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Editorial on the Research Topic

Multi-omics, Epigenomics, and Computational Analysis of Neurodegenerative Disorders

With the dawn of multi-omics technologies, integrated with computation and biostatistics,
remarkable progress has been made in understanding the pathobiology of neurodegenerative
diseases such as Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD),
Alzheimer’s disease (AD), Parkinson’s Disease (PD), Aging, and others. Multi-omics approaches
such as genomic/epigenomic, transcriptomic, proteomic, metabolomics, and miRNAomics, as well
as genetic and functional perturbations have changed the experimental modeling of these diseases.
For example, in ALS, genomic approaches such as genome wide association studies (GWASs) have
led to the discovery of relatively few loci despite 52% heritability estimates (Zhang et al., 2022).
However, these changes occur in <10% of ALS patients, and thus, there are likely to be many ALS
risk genes yet to be discovered. Similarly, in FTD (Ferrari et al., 2014), AD (Bertram and Tanzi,
2009), PD (Kia et al., 2021), Aging (Walter et al., 2011), and Dementia (Moreno-Grau et al., 2019)
GWAS has led to the identification of few candidate genes, novel loci and unique associations,
with evidence of disease-associated regulatory changes. Brain region and cell-sub-type-specific
(dys)functional multi-omics studies in neurodegenerative diseases, such as RNA-Seq, ChIP-Seq,
ATAC-Seq, and Hi-C has fueled genetic discovery in a cell-type dependent manner. For this special
Research Topic, we present a compendium of 10 articles, which offer a wide-ranging overview
of the different multi-omics pathways and unravel the genomic and transcriptomic alterations in
these diseases as well as endeavor to facilitate a better understanding of the mutational landscape
of these disorders.

To enable new biomarker discovery in ALS, Dr. Gabriel and colleague examines the whole
(unbiased) metabolomics data to study changes in spinal cord regions of two strains of mutant
SOD1 mice with fast (129S) or slow (C57BL) disease progression associated with SOD1-G93A
ALS transgenic mouse models (Valbuena et al.). The authors show that the C57BL have a more
favorable bioenergetic and metabolite profile, including neurotransmitter amino acid metabolism
and antioxidant homoeostasis, which were determined to be greatly affected in the thoracic
segment. Changes in energy and lipid metabolism were mostly apparent in the lumbar spinal cord
and these changes were mainly attributed to background differences between the two strains. Dr.
Masashi Aoki’s group presents insights into the complexity of multi-omics alteration of motor
neurons (MNs) axonal defects in ALS. The authors review the evidence coming from genetic
subtypes of ALS and further discuss the potential disease pathways leading to axonal defects (Suzuki
et al.). The study by Thompson et al. examines the proteome of ALS and PD patients compared
to controls using weighted gene co-expression network analysis (WGCNA) to identify pathways
and ontological groupings of interest that differentiate patient groups with particular emphasis
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on ALS patients. They identify nine co-expression modules,
approximately half of which cannot be annotated using
Gene Ontology (GO). Among the characterized modules, they
found ones associated with intracellular compartments and
RNA biology (module 1), the immune system (module 2),
which is hypothesized to reflect blood contamination, and
axon outgrowth (module 4). They perform paired differential
correlation analyses as a more focused correlation approach and
find that 11 co-expression modules are altered in ALS, with
enrichment in modules 1 and 3, although these modules were
without GO enrichment.

In a study on AD, Dr. Andres Kriete’s group applied a
novel combination of computational strategies to dorsolateral
prefrontal cortex RNA-Seq samples from 503 cognitively
well-characterized human subjects from the Religious Orders
Study/Memory and Aging Project (ROSMAP) and identify 26
distinct modules, encapsulating 4,429 genes (Malamon and
Kriete). More specifically, authors organized modules using
widely used WGCNA approach and find several gene co-
expression modules that become less co-expressed in AD (which
they define as “topological erosion”). One of these modules
is enriched in genes involved in immune and synaptic system
processes. They also report a loss of modular gene expression
associated with cognitive decline. Fewer genes remained within
statistically preserved modules with the transition from normal
cognition through MCI to AD. In addition, they compare SNPs
with gene expression from the same donors using expression
quantitative trait loci (eQTL) analysis and find that the most
significant eQTLs are from the Microtubule Associated Protein
Tau (MAPT) locus and the Human Leukocyte Antigen (HLA)
complex. Dr. Dhanwani’s group carried out a comprehensive
study focused on deciphering the role of neuronal antigen
specific T cell responses in AD patients and compare these
patients with age-matched healthy controls (Dhanwani et al.).
The authors have carefully measured T cell responses to several
potential antigens and found no differences in the antigen-
specific T cell (ASTC) reactivity tested for antigens, relative
frequency of major PBMCs subsets, and the expression of
genes between AD and healthy controls. Li et al. leveraged
several bulk gene expression data sets to identify the association
between autophagy-related genes and clinical symptoms of
AD using bioinformatics approaches. The study identified 80
autophagy-related genes with differential expression in the
brain tissue of patients with AD compared to healthy age-
matched control. The expression of a cluster of autophagy-
related genes (n = 16) correlated with AD clinical symptoms.
The authors relate seven autophagy-related proteins that are

Abbreviations: ALS, amyotrophic lateral sclerosis; AD, Alzheimer’s disease;

ASTC, antigen-specific T cell; PD, Parkinson’s disease; FTD, frontotemporal

dementia; DEGs, differentially expressed genes; EHR, electronic health records;

GO, gene ontology; GWAS, genome-wide association studies; HLA, human

leukocyte antigen; KEGG, Kyoto encyclopedia of genes and genomes; eQTL,

expression quantitative trait loci; MAPT, microtubule associated protein tau; MNs,

motor neurons; NHD, Nasu-Hakola disease; PCA, principal components analysis;

ROSMAP, religious orders study/memory and aging project; SOD1, super oxide

dismutase 1; TYROBP, TYRO protein kinase binding protein; WGCNA, weighted

gene co-expression network analysis; WGS, whole genome sequencing.

down-regulated in the brain of AD patients, such as MEF2A
and CUX1, with the progression of symptoms of AD patients
and focused on the study of MEF2A in detail. A subset of
seven autophagy genes were selected as they overlapped two
analyzed datasets, and the MEF2A transcription factor was
identified as a potential regulator of the expression of the seven
genes. MEF2A levels were decreased in AD cases compared
to control brain homogenate. Lv et al. describe changes in
m6A modifications in the hippocampus of mice harboring
a loss-of-function mutation in the gene coding for TYRO
Protein Kinase Binding Protein (TYROBP), and serve as a
mouse model for Nasu-Hakola disease (NHD). The authors
have reported higher levels of total tau, phosphorylated tau,
and amyloid β, all of which are correlated with AD and NHD
phenotypes. They observe striking reductions in all three RNA
methytransferases. Key regulators of the m6A writer machinery
(METTL3, METTL14, and WTAP) were also downregulated in
terms of relative mRNA and protein levels, contrasting with AD
models, while expression of the demethylases FTO and ALKBH5
were largely unchanged.

Tian Tian’s group carried out a comprehensive review
discussing advances in metabolomics approaches in PD
(Zhang et al.). The authors highlight the genetic mutations
and mitochondrial dysfunction that occur in patients with
mutations and sporadic abnormalities. The authors also
described synuclein and parkin gene mutations and functions,
as well as concisely recap new metabolomic discoveries in both
familial and sporadic PD. Together, this review provides a way
forward to advance our current understanding of metabolomics
of PD.

David Alan Bennett’s group studied four different epigenetic
clocks, as calculated on CD4+ cells derived from blood,
postmortem DLPFC and PCC samples from participants in
the ROSMAP aging study (Grodstein et al.). The authors use
Pearson analysis to compare how well four established epigenetic
clocks—Horvath, Hannum, PhenoAge, and GrimAge—correlate
with chronologic age in ROSMAP subjects with matched
CD4+ blood cells from longitudinal blood draws (∼7.5 year
interval) and matched DLPFC. The main results reported
were that DNAm age estimated from brain samples was
consistently lower than age at death, whereas the correlation
between DNAm age and chronological age was reasonable.
Mean clock age was consistently lower than chronologic age
in the brain samples. GrimAge correlated best with r = 0.92.
Epigenetic age modestly correlated with age in matched blood
and brain samples (again GrimAge performed best at r =

0.76). Finally, in the oldest-old subjects, these correlations were
much weaker.

We recognize that a single collection of articles cannot
comprehensively cover the entirety of the extremely broad range
of topics that characterize such complex and multifactorial
conditions such as neurodegeneration, nor the entire
gamut of multiomics modalities. The topics addressed,
however, help develop a clear idea, not only of what has
been accomplished to date by previous studies, but also
of the unmet needs future research should focus on. We
are confident that the papers assembled in this Research
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Topic will prove useful in spurring and stimulating the
future progress.
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Spinal Cord Metabolic Signatures
in Models of Fast- and
Slow-Progressing SOD1G93A

Amyotrophic Lateral Sclerosis
Gabriel N. Valbuena1, Lavinia Cantoni2, Massimo Tortarolo3, Caterina Bendotti3* and
Hector C. Keun1*

1 Department of Surgery and Cancer, Imperial College London, London, United Kingdom, 2 Department of Molecular
Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy, 3 Department
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The rate of disease progression in amyotrophic lateral sclerosis (ALS) is highly variable,
even between patients with the same genetic mutations. Metabolic alterations may
affect disease course variability in ALS patients, but challenges in identifying the
preclinical and early phases of the disease limit our understanding of molecular
mechanisms underlying differences in the rate of disease progression. We examined
effects of SOD1G93A on thoracic and lumbar spinal cord metabolites in two mouse
ALS models with different rates of disease progression: the transgenic SOD1G93A-
C57BL/6JOlaHsd (C57-G93A, slow progression) and transgenic SOD1G93A-129SvHsd
(129S-G93A, fast progression) strains. Samples from three timepoints (presymptomatic,
disease onset, and late stage disease) were analyzed using Gas Chromatography-
Mass Spectrometry metabolomics. Tissue metabolome differences in the lumbar spinal
cord were driven primarily by mouse genetic background, although larger responses
were observed in metabolic trajectories after the onset of symptoms. The significantly
affected lumbar spinal cord metabolites were involved in energy and lipid metabolism.
In the thoracic spinal cord, metabolic differences related to genetic background,
background-SOD1 genotype interactions, and longitudinal SOD1G93A effects. The
largest responses in thoracic spinal cord metabolic trajectories related to SOD1G93A

effects before onset of visible symptoms. More metabolites were significantly affected
in the thoracic segment, which were involved in energy homeostasis, neurotransmitter
synthesis and utilization, and the oxidative stress response. We find evidence that initial
metabolic alterations in SOD1G93A mice confer disadvantages for maintaining neuronal
viability under ALS-related stressors, with slow-progressing C57-G93A mice potentially
having more favorable spinal cord bioenergetic profiles than 129S-G93A. These genetic
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background-associated metabolic differences together with the different early metabolic
responses underscore the need to better characterize the impact of germline genetic
variation on cellular responses to ALS gene mutations both before and after the onset
of symptoms in order to understand their impact on disease development.

Keywords: amyotrophic lateral sclerosis (ALS), SOD1G93A ALS mouse model, metabolism, metabolomics, spinal
cord, oxidative stress, TCA cycle, energy metabolism

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rare, fatal
neurodegenerative disease characterized by a progressive
loss of motor neurons in the spinal cord, brainstem and cerebral
cortex. The majority of ALS cases are classified as sporadic
(sALS, about 90%) while the remaining 10% are familial (fALS),
resulting from inherited mutations in more than 20 genes (Chia
et al., 2018). However, we are currently unable to distinguish
between the two based on clinical presentation and using
existing technologies.

The clinical presentation and course of ALS is markedly
heterogeneous. Most ALS patients are only highlighted as
probable cases after some aspect of motor function has already
been compromised, and their condition would have already
deteriorated significantly by the time these diagnoses are
confirmed. The rate of disease progression is also highly variable
among different patients (Chió et al., 2011; Pupillo et al.,
2014; Fournier and Glass, 2015) even between those with the
same genetic familial form (Regal et al., 2006). A combination
of genetic and environmental or exogenous modifying factors
are believed to underlie the variability in disease progression.
While there are a number of accurate machine learning models
of ALS progression proposed that include rates of decline in
functional measures (Kuffner et al., 2015; Westeneng et al., 2018),
there are currently no standardized biomarkers or diagnostic
protocols at diagnosis to predict how rapidly patients are likely
to deteriorate. Together, the inability to identify individuals
who will go on to develop ALS ahead of the visible onset of
symptoms and the variability of the disease course complicate
efforts to study the early stages of the disease in humans,
underscoring the need to use animal models to investigate
pathogenic mechanisms of the disease.

The transgenic SOD1G93A mouse, expressing ∼20 copies of
human SOD1 with the G93A mutation, was developed shortly
after SOD1 mutations were first linked to ALS (Gurney et al.,
1994). It is currently still the model that best recapitulates
several core clinical and neuropathological features of the disease.
These mice invariably show progressive hind limb tremor
and weakness, locomotor deficits, and paralysis followed by
premature death (Bendotti and Carrì, 2004). In these models,
extensive motor neuron death in the ventral horn is observed,
along with the loss of myelinated axons in the ventral motor roots
(Leitner et al., 2009). The mice present with progressive weakness
in the hind limb leading to paralysis and death, almost perfectly
replicating the disease process in patients (Gurney et al., 1994;
Ripps et al., 1995; Wong et al., 1995). These models have been
crucial in our understanding of the underlying pathophysiology

of ALS (Bento-Abreu et al., 2010), identifying mechanisms linked
to motor neuron death such as mitochondrial dysfunction,
oxidative stress, protein aggregation, neuroinflammation, and
axonal transport defects. Several preclinical trials have been
performed in this mouse model, with some interventions
successfully delaying the disease course (Carrì et al., 2006; Turner
and Talbot, 2008; Mancuso and Navarro, 2015). Unfortunately,
these have not led to successful clinical trials in ALS patients
(Benatar, 2007; Mitsumoto et al., 2014).

The unpredictable severity of the disease in patients is a key
factor in the many failed clinical trials in ALS. This has made
it difficult to decipher pathogenesis and to develop effective
therapeutic strategies. There is growing evidence indicating
that disease severity in humans may be influenced by their
genetic background, as seen in mutant SOD1 mice altering
the cellular response to mutant SOD1 in a manner that either
ameliorates or exacerbates the disease phenotype (Heiman-
Patterson et al., 2011). Discovering the molecular mechanisms
underlying the variability in the ALS progression may improve
our understanding of modifiers of disease development.

In this study, we examined the effects of SOD1G93A on the
C57BL/6JOlaHsd (C57) and the 129SvHsd (129S) murine genetic
backgrounds, i.e., in the C57-G93A and 129S-G93A strains,
two ALS models with major clinical differences as previously
described (Pizzasegola et al., 2009). These two transgenic strains
have the same copy number of the human mutant SOD1
transgene, contain the same mutation, and express the same
amount of mutant SOD1 protein in the spinal cord. However, the
transgenic 129S-G93A mice exhibit a much faster rate of disease
progression, with mean survival of 129 ± 5 days, compared
to the transgenic C57-G93A mice, which have a mean survival
of 180 ± 16 days (Pizzasegola et al., 2009). Transcriptome
analysis of laser capture microdissected motor neurons from
the spinal cord of each line has revealed a marked down
regulation at disease onset of genes involved in mitochondrial
function, protein degradation, and axonal transport in the fast-
progressing transgenic 129S mice (Nardo et al., 2013). The
slow-progressing transgenic C57-G93A mice, on the other hand,
exhibited an upregulation of genes involved in the regulation of
the inflammatory and immune response, supporting a role for
genetic modifiers of the disease in determining the severity of
disease progression.

Metabolic alterations have been identified as potential factors
affecting the variability of the disease course in both ALS patients
(Dupuis et al., 2011) and in the fast- and slow-progressing
ALS mouse models (Pfohl et al., 2015; Nardo et al., 2016). To
verify this hypothesis and identify potential pathways associated
with disease progression in SOD1G93A mice, we used Gas
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Chromatography-Mass Spectrometry (GC-MS) metabolomics to
study metabolic changes in the spinal cord, the key affected tissue
in ALS. We studied the slow- and the fast-progressing SOD1G93A

ALS mouse models, analyzing samples at three time points:
before the appearance of visible symptoms (presymptomatic), at
disease onset and at late stage of the disease. We aimed to examine
how the metabolic response in the spinal cord evolves over the
natural history of the disease, as well as to identify variations in
metabolic responses to the mutant SOD1G93A that may direct the
two transgenic strains to lead different disease courses.

RESULTS

Principal Component Trajectories of the
Thoracic and Lumbar Spinal Cords
Metabolomes in the Slow- and
Fast-Progressing SOD1G93A Mice
To investigate the dynamic variation in systematic metabolic
responses to the mutant SOD1G93A-mediated disease process
in the slow- and fast-progressing transgenic mouse strains, the
metabolome was measured in the primary affected tissue in ALS,
the spinal cord. We examined two spinal cord segments: the
lumbar segment (which controls the hindlimbs and is affected
earlier in disease) and the thoracic segment (which controls the
axial muscles and is affected later in disease progression).

We examined multivariate patterns of metabolite variation
and their relationship to disease progression in the spinal cord
tissue metabolome by performing a PCA trajectory analysis. For
each segment, we performed a principal component analysis
(PCA) on the tissue metabolomes from all time points using
log10-transformed, mean-centered and UV-scaled data. The
principal component analysis describes the main patterns of
variation in the metabolome data by calculating a series of
principal components (PCs, linear combinations of the original
descriptors – in this case the metabolite levels measured) where
each PC is orthogonal to each other, allowing systematic variation
in the highly multivariate metabolomic data to be summarized
in PCs that describe related changes (Wold et al., 1987). The
scores of the PCs were then examined to identify the presence
of any intrinsic class-related patterns in the data. To visualize the
trajectory of the multivariate patterns represented by the PCs over
the stages of disease progression studied here, the scores of the
principal components examined were averaged for each group of
mice at each time point and plotted.

We looked at metabolic trajectories in the original principal
components space (examining the scores as calculated in the
principal components analysis), to allow for the examination
of contributions of genetic background and SOD1 genotype
differences to disease-related patterns in the temporal metabolic
response. We also compared trajectory geometries between the
different mouse genetic backgrounds and SOD1 genotypes by
looking at aligned trajectories, where trajectories for all groups
are shown to originate from the same starting point (by centering
the mean scores of the pre-symptomatic time-points of each
group to the origin). Examining the geometry of metabolic

trajectories allows us to consider how similar the metabolic
responses are between conditions, independent of inherent
differences in the initial metabolic state (Keun et al., 2004).

The scale of trajectories were not adjusted for geometric
comparisons, as no scalar enlargement or shrinkage of
trajectories was observed between mouse backgrounds. This
suggests that the overall magnitude of metabolic responses
from mutant SOD1G93A and over time are comparable
between backgrounds, and that the difference lies more in
the directionality of the metabolic response.

An analysis of variance of the linear model relating principal
component analysis scores to the three experimental factors
SOD1 genotype, background, and disease stage as well as
their interactions was performed to determine the percentage
of variance explained by each factor in the scores of each
principal component. This indicated that variation in the
first principal component was dominated by the linear model
residuals, indicating that variation in PC1 is not being driven
or strongly influenced by our experimental factors. Only small
contributions from any of the other experimental factors were
seen in PC1 (Supplementary Figure S1). As such, we focused
the search for trends in metabolic trajectories in the subsequent
principal components.

In the lumbar spinal cord, there were pronounced differences
in the metabolic profile between the two genetic backgrounds at
all time points, with a clear separation between samples from
the C57 and 129S mice along the PC2 axis (Figure 1A). The
loadings show that the top metabolites contributing to PC2
scores are involved in alanine and aspartate metabolism, tyrosine
and phenylalanine metabolism, and the malate-aspartate shuttle
(Supplementary Figure S2A).

Trajectories for the SOD1G93A mice of both backgrounds
progressed toward the negative PC3 axis, ending at a comparable
level at late stage. The NTG mice, on the other hand, traversed
a much more limited distance over the three time points. This
difference indicates the presence of a progressive metabolic
response to expression of the mutant SOD1G93A protein in
the transgenic mice. The metabolites identified in the loadings
to have the largest contributions to these effects in PC3
(Supplementary Figure S2B) include metabolites involved in
central carbon metabolism, alanine, aspartate and glutamine
metabolism, and branched chain amino acids.

When we examined the geometry of lumbar spinal cord
metabolic trajectories, there were differing responses in the mice
with C57 and 129S backgrounds (Figure 1B). In the C57 mice,
the metabolic trajectories of the NTG and SOD1G93A mice
appear to traverse similar directions from the presymptomatic
stage to onset, but diverge from each other leading into the
late stage. In the 129S background, however, the NTG and
SOD1G93A mice exhibited opposing directions of response from
the presymptomatic stage to onset.

The largest distance traversed on PC3 was from onset to late
stage in both SOD1G93A mice, with metabolic profiles at onset
being comparable to their NTG counterparts. This suggests that
there are no substantial metabolic changes in the lumbar spinal
cord due to the effects of mutant SOD1 expression, and that
metabolic responses in this tissue primarily occur in parallel to
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FIGURE 1 | Lumbar spinal cord metabolic trajectories. Figure shows (A) metabolic trajectories from a principal components analysis of the lumbar spinal cord
metabolome, and (B) aligned trajectories, where metabolic trajectories for each mouse background-SOD1 genotype combination are centered to their respective
presymptomatic time points. Lumbar spinal cord metabolomes from non-transgenic (NTG) and transgenic human mutant SOD1G93A-expressing mice (G93A) in
either the slower-progressing C57 background or the faster-progressing 129S background were measured at the presymptomatic stage (PRE), at disease onset
(ONS), and at late stage (LATE). We examined the second (PC2) and third (PC3) principal components, which capture variation in the experimental factors being
studied (percent contribution to variation of the experimental factors to each principal component are shown in Supplementary Figure S1A). The principal
component scores for each group are shown as mean ± s.e.m. (n = 5 mice for each group per time point) for each time point.

loss of motor function. Therefore, it is not clear whether they
are cause or consequence of the disease, as they may reflect the
metabolic state during large-scale motor neuron death. Motor
neuron loss is comparable in C57-G93A and 129S-G93A mice
(Marino et al., 2015).

In the thoracic spinal cord, we looked at trajectories in the
PC2-PC4 space, where the differences between strains are not
as pronounced in the NTG mice. A strong effect from mouse
background was seen in PC3 (Supplementary Figure S1B),
with a large positive-negative separation between backgrounds.
Metabolic trajectory effects outside of those driven by mouse
background were investigated by looking at PC4, which accounts
for an almost equivalent proportion of variation in the data (11%)
as PC3 (11.7%, Supplementary Figure S1B).

Here, the metabolic trajectories for the NTG mice of
both backgrounds were clustered around one quadrant of
the PCA scores plot (Figure 2A). The SOD1G93A mice had
similar metabolic profiles to their NTG counterparts at the
presymptomatic stage, but traversed away significantly from the
NTG space at onset and late stage. Unlike in the lumbar spinal
cord, the geometries of metabolic trajectories are much more
similar in the thoracic spinal cord (Figure 2B). The metabolic

trajectories of NTG mice are poorly defined and narrowly
localized, while the SOD1G93A mice have well-defined coincident
trajectories away from the presymptomatic stage to onset, with
divergence from onset to late stage.

The similarity of geometries suggests that the mode of
response to SOD1G93A in the thoracic spinal cord is comparable
between the two mouse backgrounds. However, both the
metabolic profiles and trajectories for the fast progressing
129S-G93A mice are shifted in the same direction as the
disease-associated metabolic response. This suggests that in the
thoracic spinal cord, the metabolic response to mutant SOD1
is the same, but that the initial metabolic state of the 129S-
G93A mice are closer to that of the late disease state. Unlike
the lumbar spinal cord, we observe a larger response in the
thoracic spinal cord metabolic trajectories of both SOD1G93A

mice from the presymptomatic stage to onset, suggesting the
presence of early metabolic responses (largely from PC2) that
are mobilized in the tissue ahead of the presentation of visible
symptoms. From the loadings, the main metabolites contributing
to effects in PC2 (Supplementary Figure S3B), were amino acid
metabolites and metabolites involved in ascorbate metabolism
and carnitine synthesis.
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FIGURE 2 | Thoracic spinal cord metabolic trajectories. Figure shows (A) metabolic trajectories from a principal components analysis of the thoracic spinal cord
metabolome, and (B) aligned trajectories, where metabolic trajectories for each mouse background-SOD1 genotype combination are centered to their respective
presymptomatic time points. Thoracic spinal cord metabolomes from non-transgenic (NTG) and transgenic human mutant SOD1G93A-expressing mice (G93A) in
either the slower-progressing C57 background or the faster-progressing 129S background were measured at the presymptomatic stage (PRE), at disease onset
(ONS), and at late stage (LATE). We examined the second (PC2) and fourth (PC4) principal components, which capture variation in the experimental factors being
studied (percent contribution to variation of the experimental factors to each principal component are shown in Supplementary Figure S1B). The principal
component scores for each group are shown as mean ± s.e.m. (n = 5 for each group per time point) for each time point.

Metabolic profile separation in the PC4 axis appears to be
driven largely by SOD1 genotype, with NTG mice clustering
toward the negative PC4 axis and mutant SOD1G93A mice
clustered toward the positive PC4 axis (Figure 2A). PC4
loadings indicate that the top contributors to variation in
this component are neurotransmitters and neurotransmitter
metabolites (Supplementary Figure S3A). We observe a
distinctive disease response for the fast-progressing 129S-G93A
mice compared to C57-G93A in terms of effects in this set of
metabolites based on scores in PC4.

Effects on Individual Metabolites in the
Lumbar Spinal Cord
To evaluate effects on individual metabolites, we used a linear
model incorporating effects from the three experimental factors:
(1) SOD1 genotype, (2) mouse background, and (3) disease stage,
as well as their two-way and three-way interaction effects (see
section Materials and Methods).

The largest percent contributions to variance in the meta-
bolites significantly affected in the lumbar spinal cord were
effects from mouse background, consistent with the clear

clustering by mouse background observed in the metabolic
trajectories (Figure 3A). There were significant effects from
mouse background in 6 metabolites: glyceric acid, 3-hydroxy-
3-methylglutaric acid, O-phosphoethanolamine, alpha-
ketoglutarate, pantothenic acid, and cholesterol (Figure 3A).
Significant effects for disease stage were also observed for
alpha-ketoglutarate, pantothenic acid, and cholesterol, as well as
a significant effect for the interaction between background and
disease stage for cholesterol. The only significant effect relating to
SOD1 genotype in the lumbar spinal cord was in the interaction
between SOD1 genotype and disease stage for fumarate.

The significantly affected metabolites in the lumbar spinal
cord are involved in energy and lipid metabolism, with acetyl-
CoA as a common node. Pantothenic acid is a key precursor
in the synthesis of coenzyme A (CoA). Mitochondrial acetyl-
CoA feeds carbon inputs from glycolysis into the TCA cycle,
where we find significant effects in alpha-ketoglutarate and
fumarate. Cytosolic acetyl-CoA is the ultimate precursor of
fatty acids. It is therefore important in lipid metabolism,
and there were significant effects in several intermediates:
glyceric acid, a metabolite of the glycerol backbone of
lipids, O-phosphoethanolamine, which forms the headgroup
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FIGURE 3 | Metabolites with significant associations to SOD1 genotype,
mouse background, disease stage, or their two-way and three way interaction
effects in the linear model analysis. The percent contribution to variance (R2)
for metabolites with significant associations to any of the three experimental
factors SOD1 genotype, mouse background, and disease stage, or their
two-way and three-way interaction effects in the linear model analysis (where
pFDR ≤ 0.05) are shown in heatmaps for (A) the lumbar spinal cord and (B)
the thoracic spinal cord. Effects where p ≤ 0.05 after FDR multiple testing
correction are outlined in red (n = 5 mice per group for each timepoint).

of PE-lipids, and cholesterol. 3-hydroxy-3-methylglutaric acid
is produced from the degradation of leucine to 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA), which can be cleaved into
acetoacetate and acetyl-CoA. HMG-CoA is also involved in
the synthesis of steroids such as cholesterol, due to its role as
precursor in mevalonate synthesis.

There were lower lumbar spinal cord levels of pantothenic
acid (Figure 4A, p = 3.22 × 10−9, FDR < 5%, t-test comparing

levels in C57 with 129S mice), alpha-ketoglutarate (Figure 4E,
p = 5.11 × 10−15, FDR < 5%) and fumarate (Figure 4D,
p = 3.09 × 10−5, FDR < 5%) in the 129S mice compared
to the C57 mice. This may indicate less efficient TCA cycle
activity and reduced CoA biosynthesis in mice with the 129S
background. Levels of 3-hydroxy-3-methylglutaric acid in the
129S strain were higher than in the C57 strain (Figure 4F,
p = 9.23 × 10−13, FDR < 5%), suggesting increased degradation
of leucine as an energy compensation mechanism. The levels
of O-phosphoethanolamine (Figure 4C, p = 6.10 × 10−6,
FDR < 5%) and glyceric acid (Figure 4G, p = 3.20 × 10−27,
FDR < 5%) were also higher in the 129S strain compared to
the C57 strain. There were significant effects of background,
stage, and their interaction in levels of cholesterol from the linear
model (Figure 3A and Supplementary File S1), with similar
levels in C57-NTG and C57-G93A mice that decreased over
time (Figure 4B), contrasting with lower cholesterol levels in the
129S strain from the presymptomatic stage. Cholesterol levels in
the presymptomatic C57 mice were significantly lower than in
presymptomatic 129S (p = 3.554× 10−4).

Overall, the major metabolomic changes in the lumbar spinal
cord affected energy and lipid metabolism. These were mainly
attributable to the background difference between the C57 and
129S strain, with differences between the transgenic C57-G93A
and 129S-G93A mice observable at the presymptomatic stage.

Effects on Individual Metabolites in the
Thoracic Spinal Cord
We observed a greater number of significant effects in the
thoracic spinal cord. There were significant effects relating
to mouse background in 13 metabolites: lactate, N-acetyl-
aspartate, malate, phenylalanine, glutamate, pyroglutamate,
N-methyl-glutamate, N-acetyl-glutamate, pantothenic acid,
citrate, isocitrate, fumarate, and glyceric acid (Figure 3B).
A significant interaction effect between mouse background
and disease stage was also observed for decanoic acid.
There were also significant effects for interactions with
SOD1 genotype in 15 metabolites. There were significant
interaction effects between SOD1 genotype and disease stage
for lactate, tyrosine, o-phosphoethanolamine, oleic acid,
myo-inositol, ribose-5-phosphate, dehydroascorbic acid, and
inosine. Inosine was also found to have significant interaction
effects between SOD1 genotype and mouse background, along
with uracil, N-acetyl-aspartate, aspartate, malate, succinate,
isoleucine and 3-hydroxy-3-methylglutaric acid. Finally,
the three-way interaction effect between SOD1 genotype,
mouse background, and disease stage was also significant for
3-hydroxy-3-methylglutaric acid.

A number of these metabolites are involved in central
carbon metabolism and energy production, like the glycolytic
product lactate, the key CoA precursor pantothenic acid,
3-hydroxy-3-methylglutaric acid, and the TCA cycle
intermediates citrate, isocitrate, succinate, fumarate and
malate. Levels of these metabolites in the NTG mice tend to
be higher under the C57 background compared to the 129S
(p < 0.05 and FDR < 5% comparing levels in C57 mice to 129S
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FIGURE 4 | Metabolites with significant effects relating to mouse background or SOD1 genotype in the lumbar spinal cord (A–G) are involved in energy metabolism
and lipid metabolism. Levels of metabolites with significant effects in the linear model analysis (as indicated in Figure 3A and Supplementary File S1) are shown as
mean ± s.e.m. (n = 5 mice for each group per timepoint) of relative concentration (a.u.). Metabolites with significant effects relating to SOD1 genotype are highlighted
with red names, while metabolites with background-related effects are listed in black. Asterisks denote comparisons between NTG and G93A mice where p < 0.05
and FDR < 20% from a t-test with Benjamini-Hochberg multiple testing correction (with full statistical results for the two-group comparisons in
Supplementary File S2).

for fumarate, malate, and pantothenic acid, Supplementary
File S3) apart from 3-hydroxy-3-methylglutaric acid, where
levels were generally higher under the 129S background
(p = 8.11 × 10−11, FDR < 5%, Figure 5I). This may indicate
lower activity of energy metabolism pathways and increased
metabolism of leucine to acetyl-CoA that can enter the TCA
cycle as a compensatory mechanism in the 129S-NTG mice.
Levels of oleic acid (Figure 5M) were also markedly higher in the
C57 mice compared to 129S (p = 0.0039, FDR < 5%).

When we go on to examine the effect of SOD1G93A expression,
we find that the two transgenic strains had different responses
to mutant SOD1G93A protein expression. Levels of lactate
(Figure 5C) in SOD1G93A mice were elevated compared to NTG
at late stage under both backgrounds (p = 0.0056, FDR < 20%).
We observed similar changes in thoracic spinal cord levels of
3-hydroxy-3-methylglutaric acid in the two transgenic strains
to that in the lumbar spinal cord, with generally lower levels
with little temporal variation in SOD1G93A mice compared to
NTG under the C57 background (p = 2.63 × 10−7, FDR < 5%,
Figure 5I) contrasting with a steady decrease over time in the
fast-progressing 129S-G93A mice. There were comparable levels
of 3-hydroxy-3-methylglutaric acid in the 129S-G93A compared
to 129S-NTG at the presymptomatic stage but with markedly
lower levels at late stage (p = 3.06 × 10−4, FDR < 20%). Levels
of citrate (Figure 5H) and isocitrate (Figure 5L) were lower in
the C57-G93A mice compared to C57-NTG at presymptomatic
stage and higher at onset and late stage, but these differences

were not statistically significant (Figure 5). On the other hand,
there were consistently higher levels of citrate (p = 1.13 × 10−4,
FDR < 5%) and isocitrate (p = 1.37× 10−4, FDR < 5%) in 129S-
G93A mice compared to 129S-NTG, steadily increasing over time
for both genotypes. Levels of succinate, fumarate, and malate
tended to be lower in C57-G93A mice compared to C57-NTG,
but tended to be higher in 129S-G93A compared to 129S-NTG
(p = 0.0020 for malate).

The other large group of metabolites showing significant
effects in the linear model were amino acids that act
as neurotransmitters: aspartate, N-acetyl-aspartate, tyrosine,
glutamate, and glutamate metabolites (Figure 3B). We observed
significantly lower N-acetyl-aspartate levels in C57-G93A mice
compared to C57-NTG (p = 3.32 × 10−4, FDR < 5%,
Figure 5N). There was also a significant decrease in aspartate
(p = 3.30 × 10−4, FDR < 20%, Figure 5J) and N-acetyl-
aspartate (p = 0.0026, FDR < 20%, Figure 5N) levels of
129S-G93A mice compared to 129S-NTG at late stage, but
no significant differences at presymptomatic stage and onset.
N-acetyl-glutamate levels were also significantly lower in the 129S
mice compared to C57 (p = 0.0038, FDR < 5%, Figure 5T). Levels
of tyrosine tended to be higher in SOD1G93A mice compared to
NTG in both strains (p = 3.20 × 10−4, FDR < 5%, in the 129S
mice, Figure 5R), with marked elevations in the SOD1G93A mice
from onset (significant in the 129S mice at onset, p = 0.0164,
FDR < 20%). We also observed a progressive increase in thoracic
spinal cord levels of myo-inositol in SOD1G93A mice of both
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FIGURE 5 | Metabolites involved in energy metabolism, anti-oxidant activity, and neurotransmitter amino acid metabolism (A–U) show significant effects in the
thoracic spinal cord. Levels of metabolites with significant effects in the linear model analysis (as indicated in Figure 3B and Supplementary File S1) are shown as
mean ± s.e.m. (n = 5 mice for each group per timepoint) of relative concentration (a.u.). Metabolites with significant effects relating to SOD1 genotype are highlighted
with red names, while metabolites with background-related effects are listed in black. Asterisks denote comparisons between NTG and G93A mice where p < 0.05
and FDR < 20% from a t-test with Benjamini-Hochberg multiple testing correction (with full statistical results for the two-group comparisons in
Supplementary File S2).

strains (Figure 5G), with significant differences between all C57-
G93A and all C57-NTG mice (p = 0.0164, FDR < 20%), all 129S-
G93A and all 129S-NTG mice (p = 0.0023, FDR < 5%) and as well
between C57-NTG and C57-G93A mice at late stage (p = 0.0069,
FDR < 20%) and between 129S-NTG and 129S-G93A mice at
onset (p = 0.0111, FDR < 20%). Inositol has a diverse range of
important function in neural tissues, as it is a key osmolyte in
the CNS (Fisher et al., 2002) and a precursor for phosphoinositol

lipids, which play a prominent role in signal transduction (Fisher
et al., 1992) as well as facilitate cellular events such as regulating
cell death and survival, membrane trafficking, and maintaining
the actin cytoskeleton (Vanhaesebroeck et al., 2001).

The other significantly affected metabolites may indicate
the presence of increased oxidative stress. Levels of ribose-5-
phosphate (Figure 5B), an intermediate of the pentose phosphate
pathway, were decreased in the SOD1G93A mice compared
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to NTG in both mouse backgrounds at onset (p = 0.0013,
FDR < 20% in the 129S mice) and late stage (p = 0.0053,
FDR < 20% in C57 mice and p = 0.0023, FDR < 20% in 129S
mice). Levels of inosine (Figure 5D) and uracil (Figure 5E) in
NTG mice of both strains appear to be comparable, although
levels were increased in 129S-G93A mice compared to C57-G93A
mice (p = 6.07 × 10−4, FDR < 5% for uracil). Presymtomatic
levels were also lower in C57-G93A mice compared to C57-
NTG for inosine (p = 0.0038, FDR < 20%) and uracil
(p = 0.0019, FDR < 20%), but no significant difference was
seen in 129S mice. The presence of significant responses to
SOD1G93A expression in nucleotides may relate to metabolism
of uric acid, which can function as an antioxidant (Hooper
et al., 1998). There was also a broad increase in dehydroascorbic
acid levels in 129S mice compared to C57 regardless of
genotype and disease stage (p = 9.05 × 10−19, FDR < 5%,
Figure 5A), indicating increased oxidation of the antioxidant
ascorbic acid or broadly increased antioxidant demand under the
129S background.

Overall, the major metabolic changes in the thoracic spinal
cord affected the related pathways of energy metabolism,
neurotransmitter amino acid metabolism, and antioxidant
homeostasis. Here, we observed effects attributable to the
difference in genetic background the two mouse strains, as well
as to interactions of SOD1G93A protein expression with mouse
genetic background or the stage of disease.

DISCUSSION

Thoracic Spinal Cord Exhibits Large
Metabolic Shifts Ahead of the Onset of
Symptoms, While the Lumbar Spinal
Cord Presents Few Metabolic Changes
From Onset
We studied metabolomic changes in the spinal cord of two
murine models of fALS with the same genetic trigger (mutant
human SOD1G93A, expressed in the same amount), but different
rates of disease progression. Metabolomic signatures in the spinal
cord of these mice might relate to disease severity and help define
currently unknown aspects of disease progression variability.

Results show that it is possible to distinguish spinal
cord metabolomes in these models by disease stage. In the
thoracic spinal cord, metabolomes of SOD1G93A mice exhi-
bited large deviations from their NTG counterparts between
the presymptomatic stage and onset, regardless of mouse
background. This indicates that the largest metabolic shifts
in the thoracic spinal cord happen ahead of the onset of
symptoms, and that a metabolic response to mutant SOD1
begins early in the life of the mouse. A greater understanding
of early metabolic responses to mutant SOD1 may open
possibilities for maintaining motor neurons viability. However,
full characterization of these metabolic alterations poses a
significant challenge as no clinical or biochemical parameters
can conclusively identify early ALS before the presentation
of motor symptoms.

It is possible that metabolic responses observed in the
thoracic spinal cord may be limited to SOD1-fALS, or even
to the subset with SOD1G93A, as disease development may
vary with the SOD1 mutation present (Andersen et al., 1997).
Other SOD1 ALS-related metabolic changes have previously
been reported, including differences in cerebrospinal fluid
metabolomes with SOD1-fALS patients (Wuolikainen et al.,
2012), and neurometabolic changes in cervical spinal cords of
asymptomatic mutant SOD1-positive individuals similar to those
observed in patients with clinically apparent ALS (Carew et al.,
2011). Studies of neonatal high copy number SOD1G93A mice also
demonstrate early and widespread abnormal neuronal activity
and hyperexcitability (van Zundert et al., 2008).

The thoracic and lumbar spinal cord show similar
histopathological changes in ALS patients (Schiffer et al.,
1996; Wetts and Vaughn, 1996). A few studies have examined
thoracic spinal cord involvement in the murine models. There
were degenerative vacuolar changes in thoracic spinal cord
motor neurons of the first SOD1G93A mouse line without loss of
those cells (Gurney et al., 1994; Chiu et al., 1995). There were no
changes in proteasomal activities and no impairment of glucose
use rates in the thoracic spinal cord at presymptomatic stage,
while significant differences were already apparent in the lumbar
tract (Kabashi et al., 2004; Browne et al., 2006). This suggests a
slow involvement of the thoracic segment in the disease.

In the lumbar spinal cord, typically the principal region
affected in ALS (Chen et al., 2010), the largest metabolic trajectory
responses to SOD1G93A expression occur from onset to late
stage, with similar metabolic profiles for G93A and NTG mice at
presymptomatic stage and onset. The onset of visible symptoms
of ALS indicates that a critical mass of motor neurons has
already been compromised (Sobue et al., 1983). Histopathological
comparison of C57-G93A and 129S-G93A lumbar spinal cords
mice showed statistically significant motor neuron loss at onset,
and is comparable between the slow-progressing C57-G93A and
fast-progressing 129S-G93A (45% vs. 48% motor neuron death),
increasing up to 60 and 52% respectively at the late stage (Marino
et al., 2015). As such, metabolic effects of SOD1G93A in the
lumbar spinal cord may reflect metabolic changes that occur
with widespread motor neuron death sufficient to manifest as
a motor loss phenotype. It should be emphasized that while
the progressive loss of motor neurons from onset to late stage
occurs in 2 weeks in fast-progressing mice, a similar loss occurs
in 4 weeks in slow-progressing mice. This indicates that some
compensatory mechanisms are activated in the motor neurons of
slow-progressing mice to keep motor neurons alive for longer.

While we identified relatively few significantly affected
metabolites in the lumbar spinal cord, previous work on lumbar
motor neuron transcriptomes in the two models we analyze
in this study showed a large number of gene expression
changes (Nardo et al., 2013). However, those transcriptomes
were of a single cell type. As numerous metabolic processes
are compartmentalized in the CNS, the analytical approach in
the present study examines the metabolome at organ region
level which includes contributions from different constituent cell
types. In this regard, previous work on the two mouse models
studied here show that the environment surrounding the motor
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neurons is different, with higher microglia activation in the
lumbar spinal cord of the faster-progressing 129S-G93A mice
compared to C57-G93A, but similar levels of reactive astrocytosis
(Marino et al., 2015; Nardo et al., 2016).

Results in the thoracic spinal cord present the possibility
that prophylactic interventions to modify the early metabolic
states of individuals susceptible or likely to develop ALS may
delay the onset or progression of the disease. Preconditioning
with latrepirdine, an adenosine 5′-monophosphate-activated
protein kinase (AMPK) activator, delayed the onset of symptoms
and extended lifespan in SOD1G93A mice (Coughlan et al.,
2015) but did not improve survival in SOD1G93A mice when
administered from symptom onset (Tesla et al., 2012). The
impact of the presymptomatic metabolic state on disease course
is further supported by delayed onset and improved survival
with presymptomatic administration of other treatments such as
withaferin A (Patel et al., 2015), guanabenz (Wang et al., 2014),
and davunetide (Jouroukhin et al., 2012).

Our results introduce key considerations in the design of
future spinal cord metabolism studies, as analysis of the thoracic
spinal cord may be useful to characterize earlier biochemical
abnormalities, while lumbar spinal cord tissue may provide
key information on metabolic responses to significant motor
neuron loss. Unlike in the lumbar spinal cord (Marino et al.,
2015), we only found a significant reduction in the number
of thoracic spinal cord motor neurons at the late stage, with
no differences between the two mouse strains (Supplementary
Figure S4A), supporting the later involvement of this region
in disease progression in the SOD1G93A mice. However, we
observed significant astrogliosis and microgliosis activation in
the absence of motor neuron loss in the thoracic segment
of both SOD1G93A mouse strains at onset (Supplementary
Figures S4B,C). Considering that the microglia, but not
astrocytes, are already activated at the presymptomatic stage
in the lumbar spinal cord without inducing metabolomic
changes, we suggest that astrocytosis or other mechanisms are
involved in early metabolic abnormalities in the thoracic spinal
segment. From this investigation of tissue metabolic changes,
a more detailed dissection of these metabolic processes can be
initiated, potentially using more advanced analytical techniques
to better resolve cell type-specific contributions influencing
disease severity.

The Spinal Cord Metabolome Highlights
Perturbations in Energy,
Neurotransmitter, and Antioxidant
Homeostasis Induced by Expression of
Mutant SOD1G93A

Levels of intermediates and substrates of glycolysis and the TCA
cycle fundamental for energy metabolism were altered in both
the lumbar and thoracic spinal cord. This is consistent with
the energy imbalance observed in mutant SOD1 mice, with
signs of hypermetabolism observed weeks before the onset of
symptoms (Dupuis et al., 2004). This has been attributed to
abnormalities in muscle energy metabolism (Dupuis et al., 2011)
and accompanied by expression of mitochondrial uncoupling

proteins in skeletal muscle (Dupuis et al., 2003). However, early
dysfunctions in energy metabolism have also been observed in
CNS tissue, with abnormal mitochondrial morphology appearing
as an early pathogenic feature in mutant SOD1 mice (Wong
et al., 1995; Bendotti et al., 2001). Mitochondrial complex I
activity was decreased in the SOD1G93A mouse as early as
2 months (Jung et al., 2002), which leads to defects in oxidative
phosphorylation and impaired ATP synthesis (Mattiazzi et al.,
2002). SOD1G93A mice have exhibited reduced glucose utilization
in the brain prior to onset and in the spinal cord as the disease
progressed (Browne et al., 2006), and impaired glycolysis in
the lumbar spinal cord (Tefera and Borges, 2018). The drop
in 3-hydroxy-3-methylglutaric acid levels (indicating increased
branched-chain amino acid catabolism) we observe in the
SOD1G93A mice suggests decreased glycolysis, as the brain uses
ketone as the primary energy source when energy requirements
cannot be met by glucose (Kayer, 2006). We previously
reported a marked decrease of mitochondrial transcripts and
ATP production in the ventral portion of the lumbar spinal
cord of 129S-G93A mice compared with C57-G93A at onset
(Nardo et al., 2013). The unfavorable mitochondrial metabolic
state observed in 129S-G93A mice compared with C57-G93A
supports the idea that failing homeostatic regulation of these
mechanisms may play a role in accelerating the disease
(Irvin et al., 2015).

Furthermore, the metabolism of leucine (precursor of
3-hydroxy-3-methylglutaric acid) and other branched chain
amino acids provides additional sources of acetyl-CoA.
Breakdown of branched chain amino acids including leucine
is increased in SOD1G93A mice spinal cords (Tefera and
Borges, 2018) and in SOD1G93A mouse spinal neuron-astrocyte
co-cultures (Valbuena et al., 2017).

Levels of amino acids involved in neurotransmission
(glutamate and its derivatives, aspartic acid and N-acetyl-aspartic
acid) were also perturbed in the thoracic spinal cord, consistent
with previous reports both in ALS patients and SOD1G93A fALS
models. Decreased levels of aspartate and N-acetyl-aspartic
acid have been observed using 1H MRS in patients (Foerster
et al., 2013) as well as in SOD1G93A mouse spinal cords and
plasma (Niessen et al., 2007; Bame et al., 2014; Tefera and
Borges, 2018). Glutamine-glutamate cycle homeostasis was
altered in SOD1G93A mouse astrocyte-spinal neuron co-cultures
(Valbuena et al., 2017) and neuronal glutamate transfer to
astrocytes was reduced in SOD1G93A mouse spinal cords at
disease mid-stage (Tefera and Borges, 2018). Glutamate is also
essential for the synthesis of GSH, the main CNS antioxidant.
Associated impairments in glutamate and GSH metabolism in
a SOD1G93A motor neuronal model were restored to control
levels by supporting energy metabolism (D’Alessandro et al.,
2011). Tyrosine levels, on the other hand, exhibited some of
the largest changes and were elevated more quickly in the faster
progressing 129S strain compared to the C57. The changes in
the neurotransmitter pools will need to be examined in detail,
particularly in the context of conflicting evidence on neuronal
excitability, with studies demonstrating both hyperexcitability
(Kuo et al., 2005; Pieri et al., 2009) and hypoexcitability (Delestree
et al., 2014) in mutant SOD1 mouse neurons.
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Other metabolic effects may reflect changes in antioxidant
homeostasis with SOD1G93A expression. Shifts in levels of
nucleotides like inosine and uracil may indicate perturbation in
metabolism of uric acid, a scavenger of peroxynitrite (formed
when superoxide reacts with nitric oxide) and antioxidant
(Hooper et al., 1998). Inosine supplementation increased
bioenergetic output from glycolysis in astrocytes with the
C9Orf72 hexanucleotide repeat expansion and increased motor
neuron survival in C9Orf72 ALS astrocyte-motor neuron co-
cultures (Allen et al., 2019). Peroxynitrite amplifies oxidative
damage in mutant SOD1 ALS (Drechsel et al., 2012), and
nitrosative stress from SOD1 mutations contribute to protein
aggregate formation, a neurotoxic mechanism (Basso et al., 2009).
Increased uric acid levels were neuroprotective in a mouse model
of multiple sclerosis, where they mitigated CNS tissue damage
(Hooper et al., 1998).

The reduced levels of ribose-5-phosphate found with
SOD1G93A expression in the thoracic spinal cord are also
consistent with increased levels of oxidative stress. This may
indicate increased demand for reducing power in the form
of NADPH, shifting ribulose-5-phosphate away from ribose-
5-phosphate production toward the non-oxidative part of
the pentose phosphate pathway, which produces NADPH.
Maintenance of NADPH levels is fundamental to maintain
GSH in the reduced form. Basal levels of dehydroascorbic
acid were higher in the 129S-NTG, suggesting that oxidative
stress levels may be higher in this strain and play a role in
the faster rate of disease progression. This is supported by
evidence that the 129S-NTG mice have higher O2 consumption
and a higher basal metabolic rate than C57-NTG mice
(Almind and Kahn, 2004).

Metabolic Responses to Mutant
SOD1G93A in the SOD1G93A Transgenic
Mice Reflect Differences in Genetic
Background Between the Two Strains
Some of the largest effects observed in the spinal cord tissue
metabolomes relate to the different genetic background of the
two mouse strains. This is the single largest discriminating
factor in the lumbar spinal cord, and genetic background-related
differences in thoracic spinal cord metabolic profiles are clear
in all NTG mice and presymptomatic SOD1G93A mice. These
suggest that germline differences in metabolism may contribute
to ALS progression differences between the two SOD1G93A

strains, as they may affect the capacity of the cell to address
toxic impacts of mutant SOD1. This is consistent with the many
signs of altered metabolic homeostasis seen in ALS patients
(Ngo and Steyn, 2015).

The metabolic states of hyperlipidemia, high cholesterol levels,
and type 2 diabetes positively correlated with survival in ALS
(Dupuis et al., 2008; Seelen et al., 2014; Kioumourtzoglou et al.,
2015) while weight loss associates with poor prognosis (Dupuis
et al., 2011). In addition, a range of antecedent diseases have
been associated with a delayed ALS onset age but a shorter
disease duration (Hollinger et al., 2016). In this context, it is
relevant that in wild type mice, the C57 genetic background

renders the mice more prone to become obese, insulin resistant,
and glucose intolerant and develop diabetes (Almind and Kahn,
2004; Mori et al., 2010). Interestingly, in SOD1G93A mice,
the C57 strain exhibits slower disease progression and lower
weight loss compared to the 129S (Nardo et al., 2016). The
significant associations of glycolysis and TCA cycle metabolites
to genetic background we observe indicate impacts on energy
and mitochondrial metabolism pathways. Taken together, these
suggest that the slow-progressing C57-G93A mice may have a
more favorable spinal cord bioenergetic profile than the 129S-
G93A. Our study underlines a role for metabolism as a factor
in determining disease onset age and survival length. However,
further investigation is needed to determine the mechanisms
by which these and other metabolic differences that arise
due to differences in genetic background impact the severity
of disease in ALS.

Thoracic spinal cord metabolomes of presymptomatic 129S-
G93A mice appear to be more similar to metabolomes in
symptomatic and advanced disease than to presymptomatic C57-
G93A mice, indicating that the initial metabolic state under
the 129S background may confer disadvantages in maintaining
neuronal viability under ALS-related stressors. In instances where
basal metabolic states produce similar effects to the response
to an ALS mutant gene, a compounding effect may occur
that accelerates disease progression. This would be consistent
with ALS manifesting according to a liability threshold model,
where disease develops when the burden of disease-causing
factors crosses a critical threshold (Al-Chalabi and Hardiman,
2013). Analysis of ALS incidence rates indicate that the
neurodegenerative process leading to ALS is a multistep process,
with a large effect mutation accounting for a greater number of
steps (Chió et al., 2018). The remaining steps needed to initiate
disease are likely due to exogenous factors, involving an interplay
between environmental factors and the genome of individual
patients (Chió et al., 2018).

In the analysis of associations to tissue metabolism, we
identify a number of metabolites with significant associations
to background, stage, SOD1 genotype, or interactions between
these factors but with a relatively low corresponding percentage
contribution to variation in metabolite tissue levels (<10% for
some metabolites). This is consistent with observations that
contributions to variance in most metabolite levels studied
are in the single digit percentages for household effects and
significantly associated clinical covariates in families multiplex
for coronary artery disease (Shah et al., 2009), for demographic
variables (such as age, BMI, sex, ethnicity) in children from 6
european populations (Lau et al., 2018), for BMI in individuals
from the TwinsUK and Health Nucleus studies (Cirulli et al.,
2019), and for the combined contribution of clinical covariates
in individuals from the Framingham study (Rhee et al., 2013).
The fractions of variance associated with genetic traits in
GWAS studies typically range from 1 to 12% (Gieger et al.,
2008; Rhee et al., 2013) or less (Illig et al., 2010). SOD1
is not acting directly to produce metabolites observed in
this study in cells, so it is not unreasonable that SOD1
genotype has a similar scale of contribution to variation in
individual metabolites.
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The significant background–related differences observed for
several spinal cord tissue metabolites in the slow-and fast-
progressing SOD1G93A mice were seen in a well-defined
ALS experimental model in a controlled setting where any
environmental factors that may be involved in the disease are
significantly reduced. This highlights the potential to identify
cellular metabolic pathways that might change the disease course
or serve as markers of disease severity in these murine models.

CONCLUSION

This longitudinal study of the spinal cord metabolome in the
slow-progressing C57-G93A and the fast-progressing 129S-G93A
strain identifies the presence of metabolic responses to SOD1G93A

expression before the manifestation of visible symptoms (as seen
in thoracic spinal cord tissue), as well as metabolic responses that
are pronounced when there is an overt disease phenotype (as seen
in the lumbar spinal cord tissue). We found substantial metabolic
effects relating to differences in mouse genetic backgrounds, as
well as effects that appear to relate mouse background to disease
progression. The alterations to metabolite levels observed in the
study may indicate changes to neurotransmitter synthesis and
utilization, energy homeostasis, and the oxidative stress response.
These results indicate a potential role for basal metabolic
differences and their alteration of metabolic responses to mutant
SOD1G93A expression in influencing the disease severity.

Our investigation of the whole organ metabolome in the
thoracic and lumbar segments of the spinal cord of SOD1G93A

strains with different disease progression has provided insights
into the effect of early metabolic changes and background
metabolic differences on variation in ALS disease progression.
However, further experimental work is needed to delineate how
each background may modify the cell metabolism of the different
cell types in the spinal cord as well as their metabolic interplay
in ALS. This underscores a need to characterize the impact of
germline genetic variation on the cellular response to mutations
in ALS genes in early life, to identify cellular processes that may
delay the onset or progression of the disease.

MATERIALS AND METHODS

Mouse Models
Female transgenic SOD1G93A mice of the C57BL/6JOlaHsd (C57-
G93A) or 129SvHsd (129S-G93A) genetic background and their
corresponding non-transgenic (NTG) female littermates (C57-
NTG and 129S-NTG respectively) were used in this study.
These mouse lines were generated a few years ago from
the original B6SJL-TgNSOD-1-SOD1G93A -1Gur line expressing
approximately 20 copies of human mutant SOD1 with a
Gly93Ala substitution obtained from Jackson Laboratories and
then maintained on a C57OlaHsd or 129SvHsd background (for
more than 30 or 10 generations, respectively) at Harlan Italy
S.R.L. We have focused our investigations on the C57-G93A
and the 129S-G93A as we have observed marked differences
in disease onset, progression and survival length between

these models. The full characterization of the difference in
disease onset, progression and survival length between the two
SOD1G93A strains with several functional outcome metrics have
been detailed in previous publications (Pizzasegola et al., 2009).
The age (in weeks, means ± S.D.) of the SOD1G93A mice at
the onset of symptoms, paralysis, and survival are shown in
Supplementary Table S3.

Spinal cords were collected at the presymptomatic stage (at
8 weeks), at disease onset (19 weeks for the C57 strain, and
14 weeks for the 129S strain), and at late stage (21 weeks for
the C57 strain, and 16 weeks for the 129S strain). Collection
time points for each strain were determined on the basis of
motor function analyses (paw grip strength test) and body weight.
The progressive impairment of both fore- and hindlimb grip
strength is one of the most widely used tests to measure disease
progression (Ludolph et al., 2010).

The onset of symptoms was set as the age when the mice
showed the first sign of paw grip strength impairment (reduced
latency to fall from an inverted grid) and their body weight started
to decline. The late stage was set as the point when the mice
exhibited a decrease of∼80% in their latency on the grip strength
test and their body weight declined 20% from the initial value.

Mice were maintained at a temperature of 21 ± 1◦C with a
relative humidity of 55 ± 10% and a 12h light/dark cycle. Food
(standard pellets) and water were supplied ad libitum. Procedures
involving animals and their care were conducted according to the
Mario Negri institutional guidelines, which are compliant with
national (D.L. no. 116, G.U. suppl. 40, Feb.18, 1992, Circular
No.8, G.U., 14 July 1994) and international policies (EEC Council
Directive 86/609, OJ L 358, 1 Dec.12, 1987; NIH Guide for the
Care and use of Laboratory Animals, U.S. National Research
Council, 1996). All experiments and protocols were examined
by the Institutional Ethical Committee and authorized by the
Italian Ministry of Health. The mice were bred and maintained in
a specific pathogen-free environment. Animals with substantial
motor impairment had food on the cage bottom and water bottles
with long drinking spouts.

Tissue Preparation
Spinal cord tissues were obtained from C57-G93A and
129S-G93A mice and their corresponding age-matched NTG
littermates (n = 5 for each group) at the presymptomatic, onset
and late stage. Spinal cords were rapidly removed and placed in
cold artificial CSF (127 mM NaCl, 1 mM KCl, 1.2 mM KH2PO4,
26 mM NaHCO3, 10 mM D-glucose, 2.4 mM CaCl2, 1.3 mM
MgCl2) to limit metabolic processes prior to dissection. Tissues
were then transferred onto a Petri dish cooled on ice, and the
lumbar (L1-L6) and thoracic (T1-T13) segments dissected out
and snap frozen in isopentane at −40◦C. Tissues were stored at
−80◦C prior to metabolomic analysis.

Metabolite Extraction
Approximately 25 mg of lumbar and thoracic spinal cord tissue
was dissected on dry ice, weighed, and transferred to 2.0 mL
screw cap tubes containing 0.1 mm glass beads. Metabolites
were then extracted in 80% methanol using a Precellys24
tissue homogenizer operating at 6500 rpm in 2 cycles of 20 s.
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The resulting extract was dried down in a vacuum concentrator.
Aqueous metabolites were then separated from the dried
intracellular extract using a 2:1:3 chloroform:methanol:water
extraction method. The aqueous portion of the extract was
separated and lyophilized in silanized 1.5 mL glass vials
prior to analysis.

Gas Chromatography-Mass
Spectrometry Metabolomic Analysis
Spinal cord metabolomes were analyzed in two separate batches,
one for each spinal cord segment. Derivatization for GC-MS
was carried out by methoximation followed by trimethylsilylation
according to the protocol by Kind et al. (2009). Samples were
analyzed on an Agilent 7890 gas chromatograph connected to
an Agilent 5975 MSD using the FiehnLib settings (Kind et al.,
2009) and retention time-locking to myristic acid-d27. GC-MS
data were processed by deconvolution using AMDIS with the
Fiehn library, followed by integration using GaVIN (Behrends
et al., 2011) based on the quantitation ion for each metabolite
as taken from the Fiehn library. Metabolite measurements were
subjected to a smoothed spline normalization of repeat-injected
pooled QC samples prior to further analysis.

Statistical Analysis
Statistical analysis was carried out in R (3.4.3). Principal
component analysis was performed on log10-transformed,
mean-centered and unit variance (UV)-scaled data using
the pcaMethods package. Measures of normality for each
metabolite before and after log10-transformation are provided in
Supplementary Table S1 for lumbar spinal cord metabolites and
in Supplementary Table S2 for thoracic spinal cord metabolites.

The effects of experimental factors in our study were tested
using a linear model relating tissue metabolite levels or principal
components analysis scores to SOD1 genotype, mouse genetic
background (strain), disease stage, and the two- and three-way
interactions between these factors. The percentage of variance
explained by each factor was determined using an ANOVA. The
calculated p-values were adjusted for multiple comparisons to
control the false discovery rate (FDR, Benjamini and Hochberg,
1995). The results of the linear model statistical analyses are
provided in Supplementary File S1.

Two-group comparisons between NTG and G93A mice
for each mouse background and disease stage were tested
using a Student’s t-test, with p-values adjusted for multiple
comparisons to control the FDR. The results of these statistical
comparisons are provided in Supplementary File S2. Broader
2-group comparisons looking at larger subgroupings in the
sample set (i.e., comparing all C57 with 129S mice, all C57-
NTG mice with C57-G93A mice, etc.) were also tested using a
Student’s t-test, with p-values adjusted for multiple comparisons
to control the FDR. Comparisons where pFDR ≤ 0.05 were
considered significant. The results of these statistical comparisons
are provided in Supplementary File S3. Comparisons where
p ≤ 0.05 and FDR < 20% were considered significant; we have
chosen to highlight FDR < 5% for most comparisons to
focus on the most important changes. Summary statistics

of metabolite measurements for each group are provided in
Supplementary File S4.

Immunohistochemistry and Motor
Neuron Count
Mice at the onset of the symptoms, under deep anesthesia, were
transcardially perfused with PBS followed by 4% PAF solution
in PBS. The spinal cord was rapidly removed, post-fixed for 2 h
and cryopreserved/dehydrated in 30% sucrose solution overnight
before being frozen at −80◦C. 10–12 sections of the thoracic
spinal cord (segments T5–T8) of 4–5 mice per group were labeled
with Neurotrace to detect the Nissl substance of neuronal cells
(1:100 for 30 min, Life Technologies). Images were acquired with
an Olympus Fluoview confocal microscope and neuron areas
were analyzed with free software ImageJ. Only cells with an
area ≥ 400 µm2 were considered for the quantitative analysis of
motor neuron numbers. Data were expressed as mean number of
motor neurons per section. Immunofluorescence was evaluated
on five coronal thoracic spinal cord section (30 micron thickness)
taken one every ten within the T5-T8 segment. After blocking
the non-specific binding sites by incubation with a solution
containing normal goat serum (NGS 10%) and Triton (0.1%)
in PBS 0.01 M, the sections were incubated with the primary
antibodies (overnight at 4◦C), diluted in a solution containing
NGS 1% and Triton 0.1% in PBS 0.01 M: mouse monoclonal
anti-GFAP (1:2500, Merk Millipore), rabbit anti-IBA-1 (1:500,
Wako). After three washes in PBS 0.01 M, the sections were
incubated (1 h at room temperature) with appropriate secondary
antibodies conjugated with a fluorophore (Alexa Fluor R© Dyes,
Life Technologies), diluted (1:500) in a solution containing NGS
(1%) in PBS 0.01 M. After 3 washes in PBS 0.01 M, the sections
were mounted on glass slides and then covered with coverslips
using FluorSaveTM (Calbiochem). Images were acquired with
an Olympus Fluoview confocal microscope (20X magnification).
The quantification of GFAP and IBA-1 intensity was carried out
by determining the mean gray value of fluorescent signals in the
gray matter of ventral horns, using the free software ImageJ.
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FIGURE S1 | Percent contribution to variance of the experimental factors
examined in the first 6 principal components of (A) lumbar spinal cord and (B)

thoracic spinal cord metabolic profiles. Effects of the three experimental factors
SOD1 genotype, mouse background, and disease stage, as well as their two-way
and three-way interaction effects were examined using a linear model.

FIGURE S2 | Lumbar spinal cord principal component analysis loadings for PC2
and PC3.

FIGURE S3 | Thoracic spinal cord principal component analysis loadings for PC4
and PC2.

FIGURE S4 | Neuropathological alterations in the thoracic segment of the spinal
cord of two SOD1G93A mouse strains and their respective non-transgenic mice.
(A) Motor neuron count in thoracic spinal cord at different disease stages.
Neurons were labeled with Neurotrace and motor neurons identified by the soma
dimension (area ≥ 400 µm2). A slight but not significant decrease in the number
of motor neurons was observed in both SOD1G93A mouse strains compared to
their respective non-transgenic (NTG) mice at the onset of symptoms (left) while
this effect becomes more evident and significant in the late symptomatic stage
(right). Quantification of (B) GFAP and (C) IBA-1 immunostaining in the ventral
thoracic spinal cord of both SOD1G93A mouse strains at the onset of the
symptoms. In both strains, a marked increase of reactive astrocytosis (GFAP) and
microglia (IBA-1) were observed compared to Ntg mice (two-way ANOVA, n = 4-5,
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001).

TABLE S1 | Shapiro-Wilk normality test results and skewness measures for the
lumbar spinal cord data.

TABLE S2 | Shapiro-Wilk normality test results and skewness measures for the
thoracic spinal cord data.

TABLE S3 | Age of mice at different points in the disease course. The onset of
symptoms is defined as the time when mice show the first signs of limb muscle
force deficit on grip strength (when they fall from the inverted grid before 90
seconds). Paralysis is defined as the time when mice are completely unable to
stay on the inverted grid. Survival is defined when mice are not able to right
themselves within 10 seconds when laid on their side.

FILE S1 | Results of linear model statistical analysis.

FILE S2 | Results of two-group comparisons (Student’s t-test) between NTG and
G93A mice for each mouse background and disease stage.

FILE S3 | Results of two-group comparisons (Student’s t-test) between larger
subgroupings of the sample set.

FILE S4 | Summary statistics of metabolite measurements for each group.
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PA, United States

We have applied a novel and integrative analysis framework for next-generation
sequencing (NGS) data to 503 human subjects provided by the Religious Orders
Study and Memory and Aging Project (ROSMAP) to examine changes in transcriptomic
organization and common variants in association with late-onset Alzheimer’s disease
(LOAD). Our framework identified seven reproducible, co-regulated modules after quality
control (QC), clinical segregation, preservation filtering, and functional ontology analysis.
These modules were specifically enriched in several innate and adaptive immune
system processes, the synaptic vesicle cycle, and Hippo signaling. Topological and
functional erosion of these modules due to shedding of genes and loss of in-module
connectivity was diagnostic of disease progression. Perturbation analysis revealed that
only 1% of eQTLs overlapped genes participating in these co-regulated modules.
Common variants nevertheless identified components of the immune systems like
human leukocyte antigen (HLA) complex and microtubule-associated protein tau (MAPT)
regions in association with LOAD. Our results implicate microglial function, adaptive
immune response, and the structural degeneration of neurons as contributors to
the transcriptional deregulation observed along with common genetic variants in the
progression of LOAD.

Keywords: Alzheimer’s, networks, immune system, synapses, functional, eQTL, WGCNA

INTRODUCTION

Late-onset Alzheimer’s disease (LOAD) is a complex condition involving tau protein aggregates or
tauopathy, amyloid and lipid processing, aging, immune system response, metabolism, lysosomal
processing, and cerebrovascular health (Rogers et al., 1988; Braak et al., 2011; Jevtic et al.,
2017; Wang et al., 2017). Progress in understanding and describing this large and diverse set of
biological systems is in part determined by our ability to fully integrate clinical neuropathological
data with comprehensive models that combine several modes of next-generation sequencing
(NGS) data. To this end, we have applied our novel and integrative analysis framework to 503
subjects (305 cases/198 controls) provided by the Religious Orders Study and Memory and Aging
Project (ROSMAP) study (Bennett et al., 2012) to develop a detailed landscape of the genetic
and regulatory systems involved in LOAD, specifically with respect to clinical scores. Our study
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accomplished the following four objectives: (1) identified changes
in transcriptional organization in association with clinical
phenotypes; (2) characterized the systematic transcriptomic
and functional changes accompanying LOAD through clinical
segregation co-expression analysis; (3) identified common
genomic loci involved in LOAD; and (4) tested the relationship
between predicted expression quantitative trait loci (eQTLs) and
systematic changes in gene expression.

One of the core elements of our approach is a weighted gene
co-expression analysis (WGCNA), enabling the classification and
identification of highly correlated and connected modules of
genes grouped by co-expression (Zhang and Horvath, 2005;
Langfelder and Horvath, 2008). Network modules can be
described as series of interrelated nodes and edges. Here, nodes
are messenger RNA (mRNA) transcripts. Edges represent the
correlation coefficients between two or more given nodes, where
degrees are the number of edges shared by nodes. Genes usually
have many regulators, so we chose a hierarchical co-expression
model. Our combined approach increases specificity by reducing
large co-expression networks to only functionally significant
and highly reproducible modules. Functional significance is
defined as the Gene Ontology biological process p-value and
reproducibility is defined as the module preservation Z-score
(Langfelder et al., 2011). Co-expression analysis has been
successfully applied in Alzheimer’s disease (AD), incorporating
clinical scores and differential expression to identify co-regulated
modules changing with disease in an “all-in-one” analytical
design (Miller et al., 2008; Liang et al., 2018; Meng and
Mei, 2019). However, the common approach to co-expression
modeling does not include clinical segregation analysis. Here
we provide clinical segregation for three groups: no cognitive
impairment (NCI), mild cognitive impairment (MCI), and AD
subjects. Additionally, strong genetic associations have been
observed in LOAD (Naj et al., 2011; Lambert et al., 2013; Sims
et al., 2017) along with systematic changes in gene expression
profiles and transcriptional organization (Miller et al., 2008,
2010; Zhang et al., 2013; Ramasamy et al., 2014). Therefore,
we hypothesize that genetic variation should account for
changes in gene expression observed in transcriptomic analyses.
We systematically tested the relationship between predicted
eQTLs and transcriptomic organization to show underlying
perturbations in gene networks that can partially account for
changes observed in co-expression analyses.

METHODS

The Accelerating Medicines Partnership (AMP) provides a
variety of multi-platform next-generation sequence (NGS),
clinical, and other –omics data. We selected all subjects from the
ROSMAP study with overlapping clinical, RNA-seq, and DNA-
seq data from the prefrontal cortex from a total of 503 elderly
individuals varying from cognitively healthy to diagnosed AD
(Bennett et al., 2012; De Jager et al., 2018). All subjects reported
race as Caucasian. According to study details, RNA was extracted
from the gray matter of the dorsolateral prefrontal cortex
and quantified using the NanoDrop spectrophotometer.;101-bp

paired-end, Illumina HiSeq reads were aligned to the human
reference genome 19 (hg19). Genotype data were generated using
the Affymetrix GeneChip 6.0 platform and filtered based on the
following quality control (QC) criteria: genotype call rate less
than 99%, minor allele frequency (MAF) less than 2%, and a
Hardy–Weinberg equilibrium threshold below 1%. A total of
619,377 single nucleotide polymorphisms (SNPs) passed QC and
were used in this analysis.

Analysis Framework
Our analytical framework was previously introduced (Malamon
and Kriete, 2018) and extended here to include additional
features, such as clinical segregation, module preservation, gene
set, and functional enrichment analyses (see Supplementary
Figure 1 for workflow diagram and full description of methods).
This workflow consists of four main components: QC, co-
expression modeling, functional enrichment, and eQTL analysis.
We perform a comprehensive, three-tiered QC process to
normalize and reduce the RNA-seq dataset to the 20,000
most informationally dense and connected transcripts. Co-
expression networks are constructed using the WGCNA toolkit
(Langfelder and Horvath, 2008). Next, we apply WGCNA’s
module preservation testing procedure to measure statistical
reproducibility in all modules. We exclude all modules with
preservation Z-scores below 10 standard deviations. Higher
Z-scores signify modules that reoccur despite changing input
conditions. These become candidate modules. Functional term
and enrichment analyses are performed on all candidate modules.
Gene set enrichment analysis (GSEA) (Subramanian et al.,
2005) was used to examine larger functional network trends
and reproduce candidate modules and genes. We provide a
novel approach leveraging clinical segregation co-expression
analysis to examine and compare alterations in network and
module structure and organization with disease progression. For
segregation analysis, QC, co-expression modeling, and functional
enrichment were repeated for all clinical subgroups. Finally,
genome-wide association (GWA) and perturbation analyses were
performed. GWA provides all genomic loci (SNPs) predicted
in association with disease status. eQTL analysis provides the
predicted effects of SNPs on gene expression. Perturbation
analysis was performed by overlapping co-expression module
genes with eQTLs.

Clinical Segregation Analysis
Figure 1 outlines our clinical segregation protocol, which
was designed to assess how transcriptomic differences are
presented in clinical subgroups. We segregated samples
by extracting sample data based on COGDX and CERAD
scores and processing each group independently in WGCNA
(see Supplementary Table 1 for clinical definitions and
Supplementary Figure 2 for data plot). COGDX collapses 19
different neuropsychological tests into a single “Global Cognitive
Score” (De Jager et al., 2018). The CERAD protocol provides
neuropathological classifications for disease based on a wide
variety of life-style, neuropsychological, and cognitive tests
(Mirra et al., 1991). For COGDX, we segregated samples leaving
167 subjects with NCI, 131 subjects with MCI, and 205 subjects
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FIGURE 1 | Overview of clinical segregation co-expression analysis. An outline of our novel approach for independently analyzing and comparing co-expression
networks and module characteristics in regard of clinical disease progression scores. The three vertical lanes represent COGDX segregation for three different
cognitive scores (NCI, MCI, and AD) as defined in Supplementary Table 1. All subgroups were processed independently. First, quality control (QC) was applied to
each set to retain only the 20,000 most informationally dense and variable transcripts. Next, networks were constructed with identical modeling parameters for all
three subgroups. Module preservation (MP) testing was used to filter modules to only those that were highly reproducible (Z-score > 10), leaving seven modules.
Within these modules, we observed a significant loss in the total transcripts classified, within-module connectivity, and functional term enrichment in association with
disease progression. Heatmap tiles in the bottom lane refer to functionally significant GO biological process terms.
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with an Alzheimer’s diagnosis (AD). For CERAD, we segregated
samples leaving 130 subjects with no AD (CERAD_1), 226
subjects with possible or probable AD (CERAD_2), and 147
subjects with confirmed AD (CERAD_3). We independently
processed and analyzed all six clinical subgroups using WGCNA
with the same network parameters for all experiments.

RESULTS

Network Construction
We calculated the transcriptomic network’s total connectivity
using the median-based bi-weight mid-correlation, which is more
accurate than Pearson’s method for gene co-expression modeling
(Zheng et al., 2014). Raising the soft-threshold to a power of 6
produced an overall R2 value of 0.895, as seen in Supplementary
Figure 3. Note that the R2 value rises sharply and quickly flattens
out with a slope of−1.080 at just six iterations. WGCNA was used
to construct the initial co-expression network (Supplementary
Figure 4) using all 503 subjects. Careful consideration was used
in selecting the criteria for module identification, also known
as branch trimming. We identified 26 distinct modules, totaling
4,429 transcripts with an average of 201 genes per module.
Modules contain directionally signed groups of genes. In other
words, genes in the same module are co-expressed in the same
direction and well correlated with one another. We selected to
lean on the side of specificity by not partitioning around medoids,
leaving a total of 15,571 (77.85%) transcripts out of modules
(unclassified), as indicated in gray (Supplementary Figure 4).
Overall, the dendrogram shows clean, distinct clustering with
sufficient levels of local dissimilarity. WGCNA arbitrarily assigns
module names by color, i.e., gray and magenta. Supplementary
Figure 5 shows all module-to-module and module-to-eigentrait
(eigenvector of clinical metric) correlations for each of the four
clinical NP traits. Supplementary Spreadsheet S1 contains all
co-expressed genes grouped by module.

Clinical Segregation and Module
Preservation Analysis
To investigate network and module characteristics with respect
to disease progression, we segregated samples according to
COGDX and CERAD scores and analyzed each of the six clinical
subgroups independently in WGCNA. Clinical subgroups were
assigned according to Supplementary Table 1. For example,
subjects with COGDX scores of 0 or 1 were assigned to the
NCI group. For COGDX, we uniquely classified 4,542, 3,998, and
2,992 genes for the NCI, MCI, and AD groups, respectively. For
CERAD, we uniquely classified 3,426, 3,957, and 3,991 genes for
the CERAD_1, CERAD_2, and CERAD_3 groups, respectively.
WGCNA’s module preservation function allowed us to accurately
measure module reproducibility through permutation testing.
We calculated module preservation Z-statistics using 200
permutations for all six subgroups. See Supplementary Figure 6
for preservation statistics. Modules with Z-scores above 10 are
not obtained by random chance and can be reliably reproduced
(Langfelder et al., 2011; Li et al., 2015). A total of seven candidate
modules (Table 1) survived preservation testing. Segregation

by COGDX showed increased reproducibility and stability
in module preservation over segregation based on CERAD
assessment scores; therefore, we selected COGDX modules for
further analysis.

Functional Enrichment of Co-expression
Modules
Biologically relevant, functional pathways should be reproducible
and overlap known LOAD pathologies. To this end, we queried
the GO database to examine the functional ontologies of
the seven candidate modules. Table 1 provides statistically
significant biological process terms involving known LOAD
pathologies. The “magenta” module, which showed the strongest
functional association, was well-correlated with COGDX and
highly enriched with many immune-related genes including
ABI3, APBB1IP, CD33, CD86, DOCK2, human leukocyte
antigen (HLA)-DRA, HLA-DMB, MS4A4A, MS4A6A, MS4A7A,
TREM2, and TYROBP. Other “magenta” GO terms include
“complement pathway,” “cytokine signaling,” “neutrophil
degranulation,” and “Toll-Like receptor activation.” Additional
modules involving the immune system included the “turquoise”
and “brown” modules, which were both enriched for the
“regulation of complement activation.” A GO “cellular
components” query revealed the “dendrite membrane” as
significant for the “yellow” module (p-value = 3.73E-06).
This observation is consistent with the “biological process”
query results, which provided several synaptic processes
including “neuronal projection,” “vesicle cycle,” and “synaptic
maintenance.” The “blue” module was functionally enriched
for genes in the Hippo signaling pathway, including AMOT,
FAT4, LAT2, TJP1, TJP2, STK3, and YAP1. “Fatty acid oxidation”
was also significant for the “blue” module. Additionally, cell-
specific enrichment was performed on all seven modules (Uhlen
et al., 2015; Kuleshov et al., 2016; Lachmann et al., 2018). See
Supplementary Table 2 for results.

Organizational Changes in Immune
Module
Figure 2 shows the erosion of the “magenta” module by
comparing the network characteristics of the three co-expression
networks segregated by COGDX. “Magenta” contained 191, 145,
and 99 genes for NCI, MCI, and AD, respectively (Figure 2A) and
shared 86 genes across all clinical groups. The mean intramodular
degrees for the NCI, MCI, and AD subgroups provided in
Figure 2B were 47.13, 39.27, and 31.27, respectively. The “blue”
module shared 85 genes in all three subgroups with 859, 693, and
222 genes, respectively. The mean intramodular degrees for each
subgroup were 409.32, 341.86, and 127.42 for the “blue” module.
The “yellow” module shared 27 genes with 859, 693, and 222
genes, respectively. The mean intramodular degrees for “yellow”
were 90.48, 74.69, and 12.66, respectively (p-value = 2.2E-
16). Similar trends were observed in the other four modules.
ANOVA and Bartlett’s test for heteroscedasticity were performed
for all transcripts by COGDX subgroup revealing a significant
(p-value < 0.05) increase in the expression of 22 “magenta,” 31
“yellow,” and 70 “blue” genes. Heteroscedasticity was significant
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FIGURE 2 | Erosion of nodes and edges for top three functional modules by CODGX segregation. (A) Venn diagram of genes in the immune-enriched module
(magenta) for the three COGDX subgroups, NCI, MCI, and AD. (B) Boxplots with the number of intramodular connections (degrees) grouped by COGDX. (C) Venn
diagram for “blue” module (Hippo Signaling). (D) Boxplots of degrees grouped by COGDX for “blue” module. (E) Venn diagram for “yellow” module (synaptic vesicle
cycle). (F) Boxplots of degrees grouped by COGDX for the “yellow” module.
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FIGURE 3 | Genome-wide association plots for eQTL analysis. Regional association plots for MAPT and HLA-DPB2 regions. (A) Recombination rates (cM/Mb) (right
vertical axis) and –log10 (p-value) (left vertical axis) for SNPs with linkage peaks in blue for the MAPT and (B) HLA-DPB2 regions. SNPs are colored by the linkage
disequilibrium correlation coefficient (R2). Genetic linkage data were provided by the International HapMap Project.
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TABLE 1 | Statistically significant functional terms for seven well-preserved modules sorted by adjusted p-value.

Module name # of genes Highest fold enrichment ontology term Fold
enrichment

Lowest p-value Adjusted
p-value

NCI MCI AD

Magenta 191 145 99 Regulation of T cell activation via T cell
receptor contact with antigen bound to
MHC molecule on antigen presenting cell

>100 Immune system process 1.80E-40

Yellow 291 217 27 Regulation of synaptic vesicle cycle 12.67 Modulation of chemical
synaptic transmission

1.32E-14

Blue 859 693 222 Hippo signaling 9.74 Regulation of cell signaling 2.69E-14

Turquoise 1305 992 429 Regulation of complement activation 6.26 Cellular component
organization or biogenesis

1.47E-08

Green 66 168 54 Phospholipid dephosphorylation 12.64 Cellular protein metabolic
process

1.67E-07

Red 181 65 129 Regulation of synapse organization 5.23 Chemical synaptic transmission 5.11E-05

Brown 451 506 195 Regulation of complement activation 8.86 Humoral immune response 1.60E-04

NCI, MCI, and AD columns provide the number of module genes by COGDX subgroup. GO’s DAVID functional analysis results are provided for seven modules. Highest
fold enrichment and lowest p-value (Bonferroni adjusted) are provided in the fifth and seventh columns with the predicted biological process.

(p-value < 0.001) for 36, 48, and 74 genes, respectively. These
data provide supporting evidence for the deregulation of gene
networks in these three modules. Supplementary Spreadsheet S2
contains all ANOVA and Bartlett’s testing results.

Gene Set Enrichment Analysis
The Broad Institute’s GSEA toolkit was used to identify disease-
associated pathways via the KEGG biological pathway database
(Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017). We
performed a pre-ranked analysis with 10,000 permutations to
discover differences in functional gene networks with regard to
disease status. Supplementary Figure 7 provides the top and
bottom five KEGG pathways sorted by p-value. The top five most
significant (p-value < 1.5E-03) pathways positively enriched or
under-represented in cases contained several immune-related
genes also observed in co-expression modeling, including HLA-
DRA, HLA-DMB, and CD86. Interestingly, cases exhibited
deregulation in many immune system-related genes, which is
consistent with the shedding of co-expressed genes revealed
in the previous section. Negative enrichment scores denote
an overrepresentation of pathway gene expression in cases.
“Alzheimer’s, Parkinson’s, and Huntington’s disease” pathways
showed high overrepresentation in cases.

Transcription Factor Analysis
Finally, we asked whether transcription factors may be influential
for the observed changes in modules. Transcription factor
binding site interrogation was performed using human single-
site analysis (oPOSSUM) (Ho Sui et al., 2005) carried out at
8-bit minimum specificity, 40% conservation cutoff, 5,000 bp
upstream/downstream the transcription start site, 85% matrix
threshold, against a background of 24,752 genes. “Magenta”
genes were highly enriched (p-value < 0.001) for the SPI1
and Interferon Regulatory Factor 8 (IRF8) transcription factor
binding motif. Genes with SP1 binding site were also enriched
in genes lost from “magenta” and included CD4, CYBA, HAMP,
HCST, HLA-DMA, IL18, TLR10, and TREM2. Genes with

PPARG:RXRA binding site included CD4, CYBA, HAMP, HCST,
HLA-DMA, IL18, TLR10, and TREM2.

Expression Quantitative Trait Locus
Analysis
We used MatrixEQTL (Shabalin, 2012) to test the linear
associations between changes in gene expression and genotype
for the same 503 individuals used in co-expression modeling.
Interestingly, 90% of the top 100 eQTLs (sorted by adjusted
p-value) occurred in the microtubule-associated protein tau
(MAPT) region. Several HLA loci were statistically significant,
including HLA-A, HLA-C, HLA-DOB, HLA-DP1, HLA-DRB1,
and HLA-DRB5. Allele-specific changes in expression were
observed not only on MAPT but also on MAPT-AS1, CRHR1,
KANSL1-AS1, LRRC37A2, MAPK8IP1P1, and MAPK8IP1P2.
Regional association plots for the MAPT and HLA-DPB2
regions were generated using LocusZoom (Pruim et al., 2010),
provided in Figure 3. Linkage data were provided by the
International HapMap Project (The International HapMap
Consortium, 2003). Supplementary Figures 8–10 provide
genome-wide association and box-plots of gene expression
by genotype for four MAPT and four HLA-region SNPs
identified in eQTL analysis. Supplementary Spreadsheet S3
contains all significant eQTLs with SNP (rsID), location,
and p-value.

Perturbation Testing
To determine specific sources of genetic variation and their
effects on the transcriptome, we overlapped all predicted eQTLs
with all genes classified in co-expression modeling. Less than
1% of eQTLs (N = 5,392 gene/SNP pairs) across the 522
genes overlapped genes identified in co-expression network
modules. We observed no discernable pattern in eQTLs and
classified genes. Although observed differences in co-expression
based on segregation are largely unexplained by individual
eQTLs, functional ontology and transcription factor enrichment
analysis provided polymorphisms in multiple genes sharing the
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transcription factor IRF motifs M08887 and M00972, which
regulate many HLA genes.

DISCUSSION

Our analysis revealed several key functional domains and
pathways through which systematic deregulation occurs in
LOAD. Co-expressed transcripts, transcription factors, and
genomic loci were statistically significant contributors to LOAD
progression via deregulation along several immune system
pathways. In segregation co-expression analysis, we observed
a substantial reduction in the organizational structure of
several well-preserved, functional modules, as indicated by fewer
classified genes and lower intramodular connectivity in MCI
and AD subjects as compared to controls. In the course of this
experiment, we improved specificity in detecting functionally
relevant co-expression modules in a complex disease through
rigorous QC protocols and data reduction schemes, namely,
module preservation testing. This is significant because co-
expression analyses produce very large networks with dozens
of modules. This much data can be cumbersome and difficult
to interpret. Network module erosion and gene shedding were
observed in the microglia (“magenta”), synaptic (“yellow”), and
Hippo signaling (“blue”) modules.

We chose to make the “magenta” module the focus of this
discussion based on two statistical facts: (1) it was the most
statistically significant module in functional gene enrichment
analysis (Table 1) and (2) this module has been observed before
in a similar study. Zhang et al. (2013) identified a module (“light
cyan”) containing 537 genes in the human prefrontal cortex
which were highly associated (p-value = 2.1e-87) with the same
immune-related GO terms. Remarkably, 98 “light cyan” genes
overlapped our “magenta” module. Assuming a hypergeometric
distribution, the probability of identifying the same 98 genes from
a total gene pool of 20,000 is 3.54e-129. We initially hypothesized
that co-expression analysis would reveal cell-specific expression
modules. Co-expression segregation analysis allowed us to
compare specific changes in network and module organization.

The “magenta” module contained genes such as ABI3, CD33,
MS4A46, MS4A6S, TREM2, and TYROBP, which have been
previously linked to AD through protein-coding mutations (Naj
et al., 2011; Sims et al., 2017) and are all critical to microglial
activation and response (Satoh et al., 2017). Microglia are the
principal innate immune cells of the brain and ingest and degrade
amyloid plaques (Koenigsknecht-Talboo and Landreth, 2005).
Segregation analysis based on COGDX showed that CD33 and
TREM2 were co-expressed in NCI and MCI subjects but not in
AD subjects, and CD4 was only co-expressed in the MCI module.
CD33 and CD4 are associated with reactive microglia and have
been linked to AD (Griciuc et al., 2013). TREM2 is activated
by ligand binding and increases Aß clearance through the
apoptosis-related phosphatidylinositol-3 kinase (PI3K) signaling
pathway, while activating CD33 attenuates the innate immune
response and Aß clearance. CD33 and TREM2 showed high
heteroskedasticity in AD subjects and have been suggested
as cross-talking Alzheimer’s genes (Chan et al., 2015). Taken

together, our data suggest that CD33 and TREM2 co-regulation
are important to maintaining healthy brain aging. ANOVA
analysis of the “magenta” module showed increased expression
in many genes including IL10RA and CD37. CD37 is activated by
Aβ and mediates both humoral and cellular immune responses
(van Spriel et al., 2004, 2009). This module also included HLA-
DMA, HLA-DMB, and HLA-DRA.

Since the purpose of this study was to compare normal
brain aging with AD, underlying aging pathways were not
directly assessed. However, we noticed an interesting overlap
with previous findings in a WGCNA study on the aging of the
prefrontal cortex (Hu et al., 2018). Hu et al. reported a module
enriched in the synaptic vesicle cycle function associated with
brain aging progression. This module (“blue”) overlaps with the
enrichment of our “yellow” module defined here. Within the GO
term “synaptic vesicle cycle,” seven genes (AP2M1, ATP6V0D1,
DNM1, RAB3A, STX1A, UNC13A, and VAMP2), involved in
vesicle transport, endocytosis, and exocytosis, are shared between
both studies. The difference in platforms and sample sizes makes
this similarity remarkable, suggesting a further manifestation
of synaptic dysfunction and impaired cognition in LOAD. The
“blue” module was significantly enriched for Hippo signaling,
which not only has implications on cell growth and autophagy
but also the immune system (Zhang et al., 2018). Aß has been
shown to initiate nuclear pro-apoptotic transcription factors
in the Hippo signaling pathway, resulting in neuronal death
(Sanphui and Biswas, 2013).

Our second motivation for the study was to examine the
common genetic variants associated with LOAD. LOAD is
likely influenced by the interaction of many polygenic, low-
and moderate-effect variants. In our study, less than 1% of
eQTLs overlapped genes classified in co-expression modeling.
Of course, this did not directly explain changes in coexpression;
however, eQTL analysis provided perturbations in multiple,
functionally related genes (HLA-A, HLA-C, HLA-DOB, HLA-
DP1, HLA-DRB1, and HLA-DRB5), all sharing transcription
factor motif IRF. Interferon-regulatory factors modulate the
interferon system in innate and adaptive immunity, and INF-
γ induces differential expression of MHC class II HLA-DR
and HLA-DP genes (Helbig et al., 1991). IFN-γ is expressed
by infiltrating Th1 cells, resident microglia, and neurons and
has been implicated in the development of AD and systemic
autoimmunity. IFN-γ signaling is known to adversely affect AD
pathologies and cognitive function (Mastrangelo et al., 2009;
Monteiro et al., 2016). Activation of microglia by INF-γ inhibits
Aβ clearance (Bate et al., 2006; Browne et al., 2013). HLA region
eQTLs and changes in IFN-γ signaling can partially explain
transcriptomic immune deregulation observed in cases.

The high concentration of eQTLs in the MAPT region
highlights the impact of genetic variation on disease risk not
only through MAPT haplotypes but also in several neighboring
genes. MAPT pathologies provide a mechanistic link between
the immune system and neurodegeneration involving microglia
activation (Bhaskar et al., 2010). Splice-variants of MAPT-
AS1 actively suppress MAPT translation (Coupland et al.,
2016) and could prove to be a useful therapeutic target by
reducing hyperphosphorylated tau levels. KANSL1 is critical to
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brain development (Koolen et al., 1993) and has been linked
to AD (Jun et al., 2016). Corticotropin Releasing Hormone
Receptor 1 (CRHR1) agonists have been shown to increase Aβ

production (Futch et al., 2017). Determining the precise nature of
the relationship between genetic variation and the expression of
MAPT region genes will undoubtedly provide additional insights
into tauopathy and thus LOAD risk.

Immune network architectures account for desirable immune
system properties such as inducibility, adaptability, and
robustness (Schrom et al., 2017). Data segregation combined
with co-expression analysis sheds light onto these processes
in LOAD, revealing adaptations during disease onset and
erosion of networks in the later stages. Observed increases
in transcriptional heterogeneity resemble observations in
Parkinson’s disease (Mar et al., 2011), but can only partially
account for module erosion since many highly variable genes
are still present in the AD modules. Taken together, this study
provides insights into a complex and dynamic landscape of
genetic and regulatory processes centered around innate and
adaptive immune system function. Systematic reductions in co-
regulated genes and intramodular connectivity were diagnostic
of increasing variability in several critical LOAD pathologies,
including neuroinflammation, adaptive immunity, synaptic
loss, and apoptosis. We propose that a reduction in regulatory
and compensatory systems could also account for decreased
robustness during disease progression, but the underlying
mechanisms and the combined role of genetic variants are far
from clear. This study highlights the adequacy of combining
multi-omics NGS data types with longitudinal clinical and
other developing, deep-phenotype data to decipher the complex
molecular dynamics underlying complex diseases like LOAD.
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Amyotrophic lateral sclerosis (ALS) is an intractable adult-onset neurodegenerative
disease that leads to the loss of upper and lower motor neurons (MNs). The long axons
of MNs become damaged during the early stages of ALS. Genetic and pathological
analyses of ALS patients have revealed dysfunction in the MN axon homeostasis.
However, the molecular pathomechanism for the degeneration of axons in ALS has
not been fully elucidated. This review provides an overview of the proposed axonal
pathomechanisms in ALS, including those involving the neuronal cytoskeleton, cargo
transport within axons, axonal energy supply, clearance of junk protein, neuromuscular
junctions (NMJs), and aberrant axonal branching. To improve understanding of the
global changes in axons, the review summarizes omics analyses of the axonal
compartments of neurons in vitro and in vivo, including a motor nerve organoid
approach that utilizes microfluidic devices developed by this research group. The
review also discusses the relevance of intra-axonal transcription factors frequently
identified in these omics analyses. Local axonal translation and the relationship
among these pathomechanisms should be pursued further. The development of novel
strategies to analyze axon fractions provides a new approach to establishing a detailed
understanding of resilience of long MN and MN pathology in ALS.

Keywords: amyotrophic lateral sclerosis (ALS), omics analysis, axonal dysfunction, local translation, axon
branching, motor nerve organoid, human induced pluripotent stem cell (hiPSC)-derived motor neuron

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disorder
(Brown and Al-Chalabi, 2017). Both the upper and lower motor neurons (MNs) are affected, such
that the disorder is characterized by muscle weakness with spasticity and atrophy. Approximately
10% of ALS occurrence is familial (Ghasemi and Brown, 2018). Since the identification in 1993
(Rosen et al., 1993) of copper/zinc superoxide dismutase 1 (SOD1) in ALS patients with an autosomal
dominant trait in 1993 (Aoki et al., 1993), more than 25 genes have been reported as causative genes
of familial ALS (Maday et al., 2014; De Vos and Hafezparast, 2017; Ghasemi and Brown, 2018;
Cook and Petrucelli, 2019).

The pathomechanisms of ALS have been examined using familial ALS models. Intracellular
generation of reactive oxygen species production (Borchelt et al., 1994; Wiedau-Pazos et al.,
1996; Howland et al., 2002) and unfolded protein response/endoplasmic reticulum (ER) stress
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(Kikuchi et al., 2006; Kieran et al., 2007; Urushitani et al., 2008)
have been inferred from the discovery of SOD1 as a factor. A cell
non-autonomous effect (Boillee et al., 2006; Di Giorgio et al.,
2007; Nagai et al., 2007; Yamanaka et al., 2008; de Boer et al.,
2014) has also been examined in mutant SOD1-transgenic mouse
and cellular models. Mutations in the RNA-binding protein
(RBP) TAR DNA-binding protein (TARDBP encoding TDP-43)
can result in ALS (Kabashi et al., 2008; Rutherford et al., 2008),
and cytoplasmic TDP-43 inclusions have been reported in over
90% of cases of sporadic ALS (Mackenzie et al., 2010). In 2009,
fused in sarcoma (FUS) was determined in 2009 to be the
causative gene of ALS (Kwiatkowski et al., 2009; Vance et al.,
2009). FUS and TDP-43 have similar structural characteristics,
including an RNA recognition motif (RRM), a nuclear export
signal (NES), a nuclear localization signal (NLS), and prion-
like domains (PrLDs) (Kapeli et al., 2017). The C-terminal NLS
site regulates the nucleocytoplasmic localization of FUS and is
a hotspot for mutations in familial ALS (Kwiatkowski et al.,
2009; Vance et al., 2009; Suzuki et al., 2010; Nishiyama et al.,
2017). Abnormal phase separation of FUS is involved in this
pathomechanism (Guo et al., 2018; Hofweber et al., 2018; Qamar
et al., 2018). NLS mutations impair the nuclear import of FUS,
and the level of mislocalized cytoplasmic FUS is correlated to
the severity of the clinical ALS phenotypes (Dormann et al.,
2010). In addition, recent reports have demonstrated that the
abnormal NLS function results in the aberrant accumulation
of mutant FUS in the cytoplasm (Ichiyanagi et al., 2016;
Guo et al., 2018; Hofweber et al., 2018; Qamar et al., 2018;
Yoshizawa et al., 2018). Previous studies have found that the
toxic gain of function occurring with mutant FUS is crucial for
neurodegeneration (Scekic-Zahirovic et al., 2016; Sharma et al.,
2016; Shiihashi et al., 2016).

A hexanucleotide repeat expansion in chromosome 9 open
reading frame 72 (C9orf72) (DeJesus-Hernandez et al., 2011;
Renton et al., 2011) is the most common cause of ALS when
examined in Western countries (Balendra and Isaacs, 2018). Loss
of function of C9ORF72 (Burberry et al., 2016; O’Rourke et al.,
2016), toxic gain of function of C9ORF72 due to repeat RNA
(Peters et al., 2015; Jiang et al., 2016), and toxic gain of function
due to proteins with dipeptide repeats resulting from repeat-
associated non-ATG translation (Mori et al., 2013; Kwon et al.,
2014; Mizielinska et al., 2014; Wen et al., 2014; Chew et al., 2015)
have been suggested as disease mechanisms.

These findings are mainly focused on the event in the
cytoplasm of MNs. Actually, long axons, which have lengths of up
to 100 cm in humans, are characteristic of MN morphology, and
connect the soma of MNs to the skeletal muscles. In ALS, MNs
are dysfunctional due to axonal degeneration (Ferraiuolo et al.,
2011), that occurs prior to the motor phenotype in ALS (Fischer
et al., 2004; Roy et al., 2005). Consistent with this observation,
transgenic models of ALS also demonstrate abnormal axons and
other degenerative processes, followed by the death of MNs
(Armstrong and Drapeau, 2013; Tian et al., 2016; Fujimori,
2018). Other studies have revealed that axonal damage occurs
earlier than the death of cell bodies and subsequent symptoms
in patients; such symptoms become apparent only after the loss
of many MNs (Dadon-Nachum et al., 2011).

Various reviews have described the physiological and
pathological features of neuronal axons, including cargo
transport within axons, local translation, and the axonal
transcriptome (Jung et al., 2012; Maday et al., 2014; Batista and
Hengst, 2016; Neto et al., 2016; Brady and Morfini, 2017; De Vos
and Hafezparast, 2017). However, because primary neurons from
patients cannot be easily obtained and because axons produce
low sample yields and are difficult to culture, the details of the
pathological mechanisms of ALS remain unclear. To further
elucidate the resilience and pathomechanisms in MN axons, this
review summarizes omics analyses of the axon compartment
using microfluidic devices and ex vivo samples. Intra-axonal
transcription and local axonal translation are the mechanisms of
ALS emerging in the field, as discussed in the following.

ACCUMULATING EVIDENCE OF
AXONAL DYSFUNCTION IN ALS

The global pathomechanisms of axons in ALS are considered
next, in an overview of the current knowledge of axonal
events in MNs. This section classifies the pathomechanisms
of axonal dysfunction into six subsections, including neuronal
cytoskeleton, cargo transport within axons, axonal energy supply,
clearance of junk protein, neuromuscular junctions (NMJs), and
aberrant axonal branching (Figure 1). As mentioned in the
introduction, an increasing number of genes have been found
as causative or associated genes for ALS. Evidence of axon
pathomechanisms from the genetics of ALS is also accumulating
(Table 1). These mechanisms are explained in each subsection.

Neuronal Cytoskeleton
The axon can be visualized as a railway, and the electric signal
should be transferred from one train terminal station (the
cell body) to another terminal station (the skeletal muscle).
Mutations in genes associated with microtubules have been
identified as the causative events in ALS.

Several variants of the gene encoding α-tubulin, TUBA4A,
destabilize the microtubule network and reduce the
repolymerization capability of this network (Smith et al.,
2014). A missense mutation in the tubulin-specific chaperone
E gene, causing MN degeneration in the progressive motor
neuronopathy model mouse, ends in microtubule and axonal
defects similar to those induced by the ALS-linked TUBA4A
variation in patients (Bommel et al., 2002; Martin et al., 2002).

Mutations in profilin 1 (PFN1) can also lead to familial
ALS. PFN1 converts monomeric actin to filamentous actin.
Ubiquitinated aggregates are present in cells that express mutant
PFN1, and many of these aggregates include TDP-43, which is
associated with ALS (Wu et al., 2012). Such cells also have lower
levels of bound actin and block axon growth. Primary MNs
that harbor mutant PFN1 have a lower ratio of monomeric to
filamentous actin and smaller growth cones. The PFN1 transgenic
mouse has also been observed to recapitulate the phenotype of
MN disease (Fil et al., 2017).

NIMA (never in mitosis gene A)-related kinase 1 (NEK1)
has been linked to cilia formation, microtubule stability, and
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FIGURE 1 | Proposed pathomechanism of ALS in axon compartments. (1) Neuronal cytoskeleton; (2) cargo transport within axons; (3) axonal energy supply; (4)
clearance of junk protein; (5) Neuromuscular junction (NMJs); (6) aberrant axonal branching; (7) Axonal translation; (8) Intra-axonal transcription factors are prominent
features of the proposed pathomechanism.

neuronal morphology (Thiel et al., 2011). The NEK1 gene was
identified as a susceptibility factor for ALS (Brenner et al., 2016;
Kenna et al., 2016). Using in vivo imaging, axonal degeneration
was identified as an early event in the SOD1 and C9ORF72
repeat expansion mouse models of ALS (Tian et al., 2016).
Neurofilament L transcripts are reduced in ALS (Bergeron et al.,
1994). Neurofilaments are also found in a spheroid structure
(large axonal swelling) (Corbo and Hays, 1992). Neurofilament
light (NFL) and phosphorylated neurofilament heavy (pNFH) are
also known as biomarkers for ALS (Brettschneider et al., 2006;
Steinacker et al., 2016).

Thus, a dysfunctional cytoskeleton plays a role in
ALS pathogenesis.

Cargo Transport Within Axons
Maintenance of the function and structure of all types of cells
in mammals requires the intracellular transport of cargo. This
transport is especially important in neurons because of their
axonal and cell body polarization (De Vos and Hafezparast,
2017). Proteins and mRNA, as well as organelles, are generally
synthesized in the soma and transported along the axon. Proper
transport is required for the distribution of this cargo at the
right time and place in the axon. Using electron microscopy of
autopsy samples from ALS cases, defects in the cargo transport
within axon transport in ALS have been observed. The studies
of this transport defect revealed that the proximal axons of
large MNs harbor abnormal accumulation of mitochondria,

phosphorylated neurofilaments, and lysosomes (Hirano et al.,
1984a,b; Okada et al., 1995; Rouleau et al., 1996). In addition,
spheroids present in the axons contain different types of vesicles,
lysosomes, mitochondria, neurofilaments, and microtubules (De
Vos and Hafezparast, 2017). The accumulation of phosphorylated
neurofilaments at the initial segment of MN axons is a
major pathological characteristic of ALS (Ackerley et al., 2004;
Brady and Morfini, 2017).

Aberrant cargo transport within axons occurs early in
ALS disease progression (Williamson and Cleveland, 1999;
De Vos et al., 2007). For example, an altered transport of
mitochondria in axons has been demonstrated in two different
mutant SOD1-G93A transgenic mouse models of ALS (Magrane
et al., 2014). The slow anterograde transport of cytoskeletal
components is decreased during the months prior to the
initial neurodegeneration in mutant SOD1-G37R transgenic
mice, a change that has been exhibited using metabolic
labeling studies (Williamson and Cleveland, 1999). In mutant
SOD1-G93A transgenic mouse models, inhibiting p38 MAPK
α rescues retrograde cargo transport defects within axons
(Gibbs et al., 2018).

TDP-43 functions as an mRNA transporter across the
axonal cytoskeleton, and ALS-related mutations in TDP-43 alter
this transport function (Alami et al., 2014). Mitotracker and
Lysotracker experiments in FUS-mutant iPSC-derived MNs have
demonstrated that defects in the cargo transport within axons can
be rescued by histone deacetylase 6 inhibition (Guo et al., 2017).
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TABLE 1 | Motor neuron disease-associated mutations and axonal pathology.

Disease Gene Protein Axonal pathology

ALS1 SOD1 Superoxide dismutase 1 Impaired transport of mitochondria, microtubule stability, modulation of motor proteins
via p38 MAP kinase etc.

ALS2 ALS2 Alsin Impaired endocytic trafficking, signaling endosomes

ALS5/SPG11 SPG11 Spatacsin Axonal destabilization, reduced tubulin acetylation, reduced anterograde vesicle
transport

ALS6 FUS FUS Defective transport of mitochondria, aberrant microtubule acetylation, NMJ deformity,
aberrant axon branching, Fos-B overexpression

ALS8 VAPB Vesicle-associated membrane
protein-associated protein B

Impaired transport of mitochondria and vesicles

ALS10 TARDBP TAR DNA-binding protein 43 Defective transport of mitochondria and mRNP granules; reduced expression of
dynactin 1; aberrant microtubule stability/acetylation

ALS17 CHMP2B Charged multivesicular body
protein 2B

Impaired endocytic trafficking, signaling endosomes

ALS12 OPTN optineurin Progressive dysmyelination and axonal degeneration through engagement of
necroptotic machinery in the CNS, including RIPK1

ALS18 PFN1 Profilin l Decreased bound actin levels and can inhibit axon outgrowth. Primary motor neurons
expressing mutant PFN1 display smaller

ALS22 TUBA4A Tubulin, alpha 4a Destabilization of microtubules, general transport defect

ALS23 ANXA11 annexin All Molecular tether between lysosomes and RNA granules in axon

ALS25/SPGIO KIF5A Kinesin heavy chain Reduced kinesin-1 mediated transport, impaired neurofilament transport

FALS/HMN7B/
Perry syndrome

DCTN1 Dynactin 1 (p150, glued homolog,
Drosophila)

Altered axonal transport and vesicle trafficking, impaired signaling endosome trafficking

FTDALS1 C9orf72 C90RF72 Defective transport of mitochondria

SPG4 SPAST Spastin Destabilization of microtubules, impaired transport of mitochondria and vesicles

SPG30 KIF1A Kinesin Family Member 1A Reduced kinesin-3 mediated transport

SBMA AR Androgen receptor Defective retrograde and anterograde transport, modulation of motor proteins via JNK

Modified from Maday et al. (2014); De Vos and Hafezparast (2017), and Ghasemi and Brown (2018). Also refer to OMIM (https://www.omim.org/) as of June 2019.

Mutations in the genes that code for the motor protein
dynactin (DCTN1) (Puls et al., 2003) have been identified in
the genetic analyses of familial ALS. Mutant dynactin binds
weakly to microtubules, compared with the binding of wild-
type proteins. ALS and slowly progressing, autosomal dominant,
distal hereditary motor neuropathy in vocal paresis (HMN7B)
are due to loss-of-function mutations in DCTN1 (Puls et al.,
2003; Munch et al., 2004; Yan et al., 2015). DCTN1 expression is
also found to be downregulated in ALS-derived autopsy samples
(Jiang et al., 2005).

Kinesin family member 5A (KIF5A) is a newly identified gene
that plays a role in ALS (Brenner et al., 2018; Nicolas et al.,
2018). Mutations that occur in the N-terminal motor domain
of KIF5A cause an autosomal dominant type of hereditary
spastic paraplegia known as spastic paraplegia (SPG)10, as well
as Charcot–Marie–Tooth disease type 2 (Fichera et al., 2004).
In contrast, mutations associated with ALS are mainly found in
the C-terminal domain, which is important for binding cargo.
Patients with loss-of-function KIF5A mutations have longer
survival times than those with typical ALS (Brenner et al., 2018;
Nicolas et al., 2018). Mutations in KIF5A, as well as KIF1A, which
are loss-of-function mutations, are present in the motor or neck
domains (Ebbing et al., 2008; Citterio et al., 2015).

In addition to MNs, mature sensory axons also possess
a complex series of mRNA. A microtubule-stabilizing agent,
paclitaxel, which impairs cargo transport within axons, results
in sensory neuropathy (Gumy et al., 2011). Defects in

the cargo transport within axons are common to various
neurodegenerative diseases. Impaired cargo transport in axons
can cause neurodegeneration (Millecamps and Julien, 2013).

Axonal Energy Supply
The mitochondria play an important role in meeting the
axonal energy demand as they generate ATP through oxidative
phosphorylation (Chamberlain and Sheng, 2019). Following their
synthesis in the cell body, the mitochondria enter the axon where
they undergo robust trafficking and accumulate at the nodes of
Ranvier to meet metabolic needs (Zhang et al., 2012). Disruption
of the mitochondrial activity, transport proteins, and microtubule
association likely leads to dysfunctional mitochondrial transport
in neurodegenerative diseases. Energy deficits in injured axons
are caused by damage to the mitochondria following damage
to axons, a decrease in mitochondrial transport in axons
of mature neurons, and an increased energy consumption
(Zhou et al., 2016). During regeneration, the axons adapt to
this increased energy demand by changing the dynamics of
the mitochondria (Kiryu-Seo and Kiyama, 2019). Mutations
in RAPGEF2 mutations impair microtubule stability and
the mitochondria distribution in axons (Heo et al., 2018).
Reduction in mitochondrial Rho GTPase 1 (Miro 1), the
outer mitochondrial membrane protein, leads to anterograde
axonal transport defects (Moller et al., 2017). The imbalance
between mitochondrial fission and fusion leads to abnormal
mitochondrial morphology, underlies axonal damage, and is

Frontiers in Neuroscience | www.frontiersin.org 4 March 2020 | Volume 14 | Article 19437

https://www.omim.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00194 March 23, 2020 Time: 20:8 # 5

Suzuki et al. Omics Approach to ALS Axon

a potential therapeutic target for treating SPG15 and SPG48
(Denton et al., 2018). The ER and mitochondria form
complex sites of interactions known as mitochondria-associated
membranes (Gentile et al., 2019). Decreased ER-mitochondria
association can occur as a result of loss-of-function mutations
in SIGMAR1, leading to impaired retrograde transport and,
ultimately, to axonal degeneration and MN death (Bernard-
Marissal et al., 2015; Watanabe et al., 2016).

Astrocytes and oligodendrocytes may meet the axonal
energy demand (Kang et al., 2010; Lee et al., 2012; Morrison
et al., 2013). A deficiency in monocarboxylate transporter
1 (MCT1) was observed in oligodendroglia in the ventral
cord of SOD1 transgenic mice and in the motor cortex
of ALS patients (Kang et al., 2013; Philips et al., 2013).
The removal of the SOD1 mutation from oligodendroglial
precursor cells was observed to result in marked attenuation
of the progression of the disease (Kang et al., 2013).
Reducing the expression of MCT1 in oligodendroglia is the
pathomechanism involving the energy supply that contributes to
MN degeneration in ALS.

Clearance of Junk Protein
The ubiquitin proteasome and autophagy clearance systems
are significant homeostatic processes engaged in eliminating
defective organelles and aggregated proteins throughout the life
span of the neuron. Impairment of the ubiquitin proteasome
degradation system in MNs has been reported to replicate
the ALS phenotype in mice (Tashiro et al., 2012). Mice with
MN-specific, conditional knockout of the proteasome subunit
Rpt3 exhibit locomotor dysfunction, progressive MN loss, and
gliosis (Tashiro et al., 2012). Constitutive autophagy in neurons
also maintains cellular homeostasis by balancing the synthesis
and degradation of proteins, particularly within the distal
axonal processes (Maday and Holzbaur, 2016). Several genes,
such as valosin-containing protein, are involved in the protein
degradation process (Johnson et al., 2010).

What about in the axon fraction? Disruption of the
endosomal-lysosomal system due to ALS2/Alsin loss exacerbates
the phenotype of SOD1-H46R transgenic mice by accelerating
the accumulation of misfolded proteins and immature vesicles in
the spinal cord (Hadano et al., 2010). In the early symptomatic
and even presymptomatic SOD1-H46R transgenic mice,
degenerating and swollen spinal axons with the accumulation
of autophagosome-like vesicles have been observed (Hadano
et al., 2010). A recent study also reported impairment of
the degradation of autophagic vacuoles that engulf damaged
mitochondria from distal axons in the SOD1-G93A transgenic
mouse model (Xie et al., 2015). The clearance of dysfunctional
mitochondria from axons may be mediated by syntaphilin, a
mitochondria-anchoring protein, which is expressed at high
levels in the early disease stages of ALS in MNs (Lin et al.,
2017). FUS mutation causes axonal retention of the FUS protein
prior to its aggregation, which is caused by poly(ADP-ribose)
polymerase-dependent DNA response signaling (Naumann et al.,
2018). The authors of this review also observed the accumulation
of mutant FUS protein in the neurites of FUS-mutant induced
pluripotent stem cell (iPSC)-derived MNs (Akiyama et al., 2019).

Optineurin (OPTN) mutations are implicated in both familial
and sporadic ALS (Maruyama et al., 2010). OPTN binds
to ubiquitin and regulates NFκB activation and apoptosis
(Nakazawa et al., 2016). OPTN is also involved in several
selective autophagy processes regulated by TBK1 (Li et al.,
2016). Receptor-interacting kinase (RIPK) 1-dependent signaling
is suppressed by OPTN through the regulation of its turnover
(Ito et al., 2016). OPTN loss leads to progressive demyelination
and axonal degeneration through the activation of necroptotic
machinery in the central nervous system (CNS) (Ito et al., 2016).
These observations suggest that RIPK1 and RIPK3 are significant
in the process of progressive axonal degeneration.

A novel variant in UBQLN4 compromises motor axon
morphogenesis in zebrafish, impairing the proteasomal function
(Edens et al., 2017; Morrice et al., 2018). Based on these
reports, the clearance of junk protein is important in the
compartment of the MN axon.

NMJs
Amyotrophic lateral sclerosis can be redefined as a distal
axonopathy disease, because many molecular changes
influencing MN degeneration occur at the NMJ (Moloney
et al., 2014). The NMJ is a highly specialized synapse, that
controls signals between muscles and nerves for skeletal muscle
function. Neuromuscular remodeling precedes loss of the
motor unit in the mutant SOD1-G37R transgenic mouse model
(Martineau et al., 2018).

Certain molecules, including galectin-1 (Ferraiuolo et al.,
2007; Plachta et al., 2007), CD44 (Schmidt et al., 2011), and
amyloid precursor protein (Bryson et al., 2012), affect the
function of NMJ. Axon guidance molecules affecting the stability
of the cytoskeleton, such as Semaphorin 3A (Venkova et al.,
2014), Ephrin A4 (Takata et al., 2013), and Nogo-A (Pradat
et al., 2007), have been reported to alter the function of the NMJ
in the early stage of ALS. The loss of mitofusin 2 in neurons
causes NMJ dysfunction, whereas the upregulation of mitofusin
2 ameliorates the phenotype of mutant SOD1-G93A transgenic
mice (Wang et al., 2018).

The expression of mutant FUS or FUS knockdown in zebrafish
results in the impairment of motor activity and reduces quantal
transmission at NMJs, indicating loss and gain of function of
FUS (Armstrong and Drapeau, 2013). These changes in FUS
culminate in presynaptic dysfunction at the NMJ (Armstrong
and Drapeau, 2013). There is evidence that FUS plays multiple
roles in the nucleus and axonal compartments involved in
NMJ maintenance and axonal transport (Schoen et al., 2015;
So et al., 2018). FUS mediates the regulation of acetylcholine
receptor transcription at NMJ and is dysregulated in ALS
(Picchiarelli et al., 2019).

C9ORF72 was identified on the presynaptic side where the
protein interacts with Rab3 protein family members, suggesting
that it has a role in the regulation of synaptic vesicle functions as
a guanine nucleotide exchange factor (Frick et al., 2018).

In Drosophila, the protein Arc1 is a component of the capsid-
like structures that bind DARC1 mRNA in neurons. These capsids
are included in the extracellular vesicles that are transferred
across the NMJ from MNs to the muscle cells (Ashley et al., 2018).
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The transport of mRNA across the NMJ via these retrovirus-
like capsids and extracellular vesicles is required for synaptic
plasticity (Ashley et al., 2018). Dipeptide repeat proteins related
to C9ORF72 spread between cells in vitro and in vivo (Westergard
et al., 2016). Tau is another protein that is transported from
donor cells to recipient cells through the cell culture medium
(Wu et al., 2016b). Evidence suggests that the mechanism of
pathogenic molecular transfer, termed the prion hypothesis,
may be activated in the extracellular space and across the
NMJ synapses during degeneration of the motor cortex with
centrifugal spreading (Furukawa et al., 2011; Nonaka et al., 2013;
Porta et al., 2018).

Aberrant Axonal Branching
Axonal branching is a fundamental mechanism of nervous
system neuroplasticity (Menon and Gupton, 2018).
Accumulating evidence suggests that aberrant axonal branching
is involved in the pathomechanisms of ALS.

Overexpression of mutant human TARDBP in zebrafish
embryos induces a phenotype that includes shorter MN axons,
premature and increased branching, and abnormal swimming
(Kabashi et al., 2010). On the other hand, overexpression of
progranulin rescues mutant TARDBP-induced aberrant axonal
branching and short axonal outgrowth (Laird et al., 2010).

Injection of morpholino antisense oligonucleotides to inhibit
the translation of target mRNA and to knock down SMN
in zebrafish embryos significantly increases MN branching
(McWhorter et al., 2003). C9ORF72 modulates the activity of
the small GTPases, resulting in increased activity of LIM kinases
1 and 2 and regulation of axonal actin dynamics (Sivadasan
et al., 2016). Various actin isoforms are expressed in primary
mouse MNs, and their transcripts have been observed to be
translocated into axons (Moradi et al., 2017). It is proposed that
short hairpin RNA-mediated depletion of α-actin reduces axonal
filopodia dynamics and disrupts collateral branch formation in
developing MNs (Moradi et al., 2017).

Temporary overexpression of human cyclin-F (CCNF) in
zebrafish embryos increases the levels of cleaved caspase-3 and
cell death in the spinal cord. The mutant CCNF zebrafish also
developed an MN axonopathy, which consists of shortened
primary MN axons and an increased frequency of aberrant axonal
branching (Hogan et al., 2017).

A recent study reported that MNs cultured from mutant
SOD1-G93A transgenic mouse models exhibit enhanced axonal
outgrowth and dendritic branching (Osking et al., 2019).
As the level of branching does not correlate with the
severity of the disease, in this study, the authors concluded
that axonal branching does not affect the disease process.
Increased synaptic activity or branching is considered desirable
in the field of psychiatric disease (Shao et al., 2019). The
authors of the present review identified aberrant axonal
branching in FUS-mutant iPSC-derived MNs (Akiyama et al.,
2019). The sensory axons branching in the presence of
nerve growth factor (NGF) can be observed at sites marked
by stalled mitochondria. NGF promotes branching through
the generation of ATP and active axonal translation of
mRNA (Spillane et al., 2013). The mechanism underlying

mitochondrial stalling and growth factor distribution in MNs
requires examination.

The meaning of axonal branching might be different in each
stage of the development (Jung et al., 2012). In the embryonic
stage, axon pathfinding and synaptic formation are important.
However, in the developed stage, aberrant axon branching might
have a disadvantage in terms of normal function of signal
transmission. The significance of aberrant axonal branching in
the neurodegenerative model in vivo has not yet been elucidated.

OMICS PROFILING OF THE AXONAL
COMPARTMENT

The previous section provided an overview of the important
pathomechanisms of MN axons. These pathomechanisms have
been found to influence each other and cannot be entirely
separated. This section reviews the omics analysis of the axon
compartment in order to obtain an overall understanding of this
complex process occurring in an important region of the neuron.

Lessons From Different Nervous
Systems
The rationale for conducting omics analysis of the axon
compartment is as follows (Table 2). Surprisingly complex,
constantly changing transcriptomes are present in mature axons.
Thus, axonal mRNA localization is likely to be tightly regulated
and to play multiple roles. The ribosomal protein S6 has
been observed with immunoelectron microscopy in the axons
of embryonic sympathetic and hippocampal neurons grown
in vitro (Tcherkezian et al., 2010), indicating that local mRNA
translation also occurs in growing axons. Further, the local
translation of proteins from mRNAs selectively transported from
the soma to the synaptic terminal appears to be involved in the
regulation of axon outgrowth and regeneration (Zheng et al.,
2001; Taylor et al., 2009).

Elucidation of what features of axonal function require local
translation and determination of the mRNAs that mediate these
functions have induced intriguing challenges in the field of
axonal biology (Deglincerti and Jaffrey, 2012; Jung et al., 2012).
Assessment of the axonal transcriptome using microarray studies
has identified important axonal mRNAs and has demonstrated
the complexity and dynamic nature of the axonal transcriptome
(Zivraj et al., 2010; Gumy et al., 2011).

In a pioneering study involving omics analysis in axons,
more than 200 different mRNAs were identified with cDNA
microarray analysis in axons derived from rat with injured
sensory neurons (Willis et al., 2007). Proteins involved in
the transcription, synthesis of proteins, intracellular transport,
calcium metabolism, mitochondrial functions, and cytoskeletal
functions were identified in the study (Willis et al., 2007).
The report raised several important questions regarding axonal
translation (Deglincerti and Jaffrey, 2012), including the
question of why transcripts for nuclear proteins are localized
to distal axons.

Using a microfluidic chamber enabling the isolation of axons
without contamination with non-axonal material, mRNA has
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TABLE 2 | Omics analyses of the axon compartment in in vivo, ex vivo, and in vitro models of several types of nervous systems.

Disease
modeling

System Cell resource Vivo/Vitro Methodology Analysis Core result References

ALS Motor Human iPS-derived
motor neuron

in vitro Separating axon using
microfluidics (Jiksak
Bioengineering)

RNA sequencing Increased level of Fos-B mRNA, the binding target of
FUS, in FUS-mutant MNs. While Fos-B reduction using
si-RNA or an inhibitor ameliorated the observed
aberrant axon branching, Fos-B overexpression
resulted in aberrant axon branching even in zebrafish
model.

Akiyama et al.,
2019

ALS Motor Mouse and human
stem cell-derived spinal
motor axons

in vitro Microfluidics RNA sequencing Identified 3,500–5,000 transcripts in mouse and human
stem cell-derived spinal motor axons, most of which
are required for oxidative energy production and
ribogenesis. Axons contained transcription factor
mRNAs, e.g., Ybx1, with implications for local
functions. In SOD1G93A mutant, identifying 121
ALS-dysregulated transcript, including Nrp1, Dbn1, and
Nek1, a known ALS-causing gene.

Nijssen et al.,
2018

No Motor hiPSC-derived motor
neuron

in vitro Permeable inserts
culture device

RNA sequencing Discriminate axonal and somatodendritic
compartments

Maciel et al.,
2018

No Retina Retinal ganglion cells
(RGCs) exit from the
eye primordia from
Xenopus laevis
embryos

Ex vivo Axon grow through the
1 µm pores of the
transfilter on the
Boyden chamber

Pulsed stable isotope
labeling of amino acids in
cell culture (pSILAC) with
ultrasensitive sample
preparation technology
termed single-pot
solid-phase-enhanced
sample preparation (SP3)

Axons stimulated by different cues (netrin-1, BDNF,
Sema3A) showed distinct signatures with over 100
different nascent protein species

Cagnetta et al.,
2018

ALS Spinal Dissociated spinal cord
culture from ICR mice
at E12.5

Ex vivo Modified boyden
chamber membrane
culture system

RNA sequencing Elavl2 and miR-146a, miR-126-5p, miR-99a are shared
in axons of lentiviral overexpression of both p.A315T
TARDBP and p.G93A SOD1 mutants.

Rotem et al.,
2017

No Neuron Differentiated neurons
from human ESC

in vitro Microfluidics Microarray Confirmed the presence of two well characterized
axonal mRNAs in model organisms, β-actin and
GAP43, within hESC-neuron projections. oxytocin
mRNA localized to these human projections and
confirmed its localization using RNA-FISH.

Bigler et al.,
2017

No Motor Isolated motor neuron
from E12.5 CD-1
mouse spinal cord
using p75NTR antibody
panning

Ex vivo Xona microfluidics,
SND 150 chamber

RNA sequencing Double-random priming transcriptome methods enable
to serially diluted total RNA down to 10 pg

Briese et al.,
2016

No Retina Retinal ganglion cells
(RGCs) of mouse

in vivo Axonal translatome
using
Axon-TRAP-RiboTag
mouse and IP of
ribosome mRNAs

in vivo axonal translatome The embryonic to postnatal axonal translatome
comprises an evolving subset of enriched genes with
axon-specific roles, suggesting distinct steps in axon
wiring, such as elongation, pruning, and
synaptogenesis. Adult axons have a complex
translatome with strong links to axon survival,
neurotransmission and neurodegenerative disease.

Shigeoka et al.,
2016

Frontiers
in

N
euroscience

|w
w

w
.frontiersin.org

M
arch

2020
|Volum

e
14

|A
rticle

194

40

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00194
M

arch
23,2020

Tim
e:20:8

#
8

S
uzukietal.

O
m

ics
A

pproach
to

A
LS

A
xon

TABLE 2 | Continued

Disease
modeling

System Cell resource Vivo/Vitro Methodology Analysis Core result References

SMA Motor Isolated motor neuron
from E12.5 CD-1
mouse spinal cord
using p75NTR antibody
panning

Ex vivo Xona microfluidics,
SND 150 chamber

Microarray Knockdown of SMN, the protein deficient in spinal
muscular atrophy, produced a large number of
transcript alterations in both compartments. Transcripts
associated with axon growth and synaptic activity were
down-regulated on the axonal side of smn- deficient
motor neurons.

Saal et al.,
2014

No Retina DRG explants
dissected from
embryonic (E16) and
adult (3–5 mo old) from
Sprague Dawley rats

Ex vivo Compartmentalized
chamber to isolate
mRNA from pure
embryonic and adult
sensory axons devoid
of non-neuronal or cell
body contamination

Genome-wide microarray Tubulin-beta3 (Tubb3) mRNA is present only in
embryonic axons, with Tubb3 locally synthesized in
axons of embryonic, but not adult neurons where it is
transported

Gumy et al.,
2011

No Retina Retinal ganglion cell
(RGC) axons of two
vertebrate species,
mouse and Xenopus

Ex vivo Laser capture
microdissection (LCM)
to isolate the growth
cones

Coupled with unbiased
genomewide microarray
profiling.

Many presynaptic protein mRNAs are present
exclusively in old growth cones. ome receptor
transcripts (e.g., EphB4), present exclusively in old
growth cones, were equally abundant in young and old
cell bodies.

Zivraj et al.,
2010

No Cortical Cortical and
hippocampal
dissociated neurons
from embryonic
Sprague Dawley rats at
E18

Ex vivo Microfluidic chamber
with microgrooves
(7.5 µm wide, 3 µm
high)

Microarray Axonal transcripts are enriched for protein translational
machinery, transport, cytoskeleton, and mitochondrial
maintenance.

Taylor et al.,
2009

No Motor Primary DRG cultures
from L4-5 were
prepared from Sprague
Dawley rats that had
been injury conditioned
7 days before by sciatic
nerve crush at midthigh
level

Ex vivo Dissociated DRGs were
plated into tissue
culture inserts
containing porous
membranes (8-µm
pores). Axons were
isolated after 16-20 h in
culture by scraping
away the cellular
content from the upper
or lower membrane
surfaces

cDNA microarray Neurotrophins (nerve growth factor, brainderived
neurotrophic factor, and neurotrophin-3) regulate axonal
mRNA levels and use distinct downstream signals to
localize individual mRNAs.

Willis et al.,
2007
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been purified from mature CNS axons (Taylor et al., 2009). The
same study also described the localization of catenin-β1 and
neurexin-3 mRNA with fluorescence in situ hybridization in the
axonal compartment (Taylor et al., 2009). The somatodendritic
compartments are enriched in transcripts with postsynaptic
functions and in nuclear non-coding RNAs such as 7SK, whereas
transcripts related to translation such as7SL, the cytoplasmic non-
coding RNA, are upregulated in the compartment of the axon
fraction (Briese et al., 2016).

Transcriptome-wide analyses have revealed numerous
transcripts encoding transmembrane or secreted proteins,
which comprise about 13% of the total mRNAs found in
growth cones (Zivraj et al., 2010). Transcripts present in axons
encode many transmembrane proteins, such as integrins and
protocadherins, which are cell adhesion molecules, and EphB4
and Nrp2, which are guidance receptors (Zivraj et al., 2010).
Thus, local translation may change the cell adhesion capacity
of axons and allow axons to respond to extracellular signaling
molecules (Gumy et al., 2011). Axons also contain transcripts
that code for secreted proteins, including semaphorin and
ephrin, which are guidance molecules; BMP1, CTGF, and FGF,
which are growth factors; and collagen and TIMP3, which
compose and regulate the extracellular matrix. Thus, it is
expected that local translation probably plays a role in the
regulation of extracellular components by affecting proteins
that are secreted from growth cones (Deglincerti and Jaffrey,
2012). Axons also contain structures that resemble the ER and
Golgi. Specific labeling of the ER and Golgi exhibits irregular,
punctate staining along the axon, suggesting that axon-specific
versions of these organelles may be present in nerve terminals
(Merianda et al., 2009).

The development of compartmentalization has enabled the
examination of axon pathology in MN diseases. The knockdown
of SMN, which encodes the protein that is deficient in spinal
muscular atrophy (SMA), was shown to produce numerous
transcript alterations in both axon and somatic compartments
of the microarray (Saal et al., 2014). Transcripts associated
with axon growth and synaptic activity are downregulated on
the axonal side of SMN-deficient MNs. Improvements in the
handling of small quantities of RNA have led to further progress
in this field (Briese et al., 2016).

Evaluation of cultured spinal cord neurons grown with
a compartmented platform and subjected to next-generation
sequencing technology revealed that mRNAs and miRNAs
are differentially expressed in the somatic compared with
the axonal neuronal compartments (Rotem et al., 2017). In
axons with lentiviral overexpression of p.A315T TARDBP or
p.G93A SOD1 mutants, Elavl2, miR-146a, miR-126-5p, and
miR-99a are commonly expressed. Examination of the local
transcriptome revealed that the most abundant mRNAs within
human embryonic stem cell-derived neuronal projections are
functionally similar to the rat axonal transcriptome of cortical
neurons (Bigler et al., 2017).

The use of microfluidic technology has been particularly
useful in neuroscience research. Microfluidic platforms have
allowed researchers to address specific questions related to axonal
guidance, synapse formation, and cargo transport within axons,

and led to the development of three-dimensional (3D) CNS
models for pharmacological testing and drug screening (Neto
et al., 2016). Human iPSC-derived MNs grown in a culture device
with permeable inserts were observed to produce large amounts
of enriched axonal material that can be harvested for RNA
isolation and sequencing (Maciel et al., 2018). Transcriptome
profiling has revealed axonal and somatodendritic compartment-
specific expression.

Recently, Nijissen and colleagues developed a refined method
named Axon-seq, combining microfluidics, RNA sequencing,
and bioinformatics analysis (Nijssen et al., 2018). These results
demonstrated that the transcriptome of the axon compartment
is quite different from that of the soma and includes a smaller
number of mRNAs. They identified up to 5,000 mRNAs in mouse
and human stem cell-derived MN axons; the functions of the
majority of these are oxidative energy and ribosome production.
Axons contain transcription factor mRNAs, implicating local
functions. Investigation into the response of degenerated ALS
motor axons to the SOD1-G93A mutation identified 121 ALS-
dysregulated transcripts. Among these, Nrp1 and Dbn1 are
involved in axonal function, and Nek1 is a known ALS-causative
gene (Brenner et al., 2016; Kenna et al., 2016; Nijssen et al.,
2018). Axon-seq is an advanced technique for sequencing the
RNA in axons, and thus can provide enhanced knowledge about
peripheral nerve biology to explain the vulnerability/resilience of
MN (Nijssen et al., 2017; Allodi et al., 2019) and to identify the
treatment of MN diseases.

Development of a Microfluidic Device for
Larger-Scale Omics Analysis
Despite the improvement offered by the microfluidic device,
harvesting a sufficient volume of lysate from the axon
compartment remains challenging. In the process of improving
the dimensions of the well and materials, a novel microfluidic
device was developed by the authors of this study (Table 3).
The device enabled comparison of two sets of isogenic FUS-
mutant iPSC-derived MNs generated using genome editing
technology (Joung and Sander, 2013; Okano and Yamanaka,
2014), and provided observations of increased branching in FUS-
mutant MN axons compared with those in isogenic controls
(Akiyama et al., 2019). This phenotype was confirmed using
other ALS-causative mutations, including SOD1 and TARDBP.
Combining this innovative microfluidic device (Kawada et al.,
2017) with hiPSC-derived MN organoids further revealed the
entire in vitro profile of the human MN axons. This technique
identified increased Fos-B mRNA as a binding partner of FUS
and as a causative event for aberrant axon morphology both
in vitro and in vivo.

Morphological changes in MN axon branching have been
found to precede MN death in the mutant SOD1-G93A
transgenic mouse model (Tian et al., 2016), and abnormal neural
branching has been detected in zebrafish that overexpress mutant
FUS (Armstrong and Drapeau, 2013). Improvements in axon
morphology following suppression of abnormally upregulated
Fos-B in FUS mutants suggested a novel therapeutic candidate for
FUS-mutant ALS.
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TABLE 3 | Comparison of our microfluidic devices with those of previous studies.

Neuron device Modified boyden Nerve organoid
device

Company Xona Microfluidics Corning Jiksak
Bioengineering

Dimension 2 D 2 D 3 D (axon bundle)

Cell type Primary mouse
motor neuron

Primary mouse
motor neuron

iPSCs derived
motor neuron

Pore size 1∼3 um 3 um 150∼200 um

Axon length 150 um NA 10,000 µm (1 cm)

Retrievable
neurons

∼10*3 5 × 10*5 10*4-

RNA 20 pg- 0.3 ng/µl 12 ng (l ng/µl) -

References Briese et al., 2016;
Bigler et al., 2017;
Nijssen et al., 2018,
etc.

Rotem et al., 2017;
Maciel et al., 2018,
etc.

Akiyama et al.,
2019; Kawada
et al., 2017

Previous studies have also reported that upregulation of
Fos-B mRNA is associated with increases in spines (Lafragette
et al., 2017; Cahill et al., 2018) and growth cones (Anastasiadou
and Knoll, 2016). δFos-B modulates immature spines of the
nucleus accumbens in a model of drug addiction (Grueter
et al., 2013). Certain chemical stimulators such as kainic
acid lead to neurodegeneration via upregulated expression
of immediate early genes, including that of Fos-B (Pereno
et al., 2011). The hyperexcitability hypothesis is a major
theme in proposing the pathomechanism of ALS (Wainger
et al., 2014). A recent report of activator protein-1 (AP-1)
and MN degeneration in the mutant SOD1-G93A transgenic
mouse model has attracted attention (Bhinge et al., 2017).
Additionally, the suppression of dual leucine zipper kinase,
the upstream signal protein for c-Jun (AP-1 family member),
may become a therapeutic target for ALS (Bhinge et al.,
2017). Although substantial differences have been reported
in SOD1-ALS compared with FUS-ALS and TARDBP-ALS
(Fujimori, 2018), SOD1-, TARDBP-, and FUS-mutant MNs
have common features, suggesting a role for AP-1 in the
neurodegeneration observed in ALS. The Fos-B protein
accumulates abnormally in the MNs of ALS patients, including in
sporadic cases. Thus, Fos-B appears to be a potential therapeutic
target molecule.

The novel microfluidic device described in the preceding
paragraph comprises a large canal that enables the collection of
sufficient samples of isolated MN axons for RNA sequencing
(Kawada et al., 2017). This device has proven useful in
visualizing the global profile of the axon compartment.
Although other types of microfluidic devices, some of which
are specific to cell fraction analysis, are available on the
market (Briese et al., 2016; Rotem et al., 2017), they are
typically restricted by the limited amount of specimen obtained
(Table 3). As only a very small amount of specimen can
be analyzed, variation in conditions, such as cell purity
and culture procedures, may influence the results. Kawada’s
microfluidic device enables analysis with fewer technical
biases because it involves the collection of large amounts

of macroscopically observable axon bundles. RNA profiles
from the axon samples have reproduced the previously
reported profiles of the MN axon (Briese et al., 2016;
Rotem et al., 2017), justifying the methodology of this novel
device. Furthermore, the data obtained may provide important
resources for the subcellular fractional analysis of stem cell-
derived MN axons.

Are These mRNAs Translated in Axons?
An important question is whether these mRNAs are translated in
axons or transported to the nucleus/cell body. The importance
of axonal translation for CNS maintenance is under debate
(Spaulding and Burgess, 2017). Several types of mature
polarized cells utilize asymmetrical mRNA localization as a
means of synaptic communication with other types of cells
(Xing and Bassell, 2013). In vivo, the longest axons, such as
those of mature sensory and motor peripheral neurons, rely
most strongly on mRNA transport and local translation to
maintain homeostasis.

Upregulation of ribosome synthesis in axons has been found
to occur early in the pathogenesis of both mutant SOD1-G93A
transgenic mouse models and human ALS autopsy samples,
which suggests the involvement of Schwann cells in ALS
pathology and in aberrant axonal RNA metabolism (Verheijen
et al., 2014). Gene expression analyses of the anterior branch
of human obturator MNs biopsied from patients with ALS
demonstrated upregulation of a cluster of genes that play
important roles in biological processes involving RNA processing
and protein metabolism (Riva et al., 2016).

Direct evidence for neurodegeneration has been obtained
from the observation of mRNA transport dysregulation
due to mutations in the RBP SMN1, which causes SMA
(Wang et al., 2016b). SMN is present ubiquitously, and
its deletion is lethal. However, MNs are more sensitive
to SMN reduction than other cell types, possibly because
reduced SMN decreases the axonal localization of several
mRNAs (Rage et al., 2013) and inhibits the activity of the
mammalian target of rapamycin in axons (Kye et al., 2014).
An additional role for SMN is in the regulation of axonal
localization and local translation of growth-associated protein
43 (GAP43) mRNA in growth cones (Fallini et al., 2016).
The overexpression of two mRNA-binding proteins, HuD
and IGF2 mRNA-binding protein 1, restores the mRNA and
protein levels of GAP43 and has been shown to rescue the
axon outgrowth defects in the neurons of an SMA patient
(Fallini et al., 2016).

In previous studies, protein interaction screening intended
to elucidate FUS-mutant phenotypes also identified several
molecules that interact with FUS, including SMN (Yamazaki
et al., 2012; Groen et al., 2013). Aberrant distribution of SMN in
cytosolic FUS accumulations induces SMN reduction in axons.
Accumulation of mutant human FUS induces an integrated
stress response and reduces protein synthesis in nearby axons
(Lopez-Erauskin et al., 2018).

Non-nuclear pools of splicing factor, proline-glutamine rich
(SFPQ) are essential for normal motor development via local
mRNA maintenance or processing, and the coiled-coil domain
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of SFPQ is required for axonal localization (Thomas-Jinu et al.,
2017). The RBPs modulate nuclear processing, intracellular
transport, and local translation of target mRNAs for an accurate
spatial and temporal gene expression. SFPQ functions as an RBP
because it binds to and modulates numerous neuronal mRNAs,
including in cells, such as dorsal root ganglion neurons. SFPQ,
which has been identified by subcellular compartmentalization
analysis (Cosker et al., 2016; Takeuchi et al., 2018), has been
found to orchestrate spatial gene expression, which is essential
for axonal viability.

Local translation is also involved in several
neurodevelopmental disorders (Batista and Hengst, 2016).
Local translation defects are associated with fragile X mental
retardation and autism spectrum disorders (Kelleher and Bear,
2008). Fragile X mental retardation protein, which is present in
dendritic spines, growth cones, and axons, modulates plasticity
(Bassell and Warren, 2008) and the presynaptic proteome
(Christie et al., 2009; Akins et al., 2012). In mouse brain slices,
loss of the fragile X mental retardation protein was found
to perturb the development of presynaptic nerve terminals
(Hanson and Madison, 2007).

Degeneration of motor axons results from mutations in
various tRNA synthetases, which is consistent with the notion
that local translation of transported mRNA is necessary for
axonal homeostasis (He et al., 2015; Storkebaum, 2016).
Recently, cytoplasmic polyadenylation element-binding protein
4 was found to orchestrate the dysregulation of mRNA
expression in autism (Parras et al., 2018). Identification of a
master regulator of RNA metabolism would be beneficial in
understanding and treating for both diseases that affect MNs and
psychiatric diseases.

Nascent chain tracking is a novel technique for visualizing
local translation. This method uses multi-epitope tags and
antibody-based fluorescent probes to quantify the dynamics of
protein synthesis at the level of individual mRNAs (Morisaki
et al., 2016). Due to its sensitivity and versatility, nascent chain
tracking is a useful tool for quantifying mRNA translation
kinetics. Synaptic activity can induce mRNA localization and
the local translation of β-actin, which stabilizes expanding
synapses at dendritic spines (Wu et al., 2016a; Yoon et al.,
2016). Real-time visualization of mRNA translation in the
axonal compartment is an innovative method enabling analysis
of axonal pathology in vivo (Wang et al., 2016a; Yan et al.,
2016). The inducible fluorescent probe can be regulated in
time and space in neurons and is used to examine the
maturation of miRNA. The local maturation of miRNA by
synaptic stimulation results in a spatially restricted protein
synthesis reduction from the mRNA (Sambandan et al., 2017).
The proteomics approach described in a later section adds to the
understanding of the global change of nascent proteins produced
in the axon fraction.

Role of Intra-Axonal Transcription
Factors
Why transcripts for nuclear proteins are localized to the distal
axons is a big question raised by the omics analysis. Fos-B, a

mediator of abnormal axonal branching in FUS-mutated MNs,
is a transcription factor. Another research group also reported
dysregulated transcription factors in ALS MNs (Nijssen et al.,
2018). In determining the role of transcription factors in the
axon compartment, a comprehensive transcription of the action
fraction has identified mRNAs encoding a larger amount of
transcription factors and co-factors (Ji and Jaffrey, 2014). One
example is that of axonal STAT3, which is translated locally,
activated upon nerve injury, and is transported retrogradely
with dynein and importin α5, modulating the survival of
peripheral sensory neurons (Ben-Yaakov et al., 2012). Recently,
Tp53inp2 was reported to be an atypical mRNA regulating axon
growth by enhancing the NGF-TrkA pathway independently
with translation (Crerar et al., 2019). Importantly, data have
indicated that axonal degeneration shared early molecular change
in the neurodegenerative process of neurological disorders in
aged populations (Dadon-Nachum et al., 2011; Tagliaferro and
Burke, 2016; Salvadores et al., 2017).

In the brain of a person with Alzheimer’s disease, inhibition
of local translation of Atf4 mRNA overproduction eliminates
amyloid β-induced cell loss (Baleriola et al., 2014; Peng et al.,
2016). Atf4 mRNA translation is controlled by phosphorylation
of elongation initiation factor 2a, pivotal for an integrated
stress response (Batista and Hengst, 2016). The role of axonal
transcription factors in relation to translated proteins and non-
translated RNA requires further elucidation.

Interaction Among the Mechanisms
Already Described
The hallmark feature in the majority of autopsy cases of ALS
is nuclear depletion and cytoplasmic accumulation of TDP-
43 in degenerated neurons (Kim and Taylor, 2017). Thus,
dysfunctional trafficking between the nucleus and cytoplasm
likely plays a role in the pathology of ALS (Nedelsky
and Taylor, 2019) and may also be important in normal
physiological aging, Huntington’s disease, and Alzheimer’s
disease (Nedelsky and Taylor, 2019). RBPs with prion-like
domains (PrLDs) undergo liquid-liquid phase separation to
form functional liquids, which can be converted into abnormal
hydrogels that contain pathological fibrils that are often seen
in neurodegenerative diseases. TDP-43, FUS, heterogeneous
nuclear ribonucleoprotein A1 (hnRNPA1), and hnRNPA2 are
nuclear RBPs with PrLDs that are incorrectly sent to cytoplasmic
inclusions in neurodegenerative diseases. Mutations in PrLDs
increase the rate of fibril formation and initiate disease (Guo
et al., 2018). Karyopherin-β2, also known as transportin-1,
binds the proline-tyrosine NLS and then blocks and reverses
FUS, TATA-box-binding protein associated factor (TAF) 15,
Ewing sarcoma RBP1 (EWSR1), hnRNPA1, and hnRNPA2
fibril formation. Importin-α and karyopherin-β1 also block
and reverse TDP-43 fibril formation. Phase separation, like
stress granule formation, is an emerging property of proteins
containing PrLD such as FUS (Guo et al., 2018; Hofweber
et al., 2018; Qamar et al., 2018; Yoshizawa et al., 2018).
T-cell-restricted intracellular antigen-1 (TIA1) mutations were
found to delay stress granule disassembly and to promote
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the accumulation of granules harboring TDP-43 (Mackenzie
et al., 2017). C. elegans TIAR-2/TIA protein functions cell
autonomously to inhibit axon regeneration (Andrusiak et al.,
2019). One of the important roles of phase separation is
transcription enhancement (Sabari et al., 2018), which might
be related to local translation/transcription. The association
between axonal dysfunction and these cytoplasmic events,
including phase separation, has not yet been elucidated.

There is emerging evidence of interactions among different
processes of axonal pathology in ALS. Annexin A11 (ANXA11),
a phosphoinositide-binding protein associated with the RNA
granule, has the role of a molecular tether between lysosomes and
RNA granules. Such tethering is impaired by the ALS-associated
ANXA11 mutation (Smith et al., 2017; Liao et al., 2019). Late
endosome bearing mRNA encoding mitochondrial functional
molecules stops at mitochondria and these mRNAs are translated
on Rab7a endosomes locally in the axon (Cioni et al., 2019).

In summary, exactly how these complex mechanisms are
influenced by each other is still unknown. There is a need
for understanding how cytoskeletons are maintained, and
how molecules are transported/metabolized/synthesized, or
abolished when unnecessary. Elucidating the interaction of these
mechanisms might answer the vital question of why MNs are
vulnerable in ALS.

Advanced Omics Analysis and Further
Consideration
Conducting a comprehensive analysis of the newly produced
proteome from limited samples of subcellular compartments that
are uncontaminated by the somatodendrite remains a major
technical problem (Eichelbaum and Krijgsveld, 2014). Stable
isotope labeling of amino acids in cell culture (SILAC) has
been combined with single-well solid phase-enhanced sample
prep. Using this method, the newly produced proteome of
isolated retinal axons was obtained rapidly (in approximately
5 min) (Cagnetta et al., 2018). Treating axons treated with
stimuli such as netrin-1, brain-derived neurotropic factor,
and Sema3A, has demonstrated distinct proteomes with more
than 100 different nascent proteins. Compartment analysis
using pulsed SILAC may be applied to ALS cells with a
sophisticated culture device.

Using an axon-TRAP-RiboTag approach in mice, the dynamic
translatome of axons in the retina in vivo matches the
subcellular function (Shigeoka et al., 2016). The translatome
of the embryonic and postnatal axons includes a changing,
enriched set of genes with axon-specific roles. Thus, specific
steps in axon wiring, such as axon growth, elimination of
unnecessary axons, and synaptogenesis, may be present. Adult
axons harbor a complicated translatome that plays a role in axon
survival, neurotransmission, and neurodegenerative diseases.
Mating of several ALS mouse models can help in precisely
understanding mRNA dysregulation. Further transcriptome
and proteome analyses using labeled growth cones of single
projections in the mouse cerebral cortex in vivo may also
be of use (Poulopoulos et al., 2019). Spatial transcriptomics is
another method for elucidating gene expression in the mouse

spinal cord over the disease course, and in postmortem tissue
from patients with ALS (Maniatis et al., 2019). Another
important approach is the single-cell transcriptomics of nerve
organoids in vitro (Quadrato et al., 2017); pseudo-time
analysis or single-cell trajectory analysis can help establish the
relationship between the cause and effect of the transcriptome
of the organoids (Xiang et al., 2017; Klaus et al., 2019).
Sophisticated neuromuscular co-culture organoids would be
beneficial for these studies.

Stimulated Raman scattering microscopy is a new technique
for chemical imaging that can be used to map the distribution of
various molecules–including lipids, proteins, and nucleic acids–
in live cells and tissues, as determined by their intrinsic molecular
vibration (Freudiger et al., 2008). The authors of this review
used this type of imaging to visualize peripheral degeneration in
several ALS mouse models and human postmortem tissue (Tian
et al., 2016). Non-labeled live imaging of motor axons may assist
in monitoring the time course of axonal pathology in vivo.

In clinical settings, the strength-duration time constant,
which represents the hyperexcitability of an MN axon, is
significantly increased in patients (Kanai et al., 2006, 2012;
Geevasinga et al., 2015). Hyperexcitability is thought to be
the target of MN death in ALS (Wainger et al., 2014).
In cell culture settings, the shortened isoform of TDP-43
is upregulated by neuronal hyperactivation (Weskamp et al.,
2019). The role of these short isoform of TDP-43, which
might be the product of dysregulation of RNA metabolism,
should be considered in the axon fraction. Recent studies
have revealed the importance of stathmin-2 (STMN2), a
regulator of microtubule stability, in the pathomechanism
of TARDBP mutation (Klim et al., 2019; Melamed et al.,
2019). The expression of a microtubule regulator, STMN2,
is decreased following TARDBP knockdown, when TDP-43
is mis-localized, and in MNs from patients and the spinal
cord of postmortem samples. The reduced function of TDP-43
results in the loss of STMN2 due to altered splicing. This is
functionally important, as STMN2 is necessary for the outgrowth
and regeneration of MN axons. Post-translational STMN2
stabilization rescues neurite outgrowth and axon regeneration
deficits by TDP-43 depletion (Klim et al., 2019). A reduction
in TDP-43 inhibits axonal regeneration of iPSC-derived MNs,
whereas rescue of the expression of STMN2 restores the
axonal regeneration capacity (Melamed et al., 2019). The effect
of the short form of TDP-43 or cryptic exons under the
control of TDP-43 (Ling et al., 2015) should be examined in
the axon fraction.

CONCLUDING REMARKS

As described in the preceding section, advanced omics
approaches, in vivo analysis, and axon–cytoplasmic interactions
should be examined as the next steps in investigating
axonal pathology in neurodegenerative disease research.
The novel concept of microfluidic devices, including the
nerve organoid device presented by the authors of this review,
should be applied to other neuron types, co-culture systems,
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or proteomics analyses using human pluripotent cells, because
this technique may help elucidate the resilience of long MN and
the pathomechanism of ALS.
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Alzheimer’s disease (AD), a chronic multifactorial and complex neurodegenerative
disorder is a leading cause of dementia. Recently, neuroinflammation has been
hypothesized as a contributing factor to AD pathogenesis. The role of adaptive immune
responses against neuronal antigens, which can either confer protection or induce
damage in AD, has not been fully characterized. Here, we measured T cell responses
to several potential antigens of neural origin including amyloid precursor protein (APP),
amyloid beta (Aβ), tau, α-synuclein, and transactive response DNA binding protein (TDP-
43) in patients with AD and age-matched healthy controls (HC). Antigen-specific T cell
reactivity was detected for all tested antigens, and response to tau-derived epitopes
was particularly strong, but no significant differences between individuals with AD and
age-matched HC were identified. We also did not observe any correlation between
the antigen-specific T cell responses and clinical variables including age, gender,
years since diagnosis and cognitive score. Additionally, further characterization did not
reveal any differences in the relative frequency of major Peripheral Blood Mononuclear
Cells (PBMC) subsets, or in the expression of genes between AD patients and HC.
These observations have not identified a key role of neuronal antigen-specific T cell
responses in AD.

Keywords: Alzheimer’s disease, neurodegenration, autoimmunity, T cell responses, transcriptomics,
neuroantigens

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder associated with the progressive loss
of structure and function in neurons, leading to dementia and affecting predominantly elderly
individuals. The disease is characterized by extracellular plaques that consist of amyloid beta
peptides (Aβ) that is produced from the amyloid precursor protein (APP) and neurofibrillary
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tangles that consist of hyperphosphorylated tau (Grundke-Iqbal
et al., 1986; Butterfield and Boyd-Kimball, 2004).

Aggregation or misfolding of autoantigens expressed in the
brain, such as Aβ (Finder and Glockshuber, 2007), α-synuclein
(Paleologou et al., 2005), tau (Honson and Kuret, 2008), and
transactive response DNA binding protein (TDP-43) (Cook et al.,
2008; Guo et al., 2011; Herman et al., 2011; Jiang et al., 2016),
could render susceptibility to adaptive T cell responses and are
associated with Parkinson’s disease (PD), AD, and amyotrophic
lateral sclerosis (ALS). The role of T cell autoimmunity has been
studied in various animal models (Wong et al., 2002; Bloom
et al., 2005; Janus and Welzl, 2010; Dawson et al., 2018), but less
frequently in humans (Sulzer et al., 2017; Lodygin et al., 2019).

There are, however, increasing reasons to speculate that
T cell responses in neurodegenerative diseases, including
AD, are mounted against aggregated or misfolded neural
proteins (Mietelska-Porowska and Wojda, 2017). Some studies
have shown increased infiltration of T cells in response to
inflammatory signals in the brains of AD patients (Itagaki
et al., 1988; Pirttila et al., 1992; Merlini et al., 2018). It
is also speculated that neuroinflammation is not the only
source of neurodegeneration in the AD brain. The AD
induced neurodegeneration could emerge due to multi−faceted
interactions between inflammation and other processes such
as NFT formation, Aβ deposition, glutamate excitotoxicity,
reactive oxygen intermediate toxicity, and/or other mechanisms
that induce neuronal death in the AD cortex (Cooper et al.,
2000). However, the functional role and reactivity of the
CNS infiltrating T cells have not been determined, in part
due to limited sample availability. An alternative approach
is to study T cell responses in PBMCs that can help better
understand the role of adaptive immune responses in AD in
more accessible samples. This approach was recently successful
in characterizing the role of T cells in AD (Monsonego et al.,
2003; Gate et al., 2020), as well as Parkinson’s disease (PD),
another important neurodegenerative disorder (Sulzer et al.,
2017; Lindestam Arlehamn et al., 2019, 2020).

In addition to self-antigens implicated in the pathogenesis
of neurodegenerative diseases, some microbes like Bordetella
pertussis (PT) and herpesviruses have also been hypothesized
to be associated with the development of AD (Lin et al.,
2002; Rubin and Glazer, 2017; Allnutt et al., 2020). Therefore,
characterizing neural and microbial antigen-specific T cell
responses in peripheral T cells from individuals with AD
may help untangle the complex concept of autoimmunity in
neurodegeneration and establish a correlation between T cell
reactivity and disease progression.

Here, to assess the potential involvement of peripheral T
cells in AD, we performed a range of immunological assays
in individuals with AD and age-matched HC. Specifically, we
(i) compared the relative frequency of major PBMC cell subsets,
(ii) characterized T cell responses to proteins involved in
neurodegeneration such as Aβ, APP, tau, α-synuclein, TDP-43,
PT, and Epstein-Barr virus and cytomegalovirus (EBV/CMV),
(iii) correlated antigen-specific reactivity with demographic and
clinical variables including age, gender, time since diagnosis and
cognitive score, and (iv) conducted a transcriptomic analysis

of PBMC, CD4 memory and CD8 memory T cells to assess
differential expression of genes in AD compared to HC. In
summary, these analyses revealed no statistically significant
differences between the populations of AD patients and age-
matched HC.

RESULTS

Relative Frequency of Major PBMC
Subsets in AD Compared to
Age-Matched HC
We previously described the establishment of a flow cytometry
panel designed to quantitate the relative frequency of major
PBMC subsets in order to examine potential differences as a
function of disease states (Burel et al., 2017). Here, we utilized this
panel to specifically examine whether differences in lymphocyte
subsets could be associated with AD. We first analyzed the
relative frequency of major PBMC subsets, i.e., monocytes, NK
cells, B cells, T cells, and CD4 and CD8 memory T cells, in 27
AD and 30 age-matched HC by flow cytometric analysis (gating
strategy in Supplementary Figure S1). In general, the frequency
of all PBMC subsets was remarkably similar between AD and HC
(Figure 1). The only significant difference observed was related to
the frequency of the TEMRA subset of CD4 memory T cells, which
was found to be decreased in AD patients.

Cytokine Responses to Neural and
Microbial Antigens in AD and
Age-Matched HC
Aβ, α-synuclein, tau and TDP-43 have been implicated in AD
and other forms of dementia, as well as in PD (Paleologou
et al., 2005; Finder and Glockshuber, 2007; Cook et al., 2008;
Honson and Kuret, 2008; Guo et al., 2011; Herman et al.,
2011; Jiang et al., 2016). We examined whether T cell reactivity
against these proteins could be detected and, if so, whether
differences existed between AD patients and age-matched HC.
Accordingly, PBMCs were stimulated for 2 weeks in vitro with
peptide pools representing the different proteins. The APP pool
corresponded to 153 peptides, while the amyloid beta-42 (Aβ)
pool encompassed 9 peptides. The previously described α-syn
epitope and tau peptide pools consisted of 11 and 70 peptides,
respectively (Sulzer et al., 2017; Lindestam Arlehamn et al., 2019).
We also studied a TDP-43 peptide pool which is composed of
82 peptides. We further measured cytokine responses against
pertussis (PT) and EBV/CMV peptide pools (Bancroft et al., 2016;
Dan et al., 2016; Tian et al., 2017; da Silva Antunes et al., 2018).

After 2 weeks, cultures were harvested and stimulated with the
relevant antigen used in establishing the cultures, or PHA as a
control, in a triple-color IFNγ, IL-5, and IL-10 Fluorospot assay.
While T cell reactivity was detected for all tested antigens, no
significant differences in total response magnitude (Figure 2A) or
specific cytokines (Figure 3) were observed between AD patients
and age-matched HC.

Additionally, due to the difference in ethnicity between AD
and HC cohorts (Table 1), we also analyzed our data excluding
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FIGURE 1 | Relative frequency of different cell subsets in HC and AD. (A) Frequency of major PBMC subsets in AD (red bars and circles) and age-matched HC
(black bar and circles). (B) CD4 memory and (C) CD8 memory T cells were further evaluated for frequency of naïve, effector memory (Tem), central memory (Tcm),
and TEMRA populations. Each point represents a donor. Median ± interquartile range is displayed. Two-tailed Mann–Whitney test. Cells were gated according to the
gating strategy in Supplementary Figure S1.

FIGURE 2 | T cell reactivity to APP, Aβ, α-synuclein, tau, TDP-43, EBV/CMV, and PT in AD and age-matched HC. (A) Magnitude of total response (sum of IFNγ, IL-5,
and IL-10) in HC (black bar and circles) and AD (red bar and circles) to APP (HC, n = 33; AD n = 37), Aβ (HC, n = 37; AD, n = 37), α-syn (HC, n = 40; AD, n = 44), tau
(HC, n = 43; AD n = 41), TDP-43 (HC, n = 24; AD, n = 17), EBV/CMV (HC, n = 28; AD, n = 24), and PT (HC, n = 44; AD, n = 43). Each dot represents a subject.
Median ± interquartile range is shown. Two-tailed Mann–Whitney test. (B) Proliferation of CD4 T cells in AD (n = 6) and HC (n = 6). % of proliferated CD4++ T cell
(CFSE-ve) population in DMSO stimulated condition was subtracted from antigen stimulated condition. Median ± interquartile range is displayed. Each point
represents a subject. Two-tailed Mann–Whitney test.

non-Caucasian subjects and found no significant difference in
T cell reactivity between AD and HC, with the exception of
PT reactivity. PT-specific T cell responses were higher in AD
as compared to HC (Supplementary Figure S2). A trend for
higher PT-specific T cell reactivity was also observed in the entire
cohort (Figure 2).

We have previously described higher magnitude of responses
against tau as compared to α-syn in individuals with PD and HC
(Lindestam Arlehamn et al., 2019). Notably, the magnitude of
cytokine responses against APP, Aβ and α-syn were weaker than
that observed against tau, EBV/CMV and PT. This suggests that
these antigens are less immunogenic.

Proliferative Responses in AD and
Age-Matched HC
We next sought to confirm these findings using an alternative
readout, namely a proliferative assay that was recently described
as a means to detect β-synuclein T cell reactivity in multiple
sclerosis and PD patients (Lodygin et al., 2019). Accordingly,
we determined the frequency of proliferating CD4+ T cells
in response to the same antigens, in a subset of 6 AD
and 6 HC. The PBMCs were stained with CFSE, stimulated
with the respective antigens and cultured for 11 days. After
11 days, cells were stained with CD3, CD4, and CD8
antibodies, and the percentage of CD4+ T cell proliferation
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FIGURE 3 | Individual cytokine responses to APP, Aβ, α-synuclein, tau, TDP-43, EBV/CMV, and PT in AD and age-matched HC (A) IFNγ, (B) IL-5, and (C) IL-10.
Each symbol represents a subject. HC is represented in black bar and circles and AD is represented in red bar and circles. Median ± interquartile range is shown.

was measured (gating strategy in Supplementary Figure S3).
Utilizing this alternative readout, no difference was observed in
the percentage of proliferating CD4+ T cells between AD and
HC (Figure 2B).

Correlations Between Antigen Specific
T Cell Reactivity, Sex, and Clinical
Variables
In a recent study (Lindestam Arlehamn et al., 2020), the T
cell reactivity to α-synuclein was related to early diagnoses of
PD, suggesting that correlational studies may help establish a
link with disease progression. To investigate whether any such
relationships exists in AD, we examined the possible correlations
between antigen specific T cell reactivity and clinical variables
such as gender, age, time since diagnosis and cognitive score.
First, we compared the magnitude and frequency of antigen-
specific T cell responses as a function of sex and found no
significant difference in the T cell responses of males and females
with AD as compared to age-matched HC (Figure 4).

Next, we examined whether antigen-specific T cell reactivity
correlated with clinical variables relevant to AD patients: age,
years since diagnosis and cognitive function (the Montreal
Cognitive Assessment; MoCA) (Davis et al., 2015). Unlike
Parkinson’s disease, where a strong positive correlation was
established between T cell reactivity to α-syn and clinical
variables including age and time since diagnosis (Lindestam
Arlehamn et al., 2020), no correlation was detected in AD
patients between antigen-specific T cell reactivity and clinical
parameters (Figure 5).

TABLE 1 | Characteristics of the subjects enrolled in the study.

Characteristics and demographics AD HC

Total subjects enrolled 51 53

Median age (range), yr 69, (52–89) 68, (56–92)

Male, % (n) 51% (26) 43% (23)

Caucasian, % (n) 65% (33) 92.5% (49)

Median years since diagnosis, (range), yr 4, (0.5–11) NA

Median MoCAa (range) 18 (8–26) 28 (24–30)

Median MMSEb (range) 22 (16–28) 30 (29–30)

aMoCA collected at CUMC only. bMMSE collected at PrecisionMed only.

Transcriptional Profiling of PBMCs, CD4,
and CD8 Memory T Cells in AD and HC
Finally, we examined whether differences between individuals
with AD and HC could be detected at the level of gene expression
in different cell populations. PBMCs, CD4 memory, and CD8
memory T cells from the CUMC cohort were sorted (gating
strategy in Supplementary Figure S1) and RNA was extracted as
described in the methods section. Principal component analysis
(PCA) of the 1000 most variable genes revealed that PBMCs,
CD4 memory and CD8 memory T cells formed distinct clusters,
as expected (Figure 6A). This cell subset clustering was also
evident when the 100 most variable genes were considered
(Figure 6B and Supplementary Table S1). Next, we performed
a pairwise analysis to identify any differentially expressed (DE)
genes between AD and HC in PBMCs, CD4 memory and CD8
memory T cells. At a cut-off of log2 fold change >0.5 and padj
less than 0.05, PBMCs had no differences in patterns of gene
expression between AD and HC (0 DE genes), and only two
genes each were differentially expressed in CD4 memory (GNAL
and KIF18B) and CD8 memory (RPL10P6 and PRAM1) T cells
(Figure 6C). Moreover, we exclusively looked into differential
expression of miRNAs due to their wide implication in AD
pathogenesis (Cosin-Tomas et al., 2017; Hara et al., 2017; Kumar
and Reddy, 2018; Moradifard et al., 2018; Angelucci et al., 2019).
However, as shown in Supplementary Figure S4, there were no
miRNAs that were differentially expressed between AD and HC
subjects in either of the cell subsets tested in this study, reflecting
the lack of differences observed in the overall DEseq analysis.

DISCUSSION

We investigated autoreactivity of T cells against antigens that
have been associated with AD, specifically Aβ, APP, α-synuclein,
tau and TDP-43. To do so, peripheral T cells of AD patients and
age-matched HC were systematically compared for differences in
the frequency of T cell subsets, cytokine responses, proliferative
capacity and differential gene expression signatures.

We chose these targets because they are proteins that
accumulate in association with several neurodegenerative
diseases, including AD, and are subject to post-translational
modifications in the course of disorders that may produce
neoantigens. Pathological manifestations are characterized by
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FIGURE 4 | Magnitude of T cell responses to specific antigens in males and females with AD and age-matched HC. (A) APP (HC males n = 15, females n = 18; AD
males n = 16, females n = 21) (B) Aβ (HC males n = 18, females n = 20; AD males n = 18, females n = 19) (C) α-synuclein (HC males n = 20, females n = 21; AD
males n = 21, females n = 23) (D) tau (HC males n = 20, females n = 23; AD males n = 20, females n = 21) (E) TDP-43 (HC males n = 13, females n = 11; AD males
n = 8, females n = 9) (F) EBV/CMV (HC males n = 14, females n = 15; AD males n = 10, females n = 14) (G) PT (HC males n = 21, females n = 24; AD males n = 20,
females n = 23). Each dot represents a donor. Black dot (within gray bar) represents HC and red dot (within red bar) represents AD. Median with interquartile range is
displayed.
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FIGURE 5 | Correlation between T cell reactivity to different antigens and clinical variables. (A) Age vs. T cell reactivity. (B) Time since diagnosis vs. T cell reactivity
(C) MoCA vs. T cell reactivity. X-axis in panels (A–C) represent clinical variables age, time since diagnosis and MoCA, respectively and Y-axis represents T cell
reactivity. Each dot represents a donor. Non-parametric Spearman test was performed.
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FIGURE 6 | Transcriptomic profile of PBMC, CD4 memory and CD8 memory T cells in AD and HC (A). PCA analysis of gene expression data from PBMC (HC
n = 28 and AD n = 27), CD4 memory (HC n = 28 and AD n = 27), and CD8 memory (HC n = 30 and AD n = 26) T cells of HC and AD (B). Heat map of the top 100
variable genes in PBMC, CD4 memory, and CD8 memory T cells (C). Volcano plots show log2 fold change vs. –log10 padj value for the comparison between AD and
HC PBMC, AD, and HC CD4 memory and AD and HC CD8 memory T cells. Dotted lines indicate the cut off limit of log2 fold change (on x-axis) and –log10 padj (on
y-axis). Because most of the genes are non-significant, they fall on the axis. The genes with log2 fold change greater than 0.5 or less than –0.5 and adjusted p-Value
less than 0.05 are considered significant and are represented in red.

the immune system’s failure to clear the deposited aggregated
proteins (Irvine et al., 2008). This pathological presentation is
attributed to a combination of molecular and environmental
factors, such as aging and genetics (Cacabelos et al., 2005). At the
molecular level, the neurodegenerative diseases are characterized
by the accumulation of protein fragments that cluster together,
producing toxic effects on neurons and disrupting cell to
cell communication.

Several research groups have reported the presence of
autoantibodies against a variety of molecules in AD (Du et al.,
2001; Rosenmann et al., 2006; Dodel et al., 2011). Natural
autoantibodies are produced under physiological conditions to
clear dead cells or toxic autoantigens and thereby dampen
inflammatory signals. This feature of natural autoantibodies
highlights their potential role in conferring protection against
the progression of AD (Du et al., 2001; Weksler et al., 2002;
Brettschneider et al., 2005; Britschgi et al., 2009; Dodel et al.,
2011; Qu et al., 2014). Moreover, some autoantibodies have also
emerged as potential biomarkers for AD. However, with the
exception of some reports (Monsonego et al., 2003; Gate et al.,
2020), the role of aberrant T cell responses that equally contribute
to driving autoimmunity in AD has not been well characterized.
Thus, addressing the potential role of autoreactive T cells in AD
might improve our understanding of neurodegenerative diseases
and offer novel avenues of therapeutic intervention.

Here, multiple approaches of investigating T cell reactivity
to the various antigens revealed no difference between AD and
age-matched healthy controls except near significant increase
in IFNγ and IL-10 response to PT in AD patients. This is in
agreement with the recent hypothesis that B. pertussis plays a role
in the etiology of AD (Rubin and Glazer, 2017). Our findings
are consistent with reports of increased T cell reactivity to Aβ

in older humans and patients with AD compared to healthy
young adults, but no difference in T cell reactivity between
healthy older humans and AD (Giubilei et al., 2003; Monsonego
et al., 2003). Additionally, no difference was observed in the
frequency of various cell subsets, except for CD4 TEMRA subset.
A previous study (Richartz-Salzburger et al., 2007) reported only
slight increase in circulating CD4+ T cells and a decreased
frequency of CD3+ T cells, CD8+ T cells, and CD19+ cells in AD
compared to healthy controls. Furthermore, recently an increase
in CD3+CD8+CD45RA+CD27− TEMRA T cells was reported
in mild cognitive impairment (MCI) or AD patients (Gate et al.,
2020). In our cohort there was no significant difference in the
frequency of this cell subset. Other studies have also reported
differences in various immune cell subsets such as decreased
T cell numbers and changes in the CD4 T cell compartment
(Pellicano et al., 2012; Busse et al., 2017). The discrepancies of
the different studies could be related to differences in several
factors such as T cell stimulation methodology, sample size, drugs
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used by patients for disease management and/or in the criteria
used to define AD subjects. Our flow cytometry panels did not
include in-depth analysis of Tregs, and different subsets of Tregs
were recently found to be decreased in AD patients compared to
HC (Ciccocioppo et al., 2019). Different miRNAs have previously
been identified in serum, plasma, CSF, or brain as differentially
regulated or expressed between AD and age-matched HC (Cosin-
Tomas et al., 2017; Hara et al., 2017; Kumar and Reddy, 2018;
Moradifard et al., 2018; Angelucci et al., 2019). No studies have
so far shown differentially expressed miRNAs in these cohorts in
peripheral T cell subsets or PBMCs. Future studies can confirm
whether differences in other cell subsets, such as specifically Treg
subsets, immune parameters, or miRNA expression in these cell
subsets exist between AD and HC.

Because it is well-known that aging alters the components
of innate and adaptive immunity we included age-matched
healthy controls in this study. Age-related irreversible alterations
correlate with a general increase in propensity to autoimmunity
(Maletto et al., 1994; Simon et al., 2015), which may affect
antigen-specific T cell responses. The increase in autoimmunity
with age was recently supported by our study in Parkinson’s
disease where α-syn-specific T cell responses increase as a
function of age (Lindestam Arlehamn et al., 2020). One caveat
of our study is that the AD and HC cohorts were not matched
for race. However, no differences were detected between race-
matched AD and HC cohorts. Moreover, if race influences the
immunological responses measured we would have expected to
see more differences rather than fewer.

Our findings suggest a difference in the disease pathology
of PD and AD. PD is associated with an increase in T cell
reactivity to α-synuclein (Sulzer et al., 2017; Lindestam Arlehamn
et al., 2020). These increased T cell responses to α-synuclein are
negatively correlated with time since PD diagnosis (Lindestam
Arlehamn et al., 2020). For AD however, with the exception of
a minor decrease in the CD4 TEMRA cell population in AD, no
difference in T cell reactivity between AD and HC was noted,
and no correlation could be established between T cell reactivity
and clinical variables, which is in agreement with a previous study
(Giubilei et al., 2003). This may reflect a fundamental difference
between PD and AD, with T cells and associated inflammation
playing a key role in PD, but not AD. In that respect, it is
noteworthy that PD incidence is increased in association with
other inflammatory autoimmune diseases such as IBD, and
that anti-TNF treatment is associated with a reduction in PD
incidence (Peter et al., 2018), while no such effect has been
reported in the case of AD.

In conclusion, this study highlights a clear difference between
the role of T cell mediated immunity in PD and AD. However,
the lack of evidence for differential T cell recognition of the
antigens we studied in AD does not rule out that other proteins or
the same proteins with different post-translational modifications
may show differential response. There may further be different
forms or stages of AD where such differences could occur. Hence,
further studies deconvoluting the autoantigens at the epitope
level, including of CNS infiltrating cells, and investigating the
role of post-translationally autoantigen modifications such as
acetylation and phosphorylation might reveal differences in T cell

reactivity between AD and healthy controls providing detailed
insights on AD associated autoimmune responses.

MATERIALS AND METHODS

Ethics Statement
All participants provided written informed consent for
participation in the study. Ethical approval was obtained
from the Institutional review boards at the La Jolla Institute
for Immunology (LJI; protocol number VD-155) and the
Columbia University Medical Center (CUMC; protocol
number IRB-AAAQ9714).

Study Subjects
We recruited a total of 104 individuals diagnosed with AD
(n = 51) and age-matched healthy subjects (n = 53) in this study.
The subjects were recruited from two sites: 66 subjects from
Alzheimer’s Disease Research Center at Columbia University
Medical Center (CUMC) (AD n = 33 and HC n = 33)
and 38 subjects from a San Diego-based Contract Research
Organization, PrecisionMed (AD n = 18 and HC n = 20). The
characteristics of the enrolled subjects are detailed in Table 1.

Subjects recruited at CUMC were diagnosed by neurologists
according to the National Institute of Aging and Alzheimer’s
Association criteria (McKhann et al., 2011). Fifteen AD subjects
had neuropsychological testing only and 18 AD subjects
had neuropsychological testing and combinations of positive
biomarkers including SPECT scan (n = 6), FDG PET scan
(n = 4), CSF (n = 3), or amyloid scan (n = 7). They were all
followed for at least 2 consecutive visits. Eleven AD subjects
started having cognitive symptoms before age 65, and were thus
early onset AD. 33 HC subjects were evaluated for at least
2 consecutive years with a normal neurophysiological testing.
The neurophysiological testing comprised of MMSE, MoCA,
digit forward and backward, logical memory, selective reminding
test, fluency (phonemic and semantic), multilingual naming test,
global deficit score and neuropsychiatric inventory questionnaire.
Some HC were also screened for the same biomarkers as the AD
patients. They were all negative, CSF scan was performed in 7
individuals, and amyloid scan in 10.

At PrecisionMed, AD subjects were diagnosed according
to NINCDS-ADRDA criteria (McKhann et al., 1984) by a
neurologist or internist. The subjects underwent MRI/CT to
rule out other causes of cognitive decline and those that were
diagnosed with AD exhibited MMSE score ≤ 26, deficit in two
or more areas of cognition, progressive worsening of memory
and other cognitive functions along with any of other supportive
parameters like progressive deterioration of specific cognitive
function such as language (aphasia), motor skills (apraxia) and
perceptions (agnosia), impaired activities of daily living and
altered patterns of behavior, associated symptoms of depression,
insomnia, incontinence, delusions, illusions, hallucinations,
catastrophic verbal, emotional, or physical outbursts, sexual
disorders, and weight loss, plateaus in the course of progression
of the illness and /or seizures at advance stage. Of the 18
AD subjects, 14 were homozygous for APOE ε3, three subjects
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expressed APOE ε2/ε3, and one expressed APOE ε3/ε4. The HC
were self-reported and had MMSE of ≥29.

Neither of the cohorts included neuropathological
confirmation of AD, hence it is possible that some individuals
may present mixed pathology of AD and other forms of
dementia, such as limbic-predominant age-related TDP-43
encephalopathy (LATE), as LATE can mimic AD presentation.
However, clinical and imaging or biological tools were used to
try to minimize this risk. Moreover, LATE primarily affects older
individuals (>80yo). In the CUMC cohort, 10 out of 33 AD
subjects were older than 80 years, and all of them had clinical
presentation and neuropsychological testing suggestive of AD. In
the PrecisionMed cohort, one AD subject was above 80 years.

Another neurological condition that is characterized by
deposits of Aβ peptide in the vessels is cerebral amyloid
angiopathy (CAA). The deposits in CAA are biochemically
similar to the material comprising senile plaques in AD, however
subjects with a MRI suggestive of CAA (multiple hemorrhages;
single lobar, cortical or cortical-subcortical hemorrhage;
superficial siderosis) were not enrolled in this study.

Generation of Peptide Pools
Peptides for all the antigens tested in the study were synthesized
by A&A, LLC (San Diego) on a small scale (1 mg/ml). The
APP peptide pool (total of 153 peptides, 15-mers overlapping
by 10 residues spanning the entire protein sequence), Aβ (9
15-mer peptides spanning the Aβ-42 peptide), α-syn epitope
pool (total of 11 peptides) (Sulzer et al., 2017), tau (total of 70
peptides) (Lindestam Arlehamn et al., 2019), TDP-43 peptide
pool (total of 82 peptides, 15-mers overlapping by 10 residues
spanning the entire protein sequence), pertussis (PT) (total of 132
peptides) (Bancroft et al., 2016; da Silva Antunes et al., 2018),
and EBV/CMV pool (total of 270 peptides) (Dan et al., 2016;
Tian et al., 2017) were synthesized and then reconstituted in
DMSO. The individual peptides were then pooled, lyophilized
and reconstituted at a concentration of 1 mg/ml. The peptide
pools were tested at a final concentration of 2 or 5 ug/ml.

Isolation of PBMCs
Whole blood was collected in EDTA vacutainers and PBMCs
were isolated by density gradient centrifugation with Ficoll-Paque
plus (GE #17144003). Briefly, blood was spun at 1850 rpm for
15 min with brakes off to remove plasma. Blood was then diluted
with RPMI and 35 ml of blood was gently layered on 15 ml Ficoll-
Paque plus and centrifuged at 1850 rpm for 25 min with brakes
off. The cells at the interface were collected, washed with RPMI,
counted and cryopreserved in 90% v/v FBS and 10 % v/v DMSO
and stored in liquid nitrogen.

Fluorospot Assay
Peripheral blood mononuclear cells were thawed and stimulated
for 2 weeks in vitro at 2x106 cells per well in a 24-well plate
with APP, amyloid beta (Aβ), α-syn, tau, TDP-43, pertussis (PT),
or EBV/CMV pools. PHA was used as control. Cells were fed
with 10 U/ml recombinant IL-2 at an interval of 4 days. After
2 weeks of culture, cells were harvested and T cell responses
to specific antigens were measured by IFNγ, IL-5, and IL-10

Fluorospot assay. Plates (Mabtech, Nacka Strand, Sweden) were
coated overnight at 4◦C with an antibody mixture of mouse
anti-human IFNγ clone (clone 1-D1K), mouse anti-human IL-5
(clone TRFK5), and mouse anti-human IL-10 (clone 9D7).
Briefly, 100,000 cells were plated in each well of the pre-coated
Immobilon-FL PVDF 96 well plates (Mabtech), stimulated with
the respective antigen at the respective concentration of 5 µg/ml
and incubated at 37◦C in a humidified CO2 incubator for
20−24 h. Cells stimulated with each antigen was also stimulated
with 10 µg/ml PHA that served as a positive control. In order to
assess nonspecific cytokine production, cells were also stimulated
with DMSO at the corresponding concentration present in the
peptide pools. All conditions were tested in triplicates. After
incubation, cells were removed, plates were washed six times with
200 µl PBS/0.05% Tween 20 using an automated plate washer.
After washing, 100 µl of an antibody mixture containing IFNγ

(7-B6-1-FS-BAM), IL-5 (5A10-WASP), and IL-10 (12G8-biotin)
prepared in PBS with 0.1% BSA was added to each well and plates
were incubated for 2 h at room temperature. The plates were
again washed six times as described above and incubated with
diluted fluorophores (anti-BAM-490, anti-WASP-640, and SA-
550) for 1 h at room temperature. After incubation, the plates
were again washed as described above and incubated with a
fluorescence enhancer for 15 min. Finally, the plates were blotted
dry and spots were counted by computer-assisted image analysis
(AID iSpot, AID Diagnostica GMBH, Strassberg, Germany). The
responses were considered positive if they met all three criteria
(i) the net spot forming cells per 106 PBMC were ≥100 (ii) the
stimulation index ≥2, and (iii) p ≤ 0.05 by Student’s t-test or
Poisson distribution test.

Proliferation Assay
Peripheral blood mononuclear cells were thawed in RPMI
supplemented with 5% human serum (Gemini Bio-Products,
West Sacramento, CA), 1% Glutamax (Gibco, Waltham, MA,
United States), 1% penicillin/streptomycin (Omega Scientific,
Tarzana, CA, United States), and 50 U/ml Benzonase (Millipore
Sigma, Burlington, MA, United States). The cells were then
washed and viable cells were counted using the trypan blue
dye exclusion method. Viable cells were labeled with 5-
chloromethylfluorescein diacetate (CFSE) at a concentration of
10 uM by incubating the cells suspended in 1 ml of PBS with
CFSE at 37◦C for 10−12 min. The labeled cells were then washed
twice with 20% FBS prepared in PBS and spun at 2500 rpm for
5 min. Cells were then resuspended and cultured for 11 days in
RPMI media supplemented with 5% human Ab serum, Glutamax
and penicillin/streptomycin in the presence of APP, amyloid
beta, α-syn, tau, TDP-43, EBV/CMV and PT peptide pools.
After 4 days of culture cells were supplemented with 10 U/ml
recombinant IL-2 and on day 8, cells were again stimulated with
peptide pools. On day 11, cells were stained with a mix of anti-
CD3-AF700 (clone UCHT1, BD pharmigen), anti-CD4-APC ef
780 (clone RPA-T4, eBiosciences) and anti-CD8a-BV650 (clone
RPA-T8, Biolegend). The percentage of proliferating CD3+
CD4+ T cells was used a read out. The samples were acquired
on BD LSR I flow cytometer (BD Biosciences, San Jose, CA).
The percentage of proliferating CD3+ CD4+CFSE-T cells to
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each antigen was calculated by subtracting the background values
(as determined from DMSO stimulated control) using FlowJo X
Software (FlowJo LLC, Ashland, OR, United States). The gating
strategy is shown in Supplementary Figure S3.

Flow Cytometry
Cryopreserved PBMCs were thawed in RPMI supplemented
with 5% human serum (Gemini Bio-Products, West Sacramento,
CA, United States), 1% Glutamax (Gibco, Waltham, MA,
United States), 1% penicillin/streptomycin (Omega Scientific,
Tarzana, CA, United States), and 50 U/ml Benzonase (Millipore
Sigma, Burlington, MA, United States). Cells were then
washed and counted. 1 million cells were then blocked in
10% FBS for 10 min at 4◦C. After blocking, cells were
stained with a combination of APCef780 conjugated anti-
CD4 (clone RPA-T4, eBiosciences), AF700 conjugated anti-CD3
(clone UCHT1, BD Pharmigen), BV650 conjugated anti-CD8a
(clone RPA-T8, Biolegend), PECy7 conjugated anti-CD19 (clone
HIB19, TONBO), APC conjugated anti-CD14 (clone 61D3,
TONBO), PerCPCy5.5 conjugated anti-CCR7 (clone G043H7,
Biolegend), PE conjugated anti-CD56 (eBiosciences), FITC
conjugated anti-CD25 (clone M-A251, BD Pharmigen), eF450
conjugated anti-CD45RA (clone HI100, eBiosciences) and eF506
live dead aqua dye (eBiosciences) for 30 min at 4◦C. Cells were
then washed twice and acquired or sorted on a BD FACSAria
flow cytometer (BD Biosciences, San Jose, CA) to measure the
frequency of different cell subsets. The gating strategy is shown in
Supplementary Figure S1.

RNA Extraction and cDNA Library
Preparation
A total of 100,000 PBMCs, CD4 or CD8 memory T cells were
sorted and collected in Trizol in a 1.5 ml tube. Memory T
cells were sorted based on CD45RA and CCR7 expression
(Supplementary Figure S1), where CD45RA−CCR7+ Tcm,
CD45RA−CCR7− Tem, and CD45RA+CCR7− Temra cells were
included and CD45RA+CCR7+ naïve T cells were excluded.
Tubes were vortexed, spun and stored at −80◦C until processed.
RNA was extracted using miRNeasy Micro Kit (Qiagen) on a
Qiacube. Purified total RNA was amplified following the smart-
seq2 protocol. cDNA was purified using AMPure XP beads, and
barcoded Illumina sequencing libraries were generated, loaded
and sequenced on the Illumina sequencing platform HiSeq 2500.

RNAseq Analysis
Samples were sequenced using Hiseq 2500 (Illumina) to obtain
50 bp single reads. The paired-end reads that passed Illumina
filters were filtered for reads aligning to tRNA, rRNA, adapter
sequences, and spike-in controls. The reads were then aligned to
GRCh38 reference genome and Gencode v27 annotations, which
includes protein coding genes as well as pseudogenes, lncRNAs,
and miRNAs, using STAR (v2.6.1c) (Dobin et al., 2013). DUST
scores were calculated with PRINSEQ Lite (v 0.20.3) (Schmieder
and Edwards, 2011) and low-complexity reads (DUST > 4)
were removed from the BAM files. The alignment results were
parsed via the SAMtools (Li et al., 2009) to generate SAM

files. Read counts of each genomic feature were obtained with
the featureCounts program (v1.6.5) (Liao et al., 2014). After
removing absent features (zero counts in all samples), the
raw counts were then imported to R/Bioconductor package
DESeq2 (Love et al., 2014) to identify differentially expressed
genes among samples. P-values for differential expression were
calculated using the Wald test for differences between the base
means of two conditions. These p-Values are then corrected
for multiple tests using the Benjamini Hochberg algorithm
(Benjamini and Hochberg, 1995) to control the false discovery
rate. We considered genes differentially expressed between two
groups of samples when the DESeq2 analysis resulted in an
adjusted P-value of <0.05 and the absolute value of the log
fold-change in gene expression was greater than 0.5. Variance
stabilizing transformation (DESeq2 1.26.0) was applied on the
read counts for all samples. Since there were samples from
multiple mapping runs, an adjustment for batch effects using
the outcome of interest as the disease state was performed
using ComBat (sva 3.34.0). A principal components analysis was
performed on the top 1000 variable genes using the prcomp
function in the stats v3.6.3 library under R v3.6.3. The RNA-
seq dataset analyzed as part of this study have been deposited in
the NCBI Gene Expression Omnibus (GEO) database with the
primary accession number GSE153104.

Statistics
Statistical analyses were performed using GraphPad Prism
version 8.1.1. Data were analyzed using non-parametric statistical
tests. Mann−Whitney two-tailed test was performed to compare
T cell responses to all the antigens and frequency of cell
subsets in AD and HC. Spearman test was performed to check
the significance of correlation between T cell responses and
clinical variables.
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Epigenetic clocks are among the most promising biomarkers of aging. It is particularly
important to establish biomarkers of brain aging to better understand neurodegenerative
diseases. To advance application of epigenetic clocks—which were largely created
with DNA methylation levels in blood samples—for use in brain, we need clearer
evaluation of epigenetic clock behavior in brain, including direct comparisons of brain
specimens with blood, a more accessible tissue for research. We leveraged data from
the Religious Orders Study and Rush Memory and Aging Project to examine three
established epigenetic clocks (Horvath, Hannum, PhenoAge clocks) and a newer clock,
trained in cortical tissue. We calculated each clock in three different specimens: (1)
antemortem CD4+ cells derived from blood (n = 41); (2) postmortem dorsolateral
prefrontal cortex (DLPFC, n = 730); and (3) postmortem posterior cingulate cortex
(PCC, n = 186), among older women and men, age 66–108 years at death. Across all
clocks, epigenetic age calculated from blood and brain specimens was generally lower
than chronologic age, although differences were smallest for the Cortical clock when
calculated in the brain specimens. Nonetheless, we found that Pearson correlations
of epigenetic to chronologic ages in brain specimens were generally reasonable for all
clocks; correlations for the Horvath, Hannum, and PhenoAge clocks largely ranged from
0.5 to 0.7 (all p < 0.0001). The Cortical clock outperformed the other clocks, reaching
a correlation of 0.83 in the DLFPC (p < 0.0001) for epigenetic vs. chronologic age.
Nonetheless, epigenetic age was quite modestly correlated across blood and DLPFC in
41 participants with paired samples [Pearson r from 0.21 (p = 0.2) to 0.32 (p = 0.05)],
indicating that broader research in neurodegeneration may benefit from clocks using
CpG sites better conserved across blood and brain. Finally, in analyses stratified by sex,
by pathologic diagnosis of Alzheimer disease, and by clinical diagnosis of Alzheimer
dementia, correlations of epigenetic to chronologic age remained consistently high
across all groups. Future research in brain aging will benefit from epigenetic clocks
constructed in brain specimens, including exploration of any advantages of focusing
on CpG sites conserved across brain and other tissue types.
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INTRODUCTION

Chronologic age is the strongest risk factor for many chronic
diseases; however, disease risk is heterogeneous within
age groups, likely due, in part, to variation in “biologic
age.” Substantial research has explored biomarkers of aging
(Jylhava et al., 2017), which are critical tools for predicting disease
risk, assessing mechanisms underlying aging processes, and
developing interventions to delay aging-associated declines in
health. Epigenetic modifications are a hallmark of aging, and
epigenetic clocks are among the most promising biomarkers
of aging to date (Jylhava et al., 2017). However, the majority
of research establishing the relevance of epigenetic clocks
has largely focused on their relations with overall longevity
(Fransquet et al., 2019). In the US, heart disease and cancer
mortality, primary causes of death, have decreased (Siegel et al.,
2018; Shah et al., 2019) while deaths due to Alzheimer dementia
and related dementias have increased 145% over the last 20 years
(Alzheimer’s Association, 2019); other neurodegenerative
diseases are increasing as well (e.g., Parkinson Disease; Marras
et al., 2018). Thus, establishing effective biomarkers of brain
aging is particularly important for improving public health in
the coming decades, and eventually reducing neurodegenerative
diseases of aging.

Epigenetic dysregulation has been clearly implicated in brain
aging and neurologic diseases (Klein et al., 2016). In initial
evidence, several epigenetic clocks were well-correlated with
chronologic age when measured in brain tissue (Lu et al., 2017),
and in limited existing research, the Religious Orders Study
(ROS) and the Rush Memory and Aging Project (MAP) reported
that some epigenetic clocks assessed in brain tissue appear
modestly associated with neurodegenerative pathology (Levine
et al., 2015, 2018). In a small number of studies, epigenetic age
measured in blood has also been related to clinical neurologic
outcomes (Marioni et al., 2015; Horvath et al., 2016; Chuang
et al., 2017; Raina et al., 2017). However, clearer understanding
of epigenetic clock behavior in brain is needed to advance
applications of these clocks for brain health.

Specifically, growing research indicates that epigenetic clocks,
most of which were built with data across the lifespan and
relatively few in the oldest age ranges, may become less accurate
at the advanced ages at which many neurodegenerative diseases
manifest (Armstrong et al., 2017; El Khoury et al., 2019;
Shireby et al., 2020). In particular, at the oldest ages—ranging
up to supercentenarians (Horvath et al., 2015)—epigenetic age
estimates for many of the clocks appear consistently lower than
chronologic age. Thus, additional examination of clock behavior
at more extreme older ages is needed, especially if the trajectory
of biological age may not be linear in advanced age. Further,
direct comparisons are needed of epigenetic clock behavior in
brain specimens compared to more accessible tissue (e.g., blood).
Initial evidence, including in ROS and MAP, has suggested that
DNA methylation (DNAm) states do not appear correlated in
blood vs. brain specimens (Lunnon et al., 2014; Yu et al., 2016).
Nonetheless, this work has examined hundreds of thousands of
CpG sites simultaneously, and may not apply to the more focused
signatures provided by epigenetic clocks.

Thus, we leveraged the data from the Religious Orders Study
and the Rush Memory and Aging Project to examine inter-
relations of four different epigenetic clocks measured in three
different specimens: (1) antemortem CD4+ cells derived from
blood (two measures, on average 7.5 years apart); (2) postmortem
dorsolateral prefrontal cortex (DLPFC); and (3) postmortem
posterior cingulate cortex (PCC), among older women and men,
age 66–108 years at death. We chose to focus here on a range of
different epigenetic clocks: the Horvath clock, developed across
multiple tissues (Horvath, 2013); the Hannum clock, trained
in blood samples (Hannum et al., 2013); the PhenoAge clock,
developed with biomarkers of aging as the dependent variable
rather than age (Levine et al., 2018); and a new clock trained in
cortical tissue (Cortical clock; Shireby et al., 2020).

MATERIALS AND METHODS

Study Populations
The Religious Orders Study (Bennett et al., 2018) was initiated
in 1994, and includes older priests, nuns and brothers from
across the United States, free of known dementia at the time of
enrollment. Participants agreed to annual neurological exams,
neuropsychological testing, and blood draw, and signed an
informed consent and Anatomic Gift Act to donate their brains
at death. Over 1,468 participants completed a baseline evaluation.
The follow-up rate and autopsies exceed 90%. The Rush Memory
and Aging Project (Bennett et al., 2018) was established in
1997 with virtually identical design and data collection, and
includes older men and women from across the Chicago
metropolitan area, without known dementia at enrollment; over
2,170 participants completed a baseline evaluation to date. The
follow-up rate exceeds 90% and the autopsy rate exceeds 80%.
ROSMAP data can be requested at www.radc.rush.edu.

For the work described here, we leveraged DNA methylation
profiling previously completed in stored peripheral blood
samples collected from participants at cohort baseline and again
proximate to death, as well as from frozen DLPFC and PCC
tissue. The average postmortem interval was approximately 9 h.

Assessment of DNA Methylation States
and Epigenetic Clocks
First, DNAm was profiled in a set of 41 matched blood samples
and DLPFC specimens. The blood DNAm was profiled in
CD4+ T cells isolated from frozen peripheral blood mononuclear
cells (PBMCs). For the original research, we had been interested
in CD4+ lymphocytes because they represent a single cell type
related to immune function. As previously described (De Jager
et al., 2014), the PBMCs were washed with RPMI1640 medium
to remove Dimethyl sulfoxide (DMSO) exposure. CD4+ T-cells
were isolated using magnetic-activated cell sorting (MACS) and
reached the purity of at least 95% as assessed by flow cytometry.
Blood DNA isolation was performed using AllPrep DNA/RNA
Micro kit, according to manufacturer’s instructions.

In the DLPFC, 100 mg frozen sections were thawed on ice,
with the gray matter dissected from the white matter. The Qiagen
QIAamp DNA mini protocol was used for DNA isolation, as
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previously published (De Jager et al., 2014). In the blood and
DLPFC, DNA methylation profiles were generated using the
Illumina Infinium HumanMethylation450 platform. Details on
the processing and quality control pipelines have been previously
described in detail (De Jager et al., 2014; Yu et al., 2016). After
processing, data on 420,132 CpG sites were retained across the
22 autosomes. At each site, DNAm level was presented as a
beta value, that is, the ratio of the methylated probe intensity
to the sum of methylated and unmethylated probe intensities.
The values ranged from 0 to 1, where a larger value indicates
higher methylation.

In more recent work with the larger set of DLPFC specimens
(n = 730) and the PCC (n = 186), processing methods
were updated. Thus, the data presented for the blood and
matched DLPFC maintain the original pipelines, while the
data presented for the full set of 730 DLPFC and the 186
PCC utilize the updated pipelines. For the PCC, we also
updated to the Infinium MethylationEPIC array. For the full
set of DLPFC and PCC, the raw signal intensities were
imported into the R statistical environment with functions
from the methylumi package and further processed with the
wateRmelon package. The pipeline for quality control was
generally consistent for the HumanMethylation450 and the
MethylationEPIC arrays. Initial quality control assessment was
performed using functions in the methylumi package to exclude
samples with inefficient bisulfite conversion (<90%) as well
as outliers. Further preprocessing was conducted using the
wateRmelon package by applying a p-filter. Probes having
more than 1% of samples with a detection p-value greater
than 0.05 and a beadcount lower than 3 in more than 5%
of samples were excluded. Finally, the filtered data were
normalized with “dasen.” Non-CpG SNP (Single Nucleotide
Polymorphism) probes, probes that had been reported to
contain common (MAF > 5%) SNPs in the CG or single
base extension position, or probes that were non-specific or
mismapped, were flagged and disregarded in the evaluation of
our results. The resulting datasets for analysis here consisted
of 730 samples with 423,841 probes each for the DLPFC, and
186 samples with 810,015 probes each for the PCC. Adequate
information for probes relevant to the four clocks was available
after all processing.

We used open source software at https://dnamage.genetics.
ucla.edu/home_ to calculate three epigenetic clocks in the
blood samples, DLPFC, and PCC: Horvath clock (Horvath,
2013), Hannum clock (Hannum et al., 2013), and PhenoAge
clock (Levine et al., 2018). The Horvath clock is a pan-
tissue clock, originally constructed utilizing CpG sites across
51 human cell types and tissues. The clock was designed by
regressing DNAm states on chronologic age and using elastic
net regression to identify a prediction model; it combines
information from 353 CpG sites to calculate epigenetic age.
The Hannum clock was developed similarly, by regressing
DNAm states on chronologic age, although only in peripheral
blood samples, and includes 71 CpG sites. The PhenoAge
clock was created in blood samples, but regressed DNAm
states on clinical biomarkers rather than on chronologic
age; it incorporate 513 CpG sites. The Cortical clock was

calculated using publically available code provided by the
authors1.

Populations for Analysis
For examining epigenetic clocks in the CD4+ cells, we leveraged
information from 41 ROS or MAP participants, who also had
archived DLPFC. The 41 participants were identified from a
subset of those who provided annual blood, and had samples
from baseline and proximate to death (mean = 7.5 years of
follow-up). For further examination focused in the DLPFC, we
used 730 specimens that were part of previous research on
DNAm and neurodegeneration; analyses of the Cortical clock
in DLPFC excluded 88 specimens, which had been part of the
original training set for the Cortical clock. Finally, for the PCC,
186 samples were available at the time we conducted these
analyses. For examining correlations across tissues, we examined
41 participants with both blood samples and DLPFC, as well as
90 women and men who had information on epigenetic clocks in
both DLPFC and PCC. No participant had DNAm profiles across
all three specimens.

Statistical Analysis
First, we examined the Pearson correlations of each epigenetic
clock, in each specimen type, to chronologic age at specimen
collection. In addition, since previous research (Armstrong et al.,
2017; El Khoury et al., 2019; Shireby et al., 2020) has noted
that epigenetic clock age often underestimates chronologic age
in older age groups, we created quintiles of chronologic age, and
then examined the difference of epigenetic and chronologic age
separately within each quintile, for each clock. These age group
analyses were conducted in the DLPFC and PCC specimens, due
to the larger sample sizes available.

Next, we considered the correlations of epigenetic clock ages
across the two timepoints within the CD4+ cells, as well as clock
ages across the 41 matched CD4+ and DLPFC, and across the 90
matched DLPFC and PCC. To understand how the various clocks
relate to each other, within each specimen, we also compared
epigenetic clock ages across the four clocks (e.g., correlation of
the Horvath to Hannum clock within baseline blood samples). To
help evaluate the difference between epigenetic and chronologic
age, we also calculated the residuals from regressing epigenetic
age on chronologic age for each specimen type (which has been
termed “age acceleration”). Analyses separately examined both
epigenetic age and epigenetic age acceleration.

Finally, we considered how key factors such as sex, Alzheimer
disease (AD) neuropathology, and clinical health status may
affect clock behavior. We conducted analyses of the correlation
of epigenetic to chronologic age separately according to:
sex (male/female); pathologic diagnosis of Alzheimer disease
(yes/no); and clinical diagnosis of Alzheimer dementia (yes/no).
Ascertainment of and pathologic AD was identified using
the NIA/Reagan criteria, and clinical Alzheimer dementia
was assessed by experienced clinicians, using cognitive and
clinical data, as previously described (McKhann et al., 1984;
National Institute on Aging Reagan Institute Working Group

1https://github.com/gemmashireby/CorticalClock
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on Diagnostic Criteria for the Neuropathological Assessment of
Alzheimer’s Disease, 1997; Bennett et al., 2006). These subgroup
analyses included only DLPFC and PCC, due to the larger sample
sizes available in these specimens.

RESULTS

Chronologic age was approximately 81 years (standard deviation,
SD, 6.2) at the baseline blood collection, 89 years (SD 4.7) at the
second blood collection proximate to death, and nearly 90 years
(SD 4.9) in the matched postmortem DLPFC (n = 41). For the full
set of brain specimens, mean age at death was 88.0 (SD 6.7) in
those with DLPFC (n = 730) and 90.0 (SD 6.0) years in those with
PCC (n = 186) (Table 1). Approximately 2/3 of participants were
female. Clinical diagnosis of Alzheimer dementia as of death was
common, ranging from approximately half of participants with
a blood sample, to approximately one-third of those with PCC
specimens. Pathologic diagnosis of AD was highly prevalent—
60% of participants with a blood sample and over 70% of those
with brain specimens.

Across virtually all specimen types, mean epigenetic age
was lower than mean chronologic age (Table 1). In the blood
samples, the PhenoAge and Cortical clocks produced the largest
differences between mean chronologic and epigenetic ages.
Specifically, mean PhenoAge was 59.8 (SD 8.8) in the baseline
blood samples and 63.8 (SD 8.1) in the blood proximate to death;
Cortical age was 50.3 (SD 8.1) in the baseline blood and 53.4 (SD
7.9) in the blood proximate to death. Interestingly, in the blood
samples, mean Hannum clock age was closest to chronologic age
(baseline blood collection: mean Hannum age = 70.1, SD 6.8;
blood proximate to death: mean = 73.6, SD 6.5), likely because
the Hannum clock was originally constructed in peripheral blood.
Finally, we could consider change in epigenetic clock age over

time within the two paired blood samples; as expected, the
average epigenetic age was greater in the second than the first
blood sample for all four clocks. Nonetheless, the difference in
mean epigenetic age over the two timepoints was approximately
3–5 years across all four clocks, while the corresponding change
in chronologic age was 7.5 years.

In the brain specimens (Table 1), mean Cortical age was
closest to mean chronologic age (DLPFC: mean Cortical
age = 86.5, SD 6.0; PCC: mean = 95.9, SD 5.2). Further, mean
Cortical age in the PCC was greater than chronologic age, while
clock age was lower than chronologic age for all the other
clocks. In particular, PhenoAge was substantially younger than
chronologic age in the brain specimens, with a mean of 1.6 (SD
5.8) in DLPFC and 12.1 (SD 4.3) in PCC.

To more closely examine differences between epigenetic
and chronologic ages in the brain specimens, we divided the
population into quintiles of age, and constructed boxplots of
“delta age” by subtracting chronologic from epigenetic age
(Figure 1); thus, negative values of delta age indicate that
epigenetic age is younger than chronologic age. In DLPFC, for the
Horvath, Hannum, and PhenoAge clocks, within every quintile of
age, the median delta age as well as the upper 25th percentile of
the distribution were all negative (Figure 1). However, of these
three clocks, the smallest delta ages were consistently observed
for the Horvath multi-tissue clock. Yet, for the Cortical clock,
median delta age was positive (median = 0.7 years) in the
youngest quintile of age, and the cutpoints for the upper 25th
percentile of the distribution were positive through the youngest
three quintiles of age. Thus, Cortical clock was the only one which
did not largely underestimate chronologic age at the younger
ages in this sample. Nonetheless, across all four clocks, median
delta age became larger and more negative with each older age
group. For example, in the oldest quintile of age, median delta
age was 12.1 years, 37.3, 92.3, and 4.2 for the Horvath, Hannum,

TABLE 1 | Characteristics of participants: Religious Orders Study and Memory and Aging Project.

Populations for analysis, according to specimen typesa

Baseline blood Blood proximate
to death

DLPFC with
matched blood

All DLPFCb PCC

N 41 41 41 730 186

Chronologic Age (mean, SD) 81.2 (6.2) 88.7 (4.7) 89.6 (4.9) 88.0 (6.7) 90.0 (6.0)

Female (%) 66% 66% 66% 64% 66%

Clinical Alzheimer Dementia 0 54% 54% 42% 33%

Pathologic Alzheimer Disease n/a 73% 73% 60% 60%

Epigenetic Age (Mean, SD, range)

Horvath clock 64.6 (8.4)
Range:52.4,87.8

67.6 (7.2)
Range:49.7,90.4

69.3 (5.3)
Range: 59.6,82.6

79.7 (6.3)
Range:60.8,103.5

71.3 (3.9)
Range:56.4,82.6

Hannum clock 70.1 (6.8)
Range:57.2,88.3

73.6 (6.5)
Range:54.4,87.8

51.4 (3.3)
Range:43.8,59.5

57.0 (3.2)
Range:44.8,66.4

59.1 (2.5)
Range:49.3,64.4

PhenoAge clock 59.8 (8.8)
Range:39.0,87.5

63.8 (8.1)
Range:43.7,80.9

4.5 (5.4)
Range:-6.4,23.4

1.6 (5.8)
Range:-16.9,24.7

12.1 (4.3)
Range:1.5,39.7

Cortical clock 50.3 (8.1)
Range:27.9,65.4

53.4 (7.9)
Range:39.2,71.3

79.5 (5.6)
Range:70.6,94.8

87.3 (5.6)
Range:65.0,102

95.9 (5.2)
Range:79.1,124

aDLPFC, dorsolateral prefrontal cortex; PCC, posterior cingulate cortex. bFor analyses of the Cortical clock in the set of all DLPFC, we excluded 88 specimens which had
been part of the original training set for this clock, thus, n = 642 for the Cortical clock.
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FIGURE 1 | Difference between epigenetic clock age and chronologic agea, within quintiles of chronologic age, in dorsolateral prefrontal cortex.
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PhenoAge and Cortical clocks, respectively. That is, all clocks
underestimated chronologic age by greater amounts with older
age of the participants.

These findings were all generally consistent in the PCC (data
not shown), although Cortical age in the PCC was greater than
chronologic age in virtually all samples.

Next, we directly examined correlations of clock age to
chronologic age within the blood samples (Figure 2), correlations
were generally reasonable for the Horvath, Hannum, PhenoAge
and Cortical clocks, ranging from a low of 0.31 (Horvath clock
in the blood proximate to death) to a high of 0.66 (Horvath
and Hannum clocks in the baseline blood). Across the clocks,
correlations tended to be lowest in the blood samples proximate
to death (range 0.31–0.43), and correlations tended to be lower
for the Cortical clock than the others; for example, the correlation
of Cortical to chronologic age was 0.47 in the baseline blood (the
lowest of all four clocks).

In brain specimens (Figure 3), correlations of epigenetic
to chronologic age for the Horvath, Hannum, and PhenoAge
clocks largely ranged from approximately 0.5–0.7. The PhenoAge
clock consistently performed worst of the four clocks, with a
correlation of 0.51 in DLPFC and 0.37 in PCC. The Horvath
clock, the only multi-tissue clock, had higher correlations than
either the Hannum or PhenoAge clocks in brain specimens.
However, the Cortical clock performed best in both the DLPFC
and PCC (r = 0.83 in DLPFC, r = 0.74 in PCC).

For each clock, we also correlated epigenetic ages across paired
specimens (Table 2), including the two blood samples over time
(n = 41), the matched blood and DLPFC specimens (n = 41),
and the two cortical regions (n = 90). For the two blood samples,
collected an average of 7.5 years apart, correlations were 0.32 for
the PhenoAge clock over two timepoints, 0.42 for the Horvath
clock, 0.51 for the Hannum clock, and 0.53 for the Cortical
clock. When comparing clock ages in blood vs. brain specimens,
we found fairly low correlations of the baseline blood sample
or the blood sample proximate to death with the postmortem
DLPFC; the Horvath and Hannum clocks tended to have better
correlations than the other clocks (e.g., r = 0.31 and 0.30,
respectively, for baseline blood sample). However, we found the
highest correlations across specimen types when we compared
epigenetic age across the two cortical regions (Horvath: r = 0.61;
Hannum r = 0.40; PhenoAge r = 0.37); this correlation was
particularly high for the Cortical clock (r = 0.82). In additional
analyses to explore whether there may be better correlations
when considering the extent of epigenetic age acceleration across
specimens than the extent of epigenetic aging, we found that
results were generally similar for clock age acceleration (data not
shown in table) as for clock age.

Within each specimen, when we compared the various clocks
to each other (Table 3), overall, correlations were 0.65 or
greater for over half of the comparisons. The lowest correlations
tended to be for the PhenoAge vs. other clocks, perhaps since
the PhenoAge clock was the only clock designed to predict
biomarkers of aging rather than chronologic age.

Finally, we examined how clock performance may differ
in men vs. women, or in those with differing health status
(Figure 4), in the DLPFC and PCC specimens. Most importantly,

the correlations of epigenetic to clock age remained similar across
men and women, those with and without pathologic diagnosis of
AD, and those with and without clinical diagnosis of dementia.
However, there were suggestions of somewhat higher correlations
of epigenetic to chronologic age in men than in women, and
somewhat lower correlations in those with pathologic AD than
without pathologic AD; for example, the correlation of Cortical
age to chronologic age in DLFPC was 0.78 among men and 0.69
among women, and was 0.78 in those without pathologic AD
compared to 0.68 in those with pathologic AD.

DISCUSSION

In this investigation of characteristics of epigenetic clocks across
blood and brain specimens in older adults, we confirmed
previous reports (Armstrong et al., 2017; El Khoury et al., 2019;
Shireby et al., 2020), that epigenetic age was generally lower
than chronologic age, across specimen types. Specifically, for
the Horvath, Hannum, and PhenoAge clocks, median epigenetic
age was lower than chronologic age from the youngest through
the oldest quintiles of age in our sample. By contrast, as
may be expected, the Cortical clock demonstrated the smallest
differences between epigenetic and chronologic age in DLPFC
and in PCC. Indeed, the Cortical clock was not only designed
in brain tissue, but the training set included much larger
samples of older participants than the other clocks, which
certainly further enhances its accuracy in estimating brain aging.
We also extended published findings (Lu et al., 2017; Shireby
et al., 2020), using varying clocks than previously examined,
that correlations of chronologic to epigenetic ages in brain
specimens (i.e., DLPFC and PCC) were generally reasonable for
blood-based and multi-tissue clocks. In our specimens, these
correlations largely ranged from 0.5 to 0.7 for the Horvath,
Hannum and PhenoAge clocks—despite none being designed
expressly in brain tissue. We further confirmed a previous
report (Shireby et al., 2020) that the new Cortical clock—
the first designed in post-mortem brain tissue—performed
substantially better in brain specimens than the other clocks,
with a correlation of epigenetic vs. chronologic age over 0.8
in our DLPFC. Thus, our findings both provide broad support
for the value of epigenetic clocks in research on brain aging,
as well as specific support for “bespoke” clocks (Bell et al.,
2019) designed in target tissues of interest. Finally, however,
epigenetic age was only quite modestly correlated across paired
blood and DLPFC, indicating that broader research in biologic
aging and neurodegeneration may benefit from epigenetic
clocks focused in CpG sites better conserved across blood and
brain specimens.

Numerous large-scale studies have reported good correlations
of chronologic to epigenetic age in peripheral blood, similar to
our findings (Chen et al., 2016). However, less is known regarding
epigenetic aging specifically in blood samples proximate to
death. In our study of 41 blood samples collected a mean
of 0.9 years prior to death, we found that the correlation of
chronologic to epigenetic age appeared worse than in the baseline
samples collected years earlier. Specifically, these correlations
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FIGURE 2 | Pearson correlations of epigenetic age to chronologic age in blood samplesa.
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FIGURE 3 | Pearson correlations of epigenetic age to chronologic age in brain specimensa.
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TABLE 2 | Pearson correlations of epigenetic clocks across blood samples and brain regions.

Correlation across specimen types, for each epigenetic clock (r, p-value)

Sets of biospecimens N Horvath clock Hannum clock PhenoAge clock Cortical clock

Baseline blood/blood proximate to death 41 0.42 (p = 0.007) 0.51 (p = 0.0007) 0.32 (p = 0.03) 0.53 (p = 0.0003)

Baseline blood/DLPFC 41 0.31 (p = 0.05) 0.30 (p = 0.05) 0.08 (p = 0.6) 0.24 (p = 0.1)

Blood proximate to death/DLPFC 41 0.32 (p = 0.04) 0.31 (p = 0.05) 0.21 (p = 0.2) 0.19 (p = 0.2)

DLPFC/PCC 90 0.61 (p = 0.0001) 0.40 (p = 0.0001) 0.37 (p = 0.0003) 0.82 (p < 0.0001)

TABLE 3 | Pearson correlations of epigenetic clocks to each other, by specimen type.

Correlation of epigenetic clocks to each other (r, p-value)

Biospecimen type N Horvath vs.
Hannum

clock

Horvath vs.
PhenoAge

clock

Horvath vs.
Cortical clock

Hannum vs.
PhenoAge

clock

Hannum vs.
Cortical clock

PhenoAge vs.
Cortical clock

Baseline blood 41 0.74
(p < 0.0001)

0.69
(p < 0.0001)

0.67
(p < 0.0001)

0.68
(p < 0.0001)

0.80
(p < 0.0001)

0.58
(p < 0.0001)

Blood proximate to death 41 0.59
(p < 0.0001)

0.74
(p < 0.0001)

0.65
(p < 0.0001)

0.70
(p < 0.0001)

0.71
(p < 0.0001)

0.67
(p < 0.0001)

DLPFC 730 0.71
(p < 0.0001)

0.57
(p < 0.0001)

0.79
(p < 0.0001)

0.44
(p < 0.0001)

0.71
(p < 0.0001)

0.50
(p < 0.0001)

PCC 186 0.65
(p < 0.0001)

0.44
(p < 0.0001)

0.75
(p < 0.0001)

0.18 (p = 0.01) 0.56
(p < 0.0001)

0.46
(p < 0.0001)

ranged from 0.3 to 0.4. At the same time, from the baseline
to the final blood collection, the correlations of epigenetic
ages over these 7 years in our study (0.32–0.53) were similar
to those reported in other studies with repeated measures of
blood DNAm, including studies which did not focus on blood
collected proximate to death (Marioni et al., 2019). For example,
over approximately 7 years, in two other studies (Marioni
et al., 2019) (n = 172 and 175), they found correlations of
0.33–0.64 for the Horvath and for the Hannum clock over
time, suggesting that DNAm levels in our study changed in
at least somewhat expected ways. Ultimately, our sample size
for the peripheral blood was not large, thus it is difficult to
ascertain a cause of the observed lower correlations in the blood
samples proximate to death. However, our findings indicate that
further specific investigations of peripheral blood proximate to
death may provide new understanding of DNA methylation in
health and mortality.

Considerably less is known regarding epigenetic age in brain
tissue. In one publication reporting data only on the Horvath
clock, using seven smaller cohorts (n = 37–302, including a
subset of the ROS and MAP DLPFC here), Lu et al. (2017)
observed correlations of chronologic age to clock age ranging
from 0.61 to 0.99 within 6 brain regions. In more recent
research of PhenoAge, Levine et al. (2018) reported correlations
with chronologic age of 0.51–0.92 across varying brain regions
(including DLPFC in ROSMAP). Thus, both of these publications
found largely similar correlations as we report here, supporting
the relevance of epigenetic clocks to brain aging. Moreover, we
found especially high correlations of Cortical age to chronologic
age in the DLPFC and PCC—and excellent correlation of Cortical
age across the DLPFC and PCC. Further, in limited existing

clinical research in brain tissue, the Horvath clock in ROSMAP
DLPFC was related to some neuropathologic measures, with
significant correlations of DNAm age to amyloid load, neuritic
plaques, and diffuse plaques, but not to tangles, pathologic AD or
to clinical measures of cognitive function (Levine et al., 2015).
Interestingly, although we found that the PhenoAge clock had
the lowest correlation with chronologic age in brain tissue, initial
analyses by Levine et al. (2018) suggested that PhenoAge in
the ROSMAP DLPFC was also significantly related to amyloid
load, to neurofibrillary tangles, as well as to pathologic AD
diagnosis. It will clearly be important in future research to
extensively explore each of the clocks, assessed in brain tissue,
in association with neuropathologic and clinical neurologic
outcomes. In particular, while the Cortical clock here was best
correlated to chronologic age in the brain tissue, and had the
smallest absolute difference between epigenetic and chronologic
age, it will be interesting and important to evaluate whether this
also translates into higher predictive ability for neuropathologic
and clinical neurologic outcomes above and beyond the effect of
chronologic age.

Notably, we also found that correlations of epigenetic age in
blood vs. brain samples were low, largely 0.3 or lower across
the clocks. While research focused in brain specimens remains
central to understanding neurodegeneration, epigenetic clocks
that could allow direct translation across brain and blood,
will have the greatest research potential, given the accessibility
of blood samples. Future development of epigenetic clocks
for translational research in neurodegenerative diseases might
benefit from focusing on CpG sites which are conserved across
blood and brain tissue, as an approach to explore for improved
relevance in both tissue types.
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FIGURE 4 | Pearson correlations of epigenetic age to chronologic age, according to characteristics of participantsa.

Finally, when we specifically examined brain specimens
from participants according to sex or to health profiles,
we found that the clocks consistently performed well in
males and females, and in those with or without either
pathologic diagnosis of AD or clinical diagnosis of dementia.
This is reassuring evidence that underlying characteristics
of participants do not appear to have material influence
on basic functioning of the epigenetic clocks. Interestingly,
the Cortical clock is the only clock trained in a sample

which excluded Alzheimer disease cases, due to concerns that
underlying disease could potentially influence results (Shireby
et al., 2020). However, in comparison to the other clocks,
the Cortical clock did not demonstrate correlations with
chronologic age that were consistently better or worse in
our participants with vs. without pathologic AD, or clinical
dementia; this may further support the ability of epigenetic
clocks to estimate broad biologic aging across and within specific
underlying disease states.
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Strengths of our study include the unique availability of paired
blood samples and brain specimens, enabling investigation of
epigenetic clocks across these tissues. Further, our large sample
of older persons permitted detailed examination of epigenetic
clocks from brain tissue at older ages. There are limitations
as well. The proportion of neurons and other cell types in
the gray matter may confound DNAm states, which we did
not consider here; however, in previous analyses in ROSMAP
DLPFC, control for neuron count when broadly examining
DNAm profiles or specifically examining epigenetic clocks, did
not meaningfully change results (Horvath et al., 2015; Levine
et al., 2018). The blood samples were limited to CD4+ cells,
whereas prior studies examined clocks built from a wide variety
of cell types (Fransquet et al., 2019); however, our findings largely
mirror those of studies using varying blood cells. Nonetheless,
it is possible that specific findings here (e.g., the generally low
correlations between clocks in blood vs. brain tissue), might be
different in other blood cell types, a topic meriting additional
research. Further, the sample size of blood specimens, including
matched blood and brain specimens, was small, limiting our
analyses and interpretations. Finally, we did not consider how
the epigenetic clocks may predict the span of neuropathologic
or clinical neurologic outcomes. Instead, we chose to focus here
on extensive consideration of basic characteristics of epigenetic
clocks in blood and brain specimens—a crucial step prior to
broader neurologic research. In future investigations, we will
more directly address relations of these clocks to brain pathology
and to cognition.
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Parkinson’s disease (PD) is a multifactorial disorder characterized by progressively
debilitating dopaminergic neurodegeneration in the substantia nigra and the striatum,
along with various metabolic dysfunctions and molecular abnormalities. Metabolomics
is an emerging study and has been demonstrated to play important roles in describing
complex human diseases by integrating endogenous and exogenous sources of
alterations. Recently, an increasing amount of research has shown that metabolomics
profiling holds great promise in providing unique insights into molecular pathogenesis
and could be helpful in identifying candidate biomarkers for clinical detection and
therapies of PD. In this review, we briefly summarize recent findings and analyze
the application of molecular metabolomics in familial and sporadic PD from genetic
mutations, mitochondrial dysfunction, and dysbacteriosis. We also review metabolic
biomarkers to assess the functional stage and improve therapeutic strategies to
postpone or hinder the disease progression.

Keywords: Parkinson disease, metabolomics, genetic mutations, mitochondrial dysfunction, dysbacteriosis

INTRODUCTION

As the second most common chronic neurodegenerative disorder after Alzheimer’s disease,
Parkinson’s disease (PD) is a multisystemic disease with multiple mechanisms and neurochemical
features, affecting around >2% of all persons above 65 years of age and >4% of all persons over
the age of 80 (GBD 2015 Neurological Disorders Collaborator Group, 2017; Santos Garcia et al.,
2019; Xu et al., 2019). E Ray Dorsey et al. make an important point about the global burden of
PD, with the number of affected individuals having risen from 2.5 million in 1990 to 6.1 million
in 2016, with projections that by 2050 the number of PD patients will be at 12 million (GBD
2016 Parkinson’s Disease Collaborators, 2018). From an etiological perspective, the two hallmarks
and indicators of a definite diagnosis of PD are the deterioration of dopaminergic neurons and
the accumulation of intracytoplasmic protein α-Synuclein (α-Syn), called Lewy bodies, in the
substantia nigra region of the brain (Spillantini et al., 1997; Spillantini and Goedert, 2018). They
are mainly relevant to various neuropathological insults, such as genetic mutants (Kim and Alcalay,
2017), oxidative stress (Puspita et al., 2017), apoptosis, neuroinflammation (De Virgilio et al.,
2016; Rocha et al., 2018), mitochondrial dysfunction (Bose and Beal, 2016), disrupting intercellular
communication (Hou et al., 2019), endocrine disorders (De Pablo-Fernández et al., 2017), and
inhibition of aberrant protein degradation pathways (Tofaris et al., 2001; Spencer et al., 2014;
Sugeno et al., 2014). The α-Syn is linked to PD pathology, which possesses prion-like behavior
and presents in various throughout the nervous systems before neuronal death and classical
symptoms (Grassi et al., 2018; Ma et al., 2019). However, as a multifactorial disease, PD is also
influenced by dietary factors (Tufi et al., 2014; Fitzgerald et al., 2017; Lehmann et al., 2017; Zhao
et al., 2019), microorganisms (Keshavarzian et al., 2015; Scheperjans et al., 2015), and different
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environmental elements, such as metal (Kim et al., 2018),
neurotoxins (Bove and Perier, 2012), light exposure (Willis et al.,
2018), and infection. The disease has complex etiopathogenesis
that has still not been fully elucidated. Though four categories
of biomarkers have been recommended to confer accurate
diagnosis and assess the condition of patients, including
clinical symptoms, genetic mutation, pathological, and
neuroimaging changes (Delenclos et al., 2016), markers for
an early diagnosis and effective treatments of PD are still
lacking. Clinically, there is a high rate of misdiagnosis of
the disease and clinical accuracy of PD diagnosis is only
76–84%. Therefore, a better understanding of the etiology
and pathogenesis, as well as molecular events associated with
clinical symptoms, will be significant for early diagnosis and
therapeutic strategies.

Metabolomics is an emerging and effective approach used in
the identification and discovery of metabolic biomarkers; it relies
on the assessment of various biological samples and provides a
series of metabolic signatures involving molecular processes that
elucidate pathological changes of diseases. The technology links
various metabolic molecular mechanisms to neuronal activity
alterations, protein changes or genetic mutations, mitochondrial
dysfunction, or dysbacteriosis. As an advanced technique of
omics, metabolomics can integrate endogenous and exogenous
cellular metabolic activities, holding great promise in its ability
to probe biochemical details about the pathological status,
progression, and treatment of many chronic metabolic diseases,
such as cancer, neurodegenerative disease, and kidney disease
(Kalim and Rhee, 2017; Willis et al., 2018). Interestingly, an
increasing number of scholars devoted to PD research have
indicated that metabolomics can be considered as a powerful
tool to define biochemical information, detect metabolomic
status, and speculate on underlying mechanisms in the disease
(Koeth et al., 2013; Pannkuk et al., 2015). Metabolomics’
high-sensitivity and high-throughput properties might support
detailed information of the end-product abnormalities arising
from interactions between genes, chemicals, protein structure,
and various environmental factors. In this respect, metabolomics
could be more applicable than other "omics" techniques,
including genomics, pharmacogenomics, and transcriptomics,
in the qualitative and quantitative analysis of metabolites from
cell or biologic specimens to effectively reflect subtle changes of
metabolites (Stoessel et al., 2018). Therefore, the introduction of
metabolomics in PD research would provide a new solution for
seeking underlying metabolic biomarkers for the predication and
treatment of the disease.

Considering clinical and experimental findings in pathological
mechanisms, we know that multiple mechanisms may
contribute to PD pathogenesis. Specially, most studies about
the metabolomics of PD mainly focus on gene alterations,
energy homeostasis, and redox reactions resulting from
mitochondrial dysfunction. Meanwhile, declined antioxidation
systems and mitochondrial disorders are also important
causes of neuron inflammation and senescence associated
with neuropathology (Boland et al., 2018). Updated preclinical
evidence indicated that the bidirectional communication
between the gut community patterns and the nervous system

of the brain, hereto dysbacteriosis, was identified and plays an
important role in both the metabolism and pathology of patients
with PD. So, in-depth research on the metabolomics regarding
potential metabolic indicators and pathways of PD should focus
on its effects on pathogenesis and the pathological process.

In this review article, we provide a concise overview on
technical methods and related operative procedures in the field
of metabolomics. We review recent research on the relationship
between metabolomics and neuropathological changes of PD
in terms of genetic mutation, mitochondrial dysfunctions,
and dysbacteriosis, and also summarize the molecular
mechanisms and metabolites underlying pathological signs
as promising biomarkers of pathogenesis in both sporadic and
familial PD.

METABOLOMICS

The metabolome is the entire collection of a wide range of
small molecules that participate in body metabolic responses,
such as saccharides, amino acids, nucleotides, lipids, and
acylcarnitines. Metabolomics, as an analytical technique to
investigate disorders in the metabolome of an organism, possess
substantial sensitivity, selectivity, and identification capabilities
of analyzing diverse varieties of molecular species in biofluids,
ranging from ionic compounds in cell lysates to various
organic compounds/composition in plasma, cerebrospinal fluid
(CSF), urine, and tissue (Figure 1). Compared with traditional
targeted approaches, the new untargeted metabolomics have
great potential to identify some novel biomarkers and help
in indicating the metabolite levels of body fluids, seeking
different disease biomarkers to provide useful information about
metabolic pathways, metabolites, and pathological mechanisms.

In the past decade, many analytical technologies have been
introduced and applied in various metabolomic research fields
and thus have furthered the understanding of neurodegenerative
diseases on the basis of relevant metabolites as biomarkers. In
general, the methodologies used for metabolic identification
mainly include proton nuclear magnetic resonance (NMR),
magnetic resonance spectroscopy (MRS), liquid chromatography
mass spectrometry (LCMS), gas chromatography mass
spectrometry (GCMS), flourier transform infrared spectrum
(FTIR), and high-performance liquid chromatography (HPLC).
The first two metrics utilize the magnetic properties of
molecular atomic nuclei in metabolic samples to obtain detailed
chemical, structural, and quantities information of metabolites in
little samples. By contrast, chromatography mass spectrometry
(CMS), which combines the efficient separation capability
of chromatography with the high detectability of mass
spectrometry, has high analytical precision and superior
reproducibility and versatility (Kiraly et al., 2016).

With the development of technologies and current research,
there are different groups of metabolic biomarkers used
in susceptivity, diagnosis, pharmacodynamic response, and
prognostic assessment of diseases (Correia et al., 2017). Emerging
evidence has revealed that related metabolomics would be
a potential tool for screening and monitoring molecular
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FIGURE 1 | Metabolomics analysis methods. Molecular metabolites were extracted from different samples, ranging from ionic compounds in cell lysates to various
organic compositions in plasma, cerebrospinal fluid (CSF), urine, and tissue. Samples chromatography and mass spectrometry were prepared and administrated for
analysis and identification.

mechanisms and chemical phenotypes and seeking metabolic
signatures as diagnostic and prognostic biomarkers of familial
and idiopathic PD. For instance, Bogdanov et al. reported the
differences of metabolomic profiling of plasma from idiopathic
PD and LRRK2 patients with the G2019S mutation, implicating
that the familial PD has unique metabolomic profiles associated
with the purine pathway and oxidative processes (Bogdanov
et al., 2008; Johansen et al., 2009; Bolner et al., 2011). Similarly,
metabolic profiles of blood in idiopathic PD are also different
from healthy groups, such as alpha-synuclein, tau protein, urate,
and a series of amino acid metabolism (Bolner et al., 2011; Luan
et al., 2015; Saiki et al., 2017; Chang et al., 2018; Goldman
et al., 2018). These disturbances in the metabolic pathways
are related to mitochondrial dysfunctions and the concomitant
changes in energy homeostasis and redox reaction, which are
thought to be the final common pathways of most endogenous
and exogenous factors that are involved in the etiology of PD
(Bhinderwala et al., 2019). Recent studies have revealed that there
are metabolic differences between treated and drug-naïve PD
patients (Bogdanov et al., 2008; Troisi et al., 2019), as well as
patients with and without dementia or depression (Hatano et al.,
2016; Dong et al., 2018). In addition, biofluids metabolome has
potential to distinguish the phenotype of PD. For example, James
Roede et al. (2013), used mass spectrometry-based metabolic
profiling and showed that polyamine dopamine metabolism
was significantly altered in the rapid motor progression of
PD compared to both healthy subjects and slow progression
PD subjects, which potentially effects of neurodegeneration on

neuroinflammation or dopamine metabolism. The metabolomics
of animal models demonstrated disturbed metabolic pathways
in acylcarnitines, glycerophospholipid, and 4-hydroxypoline in
serum, indicating the metabolism influence on the onset and
progression of α-Syn pathology (Graham et al., 2018).

GENETIC METABOLOMICS IN PD
PATIENTS

Genomics is the upstream regulator of metabolomics and
participates in the modulation of differential metabolite
concentrations. Since 1977, studies have provided initial insights
into molecular genetics and identified the key contributors that
give rise to the occurrence and progression of familial PD cases
(Polymeropoulos et al., 1997; Kruger et al., 1998; Braak et al.,
2003; Zarranz et al., 2004). Until now, 27 PD-associated genes
regions have been identified, affecting 20% of all PD patients
(Klein and Westenberger, 2012; Correia et al., 2017; Arkinson and
Walden, 2018). There are six genes contributing to the clinically
classical form of PD, including three autosomal dominant
(SNCA, LRRK2, and VPS35) and three autosomal recessively
(PINK1, PARK2, and DJ-1). Additionally, some singular gene
mutations are associated with an increased risk of developing
PD, including autosomal dominant (PARK3, GIGYF2, HTRA2,
EIF4G1, RAB39B, TMEM230, CHCHD2, RIC3, and GBA) and
autosomal recessive (ATP13A2, PLA2GB, FBXO7, DNAJC13,
SYNJ1, and VPS13C). Previous studies revealed that three
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types of metabolic defects mainly play important roles in the
progression of PD: a-Syn protein aggregation, mitochondrial
dysfunction, and related oxidative damage. From the structural
and functional perspectives, these cellular dysfunctions are
associated with different sites and types of alterations in these
genes (Figure 2). Even though most familial monogenic forms
of PD are identified, metabolic research mainly focuses on
the minority of PD related-genes mutations, including SNCA,
LRRK2, PARK2, and GBA. Therefore, a thorough understanding
of these gene-related metabolomics will provide available
biomarkers for diagnosing and tracking familial PD.

SNCA
The SNCA gene is the first gene to be implicated in PD.
Of note, the gene encodes a-Syn protein and its pathogenic
mutations were linked with the abnormal accumulation of the
presynaptic protein. The initial link between the SNCA gene
and PD was found by Polymeropoulos et al. (1997) when a
missense mutation (A53T) of SNCA was implicated in patients
with autosomal dominant Parkinsonism from a large Italian
family. Shortly thereafter, accumulating evidence has shown the
mutations of A30Pro (Kruger et al., 1998), E46K (Zarranz et al.,
2004), H50Q, G51D, and A53E in the alpha-synuclein gene
(Parajuli et al., 2020). All six-point mutants have been involved in
a-Syn overexpression, accumulation, and aggregation, conferring
the risk of the disease’s onset or causing familial PD (Singleton
et al., 2013). In addition, the SNCA duplication or triplication
events (PARK4 variant), as well as the promoter’s variation, were
also involved in the formation of toxic oligomers, misfolded
α-Syn, and nigrostriatal denervation, which are vital causes of the
disease (Gatto et al., 2010; Koros et al., 2018).

Apart from protein-encoding, research has suggested the role
of the SNCA gene in fatty acid synthesis, lipid metabolism
(Golovko et al., 2007), mitochondrial membrane composition
(Barcelo-Coblijn et al., 2007), and inflammatory responses in the
brain (Castagnet et al., 2005; Golovko et al., 2009). Consistent
with previous reports, a current study supports previous findings
of the SNCA involvement in substance metabolism of the brain.
It is worth noting that the authors identified a range of metabolic
changes related to the gene through untargeted metabolomic
profiling of the brain, such as glycogen depletion, impaired
activity of succinate dehydrogenase, and the abnormality of
taurine and glutamine (Musgrove et al., 2014). The metabolic
alterations not only reflect impaired mitochondrial function in
energy production, but also indicate the pathologies associated
with other metabolic pathways. Similar to deteriorating metabolic
abnormalities in the brain, the SNCA gene-related mutations
could affect peripheral tissue metabolism in PD patients, which
are useful in understanding the metabolic status of the brain
and providing molecular signatures. Demonstrated in a cross-
sectional study by Heather et al., the premotor A53T SNCA
carriers have decreasing serotonin transporter densities and
serotonergic pathologies compared with healthy controls (Wilson
et al., 2019). In addition, the serotonergic abnormalities preceded
dopaminergic neuron loss and clinical symptoms, suggesting the
potential role of the serotonergic neurotransmitter system in
screening and monitoring the progression of the disease

(Qamhawi et al., 2015; Wilson et al., 2018). In a longitudinal
study, the comparison between A53T transgenic mice and
controls revealed that the A53T mutation could substantially
increase guanosine levels as a positive regulation against
neurodegeneration (Chen et al., 2015).

LRRK2
LRRK2 (Leucine-rich repeat kinase 2) is the most common
gene related to PD, with a frequency of 10% in familiar cases
(Paisan-Ruiz et al., 2008; Hernandez et al., 2016). Located in
a region on chromosome 12, the gene consists of 51 exons
which encode a 2,527 amino acid member of the ROCO protein
family (Paisan-Ruiz et al., 2008), and relates to mitochondrial
functions, cytoskeletal dynamics, and cellular processes
(Guaitoli et al., 2016; Bae and Lee, 2019). Based on current
research, eight pathogenic substitutions (p.Arg1441Cys/Gly/His,
p.Asn1437His, p.Tyr1699Cys, p.Gly2019Ser, p.Ile2020Thr, and
p.Ile2012Thr) and two susceptibility variants (p.Arg1628Pro
and p.Gly2385Arg) in LRRK2 have been identified. The G2019S
substitution is most frequent LRRK2-related mutation. These
PD-associated LRRK2 mutations might increase intracellular
ROS production and contribute to oxidative stress and the loss of
dopaminergic neurons.

The correlation between the increase of oxidative stress
markers and reduced antioxidant capacity and LRRK mutation
was assessed in the current study (Loeffler et al., 2017).
They measured oxidative stress and antioxidant markers in
CSF from LRRK2-related PD patients, sporadic patients, and
control subjects. Two direct indicators of oxidative stress,
the 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-isoprostane
(8-ISO) concentrations, were increased in LRRK2 patients
compared with healthy groups, while antioxidant capacity might
decrease during the progression of the disease. Similar to the
SNCA gene, the metabolomic profiles of low molecular weight
substances in PD patients with LRRK2 mutations are also
different from idiopathic PD and healthy controls (Johansen
et al., 2009). In this study, the LRRK2 mutation patients showed
significantly decreased hypoxanthine, Xanthine, and uric acid in
plasma, suggesting the reduction of related antioxidant activities.
In addition, several studies have provided evidence that blood
levels of uric acid appeared to correlate negatively with the risk for
developing PD (Annanmaki et al., 2007; Ascherio et al., 2009; Ou
et al., 2017). These suggest that metabolites of the purine pathway
play a potential role in elucidating pathogenesis and biomarkers
of PD. Like uric acid, LRRK2 mutation was associated with
impaired serine metabolism, showing decreased serine racemase
expression and increased serine levels (Nickels et al., 2019).
LRRK2 genes also took part in other metabolic responses, such
as Akt signaling, glucose metabolism, or immunity, contributing
to the identification of metabolism in LRRK-PD (Infante et al.,
2015; Wile et al., 2017).

PINK1 and PARK2
In autosomal recessively PD, PINK1, and PARK2 are associated
with the neurodegenerative disorder, which encode the E3
ubiquitin ligase Parkin and the mitochondrial serine/threonine
kinase PINK1 that play important roles in mitochondrial quality
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FIGURE 2 | Genetic metabolomics in PD. The complexity of the pathology of PD stemming from the overlap of multiple gene mutants and complex environmental
factors. Both locally and systemically, these hazards contribute to a series of responses associated with mitochondrial dysfunction, neuroinflammation, and the
failure of clearance mechanisms.

control and turnover (Arkinson and Walden, 2018). Under
normal conditions, PINK1 can phosphorylate and recruit Parkin
proteins from the cytoplasm to depolarized mitochondria, then
meditate the ubiquitination of mitochondrial outer membrane
proteins and activate mitophagy to degrade the ubiquitin
mitochondrial proteins mitofusin 1 and 2 (Pickrell and Youle,
2015; Matheoud et al., 2016; Barodia et al., 2017). Similar to
autosomal dominant genes, PINK1 and PARK2 mutations
induce metabolomic changes in PD patients. Okuzumi et al.
(2019) analyzed serum metabolomics from Parkin patients
and age-matched controls, and revealed higher levels of
oxidized lipids and fatty acid metabolites and lower levels
of antioxidant markers in PARK2 patients, suggesting the
relationship between the serum/plasma metabolomics and gene
dysfunction. Additionally, as a way of ensuring mitochondrial
quality control, the mutation effects the elimination of
dysfunctional mitochondria that was associated with an
increase of mitochondrial stress, manifesting a systemic oxidative

stress markers for the pathomechanisms of Parkin-mutation
patients (Ueno et al., 2020).

GBA
The most common genetic risk factor for PD is the
glucocerebrosidase (GBA) gene, which is located on
chromosome 1q21 and contains 11 exons that encode the
lysosomal enzyme glucocerebrosidase. In normal cells, the
metabolism of glucocerebroside attributes to the efficacy of
the glucocerebrosidase (GCase). Reports indicated that GCase
not only increases the breakdown of glucocerebroside into
glucose and ceramide, but also plays a role in α-Syn degradation
(Sidransky and Lopez, 2012; Migdalska-Richards and Schapira,
2016). By contrast, previous studies have shown that the variants
of p.E365K and p.T408M in the GBA gene are associated with PD
(Liu et al., 2016; Mallett et al., 2016). The GBA mutations disturb
the function of related lysosomal enzymes, which provoke
a-Syn accumulation (Sidransky and Lopez, 2012), disrupt
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autophagy-lysosome and molecular homeostasis (Uemura et al.,
2015), and impair the functional mitochondria by inhibiting
mitophagy (Zampieri et al., 2017). For understanding metabolic
consequences associated with the GBA gene alterations, recent
research has detected the CSF of patients with glucocerebrosidase
dysfunction, and observed impairments in mitochondrial
function and the urea cycle that increased the abundance of
several metabolites, such as 1,5-anhydro-D-glucitol, asparagine,
ornithine, glutamine, and glycine (Greuel et al., 2020).

METABOLOMICS ASSOCIATED WITH
IDIOPATHIC PD PATIENTS

Most patients are diagnosed as sporadic idiopathic PD as
opposed to familial patients, in which environmental hazards
play an important role in the pathogenesis of neurodegeneration
diseases. The pathogenesis of PD involves complex interactions
among multifarious pathomechanisms that include oxidative
stress, mitochondrial alterations, inflammatory response, and
dysbacteriosis. These pathological changes usually accelerate
the truncation (Kahle et al., 2001; Auluck et al., 2002;
Liu et al., 2005) and multimerization of misfolding proteins
through phospholipid binding, membrane compound altering,
and change in the function of molecular chaperones (Tuttle
et al., 2016; Gerez et al., 2019). The identification of aberrant
biochemistry underlying neuronal degeneration could be an
important step toward discovering mechanisms and accurate
markers for the diagnosis and therapy of PD. Based on previous
studies and updated evidence exploring the metabolomics
profiling of biofluids in PD patients, most existing knowledge
shows the alteration of different molecular species that mainly
focus on genes alterations, energy homeostasis, and redox
reaction resulting from mitochondrial dysfunction. Hence, we
summarize the progress on metabolomics in idiopathic PD
cases and focus on the metabolic biomarkers associated with
mitochondrial dysfunction and dysbacteriosis.

MITOCHONDRIAL DYSFUNCTION

As the dynamic powerhouse of a cell, the mitochondrion
plays a major role in metabolic activity and generates over
90% of the ATP in a cell. Mitochondria contain their own
genomes (mtDNA) and encode vital components associated
with mitochondrial function. There is increasing evidence
that the mitochondrial function extends well beyond the
production of energy in carbohydrate, fatty acid, amino acid, and
nucleotide metabolism, it aids in the stabilization of cytosolic
calcium, and relates to metabolic pathways, such as the pyruvate
oxidation, the Krebs cycle, and various immune responses
(Luan et al., 2015; Di Maio et al., 2016). To date, diverse
gene mutations and environmental factors have been identified
as the cause of mitochondrial dysfunction; it likely to be a key
contributor to PD pathogenesis by damaging the transport of
mitochondrial proteins, inhibiting respiratory chain function,
actuating the generation of reactive oxygen species (ROS), and

increasing α-Syn aggregation. As shown in previous studies,
the complex I function of the electron transport chain in
mitochondrion is impaired because of exposure to environmental
toxins such as paraquat, rotenone, and metals (Muthukumaran
et al., 2014; Stauch et al., 2016; Thellung et al., 2019). Patients
with sporadic PD not only present metabolic changes about
abnormal mitochondrial activity in energy homeostasis and
redox reaction (Krige et al., 1992; Haas et al., 1995; Penn
et al., 1995), but have the presence of mitochondrial oxidative
metabolism and insulin resistance (Marcovina et al., 2013;
Gonzalez-Casacuberta et al., 2019; Djordjevic et al., 2020). As
can be seen in Figure 3, these impaired mitochondrial protein
import reduced mitochondrial dynamics, increase ROS, and
create mitophagy abnormalities or bioenergetic defects that
would deteriorate α-Syn protein misfolding and aggregation.

These mitochondrial changes disturb a series of energy
metabolism systems (pentose phosphate pathway, glycolysis,
mitochondrial oxidative phosphorylation, glycolysis,
acylcarnitines, and the tricarboxylic cycle) (Roede et al.,
2013; Trupp et al., 2014; Willkommen et al., 2018), and are also
involved in the upregulation or downregulation of amino acids,
lipids, and antioxidant substances in PD (Bazinet and Laye,
2014; Lei et al., 2014; Tyurina et al., 2015). Like the correlation
between mitochondrial function and gene alterations (Figure 3),
comprehensive metabolic analysis of mitochondrial defects
arising from environmental factors, such as oxidative stress and
energy substance metabolism, might promote the discovery of
some discern biomarkers for PD. For example, Younes-Mhenni
et al. (2007) and Lewitt et al. (2013) found significantly higher
activity of oxidized glutathione, superoxide dismutase (SOD),
and catalase in PD patients compared with healthy people.
Similarly, increasing 8-hydroxy-2-deoxyguanosine (8-OHdG),
an oxidative product of damaged DNA, has also been detected
in the blood and urine of PD patients (Roede et al., 2013). On
the contrary, the high levels of antioxidants could lower the
occurrence and slow the progression of the neurodegenerative
disease (Ascherio et al., 2006). Except for metabolic alteration
related to mitochondrial oxidation, recent research about
metabolomic analysis of cell lysates showed that PD patients
present with an increase of lactic acid and a depletion of pyruvic
acid and aberrant choline metabolism in extracellular fluid
(Amo et al., 2019). Reports have shown that acylcarnitine, as the
essential amino acid for fatty acid transport into mitochondria
for energy metabolism, was definite in upregulative stages and
potentially effected the structure and function of substantia nigra
(Mallah et al., 2019).

Notably, some alterations of oxidative stress metabolites
might be used to evaluate different subtypes and stages
of the disease. Based on CSF and blood samples from
patients with PD, Karsten et al. observed specific increases
of mannose and fructose, as well as increased threonic acid
and reduced dehydroascorbic acid in early-stage PD patients
(Trezzi et al., 2017). These changes in oxidation products could
reflect the activation of antioxidative stress responses as a
resistance mechanism against neuronal injury, in contrast to
which, the failure in antioxidant reserve could aggregate the
neurodegeneration (Dunn et al., 2014). Significant increases
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FIGURE 3 | Mitochondrial metabolomics in PD patients. (A) Under normal status: 1. mitochondrial complex IV subunit 4 isoform (COX4I2) and proliferator-activated
receptor gamma coactivator 1-α (PGC1α) facilitate mitochondrial biogenesis. Additionally, PINK1 and Parkin alleviates PARIS toxicity by phosphorylation and
ubiquitination, respectively. 2. PINK1 acts on dynamin-related protein 1 (DRP1) to regulate mitochondrial fission and PKA (PINK1 inhibits protein kinase) inhibits the
progress. As such, LRRK2 is also involved in mitochondrial dynamic by MFNs and OPA1 (two mitochondrial fusion proteins) as well as DRP1 (a mitochondrial fission
protein). 3. PINK1, Parkin, and LRRK2 mediate mitochondrial transport. 4. PINK1/Parkin clears damaged mitochondria by mitophagy (B). Under gene mutant: 1.
mitochondrial biogenesis is inhibited by upregulating PGC1α, which is vulnerable to ROS. 2. The imbalance of mitochondrial dynamics. 3. The mutation of PINK1,
Parkin, or LRRK2 halt mitochondrial transportation via Miro, Milton, and motor protein Kinesin-1. In addition, altering LRRK2 expression can stabilize filamentous
actin (F-actin) and promote tau neurotoxicity. 4. Hazards causes PINK1 to accumulate when Parkin is impaired, followed by failure in the mitophagy and production
of ROS. 5. Deposition of GCB and misfolding a-Syn disrupt mitochondrial respiration, leading to the production of ROS and dysfunction of lysosomes.
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TABLE 1 | Summary of gut microbiota and their changes in the fecal samples of PD.

Phylum Family Genus Metabolite Alteration References

Firmicutes Down/Up GBD 2015 Neurological Disorders Collaborator
Group, 2017; Xu et al., 2019

Clostridiaceae Clostridium – Up Santos Garcia et al., 2019

Eubacteriaceae Acetobacterium – Up GBD 2015 Neurological Disorders Collaborator
Group, 2017

Veillonellaceae Veillonella – Up Xu et al., 2019

Lachnospiraceae Anaerostipes – Up GBD 2016 Parkinson’s Disease Collaborators,
2018

Dorea – Down

Blautia – Down Spillantini et al., 1997; Xu et al., 2019

Roseburia – Down Spillantini et al., 1997; Xu et al., 2019

Coprococcus – Down

Fusicatenibacter – Down Spillantini et al., 1997

Faecalibacterium – Down Spillantini and Goedert, 2018

Lachnospira Nicotinic acid
Pantothenic acid

Down/Up Spillantini et al., 1997; Kim and Alcalay, 2017; Xu
et al., 2019

Pseudobutyrivibrio – Down Spillantini et al., 1997

Lactobacillaceae Lactobacter – Up Kim and Alcalay, 2017; Puspita et al., 2017

Streptococcaceae Streptococcus Cadaverine Down/Up Santos Garcia et al., 2019

Ruminococcaceae Anaerotruncus – Up GBD 2015 Neurological Disorders Collaborator
Group, 2017

Bacteroidetes Down/Up Kim and Alcalay, 2017; Santos Garcia et al., 2019

Bacteroidaceae Bacteroides – Down/Up Rocha et al., 2018; Santos Garcia et al., 2019

Odoribacteriaceae Odoribacter – Down Spillantini et al., 1997; De Virgilio et al., 2016

Rikenellaceae – Down

Prevotellaceae Prevotella – Down/Up Bose and Beal, 2016; Rocha et al., 2018

Porphyromonas – Up Spillantini et al., 1997

Proteobacteria Up De Virgilio et al., 2016; Santos Garcia et al., 2019

Alcaligenaceae – Down

Comamonadaceae – Down

Desulfovibrionaceae Desulfovibrio – Up

Desulfohalobiaceae Desulfonauticus – Up

Enterobacteriaceae Down/Up De Virgilio et al., 2016; Rocha et al., 2018

Enterobacter – Up

Escherichia – Up

Serratia Nicotinic acid Up

Oscillospira – Down/Up Spillantini et al., 1997; Santos Garcia et al., 2019

Corynebacterium – Up Spillantini et al., 1997

Sutterellaceae Sutterella – Down

Comamonadaceae Comamonas – Up

Actinobacteria Up Hou et al., 2019

Bifidobacteriaceae Bifidobacterium Pantothenic acid
Pyroglutamic acid

Up GBD 2015 Neurological Disorders Collaborator
Group, 2017; Kim and Alcalay, 2017

Coriobacteriaceae Slackia – Up

Microbacteriaceae – Up GBD 2015 Neurological Disorders Collaborator
Group, 2017

Brevibacteriaceae Brevibacterium – Down Spillantini and Goedert, 2018

Verrucomicrobia Up De Virgilio et al., 2016; Santos Garcia et al., 2019;
Xu et al., 2019

Verrucomicrobiaceae Akkermansia – Up Kim and Alcalay, 2017; Santos Garcia et al., 2019

Prosthecobacter – Up

Cyanobacteria Down Hou et al., 2019

Aphanizomenonaceae Dolichospermum – Down
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TABLE 2 | Summary of microbiota cluster and their features in gut.

Cluster Features Alteration References

Opportunistic pathogens Porphyromonas Prevotella
Corynebacterium

NLRP3 inflammasome LPS Up Spillantini et al., 1997

SCFA-producing bacteria Blautia, Roseburia, Coprococcus Dorea
Lachnospira Faecalibacterium
Oscillospira Corynebacterium

SCFAs-producing
Butyrate-producing Vagal
activation

Down Spillantini and Goedert,
2018; Xu et al., 2019

Probiotic bacteria Lactobacillus Bifidobacteriaceae Cellulose metabolism Up Kim and Alcalay, 2017

Cohesive bacteria Clostridium Oscillospira Akkermansia
Ruminococcaceae

– Up Spillantini and Goedert,
2018

were seen in pyroglutamate and 2-oxoisocaproate and decreases
in 3-hydroxyisovalerate, tryptophan, and creatinine, which
supported an increase of marks in oxidative responses in
preclinical PD (Liu and Wang, 2014). Additionally, some
metabolites have also been identified as indicators of the
severity of Parkinson’s disease, including uric acid and taurine
(Engelborghs et al., 2003).

GASTROINTESTINAL DYSFUNCTION
AND DYSBACTERIOSIS

As we all know, gastrointestinal microbes and host usually remain
in a mutualistic relationship, in which the microbes keep its
diversification and function via the gut to absorb nutrition. In
turn, the parasitic microbiota parasitize in the digestive tract
and produce a series of biochemical compounds to contribute
physical and bioactive barriers or trigger protective immune
responses to withstand the effect of exogenous factors (Reza et al.,
2019; Parker et al., 2020). Accumulating evidence suggests that
many diseases have specific microbiome profiles and potentially
communicate mechanisms between the gastrointestinal and the
nervous systems, so alterations in gut microbiota have been
linked to neurodegeneration, including AD, PD, and Multiple
Sclerosis (Sasmita, 2019).

Over the last two decades, neurologists have begun to explore
in detail the relationship between the gastrointestinal tract,
gut microbiota, and the central nerve systems (CNS). In the
last several years, the gut and related microbiome have gained
increasing attention because of its close relationship with the
etiology of PD. Clinical evidence revealed that neuropathological
changes in PD are accompanied by varying symptoms of
gastrointestinal dysfunction (indigestion, constipation, bloating,
and dysbacteriosis) before the onset of motor symptoms.
Experimental evidence showed that bacterial abnormalities and
intestinal pathology may play a role in PD symptoms (Fasano
et al., 2013; Tan et al., 2015; Van Laar et al., 2019; Mertsalmi
et al., 2020). In recent reports, the gut and relevant metabolic
products have been given increasing attention because of their
importance in the disease pathogenesis (Sampson et al., 2016;
Kim et al., 2019), showing that PD patients usually show
significant changes in microbiotal abundance and diversity,
as well as distinctive profiles of microbiota composition and
intestinal metabolites (Keshavarzian et al., 2015; Vascellari et al.,
2020; Wallen et al., 2020; Table 1). Although these microbiota

composition alterations are heterogeneous, both microbiota
disorders and intestinal damage could act as triggering events
that lead to dopaminergic loss and pathological a-Syn (Matheoud
et al., 2019). Further, numerous experimental and clinical reports
indicated that the a-Syn could gather and spread from the
gastrointestine to the deep brain (Braak et al., 2003; Kim et al.,
2019; Van Den Berge et al., 2019). Notably, the alteration in
microbiota abundance was noted in different subtypes and
stages of the disease. A study has demonstrated that the
abundancy of some microbial compositions, such as Lactococcus,
Faecalibacterium, and Leptotrichia, was increased in early-stages
of PD, while Comamonas was common in patients with late-
onset symptoms. The abundance of Bacteroidetes and Firmicutes
were significantly increased in patients with motor-symptoms
(Keshavarzian et al., 2015; Lin et al., 2018). Likewise, decreased
Prevotellaceae abundance and increased Enterobacteriaceae may
have a positive association with intestinal dysfunction in PD
patients. Keeping this point in mind, we know that the
dysbacteriosis and microbiota metabolomics have potential
relevance to the existence of gastrointestinal a-Syn and pathology.
The understanding of microbiota metabolomics is essential for
exploring the pathogenesis of PD and seeking specific biomarkers
that support a more accurate assessment, earlier diagnosis, and
better monitoring of the disease progression.

To our knowledge, gut microbiota contributes to host
metabolism in the regulation of organic energy metabolism
(e.g., lipids, amino acids, and vitamins), as well as to the
differentiation and function of immune cells (Cani, 2018). The
specific microbial metabolites are disordered when gut microbes
are out of balance in abundance and diversity (Table 2).
Based on previous studies, the PD-related dysbacteriosis could
induce changes in carbohydrate fermentation, protein, and
lipid metabolism which could generate SCFA, p-cresol and
phenylacetylglutamine, protocatechuic acid, secondary bile acids,
and other metabolites (Wahlstrom et al., 2016; Murota et al.,
2018; Cirstea et al., 2020). Specifically, the concentration
of short chain fatty acids (SCFA) have largely implicated
a significant correlation between gut microbiota and PD,
and has been implicated as a driver of the onset and
progression of PD (Qiao et al., 2020). The SCFA is a metabolic
product that possesses anti-inflammatory and anti-microbial
function qualities and protects from intestinal permeability,
oxidative stress, and immune injury (Donohoe et al., 2011;
Sanchez-Guajardo et al., 2015). Further, the SCFA contain
a functional composition—Butyrate—that not only supplies
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the main source of energy for the gut epithelium, but also
strengthens the gastrointestinal barrier function (Volf et al.,
2016; Agusti et al., 2018). Therefore, the lower abundance
of the microbes that produce SCFA could have negative
effects for the intestinal barrier and immune function to
induce gastrointestinal symptoms of PD, including constipation,
intestinal inflammation, and intestinal barrier leakiness (Segain
et al., 2000). From what has been discussed above, the metabolic
changes of SCFA caused by gut microbial dysbiosis may be a
biomarker for better evaluation of PD conditions.

FUTURE PERSPECTIVES

Collectively, these findings may mark a new step on the path
toward the metabolomics of PD. Paralleling with the availability
of test samples and advances in identification technology,
metabolomics has been considerably applied as a tool in PD
research (Koeth et al., 2013; Pannkuk et al., 2015). However,
due to the heterogeneity of humans in regards to genetic
expression, dietary habit, environmental exposure, and physical

behaviors, only a few specific biomarkers can currently be
recommended in clinical practice. Hence, further works on the
correlation between metabolomics and the neurodegenerative
disease would be valuable. It is of great clinical significance
to discover specific biological markers of PD, so as to early
screen high-risk populations and facilitate timely diagnosis and
reasonable therapeutics.
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Background: Amyotrophic lateral sclerosis is a clinical syndrome with complex
biological determinants, but which in most cases is characterized by TDP-43 pathology.
The identification in CSF of a protein signature of TDP-43 network dysfunction would
have the potential to inform the identification of new biomarkers and therapeutic targets.

Methods: We compared CSF proteomic data from patients with ALS (n = 41),
Parkinson’s disease (n = 19) and healthy control participants (n = 20). Weighted
correlation network analysis was used to identify modules within the CSF protein
network and combined with gene ontology enrichment analysis to functionally annotate
module proteins. Analysis of module eigenproteins and differential correlation analysis
of the CSF protein network was used to compare ALS and Parkinson’s disease
protein co-correlation with healthy controls. In order to monitor temporal changes in
the CSF proteome, we performed longitudinal analysis of the CSF proteome in a subset
of ALS patients.

Results: Weighted correlation network analysis identified 10 modules, including those
enriched for terms involved in gene expression including nucleic acid binding, RNA
metabolism and translation; humoral immune system function, including complement
pathways; membrane proteins, axonal outgrowth and adherence; and glutamatergic
synapses. Immune system module eigenproteins were increased in ALS, whilst axonal
module eigenproteins were decreased in ALS. The 19 altered protein correlations in
ALS were enriched for gene expression (OR 3.05, p = 0.017) and membrane protein
modules (OR 17.48, p = 0.011), including intramodular hub proteins previously identified
as TDP-43 interactors. Proteins decreasing over longitudinal analysis ALS were enriched
in glutamatergic synapse and axonal outgrowth modules. Protein correlation network
disruptions in Parkinson’s disease showed no module enrichment.

Conclusions: Alterations in the co-correlation network in CSF samples identified a set
of pathways known to be associated with TDP-43 dysfunction in the pathogenesis of
ALS, with important implications for therapeutic targeting and biomarker development.

Keywords: cerebrospinal fluid, amyotrophic lateral sclerosis, motor neuron disease, biomarker, proteomics,
proteomics & bioinformatics, WGCNA, network analysis
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disease, associated with selective loss of motor neurons in the
spinal cord and brain. Alterations in multiple cellular pathways
have been implicated in the pathogenesis of ALS, including
excitotoxicity, cellular energy metabolism, protein degradation
and non-cell autonomous glial mechanisms, representing
multiple overlapping tributaries into the final common pathway
of motor neuron degeneration (Talbot et al., 2018). Since the
discovery of mislocalized cytoplasmic aggregates of 43 kDa
trans-active response DNA-binding protein (TDP-43) as the
neuropathological hallmark of nearly all ALS cases (Neumann
et al., 2006), focus has fallen on mechanisms related to alterations
in the function and behavior of TDP-43, particularly its roles
in RNA splicing, the stress response and its propensity for
aggregation (Taylor et al., 2016).

Evidence of perturbations in many pathways implicated
in ALS have been identified in biofluid samples from ALS
patients. Alterations in markers of oxidative stress, glial and
immune activation, axonal degeneration and protein degradation
mechanisms have been detected in patient samples using
candidate-driven and untargeted studies of cerebrospinal fluid
(CSF) proteins and metabolites (Turner et al., 2009).

A major advantage of the high-dimensional data produced by
untargeted approaches is the capability to explore co-ordinated
network alterations, engendering broader understanding of
the pathophysiological changes associated with a disease or
phenotype. Analytical techniques based on co-correlation, such
as weighted gene correlation network analysis (WGCNA)
(Langfelder and Horvath, 2008) and differential gene correlation
analysis (McKenzie et al., 2016) have been applied widely
in genomics and proteomics to derive regulatory networks,
understand disease-associated alterations in protein networks
and identify candidate therapeutic targets. Here, we apply this
approach to CSF, comparing network changes in patients with
ALS with healthy controls and, in order to distinguish disease-
specific changes from neurodegeneration-associated changes,
patients with Parkinson’s disease (PD) aiming to identify network
disruption overlooked by conventional analysis.

MATERIALS AND METHODS

Participants and Sampling
Ethical approval for this study was obtained from South
Central Oxford Ethics Committee B (08/H0605/85) NRES
Central Committee South Central – Berkshire (14/SC/0083 and
10/H0505/71). All participants provided written consent (or gave
permission for a carer to sign on their behalf). The study included
43 patients with ALS, 20 patients with Parkinson’s disease, and
20 healthy control subjects. Patients with ALS were recruited
from the Oxford ALS Centre, Oxford, United Kingdom and
patients with Parkinson’s disease were recruited through the
Oxford Parkinson’s Disease Centre, Oxford, United Kingdom.

CSF was collected at baseline and, in ALS patients, every
6 months when available. Clinical data was ascertained on the

same day. CSF samples were processed in accordance with
consensus guidelines for biomarker development within 1 h
of sampling and stored at −80◦C until use. Symptom onset
was defined as first weakness reported by patients. Disease
progression rate was calculated per-visit using the revised ALS
functional rating scale (ALSFRS-R) by [48 – ALSFRS-R]/[months
from symptom onset].

Proteomic Analysis
The raw data used in this analysis has been previously published
(Thompson et al., 2018b). In brief, samples of CSF were thawed
on ice and digested using heat stable immobilized trypsin as per
the manufacturer’s instructions (SMART digest, Thermo Fisher
Scientific, United Kingdom). 50 µL of CSF was mixed with
150 µL SMART digest buffer and added to SMART digest plates.
Samples were incubated at 70◦C with shaking at 1,400 rpm for
60 min. Digested samples were desalted using SOLAµ plates
and dried by vacuum centrifugation. Samples were resuspended
in 20 µL buffer A (2% acetonitrile, 0.1% formic acid in water)
and kept at −20◦C until analysis. Peptide concentrations were
assayed using a Pierce quantitative colorimetric peptide assay
(Thermo Fisher Scientific, United Kingdom) according to the
manufacturer’s instructions. A pooled sample was produced
by combining equal quantities of digested peptide from each
individual sample and injected after every tenth sample for use
in quality control analysis.

Peptides were analyzed by nano ultra-high performance
liquid chromatography tandem mass spectrometry (nUHPLC
LC-MS/MS) using a Dionex Ultimate 3000 UHPLC (Thermo
Fisher Scientific, Germany) coupled to a Q Exactive HF tandem
mass spectrometer (Thermo Fisher Scientific, Germany). 500 nL
of peptides from each sample were injected and analyzed using a
60-min linear gradient at a 250 nL/min flow rate. The gradient
used to elute the peptides started at 3 min with 2% buffer B
(0.1% TFA and 5% DMSO in CH3CN) increasing to 5% by 6 min
followed by an increase up to 35% by 63 min. The data were
acquired with a resolution of 60,000 full-width at half maximum
ion intensity with a mass/charge ratio of 400 and a lock mass
enabled at 445.120025 m/z. The 12 most abundant precursor ions
in each MS1 scan were selected for fragmentation by higher-
energy collisional dissociation (HCD) at a normalized collision
energy of 28 followed by exclusion for 27 s.

Raw MS data were analyzed using Progenesis QI for
Proteomics software v3.0 (Non-linear Dynamics). MS/MS
spectra were searched against the UniProt Homo Sapiens
Reference proteome (retrieved 01/06/2017) using Mascot v2.5.1
(Matrix Science) allowing for a precursor mass tolerance of
10 ppm and a fragment ion tolerance of 0.05 Da. Deamidation
on asparagine and glutamine and oxidation on methionine were
included as variable modifications. The peptide false discovery
rate (FDR) was set at 1% and all peptides with an ion score higher
than 20 into were imported into Progenesis QIP. Proteins that
were defined with at least one unique peptide were included in
the protein data set for further analysis (289 proteins had one
unique peptide; Supplementary Figure 1). Protein abundance
values were centered to a background median (similar to the
Progenesis QIP ’robust mean’ used for normalization within the
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software), where the background was taken as the 90% of proteins
with the lowest variance across all runs (Keilhauer et al., 2015).
Values were then scaled by median absolute deviation.

Statistical Analysis
Statistical and bioinformatic analysis was performed in R version
4.0.2. Correction for multiple comparisons was performed
using the Benjamini-Hochberg step-up procedure, with adjusted
p < 0.1 taken to indicate statistical significance. Raw, uncorrected
p-values were reported where fewer than 20 hypothesis tests were
carried out, using p < 0.05 to denote statistical significance.

Weighted Correlation Network Analysis
Weighted correlation network analysis was performed with
the weighted gene correlation network analysis (WGCNA)
package in R. Three outlying samples (two ALS and one
Parkinson’s disease) were identified using hierarchical clustering
and were excluded from subsequent analysis (Supplementary
Figure 2; participant demographics including longitudinal
sampling Table 1). Eighteen proteins were excluded due to
an excessive degree of missing data (>50% from any group).
Only baseline samples visits for longitudinal participants were
included in network analysis. A signed, weighted network was
constructed using soft thresholding power = 7 using Pearson
correlation as the dissimilarity measure, minimum module size
5 and cut height 0.05. The most highly connected 10% of proteins
within each module (highest kin) were denoted intramodular
hub proteins. Module stability was assessed by iterating network
construction using the same settings, randomly excluding one
sample from each run and comparing the proportion of shared
protein module assignments between with the reference network.
Network graphs were produced in R using the igraph package.

Module-phenotype associations were analyzed by comparing
module eigenprotein expression between conditions with a

TABLE 1 | Baseline demographic features of participants included in WGCNA
analysis.

ALS HC PD p

n, visit 1 41 20 19 –

n, visit 2 20 – – –

n, visit 3 12 – – –

n, visit 4 10 – – –

n, visit 5 2 – – –

Age at sampling, years
(mean ± SD)

62.62 ± 9.99 58.53 ± 8.57 62.87 ± 3.95 0.263*

Age at symptom onset,
years (mean ± SD)

59.95 ± 10.75 – 61.12 ± 3.87 0.925*

Male participants, n (%) 30 (73.2) 11 (55) 10 (52.6) 0.193+

Baseline disease
progression rate,
points/month (median
[IQR])

0.5 [0.27–1.00] – – –

*Kruskal-Wallis H test.
+Fisher Exact test.
ALS, amyotrophic lateral sclerosis; HC, healthy control; PD, Parkinson’s disease;
SD, standard deviation; IQR, interquartile range.

pairwise Mann-Whitney U test, comparing healthy controls with
ALS or PD samples.

Comparisons With ALS-FTD Cortical
Networks
The CSF protein network was compared with a previously
published frontal cortex proteomic dataset from control,
ALS, FTD and ALS-FTD patients using a cross-tabulation
approach (Umoh et al., 2018). Individual module protein and
gene assignments were compared between CSF and frontal
cortex module allocations for each module pair using a
hypergeometric test.

Differential Correlation Analysis
Analysis of differential correlation were performed by within-
group pairwise Pearson correlation of protein abundance in
healthy control, ALS and PD samples and correlations compared
using Fisher’s r-to-z transformation. Resulting p-values were
corrected for multiple comparisons using the Benjamini-
Hochberg step-up procedure.

Enrichment Analysis
Proteins were abstracted to genes for gene ontology (GO)
and module enrichment analysis. GO enrichment analysis was
performed in R with TopGo using the “weight” algorithm.
Foreground lists comprised genes within each module or
differentially correlated proteins, the background list comprised
all genes identified in the proteomic analysis. Module enrichment
analysis was performed using a hypergeometric test.

Longitudinal Analysis
Longitudinal analysis was performed in R using the nlme
package. Models were constructed using log−transformed
longitudinal data, including only participants for whom
longitudinal samples were available. Individual participants were
specified as random effects and anchored to the date of the
initial visit using linear mixed effects modeling with a random
intercept, fixed slope model, uncorrelated covariance structure
and degrees of freedom as calculated by Pinheiro and Bates
(Pinehiro and Bates, 2000).

RESULTS

The CSF Protein Correlation Network
WGCNA of the CSF proteome yielded a protein network
comprising 776 proteins in 10 modules ranging from 7 to 183
proteins (Figure 1). 107 proteins were not allocated to a module.
To understand the biological relevance of the protein correlation
network modules, Gene Ontology (GO) enrichment analysis was
performed (Figure 2 and Supplementary Table 1).

Two large modules demonstrated significant enrichment for
distinct groups of GO terms. Module 1, the largest comprising
183 proteins, was enriched in intracellular proteins annotated
to cytoplasmic and nuclear intracellular compartments.
Concordant with this, module one proteins were enriched
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FIGURE 1 | WGCNA of the healthy control CSF proteome. (A) Cluster dendrogram indicating module allocation. (B) Network graph indicating modules. For ease of
visualization, pairwise correlations with FDR-adjusted p > 0.01 have been excluded from this graph. CSF, cerebrospinal fluid; WGCNA, weighted gene correlation
network analysis.

FIGURE 2 | GO term enrichment of identified CSF protein network modules (FDR-adjusted p < 0.1). Size proportional to number of annotated proteins within a GO
term in that module. Top 5 GO terms by p-value are labeled. All significantly enriched GO terms are detailed in Supplementary Table 1. CSF, cerebrospinal fluid;
GO, Gene Ontology.

for functions involved in gene expression including nucleic
acid binding, RNA metabolism and translation (Figure 2 and
Supplementary Table 1). Module 2, comprising 115 proteins
was enriched in GO terms relating to axon development,
neurons, GABAergic synapses and the cell membrane.
Module 4 (75 proteins) was enriched for cytolysis and the
membrane attack complex. Module 5 (67 proteins) was
enriched in immune system proteins relating primarily to
the humoral immune system including immunoglobulins

and complement, B-cell signaling and fibrinolysis. Smaller
modules were enriched in glutamatergic synapse proteins
(module 6, 58 proteins); blood proteins involved in gas
transport (module 9, 7 proteins); fibrinogen complex, peptide
hormone secretion and vasoconstriction (module 10, 7 proteins).
Module stability analysis indicated reproducible protein-
module assignment for >75% of proteins in over 50% of
iterations for modules 1, 2, 4, 5, and 6, and >50% for module 3
(Supplementary Figure 3).
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Differences in module protein expression as measured by
module eigenproteins were observed between ALS and healthy
control samples for module 2 (healthy control median 0.054,
ALS median 0.001, p = 0.031), module 4 (healthy control median
−0.036, ALS median 0.036, p = 0.016), and module 9 (healthy
control median −0.052, ALS median −0.036, p = 0.015) and
between PD and healthy control samples for module 9 (healthy
control median−0.052, PD median 0.053, p < 0.001; Figure 3).

Differential Protein Correlation Analysis
Reveals Altered Cellular Processes in
ALS
To examine disease-related disruptions in the protein correlation
network at a more granular level, differential correlation analysis
was performed, comparing pairwise protein correlations in CSF
from ALS and PD patients with those in healthy control CSF.
This identified 11 significantly altered correlations between 19
proteins (19 genes) in ALS (Supplementary Table 2). There was
no significant GO term enrichment (false discovery rate (FDR)-
adjusted p < 0.1) amongst differentially correlated proteins, likely
attributable to the small number of proteins in the foreground
list. There was enrichment of proteins in module 1 (9/19 proteins,
OR 3.05, p = 0.017) and module 9 (2/19 proteins, OR 17.48,
p = 0.011; Figure 4A).

Module 1 proteins with altered correlation in ALS included
RNA and DNA binding proteins and proteins involved
in transcription and translation: Putative elongation factor
1-alpha 1 (EEF1A1), Histone H2B type 1-N (H2BC11),
Acidic leucine-rich nuclear phosphoprotein 32 family member
A (ANP32A) and Y-box-binding protein 1 (YBX1); the
microtubule protein Tubulin beta chain (TUBB); the glycolytic
enzymes Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and lactate dehydrogenase (LDHA); and Macrophage migration

inhibitory factor (MIF). Three of the Module 1 proteins with
altered correlation in ALS were intramodular hub proteins
(EEF1A1, H2BC11 and GAPDH).

There were three altered correlations in which both proteins
were within module 1: H2BC11 with TUBB (r = 0.97 HC, 0.56
ALS, FDR-adjusted p = 0.035), EEFA1A with TUBB (r = 0.97 HC,
0.57 ALS, p = 0.057), and GAPDH with MIF (r = 0.93 HC, 0.25
ALS, p = 0.057).

Differential correlation analysis comparing PD and healthy
controls identified 27 significant altered correlations between 36
proteins (36 genes). No significant GO enrichment was identified.
Dyscorrelated proteins were enriched in module 7 (5/36 proteins,
OR 3.98, p = 0.016) and module 9 proteins (3/36 proteins,
OR 18.31, p = 0.002) including blood proteins and proteins
involved in adhesion and carbohydrate metabolism (Figure 4B
and Supplementary Table 2).

Longitudinal Analysis Indicates
Modulation in Axon Guidance and
Neurodevelopment Pathways in ALS
Linear mixed-model analysis identified 10 longitudinally
increasing and 15 longitudinally decreasing proteins in ALS
patients (FDR-adjusted p < 0.1; Supplementary Table 3). The
proteins with longitudinally increasing abundance comprised
proteins present at high levels in plasma including complement
components C7 and C1S, Thyroxine-binding globulin, and
immunoglobulins; and extracellular matrix proteins Laminin
subunit alpha-2 and Galectin-3-binding protein. There was
no significant GO or module enrichment of increasing
proteins (Figure 4C).

Proteins with longitudinally decreasing abundance were
enriched in module 2 proteins (Figure 4D, enriched for
membrane, neuronal cell body and axon development

FIGURE 3 | Expression of module eigenproteins between conditions. *p < 0.05, **p < 0.01, ***p < 0.001. ALS, amyotrophic lateral sclerosis; HC, healthy control;
PD, Parkinson’s disease.
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FIGURE 4 | Module enrichment of differentially correlated proteins in ALS (A) and PD (B), and longitudinally falling (C) or rising (D) proteins in ALS. ALS, amyotrophic
lateral sclerosis; PD, Parkinson’s disease.

5/15 proteins; OR 3.31, p = 0.042) and module 6 proteins
(glutamatergic synapse; 10/15 proteins OR 37.21, p < 0.001).
Though lacking significant GO term enrichment, they
were annotated to concordant, disease-relevant GO terms.
These included axonal guidance and neurodevelopment
(Neurofascin, Semaphorin-7A, Ciliary neurotrophic factor
receptor subunit alpha, Peptidyl-glycine alpha-amidating
monooxygenase, Neuritin, Disintegrin and metalloproteinase
domain-containing protein 22), synapse assembly and function
(Calsyntenin-3, Receptor-type tyrosine-protein phosphatase-like
N, Neurofascin), neuropeptide signaling [Neuroendocrine
protein 7B2, identified as a candidate ALS biomarker in a
previous CSF proteomic study (Ranganathan et al., 2005)] and
RNA processing (ATP-dependent RNA helicase DHX8). Of the
longitudinally decreasing proteins, Neuritin and Neurofascin
were intramodular hubs.

Frontal Cortex and CSF Protein
Networks Show Major Differences
The CSF protein network was compared with that of a previously
published frontal cortex protein network derived from shotgun

proteomic analysis of control, ALS, FTD and ALS-FTD patient
tissue. The overlap between proteins and genes between the
two datasets was limited (intersect 107 proteins of 776 CSF
and 2612 cortex; intersect 283 genes of 684 CSF and 2487
cortex genes). Module preservation analysis by cross tabulation
(pairwise enrichment analysis of CSF and frontal cortex modules)
demonstrated no evidence of preservation of any modules. When
abstracted to genes, there was significant, albeit modest, overlap
of frontal cortex module 9 (midnight blue) with CSF module 1
(9/170, OR 10.52, p < 0.001) and CSF module 10 (3/6, OR 135.95,
p < 0.001; Figure 5).

DISCUSSION

This study analyzed a large CSF proteomic dataset to delineate
the overall protein network structure in healthy controls, ALS
and PD. The analysis identified several major protein modules,
the first enriched in intracellular compartment proteins and
functions involved in gene expression and regulation. The second
large module, was enriched with proteins involved in axonal
development, inhibitory synapses and membrane proteins.
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FIGURE 5 | Module preservation of CSF (columns) and frontal cortex (rows) by cross-tabulation. Significant overlaps were observed between CSF modules 1 and 10
with frontal cortex module 9 (midnight blue). Color indicates –log10 p-value for enrichment. CSF, cerebrospinal fluid.

Smaller, less stable, modules were enriched for immune system
proteins (modules 4 and 5), glutamatergic synapse proteins
(module 6) and blood proteins involved in gas transport (module
9), endothelial and clotting pathways (module 10).

Module eigenprotein-phenotype relationships identified
decreased expression of module 2 and increased expression of
modules 4 and 9 in ALS, and of module 9 in PD. Module 2
proteins include neural growth factors, guidance proteins and
cell adhesion molecules, many of which have been studied in ALS
and FTD as biomarker candidates. The module 2 intramodular
hub protein Ephrin type A receptor 4 has been identified as a
modifier of ALS severity, with lower levels associated with later
onset and more rapid disease progression (Van Hoecke et al.,
2012). Missense mutations in CDH13, encoding Cadherin 13
precursor, another module 2 intramodular hub protein, have
been identified in sporadic ALS patients, though this finding has
not been replicated (Daoud et al., 2011). Altered regulation of
synaptic adhesion proteins in module 2 Neurexin 1 and Neurexin
3 (of which Neurexin 1 is a module 2 intramodular hub protein)
have also been identified as a consequence of TDP-43 depletion
(Polymenidou et al., 2011).

The finding of decreases in module 2 synaptic proteins in
ALS is consistent with previous work in ALS, but differs from

Alzheimer’s disease, in which increases in levels of synaptic
proteins in CSF have been observed (Dayon et al., 2018; Portelius
et al., 2018; Higginbotham et al., 2020). It is possible that the low
levels observed in ALS reflect synaptic loss, whilst in Alzheimer’s
they indicate an active process within synapses and alterations in
synaptic protein turnover (Hark et al., 2021).

Module 4 contains proteins involved in the innate immune
response including the ALS microglial activity marker
Chitotriosidase 1 (Steinacker et al., 2018; Thompson et al.,
2018b, 2019; Vu et al., 2020), as well as complement components
and apolipoproteins. Marked inflammatory change, particularly
involving microglia and involving complement, is a well-
described feature of ALS neuropathology (Brettschneider
et al., 2012; Bahia El Idrissi et al., 2016), whilst alterations
in apolipoprotein metabolism have been implicated in the
development of ALS and as a modulator of disease progression
(Mariosa et al., 2017; Ingre et al., 2020). Alterations in module 9
may be a reflection of altered blood-brain or blood-CSF barrier
function (Garbuzova-Davis and Sanberg, 2014), though this is
less well-recognized as a feature of PD (Desai et al., 2007).

Differential protein correlation analysis provided evidence of
disease-specific alterations in relevant network modules. Several
of the proteins with altered correlation derive from pathways
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strongly implicated in ALS pathogenesis. In particular, alterations
in gene expression pathways have been demonstrated in disease
models and post mortem tissue from ALS patients (Polymenidou
et al., 2011; Krach et al., 2018). Differential correlations in
ALS were identified in H2BC11, a histone protein, YBX1, a
transcription factor implicated in ALS through model and post
mortem tissue analysis, identified as an interactor of TDP-43
and stress granule component (Anders et al., 2018; Nijssen
et al., 2018; Feneberg et al., 2020; La Cognata et al., 2020), and
EEF1A1, a translational elongation factor and, like YBX1, stress
granule component and TDP-43 interactor (Kim et al., 2010;
Anders et al., 2018). EEF1A1 and YBX1 are also components
of the synaptic protein expression machinery, potentially linking
alterations in module 2 protein levels with loss of correlation in
module 1 (Holt et al., 2019). TUBB, again a TDP-43 interactor
(Freibaum et al., 2010), dimerizes with Tubulin alpha to form
microtubules; mutations in genes encoding cytoskeletal proteins
including Tubulin alpha (though not TUBB) have been identified
as a rare cause of ALS (Smith et al., 2014). Alterations were also
observed in the relationship of several enzymes, such as GAPDH,
involved in carbohydrate metabolism, implicated through disease
models and epidemiological studies (Kioumourtzoglou et al.,
2015; Szelechowski et al., 2018).

The main signal emerging from longitudinal analysis
indicated striking progressive downregulation of proteins in
the module enriched for glutamatergic synapse proteins as well
as axonal and neuronal proteins. This is in keeping with the
progressive loss of axons, neurons and synapses that are a core
pathological feature of ALS (Sasaki and Maruyama, 1994).

Analysis incorporating comparing the CSF protein network
with a previously published frontal cortex protein correlation
network indicated limited topological overlap between this CSF
protein network and that of frontal cortex (Umoh et al., 2018).

Despite the lack of topological overlap, there was similarity
in the functional annotation of identified modules in frontal
cortex and CSF, notably between CSF module 1 and frontal
cortex module 2, both enriched in transcription and translation-
related ontological terms. CSF module 5 and cortex module 15
were enriched in antigen binding and immune system terms,
whilst synaptic, membrane and axons terms were identified in
cortex module 1 overlapping with CSF module 2 and module 6
(specifically glutamatergic synapse in the latter).

Although the CSF proteome receives a significant contribution
from the brain, much of this arises from the white matter
and gray matter regions beyond the frontal cortex. In
addition, a large proportion of the CSF protein constitution
arises through filtration of blood and secretion from the
choroid plexus and includes a large proportion of classically
secreted and non-classically secreted proteins (Thompson et al.,
2018a). Furthermore, many neuronal and glial intracellular
proteins might not be translocated into the extracellular
space and hence the CSF in normal conditions, and the
egress of proteins from CSF if determined by additional
physiological processes (such as CSF flow rate) that would not
necessarily affect all proteins proportionately (Reiber, 2001). The
relatively limited overlap in the protein identifications, likely
attributable to differences in methodological approach and the

challenges of achieving proteomic depth in biological fluids, is
also a consideration.

There are several limitations to this study. Genotype data,
including presence of the ALS-causing C9orf72 hexanucleotide
repeat expansion, was not included since testing was not widely
available at the time of sampling of participants in the study.
Though sharing the main pathological features of sporadic ALS,
C9orf72 genotype could influence CSF network structure, but
in this sporadic cohort it would not be expected to assert
major effects, though would potentially have provided insights
into the molecular divergence of genetic and non-genetic ALS.
A significant proportion of proteins were identified based on one
unique peptide (289/776), which might influence the accuracy
of identification in some cases. Lower abundance proteins with
higher variance will tend to have lower correlation, hence
lower connectivity, potentially obscuring important relationships
and excluding lower abundance proteins from modules and
impacting power to detect differential correlations.

Conclusions
This analysis found changes within the CSF protein network
in modules and pathways of established relevance to the
pathogenesis of ALS, including those linked to the known
functions of TDP-43. The diversity of alterations suggests that
successful treatment of ALS will require targeting multiple
pathways. Restoration of alterations in the CSF protein network
might be a useful group-level outcome measure to detect disease
modifying effects in therapeutic trials targeting a broad range of
potentially pathogenic pathways in ALS.
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Decreased MEF2A Expression
Regulated by Its Enhancer
Methylation Inhibits Autophagy and
May Play an Important Role in the
Progression of Alzheimer’s Disease
Hui Li, Feng Wang, Xuqi Guo and Yugang Jiang*

Tianjin Institute of Environmental and Operational Medicine, Tianjin, China

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid
plaques and neurofibrillary tangles which significantly affects people’s life quality.
Recently, AD has been found to be closely related to autophagy. The aim of this
study was to identify autophagy-related genes associated with the pathogenesis of
AD from multiple types of microarray and sequencing datasets using bioinformatics
methods and to investigate their role in the pathogenesis of AD in order to identify
novel strategies to prevent and treat AD. Our results showed that the autophagy-related
genes were significantly downregulated in AD and correlated with the pathological
progression. Furthermore, enrichment analysis showed that these autophagy-related
genes were regulated by the transcription factor myocyte enhancer factor 2A (MEF2A),
which had been confirmed using si-MEF2A. Moreover, the single-cell sequencing data
suggested that MEF2A was highly expressed in microglia. Methylation microarray
analysis showed that the methylation level of the enhancer region of MEF2A in AD
was significantly increased. In conclusion, our results suggest that AD related to the
increased methylation level of MEF2A enhancer reduces the expression of MEF2A and
downregulates the expression of autophagy-related genes which are closely associated
with AD pathogenesis, thereby inhibiting autophagy.

Keywords: Alzheimer’s disease, autophagy, MEF2A, microglia, enhancer, methylation

INTRODUCTION

With an increasing aging population, the prevalence of cognitive impairment and
neurodegenerative disease has increased. Alzheimer’s disease (AD), the most common form
of dementia, is characterized by progressive cognitive impairment and behavioral disorders. The
main pathological features of AD are amyloid plaque deposition and neurofibrillary tangles (NFTs),

Abbreviations: AD, Alzheimer’s disease; NFT, neurofibrillary tangle; CDR, clinical dementia rating; PLQ_Mn, average
of neuritic plaque counts; NPrSum, sum of scores for all cortical regions examined neuropathologically; snRNA-seq,
single-nucleus RNA-seq; NTrSum, sum of semiquantitative NFT density ratings for all cortical regions examined; PPI,
protein-protein interaction; ANOVA, analysis of variance; LSD, least significant difference; WGCNA, weighted correlation
network analysis; SEs, super enhancers; DMPs, differentially methylated positions; DEGs, differentially expressed genes;
MEF2A, myocyte enhancer factor 2A.
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which are neurotoxic and cause neuronal loss, synapse reduction,
neurological degeneration, and brain atrophy. Pathological
studies have demonstrated that NFTs and amyloid plaque
deposition initially occurred in the cortical and hippocampal
tissues of AD and subsequently spread to the whole brain (Braak
and Braak, 1995). Inhibiting neurotoxicity by reducing amyloid
plaque deposition and NFTs has been unsuccessfully attempted
(Doody et al., 2013; Ostrowitzki et al., 2017).

Autophagy consists of a series of complex physiological
processes in cells, which can eliminate misfolded proteins and
damaged organelles, promote the synthesis of biofilms and
transport of vesicles, and thus play a key role in reshaping the
cell structure and regulating energy metabolism, resisting adverse
external stimuli and stabilizing cell homeostasis. Autophagy
disorders are closely related to AD (Nixon et al., 2005). Inhibiting
lysosomal proteolysis produces similar neuropathological
manifestations in wild-type mice and exacerbates amyloid plaque
deposition and autophagy pathology in mouse models of AD
(Nixon and Yang, 2011). Presenilin 1 mutations, associated with
familial AD, result in decreased maturation of the lysosomal
v-ATPase and, thus, directly increased lysosomal pH and
impaired lysosome function, which would be predicted to reduce
autophagosome clearance (Lee et al., 2010). Another genetic
risk factor for AD is mutations in apolipoprotein E 4 (ApoE4).
ApoE4 destabilizes lysosomal membranes in an allele-specific
manner. Other factors include reactive oxygen species and
amyloid plaque and oxidized lipids and lipoproteins, which also
contribute to AD by impeding lysosomal proteolysis, damaging
lysosomal membranes, and disrupting lysosomal integrity,
thereby releasing proteases that can mediate neuronal cell death
(Boya and Kroemer, 2008; Nixon, 2013). Moreover, a study
found that autophagy inducers such as rapamycin in 3xTg-AD
mice can effectively reduce the deposition of amyloid plaques
in the brain and improve cognitive performance (Majumder
et al., 2011). However, the relationships between the pathological
progression of AD and autophagy-related genes remain unclear,
and the mechanisms have not been elucidated.

Systems biology concepts and methods provide multivariate
approaches to holistically analyze the larger interactive network
of biological pathways and identify important players in
AD onset and progression. In this study, multiple datasets
were downloaded, and bioinformatics methods were used to
analyze the correlation between autophagy-related genes and
pathological progression of AD, assessing the reasons for
their differential expression, thereby providing new clues for
elucidating the mechanism of AD.

MATERIALS AND METHODS

Data Sources
Five gene expression profiles of mRNA, one DNA methylation
profile, and related clinical data of AD were downloaded from the
Gene Expression Omnibus database1 (Table 1). The workflow is
represented in Figure 1.

1http://www.ncbi.nlm.nih.gov/geo/ TA
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FIGURE 1 | Workflow of sample procedures. The samples and data sources are shown in blue boxes, methods for data processing are shown in purple boxes, and
results are shown in green boxes.

GSE84422 (Wang et al., 2016) was used to perform a weighted
correlation network analysis (WGCNA), which consisted of 1,053
postmortem brain samples across 19 brain regions from 125
participants dying of varying severities of dementia and variable
AD-neuropathology severities, including clinical dementia rating
(CDR), Braak NFT score (Braak), CERAD diagnoses and ratings
of pathology (CERAD), average of neuritic plaque counts
in five cardinal cortical regions (PLQ_Mn), sum of CERAD
semiquantitative rating scores for all cortical regions examined
neuropathologically (NPrSum), and sum of semiquantitative
NFT density ratings for all cortical regions examined (NTrSum).
GSE84422, GSE122063 (McKay et al., 2019), GSE118553 (Patel
et al., 2019), and GSE132903 (Piras et al., 2019) were used
to screen and validate differentially expressed genes (DEGs).
GSE122063 includes frontal and temporal cortical samples
from vascular dementia (n = 8), AD (n = 12), and healthy
controls (n = 11). GSE118553 includes 401 human brain
samples (entorhinal cortex, temporal cortex, frontal cortex,
and cerebellum brain region) from 100 healthy controls, 134
asymptomatic AD (AsymAD), and 167 AD participants. Samples
of GSE132903 consisted of middle temporal gyrus between AD
(n = 97) and healthy controls (n = 98). GSE62420 (Grabert
et al., 2016) was used to validate differentially expressed myocyte
enhancer factor 2A (MEF2A).

The mRNA expression levels in GSE84422, GSE118553,
GSE132903, and GSE62420 were measured using Illumina
HumanHT-12 V4.0 expression beadchip, and the mRNA
expression levels in GSE122063 were measured using

Agilent-039494 SurePrint G3 Human GE v2 8 × 60K
Microarray 039381.

GSE80970 (Smith et al., 2018) contained prefrontal cortex
and superior temporal gyrus tissue from 147 participants with
varying levels of AD pathology. DNA modifications for these
samples were quantified using the Illumina Infinium Human
450K Methylation Array.

Single-nucleus RNA-seq (snRNA-seq), GSE138852 (Grubman
et al., 2019), on the entorhinal cortex from control and AD brains
of 16 participants, yielding a total of 13,214 high-quality nuclei,
were used to check the gene expression distributions across cells
in Alzheimer’s disease brains.

In GSE62420, brains of 4-, 12-, and 22-month-old C57Bl/6J
mice were collected and dissected into four regions: cerebellum,
cortex, hippocampus, and striatum. Microglia were extracted
from each region using a magnetic bead-based approach. Total
RNA was immediately isolated for purified microglia and
stored (−80◦C) until performing microarray analysis of purified
microglia and regional brain homogenates (n = 56).

The autophagy gene list with a total of 530 autophagy-
related genes was derived from the Gene Ontology with the term
“autophagy” (GO: 0006914) in the Homo sapiens organism.

Weighted Gene Coexpression Network
Analysis
We extracted the autophagy genes to perform WGCNA with
expression data retrieved from GSE84422 (Wang et al., 2016)
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microarray data. The R package “WGCNA” was applied to find
clinical trait-related modules and hub genes among them as
previously described (Zhang et al., 2014). The adjacency matrix
was transformed into topological overlap matrix. According to
the topological overlap matrix-based dissimilarity measure, genes
were divided into different gene modules. Herein, we set soft-
thresholding power as 6 (scale free R2 = 0.85), cut height as 0.25,
and minimal module size as 10 to identify key modules. The
module with the highest correlation with clinical traits (age, sex,
race, PIM, pH, CDR, Braak, CERAD, PLQ_Mn, NPrSum, and
NTrSum) was selected to explore its biological function through
gene ontology (GO) analyses and to screen hub genes. Hub genes
were defined as those with gene significance > 0.3 and module
membership > 0.8.

Differential Expression Analysis
For the microarray differential expression analyses of GSE84422
(Wang et al., 2016), robust multichip average (RMA) was used
for background correction of raw gene expression matrixes,
then log2 transformation of expression matrixes. The “affy”
R package was used for quantile normalization and median
polish algorithm summarization. Next, all gene probes were
mapped into gene symbols by the affymetrix annotation files.
The “limma” (linear models for microarray data) R package
was performed for identifying DEGs between definite AD
samples and healthy controls, and the results were visualized
using the volcano plot and heat map. Cutoff criteria for
screening DEGs were p < 0.05 and | log2fold change|
≥ 1.3. The screened seven genes were obtained by taking the
intersection of the DEGs of GSE84422 and hub genes related to
pathological progression of AD from WGCNA. The differential
expression analyses were performed in GSE84422, GSE122063
(McKay et al., 2019), GSE118553 (Patel et al., 2019), and
GSE132903 (Piras et al., 2019) datasets and log2fold changes
in the screened seven genes and significantly differences (AD
versus control expression levels) were represented with the
corresponding bar plot.

Transcription Factors Enrichment
To shed further light on the functions of the candidate genes,
DAVID online tools (Huang et al., 2009; Wishart et al., 2009)
in the UCSC database were used for transcription factor
annotations. The motif matrix profile MA0052.4 of MEF2A
was downloaded from JASPAR Fornes et al. (2020), and Find
Individual Motif Occurrences (FIMO, Grant et al., 2011) of
motif-based sequence analysis tools (MEME suite 5.3.3, Bailey
et al., 2009) was used to scan sequences of candidate genes for
individual matches to the motif of MEF2A. The positions and
sequences of the screened seven genes were inquired in UCSC,
and promoters were defined as the 2,000-bp window centered on
the transcript start site of genes.

Correlation Analysis
Correlations between each transcription factor and the
expression of downstream genes were analyzed (Pearson’s
correlation) in GSE84422 (Wang et al., 2016), and result
was represented with a heatmap. The correlation between

MEF2A and the screened seven genes was validated (Pearson’s
correlation) in GSE118553 (Patel et al., 2019), and result was
represented with scatter plots. MEF2A mRNA expression
levels (signal intensity) in different groups in GSE84422 and
GSE118553 were shown, and p-values were calculated using
GraphPad. In GSE84422, three groups (control, definite AD,
possible AD) were classified according to neuropathology
category as measured by CERAD (to unify the results, we
combined the diagnosis of possible AD and probe AD into
possible AD). In GSE118553, participants in the control
group were classified as showing no clinical sign of any
form of dementia and no neuropathological evidence of
neurodegeneration. Participants in the AsymAD group were
defined as clinically dementia free at the time of death, but
neuropathological assessment at autopsy revealed hallmark
AD pathology. Participants in the AD group had both a
clinical diagnosis of AD at death and received confirmation
of this diagnosis through neuropathological evaluation at
autopsy. A one-way analysis of variance (ANOVA) followed
by a least significant difference (LSD) test was used for
comparison among groups.

snRNA-Seq Data Analysis
Single-nucleus RNA-seq data were downloaded from the website2

as described by Grubman et al. (2019). We then analyzed
the expression of MEF2A in different cell types and different
groups. The MEF2A mRNA expression levels (logCounts) in
different cell types were represented and significant differences
(compared with microglia) were calculated using GraphPad. The
expression of MEF2A and screened seven genes (logCounts) in
different groups were represented using the ggplot2 package in
the R software and significant differences (AD versus control
expression levels) were calculated using GraphPad. Following the
standardization of GSE62420 (Grabert et al., 2016) microarray
data, the signal intensity of MEF2A in microglia and other mixed
cell types were shown and significant differences (compared with
microglia) were calculated using GraphPad.

Methylation Array Data Analysis
The ChAMP package in R software (Tian et al., 2017) was used
to analyze the differentially methylated positions (DMPs), and
the screening condition yielded a value of p < 0.05. The DMPs
range around MEF2A (from the last gene to the next gene) was
approximately 99,676,703–100,882,647 bp of chromosome 15,
and the coMET package of the R software (Martin et al., 2015)
was used to create a Manhattan plot with a threshold value of
p = 0.05. These DMPs were annotated by UCSC, and the means
of CpG methylation levels in different groups were represented in
a violin plot in the enhancers.

Super Enhancers and Chromatin
Interaction Analysis
The super enhancer (SE) analyses, as Nott et al. (2019)
described, were performed in UCSC. The ATAC-seq, H3K27ac

2http://adsn.ddnetbio.com
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and H3K4me3 ChIP-seq, and PLAC-seq in all types of cells in
the 99,950,000–100,200,000-bp section of chromosome 15 were
queried, and the original images were downloaded.

Cell Culture
The mouse microglia cells (BV2), obtained from the Cell
Resource Center, Peking Union Medical College (China), were
cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco, United States) with 10% fetal bovine serum (Gibco,
United States) in 5% CO2 at 37◦C. For in vitro transfection
(n = 3), the target and control siRNA (GenePharma Co., Ltd.,
China) were transfected into BV2 cells using Lipofectamine
2000 (Invitrogen, United States) according to the manufacturer’s
guidelines. Cells were collected 48 h after transfection. The siRNA
sequences were listed (Table 2).

Quantitative Real-Time PCR
Total RNA was extracted using TRIzol

R©

Reagent (Life
Technologies, Grand Island, NY, United States) and reverse
transcribed into cDNA using PrimeScriptTM II 1st Strand cDNA
Synthesis Kit for qPCR (TaKaRa, Tokyo, Japan) according to
the manufacturer’s instructions. Quantitative real-time PCR was
performed to detect the gene mRNA levels using 2 × Universal
SYBR Green Fast qPCR Mix (ABclonal, Wuhan, China).
Primers were synthesized by Sangon (Sangon Biotech Co.,
Ltd., Shanghai, China). The qPCR conditions were as follows:
95◦C for 3 min and 40 cycles of 95◦C for 5 s and 60◦C for
30 s. Melting curves were tested to assess the accuracy of the
PCR analysis. The 2−1 1 Ct was calculated to analyze the gene
expression levels: 1Ct = Ct (target gene) - Ct (β-actin gene),
11Ct = 1Ct (treatment) - 1Ct (control). The primer sequences
were listed (Table 3).

TABLE 2 | The siRNA sequences of MEF2A.

siRNA Sequences

Sense (5′-3′) Antisense (5′-3′)

si-MEF2A-1 GUGGCAGUCUUGGAAUGAATT UUCAUUCCAAGACUGCCACTT

si-MEF2A-2 CAGCCACGCUACAUAGAAATT UUUCUAUGUAGCGUGGCUGTT

si-MEF2A-3 GCUCUAAUAAGCUGUUUCATT UGAAACAGCUUAUUAGAGCTT

Negative
control

UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

TABLE 3 | The primer sequences of MEF2A and the screened seven genes.

Genes Sequences

Forward Reverse

MEF2A CAGGTGGTGGCAGTCTTGG TGCTTATCCTTTGGGCATTCAA

BNIP3 TCCTGGGTAGAACTGCACTTC GCTGGGCATCCAACAGTATTT

CDK5R1-F CTGTCCCTATCCCCCAGCTAT GGCAGCACCGAGATGATGG

HERC1-F TATAACCTGGAACCCTGTGAACC TCATGTCGCTTGATGCTCTGT

ITPR1-F CGTTTTGAGTTTGAAGGCGTTT CATCTTGCGCCAATTCCCG

OPTN-F TCACAGGTGGCTACAGGTATC CCGGAGTTGAGTTTGAGCTG

UBQLN2-F GCCGAGCCCAAAATCATCAAA ATCTTTCCGGCGAAAATCAGC

USP33-F GAGGTTTGTTGTCTCATGTGTCC GTTCATCTCTGGCGAAGAAGG

Statistical Analysis Software
RStudio (version 3.6.2) was used for data processing, GraphPad
(version 8.0) was used for the calculation of significance and
means of the differences, and Adobe Illustrator 2020 (version
24.0.1) was used for image processing.

RESULTS

WGCNA and Differential Expression
Analysis Were Used to Determine Hub
Genes Related to AD Clinical Phenotypes
To assess the relationship between gene expression and clinical
phenotypes of AD, dataset GSE84422 (Wang et al., 2016) were
downloaded and the WGCNA package, which can cluster genes
and divide them into different modules and associate the genes
of each module with the clinical phenotypes, was used to cluster
autophagy genes and divide them into 11 hub gene modules
with different module colors, according to the gene expression
correlation patterns (Figure 2B). The correlation between each
module and clinical phenotypes was calculated (Figure 2A).
In the MEblack module, 16 genes included were negatively
correlated with CDR, CERAD, PLQ_Mn, NPrSum, and NTrSum
(p < 0.05), especially, the correlation with the CERAD was
the most significant. The MEgreen module was negatively
correlated with CDR, Braak, CERAD, PLQ_Mn, and NTrSum
(p < 0.05); the MEturquoise module was negatively correlated
with CDR, CERAD, and NTrSum (p < 0.05); the MEred
module was negatively correlated with NTrSum (p < 0.05); the
MEblue module was negatively correlated with CDR, CERAD,
PLQ_Mn, and NPrSum (p < 0.05); besides, gene expression
levels in the MEgrey module were positively correlated with
age (p < 0.05).

To investigate whether the expression levels of autophagy-
related genes were different between healthy controls and
AD, we used the limma package to analyze differential
expression of autophagy-related genes in definite AD and
healthy controls in dataset GSE84422, and then screened 71
DEGs shown in a heatmap (Figure 2C). Compared with
healthy controls, the expression of autophagy genes in AD was
mostly reduced (69 genes) and only two genes were increased
(Figure 2D). The autophagy-related genes of AD were inhibited,
suggesting that their autophagy function was lower than that of
healthy controls.

Seven genes were screened by taking the intersection of
the autophagy-related genes with significant differences and
the black module hub genes with strong correlation with
pathological progression of AD screened by WGCNA (Table 4).
Validating the multiple differences of the screened seven genes
(Figure 2E), we found that compared with the control group,
all screened seven genes showed a significant decrease in
the AD group in GSE118553 (Patel et al., 2019; p < 0.05);
six genes showed a significant decrease in the AD group in
GSE132903 (Piras et al., 2019; p < 0.05); four genes showed a
significant decrease in the AD group in GSE122063 (McKay et al.,
2019; p < 0.05).
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FIGURE 2 | WGCNA coexpression analysis and differential expression analysis. GSE84422 (Wang et al., 2016) was used to perform WGCNA. (A) The correlation
between each module and clinical phenotypes is shown, including 11 modules and 11 clinical phenotypes. In each unit, the numbers above show the correlation,
and the numbers below show the p-value. Abbreviations: CDR, clinical dementia rating; Braak, Braak NFT score; CERAD, CERAD diagnoses and ratings of
pathology; PLQ_Mn, average of neuritic plaque counts in five cardinal cortical regions; NPrSum, sum of CERAD semiquantitative rating scores for all cortical regions
examined neuropathologically; NTrSum, sum of semiquantitative NFT density ratings for all cortical regions examined. (B) Cluster dendrogram of the coexpression
network modules was produced based on the autophagy genes, including 11 modules. (C) DEGs in healthy control and AD in GSE84422 were shown in the
heatmap. Cut-off criteria for screening DEGs were p < 0.05 and | log2fold change| ≥ 1.3. (D) Autophagy genes with significantly different expression in GSE84422
were shown in the volcano plot. Red spots indicate upregulated genes, and blue spots indicate downregulated genes. Cut-off criteria for screening DEGs were
p < 0.05 and | log2fold change| ≥ 1.3. (E) Validation of the gene expression levels of BNIP3, CDK5R1, HERC1, ITPR1, OPTN, UBQLN2, and USP33 between
healthy control and AD was shown in three other datasets, GSE122063 (McKay et al., 2019), GSE118553 (Patel et al., 2019), and GSE132903 (Piras et al., 2019).
Y-axes in the left indicate log2fold change of the screened seven genes in each dataset. Significant differences (AD versus control expression levels) were performed,
*p < 0.05 compared with the control group.

MEF2A Expression Is Related to the
Screened Seven Genes and AD
Neuropathological Category
The online annotation website DAVID was used to perform
transcription factor analysis for 71 DEGs and 16 genes

in the black module (total 80 genes) in the UCSC database.
The result showed that 18 transcription factors were identified
by enrichment analysis of 80 genes (p < 0.05), including 73
genes enriched in organic cation transporter 1 (OCT1), 66
genes enriched in Ecotropic Virus Integration Site 1 (EVI1),
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TABLE 4 | The expression of autophagy-related genes with significant differences in black module.

Gene symbol Entrez ID Gene name logFC p-value

CDK5R1 8851 Cyclin-dependent kinase 5 regulatory
subunit 1

−0.9307557 0.0064305

UBQLN2 29978 Ubiquilin 2 −0.8225799 0.0036374

OPTN 10133 Optineurin −0.7782243 0.0107843

USP33 23032 Ubiquitin-specific peptidase 33 −0.7235492 0.0014619

ITPR1 3708 Inositol 1,4,5-trisphosphate receptor type 1 −0.7013134 0.0137605

HERC1 8925 HECT and RLD domain containing E3
ubiquitin protein ligase family member 1

−0.6453281 0.0049519

BNIP3 664 BCL2 interacting protein 3 −0.4385456 0.0034525

and 65 genes enriched in MEF2 (Supplementary Figure 1).
This data suggested that these 18 transcription factors were
likely to play important roles in the regulation of autophagy
genes in AD. To further investigate the autophagy genes with
differences and related to pathological progression of AD, the
screened seven genes were annotated by DAVID, revealing
that the screened seven genes were regulated by transcription
factors MEF2A and CUX1 (Figure 3A). Transcription factors
can specifically bind to target motifs to regulate the expression
of downstream genes; therefore, the expression of transcription
factors was consistent with the expression of downstream genes.
We analyzed the correlation between transcription factors and
the expression of the screened seven genes obtained from
the query of the UCSC database in GSE84422 (Wang et al.,
2016; Figure 3C). Among them, the expression of MEF2A
was most correlated to the screened seven genes. The motifs
of the screened seven genes matched to MEF2A (p < 0.001)
were scanned by MEME tools (described in Methods section
“Transcription Factors Enrichment”) and were shown in UCSC
(Figure 3B). The correlation between transcription factors and
the expression of the screened seven genes were validated in
GSE118553 (Patel et al., 2019; Supplementary Figure 2). These
results showed that MEF2A had the strongest correlation with
the screened seven genes, so that we selected MEF2A for
further study.

We downloaded dataset GSE84422 and extracted the mRNA
expression data of MEF2A, and then compared different
neuropathological categories of the sample (Figure 3D) and
found no significant difference in the possible AD group
compared with the control group; in addition, the definite AD
group showed a significant difference (p < 0.05). The expression
of MEF2A in the control group was the highest, followed by the
possible AD group, and finally the definite AD group. To validate
our results, another dataset GSE118553 was used (Figure 3E).
The MEF2A expression levels were significantly lower in the AD
group than in the control group (p < 0.05) in different brain
regions (entorhinal cortex, frontal cortex, and temporal cortex),
except for the cerebellum, while AsymAD revealed no significant
difference (p > 0.05) compared with control.

In our experiment, to verify the relationship between MEF2A
and the screened seven genes, three siRNA were transfected
into BV2 cells to knock down the expression of MEF2A, and
the mRNA levels of the seven autophagy-related genes were
detected using qPCR (Figure 4). These results showed that most

of the screened seven genes were significantly decreased following
siRNA transfection (p < 0.05), suggesting that the expression of
the screened seven genes was influenced by MEF2A.

MEF2A Expression Is Cell Type Specific
and Mainly Concentrated in Microglia
The brain contains different cell types, which are responsible
for different physiological processes. Therefore, transcriptome
sequencing of different subgroups of cells can reflect the functions
of different types of cells. Grubman et al. (2019) performed single-
cell sequencing on the entorhinal cortex of participants with
AD and healthy controls, and the cells with different types of
markers were clearly divided into eight subgroups (Figure 5A).
The expression levels of MEF2A detected in microglia were
significantly higher than those in other subgroups (Figure 5B).
The single-cell sequencing dataset, GSE138852 (Grubman et al.,
2019), showed that the expression of MEF2A in microglia was
significantly (p < 0.05) higher than that in other subgroups
(Figure 5C), validating the above results. Furthermore, the
expression levels of MEF2A in AD were significantly (p < 0.05)
higher than that in healthy controls in microglia, doublet,
oligodendrocyte, and oligodendrocyte progenitor cells (OPC,
Figure 5E). Besides, there were no significant difference between
AD and healthy controls of the screened seven genes in microglia
(p > 0.05, Supplementary Figure 3).

In another dataset, GSE62420 (Grabert et al., 2016), microglia
from mouse brain tissue were purified according to specific
markers, and gene expression was measured. We downloaded the
expression matrix and screened the expression levels of MEF2A
in each tissue and found that MEF2A was significantly (p < 0.05)
upregulated in microglia compared with mixed brain cells across
different brain regions (Figure 5D). These results suggested that
the expression of MEF2A in brain tissue was cell type specific, and
the expression of MEF2A in microglia was significantly higher
than that in other cells.

Enhancer Region Methylation Regulates
MEF2A Expression
We then assessed whether epigenetic regulation could alter the
expression of MEF2A because both the pathological progression
of AD and tissue specificity could change it. SEs are important
gene control elements composed of a series of enhancers. We
analyzed datasets involved in the interactions between SEs and
promoters of different cell types in brain tissue previously
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FIGURE 3 | Relationship between MEF2A expression and the screened seven genes. (A) Transcription factors were investigated from the UCSC database with
online annotation website DAVID; transcription factors correlated with all the screened seven genes are indicated in red. In the left section, -log10(p-value) values are
shown, and gene numbers enriched are shown in the right section. (B) The motifs of the screened seven genes matched to MEF2A (p < 0.001) were scanned by
MEME tools (described in Methods section “Transcription Factors Enrichment”) and were shown in UCSC. The positions and sequences of the screened seven
genes were inquired in UCSC, and promoters (shown as green bar) were defined as the 2,000 bp window centered on the transcript start site of genes. The motif of
MEF2A downloaded from JASPAR 2020 is shown on the bottom right. (C) Correlations between transcription factors and the expression levels of BNIP3, CDK5R1,
HERC1, ITPR1, OPTN, UBQLN2, and USP33 were analyzed (Pearson’s correlation) in the dataset GSE84422 (Wang et al., 2016) and was shown as the heatmap.
(D) The dataset GSE84422 (Wang et al., 2016) was downloaded, and the mRNA expression (signal intensity) of MEF2A in different neuropathological category of
sample (possible AD group, control group, and the definite AD group) were shown using GraphPad. ANOVA followed by LSD test was used for comparison among
groups. *p < 0.05 compared with the control group. (E) The dataset GSE118553 (Patel et al., 2019) was downloaded and the mRNA expression (signal intensity) of
MEF2A in different groups (AD, AsymAD, and control group) and brain regions of sample (cerebellum, entorhinal cortex, the frontal cortex and temporal cortex) were
shown using GraphPad. An ANOVA followed by an LSD test was used for comparison among groups. *p < 0.05 compared with the control group.

Frontiers in Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 682247110

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-682247 June 10, 2021 Time: 17:26 # 9

Li et al. Decreased MEF2A Expression Inhibit Autophagy

FIGURE 4 | Expression levels of the screened seven genes after si-MEF2A transfection. (A–H) After BV2 cells transfected with three si-MEF2A for 48 h to knock
down the expression of MEF2A, the expression levels of MEF2A, BNIP3, CDK5R1, HERC1, ITPR1, OPTN, UBQLN2, and USP33 were detected using qPCR.
ANOVA followed by LSD test was used for comparison among groups. *p < 0.05 compared with the control group.

published in Nott et al. (2019). We found that ATAC-seq,
H3K27ac, and H3K4me3 ChIP-seq showed significant peaks
in the MEF2A promoter, with no cell type specificity. The
H3K27ac ChIP-seq (a characteristic marker of enhancers and
promoters) in microglia showed significant peaks in the MEF2A
enhancers, but no significant peaks were observed in neurons
or astrocytes. The PLAC-seq revealed a series of regions, mainly
concentrated in microglia, which had a high degree of interaction
with the promoter of MEF2A, suggesting only microglia had SEs
(Figure 6A). Therefore, this suggested that the specific expression
of MEF2A in microglia was due to the SEs, which promoted the
expression of MEF2A.

We analyzed the DMPs in the dataset GSE80970 (Smith
et al., 2018), and the results were shown in a Manhattan
plot (Figure 6B). In the SEs region between MEF2A and
LRRC28, there were eight DMPs which had methylation
differences (p < 0.05) in AD compared with healthy controls.
The methylation levels of SEs in participants with AD were
significantly higher than that in healthy controls (Figure 6C,
p < 0.05). This suggested that AD may lead to an increase in
the methylation of the SE region of MEF2A, thereby reducing the
mutual binding with the MEF2A promoter, leading to a decrease
in the expression of MEF2A.

DISCUSSION

In this study, we used bioinformatics methods to investigate the
relationship between autophagy-related genes and pathological
progression of AD. We downloaded the datasets and identified

the seven autophagy-related genes to be correlated with
pathological progression of AD using WGCNA. A correlation
analysis showed that MEF2A, a transcription factor enriched in
UCSC database, was closely related to the screened seven genes.
Furthermore, MEF2A was highly expressed in microglia due to
the existence of SEs, and the decreased expression of MEF2A in
AD was caused by the increased methylation of the SEs.

As a chronic neurodegenerative disease, AD has been found
to be closely related to autophagy, given that autophagy-
related pathology including accumulated autophagic vacuoles
(AVs) were found in a number of dystrophic neurites in AD
(Nixon and Yang, 2011). Through live-imaging studies of cortical
neurons, this study showed that the inhibition of lysosomal
proteolysis could selectively disrupt the axonal transport of
autophagy-related compartments, causing an AD-like axonal
dystrophy. Our analysis of the array dataset showed that
many genes related to autophagy were significantly decreased
in AD and closely related to the pathological progression
of AD. Among them, gene expression in MEblack module
was most strongly associated with CDR, CERAD, PLQ_Mn,
NPrSum, and NTrSum, which can reflect the pathology of
AD. Thus, genes in MEblack module, including BNIP3, OPTN,
CDK5R1, UBQLN2, ITPR1, USP33, and HERC1, were selected
for further analysis.

Currently, many studies showed that age-related declines in
cognitive fitness were associated with a reduction in autophagy
(Hou et al., 2019). However, according to our results, age
was positively related to autophagy gene expression in MEgrey
module. This may be related to the fact that participants
were all over the age of 60. This was consistent with the
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FIGURE 5 | MEF2A expression in brain tissue for different cell types. The snRNA-seq data of GSE138852 (Grubman et al., 2019) were downloaded, and the
expression of MEF2A in different cell types were analyzed (A, B, C, E). (A) The PCA analysis for cells with different types of markers and cells were clearly divided into
eight clusters. (B) The differential mRNA expression of MEF2A in each cell types are shown, and the red color indicates high expression. (C) The mRNA expression
of MEF2A in different cell types was performed using GraphPad. An ANOVA followed by an LSD test were used for comparison among groups. *p < 0.05 compared
with the microglia group. (D) The mRNA expression of MEF2A in microglia and in mixed brain cell from different brain regions in dataset GSE62420 (Grabert et al.,
2016) were performed using GraphPad. An ANOVA followed by an LSD test was used for comparison among groups. *p < 0.05 compared with the microglia group.
(E) The mRNA expression levels of MEF2A in AD and in healthy controls are shown. t-Test was performed for comparison between groups. *p < 0.05 compared
with the control group.

report of Glatigny et al. (2019) which stated that autophagy
was increased in many long-lived model organisms and
contributed significantly to their longevity. The relationship
between autophagy and longevity warrants further study.

For the genes in MEblack module, the functions of BNIP3,
OPTN, and UBQLN2 are related to LC3 on the lysosomal
membrane and participate in the fusion process between
lysosomes and autophagosomes. BNIP3, a BH3-domain protein
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FIGURE 6 | Epigenetic regulation analysis of MEF2A expression. (A) UCSC browser of the MEF2A locus showed ATAC-seq, H3K27ac and H3K4me3 ChIP-seq, and
PLAC-seq in brain cell types, including neurons, microglia, astrocytes, and oligodendrocytes (OLs). Shared active promoter region is indicated in yellow;
microglia-specific enhancer region is indicated in blue. (B) The DMPs range around MEF2A, approximately 99,676,703–100,882,647 bp of chromosome 15, was
used to create a Manhattan plot by coMET package of the R software with a threshold p-value of 0.05 (shown as red dotted line). The -log10(p-value) of DMPs for
MEF2A in dataset GSE80970 (Smith et al., 2018) were shown in the Manhattan plot. The SEs region is shown as a green box. (C) The methylation levels for eight
DMPs of the enhancer region in AD and healthy people were shown using GraphPad, and a Student’s t-test was used for comparisons across groups. *p < 0.05
compared with the control group.

of the Bcl-2 family located mainly on the outer membrane
of mitochondria, is an important mitochondrial autophagy
receptor that can specifically bind to LC3 on the lysosomal
membrane to promote the fusion of autophagosomes containing
mitochondria with lysosomes to induce autophagy (Chourasia
and Macleod, 2015; Tang et al., 2019). OPTN is a ubiquitin-
bound autophagy receptor involved in pathogen autophagy
and mitochondrial autophagy (Bussi et al., 2018). In aged
APP-PSEN1-SREBF2 mice, chronic cholesterol accumulation
results in an age-dependent impairment of OPTN translocation
to mitochondria, inhibiting mitophagosome formation (Roca-
Agujetas et al., 2021). APP/PS1 mice had enhanced Aβ clearance,
improved cognition and mobility when treated with miR-
331-3p and miR-9-5p, two microRNAs targeting autophagy

receptors SQSTM1 and OPTN, respectively, and antagomirs
at a late stage (Chen et al., 2021). The function of UBQLN2
in the ubiquitin protease system was to direct misfolded or
redundant proteins to the proteasome for degradation. Several
studies have shown that UBQLN2 was involved in the process
of autophagy and directly combined with LC3 to promote
the fusion of lysosomes and autophagosomes (Osaka et al.,
2015; Hjerpe et al., 2016; Chen et al., 2018). UBQLN2(P497H)
transgenic mice, causes amyotrophic lateral sclerosis (ALS)
and frontotemporal type of dementia, had the feature of a
dendritic spinopathy with protein aggregation in the dendritic
spines and an associated decrease in dendritic spine density and
synaptic dysfunction, related to impaired protein degradation
(Gorrie et al., 2014).
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The other four genes were also closely related to autophagy.
CDK5, a serine/threonine kinase, is essential for neuronal
migration and synaptic plasticity. CDK5 activation depends on
the protein p35 encoded by the CDK5R1 gene, which forms
a complex with CDK5 to perform its biological functions
(Roufayel and Murshid, 2019). CDK5 genetically interacts with
Acinus (Acn), a primarily nuclear protein, which promotes
starvation-independent, basal autophagy. Downregulation of
CDK5 influences pathologic processes of AD, including the
formation of amyloid plaques and tau hyperphosphorylation
(Nandi et al., 2017; Nandi and Krämer, 2018). CDK5R1
determines the risk for AD, with a 12.5-fold decrease in AD
risk associated with both homozygosity for CDK5R1 (3′-UTR,
rs735555) A allele and homozygosity for GSK-3β (-50, rs334558)
C allele (Mateo et al., 2009). Moncini et al. (2017) demonstrated
that two microRNAs, miR-103 and miR-107, regulate CDK5R1
expression and affect the levels of p35. As the autophagy receptor
of cells, ITPR1, a member of the IP3 receptor family, encodes the
endoplasmic reticulum (ER) receptor and mediates the release
of ER calcium to induce autophagy (Messai et al., 2015; Ren
et al., 2017; Xu et al., 2019). Recently, Seo et al. (2020) found
ITPR1 displayed associations with the neuroimaging features of
AD pathologies through a targeted sequencing analysis of the
coding and UTR regions of 132 AD susceptibility genes including
557 participants. USP33 is a deubiquitination enzyme associated
with the regulation of lysosomal activity and cell membrane
surface receptors (Kommaddi et al., 2015). HERC1, a giant
protein belonging to the HERC family, is involved in regulating
the ubiquitination of intracellular proteins and can interact with
mTOR to regulate the autophagy process (Mashimo et al., 2009;
Ruiz et al., 2016; Bachiller et al., 2018).

MEF2A, a member of the MEF2 family, belongs to the
MADS-box superfamily and is involved in the transcription
of many important genes in the cell life cycle in the form
of dimers, including the growth, differentiation and apoptosis
of neurons (Zhu et al., 2018). Vargas et al. (2018) used the
transcription regulatory network and master regulator analyses
on transcriptomic data of human hippocampus from GEO to
identify transcription factors that can potentially act as master
regulators in AD, and then 34 master regulator candidates
were identified including MEF2A. Our results showed that
MEF2A, a transcription factor for the seven autophagy-related
genes, was significantly decreased in AD. González-Velasco
et al. (2020) also reported that 158 genes were regulated by
transcription factors MEF2A among the transcriptional changes
in the cerebral cortex and hippocampus caused by aging.
Genome-wide association studies (GWAS) were performed to
assess the significance of the overlap between genome-wide
significant AD risk variants and sites of open chromatin from
data sets representing diverse tissue types (Tansey et al., 2018).
AD risk variants of MEF2A were significantly enriched both in
macrophage and microglia. González et al. (2007) stated that
variation in the MEF2A gene could be involved in the risk of
developing late-onset AD. Besides, MEF2C, another member
of the MEF2 transcription factor family, identified by GWAS
as also having effects on AD risk, was inferred as a MEF2A
target. Moreover, using rapid time-lapse two-photon calcium

imaging of network activity and single-neuron growth within
the unanesthetized developing brain, Chen et al. (2012) found
that MEF2A was the major regulator of neuronal response to
plasticity-inducing visual stimulation directing both structural
and functional changes.

Microglia, accounting for 10-15% of the total number of brain
cells, are an innate immune cell in the central nervous system
that uses phagocytosis to engulf apoptotic cells and cellular
debris (Plaza-Zabala et al., 2017). Microglia participates in the
regulation of tissue repair, synaptic plasticity and synaptogenesis,
resist invasion of foreign pathogens, and maintaining the stability
of central nervous system tissues. In our study, we found
that MEF2A, as a transcription factor to regulate BNIP3,
OPTN, and UBQLN2, was highly expressed in microglia.
Phagocytosis is very similar to autophagy in vacuole formation
and lysosomal digestion. However, unlike autophagy, which
is present in all cells, phagocytosis is a unique function of
innate immune cells such as microglia. The dysregulation of
microglia is closely related to the pathological process of AD,
in particular in the context of its role in the phagocytosis of
amyloid plaques (Condello et al., 2015; Sacks et al., 2018).
The potential regulatory effect of autophagy on phagocytosis
may occur in different phases of the phagocytosis cascade,
including phagocytosis of substrates, maturation of phagocytes,
and fusion with lysosomes, thereby affecting the degradation
of phagocytes. For examples, in the LC3-related phagocytosis
process, autophagy is partially transferred to phagocytosis to
promote the effective intracellular degradation of phagocytic
extracellular substances (Martinez et al., 2016). Heckmann
et al. (2019) found that the clearance of Aβ in microglia cells
correlated with LC3-related phagocytosis, which can promote the
phagocytosis efficiency of cells and reuse the membrane receptors
related to Aβ phagocytosis, such as CD36, TERM2, and TLR4, to
improve cognitive levels.

In the past, microglial phenotypes were characterized by
cell surface molecules and were classified as M0, M1 like
(exhibiting proinflammatory signaling and neurotoxicity), or M2
like (participating in the resolution of inflammation). However,
with the help of newly developed technologies, including single
cell RNA sequencing, quantitative proteomics, and epigenetic
studies, the characterization of microglial diversity in health
and disease has therefore been redefined (Ransohoff, 2016).
Recent genome−wide transcriptomic analyses of microglial
cells under different disease conditions have uncovered a new
subpopulation named disease−associated microglia (MGnD,
Verheijen and Sleegers, 2018; García-Revilla et al., 2019).
Krasemann et al. (2017) found that MEF2A was significantly
decreased in microglia of EAE (multiple sclerosis models),
SOD1 (ALS models), and APP/PS1 (AD models) mice. The
aggregation of amyloid β (Aβ) changed the M0-homeostatic
microglial phenotype to the neurodegenerative phenotype
MGnD identified by two major gene clusters, after which
the expression of MEF2A was significantly decreased. TREM2
induced APOE signaling and targeting the TREM2-APOE
pathway restored the homeostatic signature of microglia in ALS
and AD mouse models and prevented neuronal loss in an
acute model of neurodegeneration. Our results may explain
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that the changes in microglia homeostasis in AD were related
to autophagy regulated by MEF2A. A genome-wide analysis
of gene expression in microglia from different brain regions
across the adult lifespan of the mouse was performed, revealing
that there were region-specific transcriptional profiles and age-
dependent regional variability in gene expression (Grabert
et al., 2016). The presence of microglial heterogeneity may
underly the different expression patterns of MEF2A in the
different brain regions.

The relationship between AD and methylation has been
well investigated. Wu et al. (2008) assessed AD-related gene
methylation in peripheral blood leucocytes of diagnosed AD,
which revealed decreased DNA methylation at the amyloid
precursor protein (APP) promoter regions accompanied by
upregulated APP transcripts. The methylation of other genes,
including BACE1, PSEN1, SORL1, and NEP, involved in
amyloidogenic pathway, was also shown to be related to AD
(Poon et al., 2020). The epigenetic mechanisms, including the
methylation of GSK3β, BDNF, ANK1, BIN1, and RELN, have
been consistently reported to play critical roles in neurochemical
processes including long-term potentiation (LTP) and synaptic
plasticity (Jager et al., 2014; Poon et al., 2020). We found that
the MEF2A in AD had significantly higher levels of methylation
in the SE region than in healthy controls. SEs are composed
of a series of enhancers and are gene control elements with
tissue specificity. The significant peaks of H3K27ac ChIP-seq (a
characteristic marker of enhancers and promoters) in MEF2A
enhancers and promoters in microglia illustrated the reason for
which MEF2A is highly expressed in microglia. Changing the
methylation levels of SEs can regulate their interaction with gene
promoters and thus regulate the expression of related genes (Flam
et al., 2019). This suggests that SEs play a key regulatory role in
the expression of the MEF2A.

Currently, there is no direct evidence that the screened seven
genes are significantly reduced in microglia from the snRNA-
seq dataset of GSE138852 (Grubman et al., 2019). However, this
does not mean that the screened seven genes are not altered
in microglia in AD. We speculate that the expression of these
genes may be too low to be accurately detected in microglia,
especially OPTN, CDK5R1, and BNIP3, based on the report of
Li et al. (2019). Similarly, the low expression levels of these genes
do not mean that they are dispensable to microglia. Indeed, these
genes are crucial to the function of microglia. Bussi et al. (2018)
found that autophagy induced by exogenous fibrillar in microglia
correlated with lysosomal damage and was characterized by
the recruitment of the selective autophagy-associated proteins
TANK-binding kinase 1 (TBK1) and OPTN to ubiquitinated
lysosomes. Ma et al. (2013) found that enhanced CDK5 activity
by increasing p35-to-p25 conversion promoted Aβ phagocytosis
in microglia, whereas the inhibition of CDK5 reduced Aβ

internalization. Gong et al. (2020) reported that pinocembrin
protected microglial cells against intermittent hypoxia (IH)-
induced cytotoxicity by activating BNIP3-dependent mitophagy
through the JNK-ERK signaling pathway. In addition, another
reason may be linked to the fact that the MGnD was not
captured accurately; it was found mainly concentrated around
the amyloid plaques and was not evenly distributed throughout

AD brain tissue (Krasemann et al., 2017). Besides, whether the
reduced expression of these genes in microglia was influenced by
epigenetics mechanisms warrants further investigation.

CONCLUSION

In summary, our results indicated that AD is associated with
the increased methylation levels of MEF2A enhancer, reducing
the expression of MEF2A and downregulating the expression
of autophagy-related genes which were closely related to AD
pathogenesis, thereby inhibiting autophagy. Although further
conformational studies are warranted, our findings provide
further insights into the role of MEF2A in the prevention and
treatment of AD. The association between the reduction of
MEF2A expression and autophagy-related genes in AD warrants
further investigations.
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Loss-of-function mutations in the gene that encodes TYRO protein kinase-binding
protein (TYROBP) cause Nasu-Hakola disease, a heritable disease resembling
Alzheimer’s disease (AD). Methylation of N6 methyl-adenosine (m6A) in mRNA plays
essential roles in learning and memory. Aberrant m6A methylation has been detected
in AD patients and animal models. In the present study, Tyrobp−/− mice showed
learning and memory deficits in the Morris water maze, which worsened with
age. Tyrobp−/− mice also showed elevated levels of total tau, Ser202/Thr205-
phosphorylated tau and amyloid β in the hippocampus and cerebrocortex, which
worsened with aging. The m6A methyltransferase components METTL3, METTL14, and
WTAP were downregulated in Tyrobp−/− mice, while expression of demethylases that
remove the m6A modification (e.g., FTO and ALKBH5) were unaltered. Methylated RNA
immunoprecipitation sequencing identified 498 m6A peaks that were upregulated in
Tyrobp−/− mice, and 312 m6A peaks that were downregulated. Bioinformatic analysis
suggested that most of these m6A peaks occur in sequences near stop codons and
3′-untranslated regions. These findings suggest an association between m6A RNA
methylation and pathological TYROBP deficiency.

Keywords: Tyrobp−/− mice, m6A methylation, METTL3, METTL14, WTAP, ALKBH5, FTO, MeRIP-seq

INTRODUCTION

In the brain, TYRO protein kinase-binding protein (TYROBP) is expressed mainly by microglia
(Ma et al., 2015). A TYROBP-centered pathway has been identified in microglia of healthy adult
and aged mice, and 44 of the 100 genes interact directly or indirectly with TYROBP (Hickman
et al., 2013). Loss-of-function mutations in the TYROBP gene cause Nasu-Hakola disease (NHD),
also known as polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy
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(MIM 221770) (Paloneva et al., 2000). NHD patients typically
experience frequent bone fractures starting in their 30s,
progressive memory deficits and personality changes starting
from their 40s, and eventually dementia and death (Xing et al.,
2015). TYROBP mutations have also been detected in patients
with Alzheimer’s disease (AD) (Pottier et al., 2016). A study
of 1,647 AD patients post mortem revealed upregulation of
TYROBP and suggested that it is a key regulator of AD-related
processes (Zhang et al., 2013).

NHD and AD overlap significantly in clinical presentations
as well as in pathological features. The pathologic hallmark of
AD is the accumulation of insoluble neurotoxic aggregates,
including amyloid β (Aβ) plaques and intracellular tau
neurofibrillary tangles. Aβ deposition and neurofibrillary
changes have been reported in the brains of NHD
patients bearing homozygous Q33X mutations in the
TREM2 gene (Maderna et al., 2021). NHD patients
have been found to contain Aβ deposits in the frontal
cortex and phosphorylated tau in hippocampal neurons
(Satoh et al., 2018).

N6-methyladenosine (m6A) methylation in RNA is a post-
transcriptional modification that attaches a methyl group at
the N6 position of adenosine (Zaccara et al., 2019), which
helps regulate the localization, transport and translation of
mRNAs involved in memory and learning (Zhang et al., 2018).
Transgenic APP/PS1 mice show elevated m6A methylation
in the cerebrocortex and hippocampus; upregulation of
methyltransferase-like protein 3 (METTL3), which helps
generate m6A (Liu et al., 2014); as well as downregulation of
fat mass- and obesity-associated protein (FTO), a demethylase
that removes the m6A modification (Jia et al., 2011; Han et al.,
2020).

Given the similarities between AD and NHD, we compared
hippocampal m6A methylation between Tyrobp−/− and wild-
type (WT) mice. The function of differentially expressed
RNAs was predicted based on enrichment in Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways.

MATERIALS AND METHODS

Animal Subjects
F0 Tyrobp+/− mice were obtained from Cyagen Biosciences
(Guangzhou, China). The mouse strain was constructed by
microinjecting into fertilized eggs a transcription activator-
like effector nuclease (TALEN) that removes 10 bases
(GTACAGGCCC) from exon 2 of the TYROBP gene. F0
mice were bred with C57/BL6 mice to produce the F1 generation,
and the mutant F1 generation was inbred to generate the
F2 generation. Gene knockout was confirmed using Sanger
sequencing and western blotting.

All experiments were carried out using male mice.
Age-matched WT littermates were used as controls.
APPKM670/671NL/PSEN11exon9 (APP/PS1) mice and C57/BL6J
WT mice were purchased from Huafukang Bioscience Co.,
Ltd. (Beijing, China). Mice were housed in groups of four with

ad libitum access to standard food pellets and water on a 12/12h
light/dark cycle. Experiments were approved by the Ethics
Committee for Animal Experiments at The Affiliated Hospital of
Jining Medical University.

Morris Water Maze
Each group in this test contained six mice aged 2, 6, and
9 months. Testing was conducted using a standard 5-day regimen
with a circular pool filled with opaque water by handlers who
were blinded to grouping. During training sessions, which were
conducted once a day for the first 5 days, a platform was placed
1 cm below the surface, and the mice were placed into the
water in different quadrants facing the pool wall. If the mouse
failed to locate the platform within 60 s, it was guided to the
platform and allowed to stay on the platform for 15 s. Animal
trajectories were recorded using a video-based image tracking
system and ANY maze software (Global Biotech, Mount Laurel,
NJ, United States).

Immunofluorescence Analysis
At 24 h after the Morris water maze testing, three mice
per group were deeply anesthetized with 1% carbrital and
perfused transcardially with 0.9% saline, followed by cold 4%
paraformaldehyde in 0.1 M phosphate-buffered saline (PBS,
pH 7.4). Brains were dissected out and maintained overnight
in 4% paraformaldehyde, cryopreserved in PBS containing
30% sucrose, then stored at −70◦C until use. Brain sections
(10 µm) were prepared and incubated for 12 h with one of
the following antibodies: mouse monoclonal antibody against
TYROBP (B-2, 1:100, cat# sc-166086, Santa Cruz Biotechnology,
Dallas, TX, United States), mouse monoclonal antibody
against tau (Tau5, 1:100, cat# ab80579, Abcam, Cambridge,
MA, United States), mouse monoclonal antibody against
Ser202/Thr205-phosphorylated tau (AT8, 1:100, cat# MN1020,
Thermo Fisher Scientific, Waltham, MA, United States), mouse
antibody against Aβ(1-16) (6E10, 1:100, cat# SIG-39320,
Biolegend, San Diego, CA, United States), rabbit antibody
against m6A (1:200, cat# A17924, ABclonal, Wuhan, Hubei,
China) mixed with 2% BSA, 1 × DNase I Buffer (10 mM
Tris-HCl, 2.5 mM MgCl2, 0.5 mM CaCl2), 25 U/mL DNase
I (cat# 79254, Qiagen, Beverly, MA, United States), mouse
monoclonal antibody against Iba1 (1:100, cat# ab283319,
Abcam), rabbit monoclonal antibody against Iba1 (1:100,
cat# ab178846, Abcam), mouse monoclonal antibody against
GFAP (1:200, cat# CL488-60190, Proteintech Group, Chicago,
IL, United States) and mouse monoclonal antibody against
NeuN (1:200, cat# 66836-1-Ig, Proteintech Group). The
sections were then incubated for 1 h with either Alexa Flour
488-conjugated goat anti-rabbit IgG (1:50, cat# SA00013-2,
Proteintech Group) or Alexa Flour 568-conjugated goat anti-
mouse IgG (1:1,000, cat# ab175473, Abcam). Images were
acquired using an upright Zeiss microscope (Axio Imager.Z2,
Carl Zeiss, Oberkochen, Germany), and analyzed using Image
J (National Institutes of Health, Bethesda, MD, United States)
(Schneider et al., 2012).
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RNA Isolation and Quantitative
Real-Time PCR
Total RNA was isolated from each group of nine mice aged
6 months, then purified using TRIzol reagent (cat# 15596018,
Invitrogen, Carlsbad, CA, United States). The amount and
quality of the purified RNA were examined using the ND-1000
system (NanoDrop, Wilmington, DE, United States). Only RNA
giving an absorbance ratio A260/A280 of 1.8–2.0 was used in
further experiments. An aliquot of mRNA (1 µg per sample)
was reverse-transcribed into cDNA using the SuperScript III
First-StrandKit (cat# 18080051, Invitrogen), and 1 µL of cDNA
(diluted 1:2) was used as template in quantitative PCR in the
ChamQTM Universal SYBR qPCR Master Mix (cat# Q711-
02, Vazyme, Nanjing, Jiangsu, China). β-actin served as the
internal control. Primer sequences were designed using the
online Primer Blast tool (1Supplementary Table 1). Levels of
mRNA were expressed using the 2−11Ct method (Lv et al., 2016).
Only genes associated with transcript Ct ≤ 30 were considered
to be expressed.

Western Blotting
Total protein was isolated from frozen hippocampi from
groups of six mice aged 6 months using RIPA lysis buffer
(Beyotime Biotechnology, Nanjing, China) containing PMSF
(Beyotime Biotechnology). Lysates were left standing for
30 min, then centrifuged at 12,000 × g for 20 min at 4◦C.
Protein concentration was estimated using bicinchoninic acid
(Beyotime Biotechnology), and equal amounts (30 µg) were
separated by electrophoresis on precast 10% Bis-Tris gels (Bio-
Rad Laboratories, Hercules, CA, United States), transferred
to polyvinylidene difluoride membranes, and incubated with
one of the following primary antibodies: rabbit antibody
against TYROBP (B-2, 1:200, cat# sc-166086, Santa Cruz
Biotechnology), rabbit antibody against METTL3 (1:1,000,
cat# ab195352, Abcam), rabbit antibody against METTL14
(1:1,000, cat# A8530, ABclonal), rabbit antibody against WTAP
(1:1,000, cat# 56501, Cell Signaling Technology, Danvers,
MA, United States) and mouse antibody against GAPDH
(1:50,000, cat# AC033, ABclonal). Secondary antibodies included
horseradish peroxidase-conjugated goat anti-rabbit secondary
IgG (1:5,000, cat# AS014, ABclonal) and goat anti-mouse
IgG (1:5,000, cat# AS003, ABclonal). Antibody binding was
visualized using enhanced chemiluminescence (cat# 32106,
Thermo Fisher Scientific) and a Tanon 5200 imaging analysis
system (Tanon Technology, Shanghai, China). Band intensities
were analyzed using Image J.

Enzyme-Linked Immunosorbent Assay
RIPA-soluble protein was isolated from the brains of groups
of three to six mice aged 2, 6, and 9 months. Aβ levels
were quantified using commercial ELISAs against Aβ40
(cat# MU30299, BIOSWAMP, Wuhan, Hubei, China)
and Aβ42 (cat# MU30114, BIOSWAMP) according to the
manufacturer’s protocols.

1https://www.ncbi.nlm.nih.gov/tools/primer-blast

Quantification of m6A Methylation
Levels of m6A methylation in total hippocampal RNA from
groups of six mice aged 6 months were measured using
a commercial kit (cat# ab185912, Abcam) according to the
manufacturer’s instructions. Each sample contained 1,000 ng of
total RNA. Absorbance was measured at 450 nm and converted
to m6A levels using a standard curve.

Methylated RNA Immunoprecipitation
Sequencing
The MeRIP-Seq required at least 100 µg RNA in each sample;
therefore, the RNAs of three mouse hippocampi (either WT
or Tyrobp−/−) were pooled as one sample for MeRIP-Seq. The
RNA was isolated as described above, and its integrity was
assessed using a Bioanalyzer 2100 (Agilent, CA, United States)
and denaturing agarose gel electrophoresis. RNA was used only
if the RNA integrity number > 7.0. Poly(A) RNA was purified
from 50 µg total RNA using oligo(dT)25 Dynabeads (cat# 61005,
Thermo Fisher Scientific), and fragmented into small pieces at
86◦C for 7 min using a Magnesium RNA Fragmentation Module
(cat# e6150, New England Biolabs, Ipswich, MA, United States).
The cleaved RNA fragments were incubated at 4◦C for 2 h
with an antibody against m6A (cat# 202003, Synaptic Systems,
Göttingen, Niedersachsen, Germany) in 50 mM Tris-HCl,
750 mM NaCl and 0.5% Igepal CA-630. Immunoprecipitated
RNA was reverse-transcribed into cDNA using SuperScriptTM

II Reverse Transcriptase (cat# 1896649, Invitrogen), which was
then used as template to synthesize U-labeled second-strand
DNA using E. coli DNA polymerase I (cat# m0209, New England
Biolabs), RNase H (cat# m0297, New England Biolabs) and
dUTP (cat# R0133, Thermo Fisher Scientific). The blunt ends
of strands were extended with A bases for ligation to indexed
adapters. Each adapter contained a T-base overhang to allow it
to be ligated to the A-tailed DNA. Single- or dual-index adapters
were ligated to the fragments, which were selected by size using
AMPureXP beads. The ligated products were treated with a
heat-labile UDG enzyme (cat# m0280, New England Biolabs),
then amplified by PCR under the following conditions: initial
denaturation at 95◦C for 3 min; eight cycles of denaturation
at 98◦C for 15 s, annealing at 60◦C for 15 s, and extension
at 72◦C for 30 s; then final extension at 72◦C for 5 min. The
average insert size for the final cDNA library was 300 ± 50 bp.
The library was subjected to 2 × 150-bp paired-end sequencing
(PE 150) on an illumineNovaseqTM 6000 (Illumina, San Diego,
CA, United States).

Bioinformatic Analysis
Fastp software2 (Chen et al., 2018), with its default parameters,
was used to remove adapter contamination and low-quality reads,
defined as Q ≤ 10. Fastp was also used to verify sequence
quality of the input and immunoprecipitated samples. We used
HISAT23 (Kim et al., 2015) to map the reads to the Mus musculus
genome (version: v96). Mapped reads of immunoprecipitated

2https://github.com/OpenGene/fastp
3http://daehwankimlab.github.io/hisat2
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and input libraries were analyzed using the exomePeak package
in R4 (Meng et al., 2014), which identified m6A peaks using
the bed or bigwig format. Output was visualized using IGV
software5 (Robinson et al., 2011). MEME6 (Bailey et al., 2009)
and HOMER7 were used to identify de novo and known
motifs, followed by localization of the motif with respect to
the peak summit.

Peaks were annotated based on intersection with gene
architecture using the ChIPseeker package in R8 (Yu et al.,
2015). The expression levels of all mRNAs in input libraries
were assessed using StringTie9. FPKM was calculated as total
exon fragments/mapped reads (millions) × exon length (kB).
The mRNAs differentially expressed between Tyrobp−/− and
WT mice were defined as those showing fold change ≥ 2
or ≤ −2 and P < 0.05 based on the edgeR package in R10

(Robinson et al., 2010).

Statistical Analysis
All statistical analyses were conducted using GraphPad Prism
(version 8.0, Graphpad, San Diego, CA, United States). Data
were presented as mean ± SEM. Pairwise comparisons were

4https://bioconductor.org/packages/exomePeak
5https://www.igv.org
6https://meme-suite.org
7http://homer.ucsd.edu/homer/motif
8https://bioconductor.org/packages/ChIPseeker
9https://ccb.jhu.edu/software/stringtie
10https://bioconductor.org/packages/edgeR

assessed for significance using Student’s t test for independent
samples. Differences in the Morris water maze test were assessed
using two-way ANOVA for repeated measures, followed by
Tukey’s post hoc test. Differences in gene expression profiles were
assessed in terms of fold change. P < 0.05 were considered
statistically significant.

RESULTS

Learning and Memory Deficits in
Tyrobp−/− Mice
Tyrobp−/− mice showed extremely low expression of TYROBP,
whereas WT animals showed abundant protein, especially in
microglia (Figures 1A–C).

On day 1 in the Morris water maze, escape latency was
higher for Tyrobp−/− mice than for WT animals aged 2 months
(20.95 ± 3.31 vs. 10.51 ± 3.21 s, P = 0.008), 6 months
(24.27 ± 4.80 vs. 12.54 ± 2.78 s, P = 0.019) or 9 months
(39.63± 9.33 vs. 23.90± 3.86 s, P = 0.036; Figures 2A–C). Similar
results were observed on day 5 among animals aged 2 months
(10.65± 0.61 vs. 8.97± 0.81 s, P = 0.032), 6 months (22.38± 0.77
vs. 13.27 ± 0.99 s, P = 0.0001) or 9 months (33.39 ± 1.93 vs.
16.58± 1.02 s, P = 0.002; Figures 2A–C). In contrast, Tyrobp−/−

and WT mice did not differ significantly in swimming speed
(data not shown). Tyrobp−/− mice at all three ages showed
higher levels of soluble Aβ40 and Aβ42 than WT mice in the
hippocampus, cortex and cerebellum (Figures 2D–I).

FIGURE 1 | Western blotting and immunofluorescence analysis of wild-type (WT) and Tyrobp−/− mice. (A,B) Western blotting and quantification of TYROBP in WT
and Tyrobp−/− mice. (C) Immunofluorescence analysis of WT and Tyrobp−/− mice. Data in panel (B) are mean ± SEM. Statistical significance was calculated using
Student’s t test.
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FIGURE 2 | Performance in the Morris water maze and levels of soluble Aβ40 and Aβ42 in WT and Tyrobp−/− mice. (A–C) Escape latency of WT and Tyrobp−/−

mice aged 2, 6, or 9 months. (D,E) Levels of soluble Aβ40 and Aβ42 in hippocampus of WT and Tyrobp−/− mice aged 2, 6, or 9 months (M), as detected by ELISA.
(F,G) Levels of soluble Aβ40 and Aβ42 in cortex of WT and Tyrobp−/− mice aged 2, 6, or 9 months (M), as detected by ELISA. (H,I) Levels of soluble Aβ40 and
Aβ42 in cerebellum of WT and Tyrobp−/− mice aged 2, 6, or 9 months (M), as detected by ELISA. Data are mean ± SEM (six mice per group). Differences were
assessed for significance using two-way ANOVA for repeated measures, followed by Tukey’s post hoc test.

Higher Levels of Total Tau,
Ser202/Thr205-Phosphorylated Tau and
Aβ in Tyrobp−/− Mice
Given that Tyrobp−/− mice showed abnormal behavior and
elevated levels of soluble Aβ40 and Aβ42 at 2, 6, and
9 months, we used six-month-old animals in subsequent
experiments. Tyrobp−/− mice showed significantly higher
hippocampal levels of total tau (5.23 ± 0.24 vs. 3.06 ± 0.20%,
P < 0.0001), Ser202/Thr205-phosphorylated tau (13.82 ± 0.64
vs. 6.20 ± 0.37%, P < 0.0001) and Aβ (17.40 ± 0.56 vs.
5.24 ± 0.28%, P < 0.0001; Figure 3). Similar results were
observed in the cortex: total tau, 8.82 ± 0.45 vs. 4.82 ± 0.32%,
P < 0.0001; Ser202/Thr205-phosphorylated tau, 12.75 ± 0.48 vs.
3.71± 0.45%, P < 0.0001; and Aβ, 15.39± 1.92 vs. 5.09± 1.10%,
P < 0.0001 (Supplementary Figure 1). Similar results were
also observed in the cerebellum: total tau, 7.91 ± 0.31 vs.
4.76 ± 0.27%, P < 0.0001; Ser202/Thr205-phosphorylated tau,
7.98± 0.53 vs. 3.68± 0.28%, P < 0.0001; and Aβ, 7.27± 0.43 vs.
3.32± 0.24%, P < 0.0001 (Supplementary Figure 2).

To benchmark the phenotype of Tyrobp−/− mice against an
AD phenotype, we compared hippocampal levels of total tau
and Ser202/Thr205-phosphorylated tau between Tyrobp−/− and
APP/PS1mice, all 15 months old.Tyrobp−/−mice showed higher
levels of Ser202/Thr205-phosphorylated tau (0.45 ± 0.10 vs.
0.88± 0.07, P = 0.043) and total tau (0.79± 0.22 vs. 1.51 ± 0.07,
P = 0.047) than WT animals. However, Tyrobp−/− mice showed

lower levels of Ser202/Thr205-phosphorylated tau (0.79 ± 0.22
vs. 1.49 ± 0.10, P = 0.015) and total tau (1.51 ± 0.07 vs.
1.81± 0.02, P = 0.012) than the APP/PS1 mice (Figure 4).

Reduced m6A Methyltransferases in the
Hippocampus of Tyrobp−/− Mice
Tyrobp−/− mice contained significantly lower hippocampal
levels of Mettl3, Mettl14, and Wtap mRNAs, which encode
methyltransferases (P < 0.001, Figure 5A). These mRNA
results were verified at the protein level by western blotting
(Figures 5B,C). In contrast, the two types of animals did not
differ significantly in expression of the Fto or Alkbh5 genes
encoding demethylases.

The global m6A RNA methylation level in hippocampal
was significantly lower in six-month-old Tyrobp−/− mice
than in age-matched WT animals (0.0357 ± 0.00008 vs.
0.0529 ± 0.00005%, P = 0.005), (Supplementary Figure 3A).
Similarly, based on immunofluorescence staining, the m6A
RNA methylation were significantly lower in six-month-old
Tyrobp−/− mice than in age-matched WT animals (12.12± 1.69
vs. 5.54 ± 0.81, P = 0.024) (Supplementary Figure 3B),
and the decrease in m6A methylation occurred in microglia
(1.14 ± 0.12 vs. 0.63 ± 0.06, P = 0.020) (Supplementary
Figures 3C,D), astrocytes (4.27± 0.39 vs. 2.76± 0.30, P = 0.037)
(Supplementary Figures 3E,F) and neurons (10.17 ± 1.20 vs.
4.78± 0.55, P = 0.015) (Supplementary Figures 3G,H).
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FIGURE 3 | Numbers of hippocampal cells immunopositive for total tau, Ser202/Thr205-phosphorylated tau, and Aβ. Tissues from hippocampus of wild-type (WT)
and Tyrobp−/− mice aged 6 months were immunostained for total tau (tau-5), Ser202/Thr205-phosphorylated tau (AT8), and Aβ (6E10). (A) Representative
micrographs. (B–D) Quantification of total tau, Ser202/Thr205-phosphorylated tau, and Aβ. Data are mean ± SEM from three independent experiments (three mice
per group). Differences were assessed for significance using Student’s t test.

Altered m6A RNA Methylation Patterns in
Tyrobp−/− Mice
The original data, which were deposited in the GEO database
under accession number GSE179827, were of generally high
quality, with > 97% of reads meeting the Q20 criterion
and > 92% of reads exceeding the Q30 criterion (Supplementary

Table 2). Tyrobp−/− mice showed 810 m6A peaks differing
significantly from WT animals (Supplementary Table 3), of
which 498 peaks were significantly higher and 312 significantly
lower in Tyrobp−/− mice (Figure 6A). In Tyrobp−/− and WT
mice, the m6A peaks were enriched mainly near stop codons
and 3′-untranslated regions (Figure 6B), and the peaks differing
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FIGURE 4 | Levels of total tau and Ser202/Thr205-phosphorylated tau in WT, Tyrobp−/− and APP/PS1 mice. (A) Western blot analysis. (B) Quantification of total
tau and Ser202/Thr205-phosphorylated tau. Data are mean ± SEM from three independent experiments (three mice per group). Differences were assessed for
significance using Student’s t test.

FIGURE 5 | Reduced m6A RNA methyltransferases in the hippocampus of Tyrobp−/− mice. (A) Relative levels of Mettl3, Mettl14, and Wtap mRNAs encoding
methyltransferases and of Fto and Alkbh5 mRNAs encoding demethylases. (B,C) Western blotting and quantification of METTL3, METTL14 and WTAP in the
hippocampus. Data are mean ± SEM (six or nine mice per group). Differences were assessed for significance using Student’s t test.

significantly between the two types of mice occurred most
often in the 3′-untranslated region (53.26%), followed by other
exons (18.62%), 5′-untranslated regions (17.93%), and first exons

(10.2%) (Figure 6C). Compared to WT animals, Tyrobp−/−

mice showed higher proportions of m6A peaks in 3′-untranslated
regions (49.32 vs. 47.22%) and first exons (11.63 vs. 11.47%), but
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FIGURE 6 | Characteristics of m6A methylation in the hippocampus of 6-month-old Tyrobp−/− mice. (A) Volcano plots showing m6A peaks differing significantly
between Tyrobp−/− and wild-type (WT) mice. (B) Average distribution of m6A peaks along transcripts in the hippocampus. (C–E) Pie charts showing the distribution
of m6A peaks. (F) Major Gene Ontology terms for transcripts whose m6A methylation was upregulated in Tyrobp−/− mice. (G) Major Gene Ontology terms for
transcripts whose m6A methylation was downregulated in Tyrobp−/− mice. Up- or downregulation was defined, respectively, as fold change ≥ 2 or fold
change ≤ –2 combined with P < 0.05. Nine mice were used in each group.

lower proportions in 5′-untranslated regions (17.34 vs. 18.88%)
and other exons (21.71 vs. 22.43%) (Figures 6D,E).

In Gene Ontology (GO) analysis, the upregulated peaks were
significantly associated with the following biological processes:
regulation of DNA-templated transcription, positive regulation of
transcription by RNA polymerase II and signal transduction. The
upregulated peaks were associated with the cellular components
of cytoplasm, membrane and nucleus; and they were associated

with the molecular functions of protein binding, metal ion
binding and nucleotide binding (Figure 6F).

The downregulated peaks, in contrast, were associated mainly
with the biological processes of regulation of DNA-templated
transcription, signal transduction, and positive regulation of
transcription by RNA polymerase II (Figure 6G). Downregulated
peaks were also associated with the cellular components of
membrane, cytoplasm and nucleus; and they were associated with
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the molecular functions of protein binding, metal ion binding
and DNA binding.

Altered Hippocampal Gene Expression in
Tyrobp−/− Mice
RNA sequencing data showed that 86 genes were upregulated
in Tyrobp−/− mice relative to WT controls, while 85 genes
were down-regulated (Supplementary Table 4). The top five
upregulated genes were Fam177a, Pmch, Pcdhgb4, Hcrt, and
Tmem181c-ps, and the top five downregulated genes were
Mgam, Pcdhga2, Gpr176, Pcdhga9, and Proz (Figures 7A,B). The
altered expression of three upregulated genes (Fam177a, Pcdhgb4
and Tmem181c-ps) and three downregulated genes (Pcdhga2,
Gpr176 and Slc16a7) was verified using quantitative real-time
PCR (Figure 7C).

The major GO terms and KEGG pathways involving
upregulated genes are shown in Figures 7D,E. Upregulated
KEGG pathways included the cAMP signaling pathway, axon
guidance and MAPK signaling pathway (Figure 7E). The major
GO terms and KEGG pathways involving downregulated genes
are shown in Figures 7F,G. Downregulated KEGG pathways
included the AMPK signaling pathway, PI3K-Akt signaling
pathway, and human papillomavirus infection (Figure 7G).

Correlation of Altered m6A RNA
Methylation With Altered Gene
Expression in the Hippocampus of
Tyrobp−/− Mice
We identified genes whose m6A methylation at the RNA level and
whose gene expression were altered (Supplementary Table 5),
leading to four groups (Figure 8A): hypermethylation and
upregulation, 38 genes; hypomethylation and downregulation,
16 genes; hypomethylation and upregulation, 43 genes; and
hypermethylation and downregulation, 84 genes.

In GO analysis, the top three biological processes were
regulation of DNA-templated transcription, negative regulation
of ERK1 and ERK2 cascades, and chemical synaptic transmission.
The top three cellular components were nucleus, cytoplasm, and
membrane, while the top three molecular functions were protein
binding, metal ion binding, and nucleic acid binding (Figure 8B).
The KEGG analysis enriched for the overlap genes were cell
adhesion molecules, NOD-like receptor (NLR) signaling and
folate biosynthesis (Figure 8C).

Cell adhesion molecules of interest included Cldn19, H2-
M5 and Alcam. In Tyrobp−/− mice, these genes were m6A-
hypomethylated and upregulated. The NLR signaling pathway
includes Nlrp6 and Pstpip1. In Tyrobp−/− mice, the Nlrp6 gene
was m6A-hypermethylated and downregulated, while the Pstpip1
gene was m6A-hypomethylated and upregulated.

DISCUSSION

Here we demonstrate AD-like histopathology and behavioral
deficits in Tyrobp−/−mice, which were linked to downregulation
of the methyltransferases METTL3, METTL14, and WTAP.

These findings suggest that TYROBP deficiency may associate
with an altered m6A epitranscriptome in hippocampus as well
as altered expression of a variety of genes and signaling pathways
involved in cognitive function.

Tyrobp−/− mice mimic central features of NHD and AD,
most notably learning and memory deficits (Cui et al., 2021).
Tyrobp−/− mice in our study showed elevated levels of total tau,
Ser202/Thr205-phosphorylated tau and Aβ in the hippocampus,
cortex and cerebellum. These elevated hippocampal levels have
also been observed in NHD patients (Satoh et al., 2018). NHD
patients carrying the Q33X mutation in the TREM2 gene show
AD-like lesions, including Aβ deposition and neurofibrillary
changes (Maderna et al., 2021). However, whether deficiency of
TYROBP contributes to, or protects against neurodegenerative
disease, remains controversial. Deleting the TYROBP gene from
APPKM670/671NL/PSEN11exon9 mice mitigated behavioral and
electrophysiological deficits, without affecting the total number
of Iba1-positive microglia in cortex or hippocampus (Haure-
Mirande et al., 2017, 2019). Deleting the TYROBP gene from
MAPTP301S mice also mitigated clinical and electrophysiological
deficits, while paradoxically increasing tau hyperphosphorylation
and spreading (Audrain et al., 2019). Overexpression of
TYROBP in microglia of mice can decrease amyloid burden but
increase tau phosphorylation in an APP/PSEN1 or MAPTP301S

background (Audrain et al., 2021). These considerations lead us
to speculate that each particular state of microglial activation is
associated with an optimal level of TYROBP expression.

The m6A methylation is the most frequent reversible post-
transcriptional methylation of mammalian mRNA. The level
of m6A methylation increases in the mouse brain during
adulthood (Meyer et al., 2012), and it helps regulate long-
term memory formation (Zhang et al., 2018), facilitating
hippocampus-dependent learning and memory through the
YTHDF1 protein (Shi et al., 2018). AD patients show decreased
m6A methylation in neurons of the hippocampus and cortex,
but higher methylation in GFAP-positive astrocytes and some
Iba1-positive microglia (Zhao et al., 2021). The APP/PS1 mouse
model of AD, in contrast, shows elevated m6A methylation,
but the immunofluorescence analysis were not done (Han
et al., 2020). Tyrobp−/− mice in our study showed reduced
m6A methylation in microglia, astrocytes and in neurons.
However, the immunofluorescence cannot report differentially
on ribosomal RNA and mRNA, since they colocalize, an mRNA-
enriched ELISA is needed in the future. Further investigation
is also needed to clarify whether NHD and AD involve similar
changes in m6A methylation, and to explore how these changes
correlate with the pathological hallmarks of the two diseases.

In our study, METTL3, METTL14, and WTAP were
downregulated in Tyrobp−/− mice, and the same proteins were
downregulated in hippocampus and cortex of AD patients (Zhao
et al., 2021). METTL3 plays a key role in m6A methylation,
and depleting METTL3 from the hippocampus of C57BL/6
mice compromises memory consolidation (Zhang et al., 2018)
and triggers extensive synaptic loss, neuronal death, oxidative
stress and aberrant cell cycling (Zhao et al., 2021). Other
studies have linked AD in humans to accumulation of insoluble
METTL3 in hippocampus (Huang et al., 2020), or even to
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FIGURE 7 | Volcano plots, heatmaps, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in genes differentially
expressed between wild-type (WT) and Tyrobp−/− mice. (A) Volcano plots and (B) heatmap showing genes and transcripts differentially expressed between WT and
Tyrobp−/− mice. (C) Quantitative real-time PCR detection of six genes chosen from the methylated RNA immunoprecipitation sequencing data. (D,E) Major GO
terms and KEGG pathways were analyzed for genes upregulated by Tyrobp knockout. (F,G) Major GO terms and KEGG pathways were analyzed for genes
downregulated by Tyrobp knockout. Up- or downregulation was defined, respectively, as fold change ≥ 2 or fold change ≤ –2 combined with P < 0.05. Nine mice
were used in each group.

upregulation of METTL3 in the cortex and hippocampus of
one mouse model of AD (Han et al., 2020). These conflicting
results highlight the need for future studies to clarify how
altered m6A methyltransferase activity may contribute to
neurological diseases.

Knocking out TYROBP in our mice did not alter expression
of FTO or ALKBH5, consistent with a report of normal FTO and
ALKBH5 levels in soluble and insoluble hippocampal fractions
from AD patients (Huang et al., 2020). Other studies, however,
have reported downregulated FTO in the hippocampus of AD
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FIGURE 8 | Combined analyses of m6A-RIP-seq and RNA-seq data. Genes whose expression and m6A methylation differed significantly between Tyrobp−/− and
wild-type mice were analyzed in terms of their (A) four-quadrant distribution (see Results), (B) major GO terms, and (C) top 10 KEGG pathways. Fold change ≥ 2 or
fold change ≤ –2 and P < 0.05, nine mice were used in each group.

patients and an AD mouse model (Han et al., 2020; Zhao et al.,
2021), as well as in the cortex of a rat model for traumatic brain
injury (Yu et al., 2020). These discrepancies may depend on
the animal species, pathological state, disease stage, and brain
fraction (soluble or insoluble) being studied.

Our study appears to report the first analysis of a relationship
between differentially expressed m6A peaks and genes in NHD
or AD. We found many of the differentially expressed m6A

peaks to be related with cancer, including peaks affecting
the genes Trim58, Fam83f, Whrn, and Pde6b. Among the
differentially expressed genes known to be relevant to neuronal
functions, the Pcdhs cluster, including Pcdha and Pcdhg, are
highly expressed in the brain and help guide neurons during
brain development, neuronal differentiation, and synaptogenesis
(Shimojima et al., 2011). In Tyrobp−/− mice, Pcdhgb4 and
Pcdhga8 were upregulated, while Pcdhga2, Pcdhga9 and Pcdhgb8
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were downregulated, suggesting that Pcdhg gene expression
might have some relation with TYROBP. Fam177a was
upregulated in our Tyrobp−/− mice, and downregulation of
this gene impairs the transduction of TLR4 signaling; inhibits
the phosphorylation of NF-κB, Akt, Erk1/2 and JNK; and
downregulates TLR4, MyD88, TRAF6, and TRIF (Chen et al.,
2021). The potential implication of Fam177a in AD requires
further investigation.

Our Tyrobp−/− mice showed dysregulation of several
pathways, including signaling pathways involving cAMP, MAPK,
AMPK, and PI3K-Akt. TYROBP may interact with SHIP1 and
DOK3 to inhibit Syk, PI3K, and ERK, as well as signaling
involving Toll-like receptors in macrophages (Xing et al., 2015;
Hamerman et al., 2016). PI3K activates Akt to inhibit mitogen-
activated protein kinase kinase kinase, which in turn inhibits
Toll-like receptors (Hamerman et al., 2009). Analysis of the
overlap between m6A methylation and gene expression identified
several pathways, such as the NLR signaling pathway. Unlike
Toll-like receptors, NOD-like receptors are intracellular proteins
that scan the cytoplasm for the presence of intracellular invaders.
Future studies are needed to examine whether NLRs also
contribute to NHD.

Our Tyrobp−/− mice showed dysregulation of pathways
involving cell adhesion molecules. Neural cell adhesion molecules
are involved in memory formation and consolidation (Welzl
and Stork, 2003), and they also regulate synapse formation,
maintenance and function (Thalhammer and Cingolani, 2014).
Levels and function of synaptic cell adhesion molecules are
altered in brain tissues, cerebrospinal fluid, and sera in AD
patients (Leshchyns’ka and Sytnyk, 2016). Our results provide a
hint of a relationship between cell adhesion molecules and NHD,
so the potential role of these molecules in memory impairment
should be explored.

In summary, our study demonstrates that Tyrobp−/− mice
share behavioral and pathological features of mouse models of
AD. Knocking out TYROBP reduced m6A methyltransferases
components METTL3, METTL14, and WTAP. These and other
observed alterations in m6A methylation profiles may provide
clues to the pathogenesis of NHD, AD and other diseases related
to the Tyrobp gene. Further study is necessary to investigate how
decreasing m6A methylation mediates the histopathological and
behavioral deficits of Tyrobp−/− mice.
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