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Editorial on the Research Topic

Impact of Early Life Nutrition on Immune System Development and Related Health Outcomes
in Later Life

EARLY LIFE NUTRITION AND HEALTH OUTCOMES IN LATER LIFE

Human milk (HM) is a complex mixture of macronutrients and bioactive compounds that provide
optimal nutrition to infants (1–5). HM has been shown to impact infant’s gastro-intestinal tract,
immune system, microbiota composition, metabolism and also may have long-term effects on the
development of infectious and non-communicable diseases (3, 6–8). The aim of this editorial is to
provide a summary of the original research, reviews and opinions regarding key factors affecting
human milk composition, and the role of bioactive components of human milk on infants’ health.

Maternal obesity and maternal atopy are highly prevalent states that may have an effect on HM
composition and infants’ health outcomes (9–14). Few studies, however, have attempted to evaluate
associations between HM metabolome composition and measures of infants’ health and
development. For instance, Bardanzellu et al. reviewed different studies for HM metabolite
profile from mothers with overweight and obesity in an attempt to determine the milk
metabolome composition with respect to obesity. However, the small sample size and large
variability of the measures precluded the investigators from drawing conclusions which
underscores the necessity of large sample size studies in this area of research. The authors,
however, found that the fatty acid profile of human milk was associated with the maternal
obesity status. Specifically, higher levels of saturated fatty acids and lower levels of
monounsaturated and n-3 long-chain polyunsaturated fatty acids were found in milk of women
with obesity compared to milk of women with normal weight. These changes in milk composition
may influence long-term weight gain and glucose tolerance, in infants.
org March 2021 | Volume 12 | Article 66856915
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Allergic diseases are of a major concern and a significant burden
to healthcare. It has been previously shown that HM composition
may differ in allergic and non-allergic mothers (15). Recent research
from Stinson et al. demonstrated that human milk from atopic
mothers had lower levels of short-chain fatty acids (SCFA).
Importantly, reduced levels of SCFA during early life may
program the gut, microbiota, and obesity in infants. Nutritional
interventions during pregnancy and lactation could serve as
strategies to mitigate maternal atopy and potentially improve HM
composition. For instance, Kao et al. showed that maternal
consumption of goat milk during pregnancy and lactation
associated with reduced airway inflammation and allergy
outcomes in the offspring compared to cow’s milk consumption.
The goat milk feeding had increased immunoglobulin levels, Th1
cytokine production, and improved NK cell activity in comparison
to cow’milk feeding in the offspring. In addition, in an animal study
by Adel-Patient et al. showed that altering maternal immune status
by sensitizing to different antigens protects offspring by modulating
the antibody composition of human milk to specific antigens. In
summary, obesity and prenatal antigen exposure of mothers were
associated with HM composition and may affect infant health and
development, but relationships should be confirmed in
methodologically rigorous studies with a large sample size.

Human milk feeding likely protects from pathogens,
thereby reducing/preventing negative outcomes associated with
infection via different bioactives of milk such as human milk
oligosaccharides (HMOs) and free amino acids (FAAs) (1, 16–
19). Indeed, Carr et al. review highlighted the antipathogenic and
immunomodulatory properties of HMOs and Zuurveld et al.
reviewed the potential role of HMOs in preventing allergic
diseases. In their article Sadelhoff et al., discuss the potential
role of amino acids (particularly glutamine and glutamate) in
HM to protect against neonatal allergies and infection. Further,
using a HM-fed piglet model, Rosa et al. demonstrated the
appearance of HM metabolites’ in the gut, serum, and urine of
HM-fed piglets. Importantly, glutamic acid and glutamate levels
were higher in the HM-fed animals relative to the formula fed
group suggesting potential benefits of HM FAAs. Also, Rosa et
al., study discussed human metabolites such as polyamines and
tryptophan impact on immune response.

Human milk has been shown to promote gut microbiota
development and function (20–25). In reviewing the literature,
Carr et al. comprehensively overviewed the role of HM
microbiota on gut microbiota colonization and immune function.
This article also discussed the role of human milk components such
as HMOs, and IgA impact on gut microbiota. Peroni et al. reviewed
the literature regarding microbiome composition and its impact on
the development of allergic diseases. Drall et al. demonstrated an
association of microbiota composition in exclusively breastfed
infants to C. difficile colonization. In summary, dietary intake and
both pre- and post-natal factors appear to be associated with the gut
microbiota composition and its association to pathogens
colonization. This may be a focus for the future intervention
strategies aiming at improving infants health.

Previous studies suggest antipathogenic effects of HM
components and that the addition of these bioactive molecules
Frontiers in Immunology | www.frontiersin.org 26
(i.e., HMOs, lactoferrin, immunoglobulins, and milk fat globule
membrane FGM, extracellular vesicles) to infant formulas may
benefit child health (20, 26–36), although the studies usually lack
methodological rigor and outcomes were based on a small sample
size. The studies on recombinant immunoglobulins and bioactivity
in the digestive tract are limited. Research from Sah et al. provided
some evidence that recombinant antibody towards respiratory
syncytial virus (RSV) may impact growth and have neutralization
activity against the virus across the GI tract. In another study,
Nederend et al. demonstrated that bovine immunoglobulin antiviral
activity and T cell response may prevent RSV infection.
Interestingly, Adel-Patient et al. found no protection to protein
present in cow’s milk by feeding the hydrolysates of caseins and
Lactobacillus rhamnosus GG protobiotic. Thus, future studies are
needed to fully understand the protective effects of
immunoglobulins, as well as pre and probiotics, before adding
these components to infant formula. The combined effect of
different bioactive molecules within the formula on infant health
and development also requires further investigation.

Human milk may impart benefits through epigenetic
programming influencing long-term health by various
mechanisms. van Esch et al. provided an overview on the
evidence of maternal nutrition, environmental factors impact
on milk composition, and how the different components of milk
epigenetically program infants’ health and dictate allergy and
asthma outcomes in later life. Human milk contains extracellular
vesicles with microRNAs (miRNAs) as one of the epigenetic
molecules (35). Furthermore, Carr et al. provided evidence that
miRNAs known to modulate gene expression were associated
with immune function in the human milk-fed group compared
to formula diet-fed group in the piglet model. Also, the review by
Carr and associates highlighted that miRNAs present in human
milk may be associated with a beneficial effect for infants’ health
and immune system.

Finally, Bilsen and colleagues elegantly show how a network-
based approach that includes evidence from studies to determine
the windows of opportunity to shape lifelong health of infants. This
can be used to predict the key candidate markers of early life
immune development. Human milk is a complex mixture with
several bioactive components providing short and long-term health
benefits to infants. We sincerely hope that the article’s compilation
of the Research Topic on human milk will be useful and interesting
to the readers and hope that the knowledge gaps highlighted will be
considered for future state-of the art research findings.
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Colonization with Clostridioides difficile occurs in up to half of infants under the age of

3 months, is strongly influenced by feeding modality and is largely asymptomatic. In

spite of this, C. difficile’s presence has been associated with susceptibility to chronic

disease later in childhood, perhaps by promoting or benefiting from changes in infant gut

microbiome development, including colonization with pathogenic bacteria and disrupted

production of microbial bioactive metabolites and proteins. In this study, the microbiomes

of 1554 infants from the CHILD Cohort Study were described according to C. difficile

colonization status and feeding mode at 3–4 months of age. C. difficile colonization

was associated with a different gut microbiome profile in exclusively breastfed (EBF)

vs. exclusively formula fed (EFF) infants. EBF infants colonized with C. difficile had

an increased relative abundance of Firmicutes and Proteobacteria, decreased relative

abundance of Bifidobacteriaceae, greater microbiota alpha-diversity, greater detectable

fecal short chain fatty acids (SCFA), and lower detectable fecal secretory Immunoglobulin

A (sIgA) than those not colonized. Similar but less pronounced differences were seen

among partially breastfed infants (PBF) but EFF infants did not possess these differences

in the gut microbiome according to colonization status. Thus, breastfed infants colonized

with C. difficile appear to possess a gut microbiome that differs from non-colonized

infants and resembles that of EFF infants, but the driving force and direction of this

association remains unknown. Understanding these compositional differences as drivers

of C. difficile colonization may be important to ensure future childhood health.
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INTRODUCTION

Clostridioides (formerly Clostridium) difficile is a bacterium
that is present in the intestine of nearly 40% of infants at
1 month of age, and 30% of infants between the ages of 1
and 6 month (1). C. difficile is the main cause of antibiotic-
associated diarrhea in adults (2, 3) and although C. difficile
may not be accompanied by diarrheal illness in infants, it
has been associated with atopy and microbial dysbiosis (4–
6). Furthermore, despite the lack of immediate risks related
to carriage of C. difficile in infants, this gram-negative spore-
forming bacterium is capable of inducing gut inflammation and
disrupting the intestinal epithelial barrier (7, 8). As a result,
these less than desirable influences on the intestinal environment
may impact the succession and abundance of commensal gut
microbiota and overall microbial ecology.

Infancy is a critical period for establishment of the gut
microbial ecosystem and immune system priming to confer
protection against gut microbial dysbiosis and reduce the risk
of negative health outcomes. C. difficile is thought to promote
colonization of non-commensals and pathogenic bacteria,
although this phenomenon has received little attention in infants.
In a small group of infants (n = 53) (6), one study found
that Ruminococcus gnavus and Klebsiella pneumoniae species
were more prevalent in infants colonized with C. difficile, while
non-carriers were more frequently colonized by Bifidobacterium
longum. Acquisition of C. difficile during infancy has been
attributed to several environmental exposures, notably formula
feeding (1, 9, 10). Breastmilk bioactive factors, including human
milk oligosaccharides and secretory Immunoglobulin A (sIgA),
neutralize toxins and bind pathogens, which may account for
asymptomatic colonization of the infant gut with C. difficile
and/or lower colonization rates in breastfed infants vs. infants
not fed human milk (11–13). Consequently, infants colonized
with C. difficile may manifest distinct and persistent changes in
their gut ecology, including changes in metabolites, secretory
proteins and resident microbiota. Hence, the relationship
between C. difficile and the infant gut microbiome merits
further examination.

In this study, we report the association between C. difficile

(family Peptostreptococcaceae) and other gut microbiome
components, including composition, metabolites and sIgA, to
provide insights into ecological factors related to C. difficile
expansion in infancy. We also explored these differences in
exclusively breastfed, partially breastfed, and exclusively formula
fed infants to examine the gut microbial community and
C. difficile colonization infants with distinct diets.

METHODS

Study Design and Population
This study includes a sub-set of 1,562 families enrolled in
the CHILD Cohort Study. In this prospective population-based
cohort, mothers were recruited and enrolled with informed
consent during the second or third trimester of pregnancy
between January 2009 and December 2012 from the Vancouver,
Edmonton and Manitoba study sites (inclusion and exclusion

criteria outlined at www.childstudy.ca) (14). The primary
objective of the CHILD Cohort Study was to determine
the developmental, environmental, and genetic determinants
of later allergy and asthma in childhood (15). All infants
included in this subsample provided a fecal sample at 3–
4 months of age, which was sequenced by Illumina MiSeq
and processed by targeted qPCR to detect C. difficile. Within
this study, smaller, yet representative, groups of samples were
profiled to describe concentrations of fecal metabolites (n =

467) and secretory IgA (n = 731) (Supplementary Table 1).
Gut microbiota compositional findings have previously been
described for infants in the CHILD Cohort Study (16), but this
paper is the first integration and report of 4 characterizations
of the infant gut microbiome and gut immunity from the
CHILD Cohort Study. The Human Research Ethics Boards at the
University of Manitoba, University of Alberta, and University of
British Columbia approved this study.

qPCR for Clostridioides difficile Detection
Fecal samples of 5–10 grams were collected from infant diapers
during home-visits conducted at 3–4 months of age by a
research assistant or parents according to an approved protocol
(Supplementary Figure 1). Samples were aliquoted and stored
at −80◦C until analyzed. A targeted 16S primer and probe set
was used for amplification and quantification of C. difficile and
followed the methods set by Penders et al. (17). To minimize
differential inhibitory effects due to variable concentrations of
genomic template DNA in qPCR, all template DNA samples were
first normalized by dilution to 1 ng/µL (18). Then, eachmultiplex
assay was prepared to contain 1X QuantiNova Multiplex PCR
Kit (QIAGEN), 0.4µM of each primer, 0.25µM of each probe
and 1 µL [1 ng/µL] of sample DNA in a final volume of 20 µL.
qPCR cycling conditions were as follows: initial denaturation for
2min at 95.0◦C, 40 cycles of denaturation for 5 s at 95◦C and
annealing/extension/reading for 20 s at 60◦C. Oligonucleotides
were acquired from IDT (Integrated DNA Technologies Inc,
Coralville, IA, USA) and reactions were performed on the
MiniOpticonTM Real-Time PCR System (Bio-Rad, Hercules,
CA, USA). A standard curve was created and employed to
determine the efficiency of the C. difficile primers and probes by
performing five 1:10 serial dilutions of C. difficile ATCC 9689D-
5 genomic DNA starting at 1 ng/µL. We calculated the lower
limit of detection for the multiplex assay to be 1X10-5 ng of
DNA or 2 genomes of C. difficile based on the amplification data
from the serial dilution and the non-template control. Because
each template sample represented a different starting mass of
stool, the limit of quantification for the analysis was variable from
sample-to-sample, and ranged from 514 to 33,333 genomes/g
stool. Infants were classified by C. difficile colonization status
(present in fecal sample, yes/no). Amongst colonized infants,
median levels of C. difficile (ng/g feces) in infant fecal samples
were not different between feeding groups (data not shown).

Fecal Microbiome Analysis
DNA extraction and amplification of bacterial V4 hypervariable
region of the bacterial 16S rRNA gene was followed by
sequencing and taxonomic classification and was conducted as
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previously described (19). To summarize, microbial DNA was
extracted from the frozen stool samples mentioned above (80
to 200mg) using the QIAamp DNA Stool Mini kit according
to the manufacturer protocol (Qiagen Inc, Valencia CA).
Next, the bacterial 16S rRNA genes were amplified at the
hypervariable V4 region using PCR with appropriate primers.
PCR products were combined for sequencing, performed using
the Illumina MiSeq platform (San Diego, CA). Resultant
sequences were taxonomically classified and matched at >97%
similarity against the Greengenes reference database in QIIME
and filtered/excluded if <60% similarity. Finally, microbiota
data were rarefied to 13,000 sequences per sample and
relative abundances were calculated. At this time, microbiota
diversity within samples (alpha diversity) was calculated using
standardized estimators of OTU richness and/or evenness: Chao1
and Shannon diversity indices.

Short-Chain Fatty Acid (SCFA) and Other Fecal

Metabolites
In a sub-set of fecal samples (N = 467), metabolites
were quantified by magnetic resonance spectroscopy (NMR).
NMR requires a small quantity of sample for processing
and has high reproducibility compared to mass spectrometry
(20). Homogenization of 100mg of sample and subsequent
centrifugation were performed as necessary for sample cleaning:
Each sample was placed in an Eppendorf tube will 1mL of ice
water, vortexed for 5min and subjected to sonication for 20
more minutes at 4◦C. Samples were then vortexed for another
20min at 250 rpm. Samples were then centrifuged at 15,000
× g for 1 h at 4◦C. The supernatant was removed and placed
in a new tube and the process was repeated. The cleaned fecal
water was stored at −20◦C. After extraction, 280 µL of fecal
water was mixed with 70 µL of a standard buffer solution (54%
D2O: 46% 750mMpotassium phosphate (mono- and dibasic) pH
7.0 v/v containing 5mM DSS-d6 (2,2-dimethyl-2-silcepentane-
5-sulphonate). The sample (350 µL) was then transferred to
3mm SampleJet NMR tube for subsequent spectral analysis.
All 1H-NMR spectra were collected on a 700 MHz Avance III
(Bruker) spectrometer equipped with a 5mm HCN Z-gradient
pulsed-field gradient (PFG) cryoprobe. 1H-NMR spectra were
acquired at 25◦C using the first transient of the NOESY pre-
saturation pulse sequence (noesy1dpr), chosen for its high degree
of quantitative accuracy.

Prior to spectral analysis, all FIDs (free induction decays) were
zero-filled to 250K data points and line broadened 0.5Hz. The
methyl singlet produced by a known quantity of DSS was used as
an internal standard for chemical shift referencing (set to 0 ppm)
and for quantification. All 1H-NMR spectra were processed and
analyzed using the Chenomx NMR Suite Professional software
package version 8.1 (Chenomx Inc., Edmonton, AB) (11).
The Chenomx NMR Suite software allows for qualitative and
quantitative analysis of an NMR spectrum by manually fitting
spectral signatures from an internal database to the spectrum.
Typically 90% of visible peaks were assigned to a compound and
more than 90% of the spectral area could be routinely fit using
the Chenomx spectral analysis software. Most of the visible peaks
are annotated with a compound name. We sought to identify

all metabolites relevant to microbial production or substrate use.
Metabolites were quantified asµmol/gram feces. In this study, we
report on a subset ofmetabolitesmeasured, specifically the SCFAs
acetate, butyrate, and propionate, in addition to othermetabolites
in the metabolic pathways of C. difficile including para-cresol,
succinate, and glutamate (Supplementary Figure 2).

Fecal Secretory IgA
A sub-sample of fecal samples were assayed for sIgA (N = 731)
using the Secretory IgA ELISA (enzyme-linked immunosorbent
assay) kit (ELISA, Immundiagnostik AG assay, Bensheim,
Germany). Approximately 14mg of fecal sample was used for
the sIgA analyses. Samples were run in duplicate according to
the manufacturer’s protocol, as previously described (21), and
quantified as the average milligram of sIgA per gram wet weight
feces (mg/g). To summarize, a fecal sample aliquot for each infant
was thawed and an IDK Extract buffer was used to extract fecal
sIgA. Samples were then diluted (1:125) with a wash buffer and
placed in a microtiter plate along with controls and standards.
Wells were aspirated, washed and 100 µL of conjugate was added
and allowed to incubate at room temperature. Samples were
then shaken on a horizontal mixer, washed with TMB substrate
and incubated in the dark (20min). An ELISA reader was
used to measure the absorption at 450 nm (620 nm reference).
The reads were multiplied by 12,500 and compared against a
standard curve, created using standards provided with the assay
kit, for quantification.

Covariate Data
Breastfeeding status was determined through self-report
questionnaires administered to mothers at 3–4 months
postpartum (N = 1,554). A 3-category variable was created
for infant breastfeeding status at the time of stool sample
collection and questionnaire administration: (1) exclusively
breastfed (EBF), (2) partially (i.e., mixed) breastfed (PBF), and
(3) exclusively formula fed (EFF). Complete feeding data were
missing in 8 infants, leaving a total of 1554 infants (not the full
N = 1,562 with available C. difficile and microbiome data) that
were stratified by feeding mode.

Statistical Analysis
All statistical analysis was conducted using Stata (version
13), RStudio (version 1.1.456), and the Galaxy platform
(MaAslin) between September 2018 and March 2019. Non-
parametric (Mann-Whitney U or Kruskal–Wallis test) and
parametric (student’s t-test) tests were used where appropriate
(Supplementary Figure 3) to compare alpha diversity indices,
fecal metabolites, and fecal sIgA according to colonization status.
Differences in taxon relative abundance (outcomes) according
to C. difficile colonization status (predictor) were determined
using the multivariate association with linear models method
developed by the Huttenhower lab (MaAslin) (22) (available
at: https://huttenhower.sph.harvard.edu/galaxy/). Spearman
correlations were computed in Supplementary Table 2, and
heatplots were generated using the gplots package and the
heatmap.2() command in R. Scatter bar graphs were generated
using the ggplots2 package and the geom_boxplot() and
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geom_beeswarm() commands. Statistical significance was
defined as a two-sided p or q-value < 0.05, after FDR correction
for multiple comparisons.

RESULTS AND DISCUSSION

The prevalence of C. difficile colonization among all study infants
was 30.9% (n= 482/1562), which aligns with previously reported
estimates (1). These colonization rates differed between feeding
groups: 22.6% for EBF, 36.0% for PBF and 49.6% for EFF infants
(χ2: 76.71, p< 0.001, Figure 1A,N = 1,554). The mean Shannon
and Chao1 indices for EBF and PBF infants were lower for infants
who lacked C. difficile compared to infants colonized with C.
difficile, suggesting that the richness and abundance of the infant
gut microbiota are greater and more equally distributed in the
presence of C. difficile (p<0.05, Figures 1B,C). No differences in
alpha diversity were detected with C. difficile colonization in EFF
infants. These differences across feeding modality could not be
attributed to the normal progression of microbiota development
since infant age [median (IQR)] in each of the feeding groups was
similar: 3.29 months (1.03) for EBF, 3.33 months (0.94) for PBF,
and 3.20 months (1.10) for EFF, p= 0.27.

EBF is generally associated with low microbial alpha diversity
due to the dominance of Bifidobacterium spp. (19, 23).
Bifidobacteria thrive on human milk oligosaccharides but their
growth is reported to be suppressed with C. difficile colonization
(6, 24). Accordingly, our regression models revealed that
Bifidobacterium spp. were less abundant in EBF infants colonized
with C. difficile than EBF infants who were not colonized
(transformed β = −0.06, q = 0.021, Figure 2). Bifidobacteria are
well-known acetate producers (24, 25) and their presence was
positively correlated with this metabolite (R = 0.56, p < 0.01,
Supplementary Figure 4). Despite an observed lowered relative
abundance of Bifidobacterium, we measured higher absolute
concentrations of fecal acetate among EBF infants colonized
with C. difficile (p = 0.01, Supplementary Figure 2). Many
other microbiota produce acetate (26); thus, the greater diversity
of microbes we observed in EBF C. difficile positive infants
likely contributed to higher fecal acetate levels. In our study,
acetate concentrations were also positively correlated with the
members of the Campylobacteraceae (R = 0.38, p > 0.10),
Peptostreptococcaceae (R = 0.55, p = 0.05) and Clostridiaceae
(R = 0.58, p > 0.10) families (Supplementary Figure 4) which
were enriched in EBF infants positive for C. difficile (q <

0.05, Figure 2).
Other microbes that were differentially abundant in the

presence of C. difficile were members of the Lachnospiraceae
and the Ruminococcaceae families, and both were enriched
with C. difficile colonization among EBF and PBF infants (q <

0.05, Figure 2). Among EBF infants, we also observed higher
absolute concentrations of non-acetate SCFAs (i.e., butyrate
and propionate, p < 0.05, Supplementary Figure 2) when they
were colonized with C. difficile. The relative abundance of
Ruminococcaceae [e.g., Oscillospira spp. which are butyrate
producers (27)] was positively correlated with butyrate (R =

0.35, p < 0.01, Supplementary Figure 4) and with p-cresol

FIGURE 1 | Frequency of C. difficile colonization in our study population and

infant microbial alpha-diversity according feeding mode (n = 1,554).

Colonization rates differ within feeding groups (A) 22.63% of exclusively

breastfed infants (N = 193/853), 35.96% of partially breastfed infants (N =

155/431) and 49.63% of formula fed infants were colonized (N = 134/270)

(Fishers’ exact p < 0.001). Scatter box-plots of the median (middle line), Q3

and Q1 quartiles (box limits), IQR (whiskers) and outlying values (dots). Data

were normally distributed (Supplementary Figure 3) and thus two-sided

p-values were calculated with students t-test within infant feeding groups,

comparing colonized and non-colonized infants at a significance threshold of α

= 0.05. Higher α-diversity was observed for infants colonized with C. difficile

(CD+) and breastfed (either exclusively or partially) than non-carriers (CD–) on

the same diet. This was the case for both the Shannon diversity index (B) and

Chao1 species richness index (C). Purple represents EBF, green for PBF and

gray for EFF.
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FIGURE 2 | Relative differences in microbiota composition between C. difficile carriers and non-carriers across infant feeding groups (n = 1,554). Multivariate linear

regression results (MaAslin) for family (bolded) and genus level taxa that are differentially associated with C. difficile colonization at 3–4 months of age. Values on the

x-axis represent arcsine square root transformed regression coefficients of microbiota relative abundances for each linear model, adjusted for multiple comparisons

(FDR correction) to determine which taxa are uniquely associated with C. difficile colonization. Each model had a reference of infants without C. difficile colonization at

3–4 months. Data shown only for taxa with FDR corrected two-sided q-value < 0.05. Coefficients > 0 (positive values) represent taxa that enriched in C. difficile

carriers, while coefficients < 0 (negative values) represent taxa that were depleted in C. difficile carriers. P-values for each regression can be found in

Supplementary Tables 3–5. Purple represents EBF (N = 853, 193 CD+), green for PBF (N = 431, 155 CD+) and gray for EFF (N = 270, 134 CD+).

(R = 0.27, p = 0.08, Supplementary Figure 4), a known
product of C. difficile amino acid metabolism (28). The fecal
concentrations of p-cresol were higher in all infants colonized
with C. difficile, regardless of infant feeding group (p <

0.01, Supplementary Figure 2). Lachnospiraceae was weakly
correlated with propionate concentrations (R = 0.18, p <

0.01). Propionate production by Lachnospiraceae is through
the 1,2-propanediol and acrylate pathways, which are possessed
by Blautia, Eubacterium, and Coprococcus (29), all genera
that were enriched in EBF C. difficile carriers (q < 0.05 for
each, Figure 2).

Correlations between microbial relative abundance and
butyrate concentrations involved a greater number of
gut microbiota in PBF than EBF infants colonized with

C. difficile. Specifically, Ruminococcaceae (R: 0.25, p < 0.01),
Lachnospiraceae (R: 0.28, p < 0.01) and Clostridiaceae (R: 0.46, p
< 0.01) were all positively correlated with butyrate and enriched
in PBF infants (q < 0.05 for each, Figure 2). In contrast to EBF
infants, Lachnospiraceae taxa in PBF C. difficile positive infants
were inversely correlated with propionate levels (R = −0.57,
p < 0.01). Since Bacteroidaceae are more abundant with any
formula feeding (16), irrespective of C. difficile status in the
current study, and they predominantly produce propionate (26),
these microbiota likely out-competed Lachnospiraceae in the
fermentation of substrates in PBF infants to produce propionate
via the succinate pathway. Consistently, we observed a positive
correlation between propionate concentrations and relative
abundance of Bacteroidaceae among PBF and EFF infants, which
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was absent in EBF infants and independent of C. difficile status
(Supplementary Figure 4).

Unique to PBF infants colonized with C. difficile was a higher
relative abundance ofVeillonella spp. (family Veillonellaceae, q=
0.002, Figure 2). Also, the relative abundance of Staphylococcus
spp. (family Staphylococcaceae, q < 0.001, Figure 2) was lower
in PBF infants positive for C. difficile than non-carriers.
Fewer compositional differences were detected with C. difficile
colonization among EFF infants, relative to breastfed (exclusive
and partial) infants and equally no differences were detected in
fecal metabolites. The sole family of microbes whose relative
abundance was significantly higher in EFF C. difficile carriers
was its own family, the Peptostreptococcaceae (q = 4.80E−24,
Figure 2). As also expected, the Peptostreptococcaceae family
were enriched in EBF and PBF infants colonized with C. difficile
(q < 0.001, Figure 2).

Other metabolites measured in our study include glutamate
and succinate. Glutamate, a metabolite shown to play a role
in the establishment of C. difficile in vivo (30), was not
differentially associated with C. difficile colonization in any of
the feeding groups (Supplementary Figure 2). This metabolite
is essential for C. difficile pathogenesis but may not be
required for asymptomatic colonization in infants. Further,
unlike glutamate dehydrogenase, a protein marker of C. difficile
colonization (30), glutamate is an intermediary metabolite
which may be consumed in several microbiota cross-feeding
pathways. In fact, fecal levels of glutamate correlated with
key microbes that differed by C. difficile status in all feeding
groups (Supplementary Figure 4). Similarly, C. difficile utilizes
succinate for its expansion and has the ability to ferment
succinate to butyrate (31). Consistent with the succinate pathway,
succinate concentrations were lower and concentrations of
butyrate higher with C. difficile colonization in EBF infants and
PBF infants (p= 0.05, Supplementary Figure 2). Since succinate
is not easily absorbed by colonic cells (32), as suggested by our
findings, levels may be further lowered from cross-feeding by
succinate-utilizing members of the “Negativicutes” branch of
Firmicutes clade (e.g. Veillonella spp.) (32, 33). Indeed, succinate
was negatively correlated with Veillonellaceae in PBF infants
(Supplementary Figure 4).

In addition to examining fecal metabolites, we also measured
fecal sIgA levels as a marker of intestinal homeostasis and
mucosal immunity (34). As we previously reported, C. difficile
was associated with lower sIgA concentrations among EBF
infants (p = 0.047, Figure 3) (11). Since infant secretion of
sIgA has been positively correlated with breastmilk sIgA levels
and breastmilk microbiota, maternal factors may contribute to
lower concentrations in the infant (35, 36). Notably, animal
models have shown that offspring nursed by mothers who are
sIgA-deficient have a different gut microbiota composition than
those receiving sIgA through breastmilk (37, 38). Similar to
what we observed in EBF C. difficile positive infants, reduced
fecal sIgA was associated with compositional differences that
included an increased relative abundance of Lachnospiraceae and
pro-inflammatory microbiota. Previous work from the CHILD
Cohort Study has shown that sIgA in breastmilk may be depleted
due to factors such as depression (21) or an altered maternal milk

FIGURE 3 | Log transformed measures of fecal secretory IgA, according to

infant colonization and feeding mode (n = 731). Scatter box-plots of the

median (middle line), Q3 and Q1 quartiles (box limits), IQR (whiskers) and

outlying values (dots). Two-sided p-values were calculated with Mann–Whitney

U-test of log transformed fecal sIgA (mg/g) comparing colonized and

non-colonized infants within the same diet group. Exclusively breastfed infants

colonized with C. difficile (CD+) had lower median fecal sIgA than non-carriers

(CD–) on the same diet. Purple represents EBF (N = 290, 72 CD+), green for

PBF (N = 237, 104 CD+) and gray for EFF (N = 204, 101 CD+).

microbiota (36), which may predispose the infant to colonization
by C. difficile and related dysbiosis. Although sIgA can bind
enteric pathogens (34), there is a lack of evidence suggesting
that C. difficile contributes to the destruction of sIgA or reduce
production of this protein.

Finally, some of our findings suggest that the gut microbiota
of breastfed (both EBF and PBF) infants colonized withC. difficile
resembles the gut microbial composition of adults (e.g., increased
relative abundance of Firmicutes such as Eubacterium spp.)
(39). Meta-analytic evidence from cohorts worldwide documents
similarity between the gut microbiota of EFF infants and that
of adults (23). Extending this evidence, our study suggests
that the gut microbiome of breastfed infants colonized with C.
difficile is compositionally similar to that observed in EFF infants
(Supplementary Figure 5).

In our large population cohort study, we were not able
to categorize infants according to the proportional intake of
breastmilk vs. formula, as others have (40). Since our study
did not employ culture-based methodology, another study
limitation was inability to detect the strains and toxigenic
properties of C. difficile. Should our study findings continue to
align with previous findings, we might expect a prevalence of
toxigenic strains to be <10% among infants with C. difficile
positive samples (12, 41). We are also unable to determine the
direction of observed associations: whether C. difficile caused
gut microbial dysbiosis, or whether gut dysbiosis increased
infant susceptibility to C. difficile colonization. This could be
improved by measuring the C. difficile colonization status of
infants longitudinally (at more than one time point) to assess if
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C. difficile colonization is transient or persistent and whether the
microbiome changes precede or follow colonization. However,
with enhanced characterization of the gut microbiome beyond
taxon composition, our study provides evidence for a putative
role of C. difficile colonization on the gut microbial ecology
of young, full-term infants from a large, general population in
North America.

CONCLUSION

We observed a distinct gut microbiome in young infants
colonized with C. difficile and this distinction depended on
the breastfeeding status of the infant. The most noticeable
microbiome differences with C. difficile colonization, especially
depletion of Bifidobacterium spp., were among EBF infants.
Similar compositional differences among members of the
Firmicutes phylum were seen in EBF and PBF infants. However,
unique to PBF infants was enrichment of Veillonellaceae. These
findings highlight the differential relationship of C. difficile
colonization on EBF vs. PBF vs. EFF infants, which should be
considered in future studies of infants feeding modality and
disease risk. In summary, we found differences in the infant
gut microbiome with C. difficile colonization, but it remains
unclear whether C. difficile causes these differences or if external
factors in early infancy create a niche that is more permissive
to colonization. Newer cohorts with available multi-omics data
could validate these findings and explore the hypothesized
relations between various microbiota and C. difficile to further
understand colonization of this microbe in infancy and its
implications in later childhood health.
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Goat milk (GM), as compared to cow milk (CM), is easier for humans to digest. It

also has antioxidant and anti-inflammatory effects and can improve minor digestive

disorders and prevent allergic diseases in infants. It is unclear whether GM consumed

in pregnant mothers has any protective effects on allergic diseases in infants. In

this experimental study with mice, we found GM feeding enhanced immunoglobulin

production, antigen-specific (ovalbumin, OVA) immune responses, and phagocytosis

activity. The GM-fed mice had an increasing proportion of CD3+ T lymphocytes in the

spleen. Splenocytes isolated from these animals also showed significantly increased

production of cytokines IFN-γ and IL-10. More importantly, GM feeding during pregnancy

and lactation periods can confer protective activity onto offspring by alleviating the airway

inflammation of allergic asthma induced by mite allergens. There was a remarkably

different composition of gut microbiota between offspring of pregnant mice fed with

water or with milk (GM or CM). There was a greater proportion of beneficial bacterial

species, such as Akkermansia muciniphila, Bacteroides eggerthii, and Parabacteroides

goldsteinii in the gut microbiota of offspring from GM- or CM-fed pregnant mice

compared to the offspring of water-fed pregnant mice. These results suggested that

improving the nutrition of pregnant mice can promote immunological maturation and

colonization of gut microbiota in offspring. This mother-to-child biological action may

provide a protective effect on atopy development and alleviate allergen-induced airway

inflammation in offspring.
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INTRODUCTION

An increasing prevalence of allergic diseases, such as atopic
dermatitis, allergic rhinitis, and asthma, as well as food allergies,
has been noted in western societies (1, 2). Increasing incidences
have also been reported in newly developed Asian countries,
such as Taiwan (3, 4). These diseases now affect ∼20% of the
population worldwide (5, 6); yet the prevalence has increased too
rapidly in recent decades to be explained by genetic changes alone
(1, 5). This increasing incidence of allergic disease alongside a
decreasing incidence of microbial infections in western countries
has led to the “hygiene hypothesis” (7). This has been updated to
encompass the commensal microbiota in early life (8, 9), which
is affected by multiple environmental factors, including the mode
of delivery during childbirth (10), breast vs. formula feeding (11),
a “Western diet” low in fiber and high in fat content (12), and
misuse of antibiotics (13).

Several studies show that children who developed allergies
later in life have decreased intestinal microbial diversity,
particularly lower levels of Bifidobacillus and Lactobacillus
species in infancy (14). In addition, the pro-inflammatory
metabolites produced by dysbiotic microbiota in the neonatal
period have been associated with an increasing atopy risk
and T-cell differentiation (15). Although breast milk contains
numerous allergy-protective bioactive components, such as
milk oligosaccharides, polyunsaturated fatty acids, a variety of
cytokines of TGF-β and IL-10, and even microbiota (16), there
is conflicting evidence on the protective role of breastfeeding in
relation to the development of allergic sensitization and allergic
diseases (17). A study conducted by Munblit et al. showed that
modulation of human breast milk composition may have the
potential to prevent allergic disorders in children (18). Human
milk composition varies among individuals, which may explain
the heterogeneity of these reports. Although, there is evidence
that exclusive breastfeeding for 3–4months reduces the incidence
of eczema and is protective against wheezing in the first 2 years
of life, there are no short- or long-term advantages for exclusive
breastfeeding beyond 3–4 months that have been demonstrated
for preventing atopic disease (19).

Previous studies have suggested that goat milk (GM) is easier
for humans to digest than cow milk (CM) because its curds are
softer (20, 21). The softer curds of GM may be an advantage
for adults suffering from gastrointestinal disturbances and ulcers
(21). GM contains higher levels of calcium, magnesium, and
phosphorous than those of CM and human milk. The higher
levels of medium chain triglycerides (MCT) in GM have been
recognized as having unique health benefits for infant nutrition
(20, 21). Previous studies have demonstrated antioxidant and
anti-inflammatory effects of GM (22). For example, Jirillo
et al. have shown that GM modulates human peripheral blood
mononuclear cells (PBMCs) and polymorphonuclear neutrophils
(PMNs) to produce NO, IL-6, IL-10, and TNF-α (22). It is notable
that GM is less immunogenic than CM in a murine model
of atopy, where the production of IL-4 was lower and IFN-γ
was higher from Concanavalin A (ConA)-stimulated splenocytes
of GM-fed mice as compared to those of CM-fed mice (23).
However, GM is not recommended in CM allergic patients due

to the clinically significant cross-allergenicity between CM and
GM (24).

Human breast milk contains more than 80 milk
oligosaccharides (HMOs). Because of its prebiotic and anti-
infective properties, it has been widely recognized as the major
source for early life colonization of gut microbiota in infants
(25). Recent studies have shown that GM contains the highest
level of oligosaccharides among all domestic animals and has
significant similarities to human milk oligosaccharides from a
structural point of view (26). Though it is clear that a mother’s
diet influences the health of her fetus in many ways, there is a
lack of concrete evidence to link the role of maternal nutrition
to the development of allergic diseases in her infants (17, 19).
Whether GM consumption by pregnant mothers has atopy
protective effects on their newborns is still unclear. This study
first evaluates the immune modulation of GM consumption by
maternal mice, then it uses pregnant mice and their offspring to
verify this hypothesis.

MATERIALS AND METHODS

Animals and Diets
Adult, specific pathogen-free, female BALB/c mice (5–6 weeks
old), were purchased from the National Laboratory Animal
Breeding and Research Center (Tainan, Taiwan). They were
housed in plastic cages with an air filter device and maintained
on a standard mouse diet (Lab diet; PMI Feeds, St. Louis,
MO, USA) in the Laboratory Animal Center of the College of
Medicine, National Cheng Kung University. The composition of
the standard diet, which consisted of dry pellets (88%), crude
protein (18%), crude fat (3.1%), ash (6.2%), fiber (22%), and
carbohydrates (35%). All mice were given ad libitum access
to deionized water. The GM formula, Mama formulated goat
milk (Karihome R©), was obtained from Orient EuroPharma Ltd.,
(Taipei, Taiwan) and manufactured by Dairy Goat Co-operative
(NZ) Ltd. (Hamilton, New Zealand). The CM formula was KLIM,
powdered milk sold by Nestlé, Switzerland. The GM formula
had goat milk protein as the sole protein source, and the CM
formula contained cow milk and whey proteins (frequently
referred to “whey-enhanced” or “adapted”). In details, the GM
formula contained pasteurized goat milk solids (43%), lactose,
vegetable oils, minerals, vitamins, acidity regulator (citric acid),
choline chloride, L-tryptophan, L-isoleucine, taurine, and L-
carnitine. The whey-to-casein ratio was ∼20:80, and 60% of the
fat was goat milk fat. The CM formula contained cow milk solids
(demineralized whey, lactose, skim milk solids, whey solids, and
whey protein concentrate), vegetable oils, soy lecithin, minerals,
vitamins, acidity regulator (citric acid and/or calcium hydroxide),
choline chloride, L-tryptophan, taurine, and L-tyrosine. The
whey to casein ratio was∼60:40, and cow fat was not included.

Experiment and Study Designs
All animal experiments were performed according to protocols
approved by the Institutional Animal Care and Use Committee
(IACUC No. 105196 and No. 106244). Groups of 12 mice were
first used at 6–8 weeks of age. Milk was administered daily to
groups of mice by intra-gastric gavage in 200 µL volume. The
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daily milk intake dose for the mice was calculated from the
recommended adult human dose of 25 g/200 mL/60 kg (WHO
Dietary recommendations/Nutritional requirements) to 8.5mg
for a 20 g mouse. To evaluate the effect of milk consumption
on general immune function, mice were fed with either sterile
water (W), GM (low dose 1.6mg, L; medium dose 8.5mg, M;
and high dose 16.6mg, H), or CM (8.5mg; C) for 4 weeks before
euthanasia. Mice of control group (N) were fed with normal diet
without specific treatment.

To assess the effect of milk consumption on antigen-specific
immunological response, groups of mice were fed as described
above and were sensitized with an intra-peritoneal (i.p.) injection
50 µg ovalbumin (OVA), 2 µL Complete Freunds Adjuvant
(CFA) in 200 µL phosphate-buffered saline (PBS) on day 0, and
i.p. [50 µg OVA, 6 µL Incomplete Freunds Adjuvant (IFA) in
200 µL PBS] on day 7. They were then euthanized after 3 weeks.
OVA-treated mice were fed with either sterile water (WO), GM
(low dose 1.6mg, LO; medium dose 8.5mg, MO; and high dose
16.6mg, HO), or CM (8.5mg; CO) for 4 weeks before euthanasia.
Mice of the control group (N) were fed with normal diet without
specific treatment.

To evaluate the effects of milk consumption by pregnant mice
on their offspring, the grouping and mating design was depicted
in Figure 1. Female mice were intra-gastrically fed (200 µL)
with sterile water (group W), GM (8.5mg, group G), or CM
(8.5mg, group C) (3 mice/group) after they had been paired with
male mice. The total feeding period of female mice began from
pairing and continued through pregnancy to the end of a 4-week
suckling period. At weaning, the offspring mice were randomly
divided into two groups—the control group (WN, GN, and CN)
and HDM-stimulating group (WA, GA, and CA)—with 10 mice
each. To establish the respiratory allergy model in offspring, they
were sensitized with HDM allergen Der p (Dermatophagoides
pteronyssinus; Allergon, Engelholm, Sweden) on days 0 and 7 by
i.p. 200 µL aluminum hydroxide (Al(OH)3) [50 µg Der p/mL
Al(OH)3]. Then, mice were intra-nasally (i.n.) delivered by Der
p (50 µg/20 µL PBS) daily (5 days). On day 14, mice were
challenged with Der p (50 µg/20 µL PBS) by an intra-tracheal
(i.t.) route and were sacrificed 2 days later (Figure 1). Control
mice were sensitized with PBS (i.p. and i.n.) and were challenged
with PBS (i.t.). On the weaning day, offspring mice were marked
W0, C0, and G0 individually.

Mouse Antibody and Antigen-Specific
Antibody Measurements
IgG1, IgG2a, and IgE ELISA kits were purchased from Bethyl
Laboratories (Montgomery, TX, USA) and were used according
to the manufacturer’s recommended protocol. Antigen (OVA)-
specific IgA, IgM, IgG, and IgG subclass antibody titers were
measured by using an indirect competitive enzyme-linked
immunosorbent assay (ELISA) protocol based on previously
described methods (27).

Measurement of Total and Der p-Specific
IgE in the Serum
Blood was collected from the cheek facial vein of individual
offspring on days 0 and 16. The collected samples were left to
stand and clot for 1 h at RT, and they were then centrifuged

at 10,000 × g for 30min to obtain the serum. Serum levels
of total and Der p-specific IgE were measured by using an
ELISA kit (Mouse IgE ELISA Quantitation Set, E90-115, Bethyl
Laboratories, Inc., Montgomery, TX, USA) (28).

Splenocyte Culture and Cytokine
Measurement
A cellular suspension was produced by mincing individual
spleens between two sterile glass slides. The red blood cells were
lysed with ACK Lysing Solution (Catalog number: A1049201,
Thermal Fisher Scientific Inc., Waltham, MA, USA), and the
splenocytes were extensively washed and re-suspended in RPMI
1640 containing 10% fetal calf serum, 0.1% penicillin, 0.1%
streptomycin, and 0.1% glutamine. Cells (5 × 106 cells/mL)
were cultured in 24-well plates at 37◦C in 5% CO2 and
were stimulated with phytohaemagglutinin (1µg/mL, PHA),
ConA (1µg/mL), or lipopolysaccharide (2µg/mL, LPS). OVA
(10µg/mL) was used for positive controls and unstimulated
cells for background controls. Supernatants were harvested at
48 h and were assayed for the level of IFN-γ, TARC, IL-
10, IL-12, and TNF-α concentrations by R&D Systems ELISA
(Minneapolis, MN, USA), according to the manufacturer’s
recommendations. Detection limits were 15 pg/mL for the assays
of the abovementioned cytokines.

Passive Cutaneous Anaphylaxis (PCA)
Specific IgE antibody responses to whey proteins were assessed
in triplicate by a PCA test in experimental mice. First, 0.1ml
of twofold dilutions of pooled mouse serum samples was intra-
dermally injected into ears of recipient mice. All mice were
challenged 48 h later by an intravenous injection of 1ml of
0.9% saline solution containing 5mg Evans Blue and 2mg α-
lactalbumin or BSA. The reaction was read 30min after the
challenge. The PCA titer was defined as the highest serum
dilution when yielding a positive reaction of at least 5mm in
diameter and expressed as means± SEM (29).

Airway Hyperresponsiveness
Measurement
To measure mechanical properties of mice airways, mice
were injected (i.p.) with 100 mg/kg of pentobarbiturate, and
tracheotomies were performed on day 16 (48 h after Der p i.t.
challenge). Lung function was determined by using the Scireq
Flexivent apparatus (SCIREQ, Scientific Respiratory Equipment
Inc., Montreal, Canada). Mice were treated with increasing doses
of acetyl-β-methylcholine chloride (0–5 mg/mL) (A2251, Sigma-
Aldrich, St. Louis, MO, USA). Methylcholine was aerosolized for
ventilation by using an ultrasonic nebulizer for 3min separately.
Respiratory system resistance (Rrs) and elastance (Ers) were
calculated by using flexiVent software and fitting the equation
with airway resistance (Rn), tissue elasticity (H), and tissue
damping (resistance) (G). The data from each treatment group
was used to calculate the average response.

Broncho-Alveolar Lavage Fluid (BALF) and
Lung Tissue Examination
The BALF was collected after two times of instillation and
aspiration with 1mL of cold saline into the trachea. BALF
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FIGURE 1 | Scheme of study protocol. The classifications of offspring were based on pregnant mother mice fed with water (W), goat milk (G), or cow milk (C) on

weaning period (D0) till 2 days after allergen or PBS sensitization and challenge (D16). The offspring mice were divided into two groups: control groups from pregnant

mother mice fed with water (WN), goat milk (GN), and cow milk (CN); and HDM-sensitized and challenged groups from pregnant mother mice fed with water (WA),

goat milk (GA), and cow milk (CA).

was centrifuged at 300 × g for 5min at 4◦C to separate cells
and supernatants. The total number of cells in two collections
was counted with hemocytometer. Differential cell counts of
BALF were performed by cytospin. Cells were stained with Liu’s
stain solution for microscopic examination, and 200 cells were
enumerated. Supernatants were stored at −70◦C until assay.
To examine the bronchial epithelium inflammation in the lung
tissue, lobes were fixed by endotracheal perfusion of alcohol-
formalin. After perfusion, the trachea was closed with a suture,
and the cardiopulmonary tree was then removed and placed
in a 10% neutral buffer formalin (pH 7.4) overnight. Lobes
were separated and placed in a cassette for automated paraffin
embedding. The paraffin blocks were sectioned into 4–5µm
thickness. Sections were stained with hematoxylin and eosin.
Photographs were obtained by a Microscope DP70 (Olympus,
Shinjuku, Tokyo, Japan) and DP manager system.

Analysis of Gut Microbiome Composition
by Axiom Microbiome Array
Stool samples were obtained from groups of offspring after the
weaning period and HDM allergen sensitization (day 0), and
offspring were sacrificed after allergen intra-tracheal challenge
for 2 days (Day 16). Stool samples were frozen then stored at
−80◦C. A QIAamp DNA Stool Mini Kit was used to purify
DNA from frozen stool samples according to protocol. DNA
quality was evaluated using MaestroNano spectrophotometry
(Maestrogen, Las Vegas, NV, USA) in absorbance ratio A260
nm/A280 nm. The Affymetrix GeneTitan R© platform was used
to identify the diversity of the microbiome with a Thermo
AxiomTM Microbiome array, which can detect more than 12,000
species of viruses, bacteria, fungi, protozoa, and archaea (30).
Initially, the 200 ng target probes were prepared to detect

each DNA sample, which contained at least 20 µL of good-
quality DNA (10 ng/µL). These samples were then amplified,
fragmented, and hybridized on a chip followed by a single-base
extension through DNA ligation and signal amplification. The
array was scanned automatically on a GeneTitan Multi-Channel
instrument according to manufacturer’s instructions (Thermo
Fisher, Waltham, MA, USA).

Microarray Data Analysis
Microarray data were analyzed using MiDAS software (Axiom
Microbial Detection Analysis Software), which is based on
the Composite Likelihood Maximization Method (CLiMax)
algorithm developed at Lawrence Livermore National Laboratory
LLNL (31). Probes with signal intensity above the 99th percentile
of random control probe intensities and with more than 20% of
target-specific probes detected were considered as positives. The
microbiome diversity and difference between different samples
were calculated by R language. The principal component assay
(PCA) was performed by using Python language.

Statistical Analyses
All analyses were conducted in triplicate. Statistical analysis
was performed using GraphPad Prism version 5.0a (GraphPad
Software, Inc., La Jolla, CA, USA). Data were analyzed using the
Student’s t-test, Kruskal-Wallis one-way ANOVA, and theDunn’s
post hoc test. If ANOVA assumptions were violated, theWilcoxon
matched-pairs test would be used. Results are expressed as mean
± SEM. Statistical significance was established at the level of
p < 0.05.
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RESULTS

Goat Milk Intake Modulates Immunological
Function of Mice
The effects of GM and CM on nutritional immunity were
evaluated in mice fed intragastrically with different types of
milk for 4 weeks. Control mice were fed with water only. The
body weight of the mice increased steadily over the treatment
period (weighed once a week) with no difference among groups
fed with water, GM (three dosages; L, M, and H), or CM (C)
(data not shown). At the end of the treatment period, there was
no difference in spleen weight among the six groups (data not
shown). Thus, the daily gavage of mice with GM or CM for 4
weeks did not affect weight gain or spleen size.

In contrast, a significant increase in sera immunoglobulin
concentration was observed in mice fed with GM or CM. IgA,
IgM, and IgG (total) concentrations were significantly higher in
cow milk- and goat milk-fed mice compared to control mice
(N) (p < 0.05) (Table 1A). There was a trend of increased
IgG2a levels in mice fed with GM, but this was not statistically
significant (Table 1A). Splenocyte proliferation in response to
mitogens PHA, Con A, and LPS was without difference between
milk-fed groups and control group (Table 1B). Nevertheless,
supernatants harvested from 24 h culture of splenocytes in GM
treatment groups had increasing concentrations of cytokines
(Table 1C). Compared to water and CM groups, GM groups
(M and H) had a higher level of IFN-γ after LPS stimulation,
a higher level of IL-12 after Con A stimulation, and a higher
level of TNF-α after PHA or LPS stimulation, particularly with
LPS stimulation (Table 1C). A flow cytometry analysis of spleen
cells demonstrated that 4 weeks’ milk treatment had limited effect
on the proportion of helper T cells (CD3+CD4+), cytotoxic
T cells (CD3+CD8+), and B cells (CD3−CD45R+). Although
there appeared to be a trend of an increase in B cells, it was
not significant (Table 1D). NK-cell activity of splenocytes was
increased in mice fed with a low dosage of GM compared to
control groups (Table 1E). Phagocytic activity was enhanced in
mice fed with GM (all dosages) as compared to control and
water-fed groups (Table 1F).

Goat Milk Intake Increases
Antigen-Specific Immunological Response
of Mice
The effects of milk consumption on antigen-specific
immunological responses were evaluated by extending the
above model with OVA immunization protocol. Mice were
immunized on Day 14, boosted on Day 21, and sacrificed on Day
28. As described above, there were no significant differences in
body weights or spleen size among different treatment groups.
A daily milk gavage did not affect food intake compared to
the control groups. The immunization protocol induced an
antibody response, with the concentrations of total IgM and
IgG being increased in sera from all treatment groups compared
to non-immunized group (Table 2A). OVA-specific IgA, IgM,
IgG, and IgG subclass antibodies also significantly increased in
immunized groups, and there were higher levels of OVA-specific

IgA and IgG in mice treated with GM compared to non-milk-fed
immunized mice. OVA-specific IgA levels were the highest
when feeding with medium dosage of GM (Table 2B). After
immunization with an OVA antigen, the proliferation activity
of splenocytes increased when cultured with PHA, OVA, and
LPS in all immunized groups of mice; neither the milk and
non-milk-fed groups nor the GM- and CM-fed groups displayed
a significant difference in proliferation activity. The LO group,
however, showed significantly decreased cell proliferation at 24 h
as compared to the non-milk-fed OVA immunized group (O)
(Table 2C).

Splenocytes isolated from OVA-immunized mice produced
higher levels of IFN-γ and IL-10 after culturing with PHA
and OVA antigen than cells from non-immunized mice. When
cells were stimulated with LPS, IL-10 production had no
difference between these two groups (Table 2D). Levels of IFN-
γ had no significant difference between CM-fed and GM-
fed OVA-immunized mice when splenocytes were cultured
with OVA and LPS. But there was higher IFN-γ production
in high-dose GM-fed mice compared to CM-fed mice as
cells cultured with PHA. Splenocytes of mice fed with milk
(CM and high-dosage GM) secreted higher levels of IL-
10 than those of control mice after stimulating with OVA
(Table 2D). After immunization with the OVA antigen, mice
fed with GM produced a significantly higher amount of total
T cells (CD3+) in their spleens, as compared to non-milk-
and CM-fed mice (Table 2E). The percentage of other T-
cell subpopulations, such as helper T cells(CD3+CD4+) and
cytotoxic T cells (CD3+CD8+), and B cells (CD3−CD45R+)
in the spleens were not significantly different among the
six groups (Table 2E). To assay the recalled antigen immune
response, a delayed hypersensitivity reaction for the swelling
of mouse ear skin folds was used as described in method
section. Supplementary Figure 1A showed that the swelling of
the ear skin decreased significantly in GM- and CM-fed mice
compared to non-milk-fed mice. A histological examination
also showed a significant decrease in epidermis and dermis
thicknesses in GM- and CM-fed mice compared to non-milk-fed
mice (Supplementary Figure 1B).

Goat Milk Feeding in Pregnant Mice
Confers Protection of HDM-Induced
Allergic Airway Inflammation in Offspring
To explore the protective effect of GM- or CM-fed pregnant
mice on allergen-induced airway inflammation in their offspring,
we administrated the maternal group with water, CM, or GM
daily from mating until offspring were weaned at 4 weeks
of age. Offspring mice were divided into six groups (female
and male, n = 6 in each group) according to the maternal
mice feeding models. Sensitized (i.p.), intra-nasal (i.n.), and
intra-tracheal (i.t.) challenges with HDM (Der p) or with
PBS were carried out on the offspring (Figure 1). There was
no difference in body weight among the groups of offspring
throughout the study (data not shown). The HDM-treated
groups (WA, CA, and GA) with exposure to methylcholine
induced significantly increasing airway resistance at day 14.
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TABLE 1 | Immunological functions of mice fed with water, cow milk, and goat milk.

Naïve

(N)

Water

(W)

Cow milk

(C)

Goat milk low dose

(L)

Goat milk medium

dose (M)

Goat milk high dose

(H)

(A) IMMUNOGLOBULINS

IgA (µg/mL)

Mean ± SEM 128.8 ± 8.6 156.0 ± 11.9 176.3 ± 19.8*a 207.8 ± 15.5**a 210.7 ± 23.9**a 211.4 ± 10.5**a

IgM (µg/mL)

Mean ± SEM 145.9 ± 14.5 125.1 ± 27.6 271.7 ± 22.2**a 244.8 ± 24.6**a 309.2 ± 54.6**a 28.3 ± 34.0**a

Total IgG (µg/mL)

Mean ± SEM 27.9 ± 2.9 30.3 ± 4.1 34.7 ± 4.14*a 38.8 ± 4.1*a 48.9 ± 7.3*a 56.4 ± 11.9*a

IgG1 (µg/mL)

Mean ± SEM 199.8 ± 26.5 167.6 ± 29.1 199.1 ± 28.8 181.9 ± 29.3 165.2 ± 26.1 249.1 ± 27.8

IgG2a (µg/mL)

Mean ± SEM 9.1 ± 1.7 11.3 ± 3.1 15.5 ± 4.7 24.3 ± 10.6 34.4 ± 19.1 30.3 ± 10.1

(B) SPLEEN CELL PROLIFERATION

At 24h (ratio)

PHA/Medium 1.17 ± 0.08 1.14 ± 0.07 1.21 ± 0.07 1.20 ± 0.09 1.22 ± 0.11 1.20 ± 0.07

Con A/Medium 1.68 ± 0.27 1.32 ± 0.10 1.62 ± 0.31 1.55 ± 0.17 1.61 ± 0.21 1.68 ± 0.22

LPS/Medium 1.09 ± 0.06 1.10 ± 0.02 1.15 ± 0.05 1.12 ± 0.03 1.15 ± 0.05 1.12 ± 0.03

At 48h (ratio)

PHA/Medium 1.31 ± 0.13 1.27 ± 0.09 1.27 ± 0.07 1.36 ± 0.11 1.40 ± 0.13 1.41 ± 0.10

Con A/Medium 2.33 ± 0.46 2.10 ± 0.31 2.33 ± 0.32 2.92 ± 0.47 2.93 ± 0.51 3.05 ± 0.45

LPS/Medium 1.17 ± 0.08 1.22 ± 0.06 1.23 ± 0.07 1.19 ± 0.03 1.25 ± 0.04 1.24 ± 0.05

(C) CYTOKINE PRODUCTION

IFN-γ (pg/mL)

PHA 117.1 ± 39.6 91.0 ± 22.8 247.2 ± 67.5 227.2 ± 77.4 424.4 ± 157.6 316.0 ± 103.9

Con A 1504 ± 323.8 2121 ± 298.7 1695 ± 284.1 1891 ± 314.0 2192 ± 590.1 1900 ± 331.8

LPS 23.6 ± 5.0 26.9 ± 3.8 25.5 ± 3.5 49.7 ± 14.8 64.8 ± 20.3*a,*b 76.7 ± 19.0*a,*b

IL-12 (pg/mL)

PHA 2.88 ± 0.55 2.08 ± 0.67 1.81 ± 0.11 1.85 ± 0.12 1.80 ± 0.19 1.85 ± 0.31

Con A 18.85 ± 6.80 25.68 ± 4.66 27.35 ± 2.40 31.81 ± 5.88 32.33 ± 6.56*a 31.50 ± 5.93*a

LPS 2.32 ± 0.37 2.31 ± 0.50 2.04 ± 0.16 1.77 ± 0.14 1.80 ± 0.17 1.55 ± 0.12

TNF-α (pg/mL)

PHA 6.93 ± 1.85 11.27 ± 2.69 10.17 ± 2.67 20.67 ± 8.74 22.76 ± 5.98*a 21.59 ± 6.26*a

ConA 172.8 ± 22.47 216.7 ± 16.26 201.7 ± 12.54 224.1 ± 21.37 208.3 ± 22.91 205.1 ± 12.56

LPS 55.17 ± 3.53 6.35 ± 3.90 59.00 ± 4.80 73.48 ± 6.33*a 79.04 ± 6.72**a,*b 78.97 ± 4.87**a,**b

(D) FLOW CYTOMETRY

CD3+/CD4+ 20.40 ± 1.11 21.76 ± 1.74 25.31 ± 2.33 22.80 ± 2.27 19.72 ± 0.45 21.65 ± 2.96

CD3+/CD8+ 10.64 ± 1.46 8.76 ± 1.33 9.95 ± 1.49 9.72 ± 1.11 8.59 ± 1.23 7.90 ± 1.14

CD3−/CD45R+ 30.73 ± 4.88 33.94 ± 3.99 33.91 ± 5.46 36.57 ± 4.18 38.66 ± 3.76 40.75 ± 3.00

(E) NK CELL ACTIVITY (%)

36.3 ± 7.3 42.2 ± 8.3 42.2 ± 7.7 48.9 ± 8.2*a 43.8 ± 7.7 39.4 ± 5.8

(F) PHAGOCYTOSIS (%)

54.8 ± 2.3 56.8 ± 1.8 59.2 ± 2.1 70.7 ± 6.1*a 69.64 ± 7.2*a 71.0 ± 14.1*a

*p < 0.05; **p < 0.01.
aas compared to control group.
bas compared to cow milk-fed group.

Bold values as statistically significance.

However, airway resistance was less severe in GA and CA
groups (GA: Rrs, 2.358 cm H2O/mL and Ers, 62.26 cm H2O/mL,
CA: Rrs, 2.527 cm H2O/mL and Ers, 85.45 cm H2O/mL)
throughout pregnancy and lactation. The decrease in resistance
was significant at the concentrations of 2.5 and 5 mg/ml

methylcholine inhalation as compared to that of WA group
(Rrs, 4.213 cm H2O/mL and Ers, 137.4 cm H2O/mL, p < 0.05)
(Figure 2A). In a lung histological examination, non-HDM-
sensitized mice (WN, CN, and GN) had minimal inflammatory
cell infiltration and lower mucosal thickness (arrow) in the
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TABLE 2 | Antigen-specific immune responses in water, cow milk, and goat milk fed mice.

Naïve

(N)

OVA

(O)

OVA with cow milk

(CO)

OVA with low dose

goat milk

(LO)

OVA with medium

dose goat milk

(MO)

OVA with high dose

goat milk

(HO)

(A) TOTAL IMMUNOGLOBULINS

IgA (µg/mL)

Mean ± SEM 189.2 ± 19.1 236.1 ± 42.4 169.7 ± 14.1 195.6 ± 24.0 205.2 ± 20.9 204.7 ± 15.3

IgM (µg/mL)

Mean ± SEM 169.6 ± 23.6 455.6 ± 60.7*a 708.4 ± 51.3*a,*b 770.7 ± 69.6**a,*b 798.4 ± 132**a,*b 768.5 ± 61**a,*b

IgG (µg/mL)

Mean ± SEM 34.3 ± 10.6 63.4 ± 18.1 99.5 ± 13.8 188.6 ± 35.3**a,*c 203.0 ± 40.5**a,*c 166.7 ± 15.2**a,*c

(B) OVA-SPECIFIC IMMUNOGLOBULINS (O.D. 450nm)

Spe IgA

Mean ± SEM 0.02 ± 0.01 0.23 ± 0.06 0.28 ± 0.04 0.28 ± 0.04 0.38 ± 0.05*a 0.26 ± 0.03

Spe IgM

Mean ± SEM 0.04 ± 0.01 0.91 ± 0.19*a 1.02 ± 0.10**a 1.20 ± 0.14**a 1.17 ± 0.22**a 0.99 ± 0.14*a

Spe IgG

Mean ± SEM 0.01 ± 0.01 1.76 ± 0.23*a 2.30 ± 0.06*a 2.46 ± 0.07**a 2.46 ± 0.15*a 2.32 ± 0.12*a

Spe IgG1

Mean ± SEM 0.01 ± 0.00 2.18 ± 0.23*a 2.71 ± 0.1**a 2.60 ± 0.08*a 2.66 ± 0.15*a 2.75 ± 0.12**a

Spe IgG2a

Mean ± SEM 0.01 ± 0.00 0.36 ± 0.10 0.92 ± 0.29**a,*b 0.59 ± 0.17*a 0.51 ± 0.11*a 0.51 ± 0.09*a

(C) SPLEEN CELL PROLIFERATION

At 24 h

PHA/Medium 1.07 ± 0.04 1.38 ± 0.10 1.22 ± 0.06 1.28 ± 0.09 1.28 ± 0.05 1.27 ± 0.05

OVA/Medium 1.02 ± 0.01 1.21 ± 0.06 1.11 ± 0.04 1.08 ± 0.02*a 1.10 ± 0.03 1.13 ± 0.02

LPS/Medium 1.04 ± 0.02 1.27 ± 0.09 1.15 ± 0.07 1.14 ± 0.06 1.17 ± 0.07 1.13 ± 0.04

At 48 h

PHA/Medium 1.20 ± 0.08 2.46 ± 0.48 2.13 ± 0.36 1.815 ± 0.31 1.98 ± 0.16 1.83 ± 0.15

OVA/Medium 0.95 ± 0.01 1.30 ± 0.12 1.21 ± 0.08 1.20 ± 0.08 1.17 ± 0.05 1.23 ± 0.05

LPS/Medium 1.15 ± 0.09 1.46 ± 0.21 1.30 ± 0.15 1.18 ± 0.10 1.21 ± 0.12 1.17 ± 0.04

(D) CYTOKINE PRODUCTION

IFN-γ(pg/mL) 48 h

PHA 543.7 ± 156.4 905.1 ± 219.5*a 838.1 ± 179.3*a 1214 ± 266.5*a 1463 ± 255.5*a 1452 ± 213.2*a*c

OVA 4.44 ± 0.41 25.57 ± 3.41*a 37.52 ± 5.67*a 78.35 ± 19.57*a 46.34 ± 7.48*a 48.47 ± 11.88*a

LPS 3.81 ± 0.09 15.04 ± 5.93 95.40 ± 31.14*a 90.87 ± 30.69*a 223.9 ± 85.95*a 338.7 ± 143.1*a

IL-10 (pg/mL) 48 h

PHA 6.68 ± 2.13 17.82 ± 4.16 19.53 ± 3.40 19.13 ± 6.26 23.72 ± 4.11 22.15 ± 2.55

OVA 33.6 ± 8.5 172.3 ± 20.6 239.3 ± 21.1*a 167.1 ± 45.6 204.2 ± 25.5 305.9 ± 59.5*a

LPS 3.80 ± 0.13 3.81 ± 0.12 3.99 ± 0.14 3.60 ± 0.13 3.88 ± 0.15 3.80 ± 0.13

(E) FLOW CYTOMETRY

CD3+(MFI) 39.62 ± 1.89 36.96 ± 1.42 34.81 ± 1.47 37.70 ± 1.39 40.29 ± 1.64*b 39.81 ± 1.22*b

CD3+/CD4+ 17.82 ± 1.34 13.37 ± 1.25 14.71 ± 1.24 15.42 ± 1.77 16.70 ± 1.85 16.22 ± 1.62

CD3+/CD8+ 14.12 ± 1.20 12.43 ± 1.08 12.19 ± 0.77 12.42 ± 0.57 13.16 ± 0.55 12.94 ± 0.88

CD3−/CD45R+ 32.45 ± 2.99 28.64 ± 2.22 29.50 ± 1.34 28.89 ± 1.95 29.65 ± 2.33 29.68 ± 1.68

*p < 0.05; **p < 0.01.
aas compared to control group (N).
bas compared to OVA-immunized group (O).
cas compared to cow milk-fed (CO) group.

Bold values as statistically significance.

bronchial epithelium than those of HDM-sensitized mice. After
being challenged with HDM, GA and CA groups showed
significantly decreased inflammatory cell infiltration (12 ±

5 and 7 ± 3 cell/HPF, respectively) and mucosa thickness

as compared to those of WA group (35 ± 7 cells/HPF)
(Figure 2B).

Further analysis of BALF from HDM-sensitized mice
showed that there were increasing numbers of eosinophils,
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FIGURE 2 | The effects of goat milk feeding in pregnant mother mice on offspring. (A) Measurement of airway resistance. (B) H&E stains of lung tissues. Each group

had 10 mice, and each assay was repeated three times. P-value of different groups were compared with those of N groups by Student’s t-test (***p < 0.001).

Pregnant mother mice were fed with sterile water (W), GM (G), or CM (C), and offspring were divided into two groups: control groups from pregnant mother mice fed

with water (WN), goat milk (GN), and cow milk (CN); and HDM-sensitized and challenged group from pregnant mother mice fed with water (WA), goat milk (GA), and

cow milk (CA).

monocytes, and lymphocytes. This confirmed the inflammatory

cell infiltration into the lungs. However, BALF from the

GA group had lower total cell infiltration levels and fewer

numbers of eosinophils compared to those of WA and CA

groups (Figure 3A). In mice primed with respiratory allergen

(HDM), there were significantly higher levels of total IgE and

HDM-specific IgE antibodies than those of non-sensitized mice

(Figure 3B). However, the GA group had significantly lower

levels of total IgE compared toWA group (p< 0.05). There was a

trend of lower levels of Der p-specific IgE antibodies in the GA
and CA groups (Figure 3B). Assays of cytokine production in
BALF showed lower levels of TARC in the GA group compared
to the WA and CA groups (Figure 4A). The levels of TNF-α in
BALF were more reduced in HDM-sensitized mice compared to
non-HDM-sensitized mice (Figure 4B). There was no significant
difference in TNF-α among HDM sensitized and challenged
mice. Splenocytes collected from GA group produced the highest

levels of IFN-γ following PHA stimulation among the six groups

(Figure 4C). Furthermore, splenocytes from GA mice produced

significantly higher levels of IL-10 after PHA stimulation as

compared to cells from theWA and CA groups of mice (p< 0.05;
Figure 4D).

Goat Milk Feeding Induces Gut Microbiota
Change in HDM-Sensitized and Challenged
Offspring
To analyze gut microbiota among groups of weaned offspring
and the effect of gut microbiota on allergen-induced airway
inflammation, we collected the stools of the offspring before
allergen sensitization (day 0) and 2 days after i.t. allergen
challenge (day 16). The detection of the cDNA of stools
using Applied BiosystemsTM AxiomTM Microbiome Array found
the class of Bacteroidia, Clostridia, Flavobacteriia, Bacilli,
Deferribacteres, Verrucomicrobiae, and Gammaproteobacteria as
well as some unclassified viruses (Table 3). Comparing the ratio
of phyla Firmicutes to Bacteroidetes (F/B ratio), the water-fed
(W0) group had a higher F/B ratio (0.79) than the GM-fed
(G0) (0.50) and CM-fed (C0) groups (0.54) at Day 0. After
HDM allergen sensitization and challenge there was a remarkable
increase in the F/B ratio in water-fed mice (0.63 in WN vs.
0.84 in WA), while there was no change of F/B ratio in GM-
fed (GN vs. GA) and CM-fed mice (CN vs. CA) (Figure 5A).
A Weighted Principal Coordinates Analysis (PCoA) for the
microbiome of each sample based upon the UniFrac method was
performed to compare the overall composition of the bacterial
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FIGURE 3 | HDM allergen-induced lung inflammation and sera IgE levels in offspring. (A) Total infiltrated cells and the number of eosinophils in BALF (B) total IgE and

Der p-specific IgE levels in sera. Each group had 10 mice, and each assay was repeated three times. P-value of different groups were compared with those of N

groups by Student’s t-test (**p < 0.01 and ***p < 0.001).

community within the samples (Figure 5B). Gut microbiota of
offspring from water-fed mice had a wider spread in PCoA, while
offspring from GM- or CM-fed mice, though not overlapping,
clustered in the upper left corner of PCoA, suggesting that
these gut microbiotas were more abundant and relating to
each other. It was also notable that there was no significant
change in the abundance and β-diversity in the gut microbiota
between non-sensitized and Der p allergen sensitized/challenged
offspring from GM- or CM-fed mice, while gut microbiota of
offspring from water-fed mice showed greater change in PCoA
between WN and WA. The results from heatmap plots showed
there were more dominant strains in the gut microbiota of
offspring from GM- and CM-fed mice but less in the offspring
of water-fed mice (Figure 6). Examples of dominant bacterial
strains include Akkermansia muciniphila, Bacteroides eggerthii,
and Parabacteroides goldsteinii, which had been reported to
be beneficial to human health. In contrast, Coprococcus catus,
Lactobacillus murinus, Blautia sp. KLE 1732, and Clostridiales
bacterium VE202-09 were found to be dominant in the gut
microbiota of offspring from water-fed mice but less in the
offspring of GM- or CM-fed mice (Supplementary Figure 2).

DISCUSSION

Bioactive compounds presenting in food are called nutraceuticals
or functional foods. They are beneficial to the human body

in many aspects and may go beyond their nutritional roles.
Goat milk contains several bioactive compounds that might be
useful in relieving cardiovascular disease, metabolic disorders,
neurological degeneration, and promoting the establishment of
intestinal microbiotas (32). In host immunity, when pathogens
invade human body, B cells will generate antibodies to target
specific antigens (33). Casein phosphopeptides of GM can
increase the level of IgA in stool, which suggests a positive effect
onmucosal immunity. Lactoferrin in GM has been demonstrated
to play an important role in increasing the activity of NK cells
and increasing the phagocytic activity of phagocytes (34). GM
can also trigger IL-10, TNF-α, and IL-6 production in blood
cells (35).

Our results showed that GM-fed mice could enhance the
immune response in antibody production (IgA, IgM, and IgG
subclasses) and phagocytosis activity promotion. Compared
to CM-fed mice, there were more IFN-γ, IL-12, and TNF-α
cytokine production in the culture supernatant of stimulated
splenocytes in GM-fed mice. When mice were immunized with
a specific antigen (OVA), GM-fed mice, but not CM-fed mice,
had more antigen-specific antibodies (IgA, IgM, IgG, and IgG
subclasses) than water-fed mice. There was a significant increase
in IFN-γ and IL-10 production in the culture supernatant of
stimulated splenocytes as well as an increase in the amount
of CD3+ T lymphocytes in GM-fed mice. More importantly,
we found these enhancements of the immune response in
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FIGURE 4 | Cytokines production in offspring. (A,B) Cytokines levels (TARC and TNF-α) of BALF. (C,D) Cytokines production (INF-γ and IL-10) of culture

supernatants from PHA-stimulated splenocytes. Each group had 10 mice, and each assay repeated for three times. P-value of different groups were compared with

those of N groups by Student’s t-test (*p < 0.05; **p < 0.01; and ***p < 0.001).

TABLE 3 | Goat milk feeding in perinatal period induces gut microbiota change in HDM-sensitization and challenged offspring.

Superkingdom Phylum Class D0W D0G D0C D16WN D16WN D16GN D16GA D16CN D16CA

Bacteria Bacteroidetes Bacteroidia 45 47 45 45 44 46 45 46 46

Bacteria Firmicutes Clostridia 30 25 23 24 33 24 24 26 23

Bacteria Bacteroidetes Flavobacteriia 3 3 3 3 1 2 3 3 3

Bacteria Firmicutes Bacilli 8 0 3 6 5 2 0 0 0

Bacteria Deferribacteres Deferribacteres 1 1 1 1 1 1 1 1 1

Bacteria Verrucomicrobia Verrucomicrobiae 1 1 1 1 1 1 1 1 1

Bacteria Proteobacteria Gammaproteobacteria 0 1 1 0 0 0 0 0 0

Viruses Unclassified Unclassified 1 0 1 0 0 0 1 0 0

innate and adaptive immunities in pregnant mice; mice fed
with GM in particular could pass immunity to their offspring
to alleviate allergen-induced airway inflammation of allergic
asthma. These offspring from pregnant mice fed with GM or
CM showed a drastic change of gut microbiota composition
after weaning, compared to offspring of water-fed mice. We
suspected that GM feeding during pregnancy and lactationmight
change the composition of breast milk and confer immunological
maturation and colonization of gut microbiota on offspring,
and this might suppress atopy development and downregulate
airway inflammation.

Relationships among a wide spectrum of bioactive factors,
such as proteins, polyunsaturated fatty acids, oligosaccharides,

microbial content, metabolites, and micronutrients present in
breast milk and allergy development in infants have attracted
more attention (36–39). Various maternal exposures during
pregnancy, such as immunization, dietary patterns, vitamin
D, omega-3 fatty acids, and/or probiotics may affect breast
milk composition and thereby influence the early colonization
of gut microbiota and infant health (16, 40). Early microbial
colonization is essential to infants’ metabolic and immunological
development (41). There is a direct link between microbial
colonization and the risk of non-communicable diseases in later
life, including allergies (42). After birth, the transfer ofmicrobiota
continues during lactation, and it is considered as the cause
of differences in gut microbiota between exclusively breast-fed
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FIGURE 5 | Gut microbiota change in groups of offspring with or without HDM-sensitization and challenge. (A) The ratio of Firmicutes to Bacteroidetes (F/B ratio) in

gut microbiota (B) Bi-plot representing the weighted Principal Coordinates Analysis (PCoA), pair-wise UniFrac distances showing clustering of bacterial groups from

stool samples in groups of offspring.

and formula-fed infants during the first month of life (43). In
clinical trials, oral administration of bacterial strains to lactating
mothers modulated both human milk composition and infant’s
gut microbiota. For instance, intake of Lactobacillus reuteri led
to its detection in the mother’s milk and infant stool (44).
Another study found that giving Lactobacillus rhamnosus to
mothers during pregnancy and lactation can reduce the risk of
allergy development (45). Probiotic intake during pregnancy and
lactation also induced specific changes in infant Bifidobacterium
colonization and affected breast milk microbiota composition,
oligosaccharides, and lactoferrin (46).

While it is clear that mother’s diet influences the health of
her fetus, there is currently no concrete evidence in the role of
maternal nutrition and the development of allergic diseases in
children. As compared to formula feeding, there is clear evidence
that breastfeeding can increase gut microbial biodiversity in
infants. Whether GM consumption during pregnancy and
lactation can induce changes of intestinal microbiota in
newborns has never been explored. One clinical study (47) was

conducted to compare the composition of the stool microbiotas
of infants (<2 years old) fed with GM formula, CM-based
formula, or breast milk. The results of the beta-diversity
analysis showed that gut microbiotas and Lachnospiraceae
populations were more similar between breast/goat milk
comparisons than those between breast/cow milk comparisons.
This similarity appeared to be based on the predominance
of Ruminococcus gnavus among Lachnospiraceae in breast/goat
milk-fed microbiotas. Our study showed there were significant
differences in the intestinal microbiota compositions (PCoA
analysis) and decreased Firmicutes/Bacteroidetes (F/B) ratio in
the offspring of GM- or CM-fed pregnant mice compared to
those offspring of water-fed mice. Besides, allergen sensitization
and challenge induced slight changes in the composition of
gut microbiota and F/B ratio in offspring of milk-fed mice,
in contrast to the wide swings of change in the offspring of
water-fed mice. These results were consistent with previous
research that the resilient characteristics and atopy-protective
role of colonized gut microbiota could confer from milk-fed
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FIGURE 6 | Heatmap for the ratio of detected bacterial strains of microbiota in

groups of offspring.

maternal mice to their offspring during pregnancy and lactation
periods (48).

The abundance of bacterial species, such asA.muciniphila and
P. goldsteinii, in the offspring’s gut microbiota of GM- or CM-fed
mice had multiple regulatory functions on glucose metabolism
in diabetes and obesity as well as anti-inflammatory action
in inflammatory bowel diseases (49–51). Bacteroides eggerthii
and Bacteroides fragilis were reported to be associated with
propionate production in human intestine (52). Propionate is
a short-chain fatty acid and is suggested to be associated with
IL-10-producing regulatory T (Treg)-cell differentiation in gut-
associated lymphoid tissues (53). Recently, it had been found
that there were reduced A. muciniphila and Faecalibacterium
prausnitzii levels in the intestinal microbiota of children with
allergic asthma (54), which might explain the anti-asthma
protective role of GM-fed offspring with increasing levels of A.
muciniphila in their gut microbiota.

In conclusion, this study showed that GM consumption
could enhance immune function and antigen-specific immune
response in mice. Furthermore, maternal GM consumption
during pregnancy and lactation periods could affect the

composition of gut microbiota in offspring and protected
them against atopy and allergen-induced airway inflammation
(Supplementary Figure 3). We believe these findings have
important clinical implications in the improvement the nutrition
of pregnant mothers and components of their breastmilk. Future
trials are needed to prove this concept in order to promote
maternal health and perinatal nutrition and to reduce allergic
diseases in infants.
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times. P-value of different groups were compared with those of N groups by

Student’s t-test (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

Supplementary Figure 2 | The ratio of representing bacterial strains in gut

microbiota in different groups of offspring, with or without HDM-sensitization &

challenge. Female mice were fed with sterile water (W), GM (G), or CM (C) and

offspring were divided into two groups: control group (WN, GN, CN) &

HDM-stimulating group (WA, GA, and CA). On weaning day, offspring were

marked W0, C0, and G0 individually.

Supplementary Figure 3 | Graphic summary of goat milk effects on immune

responses and allergy diseases in offspring.
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Extracellular vesicles (EV) function in intercellular communication, and those in human

milk may confer immunologic benefits to infants. Methods of EV isolation such as

ultracentrifugation (UC) may not be feasible for the study of EVs in human milk due to the

need for large sample volume. A technique to isolate EVs from a small volume of human

milk using a precipitation reagent is described herein. Electron microscopy, nanoparticle

tracking analysis, and semi-quantitative antibody array were conducted to confirm

isolation of human milk EVs. Count, size, protein content, and fatty acid quantification

of EVs were determined. This isolation technique yielded 8.9 x 109 (± 1.1 × 109) EV

particles/mL of human milk. The present method meets the Minimal Information for

Studies of Extracellular Vesicles (MISEV) guidelines. An established EV isolation method

suitable for a low volume of human milk will facilitate further research in this growing area.

Keywords: breastfeeding, dynamic light scattering, exosome isolation, exosome verification, fatty acids,

nanovesicles, nanoparticle tracking analysis, scanning electron microscopy

INTRODUCTION

It is well-known that consumption of human milk is associated with enhanced infant health
outcomes in comparison to consumption of infant formula. However, it is not fully known which
components of human milk may be responsible for supporting optimal health and development of
newborns. Increasing research suggests that EVs from human milk have physiologic function that
may impact acute and chronic health outcomes. Human milk EVs promote epithelial cell growth
in the intestine (1) and were found to protect intestinal epithelial cells from oxidative stress (2).
Additionally, humanmilk EVs have been implicated in the immunemodulating function of human
milk, and may play a role in the development of the neonatal immune system (3). These effects may
be attributed to the protein, lipid, or microRNA cargo of human milk EVs (3). A reliable method
for consistent isolation of EVs from humanmilk is needed to determine the functional components
of EVs to which enhanced infant health outcomes can be attributed.

Although UC is the most commonly used method to isolate EVs from biospecimens (4), the
feasibility of this method for human milk research is limited. As a precious biofluid for feeding
newborns, acquiring the large volume of human milk needed for EV isolation using UC is not
always feasible. Unfortunately, no method of EV isolation has been authenticated for use with a
low volume of human milk (≤2ml); prior studies have isolated human milk EVs from a starting
volume of 9mL (5). As a result, the limitations in conducting research in this area have created
a knowledge gap. Additionally, authentication of an EV isolation method from low volumes of

30
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human milk will facilitate research on EVs throughout milk
production periods, the course of lactation, over time-of-
day variation, and perhaps most importantly in low volume
producers, which are not adequately studied.

This limitation has several potential negative consequences.
First, analysis of only large volumes may limit research to
use of pooled human milk. This measure would result in a
greater understanding of average milk composition but not of
interindividual variability. Second, analyses may be limited solely
to time of lactation when higher volumes of milk are produced.
This may then result in a disparate understanding of mature milk
relative to early and transitional milks. Finally, research may be
limited to studies of mothers with high volume ofmilk expression
instead of low volume producers. Therefore, a strong need exists
for a method of isolate EVs from a low volume of human milk.

A novel method for the isolation of EVs requires verification

procedures. The International Society for Extracellular Vesicles

(ISEV) released MISEV guidelines in 2018 (6) detailing the

minimum criteria for confirming isolation of EVs. MISEV
guidelines recommend that each EV preparation be (i) defined

quantitatively by the source of EVs, (ii) characterized to
determine the abundance of EVs by total particle number or
protein/lipid content, (iii) tested for components associated with
EV subtypes or EVs generically, and (iv) tested for the presence
of non-vesicular co-isolated components. This paper describes
a precipitation-based method for the isolation of EVs from
human milk. The subsequent characterization of EVs suggest
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Centrifuge at 2,000 x g, 
10 min, remove fat 
layer. Ideally, defat 

before freezing. 

Centrifuge de-fatted 
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filter  

Add ExoQuick-TC™ 
reagent (5:1 milk: 

ExoQuick TC™) and 
incubate overnight at 4 
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Centrifuge 
ExoQuick™-milk 

supernatant mixture 
(5000 x g for 30 min). 
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Re-suspend pellet in 
PBS 

Freeze EVs  at -80 oC  
or use immediately 
(optimal) or within 

three days of isolation 

FIGURE 1 | Workflow schematic of EV isolation from human milk using a precipitation-based isolation method.

successful isolation in compliance with the MISEV guidelines.
EVs isolated using the present method are therefore appropriate
for downstream characterization and functional analyses to
better understand the health and immune-modulating properties
of human milk.

METHODS

Mature milk (>6 months after initiation of lactation) was pooled
and pasteurized from donors to develop the EV isolation method
(Prolacta Bioscience, City of Industry CA). Twelve volunteers
also provided samples of expressed milk between 2 and 4
weeks postpartum which were immediately frozen at −80◦C.
Ethics approval was obtained from the Chapman University
Institutional Review Board. The EV isolation method (Figure 1)
outlined herein is adapted from the instructions for a commercial
precipitation reagent (7) and a previously published protocol (8).

EV Isolation Method
Thawing, Defatting, and Removal of Cell Debris

1. Thaw frozen human milk at 4◦C. Once thawed, vortex milk
for∼3 s.

2. If milk was not aliquoted into microcentrifuge tubes prior to
freezing, aliquot 1.5–2mL (or desired volume) human milk
into microcentrifuge tubes.

3. Centrifuge at 2,000× g for 10min to separate and remove the
fat layer with a metal spatula. Discard the fat layer and transfer
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milk to a new tube. Removing the fat layer also removes milk
fat globules (9).

4. Centrifuge the defatted milk at 12,000 × g for 30min
to remove cell debris. Transfer milk supernatant and/or
discard pellet.

5. Filter milk supernatant through a 0.45µm cellulose syringe
filter into a newmicrocentrifuge tube to further eliminate cells
and cellular debris.

EV Isolation

6. Using a 5:1 ratio of milk supernatant: ExoQuick-TCTM

reagent (System Biosciences, Palo Alto CA), add reagent to
the filtered milk and gently invert until mixed.

7. Incubate at 4◦C overnight or for at least 12 h.
8. After incubation, centrifuge at 5,000 × g for 30min (beige

pellet will appear at the bottom of the tube).
9. Discard supernatant, and resuspend EV pellet in 100–600µL

PBS (pH 7.4).
10. Depending on downstream application, use resuspended

EVs stored at 4◦C within 3 days or freeze immediately
at−80◦C.

Scanning Electron Microscopy
Zeiss Gemini Sigma 300 scanning electron microscope (SEM)
was used to visualize EVs isolated frommilk expressed at 2 weeks
postpartum (n = 1 volunteer). EVs were visualized 1 day after
they were isolated, resuspended, and stored at 4◦C. The original
EV resuspension in PBS (500 µL) was further diluted in PBS
(1:1,000). SEM slides were prepared with 2 µL of diluted EVs.
Argon gas sputter coating of EVs with 3 nm gold-palladium alloy
was performed to prevent sample destruction.

Nanoparticle Tracking Analysis
Nanoparticle Tracking Analysis (NTA; Nanosight NS01) was
used to determine the concentration and size of EVs isolated from

2 µm  

FIGURE 2 | Image of EVs obtained by SEM from participant (n = 1), Electron

high tension = 5.00 kV, working distance = 20.9mm, detector = secondary

electron, magnification = 8.70K X, vacuum mode = high vacuum, height =

9.851µm.

the pooled milk sample. A sample of EVs originally resuspended
in PBS (500 µL) and frozen at −80◦C was thawed on ice
and further diluted in PBS (1:75) prior to injection. Detection
threshold was set to four, and three runs each of 30 s in duration
were completed and analyzed using NTA 3.1 software. Total yield
(EV particles/mL milk) was calculated based on dilution factors
and a starting volume of 1.5 mL milk.

Dynamic Light Scattering
The diameter of EVs isolated from the pooled milk sample
was measured with a Mobius Dynamic Light Scattering (DLS)
instrument (Wyatt Technology) using DLS Firmware Version
1.2.0.0. Laser wavelength was set to 532 nm, and a detector angle
of 163.5◦ was used. DLS acquisition time was set to 5 s and a
number acquisition of three was used to perform three technical
replications on EVs stored at 4◦C over the course of 10 days.

Exocheck Antibody Array
The ExocheckTM Antibody Array (System Biosciences, Palo Alto
CA) was used according to the manufacturer’s instructions
(10) to determine the presence or absence of common EV
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FIGURE 3 | Diameter and concentration of human milk EVs from pooled

human donor milk measured by NTA. Technical replicates were performed in
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the average of the three runs was calculated (B). The above graphs are plotted

from the 10th−90th percentile of EV sizes (22.5–312.5 nm) to exclude particles
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proteins (CD63, EpCAM, Annexin5, TSG101, Flotilin1, ICAM,
ALIX, CD81) in EVs isolated from milk expressed at 4 weeks
postpartum (n= 1 volunteer). Resuspended EVs were thawed on
ice prior to antibody array analysis.

Determination of Total Fatty Acid
Concentration
The EVs fromwhich fatty acids were analyzed were isolated using
2mL aliquots of pooled milk, and with variations in EV isolation
steps. A 5:1 and 10:1 ratio of milk supernatant: ExoQuick-TCTM

reagent was used with or without (0.45µm cellulose) filtration
or purification using ExoQuick-TCTM ULTRA purification
columns according to the manufacturer’s instructions (System
Biosciences, Palo Alto, CA). Prior to fatty acid analysis, EVs were
isolated from the pooled milk sample, resuspended in PBS (500
µL), frozen at −80◦C, and thawed on ice. Fatty acid analysis was
performed by Creative Biostructure (Shirley, NY USA).

The total fatty acid concentration of EVs was determined by
colorimetric analysis in triplicate (n = 1 per isolation variation).
Standards were prepared with palmitic acid (1 nmol/µL).
Samples were diluted and homogenized. Standard dilution (50
µL) or sample (0.5–25 µL) were added to each sample well. The
final volume was adjusted to 50 µL with assay buffer. An acyl-
coenzymeA synthetase reagent (2µL) was added to each reaction
well, mixed, and incubated (20min, 37◦C). Samples were then
incubated (30min, 37◦C) in the dark with reaction mix (2 µL)
containing assay buffer (44 µL), fatty acid probe (2 µL), enzyme
mix (2 µL), and enhancer (2 µL). Finally, optical density was
measured on a microplate reader at 562 nm.

Protein Quantification
A QubitTM 4 Fluorometer was used to measure the protein
concentration in humanmilk EVs isolated frommilk expressed at
2 weeks postpartum (n = 10 volunteers). Resuspended EVs were
thawed on ice prior to protein quantification. The instrument was
calibrated with protein standards according to themanufacturer’s
instructions (11). EV samples originally resuspended in 600 µL
PBS were thawed on ice and diluted in PBS (1:20). Lysis buffer
(10µL) was added and samples were vortexed (Protease Inhibitor
Cocktail, RIPA buffer, Thermo Fisher Scientific, Waltham
MA). Protein concentration was measured in duplicate after
incubating (15min, room temperature) the lysate (1 µL) with
working reagent (199 µL). Protein quantification of EVs was
calculated based on dilution factors and a starting volume of
1.5 mL milk.

RESULTS

SEM (Figure 2), NTA (Figure 3), DLS (Figure 4), and an
antibody array (Figure 5) were used to image, quantify,
measure the average diameter, and identify protein markers
characteristic of EVs. The image obtained by SEM (Figure 2)
revealed the size of nanovesicles in the expected range for
EVs, approximately 50–350 nm. Results from analysis by NTA
(Figure 3, Supplementary Figure 1, Video 1) revealed that the
isolation method yielded 8.9 × 109 (± 1.1 × 109) particles/mL
of human milk. The mean and mode diameter of EVs were 179.3
and 150.3 nm, respectively (Figure 3). No standard deviation
is reported for the mean since a trimodal distribution of
EV populations was observed. Results from DLS (Figure 4)
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showed that the average diameter of EVs 1 day after isolation
was 213.6, and 249.7 nm 10 days after isolation. Error bars
for individual days were excluded because individual standard
deviations for technical replicates were <5% of the mean.
Antibody array (Figure 5) indicated that the sample was
positive for the following known EV markers: cluster of
differentiation 81 (CD81), ALG-2-interacting Protein X (ALIX),
intracellular adhesion molecule (ICAM), tumor susceptibility
gene 101 (TSG101), and Annexin5, and negative for cluster
of differentiation 63 (CD63), epithelial cell adhesion molecule
(EpCAM), and flotilin1.

After verification of isolation, human milk EVs were
characterized by quantifying total fatty acids (Figure 6) and
protein concentration (Table 1). The average total fatty acid
concentration of EVs isolated with the recommended method
(5:1, filter, no column purification) was 36.94 mg/dL. The
mean protein concentration of human milk EVs was 5.08
(±0.15) mg/dL.

DISCUSSION

The method of EV isolation from human milk described herein
meets the MISEV criteria (6) for verifying the presence of EVs.
EVs isolated with the proposed method were (i) quantified

CD 63

EpCAM

Annexin5

TSG101

Blank

PC

PC

GM130

Flotilin1

ICAM

ALIX

CD81

FIGURE 5 | Antibody array of human milk EVs from participant (n = 1). PC

represents the positive control, and GM130 is a cellular contamination marker.

CD 63 = cluster of differentiation 63, EpCAM = epithelial cell adhesion

molecule, TSG101 = tumor susceptibility gene 101, ICAM = intracellular

adhesion molecule, ALIX = ALG-2-interacting Protein X, CD81 = cluster of

differentiation 81.

in relation to the source of human milk, (ii) characterized
to determine the abundance of EVs by total particle number
and lipid & protein content, (iii) tested for the presence of
markers associated with EVs, and (iv) tested for the presence
of non-vesicular co-isolated components. The method adapted
from manufacturer instructions for a precipitation reagent
(7) and previous literature (8) was shown to be suitable to
adequately characterize EVs isolated from human milk and for
downstream applications.

There is consistency between the average EV diameter
measured by SEM, NTA, and DLS (Figures 2–4). Unlike NTA
which generates size distribution data, DLS measures the average
particle diameter. Measurement by DLS then may be skewed
by low concentrations of outliers or clustering of particles (12).
Therefore, the ∼15% difference in diameter between SEM, NTA,
and DLS measurements could be due to overestimation of
diameter by DLS. The recommended method presented herein
yielded 8.9× 109 (± 1.1× 109) EV particles/mL of human milk.
Another group isolated human milk EVs and reported a yield of
8.0× 1010 particles/ml of milk using a UC based method (5). The
difference in yield could be attributed to the fact that banked,
pasteurized milk was used in the present method. Additionally,
EVs were frozen and thawed prior to quantification without
defatting before initial freezing, which has shown the decreased
recovery of EVs (3).

In the MISEV guidelines, it is recommended that operational
terminology for extracellular vesicles based on factors such as size
be used. EVs <200 nm in diameter would be considered “small,”
and EVs >200 nm considered medium or large (6). Results from
NTA indicated that the greatest concentration of particles is
around 153 nm (Figure 3), meaning the EV population in highest
abundance would be classified as small. The 10th−90th percentile
of particle size were graphed (Figure 3), as particles outside this
range were likely aggregates or fragments.

Because storage conditions may affect EV characterization,
MISEV guidelines indicate the importance of describing storage
conditions such as storage container, temperature, buffer, freeze-
thaw cycles of biofluid and EVs, etc. (6). It was previously
found even that storage of EVs for 2 h at 4◦C decreased the
viability of the exosome population, but the change in size
was not measured (3). The timecourse experiment (Figure 4)
represents storage-induced changes in diameter starting from
freshly isolated EVs measured over the course of 10 days. The
average diameter of EVs measured by DLS increased over time
after isolation and storage. This may indicate swelling and
enlargement of EVs, or aggregation of particles. Therefore, when
performing studies to determine the relation between structure
and function, it may be advantageous to use EVs immediately
after isolation.

For protein-based verification of EV isolation, MISEV
guidelines stipulate that at least one type of protein in
two broad categories should be positively identified and the
absence of one negative marker indicated. These categories
include transmembrane or GPI-anchored proteins, such as
the tetraspanins CD63 and CD81, and EV-recovered cytosolic
proteins such as ALIX and flotillins-1 and 2. To verify the absence
of non-EV isolated co-structures, markers such as albumin can
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TABLE 1 | Protein concentration of EVs isolated from human milk (n = 10).

Sample Protein content

(mg/dL milk)

1 5.20

2 5.00

3 5.11

4 5.02

5 5.15

6 5.18

7 5.24

8 4.98

9 5.20

10 4.75

Mean 5.08

SD 0.15

For each sample, technical replicates were performed in duplicate.

be used (6). The antibody array (Figure 5) verified that human
milk EVs isolated were positive for proteins in the tetraspanin
and EV-recovered cytosolic proteins category, and also negative
for cellular contamination marker.

The amount of exosomal protein has been used as a means
of EV quantification (13). Considering that the average protein
concentration measured in EVs was 5.08 mg/dL, EV protein
comprises ∼0.42% of total protein from mature human milk,

assuming the protein concentration of mature human milk is
∼1,200 mg/dL (14). However, it should be noted that protein
quantification with biofluids such as human milk may not be
a consistent and reliable method of quantification due to the
presence of co-isolated molecules. Therefore, we reported the
total fatty acid concentration of human milk EVs (Figure 6).
Based on the assumption that fat content of human milk is
primarily in the form of triglyceride, we estimated that EV
fatty acids are ∼0.8% of total fatty acids in mature human
milk (14).

We compared fatty acid quantification among EVs isolated
from human milk with different volumes of reagent, use of size
exclusion filter, and with or without column affinity purification.
We suggest a supernatant-to-precipitation reagent ratio of 5:1
for optimal yield of EVs to quantify fatty acids. We also
suggest filtration of milk by size exclusion after defatting to
remove non-EV artifacts such as casein and cellular debris.
However, it is unclear whether column affinity purification after
EV isolation performs similarly to size exclusion filtration of
milk supernatant prior to EV isolation. Although fatty acid
quantification was similar after each method, it is unknown
if filtration and purification result in differences in the EV
populations isolated.

The present method of isolating EVs from human milk
fulfills the MISEV criteria by characterizing the EVs with
quantitative and qualitative methods, confirming the presence of
characteristic EVmarkers, and confirming (Figure 5) the absence
of non-EV components. The application of this isolation method
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extends beyond the applications detailed in our manuscript. The
ability to successfully isolate EVs from small volumes of human
milk can be applied to miRNA isolation, proteomics, lipidomics,
and functional in vitro assays.

CONCLUSIONS

EVs were successfully isolated from human milk using a
precipitation reagent. The method yielded 8.9 × 109 ± 1.1 ×

109 EV particles/mL of human milk. Protein and fatty acid
concentration of EVs in human milk were determined and the
percentage of fatty acids and protein in EVs relative to the
whole milk were ∼0.8% and ∼0.42%, respectively. The method
presented is consistent and reliable for isolating, quantifying,
and characterizing human milk EVs for research and clinical
purposes and in continuing to understand the human milk
food matrix. As a dynamic food and biofluid, future study may
elucidate how EVs vary over i) early, transitional and mature
milk production periods, ii) course of lactation (fore vs. hind
milk), and iii) time-of-day variation. This method can be used
to elucidate the role of human milk EVs in neonatal health and
immune system development, and for applications of formula
and human milk fortifier production.
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A healthy immune status is strongly conditioned during early life stages. Insights into

the molecular drivers of early life immune development and function are prerequisite

to identify strategies to enhance immune health. Even though several starting points

for targeted immune modulation have been identified and are being developed

into prophylactic or therapeutic approaches, there is no regulatory guidance on

how to assess the risk and benefit balance of such interventions. Six early life

immune causal networks, each compromising a different time period in early life

(the 1st, 2nd, 3rd trimester of gestations, birth, newborn, and infant period), were

generated. Thereto information was extracted and structured from early life literature

using the automated text mining and machine learning tool: Integrated Network and

Dynamical Reasoning Assembler (INDRA). The tool identified relevant entities (e.g.,

genes/proteins/metabolites/processes/diseases), extracted causal relationships among

these entities, and assembled them into early life-immune causal networks. These causal

early life immune networks were denoised using GeneMania, enriched with data from

the gene-disease association database DisGeNET and Gene Ontology resource tools

(GO/GO-SLIM), inferred missing relationships and added expert knowledge to generate

information-dense early life immune networks. Analysis of the six early life immune

networks by PageRank, not only confirmed the central role of the “commonly used

immune markers” (e.g., chemokines, interleukins, IFN, TNF, TGFB, and other immune

activation regulators (e.g., CD55, FOXP3, GATA3, CD79A, C4BPA), but also identified

less obvious candidates (e.g., CYP1A2, FOXK2, NELFCD, RENBP). Comparison of the

different early life periods resulted in the prediction of 11 key early life genes overlapping

all early life periods (TNF, IL6, IL10, CD4, FOXP3, IL4, NELFCD, CD79A, IL5, RENBP,

and IFNG), and also genes that were only described in certain early life period(s).

Concluding, here we describe a network-based approach that provides a science-based
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and systematical method to explore the functional development of the early life immune

system through time. This systems approach aids the generation of a testing strategy for

the safety and efficacy of early life immune modulation by predicting the key candidate

markers during different phases of early life immune development.

Keywords: biomarkers, immune networks, early life, machine learning, text mining

INTRODUCTION

The first 1,000 days of life is a period of growth and development
in which the foundations of lifelong immune homeostasis and
microbial colonization are established in humans (1). Alterations
during this period, due to environmental and host factors, are
considered to be potential determinants of health-outcomes later
in life (2–4). Therefore, risk reduction measures or immune
health interventions during these stages of life may be most
effective and efficient for improving health, increasing quality of
life, and lowering costs to society due to immune related diseases
and disorders.

When developing immune health interventions in early life,
the regulatory authorities (EFSA, JECFA) stress the need to
address the safety of such interventions. However, currently there
is no regulatory guidance about how to assess the risk and
benefit balance of such interventions. At the moment final safety
confirmation comes from expensive and lengthy clinical follow
up studies using a set of guidelines (5–7). Therefore, a need for
a science-based system approach to assess the safety and benefit
of nutritional immune interventions, with a special focus on early
life is clear.With such an approach animal testing can be reduced,
refined or replaced.

Key to understanding the potential of early life immunity to
shape lifelong immune health is the concept of ontogeny—the
immune system development from fetal life through adulthood.
Previously, our group made an inventory and compared the
maturation of the immune systems of human, mouse, rat, and
mini pig, based predominantly on existing (from literature) and
newly generated histologic data (8). Critical time windows of
immune organ development were identified in human and the
above mentioned experimental species. However, less is known
about the functional time frames of the developing immune
system in humans. This knowledge is crucial to identify factors
that need to be considered for assessing the safety and efficacy of
early life nutritional interventions and exposure.

As the immune system is an enormously complex system,
it is crucial to obtain more understanding about the biological
structures and processes to be able to improve human
(immune) health. However, due to the enormous wealth of
information available, it is extremely difficult to obtain a complete
picture of the biological basis of immune related diseases and
health. Individual researchers are often restricted to so called
“knowledge pockets” (9) covering only a small fraction of all
available knowledge, and that fractional information is spread
through literature or various databases. This fragmentation of
information clearly hampers our understanding of the molecular
processes underlying human health and disease. In order to

obtain a complete picture, data integration from different sources
is required.

Systems immunology combined with bioinformatics can
provide sufficient knowledge to identify factors to assess
the safety and efficacy of early life nutritional interventions
and exposure (10–12). Recent technological advances permit
collection and storage of large datasets at molecular and
cellular levels (genes, gene products, metabolic intermediates,
macromolecules, cells). So far, most studies or research groups
collected data sets from several—omics-platforms to understand
the larger (systems) picture by putting the pieces together, mostly
through association networks (e.g., Protein-Protein Interaction
network). Association networks are static and undirected
networks. They provide lesser information than a directed causal
network. However, creation of system-wide causal networks from
omics data is a task that is largely tedious, and not pragmatic.
This is because the amount of data spanning the molecular
changes in spatio-temporal space is too large to capture the
system knowledge within causal network in sufficient detail.
Nevertheless, the dynamics of the immune system are better
understood and characterized with the use of causal networks.
Our intention here is to create causal networks of the early life
immune system in a comprehensive and pragmatic manner.

Here, we generated causal immune networks in early life from
literature sources that correspond to the 1st, 2nd, 3rd trimester
of gestation (resp. EG, LG, MG), birth, newborn and infant
period as part of a bioinformatics workflow, which also included
subsequent network enrichment steps to generate comprehensive
causal early life immune networks. The network-based approach
developed here, enabled us to elucidate different phases of early
life immune development in a systematical way to predict and
prioritize biological functions and genes associated with immune
functioning in early life. Moreover, this systems approach aids the
development of a science-based testing strategy for assessing the
safety and efficacy of early life immune modulation by predicting
the key candidate markers during different phases of early life
immune development.

MATERIALS AND METHODS

Generation of the Basis of Early
Life-Immune Networks Using Text Mining
The entire bioinformatics workflow to generate human early
life networks is depicted in Figure 1. The first step was to
select relevant manuscripts describing immune mechanisms in
early life. An inventory of the available literature regarding
6 immune developmental periods [1st/2nd/3rd trimester of
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FIGURE 1 | Bioinformatics workflow to generate human early life networks. (A) Expert based selection of early life immune manuscripts were divided in 6 early life

time periods and subjected to INDRA text mining tool. This resulted in 6 causal INDRA network. (B) The gene-gene connections of the INDRA networks were

denoised and validated for the human situation by GeneMania. (C) DisGeNET and Gene Ontology tools (GO and GOslim) enriched the denoised early life networks by

adding gene-disease connections and gene-process/pathway connections. (D) Inference calculations enriched the early life networks further by adding

process-disease and disease-immune health endpoint connections. All steps together resulted in 6 human early life immune networks. The results of the different

programming steps are depicted in Tables 2–4 as indicated.
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FIGURE 2 | Workflow to generate the basis of early life immune networks by literature. Six causal early life immune networks covering a different early life were

generated by selecting appropriate manuscripts from literature after which relationships between biological entities were extracted by the text mining tool INDRA. Next

INDRA assembled, de-duplicated and standardized all relationships into causal early life-immune networks each covering a different early life period. These INDRA

networks formed the basis of the early life immune networks. *Several unique articles cover multiple early life periods.

gestation, birth, newborn (0–28 days), infant (1–24 months)]
in human and experimental animals was made using Scopus
and Medline (Figure 2). These databases were searched between
1st of December 2016 and 2nd of December 2016 and updated
each half year (last update in March 2019). The search strings
are depicted in Table 1. In total 2,966 articles were selected
and manually screened on title, abstract and full text to select
appropriate articles. Next, all selected articles were classified
into the appropriate early life time period. The lengths of these
different time periods in humans and experimental animals have
been defined previously by Kuper et al. (8) and reported in
Table 2.

The text from the manuscripts was moderately preprocessed
to correct for obvious noise in text that interfered with the text
analyses. Noise correction included deletion of special characters
(except numbers, letters, punctuations and hyphens), “Materials

and Method” section, d.o.i., terms “fig.” and “table,” replacement
of Greek characters by Roman letters, references containing
“et al.,” and hyphenation if a word was split into two parts at
the end of a line of text. The Python code used to preprocess the
manuscripts can be found at https://github.com/TNO/immune_
health_textmining/blob/master/PDFminer.py.

After this preprocessing step, INDRA (Integrated Network
and Dynamical Reasoning Assembler) text mining platform
(www.indra.bio/) was used to extract relationships and structure
information on causal mechanisms among biological entities
from the selected articles. INDRA is an automated model
assembly system interfacing with NLP systems and ontology
databases to collect knowledge, and through a process of network
assembly, produce causal graph and dynamical models (13–15).

INDRA text mining platform rendered the
full texts of the selected articles computationally
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TABLE 1 | Search strings used to assess the available literature regarding the immune functional developmental stages in human and experimental animals was

performed by searching the databases Scopus and Medline.

Search terms Combined with species terms Combined with additional search terms

Thymus OR spleen OR lymph nodes OR Peyer’s patches OR

bone marrow OR liver

Human OR mini pig

OR rat OR mouse

• Functional AND developmental AND stages

OR

• Immune AND development AND birth

OR

• Immune AND development AND weaning

OR

• Immune AND development AND prenatal

OR

• Immune AND development AND postnatal

Cord blood Human OR mini pig

OR rat OR mouse

• Functional AND developmental AND stages

OR

• Immune AND development AND birth

OR

• Immune AND development AND prenatal

* Human OR mini pig

OR rat OR mouse

• Functional AND developmental AND stages AND

(amniotic fluid) OR placenta OR (in utero) OR intrauterine

OR

• Immune AND development AND (amniotic fluid) OR

placenta OR (in utero) OR intrauterine AND birth

OR

• Immune AND development AND (amniotic fluid) OR

placenta OR (in utero) OR intrauterine AND prenatal

*No additional organ/tissue-specific term used in this search string which is specifically aimed at the gestational phase.

TABLE 2 | Developmental early life stages in human, minipig, rat, and mouse [adapted from (8)].

Early life period EGa MG LG Birth Newborn Infant

Human GD0–GW12 GW13–28 GW29–40 – 0–28 days 1–23 months

Minipig GD0–GD37 GD38–75 GD76–113 – 0–15 days 2–4 weeks

Rat GD0–6 GD7–13 GD14–21 – 0–7/10 days 1/1.5–3 weeks

Mouse GD0–6 GD7–13 GD14–21 – 0–7/10 days 1/1.5–3 weeks

aStarts at fertilization/conception.

EG/MG/LG, early/mid/late gestational period.

GD, gestational day; GW, gestational week.

accessible, identified biologically relevant entities (e.g.,
genes/proteins/metabolites/bioprocesses/diseases) and extracted
relationships among these entities. Next, INDRA assembled, and
standardized all relationships among the entities with associated
evidence into causal early life-immune networks each covering a
different early life period. Neo4J (https://Neo4j.com/) was used
as a graph database management system to store, process and
visualize the INDRA literature information as two-dimensional
networks. This entire workflow is depicted in Figure 2.

Code used to generate the INDRA network is part of the
INDRA repository and can be found at https://github.com/TNO/
immune_health_textmining/blob/master/SRP_Neo4J.py.

Denoising INDRA Literature Networks
In order to eliminate noise from the INDRA literature networks
and only depict those relationships for which there is a
biological indication that the relationship is valid, all gene-gene
relationships in the INDRA literature network were subjected to
a denoising step using GeneMania (https://genemania.org/).

Genes coding for proteins described in the INDRA network
were entered in the GeneMania Cytoscape plugin (freely
available at http://genemania.org/plugin/) to identify human
gene-gene associations from its large collection of organism
specific functional association data that include protein and
genetic interactions, pathways, co-expression, co-localization,
and protein domain similarity. These GeneMania-identified
human gene-gene associations were compared to the gene-
gene associations from the noisy INDRA literature networks, to
identify and eliminate non-human specific associations between
genes in the INDRA network. In the denoising step the
edges (connections) between the genes were eliminated from
the network, but not the genes themselves; they remained
in the network as disconnected nodes. It must be noted
that this step possibly eliminates true early-life gene-gene
interactions if they are not represented in the human-specific
GeneMania databases, which are mostly based on adult data.
However, it is foreseen that this potential loss of information
was compensated by the following enrichment steps because
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FIGURE 3 | Overview of the steps used to enrich the INDRA networks. The genes described in early life literature (level 1). were entered in (i) DisGeNET to add

gene-disease relationships to the network (level 1–4) and (ii) Gene Ontology tools GO/GO-SLIM to add gene-sub bioprocess (level 1–2), sub bioprocess—parent

bioprocess (level 2–3) and gene-parent bioprocesses (level 1–3) relationships. Next the GO-terms linking to immune health features described previously in Meijerink

et al. (16) were added to the network (level 2–5; blue arrow). The associations between bioprocesses and diseases (level 3–4) and disease–immune health features

(level 4–5) were inferred (black arrows) based on the previous enrichment steps (orange arrows).

the disconnected genes remained part of the network. The
code used to denoise the INDRA literature networks can be
found at https://github.com/TNO/immune_health_textmining/
blob/master/SRP_filter_networks.py.

Network Enrichments (Figure 3)
The INDRA network derived from literature reflects only the
functionalities of the genes and processes described in literature
which provides an incomplete picture of the functionalities of
the described genes because the manuscripts usually focus on a
specific topic. Therefore, it was important to determine whether
the expressed genes are associated with a certain biological
process and/or molecular function and/or diseases which were
not addressed in the selected manuscripts. This knowledge was
retrieved from several databases and added to the networks
(enrichment). To enrich the INDRA early life immune literature
networks, the genes coding for the proteins in the network
were entered into the Gene Disease Association Database
(DisGeNET; http://www.disgenet.org/) to retrieve the gene-
disease associations using WebGestalt tool (17). The same sets
of genes were also entered in the Gene Ontology resource tools
(GO enrichment tools GO and GO-SLIM; http://geneontology.
org/) to retrieve gene-bioprocess associations (GO/GO-SLIM).

As a final step in the network enrichments, the associations
among bioprocesses, immune related diseases and immune
health endpoints (16) were inferred based on the enrichment tool
specific database knowledge of the number and similarity of the
genes related to each of the network entities in different layers in
the model (Figure 3). As described earlier, Neo4J (https://Neo4j.
com/) was used as a graph database management system to store
and process all network information, including the literature-
derived information by INDRA.

Codes used to generate these enriched networks can be
found at https://github.com/TNO/immune_health_textmining/
blob/master/SRP_Neo4J.py https://github.com/TNO/immune_
health_textmining/blob/master/SRP_add_endpoints_to_

disease_nodes.py and https://github.com/TNO/immune_
health_textmining/blob/master/SRP_calc_inference.py.

Prioritization Immune Markers in Early Life
In order to identify key early life genes (hub genes), the PageRank
centrality score was calculated in the early life networks. The
PageRank analysis was launched by Google (the web search
engine) to identify significant web pages (18–20) and has been
used for the analysis of networks in identifying the important
nodes in the network (21). Unlike simply calculating the
connections of each gene in the network, the PageRank score
measures the importance or popularity of a gene based solely
on the interaction (link) structure of the interaction network.
It selects the genes that exhibit a high degree, whilst also
maintaining the important low-degree genes, which link to other
important genes in the network. The underlying assumption is
that more important genes are likely to receive more associations
from other important genes/bioprocesses/diseases.

The PageRank algorithm code can be found at https://github.
com/TNO/immune_health_textmining/blob/master/SRP_calc_
pagerank_neo4j.py.

RESULTS

Generation of Early Life-Immune Literature
Networks Using Text Mining
The literature covering the information on mechanisms involved
in early life immune health is scattered across thousands of
scientific papers. Therefore, text mining was applied to enable
extracting and structuring information on causal mechanisms
to create early life immune networks. In total 2,966 articles
were selected using the search strings to explore literature
databases. After manual screening 451 original manuscripts and
378 reviews were considered relevant (total number of selected
829 articles). This resulted in a selection of 249 articles for the
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1st trimester of gestation, 296 articles for the 2nd trimester of
gestation, 344 articles for the 3rd trimester of gestation, 252
articles for birth period, 287 articles for newborn period and
215 articles for the infant period. Please note that some articles

covered multiple periods. From these full text articles, INDRA
extracted resp. 2,101, 3,234, 3,654, 1,568, 2,917, and 1,487 unique
relationships for the 1st, 2nd, 3rd trimester of gestation, birth,
newborn and infant period (Figure 2). Next INDRA assembled,

FIGURE 4 | Early life immune networks based on information from early life immune literature and enriched with info from databases and inference steps, each

covering a different phase during early life. (A–C) EG, MG, and LG; (D) birth; (E) newborn (0–28 days); (F) infant (1–24 months). (G) magnification of infant.
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de-duplicated and standardized all relationships into 6 large
early life-immune networks each covering a different early life
period. The Neo4j-based framework enabled the visualization
of the early life immune networks as depicted in Figure 4. As
the networks are very dense in terms of numbers of nodes and
edges, it is impossible to extract information directly from these
networks without bioinformatical tools. The reason to depict
these “unreadable” networks is to illustrate the complexity and
density of them. In our methodology we identified 107 genes that
have been described in the selected early life literature already
during gestation and remained expressed throughout the infant
period (Supplementary Figure 1).

Denoising Early Life-Immune Literature
Networks (Table 3)
Approximately 30% (range 27–32%, depending on early life
period) of the connections (edges) between the genes coding
for proteins described in the INDRA network were overlapping
with the human gene-gene interactions present in the GeneMania
consulted databases (Table 3), indicating that the denoising step
reduced ∼70% (depending on the early life network) of the

TABLE 3 | Number of edges between genes described in early life (literature info)

and their presence in the human GeneMania database.

Network #Genes/proteins* in

early life literature

extracted by text

mining

#Gene-gene edges in

early life literature

#Edges

confirmed in

GeneMania (%)

EG 440 228 72 (32%)

MG 477 278 84 (30%)

LG 508 319 90 (28%)

Birth 225 162 49 (30%)

Newborn 291 249 68 (27%)

Infant 232 174 51 (29%)

EG/MG/LG, early/mid/late gestation.

*Sometimes it was not possible to distinguish protein names from corresponding gene

names in literature. Therefore, all those names were annotated as being both a protein

and a gene and regarded as 1 node in the network.

gene-gene connections in our network. This large reduction may
be due to the fact that: (a) The gene-gene connection is solely
relevant in early-life situations, which are not reflected in the
GeneMania-consulted databases (which contain mainly adult
data); (b) The gene-gene connection is non-human specific as
the search strings for literature included guinea pig, rat, and
mice; (c) Only genes that could be linked to a unique HUGO
Gene Nomenclature Committee (HGNC) ID are recognized by
GeneMania; and (d) The gene-gene connection is nonsense and
should therefore be excluded. It must be noted that only the
edges between the genes are removed, but the genes themselves
remained part of the network. Although this elimination step
possibly also eliminates some of the true early-life gene-
gene interactions as suggested above, it is foreseen that this
potential loss of information was compensated by the following
enrichment steps.

Network Enrichments
The relationships of genes coding for the proteins that were
identified in the early life networks by text mining were enriched
by information retrieved from Gene Ontology and DisGeNET
databases, respectively, is depicted in Table 4. After enrichment,
the number of gene—bioprocess relationships were increased
60-fold (approximately). Of note, depending on the early-life
time frame, DisGeNET databases introduced numerous gene-
disease relationships (ranging from 1,719 to 4,568 relationships)
to the early life immune networks. Other than this, the
DisGeNET database not being specific to immune-related
diseases, numerous non-immune diseases were also added to the
early-life immune networks.

Subsequent addition of associations between bioprocesses
and immune health endpoints (autoimmunity, hypersensitivity,
resistance to neoplasms, resistance to infections) as previously
described (16), further enriched the early life immune networks.
As a final step in the network enrichments, the connections
between bioprocesses and immune related diseases and immune
health endpoints were inferred based on the knowledge of the
number and the similarity of genes shared among the entities in
different layers of the model (Table 4 and Figure 3). The total
number of nodes present in the early life immune networks

TABLE 4 | Results of enrichment/inference steps of the early life denoised INDRA immune networks.

#Gene-bioprocess edges #Gene-disease edges #Bioprocess-immune

endpoint edges

#Bioprocess-diseases

edges

#Disease—immune

endpoint edges

Source Literature GO-enrichment GO-SLIM

enrichment

DisGeNET

enrichment

Meijerink et al. (16) Inference Inference

EG 149 9,546 443 3,894 1,121 1,701 1,023

MG 160 10,195 517 4,089 1,132 1,908 1,029

LG 180 10,968 546 4,568 1,246 2,207 1,136

Birth 67 3,929 168 1,719 695 1,073 627

Newborn 102 6,159 231 2,759 832 1,215 752

Infant 86 4,980 296 2,233 770 823 706

Depicted are the number of connections (edges) between biological entities (genes, bioprocesses, diseases, immune endpoints) added to the INDRA immune networks. EG/MG/LG,

early/mid/late gestation.
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TABLE 5 | Enriched early life immune network nodes.

Type of nodes EG MG LG Birth Newborn Infant

Proteins/genes* 440 477 508 225 291 232

Protein families 101 110 114 62 72 55

Chemicals 175 189 211 93 128 106

Bioprocesses** 51 56 58 36 39 34

GO processes 3,709 3,868 3,988 1,947 2,751 2,289

GOslim processes 55 55 55 59 60 59

Diseases 351 352 400 245 282 257

Immune health endpoint 4 4 4 4 4 4

Depicted are the number of nodes in the networks after all enrichment/inference steps.

These networks formed the basis of the gene prioritization (see Table 6). EG/MG/LG:

early/mid/late gestation.

*Using text mining, it was not always possible to distinguish genes from proteins (often

same name used).

**Bioprocesses identified by ontology of INDRA text mining tool.

after the enrichment and inference steps are depicted in Table 5,
indicating the complexity of the resulting 6 human early life
immune networks.

Gene Prioritization to Identify Key Markers
in Early Life
The enriched complex human early life immune networks
formed the basis to identify the key markers in early life. The
PageRank score of all nodes was calculated in the 6 human early
life immune networks which resulted in 6 lists of prioritized
immune markers each covering a different early life period
(Table 6).

In general, the genes coding for the “commonly used immune
markers” were highly ranked in all early life periods such
as the cytokines including chemokines (e.g., CXCL8, CXCL11,
CXCL13), interferons (IFN), interleukins (IL1B, IL2, IL4, IL5,
IL6, IL7, IL10, IL13, IL15, IL17A), tumor necrosis factor
(TNF), transforming growth factor (TGFB), and other immune
activation regulators (e.g., CD55, FOXP3, GATA3, CD79A,
C4BPA) directly involved in the immune response.

Comparison of the prioritized genes between the different
early life periods (Figures 5A,B) showed that 36 genes were
shown to be central in the network only during the gestational
period, whereas others were more prominent in the periods
birth, newborn and infant (6 genes: RBP4, IL2, HAMP, env,
ALG1, and IL1B) or only in the infant period (14 genes:
TJP1, IL3, PIGS, ANPEP, CXCL11, CLCA3P, JAG1, NTAN1,
CYYP1A2, CYP2E1, MADCAM1, VCAM1, GH1, and SCB).
Moreover, 11 genes were central in the early life immune
networks covering all time periods: TNF, IL6, IL10, CD4, FOXP3,
IL4, NELFCD, CD79A, IL5, RENBP, and IFNG. Most of these
genes are immune related, however RENBP, renin binding
protein, is an important regulator in the renin–angiotensin–
aldosterone system. Moreover, NELFCD, Negative Elongation
Factor Complex Member C/D, is an essential component of
the NELF complex, which negatively regulates the elongation of
transcription by RNA polymerase II.

Some of the top 50 genes were organ-specific such as
CPA1 (pancreas), CRH (neuronal), and CDX2, MGAM,

TABLE 6 | List of prioritized genes per early life time period.

The PageRank score of all nodes was calculated for each gene in order to identify the

most “central” genes in the networks. The top 50 genes (i.e., highest PageRank score)

per network are depicted, including their PageRank score. EG/MG/LG, early/mid/late

gestation. Descriptions of the genes are described in Supplementary Table 1. The light

to dark green-gradient reflects the increase in PageRank score.

SI (intestine). Other genes were specifically involved in
pregnancy such as ERVW-1, CSH1, PAEP, or involved
in early life growth, and maturation (e.g., bone/cartilage
CA2, cell cycle related proteins CAV1, PRC1; matrix
modulation FGF4, MMP9, MMP2) were also identified as
central markers.

Interestingly, also a few non-human genes were selected in
the top 50 lists (lectin, cscK, lacZ, rpoD, dop, AtJ1, lanA1,
env, ptc), representing plant, bacterial or viral specific proteins
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FIGURE 5 | Venn diagram depicting unique and shared sets of genes from the top 50 gene lists of the different early life phases (Table 6); (A) number of genes and

(B) gene names. For the gestational phases, the top 50 gene lists of early, mid and late period were combined, resulting in 67 unique genes. EG/MG/LG,

early/mid/late gestation.

as key markers. So although the GeneMania denoising step
eliminated the gene-gene edges of non-human genes, these
non-human genes got central positions in the enriched early
life networks.

Concluding, the PageRank analyses resulted in the
identification of key early life genes with overlapping genes

between the different early life periods, but also genes which
were only described in a certain early life period. Moreover,
the PageRank analyses confirmed the central role of the
“commonly used immune markers” (cytokines, chemokines)
in the early life networks, but also identified less obvious key
marker candidates.
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DISCUSSION

In this paper, we describe an approach to construct early life
immune networks to identify and prioritize factors to assess
safety and efficacy of early life immune modulation. As an
alternative to expensive, hand-built models which can take
months to years to construct, a workflow was created to
generate causal early life immune networks. Literature-based
interactions were used to form the basis of the network. These
literature networks were denoised using GeneMania databases
and enriched with data from comprehensive databases, such as
Gene Ontology and DisGeNET. Thereafter, PageRank algorithm
was applied to prioritize candidate genes in the early life
networks. The entire pipeline is interpretable and intervenable in
a way that domain experts can use our tools to greatly reduce the
time required to identify relevant immune markers in early life.

Early life in humans is associated with large developmental
milestones in the immune system.

Innate and adaptive immune cells are present early in the
fetus during gestation and then expand significantly (8, 22).
However, though the innate and adaptive immune cells are
already present early during fetal development in the first
trimester of gestation, the strength of their effector functions
differ considerably from the adult situation. For instance,
mature neutrophils are moderately present at the end of the
first trimester, and increase steeply in number shortly before
birth. Their number then returns to a stable level within days,
but they show weak bactericidal functions, poor responses to
inflammatory stimuli, reduced adhesion to endothelial cells and
diminished chemotaxis (23).

Compared with the adult immune system, which has
matured and evolved after years of exposure to antigens and
environmental stimuli, the newborn immune system comes from
a relatively sterile environment and is then rapidly exposed
to microbial challenges (10). It is well-established that these
differences in exposure to antigens and environmental stimuli
have consequences when examining disease susceptibility. Severe
infections remain a leading cause of neonatal morbidity and
mortality. The immaturity of the immune system is thought to be
an important factor for the increased rate of neonatal infections
especially when born preterm but the basis for this is not fully
understood (12), although the maturation of the neutrophil
and endothelial adhesion function are thought to contribute
significantly to the high risk of life-threatening infections in
premature infants (23).

Many of our preventive strategies for neonates rely upon
our understanding of the adult immune system, because of our
limited knowledge of early life immunity. Therefore, there is no
consensus regarding which factors should be covered to evaluate
the safety and/or efficacy of the early life interventions and how
all the available data should be interpreted appropriately. Our
bioinformatics approach assumes that the functions of genes
and proteins do not change over time. Instead, the biological
balances between gene-sets expressed in early life and adult are
assumed to change e.g., lower FOXP3 and CTLA-4 expression in
activated regulatory T cells from human neonates compared to
the adult situation (24). Therefore, the enrichment steps using
information from databases (GO and DisGeNET) containing

mostly data from adult situations, are assumed to be suitable to
enrich the networks with functionalities of the genes/proteins
that are described in early life literature. As input for these
databases, only genes shown to be expressed in a specific early life
period were entered to exclude the possibility that genes/proteins
that are not (yet) expressed in that specific time frame would be
introduced in the network. As others, we suggest that not the gene
function as such, but the context in which the genes are expressed
in early life determines the impact of the gene expression
on the biological processes, cellular responses and/or cellular
phenotype of the immune cell. Especially the microbial context
has been suggested to be important: the interactions between
the developing immune system and the microbes colonizing the
intestine, skin and airways of a newborn child has been suggested
by several groups (11, 25, 26). Olin et al. (11) showed that the
microbiome diversity increased after birth but children with
exceptionally lower diversity indicating bacterial dysbiosis (and
high level of activated T cell populations) showed an increased
immunological heterogeneity at 3 months of age. Several key
immune cell populations (DCs, B cells, NK cells), reach adult-
like phenotypes during the first 3 months of life, which suggests
that environmental exposures during this period could have
influence later in life. For example, differential susceptibility to
autoimmunity and asthmamay relate to DC exposure to bacterial
antigens early in life, which could lead to more tolerogenic DCs
later in life (27–29).

Currently only a few biomarkers of inflammation have been
developed into biomarker assays approved and recommended
by regulatory bodies for use in clinical studies, which includes
CRP, TNF-α, serotransferrin and erythrocyte sedimentation rate
(30). Although many candidate markers are identified based
on preclinical and clinical studies (as listed in the Thompson
Reuters IntegritySM Biomarkers Database), only a few are further
validated and used for assay development highlighting the
classical to clinical biomarkers gap. Moreover, in early life the
identification of suitable markers is even more limited due to the
fact that immunological studies on newborns tend to be small-
scale and focus only on few factors because of limited sample
volumes and low-throughput techniques as noted by Schaffert
at al. (10). The early life immune networks generated in our
approach enabled us to identify and rank genes that have themost
central role in the early life immune networks. This is in contrast
to earlier identified candidate markers for (pre-) clinical studies
which are not specifically aimed at early life and not necessarily
prioritized in a biological context.

There are multiple ways to prioritize genes in a biological
network (31, 32). In computing network scores, most of the
current approaches yield the limitation that the full network
topology (systems approach) is not taken into account. Instead,
such scoring methods focus on direct links or the most
direct paths (shortest paths) within a constrained neighborhood
around genes, ignoring potentially informative indirect paths. By
applying PageRank algorithm, the full topology of the immune
networks is taken into account.

Comparing the top 50 genes of the early life networks of
the different time frames shows that many genes are already
described in literature early in gestation. In general, the genes
coding for the “commonly used immune markers” were highly
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ranked in all early life periods such as the cytokines including
chemokines and other immune activation regulators directly
involved in the immune response. Interestingly, transcription
factors GATA-3 and FOXP3 that regulate Th2 and T regulatory
cell development are highly ranked in the networks, whereas
the gene coding for T-bet (TBX21), the transcription factor for
Th1 differentiation, was in the lower regions of the priority
lists. It has been shown that these 3 transcription factors cross
regulate one another: T-bet modulates GATA-3 function and
Th2 cytokines block Th1 differentiation (33–36). Additionally,
GATA-3 has been shown to inhibit FOXP3 transcription by
binding to the FOXP3 gene promoter (37). The low priority
ranking of the gene coding for T-bet is in line with the current
view of an unbalanced Th1/Th2 neonatal immunity resulting in
skewing toward Th2 immunity. Moreover, the genes related to
Th17 responses [transcription factor gene coding for RORγT
(RORC) and IL17A, IL17F, and IL22], are also of low priority
(not in top 50) in the networks. In the context of the neonatal
Th2-biased immune response, the inhibitory effect of IL-4 on
the development of inflammatory Th17-type responses has been
described to represent a major regulation mechanism (38) which
may explain the low priority of Th17 related genes and the high
priority of IL-4 in the early life networks.

Several non-human genes (lanA1, cscK, dop, rpoD, lacZ,
env, ptc, lectin) were ranked in the top 50, which might
seem unexpected or perhaps even suggest a flaw in the
bioinformatics approach. However, their presence and relevance
may well-explained. In our workflow in the denoising step using
GeneMania, we removed the connections between genes that
were not of human origins, but we did not exclude the non-
human genes from the early immune networks: the non-human
genes remained in the network as disconnected nodes.

The next step in the generation of early life immune networks
was the addition of connections (edges) between the human and
non-human genes to human pathways/diseases/bioprocesses
(input DisGeNet and GO databases). Genes from
rat/mouse/guinea pig will likely not be connected to human
processes, so these genes will stay disconnected to the network
and therefore have a very low priority in the PageRank scoring.
However, some of the non-human genes from mainly viral
or microbial origin could be connected in our workflow to
multiple human processes/diseases and therefore turned out
to be in the top 50 of the PageRank scoring. The relevance of
the role of these non-human genes in immune responses could
be confirmed by literature: lanA1 (viral protein LanA1; role in
host-virus interaction) (39), cscK (bacterial fructokinase; role
in TLR4 activation) (40), dop (bacterial pup deamidase; role
in resistance to infection) (41), rpoD (bacterial sigma factor
for RNA polymerase; role in exponential growth bacteria) (42),
lectin (role in activation of innate immune system) (43), lacZ
(bacterial beta-galactosidase; Th1-associated) (44), env (viral
envelope glycoprotein gp160; role in immune evasion) (45).

Several genes, which are usually not regarded as immune-
related, got a prominent position in our early life immune
networks such as genes involved in pregnancy, growth, and
maturation (e.g., ERVW-1, CSH1, PAEP, CA2, CAV1, PRC1,
FGF4, MMP9, MMP2). Several intestinal digestion related genes

(MGAM, ANPEP, SI) were present in the top 50 in the
birth-newborn-infant networks, which might be related to start
of oral diet after birth. These examples emphasize the role of the
immune system on so many other non-immune bioprocesses,
which should be taken into account during assessment of possible
(side-)effects of immune modulation in early life. Indeed,
several chemokines and cytokines selected in our workflow,
such as CXCL8, IL-10, TNF, IL1B, TGFb are multifunctional
molecules initially described as having a role in endometrial
functions and play a role in appropriate embryo implantation or
placental functioning (46, 47). Moreover, TNF and TGFb have
been identified as core activators of epithelial to mesenchymal
transition, which is essential for embryonic development (48, 49).
Although our approach to collect and structure and prioritize all
available information from literature and databases to identify
candidate markers is exhaustive, it also has its limitations
due to the natural limitations in the curation process of the
usage of enrichment tool-dependent auxiliary databases, and to
inaccuracies derived from text mining. Others being annotation
issues, such as the incomplete annotation of genes to GO terms
and diseases (50, 51). Furthermore, the approach might be
subjected to a reporting bias as it can be difficult to distinguish
the absence of a gene in early life or a relationship between
molecules/pathways from a lack of evaluation. In addition, we do
not take the context of the gene expression into account whereas
it is known that the context determines greatly the impact of the
genes on biological processes, cellular responses and/or cellular
phenotypes of the immune cells. Also, the networks are not
organ-specific, although organ-specific genes are in the top 50
of prioritized genes, such as CPA1 (pancreas), CRH (brain), and
CDX2, MGAM, SI (intestines).

The strength/weight of the relationships in the network were
not taken into consideration, but merely 6 association networks
have been generated of possible biological relationships in early
life immunity. The next important step for the applicability of
this approach would be to validate these relationships based on
gene expression data, which will guide us to validate the networks
and moreover enable us to finetune the weighing of the various
relationships in the network. Thismay result in a re-prioritization
of the most important genes in a specific period in early life.
Moreover, by using gene expression data, it becomes possible
to identify critical time frames for specific immune modulation,
because depending on the exposure, different pathways/processes
may be activated. Even taking into account these current
limitations, to the best of our knowledge, this is the first global
overview of the early life immune system that can be used
as a starting point to select putative markers to monitor the
functioning of the early life immune system.

The future step would be to enrich the early life immune
networks with early life gene-expression data to generate a
quantitative early life immune network for (i) the analysis of
mechanisms underlying immune health and disease in early life
and (ii) the validation of candidate markers of disease and health.

In conclusion, we describe a network-based approach that
provides a science-based and systematic method to explore the
functional development of the early life immune system in time.
This systems approach aids the generation of a testing strategy for
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assessing the safety and efficacy of early life immune modulation
by predicting the key candidate markers during different phases
of early life immune development.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

JB, MM, LV, and SK contributed to the conception and
design of the study. MM, MYM, and TR performed literature
database searches and selection. RD, MS, and SK wrote
scripts for the preprocessing of the manuscripts, GeneMania
denoising, GO/DisGeNET database-searches and inference steps
and PageRank algorithm score calculation. JB,MM, and SKwrote
the manuscript. JB, RD, MS, MYM, TR, LJ, AK, JG, LK, KK, GH,

LV, MM, and SK contributed to manuscript revision, read and
approved the submitted version.

FUNDING

This research was financially supported by the Dutch
Governmental TNO Research Cooperation Funds, Arla
Foods Ingredients and Danone Nutricia Research and Food
Safety center.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.00644/full#supplementary-material

Supplementary Figure 1 | Venn diagram depicting unique and shared sets of

genes of the different early life phases extracted from literature by INDRA text

mining (Table 3) without PageRank prioritization step. EG/MG/LG,

early/mid/late gestation.

Supplementary Table 1 | Descriptions of the prioritized genes listed in Table 6.

REFERENCES

1. Dzidic M, Boix-Amorós A, Selma-Royo M, Mira A, Collado M. Gut

microbiota and mucosal immunity in the neonate. Med Sci. (2018) 6:56.

doi: 10.3390/medsci6030056

2. Baird J, Jacob C, Barker M, Fall C, Hanson M, Harvey N, et al.

Developmental origins of health and disease: a lifecourse approach to

the prevention of non-communicable diseases. Healthcare. (2017) 5:E14.

doi: 10.3390/healthcare5010014

3. Hanson MA, Gluckman PD. Early developmental conditioning of later health

and disease: physiology or pathophysiology? Physiol Rev. (2014) 94:1027–76.

doi: 10.1152/physrev.00029.2013

4. Hanley B, Dijane J, Fewtrell M, Grynberg A, Hummel S, Junien C,

et al. Metabolic imprinting, programming and epigenetics - a review of

present priorities and future opportunities. Br J Nutr. (2010) 104:S1–25.

doi: 10.1017/S0007114510003338

5. Turck D, Bresson J, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M,

et al. Guidance on the preparation and presentation of an application for

authorisation of a novel food in the context of Regulation (EU) 2015/2283.

EFSA J. (2016) 14:1–24. doi: 10.2903/j.efsa.2016.4594

6. Aguilar F, Crebelli R, Dusemund B, Galtier P, Gilbert J, Gott D, et al.

Guidance for submission for food additive evaluations. EFSA J. (2012) 10:1–

60. doi: 10.2903/j.efsa.2012.2760

7. Administrative guidance on the submission of applications for authorisation

of a novel food pursuant to Article 10 of Regulation (EU) 2015/2283. EFSA

Support Publ. (2018) 15:1–22. doi: 10.2903/sp.efsa.2018.EN-1381

8. Kuper CF, van Bilsen J, Cnossen H, Houben G, Garthoff J, Wolterbeek

A. Development of immune organs and functioning in humans and test

animals: implications for immune intervention studies. Reprod Toxicol. (2016)

64:180–90. doi: 10.1016/j.reprotox.2016.06.002

9. Cokol M, Iossifov I, Weinreb C, Rzhetsky A. Emergent behavior of growing

knowledge about molecular interactions. Nat Biotechnol. (2005) 23:1243–47.

doi: 10.1038/nbt1005-1243

10. Schaffert S, Khatri P. Early life immunity in the era of systems biology:

understanding development and disease. Genome Med. (2018) 10:1–3.

doi: 10.1186/s13073-018-0599-1

11. Olin A, Henckel E, Chen Y, Olin A, Henckel E, Chen Y, et al. Stereotypic

immune system development in newborn children article stereotypic immune

system development in newborn children. Cell. (2018) 174:1277–92.e14.

doi: 10.1016/j.cell.2018.06.045

12. Kollmann TR, Kampmann B,Mazmanian SK,Marchant A, Levy O. Protecting

the newborn and young infant from infectious diseases: lessons from

immune ontogeny. Immunity. (2017) 46:350–63. doi: 10.1016/j.immuni.2017.

03.009

13. Gyori BM, Bachman JA, Subramanian K, Muhlich JL, Galescu L,

Sorger PK. From word models to executable models of signaling

networks using automated assembly. Mol Syst Biol. (2017) 13:954.

doi: 10.15252/msb.20177651

14. Duong D, Stone N, Goertzel B, Venuto J. Indra: emergent ontologies from text

for feeding data to simulations. In: Spring Simul Interoperability Work 2010,

2010 Spring SIW.Monterey, CA. (2010). p. 385–94.

15. Sales JE, Souza L, Barzegar S, Davis B, Freitas A, Handschuh S. Indra:

a word embedding and semantic relatedness server. In: Lr 2018 - 11th

International Conference on Language Resourses and Evaluation (Miyazaki).

(2019). p. 132–32.

16. Meijerink M, van den Broek T, Dulos R, Neergaard Jacobsen L, Staudt

Kvistgaard A, Garthoff J, et al. The impact of immune interventions: a systems

biology strategy for predicting adverse and beneficial immune effects. Front

Immunol. (2019) 10:231. doi: 10.3389/fimmu.2019.00231

17. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis

Toolkit (WebGestalt): update 2013. Nucleic Acids Res. (2013) 41:W77–83.

doi: 10.1093/nar/gkt439

18. Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking:

Bringing Order to the Web. Stanford InfoLab (1999). Available online

at: https://storm.cis.fordham.edu/~gweiss/selected-papers/classic-pagerank-

paper.pdf

19. Dellavalle RP, Schilling LM, Rodriguez MA, Van de Sompel H, Bollen

J. Refining dermatology journal impact factors using PageRank.

J Am Acad Dermatol. (2007) 57:116–9. doi: 10.1016/j.jaad.2007.

03.005

20. Griffiths TL, Steyvers M, Firl A. Google and the mind. Psychol Sci. (2007)

18:1069–76. doi: 10.1111/j.1467-9280.2007.02027.x

21. Bánky D, Iván G, Grolmusz V. Equal opportunity for low-degree network

nodes: a PageRank-basedmethod for protein target identification inmetabolic

graphs. PLoS ONE. (2013) 8:e54204. doi: 10.1371/journal.pone.0054204

22. Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune

maturation and susceptibility to disease. Trends Immunol. (2015) 36:684–96.

doi: 10.1016/j.it.2015.09.009

23. Nussbaum C, Gloning A, Pruenster M, Frommhold D, Bierschenk

S, Genzel-Boroviczeny O, et al. Neutrophil and endothelial adhesive

function during human fetal ontogeny. J Leukoc Biol. (2013) 93:175–84.

doi: 10.1189/jlb.0912468

24. Rueda CM, Moreno-Fernandez ME, Jackson CM, Kallapur SG, Jobe

AH, Chougnet CA. Neonatal regulatory T cells have reduced capacity

Frontiers in Immunology | www.frontiersin.org 13 April 2020 | Volume 11 | Article 64449

https://www.frontiersin.org/articles/10.3389/fimmu.2020.00644/full#supplementary-material
https://doi.org/10.3390/medsci6030056
https://doi.org/10.3390/healthcare5010014
https://doi.org/10.1152/physrev.00029.2013
https://doi.org/10.1017/S0007114510003338
https://doi.org/10.2903/j.efsa.2016.4594
https://doi.org/10.2903/j.efsa.2012.2760
https://doi.org/10.2903/sp.efsa.2018.EN-1381
https://doi.org/10.1016/j.reprotox.2016.06.002
https://doi.org/10.1038/nbt1005-1243
https://doi.org/10.1186/s13073-018-0599-1
https://doi.org/10.1016/j.cell.2018.06.045
https://doi.org/10.1016/j.immuni.2017.03.009
https://doi.org/10.15252/msb.20177651
https://doi.org/10.3389/fimmu.2019.00231
https://doi.org/10.1093/nar/gkt439
https://storm.cis.fordham.edu/~gweiss/selected-papers/classic-pagerank-paper.pdf
https://storm.cis.fordham.edu/~gweiss/selected-papers/classic-pagerank-paper.pdf
https://doi.org/10.1016/j.jaad.2007.03.005
https://doi.org/10.1111/j.1467-9280.2007.02027.x
https://doi.org/10.1371/journal.pone.0054204
https://doi.org/10.1016/j.it.2015.09.009
https://doi.org/10.1189/jlb.0912468
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


van Bilsen et al. Network-Based Prediction Early-Life Immune Biomarkers

to suppress dendritic cell function. Eur J Immunol. (2015) 45:2582–92.

doi: 10.1002/eji.201445371

25. Laforest-Lapointe I, Arrieta M-C. Patterns of early-life gut microbial

colonization during human immune development: an ecological perspective.

Front Immunol. (2017) 8:788. doi: 10.3389/fimmu.2017.00788

26. Vatanen T, Kostic AD, D’Hennezel E, Siljander H, Franzosa EA,

Yassour M, et al. Variation in microbiome LPS immunogenicity

contributes to autoimmunity in humans. Cell. (2016) 165:842–53.

doi: 10.1016/j.cell.2016.04.007

27. Pezoldt J, Pasztoi M, Zou M, Wiechers C, Beckstette M, Thierry

GR, et al. Neonatally imprinted stromal cell subsets induce tolerogenic

dendritic cells in mesenteric lymph nodes. Nat Commun. (2018) 9:3903.

doi: 10.1038/s41467-018-06423-7

28. Daley D. The evolution of the hygiene hypothesis. Curr Opin Allergy Clin

Immunol. (2014) 14:390–6. doi: 10.1097/ACI.0000000000000101

29. Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through

education: how tolerogenic dendritic cells shape immunity. Front Immunol.

(2017) 8:1764. doi: 10.3389/fimmu.2017.01764

30. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM,

et al. Low-grade inflammation, diet composition and health: current

research evidence and its translation. Br J Nutr. (2015) 114:999–1012.

doi: 10.1017/S0007114515002093

31. Gonçalves JP, Francisco AP, Moreau Y, Madeira SC. Interactogeneous: disease

gene prioritization using heterogeneous networks and full topology scores.

PLoS ONE. (2012) 7:e49634. doi: 10.1371/journal.pone.0049634

32. Gill N, Singh S, Aseri TC. Computational disease gene prioritization: an

appraisal. J Comput Biol. (2014) 21:456–65. doi: 10.1089/cmb.2013.0158

33. Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH. T helper cell fate

specified by kinase-mediated interaction of T-bet with GATA-3. Science.

(2005) 307:430–3. doi: 10.1126/science.1103336

34. Agnello D, Lankford CSR, Bream J, Morinobu A, Gadina M, O’Shea

JJ, et al. Cytokines and transcription factors that regulate T helper cell

differentiation: new players and new insights. J Clin Immunol. (2003) 23:147–

61. doi: 10.1023/a:1023381027062

35. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F.

Memory and flexibility of cytokine gene expression as separable properties

of human T(H)1 and T(H)2 lymphocytes. Nat Immunol. (2003) 4:78–86.

doi: 10.1038/ni872

36. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel

transcription factor, T-bet, directs Th1 lineage commitment. Cell. (2000)

100:655–69. doi: 10.1016/S0092-8674(00)80702-3

37. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and

sufficient for Th2 cytokine gene expression in CD4T cells. Cell. (1997)

89:587–96. doi: 10.1016/S0092-8674(00)80240-8

38. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines

and the expanding diversity of effector T cell lineages. Annu Rev Immunol.

(2007) 25:821–52. doi: 10.1146/annurev.immunol.25.022106.141557

39. Sun R, Liang D, Gao Y, Lan K. Kaposi’s Sarcoma-associated herpesvirus-

encoded LANA interacts with host KAP1 to facilitate establishment of viral

latency. J Virol. (2014) 88:7331–44. doi: 10.1128/JVI.00596-14

40. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I.

Toll-like receptor 4 is involved in the development of fructose-induced

hepatic steatosis in mice. Hepatology. (2009) 50:1094–104. doi: 10.1002/hep.

23122

41. Cerda-Maira FA, Pearce MJ, Fuortes M, Bishai WR, Hubbard SR, Darwin KH.

Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation

pathway in Mycobacterium tuberculosis. Mol Microbiol. (2010) 77:1123–35.

doi: 10.1111/j.1365-2958.2010.07276.x

42. JishageM, Iwata A, Ueda S, Ishihama A. Regulation of RNA polymerase sigma

subunit synthesis in Escherichia coli: intracellular levels of four species of

sigma subunit under various growth conditions. J Bacteriol. (1996) 178:5447–

51. doi: 10.1128/JB.178.18.5447-5451.1996

43. Brown GD, Willment JA, Whitehead L. C-type lectins in

immunity and homeostasis. Nat Rev Immunol. (2018) 18:374–89.

doi: 10.1038/s41577-018-0004-8

44. Ménoret S, Aubert D, Tesson L, Braudeau C, Pichard V, Ferry N, et al.

lacZ transgenic rats tolerant for β -galactosidase: recipients for gene transfer

studies using lacZ as a reporter gene. Hum Gene Ther. (2002) 13:1383–90.

doi: 10.1089/104303402760128603

45. Cook JD, Lee JE. The secret life of viral entry glycoproteins:

moonlighting in immune evasion. PLoS Pathog. (2013) 9:e1003258.

doi: 10.1371/journal.ppat.1003258

46. DuMR,Wang SC, Li DJ. The integrative roles of chemokines at the maternal-

fetal interface in early pregnancy. Cell Mol Immunol. (2014) 11:438–48.

doi: 10.1038/cmi.2014.68

47. Salama KM, Alloush MK, Al hussini RM. Are the cytokines TNF alpha

and IL 1Beta early predictors of embryo implantation? Cross sectional

study. J Reprod Immunol. (2020) 137:102618. doi: 10.1016/j.jri.2019.

102618

48. Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in

the epithelial-mesenchymal transition. Cell Adhes Migr. (2015) 9:317–24.

doi: 10.1080/19336918.2015.1016686

49. Shook D, Keller R. Mechanisms, mechanics and function

of epithelial-mesenchymal transitions in early development.

Mech Dev. (2003) 120:1351–83. doi: 10.1016/j.mod.2003.

06.005

50. Bauer-Mehren A, Furlong LI, Sanz F. Pathway databases and tools for their

exploitation: benefits, current limitations and challenges.Mol Syst Biol. (2009)

5:290. doi: 10.1038/msb.2009.47

51. Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA,

Sanz F, Furlong LI. Gene-disease network analysis reveals

functional modules in mendelian, complex and environmental

diseases. PLoS ONE. (2011) 6:e20284. doi: 10.1371/journal.pone.

0020284

Conflict of Interest: LN and AS are employed by Arla Foods Ingredients. JG is

employed by Danone Food Safety Center. LK and KK are employed by Danone

Nutricia Research.

The authors declare that this study received funding from Arla Foods Ingredients

and Danone Nutricia Research. The funders had the following involvement in

the study: contributed to manuscript revision, read and approved the submitted

version.

Copyright © 2020 van Bilsen, Dulos, van Stee, Meima, Rouhani Rankouhi,

Neergaard Jacobsen, Staudt Kvistgaard, Garthoff, Knippels, Knipping, Houben,

Verschuren, Meijerink and Krishnan. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 14 April 2020 | Volume 11 | Article 64450

https://doi.org/10.1002/eji.201445371
https://doi.org/10.3389/fimmu.2017.00788
https://doi.org/10.1016/j.cell.2016.04.007
https://doi.org/10.1038/s41467-018-06423-7
https://doi.org/10.1097/ACI.0000000000000101
https://doi.org/10.3389/fimmu.2017.01764
https://doi.org/10.1017/S0007114515002093
https://doi.org/10.1371/journal.pone.0049634
https://doi.org/10.1089/cmb.2013.0158
https://doi.org/10.1126/science.1103336
https://doi.org/10.1023/a:1023381027062
https://doi.org/10.1038/ni872
https://doi.org/10.1016/S0092-8674(00)80702-3
https://doi.org/10.1016/S0092-8674(00)80240-8
https://doi.org/10.1146/annurev.immunol.25.022106.141557
https://doi.org/10.1128/JVI.00596-14
https://doi.org/10.1002/hep.23122
https://doi.org/10.1111/j.1365-2958.2010.07276.x
https://doi.org/10.1128/JB.178.18.5447-5451.1996
https://doi.org/10.1038/s41577-018-0004-8
https://doi.org/10.1089/104303402760128603
https://doi.org/10.1371/journal.ppat.1003258
https://doi.org/10.1038/cmi.2014.68
https://doi.org/10.1016/j.jri.2019.102618
https://doi.org/10.1080/19336918.2015.1016686
https://doi.org/10.1016/j.mod.2003.06.005
https://doi.org/10.1038/msb.2009.47
https://doi.org/10.1371/journal.pone.0020284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00700 April 21, 2020 Time: 16:48 # 1

MINI REVIEW
published: 23 April 2020

doi: 10.3389/fimmu.2020.00700

Edited by:
Maria Carmen Collado,

Institute of Agrochemistry and Food
Technology (IATA), Spain

Reviewed by:
Tommi Vatanen,

The University of Auckland,
New Zealand

Christina E. West,
Umeå University, Sweden

*Correspondence:
Diego G. Peroni

diego.peroni@unipi.it

Specialty section:
This article was submitted to

Nutritional Immunology,
a section of the journal

Frontiers in Immunology

Received: 14 January 2020
Accepted: 27 March 2020

Published: 23 April 2020

Citation:
Peroni DG, Nuzzi G, Trambusti I,

Di Cicco ME and Comberiati P (2020)
Microbiome Composition and Its

Impact on the Development of Allergic
Diseases. Front. Immunol. 11:700.

doi: 10.3389/fimmu.2020.00700

Microbiome Composition and Its
Impact on the Development of
Allergic Diseases
Diego G. Peroni1* , Giulia Nuzzi1, Irene Trambusti1, Maria Elisa Di Cicco1 and
Pasquale Comberiati1,2

1 Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy, 2 Department
of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia

Allergic diseases, such as food allergy (FA), atopic dermatitis (AD), and asthma, are
heterogeneous inflammatory immune-mediated disorders that currently constitute a
public health issue in many developed countries worldwide. The significant increase
in the prevalence of allergic diseases reported over the last few years has closely
paralleled substantial environmental changes both on a macro and micro scale, which
have led to reduced microbial exposure in early life and perturbation of the human
microbiome composition. Increasing evidence shows that early life interactions between
the human microbiome and the immune cells play a pivotal role in the development of the
immune system. Therefore, the process of early colonization by a “healthy” microbiome
is emerging as a key determinant of life-long health. In stark contrast, the perturbation
of such a process, which results in changes in the host-microbiome biodiversity and
metabolic activities, has been associated with greater susceptibility to immune-mediated
disorders later in life, including allergic diseases. Here, we outline recent findings on the
potential contribution of the microbiome in the gastrointestinal tract, skin, and airways to
the development of FA, AD, and asthma. Furthermore, we address how the modulation
of the microbiome composition in these different body districts could be a potential
strategy for the prevention and treatment of allergic diseases.

Keywords: allergy, asthma, atopic dermatitis, food allergy, health outcomes, immune system, children,
microbiome

INTRODUCTION

Over the last few decades, many developed and fast-growing countries worldwide have registered a
dramatic increase in the prevalence of allergic diseases, such as asthma, AD, and FA, which currently
pose a substantial burden to healthcare systems (1, 2). Thus far, the genetic and environmental
drivers of the rapid rise in allergy prevalence remain to be more fully elucidated.

Notably, the evolution of the allergy epidemic has closely paralleled radical environmental and
lifestyle changes, such as progressive industrialization and urbanization, widespread sanitation
programs and antibiotics use, physical inactivity and highly processed diets. All these changes have
led to reduced microbial exposure in early life and loss of microbial biodiversity (3).

Abbreviations: AD, atopic dermatitis; BM, breast milk; CMA, cow’s milk allergy; FA, food allergy; SCFA, short-chain fatty
acid; TLRs, Toll-like receptors; Treg, regulatory T cell.
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Accumulating evidence points to a central role of the human
microbiome perturbation in the rising prevalence of allergic
diseases. The human microbiome comprises bacteria, viruses,
fungi, protozoans, and archaea, which colonize primarily the
gastrointestinal tract, but also the airways and the skin surface
from the first days of life and gradually develop and diversify
concomitantly with the physiological growth of the individual.
The resident microbial communities in the human gut and
other organs have been shown to modulate both the innate
and acquired immune responses. Recent data show that several
environmental drivers can affect the microbiome colonization,
composition and metabolic activity in infancy, and alter the host
functions for nutrition and immunity (4). Indeed, the process
of early colonization by a “healthy” microbiome is emerging as
a key determinant of life-long health, whereas the perturbation
of such a process, has been associated with greater susceptibility
to immune-mediated disorders later in life, including allergic
diseases (5).

The recent introduction of the next-generation sequencing
and genomic analysis to identify different microbial species has
led to a greater knowledge of the complex role of the human
microbiome in the pathogenesis of FA, AD, and asthma. Here,
we review recent findings on the potential role of the human
microbiome in the gastrointestinal tract, the skin, and the airways
to the development of allergic diseases, and we address how the
modulation of the microbiome composition could be a potential
therapeutic or even preventive strategy for such disorders.

EARLY LIFE FACTORS MODULATING
GUT MICROBIOME COMPOSITION

It is well established that microbiome composition changes
dynamically in the first few years of life and can be influenced
by several prenatal and postnatal environmental and host-
related factors (Figure 1) (6). Among these factors, mounting
evidence shows that some perinatal factors, such as mode of
delivery, breastfeeding, early antibiotic use, and timing and
type of complementary feeding, can significantly modulate
the gut microbiome composition, which is emerging as a
key determinant in developing immune tolerance responses to
different antigens (7). The gut microbiome of newborns delivered
by cesarean section shows a lower level of commensal bacteria
typically found in those born vaginally and high concentrations
of opportunistic pathogens typically found in the hospital
environment, such as Enterococcus, Enterobacter, and Klebsiella
species (8). These differences largely even by the time babies are
weaned around 6 to 9 months, except for commensal bacteria
Bacteroides, which remain absent or at very low levels in most
cesarean section infants. Of note, the effect of the cesarean
section on the infant microbiome seems to be related to maternal
antibiotic exposure before the delivery (8).

Breast milk contributes to the development of healthy
gut microbiome. BM contains essential micronutrients and
prebiotic compounds, which support the colonization and
growth of commensal bacteria, and several immune active
factors, oligosaccharides and microbes, which could all modulate

host immune responses (9). Term infants born vaginally and
breastfed exclusively seem to have the most “beneficial” gut
microbiome, with the highest concentration of Bifidobacteria
and lowest numbers of Clostridium difficile and Escherichia
coli (10).

Shifting from exclusively breastfeeding to complementary
feeding at weaning increases the prevalence of Bacteroides,
Bilophila, Roseburia, Clostridium, and Anaerostipes, and
progressively leads to the establishment of an adult-type
microbiome (11). In particular, the introduction of solid foods
modulates gut microbiome shifting from Bifidobacterium-
dominant to Bacteroidetes- and Firmicutes-dominant species,
such as the Clostridium coccoides and Clostridium leptum groups
(12). The introduction of solid foods also induces a sustained
increase in fecal SCFA levels and expression of genes associated
with the adult microbiome’s core metabolic functions, such as
polysaccharide breakdown, vitamin biosynthesis, and xenobiotic
degradation (13).

The first 1000 days of life (i.e., the period from conception
to age 2 years) seem to represent the critical window of
opportunity for microbiome modulation (Figure 1) (6, 14).
After this period, the gut microbiome tends to acquire an
adult-like configuration with distinct microbial community
composition and functions (15). However, several factors
can induce significant perturbations to the gut microbiome
composition later in life, such as long-term dietary changes, or
frequent or prolonged use of antibiotics (13, 16). Notably, a very
recent multi-omics integrative analysis showed that antibiotic
use in adults induced alterations to the gut microbiome which
adversely affected immunogenicity and responses to influenza
vaccination (17).

HOW THE GUT MICROBIOME CAN
INFLUENCE IMMUNE RESPONSES

Neonatal and infant gut microbiome appear to be involved in
gut tolerance modulation and immune system “education” (18,
19). Germ-free animal experiments best describe this mutualistic
relationship in animals (20–27). These data may support such a
relationship in humans.

Indeed, some recent human studies have addressed the role
of the gut microbiome on adaptive and innate immunity in
the context of allergic diseases. Christmann et al. (28), reported
lower IgG responses to specific clusters of microbiota antigens
in infants who then developed allergic disorders in childhood
(including skin, respiratory, and food allergies) compared to
healthy children. West et al. (29), studied infants at high risk
of atopic diseases and showed that depletion of Proteobacteria
in early infancy is associated with increased Toll-like receptors
(TLR)-4 induced innate inflammatory responses, whereas
depletion of Ruminococcaceae is associated with increased TLR-
2 induced innate inflammatory responses. Fujimura et al. (30),
reported that infants at risk of asthma have a gut microbial
signature with reduced abundance of certain bacteria taxa,
such as Faecalibacterium and Bifidobacterium. Stimulation of
adult PBMC with sterile fecal water from these infants then
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FIGURE 1 | Factors shaping the human microbiome development. The neonatal microbiome is a delicate and highly dynamic ecosystem that undergoes rapid
changes in composition in the first few years of life determined by several pre and perinatal factors. The maturation of the gut microbiota toward an adult-like
structure largely occurs by the age of 2 or 3 years. Therefore, early infancy could be a critical period for modulating the microbiota to promote healthy growth and
development.

led to increases in CD4 + IL-4 producing cells and reduced
regulatory Foxp3 cells. Similarly, Sjödin et al. (31), found that
the gut symbiont Faecalibacterium correlated with the expression
levels of regulatory cytokines in children with multiple allergies,
suggesting an opportunity to expand such taxa to promote a
regulatory tolerogenic immune response.

ROLE OF THE MICROBIOME IN THE
DEVELOPMENT OF ALLERGIC
DISEASES

The composition of the microbiome varies across different
body sites, which constitute unique habitats resulting in varied
microbial communities within and between subjects. The greatest
concentration and diversity of microorganisms are found in
the gastrointestinal tract, which is dominated by facultative and
strictly anaerobic bacteria of the phyla Firmicutes, Bacteroidetes,
Actinobacteria, Verrucomicrobia, and Proteobacteria (32).

The mechanisms that mediate host-microbe communications
are highly complex; a disrupted dialogue due to altered
microbiome seems to negatively impact the immune
homeostatic networks and may contribute to the development
of hypersensitivity reactions to environmental allergens (33).
This connection emerged over the last few decades with the
proposed “hygiene hypothesis,” based on the epidemiological
evidence that environmental drivers increasing early life
microbial exposure (such as vaginal delivery, farming life, and
furry animals exposure during childhood, large family size,
unpasteurized milk consumption and absence of early antibiotic

exposure) were associated with a lower risk of developing
allergic disorders (34–38). Recent experimental and human
investigations have strengthened the mechanistic substance
to the hygiene hypothesis, providing evidence for the causal
relationship between early life microbial perturbation in the
gut, skin, and airways and the development of allergic diseases
(Figure 2).

Microbiome and Food Allergy
The composition and metabolic activities of the gut microbiome
seem to be closely linked with the development of oral tolerance
(39). Mortha et al. (40), showed that commensal microorganisms
favor the crosstalk between innate myeloid and lymphoid cells
that contributes to immune homeostasis in the gut and the
development of oral tolerance to dietary antigens.

Infants with CMA have more total bacteria, in particular the
anaerobic type, compared to healthy controls after 6 months
of milk formula assumption. In addition, higher concentrations
of Lactobacilli and lower concentrations of Enterobacteria
and Bifidobacteria were observed in infants with CMA (41).
Bunyavanich et al. showed that Clostridia and Firmicutes rates
were particularly elevated in the gut microbiota of infants
whose CMA resolved by 8 years of age (42). Fazlollahi et al.
found that the gut microbiome of children with egg allergy
had a greater abundance of the genera from Lachnospiraceae
and Ruminococcaceae than those of healthy controls (43).
A prospective study comprising 14 children with FA and
87 children with food allergens sensitization, showed that
Haemophilus, Dialister, Dorea, and Clostridium genera were
reduced in participants with food sensitization, whereas, the
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FIGURE 2 | Currently known microbiome perturbations in infancy associated with allergic diseases.

genera Citrobacter, Oscillospira, Lactococcus, and Dorea were
under-represented in participants with FA (44). Furthermore,
in subjects with peanut or tree nut allergy, decreased microbial
richness and increased concentration of Bacteroides species were
reported compared to non-allergic controls (45).

Studies in animal models showed that germ-free mice were
protected from developing anaphylaxis to cow’s milk if colonized
with gut microbiome from healthy infants, but not from infants
with CMA (46). The transfer of specific bacterial strains, such
as Bifidobacterium or Clostridium species to mice was shown
to reducing the risk of food sensitization, by the induction of
mucosal Treg (47). Clostridia can also stimulate innate lymphoid
cells to produce IL-22, which contributes to strengthen the
epithelial barrier and decrease the permeability of the gut to
dietary proteins (48). Some functional effects of Clostridia in FA
likely also occur through their fermentation metabolites, such as
butyrate, a SCFA with known immunoregulatory and tolerogenic
proprieties (49).

Experimental findings showing that the gut microbiome
contributes to the development of food tolerance suggest that
microbial modulation could be a potential therapeutic strategy
for FA. Although the supplementation of an extensively
hydrolyzed milk formula with Lactobacillus casei and
Bifidobacterium lactis did not prove to accelerate the resolution
of CMA (50), the administration of extensively hydrolyzed
casein formula containing the probiotic Lactobacillus rhamnosus
GG has been shown to promote CMA resolution at 12, 24, and
36 months, compared to non-supplemented hypoallergenic milk
formula (51). Of note, the use of such Lactobacillus rhamnosus

GG-supplemented formula significantly expanded butyrate-
producing bacterial strains in the infant gut microbiome
compared to non-supplemented formula (49). In another study,
the use of an amino-acid based formula containing a specific
synbiotics (i.e., a combination of prebiotic blend of fructo-
oligosaccharides and the probiotic strain Bifidobacterium breve
M-16V) has been shown to modulate the gut microbiome and
its metabolic activities also in infants with non-IgE mediated
CMA (52–54). Recently, an uncontrolled study suggested that
oral supplementation with Lactobacillus rhamnosus GG could
enhance the efficacy of oral immunotherapy in inducing peanut
tolerance and immune changes in children with peanut allergy
(55). However, further studies including a control group are
required to determine whether modulation of the microbiome
during immunotherapy will favor the acquisition of sustained
unresponsiveness to food allergens.

Microbiome and Atopic Dermatitis
Several factors, such as age, gender, ethnicity, climate, ultraviolet
exposure, and lifestyle drivers, can influence the composition
of skin microbiome (56). The healthy skin microbiome
is represented by Propionibacterium species, which are
mainly found in sebaceous sites, and Corynebacterium and
Staphylococcus species, which are more abundant in moist
microenvironments. Malassezia is the predominant fungal flora
on human skin (56, 57).

Atopic dermatitis is a complex skin disease characterized by
epidermal barrier dysfunction, altered innate/adaptive immune
responses and impaired skin microbial biodiversity (58). Loss of
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microbial diversity, with the predominance of the Staphylococcus
aureus over Staphylococcus epidermidis, is a characteristic feature
at both acute and chronic skin sites of AD (59), which correlates
with AD severity and the risk of allergic sensitization to
common allergens (60). Staphylococcus aureus contributes to
the epidermal barrier disruption through different pathways,
including the downregulation of terminal differentiation of
epidermal proteins, such as filaggrin and loricrin, and the
promotion of the skin proteases activities, which directly damage
the skin barrier (61, 62).

Coagulase-negative Staphylococci, which include
S. epidermidis, S. hominis and S. lugdunensis, can secrete
antimicrobial metabolites that limit S. aureus overgrowth and
biofilm formation (61). In addition, S. epidermidis can also
activate TLR2 signaling, which can induce the production of
keratinocyte-derived antimicrobial peptides and increase the
expession of epidermal tight junction proteins (63). Neonatal
colonization of the skin by S. epidermidis is associated with the
induction of specific Tregs that modulate local activation of host
immune responses (64). Indeed, it has been recently shown that
skin commensal Staphylococci species are significantly reduced at
2 months in infants who later developed AD at 1 year, suggesting
that targeted topical modulation favoring early colonization
with this genus might reduce the risk of later occurrence of
AD (65). These findings, together with evidence that regular
application of moisturizers repairs the skin barrier and restores
commensal bacterial diversity (66–68), constituted the rationale
for ongoing research on the application of topical probiotics,
such as Vitreoscilla filiformis lysate and Roseomonas mucosa, as a
potential strategy to modulate the skin microbiome and treat AD
(69, 70). Preliminary data also showed that the autologous skin
transplantation of antimicrobial coagulase-negative Staphylococci
strains to human subjects with AD could decrease S. aureus
overgrowth and colonization (71).

Changes in the gut microbiome seem also to contribute to the
development of AD. Patients with AD have lower concentrations
of Bifidobacterium in the gut microbiome than healthy controls,
and these counts are inversely related to the severity of the disease
(72). Early gut colonization with Clostridium difficile was related
to the occurrence of AD (73), and lower Bacteroidetes diversity
at 1 month was associated with AD at 2 years of age (74). There
is evidence that pre- and post-natal supplementation with oral
Lactobacillus and Bifidobacterium strains could reduce the risk of
AD in infants due to changes in T cell-mediated responses (75).
Finally, a recent large prospective study of gut microbiota showed
that Lachnobacterium and Faecalibacterium were significantly
less abundant in those children who developed AD by school-
age compared to healthy controls. Notably, the differential
abundance of these bacterial taxa was documented throughout
infancy, which supports the likelihood of their protective role in
the development of AD (76).

Microbiome and Asthma in Childhood
Accumulating evidence shows that the composition of the lung
microbiome in early life can affect the development of respiratory
health or disease (77, 78). Preclinical models support a protective
role of bacteria against allergic airway inflammation (79, 80).

The phylum Bacteroides, particularly Prevotella spp.,
predominate in the lung microbiome of healthy subjects (81,
82). During the first 2 weeks of life, the lung microbiome
promotes the transient expression of programmed death-
ligand 1 (PDL1) in dendritic cells, which is necessary for
the Treg-mediated attenuation of allergic airway responses
(83). Epidemiological evidence shows that children who
grow up in a farming environment and are exposed to
diverse microbial communities since early life have a lower
incidence of allergies (84). Notably, the airway colonization
by Streptococcus, Moraxella, or Haemophilus within the
first 2 months of life has been associated with the severity
of lower respiratory viral infection in the first year of life,
and the risk of asthma development later in life (85). The
phylum Proteobacteria has also been associated with asthma
and neutrophilic exacerbations, whereas Bacteroidetes with
eosinophilic exacerbations, leading to the consideration that
distinct mediators and microbiome profiles may represent
different clusters of biological exacerbations (86, 87).

Emerging evidence shows that gut microbial perturbations
in early life can also influence the development of allergic
airway inflammation. Antibiotic use in neonatal mice favors
variations in the microbiome composition, which have been
associated with alterations in intestinal Tregs and increased
susceptibility to airway hyper-responsiveness (88). Similarly, pre-
and post-natal exposures to antibiotics in humans have been
associated with an increased risk of developing asthma (89).
In a recent longitudinal study, Galazzo et al. (76), showed that
the bacterial genera Lachnobacterium, Lachnospira and Dialister
were significantly decreased in the gut microbiome of infants who
developed asthma by school-age compared to healthy controls.
Analysis of the gut microbiome at 3 months of age within
the Canadian Healthy Infant Longitudinal Development Study
(CHILD) showed a reduction in bacterial taxa of the genera
Lachnospira, Veillonella, Faecalibacterium, and Rothia among
infants at risk of childhood asthma (90). In another recent
observational cohort study, a reduction of Lachnospiraceae,
Faecalibacterium, and Dialister at 1 year of age was associated
with an increased risk of asthma at 5 years of age (91).

The protective effect of these bacterial taxa on asthma
occurrence could be mediated by their fermentation products
(92, 93). Faecalibacterium prausnitzii ferments dietary fiber
to produce SCFAs, most notably butyric acid (93). Butyrate
is the preferred energy source for colonocytes and has anti-
inflammatory effects by inducing Tregs and promoting epithelial
barrier permeability (94). SCFAs can contribute to the maturation
process of dendritic cells in the bone marrow, leading to mature
cells with a reduced ability to instigate Th2 responses in the lungs
and to induce IgA production by mucosal B cells (94). High levels
of gut microbial-derived butyrate in early life reduce the risk of
allergen sensitization and asthma occurrence later in life, both in
experimental and human studies (94, 95).

Finally, a recent systematic review of studies examining
the effect of oral probiotic supplementation on asthma-related
outcomes reported no significant differences in children receiving
probiotics compared to the control groups regarding asthma
control and lung function (96).

Frontiers in Immunology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 70055

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00700 April 21, 2020 Time: 16:48 # 6

Peroni et al. Microbiome Composition and Allergic Diseases

CONCLUSION

Early life is a crucial period for microbiome and immune
development. The perturbation of the development and
maturation of the microbiome during the first few years
of life can have a variety of harmful effects on immune
health, contributing to determining the development of atopic
diseases. Although current understanding of the relationships
between early life nutrition, microbiome, and immune system
development has significantly increased in recent years,
substantial knowledge gaps persist regarding the molecular

mechanisms involved. Understanding these mechanisms is of the
outermost importance to develop effective prevention strategies
for allergic diseases.
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The prevalence and incidence of allergic diseases is rising and these diseases have

become the most common chronic diseases during childhood in Westernized countries.

Early life forms a critical window predisposing for health or disease. Therefore, this can

also be a window of opportunity for allergy prevention. Postnatally the gut needs to

mature, and the microbiome is built which further drives the training of infant’s immune

system. Immunomodulatory components in breastmilk protect the infant in this crucial

period by; providing nutrients that contain substrates for the microbiome, supporting

intestinal barrier function, protecting against pathogenic infections, enhancing immune

development and facilitating immune tolerance. The presence of a diverse human milk

oligosaccharide (HMOS) mixture, containing several types of functional groups, points

to engagement in several mechanisms related to immune and microbiome maturation in

the infant’s gastrointestinal tract. In recent years, several pathways impacted by HMOS

have been elucidated, including their capacity to; fortify the microbiome composition,

enhance production of short chain fatty acids, bind directly to pathogens and interact

directly with the intestinal epithelium and immune cells. The exact mechanisms underlying

the immune protective effects have not been fully elucidated yet. We hypothesize that

HMOS may be involved in and can be utilized to provide protection from developing

allergic diseases at a young age. In this review, we highlight several pathways involved

in the immunomodulatory effects of HMOS and the potential role in prevention of allergic

diseases. Recent studies have proposed possible mechanisms through which HMOS

may contribute, either directly or indirectly, via microbiome modification, to induce oral

tolerance. Future research should focus on the identification of specific pathways by

which individual HMOS structures exert protective actions and thereby contribute to the

capacity of the authentic HMOS mixture in early life allergy prevention.

Keywords: human milk oligosaccharides, mucosal immunity, allergic diseases, early life nutrition, sialyllactose,

fucosyllactose, non-digestible oligosaccharides
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INTRODUCTION

Human milk is unique in its composition as it covers all
nutritional and physiological infant requirements during the
first months of life (1). Therefore, investigating the biological
activity of components derived from human breast milk is an
area of great interest, in order to identify specific components
that support proper immune development in the infant when
breastfeeding is not possible. The first indications of a link
between breastfeeding and allergy outcome later in life has
been published almost a century ago (2). Since then, numerous
studies have been conducted to substantiate this suspected link
(3–8). Breastmilk is the gold standard in early life nutrition,
because of its large range of bio-active protective nutrients
essential for healthy development of the microbiome and gastro-
intestinal and immune maturation. However, it can also transfer
allergens which may cause allergic reactions in atopic or allergic
infants. Therefore, the conflicting data presented by these studies
demonstrate the importance of studies further evaluating the
biological activities of specific constituents found in human milk
(9), such as human milk oligosaccharides (HMOS).

HMOS are the third most abundant component of human
breast milk after lactose and lipids. The concentration of total
HMOS in human breast milk ranges from 5 to 15 g/L, depending
on the stage of lactation and genetic background of the mother
(10, 11). More than two hundred structurally different forms
of HMOS have been identified (12–14). Different structural and
functional groups of HMOS have been related to various effects
on several aspects of the immune system (15–19), highlighting
the need for a diverse mixture of oligosaccharides in neonatal
nutrition for optimal immune development.

Maturation of the immune system in the gastrointestinal tract
is linked to proper systemic immunity and the establishment
of effective oral tolerance for harmless food proteins and
commensal bacteria of the host microbiome (20). As microbial
colonization coincides with a rapidly maturing immune
system in infants, microbial dysbiosis may therefore disturb
development of the gastro-intestinal tract and immune system
(21). Microbial dysbiosis and immature immune responses
are thought to play a crucial role in e.g., necrotic enterocolitis
(NEC), a disease characterized by inflammation and necrosis of
the intestines affecting especially premature infants (22), whose
immune system is not yet fully developed. Pathologies such as
NEC and allergic diseases share common ground, as both have
been linked to impaired microbial colonization and improper
immune maturation.

One of the specific contributions of HMOS in human milk
is its prebiotic capacity. Modulation of the infant’s microbiome
composition into a bifidogenic profile has been shown to have
beneficial effects on infant health. Therefore, prebiotics, such
as galacto-oligosaccharides (GOS) and fructo-oligosaccharides
(FOS), have shown several beneficial immune and microbiome
developments in infants (23–25). The specific combination
of 90% short-chain (sc)GOS with 10% long-chain (lc)FOS
resemble the molecular size distribution of the neutral HMOS
fraction found in human milk (26). Prebiotic supplementation
with scGOS and lcFOS reduces the incidence of allergy

development (26–31). Murine models for both food allergy
and house dust mite induced allergic asthma demonstrated
the preventive effects of non-digestible oligosaccharides (29,
30). Moreover, scGOS/lcFOS supplemented infant formula in
neonates decreased the prevalence of atopic dermatitis and other
allergic manifestations (26–28).

Currently, only a small number of in vivo studies have
investigated immunomodulatory properties and immune
development capacities of HMOS. Thus, there are a limited
amount of studies that attribute immune development properties
to HMOS and individual HMOS structures. Several studies
describing immunomodulatory effects of scGOS and lcFOS
have been included in this review as they may serve as a
framework in which future research could focus on elucidating
how immune related mechanisms may be affected by HMOS.
In addition, almost no clinical trials have investigated the
effects of HMOS supplementation, although the association
between the presence of specific HMOS biologically available in
human milk and the prevalence of infectious diseases (32–34)
or allergic diseases (35–37) has been indicated. The possible
biological functions of HMOS gain support from studies that
show a potential protective effect of prebiotic administration
in in vitro models, animal models and human studies against
development of asthma or allergy (28, 35, 38, 39). Most of the
HMOS are not digested in the upper part of the gastrointestinal
tract, but are fermented by local microbiota (40). A large
proportion of HMOS will reach the colon intact (40), where
they can serve as prebiotics for the colonic microbiota of the
infant. Although a large portion of HMOS is metabolized by
gut microbiota, some cross the intestinal (sub)mucosa and
enter systemic circulation (13, 41, 42), thereby potentially
modulating systemic immune functions. This means that
HMOS may influence immunity and potentially not only the
intestinal microbiome but also the microbiome composition in
the lungs, providing a possible explanation for the observation
that breastfed infants are less likely to develop asthma during
childhood (43). In addition, reduced occurrence (up to 50%
reduction) of atopic dermatitis, asthma, recurrent wheeze and
food allergy in infants supplemented with prebiotics in early life
has been observed (27, 28, 44–46). Despite these observations,
little is known regarding the systemic distribution of HMOS
in the infant, and how it may influence processes outside the
gastrointestinal tract.

The complexity and abundance of oligosaccharides in
human milk is unique amongst mammals (47). HMOS play
an essential role in the postnatal growth and development
of the mucosal immune system. HMOS are made up of
monosaccharide units such as glucose (Glc), galactose (Gal),
fucose (Fuc),N-acetylglucosamine (GlcNAc), and sialic acid with
N-acetylneuramic acid (Neu5Ac). HMOS synthesis follows a
distinct pattern of formation. Each structure has a Gal-Glc unit at
the reducing terminus, also known as a lactose unit, containing
a β1–4 glycosidic linkage. Elongation of lactose can occur by
addition of Gal-GlcNAc units via a β1–3 or β1–6 glycosidic bond
to form the linear or branched core structures (see Figure 1).
The HMOS core structure can be further modified through the
addition of Fuc or Neu5Ac residues (48).
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FIGURE 1 | General composition of human milk oligosaccharides and synthetic analogs. (A) All HMOS consist of only 5 different monosaccharides. The chemical

structures of these monosaccharides are presented in a D- configuration. (B) The composition of HMOS follows a distinct structure. Elongation of the core structure

and decoration with fucose and/or sialic acid residues leads to the large number of different structures discovered to date. (C) As examples, six simple

oligosaccharide structures are displayed.

The unique diversity of HMOS also includes
galactosyllactoses, with structures based on the elongation
of lactose and further galactose residues (49, 50). These types of
linkages are indigestible, but fermentable by specific bacteria;
leading to the large number of∼200 distinct structures identified
to date. Decoration of the core structure with sialic acid, results
in an acidic structure, whereas all other HMOS, including
those containing fucose groups, are considered neutral. The
composition of HMOS produced by a mother is determined by
genetic polymorphisms in genes encoding fucosyltransferases
FUT2 [Secretor (Se) gene] and FUT3 [Lewis (Le) gene]. Both
genes are polymorphic, the individual expression of these genes
are accountable for variable enzyme activity and corresponding
variation in HMOS profiles in breast milk (11). Recent data has
even indicated that these genetic polymorphisms in mothers,
impact immunologic outcome of their children later in life. This

effect was demonstrated in children, with a hereditary high risk
of developing allergic diseases, who were fed breast milk of FUT2

expressing mothers which decreased the incidence of allergic
manifestation of these children at 2 years of age (36). However,
from this study it cannot be concluded that solely this genetic
polymorphism is related to the allergic outcome of the infant, as
many genetic, nutritional and environmental factors contribute
to the immune development in neonates.

Synthetically manufactured HMOS or HMOS produced
by genetically engineered bacteria, such as 2’-fucosyllactose

(2’FL) (51), 3-fucosyllactose (3FL) (52, 53), lacto-N-neotetraose
(LNnT) (54), 3’-sialyllactose (3’SL), 6’-sialyllactose (6’SL) (55),
and 3’-galactosyllactose (3’GL) (56) have become commercial
available just recently. This provides the opportunity to study
specific pathways by which individual HMOS structures exert
their protective immunologic effects in infants.

ALLERGIC SENSITIZATION AND THE
ROLE OF THE EPITHELIAL BARRIER

The prevalence of allergic diseases is rising tremendously,
particularly in Westernized regions (57). An allergic disease is an
immunological result of complex interactions between genetic,
environmental and lifestyle factors mainly triggered by harmless
substances (58). Reduced microbial exposure and diversity is one
of the many factors that may contribute to the rise in allergic
disease prevalence. In allergic sensitization, a harmless, for
example food-derived or airborne protein, crosses the mucosal
lining and is presented by antigen presenting cells that drive
T helper 2 (TH2) biased immunity contributing to IgE isotype
switching of B-cells. Mucosal surfaces with epithelial barriers
provide the body with protection from external factors, ensuring
that only specific components and nutrients can pass through the
epithelium and enter systemic circulation. Allergic sensitization
has been linked to dysfunction of the epithelial barrier, both in the
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intestine and skin (59, 60). Epithelial barrier integrity depends,
among other factors, on the mucus layer covering the single layer
of epithelial cells. The mucus layer in the intestines prevents
the majority of pathogens and intestinal contents from making
direct contact with the epithelial cells (61). In humans, the most
abundant protein present in the intestinal mucus layer is mucin
2, which is secreted by goblet cells (62). Several factors, including
the microbiota, can influence the composition and therefore the
protective effects of the mucus (63). Gut maturation takes place
the first couple of weeks after birth rendering a leaky barrier in
the first weeks of life (64). This can help to organize oral tolerance
induction, but it also provides a risk for allergic sensitization.

Tight junctions strengthen apical connections between
epithelial cells that cover the underlying connective tissue,
thereby contributing to barrier function. Epithelial tight junction
proteins tightly regulate paracellular compartments, preventing
transport of large molecules, such as proteins and lipids or
microbes and microbial products into the underlying tissue (65).
These tight junctions are apically present and are crucial for
epithelial barrier integrity. Upon epithelial injury, antigens can
cross the epitheliummore easily. Cytokines, such as interleukin-8
(IL-8), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP),
are produced by the epithelial cells as a response to stress and
damage (66). These epithelial cell secreted cytokines influence
neighboring dendritic cells (DCs) (67). Generally, DCs in the
gastrointestinal tract are hyporesponsive and favor tolerogenic
response to prevent unnecessary inflammatory responses to
antigens and microbes (68). IL-25, IL-33, and TSLP stimulate
the uptake and processing of foreign antigens by DCs and drive
these DCs to promote development of TH2 cells from naïve T
cells (69, 70). Consequently, IL-4 and IL-13 produced by the
TH2 cells induces the activation and class-switching of B cells to
produce allergen-specific IgE (67). The secreted IgE will bind to
the high-affinity Fc receptors on the surface of mast cells. Upon
a consequent encounter, the allergen crosslinks the IgE bound
to the mast cells, triggering the mast cell to degranulate and
release inflammatory mediators, such as histamine, causing the
symptoms of allergic disease (71).

Newborns may be particularly susceptible to developing
allergic diseases since the immune system after birth is dominated
by TH2 responsiveness (72). Immune maturation involves
shifting toward a more T helper 1 (TH1) prone and regulatory
type, which favors the development of adequate immune
protection and balanced immune responses (73). The importance
of the epithelial barrier and mucosal homeostasis in prevention
of allergic sensitization has sparked interest. HMOS may help to
support this function by stimulating proper epithelial maturation
and microbial colonization (74–76).

HMOS SHAPE THE MICROBIOTA OF
NEONATES

The first 1,000 days of life are critical for the development of
a diverse, stable gut microbiome (76–78). The initial microbial
composition of the gut is determined by host genetics and
environmental factors, such as health status, mode of delivery
and diet (79). The first bacteria to colonize neonate’s intestines

are Enterobacteriaceae and Staphylococcus (80), followed by
bifidobacteria and lactic acid bacteria (81). Proper colonization
is essential for optimal development and health, as the
establishment of a rich and diverse microbiome is related to
a decreased prevalence of allergic (82), metabolic and other
immunologic diseases later in life (83, 84).

HMOS promote the growth of beneficial bacteria, such as
Bifidobacterium and Lactobacillus species (85, 86). Therefore,
HMOS are known for their prebiotic effects and as players in
shaping the microbiota of infants as depicted in Figure 2. The
microbiota supporting effects of HMOS were observed when
the gut colonization in breast-fed and formula-fed infants was
compared, while addition of scGOS/lcFOS to formula milk
was found to bring the microbiome composition closer to that
of breastfed infants (87, 88). The microbiota are capable of
fermenting oligosaccharides, however the capacity to degrade
HMOS is strain-specific and depends on the presence of several
genes (89, 90). Several strains of Bifidobacterium are well-
adapted to digest purified natural HMOS into metabolites such
as short chain fatty acids (SCFA) (90–93). Glycosyl hydrolases
(GH), expressed by bifidobacteria, cleave monosaccharides from
the HMOS and making them available for utilization by the
microbe (94). This enzymatic degradation can either occur by
membrane-associated extracellular GHs (95) or, as is the case
for Bifidobacterium infantis, intact HMOS are transported into
the cell by Solute Binding Proteins (96) and broken down by
GHs inside the cytoplasm (97). The available monosaccharides
are assimilated in central metabolic pathways and consequently
release large volumes of e.g., SCFAs (98).

Both B. longum and B. bifidum, the major intestinal bacteria
found in breastfed infants, are remarkably well-equipped to
metabolize HMOS. In contrast, B. adolescentis is often associated
with the adult intestinal microbiota, and is a less effective
HMOS metabolizer (81, 91, 93). In contrast to Bifidobacterium
spp., Bacteroides spp. are not specifically adapted to metabolize
HMOS, but degradation of plant polysaccharides by Bacteroides
spp. has been indicated (90). As plant-derived oligosaccharides
are structurally comparable to human oligosaccharides, the
capacity of multiple Bacteroides strains to metabolize HMOS
is not unexpected (89). Providing a substrate for commensal
gut bacteria results in a competitive growth advantage for
these bacteria, enhancing proper colonization in the infants
intestine and reducing growth conditions for and colonization by
pathogenic bacteria (99, 100).

Unlike several species of commensal gut bacteria discussed
previously, certain pathogenic species do not use HMOS as
carbohydrate source for growth, including Clostridium difficile,
Enterococcus faecalis and Escherichia coli (89). In addition,
HMOS can actively bind to several pathogenic microbes and
thereby possibly prevent adhesion as first step of infection
(101). Infant formula can be supplemented with the prebiotics
scGOS and lcFOS in order to promote the growth of various
Bifidobacterium and Lactobacillus strains (102). However, these
oligosaccharides do not contain terminal fucose or sialic acid
residues, hence missing out biological function of HMOS related
to these specific functional groups (103).

Proper colonization of the gut promotes intestinal barrier
function and immune maturation (104). The establishment
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FIGURE 2 | Overview of the possible functions of HMOS related to the prevention of allergic diseases. The diversity in structures suggests engagement in several

mechanisms related to maturation of the infant’s gastrointestinal tract. (1) HMOS have shown to function as prebiotics and therefore stimulate growth of commensal

bacteria. In addition, HMOS have shown to bind pathogens, thereby preventing binding of these pathogens to the intestinal epithelium itself and possible consequent

infections. SCFAs produced during HMOS fermentation can enhance epithelial barrier integrity and locally and systemically modify immune responses. (2) HMOS can

promote mucus production and epithelial tight junction integrity, thereby supporting the physical barrier between the intestinal epithelium and the gut content. (3)

Several mechanisms by which HMOS directly affect the immune function have been described. Modulation of the response of DCs is one of those described

mechanisms which may be relevant for the instruction of protective mucosal immune development. (4) Transportation of a small fraction of HMOS over the intestinal

epithelium, results in systemic availability of these structures. This suggests an immunomodulatory role for HMOS, also beyond the gastrointestinal tract. All these

HMOS related mechanisms can potentially enhance tolerance induction and therefore possibly prevent allergic diseases. Adjusted from Ayechu-Muruzabal et al. (48).

of a rich and diverse microbiome is related to a decreased
prevalence of allergic diseases (82). Prebiotics like HMOS
can support the growth and function of commensal bacteria
and therefore possibly enhance gut microbial diversity. The
association between microbial diversity and development of
allergic diseases (83, 105) and the role of HMOS in this context,
has yet to be elucidated.

METABOLITES OF HMOS INFLUENCE
INTESTINAL BARRIER INTEGRITY AND
IMMUNE FUNCTION

As described in previous section, HMOS are digested by
intestinal bacteria, resulting in various metabolites, among which

SCFA are well-known for immunomodulatory properties. The
fermentation of major HMOS by bifidobacteria and lactobacilli
into SCFA is very efficient (81), hence these bacteria are the
dominant suppliers of SCFA in the infant’s colon. Butyrate,
propionate, and acetate are SCFA metabolites that have gained
interest in recent years due to their proposed health benefits.
Butyrate is mainly utilized by the epithelial cells, whereas acetate
and propionate can be transported across the epithelial barrier to
become systemically available in low levels via the bloodstream as
depicted in Figure 2 (106).

Upon absorption by the colonic epithelial cells, SCFA
promote several functions of the epithelial barrier. The
mucus layer covering the epithelial cells is essential to
maintain epithelial barrier integrity. SCFA enhance the
mucus secretion by upregulating the expression of mucin 2
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(107). Acetate, produced in high levels by Bifidobacterium
and Bacteroides species, increases the expression of genes
related to mucus and support goblet cell differentiation
(108–110). In addition, SCFA are known to protect against
inflammatory insults and fortify the tight junction barrier
(111). Promoting and enhancing the epithelial integrity
may be of relevance in preventing allergic diseases, as
a disrupted intestinal epithelial layer could lead to a
compromised local tolerance response in which food
allergens are able to reach underlying immune cells
intact (112).

In addition, SCFA interact with DC and T cells and
therefore modulate inflammatory immune responses. Many of
the protective effects of SCFA have been attributed to the
interaction with G protein-coupled receptors (GPR) present on
intestinal epithelial cells and immune cells (113). Moreover,
GPR-independent regulation of the immune response via T
cell modulation has been shown in a murine model (114). In
this model, SCFA regulate cytokine production via mammalian
target of rapamycin (mTOR) by inhibiting histone deacetylase
(HDAC) in T cells. In a previous study, butyrate effectively
inhibited several HDACs in various cells, among which those
that promote the transcription of FoxP3 in T cells, leading to
increased expression of this hallmark transcription factor of
regulatory T (Treg) cells (115, 116). In addition, inhibition of
maturation and differentiation ofmacrophages andDCs has been
demonstrated (117). Suppression of inflammatory responses
by butyrate was shown to involve inhibition of the NF-κB
pathway in inflammatory cells such as macrophages in the lamina
propria (118).

Interestingly, recently it was found that the microbiome
of infants who develop allergic diseases during childhood
have a reduced genetic potential for butyrate production
from complex carbohydrates, supporting the importance of
SCFA production in protecting the infant from developing
allergic diseases (119). Therefore, supporting the microbial
development may be of interest in infants more susceptible
to developing allergic diseases (120, 121). All together, as
bacterial metabolites of HMOS, SCFA may contribute to
the immunomodulatory and protective effects against allergic
disease development.

HMOS STRENGTHENING THE INTESTINAL
EPITHELIAL INTEGRITY

Beyond their fermentation products, HMOS themselves may
directly provide protection from intestinal epithelial barrier
dysfunction (122), by promoting epithelial barrier maturation
and mucus production (75) (illustrated in Figure 2). A mixture
of human milk derived HMOS was shown to increase mucus
production after 24 h of in vitro treatment in two different
intestinal epithelial cell lines. The improved mucus production
was linked to an upregulation of Muc2. In addition, apart
from increased mucus production, HMOS could protect against
pathogen induced barrier disruption as determined by means of
transepithelial electrical resistance (TEER) (123). Furthermore,

pollution induced loss of epithelial barrier integrity could
be prevented by scGOS and 3’GL as measured in both
TEER values and luciferase yellow flux across the intestinal
epithelial monolayer in Caco-2 cells (124, 125). It was also
demonstrated that supplementation with scGOS resulted in a
significant increased rate of tight junction reassembly (124).
Interestingly, the galactosyllactose with a β1–3 glycosidic linkage
was effective in protecting the intestinal barrier function,
whereas the galactosyllactose with an α1–3 glycosidic linkage
did not prevent the deoxynivalenol (DON)-induced disrupted
intestinal barrier (125). The protective effect of 3’GL on the
intestinal epithelial barrier under challenge is structure-specific,
which supports the notion that it is critical to understand the
function and diversity of the structures within the total pool
of HMOS, including the specific benefits of 3’GL within early
life nutrition. These studies show that HMOS may directly
promote proper development of the intestinal barrier, which
strengthens the physical barrier between the intestinal epithelium
and the gut content, contributing to lower antigenic load and
mucosal homeostasis, which may help to decrease sensitization
to food allergens.

In addition to this, the immunologic effects that are mediated
through interaction between the intestinal epithelium and
the underlying mucosal immune system should be addressed.
Administration of synthetic HMOS 6’SL to antigen-antibody
complex activated intestinal epithelial cells in vitro and resulted
in a dose-dependent decrease of IL-8 and CCL20 secretion.
Whereas, administration of 2’FL selectively reduced the secretion
of CCL20 from the two cell lines used in this study (38).
Similarly, a decrease of cytokine and chemokine production
was observed upon TNFα stimulation of these cells after 6’SL
exposure. Furthermore, comparable outcomes were observed
for 3’GL, 4’GL, and 6’GL in an in vitro model for the infant
intestinal epithelium (50). However, this decrease in cytokine
production was not observed when two different intestinal cell
lines were exposed to 2’FL (38). Additionally, it was observed that
3’SL, which is an isomer of 6’SL, downregulated the production
of pro-inflammatory cytokines in Caco-2 intestinal cells by
inhibition of the NF-κB pathway in a PPARγ dependent manner
(126). These observations indicate that different functional
groups and structures of HMOS exert the anti-inflammatory
effects via different mechanisms. Silencing exaggerated or
unwanted epithelial cell activation is essential for maintaining
mucosal homeostasis.

Data indicated that mice, fed a diet supplemented with
GOS for 2 weeks prior to exposure to DON, maintain their
normal cellular distribution, as measured by villus height in
the proximal small intestine (124). A study in suckling rats
investigated the effects of 2’FL on mucosal immunomodulation
(19). After treatment with 2’FL for 16 days an overall lower
presence of inflammatory cytokines in the intestines compared
to a reference group was observed, whereas the ratio of TH1/TH2
cytokines remained unchanged. In addition, the height and
area under the villi present in the intestines was significantly
increased upon supplementation with 2’FL, pointing to a positive
effects of this prebiotic on intestinal growth (19). This is linked
to the observation that 2’FL and scGOS/lcFOS in early life
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TABLE 1 | Overview of HMOS binding receptors, potentially involved in immunomodulation.

HMOS identified as ligands Receptor Expression of receptor on Function of receptor References

2’FL, 3FL, LNFP-III, LNFP-IV, LNDFH-I DC-SIGN Antigen presenting cells Antigen presentation (138–140)

3’SL and 6’SL Siglec 5, 9 Neutrophils, monocytes, dendritic cells Immune signaling (138, 141)

LNnT, LNT, LNFP-II, LNFP-III, LNDFH Galectin 1, 2, 3, 7, 8, 9 Intestinal cells, lymphocytes, antigen presenting cells Immune signaling (142–144)

2’FL and 3’SL TLR4 Most cell types, mainly immune cells Pathogen detection (15, 16)

Adapted from Triantis et al. (145).

alter gut microbiome development while supporting vaccination
responses (18, 127, 128).

In the light of NEC, especially sialylated oligosaccharides
have shown promising outcomes in vivo in prevention and
development of necrotic intestinal lesions (122). Several studies
in neonatal rats have reported reduced pathology scores upon
intervention with HMOS mixture (129), or single HMOS
alone (130, 131). Although sialylated oligosaccharides have been
identified as the protective agents (129), intervention with
2’FL has also resulted in a reduced pathology score in rats
(130). Dietary supplementation of 2’FL in preterm pigs had no
significant effects on intestinal structure, digestive function and
the development of NEC (132). Nonetheless, pooled HMOS,
rather than single HMOS, have consistently shown to be most
effective in preventing development of NEC (122).

Moreover, it has been shown that HMOS provision early in
life can protect against the development of autoimmune diabetes
in NOD-mice (133). The number of in vivo studies looking
into the immunomodulatory effects of single HMOS are rather
limited, and currently restricted to only the simple short chain
structures. In a murine model for hen’s egg allergy, 2’FL or
6’SL were found to reduce allergy symptoms in association with
the induction of IL-10+ Treg cells (39). Prebiotic mixtures, such
as scGOS and lcFOS, have been studied more extensively for
immunomodulatory effects in vivo, showing promising results
with regards to preventing allergic diseases, such allergic asthma
and food allergy and these effects also link to the induction of
Treg responses (134–137). This implies a need for additional in
vivo studies to gain insight in the properties of (single) HMOS to
modulate gut maturation and the development of the mucosal
immune system. Combining these studies, the direct effects of
HMOS on the intestinal epithelial integrity and activation status
and possibly the mucosal immune system are only started to be
elucidated. The exact mechanisms and pathways involved are not
yet fully understood. However, some of the receptors involved
in HMOS signaling are identified and will be discussed in the
following section.

HMOS BIND TO AND ACT AS RECEPTORS

One potential role of HMOS to modulate the infant’s immune
system is through receptor binding properties. In fact, multiple
classes of human receptors have been described to interact with
specific structures of HMOS, as summarized in Table 1. These
receptors are mainly expressed by innate, adaptive immune cells
and epithelial cells, they may therefore play a key role in mucosal
immunomodulatory effects of HMOS (145).

Glycan Receptors
Glycan-binding receptors, also known as lectins, are particularly
effective in binding HMOS. Many of the receptors belonging
to the lectin family are involved in modulation of immune
pathways. Lectin receptors consist of several subcategories,
such as: membrane bound C-type lectins, sialic acid binding
immunoglobulin-like lectins (Siglecs) and soluble type galectins.

The C-type lectin receptor dendritic cell-specific ICAM-
grabbing non-integrin (DC-SIGN) is present on the surface of
DCs and macrophages. It is usually involved in phagocytosis
of pathogens upon recognizing pathogen-related glycoproteins.
DC-SIGN has an affinity for HMOS containing α-linked fucose
residues (138). A high affinity for 2’FL and 3FL (2 major
structures of HMOS)may be of distinct physiological relevance in
modulating immune responses in infants. DC-SIGN is expressed
by cells in the gastrointestinal tract (139) and this receptor can
promote allergen uptake by DCs. This may lead to subsequent
TH2 cell polarization as seen in patients with atopic dermatitis
(146). Therefore, even though DC-SIGN can confer protective
regulatory immunity in a pre-clinical model for auto-immune
disease (147), DC-SIGN signaling may be involved in the
sensitization phase of allergic diseases as allergens are capable of
DC activation via DC-SIGN binding (148). An HMOS mixture
derived from human milk was found to lower the expression
of DC-SIGN on DC (140). This indicates that HMOS may be
able to reduce DC-SIGN driven allergic sensitization through
suppression of DC-SIGN expression on DC and via blocking the
DC-SIGN receptor.

Siglecs are expressed by several immune cells that are involved
in allergic effector responses, such as eosinophils and mast cells.
Siglecs have been associated with binding of sialylated HMOS,
although previous results show only affinity of siglec-1, -5, -7,
-9, and -10 to 3’SL and 6’SL (141), and more recent data show a
more limited binding affinity of Siglecs for HMOS (138). Siglec-9
provides low binding affinity for 3’SL and 6’SL, while siglec-5
has very low affinity for only 3’SL. This study found no other
Siglecs to bind sialylated HMOS (138). Hence, the presence of
sialic acid alone is not sufficient to ensure functional binding to
a Siglec receptor (138). Siglec-7 and siglec-8 have been associated
with allergy related immune mechanism (149, 150) making these
potential targets for immune modulation by HMOS in relation to
allergy prevention.

Galectins are another group of β-galactoside-binding
receptors that bind carbohydrate moieties or glycan structures
present on proteins. Moreover, galectins are expressed on and/or
secreted by several immune cells and intestinal epithelial cells
(151). These receptors can directly forward signals into the cell
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upon binding to a ligand, but galectins can also be secreted from
cells (152). In the secreted form, galectins can act as ligands and
bind to receptors, such as TIM-3 and CD44 on other mucosal
immune cells (153). Galectins such as galectin-9 have shown to
induce Treg cells (154–156). The binding of HMOS to galectins
may directly modify galectin release and affect interactions
of galectins with other cells, potentially resulting in immune
modulation. Of the thirty-two different HMOS structures tested
for binding to four galectins (galectin-1, -3, -7, and -9) (142),
a total of 25 of these structures were recognized by all four
galectins. Significant differences in affinity for each HMOS
were observed, i.e., 2’FL, 3’SL, and LNnT were shown to bind
galectins, whereas 3FL and 6’SL did not. 2’FL, the most common
HMOS in human milk, binds with moderate-to-high affinity
to all four galectins, while 3FL a structure very similar to 2’FL,
not or weakly binds to any of the four galectins included in
the study (142). Similar results were obtained in a different
report, including galectin-1, -3, and -7 (143). These findings are
supported by a previous study (144), suggesting that all included
galectins showed affinity for LNnT, but had no affinity for 6’SL.
This study also highlighted the evolutionary conserved binding
affinity of galectins for glycans. Galectin-9 is a particularly
promising target in allergy prevention strategies, as exposure
of intestinal epithelial cells to scGOS/lcFOS together with
bacterial CpG DNA or synthetic CpG ODN promoted the
secretion of galectin-9 in vitro, which resulted in enhanced
secretion of IFNγ and IL-10 production by underlying immune
cells (154, 157). These cytokines are related to a regulatory
type of TH1 polarization and suppress TH2 cell activation.
Experiments with dietary interventions including scGOS/lcFOS
enhanced local and/or systemic galectin-9 levels in murine and
human allergy in association with symptom reduction (137).
Furthermore, galectins can become systemically available and
dampen allergic effector responses as shown in a murine model
of food allergy (137).

Pattern Recognition Receptors
Toll-like receptors (TLR) are a family of receptors known
to sense common molecules of pathogenic or commensal
microorganisms, such as TLR4 ligand lipopolysaccharide (LPS)
or TLR9 ligand bacterial CpG DNA. Decreased formation of
the three-component complex TLR4, CD14, and LPS, inhibits
subsequent pro-inflammatory immune signaling (158). Xiao et al.
showed an increase in LPS receptor TLR4 mRNA expression
upon stimulation with pooled HMOS isolated from human milk
in monocytic derived dendritic cells (moDC) in vitro, yet protein
levels of this receptor were not increased (140). In addition to
affecting TLR4 transcription, HMOS suppress the expression of
cluster of differentiation (CD)14, a coreceptor of TLR which is
necessary to recognize LPS. 2’FL significantly suppresses CD14
in intestinal epithelial cells (16). In contrast to suppression of
inflammation via TLR4 by 2’FL, pro-inflammatory properties
related to TLR4 modulation have been described for synthetic
3’SL. In a TLR4-dependent manner, 3’SL was shown to induce
intestinal inflammation (15). This pro-inflammatory effect of
3’SL can be explained by mimicking possible structural aspects
of pathogenic bacteria, thereby educating and preparing the

immune system for possible pathogenic encounters later in life.
However, the phenotypical changes of DCs by 3’SL may have
been due to LPS contamination of the oligosaccharide during
synthesis, since pre-exposure to LPS may contribute to TLR4
silencing (159). However, LPS-containing bacteria are normal
components of a healthy intestinal microbiome (160). In this
respect, the low level of endotoxins present in purified HMOS
used in in vivo studies would be minimal compared to the
vast amount of endotoxin triggers the infant receives directly
after birth. The contradicting results regarding HMOS-induced
modulation of TLR4 show that we are only beginning to elucidate
the possible immunomodulatory effects of HMOS. In addition,
as synthetic (s)HMOS are either derived from enzymatically-
processed lactose or produced by E. coli. In the latter situation
a second possible immune trigger from bacterial byproducts may
add to the biological effects of sHMOS structure. The origin of
HMOS may influence the immunomodulatory effect, therefore
an overview of the source and main outcomes of the studies
referred to in this review is provided in Table 2.

Pathogen Binding
Besides binding to receptors on the cell membrane, HMOS can
act as soluble receptors and bind to several pathogenic bacteria,
thereby preventing binding to the intestinal epithelium and
subsequent infection (101). Both in vitro and in vivo studies show
that 2’FL attenuated Campylobacter jejuni infection (17, 168).
However, Coppa et al. did not find inhibition of adhesion of
Escherichia coli, Vibrio cholerae and Salmonella fyris in an in
vitro intestinal epithelial setting with 2’FL (101). Nonetheless,
inhibition of adhesion was observed with 3’SL, 6’SL and 3FL
and combinations of these sHMOS. There was a diminished
growth of Streptococcus agalactiae (group B Streptococcus)
upon incubation with human pooled natural HMOS, that was
attributed to the neutral fraction of the HMOS (169). This effect
was supported by other studies, as pooled HMOS inhibited
growth of group B Streptococcus (GBS) and prevented biofilm
formation, although the effects of single HMOS were GBS strain
specific (170–172). In this study, the effects of HMOS were
compared to scGOS. scGOS did not diminish the growth of group
B Streptococcus (169), showing that the structures in scGOS in
this respect do not exert similar effects as the mentioned HMOS
subtypes. These studies indicate that HMOS can also function
as decoy receptors, thereby inhibiting growth and adhesion of
pathogens in the gastrointestinal tract.

As antibiotic resistance is a growing problem, alternative
antibacterial treatments are being investigated (173), including
the use of HMOS to potentiate antibiotic functioning (174). It
has been recently demonstrated that when exposed to HMOS,
GBS becomes sensitive for trimethoprim, an antibiotic to which
these bacteria are normally resistant. A significant decrease
in metabolic pathways related to membrane construction was
observed (175). Furthermore, HMOS were able to sensitize
GBS to several antibiotics, such as erythromycin, gentamycin
and clindamycin. In addition, an increased sensitivity to
gentamycin, when combined with HMOS, in Staphylococcus
aureus and Acinetobacter baumanii was also observed. However,
these potentiating effects were obtained for β-lactams and
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TABLE 2 | Overview of studies included in this review, which describe effects of non-digestible oligosaccharides (NDO) on immune function.

References Model NDO Main effect of intervention

In vitro

Gnoth et al. (42) Caco-2 cells Isolated HMOS Neutral HMOS are transported across intestinal epithelia via

receptor-mediated transcytosis as well as by paracellular flux, while acidic

HMOS are translocated solely via paracellular pathways

Eiwegger et al. (161) cord blood T cells Isolated HMOS Acidic HMOS increased the percentage of IFN? and IL-13 producing T cells

as well as CD25+ T cells. IgE and IgG1 production was unaffected

Coppa et al. (101) Caco-2 cells Isolated HMOS Acidic HMOS showed anti-adhesive effects on all 3 intestinal pathogens.

Neutral HMOS showed anti-adhesive effects on 2 out of 3 tested pathogens

He et al. (49) Fetal small intestinal

samples

Isolated HMOS HMOS from colostrum samples were able to attenuate mucosal response to

surface inflammatory stimuli, and enhanced maturation of intestinal mucosa

Xiao et al. (140) human moDCs Isolated HMOS HMOs limited LPS maturation of moDCs. HMOS-conditioned moDCs

promoted Treg generation

Newburg et al. (50) T84 cells, H4 cells,

NCM-460

Isolated HMOS and GOS HMOS attenuated surface inflammatory stimuli. HMOS and GOS attenuated

NF-κB signaling

Eiwegger et al. (162) Caco-2 cells Isolated HMOS and scGOS

+ lcFOS and AOS

Acidic HMOS increased IFN? and IL-10 secretion and suppressed TH2

cytokine production in T cells from peanut allergic patients

He et al. (16) T84 cells, H4 cells Isolated HMOS, 2’FL3,

LNFP-I3, 3’SL3 and 6’SL3
HMOS and 2’FL inhibited LPS-TLR4 signaling via suppressed CD14

expression. No significant results for any of the other tested NDOs

Holscher et al. (75) Caco-2Bbe cells, HT-29

cells

Isolated HMOS, 2’FL1,

3’SL2 and 6’SL1
Single HMOS and isolated HMOS decreased proliferation in pre-confluent

cells, but increased cell differentiation. isolated HMOS decreased apoptosis

and necrosis

Akbari et al. (124) Caco-2 cells GOS GOS improved tight junction assembly and DON induced loss of

transepithelial resistance was prevented

De Kivit et al. (154) T84 cells, HT-29 cells scGOS + lcFOS scGOS + lcFOS in combination with B. breve M-16V increased epithelial

expression and secretion of galectin-9, and enhanced TH1 and Treg
polarization

Hayen et al. (157) HT-29 cells scGOS + lcFOS and scFOS

+ lcFOS

Both mixtures induced enhanced IFN? and IL-10, but suppressed IL-13 and

TNFα secretion. scFOS + lcFOS enhanced TH1 and Treg response in a

peanut-specific co-culture (HT-29/PBMC) model

Zenhom et al. (126) Caco-2 cells FOS and 3’SL3 Both decreased levels of inflammation, as IL-12 secretion and mRNA

expression of IL-12p35, IL-8, and TNFα was reduced in a dose- and

time-dependent manner

Perdijk et al. (163) human moDCs GOS, 2’FL1 and 6’SL1 None of the oligosaccharides influenced DC differentiation and LPS-induced

maturation

Yu et al. (17) Hep-2 cells, HT-29 cells 2’FL2 2’FL attenuated C. jejuni invasion in both cell lines

Perdijk et al. (159) human moDCs 3’SL1 3’SL mediated NF-κB activation via TLR4 induction was explained by LPS

contamination

Zehra et al. (38) T84 cells, HT-29 cells 2’FL2 and 6’SL2 2’FL inhibited CCL20 secretion from epithelium upon antigen-antibody

complex stimulation. 6’SL inhibited IL-8 and CCL20 secretion from

epithelium upon antigen-antibody complex stimulation

Holscher et al. (74) Caco-2Bbe cells, HT-29

cells

LNnT3, 2’FL3 and 6’SL3 All HMOS inhibited cell proliferation in undifferentiated cell cultures. 2’FL

increased alkaline phosphatase and sucrase activity. LNnT increased

transepithelial resistance

Varasteh et al. (125) Caco-2 cells 3’GL3, 4’GL3 and 6’GL3 3’GL prevented loss of transepithelial resistance upon DON exposure, 4’GL

and 6’GL had no effect

Pre-clinical

Xiao et al. (133) Mice Isolated HMOS HMOS intervention delayed and suppressed type 1 diabetes development

and reduced development of severe pancreatic insulitis in NOD-mice

Wu et al. (123) Mice Isolated HMOS HMOS increased mucin expression, whereas intestinal permeability was

decreased

Jantscher-Krenn et al. (129) Mice Isolated HMOS and GOS HMOS reduced NEC pathology scores, the effects were attributed to

DSLNT in the HMOS mixture

Yu et al. (131) Rats Isolated HMOS, GOS and

synthetic disialylated-GOS

HMOS and sialylated-GOS reduced NEC pathology scores. GOS had no

effect on NEC development

Autran et al. (130) Rats Isolated HMOS, GOS and

synthetic disialylated-GOS

HMOS and sialylated-GOS reduced NEC pathology scores. GOS had no

effect on NEC development

(Continued)
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TABLE 2 | Continued

References Model NDO Main effect of intervention

Comstock et al. (164) Pigs Isolated HMOS, 2’FL3,

3FL3, 3’SL3, 6’SL3,

LNFP-III3 and LNnT3

HMOS stimulation IL-10 production by PBMCs. Fucosylated HMOS

decreased proliferation of HMOS. Sialylated HMOS increased PBMC

proliferation, although less CD4+ cells were observed

Akbari et al. (124) Mice GOS GOS treatment stabilized villus height upon DON exposure

Verheijden et al. (30) Mice GOS GOS prevented induction of airway eosinophilia and TH2 related cytokine

concentrations in lung, similar to budesonide treatment in house-dust mite

allergy

Verheijden et al. (135) Mice GOS GOS decreased IL-33 secretion and expression in HDM-induced asthma

Verheijden et al. (165) Mice GOS GOS decreased CCL5 and IL-13 concentration in lung tissue from

HDM-induced allergic asthma mice, similar to budesonide treatment

Djouzi and Andlueux (23) Rats GOS and FOS GOS and FOS decreased pH in caecum, increased total SCFA

concentration

Verheijden et al. (31) Mice scFOS + lcFOS scFOS + lcFOS in combination with B. breve M-16V prevented house-dust

mite induced airway inflammation

De Kivit et al. (137) Mice scGOS + lcFOS scGOS + lcFOS in combination with B. breve M-16V induced reduced

acute allergic skin response, and higher concentrations of galectin-9, which

was associated with allergy prevention

De Kivit et al. (166) Mice scGOS + lcFOS scGOS + lcFOS in combination with B. breve M-16V in an ovalbumin

allergic mouse model, reduced allergic symptoms and increased galectin-9

serum levels. DC activation and TH2 frequency were normalized in allergic

mice

Schouten et al. (134) Mice scGOS + lcFOS + AOS Prebiotic mixtures enhanced percentages of TH1 cells and decreased Th2

cell percentages were observed. Strong reduction in allergic skin reaction.

CD25+ Treg cells were involved in the tolerance induction effect

Kerperien et al. (29) Mice scGOS + lcFOS and AOS Only NDO mixtures reduced allergic skin response, whey-IgG1 levels, TH2

and TH17 mRNA expression, and increased Foxp3+ cells

Kerperien et al. (136) Mice scGOS + lcFOS + AOS Prebiotic mixtures increased mRNA expression of IL10, TGFβ and Foxp3,

and acute allergic skin response was 50% lower in whey allergic mice when

fed the prebiotic mixture. These protective effect were depended on IL10

and TGFβ

Xiao et al. (127) Mice scGOS + lcFOS + 2’FL2 NDOs enhanced influenza vaccine response, higher levels of IgG1, IgG2a,

and activated B cells were observed

van den Elsen et al. (128) Mice scGOS + lcFOS + 2’FL2 NDOs improved vaccine-specific antibody response and modulated gut

microbiota composition

Yu et al. (17) Mice 2’FL2 2’FL attenuated C. jejuni colonization, weight loss and inflammatory

cytokines

Cilieborg et al. (132) Pigs 2’FL3 2’FL intervention did not result in observed differences in bacterial

colonization, intestinal function and NEC pathology

Xiao et al. (18) Mice 2’FL2 2’FL improved humoral and cellular immune response to influenza

vaccination

Azagra-Boronat et al. (19) Rats 2’FL3 2’FL increased plasma IgE and IgA levels. Increased intestinal villus height.

Higher Lactobacillus proportion in cecum

Weiss and Hennet (103) Mice 3’SL3 3’SL induced higher degree of resistance to dextran sulfate sodium-induced

colitis

Kurakevich et al. (15) Mice 3’SL3 3’SL increased colitis, via TLR4 signaling

Castillo-Courtade et al. (39) Mice 2’FL2 and 6’SL2 2’FL and 6’SL attenuated ovalbumin induced allergic symptoms like

diarrhea, hypothermia, mast cell number in the intestine, and increased

induction of IL-10 producing Treg cells

Clinical

Newburg et al. (32) Infants HMOS in human milk Higher 2’FL and LNF-I to 3FL and LNF-II ratios in human milk correlated

with more protection against diarrhea in infants

Sjögren et al. (35) Infants HMOS in human milk Neutral HMOS concentration in human milk is not related to maternal allergy

status nor allergy development in children

Bode et al. (33) Infants HMOS in human milk Higher concentrations of HMOS in human milk were correlated to

decreased risk of HIV transmission from mother to child. However, higher

concentrations of 3’SL were found in HIV transmitting woman

(Continued)
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TABLE 2 | Continued

References Model NDO Main effect of intervention

Wang et al. (88) Infants HMOS in human milk Breastfed infants had relative higher abundances of Bacteroides, and lower

proportions of Clostridium, Streptococcus, Enterococcus and Veillonella

than infants fed formula milk

Kuhn et al. (34) Infants HMOS in human milk Higher concentrations of 2’FL and LNF-I were found in human milk from HIV

non-transmitting woman

Sprenger et al. (36) Infants HMOS in human milk FUT-2 associated oligosaccharides in human milk in infants at high risk of

allergy development, and born via C-section are associated with lower risk

of IgE-associated eczema

Seppo et al. (37) Infants HMOS in human milk Low LNFP-III concentrations in human milk was related to an increased

likelihood to develop cow’s milk allergy, compared high concentrations of

LNFP-III in infants

Grüber et al. (44) Infants Neutral oligosaccharides +

AOS

Prebiotic supplemented formula resulted in a significant lower rate of atopic

dermatitis compared normal formula in infants. Incidence of atopic

dermatitis in prebiotic supplemented infants was in a similar range

compared to breast fed infants

Moro et al. (27) Infants GOS and FOS GOS and FOS dose-dependently increased in Bifidobacteria and

Lactobacilli, in infants receiving prebiotic supplemented formula compared

to non-supplemented formula

Arslanoglu et al. (28) Infants scGOS + lcFOS Infants receiving scGOS + lcFOS had a lower incidence of allergic

manifestations, in addition, fewer physician-diagnosed respiratory tract

infections, fever episodes, and antibiotic prescriptions were recorded

De Kivit et al. (137) Infants scGOS + lcFOS scGOS + lcFOS in combination with B. breve M-16V induced higher serum

galectin-9 levels, which is associated with allergy prevention

Goehring et al. (167) Infants GOS + 2’FL3 GOS + 2’FL supplemented formula fed infants had similar plasma

inflammatory cytokine concentrations compared to breast fed infants.

Infants fed with the GOS diet had significantly increased levels of

inflammatory cytokines present in plasma

As HMOS has different origin which may influence the immunological outcome, when possible the origin of the used HMOS was noted. Biological isolated HMOS1, chemically

synthesized2, bacterial fermentation/synthesis3 or source unknown. Studies are sorted based on model subgroup (e.g., in vivo), NDO and year of publication.

glycopeptides (176). Next to the above reported antibacterial
properties, similarly some viral inhibiting interactions have been
described (177). These interactions include binding of 2’FL to
conserved epitopes, which are involved in binding to host cells,
on norovirus (178, 179). Next to 2’FL, also 3’SL and 6’SL showed
to inhibit cell binding in a rotavirus in vitro model (180).
Some promising results of HMOS intervention have even been
observed for influenza and HIV infections (177).

HMOS INTERACT WITH IMMUNE CELLS

HMOS have been detected in the blood, feces and urine of
breastfed term and preterm infants (181–184). In breastfed
infants, HMOS concentrations in urine appear to be around
10 times higher than in serum (184), which can be explained
by clearance of substances from a larger volume of blood and
accumulation in a small volume of urine. Direct effects have
been demonstrated in vitro in bone marrow-derived dendritic
cells (BMDC) treated with 2’FL. There was an increase in
the percentage of CD40+ and CD86+ BMDCs upon exposure
to 2’FL (18). Direct modulation of human moDCs was not
found for 2’FL, 6’SL and scGOS (163), but the idea of possible
moDC modulation via other HMOS cannot be excluded. BMDC
exposed to 2’FL and stimulated by influenza vaccination had a
greater capacity to induce CD4+ T cell proliferation in fresh

whole splenocytes (18). Low concentrations of a mixture of acidic
HMOS, purified from humanmilk, can alter cytokine production
in cord blood mononuclear cells (CBMC) (161). The production
of IFNγ and IL-10 in CBMCs was increased upon exposure
to acidic HMOS, while IL-13 production remained unaltered,
pointing to skewing of the balance toward a regulatory type TH1
response. Similar effects were observed in a prior study exposing
CBMC to acidic HMOS, which resulted in decreased IL-13
production in T cells (162).Mast cell function and direct effects of
HMOS on mast cell degranulation were investigated in a murine
food allergy model (39). In vitro exposure of bone marrow-
derived mast cells to 6’SL resulted in significant inhibition of
IgE-dependent mast cell degranulation, but only at a relatively
high concentration of 1 mg/mL. However, in this same study,
2’FL did not significantly inhibit mast cell activation. Both 6’SL
and 2’FL induce IL10+ Treg cells and thereby indirectly stabilize
the degranulation of mast cells, in association with reduced food
allergy symptoms (39). Hence, HMOS may have the capacity
to modulate the immune response via various mechanisms, as
indicated by the direct effects of HMOS on several immune
cell types.

In the above described murine model for food allergy,
2’FL and 6’SL reduced food allergy symptoms via inducing
Treg cells and modulating mast cells (39). After 2’FL and
6’SL treatment during challenge in ovalbumin sensitized mice
enhanced the capacity of CD4+CD25+ Treg cells to inhibit mast
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cell degranulation ex vivo (39), indicating that specific sHMOS
support Treg cell function. Similar results were found using
scGOS and lcFOS in combination with acidic oligosaccharides
or B. breve in prevention of food- (29, 166) or asthma-allergy
in mice (31, 165). In piglets, either sow-reared or formula fed,
peripheral bloodmononuclear cells (PBMCs) were isolated (164).
PBMCs from formula fed piglets showed more proliferation
than sow-reared piglets upon LPS stimulation ex vivo, while
ex vivo addition of sHMOS 2’FL normalized this increased
proliferation. The percentage of T helper cells was higher
in formula fed piglets compared to sow-reared piglets. Ex
vivo added synthetic fucosylated and sialylated oligosaccharides
downsized the expansion of the TH cell population in the formula
fed piglets, while the cytotoxic T cell population remained
unaffected by ex vivo sHMOS treatment (164). These results
indicate that fucosylated and sialylated oligosaccharides may
possess immune regulatory properties, potentially modulating an
allergic inflammatory response.

Although clinical trials in this area of research are scarce,
data from an initial study indicate that addition of 2’FL
to infant formula lowers concentrations of pro-inflammatory
cytokines in plasma compared to infants fed a control formula
(167). In addition, the decrease of these cytokines in the
2’FL supplemented infants was comparable to the low level
of inflammatory cytokines that was measured in plasma
of breastfed infants (167). As such, it should be carefully
considered whether the effects observed in any of the in
vivo and clinical studies are caused by a direct effect of the
HMOS or indirect immunomodulatory effects as a result of
microbiome modulation.

A convincing body of evidence is missing to ascribe clear
immune development properties to HMOS and individual
HMOS structures, since only a small number of in vivo
studies describe immunomodulatory properties and immune
maturation. In addition, the exact properties of the different
groups of HMOS to modulate the immune system are not clear.
Therefore, several studies illustrating immunomodulatory effects
of scGOS and lcFOS have been described here and summarized
in Table 2, as they may propose a framework in which future
research could focus to elucidate immune related mechanisms
affected by HMOS. As synthetically produced HMOS have
become available recently, studying these may contribute to
acquiring knowledge of the exact properties of HMOS and their

specific functional groups in more detail and promote research
focussing on allergy prevention. Development of adequate

in vitro models for allergic sensitization including intestinal
epithelial cells and/or dendritic cells, may help understanding the
direct immunomodulatory effects of HMOS and their possible
role in allergy prevention.

CONCLUSION

The increasing prevalence of allergic diseases has sparked interest
in the role of early life nutrition and allergy development. Dietary
components drive early life microbiome development as well
as gut and immune maturation. HMOS in breast milk exhibit
various microbiome modulating as well as mucosal immune
maturation properties, which are not yet fully understood.
However, in recent years several pathways involved in the
effects of HMOS have been elucidated, including their capacities
to fortify the microbiome composition and the release of
fermentation products including SCFAs, as well as direct
binding to pathogens and interactions with the gastrointestinal
epithelium and local and systemic immune cells (as illustrated in
Figure 2). Specific structural groups of HMOSmay target several
aspects of the immune system and modify immune function,
thereby highlighting the need for further research on this topic.
In addition, a more diverse mixture of oligosaccharide structures
in neonatal formula nutrition may more closely resemble the
HMOS composition as available in human breast milk and
provide extra benefit for the child. Future research should focus
on uncovering the mechanisms and pathways by which HMOS
and the specific functional groups present in these HMOS may
exert immunomodulatory actions. Ultimately, it would be of
utmost value to identify whether specific HMOS structures are
capable of contributing to early life allergy prevention.
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Breastfeeding is indicated to support neonatal immune development and to protect

against neonatal infections and allergies. Human milk composition is widely studied

in relation to these unique abilities, which has led to the identification of various

immunomodulating components in human milk, including various bioactive proteins.

In addition to proteins, human milk contains free amino acids (FAAs), which have

not been well-studied. Of those, the FAAs glutamate and glutamine are by far the

most abundant. Levels of these FAAs in human milk sharply increase during the first

months of lactation, in contrast to most other FAAs. These unique dynamics are globally

consistent, suggesting that their levels in human milk are tightly regulated throughout

lactation and, consequently, that theymight have specific roles in the developing neonate.

Interestingly, free glutamine and glutamate are reported to exhibit immunomodulating

capacities, indicating that these FAAs could contribute to neonatal immune development

and to the unique protective effects of breastfeeding. This review describes the current

understanding of the FAA composition in human milk. Moreover, it provides an overview

of the effects of free glutamine and glutamate on immune parameters relevant for allergic

sensitization and infections in early life. The data reviewed provide rationale to study the

role of free glutamine and glutamate in human milk in the protection against neonatal

allergies and infections.

Keywords: human milk, free amino acids, glutamine, glutamate, neonates, immune development, allergies,

infections

INTRODUCTION

Human milk is widely recognized as the best source of infant nutrition. It provides the infant with
a highly diverse mix of nutrients that supports optimal development. The health benefits of human
milk, however, go beyond that of providing nutrients. An increasing body of evidence suggests that
humanmilk provides the neonate with a protection against a variety of immune-related conditions.
For example, it is shown consistently that infants who were exclusively breastfed were less likely to
develop respiratory and gastrointestinal infections than infants who fully or partially received an
infant milk formula (1–5). This protective effect of breastfeeding against infections may extend well
beyond infancy and is indicated to be enhanced upon prolonged breastfeeding (6, 7). Furthermore,
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studies have demonstrated that exclusive breastfeeding protects
against various allergic diseases, including atopic dermatitis
(8, 9), asthma (9–11) and food allergy (12–15), especially if
there is a family history of allergic disease (16). For cow’s
milk allergy, which is one of the most common food allergies
in infants, the incidence rate is reported to be up to seven
times lower in exclusively breastfed infants, compared to infants
fully or partially fed an infant milk formula (17–19). These
unique protective capacities of human milk have driven scientific
research into the underlying mechanisms in the past decades
(15, 20, 21).

At birth, the immune system is immature (22). Compared
to adults, the neonatal immune system is characterized by
diminished innate effector cell functions, suppressed T-helper 1
(TH1) immune responses and skewed T cell responses to antigens
toward T-helper 2 (TH2) immunity. These characteristics
correlate with an increased susceptibility to infections and
allergies in the neonatal period (23, 24). This susceptibility is
further enhanced by an immature intestinal barrier function
and an incomplete intestinal microbial colonization at birth
(23). Various factors in human milk have been identified that
could support the development of these immune functions, and
thus may contribute to the protection against infections and
allergies. For instance, human milk contains immunoglobulin
A (IgA) antibodies, which confer protection against pathogens
and are reported to induce tolerance to food allergens
(25, 26). Moreover, various bioactive oligosaccharides, fatty
acids and proteins have been identified in human milk that
are capable of modulating immune responses directly, e.g.,
by regulating immune responses to pathogens (27–29), and
indirectly, e.g., by shaping the gut microbiome (29–32). In
addition to proteins, human milk also contains protein-
unbound, free amino acids (FAAs). Accumulating evidence
indicates that certain FAAs are bioactive, and more specifically
have immunomodulating capacities (33, 34). Hence, FAAs in
human milk may play an active part in an optimal immune
development of the infant. However, whereas research on
physiological functions of FAAs has made significant progress
in recent years, FAAs are typically overlooked in human
milk research.

Of the total content of amino acids (AAs) in human milk,
5–10% is present in free form. The FAAs glutamate and
glutamine are by far the most abundant, both in absolute sense
and relative to their protein-bound form, together comprising
almost 70% of all FAAs present in human milk (35). Their
levels display unique and consistent patterns over lactation,
suggesting that secretion of these FAAs in human milk is a
regulated process (35, 36). Interestingly, these structurally related
FAAs have been widely associated with immunomodulation,
including the modulation of immune mechanisms relevant for
the development of allergies and infections. This review aims to
describe the current understanding of the FAA composition in
human milk, and to provide an overview of the effects of the
FAAs glutamine and glutamate on immune parameters relevant
for allergic diseases and infections in early life. Ultimately, a
better understanding of the composition of FAAs in human milk
and their immunomodulating capacities may contribute to the

development of new avenues in the prevention of allergies and
infectious diseases in infancy.

AMINO ACIDS IN HUMAN MILK:
PROTEIN-BOUND AND FREE AMINO
ACIDS

It is well known that protein quality and quantity are key aspects
of the nutritional value of human milk. The total amino acid
(TAA) composition of human milk, including protein-bound
AAs and FAAs, is used to evaluate the quantity and the quality
of the milk proteins and hence is well characterized (36, 37).
However, many studies only report the TAA composition and
do not distinguish between protein-bound and FAAs. As a result,
data on FAAs in human milk are relatively limited.

FAAs in human milk have been reported to account for ∼5–
10% of the TAA content (35, 36). Despite their low abundance
relative to protein-bound AA levels, the relevance of FAAs in
human milk should not be underestimated. Their levels are
approximately 100 times higher than the 0.05% FAA pool in
tissues (38) and up to 30 times higher than the FAA levels
in plasma of infants (39). Moreover, FAAs in human milk
contribute significantly to the initial changes in plasma levels
of FAAs following a feed (40, 41) and are indicated to be
more readily absorbed (42–44), appear sooner in the circulation
and thus might reach peripheral organs and tissues faster than
protein-derived AAs. Indeed, differences in plasma FAA levels
were observed between infants receiving an infant milk formula
containing FAAs and infants receiving an equivalent portion
of AAs in the form of intact protein, suggesting differences in
absorption kinetics between FAAs and protein-derived AAs (45–
47). In contrast to their protein-bound counterpart, FAAs can
interact with specific receptors present on a wide variety of cells in
various parts of the body, including the intestines, where they can
activate specific intracellular pathways and confer physiological
effects (34, 48).

While human milk directly supplies infants with FAAs,
human milk proteins could also provide the infant with FAAs
via proteolysis in the neonatal gastrointestinal tract. However,
the contribution of proteolysis of human milk proteins to the
FAA supply of infants might be relatively low, as (complete)
proteolysis of these proteins in infants is shown to occur to
a minimal extent (49–52). Factors contributing to the limited
proteolysis of human milk proteins are the relatively low output
of pepsin and gastric enzymes observed in infants, the relatively
high gastric postprandial pH which leaves proteases largely
inactive, as well as the high degree of glycosylation of these
proteins (50). Accordingly, it has been argued that the availability
of FAAs in the upper region of the gastrointestinal tract,
including the upper parts of the small intestine, is almost entirely
dependent on the dietary FAA content (48).

The unique abilities of FAAs compared to protein-bound
AAs and the relatively inefficient proteolytic capacity of neonates
underline the importance of understanding the FAA composition
in human milk, separate from the TAA composition.
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The FAA Composition in Human Milk is
Dynamic and Seemingly Regulated
The composition of human milk is known to be dynamic over
the course of lactation. The total protein content has been
consistently shown to decrease in the first 3 months of lactation
(35, 36). It is argued that this decrease correlates with the infant’s
protein requirements for growth and that it prevents overfeeding,
as milk volume intake increases during this period (53, 54).
Not surprisingly, similar dynamics are found for the protein-
bound AA content in human milk. For each individual AA
the protein-bound form decreases to a highly similar extent
during lactation, indicating that the dynamics of protein-bound
AAs in human milk during lactation are not AA-specific (35).
In contrast, levels of FAAs in human milk display dynamics
during lactation that are highly AA-specific: whereas levels of
some FAAs decrease in the first 3 months of lactation, others
remain stable or sharply increase (35, 36). Remarkably, these FAA
dynamics during lactation are consistent in studies across various
ethnic groups and geographical locations, indicating that these
dynamics are globally consistent and thus seemingly regulated
(35, 36, 55, 56).

The underlying mechanisms regulating the dynamics of FAA
levels in human milk are poorly understood. Cells of the
mammary gland secrete proteases and anti-proteases into human
milk that together regulate the cleavage of specific AAs from
human milk proteins, generating FAAs and peptides (57). Thus,
it can be hypothesized that temporal changes in net proteolytic
activity in humanmilk contribute to the FAA dynamics, although
this is unlikely as levels of all major human milk proteases
and anti-proteases decrease during lactation, along with levels
of their substrates (50, 58). Mammary gland cells can also
directly secrete FAAs into human milk via AA transporters
present on their cell membranes. Interestingly, animal studies
have shown that the expression of certain AA transporters in the
mammary gland increases with progressing lactation, whereas
that of others remains unchanged (59–62). These expression
dynamics throughout lactation appear to be tightly regulated
by multiple intracellular signaling pathways (63). Thus, it can
be speculated that the dynamic expression of AA transporters
on mammary gland cells along lactation contributes to the FAA
dynamics in human milk.

To better understand the mechanisms underlying the
secretion of FAAs in human milk, several studies examined the
influence of maternal characteristics on the FAA composition in
human milk. Whereas, FAA levels seem to be independent of
the mothers’ age (64), maternal body-mass index is reported to
slightly influence levels of several FAAs (65, 66). Mechanisms
underlying this effect are not known, but may involve the
hormone prolactin, as prolactin is involved in regulating FAA
transport in the mammary gland and levels of prolactin associate
with maternal body-mass index (67–69). Studies investigating
the effect of maternal diet on the AA composition in human
milk indicate that the TAA composition is largely independent
of the AA composition of the diet (70, 71). For FAAs, this
relation remains to be examined in humans. However, studies
across different geographical locations where different diets are

consumed show largely similar levels and ratios of FAAs in
human milk, suggesting that maternal diet is not of major
influence (35, 36, 55, 56). This is supported by the finding that
oral supplementation of a single load of glutamate (6g) in healthy
lactating women did not alter levels of any of the FAAs in their
breastmilk (72). Moreover, several studies reported that there was
no association between maternal plasma levels of FAAs and the
FAA levels in human milk (73, 74). In fact, some FAAs were 1- to
15-fold higher in plasma compared to milk, whereas levels of free
glutamate were 40-fold higher in milk than in plasma.

All together, these findings indicate that selective FAA
transport occurs in mammary tissues during lactation and
that levels of FAAs in human milk might be highly regulated
throughout lactation.

Correlations of FAAs in Human Milk With
Lactation Stage, Gestational Age and
Infant Anthropometrics: A Special Role for
Free Glutamine and Glutamate?
The FAAs glutamine, glutamate, glycine, serine and alanine in
human milk have consistently been shown to increase in the first
3 months of lactation, whereas the levels of most other FAAs
remain relatively stable along lactation (35, 36, 55, 56). Of these,
glutamate is by far the most abundant, accounting for more than
50% of the total FAA content at any stage of lactation. In addition,
glutamate shows the highest absolute increase in concentration
along lactation, increasing from∼1.25 to 1.75mM frommonth 1
to 6 of lactation (35). Glutamine, the second-most abundant FAA,
shows the highest relative increase in concentration, increasing
almost 350% from month 1 to 6 of lactation and reaching a
concentration of up to 0.6mM (35, 64, 75). In addition to the
stage of lactation, the gestational age of the infant has also been
reported to be a determinant of the free glutamine levels in
human milk. A meta-analysis has shown that free glutamine
levels in milk for preterm infants are almost three times lower
than those observed in milk for term infants in the first month of
lactation (36). Levels of all other FAAs were similar in preterm
and term human milk samples, indicating that this difference
was AA-specific.

Studies investigating associations of FAAs with infant
anthropometrics are scarce but do report consistent findings. It
was recently reported that free glutamate levels in human milk
were significantly higher for term infants that had faster weight
gain (76). Moreover, glutamine levels also tended to be higher
for fast growing children. Consistent with these findings, another
study reported a positive association between free glutamine
levels in human milk and infant length at 4 months of age (65).
These findings are in line with studies indicating that milk for
boys tends to have higher levels of free glutamine and glutamate
than milk for girls in the first 3 to 4 months of lactation (35, 76),
as boys are known to gain more weight and length than girls in
this time period (77).

The finding that levels of free glutamine and glutamate in
human milk are relatively high, display unique dynamics along
lactation, and are associated with infant anthropometrics urges
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the need to understand the functions that these FAAs could have
during infant development.

THE DIVERSITY IN PHYSIOLOGICAL
FUNCTIONS OF FREE GLUTAMINE AND
GLUTAMATE

In the last decade, it has been recognized that glutamine and
glutamate are essential AAs at key times in life, including the
neonatal period when rapid growth occurs (78, 79). Although
these two FAAs are structurally related, they appear to be
different in terms of absorption by the infant. Whereas dietary
glutamine supplementation in infants leads to higher plasma
levels of this AA (80, 81), plasma levels of glutamate are
largely unaffected by dietary glutamate (82, 83). This suggests
that free glutamate in human milk is almost entirely used
by splanchnic tissues, limiting its availability for other tissues,
whereas glutamine might also exert direct effects elsewhere in the
body. Despite these differences, most of the dietary glutamine
and glutamate provided to neonates is consistently shown to
be used by the intestines (84, 85). The intestines do not only
form a physical barrier to protect against pathogens but are also
home to the largest immune organ of the body: the gut-associated
lymphoid tissue (GALT). This may explain why glutamine and
glutamate are associated with a wide range of physiological
functions, ranging from energy provision to cells to more specific
immunomodulating functions, many of which could be relevant
in the context of the prevention of neonatal allergies and
infections. Figure 1 provides a summary of the demonstrated
effects of free glutamine and glutamate in (developing) intestinal
tissues, which are described in detail below.

Metabolism of Glutamine and Glutamate in
Intestinal Epithelial Cells and Immune
Cells: Their Function as Energy Substrate
and Protein Precursors
It is well-established that glutamine and glutamate are important
energy substrates for intestinal epithelial cells (IECs) and
immune cells, especially during periods of rapid growth (86).
In fact, studies in young animals and infants have shown that
approximately half of the dietary glutamate and glutamine is
oxidized by intestinal and immune cells, ultimately leading to
the generation of energy for the cells to adequately function and
grow (87). Intestinal cells can convert glutamine into glutamate,
which is crucial for the usage of glutamine for energy purposes
(88). Whereas, human intestinal cells can also convert glutamate
into glutamine, this process is limited due to the low glutamine
synthetase activity in the small intestine (89, 90). In the neonatal
period, this ability may be further limited as studies in young rats
demonstrated that glutamine synthetase activity is particularly
low in the pre-weaning period (91, 92). Remarkably, IECs as
well as immune cells cannot function properly without the
availability of exogenous glutamine (93). This, combined with
their limited capacity to synthetize glutamine suggests that
adequate functioning of these cells in the neonatal period might
be partially dependent on dietary-derived glutamine.

Besides serving as energy substrates, free glutamine and
glutamate are both specific precursors for glutathione, which
is the main antioxidant in IECs and immune cells and critical
for the prevention of cellular damage caused by pro-oxidants
(94). An imbalance in pro- and antioxidants, known as oxidative
stress, stimulates inflammatory responses that can lead to the
development and maintenance of allergic disorders (95, 96).
Hence, antioxidants like glutathione are considered as preventive
or treatment strategy for food allergies (97). It has been
reported that both dietary glutamine and dietary glutamate
enhance glutathione production and, possibly as a result, reduce
oxidative stress in the intestines of weaning piglets (98, 99). In
addition, glutamine, but not glutamate, is an important specific
precursor for the synthesis of mucins, which are critical for the
defense against infections and are suggested to protect against
allergic sensitization (100–103). Accordingly, oral glutamine
supplementation has been shown to enhance mucin synthesis
and to increase the number of mucin-secreting goblet cells in the
small intestine of weaned piglets (104).

Effects of Free Glutamine and Glutamate
on Intestinal Growth and Barrier Function
In the rapidly growing neonate where the intestines are not yet
fully developed, it is crucial to achieve andmaintain rapid growth
of IECs. Moreover, it is well-established that intestinal barrier
function is a crucial factor in the protection against allergies
and infections, by preventing allergen and bacterial translocation
from the gut lumen into the immune cell-populated lamina
propria and mesenteric lymph nodes (105–107). In neonates
where intestinal barrier function is immature, proper availability
of nutrients that contribute to the growth of IECs andmaturation
of the intestinal barrier is critical to support this protective effect.
Interestingly, free glutamine and glutamate have been shown
consistently to influence these processes, by various mechanisms
which are further explained in the following sections.

Impact of Glutamine on Intestinal Functions
Glutamine is by far the most widely examined AA in
relation to growth and function of IECs. This FAA is
known to stimulate IEC proliferation in a variety of ways, as
demonstrated in various neonatal IEC lines in vitro. For instance,
glutamine dose-dependently enhanced cell proliferation and
differentiation of neonatal porcine and rat IECs, through
activating multiple mitogen-activated protein kinases (MAPKs)
(108–110). Moreover, studies in neonatal porcine and adult
human IEC lines have indicated that glutamine also promotes
growth through augmenting the effects of growth factors,
including insulin-like growth factor 1 and epidermal growth
factor (108, 111–113). In addition to promoting growth,
glutamine has been reported to dose-dependently protect against
inflammation-, endotoxin- and oxidant-induced cell death and
damage in these IEC lines (114–116). Remarkably, glutamine
completely blocked inflammation-induced apoptosis in the adult
human epithelial cell line HT-29 when supplied at 0.5mM,
a concentration similar to that of free glutamine in human
milk (115).
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FIGURE 1 | Overview of the potential effects of free glutamine and glutamate, selectively secreted in human milk by mammary gland cells, in the developing infant gut.

The ↑ and ↓ indicate an upregulation and downregulation, respectively, of the corresponding target following in vitro and/or in vivo supplementation with glutamine (•)

or glutamate (•). Effects are limited to those that are relevant in the context of allergic sensitization and infections. FAA, Free amino acid; IEC, Intestinal epithelial cell;

IEL, Intraepithelial lymphocyte; GC, Goblet cell; TH1, T-helper 1 cell; TH2, T-helper 2 cell; IgA, Immunoglobulin A; F. prausnitzii, Faecalibacterium prausnitzii.

Multiple lines of evidence indicate that glutamine also
specifically stimulates intestinal barrier function. For instance,
in vitro studies with neonatal porcine and human adult IEC
lines have revealed that glutamine restriction reduces the
expression of the major tight junction proteins, including
claudin and occludin proteins, which are vital for intestinal
barrier function (110, 117, 118). This was accompanied by a
reduced distribution of these proteins at the plasma membrane
and an increase in IEC permeability. Remarkably, glutamine
supplementation in these in vitromodels completely reversed this
process, suggesting that sufficient availability of free glutamine
is crucial for optimal epithelial barrier functions. These effects
were mediated through enhanced AMP-activated protein kinase
signaling and diminished PI3K/Akt signaling, indicating that
glutamine supports intestinal barrier function via modulation of
specific intracellular pathways (110, 118).

Consistent with in vitro studies in neonatal cells, studies
in young animals also suggest a potential role of glutamine
in promoting a healthy intestinal development. In rat pups
and young piglets, dietary deprivation of glutamine has been
reported to diminish intestinal integrity, through breakdown
of epithelial junctions and shortening of microvilli (119, 120).
Conversely, dietary supplementation of glutamine in young
piglets has been consistently reported to increase villus height,
inhibit apoptosis and boost proliferation of IECs, increase
tight junction protein expression and improve epithelial barrier
function (98, 121–123). In addition, glutamine is shown

to protect against pathogen-induced intestinal damage in
vivo. For instance, weaning piglets fed a glutamine-enriched
diet prior to challenge with E.coli completely maintained
villus morphology and tight junction protein expression (124,
125). Moreover, oral supplementation of glutamine prevented
endotoxin-induced intestinal damage in suckling piglets (114).
Consistent with the ability of glutamine to promote intestinal
barrier function, glutamine supplementation is reported to
prevent bacterial translocation in various adult animal models
of intestinal obstruction (126–131). Whether glutamine can also
prevent bacterial translocation in neonatal animals remains to
be examined.

Impact of Glutamate on Intestinal Functions
A growing body of evidence suggests that next to glutamine
also glutamate has effects on IEC growth and intestinal
barrier function. A recent in vitro study in neonatal porcine
IECs has demonstrated that supplementation of glutamate
dose-dependently enhances cell proliferation (132). Moreover,
this study showed that glutamate supplementation prevented
oxidative stress-induced changes in IEC viability, barrier function
and membrane integrity by increasing the abundance of tight
junction proteins (132). The ability of glutamate to improve
intestinal barrier function is also demonstrated in a study using
adult human IEC lines, where glutamate addition significantly
reduced phorbol-induced hyperpermeability (133). Remarkably,
these effects were observed at a glutamate concentration three
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times lower than that present in human milk, highlighting
the potency of free glutamate in human milk to exert
physiological effects.

In addition to in vitro studies, in vivo studies in young
animals also indicate that free glutamate can promote intestinal
development. Supplementation of dietary glutamate to healthy
weaning piglets led to an increase in overall intestinal health,
as evidenced by higher villus height and enhanced intestinal
mucosal thickness and integrity (122, 134). Furthermore, dietary
glutamate dose-dependently enhanced the weight of the small
intestine, increased the depth of the crypts and the lamina
propria, and improved intestinal antioxidative capacities in
healthy weaning piglets (99). Finally, dietary glutamate prevented
mycotoxin-induced impairments in intestinal barrier function
and morphology in young piglets, suggesting that free glutamate
may also play a role in the prevention of intestinal damage (135).

As glutamate can be converted into glutamine by IECs,
although at limited rates, the effects observed for glutamate
may be attributable to the effects of glutamine. However,
studies examining effects of both glutamine and glutamate
demonstrated differential effects of these FAAs on functions of
IECs and intestinal morphology. For instance, weaning piglets
supplemented with dietary glutamine alone had higher villi than
those piglets supplemented with a combination of glutamate and
glutamine, whereas the combination led to the deepest crypts
(136). Moreover, glutamine was observed to have protective
effects against oxidant- and endotoxin-induced death of porcine
neonatal IECs in vitro, whereas glutamate had no effect (114).
This indicates that the effects of glutamate on intestinal function
are not solely exerted through conversion into glutamine.

Effects of Free Glutamine and Glutamate
on Immune Cell Functions
In addition to epithelial cells, the immune cells of the GALT
also play a crucial role in the prevention of neonatal allergies
and infections. The immature neonatal GALT is characterized
by the production of higher levels of pro-inflammatory cytokines
(137, 138), whereas anti-inflammatory capacities are diminished
(139). The pro-inflammatory milieu in the neonatal intestines is
indicated to induce T-helper 2 (TH2) immune activity (140, 141).
In contrast, T-helper 1 (TH1) immunity is highly limited and
gradually develops during the postnatal period (142–144). The
resulting TH2-dominant immune milieu is known to increase the
susceptibility to allergic sensitization, whereas the minimal TH1
function correlates with the increased susceptibility of neonates
to infections (144, 145). Thus, components in human milk with
anti-inflammatory capacities, or components that enhance the
development of TH1 immunity or suppress TH2 activity might
contribute to the prevention of neonatal allergies and infections.
Free glutamine and glutamate both have been associated with
these immunomodulatory capacities, as described in detail below.

Impact of Glutamine on Immune Cell Functions
The importance of glutamine for the development and function
of the immune system is well recognized. Although in vitro
studies in neonatal cells are lacking, numerous in vitro studies
in adult cells showed that various immune cells fail to develop

and function without adequate glutamine availability (146).
For instance, glutamine restriction impaired the growth and
differentiation of B and T cells (147) and diminished antigen
presentation and phagocytotic capacities of macrophages and
neutrophils (148, 149). Conversely, glutamine supplementation
dose-dependently enhanced phagocytotic capacities of human
neutrophils in vitro (150, 151). Consistent with these findings, in
vivo studies in young animals indicate that glutamine availability
modifies intestinal immune cell populations. For example,
dietary glutamine dose-dependently increased the number of
neutrophils and macrophages in weaning piglets following an
LPS-challenge (123, 152), suggestive of enhanced antimicrobial
capacities. Moreover, in newly weaned piglets, dietary glutamine
decreased the proportion of antigen-naïve T cells in the
mesenteric lymph nodes (153), which are reported to be elevated
in allergic patients and are proposed as an early life marker
for future development of allergies (154, 155). Finally, dietary
glutamine increased the number of IgA-secreting B cells in the
small intestine of youngmice (156) and enhanced intestinal levels
of IgA in various weaning animals (157–161). Together, these
results indicate that glutamine availability influences immune cell
populations in developing intestinal tissues, which in turn may
influence antimicrobial and anti-allergic immune processes.

A consistent body of evidence shows that glutamine
also exhibits anti-inflammatory capacities. In vitro studies
demonstrated that glutamine supplementation decreased
the production of pro-inflammatory cytokines IL-6, IL-
8, and/or TNFα, while increasing the production of
anti-inflammatory/regulatory cytokine IL-10 in various
activated adult human immune cells, including intra-
epithelial lymphocytes (IELs), intestinal mast cells, peripheral
mononuclear cells (PBMCs) and monocytes (162–165). Similar
findings are reported in healthy young animals. For instance,
dietary glutamine reduced levels of pro-inflammatory cytokines
(including IL-1 and IL-8) while increasing levels of anti-
inflammatory/regulatory cytokines (including IL-10) in the small
intestine of healthy weaning piglets (123, 124, 166). Furthermore,
in LPS-challenged piglets, dietary glutamine reduced intestinal
expression of inflammatory markers, including Toll-like
receptor-4 and the nuclear factor NF-κB, suggesting that
glutamine might also have potent anti-inflammatory effects in
immune-compromised conditions (114).

Glutamine has also been indicated to play a regulating role
in the balance between TH1 and TH2 immunity, however, in
vitro studies examining this aspect in neonatal immune cells
are lacking. It is reported that adult murine naïve T cells are
able to differentiate into TH2 cells under glutamine-restricted
conditions, but not into functional TH1 cells, indicating that
glutamine deprivation may favor TH2 differentiation (167).
Conversely, supplementation of glutamine is reported to enhance
TH1 and/or diminish TH2 responses of various activated adult
immune cells in vitro. For instance, glutamine increased the
production of TH1 cytokines IL-2 and IFNy by activated
murine IELs and by human lymphocytes and PBMCs, while
TH2 cytokines were unaltered (168–171). In activated human
intestinal mast cells, glutamine did not alter the release of TH1
chemokines, but reduced the release of TH2 chemokine ligand 2
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and leukotriene C4, which are both involved in the pathogenesis
of various allergic diseases (164, 172). Although data are limited,
in vivo studies in young animals also suggest a regulating role
of glutamine in the TH1/TH2 immune balance. In young mice,
dietary glutamine increased the expression of IL-2 and the IL-
2 receptor by lymphocytes, indicative of increased activity of
and responsiveness to TH1 stimuli (173). Moreover, dietary
glutamine in healthy weaning piglets lowered the production
of TH2 cytokine IL-4 and increased the IFNγ/IL-4 ratio in
mesenteric lymph node cells (153). Finally, in weaning rabbits,
dietary glutamine upregulated IL-2 and IL-10 expression by
IELs, while inhibiting expression of IL-6, an inducer of TH2
differentiation of naïve T cells (174, 175). Although further
confirmation in neonatal animals is critical, these data may
indicate that glutamine plays a role in promoting amore balanced
TH1/TH2 immune system in the neonatal period.

Impact of Glutamate on Immune Cell Functions
Despite dietary glutamate being almost completely used in
intestinal tissues, studies investigating the effects of glutamate
on intestinal immune cells are lacking. Yet, receptors for
glutamate are found on a variety of immune cells, including
lymphocytes and dendritic cells, suggesting that glutamate
has a role in immune cell functioning (176). Studies using
adult human peripheral T cells demonstrated that glutamate at
low concentrations (<100µM) dose-dependently increases the
proliferative response of T cells to various stimuli (176, 177). At
higher concentrations (>1mM), however, this effect reversed,
indicating that glutamate tends to have immunosuppressive
properties at higher concentrations (176, 178). Accordingly, it is
postulated that the high glutamate concentration in the intestinal
microenvironment, which may reach the millimolar range, could
prevent inappropriate responses to dietary antigens by exerting
immunosuppressive effects on intestinal T cells (178).

Besides regulating T cell proliferation, glutamate availability
is also indicated to influence the TH2 and TH1 cytokine
production by T cells. Glutamate is released by dendritic cells
during T cell interaction, where it has dual roles (179). In
cases of non-specific antigen presentation, glutamate inhibits
T cell activation. However, upon specific antigen presentation
glutamate stimulates T cell proliferation and the production of
IL-2, IFNγ and IL-10, thereby promoting a TH1 response (179).
This latter process depends on glutamate released from dendritic
cells, but also on extracellular glutamate concentrations,
suggesting that this process could be influenced by dietary
glutamate (179). Accordingly, it is reported that glutamate
supplementation of up to 1-2mM enhanced IFNy and IL-10
secretion by activated adult human peripheral T cells in vitro,
whereas secretion of TH2 cytokines IL-4 and IL-5 was unaffected
(180). When supplied at even higher concentrations (>5mM),
however, glutamate inhibited IFNy and IL-10 secretion by these
cells. Unfortunately, in vitro studies in neonatal cells and in vivo
studies investigating the effects of glutamate on immune cell
functions are lacking. Nevertheless, the findings in adult immune
cells suggest an immunoregulating role for glutamate, with effects
that are highly dependent on the context and the concentration.
At concentrations present in human milk, glutamate could

be involved in promoting TH1 immunity and subsequently in
reducing the susceptibility to allergic sensitization, although this
remains speculative due the lack of evidence in neonatal cells
or animals.

Effects of Free Glutamine and Glutamate
on the Intestinal Microbiota
Accumulating evidence indicates that the gut microbiota plays
a vital role in tolerance induction to dietary antigens (181–
183). Accordingly, clinical studies have provided evidence for
a link between the microbiota composition in the neonatal
period and the development of allergic diseases. It is reported
that a higher intestinal bacterial diversity in early life is
associated with a lower risk of developing various allergic
diseases, including food allergy (184–187). Moreover, infants
with an increased colonization of Firmicutes and a decreased
colonization of Bacteroidetes (corresponding to an increased
Firmicutes-to-Bacteroidetes ratio), or a decreased colonization of
Proteobacteria and Bifidobacteria are shown to be at increased
risk of developing food allergies (188–191). Mechanisms by
which gut microbes modify the susceptibility to allergies are
poorly understood but may involve specific modulation of TH2
and TH1 immunity (192, 193). The colonization of intestinal
microbiota is far from complete at birth and is influenced by
various environmental factors, including breastfeeding duration
(189). Thus, humanmilk components that shape the neonatal gut
microbiota composition may play an active part in modifying the
susceptibility to allergic sensitization. Although data are limited,
several studies have shown that glutamine and glutamate can
modulate the abundance of gut bacteria that have been associated
with the protection against allergic diseases.

Impact of Glutamine on the Gut Microbiota

Composition
The ability of dietary glutamine to modify the microbiota
composition is shown in various young animals. A study in
weaning mice demonstrated that dietary glutamine decreased the
content of Firmicutes in the jejunum and ileum, and decreased
the Firmicutes-to-Bacteroidetes ratio in the ileum (194). Similar
findings are reported in studies in adult pigs and human
(195, 196). In weaning rabbits, dietary glutamine specifically
reduced the presence of Clostridium spp. in the ileum, of which
colonization in early life has been associated with increased
risk of allergic diseases (197, 198). Finally, a glutamine-enriched
diet is also shown to increase the abundance of beneficial
Bifidobacteria in the jejunum of healthy weaned mice (194),
and to decrease potentially harmful microorganisms in adult
pigs (196). The mechanisms underlying the effects of glutamine
on the gut microbiota composition are poorly understood. It is
postulated that glutamine supplementation regulates utilization
and metabolism of a variety of AAs in a niche-specific manner,
affecting the activity and number of specific microbes (157, 199).

Impact of Glutamate on the Gut Microbiota

Composition
To our knowledge, only two animal studies examined the effects
of dietary glutamate on the intestinal microbiota composition to
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date, both of which used animals in their post-weaning phase. It
has been reported that dietary glutamate markedly enhanced the
bacterial diversity in the intestinal flora of healthy post-weaning
pigs (200). Moreover, the glutamate-enriched diet decreased
the Firmicutes-to-Bacteroidetes ratio in the ileum, although this
effect was only seen when given in combination with a high fat
diet and was not observed in other intestinal sections. Perhaps
more interestingly, dietary glutamate specifically promoted the
colonization of prausnitzii and Faecalibacterium prausnitzii in
post-weaning pigs (200, 201). The colonization of Roseburia in
early life has been positively associated with the acquisition of
tolerance to cow’s milk (202), and Faecalibacterium prausnitzii
is indicated to play a role in the prevention of food allergy
(203–205). These intestinal microbes are some of the main
producers of the short-chain fatty acids butyrate and propionate.
Accordingly, a glutamate-enriched diet significantly increased
colonic concentrations of these fatty acids in adult pigs (206).
Butyrate and propionate both have been associated with the
prevention of various allergic diseases and, consequently, high
faecal levels of these fatty acids in early life have been associated
with a decreased risk of developing atopy (207–209).

CONCLUDING REMARKS

Research indicates that breastfeeding during the first months
of life provides protection against immune-related conditions
in neonates and later in life. These conditions include
gastrointestinal infections and several allergic diseases including
food allergy. It is indicated that the transfer of specific
immunomodulating components, such as bioactive proteins,
from mother to infant through human milk contributes to this
protective effect. In addition to proteins, human milk contains
FAAs, which have unique characteristics. They are more readily
absorbed than protein-derived AAs and can be recognized by
specific receptors on various cells. Moreover, whereas protein-
bound AAs decrease during the lactation period in a non-AA-
specific manner, temporal changes of FAAs in human milk
are highly AA-specific. These dynamics in FAA levels are
globally consistent and thus seemingly independent of ethnicity,
demographics and maternal diet. This suggests that selective
FAA transport occurs in the mammary gland, that FAA levels in
human milk are strictly regulated and, consequently, that FAAs
are likely to be of physiological relevance in the developing infant.

With regards to individual FAAs in human milk, free
glutamine and glutamate display particularly remarkable
characteristics. They account for almost 70% of the FAA
content in human milk, they both drastically increase in
the first 3 months of lactation and their levels have been
shown to positively correlate with infant growth, suggestive of
important functions in the developing neonate. In neonates,
dietary glutamine and glutamate are mainly used by the
intestines. Remarkably, studies in neonatal immune cells
and young animals demonstrate that these FAAs can have a
wide range of effects on cells in developing intestines, also
at concentrations similar to their levels in human milk. In
short, they are reported to increase the growth of intestinal
epithelial cells, enhance intestinal barrier function, influence
immune cell development and populations in the gut-associated
lymphoid tissue, exert anti-inflammatory and potentially
TH1 promoting and/or TH2 inhibiting effects on various
intestinal immune cells, and modify the abundance of gut
microbiota that might play a role in allergic sensitization
(Figure 1). Together, these effects could potentially support
neonates in the protection against allergic sensitization
and infections.

All together, the findings described in this review warrant
further research into the contribution of free glutamine and
glutamate in human milk to the protection against neonatal
allergies and infections. Levels of free glutamine and glutamate,
in addition to that of other bioactive factors that could influence
early life immune development, are considerably higher in
human milk than in standard infant milk formulas, leading
to significant differences in the intake of these FAAs between
breastfed and formula-fed children (210–212). As many of the
effects of glutamine and glutamate described in this review
were concentration-dependent, future studies should address
whether this differential intake contributes to the differential
occurrence in immune-related conditions between formula-fed
and breastfed children.
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microRNAs (miRNAs) are conserved non-coding small nucleotide molecules found in

nearly all species and breastmilk. miRNAs present in breastmilk are very stable to

freeze-thaw, RNase treatment, and low pH as they are protected inside exosomes.

They are involved in regulating several physiologic and pathologic processes, including

immunologic pathways, and we have demonstrated better immune response to vaccines

in piglets fed with human milk (HM) in comparison to dairy-based formula (MF).

To understand if neonatal diet impacts circulatory miRNA expression, serum miRNA

expression was evaluated in piglets fed HM or MF while on their neonatal diet at postnatal

day (PND) 21 and post-weaning to solid diet at PND 35 and 51. MF fed piglets showed

increased expression of 14 miRNAs and decreased expression of 10 miRNAs, relative

to HM fed piglets at PND 21. At PND 35, 9 miRNAs were downregulated in the MF

compared to the HM group. At PND 51, 10 miRNAs were decreased and 17 were

increased in the MF relative to HM suggesting the persistent effect of neonatal diet.

miR-148 and miR-181 were decreased in MF compared to HM at PND 21. Let-7 was

decreased at PND 35 while miR-199a and miR-199b were increased at PND 51 in MF

compared to HM. Pathway analysis suggested that many of the miRNAs are involved in

immune function. In conclusion, we observed differential expression of blood miRNAs at

both PND 21 and PND 51. miRNA found in breastmilk were decreased in the serum of

the MF group, suggesting that diet impacts circulating miRNA profiles at PND 21. The

miRNAs continue to be altered at PND 51 suggesting a persistent effect of the neonatal

diet. The sources of miRNAs in circulation need to be evaluated, as the piglets were fed

the same solid diet leading up to PND 51 collections. In conclusion, the HM diet appears

to have an immediate and persistent effect on the miRNA profile and likely regulates the

pathways that impact the immune system and pose benefits to breastfed infants.
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INTRODUCTION

The World Health Organization and American Academy of Pediatrics recommend exclusive
breastfeeding for the first six months of life, followed by breastfeeding with complimentary foods
until 1 year of age (1, 2). It is well-established that breastfed babies have decreased rates of obesity,
infections such as otitis media and respiratory tract infections, and decreased asthma and atopic
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dermatitis (2). However, the exact mechanisms that make
breastfeeding better for infants is still unclear. Multiple
components of breastmilk have been shown to impact growth
and development as well as immune function including human
milk oligosaccharides (3–5), immunoglobulins (6), cytokines (7,
8), and growth factors (9, 10). microRNA (miRNA) are also
possible contributors to the benefits of breastfeeding.

miRNAs are conserved non-coding small nucleotide (∼22
nucleotides) molecules (11) that have biological activities in
humans (12–15). Breastmilk miRNAs are thought to survive in
an acidic environment in the gastrointestinal tract, when exposed
to RNase, and be absorbed in the gut (16). miRNAs from bovine
milk have been found in the plasma of humans and noted to have
a regulatory effect on cell functions (14), such as innate immune,
T-cell and B-cell function; several of thesemiRNAs are also highly
abundant in humanmilk (16, 17). Infant formulas, however, have
a decreased amount of miRNA (13, 18). Dietary sources have
been shown to contribute an appreciable amount of miRNA to
total serum miRNA. For example, when mice are fed a miRNA-
depleted cow’s milk diet for 4 weeks, they showed a decrease
in measured plasma miRNA by ∼ 60% compared to mice fed a
miRNA-sufficient diet (19). However, studies are limited in terms
of understanding the impact of breastmilk miRNAs and other
components on infants’ health. Therefore, the purpose of the
current study is to determine if neonatal diet influences serum
miRNA and if it continues to have an impact after being weaned
to a solid diet.

MATERIALS AND METHODS

Animal Study
The piglet study design has been described previously (20).
Animal maintenance and experimental protocols followed
the ethical guidelines for animal research approved by the
Institutional Animal Care and Use Committee (IACUC) and
Institutional Biosafety Committee (IBC) at University of
Arkansas for Medical Sciences. Briefly, 2 day old male piglets
were obtained from a regional commercial farm and transferred
to the vivarium at Arkansas Children’s Nutrition Center (ACNC).
They were then randomized to be fed an isocaloric diet of
either dairy-based formula (MF; n = 26) or human breastmilk
(HM; n = 26). Donor human breastmilk was obtained from the
Mother’sMilk Bank of North Texas, and Similac Advance powder
was obtained from Ross Products (Abbot Laboratories). Both
HM and MF diets were supplemented to meet the nutritional
recommendations of the National Research Council (NRC) for
growing piglets. At postnatal day (PND) 14, solid pig starter was
introduced until PND 21, at which time all piglets were weaned
to an ad libitum solid diet until PND 51.

Sample Processing
At 8 h of fasting, blood was collected on the morning of PND
21, 35, and 51 into PAXgene (Qiagen) Blood RNA Tubes. At
PND 21 there were 9 MF and 9 HM, 4 MF and 4 HM at PND
35, and 9 MF and 10 HM at PND 51. Tubes were allowed to sit
for 2 h at room temperature and then stored at −80◦C. Prior to
processing, the PAXgene tubes were moved from the −80◦C to

4◦C overnight and then allowed to sit at room temperature for
2 h. The PAXgene tubes were then centrifuged at 3000 × g using
a swing-out rotor (Eppendorf 5810R Centrifuge) for 10min, and
samples were processed with the PAXgene Blood miRNA Kit
(PreAnalytiX, Switzerland) to isolate blood RNA according to the
commercial protocol. RNA samples were stored at −80◦C until
needed for small RNA library preparation.

A cDNA sequencing library for miRNA (miRs) was generated
using standard methods of the QIAseq miRNA Library Kit
(Qiagen, Germany). Small RNA sequencing libraries were
constructed using Qiagen’s QIAseq R© miRNA Library Kit (96)
(Qiagen, Germany, cat. 331502) according to the manufacturer’s
protocol. Briefly, adapter sequences were sequentially ligated to
the 3′ and 5′ ends of miRNA in each sample. Adapter ligated
miRNAs were then assigned unique molecular indexes (UMI)
and simultaneously transcribed into single-stranded cDNA.
This was followed by cDNA cleanup per the manufacturer’s
instruction, and construction of PCR-amplified Illumina
compatible sequencing libraries, which involved ligating a 3′

sequencing adapter, and 1 of 48 indexed adapters (QIAseq
miRNA NGS 96 index IL) during the amplification process.
The sequencing libraries were then subjected to a second
library cleanup and validated for fragment size and quantity
using an Advanced Analytical Fragment Analyzer (AATI) and
Qubit fluorometer (Life Technologies), respectively. Equal
amounts of each library were then pooled and sequenced on a
NextSeq 500 platform using high output flow cells to generate
a ∼5–10 million 75-base single end reads per sample (1 ×

75bp SE). All sequencing was performed by the Center for
Translational Pediatric Research (CTPR) Genomics Core at
Arkansas Children’s Research Institute (Little Rock, AR, USA).

Statistical Analysis
Following demultiplexing, miRNA reads were quality checked
using FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and MultiQC (21). The fastq files that passed
quality control were then adapter trimmed. miRNAs were
quantified using Qiagen’s primary QIAseq miRNA quantification
tool available through GeneGlobe’s data analysis center (https://
geneglobe.qiagen.com/us/analyze/) against all organisms in
miRBase (miRBase v21). miRNA’s with low UMI-counts were
then removed before downstream analysis. To retain the
maximum number of interesting features, miRNA with a
minimum of 10 counts-per-million (CPM) in at least 17 libraries
were retained for further investigation. The filtered dataset was
then normalized for compositional bias using trimmed mean
of M values (TMM) (22, 23). edgeR’s quasi-likelihood method
(glmQLFTest) was used to identify differentially expressed
miRNA between experimental groups (24–26).

Pathway Analysis
The challenge associated with the piglet model includes finding
databases that support miRNA target prediction analysis. As
miRNAs are conserved (27–29) and the pig genome is not well-
annotated, a human miRNA database was utilized to conduct
target prediction analysis using Ingenuity Pathway Analysis
software (IPA, Qiagen). The experimentally verified target gene
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list of miRNA was generated. The target genes were subjected
to canonical pathway analysis that included metabolic pathways,
cell cycle regulation, cell growth, proliferation and development,
cellular immune response, cellular stress and injury, cytokine
signaling, growth factor signaling, humoral immune response,

TABLE 1 | MF fed piglets have differential miRNA expression at PND 21 relative to

HM fed piglets.

miRNA FC p-value

ssc-miR-708-5p −39.76665575 0.002

ssc-miR-196b-5p −3.237684325 0.001

ssc-miR-142-3p −2.797240418 0.005

ssc-miR-7142-3p −2.661387334 0.007

ssc-miR-181b −2.420461905 0.006

ssc-miR-181d-5p −2.28856399 0.018

ssc-miR-451 −2.276169814 0.012

ssc-miR-181a −1.857234399 0.038

ssc-miR-1296-5p −1.49268688 0.019

ssc-miR-148b-3p −1.359814304 0.045

ssc-miR-28-3p 1.509698075 0.041

ssc-miR-532-5p 1.534975917 0.026

ssc-miR-128 1.559663023 0.019

ssc-miR-574 1.589728656 0.042

ssc-miR-9810-3p 1.613911517 0.030

ssc-miR-335 1.791816536 0.011

ssc-miR-1468 1.796667674 0.048

ssc-miR-7 1.809841726 0.023

ssc-miR-182 1.825348966 0.043

ssc-miR-126-3p 1.928895853 0.022

ssc-miR-99b 1.954175359 0.007

ssc-miR-130a 2.463583469 0.046

ssc-miR-142-5p 2.576233506 0.010

ssc-miR-18b 37.26653433 0.010

Negative fold change (FC) indicates the miRNA is downregulated in MF fed piglets

compared to HM fed piglets while positive FC indicates miRNA are upregulated in MF

relative to HM group. The data represents values for 9 MF and 9 HM.

TABLE 2 | MF fed piglets have differential miRNA expression at PND 35 relative to

HM fed piglets.

miRNA FC p-value

ssc-miR-18b −49.72067945 0.048

ssc-miR-135 −42.25878671 0.040

ssc-miR-9 −34.874668 0.049

ssc-miR-32 −7.975548269 0.047

ssc-miR-126-5p −5.646933269 0.012

ssc-miR-27b-3p −3.406773728 0.040

ssc-miR-126-3p −2.826728093 0.051

ssc-miR-628 −2.647555179 0.053

ssc-let-7g −1.964276243 0.012

Negative fold change (FC) indicates the miRNA is downregulated in MF fed piglets

compared to HM fed piglets. The data represents values for 4 MF and 4 HM.

nuclear receptor signaling, organismal growth and development,
pathogen-influenced signaling, and transcriptional regulation.
The enriched pathways were based on the right-tailed Fisher’s
exact test (adjusted for False Discover Rate at 5%) that are
graphed as negative log p-value. These pathways indicate the
likelihood of an association of genes to the pathway in MF vs.
HM fed piglets at different time points.

RESULTS

miRNA Expression Profile
miRNA expression analysis was performed on blood samples
from MF piglets in comparison to HM piglets at different
time points (PND 21, 35, and 51). The reader is referred to
Tables S1–S3 for miRNAs identified using human, mouse, and
piglet genome. The data described here are exclusively based
on piglet genome. Results demonstrate differential expression of
miRNA in the MF group relative to HM fed piglets. At PND 21,
10 miRs were downregulated and 14 were upregulated in MF

TABLE 3 | MF fed piglets have differential miRNA expression at PND 51 relative to

HM fed piglets.

miRNA FC p-value

ssc-miR-708-5p −181.4471982 0.000

ssc-miR-18b −24.60941262 0.005

ssc-miR-135 −9.524924918 0.003

ssc-miR-23b −2.890749819 0.012

ssc-miR-27b-3p −2.835459396 0.005

ssc-miR-27a −2.012577166 0.009

ssc-miR-28-5p −1.795200855 0.040

ssc-miR-24-3p −1.769462259 0.011

ssc-miR-99a −1.55286892 0.046

ssc-miR-23a −1.464557853 0.024

ssc-miR-339 1.393039587 0.040

ssc-miR-339-3p 1.431395735 0.041

ssc-miR-339-5p 1.435181521 0.028

ssc-miR-4334-3p 1.495246365 0.019

ssc-miR-532-3p 1.529235062 0.032

ssc-miR-1307 1.534150221 0.032

ssc-miR-149 1.63922384 0.053

ssc-miR-328 1.745143555 0.044

ssc-miR-320 1.872187384 0.016

ssc-miR-30c-3p 1.901539247 0.029

ssc-miR-199a-3p 2.200123182 0.006

ssc-miR-199b-3p 2.857399975 0.022

ssc-miR-100 3.033459346 0.029

ssc-miR-7139-3p 3.289366861 0.019

ssc-miR-199a-5p 3.552896912 0.000

ssc-miR-204 5.124808887 0.045

ssc-miR-205 8.226824537 0.002

Negative fold change (FC) indicates the miRNA is downregulated in MF fed piglets

compared to HM fed piglets while positive FC indicates miRNA are upregulated in MF

relative to HM group. The data represents 9 MF and 10 HM.

Frontiers in Immunology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 124092

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Carr et al. Postnatal Diet Impacts Serum microRNA

in comparison to HM fed piglets (Table 1). At PND 35, 9 miRs
were decreased in MF relative to HM fed piglets (Table 2). At
PND 51, 10 miRs were downregulated and 17 were upregulated
in MF compared to HM fed piglets (Table 3). There were several
miRNAs that displayed altered directionality depending on PND.
For instance, ssc-miR-18b was increased in MF at PND 21 and
decreased at PND 35 and PND 51 relative to HM group. ssc-
miR-126-3p was elevated in MF compared to HM group at PND
21 and lower at PND 35. Other miRNAs were different only at
certain time points. For example, ssc-miR-708-5p was decreased
at PND 21 and PND 51 in the MF group relative to the HM
group. ssc-miR-135 and ssc-miR-27b-3p were lower at both PND
35 and PND 51 in MF compared to HM group. In addition, miRs
found in breastmilk by other research groups (13, 14, 16) such as
miR-148 and miR-181 were decreased in MF compared to HM at
PND 21. Furthermore, immune system related miRs such as let-7
(30–33) was decreased at PND 35 while miR-199a and miR-199b
(34–36) were increased at PND 51 in MF compared to HM.

Target Gene Prediction and Pathway
Analysis of miRNAs
IPA identified 17 (out of 24) miRs at PND 21, 7 (out
of 9) at PND 35, and 15 (out of 27) at PND 51 with
experimentally validated gene targets. miRNAs repress gene
translation, therefore, downregulated miRNA is associated with
increased gene expression and upregulated miRNA is associated
with the decreased gene expression. For downregulated miRNAs
in the MF group vs. HM group, the number of unique genes were
37 at PND 21, 159 at PND 35, and 30 at PND 51 (Figure 1A).
The three common genes between PND 21 and PND 35 are B-cell
lymphoma 2 like 1 (BCL2L1), Kristen rat sarcoma viral oncogene
homolog (KRAS), and Vinisin-like 1 (VSNL1). The common
genes between PND 21 and PND 51 is mitotic arrest deficient
2 like 1 (MAD2L1). There are 50 common genes between PND
35 and PND 51. There is one common gene, estrogen receptor 1
(ESR1), between PND 21, PND 35, and PND 51. For upregulated
miRNA, unique genes were 67 at PND 21 and 60 at PND 51

(Figure 1B). There are ten common genes between PND 21
and PND 51. Pathway analysis of the target-predicted genes was
performed using IPA in order to further understand the functions
possibly regulated in the MF vs. HM group. The top 25 pathways
are shown for the different time points in Figures 2– 4. A full list
of genes and pathways possibly regulated bymiRNA can be found
in Tables S4–S8.

DISCUSSION

Breastfed infants, compared to formula fed, have decreased rates
of infections such as otitis media, respiratory tract infections,
gastroenteritis, and necrotizing enterocolitis as well as lower
rates of obesity and diabetes (2). In previously published work
(20), our lab noted that the piglets fed HM had higher serum
antibody titers to cholera toxin subunit B and tetanus toxoid
than those fed MF. They also had elevated immunoglobulin
A producing cells specific to cholera toxin subunit B. The
HM fed piglets were noted to have higher T cell proliferation
compared to the MF group. There was no difference in
body weights or caloric intake between the two groups, thus
differences attributed here are likely by diet. Many components
of breastmilk contribute to these improved outcomes in infants
and new literature suggests miRNA may play a role. While
there are studies that describe the different types of miRNA
in breastmilk (13, 14, 16), there is no concrete evidence that
miRNAs have a direct impact on infant immunity. It is also
possible that other breastmilk components alone impact infant
circulatory miRNA. To address this, we used a model of
formula vs. breastmilk fed piglets collecting circulatory miRNA
at different time points of weaning and post-weaning of the
neonatal diet.

Kosaka et al. (16) noted expression of multiple miRNA in
breastmilk that were predicted to be involved in T- and B-cell
function. Specifically, miR-181a and miR-181b were identified
in breastmilk. Interestingly, these miRs were decreased in
circulation at PND 21 in our MF group compared to the HM
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FIGURE 1 | Target predicted genes in MF fed piglets relative to HM fed piglets at PND 21, 35 and 51. (A) Venn diagram shows unique and shared genes of

downregulated miRNA in MF relative to HM at each time point. (B) Venn diagram shows unique and shared genes of upregulated miRNA in MF relative to HM at each

time point. The data represents from piglets of 9 MF and 9 HM at PND21, 4 MF and 4 HM at PND 35, and 9 MF and 10 HM at PND 51.
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FIGURE 2 | Enriched pathways of MF compared to HM at PND21. (A) IPA of target predicted genes for downregulated miRNA in MF relative to HM at PND21. (B) IPA

of target predicted genes for upregulated miRNA in MF relative to HM at PND21. The data represents from 9 MF and 9 HM fed piglets.

group, suggesting that breastmilk could be the source for these
miRNAs. Since these miRNAs are thought to be involved in
B- and T-cell differentiation (37), it is plausible that the higher
expression in HM fed piglets contributed to the diet-dependent

differences in immune cell activity that we previously reported
in these animals. The expression pattern of miR-181a during T-
cell maturation is dynamic and likely influences development of
T-cells (38). miR-181 also plays a role in inflammation. It has
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FIGURE 3 | Enriched pathways of MF compared to HM at PND35. IPA of target predicted genes for downregulated miRNA in MF relative to HM at PND35. The data

represents from 4 MF and 4 HM fed piglets.

been shown to downregulate production of TNF-α in Brucella
abortus infections (39). These data, along with ours, suggest
that breastmilk miRs are likely involved in protecting infants in
modulating the immune system (i.e., to reduce inflammation by
infection and to impact T-cell maturation).

Golan-Gerstl et al. and Kahn et al. both showed high levels of
miR-148 in pre-term, early term, and term breastmilk (13, 40).
Golan-Gerstl et al. also showed significantly reduced amounts of
miR-148 in formula compared to breastmilk. The piglets fed MF
had a decreased amount of blood miR-148 compared to those fed
HM at PND 21. miR-148 family negatively regulates the innate
immune response by limiting cytokine production and inhibiting
T-cell proliferation initiated by dendritic cell presentation of
antigens in a mouse model (41), suggesting a role in reducing
inflammatory cytokine production in HM fed piglets.

Let-7 is highly present in both the skim and fat layers of
breastmilk (13, 14, 42). It has also been shown in these layers in
bovine and goat milk (13). Let-7 regulates the innate and adaptive
immune response, plays a role in TLR4 signaling andmacrophage
activity, and also affects T-cell differentiation and limits B-cell
activation (30–33). At PND 35, let-7 had decreased concentration
in MF fed group compared to HM group.

At both PND 21 and PND 51, miR-708-5p was significantly
decreased in the MF fed piglets compared to the HM fed
piglets, ∼40 fold and 180 fold respectively (Tables 1, 3). miR-
708 has been shown to target TLR4 (34) suggesting decreased
inflammatory pathway activation in HM fed piglets compared to
MF fed. miR-708 has also been shown to increase phagocytosis

(35) which may allow the HM fed piglets to eliminate pathogens
more easily than the MF fed piglets. miR-18b was significantly
upregulated at PND 21 but significantly downregulated at PND
35 and 51 in the MF compared to HM fed piglets (Tables 1–3). In
patients withmultiple sclerosis, miR-18b has been associated with
relapse (36, 43) so it is possible that it plays a role in inflammation
and autoimmune diseases.

The piglets fed MF had higher levels of miR-199a and miR-
199b at PND 51 than those fed HM. miR-199b has been found to
be significantly increased in nasal mucous extracellular vesicles
of adults with allergic rhinitis compared to those that are healthy
(44). In asthma patients with a neutrophilic phenotype, plasma
miR-199a was significantly increased and correlated negatively
with pulmonary function (45). Wang et al. showed in a mouse
model infected with Mycobacterium bovis that miRNA-199a
inhibits autophagy of macrophages and decreases interferon-β
production. This allows M. bovis to survive and grow in these
infected mice (46). miR-199 is associated with allergy and asthma
in adults and with bacterial survival inmice. It is possible that this
miRNA is involved in increased atopy in formula fed infants (2).
These data suggest that the diet could have a persistent effect on
miRNA expression and on the immune system.

Several studies have shown that diet alone impacts miRNA
levels. In a review by Kura et al. (47), different dietary
components such as vitamin D, selenium, and vitamin E
impacted blood and cardiac miRNAs that are associated with
decreased cardiovascular disease. A high fat diet is associated
with decreased miRNA-29b expression in the heart and increases
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FIGURE 4 | Enriched pathways of MF compared to HM at PND51. (A) IPA of target predicted genes for downregulated miRNA in MF relative to HM at PND51. (B) IPA

of target predicted genes for upregulated miRNA in MF relative to HM at PND51. The data represents from 9 MF and 10 HM fed piglets.

susceptibility to heart injury (48). Dietary compounds have
also been shown to change the miRNA expression in skin in
patients with psoriasis, helping with treatment of this disease
(49). These data suggest that neonatal diet itself can impact
miRNA expression. miRNA expression may have an impact
in microbiome as well. Zhou et al. showed that mice fed an
exosome/RNA depleted diet had different microbiome than mice

fed an exosome/RNA sufficient diet (50). In our piglets, miRNA
profiles are different in the formula fed vs. breastmilk fed piglets,
as are the microbiome profiles [previously published data (51)].
While speculative, it is possible that the miRNA played a part in
the neonatal diet-associated differences of the microbiome.

Pathway analysis revealed several pathways involved in
immune function. B-cell receptor signaling pathway was likely
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upregulated in the MF compared to HM at PND 21 in
both the blood and ileal mucosa (Elolimy et al., unpublished
results). The B-cell receptor pathway helps with development
and differentiation of B-cells after exposure to antigens (52, 53).
HM contains immunoglobulins (6, 54) that help in gut mucosa
development and likely immune system education. These are not
present in formula, which is likely the reason for an upregulation
in this signaling pathway in the formula group. In the blood, this
pathway is also both increased and decreased at PND 51, which
is possibly due to the fact that signaling by miRNA is involved
in maintaining homeostasis in the host. DNA methylation and
transcriptional repression signaling pathway was also increased
in the MF vs. HM group at PND 21 in both the blood and
the ileal mucosa (Elolimy et al., unpublished results). DNA
methylation involves regulation of gene expression by either
inhibiting binding of transcription factor(s) or recruiting gene
repression proteins to bind the DNA (55). This implies that MF
fed may have a different methylation pattern and therefore gene
expression, than HM fed, possibly these impact immune and
metabolic realms.

The IL-7 signaling pathway is likely upregulated at PND 35
and 51 in the MF group compared to the HM group (miRNA
were decreased). The IL-7 signaling pathway is important for
development and differentiation of T-cells and early development
of B-cells (56). Multiple cytokines have been found in human
milk including IL-7 (57, 58) so it is possible that the HM
group did not have an increase in this pathway because they
are already exposed to IL-7 from the HM. This also suggests
that the neonatal diet has prolonged effects on miRNA and gene
expression post-weaning neonatal diet.

The IGF-1 signaling pathway was downregulated at
PND 21 (miRNA upregulated) and upregulated at both
PND 35 and 51 (miRNA downregulated) in the MF group
compared to the HM group. Insulin-like growth factor (IGF)-1
plays an important role in multiple areas of development
including cell proliferation and differentiation of tissues
(59). Low levels of IGF-1 have been associated with different
complications in premature infants including retinopathy of
prematurity (ROP) (60) and bronchopulmonary dysplasia
(BPD) (61). Interestingly, one study looked at IGF-1 to
prevent these complications and decrease rates of ROP
(60) which further prompted an ongoing study looking
at IGF-1 infusion to prevent BPD. IGF-1 has also been
shown in rat models to decrease germinal matrix hemorrhage
bleeds (62).

There are several limitations to this study. First, the human
breastmilk used was a pool and pasteurized. While miRNA
has been shown to survive pasteurization (17), several other
components might not survive the pasteurization process.
Lactoferrin and secretory IgA are both reduced to some extent
by pasteurization (63). We were not able to isolate miRNA from
the breast milk samples at the time of this study, therefore,
the differences seen in the MF vs. HM fed group are possibly
attributable to human milk miRNA, but could also be due to
other components in breast milk such as secretory IgA, human
milk oligosaccharides, cytokines, etc (3–10). Secondly, the age of

the babies of the donor milk mothers varies from about 2 months
to 12 months (with an average of 6 months) and breastmilk
components change over time (64, 65); thus, differences observed
cannot be attributed to specific postpartummilk. Since the source
of miRNA in this study was whole blood, future studies are
needed to determine the specific cell types involved in miRNA
expression profile.

CONCLUSION

Human breastmilk fed piglets were found to have variable
amounts of circulatory miRNA compared to formula fed piglets
in our pilot study. We proposed that the differential abundances
of miRNA impacts immune system in MF vs. HM fed piglets.
Further studies should include a human study of serum miRNA
in breastmilk vs. formula fed infants as well as miRNA
present in their diets. Also, studies looking at specific immune
cells and their roles/associations with the miRNA patterns
are warranted.
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Background: The high incidence of food allergy in childhood points to the need of

elucidating early life factors dictating allergy susceptibility. Here, we aim to address in

a mouse model how the exposure to a major cow’s milk allergen through breastmilk of

mothers with different immune status influences food allergy outcome in offspring.

Methods: BALB/cJ future dams were either kept naïve, or sensitized through the

oral route using cholera toxin (“orally sensitized”) or through the i.p. route using alum

(“i.p. sensitized”), or rendered fully tolerant (oral gavage without any adjuvant) to bovine

β-lactoglobulin (BLG). After mating with naïve males and delivery, mothers were orally

exposed or not to BLG during the whole lactation. Then, eight groups of lactatingmothers

were considered: naïve, i.p. sensitized, orally sensitized, or tolerant, each exposed or

not during lactation. In order to specifically address breastmilk effects on their allergy

susceptibility, pups from naïve-synchronizedmothers were cross-fostered by the different

groups of treated dams and lactating mothers at delivery. In some experiments, mothers

kept their own pups to address a possible in utero effect. BLG antigen, BLG-specific

antibodies, and BLG-immune complexes were measured in breastmilk from the different

lactating mother groups. Allergic sensitization was monitored in 5-weeks old female

offspring (n = 7–8/group of lactating mothers) by determining BLG-specific antibodies

in plasma and splenocytes cytokine secretion after i.p. injections of BLG/alum. Allergic

reaction to oral BLG challenge was evaluated by measuring mMCP1 in plasma.

Results: Offspring was protected from one allergic i.p. sensitization when nursed

by i.p. sensitized mothers, independently of BLG exposure during lactation. Orally

sensitized dams conferred protection in offspring solely when exposed to BLG during

lactation, while naïve mothers did not provide any protection upon BLG exposure.

The levels of protection correlated with the levels of BLG-specific antibodies and

BLG-immune complex in breastmilk. There was a trend for decreased sensitization in
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offspring breastfed by tolerant and exposed mothers, which was not associated with

transfer of specific antibodies through breastmilk. Protection provided by nursing by

treated/exposed mothers was not persistent after a boost i.p. injection of the progeny

and then did not protect them from an allergic reaction induced at this time point. No

additional in utero effects were evidenced.

Conclusion: Our study demonstrates the strong potential of breastmilk to modulate

immune response to a major cow’s milk allergen in the progeny. It highlights the

importance of maternal immune status and of her consumption of the allergen

during lactation in dictating the outcomes in offspring. This opens perspectives where

modulating maternal immune status might increase the chance of cow’s milk allergy

prevention in breastfed children.

Keywords: breastfeeding, food allergy, prevention, cow’s milk, mouse model

INTRODUCTION

Immunoglobulin-E (IgE)-mediated food allergies are
hypersensitivity reactions against harmless food proteins
occurring in predisposed individuals. Instead of a clinically
silent immune regulatory response, food allergic people
mount inflammatory immune responses driven by Th2 cells
upon ingestion of a food allergen (1). This results from
an impaired induction of oral immune tolerance toward
food antigens or its breakdown. Because the incidence of
allergic disease peaks in infancy and childhood, there is a
need to identify which early life factors are dictating allergy
susceptibility (1).

The perinatal period is a critical period in which both
microbiota implantation and type of feeding impact on the
maturation of the gut immune system and the epithelial barrier,
and thus on the propensity to develop food allergy later
in life. Notably, breastmilk might influence immune system
development via the transfer of various immunomodulatory
molecules directly acting on the epithelial and immune
system, or acting via the microbiota, such as regulatory/pro-
inflammatory cytokines, miRNA, immunoglobulins, nutrients,
but also metabolic products from the microbiota (2–5). Human
breastmilk also contains food antigens, which have been
ingested by the mother (6–17). While the factors controlling
food antigen shedding in breastmilk are poorly identified, the
excretion of food antigens, at low doses and over a long
period of time after ingestion (>24 h), appears as a natural
process. This might have a role in the education of the
immune system to environmental antigens to which the newborn
will be naturally exposed: actually, as part of the usual diet
of the mother, they might correspond to dietary habits of
the family.

Mouse studies evidenced that oral administration of
ovalbumin (Ova) to naive mice during lactation led to excretion
of Ova in milk, which induced partial protection of the progeny
from experimental Ova-induced allergic airway inflammation.
The protection was antigen-specific and dependent of
transforming growth factor-beta (TGF-β) in breastmilk (18).

However, the protective effect provided by Ova-exposure during
lactation was far more intense and durable if the mothers were
first immunized to the allergen. Breastfeeding-induced tolerance
then involves the transfer of IgG-Ova complexes to the neonates,
their loading through the neonatal receptor for immunoglobulin
constant region (FcR) in the gut and the induction of specific
Foxp3+CD25+ regulatory cells (19–21). These observations
were further extended to mice models of Ova-induced allergic
diarrhea (17).

In order to expand the knowledge on how to prevent food
allergy by breastmilk, we aimed to address whether observations
obtained with an egg allergen could be extended to the major
cow’s milk allergen, bovine β-lactoglobulin, a frequent cause
of food allergy in infancy. Furthermore, in order to better
reflect the human setting, we also aimed to assess the role of
the immune status of the mother in this protection. We then
considered either naïve, tolerant, moderately sensitized, or highly
sensitized mothers who were exposed or not to the food allergen
during lactation.

MATERIALS AND METHODS

Mice
Female and male BALB/cJ Rj mice, 4 weeks-old, were purchased
from CERJ (Centre d’Elevage René Janvier, Le Genest-Saint-
Isle, France), and were housed in filtered cages under normal
specific pathogen free husbandry conditions, with autoclaved
bedding and sterile water. Mice received a diet deprived of
animal proteins in which BLG was not detected using specific
immunoassays (22).

BLG Purification
Native BLG (BLG) was purified from raw cow’smilk (non-heated,
Ferme de Viltain, Saclay, France) using selective precipitation
and chromatography, and further characterized, as previously
described (23).
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Sensitization or Tolerization of the Future
Dams, and Oral Exposure to BLG During
Lactation
A first group of female mice was highly sensitized when 7 weeks-
old by i.p. injection of 5µg of BLG adsorbed on alum (Alhydrogel
3%, Superfos, Danemark, 1 mg/mouse), with a second injection
performed 14 days apart, a model known to induce very high
levels of IgE and IgG1 specific antibodies and high Th2 cytokine
secretion (24–26) (“i.p. sensitized” mothers, n = 15). Another
group of female mice was moderately sensitized when 4 weeks-
old by performing intra-gastric gavage with 2mg of BLG mixed
with 10 µg of Cholera toxin (Sigma-Aldrich, Saint-Louis, US).
Gavaged were repeated once a week for 5 weeks. This model
allows inducing specific IgE, IgG1, and Th2 cytokine secretion,
but that are far lower than induced by the i.p. route using alum
(24) (“orally sensitized”mothers, n= 15). A third group of female
mice was rendered fully tolerant by repeated gavage with 2mg
of BLG alone when 8 weeks old, a model allowing induction
of regulatory T cells that prevent any further sensitization to
BLG and any induction of BLG-specific antibodies (26, 27)
(“tolerant mothers,” n = 15). An fourth group of female mice
was kept untreated (naïve mothers, n = 15). When 9 weeks
old, and 2 days after the last sensitizing/tolerating treatment,
all females were mated with age-matched naïve males. Sixty six
percent of the females were pregnant, and at delivery, pups from
sensitized/tolerated mothers were replaced by pups from naïve-
synchronizedmothers in order to exclusively assess breastfeeding
effect and not the in utero effect (Figure 1). Lactating mothers
were then exposed or not to 1mg of BLG by gavage (200
µl/administration, diluted in PBS) every other day starting 48 h
after delivery and until weaning. Non-exposedmice received only
PBS, so they and their pups had the same handling/stress as in the
group of exposed mothers.

In order to assess any additional in utero effect, another
experiment was conducted in which pups were kept by their
respective mother and protocol then performed as before.

Milk Collection
Breastmilk was collected 10 days post-partum from the stomach
of 6–10 male pups per mother group. Males were sacrificed 4 h
after gavage of the mother with BLG (or PBS) and stomach
content was collected and pooled per mother treatment (2–
3 mothers per treatment group). Content was weighted and
diluted in two volumes of PBS. After vortexing and centrifugation
(10,000 × g, 10min, +4◦C), supernatants were collected and
stored at−20◦C until analysis.

BLG, BLG-Specific Ig Antibodies, and
BLG-Ig Immune Complexes in Breastmilk
Enzyme immunometric assays were performed in 96-well
microtiter plates (Immunoplate Maxisorb, Nunc, Roskilde,
Denmark) using AutoPlate Washer, Microfill dispenser and
spectrometer equipments from BioTek instruments, Inc
(Avantec, Rungis, France).

BLG antigen and BLG-specific IgG1, IgA, and IgE were
quantified in serial dilution of breastmilk samples (from 1/5

to 1/625) as previously described (22, 25, 28). As no standard
is available for BLG-specific IgA, results are expressed as
absorbance measured at 414 nm.

BLG-IgG1, BLG-IgA, and BLG-IgE immune complexes
were assayed on plates coated with IgG purified from rabbit
hyperimmunized with BLG. Serial dilutions (from 1/5 to 1/625)
of breastmilk samples were performed in immunoassay buffer
(0.1M phosphate buffer, 0.1% bovine serum albumin, 0.01%
sodium azide) and applied to coated plates for 18 h at 4◦C.
After extensive wash (0.01M phosphate buffer pH 7.4, 0.05%
Tween 20), acetylcholinesterase (AChE)-labeled anti-mouse IgE,
anti-mouse IgG1, or anti-mouse IgA antibodies were applied
for 3 h at room temperature, and solid-phase bound AChE
activity was determined by addition of 200 µL/well of Ellman’s
medium. Absorbance was then measured at 414 nm (25, 28). A
positive control of IgG1-BLG immune complex was provided
by mixing purified anti-BLG IgG1 monoclonal antibodies
(10 ng/ml) with purified BLG (1 ng/ml). No specific IgA-BLG or
IgE-BLG immune complexes were detected, whatever the group
of lactating mothers considered.

Allergy to BLG in Offspring (Figure 1)
Protocol of Induction of Allergy to BLG
When 5 weeks old, the female offspring nursed by the different
groups of mothers (e.g., naïve, naïve exposed during lactation,
i.p. sensitized, i.p. sensitized exposed during lactation, orally
sensitized, orally sensitized exposed during lactation, tolerant,
tolerant exposed during lactation) was sensitized to BLG by
i.p. immunization with alum (7–8 mice/group of mothers).
Plasma samples were collected 20 days later to assess allergic
sensitization. To assess the persistency of any effects, a boost
injection was performed 21 days after the first i.p. sensitization,
and 2 weeks later, all mice were orally challenged with 15mg of
purified BLG. Plasma was collected 60min later, both to assess
allergic sensitization and elicitation of the allergic reaction.

Evaluation of Allergic Sensitization
BLG specific IgG1, IgE, and IgG2a were quantified on plasma
samples collected from progeny using BLG-coated microtiter
plates (25, 26, 29). Due to high IgG concentrations that might
mask epitopes for IgE binding after the i.p. boost (25), a reverse
assay using anti-mouse IgE coated plates and AChE-labeled BLG
was also performed. Results are then expressed as mAU414nm

(no standard available). Non-specific binding was assessed using
plasma samples collected from naïve progeny (non-sensitized
progeny from naïve and non-exposed mothers).

Evaluation of Allergic Reaction
Mouse Mast Cell Protease-1 (mMCP1), a specific marker
of intestinal mast cell activation (Moredun Scientific
Limited, Midlothian, UK), was assessed on plasma samples
collected 60min after BLG oral challenge following
provider recommendations.

Splenocytes Cytokine Secretion
After oral challenge, spleens were harvested and pooled
within each mother treatment group. After lysis of red blood
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FIGURE 1 | Experimental protocol: BALB/cJ future dams were either kept naïve, moderately (intra-gastric gavage with BLG, and Cholera toxin) or highly

(intra-peritoneal administration of BLG/alum) sensitized to BLG, or rendered tolerant to BLG (intra-gastric gavage with BLG alone) before mating with naïve males. At

delivery, pups of treated mothers were replaced by pups from naïve-synchronized mothers in order to prevent interferences from in utero effects. Lactating mothers

from each group then received BLG or PBS by i.g. gavage every other day, during the whole period of lactation. Breastmilk was collected 10 days post-partum by

pooling stomach contents from 6 to 10 male pups per mother group to assess BLG, BLG specific antibodies, and BLG-immune complexes. The female progeny was

then experimentally sensitized by i.p. injection of BLG and Alum when 5 weeks-old and BLG-specific IgE, IgG1, and IgG2a were measured 3 weeks later. A boost

injection was performed 21 days after the first i.p. sensitization, and 2 weeks later, all mice were orally challenged with 15mg of purified BLG. Plasma was collected

60min later, both to assess allergic sensitization and elicitation of the allergic reaction. Mice were then sacrificed and spleens were pooled to assess ex vivo

BLG-specific cytokine secretion.

FIGURE 2 | (A) BLG antigen, (B) BLG-Specific IgG1 (black bars), IgA (white bars) and IgE (gray bars) and (C) IgG1-BLG immune complexes detected in milk

collected 10 days post-partum from naïve, sensitized or tolerant mothers exposed (+) or not (–) to 1mg of BLG every other day during lactation. Assays were

performed on stomach contents collected from pups 4 h after the exposition of their fostered mothers. For BLG-specific IgA and IgG1-BLG immune complexes,

absorbance signals (mAU414nm) obtained at the 1/25 dilution are reported. A positive control of IgG1-BLG immune complex was provided by mixing purified anti-BLG

IgG1 monoclonal antibodies with purified BLG (right bar).

cells (180mM NH4Cl, 17mM Na2EDTA) and several washes,
splenocytes were resuspended in RPMI-10 (RPMI supplemented
with 10% fetal calf serum, 2mM L-glutamine, 100U penicillin,

100µg/mL streptomycin—all from Gibco). Cells were incubated
in 96-well culture plates (106 cells/well) in the presence of
BLG (20µg/mL), RPMI-10 (negative control), or concanavalin
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A (1µg/mL, positive control) for 60 h at 37◦C and 5% CO2.
Each culture conditions were performed in duplicates. Culture
were centrifuged (300 × g, 10min) and supernatants were
collected and stored at −80◦C until further assay for cytokines
using multiplexed kits and apparatus from Biorad (Bio-Plex
ProTM Mouse Group I and Bioplex100TM apparatus; Marnes la
Coquette, France).

Statistical Analysis
Due to the number of animal included per group (n
< 30) and as data were not normally distributed, we
used non-parametric tests. Presence of differences between
groups was first tested using non-parametric Kruskall-Wallis
test, and p-values calculated using Monte Carlo simulation
(10,000 permutations). Pairwise multiple comparison was then
performed using Conover-Iman testing, including Bonferroni
correction for multiple testing. When specified, Mann Whitney
test was additionally performed between two specific groups.
All statistical analysis were performed using XLSTATTM 2019
(version 2.3, Addinsoft, France).

RESULTS

The Transfer of BLG Antigen, BLG-Specific
Antibodies, and BLG-Immune Complexes
Into Breastmilk Depends on Maternal
Immune Status
Using a BLG-specific sandwich immunoassay, we detected BLG
in milk collected from naïve or tolerant mothers who had been
exposed to BLG during lactation (Figure 2A). In contrast, we
could not detect BLG in milk collected from orally (moderate
sensitization) or i.p. (high sensitization) sensitizedmothers orally
exposed to BLG during lactation.

BLG-specific IgE, IgG1, and IgA (Figure 2B) and BLG-IgG1
immune complexes (Figure 2C) were undetectable in milk from
naïve or tolerant mothers, whether they had been exposed or
not to BLG during lactation. In milk from orally sensitized
mothers, BLG-specific Ig and immune complexes were detected
and their levels increased with BLG exposure during lactation.
I.p. sensitized mothers had the highest levels of BLG-specific Ig
and BLG immune complexes. They were not further increased by
BLG-exposure during lactation, except for the BLG-specific IgA.

Protection From i.p. Sensitization to BLG in
Offspring Depends on Maternal Immune
Status and Oral Exposure to BLG During
Lactation
The susceptibility of offspring from various mothers’ group to
be sensitized to BLG was first assessed by measuring BLG-
specific antibodies after one i.p. sensitization with BLG in
Alum. Mice fostered by naïve mothers exposed or not to BLG
during lactation demonstrated comparable sensitization levels,
as evidenced by comparable concentrations of BLG-specific IgE
and IgG1 (Figure 3). A trend in decreased BLG-specific IgE
and IgG1 antibodies concentrations were evidenced in progeny
fed by tolerant and exposed mothers (p = 0.06 and p = 0.01,

respectively, using Mann-Whitney test and when compared
to naïve non-exposed mice), whereas no effect was evidenced
in absence of exposure. Progeny fostered by orally sensitized
mothers were significantly protected from sensitization only if
mothers were exposed to BLG during lactation, although a trend
in decreased BLG-specific IgE concentrations was also noticed
without this exposure (p = 0,01 vs. naive non-exposed mother,
using Mann-Whitney test). In contrast, progeny fostered by
i.p. sensitized mothers were fully protected from sensitization,
whether exposed or not during lactation, as evidenced by the
nearly absence of specific IgE and the very low concentrations
of BLG-specific IgG1.

Protection Is Not Persistent After a Boost
i.p. Injection of the Progeny With BLG and
Then Does Not Protect the Progeny From
Allergic Reaction Elicitation
We further assessed the persistency of the prevention from
sensitization observed in the progeny nursed by the different
treated/exposed groups of mothers by performing an additional
i.p. immunization with BLG and alum and an oral BLG challenge.
A significant decrease of BLG-specific IgE concentrations
was only observed in the progeny fostered by the i.p.
sensitized exposed or non-exposed mothers as compared to
naïve non-exposed mothers (Figures 4A,B). However, this
protection from systemic sensitization was not associated
with a reduced allergic reaction as shown by comparable
levels of mMCP1 in all the groups (Figure 4C). The only
group that tended to be protected from the elicitation of
an allergic reaction was the progeny fostered by tolerant
and exposed mothers (p = 0.06 using the Mann-Whitney
test). No difference of IgG2a concentrations was observed
between the different groups of sensitized progeny (data
not shown).

Cellular Response in the Progeny
Evidenced Modulated Cytokines Profiles
We then assessed cellular immune responses in the sensitized
progeny mice by analyzing cytokine secretion at the end
of the experimental protocol. No cytokine secretion was
observed after culture with media alone, and Concanavalin
A-stimulation led to comparable cytokine secretions in the
different groups of mice (not shown). When splenocytes were
cultured with BLG, increased secretion of Th1 (IFNγ) and
Th17 (IL-17) cytokines was noticed in cells from progeny
fostered by naïve mothers exposed during lactation to BLG
compared to all the other groups (Supplementary Figure 1).
A trend in increased BLG-induced Th2 cytokines IL-5 and
IL-13 secretion was noticed in splenocytes from progeny
fed by non-exposed and sensitized mothers, either i.p. or
orally, which was however not associated with higher humoral
responses (Figures 3, 4). Conversely, exposure during lactation
greatly decreased BLG-induced Th2 cytokine secretion in those
groups. Feeding by tolerant mothers also rather led to a
decreased Th2 cytokine secretion, whatever the exposure during
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FIGURE 3 | Plasma BLG-Specific IgE (A) and IgG1 (B) antibodies induced after one i.p. sensitization with BLG/alum in pups fostered by naïve or pre-natally

sensitized or tolerated mothers, further orally exposed (+) or not (–) to BLG during lactation. Tukey box and whiskers from 7 to 8 mice/groups are shown. Statistical

analysis evidenced differences between groups (p < 0.0001, non-parametric Kruskall Wallis test). Pairwise multiple comparisons were then performed using

Conover-Iman testing, including Bonferroni correction for multiple testing. Groups indicated with different letters are different from each other’s (p < 0.05). p-values

obtained using additional testing against control (naive and non-exposed mothers) by Mann Whitney test are also indicated between brackets.

lactation. Comparable results were obtained for Th2 cytokines
and IL-10.

Absence of Additional in utero Effects
We finally aimed to assess if in utero events might provide
additional protective effects in the progeny. Therefore, we
compared sensitization in pups nursed by their own mothers vs.
pups from naïve-synchronized mothers that were cross-fostered
by mothers from the different groups. All mothers were exposed
to BLG during the whole breastfeeding period. We found similar
IgE and IgG1 responses after the first sensitization (Figure 5A)
and after the boost injection (Figure 5B) in pups form the
mothers fostering their own progeny (“in utero + lactation”) or
progeny from naïve-synchronized mothers (“lactation”).

DISCUSSION

New epidemiological and interventional studies demonstrate
the food allergy preventive effect of early introduction of some
allergens in infant diet such as egg and peanut (LEAP and
EAT studies, G. Lack and G. du Toit) (30–32). In contrast, the
interventional introduction of cow’s milk in the diet of breast-
fed infant after 3 months is not associated with protection (33).
This is in line with the non-interventional large study from Katz
and coworkers that evidenced the highest cow’s milk prevalence
in infants for who regular exposure to cow’s milk protein was
withheld until the age of 4–6 months (34). In parallel, studies
evidenced that regular introduction of cow’s milk formula in
the first 2 weeks (34) or first 3 months (35) while pursuing
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FIGURE 4 | Plasma BLG-Specific IgE (A), IgG1 (B), and mMCP1 (C) induced after two i.p. sensitizations and then an oral food challenge with BLG in pups fostered

by naïve or prenatally sensitized or tolerized mothers, further orally exposed (+) or not (–) to BLG during lactation. Tukey box and whiskers from 7 to 8 mice/groups are

shown. Statistical analysis evidenced differences between groups (p = 0.002 for IgE and p = 0.038 for mMCP1, non-parametric Kruskall Wallis test). Pairwise multiple

comparisons were then conducted using Conover-Iman testing, including Bonferroni correction for multiple testing. Groups indicated with different letters are different

from each other’s (p < 0.05). p-values obtained using additional testing against controls by Mann Whitney test are also indicated (MW).

FIGURE 5 | Pups were born and fed by prenatally sensitized (i.p. or orally) or tolerant mothers, further orally exposed during lactation (in utero + lactation), or pups

from naïve mice were fostered by prenatally sensitized or tolerant mothers further orally exposed during lactation (n = 5–12/group). BLG-specific IgE (top panel) and

IgG1 (bottom panel) were assayed in plasma from progeny after one (A) and two (B) i.p. sensitizations with BLG/alum. Specific antibodies are expressed as

percentage, with the mean value obtained in naive mothers not exposed during lactation used as a reference (100%). Immune response was compared between

“in utero + lactation” and “lactation” groups for a same mother pre-treatment, and p-values are indicated (Mann Whitney test).

breastfeeding might allow protection. In these studies, no or few
information is available on the mother immune status and cow’s
milk consumption while breastfeeding. Yet, oral exposure in the
mother during lactation might already have a significant impact
on the breastfed progeny; it has been evidenced recently that early
peanut introduction (<12 months) is associated with protection
only if the mother consumed peanut while breastfeeding (32).

This highlights the need to better understand the way to
maximize the chance of food allergy prevention. Here, we then
aimed to determine how both the immune status of the mother
and her ingestion of a clinically-relevant cow’s milk allergen
during breastfeeding will impact the allergic outcome in the
progeny. Using a mother-child mouse model, we found that these
factors do have a major impact on sensitization susceptibility
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in offspring. Effect on sensitization ranged between nihil for
naïve mothers exposed to BLG to a very potent protection
for i.p. sensitized mothers (highly sensitized) ingesting or not
BLG during lactation. Tolerant mothers and orally immunized
(moderate sensitization) mothers induced some protection from
sensitization but only when exposed to BLG during lactation.
No additional in utero effect was evidenced in our experimental
set up.

Actually, when we administered BLG to naïve BALB/cJ
lactating mothers, we detected BLG in milk collected on
D10 but we could not evidence any significant effect on
sensitization of the progeny. Our results are not in line with
all those obtained following the same experimental schedule
and using Ova as a model allergen (18, 20, 36), although
others did not evidence protection and even demonstrated
enhanced sensitization in the progeny in similar models (37).
Importantly, a mother ingesting a food is most of the time
not naïve to this food: she is either tolerant, or sensitized,
or allergic and the mothers then produce antibodies (IgGs,
IgE, IgA) and have T cells (Treg, T helper) specific to the
food antigens. Although a high inter-individual variability was
noticed, Ova specific IgG and IgA were detected in more
than 95% of transition breastmilk from the French birth
cohort EDEN, whereas Ova was detected in only 50% of
the samples (17). In the present study, we evidenced that
sensitization level of the mothers (naïve, moderately (oral)
or highly (i.p.) sensitized) determines the concentrations of
IgG, IgE, and IgA specific antibodies in milk, and these
increase upon oral exposure in the moderately exposed
mothers. The concentrations of antibodies were associated
with level of protection in the progeny. This is in line
with different studies in human that suggest a protective
role of high concentrations of breastmilk specific antibodies
on child sensitization, and that exposure of the mother
to the food allergens during lactation might increase their
concentrations (38, 39).

However, immune complexes might be even more efficient
than specific antibodies to protect the progeny, as evidenced
in the Ova-model in which breastfeeding-induced tolerance by
immunized mothers relies on the transfer of IgG-Ova complexes
to the neonates (19, 21). Although immune complexes were
not assessed in most of the previous cited studies in humans,
IgG and IgA immune complexes with gliadin (9) and peanut
allergens (13) were evidenced in human breastmilk. Moreover,
oral administration of human breastmilk containing peanut
allergens (free and complexed) before weaning induced partial
protection from sensitization in a mouse model (13). In the
present study, BLG-immune complexes levels are related with
level of protection in the progeny. Exposure to the allergen is
required to detect immune complex in breastmilk in the orally
sensitized mothers, whereas exposure to BLG in the BLG/Alum
model is dispensable. This might result from the deposit effect of
alum allowing progressive release of the antigen, then available
for forming immune complexes independently of oral exposure.
Although we did not absolutely prove the direct causal role
of Ig and immune complex on protection from sensitization,
which might be a limitation of our study, all these results

suggest that, in the human condition, oral exposure to the
allergen during breastfeeding might be critical to form the Ig-
immune complexes necessary to induced efficient protection in
the progeny.

Another interesting point is that BLG was not detectable in
the BM from sensitized and exposed mothers, whereas we were
able to detect BLG in the BM from naïve or tolerant mothers
exposed during lactation. As BLG detection relied on the use of an
immunometric assay, BLG might not be detectable in the former
milks due to a masking effect of specific antibodies present in
the breastmilk and/or the presence of BLG mainly as immune
complexes. The fact that not all mothers were found to be
excretors in various studies might result from the same masking
effect (7–12, 14–17). This might then imply that all mothers
are actually excretors of allergens in their BM, but as a free
and/or complexed form depending on the levels of exposure. This
should be taken into account in the association studies relating
allergen concentrations in breastmilk and allergic outcome in
the progeny.

In our mouse model, tolerant mothers tended to protect
offspring from sensitization when exposed to BLG during
lactation and this protection was not associated with Ig levels
or presence of immune complexes in breastmilk. This suggests
that other mechanisms, such as transfer in breastmilk of
specific immune cell or immuno-suppressive cytokines, might
also be involved in the transfer of protection. The actors and
mechanisms involved in the protection provided by tolerant and
exposed mothers clearly need additional studies.

It is worth noting that sensitization levels and mMCP1
concentrations after the OFCs were not directly correlated. This
may be explained by difference in mast cell density and FceRI
expression and will require further investigation.

Finally, another point is that the induction of protection we
observed with BLG appears to be less efficient than that observed
for Ova, despite the same experimental schedule applied (18–21).
Notably, we could not evidence any protective effect of exposure
to BLG via breastmilk from naïve mothers, and the protection
provided by i.p. sensitized mother did not protect progeny from
allergic reaction. These observations suggest that, in addition to
the immune status of the mother, the nature of the food allergen
itself might be important in dictating the possibility to induce
oral tolerance in early life. This is also reflected in epidemiological
and interventional studies demonstrating the prevention of food
allergy by early introduction of some allergens in the diet such as
egg and peanut while this was not observed for other allergens
such as cow’s milk (33). Future work is needed to elucidate which
additional approaches are necessary for successful persistent
induction of immune tolerance and prevention of allergic disease
to cow’s milk allergens in early life. Offspring exposure to BLG
after weaning might be required, as suggested for peanut (32).
Other strategy might also include supplementation in TGF-β in
formula given after weaning (17).

In conclusion, our study demonstrated the strong potential
of breastmilk to modulate in the long term the immune
response to food allergens in offspring. This protective effect
is associated with the excretion of the food allergens and
immune factors in breastmilk, some of which are increased by
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exposure to the allergen during lactation. Future studies will
need to address whether early immune modulation to cow’s milk
allergen by exposure through breastmilk might lead to a more
successful cow’s milk allergy prevention by early introduction
in child.
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Pre-pregnancy body mass index (BMI) is a major relevance factor, since maternal

overweight and obesity can impair the pregnancy outcome and represent risk factors

for several neonatal, childhood, and adult conditions, including excessive weight gain,

cardiovascular disease, diabetes mellitus, and even behavioral disorders. Currently,

breast milk (BM) composition in such category of mothers was not completely defined.

In this field, metabolomics represents the ideal technology, able to detect the whole

profile of low molecular weight molecules in BM. Limited information is available on

human BM metabolites differences in overweight or obese compared to lean mothers.

Analyzing all the metabolomics studies published on Medline in English language, this

review evaluated the effects that 8 specific types of metabolites found altered by maternal

overweight and obesity (nucleotide derivatives, 5-methylthioadenosine, sugar-alcohols,

acylcarnitine and amino acids, polyamines, mono-and oligosaccharides, lipids) can exert

on the risk of offspring obesity development and other potentially associated health

outcomes and complications. However, metabolites variations in samples collected from

overweight and obese mothers and the potentially correlated effects highlighted below

still need further investigations and should be confirmed in future metabolomics studies

on larger samples. Finally, the positive or negative influence of maternal overweight

and obesity on the offspring, potentially exerted by breastfeeding, should be analyzed

in close correlation with maternal age, genetic and environmental factors, including

diet, and taking into account the interactions occurring between BM metabolites and

lactobiome. The evaluation of all the factors affecting BM metabolites in overweight

and obese mothers can lead to the comprehensive description of such biofluid and

the related effects on breastfed subjects, potentially highlighting personalized needs

of BM supplementation or short- and long-term prevention strategies to optimize

offspring health.

Keywords: breast milk, breastfeeding, obesity, overweight, gestational diabetes mellitus, diabetes, metabolomics

INTRODUCTION

Obesity is a growing social problem affecting an increasing number of women in reproductive
age. It represents a risk factor potentially impairing the pregnancy itself, and even the long-term
outcome of the offspring, since it is well known that the overweight condition can be transmitted to
the future generations. Several observational studies and some meta-analyses have been carried out
to assess whether breastfeeding is positively correlated with a reduction in the incidence of obesity
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in later life. Although most of them showed a modest reduction
in such risk (1), rigorous reviews (1–3) conclude that there is
no clear cause-effect relationship, because of several confusing
factors and frequent bias of such studies. Currently, conditions
as the socio-economic status of the mother, the level of
education, ethnicity, eating habits of the family, and duration
of breastfeeding have not been considered and could themselves
justify the association. On the other hand, a study reports that
the risk of obesity is higher in the non-breastfed children of obese
mothers, but remains higher even in those who are breastfed than
in the general population (4).

Nutrition in the early stages of life plays a fundamental role
in the child’s growth and development, and is presumably one
of the main players in the “programming” of his future health.
In the very early phases of life breast milk (BM) can affect the
maturation of organs and systems, influencing the future health.

Human BM is a complex biofluid containing a very large
number of components, including macronutrients, hormones,
bioactive molecules, stem cells, and microbial communities; each
of them is potentially responsible for a certain specific and even
synergic influence on the newborn outcome, on its growth and
on the development of organs and systems, as deeply reviewed in
several paper by ours (5–10).

It could be hypothesized that maternal pathological
conditions could influence BM composition, but there are
few studies in agreement with these considerations. In a recently
published review by our group, to our knowledge the first on
this topic, the studies using metabolomics to investigate BM
of women with great obstetrical syndromes were discussed;
it emerged that some metabolites seem to differentiate BM
of healthy women and samples collected from women with
preeclampsia, gestational diabetes, and intrauterine growth
restriction; these metabolites might be related to the long-
term outcomes in the offspring of affected mothers. The
results of the analysis seem to highlight the involvement of
the mammary gland in the underlying pathological processes
and suggest the possibility that BM, while remaining the
food of first choice in the early stages of life, could benefit
from targeted supplementation to promote a better infant
outcome (11).

Up to now, a clear description of BM composition
in overweight or obese mothers has not been provided.
Metabolomics is an emerging method in the study of BM and
has proved useful in differentiating the characteristics of healthy
women milk according to gestational age and lactation stage
(12–14).

In the present paper, through the review of the metabolomics
studies on BM collected from overweight-obese women, for the
first time, we aim to investigate the metabolites found altered in
the different studies, to assess whether they can have a positive
(or negative) effect on the onset of obesity and other long-
term complications.

We accurately searched on Medline the whole available
literature, in English language, applying metabolomics to
characterize BM in overweight and obese mothers; thus,
breast milk, overweight, obesity, metabolomics, lipidomics, and
oligosaccharides were used as key words.

As result, we found and discussed a single article on
untargeted metabolomics (15), a total of four articles on targeted
metabolomics (16–19), and 10 articles on lipidomics (20–29)
published since 2013–2020. Review articles were excluded.

The main metabolomics differences detected by comparing
BM of overweight/obesemothers and lean ones, and the potential
short- and long-term effects in offspring have been summarized
in Table 1. When available, details on maternal age in the
different studies have been reported in the footnotes.

NUCLEOTIDE DERIVATIVES

The effects of nucleotides as bioactive substances in the
regulation of body functions have been known since long
time. In vitro and in vivo studies showed that nucleotides
can promote gut maturation, affect immune modulation
enhancing infant antibody response and, in neonatal gut,
they can favor the growth of bifidobacteria. In humans,
they are considered semi-essential dietary elements, due
to the poor capacity of some tissues to synthesize them
de novo, such as intestinal mucosa and hematopoietic
cells. Even if their addition is optional, their pre-constitute
mixes are usually present in infant formula milk, to
optimize products resembling more accurately mother’s
samples (31).

Pyrimidine derivatives: in the study by Isganaitis et al.,
the only one, to our knowledge which performs an
untargeted metabolomics analysis, liquid chromatography-
gas chromatography-mass spectrometry (UHPLC-GC-MS) was
applied to BM analysis at 1 and 6 months post-partum; samples
collected from women with BMI > 25 Kg/m2 were compared
with a control group of lean mothers. Pathway analysis indicated
that metabolites related to purine and pyrimidine metabolism
were the most represented among those found to be significantly
different at 1 month post-partum in BM of overweight-obese
mothers compared to normal weight controls (15).

Among pyrimidine derivatives, orotate was reduced in
the milk of obese-overweight mothers by about 25% (15).
Orotate, introduced with food (especially dairy products) or
synthesized de novo (from glutamine, ATP and CO2), is
an intermediate metabolite of pyrimidine synthesis and a
precursor of uridine-mono phosphate (UMP), a nucleotide
that plays a central role in different aspects of human
metabolism (32). BM contains less orotate compared to milk
of other species, and mammary gland is assumed to produce
it and to have a high rate of UMP synthetase, an enzyme
involved in the transformation of orotate into UMP, readily
absorbed in gastro-intestinal tract (33). UMP, in addition to
the involvement in nucleic acids synthesis, is the precursor
of uridine-di-phosphate (UDP)-sugars, extracellular signaling
molecules whose role in inflammatory and immune processes
and in obesity-related glucose metabolism has been recently
partially clarified.

With regard to the former, UDP-sugars are the major agonist
of P2Y14 receptor (P2Y14R), abundantly expressed in leukocytes
and other immune/inflammatory cells. They are also involved
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TABLE 1 | Main metabolomics differences detected by comparing breast milk of overweight/obese mothers and lean ones in the different studies, and the potential short-

and long-term effects in offspring.

Metabolites variation in overweight/obese mothers samples Potential long term effects in offspring

PYRIMIDINE DERIVATIVES

Orotate

↓ at 1 month of lactation (15)

Altered glucose homeostasis

More weight gain by an inadequate diet

Negative effect on the development of immune processes

PURINE DERIVATIVES

AMP, Adenine

↑ at 1 month of lactation (15)

↑ Overweight risk

Protection from obesity associates insulin-resistance

Positive effect on the development of immune processes

↑ Neuroprotection

↓ Cardio-vascular risk

Methylthioadenosine

↑ at 1 month of lactation (15)

Protection against cardio-metabolic risk

SUGAR ALCOHOLS

Erythritol

↑ at 1 month of lactation (15)

↑ Overweight risk

AMINOACIDS (AND ACYLCARNITINES)

Branched chain aminoacids (BCAAs)

↑ at 3 month of lactation (16)

↑ Cardio-metabolic risk

Unfavorable neurological outcomes

3-5Acylcarnitines (ACs)

↑ at 6 month of lactation (15)

Glutamine

↓ at 6 months of lactation (15)

Altered glucose homeostasis

Unfavorable neurological outcomes

(as precursor of glutamate)

Asparagine and Ornithine

↓ at 6 months of lactation (15)

↑ Cardio-metabolic risk

Aromatic aminoacids and derivatives

Tyrosine

↑ at 6 months of lactation (16)

↑ Cardio-metabolic risk

Kynurenic acid

↓ at 6 months of lactation (15)

Protection against cardio-metabolic risk from oxidative stress and inflammation

2-Aminobutyrate (2-AB)

↑ at 1 month of lactation (15)

Protection against oxidative stress

Polyamines

↓ at 3 days, 1 month and 6 months of lactation (17)

Less protection against cardio-metabolic risk from oxidative stress and inflammation

Less neuroprotection

MONOSACCHARIDES

1-5 anhydroglucitol (1,5-AG)

↑ at 1 and 6 months of lactation (15)

Emerging hyperglycemia marker

In breast milk

Potential role in describing maternal glycemic control

Arabinose

↑ at 6 months of lactation (15)

Effects on some pathogens, potentially reducing their virulence

Glucose-6-phosphate

↑ at 6 months of lactation (15)

Protection against oxidative stress

Providing of energy supply

OLIGOSACCHARIDES

Lacto-N-fucopentaose I

↓ at 1 month of lactation (15)

↑ Overweight risk

↓ Infant height

↓ Protection against infections

Negative influence on neonatal gut microbiota, i.e., reducing Lactobacillus spp. (30)

Lacto-N-fucopentaose II

↑ at 1 month of lactation (15)

↑ Overweight risk

Lacto-N-fucopentaose III

↑ at 1 month of lactation (15)

↑ Infant height promotion

↑ Protection against infections

↑ Gut content of Lactobacillus spp. (30)

2′-Fucosyllactose

↓ at 1 month of lactation (15)

Higher in Se+ overweight mothers than Se+ non-overweight ones

(observation not confirmed in obese mothers) (18)

No clear associations with infant growth

Its reduction could lead to: ↓ Infant weight, height and growth promotion ↓

Protection against infections

(Continued)
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TABLE 1 | Continued

Metabolites variation in overweight/obese mothers samples Potential long term effects in offspring

3′-Fucosyllactose

↑ at 1 month of lactation (15)

Lower in Se+ overweight mothers than Se+ non-overweight

ones. (observation not confirmed in obese mothers) (18)

No clear associations with infant growth

Lacto-N-hexaose

↓ at 3-4 months of lactation (19)

↓ Overweight risk

LIPIDS

Saturated fatty acids

↑ At 1 and 2 months (23, 24), and at 3 months of lactation (21)

↑ Weight and BMI gain up to 13 months

Palmitic acid (16:0)

↑ at 2 weeks of lactation (25)

Tridecanoic acid (C13:0)

↑ in colostrum (26)

↑ Overweight risk

↓ Glucose tolerance

↓ Insulin response

↓ Oxidation of fatty acids

↑ Inflammatory and metabolic responses

MUFA/SFA, UFA/SFA

↓ at 3 months of lactation (21)

↑ Weight and BMI gain up to 13 months

Total MUFA

↓ at 1–3 months of lactation (22, 23)

Oleic acid (18:1)

↓ at 2 weeks of lactation (25)

↑ Overweight risk

Worsening of metabolic and lipid profiles

n3 PUFA

↓ at 1–3 months (21, 22, 29) and at 6–7 months of lactation (20)

↓ from 3 days to 2 months of lactation (24)

↑ in colostrum (26)

↑ Overweight risk

↑ Inflammation

ALA, EPA, DHA

↓ at 1–3 months of lactation (22, 23, 29) and from 3 days to 2

months of lactation (24)

↑ Overweight risk

Unfavorable sensorineural outcome

n-6 PUFA

↑ at 2 months of lactation (29) and at 6–7 months of lactation (20)

DGLA

↑ at 2 weeks of lactation (25)

↑ Weight for age z-score

↓ Lengh for age z-score and CC between 2 weeks and 2 months of age

↑ Inflammation

n-6/n-3

↑ at 1–3 months of lactation (21–23, 29) and from 3 days to 2

months of lactation (24)

↑ Overweight risk

↑ Inflammation

Adrenic acid (22:4 n-6)

↑ in colostrum (26) and at 2 weeks of lactation (25)

Promotion of CNS development

PAHSA levels

↓ at 3 days of lactation (28)

↑ Overweight risk

↑ Inflammation

↓ Glucose tolerance

Conjugated linoleic acid isomers

↑ at 2 weeks of lactation (25)

↓ in colostrum (26)

Conflicting results in the 2 available studies (25, 26)

UFA, unsatured fatty acids; SFA, satured fatty acids; MUFA, mono-unsaturated fatty acids; PUFA, unsaturated fatty acids; ALA, α-linolenic acid; EPA, eicosapentaenoic acic; DHA,

docosahexaenoic acid; DGLA, dihomo-gamma-linolenicacid; PAHSA, palmitic acid ester of hydroxystearic acid.

When available, details on maternal age in the different studies have been reported in the footnotes.

Details on maternal age (means ± SDs):

(15): Average age of overweight-obese mothers: 30.5 ± 4.7 years (no statistically significant differences with lean group).

(16): Average age of obese mothers: 30.2 ± 4.7 years (no statistically significant differences with lean group).

(17): Average age of obese mothers: 30.2 ± 5.8 years (no statistically significant differences with lean group).

(18): Average maternal age is reported according to Secretor status, not referring to maternal BMI.

(19): Average age of the mothers in the study: 33.0 ± 4.2 years (considering overweight and lean mothers together).

(20): Average age of overweight mothers: 34.06 ± 3.37 years (no statistically significant differences with lean group).

(21): Average age of overweight mothers: 31.0 ± 5.0 years (no statistically significant differences with lean group).

(22): Maternal age in relation to BMI is not reported.

(23): Average age of overweight-obese mothers: 32.0 ± 4 years (no statistically significant differences with lean group).

(24): Average age of lean mothers: 32.0 ± 4.1 years; Average age of obese mothers: 30.5 ± 5.7 years.

(25): Average age of overweight-obese mothers: 29.9 ± 3.8 years (no statistically significant differences with lean group).

(26): Maternal age in relation to BMI is not reported.

(28): Average age of obese mothers: 35.1 ± 4.3 years (statistically higher than lean group).

(29): Average age of obese mothers: 30.0 ± 5.7 years (no statistically significant differences with lean group).
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in the maturation of dendritic cells, in the degranulation of
mast cells, and in the promotion of the regenerative processes of
hematopoietic cells in the bone marrow (34). These observations
suggest that the reduction of orotate in BM of overweight-
obese mothers could have an adverse effect on the neonatal
immune processes.

With specific reference to obesity, studies in mice models
highlighted the abundant presence of P2Y14R mRNA in
the pancreas and its implication in the modulation of
insulin secretion. Moreover, the agonist action of UDP-
sugars on the P2Y14R would seem to blunt the effect of
an high fat diet on weight gain (35). In agreement with
these reports, the reduction of orotate in BM of obese-
overweight mothers could have a long-lasting adverse effect
on glucose tolerance and on the protection, exerted by these
nucleotide derivatives, against weight gain promoted by an
inadequate diet.

Purine derivatives: among the metabolites belonging to purine
pathway, adenosine mono phosphate (AMP) and its catabolite
adenine were increased in BM of overweight-obese mothers
1 month after birth, while adenosine monophosphate cyclic
(cAMP) was reduced (15).

Once introduced with the diet, purine nucleotides no longer
necessary for cellular functions are degraded by intestinal
enzymes to uric acid. In BM, they can derive from the direct
passage from blood to milk or from metabolic processes in the
mammary gland (31).

Purines are involved in physiological and pathological
processes in all tissues and specifically in adipose tissue. In
particular, ATP and adenosine binds to specific receptors of white
and brown adipose tissue, both in adipocytes and stromal cells,
and their function may be altered in various diseases such as
metabolic syndrome (36, 37).

Some of their important functions, exerted mainly through
the action of adenosine on A1 receptors, concern the inhibition
of lipolysis and the reduction of free fatty acids (whose
involvement in the pathogenesis of insulin resistance, diabetes,
cardiovascular diseases is recognized), the reduction in insulin
resistance is associated with obesity, the increase in leptin
production (with an additional beneficial effect on insulin
sensitivity), and the increase in the uptake of glucose by
adipocytes (with improvement of glucose tolerance but also in
triglycerides storage and weigh gain). In agreement, in some
studies on obese patients, A1Rs expression was found to be
inversely related to the ability to lose weight (38, 39). As
well as pyrimidine nucleotides, purine nucleotides positively
affect innate immunity and regulates monocytes, macrophages,
dendritic cells and mast-cell functions (37, 40). Moreover,
their involvement in numerous central nervous system (CNS)
functions such as behavior, nociception and locomotion has been
highlighted (41).

Finally, the activation of purine pathway found in BM of
overweight-obese mothers (15) could promote weight gain long
after birth, but also improve glucose tolerance and insulin
sensitivity in case of obesity, and reduce cardiovascular risk. It
may also have a positive effect on the development of immune
and anti-inflammatory processes and on neuroprotection.

5-METHYLTHIOADENOSINE

Methylthioadenosine (MTA) was increased 1 month
post-partum in BM of obese-overweight mothers and it was also
the only metabolite involved in the overlap between BMI and
infant total fat content at 1 month (15). It is a natural nucleoside
sulfur containing derived from 5 s-adenosylmethionine (5
SAMe) in polyamine cycle, present in all mammalian tissues
including the placenta. 5 SAMe is the substrate of the 5-MTA
phosphorylase enzyme, that initiates the salvage pathways
leading to the recovery of methionine by one side and adenine
(adenosine, AMP) by the other (39). It is an almost exclusively
endogenous metabolite (its presence has been described but
not quantified in some edible plants) described for the first
time in BM by Isganaitis (15). Being a purine nucleoside, we
can assume a gastro-intestinal absorption, similar to that of the
other purines.

5-MTA has important cellular regulatory functions, including
gene expression control, inhibition of cell proliferation,
activation of lymphocytes, modulation of tumors invasiveness,
regulation of apoptosis, and liver-protection (42). Its potent
anti-inflammatory profile has been proven in mice where it
prevents lipopolysaccharide-induced death by inhibiting TNFα
production (pro-inflammatory cytokine) and iNOS (inducible
nitric oxide synthase) gene expression, while enhancing the
release of IL-10 (anti-inflammatory cytokine) (42).

In a metabolomics study on an induced rat model of diabetes
dating back to 2016, 5MTAwas significantly higher. The study of
oxidative stress products showed increased values of superoxide
dismutase and hypoxia inducible factor 1 alpha. Both the 5-MAT
and the oxidative stress products normalized after treatment
with isoflavones, demonstrating their action on the cellular
oxidative damage and therefore highlighting related metabolic
processes (43). One year later, an untargeted metabolomics
study (UPLC-MS) detected an increase in 5-MTA level in the
urines of elderly patients with type 2 diabetes (T2D) (44). In a
further metabolomics study in Mexican adolescents, conducted
with to investigate the metabolites associated with a metabolic
disease risk z-score (MetRisk z-score), 5-MTA values showed
a significant correlation (45). Finally, 5-MTA levels resulted
significantly associated with the BMI in a study conducted on
2,396 unrelated European individuals in the TwinsUK cohort and
724 others of the Health nucleus cohort in three time-points,
covering a total interval of 8–18 years (46).

5-MTA should be considered a protective molecule
against chronic inflammation and oxidative stress conditions
characterizing obesity and metabolic syndrome. In this respect,
MTA increase in BM of overweight-obese mothers (15) could
be protective for long-term overweight, oxidative stress and
cardio-metabolic risk.

SUGAR-ALCOHOLS

Erythritol and ribitol (sugar alcohols) were increased in the
milk of obese-overweight mothers 6 months after birth (15).
To the best of our knowledge, only another study investigates
sugar alcohols in BM (HPLC), even if erythritol and ribitol
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were not detectable (47). While ribitol is an endogenous
molecule originating from the reduction of ribose in fibroblasts
and erythrocytes, erythritol is a low-caloric sugar-substituted
sweetener authorized in the USA and it is also present in different
foods. It is absorbed from the proximal intestine by passive
diffusion. Recently, its serum increase has been observed, in
correlation to weight gain, in a cohort of freshmen. At the
same time, through ex vivo isotopic techniques, endogenous
production of erythritol from glucose (48) was detected. Given
the wide use of low-caloric sweeteners by obese-overweight
individuals, further investigation will be useful to clarify whether
its increase in the milk of obese-overweight mothers could be
related to this or to other metabolic pathways (48) and the
possible long-term effect on glucose metabolism in the infant.

ACYLCARNITINE AND AMINO ACIDS

Acilcarnitine (ACs) and branched amino acids (BCAAs): Three
short-chain ACs were increased in the milk of obese-overweight
mothers at 6 months after delivery (15). Short-chain ACs derive
from the catabolism of BCAAs, rather than from long-chain
fatty acids. Although Isganaitis and colleagues did not detect
an increase in BCAAs in the milk of overweight and obese
mothers (15), De Luca et al. (16), trough UPLC and Tandem
Mass (MS/MS), specificallymeasured free amino acids in themilk
of 45 obese women and 45 controls at 1 month post-partum.
As result, they found an increase in BCAAs and tyrosine (by
20 and 30%, respectively) in the formers (16). The increase in
serum levels of BCAAs and ACs has been found, in several
studies, in obese subjects with or without T2D, and has been
more correlated with insulin resistance than with obesity (46, 49–
52). The same group of Isganaitis (45) carried out an untargeted
metabolomic study on 262 children aged 6–10 years divided
into two groups (thin and obese non-diabetic): through MS,
they found that obese children showed an increase in BCAAs
and C3-C5 ACs, significantly correlated with several cardio-
metabolic risk indices, including insulin resistance. Interestingly,
the pattern was more pronounced in children of mothers with
pre-gestational obesity.

An increase in BCAAs may compromise the transport
of aromatic amino acids into cells and tissues, reducing
the production of serotonin and melatonin (derived from
tryptophan) and catecholamines (derived from phenylalanine
and tyrosine) in the CNS. Melatonin and serotonin exert their
effects both centrally and in the periphery, regulating energy
homeostasis through central control of food intake, promoting
lipogenesis and glucose metabolism (53).

Finally, literature data on BCAAs and ACs in obese subjects
suggest that exposure to these metabolites is associated with
increased metabolic risk later in life. It may also lead to
a reduced availability of tryptophan and its serotonin and
melatonin derivatives, with neurobehavioral impairment and
negative effects on lipid metabolism. The abundance of BCAAs
and ACs found in BM (15, 16) could in the same way be
linked to an increased metabolic and neuropsychiatric risk in the
long distance.

Glutamine: glutamine was reduced by about 30% in the milk
of obese-overweight mothers at 6 months after delivery (15).
It should be noted that an untargeted metabolomics work on
the milk of mothers with gestational diabetes (54) showed a
reduction of glutamine. Its role in promoting better glucose
homeostasis as main precursor of gluconeogenesis in the kidney,
representing a main substrate for gut-brain gluconeogenesis
system, and an inducer of glucagon-like peptide secretion was
highlighted in our recent review (11, 55–58) investigating BM of
women with great obstetrical syndromes.

Finally, the reduction of glutamine in the milk of obese-
overweight mothers at 6 months after birth (15) may have long-
term adverse effects on glucose homeostasis.

Asparagine and ornithine: these aminoacids were reduced by
about 50 and 20%, respectively, in the milk of obese-overweight
mothers at 6 months after delivery (15). Several studies on the
amino acid profile in obese subjects inversely correlate the amino
acid asparagine with the cardio-metabolic risk (46, 50, 52, 59, 60);
only one recent study, to our knowledge, correlates also ornithine
to T2D (61).

Their reduction in the milk of obese women could be a
long-term metabolic risk factor in infants.

Aromatic amino acids and derivatives: tyrosine (in addition to
BCAAs) was increased by 30% in the milk of obese women 1
month after birth (16). An increase in blood tyrosine is frequently
reported in obese subjects (45, 46, 50–52, 62, 63); it is likely to
contribute to insulin resistance by glucose production through
the pathway of dicarboxilic acid fumarate, the latter also found
increased in BM of obese-overweight mothers at 6 months (15).

High levels of tyrosine in the milk of obese women (16) could
have a negative impact on BMI and cardio-metabolic risk in
later ages.

Kynuretic acid was reduced by about 30% in the milk of
overweight-obese women 6 month after birth (15).

In the human body most of kynurenic acid comes from
tryptophan catabolism; it is also present in foods and seems to
be produced by intestinal microflora in moderate quantities. It
can be easily absorbed from the digestive system and transported
to the liver and the kidney (64).

In humans, serum kynurenic acid has been positively
associated with several cardio-metabolic risk factors as BMI and
insulin-resistance (35, 44): however, some reports in humans
disagree with experimental studies where kynurenic acid was able
to improve energy metabolism and inflammation in mice fed
a high-fat diet and to promote weight loss (65, 66). Thus, it is
possible that the elevation of this metabolite in individuals with
metabolic risk can represent a compensatorymechanism through
which kynurenic acid could perform its beneficial action. In this
context, the reduction of kynurenic acid in BM of overweight-
obese mothers in the Isganaitis study (15) could lead to an
increased susceptibility to metabolic risk long after birth, rather
than being protective.

2-Aminobutyrate (2-AB): 2-AB significantly increased in
samples collected from overweight-obese womenat 1 month
of lactation, increased by about 55% (p = 0.03) (15). 2-AB
metabolismis poorly clarified, especially in BM. It seems involved
in defense against oxidative stress; reduced glutathione is a
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central metabolite in the intracellular redox state. Glutathione
consumption through oxidative stress activates a compensatory
glutathione (GSH) synthetic pathway, accompanied by the
synthesis of ophthalmic acid, a GSH analog, from 2-AB (67, 68).

We found a single study investigating 2-Ab in BM; in detail,
such metabolite was compared between mothers affected by
inflammatory bowel disease (IBD) and healthy mothers at 3 and
6 months of lactation. As result, 2-AB was lower in IBD mothers,
potentially related to increased pro-inflammatory activity (69).

We strongly believe that 2-AB increase in BM from obese
mothers could be a compensative mechanism reflecting an
increase in oxidative stress.

POLYAMINES

In the study by Ali et al. (17), 50 mothers (20 lean, 20 obese
and 10 obese undergoing dietary treatment), were invited to
collect milk at 3 days, 1 month, and 2 months post-partum, to
investigate polyamine levels with HPLC. The total polyamine
content was reduced in obese mothers at the three time points:
the reduction concerned only spermidine and putrescine levels,
while spermine was equally represented in the considered
groups. The 10 obese mothers undergoing dietary treatment
had a higher spermidine and putrescine milk content than the
others obese women. The authors assume that the reduced
content of polyamines in obese BM could depend on the
low quantity of polyamines in the fat- and carbohydrates-rich
foods assumed by obese subjects (17). In agreement, higher
levels of polyamines were found in subjects who practice the
Mediterranean diet (70).

Polyamines are widely present in the human body and
are involved in many vital functions. Although they mainly
derive from endogenous metabolism, a percentage is produced
by food and intestinal flora, especially in case of fiber-rich
diet. Once introduced with food, they can be absorbed and
distributed to different tissues. Their protective role against
cardio-metabolic risk has been highlighted by the study of
Eisenberg et al., which finds an association between increased
consumption of spermidine and decreased cardiovascular events
and mortality (71).

Polyamines also represent oxidative stress and inflammation
modulators, often associated with obesity and implicated in
the pathogenesis of metabolic syndrome (72). In a study
performed on 60 obese children aged 7–14 years, blood levels
of polyamines were significantly higher than in controls, and
spermine represented a marker of oxidative stress (NO pathway)
and inflammation. The authors believe that the increase in these
metabolites could be a protective mechanism against obesity-
related oxidative stress (73). Recently, an association between
serum polyamine and T2D levels has been reported in a cohort
of patients with metabolic syndrome (74).

A deregulation of the polyamine system would play a role in
neurodegenerative diseases (75, 76) and depression (77) because
of their involvement in the modulation of synapsis and in the
regulation of the ionic channels that participate in neuronal
excitability (72).

Finally, the reduction of polyamines in BM could make
newborns of obese mothers in the long distance more susceptible
to weight gain, oxidative stress, inflammation and cardio-
metabolic risk. Moreover, they may be less predisposed to
develop neuropsychiatric disorders.

MONOSACCHARIDES AND
OLIGOSACCHARIDES

Below, we review the few available studies regarding human
milk monosaccharides and oligosaccharides (HMOs) variations
in BM from overweight and obese mothers instead of normal
weight mothers’ samples, and the consequent effects on neonatal
metabolism and infant growth.

It should be underlined that ingested HMOs can reach the
distal bowel and colon without undergoing any modification or
enzymatic hydrolysis in the stomach and upper GI tract. Thus,
HMOs can be metabolized by intestinal microbes and 99% of
them is eliminated with the stools. The smallest percentage of
them (about 1%) can be absorbed through the intestine and reach
the circulation, being transferred to several organs, such as brain,
liver, respiratory and urinary tract, where they can exert several
functions (7).

- 1,5Anhydroglucitol (1,5-AG) (monosaccharide) was found
significantly increased in BM from overweight and obese
mothers at 1 (p = 0.002)and 6 months of lactation (increased
by 37% at 6 months, p= 0.003) (15).

1,5-AG is a very interesting metabolite not previously described
in BM. Serum 1,5-AG is a validated short-term marker of
glycemic control (78) in patients with type1 and type 2 diabetes,
and its role in gestational diabetes is still under evaluation (78–
82). During pregnancies affected by diabetes, the mean maternal
serum values of 1,5-AG were negatively associated with neonatal
birth weight and tended to be lower in infants with hypoglycemia;
the magnitude of the difference between hypoglycemic and
normoglycemic was greater for gestational diabetes (83).

According to another study, maternal serum level of
1,5-AG at birth was significantly and inversely associated
with neonatal complications (such as respiratory distress,
hypoglycemia, polycythemia, hyperbilirubinemia, and “large for
gestational age” condition), resulting useful in the prediction of
complications (84).

In our opinion, 1,5-AG level in BM could reflect maternal
glycemic control and help in predicting neonatal outcome in
pregnancies complicated by diabetes, even if it was not identified
before in BM and its presence requires further clarification.

- Arabinose (monosaccharide) was found significantly increased
in BM from overweight and obese mothers at 6 months of
lactation (increased by 72%, p= 0.01) (15).

Arabinose, a five-carbon sugar is a carbon source for many
bacteria. In literature, we did not find a metabolic role of such
pentose in BM on infant weight gain.

However, in two studies it seems to modulate, in a
controversial way, Pseudomonas aeruginosa virulence, an
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opportunistic human pathogen strongly associated with NEC
development (85, 86).

Therefore, arabinose could have a potential role on pathogens
virulence, improving our knowledge of BM-related effects and
contributing to the optimization of formula milks.

- Glucose-6-phosphate (monosaccharide) was significantly
higher in BM from overweight and obese mothers at 6 months
of lactation (2.07-fold change, p= 0.01) (15).

Glucose-6-phosphate (G6P or α-D-glucose-6-phosphate) is
involved in protection against oxidative stress, since it guarantees
adequate levels of NADPH to modulate the redox state (87).

In literature, we found a single very old study measuring such
metabolite in human milk during established times of lactation,
including G6P, but the results are not clear (88).

Thus, by the few available evidences, it could be supposed a
protective role against oxidative stress and provide energy supply.

- Lacto-N-fucopentaose I (LNFPI) was found significantly
reduced in BM from overweight and obese mothersat 1 month
of lactation, reduced by about 62% compared to samples of
normal weight mothers (p= 0.007) (15).

LNFPI resulted the most relevant influencer of infant growth,
significantly associated with lower infant weight at 1 month and
with lower weight and less lean and fat mass at 6 months (89).

LNFPI was also associated with lower infant weight and
weight gain at 1 month in another study (18).

Moreover, LNFPI had positive contributions in height-for-age
Z scores at 20 weeks (30).

LFNP I was lower in BM ofmothers of severely stunted infants
vs. healthy controls 6 months after delivery (90).

Therefore, LNFPI in BM seems protective against excessive
weight gain in infants and its reduction in overweight and
obesity supports the potential pro-adipogenic role of BM in
these mothers.

- Lacto-N-fucopentaose II and III (LNFPII-III) were found
significantly higher in BM from overweight and obese mothers
at 1 month of lactation (p < 0.05) (15).

At 6 months of lactation, LNFPII was associated with greater fat
mass (89).

BM LNFP III positively contributed to infant height-for-age
Z scores at 20 weeks (30) and it seems to modulate metabolic
pathways inmice, improving glucose tolerance, insulin sensitivity
and suppressing liver lipogenesis in experimental model of
obesity (91).

In conclusion, little is known on such HMOs and their impact
on neonatal growth; LNFP II high level in BM of overweight and
obese mothers could suggest a role in infant overweight.

- 2-Fucosyllactose (2′-FL) was found significantly lower in
BM from overweight and obese mothers at 1 month of
lactation, reduced by about 38% than normal weight mothers
samples (15).

On the contrary, in another study, 2′-FL would be higher in
samples from overweight than non overweight mothers (18).

Regarding its relation to infant growth, 2′-FL was found lower
in BM of severely stunted infants’ mothers vs. healthy controls at
6 months of life (90).

2′-FL seems directly associated to maternal pre-pregnancy
BMI, infant weight up to 1 year of life and also child height up
to 5 years of life in offspring of Se+ mothers. According to such
data, this HMOs seems to affect child growth up to 5 years of
life (92).

Contrarily, in another study 2′-FL did not influence body
length, weight, CC or BMI at 4 months of life (93).

In milk from Se+ mothers, 2′-FL resulted the most abundant
HMO, positively associated with infant weight velocity from 0 to
5 months of post-natal age and with fat mass index at 5 months.
Thus, 2-FL, currently added to some milk formulas, could be
involved in excessive weight gain (94).

Maternal BMI at 5 months of lactation has been positively
correlated with 2′-FL content (94).

In conclusion, data on 2′-FL seems conflicting; such HMO
was associated with a higher maternal BMI and with infant
growth, even if its variation in BM from obese mothers should
be still defined.

2′-FLwas also hypothesized to increase weight gain when milk
formulas are supplemented, effect that results balanced by other
HMOs added to such formulations (95, 96).

- 3-Fucosyllactose (3′-FL) was found significantly increased in
BM from overweight and obese mothers at 1 month of
lactation (p= 0.03) (15).

Contrarily, in another study, 3′-FL was lower in BM from Se+
overweight mothers than normal weigh ones (18).

Regarding 3′-FL content in BM of overweight and obese
mothers, data are controversial and there are not significant
associations with infant growth.

- Lacto-N-hexaose (LNH) was found significantly lower in BM
of obese mothers at 3–4 months of lactation (p < 0.05) (19).

At 6 months of lactation, it has been associated with higher
infants’ body fat mass (89); thus, LNH reduction could protect
from weight gain.

Moreover, it could contribute to the lower duration of
breastfeeding of obese mothers (18, 19).

LIPIDS

Lipid composition of BM seems influenced by maternal BMI,
influencing its inflammatory and oxidative profile (20).

Maternal obesity seems related to the increase of n-6/n-
3 fatty acid ratio and to the proportion of long-chain fatty
acids (LCFAs) in BM. (96, 21–24). LCFAs are less digestible
by the neonatal gut; moreover, long-chain polyunsaturated
fatty acids (LCPUFAs), such as eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA), and arachidonic acid (AA) are
involved in several metabolic pathways, including a role as
constituents of cells membranes, and in nervous system and
retina development (20).
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Infant growth up to 6 months of life was correlated with
higher levels of dihomo-gamma-linolenic (20:3 n6-DGLA),
adrenic (22:4 n-6), palmitic acids, conjugated linoleic isomers
and reduced level of oleic acids in BM of overweight-obese
mothers (25).

Palmitic acid seems involved in inflammatory and metabolic
responses and it could also reduce the oxidation of FAs, alter the
insulin response and increase the fat mass (97).

Adrenic acid is abundant in the brain and in myelin lipids,
especially in phosphatidylethanolamine. Its important precursor
is AA acid, whose conversion into adrenic acid is particularly
active in the early stages of life (26). Oleic acid was shown
to reduce obesity risk and improve the metabolic and lipid
profiles in adults (98). DGLA, other n-6 PUFAs such as AA,
and bosseopentaenoic acid (20:5 n-6) are probably involved
in the pathogenesis of obesity, promoting adipogenesis and
inflammation (20). This group correlates with a greater increase
in the weight for age (WFA) z-score, a smaller increase in the
lengh for age z-score and of the CC between 2 weeks and 2
months of age. The effects on long distance obesity are clearly
to be determined (25).

In another study, samples from overweight mothers showed
higher levels of saturated FAs (SFAs), lower amount of n-3 FAs
and lower ratio of unsaturated (UFA) to saturated (SFA) FAs, and
higher n-6/n-3ratio than normal weight samples. Moreover, total
SFAs content in BM was positively correlated while MUFA/SFA
ratio and UFA/SFA ratio inversely correlated to infant weight and
BMI gain up to 13 months (21).

Successively, the same group investigated the combined effects
of maternal pre-pregnancy BMI and food choices on BM
triacylglycerols (TAGs) at 3 months of lactation. They evidenced
a higher content in 18:3 and a reduced level of 18:0 in normal
weight mothers following a recommended food-diet (low fat),
than normal weight mothers eating non-recommended foods.
Moreover, in samples collected from normal weight mothers
eating recommended foods, levels of 50:1 were lower than milk
produced by overweight mothers eating recommended food
choices. Finally, BM from overweight and obese mothers was
characterized by higher levels of saturated FA and lower amount
of n-3 FA than non overweight mothers, independently by the
diet. Thus, they concluded that maternal BMI and diet can
influence the molecular weight distribution of TAGs in BM
samples but does not significantly alter their regioisomerism (27).

In BM from obese mothers, an increase in lipid content (10–
20%), and higher levels of ALA, n-6/ n-3 ratio and total PUFA
were detect, instead of normal weight mothers. In the same study,
total MUFAwere significantly reduced in BM from overweight
and obese mothers, while 20:1 n-9 were increased (22).

In a similar article,n-3 LCPUFA (including EPA and DHA)
were lower while n-6 LCPUFA and n-6/n-3 ratio were higher in
overweight mothers at 6–7 months of lactation (20).

A Sweden group demonstrated higher SFAs and n-6/n-3/ratio,
and lower n-3LCPUFA (and LA, DHA, EPA) in BM of obese
mothers (24).

Total PAHSA levels [the fatty acid esters of hydroxy fatty
acids (FAHFAs), namely palmitic acid hydroxystearic acids],
endogenous lipid produced by adipocytes in themammary gland,

resulted significantly lower in obese mothers’ samples at 3 days
postpartum (28).

PAHSA seem to promote gut maturation and secretion of
GLP-1, which stimulates insulin secretion and increase glucose
tolerance (99).

Interesting findings were also obtained correlating maternal
BM lipid content in colostrum and mature milk with infant
anthropometry (at 6, 18, and 36 months) and with cognition
at 18 months. BM from overweight and obese mothers showed
higher SFA levels and n-6/n-3 ratio, and decreased ALA, DHA
and MUFA content in mature milk. Infant BMI-z-score at 6
months resulted inversely associated with colostrum levels of n-6
and n-3 LC-PUFAs (e.g., AA and DHA) and positively associated
with n-6/n-3 ratio. Cognitive profile evaluated with Bayley scales
was positively correlated to colostrum content of n-6 and n-3
PUFAs, DHA, and ALA, and negative correlated to the n-6/n-
3 ratio. Thus, according to these data, maternal obesity could
increase BMI in the offspring, but n-6/n-3 ratio could impair
infant cognition, even if such results should be confirmed (23).

In a further study BM of obese mothers at 2 months post-
partum showed a higher n-6/n-3 FA ratio, while total n-3 PUFAs
were reduced of 20%, in association to lower levels of DHA, EPA,
docosapentaenoic acid and lutein (29).

A unique study of Sinanoglu et al. deeply investigated
colostrum lipid content according to maternal BMI. As
result, docosadienoic acid (C22:2 n-6), conjugated LA isomers
C18:2c9t11 (rumenic acid) and C18:2t11t13 were higher
in normal weight mothers’ BM; total n-3,decanoic (C10:1),
tridecanoic (C13:0) and adrenic (C22:4n-6) acids were higher
in obese mothers; ALA (C18:3n-3) was higher in overweight
mothers’ samples (26).

Interest in conjugated LA isomers has grown in recent years
due to the increasing number of experimental studies attributing
them anti-inflammatory, anti-carcinogenic, antiadipogenic,
antidiabetic, and anti-hypertensive properties in animal models.
Their increase is probably causedby the excessive dietary intake
(25). They may represent afuture nutritional tool to prevent
diseases as metabolic syndrome but studies on humans are still
necessary (100–102).

The n-6/n-3 ratio in BM increases in proportion with the fat in
the diet: this could lead to a higher adipose tissue accumulation
in neonates fed with obese mothers’ BM. The authors speculate
that the increase of PUFA in overweight and obese mothers’
BM could determine cardio-protective (probably) compensatory
mechanism for their infants, since such mediators are related to
a better metabolic profile (26).

CONCLUSIONS

Maternal obesity seems a major risk factor for excessive fetal
growth (103), infant overweight and children obesity (104, 105).
The negative impact of obesity on children’s health can lead to the
early development of T2D, the premature onset of cardiovascular
complications and, in general, a higher risk of early mortality
(106). Recent literature has shown increasing interest in the
impact of such disease on the nervous system and in particular,
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in the field of neuropsychiatric and behavioral disorders (mainly
attention-deficit/hyperactivity disorder, conduct disorders and
autism), described only sporadically in the past but now
confirmed by large population studies (107, 108). Besides, a
reduction in prefrontal cortex thickness and associated executive
function deficit was described in a large cohort of obese children
aged 9–10 years (109).

In the present review of metabolomics studies on BM
from overweight-obese mothers highlighting the differences
with samples from the lean ones, some of the metabolites
that differentiate the two groups—aminoacids, acyl-carnitines,
lipids and oligosaccharides—have been found altered in subjects
with the same characteristics and in experimental modes of
obesity in several studies and in a relevant number of cases.
For these metabolites, which can be considered “major,” the
results obtained from the aforementioned studies allow for more
reliable hypotheses on the meaning of their alteration in BM
long after birth. However, it should be noted that it is difficult
to make qualitative assessments of the relevance of one group of
metabolites in relation to the other.

Between these “major” metabolites, all aminoacids found
altered could promote cardio-metabolic risk unlike their
derivatives (“minor” metabolites) whose reduction (kinurenic
acid) or increase (2-aminobutyrate) might give protection against
cardio-metabolic risk from oxidative stress and inflammation.

Among HMOs, those decreased (LNFPI, 2FL, LNH) seem to
have a protective effect against excessive weight gain, while NFPII
increase could predispose to it.

Our analysis of the papers investigating fatty acids in BM
of overweight-obese mothers, in agreement with the unique
available meta-analysis (110), highlights an increase in saturated
fatty acids, a reduction in monounsaturated fatty acids, a
reduction in n-3 LCPUFA, and an increase in n-6/n-3 ratio in
most of them. The first two effects could promote excessive
long-term weight gain and associated inflammation, as well as

reduce glucose tolerance. The increase in the n-6/n-3 ratio,
due to the reduction in n-3 or increase in n-6 may impair, as
previously mentioned, sensorineural development and promote
adipogenesis and inflammation.

Between the “minor” metabolites, the alteration of nucleotides
derivatives could promote weight gain after birth and have,
except for adenine and MTA, a negative impact on the risk
of insulin resistance, T2D, cardio-metabolic disease and on
the onset of neurological problems. Increase of adenine, while
promoting weight gain, could hinder the insulin resistance
associated with obesity (and cardio-vascular risk) and have a
positive impact on immune and neurological development. Even
MTA increase could be protective against cardio-metabolic risk
in offspring.

Lastly, reduction of polyamines could correlate with outcomes
related to obesity in the long distance.

Finally, metabolites variations in BM samples collected from
overweight-obese mothers and the potentially correlated effects
pointed out above, still need further investigations and should
be confirmed in future studies on larger sample: metabolomics
seems the most suitable technology in this regard. It can lead
to the comprehensive description of such biofluid and the
related effects on breastfed subjects, potentially highlighting
personalized needs of BM supplementation or short and long-
term prevention strategies to optimize offspring health.

In our opinion, such topic is of major importance, since
pediatric health starts in intrauterine and perinatal life.
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Short chain fatty acids (SFCAs) are microbial metabolites produced in the gut upon

fermentation of dietary fiber. These metabolites interact with the host immune system

and can elicit epigenetic effects. There is evidence to suggest that SCFAs may play a role

in the developmental programming of immune disorders and obesity, though evidence

in humans remains sparse. Here we have quantified human milk (HM) SCFA levels in an

international cohort of atopic and non-atopic mothers (n= 109). Our results demonstrate

that human milk contains detectable levels of the SCFAs acetate, butyrate, and formate.

Samples from atopic mothers had significantly lower concentrations of acetate and

butyrate than those of non-atopic mothers. HM SCFA levels in atopic and non-atopic

women also varied based on maternal country of residence (Australia, Japan, Norway,

South Africa, USA). Reduced exposure to HM SCFA in early life may program atopy or

overweight risk in breastfed infants.

Keywords: human milk, short chain fatty acids, atopy, allergy, international cohort, breast milk

INTRODUCTION

Human milk (HM) confers numerous benefits to the developing infant, an effect attributed to
its many bioactive metabolites. The evidence for some of the long-term health benefits of HM is
inconclusive (1). Regarding the prevention of atopic diseases through breastfeeding, this varies
across countries and in particular, according to the atopic phenotype of the mother (2). While
genetics and epigenetics play a role in the inheritance of atopic disease (3, 4), the role of HM
metabolites remains underexplored in this field. Still in its infancy, the study of theHMmetabolome
has proven valuable in identifying variability by maternal phenotype, diet, and disease state (5, 6).
Short chain fatty acids (SCFAs) are key metabolites of microbial fermentation of fiber that have
links with host health. Early-life exposure to SCFAs has been shown to protect against atopy (7).
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When administered to pregnant mice, the SCFA acetate has
prevented offspring from developing atopic airway inflammation
(8). These findings are corroborated by human data of
associations between high maternal serum acetate levels during
pregnancy and decreased risk of respiratory symptoms in young
infants (8). Similarly, propionate has been shown to protect
against allergic airway disease in mice via its effects on dendritic
cell biology (9), while butyrate induces the differentiation
of colonic regulatory T cells (10). Further, murine studies
have demonstrated that prebiotic fiber supplementation during
pregnancy or lactation reduces risk of atopy in offspring (11, 12).
Similar trials are currently underway in humans [SYMBA (13)
and PREGRALL (14)]. Recently, Lee-Sarwar et al. reported higher
fecal acetate levels (relative to total SCFA) in pregnant women of
children less likely to develop atopic disease (15).

SCFAs (formate, acetate, propionate, butyrate, and valerate)
are intermediate and end products of dietary carbohydrate
fermentation by gut bacteria (7). These microbial metabolites are
concentrated in the colon and some are distributed systemically
after absorption (8, 9, 16). Through their interaction with
G-protein-coupled receptors and their inhibition of histone
deacetylases, SCFAs are able to elicit a broad range of biological
effects, including promotion of regulatory T cell responses and
tolerance, mucus secretion and epithelial barrier integrity in
the gut, and synthesis of bone marrow dendritic cell precursors
(9, 17, 18). A broad range of bacteria are also present in HM (19).
HM SCFAs are likely produced by the maternal gut microbiota
and distributed to the mammary gland via the circulation. They
may also be produced by the resident HM microbiota; however,
evidence for this possibility is currently lacking. To date, there
has been limited investigation into HM SCFA profiles. Smilowitz
et al. were the first to document the presence of acetate and
butyrate in HM samples collected 90 days postpartum, finding
that these SCFAs were highly variable among women (20). In
HM samples from a single woman, acetate, butyrate and formate
were detected as early as 24 days postpartum (21). All three
of these SCFAs were identified by nuclear magnetic resonance
(NMR) at 1-2 months postpartum in a larger study of women
(22). Butyrate has also been documented in studies of HM fat or
fatty acids (23, 24). Meng et al. reported the presence of acetate
and butyrate in HM from women with and without irritable
bowel disease, finding higher acetate levels in women treated with
aminosalicylates (25). Finally, Gómez-Gallego et al. performed
NMRmetabolic profiling of 79 HM samples from 4 international
cohorts. They identified acetate, butyrate, and formate in these
samples and reported differences in acetate and formate levels
between countries (26).

Total SCFA levels are elevated in the stool of lactating women
at 1 month postpartum compared to non-pregnant women (27),
implicating their importance to the nursing infant. HM SCFAs
have been shown experimentally to prevent atopic disease, but
breastfeeding by atopic mothers does not protect against atopy
to the same extent as breastfeeding by non-atopic mothers (2).
This discrepancy may be a function of reduced levels of SCFAs
in HM among atopic mothers, though this has not been tested.
Herein, we profiled SCFA levels in HM samples from atopic and
non-atopic mothers from six international sites, including two

countries with high rates of atopic disease. We hypothesized that
atopic women would exhibit reduced levels of HM SCFAs.

METHODOLOGY

Study Design
In this descriptive study, 109 HM samples from 6 cohort studies
from different countries were analyzed (5). The cohorts were
from Perth, Australia (n = 29 from 2 cohorts); Chiba, Japan
(n = 12); Detroit, USA (n = 18); Oslo, Norway (n = 40);
Cape Town, South Africa (n = 10). These cohorts were sampled
across countries to identify women with and without atopic
disease. Whenever possible, samples were obtained from women
who delivered vaginally and did not receive antibiotics while
breastfeeding. To reduce the impact of maternal diet or genetics,
an effort was made to obtain samples from women of the same
ethnicity within a country. Research ethics approval was obtained
from the local ethics committees of participating institutions:
Human Research Ethics Committee of TheUniversity ofWestern
Australia, Human Research Ethics Committee of the Princess
Margaret Hospital, Committee on Human Research of Chiba
University, Institutional Review Board at Henry Ford Health
System, Norwegian Regional Committees forMedical andHealth
Research Ethics, and University of Cape Town Human Research
Ethical Committee.

Maternal Atopic Status
Maternal atopic status was defined according to maternal
report of having asthma, eczema or atopic dermatitis, or a
pet, environmental or food allergy (Norwegian, South African
women), or atopic sensitization on the basis of at least one blood
allergen-specific IgE level≥ 0.35 kU/L (US women) to house dust
mite, dog, cat, Timothy grass, ragweed, Alternaria alternata, egg,
or German cockroach, or at least one blood allergen-specific IgE
level ≥ 0.7 kU/L (Japanese women) to house dust mite, cat or
Japanese cedar, or at least one positive skin prick test (Australian
women) to house dust mite, dog, cat, Timothy grass, Japanese
cedar where applicable, ragweed, Alternaria alternata, egg, or
German cockroach. Australian and Japanese atopic women also
had a physician-diagnosed history of asthma, eczema or atopic
dermatitis concurrent with atopic sensitization.

Human Milk Sample Collection
HM samples were collected 1 month after birth, a time point
at which the composition of human milk is thought to stabilize
(28). Participants were given written and oral instructions to
standardize self-collection of samples. Prior to collection, nipples
and mammary areola were cleaned with soap and sterile water,
and for the samples from South Africa, additional cleaning was
performed with chlorhexidine to reduce contamination by skin
microbes. Human milk samples were expressed manually or with
an electric breast pump into a sterile tube. Australian samples
from non-atopic women (2015) and Norwegian samples (2002)
were stored at −20◦C, Australian samples from atopic women
(2002) and samples from US women (2003) were stored at
−80◦C. The samples from Japanese women (2010) were initially
stored at −80◦C before being moved to −30◦C. Samples were
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shipped on dry ice to The Metabolomics Innovation Center,
Edmonton, Canada for processing in 2015.

NMR Analysis
Milk metabolite levels were determined by NMR because of its
high reproducibility and coverage of a large range of metabolites.
Samples were analyzed as previously reported by Gay et al. (5).
Briefly, samples were thawed on ice, mixed thoroughly, and
then filtered to remove residual lipids and proteins using a 3-
kDa cutoff spin filter at 10,000 × g for 15min at 4◦C. Three
hundred fifty microliter of filtrate was transferred to a clean
tube, and 70 µL of D2O and 60 µL of standard buffer solution
(585mMNaHPO4 (pH 7.0), 11.667mM disodium-2,2-dimethyl-
2-silapentane-5-sulfonate (DSS), and 0.47% NaN3 in H2O) were
added. Samples were then transferred to regular NMR tubes for
subsequent NMR spectral analysis. All 1H-NMR spectra were
collected on a Varian 500 MHz Inova spectrometer equipped
with a 5-mm HCN Z-gradient pulsed-field gradient cryogenic
probe. 1H-NMR spectra were acquired at 25◦C using the first
transient of the Varian tnnoesy pulse sequence (chosen for
its high degree of selective water suppression and quantitative
accuracy of resonances around the solvent). Water suppression
pulses were calibrated to achieve a bandwidth of 80G. Spectra
were collected with 128 transient and 8 steady-state scans
using a 4-s acquisition time (48,000 complex points) and a
1-s recycle delay. Quality control (QC) mixtures consisting
of 4 metabolites at 1mM were analyzed for every 20 to 25
samples, and a relative standard deviation of <2% was observed.
Prior to spectral analysis, all free induction decays were zero-
filled to 64,000 data points and line broadened to 0.5Hz. The
methyl singlet produced by a known quantity of DSS was
used as an internal standard for chemical shift referencing
(set to 0 ppm) and for quantification. All 1H-NMR spectra
were processed and analyzed using the Chenomx NMR Suite
Professional software package version 8.1. Typically, 90% of
visible peaks were assigned to a compound, and more than
90% of the spectral area could be routinely fit using the
Chenomx spectral analysis software. Most of the visible peaks
were annotated with a compound name and expressed as
µmol/L. The limit of detection for these compound was 5-
6 µmol/L.

Statistical Analysis
Statistical analyses were carried out using R studio 1.1.414
(Rstudio Inc., Boston, MA, USA) with package nlme for linear
mixed models to test statistically significant differences between
HM metabolites by atopic status within each country and by
country within atopic status. The Tukey–Kramer test was used
to adjust for multiple comparisons. Differences were considered
to be statistically significant if p < 0.05. Partial Least Squared
Discriminant Analysis (PLS-DA) plots were created using an
Excel add-in Multibase 2015 package (Numerical Dynamics,
Japan) to maximize the separation of HM clusters by maternal
atopic status. Correlations between SCFAs were determined
using Spearman’s rank correlation.

RESULTS

Of the 109 participating women, 43% were classified as
atopic (Table 1). There was generally an even distribution of
atopic/non-atopic mothers between the cohorts, except for South
Africa, where only non-atopic women were sampled. Overall,
69% of participants were Caucasian. The majority of South
African women were of mixed race, 39% of the US cohort were
African American, and most of the Australian and Norwegian
cohorts were of Caucasian ancestry. Cohorts were comparable
with respect to maternal age, parity and pre-pregnancy BMI;
Japanese women had the lowest BMI, whereas Australian women
were the oldest and had the lowest parity. All but one woman had
delivered vaginally. Only nine women reported taking antibiotics
and use was during early pregnancy or delivery.

Full metabolomic data from this cohort have previously been
reported (5). In brief, HM samples from atopic and non-atopic
mothers clustered separately (Supplementary Figure 1). For the
purposes of this study, we have focused on the SCFAs in HM,
which have not been previously reported in this cohort.

Human Milk Contains Short Chain Fatty
Acids
All samples contained detectable levels of acetate, butyrate, and
formate (Table 2). Propionate and valerate were not detected in
any of the samples. Butyrate was the most abundant SCFA in
these samples (median level of 95.6 µmol/L), followed by acetate
(median level of 46.8 µmol/L), and formate (median level of 43.7
µmol/L). There were statistically significant positive correlations
between acetate and butyrate (rho= 0.55, p= 6.66× 10−10) and
acetate and formate levels (rho = 0.33, p = 0.0006). The SCFA
intermediates pyruvate, lactate, and succinate were also detected
(Supplementary Table 1).

Human Milk Short Chain Fatty Acids Differ
Geographically and by Maternal Atopic
Status
HM from atopic women had significantly lower levels of the
SCFAs acetate (p = 0.02) and butyrate (p = 0.001) than that of
non-atopic women (Figure 1). Median levels of these SCFAs in
atopic women were approximately half that of their non-atopic
counterparts (57% lower for acetate, 62% lower for butyrate).
Only for Australian women, of whom 100%were Caucasian, were
acetate and butyrate levels significantly lower in those with vs.
those without atopy (p = 0.009 and p = 0.002, respectively).
Acetate levels were lower in atopic vs. non-atopic Norwegian
(85% Caucasian, p = 0.009). The reduction in HM acetate levels
with atopy in Japanese women (100% Asian) did not reach
statistical significance (p = 0.2). Among women from the US
(61% Caucasian), HM acetate levels were higher with atopic
than non-atopic disease (p = 0.02). This difference was driven
by samples from atopic Black women as when the comparison
was restricted to Caucasian women, differences were no longer
statistically significant. HM formate levels were also lower in
atopic than non-atopic women (45% lower, p= 0.056) (Figure 1);
this difference was statistically significant within Australian
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TABLE 1 | Characteristics of the cohort (n = 109).

Australia Japan Norway South Africa USA

(n = 29) (n = 12) (n = 40) (n = 10) (n = 18)

Maternal atopy 21 (72%) 6 (50%) 9 (23%) 0 (0%) 11 (61%)

Maternal race

Caucasian 28 (100%) 0 (0%) 34 (85%) 2 (20%) 11 (61%)

Asian 0 (0%) 12 (100%) 0 (0%) 0 (0%) 0 (0%)

Black 0 (0%) 0 (0%) 0 (0%) 2 (20%) 7 (39%)

Mixed race 0 (0%) 0 (0%) 0 (0%) 6 (60%) 0 (0%)

Other race 0 (0%) 0 (0%) 6 (15%) 0 (0%) 0 (0%)

Maternal age (years) 33.8 ± 5.2 24.6 ± 5.5 29.4 ± 5.2 29.8 ± 4.8 29.6 ± 4.4

Maternal parity 1.3 ± 0.5 1.7 ± 1.0 1.5 ± 0.5 2.0 ± 0.9 2.2 ± 1.2

Maternal pre-pregnancy BMI 20.7 ± 2.5 28.1 ± 6.6 25.0 ± 2.9 27.2 ± 5.6

Maternal antibiotics 4 (14%)* 0 (0%) 5 (13%)∧ 0 (0%) 0 (0%)

Cesarean delivery 1 (4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Male infant 13 (46%) 6 (50%) 25 (63%) 5 (50%) 6 (33%)

Values are reported as n (percent) or mean ± SD.

Blank cells represent missing data.

*One case of intrapartum Cefazolin for cesarean delivery, two cases of intrapartum penicillin for Group B Streptococcus, one case of intrapartum antibiotics with no class or

reason recorded.
∧All exposures were in early pregnancy. Class of antibiotic was not recorded.

TABLE 2 | Levels of short chain fatty acids detected in 109 human milk samples taken at 1 month postpartum.

Formate Acetate Propionate Butyrate Iso-butyrate Valerate Iso-valerate

(C1:0) (C2:0) (C3:0) (C4:0) (C5:0) (C5:0) (C5:0)

Prevalence 100% 100% 0% 100% 0% 0% 0%

Median 43.7 46.8 - 95.6 - - -

Minimum 15.2 13.5 - 4.8 - - -

Maximum 4960.3 4307.7 - 409.5 - - -

Values are reported as % prevalence or µmol/L.

FIGURE 1 | Human milk levels (µmol/L) from non-atopic (n = 62) and atopic (n = 47) mothers of (A) acetate, (B) butyrate and (C) formate. Lines indicate mean values.

women (p < 0.0001) and within Norwegian women (p = 0.009).
Overall, there were no differences in HM levels of the SCFA
intermediates pyruvate, lactate, and succinate between atopic
and non-atopic women (Supplementary Table 1). However, the
HM of Australian women with atopy also had higher levels of

lactate (p = 0.01) and pyruvate (p < 0.0001), and lower levels of
succinate (p= 0.003) than of women without atopy.

Variations in HM SCFAs levels were also seen between women
of the same atopic status living in different countries (Figure 2,
Supplementary Table 2). As tested by mixed linear models, HM
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FIGURE 2 | Human milk levels (µmol/L) from non-atopic and atopic mothers in five international sites of (A) acetate, (B) butyrate and (C) formate. Boxes represent

median and IQR, whiskers represent range.

Frontiers in Immunology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 1427127

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stinson et al. SCFAs in Human Milk

levels of butyrate were significantly lower in non-atopic US
women compared to those living in Australia, Norway, or Japan
(p = 0.001, p = 0.004, and p = 0.02, respectively) but not South
Africa. HM butyrate levels were reduced in non-atopic South
African women compared to non-atopic Australian women (p
= 0.01). We conducted a sensitivity analysis that subdivided
non-atopic women in the US by race into Black or Caucasian.
Only among non-atopic Caucasian women from the US did
butyrate levels remain significantly lower than among women in
the above comparison.

Atopic women did not differ in their milk acetate or butyrate
profiles if they lived in the US vs. Australia, or in Norway
vs. Japan. HM from atopic Australian and US women had
significantly lower levels of acetate and butyrate that that of
atopic Norwegian and Japanese women (p < 0.001). HM from
atopic Australian women also had lower levels of formate
compared to that of US women (p = 0.02). No other differences
in milk SCFA levels between countries were observed within
either non-atopic or atopic women. In a sensitivity analysis
that subdivided atopic women in the US by race, atopic Black
or Caucasian women from the US continued to differ from
Norwegian and Japanese atopic women in terms of lower
acetate and butyrate levels in HM. Restricting the US-Australia
comparison to atopic Caucasian women did not alter the lack of
statistical difference for HM acetate or butyrate.

Levels of SCFA intermediate products also differed by country
(Supplementary Table 2). Lactate levels were significantly higher
in HM from non-atopic Japanese women compared to HM from
other non-atopic women (Norway p = 0.003, South Africa p =

0.006, Australia p = 0.008, USA p = 0.01). Similarly, lactate was
elevated inHM from atopic Japanesemothers compared to atopic
Norwegian mothers (p = 0.01). HM from non-atopic Japanese
and South African mothers had significantly higher levels of
pyruvate compared to non-atopic Australian and Norwegian
mothers (Japan v. Australia p = 0.004; Japan v. Norway p =

0.008; South Africa v. Australia p= 0.02; South Africa v. Norway
p = 0.04). Finally, atopic Norwegian women had significantly
higher levels of HM succinate compared to mothers from other
countries (p < 0.001).

DISCUSSION

Here we report that HM contains detectable levels of SCFAs
acetate, butyrate, and formate at 1 month postpartum.
Collectively, HM levels of acetate and butyrate were significantly
reduced in atopic women. This trend was retained for HM
acetate in atopic women in Australia, Norway and Japan but
not the US. Only among Australian women were HM formate
and butyrate levels lower with atopic disease. SCFAs have been
shown to be provide protection from allergy and atopy in
mice, particularly through their effects on regulatory T cell and
dendritic cell biology (8, 9, 16). Higher relative levels of fecal
acetate during pregnancy have been associated with reduced risk
for hay fever, asthma and wheeze in the offspring of mothers
with a history of atopy (15). In their study, fecal acetate levels
were higher in mothers of breastfed infants. The ability of SCFAs

to inhibit histone deacetylases suggests a role for HM-derived
SCFAs in the epigenetic regulation of immune function and
postnatal programming of atopy in breastfed offspring. Reduced
levels of SCFAs in the HM of atopic women may therefore play
a role in the intergenerational transmission of atopic disorders.
Indeed, recent data demonstrate that low HM bacterial richness
is associated with atopy development in early life (29). Gomez-
Gallergo et al. reported country differences in HM SCFA and
their correlations with HM microbiota (26). We extend those
findings by identifying maternal atopic status as a possible source
of variation in HM SCFA.

The reduced levels of acetate in milk from atopic mothers
may have other physiological consequences for breastfed infants.
In cows, acetate is the major substrate of de novo fat synthesis
in milk (30). It is unclear whether this is also true for humans
(31), but HM acetate levels are found to be weakly correlated
with HM fat concentrations (22). In general, breastfeeding is
associated with reduced infant adiposity, and gut acetate levels
are highest in exclusively breastfed infants (32, 33). SCFAs are
involved in several biologic pathways that prevent overweight,
including appetite suppression and promotion of fat oxidation
over fat synthesis (7). Indeed, HM acetate levels are reported
to be negatively associated with infant skinfold thickness (22).
Maternal atopic status appears to over-ride the protective actions
of prenatal anti-inflammatory cytokines against overweight
development in offspring (34). Our study suggests that maternal
atopic status may also reduce the availability of HM SCFAs
to regulate fat metabolism in the breastfed infant. Acetate and
butyrate are also involved in the production of long-chain fatty
acids (31). However, contrary to our findings, HM long-chain
fatty acid levels do not appear to differ by atopic status (35–37).

HM SCFA levels also varied between our cohorts. This is
unsurprising given that the early life gut, adult gut, and HM
microbiomes vary geographically (38–41). These metabolites are
also likely influenced by regional differences in diet that feed
the gut microbiota toward enrichment with Bacteroidetes species
in US/European populations. Since we did not collect maternal
fecal or HM samples for bacterial profiling, we are unable to
link alterations in HM SCFA profiles with specific members
of the bacterial community. Gronlund et al. reported reduced
bifidobacterial abundance in HM and in the gut microbiota
of breastfed infants if mothers had atopic disease (42). Higher
bifidobacterial abundance by 3 months of age, followed by an
earlier switch to increasing abundance of butyrate-producing
bacteria, has been found to be protective against later risk of
atopy (43). Recently, Bifidobacterium, a key acetate-producing
genus, was found to be less abundant in the stool of breastfed
infants in the US vs. several African countries (41). Additionally,
HM from mothers of US infants exhibited much lower overall
bacterial diversity (41). While Bifidobacterium spp. chiefly
produce acetate, they form symbiotic relationships with butyrate-
producers such as Eubacterium (44). In HM, acetate and butyrate
levels are positively correlated (22). It is thus interesting to note
the exceptionally low levels of butyrate in HM from non-atopic
US mothers of Caucasian ancestry.

Acetate, butyrate, and formate have been found in HM of
women worldwide (20–26). The levels of SCFAs reported here
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are in line with those recently reported by Prentice et al. as
determined by NMR and GC-MS (at 1-2 months postpartum),
and by Wu et al. (across lactation) and Smilowitz et al. (at
3 months) by NMR (20–22). We also confirm the positive
correlations of HM acetate with butyrate and formate reported by
Prentice et al. The failure by us and others to detect propionate
in HM is curious. Presumably, SCFAs, which are produced in
the gut, enter HM from the maternal circulation. Thornburn
et al. reported that the three most abundantly produced SCFAs in
humans (acetate, butyrate, and propionate) were approximately
equal in concentration in the sera of pregnant women (median
levels 51.4 µmol/L for acetate, 37.1 µmol/L for propionate, and
35.6 µmol/L for butyrate) (8). SCFAs present in HM may be
produced by the resident HM microbiota; however, evidence
for this possibility is currently lacking. Regardless, the presence
of SCFAs in HM likely has important consequences for the
developing infant. Endogenous production of SCFAs is low in
early infancy (45). Maternally provided SCFAs may, therefore,
supplement breastfed infants during the early periods of gut
microbiome immaturity.

A major strength of our study is the use of multiple cohorts
from around the world. However, this also means that samples
were not uniformly collected and stored. Lack of standardized
collection by time of day is not an issue for our comparison
since there is no evidence for diurnal variation in HM SCFAs
(21). On the other hand, some SCFAs are sensitive to storage
temperatures higher than −80◦C, the temperature at which
SCFAs are highly stable for up to 2 months (46). Slight increases
to levels of HM butyrate (4 µmol/L) are initially seen after
short periods of storage at −20◦C compared to storage at
−80◦C (21), followed by modest declines in butyrate with
longer HM storage times at −20◦C for up to 16 years (22).
Unfortunately, no studies have compared long term storage at
−20◦C to −80◦C. While variation in storage conditions may be
an unavoidable limitation of our study, it is unlikely to explain
the much lower levels of HM butyrate observed in the Australian
atopic samples (stored at −80◦C) or to explain within country
differences or between country similarities. More importantly,
the very large difference in milk butyrate between our Australian
cohorts (161 µmol/L lower levels in atopic women) is in the
opposite direction to the above stability findings since atopic
samples were stored immediately at −80◦C, whereas the more
recently-collected non-atopic samples were stored at −20◦C.
Our non-standard definition of “atopy” across cohorts is also
a major limitation of this comparison, although similar trends
were observed for HM from Norway and Japan despite the
absence of serum IgE testing in Norwegian women. Other
limitations include not having samples from atopic women
from South Africa, and lacking balance in atopy status and
number of participants per country. Finally, data were not
available for all cohorts on maternal parity, body-mass index
or socioeconomic status, but these characteristics have not been
found to be correlated with HM SCFA levels (22). On the other
hand, this study would have benefited from information on
maternal diet, which may have strengthened similar findings
by atopic status in two countries with high fermented food
intake—Norway and Japan.

CONCLUSION

Our findings suggest that HM SCFA levels may vary by maternal
atopic status and country of residence, a finding that could not
be attributed to race. Despite sharing Caucasian ancestry, HM
SCFA profiles for atopic women differed in Norway vs. the US
or Australia. On the other hand, similar HM SCFA profiles by
atopic status were seen in Norway and Japan. Lower levels of
HM SCFAs have the potential to alter immune programming
and fat metabolism in the breastfed offspring of women. This
has implications for non-atopic women as well. In our study,
this singled out women in the US who had the lowest levels
of HM acetate and butyrate compared to non-atopic women in
other countries.
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Respiratory syncytial virus (RSV) infections represent a major burden of disease in

infants and are the second most prevalent cause of death worldwide. Human milk

immunoglobulins provide protection against RSV. However, many infants depend

on processed bovine milk-based nutrition, which lacks intact immunoglobulins. We

investigated the potential of bovine antibodies to neutralize human RSV and facilitate-cell

immune activation. We show cow’s milk IgG (bIgG) and Intravenous Immunoglobulin

(IVIG) have a similar RSV neutralization capacity, even though bIgG has a lower pre-F to

post-F binding ratio compared to human IVIG, with the majority of bIgG binding to pre-F.

RSV is better neutralized with human IVIG. Consequently, we enriched RSV specific T

cells by culturing human PBMCwith a mixture of RSV peptides, and used these T cells to

study the effect of bIgG and IVIG on the activation of pre-F-pecific T cells. bIgG facilitated

in vitro T cell activation in a similar manner as IVIG. Moreover, bIgG was able to mediate

T cell activation and internalization of pathogens, which are prerequisites for inducing

an adaptive viral response. Using in vivo mouse experiments, we showed that bIgG is

able to bind the murine activating IgG Fc Receptors (FcγR), but not the inhibiting FcγRII.

Intranasal administration of the monoclonal antibody palivizumab, but also of bIgG and

IVIG prevented RSV infection in mice. The concentration of bIgG needed to prevent

infection was ∼5-fold higher compared to IVIG. In conclusion, the data presented here

indicate that functionally active bIgG facilitates adaptive antiviral T cell responses and

prevents RSV infection in vitro and in vivo.

Keywords: bovine IgG, RSV, immunoglobulin, prophylaxis, T cell activation

INTRODUCTION

Respiratory syncytial virus (RSV) infections are a major disease burden in infants and RSV is
the second most prevalent cause of death in children, mostly affecting children in low- and
middle-income countries (1, 2). It is estimated that 118.200 children died in 2015 because of RSV
(1). RSV also is a major seasonal burden to healthcare systems as yearly 3.2 million hospitals
admissions are attributed to RSV (1). Efficient protection from RSV will substantially lower
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healthcare costs as RSV infections are associated with recurrent
wheeze during the first years of life in both healthy preterm
and term born children (3, 4). Children are especially vulnerable
to RSV during the first 6 months of life, when children
are mainly dependent on maternal transferred immunity (5).
Specifically infants are unable to produce autologous antibodies
and maternal antibody titers decrease quickly within the first
months (6, 7). It has been shown that breastfeeding reduces the
severity and incidence of RSV infections in children (5). Four
months exclusive breastfeeding reduces the risk on respiratory
and gastro-intestinal tract infections (8, 9). Yet, most children
in developed countries fully rely on bovine milk based infant
formulas that do not seem to offer a similar level of protection
against these pathogens. The current treatment palivizumab
is the only available prophylaxis to protect against RSV (10).
Palivizumab binds to the post fusion form of the F protein
(11). The F protein undergoes conformational changes after RSV
binding facilitating fusion with host cells (11).

Human and bovine milk differ in their composition, e.g.,
bovine milk has lower molecular weight and less diverse milk
oligosaccharides than humans. Even though both human and
bovine colostrum and milk contain immunoglobulins, bovine
milk has a higher concentration of IgG compared to human
milk, in which IgA is the most prevalent antibody (12). The
most prevalent immunoglobulin isotype in human milk, IgA,
is inversely correlated with respiratory tract infections (13). It
is hypothesized that a higher IgG concentration in bovine and
other ruminant milk is needed because there is no transfer
of maternal immunoglobulins during pregnancy in ruminants,
making milk the only source for protective immunoglobulin
transfer (14). Despite those differences, it has been demonstrated
that consumption of raw bovine milk protects infants against
respiratory tract infections and the development of allergies
and allergic asthma (15–17). Moreover, immunoglobulins from
bovine milk are able to detect several common respiratory tract
pathogens like RSV (18). Since raw cow’s milk confers the risk
of transmitting pathogens to infants, milk is normally heat
treated before consumption. Heat treatment of milk reduces the
protective effect of bovine milk (15, 19, 20). The amount of
intact milk protein thus seems to be correlated to the protective
potential of bovine milk, indicating that bovine milk loses its
protective potential due to denaturation of milk proteins (19, 20).

Although there is no evidence of gastro-intestinal uptake of
bovine immunoglobulins, bIgG is shown to interact with the
neonatal Fc receptor (FcRn) (21). Furthermore, bIgG has been

Abbreviations: ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid);

ADCC, Antibody-dependent cellular cytotoxicity; APC, antigen presenting cells;

ATCC, American Type Culture Collection; bIgG, cow’s milk IgG; BSA, bovine

serum albumin; F protein, RSV fusion protein; FcγR, IgG Fc Receptors; FCS, fetal

calf serum FI-RSV, formalin-inactivated respiratory syncytial virus; IC, immune

complexes; IMDM, Iscove’s Modified Dulbecco’s Medium; IVIG, Intravenous

Immunoglobulin; KO, knock out; MFI, Mean fluorescence intensity; moDC,

monocyte-derived dendritic cells; PBMC, Peripheral blood mononuclear cells;

PBS, phosphate buffered saline; PFA, Paraformaldehyde; PFU, Plaque-forming

unit; RCF, Relative Centrifugal Force; RPMI, RPMI1640medium; RSV, Respiratory

syncytial virus; SD, standard deviation; WT, wild type.

shown to bind human FcγRII and is able to form immuno-
complexes that can mediate activation of monocyte-derived
dendritic cells (moDCs) (18, 22, 23). This strongly indicates that
supplementation of bIgG to infant formulas could be beneficial
for infants.

In the present work, we examined the capacity of purified
bIgG to bind RSV, its potential to facilitate RSV-specific T cell
responses in vitro, and evaluated its prophylactic capacities.

MATERIALS AND METHODS

Cells and Viruses
HEp-2 cells (ATCC) were maintained in Iscove’s Modified
Dulbecco’s Medium (IMDM, Gibco) supplemented with 10%
fetal calf serum (FCS), 100 U/ml penicillin and 100 ug/ml
streptomycin (Life Technologies) at 37◦C and 5% CO2.
RSV-A2 and RSV-A2-RL-Line19F were propagated in HEp-2
cells, purified by polyethylene glycol 6,000 precipitation, and
resuspended in PBS supplemented with 10% sucrose and stored
in liquid nitrogen, as previously described in Jacobino et al. (24).

Bovine IgG
Bovine colostrum was collected from 5 cows within 5 days after
calving. The colostrum was cooled and the fat was removed by
ultracentrifugation (RCF 100,000∗G). The fat free milk serum
was stored at−20◦C until further purification. After thawing the
lipid fraction was removed by centrifugation (RCF 23,500∗G),
and acidic colostral whey was prepared to remove casein by
precipitation with 1MHCl at pH 4.2. The precipitated casein was
removed by centrifugation, adjusted to pH 6.8 with 1M NaOH,
filtered and diluted in 20mM sodium phosphate, pH 7.0.

bIgG was then isolated from colostral whey by affinity
purification using a column consisting of HiTRap Protein G HP
(VWR), followed by acid elution with 0.1M Glycine-HCl, pH 2,7
and dialysis against PBS. Purity was of bovine IgG was checked
by SDS-PAGE.

Mice
All experiments were approved by the Animal Ethical Committee
of the UMC Utrecht (25). Experiments were performed in
C57BL/6 mice purchased from Janviers Lab, or in FcRγ–/–
C57BL/6, maintained in the Animal Facility of the UMCUtrecht,
or in mFcγR I/II/III/IV–/– C57BL/6 mice, kindly provided by
Dr. S.J. Verbeek (LUMC, The Netherlands). Mice were aged 8–20
weeks at the start of the experiments, and littermates were used
as controls.

Binding to RSV-Infected Cells
HEp-2 cells were cultured to 70–80% confluency in T75 flasks
and infected O/N with 1 × 108 PFU RSV-A2 or RSV-A2-RL-
Line19F at 37◦C and 5% CO2. Cells were trypsinized and 1× 105

cells/well were seeded in 96 well V bottom plates (Greiner bio-
one). Serial diluted bIgG, IVIG and palivizumab were allowed to
bind for 45min on ice and detected with αhIgG-RPE or αbIgG-
Alexa647 for 45min on ice. Antibody binding was analyzed
by flow cytometry (BD bioscience, Canto II and FACS Diva
software). Relative binding was calculated by correcting for the
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total infection of the different RSV strains detected by anti-RSV
glycoprotein (Merck).

RSV Neutralization Assay
RSV-A2 or RSV-A2-RL-Line19F (MOI 2) was pre-incubated in
IMDM supplemented with 1% FCS in the presence or absence
of antibodies for 1 h at 37◦C. HEp-2 cells (1 × 10e5 cells)
were added and incubated for 1 h at 37◦C and 5% CO2. Cells
were washed and incubated 24 h in fresh medium at 37◦C
and 5% CO2. Cells were trypsinized and infection was stained
with 1 ug/ml palivizumab (MedImmune) and 200 times diluted
αhIgG-Alexa647 (Southern Biotech). Infection was determined
with flow cytometry (BD Bioscience, Canto II and FACS Diva
software). The percentage neutralization was calculated by setting
the MFI of the uninfected and the infected cells at 0% and
100% neutralization.

Pre- and Post-fusion Protein Binding
96 well maxisorp plates (Nunc) were coated O/N with 100 ng/ml
stabilized pre- and post-fusion (F) protein (26–28). In between
steps, plates were washed with 0.05% Tween20 in PBS. Plates
were blocked with 0.5% gelatin in PBS for 1 h at room
temperature (RT). palivizumab, Intravenous Immunoglobulin
(IVIG, Nanogam, Sanquin) and bIgG were diluted in PBS and
incubated for 2 h at RT. Horseradish peroxidase labeled goat-
αhIgG (Jackson) or sheep-αbIgG (Abd Serotec) was used as
detection antibody. Plates were developed with ABTS substrate
(Roche) and the absorbance was measured at 405 nm with a
Multiscan RC (Thermolab Systems).

Human T Cell Activation
PBMC were isolated from blood of healthy donors by ficoll
separation and cultured in RPMI1640 supplemented with
5% human AB serum, 100 U/ml penicillin and 100 ug/ml
streptomycin (Life Technologies) for 14 days at 37◦C and 5%
CO2, 100 ng/ml PepMix RSV (JPT) was added to enrich for the
RSV specific T cells. 10 U/ml Interleukin-2 (IL-2) was added
to the culture after 7 days. Autologous monocytes were isolated
from the PBMC fraction using CD14 magnetic beads (Miltenyi
Bioscience) and used as antigen presenting cells. RSV-specific
enriched T cells were cell trace violet labeled and incubated
with autologous monocytes, pre-F protein and antibodies in
Xvivo 15 medium for 5 days at 37◦C and 5% CO2. T cell
activation was determined by the number of CD4+ and CD8+ T
cells (αhCD3-PerCP / αhCD4-RPE / αhCD8-PE/Cy7) per 10000
sulfate latex beads (Invitrogen) measured with flow cytometry
(BD Bioscience, Canto II and FACS Diva software).

Binding of bIgG to Murine FcyReceptors
Bone marrow derived macrophages and dendritic cells were
cultured from wild-type (WT), FcRγ–/–, mFcγR I/II/III/IV–/–
C57BL/6 mice as described previously (29). 96-well MaxiSorp
plates (Nunc) were coated O/N with 10 ug/ml antibody diluted
0.1M NaHPO4, pH 9. Plates were blocked with 1 % gelatin
in RPMI1640 (Gibco) for 1 h at room temperature (RT). Cells
were labeled with 20 uM calcein AM (Invitrogen) for 30min
at 37◦C. 1.5 × 10e5 labeled cells/well were allowed to bind

to the coated wells for 45min at 37◦C in 0.1% gelatin in
RPMI1640. Binding was defined after several washes with
0.1% gelatin in RPMI1640 and measured (excitation 485 nm,
emission 527 nm, ThermoFischer Scientif Fluoroskan Ascent FL)
calculated compared to the initial fluorescence.

Internalization Assay Mouse Macrophages
1.5× 10e8 FITC-labeled S. aureuswere opsonized with 500 ug/ml
IVIG or bIgG or without antibody in 100 µl 1% bovine serum
albumin (BSA)-RPMI1640 for 15min on ice. Washed bacteria
were incubated in an effector: target ratio of 1:100 with 1 × 10e5
bone marrow derived WT mouse macrophages in V bottom 96
well plates (Greiner) for 30min on ice. Cells were washed with
100 ul ice-cold 1% BSA medium and equally divided over 2 wells
prior to addition of opsonized bacteria. One part was incubated
at 37◦C for internalization, while the other part was stained
directly. Extracellular immune complexes (IC) were stained with
200x diluted Alexa647 conjugated αhIgG (Jackson) or αbIgG
(Jackson) on ice. A decrease in extracellular signal is considered
as internalized IC. In addition, cells were washed, fixated with 1%
PFA and analyzed by flow cytometry (BD Bioscience, Canto II
and FACS Diva software).

RSV Prophylactic Mouse Model
Female FcRγ–/– C57BL/6 mice or wild-type female littermates
of the same age were used. Mice were anesthetized (3–4%
isoflurane) and administered intranasal with 50 µl antibody
diluted in PBS with a varying dosing (0.2–5 mg/kg) of bIgG or
IVIG or with a fixed dose of 5 mg/kg bIgG or 1 mg/kg for a
similar prophylactic effect on the viral load. Palivizumabwas used
at 0.05 mg/kg. Mice were intranasally infected with 3 × 10e6
PFU RSV-A2-RL-Line19F in 50 µl PBS after 24 h. Mice were
euthanized by intraperitoneal injection of sodium pentobarbital
5 days post infection. A bronchioalveolar lavage was performed,
after inflating the lungs, with 1ml PBS and used to determine the
viral load, as described previously (24).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 6
software. An unpaired Student’s t-test was used to compare mean
values between two groups. Statistical analysis for other multiple
comparisons was performed using one-way ANOVA. Statistical
significance is indicated as follows: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p
< 0.001, ∗∗∗∗p < 0.0001. All graphs represent mean ± SD of
triplicate measurements, unless indicated otherwise.

RESULTS

Bovine IgG Binding and Neutralization of
RSV
For this study we made use of RSV-A2 and the more pathogenic
strain RSV-A2-RL-Line19F, to evaluate whether the binding
of purified bovine colostrum IgG (bIgG) and purified human
plasma IgG (IVIG) is equal between both strains. HEp-2 cells
were infected with RSV and dose-dependent binding of bIgG and
IVIG was analyzed. Binding was compared to the clinically used
antibody palivizumab (human IgG1 against RSV F protein). bIgG
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bound to the RSV-A2 infected cells, as shown previously, starting
from a concentration of 1.2µg/ml bIgG. Binding of bIgG was
equal to cells infected with both RSV strains, similar to what was
observed with IVIG and palivizumab (Figure 1A).

RSV-specific antibodies, like palivizumab, are known to
neutralize RSV and are able to prevent infection in children.
To evaluate the in vivo protective capacity of bIgG we aimed
to use the more pathogenic strain RSV-A2-RL-Line19F, however
we first wanted to compare the in vitro neutralizing capacity of
bIgG between RSV-A2-RL-Line19F and the less pathogenic RSV-
A2 strain. Previously, we have shown that bIgG is capable of
preventing RSV-A2 to infect HEp-2 cells in vitro (18). Therefore,
both RSV strains were pre-incubated for 1 h with a serial dilution
of palivizumab, IVIG or bIgG. Infection of HEp-2 cells was
allowed for 1 h at 37◦C and cells were washed three times in
fresh IMDM medium after incubation to prevent binding of the
anti-RSV antibodies to the infected cells and thereby masking
the F protein expression of the cells. Infection was analyzed
after 24 h by flow cytometry and the neutralization capacity of
the antibodies were calculated. All antibodies were capable of
neutralizing RSV and preventing infection, as shown previously.
The neutralization capacity of all antibodies was equal between
both RSV strains (Figure 1B).

Binding of Bovine IgG to Pre- and
Post-fusion F Protein
The RSV fusion glycoprotein (F-protein) is a class I viral
fusion protein that is involved in the fusion of the virus
the host cell. It undergoes a conformational change from
the pre-fusion state to the post-fusion state during viral
entry. Antibodies directed against pre-fusion F show a
higher neutralization capacity than antibodies directed
against post-fusion F (27, 30). Specific binding to plate-
bound stabilized pre- and post-fusion F was determined.
bIgG was found to recognize both the pre- and the post-
fusion F (Figure 1C). The ratio of pre- vs. post-fusion F
specific antibodies was higher for palivizumab and IVIG,
but bIgG still recognized the pre-fusion state better than the
post-fusion state.

Facilitation of Human RSV-Specific T Cell
Activation by Immune Complexes of RSV
With hIgG and bIgG in vitro
Bovine IgG can engage the human FcγRII on myeloid cells
when it is bound simultaneously to RSV. These RSV-bIgG
immunecomplexes (IC) can be internalized by FcγRII expressing
antigen presenting cells (APC) like monocyte-derived dendritic
cells (moDC’s). To study whether this uptake can result in antigen
presentation and thereby leading to activation of the adaptive
immune system, a human T cell activation assay was performed.
PBMC from healthy donors were enriched for their RSV specific
T cells with a RSV peptide mix. Autologous monocytes were used
as APC and co-cultured with the RSV specific T cells and IC,
formed by co-incubation of pre-fusion F and palivizumab, IVIG
or bIgG in titrated concentrations for 5 days. T cell activation
was determined by the proliferation of CD4 and CD8T cells. IC

formed with palivizumab showed optimal activation of both CD4
and CD8T cells with IC formed with 0.1µg/ml antibody. The
curve of bIgG and IVIG looked highly similar, however with an
optimum between 0.2 and 1µg/ml antibody (Figure 2).

FcγR-Dependent Binding and
Internalization of Bovine IgG by Murine
Macrophages and Dendritic Cells
To investigate whether bIgG can contribute to the prevention
and clearance of RSV in vivo, we used a murine RSV challenge
model. The in vitro data with bIgG and human immune cells
suggested that there could be a contribution of active clearance by
FcγR-expressing immune cells in the elimination or RSV. bIgG is
capable to bind the human activating FcγRIIa, but mice do not
express the activating FcγRIIa but only the inhibitory FcγRIIb.
Therefore, we first examined whether bIgG could bind murine
FcγR. Calcein labeled macrophages and dendritic cells, cultured
from bone marrow of wild-type (WT) mice, showed binding to
plate bound IVIG and bIgG (Figures 3A,B). Using cells from the
FcγR I/II/III/IV knock out (KO) mouse, lacking expression of
all the FcγR, resulted in no binding to IVIG and bIgG equal to
the control antibodies. In contrast, the cells of the FcRγ KOmice
were still able to bind the control antibody mIgG1 and partly to
IVIG via the inhibitory receptor FcγRII, the only FcγR expressed
by these mice (Figures 3A,B). However, bIgG does not bind to
cells of the FcRγ KO mice, demonstrating that binding to bIgG
to murine macrophages and dendritic cells is FcγR dependent
and only occurs with the activating FcγR. Blocking experiments
could not reveal whether one or more of the activating FcγR is
responsible for this binding (data not shown).

Next, we examined whether the binding of bIgG to murine
FcγR can also induce internalization, as prerequisite for efficient
clearance and induction of a memory T cell response. FITC
labeled S. aureus were opsonized with or without IVIG or
bIgG and incubated with WT mouse bone marrow-derived
macrophages. Extracellular IC was determined and compared
between 4 and 37◦C for internalization (Figure 3C). Both IVIG
and bIgG showed a decrease in signal on the outside of the cells
indicating that the IC were internalized by the macrophages.

In vivo Prophylactic and FcγR Dependent
Activity of bIgG
The protective capacity of bIgG was further studied in a
prophylactic RSVmousemodel. A dilution series of bIgG or IVIG
and one dosage of palivizumab was administered intranasally
24 h prior to RSV challenge. IVIG was able to reduce viral load
in a concentration dependent manner, while bIgG protected
against RSV infection in the airways only at the highest dose
(Figure 4A). To investigate the underlying mechanism of this
protection, we compared the protective effect in WT mice to the
effect in FcRγ KO out mice. For optimal comparison between
the antibodies, we chose the lowest concentration of antibody
that resulted in a protective effect in Figure 4A. The level of
infection was equal in the PBS treated mice between the WT and
the mice lacking the activating FcγR (Figure 4B). RSV infection
was decreased in all treated WT mice with similar levels between

Frontiers in Immunology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 1701135

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nederend et al. Bovine IgG Prevents RSV Infection

FIGURE 1 | bIgG RSV binding and neutralization. Antibody binding of serial diluted palivizumab (Pali), IVIG or bIgG to RSV-A2 (closed symbols) or

RSV-A2-RL-Line19F (open symbols) infected HEp-2 cells. RSV specific binding detected with αhIgG-RPE or αbIgG-Alexa647 and analyzed by flow cytometry. Data

corrected for infection rate (A). HEp-2 cells were infected with RSV-A2 or RSV-A2-RL-Line19F which was pre-incubated for 1 h with a serial dilution of palivizumab,

IVIG or bIgG. Infection was analyzed by flow cytometry, uninfected cells and no antibody incubation were set as 100 and 0% neutralization, respectively (B). Pre- and

post-fusion F glycoprotein specific binding of palivizumab, IVIG and bIgG (C). Median with range of triplicate measurements are shown *P ≤ 0.05; **P ≤ 0.01.

FIGURE 2 | Human T cell activation by RSV prefusion protein-bIgG immunecomplexes. Enriched RSV specific human T cells from healthy donors were incubated with

autologous monocytes and immunecomplexes generated by pre-incubating prefusion protein (preF) and a serial dilution of palivizumab, IVIG or bIgG. Activation was

determined by the number of CD4T cells (A) or CD8T cells (B) per 10,000 sulfate latex beads with flow cytometry.

the different antibodies. The decrease in viral load was less in the
FcRγ KO mice, indicating a role for the activating FcγR, next to
the prophylactic neutralizing effect of the antibodies.

DISCUSSION

In this paper, we have demonstrated that bovine IgG binds to two
different strains of human RSV, facilitates the activation of RSV-
specific T cells, and reduces viral load with RSV in a prophylactic
RSV in vivomouse model.

Bovine IgG is able to recognize pre- as well as post-fusion
F protein of RSV, although in a lower pre- to post-fusion F
protein binding ratio then IVIG and palivizumab. Despite the

fact that binding to pre-fusion F protein is associated with a
higher neutralization capacity than antibodies that bind to post-
fusion F protein, IVIG and bIgG showed a similar neutralization
capacity in vitro. It has to be noted that for palivizumab
lower concentrations are needed to neutralize RSV compared to
both IVIG and bIgG. Since IVIG an bIgG are both polyclonal
antibodies, it was expected that higher concentrations would
have been needed to reach a similar neutralization compared to
the monoclonal antibody palivizumab. Here, neutralization was
only tested in RSV-A strains and not in B strains. Since the F
protein is highly conserved between RSV A and B strains, it
is likely that bIgG is able to bind and neutralize RSV-B strains
as well (31). Moreover, we observed that bIgG was also able
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FIGURE 3 | Binding and internalization by activating murine FcγR. Plates were coated with 10 ug/ml IVIG or bIgG and incubated with calcein labeled macrophages

(A) and dendritic cells (B) cultured from bonemarrow of wild-type (WT), FcRγ–/–, mFcγR I/II/III/IV–/– C57BL/6 mice. Binding was compared to human IgG1 (ctrl 1) and

mouse IgG1 (ctrl 2) (N = 3). FITC labeled S. aureus were opsonized with or without IVIG or bIgG and incubated with WT mouse bonemarrow derived macrophages at

4◦C (binding), samples were equally divided and one part was incubated at 37◦C for internalization. Extracellular immunecomplexes were determined by Alexa647

conjugated αhIgG or αbIgG and analyzed by flow cytometry. Decrease in signal is considered as internalization (C). Mean with SD of triplicate measurements are

shown. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.

to neutralize the more pathogenic strain RSV-A2-RL-Line19.
Bovine IgG is able to recognize pre- as well as post-fusion
F protein of RSV, although in a lower pre- to post-fusion F
protein binding ratio then IVIG and palivizumab. Bovine IgG
is directed against the bovine RSV. As the prefusion protein of
bovine RSV is not identical to the human RSV, as the homology
between human and bovine F protein is about 80% (32), it is
expected that bIgG has a lower affinity for human RSV pre fusion
protein than IVIG and a monoclonal antibody raised against
human pre F protein. In addition, cows are often vaccinated
against RSV. These vaccines contain attenuated bovine RSV, for
example inactivated with formalin (33). It is known that the pre
F protein is not stable, and disappears from the RSV surface
upon formalin fixation (34). These observations may explain

why bovine IgG binds to a lesser extent to human RSV pre
F protein.

When RSV-specific T cells are cultured with autologous
PBMC’s, bIgG and RSV F protein, bIgG as well as IVIG
strongly facilitated T cell proliferation, which indicates activation
of the adaptive immune system. A similar effect has been
described in mice infected with RSV, oral administration of
bovine colostrum led to an increased CD8T cell activity (35).
Particularly in RSV infections, the role of T cells is dubious.
T cells are, like in other viral infections, required for viral
clearance (36). However, it is hypothesized that T cells are
also the cause of the vaccination-enhanced disease during the
FI-RSV trial (37, 38). Particularly Th2 cells are suspected to
play an important role in RSV bronchiolitis immunopathology
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FIGURE 4 | In vivo prophylactic activity of bIgG in WT and FcRγ–/– mice. Wild-type (WT) C57BL/6 mice were prophylactically treated with a titration of bIgG or IVIG

(A) 24 h prior to intranasal infection with 3 × 10e6 PFU RSV-A2-RL-Line19F. RSV load was determined in bronchoalveolar fluid 5 days after infection. The contribution

of FcyR was compared in WT (open circles) and FcRγ–/– mice (closed circles) with prophylactic treatment resulting in similar viral load in WT (5 mg/kg bIgG/1 mg/kg

IVIG/0.05 mg/kg) (B). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.

due to Th2 cytokine release (37). In literature, the activation
of T cells by bovine milk has only been evaluated by Xu
et al. (35). In this study, activation of CD8+ T cells was
observed after oral ingestion of bovine milk (35). However, this
increased CD8+ T cell activation in mice was also associated
with a lower burden of disease (35). This indicates that the
increased T cell activity against RSV that was observed in
vitro, is likely to only lead to viral clearance without negatively
impacting the infection. Moreover, Den Hartog et al. showed
that bIgG is capable of recognizing other common respiratory
pathogens like influenza and Haemophilus influenzae as well,
indicating that bIgG might also activate T cell responses to other
pathogens (18).

In order to perform prophylactic RSV studies in mice, we
first investigated whether bIgG is capable to engage with murine
Fc-receptors. We found that bIgG binds murine macrophages
and dendritic cells through one or more activating Fc-receptors.
We also showed that opsonization by bIgG enabled murine
macrophages and dendritic cells to phagocytose S. aureus. It has
been shown that bIgG is able to form immune complexes that
can lead to opsonization of the pathogen. This opsonization is
possible mediated by FcRγII as it has been shown that bIgG
is able to bind to this receptor (38–400. Moreover, Inhibition
of FcRγIIa lead to inhibition of the opsonization of bIgG-HIV-
1 immune complexes (39). The in vivo prophylactic studies
clearly show that both palivizumab, IVIG and bIgG reduced
the RSV load in bronchoalveolar fluid. Interestingly, in the
FcRγ-/– mice, less protection from RSV was observed for
all three antibody groups: palivizumab, IVIG and bIgG. This
indicates that also in vivo the activating FcγRs are important
for RSV antibodies as was described before for palivizumab
by Van Mechelen et al. (40). No statistical relevant difference
could be found between the mice that either received bIgG
or IVIG, indicating that bIgG is not inferior to IVIG in the
protection from RSV in mice. A similar protective effect of
bIgG was observed in the study performed by Xu et al.,
demonstrating that oral intake of bovine IgG protectedmice from
RSV (35).

Conclusively, our data suggest that addition of bIgG may be
a novel strategy to increase the protective potential of infant
formulas. As stated before, many children are dependent on
bovine milk derived infant formulas as they are not breastfed
(41). Previous trials evaluating the effect of raw milk or bovine
immunoglobulin rich formulas have already shown their efficacy
in the treatment of gastro-intestinal infections with rotavirus and
E. coli. Another trial performed by Loss et al. remarkably showed
that childrenmay benefit from raw cow’s milk consumption since
the raw cow’s milk arm showed fewer respiratory tract infections
(among which rhinitis and otitis) and fever episodes compared
to the processed milk arms (15, 42). However, consumption of
raw cow’s milk encompasses risk for young children to transmit
several pathogens among which tuberculosis, brucellosis and
listeria (15). Adding purified bIgG to infant formulas may thus
transfer part of the protective effect of raw bovine milk to
microbiologically safe infant formulas.
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Manoj K. Pastey 3 and David C. Dallas 1*
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Oral administration of engineered immunoglobulins has the potential to prevent enteric

pathogen-induced diarrhea in infants. To prevent infection, these antibodies need

to survive functionally intact in the proteolytic environment of the gastrointestinal

tract. This research examined both ex vivo and in vivo the functional survival across

infant digestion of palivizumab, a model FDA-approved recombinant antibody against

respiratory syncytial virus (RSV) F protein. Palivizumab-fortified feed (formula or human

milk), infant gastric, and intestinal samples were incubated to simulate in vivo digestion

(ex vivo digestion). Palivizumab-fortified human milk was also fed to infants, followed by

collection of gastric and intestinal samples (in vivo digestion). Palivizumab was purified

from the samples of digestate using protein G spin columns followed by filtration through

molecular weight cut-off membranes (30 kDa). Palivizumab functional survival across ex

vivo and in vivo digestion was determined via an anti-idiotype ELISA and an RSV plaque

reduction neutralization test. Palivizumab concentration and RSV neutralization capacity

both decreased when incubated in intestinal samples (ex vivo study). The concentration

and neutralization activity of orally-supplemented palivizumab also decreased across

infant digestion (in vivo study). These results indicate that if recombinant IgGs were

selected for oral supplementation to prevent enteric infections, appropriate dosing would

need to account for degradation occurring in the digestive system. Other antibody

formats, structural changes, or encapsulation could enhance survival in the infant

gastrointestinal tract.

Keywords: palivizumab, infant digestion, human milk, antibody functional activity, respiratory syncytial virus

INTRODUCTION

Infectious diarrhea kills more than 2,000 children under 5 years of age every day (1–3).
Breastfeeding is associated with lower infection risks in infants (4–6), and human milk enhances
passive immunity of breastfed infants by supplying pathogen-specific neutralizing antibodies (7).
Following the human milk model of maternal antibodies facilitating immunological protection
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for offspring, oral provision of pathogen-specific recombinant
immunoglobulins could help prevent diarrheal infections
in infants. To prevent infection, however, orally-delivered
recombinant antibodies would have to resist degradation
from exposure to milk and gastrointestinal proteases and pH
changes (from pH 3.5–8) across the gastrointestinal tract (8,
9). Proteolytic enzymes, such as carboxypeptidases, elastase,
plasmin, and kallikrein, are present in breast milk (10). These
proteolytic enzymes may be active during gastrointestinal
digestion, as inactive cathepsin D in breast milk is activated by
the acid conditions of the stomach (11). Many digestive enzymes,
including pepsin, trypsin, and chymotrypsin, also mix with feed
(human milk) during infant digestion. No studies have thus far
been reported for the effect of human digestive proteases on viral
neutralization; however, these enzymes may degrade antibodies.

The extent to which recombinant antibodies survive across
infant digestion remains unknown. Functional survival of
recombinant antibodies across digestion needs to be examined
to assess their potential as oral supplements to prevent
enteric infections.

As a model for examining the functional survival
of recombinant antibodies across digestion, we selected
palivizumab (a humanized monoclonal recombinant IgG1κ), the
only FDA-approved recombinant antibody for use in infants to
prevent infections, and which is administered via intramuscular
injection. Palivizumab recognizes and binds to the fusion protein
(F) of RSV, thereby inhibiting infection of host cells (12, 13). In
our previous study (14), palivizumab was not stable across ex
vivo incubation in infant gastric and intestinal samples, whereas
naturally occurring human milk RSV-specific antibodies were
stable. Whether the degradation of palivizumab as measured by
ELISA across ex vivo infant digestion corresponds with a loss of
functional capacity of palivizumab to neutralize RSV remained
unknown. The aim of this study was to measure the extent
to which palivizumab retains functional RSV neutralization
capacity across incubation within ex vivo infant gastric and
intestinal samples (ex vivo digestion) and across gastric and
intestinal sampling sites after oral supplementation to infants
(in vivo digestion). This work serves as a model for examining
the digestion of recombinant antibodies that can be used to
inform future development of oral enteric pathogen-specific
recombinant antibodies for the prevention of infectious diarrhea.

MATERIALS AND METHODS

Digestion of Human Milk and Formula
(ex vivo and in vivo)
In vivo digestion samples were collected from infants at
the Doernbecher Children’s Hospital Neonatal Intensive Care
Unit (NICU) located at Oregon Health & Science University
in Portland, OR, after obtaining parental informed consent

Abbreviations: RSV, respiratory syncytial virus; NT, neutralization titer; DMEM,

Dulbecco’s Modified Eagle Medium; ELISA, enzyme-linked immunosorbent assay;

FBS, fetal bovine serum; PBS, phosphate-buffered saline (pH 7. 4); PBST, PBS

containing 0.05% Tween-20; BSA, bovine serum albumin; MWCO, molecular

weight cut off.

(Figure 1). Inclusion criteria for infants in this study were infants
already admitted to the NICU, >34 weeks corrected gestational
age, with an indwelling nasogastric or orogastric feeding tube
and tolerating full enteral feeding volumes (typically 150–160
mL/kg/day). Exclusion criteria were infants with diagnoses that
were incompatible with life, infants not being fed enterally, major
gastrointestinal system anomalies affecting protein digestion,
severe genitourinary anomalies, and significant metabolic or
endocrine diseases. Prior to feeding, a nasally-placed tube
was placed into the distal duodenum or proximal jejunum.
Gastric and intestinal samples were collected from four infant
pairs (Table 1). Feeds were delivered via nasogastric tubes over
30min or less. Infants were fed without palivizumab (formula
for infant 1, fortified mother’s milk for infant 2) or with
palivizumab (60µg/mL in fortified mother’s milk for infant 3 and
1,000µg/mL in unfortifiedmother’s milk for infant 4). This range
of feed types represent all common feed types fed to infants in the
NICU, allowing us to encompass this potential variability within
the analysis of the extent of palivizumab digestion. Twomilliliters
of feed samples were collected in sterile vials on ice. Each
infant’s gastric contents (0.5–2mL) was withdrawn by suction
30min after completion of feeding into a 3-mL syringe and
transferred in sterile vials, and placed on ice. Intestinal samples
were collected from the nasojejunal/duodenal tube into sterile
vials on ice via gravity flow as the digesta passed the collection
tube port. Gastric and intestinal samples collected are, thus,
mostly composed of the most proximal feed with the addition
of digestive secretions. The sample vials were immediately stored
at−80◦C. The frozen sample vials were transported on dry ice to
Oregon State University and stored at−80◦C.

For ex vivo digestion of palivizumab (Figure 1), the samples
[feed (formula for infant 1 or fortified mother’s milk for infant
2), gastric, and intestinal samples] were thawed quickly at 37◦C
with shaking at 300 rpm (∼1min). Palivizumab was added
to samples (feed, gastric, and intestinal) at 11 mg/mL and
digested at 37◦C with shaking at 300 rpm for 1 h (feed, gastric,
and intestinal samples) in an Eppendorf ThermoMixer R© C
(Eppendorf AG, Hamburg, Germany). The higher concentration
of palivizumab used for the ex vivo incubation compared with
the feeding study was selected to allow the use of lower sample
volumes while extracting enough palivizumab for RSV plaque-
neutralization assay.

Determination of Palivizumab Content
Using Enzyme-Linked Immunosorbent
Assay (ELISA)
The Palivizumab content in the samples was determined using
an anti-idiotype ELISA with HCA261 (Bio-Rad, Richmond,
CA, USA) as a capture antibody and horseradish peroxidase-
conjugated goat anti-human IgG gamma chain (STAR 106P,
Bio-Rad) as a detection antibody according to the method
developed by Bio-Rad, with some modifications. Briefly, 100
µL of HCA261 at 1µg/mL in phosphate-buffered saline (PBS;
pH 7.4) was added in each well of a clear flat-bottom 96-well
plate (Nunc MaxiSorp; Thermo Fisher Scientific, Waltham, MA,
USA) and incubated overnight at 4◦C. Wells of the microplate
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FIGURE 1 | Experimental workflow for determination of degradation of

palivizumab functional activity during infant digestion.

were washed three times with 200 µL of PBS containing
0.05% Tween-20 (PBST) (Bio-Rad) and blocked for 1 h with
150 µL of PBST containing 1% bovine serum albumin (BSA)
at RT. Samples were diluted 2-fold with PBST containing
1% BSA, and palivizumab standards were prepared in PBST
containing 1% BSA in the range of 1–1,000 ng/mL. Palivizumab
standards/diluted samples (100 µL) were added to each well
after washing three times using PBST and incubated for 1 h at
RT. The wells were washed three times with PBST as described
above; 100 µL of horseradish peroxidase-conjugated goat anti-
human IgG gamma chain detection antibody at 0.13µg/mL PBST
containing 1% BSA were added to each well and incubated at
RT for 1 h. After the plates were washed 6 times with PBST
as described above, 100 µL of 3,3′,5,5′-tetramethylbenzidine
substrate solution (Thermo Fisher Scientific) were added to each
well and incubated for 5min. The reaction was stopped by adding
50 µL of 2N sulfuric acid and the absorbance was measured at
450 nm using a microplate reader (Spectramax R© M2, Molecular
Devices, Sunnyvale, CA, USA). The samples from feed, infant
gastric, and intestinal contents were tested at least two dilutions
with 3 replicates of each dilution. Replicate measurements were
averaged. The percentage survival of intact ELISA-detectable
palivizumab at each digestion point was determined with respect
to the unincubated sample in the ex vivo study, whereas it
was determined with respect to feed in the in vivo study.

TABLE 1 | Demographics of four mother–infant pairs sampled for feed (formula or

human milk), gastric, and intestinal contents.

Demographics Infants†

Gestational age at birth, weeks 32.08 ± 4.48 (27.1–38)

Postnatal age at feeding, days 41.50 ± 22.93 (23–75)

Corrected gestational age at feeding, weeks 38.00 ± 2.31 (36.4–41.3)

Body weight at sampling, kg 2.87 ± 0.53 (2.45–3.63)

Length at sampling, cm 46.25 ± 3.77 (42–51)

Head circumference at sampling, cm 35.50 ± 3.54 (31–39.5)

Total kilocalories intake, kcal/kg/day 131.25 ± 25.40 (108–165)

Specific feed volume, mL 43.50 ± 12.23 (30–57)

†Values are mean ± SD (range).

Percentage survival was determined for each dilution (the average
of three replicates) separately and these values were used for
statistical analyses.

Purification of Palivizumab Using Protein G
Spin Column and 30-kDa Molecular Weight
Cut Off (MWCO) Filtration
Milk, gastric and intestinal samples contain substances such
as β-casein, milk fat, immunoglobulins (SIgA, IgG, and IgM),
lactoferrin, proteases, protease inhibitors, lactoperoxidase, cells,
and bacteria that can introduce background effects on the RSV
neutralization assay (15–18). Thus, palivizumab was purified
from the ex vivo and in vivo samples using protein G column
and 30 kDa-MWCO filtration. Protein G spin column (Thermo
Fisher Scientific) and all buffers were equilibrated to RT
(30min). Storage solution of the column was passed through
by centrifuging the column at 5,000 × g, 20◦C for 30 s. To
equilibrate the columns, 400 µL of the PierceTM protein G IgG
binding buffer (proprietary composition, pH 5.0, containing
0.02% sodium azide) were added and the column was centrifuged
at 5,000 × g, 20◦C for 30 s. The equilibration step was repeated
once. The volume of sample added to the protein G column
varied based on the infant and sample type, and was selected
based on a desired final concentration of 300µg/mL palivizumab
in the purified sample, assuming a standard 50% palivizumab
loss after complete extraction (protein G and 30-kDa MWCO
filtration). This allowed for a 30-fold dilution to overcome
background effects in the neutralization assay while maintaining
a target 10µg/mL palivizumab starting concentration in the
neutralization assay. Samples were separately diluted with the
binding buffer in the ratio of 1:3 (v/v) to ensure optimal
ionic strength and pH for binding. The diluted sample was
centrifuged for 10min at 1,000 × g, 4◦C, and the supernatant
was collected for palivizumab extraction. The pellet was dissolved
in 1mL binding buffer, centrifuged as described above, and
the supernatant was collected and combined with the previous
supernatant. An aliquot of this supernatant prepared from
sample-buffer mixture (500 µL) was added to a protein G spin
column and mixed end-over-end for 10min and centrifuged
at 5,000 × g, 20◦C for 30 s. To wash the column, 500 µL
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of the binding buffer were added, mixed to resuspend the
resin and centrifuged at 5,000 × g, 20◦C for 30 s. These wash
steps were repeated 9 times. To elute bound palivizumab, 500
µL of the PierceTM gentle Ag/Ab elution buffer (proprietary
composition, high ionic strength, pH 6.6) were added to the
column, the column was mixed end-over-end to resuspend the
resin and centrifuged at 5,000 × g, 20◦C for 60 s. Elution
steps were repeated 7 times. To remove remaining interfering
substances, the protein G extract was added to a 30-kDa MWCO
centrifugal filter unit. Prior to the addition of the sample,
5mL of Dulbecco’s Modified Eagle Medium (DMEM), without
serum, were added to the device followed by centrifugation at
3,000 × g, 4◦C for 3min to wash the apparatus. This washing
step was repeated once. Four milliliters of each protein G
extract were combined with 5mL of DMEM (no serum, with
antibiotic), added to the MWCO device and centrifuged at
1,000 × g, 4◦C for 10min. To allow for additional removal
of interfering substances, 5mL of DMEM (without serum)
were added and the MWCO device was centrifuged (repeated
2 times). The retentate (purified palivizumab) was collected,
and palivizumab concentration in the purified samples was
determined by ELISA. The efficiency of this extraction was
not 100% and differed across sample types. To make a fair
comparison, the extracted palivizumab concentrations were
normalized to a specific dilution of the original concentration
prior to the neutralization assay. To do so, a dilution that would
bring the original palivizumab concentration close to 10µg/mL
was selected as the target for normalizing the dilution of the
purified sample. Purified palivizumab samples were then diluted
to reach the concentration of this selected dilution for the
respective unpurified sample. This normalized dilution number
was used to interpret the results of the plaque assay.

Determination of Plaque Reduction
Neutralization Titer
Preparation of RSV Frozen Stock
HEp-2 cells (ATCC R© CCL23TM) were seeded in a tissue culture
flask (75 cm2) with DMEM containing 10% fetal bovine serum
(FBS) and 1% antibacterial-antimycotic solution and allowed to
grow until reaching >95% confluency (typically 24–48 h) in a 5%
CO2 incubator at 37◦C. The cell monolayer was washed three
times with sterile Hank’s balanced salt solution and infected with
1mL of frozen RSV subtype A (Long strain; ATCC R© VR-26TM;
American Type Culture Collection, Manassas, VA, USA) stock
(3.74 × 107 plaque-forming units/mL) in 3mL of virus growth
medium (DMEM with antibiotics-antimycotics without serum).
The flask was incubated at 37◦C in a CO2 incubator for 2 h. The
flask was rocked in the North–South (N–S) and East–West (E–
W) direction every 15min to maintain an even virus distribution
and avoid potentially drying the cells. After 2 h of incubation,
10mL of the virus growth medium were added to stop virus
adsorption. The flask was examined every day during post-
infection incubation via an inverted microscope for cytopathic
effects, namely syncytia formation, rounding and sloughing, to
ensure the viral infection had taken place. After 5 days post-
infection, the spent media was forcefully mixed 10 times with a
pipette to free the infected, weakly attached cell monolayer from

the flask and collected in a 50-mL Falcon tube. The pooled cells
and supernatants were centrifuged at 280× g, 4◦C for 5min and
the supernatant was collected, leaving∼200 µL of supernatant in
the tube with the pelleted cells. The cell pellet was resuspended
with the leftover 200 µL of supernatant and frozen immediately
on dry ice, followed by quickly thawing in a 37◦Cwater bath. This
freeze-thaw step was repeated 3 times and the tube was agitated
with a vortex mixer after each cycle. All the freeze-thawed cell
debris was pooled with the saved supernatant, sterile glycerol was
added at 15% (v/v) and mixed well with a vortex mixer. The
virus suspension was pipetted into cryovials (300 µL/cryovial)
and stored at−80◦C for long-term storage.

Determination of Neutralization Titer of Samples

Against RSV
The plaque reduction neutralization assay was performed with
some modifications (19). Briefly, HEp-2 cells were seeded
onto a 96-well plate at a density of 3.5 × 105 cells/mL
in DMEM containing antibiotic-antimycotic solution (1%)
and 10% FBS and grown in a CO2 incubator until the
cells reached >95% confluency. Frozen stock of human RSV
(10(6.00)TCID[50]/0.1mL, HEp2, 2 days; 7 × 106 plaque
forming units/mL) was diluted 250-fold in DMEM containing
antibiotic-antimycotic solution (1%) without FBS. An aliquot
of the diluted virus (40 µL) was mixed with an equal volume
of 1.2-fold serially diluted samples in DMEM without FBS
(40 µL) in triplicate and pre-incubated for 1 h at 37◦C in a
CO2 incubator. After washing the cell monolayer three times
with DMEM containing antibiotic-antimycotic solution (1%)
without FBS, sample-virus mixtures (25 µL/well) were added
to the plate in duplicate wells (for a total of six wells per
dilution). The plate was incubated at 37◦C in a CO2 incubator
with shaking for 2 h, with intermittent manual rocking each
direction (N–S and E–W) every 15min for 1min in a biosafety
cabinet to enable non-neutralized virus to adsorb onto the
cells. The virus-sample inoculum was aspirated, and 0.1mL
of overlay medium (1% methyl cellulose (Spectrum Chemical
Manufacturing Corp., New Brunswick, NJ, USA) in DMEM
containing antibiotic/antimycotic solution, without FBS) was
added to each well and returned to the incubator. Methylcellulose
fixed the virus in position to prevent RSV progeny spreading
throughout the well and ensure localization of plaques. After
48 h of incubation at 37◦C, the overlay was aspirated using
a multichannel aspirator. The cells were fixed by adding
100 µL/well of ice-cold acetone:methanol (60:40) for 5min
and air-drying for 30min. The non-specific sites on the cell
monolayer surface were blocked by adding 100 µL/well of 3%
skim milk (MilliporeSigma) for 10min. The cell monolayer
was washed three times with PBST. A drop of BLOXALL
blocking solution (Vector Laboratories, Inc., Burlingame, CA,
USA) was added to each well and incubated for 10min to
inhibit endogenous peroxidase, pseudoperoxidase, and alkaline
phosphatase activities. The cell monolayer was washed three
times with PBST. The cells were incubated with mouse anti-RSV
F protein monoclonal antibodies (MilliporeSigma) at 1:1,500 in
PBST (100µL/well) for 2 h. The cell monolayer was washed three
times with PBST and incubated for 1 h in a CO2 incubator with
alkaline phosphatase-conjugated goat anti-mouse IgG antibodies
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(MilliporeSigma) at 1:1,500 dilution in PBST (100 µL/well). The
cell monolayer was washed three times with PBST. Individual
plaques were stained by adding 100 µL per well VECTOR
Black alkaline phosphatase substrate (Vector Laboratories, Inc.,
Burlingame, CA, USA) followed by incubation at RT for 15min
to allow color development. The cell monolayer was washed
with PBST. Images of the plate with plaques were recorded
using a fluorescence microscope (model: BZ-X710; Keyence
Corporation, Osaka, Japan), and plaques were counted manually
using Fiji, an open-source image processing package based on
ImageJ. Each plate had two wells without RSV (negative control).
The sample dilution number for a reduction in 50% plaque
neutralization compared with plaque formation in virus-only
controls was referred to as 50% neutralization titer (NT50), and
it was interpolated from the four-parameter logistic curve drawn
from % plaque reduction vs. sample dilution number using
GraphPad Prism software (version 8.2.1). A separate NT50 value
was determined for each of the three experimental replicates
based on the average plaque count values of the duplicate wells.
The percentage functionality loss of palivizumab at a digestion
point was determined with respect to the unincubated sample
in the ex vivo study, whereas it was determined with respect to
feed in the in vivo study. Percentage functionality was determined
for each of the three experimental replicates separately and these
values were used for statistical analyses.

Statistical Analysis
All data passed the Shapiro-Wilk normality test. Unpaired t-tests
were performed for the ex vivo study to evaluate significant
differences between the percentage survival of palivizumab
relative to time 0 based on ELISA and the RSV neutralization
assay at P < 0.05 for each infant separately based on
measurement replicates (values from at least three dilutions
measured in triplicate for ELISA and three independently
calculated NT50 values based on duplicate wells for the plaque
assay). One-way analysis of variance (ANOVA) followed by
Tukey Honestly Significant Difference post-hoc tests were
conducted in the in vivo study to evaluate significant differences
between the mean percentage survival of palivizumab relative to
feed based on ELISA and the RSV neutralization assay at P < 0.05
for each infant separately based on measurement replicates
(values from at least two dilutions measured in triplicate for
ELISA and three independently calculated NT50 values based
on duplicate wells for the plaque assay). A two-tailed Pearson’s
correlation test was performed to determine the correlations
between percentage palivizumab stability as measured by ELISA
and NT50 values from the RSV-neutralization assay across gastric
and intestinal ex vivo and in vivo digestion. GraphPad Prism
software (version 8.2.1) was used for statistical analyses.

RESULTS

Survival of Palivizumab After ex vivo
Digestion
To study palivizumab survival across simulated infant digestion,
the binding activity of palivizumab was determined via an
anti-idiotype ELISA and the functional neutralizing capacity

via the RSV plaque-reduction neutralization test after 1 h
incubation in human milk, gastric, and intestinal digestates (ex
vivo digestion).

For Infant 1, palivizumab concentration in formula
remained stable after 1 h of incubation as determined by
ELISA (Figure 2A). Likewise, NT50 remained stable (Figure 2B).
Following 1-h incubation of the infant’s gastric sample,
palivizumab concentration decreased 72.34% (Figure 2A) and
NT50 decreased 57.87% (Figure 2B). After 1 h of incubation
of the infant’s intestinal sample, palivizumab concentration
decreased 51.09% (Figure 2A) and NT50 decreased 58.47%
(Figure 2B). The combined data demonstrate that the anti-
idiotype binding capacity and neutralization capacity of
palivizumab was degraded during ex vivo gastric and intestinal
digestion in Infant 1 samples. For Infant 2, both palivizumab
concentration and NT50 were stable after 1-h incubation in
fortified mother’s milk and the gastric sample (Figures 2C,D,
respectively). After 1 h of incubation of the intestinal sample,
palivizumab concentration decreased 26.74% (Figure 2C) and
NT50 decreased 58.43% (Figure 2D).

The combined ELISA and neutralization assay results
demonstrated that palivizumab was not digested after ex vivo
incubation in either the formula or fortified mother’s milk, was
variably digested in the gastric samples from Infant 1 and Infant
2 and was digested in the intestinal samples from both infants.

Survival of Palivizumab Across in vivo

Digestion
The extent to which orally-supplemented palivizumab’s anti-
idiotype binding capacity and RSV neutralization capacity
decreased across infant digestion was examined (in vivo study).
For Infant 3, fed 60µg/mL of palivizumab in fortified mother’s
milk, palivizumab concentration was 36.39% lower in the gastric
sample than in the feed (Figure 3A). The neutralization titer
of palivizumab was stable during gastric digestion in Infant 3
(Figure 3B). In the intestinal sample from Infant 3, palivizumab
concentration was 57.52% lower than in the feed and 21.13%
lower than in the gastric sample (Figure 3A). Likewise, the NT50

in the intestinal sample was 36.13% lower than in the feed and
29.64% lower than in the gastric sample (Figure 3B). For Infant
4, fed 1,000µg/mL palivizumab in unfortified mother’s milk,
palivizumab concentration and NT50 were stable in the gastric
sample (Figures 3C,D, respectively). Palivizumab concentration
in the intestinal sample was 57.49% lower than in the feed and
47.68% lower than in the gastric sample (Figure 3C). NT50 in
the intestinal sample was 63.55% lower than in the feed and
65.00% lower than in the gastric sample (Figure 3D). Overall,
the neutralization assay results demonstrated that palivizumab
was not digested during gastric digestion, whereas it was digested
during intestinal digestion of both Infant 3 and Infant 4.

We hypothesized that the functionality of palivizumab could
be indicated by ELISA. A two-tailed Pearson’s correlation test was
performed to determine the correlations between palivizumab
percentage stability as measured by ELISA and NT50 values from
the RSV-neutralization assay across gastric and intestinal ex vivo
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FIGURE 2 | Stability of palivizumab during a 1 h ex vivo digestion in feed (brown bars), gastric samples (cyan) and intestinal samples (magenta) in (A) Infant 1 and

(C) Infant 2, respectively, tested by anti-idiotype ELISA and represented as percentage of the original palivizumab content. Stability of palivizumab neutralization

capacity across ex vivo digestion in the sample from (B) Infant 1 and (D) Infant 2 based on NT50 and represented as a percentage of the original functionality. Values

are mean ± SD, n = 6 and 3 dilutions for Infants 1 and 2, respectively, measured in triplicate for ELISA and n = 3 experimental replicates measured in duplicate for the

RSV neutralization assay. Asterisks show statistically significant differences (**P < 0.01; ***P < 0.001; and ****P < 0.0001) between time 0 and 1 h of incubation within

each sample type using unpaired t-tests. The broken line shows palivizumab stability in the anti-idiotype ELISA and palivizumab functionality in the RSV neutralization

assay in feed (0 h), gastric (0 h), and intestinal (0 h) as 100%.

and in vivo digestion. These variables were highly correlated
(P < 0.0001, r = 0.87).

DISCUSSION

Diarrhea causes more than half a million deaths each year
among children under 5 years old, with most deaths occurring
in resource-limited countries (20, 21). Infants are born with
naive immune systems, including low levels of intestinal
immunoglobulin secretion (22). Feeding infants human
milk significantly decreases infectious diarrhea risk, likely
in part because milk provides enteric pathogen-specific
antibodies (5). Infants can be protected against enteric
pathogen-induced diarrhea through fortification of milk or
formula with enteric pathogen-specific antibodies. To be
effective in preventing enteric pathogen infection, however,
oral immunoglobulins need to survive intact after exposure
to the digestive system’s highly degradative environment,

which varies from pH 3 to 8 and contains proteolytic
enzymes (8, 23, 24). The extent to which recombinant
immunoglobulins remain structurally intact and functional
across infant digestion remains unknown. In our previous
study (14), we demonstrated that palivizumab was degraded
in ex vivo infant gastric and intestinal digestion as observed
via an RSV F protein-specific ELISA. This result contrasted
with the observation that naturally occurring human milk
RSV-specific antibodies remained stable across ex vivo
digestion. As that study did not test the extent to which
observed degradation corresponds with loss of RSV neutralizing
capacity (i.e., functionality), herein, we examined the survival
of palivizumab across ex vivo and in vivo infant digestion
via a plaque reduction neutralization test in addition to an
anti-idiotype ELISA.

The anti-idiotype ELISA was selected as a means to determine
the extent to which palivizumab remained intact through
digestion. To be detected by ELISA, both the Fab and Fc regions
of the antibody would have to be sufficiently structurally intact
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FIGURE 3 | Stability of palivizumab during in vivo digestion in (A) Infant 3 and (C) Infant 4 tested by anti-idiotype ELISA and represented as percentage of the original

palivizumab content in feed compared with the gastric (cyan bars) and intestinal (magenta) samples. Stability of palivizumab functionality during digestion in (B) Infant 3

and (D) Infant 4 tested by plaque neutralization assay and represented as percentage of the palivizumab functionality in the feed sample. Values are mean ± SD, n = 3

and 2 dilutions for Infants 3 and 4, respectively, measured in triplicate for ELISA, and n = 3 experimental replicates measured in duplicate for the RSV neutralization

assay. Asterisks show statistically significant differences (*P < 0.05; **P < 0.01; ***P < 0.001, and ****P < 0.0001) using one-way ANOVA followed by Tukey’s multiple

comparison tests. The broken line shows palivizumab stability in the anti-idiotype ELISA and palivizumab functionality in the RSV neutralization assay in feed as 100%.

to bind to the anti-idiotype antibody and anti-IgG antibody,
respectively. To confirm the extent to which the ELISA could
serve as an indicator of palivizumab functionality, we tested
the neutralization capacity of palivizumab via the plaque-
reduction neutralization test. To be functional in this test,
palivizumab must be structurally intact enough to bind to the
F protein of RSV to prevent fusion with the host cell, thereby
preventing infection.

The digestion of palivizumab was tested with ex vivo and
in vivo approaches. By incubating palivizumab in clinically-
collected feedings (formula, fortified mother’s milk, and
unfortified mother’s milk), and gastric and intestinal contents
from neonatal intensive care unit patients, we provided
conditions highly similar to those of in vivo digestion, including
the correct concentration of enzymes. This approach more
optimally mimics in vivo digestion than the typical in vitro
digestion system (25, 26). Although ex vivo digestion overcomes
some limitations of in vitro methods, it is a static simulation
and cannot entirely replicate the dynamic complexity of human

digestion. In this study, we therefore also examined in vivo
digestion of palivizumab in infants.

Palivizumab was degraded across both gastrointestinal
digestion ex vivo and in vivo as determined by ELISA and
the plaque-reduction neutralization test. This loss of binding
and neutralization capacity indicates that the ex vivo and in
vivo gastrointestinal environments altered palivizumab structure
and/or resulted in proteolytic degradation. This observed
antibody degradation could result from proteolytic degradation
by digestive enzymes encountered during gastrointestinal
digestion and/or structural destabilization by the shift from a low
gastric pH to a high intestinal pH.

The percentage stability of palivizumab based on the
concentrations from the anti-idiotype ELISA and the NT50 values
from the plaque assay were highly correlated. This correlation
indicated that in future experiments, the ELISA method alone
can be used as a marker of the functional activity of an antibody
across digestion. This finding is an essential discovery on a level
of practicality for further implementations of this research in that
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the ELISA method has a much higher throughput than does the
RSV-neutralization assay.

A limitation of this study is the small number of infants
sampled for ex vivo and in vivo digestive analysis. Though this
limitation precludes analysis of the biological variation among
infants, the four subjects sampled allows a clear answer to our
primary research question: to what extent does a recombinant
antibody survive functionally intact in the infant digestive
tract. The results from both the ex vivo and in vivo analysis
clearly demonstrate that the infant digestive tract degrades
the functional capacity of palivizumab. Likewise, the limited
numbers do not allow analysis of the effect of feed type on
palivizumab digestion. However, as each infant tested herein
was fed a different type of feed, we have encompassed the
range of potential variability from this factor within our overall
result, that palivizumab is partially functionally degraded across
infant digestion.

The partial degradation of functional activities of the
recombinant monoclonal antibody palivizumab against RSV
suggests that use of recombinant IgG for oral supplementation
to prevent enteric pathogens will require either a high degree
of antibody dosing to compensate for losses during digestion,
antibody encapsulation strategies, or antibody structural
changes to enhance antibody stability. Future work should
examine the extent to which such approaches can improve
the functional survival of recombinant antibodies across
infant digestion.

Pathogen-specific recombinant antibodies could have a wide
array of applications within the food industry. As an example,
enterally-dosed antibodies could be used either to protect against
foodborne illness or to modulate the intestinal microbiome. The
analytical strategies established herein would be desirable to

examine the potential survival and hence, functional capacity of
any such antibodies administered with foods.
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Background: Early nutrition may influence the development of food allergies later in
life. In the absence of breastfeeding, hydrolysates from cow’s milk proteins (CMP) were
indicated as a prevention strategy in at risk infants, but their proof of effectiveness in
clinical and pre-clinical studies is still insufficient. Thanks to a validated mouse model, we
then assessed specific and nonspecific preventive effects of administration of extensive
hydrolysates from caseins (eHC) on the development of food allergy to CMP. The
additional nonspecific effect of the probiotic Lactobacillus GG (LGG), commonly used in
infant formula, was also assessed.

Methods: Groups of young BALB/cByJ female mice were pretreated by repeated
gavage either with PBS (control mice), or with PBS solution containing non-hydrolyzed
milk protein isolate (MPI), eHC or eHC+LGG (eq. of 10 mg of protein/gavage). All mice
were then experimentally sensitized to CMP by gavage with whole CM mixed with
the Th2 mucosal adjuvant Cholera toxin. All mice were further chronically exposed to
cow’s milk. A group of mice was kept naïve. Sensitization to both caseins and to the
non-related whey protein β-lactoglobulin (BLG) was evaluated by measuring specific
antibodies in plasma and specific ex vivo Th2/Th1/Th17 cytokine secretion. Elicitation of
the allergic reaction was assessed by measuring mMCP1 in plasma obtained after oral
food challenge (OFC) with CMP. Th/Treg cell frequencies in gut-associated lymphoid
tissue and spleen were analyzed by flow cytometry at the end of the protocol. Robust
statistical procedure combining non-supervised and supervised multivariate analyses
and univariate analyses, was conducted to reveal any effect of the pretreatments.

Results: PBS pretreated mice were efficiently sensitized and demonstrated elicitation
of allergic reaction after OFC, whereas mice pretreated with MPI were durably protected
from allergy to CMP. eHC+/-LGG pretreatments had no protective effect on sensitization
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to casein (specific) or BLG (non-specific), nor on CMP-induced allergic reactions.
Surprisingly, eHC+LGG mice demonstrated significantly enhanced humoral and cellular
immune responses after sensitization with CMP. Only some subtle changes were
evidenced by flow cytometry.

Conclusion: Neither specific nor nonspecific preventive effects of administration of
casein-derived peptides on the development of CMP food allergy were evidenced in our
experimental setup. Further studies should be conducted to delineate the mechanisms
involved in the immunostimulatory potential of LGG and to clarify its significance
in clinical use.

Keywords: food allergy, prevention, hydrolyzed formulas, probiotic, cow’s milk, mouse model

INTRODUCTION

Type of feeding in early life may determine the propensity to
develop a food allergy later in life. One of the main food allergies
in infancy is a cow’s milk proteins (CMP) allergy, which affects
0.5 to 3% of children in the first year of life (1). It may be severe,
persistent and have lifelong implications for health (1, 2). In most
allergic children, CMP allergies can be managed using formula
based on extensive hydrolysates from whey (eHW) or from
caseins (eHC). Those hydrolysates contain CMP-derived small
peptides with no more IgE-binding epitopes, thus preventing any
elicitation of an allergic reaction in allergic infants. In clinical use,
eHC formula allowed for a higher rate of tolerance acquisition
to CMP compared to soya or amino acids formula (3). This
effect may result from the fact that eHC still contains a large
proportion of small peptides derived from caseins that may act
as tolerogenic specific T-cell epitopes, or that may display non-
specific immunoregulatory properties. Actually, some peptides
derived from caseins possess different biological effects, such as
anti-inflammatory properties (4), healing of intestinal damages,
at least in vitro (5), and anti-microbial and immunoregulatory
effects [review in (6) and (7)]. Moreover, supplementation of
eHC with the probiotic Lactobacillus rhamnosus GG (LGG)
significantly improved the observed tolerance in clinic (3, 8)
and limited other allergic manifestations for up to 3 years when
compared to eHC alone (9). The non-specific additional effect
of LGG may result from various mechanisms, either direct (e.g.,
immunoregulation) or indirect (e.g., modification of microbiota
composition and function, both important for intestinal barrier
integrity) (10).

On the other side, the use of infant formula based on CMP
hydrolysates as a diet for allergy primary prevention is a matter
of high interest and debate. In the absence of breastfeeding, the
use of partial or extensive hydrolysates of CMP was indicated in

Abbreviations: BLG, bovine β-lactoglobulin; Cas, caseins; CMP, cow’s milk
proteins; CT, Cholera toxin; eHC, extensive hydrolysates from caseins; eHW,
extensive hydrolysates from whey; HCPC, Principal Component Analysis and
Hierarchic Classification on Principal Components; LGG, Lactobacillus rhamnosus
GG; LP, lamina propria; MLN, mesenteric lymph nodes; mMCP1, mouse
mast cell protease 1; MPI, non-hydrolyzed milk proteins isolate; OFC, oral
food challenge; PCA, principal component analysis; pHW, partial hydrolysates
from whey; PLS-DA, partial least square – discriminant analysis; VIP, variable
important in projection.

at-risk infants to prevent allergic sensitization to CMP and to
limit the start of the “atopic march.” In this selected population,
administration in the first 4 months of life of eHC or of partial
hydrolysates from whey (pHW) decreased eczema incidence in
the first 10 years of life when compared to standard CM formula
or eHW. However, no effect on asthma or rhinitis, nor on
sensitization to foods or aeroallergens, was observed (11, 12).
Other interventional studies (13) or meta-analysis (14) did not
support beneficial effects of CMP hydrolysates in at risk infants.
A recent population-based study even demonstrated that the use
of pHF at 2 months was related to higher risk of food allergy
at 2 years of age, both in at risk and non-at risk infants (15).
Further research on the impact of early nutrition practices using
such formula for food allergy prevention is thus still of major
importance in order to provide relevant and scientifically based
preventive policies.

Animal models can enable the studying of the impact of
postnatal nutrition on the immune responses. Two Th2-biased
strains of female mice, namely C3H/HeOuJ [e.g., (16–19)] and
BALB/c [e.g., (17, 20–24)], are mainly used to more specifically
study food allergy and (early) oral tolerance induction, and their
underlying mechanisms. In this context, by using the female
BALB/c mouse model, we previously demonstrated that oral
administration of the whey protein β-lactoglobulin (BLG) led to
a specific tolerance that relies on the induction of regulatory T
cells (Treg), and which prevents any further sensitization to this
purified cow’s milk allergen (23, 25). Large peptides generated
from BLG were still efficient to induce tolerance to BLG, whereas
products derived from extensive hydrolysis with trypsin, leading
to small peptides probably lacking T cell epitopes, were no more
tolerogenic. Using an experimental model of allergy to whole
CMP, we further evidenced a lower tolerogenic potential of partial
hydrolysates from caseins compared to a non-hydrolyzed CMP
formula (26). The tolerogenic effect was restricted to the protein
source used to produce the hydrolysates, which suggests an
antigenic specificity of the induced tolerance. Conversely, others
have demonstrated that eHC allowed a partial prevention of
allergy in a mouse model of sensitization to BLG (27), which
may then rely on non-specific immunomodulatory potency of
caseins-derived peptides.

In the present study, we then aimed to assess the effect of
administration of eHC on a further experimental sensitization
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to CMP, which has never been reported. We evaluated the effect
of eHC administration on sensitization to both caseins and
whey proteins (BLG) in order to delineate specific from non-
specific effects of caseins-derived peptides, respectively, with the
nonspecific effect being the mechanism of action suggested by
the outcome of clinical CMP allergy studies. We also assessed the
additional non-specific effect of the probiotic LGG, a probiotic
largely used in infant’s formulas.

MATERIALS AND METHODS

Tested Materials
Non-hydrolyzed CMP (Milk protein isolate, MPI; 88% protein,
containing both caseins and whey proteins), extensive
hydrolysate from caseins (eHC, 85% of equivalent protein);
and LGG were provided by Mead Johnson Nutrition (Evansville,
IN, United States). eHC corresponds to the one found in
Nutramigen formula; eHC peptide length distribution, full
MS-based peptidomics description and batch-to-batch variation
analysis are described in (28). Commercial whole CM (UHT,
AuchanTM, France; 33 mg/ml of proteins) was used for
experimental sensitization. For oral food challenge (OFC),
commercial ultra-filtrated raw CM (MargueriteTM, Candia,
Lyon, France) was defatted (20 min, 400 g, +4◦C) and freeze
dried to increase protein concentration. Dry powder was
solubilized in water and CMP concentration adjusted at
80 mg/ml (OFC solution; BCA kit, Pierce, Thermo Scientific,
Waltham, United States).

Protocol of Tolerance Induction and CMP
Sensitization in Mice
Ethical Considerations
All animal experiments were performed according to the
European Community rules of animal care, and with specific
Ethical approval from French Minister (authorization #16589 –
A17034).

Mice
Females BALB/cByJ mice (3 weeks old, Centre d’Elevage René
Janvier, Le Genest Saint-Isle, France) were housed in filtered
cages under normal SPF husbandry conditions and received a
standard diet (LASQCdiet R© Rod16-R, Genobios, Laval, France;
16.9% of proteins) deprived of animal proteins, in which no
BLG was detected using specific immunoassays (29). Mice were
acclimated for 2 weeks before experimentation. Three days before
starting the experiments, mice were randomly allocated to cages
corresponding to experimental groups (3–8 mice/cage; see below)
and individually identified by ear tattooing. No difference in
mean weights was observed between groups (not shown).

Administrations and Samplings
The schedule of the experimental protocol is provided Figure 1.
Mice received one intra-gastric gavage per day (200 µl/gavage)
on days 1, 2, 3, 4 and 8, 9, 10, and 11 with either phosphate
buffer saline (PBS, positive control of sensitization), a PBS
solution containing eHC, a PBS solution containing eHC

plus LGG (108 CFU/100 g, similar to ratio in Nutramigen
LGG formulation), or a PBS solution containing MPI. Ten
mg of CMP were administered by gavage in eHC+/-LGG
and MPI groups, corresponding to 1–2% of the total protein
intake provided by the standard diet, which was considered
as negligible. Administrations were performed following doses
and protocol that favor oral tolerance induction (26), using
an animal feeding needle (Popper & Sons, New Hyde Park,
NY, United States).

After these pretreatments, all mice were submitted to a
protocol of experimental sensitization to cow’s milk proteins
(CMP, i.e., to both caseins and whey proteins), which consisted
of repeated administrations of 180 µl of whole CM (eq. to
6 mg proteins/gavage) mixed with 20 µl of the Th2 mucosal
adjuvant Cholera Toxin (10 µg/mice; Sigma Aldrich, St. Louis,
United States) (20). Administrations were performed once a
week, for 6 weeks (i.e., on days 15, 22, 29, 36, 43 and 50). On
day 56, a first OFC was performed with 20 mg of CMP, and
plasma was obtained 3 h later to assess antibodies and mouse mast
cell protease-1 (mMCP-1) concentrations (see below). Additional
gavages with CM (200 µl) were performed on days 60, 70, 80,
and 90 to assess the persistence of any tolerogenic effects upon a
chronic exposure. A second OFC was performed on day 95, and
plasma collected as previously. One week after, two additional
gavages with 200 µl of CM were performed (days 103 and 105).
On day 106, mice were finally sacrificed and spleen, mesenteric
lymph nodes (MLN) and small intestine were collected in PBS-
Glucose (1 g/l) to analyze cellular responses. The group of naïve
mice only received the OFCs. All collected samples (plasma,
organs) were identified and treated individually.

Experimental Groups
Two separate protocols were conducted (T1: eHC; T2:
eHC+LGG) (Table 1). For each protocol, two independent
experiments (A and B) were performed in parallel, 2 to 3 weeks
apart, to assess the reproducibility of any observed effects.
In each protocol, 16 mice received PBS (positive control of
sensitization), 10 mice received eHC (T1) or eHC+LGG (T2),
and 5 mice received MPI as pretreatment. In parallel, six
mice were kept naïve (neither pre-treated nor experimentally
sensitized to CMP).

Analysis of the Humoral Response
BLG- and caseins (Cas)-specific IgE, IgG1, and IgG2a antibodies
were assayed as previously described using allergen-coated
microtiter plates (26, 30). For IgG1 and IgG2a, standard curves
were performed on each assay plate using mixes of purified
and standardized BLG- or Cas-specific monoclonal antibodies
produced and characterized in the lab. Results are then provided
as ng/mL. For specific IgE, serial dilution of a pool of hyper-
immune plasma was used as a standard on each assay plate.
Results are then provided as “Arbitrary Units.”

Elicitation of the Allergic Reaction
Mouse mast cell protease 1 was assessed as a marker of
the elicitation of an immediate intestinal allergic reaction,
using commercial kit (Mouse mMCP-1 ELISA Ready-SET-Go!,
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FIGURE 1 | Experimental schedule.

TABLE 1 | Protocols and subgroups.

Protocol Sub-groups Gavage pre-treatment Experimental sensitization Number of mice

T1 A PBS Cow’s milk + CT 8

eHC Cow’s milk + CT 5

MPI Cow’s milk + CT 5

Naive PBS 3

B PBS Cow’s milk + CT 8

eHC Cow’s milk + CT 5

Naive PBS 3

T2 A PBS Cow’s milk + CT 8

eHC+LGG Cow’s milk + CT 5

MPI Cow’s milk + CT 5

Naive PBS 3

B PBS Cow’s milk + CT 8

eHC+LGG Cow’s milk + CT 5

Naive PBS 3

Detailed protocol is provided Figure 1.

Affymetrix, eBioscience, San Diego, CA, United States) following
the provider’s recommendations. No clinical symptoms were
evidenced in BALB/c mice when performing sensitization with
cholera toxin and an OFC with 20 mg of CMP.

Analysis of Cellular Responses
Extraction and Reactivation of Spleen Cells
After mechanical dilaceration of the spleen (Gentle MACs
dissociator, Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany), red blood cells were lysed (Red Blood cell Lysis
Buffer, Sigma). Splenocytes were then washed and finally
suspended in RPMI-10 (RPMI supplemented with 10% fetal
calf serum (FCS), 2 mM L-glutamine, 100 U penicillin,
100 µg/ml streptomycin; all from GIBCO R©, Thermo Fisher
Scientific, Waltham, United States). After numeration and
assessment of viability using 7-amino-actinomycin D (7-AAD,
Life technologies, Carlsbad, United States), cell concentrations
were adjusted. Part of cells were used for T helper (Th)
and regulatory T (Treg) cells labeling (see below). Other

spleen cells were labeled with CFSE (CFSE Cell Division
Tracker Kit, Biolegend, San Diego, United States) following
the provider’s recommendation. Cells were then dispatched
in 96-well culture plates (106 cells/well), and purified BLG
or Cas [(31); final concentration 20 µg/ml] were added to
activate specific memory T cells. Purified proteins were pre-
incubated with polymyxin (Sigma-Aldrich, final concentration
50 µg/ml) in order to neutralize any LPS contamination.
Efficiency of neutralization was confirmed by the fact that
neither cell proliferation nor cytokine secretion was evidenced
in spleen cell from naïve mice cultured with BLG or Cas.
Concanavalin A (1 µg/ml) was used as a positive control of
activation, and RPMI-10 as a negative control (not shown).
After incubation for 60 h at 37◦C (5% CO2) and centrifugation
(300 g, 10 min, +4◦C), the supernatants were collected and
stored at −80◦C, and cells were collected for Treg/Th cell
staining (see below). IL-5, IL-13, IL-10, IFNγ, and IL-17
cytokines were assayed by multiplexed assays on undiluted
supernatants using apparatus and commercial kits from BioRad
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(BioPlex200 R©, BioRad, Marnes-la-Coquette, France), following
the provider’s recommendations.

Cell Extraction From MLN and Lamina Propria
Cell suspension was obtained from MLN after manual
dissociation on a cell strainer (70 µm; BD, Le Pont de Claix,
France). Small intestine was collected and flushed with 10 ml
of PBS. After Peyer’s patches removal, cells were extracted from
lamina propria (LP) by successive incubations in HBSS, 2 mM
EDTA, 10 mM HEPES, and extracellular matrix digestion (RPMI,
10 mM HEPES, 25 µg/ml Liberase (Roche, Sigma; 0.13 WU),
10 U/ml DNAse I). Numeration and viability were assessed by
flow cytometry using 7-AAD, and cell concentrations adjusted in
PBS, 1 mM EDTA, 2% FCS for staining.

Cell Staining
5 × 105 cells were stained for Th or Treg using the
following anti-mouse antibodies (all from BioLegend, except
when specified). Treg: PE anti-Foxp3, PerCP/Cy5.5 anti-Helios,
PE/Cy7 anti-CCR9, AlexaFluor647 anti-CD39, APC/Fire750
anti-CD45, BV421 anti-LAP, BV510 anti-CD4, BV605 anti-
CTLA4, and BV785 anti-CD25. Th: PE anti-Foxp3, APC anti-
RORγt (eBioscience), PE/Cy7 anti-CCR9, BV421 anti-GATA3,
BV605 anti-Tbet, APC/Fire750 anti-CD45, BV510 anti-CD4,
and BV785 anti-CD3. All antibodies were first titrated for
optimal dilution (0.1–2 µg/ml for 106 cells). FcR were blocked
using anti-CD16/anti-CD32 (2.4G2, BD Pharmingen, Le Pont
de Claix, France), and cells were incubated with antibodies
for extracellular labeling for 30 min at +4◦C. After washing,
cells were fixed and permeabilized (True-Nuclear Transcription
factor buffer set kit, Biolegend). After a new incubation with
anti-CD16/CD32 antibodies, intracellular staining (Foxp3, Tbet,
RORγt, GATA-3, and Helios) was performed for 45 min at +4◦C.
Compensations were performed using beads (UltraComp eBeads;
Life technologies) stained with the same antibodies.

All acquisitions were performed on a Novocyte 13-colors
flow cytometer (ACEA Bioscience, Inc., San Diego, CA,
United States). Analysis was performed through FlowJo R© v10
(FlowJo LLC, Ashland, OR, United States). We first combined
analysis of extracellular markers (CD45, CD3, CD4, and CCR9
for intestinal homing) to that of transcription factors (T-bet,
GATA-3, RORγt, and Foxp3) to have an overview of Th and
Treg cells induced in the intestine. For a more in-depth analysis
of Treg cells, we also analyzed Foxp3, Helios, LAP, CTLA-4,
CCR9, and/or CD39 expression within CD4+CD45+ gated cells.
Helios−Foxp3+ cells were defined as “iTreg” (Treg induced in
periphery against exogenous antigen) and Foxp3−LAP+ cells as
“Th3” cells (32).

Statistical Analysis
Assessment of Data Homogeneity for a Same
Pretreatment Between Subgroups and Protocols
For mice receiving the same pretreatment, homogeneity of
data obtained in the two protocols (PBS and MPI) and/or in
the different sub-groups (i.e., eHC, eHC+LGG) was checked
for each analyzed variable (i.e., all humoral and cellular data,
mMCP1 concentrations) [Rcmdr package and “coin” plugin,

script for reiteration of oneway_test and adjustment for multiple
testing using false discovery rate (fdr), R software]. If no
difference was evidenced between subgroups and/or between
protocols for a given variable, all data corresponding to this
variable were gathered by pretreatment. Conversely, data from
protocols or sub-groups were analyzed separately if a significant
difference was evidenced.

Thanks to this first analysis, we were able to gather all data
obtained for a same pretreatment from the different subgroups
and protocols for BLG- and Cas-specific IgE, IgG1, and
IgG2a antibodies concentrations and mMCP1 concentrations.
Conversely, we observed significant differences for cytokine
concentrations for a same pretreatment between protocols and
between subgroups. We then expressed each cytokine as a
percentage, with PBS pretreated mice taken as an internal
reference within each subgroup (100%). Once expressed this
way, no statistically significant difference was evidenced for
a same pretreatment between protocols and/or subgroups,
allowing corresponding data to be gathered. All these gathered
data (specific antibodies and cytokines concentrations, mMCP1
concentrations) were then aggregated to perform multivariate
analysis (see below), and classical univariate analysis.

For cytometry analysis, a higher heterogeneity was observed
between the experiments. We gathered data or had to
analyze the data protocol per protocol, or even subgroup per
subgroup, depending on the population or organ considered
(see section “Results”). Data from cytometry were then
analyzed independently from other data using univariate
analysis (see below).

Multivariate Analysis
Firstly, we performed a descriptive analysis through a principal
component analysis (PCA) of all the aggregated data (antibodies,
cytokines and mMCP1 concentrations) obtained from each
individual to have an overview of all the individuals, to
identify potential outliers (none identified), and to assess
the variables which are the most explicative of the whole
dataset. Non-supervised clustering was also tested (Hierarchic
Classification on Principal Components, HCPC; R software,
FactoMineR plugin); HCPC gathers the individuals that are
closer when considering all the variables, without any a priori:
if pretreatments have no effect, individuals will then be
homogeneously shared into the different clusters, which is
assessed via a chi-square test.

Then, we modeled all the aggregated data (antibodies,
cytokines and mMCP1 concentrations) using supervised
Partial Least Square-Discriminant Analysis (PLS-DA R©, XLSTAT
software, Addinsoft, Paris, France), with pretreatment identified
as the explicative variable (PBS, eHC; eHC+LGG or MPI). If
such a model is successfully constructed, that means that it is
possible to classify the mice depending on the pretreatment
they received thanks to the analyzed components, and then that
each pretreatment may have a specific effect. Such a model will
then allow identifying the “discriminant variables”, that is to
say the set of components that mainly participated in the model
construction and then that mainly supported the differences
between the groups. Those components are identified thanks to
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model-calculated variable important in projection values (VIP),
and are selected as showing VIP± SD > 1.

Univariate Analysis
For a given variable, all groups were compared to all others using
pairwise comparison (permutation t-test with false discovery rate
(fdr) adjustment; R software, RVAideMemoire package). When
specified, we also compared all the groups to the PBS group only
(non-parametric Kruskal–Wallis and Dunn’s post-test, GraphPad
Software, San Diego, CA, United States). A p < 0.05 value
was considered significant. A trend was noticed for p-value
0.05 < p < 0.1.

RESULTS

Sensitization and Elicitation of the
Allergic Reaction to CMP in Pretreated
Mice
Comparable results were obtained after the sensitization (day
56; Figure 1: specific antibodies and mMCP1 concentrations)
and after the chronic exposure (specific antibodies and cytokine
secretion, mMCP1 concentrations). For clarity, only the later
results will be presented in the following.

Multivariate Analysis of the Humoral and Cellular
(Cytokines) Parameters
We first performed a descriptive non-supervised analysis (PCA)
of the seventeen variables obtained from each individual
and that we can gather after the second OFC (BLG and
Cas-specific IgE, IgG1 and IgG2a antibodies concentrations,
BLG and Cas-specific IL-5, IL-13, IL-10, IL-17, and IFNγ

secretions, mMCP1 concentrations; Supplementary Figure S1).
This analysis highlighted that BLG and Cas-induced IL-5, IL-
13, and IFNγ and Cas-induced IL-10 secretions were highly
correlated together and are the main contributors of first
dimension of PCA, that explained 38.9% of the total variance
of the whole dataset. BLG and Cas-specific IgE and IgG1
antibodies, and mMCP1 are the main contributors of the second
PCA dimension (16% of total variance). Conversely, BLG-
and Cas-specific IgG2a, and BLG-specific IL-10 supported few
information, as shown by their low-length vectors in the PCA.
Non-supervised HCPC already evidenced a pretreatment effect
(p = 0.0035), with classification of eHC+LGG mice in a separate
cluster (not shown).

Data modeling using supervised analysis (PLS-DA) of the
17 variables led to the construction of a 2-components
model with low predictive values (R2X cum = 0.516, R2Y
cum = 0.171). Actually, only PBS and eHC+LGG pre-treated
mice were correctly classified, in two separate groups. This
suggests that these mice are not comparable for the global
information provided by the 17 variables analyzed. Conversely,
eHC mice were classified in the same group as PBS mice,
suggesting that PBS and eHC mice are comparable for the
global information provided by the 17 variables. BLG and Cas-
specific IL-5 and IL-13, anti-BLG IgG1, mMCP-1, and Cas-
specific IL-10 were identified as the discriminant variables of

the PLS-DA (VIP ± SD > 1; Supplementary Table S1), i.e.,
as the variables that mainly supported the differences identified
between the groups.

Univariate Analysis of the Humoral and Cellular
(Cytokines) Parameters
In parallel, we performed univariate analysis and graphically
represented the data to visualize differences between groups.
Anti-BLG and anti-Cas IgE and IgG1 antibodies were
significantly induced in PBS-pretreated and CMP-sensitized mice
compared to naïve mice (Figures 2A–D), which was associated
with significant secretion of Th2 cytokines (IL-5 and IL-13)
upon BLG and Cas ex vivo stimulation, and with significant
secretion of Th1 (IFNγ), Th17 (IL-17) and regulatory (IL-10)
cytokines, mainly upon Cas re-stimulation (Figures 3A–I). In
line with this high sensitization status of PBS-pretreated mice,
OFC induced a significant increase of mMCP1 concentrations in
plasma (Figure 4), traducing the elicitation of an allergic reaction
in these mice. Conversely, gavage with non-hydrolyzed CMP
(MPI pretreatment group) significantly prevented CMP allergy,
as evidenced by decrease of specific IgE and IgG1 concentrations
(Figures 2A–D) and prevention of the elicitation of the allergic
reaction (Figure 4) compared to PBS-pretreated mice. This was
associated with absence of Th2 and IL-10 cytokines secretion,
although low but significant secretions of IFNγ and IL-17 were
still observed (Figure 3).

In line with multivariate analysis, PBS and eHC-pretreated
mice were comparable for all the analyzed parameters, i.e., BLG
and Cas-specific antibodies (Figure 2) and cytokines (Figure 3),
and mMCP1 release after OFC (Figure 4). CMP allergy was also
significantly induced in eHC+LGG pretreated mice. However,
eHC+LGG pretreated mice had significantly higher BLG-specific
IgG1 antibodies concentrations compared to all other groups
(Figure 2C). A significant/trend increase of anti-BLG (p = 0.03)
and anti-Cas (p = 0.1) IgE antibodies concentrations was also
observed in eHC+LGG pretreated mice when comparing all
groups to the PBS one. BLG and Cas-induced IL-5, IL-13,
IFNγ, and IL-10 secretions were also significantly increased in
eHC+LGG compared to PBS and (for some) to eHC pretreated
mice (Figure 3).

Analysis of Th and Treg Cells in Gut
Associated Lymphoid Tissue (GALT) and
in Spleen
No significant difference was observed in Th and Treg cell
subpopulations frequencies analyzed in the MLN or spleen at
sacrifice (not shown).

Lamina Propria
A trend in increased frequency of RORγt+Foxp3+ cells was
noticed in LP from eHC pretreated mice (p = 0.09 versus PBS,
MPI and eHC+LGG mice; FDR-adjusted value from pairwise
permutation test; not shown). Conversely, a reproducible
significant decrease of CCR9+CD39+ cells within CD4+Foxp3+
Treg cells in LP from eHC compared to PBS pretreated mice
was observed (intra-protocol analysis, not shown). In parallel, a
trend in increased frequency of CCR9+Th2 cells was observed
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FIGURE 2 | Anti-BLG and anti-Cas IgE [(A,B), respectively] and IgG1 [(C,D), respectively] antibodies concentrations in mice receiving gavage with PBS (n = 32),
eHC (n = 10), eHC+LGG (n = 10), or MPI (n = 10) before the oral sensitization to cow’s milk proteins. Naïve mice (n = 12) were not treated nor sensitized, but were
challenged. Blood samples were obtained after the chronic exposure to CM and 3 h after a second OFC (day 95). Medians (bars) with box and Tukey whiskers are
shown for each treatment group. All groups were compared to each other using pairwise comparison and permutation t-test; corresponding fdr-adjusted p-values
are indicated. Trend (0.05 < p < 0.1) and associated p-value are indicated into brackets.

in LP from eHC+LGG pretreated mice compared to other
pretreated groups (Figure 5), in line with the higher sensitization
status of these mice.

Spleen Cells After ex vivo Reactivation
Analysis of splenocytes after specific ex vivo stimulation showed
a comparable percentage of proliferating cells (CFSElow) within
CD45+CD4+ cells in CMP sensitized mice (not shown). The
percentage of CD4+RORγt+ Th17 cells significantly increased
in the eHC group after BLG and/or caseins ex vivo stimulation
(Figures 6A,B). We also observed an increased frequency of
CD4+GATA3+ Th2 cells in eHC mice compared to PBS mice
after BLG ex vivo stimulation, which was associated with a
decrease of CD4+Foxp3+ frequency (intra-protocol analysis; not
shown). No significant change was noticed in eHC+LGG group.

DISCUSSION

The aim of the present study was to assess the effect of
administration of an extensive hydrolysate from caseins (eHC),
supplemented or not with LGG probiotic, on the further
experimental induction of CMP allergy. Thanks to a validated
mouse model of CMP allergies, both specific and non-specific
effects of casein-derived peptides were assessed.

We evidenced that, as expected, a CMP allergy is efficiently
induced in PBS-pretreated and CMP-sensitized mice, as shown
by high specific IgE and IgG1 antibody concentrations, high
specific Th2 cytokine secretion and high mMCP1 concentrations
after OFCs. Conversely, gavage with non-hydrolyzed CMP (here
MPI) efficiently prevent further induction of CMP allergy. No
protective effect of eHC+/-LGG on the sensitization to casein
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FIGURE 3 | BLG and Cas-induced secretion of IL-5 [(A,B), respectively], IL-13 [(C,D), respectively] IFNγ [(E,F), respectively], and IL-17 [(G,H), respectively], and
Cas-induced secretion of IL-10 (I) in mice that received gavage with PBS (n = 32), eHC (n = 10), eHC+LGG (n = 10), or MPI (n = 10) before the oral sensitization and
then chronic exposure to CM. Naïve mice (n = 12) were not treated nor sensitized. Cytokines were assayed in supernatants obtained from individual spleen cells
stimulated ex vivo with purified BLG or Caseins. Results are expressed as percentage of secreted cytokines using PBS group as an internal reference within each
sub-groups (100%). Medians (bars) with box and Tukey whiskers are shown for each treatment group. All groups were compared using pairwise comparison and
permutation t-test; corresponding adjusted p-values are indicated. Trend (0.05 < p < 0.1) and associated p-value are indicated into brackets.

FIGURE 4 | mMCP1 concentrations in plasma from mice pretreated with PBS
(n = 32), eHC (n = 10), eHC+LGG (n = 10), or MPI (n = 10) before the oral
sensitization, then chronically exposed to CM. mMCP1 was assessed 3 h
after an OFC with 20 mg of CMP. Naïve mice (n = 12) were not treated nor
sensitized, but were challenged. Medians (bars) with box and Tukey whiskers
are shown for each treatment group. All groups were compared to each other
using pairwise comparison and permutation t-test; corresponding fdr-adjusted
p-values are indicated.

FIGURE 5 | Percentage of Th2 CCR9+ cells in LP from mice of the different
treatment groups. Aggregated data from the two protocols are shown. A first
gate was designed based on structural parameters (FSC and SSC), and then
single cells were selected (FSC-A × FSC-H). Within single cells,
CD45+FSClow cells were gated, in which we selected CD3+CD4+ T cells.
Within these cells, intestinal Th2 cells were identified thanks to the
co-expression of transcription factor GATA3 and homing receptor CCR9.
Medians (bars) with box and Tukey whiskers are shown for each treatment
group. All groups were compared to each other using pairwise comparison
and permutation t-test; corresponding adjusted p-values are indicated.
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FIGURE 6 | Percentage of CD4+RORγt+ cells within proliferating cells after specific ex vivo reactivation with BLG (A) or Caseins (B). A first gate was designed
based on structural parameters, and then single cells were selected. Within single cells, CFSElow cells (i.e., proliferating cells) were gated and then analyzed for CD3
and CD45 expression. Within CD3+CD45+ proliferating cells, co-expression of CD4 and transcription factors RORγt was assessed. Comparable results were
obtained when selecting first CD45+CFSElow within single cells, then gating CD3+CD4+ cells and analyzing expression of transcription factors within this latter
population. Medians (bars) with box and Tukey whiskers are shown for each treatment group. All groups were compared to each other using pairwise comparison
and permutation t-test; corresponding adjusted p-values are indicated. Trend (0.05 < p < 0.1) and associated p-value are indicated into brackets.

could be evidenced, nor on sensitization to other non-related
CMP (here the whey protein BLG), and no protection was
provided on elicitation of the allergic reaction to CMP. Although
eHC mice could not be distinguished from PBS groups for
all analyzed parameters, eHC+LGG mice were characterized
by enhanced humoral and cellular immune responses, both to
caseins and BLG.

Firstly, we would like to point out that we uniquely analyzed
our data through rigorous statistical procedures: (i) assessment of
homogeneity of data between protocols and subgroups allowing
(or not) to gather data and then to increase statistical power, (ii)
descriptive analysis (PCA and HCPC) of gathered data further
aggregated, in order to identify potential outliers within the
individuals and the most contributive variables in the global
response, but also to anticipate differences between groups, and
(iii) supervised analysis to identify differences (or their absence)
between groups and the variables supporting these differences.
Univariate analysis (with correction for multiple testing) allowed
comforting these results and visualizing the differences between
groups. Such statistical procedure in experimental models may
improve the quality, rationalization and robustness of in vivo
studies that integrate several parameters on the same animal and
that aim to compare different (pre)treatments.

Concerning the results obtained with eHC alone, our results
are in line with, and extend previous results demonstrating the
high and specific prevention potency of non-hydrolyzed CMP
(here MPI), and the loss of efficiency of this preventive specific
effect while the degree of hydrolysis increases (18, 23, 25, 26).
In line with these results, a mix of four 18 amino-acid long
synthetic peptides derived from BLG administered orally before
oral sensitization to CMP did not prevent a local or systemic
CMP allergy (33). In another model, eHW given for 3 weeks
through the drinking water (∼180 mg of proteins/day) had no
effect on epicutaneous sensitization to BLG, but an attenuation of

anaphylaxis and activation of intestinal mast cells was observed
after an OFC (34). We then cannot exclude that a longer
pretreatment period and higher doses of eHC would have a
significant effect on sensitization or elicitation to caseins in our
experimental setup. However, 180 mg of whey protein for a 20 g
mouse is equivalent to 54 g of protein for an infant of 6 kg.
As infant formulas contain 1.3–1.4 g of protein per 100 ml, the
quantity of formula ingested by the baby would be 3.8–4.1 L/day.

Alternatively, Aitoro et al. (27) reported prevention from
allergy to purified BLG by eHC administration, an effect that then
results from non-specific bioactivity of peptides derived from
caseins. Discrepancies between this later study and ours should
not rely on eHC composition that demonstrated minor batch-to-
batch variations (28). In Aitoro’s study, eHC was administered
through the drinking water as the sole source of food, and was
compared to a standard solid diet. However, intervention and
standard diets were not comparable for the protein load but also
for nutrients such as dietary fibers, fatty acids, vitamin D and
folic acids. Those components can critically affect the intestinal
barrier, the immune system and the composition and function
of the intestinal microbiota, all of which influence a further
experimental allergic sensitization. Moreover, they pursued eHC
administration during sensitization with BLG and cholera toxin
(CT), whereas κ-casein derived glycomacropeptides have been
described to inhibit binding of CT to its receptor, at least in vitro
(35, 36). Glycomacropeptides is hydrolyzed in eHC, but some
derived peptides (37) may still interfere with CT and then with
the experimental sensitization to BLG. Such non-specific effects
could not be evidenced in our experimental setup since eHC
administration was not pursued during sensitization.

Considering the cellular responses, we observed a trend
in increased frequency of RORγt+Foxp3+ cells in LP, and
a significant increase of RORγt+ and GATA3+ cells among
proliferating splenic cells from eHC pretreated mice. Although
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these changes did not affect sensitization and elicitation
parameters, further analysis in GALT focusing on these
parameters just after the pre-treatment phase would be
instructive. RORγt+Foxp3+ cells are regulatory cells of
importance in the intestine that participate in inflammation
control and are induced for example by probiotic strain (38).

Our present study also revealed the strong
immunostimulatory potential of LGG. We observed a significant
increase of almost all immune parameters in eHC+LGG
pretreated mice compared to PBS or eHC pretreated mice. It
is worth noting that cellular response differences were mainly
revealed through cytokine secretion: small differences were
observed through deep cytometry analysis on GALT and spleen
cells, even after ex vivo restimulation. This thus suggests that
the activity (i.e., secretion capacity) rather than the increased
frequency or proliferation of specific subpopulations is detectable
in our experimental setting. Moreover, despite an increase of
specific-antibodies concentrations in eHC+LGG pretreated
mice, we did not evidence an increase of mMCP1 concentrations
after the OFCs, which would require further investigations
(e.g., comparison of mast cell density and FcγRI expression in
intestine). Our results are then in contradiction with most of
the studies available. For example, more significant preventive
(and therapeutic) effects were reported when using eHC+LGG
compared to eHC in the BLG-allergy model (27), in line with the
clinical results obtained in CMP allergic patients (8). It is clear
that the administration of LGG before sensitization (preventive
strategy) will not have the same effect than administration
of the same compounds in an already sensitized organism
(therapeutic strategy). In the therapeutic schedule, Th1/Th17
induced response (as evidenced in our experiments by increased
IFNγ and IL-17 secretion in eHC+LGG group) may rather
counteract the on-going Th2 immune response, as observed in
clinical trials (3, 8, 9). IL-10 induced in the eHC+LGG group
may also play a more pronounced regulatory role in this context.
But, in the preventive strategy, the time lapse between LGG and
sensitizing administration may also be of importance. Actually,
transient modification of the gut microbiota composition
(unfortunately not assessed in our experiments) and the immune
response potentially induced by LGG may amplify the adjuvant
effect of CT, or on the contrary repress it, depending on the
immune status at the exact moment CT is administered (i.e.,
“inflammation burst” versus “inflammation resolution”). Further
studies combining non-hydrolyzed proteins [e.g., MPI or purified
BLG (23, 26)] plus LGG intervention should be conducted to
further assess the immunostimulatory effect of LGG and its
effect on the induction of oral tolerance. Other probiotics strains
should be tested as well in a comparable experimental model.

CONCLUSION

In conclusion, we could not evidence any preventive effect,
either specific or non-specific, of administration of extensive
hydrolysates from caseins on further experimental CMP allergy.
The pre-clinical data we provide are in line with others, and
a with recent population-based study that did not observe

preventive effect of the use of pHF at 2 months on food
allergy, both in at risk and non-at risk infants (15). Altogether,
these results then further challenge the use of hydrolysates
for allergy prevention. Unexpectedly, we also evidenced that
co-administration of LGG with eHC enhanced the immune
response induced against CMP. Our results do not challenge
the efficiency of eHC supplemented with LGG as a therapeutic
strategy for allergic infants evidenced in clinical trials (3, 8).
However, and although our findings obtained in a mouse model
cannot be translated directly to weaning neonate/infants, further
studies in a preventive set up should be conducted to further
analyze the effect of early nutritional intervention using LGG
on food allergy development, independently of hydrolysates, to
understand immune mechanisms involved, and to clarify their
significance in clinical applications.
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Specific and adequate nutrition during pregnancy and early life is an important

factor in avoiding non-communicable diseases such as obesity, type 2 diabetes,

cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic

and experimental studies have shown that nutrition is important at all stages of life, it

is especially important in prenatal and the first few years of life. During the last decade,

there has been a growing interest in the potential role of epigenetic mechanisms in the

increasing health problems associated with allergic disease. Epigenetics involves several

mechanisms including DNA methylation, histone modifications, and microRNAs which

can modify the expression of genes. In this study, we focus on the effects of maternal

nutrition during pregnancy, the effects of the bioactive components in human and bovine

milk, and the environmental factors that can affect early life (i.e., farming, milk processing,

and bacterial exposure), and which contribute to the epigenetic mechanisms underlying

the persistent programming of immune functions and allergic diseases. This knowledge

will help to improve approaches to nutrition in early life and help prevent allergies in

the future.

Keywords: epigenetics, epigenetic imprinting, environmental factors, unprocessed (raw) milk, breastfeeding,

allergy, nutritional programming, bioactive milk components

INTRODUCTION

There is increasing evidence to suggest that maternal diet during pregnancy, breastfeeding,
early life nutrition, and early life malnutrition can have sustained effects on immunological
outcomes, such as respiratory allergies, and metabolic outcomes such as type 2 diabetes
and obesity. Nutritional programming during gestation might permanently affect
the immunological competence and nutritional status in early life Figure 1. This is
exemplified by the thrifty phenotype, where the metabolic response to undernutrition
during the fetal period is inappropriate during overnutrition later in life, leading to
disease manifestations (1). Several studies have since shown that prenatal exposure
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FIGURE 1 | As described in this review, early life nutrition (breastfeeding, raw milk consumption, and some infant formula components), early life environmental

exposures (such as farming environment), as well as prenatal development under the influence of maternal diet can all have sustained effects on health outcomes later

in life. PUFA, polyunsaturated fatty acids; HMO, human milk oligosaccharides.

to famine is associated with the development of type 2 diabetes
later in life (2–4), and an epigenetic link was demonstrated
in relation to the Dutch hunger winter where epigenetic
modification of the IGF2 gene was shown to be linked to famine
during prenatal development (5).

Epigenetic mechanisms may play an important role in these
effects. It has even been suggested that early life nutrition
forms the basis for susceptibility to a plethora of chronic
age-related non-communicable diseases (NCD), like respiratory
allergies (6–9). Thus, specific and adequate nutrition during
pregnancy and early life are considered important factors
that could reduce instances of allergic diseases. Epidemiologic
and experimental studies show that nutrition is important for
(immunological) health, especially when we are very young
and during prenatal development, which may influence health
and disease throughout our lives (6, 10). The structures of
the mucosal immune system in the gastrointestinal (GI) tract
are fully developed in utero by gestational week 28 (11).
Increasing evidence suggests that maternal diet and other
prenatal exposures can influence this development by crossing
the placenta (12–14). In the first year of life, the mucosal
immune system is further shaped by microbial colonization
and oral feeding (15). Breastfeeding is the normal way of
providing newborns with nutrients for healthy growth and
development and a diet exclusively comprised of breastfeeding
has various beneficial outcomes, such as reducing the risk of
GI diseases, allergies, colitis, and respiratory infections (16).

Besides conferring protection against these short-term outcomes,
breastfeeding also reduces the long-term risks of developing
diseases like type 2 diabetes and obesity (17). In analogy to
breast milk, raw, unprocessed, bovine milk is a rich source of
immunomodulatory components (18–20). Studies have indicated
that it may protect against common respiratory infections in
infants that consume unprocessed bovine milk (21). In addition,
epidemiological evidence shows a clear association between the
consumption of raw cow’s milk and the prevention of allergy
development (22–29). Epigenetic mechanisms that are regulated
by many immune processes can thereby influence the course of
allergic diseases.

Epigenetic mechanisms (Box 1) and transcription regulatory
factors allow a flexible adaptation in the fetus. They neonate
to a fluctuating external environment whereby heritable, non-
DNA encoded, alterations in gene expression patterns occur.
Especially relevant in early life, several factors drive the
epigenetic changes that occur throughout life: environment
(e.g., exposure to microbial components in inhaled dust),
diet (e.g., components present in breast milk and bovine
milk), and the GI microbiota and its metabolites (e.g.,
through the production of short-chain fatty acids [SCFA]
after fermentation of dietary non-digestible oligosaccharides).
Thus, environmental, dietary, and microbiota-derived epigenetic
modifications during gestation and early life can shape future
immunity to the development of diseases like obesity, type
2 diabetes, allergy, asthma, and infections. Most of our
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BOX 1 | Epigenetic mechanisms.

Epigenetics refers to systems that control gene expression in a heritable fashion without changing the genomic sequences. The epigenome is much more flexible

than the genome and shows different phenotype variations that are influenced by environmental factors and dietary habits. Epigenetic mechanisms include DNA

methylation, histone modifications, and RNA interference by microRNAs (miRNAs) (See in this Box figure). Epigenetic mechanisms thus contribute to the regulation

of gene expression at the level of transcription by DNA methylation and by modifying chromatin accessibility through posttranslational modifications of histones, and

after transcription by mRNA silencing. These epigenetic mechanisms can regulate gene expression by modifying the accessibility of the DNA to transcription enzymes

without altering the DNA nucleotide sequence, influencing stability of mRNA or translation efficiency, and others (30–32). The transfer of a methyl group onto DNA,

performed by DNA methyltransferases (DNMTs), can directly regulate the rate of gene transcription. DNA demethylation is catalyzed by several enzymes serving as

controllers for the equilibrium of DNA methylation (33). For example, methylation of DNA in the promoter regions of cytokines can influence immune responsiveness

by steering Th cell differentiation into Th1, Th2, Th17, or Treg (34, 35). For more details see Box 2. In addition, histone modifications like acetylation, methylation,

phosphorylation and others can also modulate the development and activity of immune cells. Histone acetylation is an important remodeling activity that is catalyzed

by a series of enzymes called histone acetyltransferases (HATs). Acetylation is generally considered as a permissive activity that facilitates gene transcription. On the

contrary, histone deacetylases (HDACs) reverse HAT activity and tighten up the folding of DNA around the histones and make them less accessible for transcription

factors (31, 36). The interplay between HATs and HDACs determines the histone acetylation balance and regulates the gene expression (37, 38) and production of

pro-inflammatory (IL-1β, IL-5, IL-6, IL-8, IL-12, and TNFα) and anti-inflammatory mediators (IL-10). Histone methyltransferases (HMTs) and demethylases (HDMs)

serve as controller enzymes for the equilibrium of histone methylation (31). Finally, RNA interference can occur by small noncoding RNAs, most notably miRNAs that

are found in biological fluids as well as in extracellular vesicles (e.g., in milk). MiRNAs represent short noncoding RNA molecules of 18 to 23 nucleotides that control

gene expression by inducing mRNA degradation and/or inhibit post-transcriptional translation. As a result, specific miRNA can silence selective gene expression (32).

For example, milk contains extracellular vesicles or exosomes that contain a wide range of microRNAs, including miR-21, miR-29b, miR-148a, and miR-155 that is

known to influence Foxp3 expression and Treg development (39).

current knowledge on the environmental and dietary effects
on epigenetics and early life immune function comes from
epidemiological findings which indicate that children growing
up on farms have a decreased risk of developing allergies,
especially asthma. For this reason, we will focus this review
on the effects of maternal nutrition during pregnancy, the
effects of bioactive components in human and bovine milk,
and the environmental factors in early life that can contribute
to the epigenetic mechanisms involved in the course of
allergic diseases.

EPIGENETIC REGULATION OF TH2
DEVELOPMENT IN ALLERGIC DISEASE

Epigenetic changes have been strongly associated with allergies
and asthma and might thereby serve as biomarkers. The role of
epigeneticmechanisms, particularly DNAmethylation, in allergic
diseases is at the interface of gene regulation, environmental
stimuli, and developmental processes, thereby determining the
pathogenesis of asthma and allergy. Alterations of the DNA
methylation status in the genes specific for a different subset of T
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helper (Th) cells that are considered to be a good example of how
epigenetic modulation can influence the development of asthma
and other allergic diseases.

The differentiation of naïve CD4+ T cells into Th
subpopulations is strictly regulated, with changes in epigenetic
marks at main lineage-determining loci encoding transcription
factors like GATA3, RORγt, TBX21, and Foxp3 playing a pivotal
role. These changes affect the differentiation into mature Th
subpopulations, such as Th1, Th2 (and Th9), regulatory T
cells (Treg cells), and Th17 (30, 35, 47, 48). In naïve CD4+ T
cells, which express a moderate level of GATA3 mRNA after
receiving signals via the T cell receptors (TCRs) in the presence
of IL-4, activated STAT6 proteins bind to the GATA3 gene
locus, driving Th2 differentiation, which is a characteristic in the
development of allergy. Differentiation of human CD4+ cells
into the Th2 subtype is accompanied by the induction of DNase I
hypersensitive (DHS) sites and CpG demethylation around these
(DHS) regions within the IL-4 and IL-13 promoters. Extensive
studies of the Th2 cytokine locus control region have shown
that specific sites undergo rapid demethylation during Th2
differentiation (49).

In addition to DNA methylation, histone modifications
are also important in guiding T-cell differentiation. T-bet
and GATA3 transcription factors control lineage-specific
histone acetylation of IFN-γ and IL-4 loci during Th1/Th2
differentiation. Rapid methylation of H3K9 and H3K27
residues (repressive marks) at the IFN-γ locus was associated
with differentiating toward Th1 cells, while demethylation of
H3K9 and methylation of H3K27 was associated with Th2
differentiation (49). Epithelial alarmins (IL-25, IL-33, thymic
stromal lymphopoietin [TSLP]) induce an inflammatory
response in the respiratory mucosal membrane. IL-33 binds to
its receptor ST2 on memory Th2 cells and induces epigenetic
changes of the IL-5 gene, resulting in the generation of IL-
5-producing Th2 cells (47). Thus, Th2 differentiation, which
is characteristic of allergy, is triggered by phosphorylation of
STAT6 signal transducers and expression of GATA3 and Th2
cytokines, including IL-4 (47).

Demethylation of the IL-4 promoter leads to allergic
sensitization (48). Th1 differentiation is in turn triggered by
phosphorylation of STAT4 signaling, and expression of the
transcription factor T-bet and cytokine. For a more detailed
description of epigenetics and T cell development, see Box 2.
Asthmatic individuals show a lower histone deacetylase (HDAC):
histone acetylase (HAT) ratio, i.e., a relative decrease of HDAC
enzymes, which is corrected by proper anti-asthma treatment
(50). The DNA methylation status of Foxp3 is regulated within
a highly conserved region within the CpG-rich Treg-specific
demethylated region with a differential Foxp3 demethylation

status in children with an active cows milk allergy (CMA) and

acquisition of immune tolerance (51).

EFFECTS OF EARLY LIFE NUTRITION ON
ALLERGIC DISEASE

The WHO recommends exclusive breastfeeding for infants
during the first 6 months of life, and that it should be given

alongside complementary feeding up until children are 2 years
old (52). If mothers are unable to breastfeed, many children
receive early life nutrition alternatives that are based on bovine
milk. Therefore, this section of the study is focused on breast
milk, bovine milk, and their components.

Effects of Maternal Diet in Pregnancy and
Breastfeeding on Allergic Disease
There is increasing evidence to suggest that the maternal
diet during pregnancy and breastfeeding can have sustained
effects on immunological outcomes in the infant and even have
ramifications for their health later in life. The maternal diet
can modify some immune supporting micronutrients in breast
milk, such as the fat-soluble vitamins A and D, as well as
the water-soluble B vitamins, and polyunsaturated fatty acids
(PUFA), but maternal diet does not influence other components
such as iron and zinc (53). Although there is some conflicting
data, supplementation of maternal diet with vitamins and
micronutrients during pregnancy and breastfeeding does not
seem to prevent infections and allergies in offspring (54, 55).

Supplementation of Maternal Diet With PUFA
Long-chain PUFA (LCPUFA) induce inflammation by
modulating inflammatory mediators like prostaglandins
and immunomodulatory factors like IL-10 and TSLP (56).
Consumption of omega-3 PUFA correlates with the inhibition
of TLR4 signaling and thereby the production of inflammatory
cytokines (IL-1, IL-6, and TNFα), which is reflected by a
lower risk of allergies, whereas consumption of saturated fats
and omega-6 PUFA, a potential trigger for TLR4-induced
inflammation, has been associated with a higher risk of allergies.
In addition, PUFA supplementation during pregnancy was
associated with a reduction in allergic outcomes after birth
(57, 58), but not when it was supplemented to infants (8, 59–61),
suggesting that pregnancy is an important time that influences
the development of the immune system.

Supplementation of Maternal Diet With

Pre-/Probiotics
Probiotics are living microorganisms which, when administered
in adequate amounts, confer a health benefit to the host. They
generally exist of Lactobacillus, Bifidobacterium, or Escherichia
species, which are commonly found in a normal microbiota.
Prebiotics are mostly dietary fibers that are non-digestible
food ingredients and beneficially affect the host’s health by
selectively stimulating the growth and/or activity of some
genera of microorganisms in the colon, generally lactobacilli
and bifidobacteria.

Intestinal microbiota strongly influence the maturation of
the immune system (62) and particularly the development of
immune tolerance, because they affect the Th1/Th2/Th17/Treg
balance. The microbiota composition is modulated by dietary
components that help shaping and timing of the composition
of the early microbiome (63, 64). In addition, microbiota can
be transmitted directly into the uterus during fetal development,
passage through the birth canal or during cesarean-section,
breastfeeding, and when providing care to the offspring (65, 66).
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BOX 2 | Epigenetics and T-cell subset development.

The differentiation of naïve CD4+ T cells upon antigen exposure into effector T helper (Th) subsets (Th1, Th2, and Th17) or induced regulatory T (iTreg) cells relies

on epigenetic regulation and the establishment of cell-fate programs (40, 41). DNA methylation and chromatin modifications at pivotal loci in Th cells such as IFN-γ ,

IL-4 and, Foxp3 contribute to the formation of stable, heritable gene expression patterns. Methylation of CpG dinucleotides specially at promoter or other regulatory

regions of genes is generally considered a repressive feature causing silenced genes what mostly seen in (embryonic) stem cells. Targeted loci DNA demethylation is

required during early or late hematopoietic cell differentiation (41, 42). For instance, DNA demethylation plays a role in the expression of Th2 cell-related cytokine, IL-4

(43) and, Treg cell-related regulators (44, 45). Besides DNA methylation, histone modifications including acetylation and methylation have a role in the development

of Th cell lineage. Histone acetylation, associated with the control of gene expression by condensing or relaxing the chromatin structure to repress or activate

transcription, respectively, regulates the expression of several inflammatory mediators of the immune system. In this regard, modifications of histones occur in the

enhancer and promoter regions of the STAT4 and STAT1 transcription factor binding sites upstream of the IFN-γ and TBX21 (T-bet) gene to direct Th1 differentiation.

In contrast, activation of STAT6 in response to IL-4 occurs leading to the expression of IL-4 and GATA3 transcription factor genes in Th2 differentiating cells. Driving

naïve CD4+ T cells toward Th17 phenotype requires STAT3 activation followed by expression of RORC gene encoding RORγt transcription factor and subsequently

the production of IL-17 cytokines. Alternatively, upon naïve CD4+ T cells exposure to TGF-β, STAT5 transcription factor engages leading to changes in Foxp3 gene

promoter site and commitment of cells into Treg fate. These specific histone modifications lead to engagement of lineage-specific key transcription factors which

ensures Th phenotype stabilization and prevents the cells from skewing toward alternative commitments (35, 42, 46).

Food supplements, which are often termed functional foods,
have been used to alter, modify, and reinstate pre-existing
intestinal microbiota (67). Supplementation of prebiotics,
probiotics, and synbiotics (68–74), as well as PUFA (58, 69, 75–
77) during pregnancy and breastfeeding, may reduce eczema
in infants. This is further supported by preclinical studies,
which indicated that supplementing the maternal diet with
specific pre- or probiotics affects milk composition (78) and
that supplementing non-digestible oligosaccharides diminished
allergic disease in offspring (79–81). This may, in part, be linked
to the production of SCFA by the intestinal microbiota (82–86).
Even though maternal diet during pregnancy and breastfeeding
can modulate the prevalence of allergy in the offspring, the
potential role of breastfeeding in allergy prevention is still under

discussion, as it seems to be linked to variations in breast milk
composition rather than to breastfeeding per se (53, 87).

Effects of Consumption of Raw Milk and
the Farming Environment
Most of our current knowledge on the effects of environment
and diet on epigenetics and early life immune function is based
on epidemiological findings, which indicate that children who
grow up on farms have a decreased risk of developing allergies,
especially asthma. Allergies are multifactorial, Th2-driven
diseases that are triggered by gene-environment interactions.
Environmental factors can interact with genes involved in asthma
and allergy development via epigenetic mechanisms, such as
DNA methylation and histone modifications. These epigenetic
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mechanisms can regulate gene expression by modifying the
accessibility of the DNA to transcription enzymes without
altering the DNA nucleotide sequence (30, 33). In addition to the
consumption of raw cow’s milk (22–29), contact with livestock
and animal feed along with other farm-related exposures
have shown independent protective effects, indicating that a
farm/country lifestyle can contributes to a reduced risk of asthma
and allergies in children (25, 27, 88–90). Interestingly, the timing
of these exposures seems to be crucial, with the strongest effects
observed for exposures that occurred in utero and during the
first year of life (23, 91, 92). Since the protective “farm effect”
was demonstrated to sustain into adult life (25), effects might be
mediated via epigenetic inheritance/regulation.

Several epigenome wide-association studies concerning
allergies have been performed and reviewed (30). These studies
showed that allergic disease is accompanied by changing DNA
methylation patterns in Th2, Th1, Th17, Th9, and Treg subsets in
the affected tissues. DNA methylation changes by demethylation
and increased FoxP3+ regulatory T cell numbers in peripheral
blood mononuclear cells were shown in 4.5-year-old farm
children (93). These regulatory T cell numbers were negatively
associated with doctor-diagnosed asthma. It remains to be seen
if these changes also precede the onset of allergic disease and can
be predictive for allergy development, but questions remain as to
how are these epigenetic changes induced. It has been suggested
that the epigenome is affected by the farm environment. The
first indication for a potential role of epigenetic regulation in
the protective “farm effect” was provided by Slaats et al. who
demonstrated that DNA methylation of the promoter region
of CD14 in placentas of mothers living on farms was lower
compared to mothers not living on a farm (94). These lower
DNA methylation levels were reflected in higher CD14 mRNA
expression levels (95). Interestingly, a higher expression of
the CD14 gene was also observed in farmers’ children (96).
Prenatal farm exposure was also associated with increased gene
expression of other innate immune receptors, such as TLR5,
TLR7, TLR8, and TLR9, at birth (97, 98) and TLR2 and TLR4 in
farm-raised children at school age (95, 96). Maternal exposure
to farm environments increases the number of T regulatory
(Treg) cells in the cord blood of infants, which is associated with
decreased Th2 cytokines and may be linked to demethylation
at the FOXp3 promoter (99). Whether epigenetic inheritance is
underlying these effects requires further investigation. Further
evidence that the farm environment affects the epigenome was
provided by a pilot study which showed hypermethylation of
genes related to IgE regulation and Th2 differentiation in cord
blood from farmers’ as compared to non-farmers’ children (100).
Interestingly, at least part of the protective effect triggered by
those factors has been ascribed to the farm bacteria, for instance,
Acinetobacter lwoffii (101, 102), with a pivotal contribution
of downstream epigenetic mechanisms, specifically histone
modifications (103).

Milk Components
Human milk contains a unique combination of lipids, proteins,
carbohydrates, vitamins, and minerals and thereby provides
an ideal source of nutrition for the healthy growth and

development of a newborn (104). However, human milk is more
than nutrition as it also contains bioactive components that
can modulate the immune system, such as immunoglobulins,
lactoferrin, human milk oligosaccharides (HMO), long-chain
fatty acids, and anti-inflammatory cytokines (18, 105, 106). Most
of the immunologically relevant components in breast milk
are also found in bovine milk (18). Several key components
of breast milk that are not present at high enough levels
in bovine milk are added to infant formula to provide the
crucial nutrients needed. These include prebiotics or even single
HMO like 2’-fucosyllactose (as an alternative to the complex
mixture of HMO in breast milk), lactoferrin, PUFA, vitamins,
and minerals.

Non-digestible Milk Oligosaccharides
One of the major differences between human breast milk and
bovine milk is the amount and diversity of the HMO, i.e.,
complex, non-digestible oligosaccharides (107, 108). The HMO
in breast milk constitutes about 20% of the milk saccharides
next to the major carbohydrate in milk, lactose. Human breast
milk contains ∼5–15 mg/ml of these non-digestible HMO,
consisting of up to 200 or more unique structures. In contrast,
bovine milk only contains a few of these oligosaccharides,
at much lower levels. One injected, HMO survive passage
and digestion through the stomach and small intestine and
reach the colon, where they are fermented into SCFA like
acetate, butyrate, and propionate (107, 108). In addition, they
shape the microbiota by selectively enhancing the growth of
bifidobacteria and lactobacilli. These SCFAs serve as an energy
source for colonic intestinal tissue and shape the interactions
between the host and its gut microbiota. Furthermore, SCFA
reduces intestinal pH, limit outgrowth of Enterobacteriaceae,
and support intestinal barrier function. HMO is the key factor
in shaping the development of immunity and early microbiota
after birth. HMO have effects on microbiota and infections
(107, 108). Of these, 2’-fucosyllactose is the HMO that is
most abundantly present in breast milk and has therefore been
chosen as the first HMO that was introduced in infant nutrition
in 2018.

Prebiotics are non-digestible oligosaccharides like galacto-
oligosaccharides (GOS) and fructo-oligosaccharides (FOS),
and have widely been used in infant nutrition to mimic
the bifidogenic- and SCFA-inducing effect of HMO. There
is some evidence that prebiotic oligosaccharides in infant
nutrition may prevent eczema in infants (109–112). It is not
clear if these effects also extend to the prevention of other
allergic diseases, as only one study to date has reported
the effects of prebiotics on asthma and food allergy (113).
For probiotics, effects are also seen when they are added
in infant nutrition (68). As can be seen in detail in Lomax
and Calder (114), several studies have reported that infant
formula supplemented with prebiotics have a trend toward
or even a significant preventive effect on the occurrence
of gastrointestinal infections. Trends toward decreased fever
episodes, antibiotic use, and upper respiratory tract infections
(URTI) have been described. Two studies, by Bruzzese et al.
and Arslanoglu et al. and performed with scGOS/lcFOS,
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supplemented very young infants from early after birth for
6–12 months (115, 116). Both studies showed a significant
reduction in gastroenteritis (115) and a reduction in the
total number of infections (116). A study from Westerbeek
et al., in which scGOS/lcFOS were combined with acidic
oligosaccharides (pAOS) showed a non-significant tendency
toward fewer serious infections (117). This study was, however,
conducted over a shorter time period, and the infants were
preterm. In two other studies infants were older than 6 months
(118, 119) were supplemented with oligofructose, one did
not show an effect on diarrhea, whilst the latter observed
a protective effect against diarrhea. Since these components
and their effects have been reviewed in detail previously, we
will not address them in detail here, and will instead, only
focus on their potential epigenetic and long-lasting immune
health effects.

Bioactive Components Besides Non-digestible

Oligosaccharides
Both human milk and bovine milk contain many other bioactive
components that can modulate immune function [reviewed in
(18, 19, 105–107)]. The components in human and in bovinemilk
that can be isolated in large quantities have largely been studied
as separate entities, because they are potential infant nutrition
ingredients. Several of these components, such as transforming
growth factor-β (TGF-β) (120), bovine lactoferrin (121–124),
bovine alkaline phosphatase (19, 125), bovine osteopontin (126,
127), and the milk fat globular membrane (MFGM) (128), as
well as milk exosomes (39), have been linked to immunological
outcomes with varying levels of evidence (infection, allergy).
Another milk component that may have more sustained
immunological effects are bovine IgG antibodies. Where IgA
is the predominant immunoglobulin isotype in breast milk,
bovine milk has a larger amount of IgG (129). Bovine milk IgG
(bIgG) has been shown to bind to aeroallergens (130) as well
as to respiratory pathogens such as respiratory syncytial virus
(RSV), and can inhibit infection of human cells with human
RSV (131). Through the formation of immune complexes, bIgG
can enhance RSV-specific T cell responses (132). Similarly,
bovine colostrum, which is a rich source of IgG can prevent
the infection of mice with RSV (133). Different from adaptive
immunity, innate immunity was until recently believed to
lead to immune memory. However, vaccination studies have
shown that after vaccination—that is associated with cross-
protection to other pathogens—the innate immune response is
increased to the vaccine, but also other pathogens (134, 135). The
mechanism of this was elucidated in several mechanistic studies
and was shown to be dependent on epigenetic modification of
monocytes and macrophages (136–139). Even though epigenetic
modification was not directly shown, bovine IgG can induce
trained immunity in monocytes (140). In addition to possibly
preventing some of the epigenetic modifications induced by
infection with respiratory viruses, which would be the result
of the lower prevalence of respiratory tract infections (21),
bovine IgG may also directly modify subsequent innate immune
responses in infants.

(EPIGENETIC) EFFECTS OF HUMAN
BREAST MILK AND BOVINE MILK ON
ALLERGY OUTCOMES LATER IN LIFE

Several epigenome wide-association studies on allergies have
been performed, as reviewed elsewhere (30). These studies
have shown that allergic disease is accompanied by changing
DNA methylation patterns in Th2, Th1, Th17, Th9, and Treg
subsets in affected tissues. The epigenetic mechanism behind
T cell subset differentiation is strongly affected by essential
micronutrients (folate, vitamins B2, B6, and B12, methionine
choline, and betaine) (141), bioactive food components (tea
polyphenols, genistein from soybean, isothiocyanates from plant
foods, curcumin, and curcumin-derived synthetic analogs) (142),
total diet (fiber, protein, fat, and hormones) (143), ethanol,
and carbohydrates (144). Dietary compounds, especially vitamin
D, folate, and zinc, also have the potency to interfere with
DNA methylation and thereby steer the Th1-Th2 balance.
In addition to these effects on DNA methylation, prenatal
supplementation with PUFA or maternal levels of folate, and
microbiota-derived SCFA have been associated with changes in
histone acetylation patterns at important T cell differentiation
regulating genes (Box 2). After birth, these immunomodulatory
dietary components are also transferred to the newborn via
breast milk.

Epigenetic Effects of Breastfeeding, Raw
Milk, and Exposure to the Farming
Environment in Early Life
As already mentioned, the mechanisms underlying the anti-
allergic effects of human milk are most probably complex,
as human milk contains not only nutritional substances but
also functional molecules including polysaccharides, cytokines,
proteins, and other components forming a real biological system
which can modulate and shape the innate and adaptive immune
responses of the infant in very early life (104, 145). If and how
those components affect the epigenetic status of the growing child
and what consequences this has for allergy development need
to be addressed in future studies. Considering the observations
made about farm milk (see below), as well as indications that
breastfeeding may be capable of changing DNA methylation
patterns in the offspring (146), such studies are justified.

Epigenetic modulation of the Foxp3 gene by farm milk was
demonstrated in an animal model. In this study, exposure to raw,
unprocessed, cow’s milk for 8 days, increased histone acetylation
of Foxp3 in splenocyte-derived CD4+ T cells compared to
processed milk exposure (147). In the same study, mice were
subjected to an ovalbumin-induced food allergy model after milk
exposure and, interestingly, histone acetylation of Th2 genes was
lower in raw milk-pretreated mice compared to processed milk-
pretreated mice. These mice also showed a reduction in food
allergic symptoms (147). As for farm exposure, exposure to raw
milk in the first year of life was also associated with changes in
gene expression of the innate immune receptors (98). Moreover,
it was demonstrated that a polymorphism in the CD14 gene
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influenced the protective effect of raw cow milk consumption
on allergic diseases (148). DNA demethylation and increased
Foxp3+ in the regulatory T cell numbers in the peripheral blood
mononuclear cells of 4.5 year-old children were also shown
in farm children (93). These regulatory T cell numbers were
negatively associated with doctor-diagnosed asthma. It remains
to be seen if these changes also precede the onset of allergic
disease and can be predictive of allergy development.

There is evidence that the epigenome is affected by the farming
environment. The first indication for a potential role of epigenetic
regulation in the protective “farm effect” was provided by Slaats
et al. who demonstrated that DNA methylation of the promoter
region of CD14 in placentas of mothers living on a farm was
lower compared to mothers not living on a farm (94). These
lower DNA methylation levels were reflected in higher CD14
mRNA expression levels (95). Interestingly, a higher expression
of the CD14 gene was also observed in the children of farmers
(96). Prenatal farm exposure was also associated with increased
gene expression of other innate immune receptors, such as TLR5,
TLR7, TLR8, and TLR9, at birth (97, 98) and TLR2 and TLR4
in farm-raised children at school age (91, 96). Maternal exposure
to farming environments increased the number of Treg cells in
the cord blood of infants, which is associated with decreased
Th2 cytokines and may be linked to demethylation at the Foxp3
promoter (50). Whether epigenetic inheritance is the underlying
cause of these effects requires further research. Additional
evidence that the farm environment affects the epigenome was
provided by a pilot study that showed DNA hypermethylation of
genes related to IgE regulation and Th2 differentiation in cord
blood from the children of farmers as compared to the children
of non-farmers (100).

Epigenetic Effects of miRNA Containing
Extracellular Vesicles (Exosomes)
Interestingly, both human and cow’s milk contain extracellular
vesicles, or exosomes, that are resistant to the acidic environment
in the stomach and RNAses in the GI tract. These exosomes
contain a variety of especially immune function-related
microRNAs (miRNAs). miRNAs represent short noncoding
RNA molecules that control 40–60% of the total gene expression
by inducing mRNA degradation and/or post-transcriptional
inhibition of translation. As a result, specific miRNA can silence
selective gene expression. The expression of a single gene can
be regulated by several miRNAs, and likewise, a single miRNA
can regulate over 100 genes (32, 149). This activity thereby
constitutes an epigenetic mechanism by which nutritional factors
can influence immune activity or the induction of tolerance
by affecting the Th1-Th2 balance. Bovine milk exosomes
are taken up by human macrophages (150) and epithelial cells
(151, 152), exosomes become systemically available in the body of
laboratory animals upon oral delivery (153), and bovine miRNA
are detectible in the blood after drinking pasteurized milk (154).
However, systemic availability could not be demonstrated for
breast milk derived exosomes (155) or vegetable derived miRNA
(156). Breast milk-derived exosomes were described in 2007
to enhance Treg development in vitro (157). Based on miRNA

content, bovine milk exosomes contain immunoregulatory
miRNAs, like miRNA155, that are involved in the development
of Tregs and are thought to play a role in the effect of raw
milk consumption on asthma (39). In addition to allergy, orally
delivered bovine milk exosomes ameliorated arthritis in a murine
model (158), and recent evidence also links milk exosomes to
the prevention of necrotizing enterocolitis and intestinal damage
in in vitro and in vivo investigations (159, 160). These studies
suggest that miRNAs in human and raw bovine milk exosomes
may have epigenetic effects in infants.

Epigenetic Effects of SCFA
Several studies have implicated the SCFA butyrate, propionate,
and acetate as epigenetic modifiers of early life immunity,
especially in the development of asthma (161). In addition to
regulating Treg differentiation and histone acetylation, SCFAs
can induce effector T cell differentiation in secondary lymphoid
organs by inhibiting endogenous HDAC activity independent
of activation of G-protein-coupled receptor (GPCR). In more
detail, SCFA can modulate diverse cell processes by two
mechanisms, either via interacting with the GPCR (GPR43,
GPR41, GPR109A) on the plasma membrane or following a
receptor-independent entrance to the cells (162). SCFA entry
occurs through passive diffusion or actively by the involvement
of two transporters, namely, monocarboxylate transporter
1 (MCT1/SLa16a1) and sodium-coupled monocarboxylate
transporter 1 (SMCT1/SLc5a8). These receptors and transporter
molecules are widely present in immune and non-immune
cells (162, 163). This effect is highly pronounced for butyrate
and to a lesser extent for propionate and acetate (164–166).
HDAC inhibition allows HATs activity leading to histone
hyperacetylation and subsequently an altered gene expression
(37) which might, for instance, result in the proliferation
of Treg cells (167–169). The significance of this mechanism
is illustrated by the fact that bovine, but not human, milk
triglycerides contain a relatively high concentration of the
SCFA butyrate (18). Altogether, present evidence implies
that HDAC inhibitory activity of SCFA might be cell and
tissue dependent, and the gene expression pattern is related
to the cellular stage and other environmental signals. If
bovine milk consumption is associated with decreased allergy
prevalence, does this also mean that milk components can
affect epigenetic mechanisms? There is no in vivo evidence
that the induction of SCFA by sialyllactose when ingested in
bovine milk, but sialyllactose has been reported to induce
SCFA production in in vitro fecal microbiota cultures (170)
and may thus affect histone acetylation in infants. A high
fiber diet (resulting in SCFA production in the colon) or
direct feeding of SCFA has been shown to prevent airway
inflammation in animal models (84, 85), and SCFA levels in fecal
samples of children associated inversely with sensitization to
aeroallergens (171, 172).

In addition to allergies, intestinal immunity can also be
influenced by microbiota-derived metabolites. For example,
tryptophan metabolites can act as aryl hydrocarbon receptor
(AhR) ligands, inducing IL-22 and antibacterial peptide
production (173), SCFA can directly support the intestinal
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epithelial barrier, and bile acids can also be metabolized by
the microbiota and influence intestinal barrier function and
immunity (174). Two studies reported a decreased risk of
wheezing in infants because of high maternal dairy intake
(175, 176). Taken together, alterations in the local cellular
microenvironment and the microbiome (56) allow milk to
induce epigenetic changes in both maternal and neonatal
nutrition-mediated genes, which can ultimately affect immune
programming in the offspring (177).

CONCLUSIONS

This review summarizes current knowledge on the potential
effects of human and bovine milk on neonatal immunity and
epigenetic programming and its possible consequences on the
development of allergies in early childhood and beyond (see
Figure 1).

Breast milk is the food of choice for newborns and infants.
When breast milk is not sufficiently available, cow’s milk based
formula is the best alternative, and thus cow’s milk has become
an integral part of early life diet.

Several epidemiological studies that have shown that exposure
to a farm environment as well as to raw/unprocessed cow’s milk
in the prenatal period and early childhood is associated with
protection against the development of asthma and other allergies
later in life. Many cow’s milk components have been shown
to have similar effects on human immune cells as their breast
milk counterparts.

Some of the molecular pathways that may explain the
association between the consumption of raw milk asthma and
allergy may be linked to epigenetics. Epigenetic mechanisms

like DNA methylation, but also histone modifications, and non-
classical epigenetics represented by miRNA may all contribute to
the effects induced by raw cow’s milk.

However, milk and dairy products are subject to industrial
processing to ensure microbiological safety. As a result, milk
proteins can be denatured, and lose their functional activity. In
addition, glycation of milk proteins is thought to increase the risk
of developing cow’s milk allergy, illustrating that preserving milk
proteins and preventing glycation may be important innovations
to help prevent allergies.

Based on what is currently known on immunological and
epigenetic effects that can be exerted by human and different
types of bovine milk, future research should focus on enhancing
the functional (immunological as well as epigenetic) activity of
milk components in early life nutrition, and on establishing
epigenetic markers of immunological responses to milk. These
could be especially important for diagnostic purposes and
assessing the risk of developing CMA. Knowledge gathered
during studies on the epigenetic effects of milk can be used
in the future to drive the development of preventive or
therapeutic anti-allergic strategies based on components that
affect epigenetic mechanisms.

Finally, the continuation of epidemiologic and mechanistic
studies on the effects of the components of breast and bovine
milk on human immune function and health will increase our
knowledge and help in finding potential applications that may
help prevent allergies in the neonatal period.

AUTHOR CONTRIBUTIONS

All authors contributed to the writing of the manuscript.

REFERENCES

1. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus:

the thrifty phenotype hypothesis. Diabetologia. (1992) 35:595–601.

doi: 10.1007/BF00400248

2. de Rooij SR, Painter RC, Phillips DI, Osmond C, Michels RP, Godsland IF,

et al. Impaired insulin secretion after prenatal exposure to the dutch famine.

Diabetes Care. (2006) 29:1897–901. doi: 10.2337/dc06-0460

3. Lumey LH, Khalangot MD, Vaiserman AM. Association between type

2 diabetes and prenatal exposure to the ukraine famine of 1932-33: a

retrospective cohort study. Lancet Diabetes Endocrinol. (2015) 3:787–94.

doi: 10.1016/S2213-8587(15)00279-X

4. Li C, Lumey LH. Exposure to the chinese famine of 1959-61 in

early life and long-term health conditions: a systematic review and

meta-analysis. Int J Epidemiol. (2017) 46:1157–70. doi: 10.1093/ije/

dyx013

5. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES,

et al. Persistent epigenetic differences associated with prenatal exposure

to famine in humans. Proc Natl Acad Sci USA. (2008) 105:17046–9.

doi: 10.1073/pnas.0806560105

6. Prescott SL. Early nutrition as a major determinant of ’immune health’:

implications for allergy, obesity and other noncommunicable diseases.

Nestle Nutr Inst Workshop Ser. (2016) 85:1–17. doi: 10.1159/0004

39477

7. Harb H, Alashkar Alhamwe B, Acevedo N, Frumento P, Johansson C,

Eick L, et al. Epigenetic modifications in placenta are associated with

the child’s sensitization to allergens. Biomed Res Int. (2019) 2019:1315257.

doi: 10.1155/2019/1315257

8. Acevedo N, Frumento P, Harb H, Alashkar Alhamwe B, Johansson C, Eick L,

et al. Histone acetylation of immune regulatory genes in human placenta in

association with maternal intake of olive oil and fish consumption. Int J Mol

Sci. (2019) 20:1060. doi: 10.3390/ijms20051060

9. Prescott SL. Early-life environmental determinants of allergic diseases and

the wider pandemic of inflammatory noncommunicable diseases. J Allergy

Clin Immunol. (2013) 131:23–30. doi: 10.1016/j.jaci.2012.11.019

10. Koletzko B, Brands B, Grote V, Kirchberg FF, Prell C, Rzehak P, et al. Long-

term health impact of early nutrition: the power of programming. Ann Nutr

Metab. (2017) 70:161–9. doi: 10.1159/000477781

11. Georgountzou A, Papadopoulos NG. Postnatal innate immune

development: from birth to adulthood. Front Immunol. (2017) 8:957.

doi: 10.3389/fimmu.2017.00957

12. West CE, D’Vaz N, Prescott SL. Dietary immunomodulatory factors in

the development of immune tolerance. Curr Allergy Asthma Rep. (2011)

11:325–33. doi: 10.1007/s11882-011-0200-0

13. Torow N, Marsland BJ, Hornef MW, Gollwitzer ES. Neonatal mucosal

immunology.Mucosal Immunol. (2017) 10:5–17. doi: 10.1038/mi.2016.81

14. McDade TW. Early environments and the ecology of inflammation.

Proc Natl Acad Sci USA. (2012) 109(Suppl. 2):17281–8.

doi: 10.1073/pnas.1202244109

15. Brugman S, Perdijk O, van Neerven RJ, Savelkoul HF. Mucosal immune

development in early life: setting the stage. Arch Immunol Ther Exp. (2015)

63:251–68. doi: 10.1007/s00005-015-0329-y

Frontiers in Immunology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 2141170

https://doi.org/10.1007/BF00400248
https://doi.org/10.2337/dc06-0460
https://doi.org/10.1016/S2213-8587(15)00279-X
https://doi.org/10.1093/ije/dyx013
https://doi.org/10.1073/pnas.0806560105
https://doi.org/10.1159/000439477
https://doi.org/10.1155/2019/1315257
https://doi.org/10.3390/ijms20051060
https://doi.org/10.1016/j.jaci.2012.11.019
https://doi.org/10.1159/000477781
https://doi.org/10.3389/fimmu.2017.00957
https://doi.org/10.1007/s11882-011-0200-0
https://doi.org/10.1038/mi.2016.81
https://doi.org/10.1073/pnas.1202244109
https://doi.org/10.1007/s00005-015-0329-y
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Esch et al. Milk and Immunity in Infancy

16. Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, Michaelsen

KF, et al. Breast-feeding: a commentary by the espghan committee

on nutrition. J Pediatr Gastroenterol Nutr. (2009) 49:112–25.

doi: 10.1097/MPG.0b013e31819f1e05

17. Victora CG, Bahl R, Barros AJ, Franca GV, Horton S, Krasevec J, et al.

Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong

effect. Lancet. (2016) 387:475–90. doi: 10.1016/S0140-6736(15)01024-7

18. van Neerven RJ, Knol EF, Heck JM, Savelkoul HF. Which factors in raw

cow’s milk contribute to protection against allergies? J Allergy Clin Immunol.

(2012) 130:853–8. doi: 10.1016/j.jaci.2012.06.050

19. Abbring S, Hols G, Garssen J, van Esch BCAM. Raw cow’s milk consumption

and allergic diseases - the potential role of bioactive whey proteins. Eur J

Pharmacol. (2019) 843:55–65. doi: 10.1016/j.ejphar.2018.11.013

20. Perdijk O, van Splunter M, Savelkoul HFJ, Brugman S, van Neerven

RJJ. Cow’s milk and immune function in the respiratory tract: potential

mechanisms. Front Immunol. (2018) 9:143. doi: 10.3389/fimmu.2018.00143

21. Loss G, Depner M, Ulfman LH, van Neerven RJ, Hose AJ, Genuneit

J, et al. Consumption of unprocessed cow’s milk protects infants from

common respiratory infections. J Allergy Clin Immunol. (2015) 135:56–62.

doi: 10.1016/j.jaci.2014.08.044

22. Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Buchele G, et al.

The protective effect of farm milk consumption on childhood asthma and

atopy: the gabriela study. J Allergy Clin Immunol. (2011) 128:766–73 e4.

doi: 10.1016/j.jaci.2011.07.048

23. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch

S, et al. Exposure to farming in early life and development of

asthma and allergy: a cross-sectional survey. Lancet. (2001) 358:1129–33.

doi: 10.1016/S0140-6736(01)06252-3

24. Brick T, Hettinga K, Kirchner B, Pfaffl MW, Ege MJ. The beneficial effect

of farm milk consumption on asthma, allergies, and infections: from meta-

analysis of evidence to clinical trial. J Allergy Clin Immunol Pract. (2020)

8:878–89 e3. doi: 10.1016/j.jaip.2019.11.017

25. von Mutius E, Vercelli D. Farm living: effects on childhood asthma and

allergy. Nat Rev Immunol. (2010) 10:861–8. doi: 10.1038/nri2871

26. Sozanska B, Pearce N, Dudek K, Cullinan P. Consumption of unpasteurized

milk and its effects on atopy and asthma in children and adult inhabitants in

rural poland. Allergy. (2013) 68:644–50. doi: 10.1111/all.12147

27. Ege MJ, Frei R, Bieli C, Schram-Bijkerk D, Waser M, Benz MR, et al.

Not all farming environments protect against the development of asthma

and wheeze in children. J Allergy Clin Immunol. (2007) 119:1140–7.

doi: 10.1016/j.jaci.2007.01.037

28. Waser M, Michels KB, Bieli C, Floistrup H, Pershagen G, von Mutius E,

et al. Inverse association of farm milk consumption with asthma and allergy

in rural and suburban populations across europe. Clin Exp Allergy. (2007)

37:661–70. doi: 10.1111/j.1365-2222.2006.02640.x

29. Perkin MR, Strachan DP. Which aspects of the farming lifestyle explain the

inverse association with childhood allergy? J Allergy Clin Immunol. (2006)

117:1374–81. doi: 10.1016/j.jaci.2006.03.008

30. Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics

and allergy: from basic mechanisms to clinical applications. Epigenomics.

(2017) 9:539–71. doi: 10.2217/epi-2016-0162

31. Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bulow V, Harb H,

Alhamdan F, et al. Histone modifications and their role in epigenetics of

atopy and allergic diseases. Allergy Asthma Clin Immunol. (2018) 14:39.

doi: 10.1186/s13223-018-0259-4

32. Baskara-Yhuellou I, Tost J. The impact of micrornas on alterations of gene

regulatory networks in allergic diseases.Adv Protein Chem Struct Biol. (2020)

120:237–312. doi: 10.1016/bs.apcsb.2019.11.006

33. Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role

of epigenetics in allergy and asthma development. Curr Opin Allergy Clin

Immunol. (2020) 20:48–55. doi: 10.1097/ACI.0000000000000598

34. Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold

the key to conquering the epidemic of allergy and immune disease. Allergy.

(2010) 65:7–15. doi: 10.1111/j.1398-9995.2009.02186.x

35. Suarez-Alvarez B, Rodriguez RM, Fraga MF, Lopez-Larrea C. DNA

methylation: a promising landscape for immune system-related diseases.

Trends Genet. (2012) 28:506–14. doi: 10.1016/j.tig.2012.06.005

36. Grozinger CM, Schreiber SL. Deacetylase enzymes: biological functions

and the use of small-molecule inhibitors. Chem Biol. (2002) 9:3–16.

doi: 10.1016/S1074-5521(02)00092-3

37. Eberharter A, Becker PB. Histone acetylation: a switch between repressive

and permissive chromatin. Second in review series on chromatin dynamics.

EMBO Rep. (2002) 3:224–9. doi: 10.1093/embo-reports/kvf053

38. Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in

the control of gene expression. Biochem Cell Biol. (2005) 83:344–53.

doi: 10.1139/o05-041

39. Melnik BC, John SM, Carrera-Bastos P, Schmitz G. Milk: a

postnatal imprinting system stabilizing foxp3 expression and

regulatory t cell differentiation. Clin Transl Allergy. (2016) 6:18.

doi: 10.1186/s13601-016-0108-9

40. Janson PC, Winerdal ME, Winqvist O. At the crossroads of t helper lineage

commitment-epigenetics points the way. Biochim Biophys Acta. (2009)

1790:906–19. doi: 10.1016/j.bbagen.2008.12.003

41. Wilson CB, Rowell E, Sekimata M. Epigenetic control of t-helper-cell

differentiation. Nat Rev Immunol. (2009) 9:91–105. doi: 10.1038/nri2487

42. Tripathi SK, Lahesmaa R. Transcriptional and epigenetic regulation

of t-helper lineage specification. Immunol Rev. (2014) 261:62–83.

doi: 10.1111/imr.12204

43. Makar KW, Perez-Melgosa M, Shnyreva M, Weaver WM, Fitzpatrick

DR, Wilson CB. Active recruitment of DNA methyltransferases regulates

interleukin 4 in thymocytes and t cells. Nat Immunol. (2003) 4:1183–90.

doi: 10.1038/ni1004

44. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger

EP, et al. Epigenetic regulation of foxp3 expression in regulatory

t cells by DNA methylation. J Immunol. (2009) 182:259–73.

doi: 10.4049/jimmunol.182.1.259

45. Baron U, Floess S,Wieczorek G, Baumann K, Grutzkau A, Dong J, et al. DNA

demethylation in the human foxp3 locus discriminates regulatory t cells from

activated foxp3(+) conventional t cells. Eur J Immunol. (2007) 37:2378–89.

doi: 10.1002/eji.200737594

46. Hirahara K, Vahedi G, Ghoreschi K, Yang XP, Nakayamada S, Kanno Y,

et al. Helper t-cell differentiation and plasticity: insights from epigenetics.

Immunology. (2011) 134:235–45. doi: 10.1111/j.1365-2567.2011.03483.x

47. Onodera A, Kokubo K, Nakayama T. Epigenetic and transcriptional

regulation in the induction, maintenance, heterogeneity, and recall-

response of effector and memory th2 cells. Front Immunol. (2018) 9:2929.

doi: 10.3389/fimmu.2018.02929

48. Oestreich KJ, Weinmann AS. Transcriptional mechanisms that regulate

t helper 1 cell differentiation. Curr Opin Immunol. (2012) 24:191–5.

doi: 10.1016/j.coi.2011.12.004

49. Kim LK, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH,

et al. Oct-1 regulates il-17 expression by directing interchromosomal

associations in conjunction with ctcf in t cells. Mol Cell. (2014) 54:56–66.

doi: 10.1016/j.molcel.2014.02.004

50. Begin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease.

Allergy Asthma Clin Immunol. (2014) 10:27. doi: 10.1186/1710-1492-10-27

51. Paparo L, Nocerino R, Bruno C, Di Scala C, Cosenza L, Bedogni G, et al.

Randomized controlled trial on the influence of dietary intervention on

epigenetic mechanisms in children with cow’s milk allergy: the epicma study.

Sci Rep. (2019) 9:2828. doi: 10.1038/s41598-019-45226-8

52. World Health Organization. Infant and Young Child Nutrition. Global

Strategy on Infant and Young Child Feeding. (2002). Available online at:

https://www.who.int/nutrition/topics/infantfeeding_recommendation/en/

(accessed April 6, 2020).

53. Munblit D, Peroni DG, Boix-Amoros A, Hsu PS, Van’t Land B, Gay MCL,

et al. Humanmilk and allergic diseases: an unsolved puzzle.Nutrients. (2017)

9:894. doi: 10.3390/nu9080894

54. Prentice S. They are what you eat: can nutritional factors during gestation

and early infancy modulate the neonatal immune response? Front Immunol.

(2017) 8:1641. doi: 10.3389/fimmu.2017.01641

55. Abrams EM, Chan ES. It’s not mom’s fault: prenatal and early life

exposures that do and do not contribute to food allergy development.

Immunol Allergy Clin North Am. (2019) 39:447–57. doi: 10.1016/j.iac.2019.

06.001

Frontiers in Immunology | www.frontiersin.org 10 October 2020 | Volume 11 | Article 2141171

https://doi.org/10.1097/MPG.0b013e31819f1e05
https://doi.org/10.1016/S0140-6736(15)01024-7
https://doi.org/10.1016/j.jaci.2012.06.050
https://doi.org/10.1016/j.ejphar.2018.11.013
https://doi.org/10.3389/fimmu.2018.00143
https://doi.org/10.1016/j.jaci.2014.08.044
https://doi.org/10.1016/j.jaci.2011.07.048
https://doi.org/10.1016/S0140-6736(01)06252-3
https://doi.org/10.1016/j.jaip.2019.11.017
https://doi.org/10.1038/nri2871
https://doi.org/10.1111/all.12147
https://doi.org/10.1016/j.jaci.2007.01.037
https://doi.org/10.1111/j.1365-2222.2006.02640.x
https://doi.org/10.1016/j.jaci.2006.03.008
https://doi.org/10.2217/epi-2016-0162
https://doi.org/10.1186/s13223-018-0259-4
https://doi.org/10.1016/bs.apcsb.2019.11.006
https://doi.org/10.1097/ACI.0000000000000598
https://doi.org/10.1111/j.1398-9995.2009.02186.x
https://doi.org/10.1016/j.tig.2012.06.005
https://doi.org/10.1016/S1074-5521(02)00092-3
https://doi.org/10.1093/embo-reports/kvf053
https://doi.org/10.1139/o05-041
https://doi.org/10.1186/s13601-016-0108-9
https://doi.org/10.1016/j.bbagen.2008.12.003
https://doi.org/10.1038/nri2487
https://doi.org/10.1111/imr.12204
https://doi.org/10.1038/ni1004
https://doi.org/10.4049/jimmunol.182.1.259
https://doi.org/10.1002/eji.200737594
https://doi.org/10.1111/j.1365-2567.2011.03483.x
https://doi.org/10.3389/fimmu.2018.02929
https://doi.org/10.1016/j.coi.2011.12.004
https://doi.org/10.1016/j.molcel.2014.02.004
https://doi.org/10.1186/1710-1492-10-27
https://doi.org/10.1038/s41598-019-45226-8
https://www.who.int/nutrition/topics/infantfeeding_recommendation/en/
https://doi.org/10.3390/nu9080894
https://doi.org/10.3389/fimmu.2017.01641
https://doi.org/10.1016/j.iac.2019.06.001
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Esch et al. Milk and Immunity in Infancy

56. Amarasekera M, Prescott SL, Palmer DJ. Nutrition in early life, immune-

programming and allergies: the role of epigenetics. Asian Pac J Allergy

Immunol. (2013) 31:175–82.

57. Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, et al.

Fish oil supplementation in pregnancy modifies neonatal allergen-specific

immune responses and clinical outcomes in infants at high risk of atopy: a

randomized, controlled trial. J Allergy Clin Immunol. (2003) 112:1178–84.

doi: 10.1016/j.jaci.2003.09.009

58. Gunaratne AW,MakridesM, Collins CT.Maternal prenatal and/or postnatal

n-3 long chain polyunsaturated fatty acids (lcpufa) supplementation for

preventing allergies in early childhood. Cochrane Database Syst Rev. (2015)

22:CD010085. doi: 10.1002/14651858.CD010085.pub2

59. D’Vaz N, Meldrum SJ, Dunstan JA, Lee-Pullen TF, Metcalfe J, Holt BJ,

et al. Fish oil supplementation in early infancy modulates developing

infant immune responses. Clin Exp Allergy. (2012) 42:1206–16.

doi: 10.1111/j.1365-2222.2012.04031.x

60. Schindler T, Sinn JK, Osborn DA. Polyunsaturated fatty acid

supplementation in infancy for the prevention of allergy. Cochrane Database

Syst Rev. (2016) 10:CD010112. doi: 10.1002/14651858.CD010112.pub2

61. Harb H, Irvine J, Amarasekera M, Hii CS, Kesper DA, Ma Y, et al. The

role of pkczeta in cord blood t-cell maturation towards th1 cytokine profile

and its epigenetic regulation by fish oil. Biosci Rep. (2017) 37:BSR20160485.

doi: 10.1042/BSR20160485

62. Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek EM. Relevance

of pre- and postnatal nutrition to development and interplay between the

microbiota and metabolic and immune systems. Am J Clin Nutr. (2013)

98:586–93S. doi: 10.3945/ajcn.112.039644

63. Lynch SV, Boushey HA. The microbiome and development of

allergic disease. Curr Opin Allergy Clin Immunol. (2016) 16:165–71.

doi: 10.1097/ACI.0000000000000255

64. Palmer DJ, Huang RC, Craig JM, Prescott SL. Nutritional influences on

epigenetic programming: asthma, allergy, and obesity. Immunol Allergy Clin

North Am. (2014) 34:825–37. doi: 10.1016/j.iac.2014.07.003

65. Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J,

et al. In utero supplementation with methyl donors enhances allergic airway

disease in mice. J Clin Invest. (2008) 118:3462–9. doi: 10.1172/JCI34378

66. Riiser A. The human microbiome, asthma, and allergy. Allergy Asthma Clin

Immunol. (2015) 11:35. doi: 10.1186/s13223-015-0102-0

67. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and

synbiotics- a review. J Food Sci Technol. (2015) 52:7577–87.

doi: 10.1007/s13197-015-1921-1

68. Cuello-Garcia CA, Brozek JL, Fiocchi A, Pawankar R, Yepes-Nunez JJ,

Terracciano L, et al. Probiotics for the prevention of allergy: a systematic

review and meta-analysis of randomized controlled trials. J Allergy Clin

Immunol. (2015) 136:952–61. doi: 10.1016/j.jaci.2015.04.031

69. Garcia-Larsen V, Ierodiakonou D, Jarrold K, Cunha S, Chivinge J, Robinson

Z, et al. Diet during pregnancy and infancy and risk of allergic or

autoimmune disease: a systematic review and meta-analysis. PLoS Med.

(2018) 15:e1002507. doi: 10.1371/journal.pmed.1002507

70. West CE. Probiotics for allergy prevention. Benef Microbes. (2016) 7:171–9.

doi: 10.3920/BM2015.0073

71. Enomoto T, Sowa M, Nishimori K, Shimazu S, Yoshida A, Yamada K, et al.

Effects of bifidobacterial supplementation to pregnant women and infants

in the prevention of allergy development in infants and on fecal microbiota.

Allergol Int. (2014) 63:575–85. doi: 10.2332/allergolint.13-OA-0683

72. Rautava S, Isolauri E. The development of gut immune responses and gut

microbiota: effects of probiotics in prevention and treatment of allergic

disease. Curr Issues Intest Microbiol. (2002) 3:15–22.

73. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during

pregnancy, intestinal colonization and human disease.Nat Rev Gastroenterol

Hepatol. (2012) 9:565–76. doi: 10.1038/nrgastro.2012.144

74. Wickens K, Black PN, Stanley TV,Mitchell E, Fitzharris P, Tannock GW, et al.

A differential effect of 2 probiotics in the prevention of eczema and atopy: a

double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol.

(2008) 122:788–94. doi: 10.1016/j.jaci.2008.07.011

75. Miles EA, Calder PC. Can early omega-3 fatty acid exposure reduce risk of

childhood allergic disease? Nutrients. (2017) 9:784. doi: 10.3390/nu9070784

76. Willemsen LEM.Dietary n-3 long chain polyunsaturated fatty acids in allergy

prevention and asthma treatment. Eur J Pharmacol. (2016) 785:174–86.

doi: 10.1016/j.ejphar.2016.03.062

77. Sausenthaler S, Koletzko S, Schaaf B, Lehmann I, Borte M, Herbarth O,

et al. Maternal diet during pregnancy in relation to eczema and allergic

sensitization in the offspring at 2 y of age. Am J Clin Nutr. (2007) 85:530–7.

doi: 10.1093/ajcn/85.2.530

78. Azagra-Boronat I, Tres A, Massot-Cladera M, Franch A, Castell M,

Guardiola F, et al. Lactobacillus fermentum cect5716 supplementation in rats

during pregnancy and lactation affects mammary milk composition. J Dairy

Sci. (2020) 103:2982–92. doi: 10.3168/jds.2019-17384

79. Hogenkamp A, Knippels LM, Garssen J, van Esch BCAM. Supplementation

of mice with specific nondigestible oligosaccharides during pregnancy or

lactation leads to diminished sensitization and allergy in the female offspring.

J Nutr. (2015) 145:996–1002. doi: 10.3945/jn.115.210401

80. Hogenkamp A, Thijssen S, van Vlies N, Garssen J. Supplementing pregnant

mice with a specific mixture of nondigestible oligosaccharides reduces

symptoms of allergic asthma in male offspring. J Nutr. (2015) 145:640–6.

doi: 10.3945/jn.114.197707

81. van Vlies N, Hogenkamp A, Thijssen S, Dingjan GM, Knipping K, Garssen J,

et al. Effects of short-chain galacto- and long-chain fructo-oligosaccharides

on systemic and local immune status during pregnancy. J Reprod Immunol.

(2012) 94:161–8. doi: 10.1016/j.jri.2012.02.007

82. Mischke M, Plosch T. More than just a gut instinct-the potential

interplay between a baby’s nutrition, its gut microbiome, and the

epigenome. Am J Physiol Regul Integr Comp Physiol. (2013) 304:R1065–9.

doi: 10.1152/ajpregu.00551.2012

83. Gray LE, O’Hely M, Ranganathan S, Sly PD, Vuillermin P. The maternal

diet, gut bacteria, and bacterial metabolites during pregnancy influence

offspring asthma. Front Immunol. (2017) 8:365. doi: 10.3389/fimmu.2017.

00365

84. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-

Bru C, et al. Gut microbiota metabolism of dietary fiber influences

allergic airway disease and hematopoiesis. Nat Med. (2014) 20:159–66.

doi: 10.1038/nm.3444

85. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ,

et al. Evidence that asthma is a developmental origin disease influenced

by maternal diet and bacterial metabolites. Nat Commun. (2015) 6:7320.

doi: 10.1038/ncomms8320

86. Torow N, Hornef MW. The neonatal window of opportunity: setting the

stage for life-long host-microbial interaction and immune homeostasis. J

Immunol. (2017) 198:557–63. doi: 10.4049/jimmunol.1601253

87. Fujimura T, Lum SZC, Nagata Y, Kawamoto S, Oyoshi MK. Influences of

maternal factors over offspring allergies and the application for food allergy.

Front Immunol. (2019) 10:1933. doi: 10.3389/fimmu.2019.01933

88. Remes ST, Iivanainen K, Koskela H, Pekkanen J. Which factors explain

the lower prevalence of atopy amongst farmers’ children? Clin Exp Allergy.

(2003) 33:427–34. doi: 10.1046/j.1365-2222.2003.01566.x

89. Riedler J, Eder W, Oberfeld G, Schreuer M. Austrian children living on a

farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy.

(2000) 30:194–200. doi: 10.1046/j.1365-2222.2000.00799.x

90. von Ehrenstein OS, von Mutius E, Illi S, Baumann L, Bohm O, von Kries R.

Reduced risk of hay fever and asthma among children of farmers. Clin Exp

Allergy. (2000) 30:187–93. doi: 10.1046/j.1365-2222.2000.00801.x

91. Ege MJ, Bieli C, Frei R, van Strien RT, Riedler J, Ublagger E, et al. Prenatal

farm exposure is related to the expression of receptors of the innate

immunity and to atopic sensitization in school-age children. J Allergy Clin

Immunol. (2006) 117:817–23. doi: 10.1016/j.jaci.2005.12.1307

92. Douwes J, Cheng S, Travier N, Cohet C, Niesink A, McKenzie J, et al. Farm

exposure in utero may protect against asthma, hay fever and eczema. Eur

Respir J. (2008) 32:603–11. doi: 10.1183/09031936.00033707

93. Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, et al. Increased

regulatory t-cell numbers are associated with farm milk exposure and lower

atopic sensitization and asthma in childhood. J Allergy Clin Immunol. (2014)

133:551–9. doi: 10.1016/j.jaci.2013.06.034

94. Slaats GG, Reinius LE, Alm J, Kere J, Scheynius A, Joerink M.

DNA methylation levels within the cd14 promoter region are lower

Frontiers in Immunology | www.frontiersin.org 11 October 2020 | Volume 11 | Article 2141172

https://doi.org/10.1016/j.jaci.2003.09.009
https://doi.org/10.1002/14651858.CD010085.pub2
https://doi.org/10.1111/j.1365-2222.2012.04031.x
https://doi.org/10.1002/14651858.CD010112.pub2
https://doi.org/10.1042/BSR20160485
https://doi.org/10.3945/ajcn.112.039644
https://doi.org/10.1097/ACI.0000000000000255
https://doi.org/10.1016/j.iac.2014.07.003
https://doi.org/10.1172/JCI34378
https://doi.org/10.1186/s13223-015-0102-0
https://doi.org/10.1007/s13197-015-1921-1
https://doi.org/10.1016/j.jaci.2015.04.031
https://doi.org/10.1371/journal.pmed.1002507
https://doi.org/10.3920/BM2015.0073
https://doi.org/10.2332/allergolint.13-OA-0683
https://doi.org/10.1038/nrgastro.2012.144
https://doi.org/10.1016/j.jaci.2008.07.011
https://doi.org/10.3390/nu9070784
https://doi.org/10.1016/j.ejphar.2016.03.062
https://doi.org/10.1093/ajcn/85.2.530
https://doi.org/10.3168/jds.2019-17384
https://doi.org/10.3945/jn.115.210401
https://doi.org/10.3945/jn.114.197707
https://doi.org/10.1016/j.jri.2012.02.007
https://doi.org/10.1152/ajpregu.00551.2012
https://doi.org/10.3389/fimmu.2017.00365
https://doi.org/10.1038/nm.3444
https://doi.org/10.1038/ncomms8320
https://doi.org/10.4049/jimmunol.1601253
https://doi.org/10.3389/fimmu.2019.01933
https://doi.org/10.1046/j.1365-2222.2003.01566.x
https://doi.org/10.1046/j.1365-2222.2000.00799.x
https://doi.org/10.1046/j.1365-2222.2000.00801.x
https://doi.org/10.1016/j.jaci.2005.12.1307
https://doi.org/10.1183/09031936.00033707
https://doi.org/10.1016/j.jaci.2013.06.034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Esch et al. Milk and Immunity in Infancy

in placentas of mothers living on a farm. Allergy. (2012) 67:895–903.

doi: 10.1111/j.1398-9995.2012.02831.x

95. Joerink M, Oortveld MA, Stenius F, Rindsjo E, Alm J, Scheynius

A. Lifestyle and parental allergen sensitization are reflected in the

intrauterine environment at gene expression level.Allergy. (2010) 65:1282–9.

doi: 10.1111/j.1398-9995.2010.02328.x

96. Lauener RP, Birchler T, Adamski J, Braun-Fahrlander C, Bufe A, Herz U,

et al. Expression of cd14 and toll-like receptor 2 in farmers’ and non-

farmers’ children. Lancet. (2002) 360:465–6. doi: 10.1016/S0140-6736(02)

09641-1

97. Roduit C, Wohlgensinger J, Frei R, Bitter S, Bieli C, Loeliger S, et al.

Prenatal animal contact and gene expression of innate immunity receptors

at birth are associated with atopic dermatitis. J Allergy Clin Immunol. (2011)

127:179–85.e1. doi: 10.1016/j.jaci.2010.10.010

98. Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, et al.

Prenatal and early-life exposures alter expression of innate immunity genes:

the pasture cohort study. J Allergy Clin Immunol. (2012) 130:523–30 e9.

doi: 10.1016/j.jaci.2012.05.049

99. Schaub B, Liu J, Höppler S, Schleich I, Huehn J, Olek S, et al.

Maternal farm exposure modulates neonatal immune mechanisms through

regulatory T cells. J Allergy Clin Immunol. (2009) 123:774–82.e5.

doi: 10.1016/j.jaci.2009.01.056

100. Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, et al.

Farm exposure and time trends in early childhood may influence DNA

methylation in genes related to asthma and allergy.Allergy. (2013) 68:355–64.

doi: 10.1111/all.12097

101. Conrad ML, Ferstl R, Teich R, Brand S, Blumer N, Yildirim AO, et al.

Maternal tlr signaling is required for prenatal asthma protection by

the nonpathogenic microbe acinetobacter lwoffii f78. J Exp Med. (2009)

206:2869–77. doi: 10.1084/jem.20090845

102. Hagner S, Harb H, Zhao M, Stein K, Holst O, Ege MJ, et al. Farm-

derived gram-positive bacterium staphylococcus sciuri w620 prevents

asthma phenotype in hdm- and ova-exposed mice. Allergy. (2013) 68:322–9.

doi: 10.1111/all.12094

103. Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic

regulation in murine offspring as a novel mechanism for transmaternal

asthma protection induced by microbes. J Allergy Clin Immunol. (2011)

128:618–25 e1–7. doi: 10.1016/j.jaci.2011.04.035

104. Ballard O, Morrow AL. Human milk composition: nutrients

and bioactive factors. Pediatr Clin North Am. (2013) 60:49–74.

doi: 10.1016/j.pcl.2012.10.002

105. Verhasselt V. Oral tolerance in neonates: from basics to potential

prevention of allergic disease. Mucosal Immunol. (2010) 3:326–33.

doi: 10.1038/mi.2010.25

106. Boix-Amoros A, Collado MC, Van’t Land B, Calvert A, Le Doare K,

Garssen J, et al. Reviewing the evidence on breast milk composition and

immunological outcomes. Nutr Rev. (2019) 77:541–56. doi: 10.1093/nutrit/

nuz019

107. Triantis V, Bode L, van Neerven RJJ. Immunological effects of human

milk oligosaccharides. Front Pediatr. (2018) 6:190. doi: 10.3389/fped.2018.

00190

108. Bode L. Human milk oligosaccharides: every baby needs a sugar mama.

Glycobiology. (2012) 22:1147–62. doi: 10.1093/glycob/cws074

109. Osborn DA, Sinn JK. Prebiotics in infants for prevention

of allergy. Cochrane Database Syst Rev. (2013) 28:CD006474.

doi: 10.1002/14651858.CD006474.pub3

110. Cuello-Garcia C, Fiocchi A, Pawankar R, Yepes-Nunez JJ, Morgano GP,

Zhang Y, et al. Prebiotics for the prevention of allergies: a systematic review

and meta-analysis of randomized controlled trials. Clin Exp Allergy. (2017)

47:1468–77. doi: 10.1111/cea.13042

111. Eigenmann PA. Evidence of preventive effect of probiotics and prebiotics

for infantile eczema. Curr Opin Allergy Clin Immunol. (2013) 13:426–31.

doi: 10.1097/ACI.0b013e3283630bad

112. deMoura PN, Rosario Filho NA. The use of prebiotics during the first year of

life for atopy prevention and treatment. Immun Inflamm Dis. (2013) 1:63–9.

doi: 10.1002/iid3.8

113. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early

dietary intervention with a mixture of prebiotic oligosaccharides reduces the

incidence of allergic manifestations and infections during the first two years

of life. J Nutr. (2008) 138:1091–5. doi: 10.1093/jn/138.6.1091

114. Lomax AR, Calder PC. Prebiotics, immune function, infection and

inflammation: a review of the evidence. Br J Nutr. (2009) 101:633–58.

doi: 10.1017/S0007114508055608

115. Bruzzese E, Volpicelli M, Squeglia V, Bruzzese D, Salvini F, Bisceglia M,

et al. A formula containing galacto- and fructo-oligosaccharides prevents

intestinal and extra-intestinal infections: an observational study. Clin Nutr.

(2009) 28:156–61. doi: 10.1016/j.clnu.2009.01.008

116. Arslanoglu S, Moro GE, Boehm G. Early supplementation of prebiotic

oligosaccharides protects formula-fed infants against infections during the

first 6 months of life. J Nutr. (2007) 137:2420–4. doi: 10.1093/jn/137.11.2420

117. Westerbeek EA, van den Berg JP, Lafeber HN, Fetter WP, Boehm G,

Twisk JW, et al. Neutral and acidic oligosaccharides in preterm infants: a

randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. (2010)

91:679–86. doi: 10.3945/ajcn.2009.28625

118. Duggan C, Penny ME, Hibberd P, Gil A, Huapaya A, Cooper A,

et al. Oligofructose-supplemented infant cereal: 2 randomized, blinded,

community-based trials in peruvian infants. Am J Clin Nutr. (2003) 77:937–

42. doi: 10.1093/ajcn/77.4.937

119. Waligora-Dupriet AJ, Campeotto F, Nicolis I, Bonet A, Soulaines P, Dupont

C, et al. Effect of oligofructose supplementation on gut microflora and well-

being in young children attending a day care centre. Int J Food Microbiol.

(2007) 113:108–13. doi: 10.1016/j.ijfoodmicro.2006.07.009

120. Khaleva E, Gridneva Z, Geddes DT, Oddy WH, Colicino S, Blyuss O, et al.

Transforming growth factor beta in human milk and allergic outcomes

in children: a systematic review. Clin Exp Allergy. (2019) 49:1201–13.

doi: 10.1111/cea.13409

121. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al.

Bovine lactoferrin supplementation for prevention of late-onset sepsis in

very low-birth-weight neonates: a randomized trial. JAMA. (2009) 302:1421–

8. doi: 10.1001/jama.2009.1403

122. Manzoni P, Stolfi I, Messner H, Cattani S, Laforgia N, Romeo MG, et al.

Bovine lactoferrin prevents invasive fungal infections in very low birth

weight infants: a randomized controlled trial. Pediatrics. (2012) 129:116–23.

doi: 10.1542/peds.2011-0279

123. King JC Jr., Cummings GE, GuoN, Trivedi L, Readmond BX, et al. A double-

blind, placebo-controlled, pilot study of bovine lactoferrin supplementation

in bottle-fed infants. J Pediatr Gastroenterol Nutr. (2007) 44:245–51.

doi: 10.1097/01.mpg.0000243435.54958.68

124. Chen K, Chai L, Li H, Zhang Y, Xie HM, Shang J, et al. Effect of bovine

lactoferrin from iron-fortified formulas on diarrhea and respiratory tract

infections of weaned infants in a randomized controlled trial. Nutrition.

(2016) 32:222–7. doi: 10.1016/j.nut.2015.08.010

125. Abbring S, Ryan JT, Diks MAP, Hols G, Garssen J, van Esch BCAM.

Suppression of food allergic symptoms by raw cow’s milk in mice

is retained after skimming but abolished after heating the milk - a

promising contribution of alkaline phosphatase. Nutrients. (2019) 11:1499.

doi: 10.3390/nu11071499

126. Lonnerdal B, Kvistgaard AS, Peerson JM, Donovan SM, Peng YM. Growth,

nutrition, and cytokine response of breast-fed infants and infants fed formula

with added bovine osteopontin. J Pediatr Gastroenterol Nutr. (2016) 62:650–

7. doi: 10.1097/MPG.0000000000001005

127. West CE, Kvistgaard AS, Peerson JM, Donovan SM, Peng YM, Lonnerdal B.

Effects of osteopontin-enriched formula on lymphocyte subsets in the first 6

months of life: a randomized controlled trial. Pediatr Res. (2017) 82:63–71.

doi: 10.1038/pr.2017.77

128. Timby N, Hernell O, Vaarala O, Melin M, Lonnerdal B, Domellof

M. Infections in infants fed formula supplemented with bovine milk

fat globule membranes. J Pediatr Gastroenterol Nutr. (2015) 60:384–9.

doi: 10.1097/MPG.0000000000000624

129. Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ.

Effects of bovine immunoglobulins on immune function, allergy, and

infection. Front Nutr. (2018) 5:52. doi: 10.3389/fnut.2018.00052

130. Collins AM, Roberton DM, Hosking CS, Flannery GR. Bovine milk,

including pasteurised milk, contains antibodies directed against allergens of

clinical importance to man. Int Arch Allergy Appl Immunol. (1991) 96:362–7.

doi: 10.1159/000235523

Frontiers in Immunology | www.frontiersin.org 12 October 2020 | Volume 11 | Article 2141173

https://doi.org/10.1111/j.1398-9995.2012.02831.x
https://doi.org/10.1111/j.1398-9995.2010.02328.x
https://doi.org/10.1016/S0140-6736(02)09641-1
https://doi.org/10.1016/j.jaci.2010.10.010
https://doi.org/10.1016/j.jaci.2012.05.049
https://doi.org/10.1016/j.jaci.2009.01.056
https://doi.org/10.1111/all.12097
https://doi.org/10.1084/jem.20090845
https://doi.org/10.1111/all.12094
https://doi.org/10.1016/j.jaci.2011.04.035
https://doi.org/10.1016/j.pcl.2012.10.002
https://doi.org/10.1038/mi.2010.25
https://doi.org/10.1093/nutrit/nuz019
https://doi.org/10.3389/fped.2018.00190
https://doi.org/10.1093/glycob/cws074
https://doi.org/10.1002/14651858.CD006474.pub3
https://doi.org/10.1111/cea.13042
https://doi.org/10.1097/ACI.0b013e3283630bad
https://doi.org/10.1002/iid3.8
https://doi.org/10.1093/jn/138.6.1091
https://doi.org/10.1017/S0007114508055608
https://doi.org/10.1016/j.clnu.2009.01.008
https://doi.org/10.1093/jn/137.11.2420
https://doi.org/10.3945/ajcn.2009.28625
https://doi.org/10.1093/ajcn/77.4.937
https://doi.org/10.1016/j.ijfoodmicro.2006.07.009
https://doi.org/10.1111/cea.13409
https://doi.org/10.1001/jama.2009.1403
https://doi.org/10.1542/peds.2011-0279
https://doi.org/10.1097/01.mpg.0000243435.54958.68
https://doi.org/10.1016/j.nut.2015.08.010
https://doi.org/10.3390/nu11071499
https://doi.org/10.1097/MPG.0000000000001005
https://doi.org/10.1038/pr.2017.77
https://doi.org/10.1097/MPG.0000000000000624
https://doi.org/10.3389/fnut.2018.00052
https://doi.org/10.1159/000235523
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Esch et al. Milk and Immunity in Infancy

131. den Hartog G, Jacobino S, Bont L, Cox L, Ulfman LH, Leusen JH, et al.

Specificity and effector functions of human rsv-specific igg from bovinemilk.

PLoS ONE. (2014) 9:e112047. doi: 10.1371/journal.pone.0112047

132. Nederend M, van Stigt AH, Jansen JHM, Jacobino SR, Brugman S, de

Haan CAM, et al. Bovine igg prevents experimental infection with rsv and

facilitates human t cell responses to RSV. Front Immunol. (2020) 11:1701.

doi: 10.3389/fimmu.2020.01701

133. Xu ML, Kim HJ, Wi GR, Kim HJ. The effect of dietary bovine

colostrum on respiratory syncytial virus infection and immune responses

following the infection in the mouse. J Microbiol. (2015) 53:661–6.

doi: 10.1007/s12275-015-5353-4

134. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, et al.

Randomized trial of bcg vaccination at birth to low-birth-weight children:

beneficial nonspecific effects in the neonatal period? J Infect Dis. (2011)

204:245–52. doi: 10.1093/infdis/jir240

135. Benn CS, Netea MG, Selin LK, Aaby P. A small jab - a big effect:

nonspecific immunomodulation by vaccines. Trends Immunol. (2013)

34:431–9. doi: 10.1016/j.it.2013.04.004

136. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed

S, et al. Bacille calmette-guerin induces nod2-dependent nonspecific

protection from reinfection via epigenetic reprogramming of monocytes.

Proc Natl Acad Sci USA. (2012) 109:17537–42. doi: 10.1073/pnas.12028

70109

137. Quintin J, Saeed S,Martens JHA, Giamarellos-Bourboulis EJ, IfrimDC, Logie

C, et al. Candida albicans infection affords protection against reinfection

via functional reprogramming of monocytes. Cell Host Microbe. (2012)

12:223–32. doi: 10.1016/j.chom.2012.06.006

138. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S,

Kumar V, et al. Mtor- and hif-1alpha-mediated aerobic glycolysis as

metabolic basis for trained immunity. Science. (2014) 345:1250684.

doi: 10.1126/science.1250684

139. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese

F, et al. Epigenetic programming of monocyte-to-macrophage

differentiation and trained innate immunity. Science. (2014) 345:1251086.

doi: 10.1126/science.1251086

140. van Splunter M, van Osch TLJ, Brugman S, Savelkoul HFJ, Joosten LAB,

Netea MG, et al. Induction of trained innate immunity in human monocytes

by bovine milk and milk-derived immunoglobulin g. Nutrients. (2018)

10:1378. doi: 10.3390/nu10101378

141. Marques AH, O’Connor TG, Roth C, Susser E, Bjorke-Monsen AL.

The influence of maternal prenatal and early childhood nutrition and

maternal prenatal stress on offspring immune system development

and neurodevelopmental disorders. Front Neurosci. (2013) 7:120.

doi: 10.3389/fnins.2013.00120

142. Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation,

maternal infection, and nutrition. J Nutr. (2015) 145:1109–15S.

doi: 10.3945/jn.114.194639

143. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health.

Adv Nutr. (2010) 1:8–16. doi: 10.3945/an.110.1004

144. Paparo L, di Costanzo M, di Scala C, Cosenza L, Leone L, Nocerino R, et al.

The influence of early life nutrition on epigenetic regulatory mechanisms of

the immune system. Nutrients. (2014) 6:4706–19. doi: 10.3390/nu6114706

145. Rajani PS, Seppo AE, Jarvinen KM. Immunologically active components

in human milk and development of atopic disease, with emphasis on

food allergy, in the pediatric population. Front Pediatr. (2018) 6:218.

doi: 10.3389/fped.2018.00218

146. Hartwig FP, Loret de Mola C, Davies NM, Victora CG, Relton

CL. Breastfeeding effects on DNA methylation in the offspring:

a systematic literature review. PLoS ONE. (2017) 12:e0173070.

doi: 10.1371/journal.pone.0173070

147. Abbring S, Wolf J, Ayechu-Muruzabal V, Diks MAP, Alashkar Alhamwe

B, Alhamdan F, et al. Raw cow’s milk reduces allergic symptoms in a

murine model for food allergy - a potential role for epigenetic modifications.

Nutrients. (2019) 11:1721. doi: 10.3390/nu11081721

148. Bieli C, Eder W, Frei R, Braun-Fahrlander C, Klimecki W, Waser M, et al.

A polymorphism in cd14 modifies the effect of farm milk consumption on

allergic diseases and cd14 gene expression. J Allergy Clin Immunol. (2007)

120:1308–15. doi: 10.1016/j.jaci.2007.07.034

149. Cui J, Zhou B, Ross SA, Zempleni J. Nutrition, micrornas, and human health.

Adv Nutr. (2017) 8:105–12. doi: 10.3945/an.116.013839

150. Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, et al. Bovine

milk exosomes contain microrna and mrna and are taken up by human

macrophages. J Dairy Sci. (2015) 98:2920–33. doi: 10.3168/jds.2014-9076

151. Wolf T, Baier SR, Zempleni J. The intestinal transport of bovine milk

exosomes is mediated by endocytosis in human colon carcinoma caco-

2 cells and rat small intestinal iec-6 cells. J Nutr. (2015) 145:2201–6.

doi: 10.3945/jn.115.218586

152. Zempleni J, Sukreet S, Zhou F, Wu D, Mutai E. Milk-derived exosomes

and metabolic regulation. Annu Rev Anim Biosci. (2019) 7:245–62.

doi: 10.1146/annurev-animal-020518-115300

153. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived

exosomes for drug delivery. Cancer Lett. (2016) 371:48–61.

doi: 10.1016/j.canlet.2015.10.020

154. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. Micrornas are absorbed

in biologically meaningful amounts from nutritionally relevant doses of cow

milk and affect gene expression in peripheral blood mononuclear cells, hek-

293 kidney cell cultures, and mouse livers. J Nutr. (2014) 144:1495–500.

doi: 10.3945/jn.114.196436

155. Title AC, Denzler R, Stoffel M. Uptake and function studies of

maternal milk-derived micrornas. J Biol Chem. (2015) 290:23680–91.

doi: 10.1074/jbc.M115.676734

156. Link J, Thon C, Schanze D, Steponaitiene R, Kupcinskas J, Zenker M,

et al. Food-derived xeno-micrornas: influence of diet and detectability in

gastrointestinal tract-proof-of-principle study. Mol Nutr Food Res. (2019)

63:e1800076. doi: 10.1002/mnfr.201800076

157. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M,

et al. Exosomes with immune modulatory features are present in human

breast milk. J Immunol. (2007) 179:1969–78. doi: 10.4049/jimmunol.179.

3.1969

158. Arntz OJ, Pieters BC, Oliveira MC, Broeren MG, Bennink MB, de Vries

M, et al. Oral administration of bovine milk derived extracellular vesicles

attenuates arthritis in two mouse models. Mol Nutr Food Res. (2015)

59:1701–12. doi: 10.1002/mnfr.201500222

159. Li B, Hock A, Wu RY, Minich A, Botts SR, Lee C, et al. Bovine milk-

derived exosomes enhance goblet cell activity and prevent the development

of experimental necrotizing enterocolitis. PLoS ONE. (2019) 14:e0211431.

doi: 10.1371/journal.pone.0211431

160. Gao R, Zhang R, Qian T, Peng X, He W, Zheng S, et al. A comparison

of exosomes derived from different periods breast milk on protecting

against intestinal organoid injury. Pediatr Surg Int. (2019) 35:1363–8.

doi: 10.1007/s00383-019-04562-6

161. Woo V, Alenghat T. Host-microbiota interactions: epigenomic regulation.

Curr Opin Immunol. (2017) 44:52–60. doi: 10.1016/j.coi.2016.12.001

162. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber

to host physiology: short-chain fatty acids as key bacterial metabolites. Cell.

(2016) 165:1332–45. doi: 10.1016/j.cell.2016.05.041

163. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain fatty

acids, t cells, and inflammation. Immune Netw. (2014) 14:277–88.

doi: 10.4110/in.2014.14.6.277

164. Kendrick SF, O’Boyle G, Mann J, Zeybel M, Palmer J, Jones DE, et al. Acetate,

the key modulator of inflammatory responses in acute alcoholic hepatitis.

Hepatology. (2010) 51:1988–97. doi: 10.1002/hep.23572

165. Kiefer J, Beyer-Sehlmeyer G, Pool-Zobel BL. Mixtures of scfa, composed

according to physiologically available concentrations in the gut lumen,

modulate histone acetylation in human ht29 colon cancer cells. Br J Nutr.

(2006) 96:803–10. doi: 10.1017/BJN20061948

166. Sealy L, Chalkley R. The effect of sodium butyrate on histone modification.

Cell. (1978) 14:115–21. doi: 10.1016/0092-8674(78)90306-9

167. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al.

Metabolites produced by commensal bacteria promote peripheral regulatory

t-cell generation. Nature. (2013) 504:451–5. doi: 10.1038/nature12726

168. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al.

Commensal microbe-derived butyrate induces the differentiation of colonic

regulatory t cells. Nature. (2013) 504:446–50. doi: 10.1038/nature12721

169. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM,

et al. The microbial metabolites, short-chain fatty acids, regulate colonic

Frontiers in Immunology | www.frontiersin.org 13 October 2020 | Volume 11 | Article 2141174

https://doi.org/10.1371/journal.pone.0112047
https://doi.org/10.3389/fimmu.2020.01701
https://doi.org/10.1007/s12275-015-5353-4
https://doi.org/10.1093/infdis/jir240
https://doi.org/10.1016/j.it.2013.04.004
https://doi.org/10.1073/pnas.1202870109
https://doi.org/10.1016/j.chom.2012.06.006
https://doi.org/10.1126/science.1250684
https://doi.org/10.1126/science.1251086
https://doi.org/10.3390/nu10101378
https://doi.org/10.3389/fnins.2013.00120
https://doi.org/10.3945/jn.114.194639
https://doi.org/10.3945/an.110.1004
https://doi.org/10.3390/nu6114706
https://doi.org/10.3389/fped.2018.00218
https://doi.org/10.1371/journal.pone.0173070
https://doi.org/10.3390/nu11081721
https://doi.org/10.1016/j.jaci.2007.07.034
https://doi.org/10.3945/an.116.013839
https://doi.org/10.3168/jds.2014-9076
https://doi.org/10.3945/jn.115.218586
https://doi.org/10.1146/annurev-animal-020518-115300
https://doi.org/10.1016/j.canlet.2015.10.020
https://doi.org/10.3945/jn.114.196436
https://doi.org/10.1074/jbc.M115.676734
https://doi.org/10.1002/mnfr.201800076
https://doi.org/10.4049/jimmunol.179.3.1969
https://doi.org/10.1002/mnfr.201500222
https://doi.org/10.1371/journal.pone.0211431
https://doi.org/10.1007/s00383-019-04562-6
https://doi.org/10.1016/j.coi.2016.12.001
https://doi.org/10.1016/j.cell.2016.05.041
https://doi.org/10.4110/in.2014.14.6.277
https://doi.org/10.1002/hep.23572
https://doi.org/10.1017/BJN20061948
https://doi.org/10.1016/0092-8674(78)90306-9
https://doi.org/10.1038/nature12726
https://doi.org/10.1038/nature12721
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Esch et al. Milk and Immunity in Infancy

treg cell homeostasis. Science. (2013) 341:569–73. doi: 10.1126/science.12

41165

170. Perdijk O, van Baarlen P, Fernandez-Gutierrez MM, van den Brink E,

Schuren FHJ, Brugman S, et al. Sialyllactose and galactooligosaccharides

promote epithelial barrier functioning and distinctly modulate microbiota

composition and short chain fatty acid production in vitro. Front Immunol.

(2019) 10:94. doi: 10.3389/fimmu.2019.00762

171. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, et al. High

levels of butyrate and propionate in early life are associated with protection

against atopy. Allergy. (2019) 74:799–809. doi: 10.1111/all.13660

172. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-

Doutsch S, et al. Early infancy microbial and metabolic alterations

affect risk of childhood asthma. Sci Transl Med. (2015) 7:307ra152.

doi: 10.1126/scitranslmed.aab2271

173. Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota

on intestinal immunitymediated by tryptophanmetabolism. Front Cell Infect

Microbiol. (2018) 8:13. doi: 10.3389/fcimb.2018.00013

174. Lee-Sarwar KA, Lasky-Su J, Kelly RS, Litonjua AA, Weiss ST. Gut

microbial-derived metabolomics of asthma. Metabolites. (2020) 10:97.

doi: 10.3390/metabo10030097

175. Chatzi L, Garcia R, Roumeliotaki T, Basterrechea M, Begiristain H,

Iñiguez C, et al. Mediterranean diet adherence during pregnancy and

risk of wheeze and eczema in the first year of life: inma (spain) and

rhea (greece) mother-child cohort studies. Br J Nutr. (2013) 110:2058–68.

doi: 10.1017/S0007114513001426

176. Miyake Y, Sasaki S, Tanaka K, Hirota Y. Dairy food, calcium and vitamin d

intake in preg nancy, and wheeze and eczema in infants. Eur Respir J. (2010)

35:1228–34. doi: 10.1183/09031936.00100609

177. Palmer AC. Nutritionally mediated programming of the developing

immune system. Adv Nutr. (2011) 2:377–95. doi: 10.3945/an.111.

000570

Conflict of Interest: BE and JG are partly employed by Nutricia Research. RN is

employed by FrieslandCampina.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Esch, Porbahaie, Abbring, Garssen, Potaczek, Savelkoul and

Neerven. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 14 October 2020 | Volume 11 | Article 2141175

https://doi.org/10.1126/science.1241165
https://doi.org/10.3389/fimmu.2019.00762
https://doi.org/10.1111/all.13660
https://doi.org/10.1126/scitranslmed.aab2271
https://doi.org/10.3389/fcimb.2018.00013
https://doi.org/10.3390/metabo10030097
https://doi.org/10.1017/S0007114513001426
https://doi.org/10.1183/09031936.00100609
https://doi.org/10.3945/an.111.000570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Xin Zhao,

McGill University, Canada

Reviewed by:
Wayne Young,

AgResearch Ltd, New Zealand
Xin Wu,

Chinese Academy of Sciences (CAS),
China

*Correspondence:
Laxmi Yeruva

vlyeruva@uams.edu

Specialty section:
This article was submitted to

Nutritional Immunology,
a section of the journal

Frontiers in Immunology

Received: 17 September 2020
Accepted: 05 November 2020
Published: 07 December 2020

Citation:
Rosa F, Matazel KS, Bowlin AK,

Williams KD, Elolimy AA, Adams SH,
Bode L and Yeruva L (2020) Neonatal

Diet Impacts the Large Intestine
Luminal Metabolome at Weaning
and Post-Weaning in Piglets Fed

Formula or Human Milk.
Front. Immunol. 11:607609.

doi: 10.3389/fimmu.2020.607609

ORIGINAL RESEARCH
published: 07 December 2020

doi: 10.3389/fimmu.2020.607609
Neonatal Diet Impacts the Large
Intestine Luminal Metabolome at
Weaning and Post-Weaning in Piglets
Fed Formula or Human Milk
Fernanda Rosa1,2, Katelin S. Matazel1,3, Anne K. Bowlin4, Keith D. Williams1,5,
Ahmed A. Elolimy1,2, Sean H. Adams1,2, Lars Bode6,7 and Laxmi Yeruva1,2,3*

1 Arkansas Children’s Nutrition Center, Little Rock, AR, United States, 2 Department of Pediatrics, University of Arkansas for
Medical Sciences, Little Rock, AR, United States, 3 Arkansas Children’s Research Institute, Little Rock, AR, United States,
4 Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States,
5 Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock AR, United States, 6 Larsson-
Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA,
United States, 7 Department of Pediatrics, University of California San Diego, La Jolla, CA, United States

The impact of human milk (HM) or dairy milk-based formula (MF) on the large intestine’s
metabolome was not investigated. Two-day old male piglets were randomly assigned to
HM or MF diet (n = 26/group), from postnatal day (PND) 2 through 21 and weaned to a
solid diet until PND 51. Piglets were euthanized at PND 21 and PND 51, luminal contents
of the cecum, proximal (PC) and distal colons (DC), and rectum were collected and
subjected to metabolomics analysis. Data analyses were performed using Metaboanalyst.
In comparison to MF, the HM diet resulted in higher levels of fatty acids in the lumen of the
cecum, PC, DC, and rectum at PND 21. Glutamic acid was greater in the lumen of cecum,
PC, and DC relative to the MF group at PND 21. Also, spermidine was higher in the DC
and rectal contents of HM relative to MF at PND 21. MF diet resulted in greater
abundances of amino acids in the cecal lumen relative to HM diet at PND 21.
Additionally, several sugar metabolites were higher in various regions of the distal gut of
MF fed piglets relative to HM group at PND 21. In contrast, at PND 51, in various regions
there were higher levels of erythritol, maltotriose, isomaltose in HM versus MF fed piglets.
This suggests a post weaning shift in sugar metabolism that is impacted by neonatal diet.
The data also suggest that infant diet type and host-microbiota interactions likely influence
the lower gut metabolome.

Keywords: human milk, infant formula, neonates, metabolism, host-microbiota
INTRODUCTION

Human milk (HM) contains a diversity of bioactive components including lipids, human milk
oligosaccharides (HMOs), a variety of cytokines, and microbiota that can influence the child’s
development, immune function, and microbiota colonization during early life (1–3). Although
studies have indicated the positive impact of HM diet on immune function (4, 5), microbiota
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composition (6), and child’s growth (7), mechanisms behind
these outcomes are poorly understood due to limitations
associated with gut sample collection from infants. During
early life, cow’s milk-based formula (MF) has been chosen as
an alternative to human milk (8), but the degree to which MF
feeding alters the gastrointestinal tract (GI) milieu relative to HM
remains to be fully characterized.

The use of omics technologies such as metagenomics and
metabolomics provide platforms to gain new insights about the
mechanisms underlying diet-associated differences in the infant’s
growth and overall health during the neonatal period. For
instance, microbiota analysis of infant’s stool demonstrated
that HM diet shapes microbiota colonization and enriches
bacterial species Bifidobacteria and Bacteroides during exclusive
HM feeding relative to formula diet (9, 10). Furthermore,
previous studies using metabolomics investigated fecal and
serum metabolite profiles of HM versus MF fed infants (11–
14). While providing valuable insights, the GI bioregional aspects
of HM and MF feeding have remained difficult to study.

We and others reported the use of animal models (primate
and piglets) to investigate the impact of MF diet on gut
microbiota, immune system, and metabolism (15–22). These
models are valuable tools to explore the effects of neonatal
regimes on gastrointestinal tract development and maturation
(18, 23–25), since they allow the collection of multiple tissues and
GI regions for large scale analysis which is limited in human
studies (26). Our group developed a piglet model under
controlled conditions (i.e., an isocaloric diet of HM or MF,
vivarium housing), and have demonstrated that HM-fed piglets
had a higher abundance of Bacteroides which is similar to the
microbiota composition of breast-fed infants (17). Most recently,
using the same piglet model our group reported that formula diet
could alter the epithelial barrier integrity through disruption of
tight junctions in the small intestine of formula-fed piglets
compared to the HM-fed (18). These findings are indicative
that a piglet model is a promising tool to evaluate the influence of
neonatal diet on gut metabolism. Here, we present a comparative
metabolomics analysis of the distal gastrointestinal tract of
piglets fed HM or MF diet during the first 21 days of life and
post-weaning neonatal diet at day 51.
MATERIALS AND METHODS

Experimental Design
The animal study was conducted in accordance with the ethical
guidelines for animal research approved by the Institutional
Animal Care and Use Committee at the University of
Arkansas for Medical Sciences. The detailed experimental
design as well as the diet composition were previously
published (19). Briefly, White Dutch Landrace Duroc male
piglets within 2-d old were randomly assigned to two groups
(n = 26/group), fed an isocaloric diet of HM (Mother’s Milk Bank
of North Texas), or a dairy-based MF (milk formula; Similac
Advance powder; Ross products, Abbott Laboratories,
Columbus, OH) to meet the nutrient requirements of growing
Frontiers in Immunology | www.frontiersin.org 2177
pigs as per the guidelines published by the National Research
Council (NRC) (27). At postnatal day (PND) 14 complementary
food (i.e., solid pellets) (starter pellets; Teklad, TD 140608;
Harlan Laboratories) was introduced to the piglets and weaned
to ad libitum solid pellets from PND21 to PND51 (19). Piglets
were immunized on PND 21 and PND 35 with oral
administration of 100 µg of cholera toxin (C8052, Millipore
Sigma) and 100 µg of cholera toxin subunit B (CTB; C9903,
Millipore Sigma). Piglets also received The DAPTACEL
[diphtheria, tetanus, pertussis (DTaP)] vaccine (0.5 mL;
Arkansas Children’s Hospital pharmacy) by intramuscular
injection. Control piglets received vehicle.

Tissue Collection
At PND 21 and 51 piglets were euthanized after anesthetization
with isoflurane, followed by exsanguination. Cecum, proximal
colon, distal colon, and rectum contents were collected within a
scintillation vial by pinching the tissue and sliding the constriction
toward the open end. All samples were immediately snap-frozen in
liquid nitrogen and stored at −80°C until further analysis.

Metabolite Profiling and Statistical
Analyses
Cecum, PC, DC, and rectum contents were subjected to
metabolomics analyses using gas chromatography/mass
spectrometry (GC/MS) at the West Coast Metabolomics
Center at University of California Davis. Approximately 4 mg
of contents from experimental samples from each region were
used to have a pool for quality control (QC) during the process of
the metabolome data. Detailed GC/MS instrument conditions
were reported previously (28). Briefly, a total of 0.5 µL of each
sample was injected splitless into an Agilent 6890 GC equipped
with a Gerstel automatic liner exchange system (ALEX) that
includes a multipurpose sample (MPS2) dual rail, and a Gerstel
CIS cold injection system (Gerstel, Muehlheim, Germany). The
gas chromatograph was controlled using Leco ChromaTOF
software. Constituted of helium mobile phase, the gas flow rate
through a 30 m long, 0.25 mm i.d. Rtx-5Sil MS column (0.25 mm
95% dimethyl 5% diphenyl polysiloxane film) with additional
10 m integrated guard column (Restek, Bellefonte PA) was 1 mL/
min. The transfer line temperature between gas chromatograph
and mass spectrometer was set to 280°C. Electron impact was
generated by a 70-eV ionization and with an ion source
temperature of 250°C. Acquisition rate is 17 spectra/second,
with a scan mass range of 85–500 Da. Compounds were
identified by comparison with Fiehn lab BinBase database
annotations (29), database identifier [i.e., InChI key (30)], the
compound annotation metadata (i.e., retention index,
quantification mass, BinBase identifier, and mass spectrum),
and PubChem annotation (31). A list of peak heights,
retention time and mass to charge (m/z) were obtained. 549
metabolites were detected in all samples, including 282
annotated and 267 unknown (non-annotated) metabolites. The
unknown metabolites were excluded from the current analysis.
The raw data was processed and analyzed in MetaboAnalyst 4.0
(32). On postnatal day 51, diet and immunization interactions
December 2020 | Volume 11 | Article 607609
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were assessed by Permutational multivariate ANOVA
(PERMANOVA) with 999 permutations (Supplemental Table
1). No Diet × immunization interaction was observed for cecum
(P > 0.25), PC and DC (P ≥ 0.42), and for rectum content
metabolites (P = 0.11). Therefore, control and immunized data
were pooled in the analysis of the PND 51. The QC samples were
subjected to multivariate analysis in MetaboAnalyst to check the
precision of the metabolomics analysis. The supervised partial
least squares discriminant analysis (PLS-DA) score plot for the
QC samples (Supplemental Figure 1) showed the tight
clustering of the QC samples indicating the precise outcome
from the metabolites process. Metabolites peak intensities were
normalized by the sum of all identified metabolites (33) and log
transformed prior to multivariate statistical analysis (34). The
PLS-DA score plots were used to see the overall difference
between metabolite profiles of HM and MF groups followed by
Pattern Hunter analysis in MetaboAnalyst to detect the
significant differences in metabolites between groups. A
metabolite was considered to be statistically different when P -
value ≤ 0.05, Benjamini-Hochberg adjusted false discovery rate
(FDR) ≤ 0.15, and variable importance in projection (VIP)
score > 1.0 (34, 35). Based on the identification of the
significantly altered metabolites in HM and MF-fed groups, we
calculated the fold change (FC) for each metabolite.
RESULTS

MF Diet-Fed Piglets Have a Distinct
Metabolite Profile in the Distal
Gastrointestinal Tract Relative to HM Fed
Piglets at PND 21
Previously we have demonstrated that microbiota changes were
predominant in the large intestine of piglets fed the MF diet
relative to the HM group (17). Thus, to evaluate the impact of
early diet on the large intestine metabolome, the cecum,
Frontiers in Immunology | www.frontiersin.org 3178
proximal colon, distal colon, and rectum contents were
examined at PND 21. The PLS-DA model of metabolite
showed robust separation of dietary groups at PND 21 in
cecal, PC, DC, and rectal regions of the gastrointestinal tract
(Figures 1A–D).

Metabolite Profile in Different Regions
of the Distal Gastrointestinal Tract at PND
21 Is Impacted by Neonatal Diet
At PND 21, within the lumen of large intestine and rectum, a
total of 123 cecal, 111 PC, 95 DC, and 62 rectal metabolites from
diverse chemical classes including fatty acids, amino acids, lipids,
carbohydrates, vitamins, steroids, and co-metabolites were
significantly different between HM and MF diet-fed piglets
(Tables 1–7 and Supplemental Table 2). The complete list of
all detected metabolites (including non-annotated “unknown”
metabolites) within each intestinal region is presented in the
Supplementary Table 6.

Fatty Acids and Polyamines Had Higher
Abundances in the Distal Gut of HM
Relative to MF Fed Piglets at PND21
The fatty acids myristic, palmitic, linolenic, linoleic, oleic, and
palmitoleic were the common metabolites identified throughout
the lumen of cecum, PC, DC, and rectum at PND 21, which had
greater abundance in the HM than in the MF group. In the
lumen of cecum, the saturated fatty acid stearic acid was greater
in the HM-fed group relative to the MF group (Table 1). In the
PC and DC of HM fed piglets, the fatty acids cis-gondoic acid
was higher relative to the MF group (Table 1). In addition, the
fatty acids cis-gondoic had greater abundance in the DC lumen
of HM than MF-fed piglets (Table 1). Spermidine was another
metabolite common to the DC and rectal lumen that was higher
in the HM compared to the MF-fed piglets (Table 2). However,
Putrescine was lower in HM cecal lumen in comparison to
MF group.
A B C D

FIGURE 1 | Two-dimensional scores plot of partial least squares discriminant analysis (PLS-DA) model showing how distal gut content abundances of annotated
metabolites can discriminate human milk (HM) versus milk formula (MF) feeding groups during the neonatal period in piglets. Panels depict (A) cecum (B), proximal
colon (C), distal colon, and (D) rectal contents at postnatal day (PND) 21. PLS-DA scores (i.e., individual piglet scores) for PLS-DA components (dimensions) 1 and 2
are displayed. Shadows with color are 95% confidence regions. Pink circles indicate individual HM-fed piglets and green circles indicate MF-fed piglets. Sample
numbers were n = 8–11 per group.
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Carbohydrates and Amino Acids Were
Higher in MF Fed Piglets Relative to HM
Group at PND 21
The carbohydrates 1, 5-anhydroglucitol, galactitol, sorbitol, and
fructose were greater in the DC contents of HM-fed relative to
Frontiers in Immunology | www.frontiersin.org 4179
MF-fed piglets, while the carbohydrates galactose-6-phosphate
and raffinose had greater abundances in the cecal, PC, and DC
lumen of MF relative to HM-fed piglets (Table 3). Isomaltose,
ribitol, and maltotriose were greater in the cecal contents of MF
relative to the HM group. In addition, 1, 5-anhydroglucitol,
TABLE 1 | Average abundances [quantifier ion (quantion) intensities] of fatty acids significantly different when comparing human milk (HM) or milk formula (MF) diet
groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Myristic acid 145,457 21,036 73,124 18,704 1.99 0.01 0.03 1.2
Palmitic acid 625,873 39,506 444,733 43,594 1.41 0.01 0.02 1.23
Linolenic acid 16,553 2,620 6,639 1,319 2.49 <0.01 0.02 1.24
Linoleic acid 9,148 1,503 3,055 604 2.99 <0.01 0.01 1.43
Oleic acid 58,553 22,709 7,959 1,415 7.36 <0.01 0.01 1.31
Palmitoleic acid 1,581 214 604 89 2.62 <0.01 <0.01 1.6
Stearic acid 4,829,607 212,505 3,878,986 321,597 1.25 0.03 0.06 1.03
Proximal colon
Myristic acid 332,535 78,155 121,609 23,150 2.73 <0.01 0.01 1.55
Palmitic acid 1,127,510 94,825 752,618 45,928 1.5 <0.01 0.01 1.55
Linolenic acid 32,957 3,956 17,855 4,297 1.85 0.02 0.06 1.2
Linoleic acid 32,011 5,977 11,235 2,916 2.85 <0.01 0.01 1.51
Oleic acid 159,855 62,469 39,707 21,273 4.03 0.02 0.06 1.18
Palmitoleic acid 4,320 1,317 785 112 5.51 <0.01 <0.01 1.91
Cis-gondoic acid 3,097 327 2,050 225 1.51 0.03 0.09 1.08
Distal colon
Myristic acid 700,211 64,821 291,343 48,434 2.4 <0.01 0 1.87
Palmitic acid 2,023,370 165,035 1,354,469 78,078 1.49 <0.01 0 1.73
Linolenic acid 75,731 14,902 18,827 4,014 4.02 <0.01 0.01 1.68
Oleic acid 469,449 50,482 73,856 23,936 6.36 <0.01 0 2
Palmitoleic acid 8,349 1,340 615 72 13.57 <0.01 <0.01 2.6
Cis-gondoic acid 5,677 977 2,122 345 2.68 <0.01 0.01 1.65
Stearic acid 8,584,424 666,445 10,187,891 291,167 0.84 0.05 0.15 1.06
Rectum
Myristic acid 632,851 53,966 401,123 85,521 1.58 0.01 0.07 1.51
Palmitic acid 1,515,125 64,253 1,102,436 96,584 1.37 <0.01 0.02 1.79
Linolenic acid 67,665 12,297 21,882 3,716 3.09 0.01 0.06 1.57
Linoleic acid 54,138 8,348 13,835 3,649 3.91 <0.01 <0.01 2.05
Oleic acid 440,191 80,906 85,398 47,031 5.15 <0.01 0.01 1.89
Palmitoleic acid 8,349 1,340 615 72 13.57 <0.01 <0.01 2.6
Decemb
er 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
TABLE 2 | Average abundances [quantifier ion (quantion) intensities] of polyamines significantly different when comparing human milk (HM) or milk formula (MF) diet
groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Putrescine 4,460 3,457 5,720 1,288 0.78 0.03 0.07 1.01
Distal Colon
Spermidine 58,259 7,924 14,837 7,484 3.93 <0.01 0.01 1.62
Rectum
Spermidine 23,474 6,506 4,243 3,592 5.53 <0.01 0.04 1.65
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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mannose and maltotriose were higher in rectal contents in MF
group relative to HM group. The essential amino acids histidine,
valine, and leucine were greater in the cecal lumen and rectal
contents of MF-fed piglets relative to the HM group (Table 4).
Additionally, threonine, isoleucine, and phenylalanine were
greater in the rectal contents of the MF-fed group compared to
HM-group. While the non-essential amino acids glycine and
proline were greater in the rectal contents, and taurine and
cysteine were greater in the cecal contents of MF-fed compared
to the HM-fed piglets. In rectal contents, a higher abundance of
the amino acids N-acetylornithine, and N-acetylaspartic acid was
observed in the HM group (Table 3). However, glutamic acid
was higher in the HM lumen of cecal, PC, and DC while N-acetyl
aspartic acid was higher in PC, DC and rectal contents relative to
MF-fed piglets.

Cholesterol and Bile Acids Were Higher
in MF Diet-Fed Piglets at PND 21
Cholesterol was significantly higher in the MF group in cecal, PC,
and DC lumen (Table 5). Interestingly, secondary bile acid
deoxycholic acid had greater abundance throughout the 4
regions of the distal gut in comparison to HM-fed piglets.
Also, the primary bile acid chenodeoxycholic acid was higher
in the luminal contents of PC and DC in the MF group relative to
the HM group.
Frontiers in Immunology | www.frontiersin.org 5180
Tryptophan Metabolites Were Impacted
by Neonatal Diet in the Large Intestine
at PND 21
Themetabolites indole-3-propionic acid and 3-hydroxyphenylacetic
acid had greater abundance in MF-fed piglets relative to the HM
group in the cecal lumen. Within the DC lumen, 5-hydroxy-3-
indoleacetic acid and tryptophan were higher in the HM than in the
MF group. Additionally, the tryptophan metabolite 5-hydroxy-3-
indoleacetic acid was greater in the rectum of the HM relative to the
MF group (Table 6).

At PND 51 the Metabolite Profile
in the Distal Gastrointestinal Tract Is Less
Distinct and Showed a Lower Number
of Metabolite Differences Between HM
and MF
PLS-DA plots demonstrated that the distribution of metabolites
had less separation between HM and MF groups at PND 51
(Figures 2A–D), except for the rectal contents that had a robust
separation of the metabolite profile between HM and MF groups.
At PND 51 between HM and MF fed piglets, 15 metabolites were
significantly different in cecum and PC, 37 in DC, and 21 in the
rectum by using the P < 0.05 and a VIP > 1.0 criteria
(Supplemental Table 3). The lumen of the cecum of HM fed
TABLE 3 | Average abundances [quantifier ion (quantion) intensities] of sugar metabolites significantly different when comparing human milk (HM) or milk formula (MF)
diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Galactose-6-phosphate 82 11 216 39 0.38 <0.01 <0.01 1.46
Glucose-1-phosphate 1,059 240 2,373 262 0.45 <0.01 <0.01 1.48
Raffinose 157 34 328 95 0.48 0.03 0.07 1.01
Glycerol 231,576 20,963 340,232 34,945 0.68 0.02 0.05 1.08
Isomaltose 428 59 717 60 0.60 <0.01 0.01 1.37
Maltotriose 356 81 1,456 515 0.24 0.02 0.05 1.08
Ribitol 1,465 195 2,561 325 0.57 0.02 0.05 1.07
Proximal colon
Galactitol 5,648 2,174 1,427 613 3.96 <0.01 0.02 1.46
Galactose-6-phosphate 153 21 373 80 0.41 0.01 0.03 1.34
Glycerol 400,598 34,375 568,545 43,853 0.7 <0.01 0.02 1.4
Raffinose 180 28 303 42 0.6 0.02 0.08 1.13
Distal colon
1,5-anhydroglucitol 2,825 495 1,337 156 2.11 <0.01 0.02 1.54
Galactitol 8,608 3,342 882 76 9.76 <0.01 <0.01 1.96
Sorbitol 12,441 4,608 3,973 518 3.13 0.01 0.06 1.29
Fructose 8,678 1,031 5,426 1,139 1.6 0.03 0.1 1.19
Xylulose 7,403 984 3,784 569 1.96 <0.01 0.02 1.49
Ribose 271,496 42,458 143,274 20,425 1.89 0.01 0.03 1.43
Galactose-6-phosphate 136 22 354 80 0.38 <0.01 0.02 1.53
Raffinose 157 17 248 34 0.63 0.01 0.06 1.31
Rectum
1,5-anhydroglucitol 2,209 130 1,674 224 1.32 0.02 0.12 1.36
Maltotriose 247 33 391 53 0.63 0.02 0.1 1.4
Mannose 5,318 867 9,690 1,390 0.55 0.02 0.1 1.4
Decem
ber 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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TABLE 4 | Average abundances [quantifier ion (quantion) intensities] of amino acids significantly different when comparing human milk (HM) or milk formula (MF) diet
groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Histidine 2,041 607 4,831 639 0.42 <0.01 0.01 1.43
Valine 47,321 11,157 121,492 16,114 0.39 <0.01 0.01 1.42
Leucine 68,267 14,347 118,450 16,248 0.58 0.01 0.04 1.12
Isoleucine 39,144 7,645 81,579 12,819 0.48 0.01 0.02 1.22
Methionine 6,886 1,252 11,264 1,274 0.61 0.01 0.04 1.12
Taurine 75 5 152 23 0.49 <0.01 0.01 1.31
Cysteine 832 135 2,285 382 0.36 <0.01 0.01 1.4
Glutamic acid 611,642 67,690 383,277 44,281 1.6 0.03 0.07 1
Proximal colon
Cysteine 3,074 561 7,987 1,215 0.38 <0.01 <0.01 1.7
N-acetylornithine 1,295 171 2,047 236 0.63 0.03 0.09 1.1
Glutamic acid 1,176,854 153,757 697,884 65,464 1.69 0.01 0.05 1.25
N-acetylaspartic acid 24,555 7,547 12,064 4,117 2.04 0.02 0.07 1.16
Distal colon
Cysteine 1,494 229 2,757 403 0.54 0.01 0.06 1.3
Glutamic acid 930,473 150,262 306,803 36,781 3.03 <0.01 0 1.86
N-acetylaspartic acid 24,116 10,159 5,426 869 4.44 0.02 0.07 1.27
Rectum
Histidine 6,240 1,424 14,434 3,220 0.43 0.03 0.14 1.32
Valine 236,629 26,908 517,077 87,043 0.46 <0.01 0.03 1.74
Leucine 262,738 27,431 588,107 113,109 0.45 0.01 0.05 1.61
Threonine 30,098 4,222 70,540 14,278 0.43 <0.01 0.04 1.64
Isoleucine 145,147 17,537 354,847 68,488 0.41 <0.01 0.04 1.66
Glycine 44,615 3,944 89,099 11,985 0.5 <0.01 0.02 1.85
Proline 71,923 9,809 235,145 56,370 0.31 <0.01 0.03 1.75
Methionine 21,104 3,049 53,916 13,521 0.39 0.01 0.08 1.49
Phenylalanine 48,286 6,454 108,093 25,076 0.45 0.03 0.13 1.33
N-acetylornithine 1,798 312 974 238 1.85 0.02 0.11 1.38
Glutamic acid 521,372 106,688 246,722 34,239 2.11 0.01 0.08 1.46
N-acetylaspartic acid 10,420 3,025 3,625 1,075 2.87 0.01 0.06 1.55
Frontiers in Immunology | www
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er 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
TABLE 5 | Average abundances [quantifier ion (quantion) intensities] of cholesterol and bile acids significantly different when comparing human milk (HM) or milk formula
(MF) diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Cholesterol 8,019 1,200 30,126 3,223 0.27 <0.01 <0.01 1.79
Deoxycholic acid 1,040 193 7,030 1,706 0.15 <0.01 <0.01 1.62
Proximal Colon
Cholesterol 6,901 883 23,671 2,835 0.29 <0.01 <0.01 1.88
Deoxycholic acid 1,570 393 4,101 852 0.38 0.02 0.06 1.2
Chenodeoxycholic acid 37,595 13,813 89,407 29,531 0.42 0.02 0.08 1.13
Distal Colon
Cholesterol 18,311 3,627 49,675 4,448 0.37 <0.01 0 1.9
Deoxycholic acid 2,647 713 11,300 1,845 0.23 <0.01 0.01 1.63
Chenodeoxycholic acid 33,830 11,018 82,652 30,280 0.41 0.04 0.13 1.12
Rectum
Deoxycholic acid 2,805 974 7,852 1,377 0.36 <0.01 0.04 1.68
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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piglets had higher abundance of indole-3-propionic acid relative
to the MF-fed piglets. The sugar alcohol erythritol was a
common metabolite in the cecum, DC, and rectum, with
higher abundance in the HM group in comparison to the MF
group. Additionally, behenic acid was a common fatty acid in the
DC and rectal lumen which was higher in the HM-fed relative to
the MF-fed piglets at PND 51 (Table 7).

Serum Metabolome Impacted by Neonatal
Diet at PND 21 and 51
At PND 21, serum metabolome revealed higher abundance of
threonic acid and cysteine in the MF relative to the HM fed
group. While palmitoleic acid was higher in the HM group. At
Frontiers in Immunology | www.frontiersin.org 7182
PND 51, the HM diet resulted in greater abundances of sugar
metabolites including maltotriose and xylitol, and greater indole-
3-propionic acid relative to MF-fed group. The complete list of
serum metabolites impacted by HM and MF diets are presented
in the Supplemental Table 4.
DISCUSSION

The present study provides metabolite profiles in the cecum,
colon, and rectal lumen of HM versus MF feeding regimens in a
porcine model at PND 21 and PND 51. We found that diet has a
pronounced effect on metabolite profiles in the lumen of the
TABLE 6 | Average abundances [quantifier ion (quantion) intensities] of tryptophan metabolites significantly different when comparing human milk (HM) or milk formula
(MF) diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 21.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Indole-3-propionic acid 2,155 539 5,569 989 0.39 <0.01 0.01 1.31
3-hydroxyphenylacetic acid 620 67 1,421 159 0.44 <0.01 <0.01 1.65
Proximal Colon
3-hydroxyphenylacetic acid 884 137 1,806 306 0.49 0.01 0.05 1.24
Distal Colon
Tryptophan 24,762 4,056 13,072 3,373 1.89 0.01 0.05 1.35
5-hydroxy-3-indoleacetic acid 776 80 344 77 2.25 <0.01 0.01 1.69
Rectum
5-hydroxy-3-indoleacetic acid 824 87 429 83 1.92 <0.01 0.02 1.79
Decem
ber 2020 | Volum
e 11 | Article 60
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=8–11/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
TABLE 7 | Average abundances [quantifier ion (quantion) intensities] of sugar metabolites (erythritol, lyxose, xylitol, xylose, pentose, xylulose, ribose, maltotriose,
isomaltose), tryptophan metabolites (indole-3-propionic acid), and fatty acids (behenic acid) significantly different when comparing human milk (HM) or milk formula (MF)
diet groups, in cecum, proximal colon, distal colon, and rectum contents of piglets at postnatal day (PND) 51.

Cecum HM1 SEM2 MF1 SEM2 FC3 P4 FDR5 VIP6

Erythritol 1,445 356 761 104 1.9 0.03 0.78 2.02
Indole-3-propionic acid 12,716 2,080 7,397 1,240 1.72 0.03 0.78 2.07
Distal Colon
Erythritol 1,116 255 652 40 1.71 0.05 0.39 1.57
Lyxose 19,364 3,196 9,660 950 2 <0.01 0.16 2.41
Xylitol 2,899 245 1,950 118 1.49 <0.01 0.16 2.36
Xylose 282,684 50,219 135,380 17,049 2.09 <0.01 0.16 2.25
Pentose 74,638 22,946 27,458 3,058 2.72 <0.01 0.16 2.25
Xylulose 12,922 1,177 8,456 1,028 1.53 0.01 0.22 2.03
Ribose 364,271 36,115 250,569 34,238 1.45 0.03 0.39 1.73
Behenic acid 65,712 3,150 54,919 3,179 1.2 0.02 0.3 1.87
Rectum
Erythritol 655 32 432 41 1.52 <0.01 0.08 2.96
Maltotriose 586 117 201 14 2.91 <0.01 0.3 2.53
Isomaltose 706 116 445 40 1.59 0.03 0.65 1.9
Behenic acid 40,727 1,532 35,181 1,820 1.16 0.03 0.65 1.92
1Mean of normalized (mTIC) peak intensities (mz/rt) for human milk (HM) or milk formula (MF) after MetaboAnalyst analyses; n=9–15/group.
2SEM, Standard error of the mean.
3Fold change of HM mean to MF mean.
4P-value ≤ 0.05.
5FDR, Benjamini-Hochberg adjusted P-value.
6VIP, Variable importance in projection in PLS-DA models using all annotated metabolites to compare HM and MF within each bio-region. The table only presents metabolites with
significant differences between diet groups; all detected metabolites are provided in Supplementary Table 6.
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cecum, PC, DC, and rectum at PND 21 (pre-weaning) but an
attenuated effect at PND 51 (~1-month post-weaning). We
observed a greater number of metabolite changes in the luminal
region of the cecum of HM-fed piglets compared to the MF group
at PND 21. A greater abundance of fatty acids and polyamines was
observed in HM, while amino acids were higher inMF at PND 21.
The persistent effect of the neonatal diet was observed at PND 51
with altered sugar metabolism in HM versus MF fed piglets.

Of particular note was the observation that HM feeding
impacted tryptophan metabolism differently than MF feeding,
at PND 21. The majority of ingested protein is digested and
absorbed by the small intestine (36); however, a significant
amount of proteins and amino acids may reach the colon,
which is degraded by different microbial species (37). Amino
acids in the lower gut may also derive in part from the host (e.g.,
sloughed tissue, mucous, and epithelial cells from the lining of
the intestines) (38–40). In the lumen of DC, tryptophan was
higher in the HM-fed group. In addition, a derivative of indole-
3-acetic acid (IAA), 5-hydroxy-3-indole acetic acid, was greater
in the DC and rectum of HM-fed piglets. Interestingly, we have
shown that IAA concentration was also higher in the feces of
HM-fed infants at 3 months of age in comparison to formula fed
infants (41). Bacteroides genera have been shown to convert
tryptophan to indole-3-acetic acid. In support of this notion, we
have reported a higher abundance of genera Bacteroides in
infants fed human milk and a higher abundance of genera
from class Bacteroidia in the rectal lumen of HM fed piglets
(17, 41). These results suggest that tryptophan in the HM group
is likely metabolized by distal gut microbiota. In addition,
bioactive microbial tryptophan metabolites, indole, indole-3-
propionic acid, and IAA have been reported to modulate
inflammatory response by promoting IL-22 production in the
gastrointestinal tract of mice through the activation of aryl
hydrocarbon receptor (AhR) (42, 43). We speculate that the
higher tryptophan metabolite levels with human milk feeding
promotes the interaction with the host-microbiota which might
dampen inflammation.
Frontiers in Immunology | www.frontiersin.org 8183
Neonatal diet also resulted in a divergent fatty acid profile at
PND 21 in the large intestine. The human milk lipid profile is
variable, and several factors including maternal age, lactation
stage, metabolic disorders, maternal diet, among others can
modulate the lipid composition (44). HM is composed of more
than 200 fatty acids including high levels of oleic and linoleic
acids, and these are likely obtained from the mother’s diet (45).
Essential fatty acids such as linoleic and linolenic cannot be
synthesized by the mammalian body from the precursor oleic
acid due to the lack of specific enzymes (D12 and D15-desaturase
and hydrogenase), thus adequate intake of these fatty acids
through dietary regimens are needed (46). Furthermore, the
fatty acid composition of monogastric animals (i.e., piglets)
also depends on the dietary intake of fatty acids (47). In our
study, throughout the 4 regions evaluated (from cecum to
rectum) the linolenic and linoleic essential fatty acids were
higher in the HM fed piglets relative to MF at PND 21.
Additionally, other fatty acids, myristic, palmitic, oleic, and
palmitoleic were common metabolites identified throughout
the large intestine of HM-fed relative to the MF-fed group.
Studies from our laboratory and others identified higher
circulating fatty acids in the HM group. For example,
palmitoleic acid was higher in HM-fed serum in comparison to
MF-fed piglets (Supplemental Table 4), and free fatty acids such
as palmitic acid, oleic acid, and stearic acid were higher in the
plasma of infants fed HM relative to formula-fed (11). It is
suggestive that fatty acids are delivered to infants from HM and
in part from the mother’s diet. Dietary fatty acids have been
shown to exert immunomodulatory effects during inflammatory
conditions in humans (48) and in mouse models (49, 50). For
example, linolenic acid had an anti-inflammatory effect by
decreasing the secretion of the pro-inflammatory IL-6 in an
intestinal model using the Caco-2-cell line (51). Additionally,
essential fatty acids have been shown to be transferred from sow
milk into the piglets’ enteric tissues, which might play a role in the
immune response and in the epithelial integrity (52). For instance,
polyunsaturated fatty acids supplementation to pregnant sows
A B C D

FIGURE 2 | Two-dimensional scores plot of partial least squares discriminant analysis (PLS-DA) model showing how distal gut content abundances of annotated
metabolites can discriminate human milk (HM) versus milk formula (MF) feeding groups during the neonatal period in piglets. Panels depict (A) cecum (B), proximal
colon (C), distal colon, and (D) rectal contents at postnatal day (PND) 51. PLS-DA scores (i.e., individual piglet scores) for PLS-DA components (dimensions) 1 and 2
are displayed. Shadows with color are 95% confidence regions. Pink circles indicate individual HM-fed piglets and green circles indicate MF-fed piglets. Sample
numbers were n = 9–15 per group.
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resulted in lower markers of inflammation in the post weaning
period of piglets (53). These data, suggest that fatty acids from
mothers’milk exhibit immune protection to infants.

Human milk contains low levels of putrescine compared to
spermine and spermidine in term and preterm milk (54).
Interestingly, we observed a significantly lower level of putrescine
in the lumen of the cecum while spermidine was significantly
higher in the lumen of DC and rectum in HM relative to MF. It is
possible thatHM is the source for these polyamines observed in the
distal gut and may provide benefits to infants by various
mechanisms. For example, spermine and spermidine play a role
in the maintenance of the colonic (55) and intestinal mucosa in
mammals (56). Spermidine is considered essential for postnatal
intestinal maturation and it has been reported to be higher in
human milk than in formulas (57, 58). In addition, spermidine
supplementation suppresses inflammatory DC function and
systemic inflammation in the psoriasis mouse model (59).
Interestingly, human infants fed dairy-based formula had greater
levels of the pro-inflammatory molecules (IL8 and IL1b) in the
feces compared to HM-fed infants at 1-month (60) and our most
recent report suggested higher inflammatory status in MF than
HM fed piglets (18). In addition, spermidine has been shown to
play a role in autophagy to rejuvenate memory B cell response in
older individuals (61). Reduced B cell function causes poor
vaccination efficacy and likely a higher incidence of infections.
Several studies have demonstrated that HM fed infants have
stronger vaccine response and lower respiratory tract infections
during the infancy period (1, 2, 62–64). Moreover, in the same
pigletsweobserved stronger vaccine response inHMversusMF fed
piglets (19). Also, infant formula supplemented with polyamines
increased the number of Bifidobacterium species in the large
intestine of mice resulting in greater mucin production (65).
Thus, the greater level of spermidine upon human milk feeding
may benefit the infants by maintaining colon health, microbiota
composition, and immune function.

While human milk cholesterol content varies from 90 to 150
mg/L, infant formulas have lower cholesterol content between
20–40 mg/L originated from dairy milk fat (66). Adequate
cholesterol dietary intake is essential, especially for growing
infants, for the production of steroid hormones, brain
development, and lipoprotein metabolism (67, 68). However, a
balance between cholesterol absorption and synthesis is required
for maintaining whole-body cholesterol homeostasis (69).
Formula-fed infants (70, 71) and piglets (24, 72, 73) have been
shown to have higher hepatic cholesterol synthesis and fecal bile
acid excretion. Fecal sterol excretion followed by intestinal
breakdown can be associated with reduced intestinal
absorption of cholesterol (68). In the current piglet study, the
greater cholesterol detected in the cecum and colon contents of
the MF group might be associated with a feedback mechanism
(e.g., increased cholesterol synthesis) in response to the low
dietary cholesterol uptake. In addition, the cholesterol
synthesized in the liver is converted to primary bile acids such
as cholic acid (CA), and chenodeoxycholic acid (CDCA) (74).
These primary bile acids synthesized from cholesterol in
hepatocytes are conjugated to the amino acids taurine or
Frontiers in Immunology | www.frontiersin.org 9184
glycine for further biliary secretion (75). In our study, the
greater abundance of the bile acids CDCA in the PC and DC
lumen was associated with higher levels of amino acids taurine
and glycine in the cecal contents of the MF group. In the distal
colon, solely gut bacterial bile salt hydrolase (BSH) deconjugates
bile acids to form the secondary bile acids deoxycholic acid
(DCA) and lithocholic acid (LCA) (76). Importantly, we
observed higher DCA in all 4 regions of the distal gut with MF
diet suggesting as one of the mechanisms of maintaining
cholesterol homeostasis is likely by excretion of secondary bile
acids. The implications of a high level of cholesterol and bile
acids in the gut can be speculated based on previously published
literature (77). For example, bile acids can regulate the epithelial
barrier integrity through activation of the farnesoid X receptor
(FXR) on intestinal epithelial cells (74). DCA has been shown to
induce gut dysbiosis, disrupt bile acid enterohepatic circulation,
and promote intestinal inflammation (78). In addition, taurine
has been shown to activate Nlrp6 inflammasome and induce the
release of the proinflammatory IL-18 by the intestinal epithelial
cells (79). Moreover, the accumulation of DCA in the large
intestine has been associated with passive absorption through the
colon mucosa (76). Overall, these data suggest that cholesterol
and bile acid homeostasis is impacted by the formula diet.

Glutamic acid (glutamate), glutamine, and taurine are the most
abundant free amino acids (FAA) in human milk, accounting for
approximately 50% of total FAA (80–82) while in dairy-based
formulas taurine is the most prevalent FAA (83). In this study,
throughout the distal gut regions, higher glutamic acid was detected
in HM-fed piglets, likely derived from HM (82, 84). Glutamate
intake through the HM diet might benefit the overall neonatal gut
health since it has been reported to function as a major energy
substrate for intestinal cells (84, 85). Thus, non-essential amino
acids intake through human milk might supply infants with readily
available nitrogen-compounds. Previous studies demonstrated that
standard infant formulas have a lower concentration of free amino
acid compared to breastmilk (80, 83) while hydrolysate formulas
have a higher amount of amino acids relative to regular formulas
(86). In our study, several amino acids (i.e., valine, cysteine,
isoleucine, leucine, methionine, cysteine, glycine, histidine, and
phenylalanine) were higher in the cecal and rectal contents of
MF-fed piglets relative to HM at PND 21, likely due to higher
amount of protein in formula. Interestingly, previous studies
demonstrated higher levels of circulatory amino acids in formula-
fed relative to breastfed infants likely due to higher protein intake
with formula diet (11, 12, 87, 88). While we only observed higher
cysteine levels in the serum of MF fed piglets (Supplemental Table
4), it is possible that in our piglets fasting conditions (8 h) were
impacting the circulatory amino acid pool as most of the infant
studies measured metabolites after 2–3 h of fasting (11).

Sugar metabolism was impacted by the formula diet relative
to the HM diet in piglets. Several metabolites (UDP-glucuronic
acid, lyxose, ribonic acid, maltrotriose, UDP-N-acetyl
glucosamine, pyruvic acid, threonic acid, raffinose, melibiose,
erythrose, xylulose, panose, maltose, mannose) were significantly
higher in the MF group relative to the HM group in different
regions of distal gut at 8 h of fasting. Interestingly, serum
December 2020 | Volume 11 | Article 607609
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threonic acid (Supplemental Table 4) and urinary threonic acid,
ribonic acid, and maltotriose (Supplemental Table 5) were also
significantly higher in MF relative to HM piglets. Notably,
galactose concentration was higher in infant formulas
compared to mature human milk (89). In our piglet model MF
diet has impacted the carbohydrate metabolism as observed by a
higher abundance of galatcose-6-phosphate in the cecum and
colon followed by higher glucose-1-phosphate in the cecum of
MF-fed piglets at PND 21. Based on previous infant literature
and our current data, it is suggestive that formula-fed piglets
exhibited a trend to use more of the energy from carbohydrate
while HM-fed piglets may use fat as the energy fuel during
exclusive neonatal feeding (i.e., PND 21) (11, 13). Additionally,
others demonstrated that carbohydrate intake was lower in
breastfed infants at 3 and 6 months compared to formula-fed
infants (90). Also, metabolites shared between urine and large
intestine suggest that these could serve as biomarkers of host
health and likely microbial metabolism.

Previous metabolomics studies of infants have shown that the
introduction of complementary food minimizes metabolic profile
Frontiers in Immunology | www.frontiersin.org 10185
differences in serum while there are clear metabolic changes upon
exclusively HM or MF feeding in infants (11). Similarly, we
observed less separation of metabolite profile at PND 51 between
HM and MF fed piglets. However, sugar metabolites such as
erythritol, lyxose, xylitol, xylose, pentose, xylulose, ribose,
maltotriose, isomaltose were higher in HM fed relative to MF fed
post-weaned piglets. In addition, maltotriose, xylitol followed a
similar pattern in the serum of HM fed piglets (Supplemental
Table 4) suggesting a shift toward carbohydrate metabolism in HM
group post-weaning neonatal diet. Persistent effects on microbial
metabolism of tryptophan to indole-3-propionic acid was also
observed by a higher abundance of this metabolite in cecal lumen
and serum of HM fed piglets (Supplemental Table 4).
LIMITATIONS

The human milk fed to piglets was a pool from donors at 2 to 12
months of lactation, which is prone to variations on the milk
composition including fatty acids. The different stages of
A

C

D

B

FIGURE 3 | Schematic overview shows the divergent metabolite profile derived from human milk (HM) and dairy-based milk-formula (MF) and their potential effects
on neonates’ intestinal metabolism (A). Through metabolomics analysis higher fatty acids (myristic, palmitic, linolenic, linoleic, oleic, and palmitoleic acids), spermidine
(polyamine), the glutamic amino acid, tryptophan and its derivatives, pyrimidines (thymine, pseudo-uridine, and uracil), and carbohydrates (sugars) were detected in
different regions of the distal gastrointestinal tract (gut) [lumen of cecum, proximal colon (PC), distal colon (DC), and rectum] of HM-fed piglets (B). While cholesterol
abundance, bile acids (chenodeoxycholic and deoxycholic), essential amino acids (histidine, valine, and leucine), non-essential amino acids (taurine and glycine), and
carbohydrates were greater in the luminal distal gut of MF- fed piglets during the first 21 days of life (C). Sugar metabolites and tryptophan derivatives (i.e., indoles)
present in the distal gut suggest that neonatal diet interactions with the host-microbiota impact the intestinal metabolism which can be associated with the altered
serum metabolites from both diets (D). Diet- microbial interactions reflected in the excretion of mono- and oligosaccharides (i.e., 1,5-anhydroglucitol and raffinose,
respectively) in the urine of HM-group compared to sugar alcohols (i.e., threitol) and cholesterol abundance in the urine of MF-group. This model suggests that both
HM and MF can impact the host-microbial and the host-intermediate metabolism resulting in a different metabolic profile prior to weaning.
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lactation and the variability from the donor mothers might alter
the distal tract metabolite profile. The components added to the
HM and MF to maintain the requirement of a growing piglet
may impact the luminal metabolome.
CONCLUSIONS

Overall, our results showed a distinct metabolome signature
between HM and MF-fed during the first 21 days of life. The data
presented at PND 21 suggest that human milk feeding may favor
the fatty acid metabolism for energy source while MF feeding
utilized the sugar breakdown as fuel which is similar with the
findings in breastfed vs formula fed infants (11, 13). The greater
polyamines and tryptophan pathway metabolites within the distal
gut of the HM-fed group may indicate a robust immune response
upon human milk than with formula feeding. Also, at PND 21 the
higher cholesterol and bile acids in the distal gut of the MF-fed
piglets relative to the HM group suggests an impact of formula on
cholesterol homeostasis. In contrast, the addition of complementary
food (PND 51) resulted in ametabolite profile not as distinguishable
and likely shifted to carbohydrate metabolism in HM group. Thus,
diet and host-microbiota interactions likely played a role in luminal
metabolome (Figure 3). Future studies are needed to determine
how host physiology (liver and gut tissue) and immune system are
impacted at the molecular level by post-weaning neonatal diet.
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SUPPLEMENTARY FIGURE 1 | Two-dimensional scores plot of partial square
discriminant analysis (PLS-DA) model showing the distribution of the luminal
contents used as quality control pools in the metabolomic analysis. PLS-DA scores
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represents the 95% confidence region. Red circles indicate the individual luminal
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SUPPLEMENTARY TABLE 1 | Prior to metabolome data statistical analysis at
PND 51, metabolite abundance in cecum, proximal colon, distal colon, and rectum
contents were assessed by permutational multivariate ANOVA (PERMANOVA)
including Diet (human milk or milk formula), group (immunization vs control), and
their interactions (Diet:group).

SUPPLEMENTARY TABLE 2 | Average abundances (quantifier ion [quantion]
intensities) of metabolites significantly altered by diet at postnatal day (PND) 21
(n=8-11/group) across the cecum, proximal colon, distal colon, and rectum
contents of piglets fed with human milk (HM) or milk formula (MF) through PND 21.

SUPPLEMENTARY TABLE 3 | Average abundances (quantifier ion [quantion]
intensities) of metabolites significantly altered by diet at postnatal day (PND) 51
(n=9–15/group) across the cecum, proximal colon, distal colon, and rectum
contents of piglets fed with human milk (HM) or milk formula (MF) through PND 21.

SUPPLEMENTARY TABLE 4 | Average abundances (quantifier ion [quantion]
intensities) of serum metabolites significantly altered by diet at postnatal day (PND)
21 (n=25/group) and PND 51 (n=15/group) of piglets fed with human milk (HM) or
milk formula (MF) through PND 21.

SUPPLEMENTARY TABLE 5 | Average abundances (quantion peak intensities)
of urinary metabolites significantly altered by diet at postnatal day (PND) 21 (n=25/
group) and PND 51 (n=15/group), in piglets fed with human milk (HM) or milk
formula (MF) through PND 21.
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term and preterm human milk through lactation: a systematic review.
Nutrients (2013) 5(12):4800–21. doi: 10.3390/nu5124800

82. Koletzko B. Glutamate Supply and Metabolism in Infants. Ann Nutr Metab
(2018) 73 Suppl 5:29–35. doi: 10.1159/000494780
December 2020 | Volume 11 | Article 607609

https://doi.org/10.1016/j.immuni.2013.08.003
https://doi.org/10.1016/S0378-3782(01)00204-3
https://doi.org/10.1371/journal.pone.0177812
https://doi.org/10.1371/journal.pone.0177812
https://doi.org/10.1002/fsn3.121
https://doi.org/10.1017/S0029665199000488
https://doi.org/10.1017/S0007114512001559
https://doi.org/10.1097/01.MIB.0000164016.98913.7c
https://doi.org/10.1097/01.MIB.0000164016.98913.7c
https://doi.org/10.3945/jn.109.119768
https://doi.org/10.1093/ajcn/87.4.939
https://doi.org/10.1093/jas/skaa086
https://doi.org/10.1093/jas/skaa086
https://doi.org/10.1093/jas/skz300
https://doi.org/10.1017/S0007114512005284
https://doi.org/10.1136/gut.44.1.12
https://doi.org/10.1163/156856005774423890
https://doi.org/10.1017/S0029665100000100
https://doi.org/10.1111/jhn.12156
https://doi.org/10.1016/j.isci.2019.100807
https://doi.org/10.3389/fcimb.2018.00190
https://doi.org/10.1016/j.molcel.2019.08.005
https://doi.org/10.1016/j.molcel.2019.08.005
https://doi.org/10.1016/S0022-3476(95)70544-9
https://doi.org/10.1016/0929-693X(96)86014-3
https://doi.org/10.1111/j.1651-2227.1990.tb11401.x
https://doi.org/10.1016/j.jnutbio.2011.10.003
https://doi.org/10.1097/MPG.0000000000000818
https://doi.org/10.3168/jds.2009-2946
https://doi.org/10.3748/wjg.v12.i40.6429
https://doi.org/10.1016/j.lfs.2006.10.006
https://doi.org/10.1203/00006450-199807000-00010
https://doi.org/10.1203/00006450-199807000-00010
https://doi.org/10.1093/ajcn/51.6.979
https://doi.org/10.1093/jn/nxy038
https://doi.org/10.1002/cld.861
https://doi.org/10.1371/journal.ppat.1007581
https://doi.org/10.1371/journal.ppat.1007581
https://doi.org/10.1194/jlr.R500013-JLR200
https://doi.org/10.1194/jlr.R500013-JLR200
https://doi.org/10.3389/fmed.2017.00163
https://doi.org/10.1007/s10620-020-06208-3
https://doi.org/10.1007/s10620-020-06208-3
https://doi.org/10.4049/jimmunol.1601247
https://doi.org/10.1097/01.MPG.0000150407.30058.47
https://doi.org/10.3390/nu5124800
https://doi.org/10.1159/000494780
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rosa et al. Neonatal-Diet Impacts Large Intestinal Metabolome
83. Agostoni C, Carratu B, Boniglia C, Riva E, Sanzini E. Free amino acid content
in standard infant formulas: comparison with human milk. J Am Coll Nutr
(2000) 19(4):434–8. doi: 10.1080/07315724.2000.10718943

84. Agostoni C, Carratù B, Boniglia C, Lammardo AM, Riva E, Sanzini E. Free
glutamine and glutamic acid increase in human milk through a three-month
lactation period. J Pediatr Gastroenterol Nutr (2000) 31(5):508–12. doi:
10.1097/00005176-200011000-00011

85. Windmueller HG. Glutamine utilization by the small intestine. Adv Enzymol
Relat Areas Mol Biol (1982) 53:201–37. doi: 10.1002/9780470122983.ch6

86. Hernell O, Lönnerdal B. Nutritional evaluation of protein hydrolysate formulas in
healthy term infants: plasma amino acids, hematology, and trace elements. Am J
Clin Nutr (2003) 78(2):296–301. doi: 10.1093/ajcn/78.2.296

87. Kirchberg FF, Harder U, Weber M, Grote V, Demmelmair H, Peissner W,
et al. Dietary protein intake affects amino acid and acylcarnitine metabolism
in infants aged 6 months. J Clin Endocrinol Metab (2015) 100(1):149–58. doi:
10.1210/jc.2014-3157

88. Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo
R, et al. Milk protein intake, the metabolic-endocrine response, and growth in
infancy: data from a randomized clinical trial. Am J Clin Nutr (2011) 94(6
Suppl):1776S–84S. doi: 10.3945/ajcn.110.000596
Frontiers in Immunology | www.frontiersin.org 14189
89. Huisman M, van Beusekom CM, Lanting CI, Nijeboer HJ, Muskiet FA,
Boersma ER. Triglycerides, fatty acids, sterols, mono- and disaccharides and
sugar alcohols in human milk and current types of infant formula milk. Eur J
Clin Nutr (1996) 50(4):255–60.

90. Butte NF, Wong WW, Hopkinson JM, Smith EO, Ellis KJ. Infant feeding
mode affects early growth and body composition. Pediatrics (2000) 106
(6):1355–66. doi: 10.1542/peds.106.6.1355
Conflict of Interest: The authors declare that the article was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rosa, Matazel, Bowlin, Williams, Elolimy, Adams, Bode and
Yeruva. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
December 2020 | Volume 11 | Article 607609

https://doi.org/10.1080/07315724.2000.10718943
https://doi.org/10.1097/00005176-200011000-00011
https://doi.org/10.1002/9780470122983.ch6
https://doi.org/10.1093/ajcn/78.2.296
https://doi.org/10.1210/jc.2014-3157
https://doi.org/10.3945/ajcn.110.000596
https://doi.org/10.1542/peds.106.6.1355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 12 February 2021

doi: 10.3389/fimmu.2021.604080

Frontiers in Immunology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 604080

Edited by:

Francisco José Pérez-Cano,

University of Barcelona, Spain

Reviewed by:

Markus Xie,

Genentech, United States

Maciej Chichlowski,

Mead Johnson Nutrition Institute,

United States

*Correspondence:

Laxmi Yeruva

vlyeruva@uams.edu

Laura E. Carr

lecarr@uams.edu

Specialty section:

This article was submitted to

Nutritional Immunology,

a section of the journal

Frontiers in Immunology

Received: 08 September 2020

Accepted: 22 January 2021

Published: 12 February 2021

Citation:

Carr LE, Virmani MD, Rosa F,

Munblit D, Matazel KS, Elolimy AA and

Yeruva L (2021) Role of Human Milk

Bioactives on Infants’ Gut and

Immune Health.

Front. Immunol. 12:604080.

doi: 10.3389/fimmu.2021.604080

Role of Human Milk Bioactives on
Infants’ Gut and Immune Health
Laura E. Carr 1,2*, Misty D. Virmani 1, Fernanda Rosa 1,2, Daniel Munblit 3,4,5,

Katelin S. Matazel 2, Ahmed A. Elolimy 1,2 and Laxmi Yeruva 1,2,6*

1Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States, 2 Arkansas Children’s

Nutrition Center, Little Rock, AR, United States, 3Department of Pediatrics and Pediatric Infectious Diseases, Institute of

Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 4 Inflammation,

Repair and Development Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London,

United Kingdom, 5 Research and Clinical Center for Neuropsychiatry, Moscow, Russia, 6 Arkansas Children’s Research

Institute, Little Rock, AR, United States

Exclusive human milk feeding of the newborn is recommended during the first 6

months of life to promote optimal health outcomes during early life and beyond. Human

milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes,

immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides

(HMOs), microbiota, and microRNAs. Recent findings highlighted the potential

importance of adding HMOs into infant formula for their roles in enhancing host defense

mechanisms in neonates. Therefore, understanding the roles of human milk bioactive

factors on immune function is critical to build the scientific evidence base around

breastfeeding recommendations, and to enhance positive health outcomes in formula

fed infants through modifications to formulas. However, there are still knowledge gaps

concerning the roles of different milk components, the interactions between the different

components, and the mechanisms behind health outcomes are poorly understood.

This review aims to show the current knowledge about HMOs, milk microbiota,

immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have

similar mechanisms of regulating gut and microbiota function. It will also highlight the

knowledge gaps for future research.

Keywords: human milk, immunity, infants, neonates, development, breastmilk, immune system, gut

INTRODUCTION

The immune system is the primary line of defense against environmental exposures such as
allergens, bacteria, and viruses. The infant’s immune system, often mischaracterized as “immature,”
is simply naïve to its new extra-uterine environment (1). Normally it undergoes a series of pre-
programmed events during early life in response to exposures that occur primarily through the
respiratory tract and gastrointestinal tract (GIT) mucosa (2). The infant’s immune system at birth
has limited anti-oxidant and anti-inflammatory activity in the respiratory andGIT, underdeveloped
physical barriers (e.g., tight junctions), limited GIT acidity (chemical barrier), delayed T-cell
function and decreased secretion of immunoglobulins [specifically secretory immunoglobulin A
(IgA)] (3–5). Early life in humans (from the fetal stage to early months of life) is associated with
developmental milestones and human milk provides a medium for inducing both tolerances to
antigens and development of a robust immune defense against harmful pathogens. Human milk
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feeding has been demonstrated to provide healthy GIT mucosal
stimuli, impact gut microbiota composition, and promote the
infant’s developing immune system likely by human milk
bioactives (i.e., HMOs, milk microbiota, miRNA, antibodies,
lactoferrin, immunoglobulins, cytokines, and hormones) (6,
7). Careful cultivation of a healthy immune system includes
not only protective responses to harmful organisms and
antigens (e.g., bacteria, viruses, toxins) but moderating the
response to non-harmful antigens in the environment (e.g.,
food antigens or beneficial commensal organisms) in the
form of immune tolerance. The current review focus is
on lactoferrin, immunoglobulins, HMOs, milk microbiota,
and miRNAs components of human milk and their role in
infants’ gut microbiota colonization, gut health and immune
system modulation.

LACTOFERRIN

Lactoferrin (LF) membrane structure, membrane receptors
and transport have been reviewed elsewhere (8). This section
will describe the antimicrobial and immune modulatory
properties of lactoferrin as well as ongoing clinical studies of
formulas supplemented with lactoferrin. Lactoferrin is an iron-
binding glycoprotein that exhibits immunomodulatory, anti-
inflammatory, antibacterial, antifungal, and antiviral function
(Figure 1A) (9–11). Human lactoferrin levels change as milk
matures with colostrum having higher concentrations in both
term and preterm milk (12), however, preterm milk tends to
maintain higher levels of lactoferrin over time (12–14). A recent
study of Chinese women reported that lactoferrin concentration
was 3.16 and 1.73 g/L in colostrum and milk, respectively (15).
LF binds free iron which is an essential nutrient for bacterial
growth, thus leading to a bacteriostatic effect (16). Also, LF
promotes the growth of low iron requiring bacteria thought to be
beneficial to humans such as Lactobacillus and Bifidobacterium
(17). Early studies on LF showed a fungistatic effect through
iron sequestration (18, 19). Other studies have shown a more
direct fungicidal interaction between lactoferrin and the fungal
cell surface that is not dependent on iron (20, 21). Furthermore,
in vitro studies in which skim human milk and bovine milk were
incubated with lactoferrin, iron, and fungi (Candida albicans)
demonstrated that skim humanmilk inhibits fungal growth while
bovine milk did not show a fungistatic effect (22). Additionally,
another in vitro study showed that human milk LF had higher
effect in preventing bacterial growth relative to bovine LF (23)
suggesting human milk LF has a superior effect over bovine milk
LF. Unfortunately, not all mothers can provide breastmilk for
their infants and humanmilk LF is difficult to obtain for research.
Since human and bovine milk LF are highly similar in sequence
homology and structure (24, 25), and share similar antimicrobial
and immunomodulatory properties (26–29), bovine LF is used
more commonly in research.

Lactoferrin has been shown to exhibit immunomodulatory
properties in several animal models. For example, mice infected
with Mycobacterium tuberculosis and supplemented with bovine
lactoferrin had decreased levels of M. tuberculosis in their lungs

as well as decreased inflammation and increased CD4+ and
CD8+ cells (30). A porcine model evaluating the impact of
lactoferrin on the immune system showed higher levels of
natural killer (NK) cells in mesenteric lymph nodes (MLN),
peripheral blood monocytes (PBMC), and in the spleen of
piglets fed LF supplemented-formula compared to those fed
sow milk and standard formula (31). NK cells are part of the
innate immune system and provide protection to the neonate
against infections as well as release cytokines that activate
other immune cells (32, 33). Piglets fed formula supplemented
with bovine lactoferrin had increased crypt cell proliferation
and serum immunoglobulin G (IgG) compared to piglets fed
formula alone (34, 35). Additionally, piglets that received bovine
lactoferrin supplemented formula had greater IL-10 and TNF-
α production by splenic cells when compared to the control
group (35). Collectively, lactoferrin likely plays a key role in
the immune response in neonates. Due to these antimicrobial
and immunomodulatory properties of lactoferrin, lactoferrin
supplementation in preterm infants has been attempted to
decrease late-onset sepsis and necrotizing enterocolitis (36).
Moreover, the antifungal property of LF is quite important
as premature infants are much more susceptible to fungal
infections. Thus, several studies of formulas supplemented with
bovine LF to support infants’ growth and development have
occurred. For example, infant formulas supplemented with
bovine LF at 0.6 and 1.0 g/L (range of LF concentration
found in mature human milk) were compared to a standard
cow’s milk formula evaluating growth and tolerance in healthy
term infants from 12-days old to 12 months of age. This
study reported no growth rate difference between formulas,
however the bovine LF supplemented formulas had softer stool
consistency relative to the infants fed standard formula (37).
Several studies have investigated the addition of bovine LF
to neonatal diet (breastmilk, donor milk, and/or formula) in
premature infants and have not found significant differences in
late onset sepsis outcomes (38–40). Future studies are needed
to determine the beneficial effect of enteral LF and LF addition
to formulas to enhance the anti-pathogenic effects and immune
response in term as well as in preterm infants.

IMMUNOGLOBULINS

Immunoglobulins (Igs) are glycoprotein molecules produced
by plasma cells. They have been shown to provide passive
immunity to infants via transfer across the placenta and during
breastfeeding. There are five different types of Igs—IgA, IgG,
IgM, IgE, and IgD; however, only IgG, crosses the placenta with
the majority being transferred in the 3rd trimester (41, 42). All
types of Igs have been found in human milk with the most
predominant being secretory IgA (sIgA) followed by sIgG (43).
sIgA protects against toxins, bacteria, and viruses by preventing
binding to the host or directly neutralizing, and serves as the first
line of defense in the intestines (Figure 1A) (44–46). sIgA in milk
is only partially digested in the stomach of both preterm and
term infants while the remainder survives to provide immunity
to the lower GI tract (47). Levels in humanmilk decrease over the
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FIGURE 1 | Schematic overview of specific bioactive components of human milk (HM) and their role in immunomodulation. (A) An iron-binding antimicrobial protein

lactoferrin (LF) inhibits a number of pathogenic bacteria (i.e., Escherichia coli) from adhering to epithelial cell. LF can promote the growth of intestinal villi. After

pathogenic bacteria invasion into the lamina propria of the epithelial gut cells, LF can inhibit the signal between lipopolysaccharide (LPS) released by gram-negative

bacteria and the CD14—TLR complex (macrophage signaling). LF can enhance the maturation of B and T cells to improve the immune response. Immunoglobulins

IgA, IgM, and IgG present in HM provide passive immunity to the newborn. IgA and IgG can bind to pathogenic bacteria and prevent them from adhering to the

epithelial cells in the gut mucosa. Also, IgA can serve as a substrate to obligate anaerobes (i.e., Bacteroides) promoting a healthy microbiota colonization. IgM inhibits

enteric bacterial and viral infections by opsonizing the antigen for complement fixation and destruction. (B) In the lumen, human milk oligosaccharides (HMO) inhibit

bacterial binding to cell receptors by directly binding to the pathogens. HMOs can stimulate the growth of commensal bacteria by serving as substrates. On epithelial

cells, HMOs can prevent pathogen binding by acting as binding decoy receptors. Metabolites of HMOs including short-chain fatty acids can influence epithelial cell

maturation and intestinal barrier (i.e., tight junctions) function. HMOs can interact with dendritic cells present in the lamina propria leading to T-cell proliferation,

subsequently, T/B cell

(Continued)
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FIGURE 1 | interaction resulting in increased production of antibodies in order to keep the immune system homeostasis. In the absence of HMOs (no HMO)

pathogenic bacteria binding to the epithelial cells increase cytokine production in the lamina propria as a pro-inflammatory response. (C) Bifidobacterium and

Lactobacillus, commensal bacteria found in HM, can adhere to intestinal cells, resulting in greater beneficial microbiota colonization. Furthermore, Bacteroides fragilis

can interact with dendritic cells, resulting in suppression of inflammation by inducing T regulatory cell (Treg) production. (D) The extracellular vesicles (EVs) contain

cargos such as microRNAs (miRNAs). EV-miRNAs likely have immunological and microbial impact on the gastrointestinal tract of neonates. Human milk miRNAs such

as miR-21 can regulate gene expression by binding to toll-like receptors 7 and 8 (TLR7/TLR8). Other milk miRNAs (i.e., miR-148 and miR-30) may play a role in gut

immune response by decreasing cytokine production via T-cell inhibition and preventing antigen presentation by dendritic cells and macrophages, respectively.

first 12 weeks post-partum, most significantly over the first week
(48, 49). Although it does decrease, infants rely on human milk
sIgA initially, as the cells that produce sIgA in the neonatal gut are
low at birth and increase by 10–20 times over the first 6months of
life (50). This correlates with a study comparing fecal sIgA levels
in breastfed and formula-fed infants which noted that in the first
month of life, sIgA levels were much higher in the breastfed
group but were more similar between breastfed and formula fed
infants at 6 months of age (51). In mothers immunized with
the Neisseria meningococcal vaccine, IgA antibodies specific for
Neisseria meningitidis have been shown in human milk for up
to 6 months post-partum (52). Interestingly, mother’s health
status appears to impact sIgA levels in the human milk. sIgA
levels have been reported to be lower in the mature milk of
mothers with gestational diabetes (53) and in mothers with post-
partum stress, anxiety, and depression (54). IgA and IgG levels
are lower in the colostrum of mothers with gestational diabetes
compared to normo-glycemic women (55, 56). Overall, data
suggests that mothers’ health condition, vaccination status and
lactation period impacts IgA levels in human milk.

IgG is the main immunoglobulin found in serum and is
associated with long-term immunity. It not only activates the
complement cascade to remove pathogens, but has also been
shown to protect against viral infections at the mucosal level
through neutralization (57, 58). IgG levels in human milk are
low, but increase over time (59). Interestingly, the concentration
of IgG is higher in the human milk of exclusively breastfeeding
mothers compared to those that are non-exclusive breastfeeding
(59). In a mouse model, pathogen-specific IgG was shown to be
transferred in milk and protect the pups by coating the pathogen
and reducing intestinal colonization (60). Kazimbaya et al. (61)
collected human milk samples from mothers prior to their infant
receiving the live rotavirus vaccine. For each sample, whole milk,
purified IgA, purified IgG, and IgA/IgG depleted milk were
isolated. MA104 cells inoculated with the live rotavirus vaccine
were exposed to different dilutions of whole milk, purified
IgA, purified IgG, and IgA/IgG depleted milk. Interestingly,
whole milk and purified IgA and IgG inhibited viral replication
suggesting that human milk IgA and IgG can protect against
rotavirus infections (61). These studies suggest that human milk
IgG plays a role in decreasing infections in infants.

IgM is also transferred to infants via human milk. IgM
levels do not vary in human milk in exclusive breastfeeding
mothers compared to non-exclusive breastfeeding mothers (59).
However, IgM is partially digested by term infants while it is not
digested by preterm infants (62). Nevertheless, IgM antibodies
protect against bacterial and viral infections by opsonizing the
antigen for complement fixation and destruction (63, 64). Serum

IgE is associated with a reduction in allergic reactions and
parasitic infections. It has also been shown to protect against
viruses such as parvovirus B19 (65) and progression of human
immunodeficiency virus 1 (HIV-1) (66, 67). Anti-parvovirus B19
IgE antibodies have been found in humanmilk (68), which might
help protect breastfed infants from infection with parvovirus
B19. Allergen-specific IgG and IgE antibodies are present in both
maternal blood and human milk which may sensitize infants to
similar allergens (69). IgD is expressed on mature B cells and
it has been shown to bind to certain bacteria resulting in B cell
stimulation and activation (70, 71).

Of note, IgA, sIgA, IgM, and IgG concentrations are
significantly higher in fresh humanmilk compared to donor milk
(62), which is important to infants in the neonatal intensive care
unit due to frequent use of donor milk. This is not unexpected
as most donor milk is from mothers of infants that are at least 6
months of age and these samples undergo Holder pasteurization.
IgM and IgG are more sensitive to Holder pasteurization than
IgA (62, 72, 73). Overall, Igs play a role in reducing pathogenic
infections, allergies and likely gut maturation in combination
with other components of human milk.

HUMAN MILK OLIGOSACCHARIDES
PROMOTE BENEFICIAL MICROBIOTA
GROWTH, PROTECT FROM
INFLAMMATION, AND PREVENT
PATHOGEN INVASION

Humanmilk oligosaccharides (HMOs) are unconjugated lactose-
based carbohydrate structures (74, 75) with concentrations
between 7 and 14 g/L in mature milk and 20–24 g/L in colostrum,
making HMOs the third most abundant solid component
in human milk after lactose and lipids (74, 76). The milk
oligosaccharide profile in human milk is more diverse than
that of other mammals. For example, the concentration of
oligosaccharides in bovine milk is 100 mg/L, and only 50
oligosaccharides structures have been identified in bovine milk
(77). However, more than 200 distinct HMO structures have been
identified in human milk (74, 75, 78, 79). The structure of HMOs
has been reviewed previously (80). The HMOs profile among
individual women varies due to differences in the expression
of the secretor (Se) and Lewis (Le) genes in the mammary
gland. The Se gene encodes for α1,2-fucosyltransferase 2 (FUT2)
while the Le gene encodes α1-3/4-fucosyltransferase 3 (81, 82).
A systematic review to determine the most abundant HMOs
comparing both term and preterm milk reported that for
secretor mothers, term milk is most abundant with the neutral
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HMOs 2′-fucosyllactose (2′FL), difucosyllacto-N-hexaose II (DF-
LNH II), Trifucosyllacto-N-hexaose (TF-LNH), and Lacto-N-
Fucopentaose I (LNFP-I) and the acidic HMOs 6′-sialyllactose
(6′SL), Disialyllacto-N-Tetraose (DS-LNT), and fucosyllacto-N-
neohexaose I (FS-LNnH I). For secretor mothers, pretermmilk is
most abundant with the neutral HMOs 2′FL, DF-LNH II, LNFP-
I, and tetrasaccharides lacto-N-tetraose (LNT) and acidic DS-
LNT, 6′SL, sialyllacto-N-tetraose c (LST c). Non-secretor milk
does not contain α1-2-fucosylated HMOs (83). Additionally, this
study revealed that non-secretor term milk is most abundant
with neutral DF-LNH II, LNT, and lacto-N-neotetraose (LNnT)
and acidic 6′SL. Non-secretor pre-term milk is most abundant
for neutral DF-LNH II, LNT, and LNFP II and acidic DS-LNT,
LSTc, and 6′SL (83). Erney et al. (84) evaluated 435 women from
10 countries and showed a significant variance in expression of
HMOs. In particular, European and Latin American mothers had
higher 2′FL expression than those in the US or Asia (84). An
in-depth evaluation of regional variation in HMO composition
evaluating 410women from 11 different regions in Europe, North
and South America, and sub-Saharan Africa showed variation
in secretor status based on regions and self-identified ethnicity
(85). It also noted variation in total HMO concentration as well
as concentrations of all HMO types except LNFP-I. In addition,
several HMO concentrations varied based on environment (rural
vs. urban Gambia) including higher LNnT and DSLNT in the
rural cohort (85). In addition, HMO composition is likely
impacted by exercise. For example, recently Harris et al. (86)
demonstrated that exercise induces an increase in 3-SL in human
and mice during lactation. In conclusion, HMO composition is
impacted by geographic location, likely diet, the secretor status
of the mother, term vs. preterm milk and exercise. Thus, future
studies need to determine how combination of these factors
can optimize HMO synthesis and protect neonates during the
infancy period.

HMOs Promote Growth of Healthy Gut
Microbiota and Exhibit Protection Against
Infections
HMOs have been shown to have a prebiotic effect as they are
not digested in the gut and reach the large intestine intact
where they are utilized by gut microbiota. HMOs have been
shown to stimulate gut microbiota growth and composition.
Bifidobacterium, specifically Bifidobacterium longum subsp.
infantis and its interaction with HMOs has been well-studied.
B. infantis has greater growth when HMOs, not glucose, are
the sole source of carbohydrates (87). Its genome has been
shown to contain gene clusters dedicated to HMO metabolism
and utilization (88). This ability to grow and metabolize HMOs
is not present across all bacteria, but seen in B. infantis
as well as Bifidobacterium bifidum, Bacteroides fragilis, and
Bacteroides vulgatus (89–91). Many bacteria, Lactobacillus gasseri
and Enterococcus, for example, do not grow well, or at all, in just
the presence of HMOs (87, 91). In a recent animal study, healthy
rats were supplemented daily with 2′-FL from days 2 to 16 of life.
At day 8, supplemented animals were noted to have increased
villus heights as well as higher Lactobacillus proportions in cecal

samples. At day 16, animals had higher plasma IgA and IgG as
well as more T-cell subsets in their mesenteric lymph nodes (92).
This study shows that 2′FL supplementation early in life has a
prebiotic effect as well as promotes intestinal growth and immune
system maturation.

HMOs not only promote a healthy gut microbiota
composition, but also have antimicrobial properties.
For instance, α1,2-fucosylated oligosaccharides inhibited
Campylobacter jejuni infection in mice (93). In addition, 2′FL
percentage in milk has been shown to be inversely proportional
to rates of C. jejuni diarrhea (94). HMOs have also recently been
shown to have antimicrobial properties against Streptococcus
agalactiae [Group B Strep (GBS)], Staphylococcus aureus, and
Acinetobacter baumannii (95, 96) by increasing the sensitivity
of such bacteria to several antibiotics, particularly antibiotics
to which they are not usually susceptible (97). Overall, HMOs
provide some protection to infants against bacterial pathogens.

HMOs protect infants from pathogen invasion by various
mechanisms (Figure 1B). Several in vitro and in vivo studies
highlighted the antiviral properties against different viruses
including rotavirus, norovirus, HIV, and influenza. Rotavirus
is the most common cause of severe diarrhea worldwide and
accounts for 5% of all deaths among children <5 years of
age (98). In vitro, 2′FL, 3′SL, 6′SL, and galacto-oligoasccharide
reduce infectivity of human rotavirus in MA104 cells, mainly
through effects on the virus (99). In experimental settings, 2′FL,
LNnT, 3′SL, and 6′SL supplementation in piglets acutely infected
with rotavirus downregulated the viral non-structural protein-
4 (NSP-4) mRNA expression in the ileum, indicating HMOs
inhibit rotavirus replication in the gut (100). Other animal
studies in both rats and piglets show that HMOs, in addition to
prebiotics, can reduce the length of diarrhea caused by rotavirus
(101, 102). HMOs have also been shown to protect against
norovirus, the most common cause of acute gastroenteritis
outbreaks. Norovirus has been shown to interact with histo-
blood group antigens differently with type O having higher
susceptibility and B having lower susceptibly to the infection
(103, 104). Non-secretors have also been shown to have lower
susceptibility to norovirus infections. However, milk from non-
secretor mothers does not inhibit attachment of norovirus while
milk from secretors does (105). This is likely due to 2′FL binding
to the virus and blocking attachment to the gastrointestinal tract
(106, 107). 3′FL has also been shown to bind norovirus and block
its attachment. Both 2′FL and 3′FL do so by binding to the HBGA
pockets on the norovirus capsule, thus, they act as soluble decoy
receptors to block pathogens (106). Human milk with higher
LDFH-I levels is associated with protection against norovirus as
well (94). In both of these gastrointestinal viruses, HMOs have
been shown to improve outcomes.

It is estimated that over 38 million people are living
with HIV and the rates of transmission from mother to
child are as high as 45% (108). In the western world,
HIV is considered a contraindication to breastfeeding (109),
however, in other countries where access to clean water is
unavailable, it is deemed to be the safest option for infant
feeding due to lack of nutritional alternatives (110). While
breastfeeding is the main post-natal transmission route, many
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breastfed infants do not become infected. HMOs have been
shown to bind the HIV surface glycoprotein, gp120 and
decrease binding to dendritic cells (111). HIV infected mothers,
particularly those with higher concentrations of LNnT are
less likely to transmit HIV to their infants. Mothers with
higher concentrations of 3′SL are noted to have higher
transmission rates to their offspring as well as a higher viral
load and lower CD4 count (112, 113). Higher concentrations of
fucosylated HMOs are also associated with decreased mortality
in non-infected infants whose mothers are HIV positive (114).
Another viral infection that can be ameliorated with HMOs
is influenza. Influenza infects more than 3 million people
yearly worldwide and causes over 300,000 deaths (115). An
in vitro study using pretreated respiratory epithelial cells
(Calu-3, 16HBE lines) and PBMCs challenged with either
respiratory syncytial virus or influenza and incubated with
various concentrations of 6′SL, 3′SL, 2′FL, and LNnT for 24 h
showed that 6′SL and LNnT significantly decreased influenza
viral load in both airway epithelial cell lines (116). In addition,
modified versions of 3′SL and 6′SL have been shown to block
hemagglutination and prevent infectivity of influenza viruses
(117, 118). HMOs have been shown to improve outcomes in
viral gastroenteritis and influenza as well as impact transmission
of HIV.

HMOs Improve Gut Barrier Function and
Optimize Immune Function
Necrotizing enterocolitis (NEC), a common intestinal disease
among premature infants, can cause significant morbidity and
mortality [reviewed by Neu and Walker (119)], and is far less
common in humanmilk fed vs. formula fed infants (120). Enteral
feeding, including breast- and formula-feeding, impacts the gut
maturation of neonates by increasing or decreasing intestinal
permeability (121, 122). Decreased intestinal permeability is
associated with gut maturation while elevated permeability
makes neonates more susceptible to enteric infections and
inflammation such as NEC (123, 124). Several studies in animals
and humans demonstrated that HMOs may contribute to
breastfed infants’ lower rates of NEC. In a NEC induction
model using neonatal mice, HMO supplemented formula-fed
pups had increased mucin expression and decreased intestinal
permeability (125). In another rat model of NEC, pups fed HMO
supplemented formula had improved survival and the HMO
disialyllacto-N-tetraose (DSLNT) was noted to be protective
(126). Formulas supplemented with 2′FL have been associated
with decreased NEC rates in both mice and rat models (127, 128).
However, animal models using preterm pigs have shown only
minor effects of HMO supplemented formula on gut microbiota
(129) and no effects on gut permeability (130). In addition,
several studies have found thatmilk with lower levels of DSLNT is
associated with higher rates of NEC (113, 128). In breastfeeding
or pumping mothers, decreased diversity of HMOs, specifically
lower concentrations of LNDFH-I during the first month of
life is associated with a higher risk for NEC development in
preterm infants (131). Clinical trials reported an association
of breastfeeding with decreased intestinal permeability at 7

and 14 days of life in preterm infants compared to those
that were formula fed (122). In preterm infants, decreased
intestinal permeability was associated with increased abundance
of Clostridium and Bifidobacterium during the first 2 weeks of life
(132). However, which components of humanmilk are providing
these effects and interactions remains to be determined. Overall,
HMOs have been shown to decrease pro-inflammatory cytokine
expression, pathogenic bacteria penetration, and intestinal
permeability in the gut (125, 133, 134). These findings suggest
that not just HMOs alone, but rather HMOs in combination with
maternal and/or host microbiota might regulate the intestinal
barrier function.

HMOs play an important role in the enhancement of the
immune system both locally and systemically. HMOs enhance
the functions of human dendritic cells (135), an antigen-
presenting cell that plays a pivotal role in the regulation and
development of the immature immune system in neonates
through the recruitment of functional regulatory T-cells (136).
For instance, an in vitro approach showed that 0.8, 2 and 5
mg/mL of an HMO mixture upregulated interleukin production
(IL-10, IL-27, and IL-6) in dendritic cells (135). Furthermore,
HMOs at these concentrations protected dendritic cells against
the inflammatory impact of 5 mg/mL lipopolysaccharide (LPS)
(135). In a recent mouse model, neutral HMO fractions
stimulated the immune response in peritoneal macrophage cells
by upregulating the release of nitric oxide (NO), prostaglandin E2
(PGE2), reactive oxygen species (ROS), TNF-α and interleukins
such as IL-1β, IL-2, IL-6, and IL-10 (137). Therefore, it is
reasonable to hypothesize that certain HMOs can inhibit the
pro-inflammatory responses in breastfed infants. In a mouse
model, 2′FL supplementation with a dose range of 0.25–5%
(w/w) 2 weeks before the primary and booster vaccinations
enhanced humoral and cellular immune response to vaccines
(138). Mice that received 2′FL had increased levels of vaccine-
specific IgG1 and IgG2a in the serum that were 2′FL dose
dependent and increased CD27 expression in splenic B-cells.
When stimulated ex vivo, spleen cells from 2′FL mice had
increased interferon-γ production and proliferation of CD8+

and CD4+ T-cells (138). In addition, mice that were fed the
2′FL containing food had increased activation of B-cells, T1-
helper cells, and regulatory T-cells in their MLN (135). In
a porcine model, piglets that received formula supplemented
with HMOs were shown to have increased circulating NK
cells and mesenteric lymph node memory T-cells compared
to those that only received formula (139). These studies show
that HMOs improve immune response to both infections
and vaccines.

HMOs have been shown to play a role in toll-like receptors
(TLRs) expression. TLRs are a family of pattern recognition
receptors that play a key role in the recognition of invading
pathogens and initiate host defense (140–142). Studies have
reported structure-dependent effects of HMOs on TLR functions.
For example, Asakuma et al. (143) showed that 3′SL, 6′SL,
and 6′GL increased expression of both TLR2 and TLR4
while LNFP-I upregulated TLR4 in intestinal cell line HT-
29 (143). In another in vitro study, Cheng et al. (144)
reported that 3′-FL activated TLR2 whereas LNT activated
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several TLRs in THP1 macrophages. They also found inhibitory
effects for HMOs on TLRs in vitro. For instance, 6′SL, 2′FL,
and LNnT inhibited TLR5 and TLR7 whereas 3′FL inhibited
TLR5, TLR7, and TLR8 (144). A recently published study
fed mice and premature piglets with 2′FL, 6′SL or lactose
supplemented formula. Those fed 2′FL and/or 6′SL were noted
to have decreased signs of NEC. 2′FL and 6′FL inhibited
TLR4 signaling in vivo in cultured IEC-6 enterocytes, in
human intestinal explants from NEC patients, and in mouse
derived enteroids (145). These studies indicate some role
for HMOs in modulating TLRs, however, comparisons are
difficult due to differences in studies conducted. The complex
effects of different HMOs in modulating TLRs need to be
investigated through in vivo models. This will enable us
to determine the different mechanisms involved in immune
modulation by HMOs. Overall, HMOs appear to have a
protective effect in reducing inflammation and inducing stronger
immune response.

HMOs as Supplements to Boost Immune
Function
HMOs and bovine milk oligosaccharides (BMOs) are currently
being studied for their ability to improve immune response in
infants. Bovine milk serves as a source of simple and complex
oligosaccharides that resemble HMOs (146). It is substantially
lower in overall total oligosaccharide concentration compared
to human milk, however, there are some similarities in the
oligosaccharide profile (147). Bovine milk has a much larger
proportion of acidic oligosaccharides including 3′SL and 6′SL
as well as neutral LNnT, which are identical to the HMOs
with the same name (148). Fucosylated structures such as
2′FL have also been isolated from bovine milk, though in
far lower concentrations than human milk (146, 148). BMOs
have been demonstrated to elicit similar biological functions to
those of HMOs including inhibition of pathogen adhesion to
intestinal enterocytes, diminished gut permeability, decreased
inflammatory markers, and correction of gut dysbiosis (149).
Charbonneau et al. (150) investigated breastfed infants’ growth
parameters and differences in human milk oligosaccharide
composition in Malawi (150). This study demonstrated that the
human milk of mothers whose infants had poor growth had
lower levels of sialylated HMOs and overall lower concentrations
of HMOs (150). Based on this data, a germ-free mouse and
piglet model was then used to investigate the impact of sialylated
HMOs on stunting phenotype. Animals were gavaged with
bacterial strains from feces of infants with growth failure
and fed a typical Malawian diet. Some of the animals were
supplemented with sialylated BMO’s (S-BMO) as well. Those
that received S-BMO had improved lean body mass gains,
improved metabolism, and elevated levels of N-acetylneuraminic
acid (150), suggesting sialylated oligosaccharides are involved in
infant growth.

Addition of synthesized oligosaccharides to infant formulas
is an evolving field. 2′FL is one of the most abundant and well-
studied of the human oligosaccharides as previously mentioned.
It has been successfully synthesized and shown to be structurally

similar to 2′FL found in humanmilk samples (151). In a neonatal
piglet model, enzymatically synthetized 3′SL and 6′SL sodium
salt supplemented bovine based formulas were investigated (152,
153). Piglets were fed either a control diet or concentrations
of 140, 200 or 500 mg/L 3′SL, and 300, 600, and 1,200 mg/L
for 6′SL. These studies showed that the synthesized HMOs
are safe and maintain similar growth in supplemented piglets
compared to control diet (152, 153). Several clinical studies have
evaluated the addition of 2′FL to formula. 2′FL formula fed
infants were compared to breastfed infants and all infants had
appropriate growth (154). An evaluation of the cytokine profiles
in breastfed infants, 2′FL supplemented formula fed infants,
and standard dairy-based formula fed infants demonstrated
that 2′FL supplemented formula fed infants had lower plasma
concentrations of IL-1α, IL-1β, IL-6, TNF-α, and IL-1rα than the
standard formula fed infants, and were similar to those that were
breastfed (155). 2′FL supplemented formulas have been approved
and are being marketed in Europe (156) and the US, however,
the supplementation is at much lower concentrations of 2′FL
than what is found in human milk. Sialic acid concentrations
have also been evaluated in human milk from mothers with term
and preterm infants and compared to several infant formulas
(157). The highest concentration was noted in colostrum and
then decreased over the next 3 months. Milk from mothers
with preterm infants had higher levels of sialic acid. Formulas,
however, had a much lower sialic acid content, <25% of
what was found in human milk (157). Sialic acid is integral
to neonatal brain development and childhood malnutrition,
specifically decreased sialic acid intake, has been linked to
persistent cognitive deficits (158, 159). Thus, future studies of
formulas supplemented with sialic acid would need to be tested
for the cognitive function in infants and HMO supplementation
to formula is an avenue to pursue in the near future.

HUMAN MILK MICROBIOTA IMPACTS
COLONIZATION OF GUT MICROBIOTA
AND LIKELY IMMUNE SYSTEM DURING
NEONATAL PERIOD

Different maternal factors including pathologies of the breast,
intrapartum antibiotics, maternal health, body mass index
(BMI), parity, gestational age, and geographic location of
the mothers can contribute to shaping the milk microbiota
(160–166). The early establishment of infant microbiota
relies on maternal microbiota and plays a key role in the
formation of the gut barrier and the maturation of the
immune system (Figure 1C) (167). Human milk contains a
complex community of bacteria (161, 168) which includes,
but is not limited to, multiple genera from Bifidobacterium
and Lactobacillus spp, Streptococcus, Staphylococcus, Ralstonia,
Bacteroides, Enterobacter, and Enterococcus (161, 167, 169–171).
Hunt et al. (172) showed that while there are common genera
found in milk, there is variation overtime and between mothers.
While most studies have focused on human milk bacterial
content, several recent studies have noted fungi present in
human milk (173–177). These studies are observational and
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further investigation is required to evaluate fungal population
variance between mothers, the functions of milk mycobiome
in infant gut development, and its interactions with other
milk microbiota/bioactives and infant immune system. Due
to this constraint, this review will focus on human milk and
infant microbiota.

Human milk microbiota likely establishes a healthy profile
of intestinal bacteria, leading to the maturation of the innate
and adaptive immune systems in infants. For instance, intestinal
bacteria promote the development of B-cells in Peyer’s Patches
and increase the release of mucosal IgA, which acts as the first line
of defense (178, 179). Human milk bacteria can also improve the
activity against infections through the induction of cytotoxic Th1
cells maturation in vitro (180). Interestingly, Lactobacillus in the
human milk may enhance the release of Th1 cytokines and TNF-
α, and activate NK cells, CD4+, and CD8+ T-cells and regulatory
T-cells (181). In addition, commensal bacterial in human milk
such as Lactobacillus gasseri and Lactobacillus crispatus have
adhesion capacity to the intestinal cells, indicating greater
colonization for beneficial bacteria in the gut in breastfed infants
(182). In a recent study, Damaceno et al. (182) reported that
Bifidobacterium breve, Lactobacillus gasseri and Streptococcus
salivarius, limit pathogen adhesion to intestinal epithelial cells ex
vivo (182). The microbial species identified in human milk have
pathogen inhibition and improving immune function properties.
Many studies compare human milk bacterial content to stool
content of infants. Human milk microbiota composition is also
dependent on pumped vs. directly breast fed. Recently, Moossavi
et al. (161) noted that providing pumped milk was associated
with higher levels of potential pathogens (i.e., Enterobacteriaceae
and Enterococcaceae). Infants fed pumped milk had a lower
amount of Bifidobacterium in their stool. In addition, Fehr et al.
(183) noted that exclusively breastfed infants have a different
microbiome than those that are fed pumped milk. The fact that
direct breastfeeding vs. pumpedmilk feeding results in a different
gut microbiome in infants needs to be investigated further. It
is possible that some of the variations are due to variability
in pump hygiene, mothers skin microbiota, and contribution
from environment.

Commensal bacteria in human milk may play protective
roles against gastrointestinal infections during infancy. Malago
et al. (184) found that Lactobacillus casei, Lactococcus lactis
and Bifidobacterium infantis suppressed the release of IL-8 in
Caco-2 intestinal cell line incubated with pathogenic Salmonella,
supporting the notion that human milk bacteria could protect
the infant intestine against epithelial damage. In a recent study,
higher abundance of Bifidobacterium at 1 week of life was
associated with higher levels of IL-13, IL-5, IL-6, TNF, and IL-1β
at 36 months of age compared to children with lower abundance
of Bifidobacterium at the same time point (185). Bacteroides
might also play a key role to support the immune system in
infants during the early stages of life. In particular, the surface
of Bacteroides fragilis has polysaccharide A which increases
FOXP3 T-cells in the lamina propria resulting in suppression of
inflammation (186). In a mouse model, Donaldson et al. (187)
showed that Bacteroides binds IgA which allows it to colonize
the gastrointestinal tract. In conclusion, milk microbiota likely is

one of the first things to colonize the infant gut, promote growth
of beneficial microbiota, and in turn impact the immune system
in infants.

The infant diet also impacts the microbiome of the
gastrointestinal tract and immune system in both animal models
and clinical studies. In a rhesus macaques model, formula
fed infants were noted to have a different gut microbiome
including more Ruminococcus and less Lactobacillus. They also
had an increase in pro-inflammatory cytokines TNFα, IFN-
γ, IL-1β, and IL-8 (as well as several others) at 1 month of
life that decreased overtime (188). Mothers milk fed rhesus
macaques are noted to have more memory T-cells as well as T-
helper 17 cells compared to formula fed which persists even 6
months after weaning (189). A study of juvenile rhesus macaques
noted continued differences, in particular, higher CD8+ T-cell
activation (190). These studies show that in rhesus macaques,
mothers milk improves immune response while formula changes
the microbiome and increases inflammation. There are also
several studies carried out with a piglet model that explore diet
and its effect on microbiome and the immune system. While
many piglet models use sow-fed piglets, this leads to confounding
factors due to housing environment, sow milk microbiota,
and the maternal environment. Studies from our team housed
piglets in the vivarium and fed a regulated diet to eliminate
the confounding factors associated with a sow-fed piglet model.
Piglets were fed either donor human milk or formula and
monitored closely for growth and immune responses. Those fed
human milk had a stronger immune response to vaccination
in comparison to those fed formula. The piglets who received
human milk had lower genera diversity at day 50. At day 21,
those fed human milk had higher levels of Bacteroides than
those fed formula (191, 192). The human milk fed group also
had higher levels of T-cell proliferation (191, 192). These results
were similar in comparison to infants fed human milk suggesting
the strength of the model. For example, in a small comparative
study, fecal samples were collected during the first 20 days of life
from 6 breastfed and 6 formula fed infants. In breastfed infants,
Bifidobacterium became the most common gut bacteria while
in formula fed infants, Bacteroides and Bifidobacterium were
found in similar amounts (193). Several other studies have found
that in early life, stool Bifidobacterium amount varies in healthy
breastfed infants (194–197). Although the reason is unclear,
environment may play a role in this. A recent study found three
distinct infant gut microbiota, one low in Bifidobacterium but
with higher amounts of Streptococcus, one with high amounts
of both Bifidobacterium and Bacteroides, and one with higher
amounts of Bifidobacterium. Overtime, infant stool transitioned
from the profile low in Bifidobacterium to a profiler higher in
Bifidobacterium (197). The CHILD cohort has published several
studies on infant diet and its impact on microbiome. At 3
months of age, formula fed infants had higher richness and
increased Lachnospiraceae. Infants who were breastfed but briefly
supplemented with formula had lower levels of Bifidobacteriaceae
and higher levels of Enterobacteriaceae at 3 months of age
compared to those who did not receive any formula (198). A
smaller subset from this cohort noted that formula fed infants
had increased richness at 4 months and higher amounts of
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Clostridium difficile were noted (195). A 2-year study of infant
diet and microbiome revealed that formula feeding in the first 3
months of life is associated with decreased diversity and richness
at 12–24 months of life. It is also associated with altered beta
diversity (199). Andersson et al. (200) compared infants fed 3
different types of formula to breastfed infants and evaluated
immune response through 6 months of age. The breastfed group
had an increase in leukocyte count, particularly an increase in
neutrophils. Formula fed infants had a decrease in the relative
amount of NK cells and an increase in CD4+ αβT-cells. Formula
fed infants also had a higher ratio of CD4–CD8 cells (200). Data
from these studies indicate that human milk feeding is optimal
for microbial colonization, promoting robust immune response
and decreasing inflammation in early life.

EXTRACELLULAR VESICLES AND
MICRORNA CARGO ROLE IN IMMUNE
FUNCTION

Extracellular vesicles is a broad term used to describe vesicles
released from many cell types. Readers are referred to O’Reilly
et al. (201). for a detailed review of human milk extracellular
vesicles (EVs) and their role on infant health. The different
methodologies (ultracentrifugation, Exoquick) used to isolate
EVs indicate the existence of two subsets such as exosomes
(30–100 nm) (202–204) and microvesicles (100–1,000 nm) (205,
206). EVs have been reported to contain various molecules (i.e.,
proteins, microRNA, metabolites) (207–215). It is yet to be
determined whether both exosomes and microvesicles contain
miRNAs as most of the methods used so far enrich exosomes.
Interestingly, milk seems to contain the highest level of miRNAs
compared to its volume. The mechanisms involved in loading
the miRNAs to EVs in human milk are still unclear and future
research is needed. For a more detailed review of EV biogenesis
and cargo composition readers are referred to Spencer and
Yeruva (216). The focus of this subsection is to describe EV-
microRNA cargo role on infant health.

miRNA are small non-coding RNA (∼22 nucleotides) that
regulate post-transcriptional expression of genes and have
biological activities in humans (217–219). Human milk contains
several miRNAs (218, 220), and these miRNAs survive in the
acidic environment in the GI tract and can be absorbed (221).
Infant formulas, however, have a significantly lower amount of
miRNAs compared with human milk (218, 222). The origin
of these miRNAs is still under debate. However, based on the
current knowledge on the composition of the EV proteins,
breast cell lines, and miRNA profile of mammary gland cells,
these miRNAs are likely from immune-related and mammary
gland cells (223–225). The literature review of several studies
on miRNA profile suggests that miR-148a-3p, miR-22-3p, miR-
200a-3p, miR-146b-5p, miR-30d-5p, let-7a-5p, miR-30a-5p, let-
7f-5p, let-7b-5p, and miR-21-5p (226–231) were the most
abundant in human milk. In vitro studies suggest that milk
miRNAs are taken up by intestinal, immune, and cancer cell
lines (218, 220, 232–236). Future animal models and clinical

studies under controlled conditions are needed to determine the
bioavailability of these miRNAs.

Few studies have been conducted so far on various factors
impacting milk miRNA composition. For example, in mice fed
high-fat diet, changes in milk miRNA expression was observed
(237). Target prediction analysis of these miRNAs in the high-
fat diet group impacted developmental process and transcription.
Most recently, Carney et al. demonstrated changes in miRNA
profile based on delivery status (preterm vs. term) that appear
to influence metabolism and lipid biosynthesis. This suggests
gestational age likely plays a role in milk miRNA composition
and miRNAs appear to directly influence neonatal health and
metabolism. This is an area for future studies to determine the
underlying mechanisms involved in milk miRNA composition.

The biological impact of human milk EV-miRNAs on infant
health is important to address before supplementing formulas.
Previous studies using target prediction analysis of human
milk miRNAs provided initial evidence that the majority of
these miRNAs are likely impacting the immune system. Also,
experimental evidence from in vitro and in vivo studies using
infection and inflammation models suggest that milk miRNAs
could impact the immune system. For example, miR-148,
present in pre-term and term human milk but significantly
lower in formula (218, 226), appears to be the most abundant
in human milk. It is shown to regulate the innate immune
response in several ways including limiting cytokine production
(238). miR-148 also inhibits T-cell proliferation initiated by the
presentation of antigens by dendritic cells in a mouse model
(238). Let-7 functions to regulate the innate immune system;
it limits B-cell activation, affects T-cell differentiation, and
regulates TLR4 signaling and macrophage activation (239, 240).
miR-30 is important for intestinal epithelial cell homeostasis
(241) and the immune response to Mycobacterium tuberculosis
(242) and influenza infections (243). miR-30 also inhibits
antigen processing and presentation by dendritic cells and
macrophages (244). Other studies identified miR-181 in human
milk (220) which induces B- and T-cell differentiation and
development (245, 246) and plays a role in inflammation by
downregulating TNF-α production in Brucella abortus infections
(247). In addition, porcine milk miRNAs were recently shown to
reduce LPS-induced apoptosis by preventing TLR4 in intestinal
epithelial cells (248). Thus, it is possible that milk miRNAs
protect infants from infection, reduces inflammation, and boosts
the immune response by various mechanisms (Figure 1D).

The potential for human milk miRNAs acting as TLR7 ligand
is a novel concept that we put forth in this review.We hypothesize
that GU rich motif (GU or GUUG) of human milk miRNAs
activates TLR7/TLR8 and could have an adjuvant effect on
immune response during vaccination in breastfed infants. For
example, milk miR-21, let-7a, and let-7b have a GU rich region
and can bind to TLR7/TLR8 receptors (249–252). Thus, milk
miRNAs could have dual functions such as TLR7/TLR8 receptors
and/or regulatory role by inhibiting gene expression. Mechanistic
studies are needed to determine the specific role of milk miRNAs.
In addition, whether miRNAs have direct or indirect effects
via microbiota on the infant gut and the immune system is
not fully understood. However, the evidence so far suggests
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that miRNAs could change microbiota composition. Recently,
exosome/RNAdepleted diet (based on bovinemilk exosomes) fed
C57Bl6 mice showed changes in the composition of microbiota
with relative abundances reported < 1% at family taxonomic
level in comparison to exosome/RNA sufficient diet fed mice
(253). This study does not show the direct role of miRNAs
from bovine milk, nor does it indicate which components of
exosomes altered the microbiota composition. However, in a
different study it has been demonstrated that bacterial growth
is promoted in the presence of certain miRNAs and that
endogenous miRNA produced by intestinal epithelial cells alter
gut microbial diversity. The increased growth was observed
in co-culture of Mission R© miRNA mimics and Fusobacterium
nucleatum (ATCC R© 10953) and E.coli (ATCC R© 47016) (254).
Results from this study suggest that miRNAs modulate the gut
microbiota; to date, however, no studies investigating the effect
of exogenous miRNAs from human milk on neonatal microbiota
have been conducted. If miRNAs do indeed promote the survival
and growth of gut bacteria, these may serve as a novel component
to supplement the infant diet.

PERSPECTIVE AND CONCLUSIONS

Human milk remains the gold standard for infant nutrition.
This review summarized several bioactive components of human
milk and their impact on infant microbiome and gut/immune
function. Human milk oligosaccharides have been shown to have
a prebiotic effect, decrease infectivity as pathogen decoys, and
enhance the immune system. Milk microbiota appears to help
infants’ gut and immune system and protect from pathogens.
However, several questions remain unanswered that could
ultimately improve term and preterm infant outcomes including
decreased infection and improved gut and immune function.
Mechanistic studies involving animal models in association with
clinical trials are needed. While large animal models (piglet
and monkey) are advantageous due to the similarities with
infant gut physiology (189, 255), they have multiple limitations.
These include a low cost-benefit ratio to generate germ-free
animal models due to the specialized facilities required, difficulty
and expense of knock-out models, issues obtaining species
specific reagents and ethical constraints. Animal models have
shown differences in offspring gut microbiome and immune
response based on diet. Clinical data, while extremely relevant,
only allows for association data due to confounding factors.
Thus, alternative models such as germ-free mice could be

explored to understand the mechanistic questions about milk
bioactives. Determining how different human milk bioactives
individually and in combination will impact infants’ health needs
to be pursued.

Future Research
While many questions relating to human milk bioactives have
been addressed, there are areas of research that requires future
studies. The questions that remain unanswered are: (1) what
combination of HMOs or their derivatives should be added
to standard formula? (2) should HMOs be added to formula
for premature infants? (3) what are the direct and indirect
effects of HMOs on infant immune function? (4) how does
maternal microbiota transfer into milk and further shape the
milk microbiome? (5) does out-of-body bacteria, including skin
bacteria, infant oral bacteria, or bacteria from the environment
enter the mammary gland and alter milk microbiota? (6) does
milk microbiome affect composition of other milk components
such as HMOs andmiRNAs? (7) how does milk microbiota affect
TLRs in the infant gut and does this impact colonization with
commensal bacteria and protection from invading pathogens? (8)
does the gut milieu (microbiota andmycobiota) interact and how
does the interplay impact overall infant health? and (9) how does
the addition of different human milk components to formula
impact the gut colonization patterns, and in turn, longitudinal
infant health? All these questions need further investigation using
preclinical and clinical studies. microRNAs are a newer field of
study, thus, many questions remain pertaining to how miRNAs
interact with the infant gut microbiome and immune system.
In conclusion, determining how different human milk bioactives
individually and in combination will promote infants’ health
needs to be pursued.
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