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Editorial on the Research Topic

Emerging Biomarkers for NSCLC: Recent Advances in Diagnosis and Therapy

The advent of precision medicine and predictive molecular pathology has significantly modified the
clinical management of patients with non-small cell lung cancer (NSCLC). A plethora of different
biomarkers has been approved for predictive molecular purposes (Zhu et al.; Li et al.; Lin et al.). In
this scenario, molecular techniques able to optimize the limited amount of nucleic acids extracted
from small tissue and/or liquid biopsy samples are essential for the different clinically relevant
biomarkers evaluation. Next generation sequencing (NGS) is a fascinating molecular approach able
to analyze different gene alterations from different patients, simultaneously, starting from low input
material. However, it should be remembered that a careful process of validation and harmonization
of wet and dry procedures are strongly warranted (Malapelle et al.). Beyond the administration of
tyrosine kinase inhibitors, a high percentage of NSCLC patients without any driver alteration can
benefit from the administration of immune-checkpoint inhibitors (ICIs). Despite the established
role of the evaluation of programmed death-ligand 1 (PD-L1) expression through
immunohistochemistry or immunocytochemistry on tissue specimens, several other biomarkers
are currently under investigation. Among these, tumor mutational burden (TMB) evaluated on
tissue samples is the most commonly studied. However, TMB evaluation suffers from some
technical issues. Thus, the adoption of surrogate biomarkers, such as MSH2 expression (Jia
et al.), may be a valid option. In addition, blood TMB evaluation may be a valid opportunity to
assess TMB status and monitor ICIs response (Friedlaender et al.). Liquid biopsy adoption is
increasing due to a not negligible percentage (about 30%) of NSCLC patients who do not have tissue
availability for molecular analysis. Beyond the predictive purposes, liquid biopsy may play a pivotal
role in the early diagnosis and prognosis evaluation of lung cancer (Dong et al.; Xi et al.). In the
setting of prognostic biomarkers, many data have emerged on NSCLC. In particular, micro RNA
(miRNA) 1323 with high expression in lung adenocarcinomas, promoting cancer cell migration, is
associated with a poor prognosis (Zhao H et al.). Other prognostic biomarkers are currently under
investigation, in particular those related to metabolic reprogramming, extracellular matrix, and
tumor microenvironment remodeling (Bi et al.; Yang et al.; Czarnecka et al.; Ma et al.; Ahmed).
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Another interestingfield of investigation concerns the development
of prognosticmodels (WuL-L et al.) and immunoscoring strategies
to stratify early stage patients (Zhao Z et al.). Finally, careful
attention should be paid to the novel approaches related to
machine learning algorithms used to predict lymph node
involvement in early T stage patients (Wu Y et al.), the possibility
to isolate and characterize stem-like cells (Masciale et al.), and the
possibility to adopt a radiomics-based nomogram to predict EGFR
mutation subtypes (Zhao W et al.).

Taken together, the papers published in Research Topic
“Emerging Biomarkers for NSCLC: Recent Advances in
Diagnosis and Therapy” represent a critical discussion focused
on the role of different novel biomarkers for both predictive and
prognostic purposes.
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Patients’ clinical factors and genetics factors such as anaplastic lymphoma kinase (ALK)

fusion variants and BIM (Bcl-2-like 11) polymorphism were reported to be associated

with clinical outcome in crizotinib-treated advanced non-small cell lung cancer (NSCLC).

However, the results were still controversial. We analyzed outcome of 54 patients with

known ALK fusion variants who received crizotinib for advanced NSCLC. Thirty of them

had successful BIM polymorphism analysis and 6 (20%) had a BIM deletion. Multivariate

Cox regression analysis found that previous anticancer therapy [adjusted hazard ratio

(aHR) 1.35, 95% confidence interval (CI), 1.04–1.76 for each additional line of therapy, p

= 0.025] and Eastern Cooperative Oncology Group (ECOG) performance status≥2 (aHR

8.35, 95% CI, 1.52–45.94, p = 0.015) were independent factors for progression-free

survival (PFS). Only ECOG performance status ≥2 (aHR 7.20, 95% CI, 1.27–40.79,

p = 0.026) was an independent factor for overall survival (OS). Neither ALK fusion

variants nor the presence of a BIM deletion was associated with crizotinib PFS or

OS. After adjusting with clinical factors, different ALK variants and BIM polymorphism

might not be independent factors for crizotinib PFS or OS in advanced NSCLC with

ALK rearrangement.

Keywords: non-small cell lung cancer, ALK, ALK variant, BIM, crizotinib

INTRODUCTION

In 2007, the echinoderm microtubule-associated protein-like 4 (EML4)–anaplastic lymphoma
kinase (ALK) gene rearrangement was first discovered as a driver oncogene for non-small cell
lung cancer (NSCLC) (1). Inversion in chromosome 2p fused the N-terminal domain of EML4
to the intracellular kinase domain of ALK, causing constitutive activation of tyrosine kinase,
leading to uncontrolled cell growth and proliferation. During the following 10 years, targeting
ALK with tyrosine kinase inhibitors (TKIs) has achieved great success. The first-generation ALK
TKI crizotinib had better progression-free survival (PFS) (10.9 vs. 7.0 months) and a better overall
response rate (ORR) (74 vs. 45%) than chemotherapy in treating naïve ALK rearranged {ALK
positive [ALK(+)]} NSCLC in the PROFILE 1014 study (2). Crizotinib has been approved by theUS
Food and Drug Administration (US FDA) as first-line treatment for ALK(+) advanced NSCLC (3).
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The second-generation ALK TKIs alectinib (CH5424802/
RO5424802) and ceritinib (LDK378) also showed promising
activity in controlling ALK(+) NSCLC in phase 3 trials (4, 5).
Moreover, in ALK TKI-naïve patients treated with brigatinib,
a next-generation ALK TKI, the PFS was longer than patients
treated with crizotinib (6). The development of ALK TKI for use
against ALK(+) NSCLC is one of the best stories in the history of
developing anticancer therapy.

However, most patients still experienced disease progression
after ALK TKI treatment. The latest released data for East Asian
patients in PROFILE 1029 revealed that median PFS was 11.1
(95% confidence interval, CI: 8.3–12.6) months for first-line
crizotinib-treated advanced ALK(+) NSCLC patients (7). Several
factors were reported to be associated with crizotinib PFS, but
the two main groups were clinical factors and genetic factors.
Traditional clinical factors such as the patient’s performance
status (8, 9) and brain metastasis (10–12) prior to crizotinib
treatment were reported to influence crizotinib PFS. Among
the genetic factors, one of the most common was ALK fusion
variants. In the preclinical data, different ALK fusion variants
were associated with crizotinib sensitivity. ALK fusion variant
2 had lower crizotinib IC50 than variant 3. Longer ALK fusion
variants were the most unstable and were supposed to be
more sensitive to crizotinib than shorter ALK fusion variants
(13). The presence of a tandem atypical beta-propeller in the
EML protein (TAPE) domain was reported to influence the
stability of EML4–ALK protein (14); “short variants,” such
as variants 3a/b and 5a/b, lack a TAPE domain (15) and
might be less responsive to crizotinib than the longer TAPE-
containing variants, such as variant 1 and variant 2 (16). A
circular RNA F-circEA found in only variant 3 was reported to
promote cancer cell migration and proliferation (17). However,
in spite of the supposed mechanism, the real-world data were
conflicting. ALK variant 1 (18), variant 2 (19), and variants
other than variant 3 (16, 20) were reported to have a better
crizotinib PFS, but there were also several reports indicating
that all variants had a similar outcome (21, 22). In fact, the
largest cohort to date reported there was no crizotinib PFS
difference between variant 1 and variant 3 (23). Whether or not
different EML4–ALK fusion variants influence crizotinib PFS
remains controversial.

Another interesting genetic factor was Bcl-2-like 11 (BIM).
BIM is a pro-apoptotic member of the B-cell CLL/lymphoma
2 (BCL2) family of proteins, discovered in Asia only. Its
upregulation is required for TKIs to induce apoptosis in kinase-
driven cancers (24). The BIM deletion polymorphism was
reported to be associated with primary resistance to or a
short PFS with epidermal growth factor receptor (EGFR) TKI
in advanced EGFR-mutant NSCLC (24, 25). Another report
indicated that BIM deletion was related to a poor crizotinib
response in advanced ALK(+) NSCLC (26). However, in our
previous study, we could not find a relationship between the
BIM deletion polymorphism and primary EGFR TKI resistance
among our 327 Taiwanese patients, while 52 (16%) of them
were positive for BIM deletion (27). In this study, we aimed
to analyze the association of clinical factors and genetic factors,
including ALK fusion variants and BIM polymorphism, with

crizotinib PFS and overall survival (OS) in advanced EML4–
ALK(+) NSCLC patients.

METHODS

Patients
This study retrospectively enrolled patients receiving crizotinib
for EML4–ALK rearrangement stage IV or postoperative
recurrent (advanced) NSCLC between December, 31, 2010,
and December, 31, 2017, at the National Taiwan University
Hospital. Only patients with data on EML4–ALK variants
using reverse transcription polymerase chain reaction (RT-
PCR) were included. Patients who stopped crizotinib within
30 days due to intolerable side effects were excluded. Patients’
baseline characteristics, including age, gender, smoking status,
previous anticancer therapy, Eastern Cooperative Oncology
Group (ECOG) performance status (28), prior brain metastasis,
EML4–ALK variants, and status of BIM polymorphism, were
checked. The patients were treated and followed up based on
the clinician’s decision. A blinded chest physician who was
not involved in patient management and did not know the
laboratory data on EML4–ALK variants and BIM polymorphism
retrospectively reviewed the chart and images to determine
disease progression according to RECIST criteria version 1.1 (29).
PFS was defined as the duration from the first dose of crizotinib to
disease progression or death during treatment. OS was defined as
the duration from the first dose of crizotinib to the patient’s death.
Each patient’s best overall response, PFS, and OS were recorded.
This study was approved by the Institutional Review Board of
National Taiwan University Hospital. Written informed consent
was obtained from all patients before checking their cancer
specimens for molecular studies. All methods were performed in
accordance with the relevant guidelines and regulations.

Analysis for EML4–ALK Fusion Gene
Using immunohistochemistry (IHC) stain, we checked the
patients’ cancer specimens for ALK using Ventana ALK
(D5F3) antibody. We further analyzed cancer specimens
for EML4–ALK variants using RNA RT-PCR, as previously
described (30). In brief, RNA extracted from patients’ tissue
specimens were collected for RT-PCR amplification by a
OneStep RT-PCR Kit (Qiagen) using the following primers:
5′-TGGCTGATGTTTTGAGGCGT-3′ (forward, on exon 2
of EML4), 5′-AGAGCCCACACCTGGGAAAG-3′ (forward,
on exon 13 of EML4), 5′-CCACACAGACGGGAATGAAC-
3′ (forward, on exon 18 of EML4), and 5′-
AGCAAAGCAGTAGTTGGGGT-3′ (reverse, on exon 20 of
ALK). The PCR conditions were as follows: 50◦C for 30min,
95◦C for 15min (94◦C for 50 s, 60◦C for 50 s, 72◦C for 60 s)
× 40 cycles, and 72◦C for 10min. RT-PCR amplicons were
purified and sequenced with Sanger sequencing in both sense
and antisense directions. Because the length of the ALK fusion
protein may contribute to its stability (13) and probably
crizotinib PFS, we also separated different ALK fusion variants
into a long group and a short group. Short ALK fusion variants
were defined as variants that do not have the TAPE main, i.e.,
variant 3a, variant 3b, variant 5a, and variant 5b. Long ALK
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fusion variants were defined as EML4–ALK fusion variants that
contain the TAPE, i.e., all variants other than variant 3a, 3b, 5a,
or 5b (15, 22).

Analysis for the BIM Polymorphism
We checked patient cancer specimens with known EML4–
ALK fusion variants for further BIM polymorphism analysis,
as previously described (24). Cancer DNA was extracted
from cancer specimens using the QIAamp DNA Mini Kit
(Qiagen). PCR reactions were done to determine the presence
of wild-type or deletion alleles using high-fidelity JumpStartTM

REDAccuTaq R© LA DNA Polymerase (Sigma) with the following
conditions: 96◦C for 30 s (94◦C for 15 s, 60◦C for 60 s,
68◦C for 10min) × 30 cycles, and 68◦C for 20min. The
forward primer was 5′-AATACCACAGAGGCCCACAG-3′ and
the reverse primer was 5′-GCCTGAAGGTGCTGAGAAAG-3′.
The PCR products for the deletion (1,323 bp) and the wild-
type (4,226 bp) alleles were applied on a 1% agarose gel and
were sequenced.

Statistical Analysis
Continuous variables were reported as median with interquartile
range (IQR). Categorical data were compared using the chi-
square test. PFS and OS were plotted using the Kaplan–Meier
method and compared by log-rank test. A Cox proportional
hazard model was used for univariate and multivariate analysis
for crizotinib PFS andOS. Variables with p< 0.2 in the univariate
analysis and clinically important variables such as ALK variant
type, BIM deletion, and brain metastasis prior to crizotinib were
forced into the final model. Statistical significance was set at p <

0.05. All statistical analyses were performed using the Statistical
Package for the Social Sciences, version 18.0K (SPSS, Inc.,
Chicago, IL, USA). The data cutoff date was September 23, 2018.

RESULTS

Patient Demographic and Clinical
Characteristics
A total of 104 ALK IHC(+) patients received crizotinib for
advanced NSCLC during the study period. Fifty-five patients had
known EML–ALK fusion variants, as determined by RT-PCR.
One patient who received crizotinib for <30 days because of
side effects was excluded. A total of 54 patients with known
EML4–ALK fusion variants were included in the study. Because
of the overlapping enrollment interval, 13 of the 54 patients were
included in another published article (31). Thirty of the total 54
patients had adequate tissue for BIM polymorphism analysis.

Twenty-three patients had ALK variant 1; six patients had
ALK variant 2; 18 patients had ALK variant 3a/b; and seven
patients had other ALK variants (two with variant 5, one with
variant V5a, two with variant 6, one with variant 8, and one
with variant 1 plus insertion of 117 base pairs). The median
follow-up time of the cohort was 13.8 (IQR, 7.4–25.4) months.
Most patients had received prior anticancer therapy (median,
2 lines of prior anticancer therapy before crizotinib, range,
0–12) and three patients had received crizotinib as first-line

therapy. The crizotinib response rate and the median follow-
up time did not differ between the different ALK variant
groups (Table 1). Patients with variant 2 had better ECOG
performance status (0 or 1) (Table 1). Patients with long ALK
variants were younger than patients with short ALK variants
(p = 0.03) (Supplementary Table 1). In patients with long
ALK variants, the baseline characteristics were not different
significantly between variant 2 and other long ALK variants
(Supplementary Table 2).

BIM deletion polymorphism was found in 20% (6/30) of the
patients. There was no significant difference in demographic
data between patients with deletion polymorphism and wild type
(Supplementary Table 3).

Progression-Free Survival
The median crizotinib PFS was 7.3 [95% confidence interval
(CI), 4.2–10.4] months in this cohort. The median PFS did not
differ significantly among the four ALK variant groups [variant
1, 6.1 (95% CI, 1.6–10.6) months; variant 2, 11.0 (95% CI, 0–
22.1) months; variant 3, 7.3 (95% CI, 3.6–10.9) months; other
variants, 5.5 (95%, 3.1–8.0) months, p = 0.33 by log-rank test,
Figure 1A]. The median PFS also did not differ significantly
between variant 2 and all other variants [variant 2, 11.0 (95%
CI, 0–22.1) months; all other variants, 6.1 (95% CI, 2.7–9.5)
months, p = 0.21 by log-rank test, Figure 1B], between long
ALK variants and short variants [long ALK variants, 6.1 (95%
CI 2.3–9.8) months; short ALK variants, 8.2 (95% CI, 3.7–12.7)
months, p= 0.97 by log-rank test, Figure 1C], and between BIM
deletions and not [BIM deletion, 5.5 (95% CI 0–26.6) months;
wild-type BIM, 8.6 (95% CI, 3.5–13.7) months, p = 0.57 by log-
rank test, Figure 1D]. Multivariate analysis found that ECOG
performance status ≥2 [adjusted hazard ratio (aHR) 8.35, 95%
CI, 1.52–45.94, p= 0.015] and previous anticancer therapy (aHR
1.35, 95% CI, 1.04–1.76 for each additional line of therapy, p
= 0.025) were independent factors for crizotinib PFS (Table 2).
However, EML4–ALK fusion variants and BIM deletion were not
independent factors for crizotinib PFS. ALK variant 1, variant 2,
and variant 3a/b had nearly equal aHR (1.00 as the reference, 0.99
and 1.30, respectively). BIM deletion had a nearly neutral aHR
0.88, as well.

Overall Survival
The median OS was 22.0 [95% confidence interval (CI), 15.3–
28.7) months in the cohort. The median OS did not differ
significantly among the four ALK variant groups [variant 1,
16.1 (95% CI, 10.6–21.5) months; variant 2, not reached;
variant 3, 25.1 (95% CI, 5.4–44.7) months; other variants,
10.3 (95%, 7.7–12.9) months, p = 0.45 by log-rank test,
Figure 2A]. The median OS also did not differ significantly
between variant 2 and all other variants [variant 2, not reached;
all other variants, 19.7 (95% CI, 11.9–27.4) months, p =

0.21 by log-rank test, Figure 2B], between long ALK variants
and short variants [long ALK variants, 18.5 (95% CI 10.3–
26.8) months; short ALK variants, 25.1 (95% CI, 9.2–40.9)
months, p = 0.85 by log-rank test, Figure 2C], and between
BIM deletion and not [BIM deletion, 25.1 (95% CI 0–71.6)
months; wild-type BIM, 22.0 (95% CI, 11.1–32.9) months,
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TABLE 1 | Demographic data (n = 54).

Variable Variant 1 (n = 23) Variant 2 (n = 6) Variant 3a/b (n = 18) Other variants (n = 7) p-value

Median age (years) (IQR) 56 (47–62) 50 (45–57) 62 (55–65) 56 (46–61) 0.16

Male 13 (57%) 2 (33%) 12 (67%) 5 (71%) 0.46

Never-smoker 13 (57%) 6 (100%) 13 (72%) 6 (86%) 0.14

Previous anticancer therapy (line) 2 (1–5) 1 (1–5) 2 (1–3) 4 (4, 5) 0.15

ECOG ≥2 before crizotinib 5 (22%) 0 (0%) 2 (11%) 4 (57%) 0.04

Brain metastasis before crizotinib 10 (44%) 1 (17%) 5 (28%) 4 (57%) 0.34

Best crizotinib response* 0.81

PR 9 (43%) 4 (66%) 11 (60%) 4 (57%)

SD 8 (38%) 1 (17%) 4 (22%) 1 (14%)

PD 4 (19%) 1 (17%) 3 (18%) 2 (29%)

BIM deletion (n = 30) 3/12 (25%) 0/4 (0%) 2/9 (22%) 1/5 (20%) 0.75

Median follow-up time (months) (IQR) 15.4 (5.0–22.3) 18.2 (10.2–43.9) 15.9 (8.7–35.2) 9.9 (7.7–20.3) 0.47

*Two patients with variant 1 were not evaluable for crizotinib response.

IQR, interquartile range; ECOG, Eastern Cooperative Oncology Group performance score; BIM, Bcl-2-like 11.

FIGURE 1 | Kaplan–Meier analyses for progression-free survival (PFS). (A) PFS among different ALK fusion variants. (B) PFS between ALK fusion variant 2 and other

fusion variants. (C) PFS between short (variant 3a/b and 5a/b) and long (all other variants) ALK fusion variants. (D) PFS between BIM deletion and wild type BIM.

p = 0.57 by log-rank test, Figure 2D]. Multivariate analysis
found that ECOG performance status ≥2 (aHR 7.20, 95%
CI, 1.27–40.79, p = 0.026) was an independent factor for
OS (Table 3), while ALK fusion variants and BIM deletion
were not.

DISCUSSION

We found that clinical factors such as prior anticancer therapy
and ECOG performance status were independent factors for
crizotinib PFS in advanced NSCLC bearing EML4–ALK fusion,
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TABLE 2 | Progression-free survival: univariate and multivariate analysis (n = 54).

Variable Univariate analysis Multivariate analysis

Hazard ratio 95% CI p-value Adjusted hazard ratio 95% CI p-value

Age (≥65) 0.79 0.35–1.80 0.58

Male sex 1.04 0.56–1.93 0.89

Never-smoker 0.94 0.49–1.81 0.86

ALK variants 0.36 0.87

Variant 1 1.00b 1.00b

Variant 2 0.52 0.17–1.59 0.25 0.99 0.18–5.35 0.99

Variant 3a/b 0.93 0.46–1.86 0.93 1.30 0.38–4.43 0.68

Other variantsa 1.73 0.67–4.47 0.26 0.64 0.14–2.94 0.57

ECOG ≥2 3.76 1.72–8.21 0.001 8.35 1.52–45.94 0.015

Previous anticancer therapy (per line) 1.14 1.02–1.27 0.02 1.35 1.04–1.76 0.025

Initial brain metastasis 1.53 0.82–2.85 0.18 0.72 0.18–2.87 0.64

BIM deletion 0.73 0.25–2.18 0.58 0.88 0.27–2.86 0.83

aALK variants other than variants 1, 2, or 3a/b.
bAs a reference compared to other ALK variants.

CI, confidence interval; ALK, anaplastic lymphoma kinase; ECOG, Eastern Cooperative Oncology Group performance score; BIM, Bcl-2-like 11.

FIGURE 2 | Kaplan–Meier analyses for overall survival (OS). (A) OS among different ALK fusion variants. (B) OS between ALK fusion variant 2 and other fusion

variants. (C) OS between short (variant 3a/b and 5a/b) and long (all other variants) ALK fusion variants. (D) OS between BIM deletion and wild-type BIM.

while ALK fusion variants and BIM polymorphism were not.
In this cohort with mainly previously treated patients, for
each additional line of anti-cancer therapy, the adjusted HR

was 1.42 (95% CI, 1.06–1.86). With regard to the first-line
PROFILE 1014 (2) and second-line PROFILE 1007 (32) phase
3 trials for ALK(+) NSCLC, the median crizotinib PFS in
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TABLE 3 | Overall survival: univariate and multivariate analysis (n = 54).

Variable Univariate analysis Multivariate analysis

Hazard ratio 95% CI p-value Adjusted hazard ratio 95% CI p-value

Age (≥65) 1.07 0.44–2.63 0.89

Male sex 1.40 0.68–2.90 0.36

Never-smoker 0.72 0.34–1.51 0.38

ALK variants 0.48 0.48

Variant 1 1.00b 1.00b

Variant 2 0.37 0.08–1.64 0.19 1.15 0.20–6.75 0.88

Variant 3a/b 0.74 0.33–1.64 0.45 1.13 0.28–4.49 0.86

Other variantsa 1.27 0.41–3.88 0.68 0.22 0.03-1.53 0.13

ECOG ≥2 3.09 1.38–6.93 0.006 7.20 1.27–40.79 0.026

Previous anticancer therapy (per line) 1.15 1.02–1.29 0.028 1.27 0.97–1.66 0.09

Initial brain metastasis 1.65 0.79–3.43 0.18 0.89 0.19–4.13 0.88

BIM deletion 0.70 0.20–2.43 0.57 0.97 0.24–3.95 0.97

aALK variants other than variants 1, 2, or 3a/b.
bAs a reference compared to other ALK variants.

CI, confidence interval; ALK, anaplastic lymphoma kinase; ECOG, Eastern Cooperative Oncology Group performance score; BIM, Bcl-2-like 11.

the first-line trial seemed to be better (10.9 vs. 7.0 months).
Zhou et al. reported on 73 ALK(+) NSCLC patients that
received first-line crizotinib, pemetrexed/platinum, or non-
pemetrexed chemotherapy/platinum. Poor ECOG performance
status and crizotinib after non-pemetrexed chemotherapy were
two independent factors for poor crozitinib PFS in multivariate
analysis (33). Lin et al. reported on 94 advanced ALK(+) NSCLC
patients and found that crizotinib had a better PFS in first-line
use than in second-line use (median PFS 10.5 vs. 8.3 months, p
= 0.020) (21). Unlike EGFR-TKIs, whose performance was the
same in first-line or second-line treatment for advanced EGFR-
mutant NSCLC (34), crizotinib had a tendency to do better
in first-line use. Poor ECOG performance prior to crizotinib
therapy was another independent factor for crizotinib PFS and
OS. Poor performance status is a traditional negative prognostic
marker among oncology patients (35). It was also found in
crizotinib-treated advanced ALK(+) NSCLC patients in previous
reports (8, 9, 33, 36).

Different EML4–ALK fusion variants were reported to
influence crizotinib efficacy, but results from different reports
are conflicting. The results of the current study and of previous
reports regarding EML4–ALK fusion variants and crizotinib PFS
are summarized in Table 4 (16, 18–23, 37). All studies were
conducted in a single center except for the report by Mitiushkina
et al., which included three different hospitals in St. Petersburg,
Russia (22). Yoshida et al. first reported that ALK fusion variant
1 had better crizotinib PFS in 35 Japanese patients (18). This was
the first clinical report on the influence of different ALK fusion
variants on crizotinib PFS. The patient numbers were relatively
small and it only included first-line crizotinib-treated patients.
Moreover, Lin et al. reported that 55 patients with variant 1 and
variant 3 received first-line crizotinib, and the PFS was similar
(23). Li et al. (19), Woo et al. (16), and Christopoulos et al. (20)
reported responsiveness of patients from China, South Korea,
and Germany to crizotinib in 2018, and the results were similar.

Although Li et al. concluded that variant 2 had better crizotinib
PFS, there was still a tendency for non-variant 3a/b patients
to have a longer crizotinib PFS (median, 18.4 vs. 13.1 months,
p = 0.24), which was consistent with the findings reported by
Woo et al. and Christopoulos et al. The three studies had a
similar characteristic: the majority of patients had variant 3a/b.
However, while variant 3 had disadvantages in both PFS and OS
as reported by Christopoulos et al. (20), the OS was almost the
same (p = 0.96), as reported by Woo et al. (16). On the other
hand, the largest cohort to date by Lin et al. showed that there
was no difference between variant 1 and variant 3, in patients
treated with both first-line ALK TKI as crizotinib and first-line
crizotinib (23). Lei et al. (21), Cha et al. (37), Mitiushkina et al.
(22), and our study found no difference between different ALK
fusion variants. In the five studies from the United States, China,
South Korea, Russia, and Taiwan, the majority of patients had
variant 1. Both positive and negative reports included Caucasian
and Asian patients, so race may not have contributed to the
differences in results. Is it possible that the composite of variants
in study cohorts had some influence on the results? The patient
percentages of variant 3 in the five studies, which did not find
differences between variants, were 48%, 30%, 19%, 25%, and
33%, respectively. In fact, patients with variant 3 were the second
largest group among the cohorts, which does not lend support
to the hypothesis of smaller patient numbers leading to an
overestimation of PFS for variant 3 in the studies. One of the
possible explanations may be the use of multivariate analysis.
Only studies by Yoshida et al. and Li et al., and our study
used a multivariate analysis to determine the independent factors
for crizotinib PFS. Although the clinicopathologic characteristics
seemed to be similar between the two analyzed groups (such
as variant 3a/b or non-variant 3a/b), multivariate analysis that
includes clinically relevant variables may still be a better method
to find independent factors. Different patient groupings may
influence crizotinib PFS if they are not adjusted appropriately.
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TABLE 4 | Current reports of ALK fusion variants and crizotinib progression-free survival.

References Study site Detection of ALK

fusion

ALK TKI Timing of ALK

TKI

Patient

number

Prominent ALK

fusion variant

Non-EML4-ALK

fusion

PFS difference Median ALK TKI PFS

(months)

Multi-variate

analysis

Yoshida et al. (18) Japan RT-PCR Crizotinib First-line 35 V1, 54%

(54%/14%/12%)*

No V1 longer 11.0 vs. 4.2 Yes

Li et al. (19) China NGS Crizotinib Mixed 49 V3a/b, 33%

(23%/15%/33%)*

Yes (18%) V2 longer 34.5 vs. 12.3 Yes

Woo et al. (16) South Korea RT-PCR Crizotinib Mixed 44 V3a/b, 44%

(33%/11%/44%)*

Yes (6%) Non-V3a/b longer Not-reached vs. 11.0 No

Christopoulos et al.

(20)

Germany RT-PCR, NGS Crizotinib,

Alectinib,

Ceritinib

Mixed 67 V3a/b, 51%

(39%/10%/51%)*

No Non-V3a/b Longer 39.3 vs. 7.3 No

Lin et al.† (23) United States RT-PCR, DNA direct

sequencing or NGS

Crizotinib First-line ALK TKIa

and first-lineb
99†a

55b
V1† 52%

(V3 48%)a

V3† 51%

(V1 49%)b

No No differencea,b 9.2 vs. 7.5a

8.9 vs. 6.9 b
No

Lei et al. (21) China RACE-coupled PCR Crizotinib Mixed 61 V1, 36%

(36%/12%/30%)*

Yes (3%) No difference V1 vs. V3 vs. others: 11 vs.

10.9 vs. 7.4

No

Cha et al. (37) South Korea RT-PCR Crizotinib Mixed 32 V1, 39%

(39%/6%/19%)*

Yes (37%) No difference Not disclosed in numbers# No

Mitiushkin et al. (22) Russia RT-PCR Crizotinib,

Alectinib,

Ceritinib

Mixed 64 V1, 52%

(52%/5%/25%)*

Yes (2%) No difference Not disclosed in numbers# No

Current study Taiwan RT-PCR Crizotinib Mixed 54 V1, 43%

(43%/11%/33%)*

No No difference V1 vs. V2 vs. V3 vs. others:

6.1 vs. 11.0 vs. 7.3 vs. 5.5

Yes

*Proportion of variant 1/variant 2/variant 3a/b in study cohorts.
†
It is the largest cohort to date. It only compared variant 1 with variant 3. Data from patients with other ALK variants were not disclosed. Patients who received crizotinib as first-line ALK TKIa and crizotinib as first-line therapyb were listed.

#Only Kaplan–Meier curves were available.

The bold values were used to emphasize the prominent ALK fusion variant and its percentage only.
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This may partly explain the discordance of OS data between
the reports from Woo et al. and Christopoulos et al. In
Christopoulos’s cohort, variant 3a/b patients had more initial
metastatic sites, either thoracic or extra-thoracic, and fewer
patients with variant 3a/b had cancer recurrence from an early-
stage cancer rather than initial stage IV (20). More metastatic
sites and less cancer recurrence from early-stage NSCLC had
survival disadvantages (38, 39), and might have contributed
to shorter PFS and OS in variant 3a/b patients in the cohort.
On the other hand, in our cohort, although patients with
variant 2 tended to have a longer PFS, they might also have
clinical advantages (tended to be younger, never-smokers, with
better baseline performance status, and with less initial brain
metastasis) (Table 1). The PFS between variant 1, variant 2,
and variant 3a/b were almost equal after multivariate analysis
(aHR, 1.00 as reference, 0.99, 1.30, respectively, Table 2). We
hypothesize that although different ALK fusion variants might
contribute to different crizotinib PFS, the impact may not be
significant after adjusting for clinical factors.

In this study, there were 30 patients with enough tissue
for BIM analysis and six were positive for BIM deletion
(20%). The prevalence rate was consistent with previous reports
(11–19%) (24–27). The BIM deletion polymorphism was not
associated with a difference in crizotinib PFS (Figure 1D) or
OS (Figure 2D). Using the multivariate Cox proportional hazard
model, BIM deletion was also not related to differences in PFS
or OS (Tables 2, 3). BIM deletion was associated with shorter
PFS in 47 ALK(+) NSCLC patients receiving crizotinib (26).
BIM polymorphism was also reported to be associated with
primary resistance or short PFS with EGFR TKIs (24, 25).
However, Lee et al. checked 193 patients who received EGFR
TKI for EGFR-mutant NSCLC and there was also no difference
in EGFR TKI PFS between patients with and those without a
BIM deletion (40). The result was similar to our previous analysis
(27). Although BIM is a pro-apoptotic protein andmay be related
to TKI-induced cancer cell death, lung cancer cells may not
be totally dependent on this pathway, and the concentration of
BIM protein may also matter. Furthermore, the BIM deletion
polymorphism is found only in Asians, and not in Caucasians
(24). If the BIM deletion polymorphism was associated with
shorter PFS, the effectiveness of crizotinib among Asians would
be worse than inWestern countries, but this is not true. Whether
or not a simple BIM gene deletion influences TKI efficacy in
NSCLC patients remains questionable.

There were several limitations to this study. First, it was
a retrospective cohort study in a single center, as in previous
reports. Because of the rarity of ALK(+) NSCLC, the patient
number was still limited. The BIM deletion polymorphism
in ALK(+) NSCLC patients, which is found in only 10–
20% of ALK(+) patients, is even rarer. This may also be the
reason that different reports have had different findings to
date. As a result of limited patient numbers, the resistance
mechanisms could not be addressed. Further larger multicenter
or international prospective cohorts are warranted. Second,
this was a cohort with mainly previously treated patients. Our

results may not be generalizable to patients receiving first-
line crizotinib therapy. Because reimbursement of crizotinib
as first-line therapy was not approved by Taiwan’s National
Health Insurance until November 1, 2017, only three of 54
patients in our cohort used crizotinib as first-line therapy.
However, although the U.S. FDA approved first-line crizotinib
therapy, almost other studies also included mixed-line therapy
with crizotinib, and purely first-line crizotinib data were
rare (Table 4). Third, we used RT-PCR to determine ALK
fusion variants. As in prior reports, not all ALK fusion
variants could be detected. With the development of next-
generation sequencing, more ALK fusion variants can be
found, and the entire picture of ALK fusion lung cancer will
become clearer.

In conclusion, clinical factors such as more prior anticancer
therapies and ECOG performance status≥2 were associated with
a poorer crizotinib outcome. Different ALK variants and the BIM
polymorphism were not independent factors for crizotinib PFS
or OS in this study.

DATA AVAILABILITY

The datasets that were analyzed during the current
study are available from the corresponding author on
reasonable request.

ETHICS STATEMENT

This study was reviewed and approved by the Institutional
Review Board of National Taiwan University Hospital. Written
informed consent was obtained from all patients before checking
their cancer specimens for molecular studies. All methods
were performed in accordance with the relevant guidelines
and regulations.

AUTHOR’S NOTE

An earlier version of this study was presented as a poster
presentation in the Asian Pacific Society of Respirology
2018 Congress.

AUTHOR CONTRIBUTIONS

Y-TL participated in the study design, review and collection of
patients’ data, statistical analysis, and drafting of the manuscript.
Y-NL participated in collection of patients’ data, analyses of
ALK and BIM, and revision of the manuscript. J-YS designed
the study, interpreted the data, and reviewed and revised
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.00880/full#supplementary-material

Frontiers in Oncology | www.frontiersin.org 8 September 2019 | Volume 9 | Article 88014

https://www.frontiersin.org/articles/10.3389/fonc.2019.00880/full#supplementary-material
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Crizotinib, ALK Variants and BIM

REFERENCES

1. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S,

et al. Identification of the transforming EML4-ALK fusion gene in non-

small-cell lung cancer. Nature. (2007) 448:561–6. doi: 10.1038/nature

05945

2. Solomon BJ, Mok T, KimDW,WuYL, Nakagawa K,Mekhail T, et al. First-line

crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med.

(2014) 371:2167–77. doi: 10.1056/NEJMoa1408440

3. Malik SM, Maher VE, Bijwaard KE, Becker RL, Zhang L, Tang SW,

et al. U.S. Food and Drug Administration approval: Crizotinib for

treatment of advanced or metastatic non-small cell lung cancer that is

anaplastic lymphoma kinase positive. Clin Cancer Res. (2014) 20:2029–34.

doi: 10.1158/1078-0432.CCR-13-3077

4. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW,

et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell

lung cancer. N Engl J Med. (2017) 377:829–38. doi: 10.1056/NEJMoa17

04795

5. Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, et al. First-

line ceritinib versus platinum-based chemotherapy in advanced ALK-

rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-

label, phase 3 study. Lancet. (2017) 389:917–29. doi: 10.1016/S0140-6736(17)

30123-X

6. Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, et al. Brigatinib

versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med.

(2018) 379:2027–39. doi: 10.1056/NEJMoa1810171

7. Wu YL, Lu S, Lu Y, Zhou J, Shi YK, Sriuranpong V, et al. Results of PROFILE

1029, a Phase III comparison of first-line crizotinib versus chemotherapy in

East Asian patients with ALK-positive advanced non-small cell lung cancer. J

Thorac Oncol. (2018) 13:1539–48. doi: 10.1016/j.jtho.2018.06.012

8. Ock CY, Yoo SH, Keam B, Kim M, Kim TM, Jeon YK, et al. Clinical

factors affecting progression-free survival with crizotinib in ALK-positive

non-small cell lung cancer. Korean J Intern Med. (2019) 34:1116–1124.

doi: 10.3904/kjim.2018.011

9. Cao Y, Xiao G, Qiu X, Ye S, Lin T. Efficacy and safety of crizotinib

among Chinese EML4-ALK-positive, advanced-stage non-small cell lung

cancer patients. PLoS ONE. (2014) 9:e114008. doi: 10.1371/journal.pone.0

114008

10. Xing P, Wang S, Hao X, Zhang T, Li J. Clinical data from the real world:

efficacy of crizotinib in Chinese patients with advanced ALK-rearranged non-

small cell lung cancer and brain metastases. Oncotarget. (2016) 7:84666–74.

doi: 10.18632/oncotarget.13179

11. Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, et al.

Clinical impact of crizotinib on central nervous system progression

in ALK-positive non-small lung cancer. Lung Cancer. (2016) 97:43–7.

doi: 10.1016/j.lungcan.2016.04.006

12. Lei YY, Yang JJ, Zhong WZ, Chen HJ, Yan HH, Han JF, et al. Clinical

efficacy of crizotinib in Chinese patients with ALK-positive non-small-

cell lung cancer with brain metastases. J Thorac Dis. (2015) 7:1181–8.

doi: 10.3978/j.issn.2072-1439.2015.06.04

13. Heuckmann JM, Balke-Want H, Malchers F, Peifer M, Sos ML, Koker

M, et al. Differential protein stability and ALK inhibitor sensitivity

of EML4-ALK fusion variants. Clin Cancer Res. (2012) 18:4682–90.

doi: 10.1158/1078-0432.CCR-11-3260

14. Richards MW, Law EW, Rennalls LP, Busacca S, O’Regan L, Fry AM,

et al. Crystal structure of EML1 reveals the basis for Hsp90 dependence of

oncogenic EML4-ALK by disruption of an atypical beta-propeller domain.

Proc Natl Acad Sci USA. (2014) 111:5195–200. doi: 10.1073/pnas.1322

892111

15. Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW. Molecular mechanisms

that underpin EML4-ALK driven cancers and their response to targeted drugs.

Cell Mol Life Sci. (2016) 73:1209–24. doi: 10.1007/s00018-015-2117-6

16. Woo CG, Seo S, Kim SW, Jang SJ, Park KS, Song JY, et al. Differential protein

stability and clinical responses of EML4-ALK fusion variants to various ALK

inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann

Oncol. (2017) 28:791–7. doi: 10.1093/annonc/mdw693

17. Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, et al. Circular RNA F-

circEA produced from EML4-ALK fusion gene as a novel liquid biopsy

biomarker for non-small cell lung cancer. Cell Res. (2018) 28:693–5.

doi: 10.1038/s41422-018-0033-7

18. Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, et al.

Differential crizotinib response duration among ALK fusion variants in

ALK-positive non-small-cell lung cancer. J Clin Oncol. (2016) 34:3383–9.

doi: 10.1200/JCO.2015.65.8732

19. Li Y, Zhang T, Zhang J, Li W, Yuan P, Xing P, et al. Response

to crizotinib in advanced ALK-rearranged non-small cell lung cancers

with different ALK-fusion variants. Lung Cancer. (2018) 118:128–33.

doi: 10.1016/j.lungcan.2018.01.026

20. Christopoulos P, Endris V, Bozorgmehr F, Elsayed M, Kirchner M, Ristau

J, et al. EML4-ALK fusion variant V3 is a high-risk feature conferring

accelerated metastatic spread, early treatment failure and worse overall

survival in ALK(+) non-small cell lung cancer. Int J Cancer. (2018) 142:2589–

98. doi: 10.1002/ijc.31275

21. Lei YY, Yang JJ, Zhang XC, Zhong WZ, Zhou Q, Tu HY, et al. Anaplastic

lymphoma kinase variants and the percentage of ALK-positive tumor cells

and the efficacy of crizotinib in advanced NSCLC. Clin Lung Cancer. (2016)

17:223–31. doi: 10.1016/j.cllc.2015.09.002

22. Mitiushkina NV, Tiurin VI, Iyevleva AG, Kholmatov MM, Filippova EA,

Moiseyenko FV, et al. Variability in lung cancer response to ALK inhibitors

cannot be explained by the diversity of ALK fusion variants. Biochimie. (2018)

154:19–24. doi: 10.1016/j.biochi.2018.07.018

23. Lin JJ, Zhu VW, Yoda S, Yeap BY, Schrock AB, Dagogo-Jack I, et al.

Impact of EML4-ALK variant on resistance mechanisms and clinical

outcomes in ALK-positive lung cancer. J Clin Oncol. (2018) 36:1199–206.

doi: 10.1200/JCO.2017.76.2294

24. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A

common BIM deletion polymorphism mediates intrinsic resistance and

inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. (2012)

18:521–8. doi: 10.1038/nm.2713

25. Isobe K, Hata Y, Tochigi N, Kaburaki K, Kobayashi H, Makino T, et al. Clinical

significance of BIMdeletion polymorphism in non-small-cell lung cancer with

epidermal growth factor receptor mutation. J Thorac Oncol. (2014) 9:483–7.

doi: 10.1097/JTO.0000000000000125

26. Zhang L, Jiang T, Li X, Wang Y, Zhao C, Zhao S, et al. Clinical features of Bim

deletion polymorphism and its relation with crizotinib primary resistance in

Chinese patients with ALK/ROS1 fusion-positive non-small cell lung cancer.

Cancer. (2017) 123:2927–35. doi: 10.1002/cncr.30677

27. Wu SG, Liu YN, Yu CJ, Yang PC, Shih JY. Association of BIM deletion

polymorphism with intrinsic resistance to EGFR tyrosine kinase inhibitors

in patients with lung adenocarcinoma. JAMA Oncol. (2016) 2:826–8.

doi: 10.1001/jamaoncol.2016.0016

28. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET,

et al. Toxicity and response criteria of the Eastern Cooperative Oncology

Group. Am J Clin Oncol. (1982) 5:649–55. doi: 10.1097/00000421-19821200

0-00014

29. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.

New response evaluation criteria in solid tumours: revised RECIST guideline

(version 1.1). Eur J Cancer. (2009) 45:228–47. doi: 10.1016/j.ejca.2008.10.026

30. Lin YT, Yu CJ, Yang JC, Shih JY. Anaplastic lymphoma kinase (ALK) kinase

domainmutation following ALK inhibitor(s) failure in advanced ALK positive

non-small-cell lung cancer: analysis and literature review. Clin. Lung Cancer.

(2016) 17:e77–94. doi: 10.1016/j.cllc.2016.03.005

31. Lin YT, Chen CY, Shih JY. Real-world crizotinib use for anaplastic lymphoma

kinase (ALK)-positive advanced non-small cell lung cancer under first-year

national health insurance coverage in Taiwan. Thorac Med. (2018) 33:1–13.

32. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib

versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med.

(2013) 368:2385–94. doi: 10.1056/NEJMoa1214886

33. Zhou J, Zheng J, Zhang X, Zhao J, Zhu Y, Shen Q, et al. Crizotinib in

patients with anaplastic lymphoma kinase-positive advanced non-small cell

lung cancer versus chemotherapy as a first-line treatment. BMC Cancer.

(2018) 18:10. doi: 10.1186/s12885-017-3720-8

34. Wu JY, Yu CJ, Yang CH, Wu SG, Chiu YH, Gow CH, et al. First-

or second-line therapy with gefitinib produces equal survival in non-

small cell lung cancer. Am J Respir Crit Care Med. (2008) 178:847–53.

doi: 10.1164/rccm.200803-389OC

Frontiers in Oncology | www.frontiersin.org 9 September 2019 | Volume 9 | Article 88015

https://doi.org/10.1038/nature05945
https://doi.org/10.1056/NEJMoa1408440
https://doi.org/10.1158/1078-0432.CCR-13-3077
https://doi.org/10.1056/NEJMoa1704795
https://doi.org/10.1016/S0140-6736(17)30123-X
https://doi.org/10.1056/NEJMoa1810171
https://doi.org/10.1016/j.jtho.2018.06.012
https://doi.org/10.3904/kjim.2018.011
https://doi.org/10.1371/journal.pone.0114008
https://doi.org/10.18632/oncotarget.13179
https://doi.org/10.1016/j.lungcan.2016.04.006
https://doi.org/10.3978/j.issn.2072-1439.2015.06.04
https://doi.org/10.1158/1078-0432.CCR-11-3260
https://doi.org/10.1073/pnas.1322892111
https://doi.org/10.1007/s00018-015-2117-6
https://doi.org/10.1093/annonc/mdw693
https://doi.org/10.1038/s41422-018-0033-7
https://doi.org/10.1200/JCO.2015.65.8732
https://doi.org/10.1016/j.lungcan.2018.01.026
https://doi.org/10.1002/ijc.31275
https://doi.org/10.1016/j.cllc.2015.09.002
https://doi.org/10.1016/j.biochi.2018.07.018
https://doi.org/10.1200/JCO.2017.76.2294
https://doi.org/10.1038/nm.2713
https://doi.org/10.1097/JTO.0000000000000125
https://doi.org/10.1002/cncr.30677
https://doi.org/10.1001/jamaoncol.2016.0016
https://doi.org/10.1097/00000421-198212000-00014
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.cllc.2016.03.005
https://doi.org/10.1056/NEJMoa1214886
https://doi.org/10.1186/s12885-017-3720-8
https://doi.org/10.1164/rccm.200803-389OC
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Crizotinib, ALK Variants and BIM

35. Stanley KE. Prognostic factors for survival in patients with inoperable lung

cancer. J Natl Cancer Inst. (1980) 65:25–32.

36. Noronha V, Ramaswamy A, Patil VM, Joshi A, Chougule A, Kane S, et al. ALK

positive lung cancer: clinical profile, practice and outcomes in a developing

country. PLoS ONE. (2016) 11:e0160752. doi: 10.1371/journal.pone.0160752

37. Cha YJ, Kim HR, Shim HS. Clinical outcomes in ALK-rearranged lung

adenocarcinomas according to ALK fusion variants. J Transl Med. (2016)

14:296. doi: 10.1186/s12967-016-1061-z

38. Bates JE, Milano MT. Prognostic significance of sites of extrathoracic

metastasis in patients with non-small cell lung cancer. J Thorac Dis. (2017)

9:1903–10. doi: 10.21037/jtd.2017.06.117

39. Ko R, Kenmotsu H, Hisamatsu Y, Akamatsu H, Omori S, Nakashima

K, et al. The effect of gefitinib in patients with postoperative recurrent

non-small cell lung cancer harboring mutations of the epidermal growth

factor receptor. Int J Clin Oncol. (2015) 20:668–73. doi: 10.1007/s10147-014-

0761-8

40. Lee JK, Shin JY, Kim S, Lee S, Park C, Kim JY, et al. Primary resistance

to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors

(TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive

EGFR mutations: an exploratory study. Ann Oncol. (2013) 24:2080–7.

doi: 10.1093/annonc/mdt127

Conflict of Interest Statement: Y-TL has received speaking honoraria from

AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Pfizer, Roche, and

TTY Biopharm; and travel expense from Pfizer. J-YS has received personal fees for

advisory boards from AstraZeneca, Roche, Boehringer Ingelheim, Eli Lilly, Merck

Sharp & Dohme, Ono Pharmaceutical, Chugai Pharmaceutical, AbbVie, and

Bristol-Myers Squibb; speaking honoraria from AstraZeneca, Roche, Boehringer

Ingelheim, Eli Lilly, Pfizer, Novartis, Merck Sharp & Dohme, Ono Pharmaceutical,

Chugai Pharmaceutical, AbbVie, and Bristol-Myers Squibb; and travel expense

from Roche, Boehringer Ingelheim, Pfizer, Merck Sharp & Dohme, Chugai

Pharmaceutical, and Bristol-Myers Squibb.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Lin, Liu and Shih. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 10 September 2019 | Volume 9 | Article 88016

https://doi.org/10.1371/journal.pone.0160752
https://doi.org/10.1186/s12967-016-1061-z
https://doi.org/10.21037/jtd.2017.06.117
https://doi.org/10.1007/s10147-014-0761-8
https://doi.org/10.1093/annonc/mdt127
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 01 October 2019

doi: 10.3389/fonc.2019.00975

Frontiers in Oncology | www.frontiersin.org 1 October 2019 | Volume 9 | Article 975

Edited by:

Umberto Malapelle,

University of Naples Federico II, Italy

Reviewed by:

Rabab Mohamed Gaafar,

Cairo University, Egypt

Francesco Pepe,

Department of Public Health,

University of Naples Federico II, Italy

*Correspondence:

Lanjun Zhang

zhanglj@sysucc.org.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Thoracic Oncology,

a section of the journal

Frontiers in Oncology

Received: 23 June 2019

Accepted: 13 September 2019

Published: 01 October 2019

Citation:

Xi K, Wang W, Wen Y, Chen Y,

Zhang X, Wu Y, Zhang R, Wang G,

Huang Z and Zhang L (2019)

Combining Plasma miRNAs and

Computed Tomography Features to

Differentiate the Nature of Pulmonary

Nodules. Front. Oncol. 9:975.

doi: 10.3389/fonc.2019.00975

Combining Plasma miRNAs and
Computed Tomography Features to
Differentiate the Nature of Pulmonary
Nodules
Kexing Xi 1,2†, Weidong Wang 1,2†, Yingsheng Wen 1,2†, Yongqiang Chen 1,2, Xuewen Zhang 2,3,

Yaobo Wu 4, Rusi Zhang 1,2, Gongming Wang 1,2, Zirui Huang 1,2 and Lanjun Zhang 1,2*

1Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China, 2 State Key Laboratory of

Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China, 3Department of Medical

Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China, 4 State Key Laboratory of Organ Failure Research,

Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital,
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Objective: The purpose of this study was to evaluate the diagnostic efficiency of

combining plasma microRNAs (miRNAs) and computed tomography (CT) features in the

diagnosis of pulmonary nodules.

Methods: Ninety-two pulmonary nodule patients who had undergone surgery were

enrolled in our study from July 2016 to March 2018 at the Sun Yat-sen University

Cancer Center. A prediction model was established by combining 3 miRNAs

(miRNA-146a, -200b, and -7) and CT features to identify the pulmonary nodules of these

patients.We evaluated the diagnostic performance of this predictionmodel for pulmonary

nodules using the Receiver Operating Characteristic (ROC) curve.

Results: The expression levels of miRNA-146a, -200b, and -7 in early-stage non-small

cell lung cancer (NSCLC) patients are significantly higher than those in benign nodule

patients. We used these three miRNAs and CT features (pleural indentation and

speculation) to establish a prediction model for early-stage NSCLC, with a sensitivity and

specificity of 92.9%, 83.3% in the training set, respectively. For the validation process,

with the sensitivity of 71.8% and the specificity of 69.2%. For ROC curve analyses, area

under the curve (AUC) for tumor identification in the training stage and validation stage

were 0.929 and 0.781, respectively.

Conclusion: Plasma miRNA-146a, miRNA-200b, and miRNA-7 may be potential

biomarkers for the early diagnosis of lung cancer. Our prediction model can help to

identify the nature of pulmonary nodules with a relatively high diagnostic efficiency.

Keywords: microRNA, pulmonary nodules, prediction model, diagnosis, NSCLC
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INTRODUCTION

Lung cancer is the most common cancer in the world with high
morbidity and mortality based on the global cancer statistics
from 2012 (1). In all, 80∼85% of lung cancer cases are non-
small cell lung cancer (NSCLC) (2). To date, the 5-year overall
survival of lung cancer is only approximately 15%, despite the
advances of new diagnostic techniques and treatments over the
last few decades (3). One of main reasons for the poor prognosis
of lung cancer is that more than 60% of patients have advanced
NSCLC at the time of diagnosis (4). The early diagnosis of lung
cancer is vital to improve the overall survival rate and prognosis
of lung cancer.

At present, the diagnosis of lung cancer clinically depends on a
pathology examination. However, this method requires obtaining
tissue from patients, which involves invasive procedures, such
as percutaneous needle lung biopsy, bronchoscopy, and video-
assisted thoracoscopic surgery (VATS). And a non-invasive
test is more valuable, which can reduce the economic burden
and surgical wound. Thanks to the increasing widespread
use of computed tomographic (CT) scans, some early-stage
lung cancer cases can be discovered. Moreover, based on the
National Lung Screening Trial (NSLT), it was found that high-
risk individuals who received low-dose computed tomographic
(LDCT) screening had a 20% reduction in the mortality of lung
cancer (5). However, some studies reported that screening CT
had a high false positive rate which may lead to unnecessary
treatment (5, 6). In the meantime, some tumor markers
including Neuron-specific enolase (NSE), Carcinoembryonic
antigen (CEA), Squamous cell carcinoma antigen (SCCA),
and Cytokeratin-19 fragments (Cyfra21-1), have been widely
used in the clinic. However, the specificity and sensitivity of
these tumor markers for differentiating malignant or benign
pulmonary nodules are limited (7). Furthermore, most of them
were increased in advanced-stage lung cancer patients. Thus, it
is urgent to find new methods and molecular biomarkers for
detecting and diagnosing lung cancer.

MicroRNAs are endogenous noncoding RNAs of
approximately−22nt in length (8). They participate in post-
transcriptional gene regulation, and may act as potential
molecular biomarkers (9). Numerous studies have reported
the diagnostic value of miRNAs in pulmonary nodules and
that they can serve as novel biomarkers for the early detection
of lung cancer. According to the published literature and our
previous study, we selected 10 miRNAs (miR-17, -146a, -200b,
-182, -221, -205, -7, -21, -145, and miR-210) for our study
(10–14). We aimed to measure the differences in expression of
miRNAs between benign and malignant pulmonary nodules
and then select the target miRNAs in this study. Finally, we
combine miRNAs and CT features to diagnosis the nature of
pulmonary nodules.

MATERIALS AND METHODS

Patients
In this retrospective study, all 92 patients were enrolled from
July 2016 to March 2018 at the Sun Yat-sen University Cancer

Center. Patients were collected based on the following eligibility
criteria: (1) Patients were diagnosed with a pulmonary nodule
by CT before the surgery; (2) Patients diagnosed as stage
0∼IIa non-small cell lung cancer (NSCLC) or benign lung
disease pathologically after surgery; (3) Patients diagnosed
with NSCLC can obtain accurate pathologic staging; and
(4) Patients had complete clinicopathologic information. The
exclusion criteria in this study were as follows: (1) Patients
received radiotherapy or chemotherapy before the surgery;
(2) Patients had a second primary tumor; (3) Patients were
not pathologically confirmed after surgery; and (4) Patients
with stage IIb∼ IV lung cancer. The patients selected for the
training set and validation sets were according to the time of
diagnosis. Patients were staged before the surgery according
to the examination including brain MRI, thoracoabdominal
CT, even positron emission tomography (PET). Patients
were staged after the surgery according to the result of
pathology. The pathologic staging of tumor was according
to the International Association for the Study of Lung
Cancer (8th version). This study was approved by the Ethics
Committee of Sun Yat-sen University Cancer Center (NO.
B2017-050) and written informed consent was obtained from
all patients.

RNA Extraction and RT-PCR
Five milliliter of venous blood was collected from every patient
before the surgery, centrifuged within 2 h at 3,200 rpm for 10min
at 4◦C and then stored at−80◦C until use.

Total RNA was extracted from 200 µl of plasma samples
using miRNeasy Serum/Plasma Kit (Qiagen, USA) according to
the manufacturer’s instructions, and eluted to a final volume of
14 µl. The total reaction volume for Poly(A) tailing was 25 µl
including eluted RNA, 10 µl; cel-miR-39, 1 × 109 copy; 5 ×

PAP buffer solution, 4 ul; PolyA polymerase (Life, 74225Y/Z),
2∼5U; and appropriate RNase-free water to the volume of 25
µl. The reaction conditions for Poly(A) tailing were 37◦C for
10∼20min, 65◦C for 10min. Adding a total of PolyA-tailed
RNA, 10 µl; RT buffer solution, 2 µl; dNTPs, 2 µl; reverse
primers, 20µM; Omniscript (Qiagen Cat No.205111), 4U and
appropriate RNase-free water to the Reverse transcription (RT)
reactions, and the final volume is 20 µl. The conditions for
reverse transcription (RT) reactions were incubated at 37◦C for
1 h, 85◦C for 5min, and terminated at 4◦C. The total volume
for real-time PCR reaction was 20 µl and contained 1 µl cDNA,
10 µl 2 × SYBR Green Mix, 10µM forward primers, 10µM
reverse primers and appropriate H2O. The conditions for real-
time PCR reaction were as follow: 95◦C for 3min; 40 cycles of
95◦C for 15 s and 60◦C for 35 s; 95◦C for 15 s and 60◦C for
1 min.

We used the Omniscript RT Kit (Qiagen, Germany)
to accomplish reverse transcription (RT) reactions. The
SYBR Green Mix (Qiagen, Cat No.208054) was used for
real-time quantitative polymerase chain reaction (RT-
PCR) analysis to detect the expression levels of miRNAs.
The relative expression of miRNAs was analyzed with the
2−11Ct method (15). The cel-miR-39 was chosen as the
inner control.
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TABLE 1 | Clinical features of benign pulmonary nodule patients and NSCLC patients (n, %).

Training set Validation set

Characteristic Benign (n = 12) NSCLC (n = 28) Benign (n = 13) NSCLC (n = 39)

Gender

Men 4 (33.33) 15 (53.57) 9 (69.23) 17 (43.59)

Women 8 (66.67) 13 (46.43) 4 (30.77) 22 (56.41)

Age

≤60 10 (83.33) 14 (50.00) 9 (69.23) 19 (48.72)

>60 2 (16.67) 14 (50.00) 4 (30.77) 20 (51.28)

Smoking index

<400 10 (83.33) 20 (71.43) 8 (61.54) 28 (71.79)

≥400 2 (16.67) 8 (28.57) 5 (38.46) 11 (28.21)

pTNM stage

0∼Ia 18 (64.29) 31 (79.49)

Ib 7 (25.00) 7 (17.95)

IIa 3 (10.71) 1 (2.56)

Differentiation grade

Poor 7 (25.00) 6 (15.38)

Moderate 14 (50.00) 25 (64.10)

Well 7 (25.00) 8 (20.51)

Nodule diameter (cm) 1.90 ± 1.25a 2.51 ± 1.31a 1.40 ± 0.53a 1.83 ± 0.83a

speculation 0 (0.00) 14 (50.00) 4 (30.77) 21 (53.85)

Pleural indentation 1 (8.33) 13 (46.43) 1 (7.69) 16 (41.03)

Air bronchogram 0 (0.00) 3 (10.71) 2 (16.67) 5 (12.82)

Vessels sign 1 (8.33) 3 (10.71) 0 (0.00) 2 (5.13)

NSLCL, non-small cell lung cancer; TNM, tumor-node-metastasis. aData are presented as mean ± SD.

TABLE 2 | Expression levels of 10 miRNAs between 28 NSCLC patients and 12 benign pulmonary nodule patients [mean ± SD and median (Q25–Q75)].

miRNAs NSCLC group Benign group P-value

miR-17 8.716 (8.054–9.281) 8.117 (7.341–8.390) 0.059a

miR-146a 8.371 (7.562–9.085) 7.628 (6.720–7.961) 0.021a

miR-200b 6.678 (5.482–7.585) 5.319 (3.916–5.817) 0.048a

miR-182 6.898±1.377 6.212±1.187 0.141b

miR-221 8.409±1.060 7.800±0.904 0.091b

miR-205 6.743 (6.235-8.008) 6.278 (4.866-6.891) 0.157a

miR-7 7.312 (6.745-8.346) 6.379 (5.635-6.731) 0.040a

miR-21 9.045 (8.165-9.705) 8.347 (7.732-8.909) 0.092a

miR-145 8.004±1.000 7.471±0.962 0.127b

miR-210 7.756 (6.536-8.569) 6.269 (5.558−7.267) 0.082a

NSCLC, non-small cell lung cancer. aP-value of Mann-Whitney U, bP-value of t-test.

TABLE 3 | The results of miRNAs and the prediction model in the diagnosis of pulmonary nodules in the training set.

Category AUC Sensitivity Specificity Cutoff value 95%CI P

miR-146a 0.732 67.9% 91.7% 8.0528 0.561∼0.903 0.021

miR-200b 0.699 67.9% 83.3% 6.0335 0.503∼0.896 0.048

miR-7 0.707 75.0% 83.3% 6.7858 0.511∼0.903 0.040

Prediction model 0.929 92.9% 83.3% 0.4404 0.847∼1.000 <0.001

AUC, area under the curve; CI, confidence interval.
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Statistical Analysis
Statistical analyses were performed using SPSS software version
21 (SPSS Inc., Chicago, IL). We used the Shapiro-Wilk test
for the test for normal distribution. The Wilcoxon rank-sum
test was used when the data were not normally distributed.
When the data were normally distributed, we used the t-test for
univariate analysis. The Mann-Whitney U-test and t-test were
used to compare the difference of the expression of miRNAs
between benign and malignant pulmonary nodule patients.
The t-test, Mann-Whitney U-test, and Kruskal-Wallis test were
used to evaluate the relationship between the expression levels
of the plasma miRNAs and clinicopathologic characteristics.
The risk score model was built using logistic regression. The
Receiver Operating Characteristic (ROC) curve was used to
evaluate the diagnostic performance of plasma miRNAs and
the risk score model for distinguishing benign and malignant
pulmonary nodules. Because of the magnitude of the miRNA
levels measured, the results were log transformed for analysis
when needed. P-values <0.05 was considered to indicate a
statistically significant difference.

RESULTS

Patient Description
In all, 25 benign pulmonary nodule patients and 67 malignant
pulmonary nodule patients were enrolled in this study (Table 1).
The age of all participants ranged from 32 to 81 years. The
median ages of benign pulmonary nodule patients and NSCLC
patients were 57 and 61 years, respectively. In the training set,
there were 12 participants in the benign group and 28 patients
in the NSCLC group. In the validation set, 13 benign pulmonary
nodule patients and 39 NSCLC patients were included. Among
the NSCLC patients, including 1 patient of stage 0, 48 patients
of stage Ia, 14 patients of stage Ib, and 4 patients of stage IIa. The
clinical and imaging features of the patients are shown in Table 1.

miRNA Selection
We detected the levels of 10 miRNAs (miR-17, -146a, -200b, -
182, -221, -205, -7, -21, -145, and miR-210) in 28 NSCLC patients
and 12 benign subjects in the training stage. The results revealed
that the levels of miR-146a, miR-200b, and miR-7 in NSCLC
group were statistically higher than those in benign subjects.
The P-values were 0.021, 0.048, 0.040, respectively. However, for
the expression levels of the other seven miRNAs, there were no
significant differences between these two groups. The details are
shown in Table 2.

Establish a Prediction Model
In the first stage, we selected 3 miRNAs (miR-146a, miR-
200b, and miR-7) from 10 miRNAs (miR-17, -146a, -200b, -
182, -221, -205, -7, -21, -145, and miR-210) in 28 NSCLC
patients and 12 benign subjects. Then, we used logistic regression
analyses on variables, including miR-146a, miR-200b, miR-7,
gender, age, smoking index, nodule diameter, speculation, pleural
indentation, air bronchogram, and vessel sign, to establish a
prediction model. The CT features were evaluated by two
radiologists independently. A third radiologist made the final

TABLE 4 | The results of miRNAs and the prediction model in the diagnosis of

pulmonary nodules in the validation set.

Category AUC 95%CI P

miR-146a 0.696 0.530∼0.863 0.035

miR-200b 0.724 0.558∼0.889 0.016

miR-7 0.717 0.551∼0.883 0.020

Prediction model 0.781 0.636∼0.926 0.003

AUC, area under the curve; CI, confidence interval.

decision when the two radiologists disagreed. The following
variables were enrolled into the predictionmodel, includingmiR-
146a, miR-200b, miR-7, speculation, and pleural indentation.
The prediction model was described by the following equations:
Y= 1.011×miR-146a+0.907×miR-200b-0.795×miR-7+23.109×
speculation+4.291×pleural indentation-8.648.

Note: Smoking index is a parameter which is used to quantify
cumulative smoking exposure. Usually, multiply the number of
cigarettes smoked every day by the years smoked to get the
Smoking index.

Diagnostic Value of the Prediction Model
We used the ROC curve to assess the efficacy of miRNAs and
the prediction model for the diagnosis of pulmonary nodules.
In the training set, the AUC, sensitivity, and specificity were
0.732, 67.9, and 91.7% for miR-146a; 0.699, 67.9, and 83.3%
for miR-200b; 0.707, 75.0, 83.3% for miR-7, respectively. The
AUC of the prediction model was 0.929, with a sensitivity of
92.9%, and a specificity of 83.3% using the optimal cutoff value
of 0.4404 (Table 3). At this point, the sensitivity + specificity
were considered to be maximal. In the validation stage, 13
benign patients and 39 NSCLC patients were included. The
same cutoff value was used to determine the risk score for
the cases. The ROC curve analysis of the prediction model
allowed us to distinguish early-stage NSCLC from benign
pulmonary nodule patients with 71.8% sensitivity and 69.2%
specificity (AUC = 0.781), other results were shown in Table 4.
The ROC curves of three miRNAs (miR-146a, miR-200b, and
miR-7) and the prediction model were shown in Figures 1,
2, respectively.

Association of the Expression of miR-146a,
miR-200b, miR-7 With Clinical
Characteristics
We explored the relationship between the expression of
these three miRNAs and the patient clinical status in all
NSCLC samples. As shown in Table 5, there are no significant
connections between the expression of miR-146a, miR-200b,
miR-7, and gender, age, smoking index, pTNM stage, or
differentiation grade.

DISCUSSION

Lung cancer is the leading cause of cancer-related death in
the world (1). The poor prognosis of lung cancer is mostly
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FIGURE 1 | ROC curve of the prediction model. (A) ROC curve of training stage (AUC = 0.929). (B) ROC curve of validation stage (AUC = 0.781).

FIGURE 2 | ROC curves of three miRNAs.

due to the advanced stage of the disease. Improving the early
diagnostic rate of lung cancer is very important. With the
help of CT, more patients with lung nodules can be found.
However, CT has a relatively high false positive rate, which
may diagnose benign nodules as lung cancer and lead to
unnecessary anxiety and surgery (5, 6, 16). It is imperative
to find novel biomarkers for the auxiliary diagnosis of lung
cancer together with CT. In this study, three miRNAs were
enrolled into amodel to predict the nature of pulmonary nodules.
Current literatures have shown that miRNAs may serve as
novel potential biomarkers for cancers (17, 18). Novel potential
biomarkers like miRNAs was non-invasive method which was
more valuable. Invasive operations, such as bronchoscopy and
VATS not only increase the treatment costs but also the
time of treatment, and some patients need to be hospitalized.
What is more, invasive operations can bring patients surgical
trauma. Compared with invasive test, a blood test/imaging
is repeatable, easy sample management, cost-effectiveness,
and non-invasive.

Plasma miRNAs have been reported to be involved in the
occurrence and progression of lung cancer (19). Many studies

have demonstrated the high diagnostic efficiency of miRNAs
for early cancer detection (20–22). Based on previous studies,
the diagnostic value of single miRNA for diagnosing pulmonary
nodules was still poor (23). Thus, we combined of three miRNAs
(miR-146a, miR-200b, and miR-7) for analysis in our study.
Different from the early studies focused on a single or a
few miRNAs (18, 24), the result of our study revealed that
combining miRNAs and other clinical imaging features can
obtain better diagnosis efficacy than those approaches using a
single miRNA. A single miRNA only revealed some aspects
of tumorigenesis, the combination of miRNAs constituted a
better indicator for tumor occurrence and progression. And
the diagnostic efficiency of a panel of miRNAs is usually better
than that of a single miRNA (25). In our study, three out of
10 candidate miRNAs (miR-17, -146a, -200b, -182, -221, -205,
-7, -21, -145, and miR-210) were found to increase significantly
in NSCLC patients compared with those of benign individuals.
Which demonstrated miR-146a, miR-200b, miR-7 may be the
potential biomarkers for early-stage NSCLC. Nevertheless, the
expressions of the other candidate miRNAs may be different
significantly between NSCLC and benign patients when the
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TABLE 5 | Relationship between clinicopathologic characteristics and miRNAs expressions in NSCLC.

Characteristics Number miR-146a P miR-200b P miR-7 P

Gender 0.620 0.425 0.990

Men 32 8.068 (7.122–8.545)a 6.249 (4.145–6.912)a 7.312 (5.603–7.525)a

Women 35 8.137 (7.636–8.547)a 5.842 (4.592–6.465)a 7.230 (6.615–7.565)a

Age 0.778 0.792 0.744

≤60 33 8.068 (7.194–8.525)a 6.049 (4.527–7.052)a 7.301 (5.926–7.782)a

>60 34 8.117 (7.367–8.588)a 6.090 (4.503–6.521)a 7.268 (6.048–7.502)a

Smoking index 0.906 0.372 0.513

<400 48 8.072 (7.246–8.659)a 5.622±1.435b 7.223 (5.891–7.525)a

≥400 19 8.127 (7.490–8.504)a 5.985±1.623b 7.316 (6.726–7.531)a

pTNM stage 0.408 0.420 0.821

0∼Ia 49 8.068 (7.105–8.552)a 6.037 (4.409–6.502)a 7.310 (5.630–7.518)a

Ib/IIa 18 8.218 (7.367–8.662)a 6.276 (4.828–7.132)a 7.177 (6.102–7.808)a

Differentiation grade 0.589 0.207 0.711

Poor 13 8.324 (8.029–8.506)a 6.193 (5.734–6.772)a 7.301 (7.078–7.535)a

Moderate 39 8.017 (7.265–8.558)a 5.758 (4.462–6.465)a 7.230 (5.856–7.531)a

Well 15 8.107 (6.763–8.598)a 6.360 (4.356–7.288)a 7.318 (5.365–8.037)a

NSCLC, non-small cell lung cancer. adata are presented as median (Q25–Q75), bdata are presented as mean ± SD.

sample size increased. We did not find the relationships between
the expression of miR-146a, miR-200b, miR-7, and clinical
characteristics in early-stage NSCLC. However, future studies
may be needed to conduct to test other stageNSCLC to determine
the relationships between the expression of above miRNAs and
clinical characteristics.

Regarding the diagnosis of the lung nodules, most clinicians
prefer to evaluate the pretest probability using clinical experience
and judgment. Under this situation, the pretest probability is
easily affected by subjectivity, and the result is not reliable.
In this study, we established a prediction model with a
mathematical formula, to distinguish benign and malignant
pulmonary nodules, which is more reliable, measurable. Because
a combination of molecular biological information and imaging
features reflects various aspects of tumorigenesis. And we can
get a risk score through the mathematical formula which
contributes to decrease subjective. For imaging findings, the
Swensen model and the VA model were used to diagnose the
nature of lung nodules by some clinicians (26, 27). In the
Swensen model, 6 variables of clinical and imaging features
were predictors of malignancy, including age, smoking history,
history of cancer, nodule diameter, upper lobe location, and
speculation (26). In our prediction model, 2 variables of
clinical and imaging features were included. We found that
nodules with speculation and pleural indentation are more
likely to be malignant, which was consistent with previous
studies (26). Unlike many early studies focused on using clinical
and imaging features to distinguish benign and malignant
pulmonary nodules (28, 29), we added the new potential
biomarker- miRNAs into our prediction model and achieved
a relatively good discriminant result. Which can also provide
the theoretical foundation for further exploring the role of
combining miRNAs and, clinical and imaging features in the
diagnosis of lung nodules.

Reviewing the overall existing literature of biomarkers for
distinguishing NSCLC from benign pulmonary nodules, we may
apply plasma miRNAs, ctDNA, circulating cancer cell (CTC),
together with existing tumor biomarkers (such as CEA, NSE,
Cyfra21-1) to the early diagnosis of lung cancer in clinic in
the future.

More and more patients with pulmonary nodules are
discovered due to the popularity of LDCT. The management
of pulmonary nodules remains challenging (30), and evaluating
the pretest probability of malignancy of pulmonary nodules
is important. The result of the present study discloses that
this model can diagnosis early-stage NSCLC with relatively
high sensitivity and specificity, which will help to improve
the strategies for pulmonary nodule management. In face of
a patients with pulmonary nodules, we can choose different
treatment programs, such as surgery, needle biopsy, or watchful
waiting, according to the risk score of the model in the future.
Furthermore, the model can be used for early detection of lung
cancer, which can help to improve the prognosis of lung cancer.

This study has several limitations. Above all, this is a
retrospective study with a small sample size, which may lead to
potential bias. Furthermore, the proportion of benign nodules
patients was relatively low, and this may can reduce diagnostic
efficiency. Finally, the predictive model appears to be validated
using a separate small set of patients from the same institution.
Conducting a large-scale, multicentric and prospective clinical
study will be more valuable in the future.

In conclusion, we found that Plasma miRNA-146a, miRNA-
200b, and miRNA-7 may be the potential biomarkers for the
early diagnosis of lung cancer. Our prediction model can help
to identify the nature of pulmonary nodules with a relatively
high diagnostic efficiency. Which will serve for the detection
for early-stage lung cancer and improve the management of
pulmonary nodules.
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Background: Loss of control on cell division is an important factor for the development

of non-small cell lung cancer (NSCLC), however, its molecular mechanism and

gene regulatory network are not clearly understood. This study utilized the systems

bioinformatics approach to reveal the “driver-network” involve in tumorigenic processes

in NSCLC.

Methods: A meta-analysis of gene expression data of NSCLC was integrated with

protein-protein interaction (PPI) data to construct an NSCLC network. MCODE and

iRegulone were used to identify the local clusters and its upstream transcription

regulators involve in NSCLC. Pair-wise gene expression correlation was performed using

GEPIA. The survival analysis was performed by the Kaplan-Meier plot.

Results: This study identified a local “driver-network” with highest MCODE score having

26 up-regulated genes involved in the process of cell proliferation in NSCLC. Interestingly,

the “driver-network” is under the regulation of TFs FOXM1 andMYBL2 aswell asmiRNAs.

Furthermore, the overexpression of member genes in “driver-network” and the TFs are

associated with poor overall survival (OS) in NSCLC patients.

Conclusion: This study identified a local “driver-network” and its upstream regulators

responsible for the cell proliferation in NSCLC, which could be promising biomarkers and

therapeutic targets for NSCLC treatment.

Keywords: non-small cell lung cancer, gene expression, meta-analysis, systems bioinformatics, gene network

INTRODUCTION

Lung cancer is one of the most commonly diagnosed cancer with high mortality around the
world (1). The global prevalence of lung cancer and mortality rate is rising at an alarming
pace with an estimated number of newly diagnosed lung cancer was 2.1 million while the
number of deaths was 1.8 million in 2018 (https://gco.iarc.fr). Based upon histology, lung
cancer is divided into two classes: (i) Non-small cell lung cancer (NSCLC) which represents
approximately 85–90% of all lung cancer, and (ii) Small-cell lung cancer (SCLC) which
represents approximately 10–15% of the lung cancer (1). NSCLC has three major sub-classes
including (a) lung squamous cell carcinoma (LUSC), (b) lung adenocarcinoma (LUAD), and
(c) large cell carcinoma. However, due to lack of clinical symptom and effective diagnostic
screening, the NSCLC is generally diagnosed at an advanced stage. The 5-year overall
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survival rate of metastatic NSCLC is 6% and has not been
significantly improved in spite of having advancement in surgery,
chemotherapy, and radiation (https://www.cancer.org).

Molecular profiling of NSCLC identified mutations in the
tumor suppressor genes (TP53, RB1), oncogenes (EGFR, KRAS,
AKT,MAPK) and translocations in oncogenes (ALK, RET, ROS1,
NTRK1, NRG1), which alter the important signal-transduction
pathways (2, 3). EGFR mutants have been reported more
frequently in NSCLC in nonsmokers Asians patients and showed
highly sensitive to therapy with EGFR tyrosine kinase inhibitors
such as gefitinib and erlotinib (4, 5). Similarly, ALK rearranged
gene fusion was also highly reported in NSCLC and has been
proven more effective treatment with ALK-targeted inhibitors
(crizotinib and alectinib) (1, 6). The genomic mutations not only
alter the protein structure but also affect the expression level of
genes involved in the cell division resulting in uncontrolled cell
proliferation, cell survival, and NSCLC. Previous studies mainly
focused on understanding the alteration in gene expression in
NSCLC tumors (7), and identified overexpressed genes including
CDC20 (8), CCNB1 (9), ASPM (10), and KIF4A (11), which
contributes to the proliferation of tumor cells and also associated
with poor prognosis. Furthermore, the role of transcription
factors (TFs) including MYBL2 (12), FOXM1 (13–15), and
E2F4 (16) in cell proliferation and cell survival in NSCLC
has been reported. The miRNAs, a class of small non-coding
RNAs which regulate gene expression at the post-transcriptional
level through binding to 3′UTR of mRNA (17, 18), are also
emerging as promising biomarkers for detecting NSCLC (19).
However, the molecular mechanism and regulatory network of
the mRNAs, TFs, miRNAs, and proteins underlying dysregulated
cell division and cell proliferation in NSCLC are still largely
remain unclear. Addressing these challenges are most pivotal
for developing anticancer drugs and diagnostic and prognostic
biomarkers for better management and personalized treatment
of NSCLC.

The emergence of high-throughput genomics,
transcriptomics, proteomics, and interactome data and
their integrative analysis opens a new avenue for a deep
understanding of etiology of cancer (20, 21). This work is
focused on applying a systems bioinformatics approach to
uncover interaction and regulatory mechanism of mRNAs,
TFs, miRNAs, and proteins underlying cell proliferation and
progression of NSCLC. Gene expression profiles have been
integrated to identify the high confidence up- and down-
regulated genes in the NSCLC compared to adjacent non-tumor
tissues. Moreover, using the transcriptome-interactome data,
NSCLC network was constructed and analyzed to understand
the molecular mechanism underlying the development and
proliferation of NSCLC. Our analysis revealed one important
“driver-network” consists of 26 genes and its upstream regulators
TFs FOXM1 and MYBL2 whose overexpression are associated
with dysregulation of cell cycle and enhance cell proliferation
in NSCLC. Furthermore, NSCLC associated miRNAs regulating
the genes of “driver-network” were also identified. Combination
of genes in the “driver-network” and upstream regulators
could be potential biomarkers for diagnosis and prognosis; and
therapeutic targets for better treatment of NSCLC.

MATERIALS AND METHODS

Gene Expression Data Collection
In February 2019, microarray gene expression data were searched
inGene ExpressionOmnibus database (GEO: www.ncbi.nlm.nih.
gov/geo/) using following criteria: (a) Lung cancer; (b) Human;
and (c) Expression profiling by array; which gave 304 unique
GEO series (GSEs). Then, a careful manually selected the GSEs
data using following criteria: (d) Each GSE must have the profile
of NSCLC along with adjacent non-tumor tissues as a control; (e)
Each group (NSCLC/control) must have more than 20 samples;
(f) All GSEs are from same microarray platform. Based upon the
above criteria, three GSEs data [GSE27262 (22, 23), GSE18842
(7), and GSE19804 (24)] were selected and downloaded for
further study (Table S1).

Identification of Differentially Expressed
Genes (DEGs)
This study analyzed the gene expression data having 131 samples
from NSCLC and 130 samples from adjacent non-tumor tissues
as control (Normal). Preprocessing of each microarray raw
data including background correction, normalization and log2
transformation were performed separately with RMA of Oligo
package version 1.46 in Bioconductor/R version 3.5.2 (25). Each
normalized expression data was integrated into a single file and
batch effects were removed with ComBat of sva package version
3.30 in R (26). After that, differential expression analysis of genes
between NSCLC compared to control was calculated using the
linear modeling features of the limma package version 3.38 in
Bioconductor/R (27). Affymetrix probe set ids were mapped to
gene symbol using DAVID 6.8 (https://david.ncifcrf.gov/) (28).
The gene is considered as differentially expressed (DEGs) if
log2 Fold Change |log2FC| is >2 and adjusted P-value is <

0.001. If multiple probe id mapped with the same gene, probe
id with highest log2FC were selected. The expression data of
the significant DEGs were selected and transformed into Z-
score (row-wise of value), then a hierarchical clustering across
rows were performed to create a heatmap using Morpheus
tool (https://software.broadinstitute.org/morpheus/).

Functional Annotation and Pathway
Enrichment Analysis
In order to investigate the biological processes altered in
NSCLC, we performed the functional annotation including
Gene Ontology (GO) enrichment analysis for Biological
Process, Molecular Function, Cellular Component, and Kyoto
Encyclopedia of Genes and Genomes (KEGG: www.kegg.jp)
to the list of DEGs. All these functional annotations were
performed with clusterProfiler v3.10.1 in Bioconductor/R using
pvalueCutoff = 0.01, pAdjustMethod = “BH,” qvalueCutoff =

0.05, minGSSize= 5 (29).

Construction and Analysis of the NSCLC
Network
To construct the NSCLC network, DEGs were mapped to the
STRING version 11 application (30). The setting parameters
of STRING were: (a) meaning of network edges (confidence);

Frontiers in Oncology | www.frontiersin.org 2 October 2019 | Volume 9 | Article 101126

https://www.cancer.org
www.ncbi.nlm.nih.gov/geo/
www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/
https://software.broadinstitute.org/morpheus/
www.kegg.jp
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ahmed NSCLC Proliferation Regulators Were Identified

(b) active interaction sources (selected all); (c) minimum
required interaction score (high confidence >0.900); (d) max
number of interactors to show (1st shell, none/query protein
only); (2nd shell, none). The PPI data was downloaded, and
the network was visualized in Cytoscape software version
(3.5.1), where each node represents a protein while the edge
represents an interaction between proteins (31). We also
integrated the information of differential gene expression level
into the network, where the red node indicates up-regulated,
while the green node indicates down-regulated expression
in NSCLC compared to control. The topological structure
of the NSCLC network was analyzed using Cytoscape plug-
in “NetworkAnalyzer.”

Intending to identify highly connected local sub-networks in
the NSCLC network, we applied the Cytoscape plug-in MCODE
clustering algorithm (32). Furthermore, the biological relevance
of these modules was analyzed with GO and KEGG pathway.

Identifying the Upstream Regulator of
Genes in Cluster
To identify the upstream transcription regulators of genes in
MCODE clusters, Cytoscape plug-in iRegulone (V 1.3) was used
at default parameters (33). Then, in house program was used
to generate a matrix table where each row indicates TF while
a column indicates a target gene. A Venn diagram was drawn
using (http://www.interactivenn.net/).

Expression Correlation Between Genes
and TFs
To establish the relationship between genes in a cluster and
its upstream regulators, pair-wise gene expression correlation
was performed with GEPIA (http://gepia.cancer-pku.cn/index.
html) (34). The web server integrated RNA-seq expression data
from 9,736 tumors and 8,587 normal samples of the Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx) projects. The analysis was done on default parameters:
Pearson correlation coefficient; and selected LUAD and LUSC as
TCGA tumor and TCGA normal dataset.

Effect of Signature Genes on Survival in
NSCLC by Kaplan-Meier Plot
The potential effect of expression of relevant genes on the
overall survival (OS) was analyzed on the lung cancer patient.
An online KM plotter software (http://kmplot.com/analysis/)
was used to generate the Kaplan-Meier Plot on 1926 NSCLC
cancer patients (LUAD and LUSC) (35). The tool run on the
default parameters on hazard ratio (HR) with 95% confidence
intervals and log-rank P-value which is considered as significant
P-value < 0.05. The biased arrays (n = 2,435) were excluded for
quality control.

Extension of Cluster 1 With miRNA
In order to understand the regulatory role of miRNAs in
NSCLC, the differentially expressed miRNAs (DEMs) in NSCLC
compared to normal was downloaded from miRCancer database
(http://mircancer.ecu.edu/) (36). After removing redundancy
and cleaning of the data, 56 miRNAs were appeared as

up-regulated, while 168 miRNAs were appeared as down-
regulated in NSCLC compared to control. The targets of
these DEMs were identified using miRNet tool (https://www.
mirnet.ca/). After that, only those miRNAs were selected
for further study which are targeting any of the 31 genes
(Cluster 1 and its associated TFs). Finally, an extended sub-
network of Cluster 1 was generated by integrating Cluster
1 with its upstream regulators of TFs and miRNAs in
Cytoscape. To make sparse visualization of network, interaction
within Cluster 1 as well as between Cluster 1 and TFs
were removed.

Mutational Signatures in NSCLC
The cBio Cancer Genomic Portal (http://cbioportal.org) is a
freely available tool to explore cancer genomic data in diverse
cancers. We selected the NSCLC from TCGA database and
submitted the list of 31 genes from Cluster 1 and its associated
TFs in cBioPortal.

RESULTS

Verification of Each Group of Samples
Using Principal Component Analysis
The Principal Component Analysis (PCA) was performed
on normalized data of gene expression, which revealed a
clear difference between NSCLC and normal samples in each
GSEs study (Figures S1A–C). The cumulative contribution
of PC1, PC2, and PC3 is 38.59, 33.64, and 36.47% for
GSE27262, GSE18842, and GSE19804 datasets, respectively.
In order to increase the statistical power to discover the
DEGs, the expression data of three GSEs was integrated

TABLE 1 | List of top 20 differentially expressed genes is NSCLC.

Up-regulated Down-regulated

Gene Log2FC Adj. p-value Gene Log2FC Adj. p-value

SPP1 4.70 4.49E-66 AGER −5.06 2.18E-89

COL11A1 4.27 3.81E-51 CLDN18 −5.05 4.65E-54

COL10A1 4.10 1.62E-67 SFTPC −4.53 9.44E-41

MMP12 3.95 3.41E-47 GPM6A −4.50 6.61E-89

MMP1 3.86 1.32E-35 ADH1B −4.34 5.76E-51

GREM1 3.71 3.70E-43 FABP4 −4.30 8.44E-65

HS6ST2 3.56 4.04E-54 TMEM100 −4.28 8.16E-57

GJB2 3.39 3.21E-46 CLIC5 −4.15 2.31E-69

CTHRC1 3.38 6.08E-62 CA4 −4.13 1.45E-85

TOP2A 3.36 4.37E-66 FAM107A −4.12 2.82E-77

ANLN 3.25 2.25E-59 WIF1 −4.03 1.35E-40

COL1A1 3.13 9.35E-49 FCN3 −4.02 2.07E-62

PSAT1 3.05 4.96E-59 GKN2 −3.90 1.01E-56

TMPRSS4 3.00 8.65E-52 STXBP6 −3.88 9.95E-66

SPINK1 2.93 1.21E-20 CD36 −3.88 2.41E-64

CDCA7 2.90 2.04E-56 Mt1m −3.87 2.33E-50

CST1 2.90 6.08E-42 AQP4 −3.76 2.70E-37

CXCL14 2.87 5.54E-31 SFTPA1 −3.70 2.40E-28

CEACAM5 2.83 2.54E-23 cpb2 −3.69 1.29E-48

RRM2 2.76 8.65E-52 TNNC1 −3.69 4.28E-84
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and technical variability and noise were removed using
batch effect correction. The PCA analysis clearly showed the
distinction between cancer and normal samples indicating
successful removal of the batch effects on the GSEs microarray
data (Figures S1D,E).

Identification of DEGs
To identify the genes contributing to the NSCLC, differential
expression analysis was conducted on gene expression data. A
total of 346 DEGs including 97 up-regulated and 249 down-
regulated genes were identified with |log2FC| > 2 and adjusted
P-value is < 0.001. Among DEGs, top 10 genes showing up-
regulated expression are SPP1, COL11A1, COL10A1, MMP12,
MMP1, GREM1, HS6ST2, GJB2, CTHRC1, and TOP2A; while
top 10 genes showing down-regulated expression are AGER,
CLDN18, SFTPC, GPM6A, ADH1B, FABP4, TMEM100, CLIC5,
CA4, and FAM107A (Table 1). Detail information and the
complete list of DEGs is provided in Table S2A for up-regulated
and Table S2B for down-regulated genes. A hierarchical
cluster heatmap of DEGs across biological samples reveals
distinct patterns of gene expressions in NSCLC compared to
normal (Figure S2).

Functional Annotation and Pathway
Enrichment Analysis
To understand the biological function and key pathways altered
inNSCLC, function annotation and pathway enrichment analysis
was performed for the list of up- and down-regulated genes.
Biological process (BP) and Molecular Function (MF) of Gene
Ontology analysis revealed that the up-regulated genes are
primarily associated with nuclear division, organelle fission,
chromosome segregation, regulation of mitotic nuclear division,
metaphase/anaphase transition of cell cycle, and mitotic spindle
assembly checkpoint, and microtubule binding (Figure 1A).
The cellular components (CC) of up-regulated genes were
significantly associated with spindle, chromosome region,
kinetochore, microtubule, and midbody, fibrillar collagen trimer,
and spindle microtubule (Figure 1A). The KEGG pathway
analysis showed the up-regulated genes were significantly
enriched in only Cell cycle-G2/M transition (Figure 1A).

Biological process (BP) andMolecular Function (MF) of Gene
Ontology analysis revealed that the down-regulated genes are
primarily associated with circulatory system process, leukocytes
migration, cell-substrate adhesion, regulation of angiogenesis,
receptor-mediated endocytosis, cell chemotaxis, regulation of
cell junction assembly, amide binding, peptide binding, and
cytokine binding (Figure 1B). The cellular components (CC)
of down-regulated genes were significantly associated with
the extracellular matrix, membrane raft, cell-cell junction,
and collagen-containing extracellular matrix (Figure 1B). The
KEGG pathway analysis showed the down-regulated genes
were significantly enriched in only BMP signaling (Figure 1B).
The complete results of GO and KEGG analyses could be
found in Table S3A for up-regulated and Table S3B for down-
regulated genes.

Construction and Analysis of NSCLC
Network
Mapping of DEGs on STRING gave PPI network with 151
nodes and 640 edges, which were visualized in Cytoscape
software, where each node represents a protein while an
edge represents an interaction between proteins. The gene
expression level of each protein was integrated into the PPI
network, where the red node indicates up-regulated, while the
blue node indicates down-regulated gene expression level in
NSCLC compared to normal and termed as NSCLC network
(Figure 2). Size of the node is based upon the degree of
connectivity of the node. Edges in the network represent
direct interactions between nodes. As shown in Figure 2,
there are 61 and 86 nodes in the network showing up-
regulation and down-regulation, respectively; while 4 nodes
are not having gene expression level (identified by PPI
interaction and not in the list of our DEGs). A highly
interconnected sub-network of overexpressed genes could be
seen in the NSCLC network. The structural topological of
NSCLC network including Betweenness Centrality, Closeness
Centrality, Clustering Coefficient, and Degree were analyzed and
presented in Table S4. Furthermore, highly inter-connected 15
sub-network clusters were extracted from NSCLC network using
Cytoscape plug-in MCODE (Figure S3; Table 2). Among them,
top five clusters with the highest MCODE score were considered
for further study. Topologically relevant information of a gene is
given as follows:

Hub genes: The highly connected gene in the network is
called hub gene. The node CDC20 has the highest degree of
connectivity [35] in the NSCLC network. Other top-five hub
nodes with their degree of connectivity are BUB1 [33], CDK1
[33], UBE2C [32], CCNB1 [31], and CCNB2 [31] (Table S4). It
is interesting to note that all 26 nodes of NSCLC network act
as intramodular hubs of Cluster 1. Therefore, we considered all
genes in Cluster 1 as hub genes as their degree of connectivity are
more than 21 (Figure S3; Table S4).

Betweenness centrality of Node: The node RHOJ has
the highest betweenness centrality of 1, which connects
DLC1, ARHGEF26, and ARHGAP6 (Figure 2; Table S4). Node
Interleukin-6 (IL6) has second-highest betweenness centrality of
0.611 in the NSCLC network, which connects 6 proteins across
three sub-networks: Cluster 1 (UBE2C); Cluster 2 (CXCL2); and
Cluster 5 (SPP1, CP, GOLM1, CHRDL1) (Figure 2; Table S4).

Top DEGs in Clusters: It was found that the highest up-
regulated gene are TOP2A (Cluster 1), CXCL13 (Cluster 2),
COL11A1 (Cluster 3), and SPP1 (Cluster 5); while highest down-
regulated genes are PPBP (Cluster 2), COL6A6 (Cluster 3),
EDNRB (Cluster 4), and IL6 (Cluster 5).

In order to understand the functional relevance, these clusters
were further analyzed using GO and pathways enrichments. The
Cluster 1 consist of 26 up-regulated gene in NSCLC network
(Table 2). Functional annotation indicates that: (a) Cluster
1 is significantly associated with nuclear division, spindle,
microtubule binding, and protein serine/threonine kinase
activity (Figure S4; Table S5); (b) Cluster 2 is significantly
associated with leukocyte migration, cell chemotaxis, G
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FIGURE 1 | Functional annotation of up-regulated genes in NSCLC (A); and down-regulated genes in NSCLC compared to control (B). GO, Gene Ontology; BP,

Biological Processes; MF, Molecular Function; CC, Cell Component; KEGG, Kyoto Encyclopedia of Genes and Genomes.

protein-coupled receptor binding, and chemokine activity; (c)
Cluster 3 is significantly associated with extracellular matrix
organization and collagen trimer; (d) Cluster 4 is significantly
associated with G protein-coupled receptor signaling pathway via
cyclic nucleotide second messenger; (e) Cluster 5 is significantly
associated with post-translational protein modification, cytokine
activity (Figure S4).

Upstream Regulator of Cluster
Transcription factors play crucial roles in initiation, progression,
and metastasis of cancer. However, the role of TFs and their
downstream target genes and their regulatory mechanisms in
the development of NSCLC remains largely unknown. Therefore,
each MCODE cluster was analyzed to identify the potential
upstream TF regulators using the iRegulone tool.

Cluster 1:Our analysis showed that almost all 26 up-regulated
genes are under the control of five TFs: FOXM1, MYBL2,
TFDP1, E2F4, and SIN3A (Figure 3A). However, only FOXM1
and MYBL2 are up-regulated gene showing log2FC >1, while,
TFDP1 and E2F4 show slight up-regulated while SIN3A show
slight down-regulated in our list of DEGs of NSCLC.

Cluster 2: The cluster 2 contains 10 genes, which is under the
regulation of 24 TFs, however, only four TFs showed |log2FC|
>1 (TFAP2A and TFAP2C up-regulated; GATA2 and FOS down-
regulated) in our list of DEGs (Figure 3B).

Cluster 3: The cluster 3 contains 7 genes, which is under the
regulation of 7 TFs, however, all of the TF showed |log2FC| < 1
in our list of DEGs (Figure 3C).

Cluster 4: The cluster 4 contains 10 genes, which are under
the regulation of 20 TFs, however, only GATA6, EBF1, and JUN
showed log2FC < −1 in our list of DEGs (Figure 3D). Cluster
5: Cluster 5 contains 5 genes, which is under the regulation of
22 TFs, however, only six TFs showed |log2FC| >1 (TFAP2A
and TFAP2C up-regulated; JUN, FOXA2, JUNB, and FOS down-
regulated) in our list of DEGs (Figure 3E). Cluster 1 contains all
up-regulated genes, and Cluster 4 contains all down-regulated
genes, however, the rest of the cluster contains both up-and
down-regulated genes. Venn diagram showing that few TFs are
commonly regulating more than one cluster (Figure 3F).

Validation of Upstream Regulator of
Cluster
A study found that the expression level of genes and their TFs are
highly correlated in spite of cell diversity; while the expression
level of randomly selected genes and TFs show very weak
correlation (37). Therefore, TFs interacting with its potential
target gene in clusters of NSCLC network were analyzed for their
expression correlation.

Cluster 1: Using Pearson correlation coefficients, all genes in
Cluster 1 are showing significantly highly positive correlation
with upstream TFs FOXM1, and MYBL2 in NSCLC (Figure 4A;
Figure S5). As revealed in the figures, their gene expression is
induced in NSCLC compared to the normal sample. Top five
highly correlated expressed genes with a FOXM1 are (a) CCNB2
(R= 0.74); (b) KIF4A (R= 0.73); (c) ASPM (R= 0.72); (d) KIF11
(R = 0.70); and (e) BUB1 (R = 0.69). Top five highly correlated

Frontiers in Oncology | www.frontiersin.org 5 October 2019 | Volume 9 | Article 101129

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ahmed NSCLC Proliferation Regulators Were Identified

FIGURE 2 | NSCLC network showing protein-protein integration network in NSCLC. Red node indicates up-regulated; while blue node indicates down-regulated

mRNAs in NSCLC compared to normal. Size of the node is based upon degree of connectivity of the node. Edges in the network represent direct interactions

between nodes.

expressed genes with TF MYBL2 are; (a) BUB1 (R = 0.72); (b)
KIF4A (R = 0.71); (c) KIF2C (R = 0.70); (d) KIF11 (R = 0.68);
and (e) NEK2 (R= 0.67).

Cluster 2: The highest correlation of R = 0.53 was observed
between FOS and CXCL2 (Figure S6). However, our data showed
these both genes are down-regulated in NSCLC.

Frontiers in Oncology | www.frontiersin.org 6 October 2019 | Volume 9 | Article 101130

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ahmed NSCLC Proliferation Regulators Were Identified

TABLE 2 | List of 15 highest score clusters identified from NSCLC Network by MCODE.

Cluster Score

(Density*#Nodes)

# Nodes # Edges Node IDs

1 25.2 26 315 CEP55, KIF20A, DLGAP5, KIF4A, RRM2, KIF11, NUF2, NUSAP1, UBE2C, CCNB1,

BUB1, NEK2, TPX2, BUB1B, TOP2A, MAD2L1, PBK, CCNB2, MELK, CDC20,

BIRC5, CDK1, CENPF, ASPM, KIF2C, TTK

2 10 10 45 GNG11, CXCL13, NMU, CXCL2, S1PR1, CX3CR1, CXCL3, PPBP, SSTR1, CXCR2

3 7 7 21 COL3A1, COL11A1, COL6A6, COL1A1, COL4A3, COL1A2, COL10A1

4 5.111 10 23 PROK2, VIPR1, ADRB2, ADRB1, EDNRB, EDN1, RAMP3, CALCRL, GRK5, AGTR1

5 5 5 10 GOLM1, SPP1, IL6, CHRDL1, CP

6 4 4 6 PTPRB, MCEMP1, CD36, OLR1

7 4 4 6 THBS2, ADAMTSL3, ADAMTS8, ADAMTS1

8 4 4 6 SFTPA1, SFTPC, SFTPB, SFTPD

9 3 3 3 ZWINT, CENPA, CENPU

10 3 3 3 ZBTB16, NEDD4L, LMO7

11 3 3 3 VWF, MMRN1, CFD

12 3 3 3 SCN7A, SPTBN1, SCN4B

13 3 3 3 SOX2, KLF4, EPAS1

14 3 3 3 ACVRL1, CAV1, SMAD9

15 2.8 6 7 CLDN18, CLDN5, CDH5, CLDN22, CDH3, JUP

Cluster 3: It showed the highest correlation of R = 0.36
between TCF12 and COL1A2 (Figure S7). However, our data
showed COL1A2 is up-regulated, while TCF12 is slightly down-
regulated in NSCLC.

Cluster 4: The highest correlation of R = 0.34 was observed
betweenGATA6 and RAMP3 (Figure S8). Our data showed these
two genes are down-regulated in NSCLC.

Cluster 5: Cluster 5 showed the highest correlation of R =

0.33 between FOXA2 and GOLM1 (Figure S9). However, our
data showed GOLM1 is up-regulated, while FOXA2 is down-
regulated in NSCLC.

Gene Expression-Based Survival Analysis
in NSCLC by Kaplan-Meier Plot
The topologically significant genes in the global NSCLC network,
genes in MCODE clusters, and upstream regulator TFs (showing
|log2FC|>1) were analyzed for association with OS in NSCLC
using Kaplan-Meier plots. Kaplan-Meier plots of each cluster
and their associated TFs are presented as follow: Cluster 1 in
Figure 4B and Figure S10; Cluster 2 in Figure S11; Cluster 3 in
Figure S12; Cluster 4 in Figure S13; and Cluster 5 in Figure S14.
Kaplan-Meier plots showed that high expression of all the up-
regulated genes of Cluster 1 make worse the OS [HR >1], while
high expression of down-regulated gene SIN3A makes better the
OS [HR <1] in NSCLC (Figure 4B; Figure S10). Kaplan-Meier
plots of the gene of other clusters showed very much similar
patterns that high expression of up-regulated genes make worse
the OS, while high expression of down-regulated genes make
better the OS in NSCLC (Figures S11–S14).

Extension of Cluster 1 With miRNA
Our analysis identified 30 up-regulated and 70 down-regulated
miRNAs targeting 25 genes of Cluster 1 and associated five TFs.
These data were used to generate miRNA network of Cluster
1 consisting of 130 nodes and 218 interactions (Figure 5). Our

analysis found none of the miRNA is targeting NUSAP1 gene
of Cluster 1. The top five genes targeted by highest number
of down-regulated miRNAs in NSCLC are: (a) RRM2 targeted
by 17 miRNAs; (b) BIRC5 targeted by 14 miRNAs; (c) CEP55
targeted by 12 miRNAs; (d) KIF2C targeted by 11 miRNAs;
(e) CDK1 targeted by 9 miRNAs (Table S6). Interestingly, it
was found that the expression of TFs, regulators of Cluster 1
genes, are also under the control of miRNAs as following: (a)
FOXM1 is targeted by 10 miRNA (9 down- and 1 up-regulated);
(b) MYBL2 is targeted by 6 miRNAs (5 down- and 1 up-
regulated); (c) TFDP1 is targeted by 7 miRNAs (6 down- and 1
up-regulated); (d) E2F4 is targeted by 5 miRNAs (4 down- and
1 up-regulated); (e) SIN3A is targeted by 6 miRNAs (4 down-
and 2 up-regulated). The complete list of gene and its associated
miRNAs are provided in Table S6.

The miRNA targeting highest number of genes are as
following: (a) hsa-miR-193b-3p is targeting 11 genes (ASPM,
BUB1, BUB1B, CDC20, CDK1, KIF11, MELK, RRM2, TOP2A,
TPX2, UBE2C); (b) hsa-miR-215-5p is targeting 10 genes (ASPM,
BUB1B, CDC20, CENPF, CEP55, DLGAP5, KIF20A, MAD2L1,
NUF2, TTK); (c) hsa-miR-186-5p is targeting 7 genes (BUB1,
DLGAP5, FOXM1, KIF11, NEK2, RRM2, TOP2A); (d) hsa-
miR-16-5p is targeting 7 genes (BIRC5, CDC20, CDK1, CENPF,
CEP55, KIF2C, UBE2C); and (e) hsa-miR-30a-5p is targeting 5
genes (CDC20, KIF11, MYBL2, RRM2, TFDP1). The complete
list of miRNAs and their targets are provided in the Table S7.
Interestingly, hsa-miR-193b-3p, hsa-miR-215-5p, hsa-miR-186-
5p, hsa-miR-16-5 and hsa-miR-30a-5p are down-regulated and
their targets are up-regulated in NSCLC compared to control
indicating their role in the development of NSCLC.

Mutational Signatures in NSCLC
Analysis of mutational signatures in 31 genes (Cluster 1 and
associated TFs) in NSCLC studies showed that queried genes are
altered in 1966 (37%) out of 5279 samples across TCGA datasets
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FIGURE 3 | Regulators of gene cluster 1–5. Each column indicates gene in a cluster, while each row indicates TF identified by iRegulone (A–E). Up-regulated DEGs in

the cluster is red with positive log2FC; while down-regulated DEGs is blue with negative log2FC. TF binding with the mRNA is in purple, while non-binding in cyan.

“NaN” If the log2FC is not available in our list of DEGs. (F) Venn diagram showing common TFs regulating different clusters.
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FIGURE 4 | (A) Correlation analysis of expression of genes in Cluster 1 and its TFs. Expression of gene is on Y-axis while TF is on X-axis. (B) Overall survival analysis

in NSCLC patients using Kaplan-Meier plots for genes of Cluster 1 and associated TFs.
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FIGURE 5 | miRNA network of Cluster 1 showing miRNAs targeting mRNAs and TFs of Cluster 1. Red node indicates up-regulated; while the blue node indicates

down-regulated expression in NSCLC compared to normal. Size of the node is based upon degree of connectivity of the node. Nodes shape with triangle, round, and

diamond represent TFs, mRNAs, and miRNAs, respectively.

(Figure 6). The top three highest altered genes are ASPM (10%),
NUF2 (6%) and CENPF (6%) (Figures 6A–D).

Our accumulating results indicate Cluster 1 is working
as a “driver-network” for the initiation of uncontrolled cell
proliferation and development of NSCLC.

DISCUSSION

The availability of huge and diverse genome-scale molecular
data provide great opportunity to integrate and analyze
them to discover new mechanisms and experimentally
testable models for initiation and proliferation of cancer
(20, 38). Furthermore, the pan-cancer studies utilized the
genomics and transcriptomics data and identified differences

and commonalities in dysregulation of biological process

across multiple cancer types (39, 40). NSCLC is a commonly

diagnosed cancer with a high mortality rate. Previous studies

identified numerous “driver-genes” as well as abnormally
expressed genes and their functional enrichment associated

with NSCLC (7, 22–24, 41). However, such studies lack

the information of the regulatory network of abnormally

expressed genes, which makes difficult to understand the
molecular mechanism of development of NSCLC as well

as to identify the potential therapeutic target genes. An

earlier study integrated the gene expression data, DNA
copy number alteration (CAN) and PPI data, and identified
“driver-networks” containing potential target genes in breast
cancer (20).
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FIGURE 6 | (A) OncoPrint of genes in Cluster 1 and associated TFs alteration in NSCLC. Lollipop plot with distribution of mutations in NSCLC across protein domains

of (B) ASPM; (C) NUF2; and (D) CENPF.
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In the current study, a meta-analysis of large gene expression
samples (131 NSCLC and 130 control) identified 346 DEGs
(97 up-regulated and 249 down-regulated) in NSCLC compared
to adjacent non-tumor lung tissues. After integrating the
PPI data into DEGs, the NSCLC network was created and
analyzed to understand the dysregulated sub-networks and
pathways in NSCLC. Furthermore, the sub-networks were
studied to identify a “driver-network” and its upstream
regulators by integrating the data of TFs and miRNAs. The
topologically important gene in NSCLC network, the “driver-
network,” and its upstream regulators could be candidate genes
for biomarkers and therapeutic target for NSCLC. However,
selecting candidate genes for biomarker and therapeutic target
requires their overexpression or underexpression have a deep
connection at the molecular level for the initiation and
progression of tumorigenesis. Therefore, the literature and
databases mining was performed on the selected candidate
genes and regulatory sub-network to understand their molecular
mechanism in NSCLC.

DEGs, Functional Annotation and Pathway
Enrichment
Our study found that SPP1 is the most up-regulated gene and
its high expression is associated with reducing OS (Table 1;
Figure S14) and thus, support the previous finding showed
enhanced expression of SPP1 in several types of tumors including
NSCLC (42). Network analysis showed SPP1 is the member
of Cluster 5 and under the regulation of TFs TFAP2A and
TFAP2C (Figure 3E). However, in spite of overexpression of
both TFs in NSCLC, our study found no positive correlation
between the expression of these TFs and SPP1 and therefore
need further investigation (Figure S9). SPP1 binds to CD44
and integrin receptor in the lung cancer cell and activates the
FAK/PI3K/AKT pathway which induces the secretion of vascular
endothelial growth factor (VEGF) resulting in increased cell
survival, cell proliferation and tumor metastasis (42). Silencing
the expression of SPP1 using siRNA decreased the NSCLC tumor
volume and weight in mice demonstrated it as a promising
therapeutic target (43). Furthermore, our analysis showed that
AGER is the highly down-regulated gene in NSCLC compared
to normal tissue. AGER is a multi-ligand receptor that binds
various ligands derived from a damaged cell and its up-
regulation at both mRNA and protein level is associated with
the majority of cancers including gastric, breast, hepatocellular,
colorectal carcinoma (44, 45). However, unlike other cancers,
AGER is down-regulated in NSCLC and also supported by
the previous finding suggested its role as a tumor suppressor
in lung cancer (46). S100A12 is a small protein express by
neutrophil granulocytes and binds with AGER receptor, which
induces the production of proinflammatory cytokines (47).
AGER and S100A12 are interacting in NSCLC network and
both are down-regulated suggested their role in reducing the
inflammation to escape from the immune response in NSCLC
(Figure 2) (47). A previous study also supports our finding
that SPP1 and AGER are highly up-regulated and down-
regulated, respectively, in NSCLC (48). A pan-cancer analysis

of pediatric leukemias and solid tumors identified 142 and 82
driver genes (40). Comparing with pan-cancer driver genes,
our study found that SIX1 was up-regulated, while TAL1 and
ID4 were down-regulated in NSCLC (40). The pan-cancer study
reported mutation in SIX1, TAL1, and ID4 were present in the
Wilms Tumors, T-lineage acute lymphoblastic leukemias, and B-
lineage acute lymphoblastic leukemias, respectively (40). Taken
together the functional annotation and pathway enrichment
analysis of DEGs indicated that up-regulated genes could lead
to enhance tumor cell proliferation, while down-regulated genes
decreased in immune cell migration in NSCLC, which are vital
for uncontrolled cell division and survival in cancer, and to
escape from the proper immune response (Figure 1).

Topology of NSCLC Network
Topological properties ofNSCLC network identified several other
key proteins. Hub gene plays a key role in the proper maintaining
the architecture of the biological network (49, 50). The study
found that the intramodular hubs are significantly related to cell
proliferation and survival time in cancer (49, 51). All of the
protein of Cluster 1 genes are highly interacting and therefore
act as hub genes in the NSCLC network (Table S4). Top six hub
genes with more than 30 degrees of connectivity are CDC20
[i.e. 35], BUB1 [33], CDK1 [33], UBE2C [32], CCNB1 [31],
and CCNB2 [31] (Table S4). CDC20 regulates cell division
through activating the anaphase-promoting complex/cyclosome
(APC/C), which begins chromatid separation to enter into
anaphase. Overexpression of CDC20 is reported in various
cancer including breast cancer, cervical cancer, urinary bladder
cancer, and associated with poor prognosis of ovarian tumors
(52). It was reported that overexpression of CDC20 is associated
with poor prognosis in NSCLC, which support our findings
(Figure 4B) (8). Therefore, various studies considered CDC20 as
a therapeutic target for cancer treatment (52).

The ubiquitin-conjugating enzyme E2 (UBE2C) is a member
of the APC/C complex and promotes the degradation of various
target proteins required for cell cycle progression. The aberrantly
high expression of UBE2C was reported in various cancers. It
was experimentally showed that the TF FOXM1 binds to the
promoter region of UBE2C and activates its high expression
in esophageal squamous cell carcinoma, which supports our
finding that the FOXM1 as an upstream regulator of UBE2C
of Cluster 1 (Figure 3A) (53). CCNB1 interact with CDK1 to
form a complex that phosphorylate their substrates and promotes
G2/M transition in the cell cycle. Cluster 1 contains various
protein including CCNB1, which are degraded by APC/C E3
ubiquitin ligase complex. Overexpression of CCNB1 resulting in
cell proliferation and was reported in various cancers including
NSCLC (9). Inhibiting the expression of CCNB1 using siRNAs
promotes apoptosis in colorectal cancer cells (54). BUB1 is
component of spindle checkpoint for proper chromosome
segregation and its up-regulation was reported in human prostate
cancer (55).

Node with the highest betweenness centrality controls the
flow of information between two nodes and therefore, could be
crucial protein in signaling network and potential drug target
to stop the flow of communication in a disease state. The node
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RHOJ has the highest betweenness centrality and interacts with
DLC1, ARHGEF26, and ARHGAP6 and they all are down-
regulated in NSCLC (Figure 2; Table S4). A study found that the
encoded protein of RHOJ is activated by VEGF and may regulate
angiogenesis. DLC1 encodes a Rho GTPase-activating protein
that functions as a tumor suppressor and down-regulated inmore
than 95% of NSCLC and other cancers (56). A previous study
supports the role of DLC1 as an inducer of apoptosis in NSCLC
(57) and as a metastasis suppressor in breast cancer cells (58).
ARHGEF26 function as guanine nucleotide exchange factors
(GEFs), which catalyze the activation of RHOG by displacing
GDP (from inactive enzyme) with GTP (active enzyme).
ARHGAP6 involves in regulating the actin polymerization at the
cell plasma membrane. Our network analysis indicates that Rho
family proteins forming a complex of RHOJ- DLC1-ARHGEF26-
ARHGAP6, which need detail study in NSCLC. Node IL6 has
second highest betweenness centrality of 0.611 in the NSCLC
network, which connects 6 proteins across three sub-networks.
IL-6 is cytokines secreted during inflammation and chronic
disease like cancer. It binds with interleukin-6 receptor alpha (IL-
6Rα) present on the surface of T-cell, NK cell, B-cell and activates
them. IL6 and its interacting partners CXCL2 and CHRDL1 are
down-regulated; while other interacting partners UBE2C, SPP1,
CP, GOLM1 are up-regulated in the NSCLC network. CXCL2
gene encodes secreted proteins and plays an important role in
inflammation and immunoregulation. A study found CXCL2 role
in the resistance of anti-cancer drug, anlotinib, in NSCLC (59).
The overexpression of GOLM1 is reported in prostate cancer
(60) and lung adenocarcinoma (61). Because of high betweenness
centrality of down-regulated IL6, it may be playing a pivotal role
in the down-regulation of the inflammatory response in NSCLC.

Driver-Network and Upstream Regulators
Further analysis of NSCLC network identified the biologically
informative 15 local cluster networks. Among them, the highest
scoring Cluster 1 identified as local “driver-network” having
26 overexpressed gene and their upstream regulators FOXM1
(log2FC = 1.88), MYBL2 (log2FC = 1.09), TFDP1 (log2FC =

0.54), E2F4 (log2FC = 0.10), and SIN3A (log2FC = −0.44)
(Figure 3A). The “driver-network” is collectively associated with
cell proliferation (Cluster 1 in Figure S4). Interestingly, we
observed a strong positive correlation between gene expression
of each member of “driver-network” and its upstream regulators
FOXM1 and MYBL2 in NSCLC (Figure 4A; Figure S5).
Furthermore, NSCLC patients with their overexpression had
significantly worse OS (Figure 4B; Figure S10).

The previous study found that MuvB core proteins interact
with E2F4-DP1 and p130 or p107 to form a DREAM complex in
G0/G1 phase of the cell cycle, which put the cell in quiescence
state by globally repressing more than 800 cell cycle genes
(62). When cell exit from quiescence state, MuvB core proteins
dissociated from p130 and interacts with MYBL2 to form MMB
(MYBL2-MuvB) complex. Subsequently, MMB recruits FOXM1
protein to form MMB-FOXM1 complex, which binds to the
promoters of several cell cycle genes and activate their expression
in G2/M phase responsible for mitosis (63). A study found that
high expression MYBL2 gene disrupts the DREAM complex

and increase the MMB complex formation and subsequently
triggers the expression of the several target genes driving the cell
proliferation in cancer (64). In this way, MMB complex function
as opposite of the DREAM complex. A previous study identified
the highly confident candidate target genes and regulatory
network of DREAM and MMB-FOXM1 complexes involved in
the cell cycle (63). Comparing to the study, it was found that
all 26 genes of Cluster 1 are the target of DREAM complex
(63). The same study support that 24 genes of Cluster 1 (except
MELK and PBK) are the target of MMB-FOXM1 complex (63).
Furthermore, the TFs FOXM1, MYBL2, SIN3A, and TFDP1 are
the target gene of DREAM, but not the MMB-FOXM1 complex.
Combining all these findings, our study indicates that most of the
genes of Cluster 1 are the common target for both DREAM and
MMB-FOXM1 complexes. However, overexpression of MYBL2
and FOXM1 could disrupt the DREAM complex and enhance the
formation of MMB-FOXM1 complex resulting high expression
of cell cycle genes in Cluster 1 which consequences uncontrolled
cell proliferation and ultimately NSCLC.

FOXM1 is a member of the Forkhead box family of
transcriptional factor that expresses in actively dividing cells.
Several studies reported the overexpression of FOXM1 stimulates
the proliferation of tumor cells during the progression of
NSCLC and other types of cancers and also associated with
poor overall survival (13–15, 65). A study found FOXM1
overexpressed NSCLC associated with resistance of cisplatin-
based chemotherapy, and its inhibition using thiostrepton or
siRNA reversed the drug resistance resulted in inhibition of cell
proliferation and induce cell death (14). Silencing of FOXM1
expression by siRNA in A549 lung adenocarcinoma cells resulted
in significant reduction in cell cycle-promoting cyclin A2 and
cyclin B1 genes, as well as DNA replication and mitosis (13).
DREAM complex directly represses the transcription of TOP2A,
which encode DNA topoisomerase to relief the torsional stress
during DNA transcription and replication (62). Furthermore,
the study showed that depleting FOXM1 expression decrease
the TOP2A mRNA and protein level in A549 human lung
adenocarcinoma cells (66). Experimental studies showed the
FOXM1 protein directly bind to the promoter region of
TOP2A mRNA (66). Our study showed overexpression of
TOP2A (log2FC = 3.36) and its upstream regulator FOXM1
indicates that both genes are the promising target for anti-cancer
therapy for NSCLC (67). A pan-cancer study found FOXM1 is
overexpressed across all studied 32 TCGA cancer types including
NSCLC compared to normal tissues (68). A pan-cancer analysis
revealed FOXM1 regulatory network as a top predictor of poor
prognosis (69). We found all the genes of Cluster 1 except
NUSAP1, PBK, and CDK1 are present in the pan-cancer network
associated with mitotic cell cycle and adverse prognostic genes
[see Figure 2d of (69)]. In addition, the pan-cancer network
contains the TFs FOXM1 andMYBL2 which support our finding.

The MYBL2 is phosphorylated by cyclin A/cyclin-dependent
kinase 2 during the S-phase of the cell cycle and activate the
cell division (12). Overexpression of MYBL2 is associated with
poor patient survival in various cancers patient including NSCLC
(12, 70). A previous study showed experimentally that several
genes including KIF20A, KIF4A, NUSAP1, CCNB1, TOP2A,
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CDK1, CENPF, and KIF2C of Cluster 1 are transactivated by
MYBL2 (12). Abnormal expression of E2F4 and its mutations are
reported in several cancers including NSCLC (16, 71, 72).

The genes ofCluster 1 aremainly involving in the proliferation
of cell division. Our study supports the previous finding that
overexpression of Cluster 1 genes in several cancer including
NSCLC and associated with poor overall survival such as:
KIF2C (73), KIF4A (11, 74), and KIF11 (75) which are kinesin
family members of motor proteins regulating the cell mitosis
through faithful chromosome condensation and segregation
(76). Furthermore, it was reported that silencing of their
expression using siRNAs inhibit the cancer cell growth (11, 73).
Several inhibitors of KIF11 such as Monastrol, Ispinesib, and
Dimethylenastron have been developed and are in clinically
used to inhibit cell proliferation and induce apoptosis to
treat numerous cancers (77). The high expression of ASPM
responsible for mitotic spindle formation (10, 78). NEK2 (79, 80)
which triggers centrosome separation are reported in NSCLC.
Interestingly, another study also supports that E2F4 and FOXM1
bind to the promoter of NEK2 gene (80). NUF2 component
of NDC80 Kinetochore complex regulating the chromosome
segregation was overexpressed in NSCLC (81). Suppressing the
expression of NUF2 inhibits tumor growth and also stimulates
cell apoptosis (81). CENPF (82, 83) which is associated with the
centromere-kinetochore complex and requires for chromosome
segregation during mitosis.

Therefore, the “driver-network” and the predicted TFs
MYBL2 and FOXM1 give more insight about the initiation and
progression of NSCLC and also could be therapeutic target genes.
However, a further biochemical study is required to understand
the effect on cell proliferation in NSCLC by using functional
siRNAs targeting a combination of TFs FOXM1, and MYBL2,
and their downstream genes of “driver-network” (84).

Our study found that the “driver-network” is not only
under the regulation of TFs, but also under the regulation
of miRNAs. This study showed that 9 miRNAs (hsa-miR-134-
5p, hsa-miR-149-5p, hsa-miR-186-5p, hsa-miR-194-5p, hsa-miR-
204-5p, hsa-miR-26b-5p, hsa-miR-320a, hsa-miR-370-3p, hsa-
miR-630) targeting FOXM1 are down-regulated in NSCLC. In
addition, these miRNAs are also targeting 11 other genes (ASPM,
BIRC5, BUB1, DLGAP5, KIF11, KIF4A, MAD2L1, NEK2,
RRM2, TOP2A, and TTK), which means these are common
targets for miRNAs and FOXM1 (Table S7). Previous studies
found the down-regulation of has-miR-134-5p and hsa-miR-
149-5p were contributing epithelial-to-mesenchymal transition
(EMT), a key process of cancer metastasis, in NSCLC (85, 86).
These studies also demonstrated that has-miR-134-5p and hsa-
miR-149-5p act as tumor suppressors by directly binds to the
3′UTR of FOXM1 and inhibiting its expression and the EMT
in NSCLC (85, 86). Accumulating evidence indicate that down-
regulation of these miRNAs eliminate their suppressive effect
resulting overexpression of FOXM1 and its 11 downstream target
genes. The decrease expression of other miRNAs in NSCLC and
their role in cell proliferation and EMT has been demonstrated
in several studies including hsa-miR-194-5p (87), hsa-miR-204-
5p (88), hsa-miR-26b-5p (89), hsa-miR-320a (90), hsa-miR-370-
3p (91) and hsa-miR-630 (92). MYBL2 and TFDP1 are targeted
by five common miRNAs (hsa-miR-30a-5p, hsa-miR-30b-5p,

hsa-miR-30c-5p, hsa-miR-30d-5p, hsa-miR-30e-5p), though they
belong from same miRNA family. A previous study showed
the down-regulation of hsa-miR-30a-5p which directly targeting
MYBL2 mRNA in NSCLC (93). Interestingly, TCGA NSCLC
dataset showed higher mutation rates in the genes of “driver-
network” as well as its upstream regulators FOXM1 and MYBL1
in the NSCLC (Figure 6).

Previous bioinformatics studies were mainly focused on the
analysis of gene expression data to identify the DEGs, their
function enrichment, the interacting hub genes in NSCLC. Ni
et al. identified five up-regulated hub genes (TOP2A, CCNB1,
CCNA2, UBE2C, and KIF20A) in NSCLC (41). Huang et al.
identified five up-regulated hub genes (CDC20, CENPF, KIF2C,
BUB1, and ZWINT) in NSCLC (94). Another study found 16
hub genes (TEK, ANGPT1, MMP9, VWF, CDH5, EDN1, ESAM,
CCNE1, CDC45, PRC1, CCNB2, AURKA, MELK, CDC20,
TOP2A, and PTTG1) in NSCLC (95). However, our study has
following advantages compared to previous studies: (a) Current
study is based upon a large dataset of NSCLC obtained from
different GEOmicroarray dataset; (b) Identified various common
DEGs detected by previous studies; (c) The DEGs were integrated
with PPI, TFs and miRNAs to understand the regulatory
mechanism of NSCLC initiation and progression; (d) Finally,
we have identified a “driver-network” consist of 26 up-regulated
hub genes and their upstream regulators (FOXM1, MYBL2, and
miRNAs) involved in the proliferation of NSCLC and could serve
as diagnostic and therapeutic targets to treat NSCLC.

Our study suggested that a gene could be functionally
important even at a small level of overexpression such as FOXM1
and MYBL2 if they act as upstream regulators of genes of
interacting proteins involved in an important biological process
(20). However, our study has following limitations: (a) All the
findings are based upon computational analysis using integrated
data of gene expression, PPI, TFs, andmiRNAs; (b) Our study did
not integrate the data of gene mutations and gene copy number
variations, which could abolish the cis- and trans-regulatory
elements of a gene resulting aberrant gene expression and
cancer (96–98); and (c) Finally, our study lacks the experimental
validation and therefore need further experimental testing.

CONCLUSION

In this study, potential biomarkers and therapeutic targets
has been identified for NSCLC using systems bioinformatics
approach on the public gene expression data. All the genes in
“driver-network” (Cluster 1) and its upstream regulators, FOXM1
and MYBL2, which collectively overexpressed and involve in the
cell proliferation, and cell division are particularly promising
for further study. Furthermore, we identified several tumor
suppressor miRNAs and their interacting target genes in the
“driver-network.” Targeting two or more genes of the “driver-
network” may be synergistic and more effective therapy against
NSCLC. In our study, correlation expression, OS, and gene
mutations dataset with strong statistical support were used to
validate our finding. However, the biochemical study on the
potential biomarkers and therapeutic targets are necessary for
further validation on clinical samples.
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Detection of Circulating Tumor Cell
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Jingsi Dong, Daxing Zhu, Xiaojun Tang, Xiaoming Qiu, Dan Lu, Bingjie Li, Dan Lin and

Qinghua Zhou*

Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China

Background: There was rare studies on prognosis of pulmonary venous CTC and early

or advanced NSCLC patients. We want to investigate whether CTCs and the subtype of

it can predict the prognosis of NSCLC patients.

Patients and Methods: One hundred and fourteen patients with stage I-III NSCLC

were included CanPatrolTM CTC analysis. PD-L1 expression level were detected in

CTC of pulmonary vein. PD-L1, number of CTC in pulmonary, CTC’s subtype, clinical

characteristics, prognosis of patients were analyzed.

Results: 110/114 (96.5%) patients could be found CTCs in pulmonary vein, 58/114

(50.9%) patients had CTC≥15/ml in pulmonary vein, 53/110 patients (48.2%) were

defined as having MCTC subtype and 56/110 patient were found have PD-L1 (+) CTC

in pulmonary vein. Multivariate analyses showed that PVCTC, MCTC, and stage were

independent factors of DFS (P < 0.05). No OS difference was found between number

of CTC (P = 0.33) and other CTC factors (P > 0.05), only stage was independent

factor of OS (P = 0.019). There were decreases of CTC number and MCTC number

in EGFR mutant subgroup (P = 0.0009 and P = 0.007). There were increases of CTC

(P = 0.0217), MCTC (P = 0.0041), and PD-L1 (+) CTC (P = 0.0002) number in KRAS

mutant subgroup. There was increase of MCTC (P =0.0323) number in BRAF mutant.

There were fewer CTCs in pulmonary vein for patients with EGFR mutant than in patients

with full wild-type gene (P= 0.0346). There were more PD-L1 positive CTCs in pulmonary

vein for patients with ALK rearrangement, KRAS mutant, BRAF mutant, or ROS1 mutant

than in patients with full wild-type gene (P = 0.0610, P = 0.0003, P = 0.032, and

P = 0.0237). There were more mesenchymal CTCs in pulmonary vein for patients with

KRAS mutant and BRAF mutant than in patients with full wild-type gene (P = 0.073 and

P = 0.0381). There were fewer mesenchymal CTCs in pulmonary vein for patients with

EGFR mutant than in patients with full wild-type gene (P = 0.0898).

Conclusions: The patients with high number of CTCs, MCTCs, or PD-L1 (+) CTCs

in pulmonary vein experienced poor prognosis of DFS. There are obvious correlations

between the CTC subtype of NSCLC and the gene subgroups of tumor tissue.

Keywords: pulmonary vein, CTC, non-small cell lung cancer, PD-L1, EMT

42

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01139
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01139&domain=pdf&date_stamp=2019-10-29
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhouqh135@163.com
https://doi.org/10.3389/fonc.2019.01139
https://www.frontiersin.org/articles/10.3389/fonc.2019.01139/full
http://loop.frontiersin.org/people/534018/overview
http://loop.frontiersin.org/people/776471/overview
http://loop.frontiersin.org/people/663349/overview


Dong et al. pvCTC Subtype in NSCLC

INTRODUCTION

Lung cancer, known as a public health problem in the world,
is the leading cause of death caused by malignant tumors
worldwide. According to Cancer Statistics published in CA, the
estimated deaths caused by lung cancer in 2018 number 83,550
for males and 70,500 for females (1). In China, Lung cancer is
the leading cause of death of male and female malignancies (2).
Non-small cell lung cancer (NSCLC) accounts for 85% of all lung
cancers, and post-treatment recurrence and metastasis are the
leading cause of death. Despite many advances in treatment, the
overall 5-year survival rate for lung cancer is <20% (3).

In 2002, Dunn et al. proposed the theory of immune editing
(4). In recent years, pd-l1 inhibitors have been approved for the
treatment of advanced non-small cell lung cancer and achieved
remarkable results (5, 6). At present, the recognized detection
of programmed cell death ligand 1 (PD-L1) was still at the
level of tissue samples, and there was rear research attention
to PD-L1 detection of circulating tumor cell (CTC), which
was the root of tumor metastasis. Many clinical studies on
the CTCs of NSCLC have shown the reliability of CTCs as a
prognostic indicator (7–9). A study of Europe confirm CTCs as
an independent prognostic indicator of progression-free survival
and overall survival in advanced NSCLC (10). Wang’s study
indicates that CTC detection is mainly related to tumor stage,
lymph node metastasis and prognosis, and CTC detection is
significantly associated with the shortening of progression-free
survival (PFS) and overall survival (OS) in NSCLC (11). CTCs
had already been considered the leading causes and markers for
tumor recurrence and metastasis (7). Study on the relationship
between postoperative disease-free survival (DFS) and CTC in
pulmonary vein of NSCLC patient is rear. A study showed that
CTCs isolated from early stages of lung cancer are predictive of
poor prognosis and can be interrogated to determine biomarkers
predictive of recurrence (12), but this study included only 36
patient of lung cancer (NSCLC = 35, SCLC = 1) and the stages
of patients was not all early (19 patients were stage I, seven
were stage II, eight were stage III, and one patient was stage
IV disease).

During the dissemination of cancer cells, epithelial cells
frequently exhibit a downregulation of epithelial markers and a
loss of intercellular junctions (13). The loss of epithelial features
is often accompanied by increased expression of mesenchymal
genes. This process, described as epithelial-mesenchymal
transition (EMT), endows cancer cells with migratory and
invasive properties and promotes cancer recurrence (14–16).
Although the number of CTC in pulmonary veins is the largest,
current studies have not focused on the relationship between

Abbreviations: CTC, circulating tumor cell; NSCLC, non-small cell lung cancer;

EMT, epithelial-mesenchymal transition; WT, wild-type; MCTC, mesenchymal

circulating tumor cell; ECTC, epithelial circulating tumor cell; PVCTC, pulmonary

vein circulating tumor cell; PFS, progression-free survival; DFS, disease-free

survival; OS, overall survival; PD-L1, programmed cell death ligand 1; EGFR,

epidermal growth factor receptor; KRAS, kirsten rat sarcoma viral oncogene;

BRAF, v-raf murine sarcoma viral oncogene homolog B; ALK, anaplastic

lymphoma kinase.

molecular subtypes of CTC in pulmonary and prognosis of
cancer therapy.

Here in this study, we focused on the relationship between
pulmonary venous CTCs (including different CTC molecular
subtypes) and postoperative prognosis of patients with stage I-
III NSCLC. The relationship between different CTC molecular
subtypes in pulmonary veins and tumor molecular subgroups
(EGFR, KRAS, ALK, and BRAF) was studied by translational
medicine methods.

METHODS

Study Design
One hundred and sixty-four non-small cell lung cancer (NSCLC)
patients with stage I-III who could receive surgical resection at
the West China Hospital of Sichuan University were included
in this study from February 2017 to January 2019. One hundred
and fourteen patients eventually met the inclusion criteria. The
study was approved by the medical ethics committee of Sichuan
University. The patient flow is show in Figure 1. All the patients
were informed of the procedure and signed informed consent.
Our report adheres to the REMARK criteria (17). Inclusion
criteria: (a) NSCLC patients who received surgery in Lung Cancer
Center of West China Hospital; (b) age of more than 18 years
old; (c) postoperative pathological stages were stage I to III; (d)
patients have complete clinical data and follow-up data.

In this study, all of the patients with lung cancer received
conventional thoracotomy. During surgery, the roots of the
pulmonary vein were ligated at the proximal end of the heart,
and then 5ml of blood was extracted at the distal end of
the pulmonary vein which was shown in Figure S1. After
the blood was extracted from the pulmonary vein, it was
immediately injected into the blood vessel containing EDTA.
Next, the proximal end of the pulmonary vein was ligated a
second time, and the distal end of the pulmonary vein was
ligated finally (Figure S1). Routine laboratory analyses were also
performed on all patients, with data prospectively collected for
age, sex, histological subtype, genotype, ECOG performance
status, smoking status, sites of metastasis, treatment received,
stage, date of progression, date of death as the previous studies
have been published (18).

Mutations in EGFR exons 18 through 21 were examined using
a DxS EGFR mutation test kit (Amoy Diagnostics, China). KRAS
mutation was analyzed by Sanger sequencing as described. ALK
rearrangement was detected by FISH using the Vysis LSI ALK
Break Apart FISH Probe (Abbott Molecular, USA) according
to the manufacturer’s instructions as described (19). Somatic
mutation analysis of BRAF and ROS1 was analyzed by SurPlex-
xTAG70plex (Surexam, China).

CTC Analysis
CanPatrolTM (Surexam Biotech, Guangzhou, China) was used to
identify CTCs in lung adenocarcinoma patients, as previously
described (Figure S2). PD-L1, EpCAM, CK8, CK18, and CK19,
vimentin, and twist gene expression levels from these different
cell types were also detected by RNA in situ hybridization.
The detection method of CTC has been described in detail
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FIGURE 1 | Patient flow.

in our published articles (20). The above markers were
used to help distinguish among epithelial, mesenchymal,
and hybrid phenotype CTCs. Detection and classification of
CTCs using multiple epithelial markers, including EpCAM,
CK8/18/19 (red fluorescence) and mesenchymal markers such
as Vimentin and Twist (green fluorescence) which were shown
in Figure 2. The PD-L1 mRNA expression level in CTCs was
detected by RNA-ISH (purple fluorescence) which were shown
in Figure 2.

Statistical Analysis
REMARK guidelines were followed in planning, analysis and
reporting of this study. SPSS Statistics 19 software (IBM
Deutschland GmbH, Germany) was used for statistical analysis.

A P < 0.05 was considered a statistically significant difference.
GraphPad Prism 6.02 was used for image processing. The survival
curve of the OS and DFS of NSCLC patients were plotted by

the Kaplan–Meier method after the log-rank test. OS was the

time from surgery to death. DFS was the time from surgery to
the time of diagnosis of local recurrence, distant metastasis or
death, whichever occurred first. The Cox regression model was
used formultivariate analysis of all independent influence factors,
including the CTC results and other factors, on OS and DFS.
Kaplan–Meier curves were computed using GraphPad Prism
6.02. T-test was used to compare and analyze continuous variable
factors in this study. Chi-squared test was used to analyze the
factors of categorical variables. Significance was indicated by the
P-values of two-tailed tests <0.05.
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FIGURE 2 | The PD-L1 mRNA expression level and CTC subtypes in CTCs was detected by RNA-ISH. PD-L1: purple fluorescence, epithelial markers: red

fluorescence, mesenchymal markers: green fluorescence. (A) Hybrid type CTC with PD-L1(++); (B) Hybrid type CTC with PD-L1(+); (C) Mesenchymal Type CTC with

PD-L1(–); (D) Mixed type CTC with PD-L1(+); (E) Hybrid type CTC with PD-L1(–); (F) Epithelial type CTC with PD-L1(–).

RESULTS

Patient Characteristics
One hundred and fourteen patients were included in this

study finally as shown in Figure 1. Forty-nine patients

were female (42.98%), and 65 were male (57.02%). Forty
squamous lung cancer patients (35.08%) and 68 patients
with adenocarcinoma lung cancer (59.65%) were included
in this study, only six patients with other histological
types of NSCLC. Fifty-one stage I patients, 21 stage
II patients, and 42 stage III patients were included in
this study.

CTCs were found in 110 patients’ pulmonary veins, only
four patients with no CTC can be found. According to
the median number of CTC in patients’ pulmonary veins,
patients were divided into group with CTC≥15 (58/114,
50.9%) and group with CTC<15 (56/114, 49.1%). The Baseline
Clinical characteristics was shown in Table 1. According to
the CTC subtype in patients’ pulmonary veins, patients
were divided into group with mesenchymal CTC (53/110,
48.2%) and group with non- mesenchymal CTC (epithelial
and hybrid subtypes, 57/110, 51.8%). The Baseline Clinical
characteristics was shown in Table S1. According to whether
express PD-L1 in CTC of patients’ pulmonary veins or not,
patients were divided into group with PD-L1 positive CTC
(56/110, 50.1%) and group with PD-L1 negative CTC (54/110,

49.9%). The Baseline Clinical characteristics was shown in
Table S2.

Clinical Relevance of Total CTCs and CTC
Subtype
The median DFS time of the whole group was 20.6 (CI: 18.7–
22.5) months (follow-up range: 0–30 months). The median
overall survival time of the whole group was 24.3 (CI: 22.5–
25.8) months (follow up range: 0–30 months). After follow-
up, univariate analyses showed significant reductions in median
DFS in CTCs≥15 patients group. The median postoperative
DFS was 15.3 (CI: 12.3–18.4) months (range: 0–30 months) in
the group with pulmonary vein CTCs≥15 patients, and 24.7
(CI: 22.7–26.7) months (range: 0–30 months) in the group with
pulmonary vein CTCs<15 patients (P < 0.001). The median
postoperative overall survival (OS) was 20.2 (CI: 16.3–24.1)
months (range: 0–30 months) in the group with pulmonary
vein CTCs≥15 patients, and 25.4 (CI: 23.6–27.3) months (range:
0–24 months) in the group with pulmonary vein CTCs<15
patients (P = 0.0093). And there was significant reductions in
median DFS in MCTC patients group. The median postoperative
DFS was 18.4 (CI: 15.4–21.4) months in the MCTC group,
and 22.5 (CI: 20.2–24.8) months in the Non-MCTC group
(P = 0.0168). And there was no significant difference in OS
between the two groups of CTC subtype (P = 0.4864). The
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TABLE 1 | Baseline clinical characteristics and CTC status of enrolled non-small

cell patients.

Characteristic Total CTC<15 (%) Total CTC≥15 (%) P-value

Total patient numbers 56/114 (49.1) 58/114 (50.9) 0.791

Age (mean) 59.7 59.2 0.931

Gender 0.685

Female 23/56 (41.1) 26/58 (44.8)

Male 33/56 (58.9) 32/58 (55.2)

Smoking status (piece*year) 317.9 432.7

Histology

Squamous 13/56 (23.2) 15/58 (25.9) 0.743

Adenocarcinoma 42/56 (75.0) 41/58 (70.7) 0.605

Others* 1/56 (1.8) 2/58 (3.4) 0.579

Surgical method

Lobectomy 39/56 (69.6) 41/58 (70.7) 0.903

Segmentectomy 12/56 (21.4) 7/58 (12.1) 0.180

Sleeve lobectomy 4/56 (7.1) 8/58 (13.8) 0.247

Pneumonectomy 1/56 (1.8) 2/58 (3.4) 0.579

Stage (AJCC 8) 0.361

Stage I-II 42/56 (75.0) 39/58 (67.2)

Stage III 14/56 (25.0) 19/58 (32.8)

Performance status (EGOG) 0.262

0–1 54/56 (96.4) 53/58 (91.4)

2 2/56 (3.6) 5/58 (8.6)

Adjuvant chemotherapy 0.420

Yes 20/56 (35.7) 25/58 (43.1)

No 36/56 (64.3) 33/58 (56.9)

Adjuvant radiotherapy 0.216

Yes 10/56 (17.9) 16/58 (27.6)

No 46/56 (82.1) 42/58 (72.4)

*Large cell carcinoma.

Kaplan–Meier survival curve of above data was shown in
Figure 3.

Clinical Relevance of PD-L1 Expression in
CTCs and Stage of Patients
After follow-up, univariate analyses showed significant
reductions in median DFS in PD-L1 positive CTC patients
group. The median postoperative DFS was 16.7 (CI: 13.9–19.3)
months (range: 0–30 months) in the group with PD-L1 positive
CTC, while 24.5 (CI: 22.4–26.5) months (range: 0–30 months) in
the group with PD-L1 negative CTC (P = 0.0003). There was no
significant difference in OS between the two groups (P = 0.09).

For the group of EGFR negative and ALK negative, there were
also significant reductions in median postoperative DFS and OS
in PD-L1 positive CTC patients group (showed in Figures 4C,D,
P < 0.05). And there was significant reductions in median DFS
and OS in stage I-II patients group. The median postoperative
DFS was 24.1 (CI: 22.1–26.1) months in the stage I-II patients
group, and 14.7 (CI: 11.8–17.5) months in the stage III group
(P < 0.001). The median postoperative overall survival (OS) was
26.4 (CI: 24.9–27.9) months in the stage I-II patients group, and
19.1 (CI: 16.0–22.0) months in the stage III group (P = 0.034).

TABLE 2 | Baseline CTC characteristics of patients with advanced NSCLC

according to total, EMT and PD-L1+ CTC status.

Group N (%) total = 114

No. of patient with no CTC in PV 4/114 (0.035)

No. of patient with CTC≥1 in PV

Total 110/114 (0.965)

MCTC>ECTC 53/114 (46.5)

PD-L1+CTC 56/114 (49.1)

MCTC>ECTC with PD-L1+CTC 27/114 (23.7)

No. of patient with CTC≥15 in PV 58/114 (50.9)

MCTC>ECTC 26/114 (22.8)

PD-L1+CTC 24/114 (21.1)

MCTC>ECTC with PD-L1+CTC 9/114 (7.9)

The Kaplan–Meier survival curve of above data was shown in
Figure 4.

In multivariate survival analysis, patients’ clinical data,
tumor’s gene type, number of pulmonary venous CTC, and
CTC subtype were included stage, mesenchymal CTCs, and the
number of pulmonary vein CTCs were the independent factors
of DFS, and only stage was independent factors of OS (showed in
Table S3).

Relationship Between CTC Subtype and
NSCLC Gene Subgroup
All of the 114 patients received gene test after surgery
using the tissue samples. 46/114 (40.4%) patients have found
EGFR mutations, 11/114 (9.6%) patients have found ALK
rearrangements, 37/114 (32.5%) patients have found KRAS
mutations and 5/114 (4.4%) patients have found BRAF
mutations. As shown in Table 2, for the patient with PVCTC≥1,
there was 53 of 114 patients with MCTC>ECTC, there was
56/114 patients with PD-L1 (+) CTC. For the patient with
PVCTC≥15, there was 26 of 114 patients with MCTC>ECTC,
there was 24/114 patients with PD-L1 (+) CTC.

For the detection of the EGFR mutant subgroup, there were
fewer CTCs in pulmonary vein for patients with EGFR mutant
than in patients with wild-type EGFR (EGFR mutant vs. WT:
mean 15.3 vs. 23.2, P = 0.0009). There were fewer mesenchymal
CTCs in pulmonary vein for patients with EGFR mutant than
in patients with wild-type EGFR (EGFR mutant vs. WT: mean
6.9 vs. 12.6, P = 0.0007). And there were little fewer PD-L1
positive CTCs in pulmonary vein for patients with EGFR mutant
than in patients with wild-type EGFR, but the difference was not
statistically significant (EGFR mutant vs. WT: median 6.4 vs. 8.8,
P = 0.67). The data above was shown in Figures 5A–C.

For the detection of the ALK rearrangement subgroup, there
was no difference of CTCs number in pulmonary vein between
patients with ALK rearrangement and patients with wild-type
ALK (ALK rearrangement vs. WT: mean 16.8 vs. 19.9, P =

0.8885). There was no difference of mesenchymal CTCs number
in pulmonary vein between patients with ALK rearrangement
and patients with wild-type ALK (ALK rearrangement vs. WT:
mean 9.4 vs. 10.1, P = 0.7459). And there was also no difference
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FIGURE 3 | The Kaplan–Meier survival curve of CTC number and MCTC number association with survival. The relationship between CTC quantity and survival (A,B);

The relationship between CTC subtype and survival (C,D).

of PD-L1 positive CTCs number in pulmonary vein between
patients with ALK rearrangement and patients with wild-type
ALK (ALK rearrangement vs. WT: mean 10.1 vs. 7.6, P = 0.576).
The data above was shown in Figures 5D–F.

For the detection of the KRAS mutant subgroup, there were
more CTCs in pulmonary vein for patients with KRAS mutant
than in patients with wild-type KRAS (KRAS mutant vs. WT:
mean 28.1 vs. 16.0, P = 0.0217). There were more mesenchymal
CTCs in pulmonary vein for patients with KRAS mutant than in
patients with wild-type KRAS (KRAS mutant vs. WT: mean 15.2
vs. 7.8, P= 0.0041). And there weremore PD-L1 positive CTCs in
pulmonary vein for patients with KRAS mutant than in patients
with wild-type KRAS (KRAS mutant vs. WT: mean 14.8 vs. 4.4, P
= 0.0002). The data above was shown in Figures 5G–I.

For the detection of the BRAF mutant subgroup, there were
more CTCs in pulmonary vein for patients with BRAF mutant
than in patients with wild-type BRAF, but the difference was not
statistically significant (BRAFmutant vs. WT: mean 55.2 vs. 18.6,
P= 0.2229). There were more mesenchymal CTCs in pulmonary
vein for patients with BRAF mutant than in patients with wild-
type BRAF, but the difference was not statistically significant
(BRAF mutant vs. WT: mean 30.8 vs. 9.5 P = 0.0323). And there
were more PD-L1 positive CTCs in pulmonary vein for patients

with BRAF mutant than in patients with wild-type BRAF, but
the difference was not statistically significant (BRAF mutant vs.
WT: mean 27.7 vs. 7.5, P= 0.1934). The data above was shown in
Figures 5J–L.

For the detection of the ROS1 mutant subgroup, there were
more CTCs in pulmonary vein for patients with ROS1 mutant
than in patients with wild-type ROS1, but the difference was not
statistically significant (ROS1 mutant vs. WT: mean 25.0 vs. 18.7,
P= 0.2877). There were more mesenchymal CTCs in pulmonary
vein for patients with ROS1 mutant than in patients with wild-
type ROS1, but the difference was not statistically significant
(ROS1 mutant vs. WT: mean 14.5 vs. 9.9, P = 0.1154). And there
were more PD-L1 positive CTCs in pulmonary vein for patients
with ROS1 mutant than in patients with wild-type ROS1, but the
difference was not statistically significant (ROS1 mutant vs. WT:
mean 11.3 vs. 7.4, P = 0.1934). The data above was shown in
Figures 5M–O.

Furthermore, we compared the each molecular subgroup with
full WT group. As shown in Figure 6, for the detection of the
EGFR mutant subgroup, there were fewer CTCs in pulmonary
vein for patients with EGFR mutant than in patients with full
wild-type gene (P = 0.0346); There were more PD-L1 positive
CTCs in pulmonary vein for patients with ALK rearrangement,

Frontiers in Oncology | www.frontiersin.org 6 October 2019 | Volume 9 | Article 113947

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Dong et al. pvCTC Subtype in NSCLC

FIGURE 4 | The Kaplan–Meier survival curve of PD-L1 (+) CTC number and stage of patient association with survival. The relationship between PD-L1 expreesion in

CTC and survival (A,B); The relationship between PD-L1 expreesion in CTC for the wild type EGFR&ALK patients and survival (C,D); The relationship between Stage

and survival (E,F).

KRAS mutant, BRAF mutant, or ROS1 mutant than in patients
with full wild-type gene (P = 0.0610, P = 0.0003, P = 0.032, and
P= 0.0237); There were more mesenchymal CTCs in pulmonary
vein for patients with KRAS mutant and BRAF mutant than in
patients with full wild-type gene (P = 0.073 and P = 0.0381);
There were fewer mesenchymal CTCs in pulmonary vein for
patients with EGFR mutant than in patients with full wild-type
gene (P = 0.0898).

DISCUSSION

Pulmonary veins are the closest reflux vessels to tumors.
Pulmonary veins are the main route for tumor cells to enter the

blood from tumor tissues of NSCLC. Okumura et al. found that
CTCs in the pulmonary vein were significantly higher than those
in peripheral blood (21). Lindsay et al. (18) had reported that

PFS and OS are shorter in patients with advanced non-small cell
lung cancer whose peripheral venous CTC is >5/ml. A study

showed that CTC monitoring after SBRT for presumed early

stage NSCLC may give lead-time notice of disease recurrence
or progression (22). A study in 2012 demonstrated that CTC

test has high sensitivity in early and advanced lung cancer (23).
So far, studies that have focused entirely on the relationship
between CTC and survival in patients with early non-small cell
lung cancer have not been published. In our point of view,
the number of tumor cells in peripheral venous blood is not
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FIGURE 5 | Box plots assessing differences in relative numbers of total CTCs, MCTCs, and PD-L1 (+) CTCs in EGFR. (A–C), ALK (D–F), KRAS (G–I), BRAF (J–L),

and ROS1 (M–O) subgroups. P-values obtained by Mann–Whitney tests.

accurate because peripheral blood first flows through tissue
cells and then flows back into venous blood. In this study, we
confirmed that the patients with the number of CTC≥15/5ml in
pulmonary veins had the significant shorter postoperative DFS
(Figure 3A, P< 0.0001). Although patients had receivedmultiple
comprehensive treatments after postoperative relapse, the OS of
patients included in this study was relatively determined by the
amount of CTC in pulmonary veins (Figure 3B, P = 0.0093). All
the patients enrolled in this study underwent open-chest surgery,

while there was no patient received thoracoscopic surgery. The
reason is that open-chest surgery is appropriate for NSCLC
patients with stage I to III, while thoracoscopic surgery is
commonly considered appropriate for NSCLC patients with stage
I to II all over the world.

Although the Cellsearch System has been used in the
majority of published studies, it depends on tumor epithelial
cell expression of EpCAM, the presence of an intact nucleus,
and the absence of CD45 (4, 7, 25–31) (16, 18). However,
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FIGURE 6 | Box plots assessing differences in relative numbers of total CTCs, MCTCs and PD-L1 (+) CTCs in EGFR (A–C), ALK (D–F), KRAS (G–I), BRAF (J–L), and

ROS1 (M–O) subgroups (mutant vs. full WT). P-values obtained by Mann–Whitney tests.

this method lacks the detection of mesenchymal CTC, and the
EMT of CTC is easy to be ignored. Recently, CanpatrolTM CTC
analysis system was developed to detect CTC and classify EMT
phenotypes via multiple mRNA in situ hybridization assay, by
which revealing that CTC count and EMT classification are
correlated with clinical stage and prognosis in many kinds of
cancers (24, 25). In this study, we found that postoperative DFS
was shorter in patients with mesenchymal CTC predominance

than in patients with epithelial and hybrid type (Figure 3C,
P = 0.0168). Different from the effect of tumor cell count
on OS, the OS of patients included in this study was not
completely determined by subtype of CTC in pulmonary veins
(Figure 3D, P = 0.48).

The PD-L1 will downregulate T-cell activation and promote
immune escape when binding with programmed death 1 (PD-1)
protein expressed on the T-cell surface (26). Many studies have
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found that the expression of PD-L1 in tumors is significantly
correlated with the treatment response of nivolumab (27, 28).
PD-L1 expression correlated with benefit to immune checkpoint
inhibitors, not only nivolumab. Although there were some
differences reported in the results of clinical trials in which
different PD-1/PD-L1 inhibitors were involved, the benefit of
immunotherapy was significantly higher in those with high
expression of PD-L1 than in those with low expression (29, 30).
Until now, there is no study on detection of PD-L1 in CTC
has been performed expect us. Detection of expression of PD-
L1 in CTC will be an important supplement to liquid biopsy
and of great significance to guide the treatment of cancer. In
this study, we not only successfully detected the expression of
PD-L1 in CTC, but also found that whether the express of PD-
L1 or not was correlated with postoperative DFS and OS in
NSCLC patients (Figure 4A, P= 0.0003; Figure 4B, P= 0.0991).
For the patients with EGFR(–) and ALK(–), the effect of PD-
L1 positive in CTC to survival (DFS & OS) was more obvious,
as shown in Figures 4C,D. This phenomenon may be related to
PD-L1-mediated tumor immune avoidance in NSCLC. It is well-
known that UICC stage is an important factor determining the
prognosis of patients in NSCLC. In this study, we confirmed that
postoperative pathological stage of NSCLC patients is obviously
related to postoperative DFS and OS (Figures 4E,F, P < 0.05).

The growth of NSCLC is related to many driver genes,
including EGFR, KRAS, BRAF, ALK, and so on. NSCLC
tumors have different genetic subgroups, even with the same
pathological type (29, 31). In this study, we found that there were
differences in the number of CTC, the number of mesenchymal
CTC, and the number of PD-L1 positive CTC among patients
with different NSCLC genotypes (Figure 5). The relationship
between information of PD-L1 in tissue and PD-L1 in CTC
was published by us in previous study (20). And we found
that positive PD-L1 in CTC was positively correlated with
positive PD-L1 in tissues. So in this study, we included new
group of patients to do many more survival analyses and
focus on the relationship between information of PD-L1 in
CTC and gene type of tissues. Within tumor cells, the network
of multiple driver genes plays an important role in tumor
growth and immune escape. This just shows that different
genotypes of tumor surface lead to different types of CTC into
the blood.

CONCLUSIONS

In conclusion, we found that pulmonary venous examination
is a more reliable method for analyzing CTC in NSCLC
patients receiving surgical treatment. In addition, the detection
of PD-L1 expression in CTC may provide an important
decision for post-operative adjuvant immunotherapy.

In subsequent studies, we will focus on the impact of
different conditions of CTC on postoperative adjuvant
therapy effect, so as to provide more information for
individualized treatment.
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Background: The identification of prognostic markers for non-small-cell lung carcinoma

(NSCLC) is needed for clinical practice. The metabolism-reprogramming marker

ketohexokinase (KHK)-A and acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659

(ACSS2 pS659) play important roles in tumorigenesis and tumor development. However,

the clinical significance of KHK-A and ACSS2 pS659 in NSCLC is largely unknown.

Methods: The expression levels of KHK-A and ACSS2 pS659 were assessed by

immunohistochemistry analyses of surgical specimens from 303 NSCLC patients. The

prognostic values of KHK-A and ACSS2 pS659 were evaluated by Kaplan–Meier

methods and Cox regression models.

Results: The expression levels of KHK-A and ACSS2 pS659 were significantly higher

in NSCLC tissues than those in adjacent non-tumor tissues (P < 0.0001). KHK-A or

ACSS2 pS659 alone and the combination of KHK-A and ACSS2 pS659 were inversely

correlated with overall survival in NSCLC patients (P < 0.001). The multivariate analysis

indicated that KHK-A or ACSS2 pS659 and KHK-A/ACSS2 pS659 were independent

prognostic biomarkers for NSCLC (P = 0.008 for KHK-A, P < 0.001 for ACSS2 pS659,

and P < 0.001 for KHK-A/ACSS2 pS659). Furthermore, the combination of KHK-A and

ACSS2 pS659 can be used as a prognostic indicator for all stages of NSCLC.

Conclusions: KHK-A or ACSS2 pS659 alone and the combination of KHK-A and

ACSS2 pS659 can be used as prognostic markers for NSCLC. Our findings highlight

the important role of metabolic reprogramming in NSCLC progression.

Keywords: metabolism reprogramming, KHK-A, ACSS2 pS659, non-small-cell lung carcinoma, prognosis,

immunohistochemistry
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INTRODUCTION

Lung cancer is becoming the leading cause of cancer-related
death worldwide (1). Non-small-cell lung carcinoma (NSCLC)
is the most common type of lung cancer, accounting for ∼85%
of all cases (2). Due to the high rates of metastasis, recurrence,
and drug resistance of NSCLC, its prognosis remains poor (3).
There is an urgent need for novel biomarkers to identify a subset
of patients with poor survival outcomes.

The reprogramming of energy metabolism is one of the
hallmarks of cancer (4). During reprograming, cancer cell
metabolism and other cellular activities are integrated and
mutually regulated (5). Recent studies have shown that metabolic
enzymes, such as ketohexokinase (KHK)-A and acetyl-CoA
synthetase 2 (ACSS2), are moderated spatially and temporally
in cancer cells so that these enzymes not only have changes in
metabolic activities but also gain non-canonical functions (5).

KHK initiates fructose catabolism by catalyzing the transfer
of a phosphate group from adenosine triphosphate (ATP) to
fructose to produce AMP and fructose 1-phosphate (F1P)
(6). F1P is then metabolized to dihydroxyacetone phosphate
and glyceraldehyde-3-phosphate to bypass important glycolytic
regulatory steps in glycolysis and enter the latter stages of
glycolysis (7). KHK-A and KHK-C are splicing isoforms of
KHK with one exon difference (8). KHK-C is expressed
mainly in the liver, intestines, and kidney, whereas KHK-A
is ubiquitously expressed at low levels (9). Although fructose
can be metabolized by both KHK-C and KHK-A, the primary
enzyme involved in fructose metabolism is considered to be
KHK-C rather than KHK-A due to its Km (10). We recently
reported that a splicing switch from KHK-C to KHK-A
occurs in hepatocellular carcinoma (HCC), leading to fructose
metabolism reduction, and KHK-A phosphorylates and activates
phosphoribosyl pyrophosphate synthetase 1 (PRPS1), resulting
in increased de novo nucleic acid synthesis for HCC development
(6). Under oxidative stress, KHK-A dissociates from PRPS1 and
phosphorylates p62 to activate Nrf2, and activated Nrf2 induces
gene expression to counteract oxidative stress and promote HCC
development in mice (11). Notably, high KHK-A expression
predicted a poor prognosis for HCC patients (6). Thus, KHK-
A reprograms HCC cell metabolism and other cellular activities
by reducing fructose metabolism and increasing de novo nucleic
acid synthesis and the antioxidative stress response by the protein
kinase activity of KHK-A. An important remaining question
is whether KHK-A plays an important role in cancers other
than HCC.

Histone lysine acetylation is essential for regulating chromatin
architecture and promoting transcription (12). In mammalian
cells, acetyl coenzyme A (acetyl-CoA) is a necessary acetyl
donor for lysine acetylation and can be produced by three
enzymes: ATP-citrate lyase (ACL), the pyruvate dehydrogenase
complex (PDC), and acetyl-CoA synthetase (ACSS) (13–15). In
nutrient-rich environments, acetyl-CoA is primarily produced by
ACL (13), and growth signals promote PDC-dependent acetyl-
CoA production (14). In tumors, metabolic stress frequently
occurs. Our previous study revealed that AMP-activated protein
kinase (AMPK) can mediate ACSS2 phosphorylation at S659

(ACSS2 pS659) to induce its nuclear translocation in a glucose-
deficient environment, and the binding of ACSS2 to the
promoter regions of lysosomal and autophagy genes can promote
acetyl-CoA production to support histone acetylation and gene
expression to promote tumor development (16). Collectively,
these results suggest that ACSS2 pS659 plays an important
role in tumor metabolism reprogramming through its nuclear
function. However, whether ACSS2 pS659 expression is a
biomarker for the clinical features and prognosis of cancer
is unknown.

In this study, we examined the expression of KHK-A and
ACSS2 pS659 in human NSCLC specimens and the relationship
between their abundance and clinical relevance in a large cohort
of surgically resected NSCLCs. We found that both KHK-A and
ACSS2 pS659 are independent prognostic factors for NSCLC
patients after surgery, and the combination of KHK-A and
ACSS2 pS659 can be used as a prognostic indicator for all stages
of NSCLC.

MATERIALS AND METHODS

Patients and Specimens
We enrolled a total of 303 consecutive patients diagnosed with
NSCLC, including 227 with lung adenocarcinoma (LUAD) and
76 with lung squamous cell carcinoma (LUSC), by pathological
examination at the National Cancer Center/Cancer Hospital in
Chinese Academy of Medical Sciences. Patients were diagnosed

TABLE 1 | Patient characteristics (N = 303).

Characteristics Number of patients (%)

Gender

Male 206 (68.0%)

Female 97 (32.0%)

Age (years)

≤60 132 (43.6%)

>60 171 (56.4%)

Histology

Adenocarcinoma 227 (74.9%)

Squamous cell carcinoma 76 (25.1%)

T stage

I 63 (20.8%)

II 141 (46.5%)

III 62 (20.5%)

IV 37 (12.2%)

Node metastasis

No 153 (50.5%)

Yes 150 (49.5%)

TNM stage

I 84 (27.7%)

II 89 (29.4%)

III 122 (40.3%)

IV 8 (2.6%)

TNM stage, tumor-node-metastasis stage.
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FIGURE 1 | NSCLC specimens have increased KHK-A and ACSS2 pS659 expression levels. (A,B) Representative IHC staining of low and high expression of KHK-A

and ACSS2 pS659 in NSCLC tissues and adjacent non-tumor tissues (N = 303). (A) LUAD, (B) LUSC. Scale bar, 200×, 100µm. (C,D) The expression levels of

KHK-A (C) and ACSS2 pS659 (D) in NSCLC and adjacent non-tumor tissues were compared by IHC staining. ****Correlation is significant at the 0.0001 level

(two-tailed).
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with NSCLC and were without preoperative chemotherapy,
radiotherapy, and distant metastasis. All paired tumor and
adjacent non-tumor tissues used in this study were collected
in compliance with an informed consent policy. This study
was approved by the Ethics Committee of the National Cancer

Center/Cancer Hospital, Chinese Academy of Medical Sciences,
and Peking Union Medical College.

We obtained clinical data by reviewing the patients’ medical
histories, which are summarized in Table 1. Pathological staging
was assessed by the 8th edition of the American Joint Committee

TABLE 2 | Relationship of KHK-A and ACSS2 pS659 expression levels with patient characteristics.

Characteristics KHK-A expression level P-value ACSS2 pS659 expression level P-value

Low High Low High

Gender

Male 149 57 0.191 114 92 0.034

Female 63 34 41 56

Age (years)

≤60 95 37 0.504 78 54 0.015

>60 117 54 77 94

T stage

I+II 146 58 0.383 110 94 0.167

III+IV 66 33 45 54

Node metastasis

No 114 39 0.081 82 71 0.391

Yes 98 52 73 77

TNM stage

I+II 127 46 0.131 97 76 0.048

III+IV 85 45 58 72

Histology

Adenocarcinoma 147 80 0.001 108 119 0.031

Squamous

cell

carcinoma

65 11 47 29

TNM stage, tumor-node-metastasis stage.

FIGURE 2 | Prognostic value of KHK-A and ACSS2 pS659 expression in NSCLC. (A,B) The value of the IHC score was used to divide the indicated NSCLC patients

into two groups with high and low levels of KHK-A (A) and ACSS2 pS659 (B) expression. Kaplan–Meier survival curves were compared using the log-rank test. All

statistical tests were two-sided. Crosses represent censored data from patients who were alive at the last clinical follow-up. (C) IHC scores of KHK-A and ACSS2

pS659 were used to divide the NSCLC patients into four subgroups (I, KHK-A low expression, and ACSS2 pS659 low expression; II, KHK-A low expression, and

ACSS2 pS659 high expression; III, KHK-A high expression, and ACSS2 pS659 low expression; IV, KHK-A high expression, and ACSS2 pS659 high expression).

Kaplan–Meier survival curves were compared using the log-rank test. All statistical tests were two-sided. Crosses represent censored data from patients who were

alive at the last clinical follow-up.
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on Cancer/Union for International Cancer Control TNM
classification system (17). We obtained completed follow-up
information for all patients, and the time from the date of
diagnosis to death or the last known date of follow-upwas defined
as overall survival (OS).

Tissue Microarray and
Immunohistochemistry
Prior to tissuemicroarray (TMA) construction, hematoxylin, and
eosin (H&E)-stained slides were evaluated by two pathologists
independently, and high tumor/stroma ratio areas were marked
in the paraffin-embedded specimens. Two core regions (1mm
in diameter) were extracted from each marked tumor tissue
and peritumoral tissue to construct the TMA slides, and
consecutive sections measuring 4µm were placed on adhesive
slides (18). Immunohistochemistry (IHC) analyses of the paraffin
sections were performed as previously described (19). A rabbit
polyclonal antibody recognizing KHK-A was obtained from
Signalway Biotechnology (Pearland, TX, Cat. #21708) and was
diluted to 1:50. An anti-ACSS2 pS659 rabbit polyclonal antibody
was obtained from Jiaxing Xinda Biological Technology and
was diluted to 1:50. The specificities of these antibodies were
previously validated (6, 16).

Evaluation of the Immunohistochemical
Findings
IHC scoring of KHK-A and ACSS2 pS659 was based on the
percentage of positive cells and the staining intensity. The
proportion scores were defined as follows: 0, 0% of positive
cells; 1, 0–1%; 2, 2–10%; 3, 11–30%; 4, 31–70%; and 5, 71–
100%. The staining intensity was rated as follows: 0, negative; 1,
weak; 2, moderate; and 3, strong. A total score (range: 0, 2–8)
was then obtained by combining the proportion and intensity
scores, as described previously (20). IHC scoring was assessed

TABLE 3 | Univariate and multivariate analyses of overall survival for 303 NSCLC.

Factor Univariate

P-value

Multivariate

Hazard

ratio

95% CI P-value

Gender (female vs.

male)

0.930 NA

Age (>60 vs. ≤60) 0.065 NA

T stage (I vs. II vs.

III vs. IV)

0.017 0.811

Node metastasis

(yes vs. no)

<0.001 2.003 1.486–2.700 <0.001

Histology

(squamous vs.

adenocarcinoma)

0.001 0.65 0.434–0.975 0.037

KHK-A (high vs.

low)

<0.001 1.533 1.120–2.099 0.008

ACSS2 pS659

(high vs. low)

<0.001 2.313 1.687–3.172 <0.001

CI, confidence interval; NA, not adopted.

independently by two experienced pathologists who did not
know the clinical information of the patients. The cutoff values
for high and low expression were based on the values of the
IHC scores. In this study, the expression of KHK-A was classified
as low (score ≤6) or high (score >6), and the expression of
ACSS2-pS659 was classified as low (score≤5) or high (score>5).

Statistical Analysis
We used SPSS 21.0 (IBM, Armonk, NY) to perform statistical
analyses. The association between marker expression and clinical
factors was analyzed by the chi-squared (χ2) test. The survival
analyses were performed by the Kaplan–Meier method (log-
rank test). We used univariate Cox regression to calculate
the risk factors for progress, and the risk factors were then
included in a multivariate Cox regression model to identify
the independent prognostic factors. P < 0.05 was considered
statistically significant. All statistical tests were two-sided.

RESULTS

NSCLC Specimens Have Increased KHK-A
and ACSS2 pS659 Expression Levels
We performed immunohistochemical (IHC) staining of NSCLC
specimens (N = 303), including LUAD (Figure 1A) and LUSC
(Figure 1B) tissues. We showed that KHK-A was primary in
the cytoplasm of the NSCLC cells and that ACSS2 pS659 was
observed in both nucleus and cytoplasm of the NSCLC cells
(Figures 1A,B). In addition, the expression levels of KHK-A and
ACSS2 pS659 were significantly higher in NSCLC tissues than
those in adjacent non-tumor tissues (Figures 1A–D), indicating

TABLE 4 | Univariate and multivariate analyses of overall survival for 303 NSCLC.

Factor Univariate

P-value

Multivariate

Hazard

ratio

95% CI P-value

Gender (female vs.

male)

0.930 NA

Age (>60 vs. ≤60) 0.065 NA

T stage (I vs. II vs.

III vs. IV)

0.017 0.823

Node metastasis

(yes vs. no)

<0.001 1.953 1.446–2.637 <0.001

Histology

(squamous vs.

adenocarcinoma)

0.001 0.661 0.441–0.992 0.046

Combination of

KHK-A and

ACSS2 pS659

<0.001 <0.001

II vs. I <0.001 2.803 1.920–4.094 <0.001

III vs. I <0.001 2.319 1.366–3.936 0.002

IV vs. I <0.001 3.587 2.413–5.331 <0.001

CI, confidence interval; NA, not adopted; I, KHK-ALow/ACSS2 pS659Low;

II, KHK-ALow/ACSS2 pS659High; III, KHK-AHigh/ACSS2 pS659Low; IV,

KHK-AHigh/ACSS2 pS659High.
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that NSCLC specimens have increased KHK-A and ACSS2 pS659
expression levels.

KHK-A and ACSS2 pS659 Expression
Levels Are Correlated With Clinical
Features in Patients With NSCLC
We examined the relationship between KHK-A and ACSS2
pS659 expression levels and clinical features in NSCLC. KHK-
A expression levels were higher in LUAD than those in LUSC
(P = 0.001). However, there were no statistical correlations
between KHK-A and other clinical features, including gender,
age, T classification, N classification, or TNM stage (all P > 0.05,
Table 2). Notably, ACSS2 pS659 expression levels were higher in
LUAD than those in LUSC (P = 0.031), and higher in female
patients than in males (P = 0.034). In addition, high ACSS2
pS659 expression was associated with older age (P = 0.015) and
advanced TNM stage (P = 0.048).

KHK-A and ACSS2 pS659 Expression
Levels Are Inversely Correlated With the
OS of Patients With NSCLC
We next analyzed whether KHK-A and ACSS2 pS659 expression
levels in NSCLC patients have any relationship with disease
prognosis. As shown in Figure 2A, high KHK-A expression levels
predicted a poor 5-years OS rate (high vs. low: 23.5 vs. 52.5%,
P < 0.001). In addition, high ACSS2 pS659 expression levels
were also correlated with a poor 5-years OS rate (Figure 2B; high
vs. low: 24.2 vs. 62.1%, P < 0.001). To analyze the prognostic
value of KHK-A and ACSS2 pS659 co-expression, we divided the
patients into four subgroups using the IHC scores of KHK-A and
ACSS2 pS659: I, KHK-A low expression and ACSS2 pS659 low
expression; II, KHK-A low expression, and ACSS2 pS659 high
expression; III, KHK-A high expression and ACSS2 pS659 low
expression; IV, KHK-A high expression, and ACSS2 pS659 high

expression. We observed that OS was significantly different
among the four subgroups (Figure 2C, P < 0.001) and that high
expression of both KHK-A and ACSS2 pS659 appeared to have
the worst prognosis with the lowest survival rates (5-years OS:
21.1%). In contrast, patients with low tumor expression of both
KHK-A andACSS2 pS659 had the best prognosis with the highest
OS rate (5-years OS: 69.1%).

A univariate analysis was performed to investigate the risk
factors for OS. As shown in Table 3, T stage, node metastasis,
histology, KHK-A, and ACSS2 pS659 were significantly
associated with OS (P < 0.05). Statistically significant variables
were added to multivariate survival analyses. In the Cox
regressionmodel, nodemetastasis, histology, KHK-A expression,
and ACSS2 pS659 levels were independent prognostic factors
of OS [hazard ratio (HR) = 2.003, 95% confidence interval
(95% CI) = 1.486–2.700 for node metastasis; HR = 0.65,
95% CI = 0.434–0.795 for histology; HR = 1.533, 95% CI =
1.120–2.099 for KHK-A expression; and HR = 2.313, 95% CI
= 1.687–3.172 for ACSS2 pS659]. To evaluate the prognostic
value of combined KHK-A and ACSS2 pS659 expression in
NSCLC, we considered the expression of KHK-A and ACSS2
pS659 as a single factor for a separate multivariate analysis.
Table 4 shows that the combination of KHK-A and ACSS2
pS659 was an independent predictor of OS (HR = 2.803, 95%
CI = 1.920–4.094 for II vs. I; HR = 2.319, 95% CI = 1.366–
3.936 for III vs. I; and HR = 3.587, 95% CI = 2.413–5.331 for
IV vs. I).

Furthermore, we analyzed the relationship between
combination of KHK-A and ACSS2 pS659 and prognosis
from TNM stage I to IV. Low combined values of KHK-A and
ACSS2 pS659 expression were associated with improved OS in
stages I (Figure 3A, P < 0.001), II (Figure 3B, P = 0.003), and
III–IV (Figure 3C, P < 0.001). These results indicate that the
combined expression of KHK-A and ACSS2 pS659 is inversely
correlated with OS in all stages of NSCLC.

FIGURE 3 | Prognostic value of combined KHK-A and ACSS2 pS659 expression in NSCLC based on TNM stage. (A–C) IHC scores of KHK-A and ACSS2 pS659

were used to divide the NSCLC patients into three subgroups (KHK-A low expression and ACSS2 pS659 low expression, KHK-A high expression and ACSS2 pS659

high expression, and others: KHK-A low expression and ACSS2 pS659 high expression or KHK-A high expression and ACSS2 pS659 low expression) in stage I (A),

stage II (B), and stage III–IV (C). Kaplan–Meier survival curves were compared using the log-rank test. All statistical tests were two-sided. Crosses represent censored

data from patients who were alive at the last clinical follow-up.
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DISCUSSION

Although tremendous clinical success in the treatment of NSCLC
during the past few decades has been achieved, the prognosis
of patients with NSCLC remains unsatisfactory. We still need
to explore biological characteristics that can reflect NSCLC
behavior. In this study, we showed that the expression levels of
metabolism reprogramming marker KHK-A and ACSS2 pS659
were significantly higher in NSCLC tissues than those in adjacent
non-tumor tissues, and KHK-A expression levels were higher
in LUAD than those in LUSC. In addition, increased ACSS2
pS659 expression was correlated with older age, advanced TNM
stage, LUAD, and female patients. Of note, we showed that high
expression levels of KHK-A and ACSS2 pS659 were correlated
with reduced OS in NSCLC. In the multivariate analysis, both
KHK-A and ACSS2 pS659 expression levels were identified as
independent prognostic biomarkers for NSCLC. These findings
suggest that KHK-A and ACSS2 pS659 are potential prognostic
indicators for NSCLC.

Our previous work demonstrated that KHK-A and ACSS2 are
two key metabolic enzymes that have important roles in tumor
development. KHK-A can act as a protein kinase to directly
phosphorylate PRPS1 to increase de novo nucleic acid synthesis
for hepatocellular tumorigenesis (6). In addition to its role in
nucleic acid synthesis, KHK-A phosphorylates p62, leading to the
activation of Nrf2 and the expression of its downstream genes
to counteract oxidative stress and support HCC development
(11). Reports on the role of ACSS2 expression in cancer have
been controversial. High ACSS2 expression predicted a poor
prognosis in patients with renal cell carcinoma and bladder
cancer (21, 22), whereas low ACSS2 expression predicted a
poor prognosis in gastric cancer and hepatocellular carcinoma
(23, 24). Our previous study showed that the phosphorylation
of ACSS2 at S659 rather than its expression level is critical
for GBM cells to counteract energy stress. S659-phosphorylated
ACSS2 translocates to the nucleus, leading to the binding to
downstream genes and acetyl-CoA production, which induces
histone acetylation and gene expression for glioma development
(16, 25). Although KHK-A and ACSS2 pS659 have been studied
in HCC and GBM, respectively, their roles in NSCLC had not yet
been explored. We showed here that the combination of KHK-A
and ACSS2 pS659 was an independent prognostic biomarker for
NSCLC and was inversely related with OS in all stages of NSCLC.
Given that multiple randomized clinical trials have suggested that
postoperative NSCLC patients with a poor prognosis are more
likely to benefit from adjuvant therapy (26), the combination of

KHK-A and ACSS2 pS659 expression levels can be taken into
consideration for decisions regarding the use of adjuvant therapy
for NSCLC, especially in the early stage.

CONCLUSIONS

In summary, KHK-A or ACSS2 pS659 alone and the combination
of KHK-A and ACSS2 pS659 can be used as prognostic markers
for NSCLC. Our findings highlight the importance of metabolic
reprogramming in the clinical behavior of NSCLC and reveal that
KHK-A and ACSS2 pS659 can be targeted for NSCLC treatment.
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Background: Lung cancer is one of the most common causes of death worldwide with a

relatively high fatality rate and amean 5-years survival of about 18%. One of the hallmarks

of cancer is the extracellular matrix (ECM) remodeling, which is crucial for metastasis. This

process may be regulated by miRs targeting metalloproteinases (MMPs) associated with

the ECM breakdown and metastatic process or blocking the action of tissue inhibitors

of metalloproteinases (TIMPs). Search for early biomarkers is essential in detecting

non-small cell lung cancer (NSCLC) and distinguishing its subtypes: Adenocarcinoma

(AC) from Squamous Cell Carcinoma (SCC), enabling targeted chemotherapy.

Methods: MiR-17 and miR-20a targeting MMP2 and TIMP3 were selected by TCGA

data analysis with further validation using miRTarBase and literature. The study group

comprised 47 patients with primary NSCLC (AC and SCC subtypes). RNA was isolated

from the tumor and normal-looking neighboring tissue (NLNT) free of cancer cells. MiRs

from peripheral blood exosomeswere extracted on admission and 5–7 days after surgery.

Gene and miRs expression were assessed in qPCR using TaqMan probes.

Results: The MMP2 has been expressed on a similar level in NLNT, as in cancer.

While, TIMP3 expression was decreased both in cancer tissue and NLNT, with

significantly lower expression in cancer. TIMP3 downregulation in NLNT and in SCC

subtype correlated negatively with miR-20a. The preoperative miR-17 expression was

significantly higher among patients with SCC compared to AC. Receiver operating

characteristic (ROC) analysis ofmiR-17 as AC subtype classifier revealed 90% specificity

and 48% sensitivity in optimal cut-off point with area under ROC curve (AUC): 0.71

(95%CI: 0.55–0.87). Within NSCLC subtypes: a strong negative correlation between

pack-years (PY) and TIMP3 expression was observed for NLNT in the SCC group.
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Conclusion: The TIMP3 silencing observed in the NLNT and its negative correlation

with presurgical expression of miR-20a (from serum exosomes), suggest that miRs

can influence ECM remodeling at a distance from the center of the lesion. The miRs

expression pattern in serum obtained before surgery significantly differs between AC

and SCC subtypes. Moreover, decreased TIMP3 expression in NLNT (in SCC group)

negatively correlates with the amount of tobacco smoked in a lifetime in PY.

Keywords: NSCLC molecular diagnostic markers, miRNA regulation, microRNA, extracellular matrix remodeling,

metalloproteinases, tissue inhibitors of metalloproteinases, exosomes

INTRODUCTION

Lung cancer (LC) is one of the most prevalent cancers, with
2 million new cases in 2018 and with a relatively high fatality
rate: the overall ratio of mortality to incidence is 0.87 (1, 2).
It is also one of the leading causes of cancer mortality in most
developed countries, representing almost 20% of deaths due to
cancer (2). Two main clinical types are distinguished: small cell
lung cancer (SCLC) and non-small cell lung cancer (NSCLC).
NSCLC accounts for almost 80% of LC, and comprised squamous
cell carcinoma (SSC; 30–32% of LC), adenocarcinoma (AC; 10–
35%), and large cell cancer (LCC; 10%) (3–5). Five-years survival
rates drastically decrease with the cancer stage, from 83% for
AJCC stage I (American Joint Committee on Cancer Staging),
to ∼6.6% for detection at an advanced stage (AJCC stage III/IV)
(6, 7). The molecular markers are needed to identify NSCLC at its
early stages, predict cancer development, and treatment response.
Potential biomarkers may be found amongmolecules responsible
for extracellular matrix (ECM) remodeling: a process driven by
matrix metalloproteinases (MMPs) countered by the endogenous
tissue inhibitors of metalloproteinases (TIMPs) (8, 9).

MMPs are the proteolytic enzymes degrading the components
of the basement membrane, acting in many physiological
processes (embryogenesis, angiogenesis, apoptosis, wound
healing) and in cancer development (8, 10). Elevated MMP2
expression was observed in stromal fibroblasts, preneoplastic
bronchial squamous lesions and pulmonary carcinoma (both in
highly invasive and moderate growth areas) (11–13). In NSCLC,
the MMP2 upregulation has been associated with greater tumor
size or distant metastasis (14, 15). The MMPs’ action can be
specifically inhibited by non-covalent binding of TIMPs, which
leads to tumor growth suppression and apoptosis promotion
(9, 16, 17). Decreased TIMP3 expression has been observed in
many human cancers, i.e., LC, gastric, hepatic, prostate, and
endometrial cancer (18–20).

MMP2 and TIMP3 expression is regulated through

microRNAs (miRs), in a post-transcriptional epigenetic

mechanism, leading to mRNA degradation, or translation

inhibition (21, 22). MiRs are considered as promising molecular
markers for the non-invasive early diagnosis of NSCLC (18, 21)
and can be assessed in an inexpensive and patients-friendly
way in the peripheral blood exosomes (23). Up to date, miRs
have been described as potential biomarkers detecting early
stages of NSCLC (miR-182, miR-183, miR-210, and miR-126)
(24) or distinguishing SCC from AC (miR-26a; small miR

panel—205-5p, 944) (15, 25). In our study, we focused on
the miR-17 and miR-20a targeting MMP2 and TIMP3; these
were selected based on TCGA data with further miRTarBase
and literature validation (see section Selection of microRNA
Molecules). MiR-17 and miR-20a have a significant impact
on the development of cancer throughout the body (26–28).
Both miRs share the ability to stimulate cell proliferation and
inhibit apoptosis (29). One of the well-characterized actions
of miR-17 is its ability to target MMP2 and TIMP3 genes.
ElevatedmiR-17 expression was correlated with a worse outcome
(negative correlation with overall survival and disease-free
survival) in hepatocellular and pancreatic cancers (30). MiR-20
possesses tumor suppressor activity by blocking VEGF-induced
endothelial cell migration (31). Moreover, decreased miR-20a
expression was found to be associated with faster tumor growth
and poor prognosis (32).

The present study evaluates the relative expression of selected
genes (MMP2, TIMP3) and miRs (miR-17, miR-20a) engaged
in ECM remodeling in histopathologically-confirmed NSCLC.
Many studies showed that the elevated concentration of the
exosomes detected in cancer patient’s serum originated from
the cancer (26–28, 33). The idea of our study was to look for
preoperative circulating miR, that can be obtained in a patient-
friendly way from the peripheral blood, as simple preoperative
clinical biomarker, distinguishing histopathological subtypes of
NSCLC, as well as pTNM, and AJCC stages.

MATERIALS AND METHODS

Patient Clinical Features and Lung Tissue
Samples
The study material comprised lung tissue and serum samples
obtained from 47 patients diagnosed with NSCLC admitted to
the Department of Thoracic Surgery, General and Oncologic
Surgery (University Teaching Hospital No. 2 in Lodz., Medical
University of Lodz, Poland) between July 2014–March 2017.
All patients underwent surgery, based on the results of
preoperative assessment. The exclusion criteria included a history
of other malignancies, active infectious disease and chemo-, or
radiotherapy before the surgery. The study was performed in
accordance with the Helsinki Declaration and was approved by
the Ethical Committee of the Medical University of Lodz, no.
RNN/140/10/KE. All participants provided written, informed
consent to take part in the study. Detailed characterization of
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TABLE 1 | Demographic characteristics of patients and histopathological

verifications of NSCLC samples.

Clinical and pathological features Current study

Entire group 47

Gender Woman 18

Men 29

Age group ≤60 10

>60 37

Histopathological type AC 24

SCC 22

pTNM Tumor size pT1 12

pT2 27

pT3 6

pT4 1

Lymph nodes invasion N0 33

N1 and N2 13

AJCC AJCC I 23

AJCC II 17

AJCC III 6

Pack-years (PYs) ≤30 PYs 15

31–45 PYs 14

>45 PYs 17

Type of the surgery Lobectomy 33

Pneumonectomy 9

Bilobectomy 4

Segmentectomy 1

pTNM, International System of Clinico-Morphological Classification of Tumors (TNM,

Tumor Node Metastasis) according to the WHO Histological Typing of Lung Tumors;

AJCC, American Joint Committee on Cancer Staging (AJCC staging) according to the

IASCLC Staging Project 7th edn.

patients, postoperative histopathological verifications of NSCLC
samples (according to the WHO Histological Typing of Lung
Tumors and IASCLC Staging Project 7th ed.) and patient
smoking status estimated in pack-years (PYs) are presented
in Table 1.

The NSCLC tumor lung tissue samples were taken from
the center of the lesion, while samples of normal-looking
neighboring tissue (NLNT) were taken from the surgical margin:
histopathological examination confirmed them to be free of
cancer cells. After resection, tissue fragments were stored in
RNAlaterTM Stabilization Solution (Ambion, USA) at −80◦C.
The peripheral blood samples (∼5ml) were obtained on
admission and 5–7 days after surgical treatment. Serum separated
by centrifugation was stored at−80◦C until exosome isolation.

Selection of microRNA Molecules
MicroRNAs targeting MMP2 and/or TIMP3 in LC were
chosen based on the TCGA datasets, containing RNAseq
results of NSCLC patients with AC (LUAD project) and
SCC (LUSC project) (34–36). Two datasets for AC and SCC,
each containing cancer group and a control group, were
downloaded using the TCGA biolinks R package. The datasets
sizes are presented in Table 2. Further validation, using data

TABLE 2 | The size of the obtained dataset from the GDC database.

Sample

type

LUAD project LUSC project

Genes:

MMP2, TIMP3

miRs:

miR-17,

miR-20a

Genes:

MMP2, TIMP3

miRs:

miR-17,

miR-20a

Cancera 539 519 502 478

Controlsb 59 46 51 45

LUAD project, TCGA dataset, containing RNAseq results of NSCLC patients with AC;

LUSC project, TCGA dataset, containing RNAseq results of NSCLC patients with SCC;
a“Solid state Tumor” origin selected for cancer samples;
b“Solid Tissue Normal” origin selected for controls.

retrieved from public microRNA databases (microRNA.org;
mirtarbase.mbc.nctu.edu.tw), indicated that miR-20a silences
MMP2 expression and miR-17 targets both MMP2 and TIMP3
(see Supplementary Figure 1). In the performed literature search
(PubMed query on miR & ECM remodeling & cancer) many
studies indicated that both miRs have a significant impact on the
development of cancer throughout the body (26–32).

Gene and miR Expression in the Studied
NSCLC Cohort—Laboratory Procedures
miR and RNA Isolation and Reverse Transcription
Exosomes were pre-isolated from serum using a standardized
isolation kit enabling enrichment of intact exosomes (Total
Exosome Isolation Reagent, Invitrogen, USA) and resuspended
in PBS. The Total Exosome RNA and Protein Isolation
Kit (Invitrogen, USA), standardized for the isolation of 30–
120 nm diameter vesicles, was used to recover total RNA
including the small RNA fraction (37, 38). The total RNA
from tissues was isolated using the Qiagen RNeasy Mini Kit
(QIAGEN, USA), according to the manufacturer’s protocol.
The quality and quantity of RNA was spectrophotometrically
assessed. Only samples fulfilling the following requirements
were selected for further use: miR concentration 1–5 ng/µl
and RNA concentration over 50 ng/µl; with 260/280 nm ratio
1.8–2.0. Reverse transcription (RT) reactions were performed
using a High-Capacity cDNA Reverse Transcription Kit with
MultiScribeTM Reverse Transcriptase and additional RNase
Inhibitor (both Applied Biosystem, USA) according to the
manufacturer’s protocol.

Real-Time Quantitative Polymerase Chain Reactions

(Real-Time qPCR)
Real-time qPCRs were performed using the 7900HT Fast Real-
Time PCR System (Applied Biosystems, USA). The qPCR mixes
for miRs analysis contained: diluted RT product, TaqMan R©

Universal Master Mix II, without UNG and 1 µl of miR probes:
hsa-miR-17-5p or hsa-mir-20a (Applied Biosystems, USA). The
miRs expression analysis, performed in DataAssist v3.01, was
based on the global normalization method. The qPCR mixes
for gene analysis contained diluted cDNA, KAPA PROBE FAST
qPCR kit (Kapa Biosystems, USA) and TaqMan assays for TIMP3
(Gene ID: 7078), MMP2 (Gene ID: 4313), and ACTB (β-actin,
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Gene ID:60) as endogenous control. All reactions were run
in triplicate. RNA isolated from normal lung tissue (Human
Lung Total RNA, Ambion, USA) served as a calibrator, for
which the RQ (relative quantification) value was considered equal
to 1. Analysis was based on the comparative 11CT method,
according to the formula 11CT = 1CT test sample—1CT
calibrator sample.

Statistical Analysis
Statistical analysis was performed using the Statistica 13.1
(StatSoft, Tulsa, USA). Non-parametric tests were used for
statistical analyses, as miR and mRNA expression values did
not follow a normal distribution (Shapiro-Wilk test). The results
of relative expression analysis (RQ values) are presented as
mean ± SD for normal distribution and median value (MV)
with interquartile range (IQR) in other cases. When comparing
independent groups, ANOVA Kruskal-Wallis, Mann-Whitney
U-tests (UMW) and the Spearman’s rank correlation (rs) were
used. Expression analysis regarding the pTNM classification was
performed according to the tumor size (pT) and presence of node
involvement (N). With only one patient in the pT4 group, pT4
was not included in statistical analysis. For the NSCLC subtype
determination test, the receiver operating characteristic (ROC)
chart was used and to compare the accuracy of various classifiers
the area under the ROC curve (AUC) was calculated. TCGA data
were analyzed using R software and R/Bioconductor package.
P < 0.05 was considered as statistically significant.

RESULTS

Selection of microRNA Molecules With
Genomic Data Commons and miRTarbase
The correlation analysis of miR and gene expression performed
on LUAD and LUSC projects data (34–36) revealed statistically
significant negative correlations between the examined genes:
MMP2 and TIMP3 and both miRs (Supplementary Figure 1;
Table 3A). Moreover, significant differences were found in miR
expression between the cancer and control groups in both
NSCLC subtypes. In the LUSC project (SCC), a significant
increase of miR-17 with miR-20a decrease of (3.64 times lower)
was observed in the cancer group compared to controls (both
p < 0.001, UMW test). The opposite was found for the AC
subtype: a significant decrease ofmiR-17 and an increase ofmiR-
20a in cancer samples (2.29 times higher) compared to controls
(Table 3B).

Genes Expression in Tumor and
Normal-Looking Neighboring Tissues
The gene expression analysis for MMP2 and TIMP3 was
performed on 43 pairs of primary NSCLC tissue and
corresponding normal-looking neighboring tissue (see Table 4).
In comparison to calibrator (RNA isolated from normal lung
tissue),TIMP3 expression was downregulated in both tissues, and
MMP2 was upregulated in both tissues. The relative distribution
and symmetry of gene expression within the analyzed groups
(cancer tissue vs. NLNT; AC vs. SCC subtype) are presented
in section Materials and Methods in Supplementary Materials

TABLE 3 | Analysis of gene and miR expression in LUAD and LUSC projects: (A)

Correlation of analyzed miR and gene expression in both projects; (B) Gene and

miR expression levels in cancer and control groups in both projects.

(A) Correlation of analyzed miR and gene expression in LUAD and LUSC projects

Squamous cell carcinoma—LUSC

miR-17 miR-20a

MMP2 −0.47* −0.40*

TIMP3 −0.37* −0.34*

Adenocarcinoma—LUAD

miR-17 miR-20a

MMP2 −0.33* −0.24*

TIMP3 −0.30* −0.25*

(B) Analysis of gene and miR expression in cancer and control groups for

LUAD and LUSC projects

Gene/miR No of transcripts

cancer group

[FPKM]

No of transcripts

control group

[FPKM]

P-value

LUSC MMP2 6530.92 7945.22 0.095

TIMP3 4780.33 33445.33 <0.001

miR-17 958.16 717.86 <0.001

miR-20a 79.61 288.56 <0.001

LUAD MMP2 5966.76 4919.22 0.388

TIMP3 7539.80 38223.79 <0.001

miR-17 626.16 367.34 <0.001

miR-20a 195.48 85.93 <0.001

*p < 0.001—in R coefficient analysis.

The values marked in bold represent the statistically significant correlations.

and Supplementary Figure 2. The TIMP3 expression was
significantly decreased in cancer tissue in comparison to NLNT
(p = 0.01; Wilcoxon test; see Supplementary Figure 4). The
MMP2 was expressed on a comparable level in cancer and
NLNT (p = 0.372; Wilcoxon test). No significant differences
were found for gene expression according to age, gender,
cancer subtypes, TNM staging (pT and N groups), or AJCC
classification. Considering long-life tobacco intake (measured
in pack-years) among SCC patients, a negative correlation with
TIMP3 expression in NLNT was found (R = −0.68, p < 0.001;
rs). Furthermore, the positive correlation between TIMP3 and
MMP2 expression was observed in NLNT from surgical margin
(R = 0.482; p = 0.001; rs; see Figure 1). In the AC subtype, there
were also observed the positive correlations between TIMP3 in
NLNT and MMP2 levels, both in cancer and NLNT (R = 0.699,
p < 0.001, and R= 0.500, p= 0.021, respectively; rs).

The validation of expressional data with the Genomic Data
Commons also revealed significantly decreased TIMP3 level
in cancer tissues in comparison to controls in both LUAD
(p < 0.001; UMW) and LUSC projects (p < 0.001; UMW).
Whereas, MMP2 was expressed on a comparable level in both
tissues in LUAD and LUSC projects. TIMP3 expression was
higher in the AC subtype in comparison to SCC (34–36),
see Table 3B. In the present study, we have also compared
the TIMP3/MMP2 expression ratios in NLNT vs. healthy lung
tissues. The experimentally-assessed expression of TIMP3 in
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TABLE 4 | Clinical and pathological features: median expression level (RQ value) of tested genes.

Clinical and pathological features N MMP2 NLNT MMP2 cancer tissue TIMP3 NLNT TIMP3 cancer tissue

Entire group 43 1.422 (IQR: 0.600–3.162) 0.900 (IQR: 0.387–2.392) 0.013 (IQR: 0.006–0.057) 0.006 (IQR: 0.002–0.069)

Gender Women 14 1.287 0.760 0.021 0.009

Men 29 1.561 1.213 0.013 0.005

Age group ≤60 years 9 1.330 1.748 0.023 0.010

>60 years 34 1.446 0.830 0.013 0.005

Histopathological type AC 21 1.575 1.252 0.013 0.006

SCC 21 1.015 0.530 0.013 0.004

pTNM Tumor size pT1 11 1.471 0.900 0.013 0.004

pT2 24 1.073 0.479 0.012 0.012

pT3 6 2.752 1.414 0.019 0.002

pT4 1 9.255 6.217 0.054 0.004

Lymph nodes invasion pN0 30 1.376 0.911 0.014 0.009

pN1 & pN2 12 1.488 0.645 0.011 0.003

AJCC AJCC I 21 1.681 0.784 0.020 1.681

AJCC II 15 1.376 1.061 0.008 1.376

AJCC III 6 1.295 1.082 0.019 1.295

Pack-years (PYs) ≤30 PYs 11 1.000 0.524 0.023 0.004

31-45 PYs 13 2.197 1.952 0.036 0.008

>45 PYs 17 1.132 0.760 0.006 0.006

Type of the surgery Lobectomy 33 1.287 0.836 0.013 0.007

Pneumonectomy 9 2.925 1.535 0.014 0.003

Bilobectomy 4 0.466 1.252 0.009 0.004

Segmentectomy 1 22.100 16.898 0.052 0.010

NLNT, normal-looking neighboring tissue; pTNM, International System of Clinico-Morphological Classification of Tumors (TNM, Tumor Node Metastasis) according to the WHO

Histological Typing of Lung Tumors; AJCC, American Joint Committee on Cancer Staging (AJCC staging) according to the IASCLC Staging Project 7th edn.

NLNT was ∼109 times lower than the MMP2. In the RNA-seq
normal tissues datasets (gtexportal.org, proteinatlas.org: controls
for LUSC and LUAD projects) TIMP3 expression was 3.35–7.77
higher thanMMP2 (see Supplementary Figure 4).

microRNA Expression
MiR expression was assessed among 43 patients (see Table 5).
Both miRs were expressed at comparable levels before and
after surgery (p = 0.681 and p = 0.334, respectively, Wilcoxon
test). The relative distribution and symmetry of miRs expression
within the analyzed groups (before vs. after surgery; AC vs.
SCC subtype) are presented in section Materials and Methods
in Supplementary Materials and Supplementary Figure 3). The
type of surgery did not affect the expression of postoperative
miRs (p = 0.202 for miR-17 and p = 0.202 for miR-20a,
Kruskal-Wallis test). No statistically significant observations
were made for miR levels in terms of age, gender, or TNM tumor
classification. Besides, no significant correlations were found
between miRs and tobacco intake (measured in pack-years),
neither before nor after tumor resection. There were observed
positive correlations between the miR expression before and after
surgery (see Figure 1).

Significant differences were found for preoperative
miR expression among NSCLC subtypes (see
Supplementary Figure 3). The preoperative miR-17 expression
was significantly higher among SCC patients compared to

AC (p = 0.02, UMW test). For preoperative miR-20a, the
opposite dependence was observed (p = 0.02, UMW test).
The presurgical miR-17 and miR-20a expression levels were
used to establish the NSCLC subtype determination test. AUC
for miR-17 classifier was 0.710 (95% CI: 0.554–0.865). For
the optimal cut-off point (≤0.189; Youden’s J statistic), the
specificity and positive predictive values (PPV) in detecting AC
were equal to 90 and 83%; sensitivity and negative predictive
value (NPV) were equal to 48 and 63%, respectively (see
Figure 2). Moreover, presurgical miR-20a expression may be
used to distinguish the NSCLC subtypes with AUC of 0.71 (95%
CI: 0.554–0.865). For the optimal cut-off point (≥5.295 for
AC; Youden’s J statistic) the specificity and PPV in detecting
AC were equal to 90 and 83%; sensitivity and NPV were 48
and 63%, respectively.

The validation of the miR expressional data with the Genomic
Data Commons (34–36) revealed significantly decreased miR-
17 expression in controls, compared to cancer group in
both LUSC and LUAD projects. The miR-20a expression in
cancer vs. control groups was opposite in LUSC and LUAD
projects (see Table 3B).

Correlation of Gene and microRNA
Expression
The analysis of miR correlation with gene expression was
performed on 39 patients with overlapping data. No correlations
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FIGURE 1 | Spearman’s rank correlogram of dependencies of miR and gene

expression. The lower part represents the dependencies of miR and gene

expression in histotypes: Adenocarcinoma (AC) and Squamous Cell

Carcinoma (SCC). Correlations marked with X are not statistically significant

(p > 0.05). Color scale represents Spearman’s correlation coefficient (rs). t,

tumor sample; sm, normal-looking neighboring tissue from surgical margin; b

(before), preoperative expression level; a (after), postoperative expression level.

were found in cancer tissue for any of the samples. Weak
correlations were discovered between TIMP3 expression in the
NLNT and postoperative miRs: a positive correlation for miR-
17 (R = −0.334, p = 0.037; rs) and a negative correlation for
miR-20a (R = 0.330, p = 0.04; rs). Similarly in SCC subtype the
TIMP3 expression in NLNT correlated positively with miR-17
(before: R = 0.474, p = 0.03; after: R = 0.549, p = 0.01; rs), and
negatively with miR-20a (before: R = −0.474, p = 0.03; after: R
=−0.549, p= 0.01; rs) (see Figure 1). No statistically significant
correlations between miR and gene expression were observed
within the AC group.

DISCUSSION

The high mortality and late detection rates associated with
NSCLC create an urgent need for developing new biomarkers
enabling early detection. Hence, it is essential to identify
candidate biomarkers among genes and microRNAs regulating
the ECM remodeling present in early stages of NSCLC, which can
help distinguish subtypes. Our present study aimed to evaluate
the relative expression of selected genes and miRs engaged in
ECM remodeling in histopathologically-confirmed NSCLC, as
candidates for molecular biomarkers.

Decreased TIMP3 Expression in
Normal-Looking Neighboring Tissue
Our analysis found TIMP3 expression to be significantly lower
in cancer tissue than in normal looking neighboring tissue. A
similar tendency was also observed in the analysis of data from
the Genomic Data Commons, where TIMP3 was significantly
decreased in cancer tissues in comparison to controls in both
analyzed AC and SCC cohorts (34, 35). Under physiological
conditions, any increase of metallopeptidase expression and its
activity would be controlled by specific non-covalent binding
of the TIMP3 protein, resulting in MMP inhibition (17). In
our study, we have noted the positive correlation between
TIMP3 and MMP2 expression in NLNT, confirmed in the AC
subtype, but not in SCC. On the other hand, the observed in
the present study, silencing of the metalloproteinase inhibitor
TIMP3 suggests that the proteins taking part in ECM remodeling
can display intensified activity. Such remodeling, especially un-
controlled ECM proteolysis, may result in more significant
cancer cell proliferation and migration. It was previously
demonstrated that restoring TIMP3 function by blocking the
expression of its suppressor gene EZH2 (using RNA interference)
led to subsequent inhibition of cancer cell migration (39).
Those findings are not entirely concordant with those of
Kumaki et al. who report that increased immunoexpression
of different metalloproteinase inhibitors correlated with tumor
aggressiveness. The TIMP2 protein was significantly stronger in
the invasive areas than the lepidic areas of Invasive Pulmonary
Adenocarcinoma (11); this has been attributed to increased
TIMP2 expression causing elevated ECM accumulation in the
invasive tumor cells, resulting in fibrous scar formation (11).

Cigarette smoking is overwhelmingly tied with SCC rather
than AC (40). Regarding smoking status in NSCLC subtypes,
we have observed significantly lower TIMP3 expression in
NLNT in long term smokers in SCC subtype, but not in AC.
Smoking-induced TIMP3 downregulation may be one of the
molecular causes of cancerogenesis among SCC patients. It was
earlier demonstrated that molecular changes like microsatellite
instability (MSI) or suppressor gene hypermethylation could
occur in histologically-normal epithelia or macroscopically-
unchanged tissue adjacent to the resected tumors in smoking
patients with primary lung cancer. Also, in smokers without
cancer, the loss of heterozygosity and MSI were detected in
histologically-normal distal bronchial epithelium (41–44).

MMP2 Expressed on Comparable Level in
Both Tissues
MMPs are typically expressed at moderate levels; their expression
rapidly grows in response to tissue injury (8, 14) and the
course of inflammation processes or cancer development. It
was previously reported that MMP2 immunoexpression was
significantly higher in the lung cancer group than among the
healthy control group (45). On the other hand, ∼50% of the
NSCLC patients revealed stronger upregulation of the MMP2 in
the fibroblasts neighboring the lesion, than in the tumor itself
(12). MMP2 proteinmay act as an extracellular matrix modulator
in fibroblast cells, enabling malignant transformation by ECM
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TABLE 5 | Clinical and pathological features: median expression level (RQ value) of tested miRs.

Clinical and pathological features N miR-17

before surgery

miR-17

after surgery

miR-20a

before surgery

miR-20a

after surgery

Entire group 43 0.459 (IQR: 0.088–1.118) 0.667 (IQR: 0.135–1.102) 2.181 (IQR: 0.896–13.134) 1.499 (IQR: 0.907–7.410)

Gender Women 17 0.496 0.876 2.017 1.141

Men 26 0.408 0.542 2.489 1.893

Age group ≤60 8 0.081 0.295 4.919 4.856

>60 35 0.496 0.868 2.017 1.152

Histopathological type AC 21 0.348 0.593 2.871 1.687

SCC 21 0.773 0.876 1.294 1.141

pTNM Tumor size pT1 10 0.533 0.596 2.359 1.775

pT2 25 0.396 0.667 2.523 1.499

pT3 6 0.904 0.634 1.202 1.848

pT4 1 0.500 0.587 9.516 7.619

Lymph node invasion pN0 30 0.377 0.701 2.660 1.429

pN1 & pN2 12 0.638 0.380 1.644 2.632

AJCC AJCC I 20 0.020 0.006 0.427 0.701

AJCC II 17 0.008 0.011 0.358 0.627

AJCC III 5 0.019 0.003 1.160 0.391

Pack-years (PYs) ≤30 PYs 12 0.338 0.596 3.384 1.775

31–45 PYs 15 0.776 0.895 1.289 1.117

>45 PYs 15 0.292 0.137 3.424 7.300

Type of the surgery Lobectomy 33 0.353 0.525 2.834 1.939

Pneumonectomy 9 0.776 0.934 1.289 1.071

Bilobectomy 4 0.459 0.348 2.181 2.877

Segmentectomy 1 0.042 0.667 23.800 1.499

pTNM, International System of Clinico-Morphological Classification of Tumors (TNM, Tumor NodeMetastasis) according to theWHOHistological Typing of Lung Tumors; AJCC, American

Joint Committee on Cancer Staging (AJCC staging) according to the IASCLC Staging Project 7th edn.

degradation and the creation of a suitable microenvironment
for vessel growth (12). In our study, performed on paired
tissues from NSCLC patients, the MMP2 expression was on
comparable level in cancer tissue and NLNT. The lack of the
MMP2 expression differences among tissues, together with the
observed TIMP3/MMP2 ratio distortion in NLNT (strongly
decreased TIMP3 expression in comparison toMMP2, compared
to the data from RNAseq studies), indicate that ECM remodeling
may be observed some distance from the lesion center. Previous
studies have linked the molecular changes in surrounding tissue,
mediated by miRs, to the field cancerization effect (43). The
phenomenon of tumor promoting (oncogenic) activity of the
MMP2 was previously demonstrated in colorectal cancer, where
elevatedMMP2mRNA levels in “healthy” tissue surrounding the
lesion were significantly higher in patients with metastatic cancer
than in non-metastatic lesions (46).

miR Expression From Serum
Exosomes—Significantly Differs Between
NSCLC Subtypes
Many studies report that both miR-17 and miR-20a influence
tumor formation and cancer progression in various organs and
tissues throughout the body (47–50); however, the vast majority
of such papers overwhelmingly describe experiments performed

using various cancer cell lines. The present study assesses their
expression in exosomes from peripheral blood samples of NSCLC
patients, collected before and after surgical removal of the tumor,
and compares our findings with data retrieved from TCGA.
This approach to miR analysis is described in a few publications
(51, 52). In the present study, the miR-20a expression levels
in pre- and postsurgical samples correlated positively. The
miRs produced by the tumor to control the process of matrix
remodeling can be observed in patients serum some days after
cancer removal. On the other hand Zhang et al. demonstrated
that after surgery the lower expression of miR-20a and four
other miRs after surgery might indicate the miR-20a originates
from tumor tissue (52). While comparing miR-17 expression
before and after surgical treatment, no significant difference was
found. Nevertheless, our study is the first to examine the change
in miR-17 expression among NSCLC patients before and after
surgical treatment.

Our research indicates that the miR expression pattern in
serum obtained before surgery significantly differs between
NSCLC subtypes. MiR-17 expression was higher among patients
with SCC than those with AC, which is concordant with Molina-
Pinelo et al. study (53) and was also confirmed by TCGA data
(34, 35). Analysis of this dependency was used to create a classifier
differentiating between NSCLC subtypes (Figure 2). Strongly
decreased expression of miR-17 can be treated as a hallmark
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FIGURE 2 | The Receiver Operating Characteristic (ROC) curve of miR-17 in

the NCSLC subtype classification. The best cut-off point for AC detection was

equal to ≤0.189 for miR-17 (Youden’s J statistic). The area under the curve

(AUC) was equal to AUC 0.710 (95% CI: 0.554–0.865), its predictive value was

as follows: specificity−90%, positive predictive value (PPV)−83%,

sensitivity−48%, and negative predictive value (NPV)−63%.

of AC subtype with 90% specificity, where a mean RQ value
over 0.189 FC can indicate a SCC subtype with 48% specificity.
The opposite trend was observed formiR-20a: its expression was
significantly increased in AC in comparison to the SCC group.

Our results are in accordance with the analysis of TCGA
data, which revealed a higher number of miR-20a transcripts
among AC patients than those with SCC.MiR-20a has previously
been described as SCC subtype biomarker; however, these
studies compared samples from SCC patients with those of
healthy volunteers, or with postoperative samples from the same
patient (only SCC subtype). Zhang et al. propose a panel of
three microRNAs (including miR-20a) as a potential diagnostic
marker for distinguishing male lung SCC patients from healthy
volunteers (54). Aushev et al. propose a panel of five miRs (miR-
205,−19a,−19b,−30b, and -20a) as a SCC biomarker; these five
miRs were found to be upregulated in exosomes extracted from
the peripheral blood of SCC patients before surgery compared
to postoperative samples (55). However, neither study performed
any assessment regarding other NSCLC subtypes.

As no literature comparing miR-20a expression among AC
vs. SCC patients could be found, our study appears to be
the first to propose miR-20a as biomarker for distinguishing
NSCLC subtypes, following an analysis of miR expression in
SCC and AC. This can be essential in case of advanced lung
cancer (confirmed with low-invasive methods like bronchoscopy
or lung needle biopsy) in AJCC clinical stage IIIA or IIIB,
where chemotherapy can be used as induction treatment before
surgery or as a complementary treatment for radiotherapy (3–
5). Preoperative subtype diagnosis may help to select better

first-line chemotherapy schemes in advanced NSCLC. Different
outcomes were observed for squamous vs. non-squamous cell
carcinomas: i.e., a better response was observed for pemetrexed
treatment in non-squamous NSCLCs compared to SCC (56).
As no correlations of miR expression with tumor grading and
staging (TNM and AJCC) were found, those miRs probably
would not be useful as preoperative circulating biomarkers of
cancer stage.

The Correlations of Gene and miR
Expression
The present study identified correlations regarding gene
expression (TIMP3 vs. MMP2) or genes and miRs (TIMP3
vs. miR-17 and miR-20a) in the normal-looking neighboring
tissue, which were not detected in the center of the cancer
lesion (Figure 3). Such changes in miR expression can be
prompted by more complex regulation of ECM remodeling
in the cancer neighborhood or could be characteristic of
NSCLC subtype. Moreover, our results are in concordance
with miR expressional data from the Genomic Data Commons,
where the studied miRs presented different trends among
subtypes:miR-20awas upregulated among tested LUAD patients,
but not LUSC.

Due to the gene location (13q31) the analyzed miRs were
observed to be expressed jointly as a 2 gene cluster or act as a
part of largermiR-17-92 cluster which has been overexpressed in
LC, colorectal cancer, and hepatocellular carcinoma (30, 57). We
did not observe any jointmiR-17/miR-20a expression pattern: the
preoperativelymiR-17 expression was higher in SCC, whilemiR-
20a was higher in AC, and miRs correlated in opposite way with
TIMP3 in NLNT.

In physiological conditions, the TIMP3 expression would
be triggered by the ECM remodeling signals to counterpart
the MMP activity (17). TIMP3 silencing is associated with the
intensified ECM remodeling and cancer cell migration (39).
Such ECM remodeling in the tumor surrounding tissue can
be forced by the rapid growth of the lesion and its rigidity:
when the diameter of the tumor increases, it exerts pressure
on neighboring tissues and blood vessels (48). Surprisingly we
have observed the positive correlation of TIMP3 in NLNT
with miR-17 expression (in the entire study cohort and SCC
subtype, not detected in AC) as the increase of the miR17 is
linked to the angiogenesis, though we hypothesize that TIMP3
expression may be activated by indirect miR action. On the
other hand, we have observed a significant increase of the
preoperative miR17 expression in SCC compared to AC, which
can partially explain the observed positive correlation with
TIMP3 decrease.

The observed in our study negative correlation of TIMP3
with miR-20a expression (both preoperative and postoperative
miR20a in SCC subtype, post miR20a in the entire study
cohort), can be explained as epigenetic silencing of the genes
controlling the ECM remodeling. The miR-20a action has been
previously linked to the induction of vascular changes in invasive
breast carcinomas (48) and metastasis in gastric cancer (50).
TIMP3 silencing mediated by miR-20a may be treated as a
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FIGURE 3 | The interaction between analyzed molecules (genes and microRNAs). The gray boxes present the dependencies published in medical literature (left) and

TCGA data (right). The middle part presents the statistically significant differences observed in our study: microRNAs were assessed in postoperative blood sample,

genes in normal-looking neighboring tissue from surgical margin.

hallmark of substantial ECM deregulation already present in
the NLNT. Remodeling encourages further growth of the lesion
and induces local hypoxia, which in turn can encourage the
development of new blood vessels growth (48, 57). The observed
strong downregulation of TIMP3 and disturbed MMP2/TIMP3
expression ratio can be explained as crucial activities in the ECM
remodeling process, enabling creation of a microenvironment
conducive to tumor growth (57).

CONCLUSIONS

• The MMP2 expression on comparable level in both tissues,
together with strong MMP2 vs. TIMP3 upregulation in
NLNT (compared to the healthy controls data from HPA
RNA-seq project or Genomic Data Commons), indicate the
metalloproteinase mediated ECM remodeling can occur in the
distance from the center of the lesion.

• The TIMP3 silencing observed in the normal-looking
neighboring tissue and its negative correlation with presurgical
miR-20a expression from serum exosomes (in SCC subtype)
suggest the role of miRs in ECM remodeling

• miR expression pattern in serum obtained before surgery
significantly differs between NSCLC subtypes. Preoperative
serum miR examination can be considered as a useful
biomarker for the neoadjuvant therapy planning for patients
with confirmed lung cancer and clinical AJCC stage III A/III
B. Furthermore, the proposed miR-based classifier does not
require the use of minimally invasive diagnostic methods, such
as biopsy or broncho-alveolar lavage, just a simple extraction
of miR from serum exosomes.

• The downregulation of TIMP3 in long-term smokers and the
decrease of presurgical miR-17 expression, can be regarded as
potential SCC subtype markers.

STRENGTHS AND WEAKNESSES OF THE
STUDY

The strengths of this study are:

• the prospective design;
• inclusion of the NSCLC patients that were not treated with

potentially mutagenic chemotherapy or radiotherapy before
the surgery;

• analysis in the most common NSCLC subtypes: AC and SCC;
• analysis of miR-17 and miR-20a expression before and after

surgical treatment;
• analysis of MMP2 and TIMP3 expression in both cancer

lesion and the normal-looking neighboring tissue (from
surgical margin);

• validation of the obtained results with the available
sequencing datasets from HPA RNA-seq project, or Genomic
Data Commons.

The weaknesses of the study are:

• a relatively low number of studied patients, despite a proper
distribution among NSCLC subtypes.

• Difficulty confirming the cancer origin of the analyzed miRs—
miRs were extracted from exosomes circulating in blood.

• Expression analysis performed only at the mRNA level,
not assessed on the protein level. IHC analysis was
not provided either in our study nor in the TCGA
validation dataset.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

Frontiers in Oncology | www.frontiersin.org 9 December 2019 | Volume 9 | Article 137269

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Czarnecka et al. ECM Remodeling in NSCLC

ETHICS STATEMENT

The study was performed in accordance with the Helsinki
Declaration and the ethical proceedings approved by the
Ethical Committee of the Medical University of Lodz, Poland,
no. RNN/140/10/KE. The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

KC created the concept of the study and provided
the final version. KC and DP-L design the study.
KC, BS, MB, and MK performed laboratory
procedures, conducted statistical analysis, and wrote
the manuscript. JK, AA, DP-L, and EB-L revised
the manuscript.

FUNDING

This study was supported by grant for Young Scientist (to KC)
financed by Medical University of Lodz, number of subsidy 502-
03/1-151-04/502-14-247.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.01372/full#supplementary-material

Supplementary Figure 1 | Diagram of the interactions between genes selected

for the study (TIMP3, MMP2) and miRs targeting them. MiRs selected using the

databases microRNA.org and mirtarbase.mbc.nctu.edu.tw.

Supplementary Figure 2 | Violin plot describing the distribution of MMP2 and

TIMP3 gene expression in tumor and normal-looking neighboring tissue (A,B), as

well as in NSCLC subtypes (C,D). The violin plot analysis represents the kernel

density plot of the analysis of binary classified data. SCC, Squamous Cell

Carcinoma; AC, Adenocarcinoma.

Supplementary Figure 3 | Violin plot describing distribution of miR-17 and

miR-20a expression in tumor and normal-looking neighboring tissue: (A,B) and in

NSCLC subtypes (C,D). The violin plot analysis represents the kernel density plot

in the analysis of binary classified data. SCC, Squamous Cell Carcinoma;

AC, Adenocarcinoma.

Supplementary Figure 4 | Box-and-whisker plot representing the expression of

TIMP3 in tumor and normal-looking neighboring tissue from surgical margin (p =

0.01; Wilcoxon test).

Supplementary Table 1 | Expression level of analyzed genes in control tissue

from RNA-seq analysis and normal-looking neighboring tissue.
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Pastuszak-Lewandoska and Brzeziańska-Lasota. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 11 December 2019 | Volume 9 | Article 137271

https://doi.org/10.1371/journal.pone.0153046
https://doi.org/10.18632/oncotarget.17038
https://doi.org/10.1371/journal.pbio.0020363
https://doi.org/10.3892/etm.2015.2538
https://doi.org/10.1093/nar/gkt680
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.2147/OTT.S150340
https://doi.org/10.1007/s10456-012-9283-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637689/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637689/
https://doi.org/10.1186/s13148-018-0492-1
https://cancergenome.nih.gov/cancersselected/lungsquamouscell
https://cancergenome.nih.gov/cancersselected/lungsquamouscell
https://cancergenome.nih.gov/cancersselected/lungadenocarcinoma
https://cancergenome.nih.gov/cancersselected/lungadenocarcinoma
https://doi.org/10.1056/NEJMp1607591
https://doi.org/10.5662/wjm.v3.i1.11
https://doi.org/10.3892/ijmm.2017.3080
https://doi.org/10.1007/s12032-013-0713-6
https://doi.org/10.1378/chest.112.6.1474
https://doi.org/10.1093/jnci/89.12.857
https://doi.org/10.1093/jnci/89.18.1366
https://doi.org/10.1513/pats.201201-004MS
https://doi.org/10.3892/ijo.2016.3610
https://doi.org/10.3892/or.2012.2123
https://doi.org/10.1016/j.bbcan.2004.09.006
https://doi.org/10.1158/0008-5472.CAN-05-2352
https://doi.org/10.1371/journal.pone.0194638
https://www.fasebj.org/doi/abs/10.1096/fasebj.31.1_supplement.934.26
https://www.fasebj.org/doi/abs/10.1096/fasebj.31.1_supplement.934.26
https://doi.org/10.3892/br.2017.862
https://doi.org/10.1155/2014/218169
https://doi.org/10.3892/ol.2016.5462
https://doi.org/10.1183/09031936.00091513
https://doi.org/10.18632/oncotarget.19666
https://doi.org/10.1371/journal.pone.0078649
https://doi.org/10.4061/2011/839872
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 18 December 2019
doi: 10.3389/fonc.2019.01394

Frontiers in Oncology | www.frontiersin.org 1 December 2019 | Volume 9 | Article 1394

Edited by:

Etienne Giroux Leprieur,

Hôpital Ambroise-Paré, France

Reviewed by:

Jessica Desiree Menis,

Istituto Oncologico Veneto

(IRCCS), Italy

Conor Steuer,

Emory University, United States

*Correspondence:

Beatrice Aramini

beatrice.aramini@unimore.it

†These authors share first authorship

‡These authors share last authorship

Specialty section:

This article was submitted to

Thoracic Oncology,

a section of the journal

Frontiers in Oncology

Received: 12 August 2019

Accepted: 26 November 2019

Published: 18 December 2019

Citation:

Masciale V, Grisendi G, Banchelli F,

D’Amico R, Maiorana A, Sighinolfi P,

Stefani A, Morandi U, Dominici M and

Aramini B (2019) Isolation and

Identification of Cancer Stem-Like

Cells in Adenocarcinoma and

Squamous Cell Carcinoma of the

Lung: A Pilot Study.

Front. Oncol. 9:1394.

doi: 10.3389/fonc.2019.01394

Isolation and Identification of Cancer
Stem-Like Cells in Adenocarcinoma
and Squamous Cell Carcinoma of the
Lung: A Pilot Study

Valentina Masciale 1†, Giulia Grisendi 2,3†, Federico Banchelli 4, Roberto D’Amico 4,

Antonino Maiorana 5, Pamela Sighinolfi 5, Alessandro Stefani 1, Uliano Morandi 1,

Massimo Dominici 2‡ and Beatrice Aramini 1*‡

1Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and

Reggio Emilia, Modena, Italy, 2Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults,

University of Modena and Reggio Emilia, Modena, Italy, 3 Rigenerand SRL, Modena, Italy, 4Department of Medical and

Surgical Sciences for Children & Adults, Center of Medical Statistic, University of Modena and Reggio Emilia, Modena, Italy,
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Background: Lung cancer stem cells (CSCs) share many characteristics with normal

stem cells, such as self-renewal and multipotentiality. High expression of aldehyde

dehydrogenase (ALDH) has been detected in many tumors, particularly in the CSC

compartment, and it plays an important role in tumor proliferation, metastasis, and drug

resistance. CD44 is commonly used as a cell surface marker of cancer stem-like cells

in epithelial tumors. The aim of this study was to isolate and analyze cancer stem-like

cells from surgically removed specimens to compare lung adenocarcinoma (ADENO)

and squamous (SQUAMO) cell carcinoma.

Methods: The ALDEFLUOR assay was used to identify and sort ALDHhigh and

ALDHlow human lung cancer cells following tissue digestion. Fluorescence-activated

cell sorting analysis for CD44 was performed with tumor cells. Quantitative real-time

PCR was performed to assess the expression of SOX2 and NANOG as stemness

markers. ALDH1A1 expression was additionally determined by immunohistochemistry.

Anchorage-independent ALDHhigh cell growth was also evaluated. ALDHhigh ADENO and

SQUAMO cells were cultured to analyze spheroid formation.

Results: All specimens contained 0.5–12.5% ALDHhigh cells with 3.8–18.9%

CD44-positive cells. SOX2 and NANOG relative expression in ALDHhigh compared

to ALDHlow cells in ADENO and SQUAMO was analyzed and compared between

the histotypes. Immunohistochemistry confirmed the presence of ALDH1A1

in the sections. SOX2 and NANOG were expressed at higher levels in the

ALDHhigh subpopulation than in the ALDHlow subpopulation only in ADENO

cells, and the opposite result was seen in SQUAMO cells. In vitro functional

assays demonstrated that ALDHhigh cells exhibited migration capacity with

distinct behaviors between ALDHhigh spheres in ADENO vs. SQUAMO samples.
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Conclusions: Our results highlight the importance of a better characterization of cancer

stem-like cells in ADENO and SQUAMO histotypes. This may suggest new differential

approaches for prognostic and therapeutic purposes in patients with non-small-cell

lung cancer.

Keywords: cancer stem-like cells, non-small-cell lung cancer, lung adenocarcinoma, lung squamous cell

carcinoma, CSC marker, aldehyde dehydrogenase

BACKGROUND

Lung cancer is the most common cancer worldwide, accounting
for 1.8 million new cases and 1.6 million deaths in 2012; the
number of deaths worldwide is expected to grow to 3 million
by 2035 (1, 2). Non-small-cell lung cancer (NSCLC) accounts
for 85–90% of all lung cancers. The primary treatment is
surgery for early stages (stages I and II) and chemotherapy,
radiotherapy, and/or immunotherapy for advanced-stage disease
(3–6). Chemotherapy drugs cannot differentiate between tumor
cells and normal cells while functioning; the treatment-related
adverse effects are noticeably strong and therefore feared by
patients. It was not until the emergence of targeted therapy
based on molecular typing that the survival period of patients
with advanced NSCLC was improved to several years. Until
2013, immunotherapy was crowned as the first place scientific
breakthrough (7). The efficacy of immunotherapy for those
without targetable oncogene mutations was proven from second-
line treatment (8–12) to first-line treatment (13, 14). Through
long-term follow-up, immunotherapy has also shown that it has
the greatest potential long-term clinical benefit (15, 16), even
though the efficacy is not fully satisfactory (17–24). Indeed,
similar to targeted therapy, patients may eventually develop
resistance to immunotherapy (25, 26), and some may even suffer
hyperprogression after immunotherapy (27, 28). The problem
of resistance has not yet been studied; however, recent data
suggest that cancer stem cells (CSCs) with characteristics of self-
renewal may be resistant to these therapies (29). Understanding
the role of CSCs in lung cancer may be very important and
useful for identifying future targets. Indeed, the development
of methods for the isolation and characterization of CSCs
from primary tumors is a critical step in understanding the
processes that mediate chemoresistance and for the development
of therapeutic strategies to overcome this resistance, including
promising immunotherapy approaches (29–31). To date, cancer
cell lines have been the most frequently used tools to study
lung CSCs (15, 16, 32). The identification of a specific marker
for CSCs in the lung remains controversial (33, 34). Current
studies provide increasing evidence for the existence of CSCs
using several specific biomarkers (e.g., CD133, CD90, and CD44)
translated from studies of human hematological malignancies
(35–37) and solid tumors (38–47). In particular, aldehyde
dehydrogenase (ALDH) activity is an important functional

Abbreviations: NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer;

ALDH, aldehyde dehydrogenase; FACS, fluorescence-activated cell sorting; CSCs,

cancer stem cells; SSC, side scatter; FSC, forward scattered; ECM, extracellular

matrix; ADENO, adenocarcinoma; SQUAMO, squamous cell carcinoma.

marker of normal and malignant stem/progenitor cells (47–51).
In addition, CSCs possess high ALDH activity, especially for
the predominant ALDH isozymes, ALDH1A1, and ALDH1A3.
Cortes-Dericks et al. (51) showed that the flow cytometry-
based ALDEFLUOR assay could be used to select ALDHhigh

and ALDHlow populations to discriminate the cancer stem-like
cell population from non-cancer stem-like cells. An enrichment
of CSCs in the ALDHhigh population was also described in
NSCLC patients and cell lines (52). In addition, several key
regulators have been described as essential for the maintenance
of a progenitor cell state under both normal and cancerous
conditions (e.g., SOX2 and the homeobox protein NANOG) (53,
54). Following these investigations, the aim of the present study
was to identify cancer stem-like cells in primary human lung
cancer cells obtained from surgical specimens and to assess the
differences and similarities between adenocarcinoma (ADENO)
and squamous (SQUAMO) cell carcinoma using a combination
of ALDH and CD44.

METHODS

The identification of cancer stem-like cells and the assessment of
the differences and similarities between ADENO and SQUAMO
were carried out by performing real-time PCR (RT-PCR), 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS)
assays, and sphere cultures.

Collection of Tumor Specimens
This study was approved by the Regional Ethical Committee of
Modena University Hospital and performed according to the
guidelines of the Helsinki Convention. Upon signed informed
consent, human lung cancer tissues were obtained from four
consecutive patients with ADENO and four consecutive patients
with SQUAMO who underwent major surgical lung resection
between October 2017 and January 2018 at the Division of
Thoracic Surgery of the University Hospital of Modena for
stage I, II, or IIIA NSCLC (8th TNM) (Table 1). The collection
of tumor tissues was carried out during surgery and was set
according to the availability of the pathologists involved in our
study. The excision of the tumor tissue was performed only
from the primary lung nodule. The microscopic features of the
cancer cells and immunohistochemistry were used to assess the
histological diagnosis.

Dissociation of Primary Tissues
Freshly obtained tumor tissues (within 1–2 h after surgical
removal) were washed in sterile Dulbecco’s phosphate-buffered
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TABLE 1 | Patients characteristics, cellular yield from each sample, viability, and aldehyde dehydrogenase (ALDH) expression determined by fluorescence-activated cell

sorting (FACS).

Adenocarcinoma

(n = 4)

Squamous cell

carcinoma

(n = 4)

All patients

(n = 8)

PATIENTS CHARACTERISTICS

Age (years) Mean ± SD 66.7 ± 9.4 73.7 ± 7.9 71 ± 8.5

Gender (male) n (%) 3 (75.0%) 3 (75.0%) 6 (75.0%)

Smoker (yes) n (%) 4 (100.0%) 4 (100.0%) 8 (100.0%)

Stage (8th TNM)

IA3 n (%) 1 (25.0%) 1 (25.0%) 2 (25.0%)

IIA n (%) 2 (50.0%) 0 (0.0%) 2 (25.0%)

IIB n (%) 1 (25.0%) 1 (25.0%) 2 (25.0%)

IIIA n (%) 0 (0.0%) 2 (50.0%) 2 (25.0%)

Neoadiuvant Chemotherapy n (%) 1 (25.0%) 0 (0.0%) 1 (12.5%)

SAMPLE CHARACTERISTICS

Weight (g) Mean ± SD 1.0 ± 0.9 1.0 ± 0.6 1.0 ± 0.7

Cellular yield (million cells/g) Mean ± SD 18.2 ± 8.6 20.4 ± 8.2 19.3 ± 7.9

FACS ANALYSIS

7-AAD negative Mean ± SD 94.3 ± 5.2% 90.5 ± 6.8% 92.4 ± 6.0%

ALDHhigh Mean ± SD 3.7 ± 5.9% 4.2 ± 3.9% 4.0 ± 4.6%

SD, standard deviation. 7-Amino-actinomycin D (7-AAD) negative cells are expressed as percentage of total number of sorted cells. ALDHhigh are expressed as percentage of 7-AAD

negative cells.

saline (PBS) (L1825-BC—Merck Millipore) and mechanically
minced into small pieces (2–4mm). Minced samples were
digested using a tumor dissociation kit in a disposable gentle
MACSTM C-Tube (Miltenyi) according to the manufacturer’s
instructions. Samples were digested for 60min at 37◦C in a gentle
MACS Octo dissociator and filtered through 70-µm sterile cell
strainers, centrifuged at 300×g for 5min, and resuspended in
a mixture of Dulbecco’s modified Eagle medium (DMEM) and
Ham’s F12 media (2:1) (Gibco) containing 50 IU/ml penicillin–
streptomycin and 4mM glutamine. Finally, viable cells were
counted using an optic phase contrast microscope.

ALDEFLUOR Assay
Single-cell suspensions of the primary tumor cells from the
surgical tumor specimens were diluted in ALDEFLUOR assay
buffer containing BODIPY-aminoacetaldehyde (STEMCELL
Technologies, Vancouver, BC). The assay was performed
according to the manufacturer’s protocol. Briefly, at least 5
million tumor cells were resuspended in ALDEFLUOR buffer (5
µl/106) and stained with ALDEFLUOR substrate. Immediately
after, 5 × 105 cells were transferred to a control tube containing
5 µl diethylaminobenzaldehyde, which is a specific inhibitor
of ALDH. Both control and test samples were incubated for
45min at 37◦C protected from light. Following incubation, the
cells were centrifuged at 300×g for 5min. The cell pellet was
resuspended in 1ml ALDEFLUOR assay buffer. Cell morphology
was evaluated using side scatter (SSC) and forward scatter (FSC).
Dead cells were excluded using 7-amino-actinomycinD (7-AAD)
staining. Cell sorting and ALDH analysis were performed using
a FACSAria III instrument (Becton Dickinson, Franklin Lakes,
NJ). The results were analyzed using fluorescence-activated cell

sorting (FACS) Diva software (Becton Dickinson). The gating
strategy included the ALDHhigh gate, which was set at least one
log apart from the ALDHlow gate. Sorted cells were promptly
lysed for gene expression analysis.

FACS Analyses
Primary tumor cell suspensions were stained with
allophycocyanin-conjugated anti-CD45 (Becton Dickinson)
and phycoerythrin-conjugated anti-CD44 (BioLegend, San
Diego, CA). An isotype control sample for each condition was
used to exclude the autofluorescence background. Dead cells
were excluded using 7-AAD staining. The gate was set based on
CD45-negative cells. Analyses were performed using a FACSAria
III instrument (Becton Dickinson). Data were analyzed using the
FACSDiva software.

RNA Isolation and Real-Time PCR
Total cellular RNA was extracted from ALDHhigh and ALDHlow

cells using the RNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions. Total RNA (500 ng) was reverse
transcribed using the RevertAidTM First-Strand Complementary
DNA (cDNA) Synthesis Kit (Thermo Scientific). Following
cDNA synthesis, RT-PCR was performed in triplicate for each

sample using FAST SYBR
TM

Green detection chemistry (Applied
Biosystems) on Step One instrument. Human SOX2, NANOG,
and GAPDH were amplified using gene-specific primers
(GAPDH: forward primer 5′-ACATCGCTCAGACACCATG-3′,
reverse primer 5′TGTAGTTGAGGTCAATGAAGGG-3′; SOX2:
forward primer 5′-GGAAACTTTTGTCGGAGACG-3′, reverse
primer 5′-GCAGCGTGTACTTATCCTTC-3′; NANOG: forward
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primer 5′AGAAATACCTCAGCCTCCAG-3′, reverse primer 5′-
CGTCACACCATTGCTATTCTT-3′). The cycling parameters
consisted of denaturation at 95◦C for 10min; and 40 cycles of 15 s
at 94◦C, 30 s at 60◦C, and 1min at 72◦C; followed by a continuous
melting curve.

Immunohistochemistry
Slides were deparaffinized with xylene, rehydrated in a graded
alcohol series, and washed in PBS twice for 5min each. The
sections were heated in 10mM sodium citrate buffer, pH
6.0, for 15min in a 95◦C water bath for antigen retrieval.
PBS washes (5min each) were performed until the buffer
cooled down. Endogenous peroxidase activity was blocked via
incubation in 3%H2O2 at room temperature for 10min. Blocking
serum was added in a dropwise manner at room temperature
for 20min to reduce the non-specific background. Samples
were incubated with the anti-ALDH1A1 monoclonal antibody
(ab-134188; 1:100 dilution; Abcam, Cambridge, MA, USA)
overnight at 4◦C. Sections were washed in PBS three times
for 2min and then incubated with a biotinylated secondary
antibody (PK-4001; Vector Labs, USA) for 30min at room
temperature. The slides were subsequently incubated with
ABC-HRP (PK-4001; Vector Labs, USA) for another 30min,
washed in PBS, and stained with 3,3-diaminobenzidine. Finally,
the sections were counterstained with Mayer’s hematoxylin,
dehydrated, and mounted. Images were collected using a
Zeiss Axioskop microscope with a Zeiss Axiocam ICc3 High-
Resolution Microscope Camera. The scoring of the ALDH1A1
staining was performed by two independent investigators who
were blinded to the patients’ clinicopathological characteristics.
Sections were scored independently. Immunoreactivity was
scored using a semiquantitative method based on the ALDH
positivity of the tumor cells as follows: 0 (<5% positive), 1 (5–
25% positive), 2 (>25–50% positive), 3 (>50–75% positive), and
4 (>75% positive) (55).

Cell Transformation Assay
Cell Biolabs CytoSelectTM 96-well cell transformation assay (cell
recovery compatible, fluorometric) was used to analyze the
anchorage-independent growth of ALDHhigh cells, and theMCF-
7 cell line was used as a positive control. ALDHhigh cells were
harvested and cultivated for a maximum of 48 h in appropriate
serum-free medium, as described below. MCF-7 cells were
cultivated in DMEM (Gibco) containing 50 IU/ml penicillin–
streptomycin and 4mM glutamine in the presence of 10% FBS
(Euroclone). Cells were used at a concentration of 9,000 cells
per well of the 96-well plate, and the growth kinetics on day 0
(T0) and day 8 (T8) were chosen to measure cell growth. This
kit provided the soft agar material, solubilization solution, lysis
buffer, and Cyquant R© GR Dye. The dye binds nucleic acids, and
the relative fluorescence units (RFUs) were quantified to reveal a
relative quantity of cells based on nucleic content.

MTS Assay
The MTS Cell Proliferation Kit (Abcam) was used to measure
the cell proliferation rate at six different time points after seeding
(0, 1, 2, 7, 14, and 21 days). In a final volume of 200 µl of cell

culture medium, 20 µl of MTS was added and incubated for
4 h at 37◦C in standard culture conditions. After incubation, the
optical density wasmeasured at 490–500 nmby aGlomaxMulti+
Detection System (Promega).

Tumor Sphere-Forming Assay
ALDHhigh and ALDHlow tumor spheres were dissociated into
single-cell suspensions, and 50,000 cells from four different
patients, two ADENO and two SQUAMO, were transferred
to 24 ultralow attachment well plates. Cells were cultured
in a mixture of serum-free DMEM and Ham’s F12 media
(2:1) (Gibco) containing 50 IU/ml penicillin–streptomycin and
4mM glutamine supplemented with 5µg/ml insulin, 10 ng/ml
epidermal growth factor (EGF), 20 ng/ml basic fibroblast growth
factor, 0.18 nM adenine, and 2 nM triiodotironin. The cells were
cultured in 5% CO2 at 37◦C for 2 weeks, and the media were
replaced or supplemented with fresh growth factors twice a week.
The entire well was digitally photographed using inverted phase-
contrast microscopy (Zeiss Axioskop and Axiocam ICc3 color
camera). All images were analyzed using the AxioVision software
(Zeiss). The total number of spheres was counted, and sphere
areas were manually measured at three different time points: 1,
2, and 3 weeks from seeding (56, 57).

RT-PCR Data Analysis
We included four patients with ADENO and four patients
with SQUAMO in the analysis, for a total of eight patients.
This study uses a three-factor full factorial experimental design
with replications, with factors such as (1) ALDHhigh and
ALDHlow cells; (2) SOX2, NANOG, and GAPDH genes; and (3)
ADENO and SQUAMO histotypes. Replications are represented
by triplicates. The analysis was performed using a linear mixed-
model approach (58), which allows formal statistical hypothesis
testing of relative gene expression. All cycle threshold values≥36
were set as equal to 36. We assessed the relative messenger RNA
(mRNA) expression of SOX2 and NANOG genes, normalized to
the expression of the housekeeping gene, GAPDH, in ALDHhigh

cells compared to ALDHlow cells by means of a linear mixed
regression model. The dependent variable was cycle threshold
(Ct), whereas the independent variables were ALDH (high vs.
low), gene (SOX2 and NANOG vs. GAPDH, which is the
reference category), histotype (ADENO vs. SQUAMO), and
pairwise and three-way interactions, all of which were analyzed
as fixed-effect factors. The model also included a random
intercept and a random ALDH–histotype interaction term that
was specific for each patient to take into account correlations
among cycle threshold values. The following parameters of
interest were examined: (1) relative expression of SOX2 and
NANOG in ALDHhigh cells compared to ALDHlow cells in
adenocarcinoma; (2) relative expression of SOX2 and NANOG
in ALDHhigh cells compared to ALDHlow cells in squamous cell
carcinoma; and (3) differences between ADENO and SQUAMO
in SOX2 and NANOG relative expression in ALDHhigh cells
compared to ALDHlow cells. The relative expression of SOX2
and NANOG in ALDHhigh cells compared to ALDHlow cells,
using GAPDH as the housekeeping gene, is reported as the
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fold change and the difference in cycle thresholds (equal to –
log2 fold change) with 95% confidence intervals and p-values.
Comparisons between ADENO and SQUAMO for SOX2 and
NANOG relative expression in ALDHhigh cells compared to
ALDHlow cells are reported as p-values. All tests were two-sided
t-tests using the Satterthwaite method for degrees of freedom.

Statistical Analysis
Continuous variables were expressed as the mean ± standard
deviation (SD) and the range, and categorical variables were
expressed as absolute and percent frequencies. Statistical analyses
of RT-PCR data were described in the previous paragraph. All
statistical analyses were performed with R 3.4.3 software (The R
Foundation for Statistical Computing, Wien) with p< 0.05 as the
significance level.

Sample Size
No formal sample size estimation was carried out in this
pilot study. Therefore, the number of patients included in the
analyses was only based on resource availability. The enrolled
patients were those who underwent major surgical lung resection
for stage I, II, or IIIA NSCLC in our division over a time
period of 4 months. We included four consecutive patients
with ADENO and four consecutive patients with SQUAMO to
balance the two types of patients according to our full factorial
experimental design.

Genomics
Genomics data were routinely recorded in our Hospital
for ADENO. DNA was extracted from formalin-fixed and
paraffin-embedded blocks of each tumor sample. Extraction
was performed with the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany), and DNA was quantified with Xpose-NGS
(Trinean NV, Gentbrugge, Belgium). Mutations were detected in
genome-amplified DNA using the high-throughput genotyping
platform SequenomMassARRAY System (Sequenom, San Diego,
CA, USA) and the Myriapod Colon Status Kit (Diatech
Pharmacogenetics, Italy) following the manufacturer’s protocol.
This molecular array allows for the identification of the most
important mutations of the KRAS,NRAS, BRAF, EGFR, PIK3CA,
and ERBB2 genes.

RESULTS

Lung Cancer Tissues From Patients Yield
Sufficient Numbers of Living Cells After
Dissociation
All eight patients enrolled in the study (mean age, 71 ± 8.5
years old; range, 61–83; six male, two female, all smokers)
underwent a lobectomy by lateral thoracotomy. Four patients
were diagnosed with adenocarcinoma of the lung (mean age,
66.7 ± 9.4 years old; range, 61–79; three male, one female),
and four patients (mean age, 73.7 ± 7.9 years old; range, 65–
83; three male, one female) were diagnosed with squamous
cell carcinoma (Table 1). Surgical tumor specimens (mean, 1.0
± 0.7 g; range, 0.2–2.2) were obtained from each patient and
used for the experiments, with similar specimen weights in

the ADENO and SQUAMO groups (Table 1). A procedure
combining mechanical dissociation with enzymatic degradation
of the extracellular matrix that maintained tissue structural
integrity was used to obtain single-cell suspensions from the
surgical tumor specimens. The average cellular yield was a mean
of 19.3 ± 7.9 million cells per gram (range, 10.0–30.3), with
similar cellular yields in ADENO and SQUAMO (Table 1). Good
cell viability was further confirmed by FACS analysis.

ALDH-Positive Stem-Like Cells Were
Identified in Primary Lung Cancer Tissue
Tumor tissue dissociation efficiently released cancer cells
characterized by a heterogeneous morphology, as illustrated by
widespread FSC and SSC values (Figure 1A). The mean viability
of the samples was 92.4 ± 6.0% (range, 82.9–99.4%) based on
7-AAD staining (Table 1). These data further confirmed that
the developed dissociation procedure was a non-toxic approach
to isolating cancer cells from tumor tissues (Figure 1). The
putative CSCs were physically separated from the bulk parental
tumor cells and recovered by FACS according to the following
gating strategy: Tumor cells were first identified based on
their morphological parameters (FSC/SSC, Figure 1A, gate P1),
and ALDH activity was measured in the 7-AAD-negative cell
population only (Figure 1B). ALDHlow and ALDHhigh cells were
selected and sorted (Figure 1C). An ALDHhigh subpopulation
was identified in all samples (mean, 4.0 ± 4.6%; range, 0.5–
12.5%, with two samples above 5%) of all viable lung cancer cells
(Table 1), which indicates that it was possible to preserve lung
cancer cells using a rapid dissociation protocol that allowed the
identification of putative CSCs.

Primary Lung Tumor Cells Express CD44
The surface marker CD44 was investigated as a possible marker
for cancer stem-like cells. 7-ADD was used to identify viable
cells, and CD45 staining was used to exclude CD45-positive cells
(Figure 2) (59).

We found that ALDHhigh and CD44-positive cells had
comparable expression in our samples (4.0 ± 4.6 and 11.5 ±

7.7%, respectively), and there was a moderate positive correlation
(Pearson correlation= 0.52).

SOX2 and NANOG in ALDHhigh/low Cells in
Adenocarcinoma and Squamous Cell
Carcinoma
A total of 143 Ct values were available. Two patients (one
ADENO and one SQUAMO) had SOX2 and NANOG Ct values
in triplicate above 36 cycles in ALDHlow cells, and one ADENO
patient had SOX2 and NANOG Ct values in triplicate above
36 cycles in ALDHlow cells and NANOG Ct values in triplicate
above 36 cycles in ALDHhigh cells. A total of 25 (17.5%) Ct
values were above 36 and set equal to 36 for data analysis.
The results from linear mixed-model analysis are reported
in Table 2. The fold changes in ADENO were 20.72 (95%
CI = 0.68; 635.58, p = 0.0755) and 25.49 (95% CI = 2.29;
283.44, p = 0.0147) for SOX2 and NANOG, respectively. The
fold changes in SQUAMO were 0.14 (95% CI = 0.02; 1.13,

Frontiers in Oncology | www.frontiersin.org 5 December 2019 | Volume 9 | Article 139476

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Masciale et al. Lung Adenocarcinoma and Squamous Cell Carcinoma

FIGURE 1 | Cells with high aldehyde dehydrogenase (ALDH) activity in one patient sample (1.2%). (A–C) The gating strategy of a representative

fluorescence-activated cell sorting (FACS) analysis of a primary tumor cell suspension in one patient. 7-Amino-actinomycin D (7-AAD) was used to assess

ALDHhighorlow on the live population of cells.

FIGURE 2 | Cell positivity for CD44. (A–D) The gating strategy of a representative cytofluorimetric analysis of a primary tumor cell suspension. 7-Amino-actinomycin D

(7-AAD) was used to exclude the CD45-positive cells in the live population to further analyze tumor cell positivity for CD44.

p = 0.1022) and 0.07 (95% CI = 0.02; 0.31, p = 0.0073) for
SOX2 and NANOG, respectively. These results are reported
in Figure 3 by both the fold change and the cycle threshold
difference scales. The differences in relative expression between
ADENO and SQUAMO were statistically significant (p = 0.0101
and p= 0.0005 for SOX2 and NANOG, respectively).

ALDH Positivity in Digested Samples
Reflects Immunohistochemical Scoring in
NSCLC
To further evaluate the ALDH expression pattern in the
NSCLC samples, ALDH1A1 immunohistochemistry was scored
as previously reported (55). Tissue sections were examined at
10× magnification to characterize the overall staining pattern
and at 20× magnification for a more accurate evaluation of
the cells to assign the appropriate values. As expected, normal
bronchial epithelium and macrophages showed ALDH1A1
expression (49).

All eight patient samples showed a broadly similar intensity of
ALDH1A1 staining in the cancerous fraction (i.e., all had scores
of 0 with <5% positive tumor cells), which is consistent with the
FACS data (Figure 4).

Cell Transformation
The Cell Biolabs CytoSelectTM 96-well cell transformation assay
did not involve subjective manual counting of colonies, but
it used a fluorescent measurement of Cyquant R© GR Dye that
bound to nucleic acids to quantify the number of cells based on
nucleic assay content. We compared the cell proliferation at T0
and T8 between the MCF-7 breast cancer cell line and ALDHhigh

cells. The MCF-7 cell line grew from 130 to 1,233 RFU, and the
ALDHhigh cells rose mildly from 158 to 177 RFU (Figure 5).

MTS Cell Proliferation Assay
Cell proliferation was evaluated in ALDHhigh cells from seeding
(day 0) until the end of the culture (day 21). AnMTS-based assay
revealed that our culture protocol did not affect the proliferation
of ALDHhigh cells. There was a trend of growth that extended
until day 21, without any notable drop in cell growth over
time (Figure 6).

General Characteristics of Tumor Spheres
ALDHhigh cells of the ADENO and SQUAMO patients were
maintained in low attachment cultures in the absence of serum
for up to 3 weeks (Figure 7.1).
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TABLE 2 | SOX2 and NANOG in ALDHhigh/low cells.

1Ct Difference

(95% CI)

FC (95% CI) p-value

SOX2

Adenocarcinoma −4.37

(−9.31; 0.57)

20.72

(0.68; 635.58)

0.0755

Squamous cell

carcinoma

2.79

(−0.17; 5.76)

0.14

(0.02; 1.13)

0.1022

Difference 0.0101

NANOG

Adenocarcinoma −4.67

(−8.15; −1.20)

25.49

(2.29; 283.44)

0.0147

Squamous cell

carcinoma

3.80

(1.71; 5.88)

0.07

(0.02; 0.31)

0.0073

Difference 0.0005

95% CI, 95% confidence interval; FC, fold change. Relative gene expression of SOX2 and

NANOG in ALDHhigh cells compared to ALDHlow cells in adenocarcinoma and squamous

cell carcinoma; results from linear mixed model analysis.

FIGURE 3 | Relative messeger RNA (mRNA) expression of SOX2 and NANOG

in ALDHhigh compared to ALDHlow cell populations, using GAPDH as the

reference gene. Expression was measured for the ALDHlow and ALDHhigh cell

populations in adenocarcinoma and squamous cell carcinoma histotypes

using real-time PCR (RT-PCR), and relative expression comparing ALDHhigh

and ALDHlow was calculated by means of a linear mixed model. The two light

gray bars represent ADENO, and the two dark gray bars represent SQUAMO.

The error bars represent the 95% confidence intervals. ADENO,

adenocarcinoma; SQUAMO, squamous cell carcinoma.

The tumor spheres that formed in each well were counted and
measured for area in ADENO and SQUAMO patients at three
different time points (1, 2, and 3 weeks), as shown in Figure 7.2.
There was a tendency for ADENO to produce a higher number
of spheres than SQUAMO, and the spheres produced by ADENO
also exhibited greater area than SQUAMO. We observed that the

spheres in ADENO had a tendency to grow in area and form
larger spheres at 2 and 3 weeks, but there was no evidence of this
in SQUAMO spheres, whose distribution did not significantly
change over time. In contrast, ALDHlow cells of both histotypes
died within 3 days, as shown in Figure 8.

Genomics
Genomics data were recorded for four ADENO patients. Two of
them had a KRAS mutation, one had an EGFR mutation and one
patient was wild type for the analyzed mutations.

DISCUSSION

The CSC theory elucidates the origin of tumors, tumor
development, metastasis, relapse, and drug resistance (60, 61).
Therefore, the establishment of a reliable and efficient method
for the isolation, manipulation, and characterization of CSCs
is controversial, presumably due to the difficulty of identifying
a specific marker. Thirty years ago, Carney and colleagues
described a rare population of cells (<1.5%) in small and
NSCLC samples that formed colonies in soft agar (62). When
inoculated into athymic nude mice, these cells recapitulated the
original lung cancer, which suggested that they had progenitor
cell features (63). Over the last decade, several investigators
isolated tumorigenic cell lines from lung cancers using different
phenotypic cancer cell characteristics (48).

In the past, different methods have been used to identify CSCs,
such as side population analysis, selection in culture, and cell
sorting for a specific marker (64–67). Of all the markers explored,
the CD133marker has received themost attention (48). However,
in our samples, the CD133 marker was not useful because of a
lack of detection, as described previously (48). Consequently, we
analyzed our population for CD44, which is a transmembrane
receptor for hyaluronic acid that is a CSC marker of several stem
cell-like properties (68). In addition, we used the ALDEFLUOR
assay to isolate cancer stem-like cells, as previously described
by Sullivan et al. (52). Interestingly, our results confirmed
comparable ALDHhigh and CD44 positive expression.

However, Sullivan et al. identified CSCs in a panel of 11
NSCLC tumor samples, 45 NSCLC lines, and 7 SCLC lines (52)
that are used to study ALDH activity and sorted a subpopulation
of NSCLC stem-like cells dependent on Notch signaling. Our
study used the same method (52), but we focused on analyzing
the differences and similarities between adenocarcinoma and
squamous cell carcinoma cancer stem-like cells. Our hypothesis
was supported by the fact that these populations are the
most frequent histotypes in lung cancer patients and account
for 50% of adenocarcinoma patients and 30% of squamous
cell carcinoma.

We investigated the ALDHhigh/low populations in both
histotypes for the mRNA expression of SOX2 and NANOG,
which are stemness-related genes in normal and cancer cells
(60, 61).

The RT-PCR data from our patients revealed more SOX2 and
NANOG expression in ALDHhigh cells than in ALDHlow cells in
adenocarcinoma. However, the opposite result was obtained for
squamous cell carcinoma, in which lower SOX2 and NANOG
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FIGURE 4 | Immunohistochemical staining intensity of aldehyde dehydrogenase. Representative images of two patient samples in squamous cell carcinoma (A) and

adenocarcinoma (B). Images were taken at 10× (upper panels) and 20× (lower panels) magnification; black arrows indicate positive cells.

FIGURE 5 | Cell transformation assay. The MCF-7 cell line and ALDHhigh cells

were compared for growth ability in a semisolid agar substrate. Two different

time points were evaluated: 0 and 8 days. In the vertical axis, DNA content of

each sample was measured using a fluorescent signal released by Cyquant

GR Dye. Time points are represented in the horizontal axis.

expression was found in ALDHhigh cells than in ALDHlow cells.
Therefore, there was a concordant trend for SOX2 and NANOG
relative mRNA expression, even though only the relative
expression of NANOG reached statistical significance. There was
a statistically significant difference between the relative mRNA

FIGURE 6 | Cell proliferation assay. A colorimetric assay,

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) based,

was performed on ALDHhigh cells after seeding. Six different time points were

evaluated (0, 1, 2, 7, 14, and 21 days). Absorbance was measured at 490 nm.

expression of SOX2 and NANOG in adenocarcinoma compared
to squamous cell carcinoma. The expression of these genes was
discussed in previous attempts to find a connection between these
stemness genes and the clinicopathological features of the tumor
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FIGURE 7 | General characteristics over time of tumor spheres in adenocarcinoma and squamous cell carcinoma. (1A–C) ALDHhigh spheres from ADENO at 1, 2, and

3 weeks. (1D–F) ALDHhigh spheres from SQUAMO at 1, 2, and 3 weeks. (2A–F) The number of spheres and their areas were calculated for two adenocarcinoma

patients and two squamous cell carcinoma patients 1, 2, and 3 weeks after seeding. Points represent values for individual patients, and bars represent average

values. ADENO, adenocarcinoma; SQUAMO, squamous cell carcinoma.

FIGURE 8 | ALDHlow cells phase-contrast microscopy. ALDHlow cells in low-attachment serum-free culture showed difficult and slow growth that completely stopped

at 3 days.

(68–70). Therefore, our study adds a new aspect by considering
the existence of different cancer-stem-like cell populations
for these two histotypes. However, our data suggest an
enrichment of cells with stemness characteristics.

To further confirm CSC-like phenotypes, we analyzed the
ability of cells to form tumor spheres in serum-free low-
attachment cultures. Tumor sphere formation assays revealed a

different pattern in sphere formation, dimension, and growth
between adenocarcinoma and squamous cell carcinoma. The
former had a tendency to produce a greater number of spheres
and larger spheres than the latter. Moreover, we observed growth
of adenocarcinoma spheres until the third week, but spheres
from the squamous cell carcinoma did not increase in number or
size. This result may be related to the distinct aggressiveness and
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clinicopathological characteristics of adenocarcinoma compared
to squamous cell carcinoma.

Furthermore, genomics data highlighted the presence of
genetic mutations in ADENO; however, the relationship of
these mutations with the cancer stem-like cells in our study
is unclear.

LIMITATIONS OF THE STUDY

The main limitation of the study is the low number of patients
included in the analyses (four ADENO and four SQUAMO).
The selection of these few patients could have affected our
results as well as the statistical power. Nevertheless, we have
included consecutive patients—which prevents from selection
bias—and we have observed statistically significant differences in
gene expression between ADENO and SQUAMO, which partially
counterbalances the issue regarding the low statistical power.
Moreover, in this study, test samples were obtained by primary
cell cultures derived from patients, which is more difficult to
obtain than tumor cell lines. On the basis of these limitations, the
results obtained in our pilot study should be confirmed by more
extensive studies.

CONCLUSION

Even with limited evidence due to the low number of patient
samples, our study showed differences between adenocarcinoma
and squamous cell carcinoma related to the analyzed stemness
genes. ALDHhigh cancer stem-like cells in adenocarcinoma
showed stemness characteristics in gene expression and
spheroid culture studies, but squamous cell carcinoma stemness
characteristics were not completely clear because of the
discrepancy between genes and cellular behavior.

To summarize, our results highlight the importance of a
better characterization of cancer stem-like cells in ADENO
and SQUAMO histotypes. This may suggest new differential
approaches for prognostic and therapeutic purposes in patients
with NSCLC.
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Objectives: MET protein expression has been reported to be in relevance with the

survival of NSCLC patients in various studies, yet the results were inconsistent. The

purpose of our study set out to determine the prognostic role of both c-MET and p-MET

expression among NSCLC that underwent surgical resection.

Methods: Data were obtained from retrospective cohort studies by searching on

PubMed, Cochrane Library, EMBASE and Web of Science, and a meta-analysis was

performed to assess the prognostic role of MET expression among NSCLC.

Results: Totally 18 literatures including 5,572 surgically resected NSCLC cases staged

I-IV were included for data synthesis. The positive rate of c-MET and p-MET was

1,753/4,315 and 135/1,257. The pooled hazard ratios (HRs) regarding c-MET and

p-MET expression for overall survival (OS) was 1.623 (95% CI: 1.176–2.240, p = 0.003)

and 1.710 (95% CI: 0.823–3.533, p = 0.15), respectively. Subgroup analysis results on

Asian (HR = 2.115, p < 0.001), adenocarcinoma (HR = 2.220, p < 0.001) and rabbit

polyclonal antibodies (HR = 2.107, p < 0.001) etc. were also indicative.

Conclusion: C-MET over-expression among NSCLC patients that underwent surgical

resection is a prognostic factor that indicated adverse survival on OS. Whereas, p-met

didn’t appear to have an impact on the prognosis of NSCLC. The studies are need and

the topic could be re-valued by then.

Keywords: MET protein, prognostic role, resected, non-small cell cancer, meta-analysis

INTRODUCTION

Lung cancer remains the leading cause of cancer incidence and mortality worldwide, accounted for
∼1.8 million deaths in 2018 (1). Among which statistically 85–90% of lung cancer cases were non-
small cell lung cancer, or NSCLC based on pathologic classification (2). With the development of
target-therapy and immunotherapy, alternatives to deal with NSCLC posterior to en bloc resection
is comprehensive (3). Yet besides the efforts to improve therapeutic methods and diagnostic
accuracy, the outcomes of NSCLC patients remains unsatisfactory (4, 5).
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MET protein, also known as hepatocyte growth factor
receptor (HGFR), has been characterized as a high affinity
transmembrane receptor tyrosine kinase (RTK) which is encoded
by its homologous oncogeneMET (6, 7). Being firstly recognized
in osteosarcoma derived cell-lines, MET was subsequently
identified to have over-expressed in various malignances
including NSCLC (8, 9). When c-MET binds to its homologous
ligand HGF, the intracellular tyrosine residues of the RTK
became activated via auto-phosphorylation (p-MET) (10). P-
MET accordingly triggers its downstream pathways such as PI3k-
Akt, Ras-MAPK, and STAT3, which physiologically promotes
tissue growth, vascularization, and healing (11, 12). Whereas, the
aberrant expression of MET would result in tumorigenesis and
development of various malignancies, including NSCLC (13, 14).
The mechanisms that led abnormal HGF/c-MET signaling
were either c-MET amplification, mutation or MET/HGF
overexpression, and among which MET over-expression most
frequently occurred (15, 16). Prior studies have noted alterations
regarding HGF/c-MET signaling played a key role among
NSCLC patient that acquired resistance to first generation
EGFR-TKIs due to its underlying interactions with EGFR
pathways (17, 18). In addition, targeting MET as well as MET
upregulation via either TKIs or MET-antibodies has already
become a novel strategy to challenge NSCLC patients with
metastatic disease (19–22). Hence, understanding the impact
of c-MET/p-MET expression on NSCLC survival should be
highlighted. As primary c-MET/p-MET expression status of
NSCLC patients was majorly from resected-specimen tumors
via immunohistochemistry (IHC), patients that received surgical
therapy was our main concern.

To date literatures has emerged with inconsistent conclusions
on the prognostic role of MET among NSCLC. C-MET
expression was thought to be a favorable biomarker in various
studies (23–25), yet others suggested the opposite (26–28). In
addition to some studies, neither c-MET nor p-MET expression
was related with NSCLC survival (29, 30). Thus, due to the
contradictory results from previous studies, we herein set out
to conduct a systematic review as well as meta-analysis by
summarizing current existing data to examine the survival
implications ofMET over-expression among lung cancer patients
that underwent surgical resection.

MATERIALS AND METHODS

Literature Search
Two reviewers (GM and YD), respectively, conducted electronic
search on PubMed, Cochrane Library, EMBASE, and Web
of Science for relevant studies up till July 15th, 2019, with
the beginning date unlimited. The search terms were as
followed: “MET” or “Mesenchymal Epithelial Transition factor”
or “Hepatocyte growth factor receptor” and “Non-small cell lung
cancer” or “NSCLC” or “Pulmonary carcinoma” or “lung cancer”
and “Prognosis” or “Outcomes” or “Survival.”

Inclusion Criteria
Eligible studies was required to be in compliance with the
following criteria: (1) NSCLC studies, all included participants

should be NSCLC patients that underwent surgical resection; (2)
MET expression was examined of each resected specimen, with
the correlation between MET expression and NSCLC survival
been reported; (3) Hazard Ratio (HR) was clearly displayed and
feasible for HR synthesis, according to methods described by
Parmar et al. (31), Williamson et al. (32), and Tierney et al. (33);
(4) Study designs include: randomized controlled trial (RCT) and
cohort study.

Exclusion Criteria
Articles were omitted from further consideration if: (1).
Systematic review or review; (2) Preclinical studies, such as
laboratorial or in vitro studies; (3) Case reports; (4). Studies of
which survival data (including survival curves yet without HRs
reported) unavailable for further calculations.

Data Extraction
Basic information of each eligible study was extracted as followed:
name of first author, publication year, country, demographic
characteristics (number of patients, gender, and median age),
smoking status, pathology, and tumor stage, antibody applied
for MET immunohistochemical (IHC) staining, cut-off value of
MET over-expression and reportedHRs (representing prognosis)
for meta-analysis.

The primary data eligible for calculation and results-pooling
was hazard ratios (HRs) reported from either multivariate or
univariate Cox hazard regression analysis for overall survival
(OS). Literatures of eligibility was filtered by two authors
(GM and YD) individually, with any discordance being revised
and re-assessed.

Quality Evaluation
The Newcastle–Ottawa Scale (NOS) criterion was adopted for
quality assessment of included studies (34). The criteria covered
three aspects of each study: (1) selection of subject: 0–4; (2)
subject comparability: 0–2; and (3) survival: 0–3. The scope
regarding the final score ranged between 0 and 9, literature with
six or more were reckoned feasible for data incorporation and
any scored no<7 were considered of good quality. Two reviewers
independently carried out quality evaluation of each study.

Statistical Analysis
Data calculation and meta-analyses were performed via STATA
(version 12.0, STATA Corporation, Texas, USA). LogHRs
reported in the literature were prior used for HR pooling,
otherwise HRs with 95% confidential intervals (CIs) were
considered for data syntheses. Multivariate analyses data
were prior adopted if multivariate and univariate survival
analyses were both conducted. Adjusted HRs was used
when unadjusted/adjusted HRs both existed. Chi-square based
Q-test and I² statistic test were performed to value heterogeneity
regarding the pooled HRs (35). The Mantel-Haenszel method or
fixed-effect models (36) were adopted when study heterogeneity
wasn’t statistically considered significant (I² < 50% or P > 0.10)
whereas random-effect models were applied for calculation in
order to minimize potential influence of heterogeneity on pooled
results. Apart from random-effect model, sensitivity analysis
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by leave one out procedures was also processed uncovering
the potential source regarding heterogeneity of pooled results
(37). Publication bias were conducted in accordance with Begg’s
methods (38). Publication bias was reckoned significant when
P-value was <0.05.

RESULTS

Study Selection
Our initial literature search retrieved 1,151 studies (after
duplicates removal) in total. Abstracts of each identified
publication was discreetly read and screened. Studies were
removed due to the reasons as followed: Reviews or systematic

review (n = 124), case reports (n = 158), irrelevant topic or
fundamental observations (n= 807). Totally 62 potential studies

of eligibly were obtained and scrutinized. Then 45 of which were

omitted owing to the following reasons: 34 studies focused on
irrelevant topics such as MET gene expression and alterations,
11 remaining studies whose data were either survival curve or
illegible of HR estimation. Two studies conducted by Sun et.al
included overlapped patients (28, 39). To limit potential risk of
bias, we omitted the publication with lesser participants. Hence,
altogether 17 studies eventually met our criteria of inclusion and
were capable of data extraction as well as meta-analyses.

Summarized process of literature selection was displayed in
the flow chart of Figure 1.

FIGURE 1 | Flow diagram of study selection.
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Baseline Characteristics
In all, our topic was demonstrated in 17 studies. Among which
Asian studies dominated in quantity, including six from Japan
(26, 29, 30, 40–42), five from China (23, 39, 43–45), and
two from Korea (27, 46). Caucasian patients that were either
from Sweden (25), Netherlands (47), Poland (48), or Australia
(24) comprised the rest population of included studies. Totally
4,315 NSCLC patients staged between I-IV that underwent
surgical resection were assessed of c-MET expression, while
1,257 participants had p-MET evaluation. Immunohistochemical
staining (IHC) was performed on each corresponding NSCLC
tissue to value c-MET/p-MET expression, and the rabbit derived
antibodies accounted for the majority of antibodies to against
MET protein. All studies mentioned HRs that were feasible
for data-pooling. MET over-expression were determined in
accordance with certain measurements that had varied threshold

values such as H-score or H intensity. All studies scored no <6
with reference to the NOS quality criterion, hence applicable for
our meta-analysis.

Baseline information was listed on Table 1.

Results From Meta-Analyses
The primary end-point of surveillance among included studies
was OS. The correlation between MET and outcomes was
determined in accordance with combined HRs and related
intervals. As a result, the prognostic role of total MET protein
or c-MET expression was analyzed in 15 studies of which
the combined HR was 1.623 (95% CI: 1.176–2.240, p =

0.003), indicating an adverse impact of c-MET expression on
NSCLC prognosis. Heterogeneity was significant (I2 = 85.9)
thus random-effect model was adopted (Figure 2A). With regard
to activated c-MET or p-MET, however, apart from potential

TABLE 1 | Baseline characteristics of the included publications.

References Country Median

age

N(F/M) Smoking

(S/NS)

Histology Stage MET type Antibody Cut-off

value

MET

high

MET

low

HR

estimation

Tsakonas et al.

(25)

Sweden 66.5 653 (316/337) 589/64 NSCLC IA–IIIB c-MET PharmDx H-score ≥ 20 336 117 Multi

Zhang et al. (45) China 60.4 86 (44/42) 29/57 ADCC I–IV c-MET RM (SP44) Staining score

≥ 2+ (50%)

54 32 Multi

Kim et al. (46) Korea NR 311 (140/171) 109/202 ADCC IB–IIIA c-MET RM (SP44) Staining score

≥ 2+ (50%)

141 170 Multi

Tran et al. (24) Australia 67 (–)/

69 (+)

271 (98/173) 211/9 NSCLC I–III c-MET RM (SP44) Staining score

≥ 2+ (50%)

248 23 Multi

Tong et al. (44) China (HK) 66 687 (223/464) 395/223 NSCLC I–IV c-MET RM (SP44) Staining score

≥ 2+ (50%)

230 457 Uni

Wang et al. (43) China 57 117 (33/84) 43/74 NSCLC I–IV c-MET R* H-score ≥ 1.9 36 81 Multi

Huang et al. (23) China 62 102 (29/73) 47/55 NSCLC I–IV c-MET RM H-score ≥ 60 52 50 Multi

Sun et al. (39) China 56.2 183 (42/141) 117/66 ADCC/SCC I–IV c-MET R* Staining score

> 3

123 60 Multi

Tsuta et al. (30) Japan 61.7 906 (332/574) 416/490 NSCLC I–IV c-MET RM stained cells

≥ 10%/MA

196 687 Uni

p-MET RM stained cells

≥ 10%/MA

51 829 Uni

Tachibana et al.

(29)

Japan 64 106 (55/51) 55/51 ADCC I–III c-MET RP H intensity

≥ 2+

30 76 Uni

Park et al. (27) Korea 62 380 (72/308) 279/101 ADCC/SCC I–IV c-MET RP H-score ≥ 4 52 328 Multi

Dziadziuszko et al.

(48)

Poland 63 174 (39/135) 165/9 NSCLC I–IV c-MET RM (SP44) H-score > 60 83 91 Uni

Onitsuka et al. (26) Japan 68.5 183 (81/102) NR ADCC I–III p-MET M* IHC Allred

score ≥ 3

12 171 Multi

Ruiz et al. (47) Netherlands NR 168 NR NSCLC I–III p-MET NR H-score > 5 72 96 Multi

Masuya et al. (42) Japan NR 88 NR NSCLC I–III c-MET RP H intensity >

grade 1

36 52 Uni

Tokunou et al. (41) Japan 59 131 (58/73) NR ADCC I–IV c-MET RP Stained

bundles ≥

1/MA

69 62 Multi

Takanami et al.

(40)

Japan 61 120 (51/69) NR ADCC I–IV c-MET RP (C-28) Stained cells

≥ 25%/MA

67 53 Multi

N, Number of patients; F, Female; M, Male; S, Smoker; NS, Non-smoker; NSCLC, Non-small cell lung cancer; ADCC, Adenocarcinoma; SCC, Squamous cell carcinoma; RM, Rabbit

monoclonal; RP, Rabbit polyclonal; R*, Rabbit; M*, Monoclonal; NR, Not reported; MM, Mouse monoclonal; MA, Microscopic area; Multi, Multivariate analysis; Uni, Univariate analysis.
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FIGURE 2 | The pooled hazard ratio (HR) for OS in surgically resected NSCLC patients that had positive c-MET expression (A) and p-MET expression (B).

heterogeneity (I2 = 80.2, p = 0.003) when combining the three
related studies, the pooled result for OS (HR = 1.710, 95% CI:
0.823–3.533, p= 0.15) was neither indicative (Figure 2B).

Subgroup Analyses
Subgroups were performed in terms of demographic
distributions and characteristics from all eligible studies.
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Subgroups were stratified by (1) Regions (Asian/Non-
Asian/Japanese/Chinese); (2) Histology (Adenocarcinoma);
(3) Antibodies for IHC (Rabbit monoclonal/Rabbit polyclonal);
(4) MET evaluation (H-score); and (5) Derived data (via
multivariate analysis or univariate analysis).

Asian/Non-Asian/Japanese/Chinese
Totally 12 studies were conducted in Asia, and the pooled HR for
OS was 2.115 (95% CI 1.440–3.108, P < 0.001, I² = 83.5%). The
pooled HRs via random-effect models from five Japanese studies
and five Chinese studies was 1.985 (95% CI 0.970–4.058, P =

0.06) and 2.627 (95% CI 1.123–6.146, p = 0.026, I² = 90.1%),
respectively. With respect to non-Asian patients, the combined
HR for OS from four studies was 0.901 (95% CI 0.586–1.387,
p = 0.637), with random-effect model due to its significant
heterogeneity (p= 0.002, I²= 80.0%).

Adenocarcinoma
The prospect of our present study was to examine the prognostic
role of MET expression on multiple NSCLC types. Yet only
adenocarcinoma was applicable. Altogether five studies focused
on pulmonary adenocarcinoma, and the synthesized HR of OS
was 2.220 (95% CI 1.607–3.066, P < 0.001). Fixed-effect model
was applied to perform the analysis since heterogeneity was not
significant (P = 0.781, I²= 0%).

IHC Antibodies/H-Score
IHC was performed in all studies, and antibodies for MET
staining varied between studies. As to seven studies that applied
rabbit monoclonal antibodies, the combined HR for OS was
1.107 (95% CI 0.777–1.579, P = 0.573, I² = 78.9%). Among
which five studies adopted SP44 (Ventana Medical Systems,
AZ, USA) antibody, and the pooled HR for survival was
1.031 (95% CI 0.668–1.590, P = 0.001, I²=78.1%). In addition,
four studies via SP44 examined MET expression by same cut-
off value with reference to methods by Spigel et al. (49),

and the pooled HR was 1.031 (95% CI 0.668–1.590, p =

0.892). For the survival analysis of five studies that applied
rabbit polyclonal antibodies, the pooled HR was 2.107 (95%
CI 1.573–2.823, P < 0.001). Heterogeneity was not statistically
significant (p = 0.521, I2 = 0%) thus fixed-effect model
was preferred.

Primary Data
Ten studies addressed the prognostic role of MET over-
expression among NSCLC by multivariate analysis. The pooled
HR on OS was 2.004 (95% CI 1.229–3.268, P = 0.005). The
remaining five studies were performed by univariate analysis, of
which the pooled HR was 1.051 (95% CI 0.745–1.484, p= 0.776).
Heterogeneity was significant among either results (I2 = 88.4 and
69.7, respectively). Therefore, random-effect model was adopted
for both analyses.

All summarized data was presented on Table 2 and shown
in Figure 3.

Sensitivity Analysis and Publication Bias
As shown in Figure 4A, the combined results representing
the pooled HRs didn’t prominently change when each study
was sequentially removed, indicating the above synthesized
results credible and robust. In addition, publication bias of our
systematic review was neither found to exist, in accordance with
Begg’s plots in Figure 4B.

DISCUSSION

Our current study aimed to examine the prognostic role of
c-MET/p-MET positivity amongNSCLC patients that underwent
surgical resection. With incorporated data, a meta-analysis
was performed. As a result, although p-MET was not found
to be associated with NSCLC survival, c-MET appears to
be a prognostic factor that led to shorter OS. In view
of Asian population, subgroup results indicated that c-MET

TABLE 2 | Meta-analyses of MET protein over-expression and survival of surgically resected NSCLC.

N of studies Model HR (95% CI) Log-rank p Heterogeneity (p, I2) Conclusion

C-MET OS 15 Random 1.623 (1.176–2.240) 0.003 <0.001, 85.9% Positive

P-MET OS 3 Random 1.710 (0.823–3.533) 0.15 0.006, 80.2% Negative

Asian OS 12 Random 2.115 (1.440–3.108) <0.001 <0.001, 83.5% Positive

Non-Asian OS 4 Random 0.901 (0.586–1.387) 0.637 0.002, 80.0% Negative

Japanese OS 5 Random 1.985 (0.970–4.058) 0.06 <0.001, 82.1% Negative

Chinese OS 5 Random 2.627 (1.123–6.146) 0.026 <0.001, 90.1% Positive

ADCC OS 5 Fixed 2.220 (1.607–3.066) <0.001 0.781, 0% Positive

RM OS 7 Random 1.107 (0.777–1.579) 0.573 <0.001, 78.9% Negative

RM (SP44) OS 5 Random 1.031 (0.668–1.590) 0.892 0.001, 78.1% Negative

H-score 4 Random 1.014 (0.822–1.251) 0.893 0.001, 0.893 Negative

RP OS 5 Fixed 2.107 (1.573–2.823) <0.001 0.521, 0% Positive

MVA OS 10 Random 2.004 (1.229–3.268) 0.005 <0.001, 88.4% Positive

UVA OS 5 Random 1.051 (0.745–1.484) 0.776 0.010, 69.7% Negative

N, Number; HR, Hazard Ratio; CI, Confidence Interval; OS, Overall Survival; ADCC, Adenocarcinoma; RM, Rabbit Monoclonal; RP, Rabbit Polyclonal; MM, Mouse Monoclonal.
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FIGURE 3 | Forest plots representing the pooled results of subgroup analyses.

FIGURE 4 | Sensitivity analyses results on omission of each individual study (A) and the Begg’s publications plots (B) of eligible studies that assessed c-MET positivity

and NSCLC survival on OS.

was an inferior prognostic marker, and such is the same
among Chinese people. Conversely, c-MET wasn’t related
with outcomes regarding Japanese participants. From a fixed-
model, c-MET overexpression was significantly involved with
inferior OS of patients with resected pulmonary adenocarcinoma.

C-MET was in correlation with poor survival when rabbit
polyclonal agents was applied for IHC, whereas neither rabbit
monoclonal antibodies nor H-score were indicative when
discussing its impact on survival of NSCLC whose c-MET
was positive. Pooled result from univariate data suggested
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c-MET was not a marker of prognosis. On the contrary,
synthesized data via multivariate analyses reflected a decisive
conclusion which c-MET was an unfavorable prognostic marker
of NSCLC.

From several aspects the adverse role of c-MET expression
could be explained. Previous studies have noted that over-
expression of c-MET was positively associated with vascular and
lymphatic invasion, which led to higher risk of cancer relapse as
well as more advanced stage among NSCLC patients (43, 50, 51).
From therapy’s experience, c-MET positivity was closely related
with radio-resistance and chemo-resistance, hence correlated
with unfavorable outcomes (52, 53). In terms of pathogenesis,
HGF could facilitate tumor metastasis through MET/HGF
pathways by inducing epithelial-mesenchymal transition (EMT)
process of NSCLC (54, 55). And metastasis is considered as the
major cause of lung cancer related death (56). In addition, c-MET
over-expression was related with the prognosis of patients that
harbored varied EGFR status as MET and EGFR shared signal
molecules in downstream pathways (23, 46). Thus, MET over-
expression could affect efficacy of patients that received EGFR-
TKIs as a result (57). Interestingly, p-MET expression which
represents activation level of MET didn’t have an impact on
survival of NSCLC in our study. As clinical research regarding
p-MET is lacking (58), the prognostic role of p-MET remains to
be further explored.

It remains controversial to determine how MET over-
expressed. Alterations on transcription level of MET gene,
which includes MET amplification and MET exon 14 skipping
mutation could be the potential mechanisms (21). Additionally,
high gene copy number (GCN) of MET was also found
be an adverse survival indicator in several studies (59–
61). Nevertheless, MET positivity was notably higher, with
a prevalence ranged up-till 70% among NSCLC, compared
with MET mutations (around 4%) (58). With reference to
previous studies, MET overexpression is positively correlated
with NSCLCs that harbored MET exon 14 skipping mutation
and amplification both (20, 62). Indicating MET positivity
could be adopted to screen NSCLC patients for further
genetic profiling, as MET alterations has been recognized as
a biomarker to receive Crizotinib treatment, and a potential
trigger to cause first generation EGFR-TKIs resistance (19, 20,
63). In addition, MET over-expression was reported to be a
favorable marker among NSCLC patients that received anti-
MET therapy as an alternative. C-MET-positive patients had
improved survival when given either anti-MET monoclonal
antibodies (Onartuzumab) or MET inhibitors in combination
with EGFR-TKIs, with reference to ongoing clinical trials (49, 64).
Hence, understanding the nature of MET expression as well
as establishing a standardized criteria regarding its evaluation,
should be highlighted.

Previously two meta-analysis was published that assessed the
impact of MET expression on survival among NSCLC (60, 65).
Guo et al. integrated 13 studies and some of the results such as
Asian/Non-Asian sub-group analyses were in concordance with
ours. Yet a major concern of this systematic review was not
making a distinction between c-MET and p-MET, as relevant
literatures were combined as a whole. The other study by

Pyo et al. also indicated that c-MET was an adverse prognostic
factor, which is in agreement with ours, but merely 11 literatures
were capable of data pooling. In addition, both systematic reviews
adopted survival data via estimation from publications whose HR
and CI were not directly provided. To avoid potential risk of bias,
those literatures were excluded from our study. As numerous
retrospective studies emerged in recent years, our systematic
review with 17 publications incorporating 5,572 NSCLC patients
has the largest data as well as information summarized in scale.
To date it is the first systematic review that highlighted the impact
of p-MET on NSCLC survival, as well as the first systematic
review that analyzed the correlation between c-MET expression
and NSCLC prognosis in many aspects such as IHC cut-off value
and antibody selection.

Due to practical constraints, our meta-analysis has
several limitations. Firstly, our several results had significant
heterogeneity. Efforts such as sensitive analysis and subgroup
analyses were performed on the basis of several aspects but a
distinct source was still lacking. Hence we speculate that the
existing heterogeneity could be attributed to the inconsistency
of baseline characteristics from included literatures such as
tumor stage, smoking status, post-operative therapies and IHC
methodology involving varied cut-off values and antibody
adoption. Tumor stage was highlighted in the protocol of the
present study for its relationship with MET positivity, yet we
failed to analyze the prognostic role of MET in each individual
stage due to lack of original data. Moreover, explanations to the
positive results derived from Asian population remains obscure.
With respect to IHC, although several recent publications
performed their IHC analysis with reference to an anti-MET
clinical trial (49), a standardized criteria for IHC to determine
MET positivity is lacking. Besides, we are unable to interpret
the loss of survival when rabbit polyclonal antibodies were
applied for MET IHC. Secondly, the amount of eligible literature
in our study is relatively small, especially in the analysis of
p-MET. Hence the current study could be re-conducted when
more evidence have emerged. In addition to above, all data
search in our study were carried out in English databases,
hence some eligible publications written in other languages
could have been neglected. Despite of limitations above, with
discreetly pooled statistics and detailed protocols, bias was
restrained to the minimum, and the results of the current study
is guaranteed reliable.

CONCLUSIONS

In conclusion, c-MET over-expression among resected NSCLC
patients is a prognostic factor that indicated adverse survival on
OS. Yet p-met didn’t appear to have an impact on the prognosis
of patients with NSCLC. The existing IHC criteria to define
MET positivity is inconsistent, which might be a factor to cause
heterogeneity. More studies should be conducted to examine
the topic, especially studies that focuses on p-MET expression
among NSCLC patients. The prognostic role of c-MET/p-MET
both among NSCLC could be re-evaluated when added evidence
have emerged by then.
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The Potential of Radiomics
Nomogram in Non-invasively
Prediction of Epidermal Growth
Factor Receptor Mutation Status and
Subtypes in Lung Adenocarcinoma

Wei Zhao 1,2, Yuzhi Wu 1, Ya’nan Xu 3, Yingli Sun 2, Pan Gao 2, Mingyu Tan 2, Weiling Ma 2,

Cheng Li 2, Liang Jin 2, Yanqing Hua 2, Jun Liu 1* and Ming Li 2,4,5*

1Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China, 2Department of Radiology,

Huadong Hospital Affiliated to Fudan University, Shanghai, China, 3 School of Biomedical Engineering, Capital Medical

University, Beijing, China, 4Diagnosis and Treatment Center of Small Lung Nodules of Huadong Hospital, Shanghai, China,
5 Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China

Purpose: Up to 50% of Asian patients with NSCLC have EGFR gene mutations,

indicating that selecting eligible patients for EGFR-TKIs treatments is clinically important.

The aim of the study is to develop and validate radiomics-based nomograms, integrating

radiomics, CT features and clinical characteristics, to non-invasively predict EGFR

mutation status and subtypes.

Materials and Methods: We included 637 patients with lung adenocarcinomas,

who performed the EGFR mutations analysis in the current study. The whole dataset

was randomly split into a training dataset (n = 322) and validation dataset (n = 315).

A sub-dataset of EGFR-mutant lesions (EGFR mutation in exon 19 and in exon 21)

was used to explore the capability of radiomic features for predicting EGFR mutation

subtypes. Four hundred seventy-five radiomic features were extracted and a radiomics

sore (R-score) was constructed by using the least absolute shrinkage and selection

operator (LASSO) regression in the training dataset. A radiomics-based nomogram,

incorporating clinical characteristics, CT features and R-score was developed in the

training dataset and evaluated in the validation dataset.

Results: The constructed R-scores achieved promising performance on predicting

EGFR mutation status and subtypes, with AUCs of 0.694 and 0.708 in two validation

datasets, respectively. Moreover, the constructed radiomics-based nomograms excelled

the R-scores, clinical, CT features alone in terms of predicting EGFRmutation status and

subtypes, with AUCs of 0.734 and 0.757 in two validation datasets, respectively.

Conclusions: Radiomics-based nomogram, incorporating clinical characteristics, CT

features and radiomic features, can non-invasively and efficiently predict the EGFR

mutation status and thus potentially fulfill the ultimate purpose of precision medicine.

The methodology is a possible promising strategy to predict EGFR mutation subtypes,

providing the support of clinical treatment scenario.
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KEY POINTS

1. We developed and validated two Radiomics-based
nomograms, incorporating clinical characteristics, CT
features and radiomic features, to non-invasively predict
the EGFR mutation status and subtypes with the aim to
potentially fulfill the ultimate purpose of precision medicine.

2. The presented results indicate that radiomics-based
nomogram may potentially facilitate scalable precision
medicine on identifying eligible patients of lung
adenocarcinoma for EGFR-targeted therapy.

INTRODUCTION

Lung cancer is the leading cause cancer-related death both
in male and female (1). Non-small cell lung cancer (NSCLC)
accounts for more than 80% of lung cancers, of which lung
adenocarcinoma is the most common histological subtype (2).
With the advances of genomics, molecular-targeted therapy
like using tyrosine kinase inhibitors (TKIs), which targets
the epidermal growth factor receptor (EGFR) mutations, is
recommended as first-line system therapy before first-line
therapy by National Comprehensive Cancer Network (NCCN)
for patients with advanced EGFR-mutant NSCLC (2) and proved
to substantially improve the progression-free survival (PFS)
compared with conventional chemotherapy (3, 4). Up to 50%
of Asian patients with NSCLC have EGFR gene mutations
(5), indicating that selecting eligible patients for EGFR-TKIs
treatments is clinically important. In patients with NSCLC, the
most commonly found EGFR mutations are deletions in exon
19 (45%) and in exon 21 (L858R in 40%) in patients with EGFR
mutations (2). Both mutations are associated with sensitivity to
the small molecule TKIs as well as erlotinib, gefitinib, afatinib,
and osimertinib (2), however, with different survival outcomes in
response to both EGFR-TKIs and chemotherapy (6). Therefore,
identifying EGFR mutation subtypes, especially those responsive
to TKI treatment, seems to be more critically and scientifically
important than just predicting EGFRmutation status.

In this context, though more and more research has emerged
on the non-invasive prediction of EGFRmutation status in recent
years (7–9), no predictors are recommended for selecting patients
in clinical decision-making. Moreover, substantial discrepancies
are presented to date with regarding to some features, especially
semantic features derived from medical images (10). Buoyed
by the availability of big data and state-of-art data analysis
strategy, such as radiomics and deep learning, decoding tumor
phenotype to precisely predict genotype has becoming the point
of attention (11). Several studies have investigated the potential
ability of radiomics to non-invasively predicting EGFRmutation
status and show promising results (12–15). Few results are
finally applied in clinical practice yet due to the complicated
procedure (e.g., time consuming, poor reproducibility, remaining
the operator-dependency that is not biases-free, and so on) of

Abbreviations: EGFR, epidermal growth factor receptor; NSCLC, non-small

cell lung carcinoma; PFS, progression-free survival; ALK, antigen anaplastic

lymphoma kinase; ROS1, c-ros oncogene 1; TKIs, tyrosine kinase inhibitors.

radiomic researches (16). In view of this, models that giving
an individual numerical probability of a clinical event (e.g.,
nomogram) rather than a predicting accuracy, may be more
suitable and convenient for clinical application.

In the current study, we aim to build radiomics-based
nomograms, integrating radiomics, CT imaging features and
clinical characteristics, to non-invasively predict EGFRmutation
status and subtypes (exon 19 and 21mutation).

MATERIALS AND METHODS

Patient Selection and Dataset Preparation
This retrospective study was approved by the institutional
review board (No. 20170103), which waived the requirement for
patients’ informed consent referring to the CIOMS guideline. The
flowchart of our study was showed in Figure 1.

A search of Picture Achieving and Communication System
(PACS) and pathological system from January 2013 to June
2018 was performed by one author with the following inclusion
criteria: (1) Available thin-slice chest CT (<1.5mm) images
before biopsies or surgical treatment; (2) Available detailed
histological reports of adenocarcinoma; (3) Available detailed
EGFR mutations testing reports; (4) No any prior treatment
before EGFRmutations analysis.

Finally, 637 patients were included. Of the 637 lesions,
342 lesions tested positively for an EGFR mutation (EGFR
Mut), where 295 lesions were classified as wild-type lung
adenocarcinomas (EGFR WT). Note that only one malignant
nodule was studied for each patient due to the availability of
EGFR testing report. Among the 342 patients with EGFR Mut,
130 patients were detected an EGFR Mut in exon 19, whereas
190 patients were detected an EGFR Mut in exon 21. The
clinical and histopathologic variables, including age, sex, smoking
status, tumor size, tumor location, histological subtypes etc. were
presented in Table 1.

Two tasks were investigated in the current study: task
(a), differentiating EGFR Mut from EGFR WT; task (b),
differentiating EGFR Mut in exon 19 from in exon 21. Each
dataset in two tasks (n = 637 and n = 320) was split into 10
groups (1–10), each subset was randomly selected by choosing
10% of each of the 2 categories. In task (a), groups 1–5
were defined as training dataset, the rest groups were defined
as validation dataset. In task (b), considering the insufficient
training data, groups 1–6 were defined as training dataset, the
rest groups were defined as validation dataset. Note that we
only included EGFR mutations in exon 19 and 21 in task b
to avoid the sparse training data and the disbalance of data
distribution. Mover, constructing a model to predict these two
exons in patients with EGFR mutation is clinically reasonable
(see Introduction).

CT Acquisition and Imaging Interpretation
All included patients were performed with the following six
scanners: GE Discovery CT750 HD, 64-slice LightSpeed VCT,
Revolution CT (GE Medical Systems); Somatom Definition
flash, Somatom Sensation-16, Somatom Force (Siemens Medical
Solutions). The acquisition parameters were as follows: 120
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FIGURE 1 | The flowchart of the study.

kVp; 100– 200 mAs; pitch, 0.75–1.5; and collimation, 1–1.5mm,
respectively. All imaging data were reconstructed by using a
medium sharp reconstruction algorithm with a thickness of
0.75–1.5mm. CT images were acquired in the supine position
at full inspiration for all patients. Only plain CT images were
used in the current study. Two radiologists (with 12 and 3
years of experience in chest CT interpretation) independently
interpreted the CT images, blinded to clinical and histologic
findings. Thirteen CT features (Table 1) were evaluated. The
definitions of these features were described in previous study (17,
18). A re-evaluation for achieving a consensus was performed to
solve the disagreement between two radiologists.

Segmentation and Radiomic Features
Extraction
All nodules were manually delineated slice by slice using a
medical image processing and navigation software 3D Slicer
(version 4.8.0, Brigham and Women’s Hospital) by one author
(with 5 years of experience in chest CT interpretation), then the
volume of interests (VOIs) were confirmed by another radiologist
(with 12 years of experience in chest CT interpretation). Fifty
randomly selected nodules were independently segmented by the
two authors for feature reproductive analysis. Images and VOIs
with NII format were exported for further analysis. Radiomic
features from three categories, including 50 gray-level histogram
features, 325 gray-level co-occurrence matrix (GLCM) features,
and 100 gray-level run lengths matrix (GLRLM) features,

were extracted using Matlab 2016b (MathWorks, Natick, USA).
The details of extracted radiomic features were presented in
Supplementary Data. Radiomic feature extraction methodology
was described in our previous study (18).

Features Selection and Radiomic Score
Construction
The least absolute shrinkage and selection operator (LASSO)
method, which is an accepted algorithm for feature selection in
high-dimensional variables (19), was applied to select the features
that were most distinguishable and build a logistic regression
model in training dataset. Then a radiomic score (R-score) was
calculated for each lesion using features selected by LASSO and
weighted by the respective coefficients.

Nomogram Construction and Validation
Univariate analysis was firstly to identify the potential predictors
among clinical characteristics, CT features and R-score. Factors
that associated with EGFR mutation status and subtypes were
then included tomultivariate analysis to identify the independent
predictors. Furthermore, the identified independent factors were
selected to construct the final nomogram in the training dataset.

Histologic Evaluation and EGFR Mutation
Analysis
The included lung adenocarcinomas were categorized according
to the 2011 IASLC/ATS/ERS classification system (20)
(drug target-associated). Molecular analysis of mutation
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TABLE 1 | Clinical and histological characteristics of included patients.

Characteristics Number Percentage

Gender

Male 269 42.2

Female 368 57.8

Mean age (range) (year)

Male 62.0 ± 11.8 (27–85) –

Female 58.3 ± 11.9 (22–85) –

Total 59.9 ± 12.0 (22–85) –

Mean size (range) (cm) 1.85 ± 1.29 (0.4–8.6) –

Smoke

Never smoker 588 92.3

Current or former smoker 49 7.7

Location

Right lobe 378 59.3

Left lobe 259 40.7

Pathology

Adenocarcinoma in situ 32 5.0

Minimally invasive adenocarcinoma 174 27.3

Invasive adenocarcinoma 431 67.7

TMN classification (eighth edition)

0 32 5.0

I 388 60.9

II 10 1.6

III 12 1.9

IV 195 30.6

EGFR Mut 342 53.4

EGFR Mut in exon 19 130 38.0

EGFR Mut in exon 21 190 55.6

status of EGFR exons 18–21 was examined using a PCR-
based amplification-refractory mutation system (ARMS) by
AmoyDx company.

Statistical Analysis
Statistical analysis was performed using R software (version
3.4.2; http://www.Rproject.org). The mean values and standard
deviations were expressed for continuous variables (age, lesions
size), and frequency or percentage for categorical variables.
The Wilcoxon rank sum test and the x2-test were used
to compare medians and proportions between two groups,
respectively. Predictive performance was evaluated by the area
under the curve (AUC) of the receiver operator characteristic
(ROC). DeLong test was used to evaluate the difference of the
ROCs between various models (21). Hosmer-Lemeshow test
was used to evaluate the goodness-of-fit of the constructed
nomogram. ICC analysis was performed using “irr” package,
features with an ICC> 075 were consider as robust features.
Lasso logistic regression was done using the “glmnet” package.
Multivariate logistic regression, nomograms and calibration plots
were done with the “rms” package. A P<0.05 indicated a
significant difference.

RESULTS

Associations Between Clinical, CT
Features and EGFR Mutation Status and
Subtypes
Associations between clinical, CT features and EGFR mutation
status and subtypes were presented in Tables 2, 3. The incidence
of harboring EGFR mutation was significantly higher in female
than male in two datasets (P = 0.002, P = 0.013, respectively).
Patients with EGFR Mut had a higher age in the current study.
Smoking was not a significant factor to differentiate EGFR
Mut lesions from EGFR WT lesions. In terms of radiographic
features, 9 features, including size, margin, shape, pleural
retraction, bronchiole change, lobulation, speculation, peripheral
emphysema, peripheral fibrosis were significantly associated with
EGFRmutation status. Patients with EGFRmutations in 21 exon
had a higher age than those with EGFR mutations in 19 exon
in two datasets (P = 0.013, P = 0.003, respectively). No other
clinical and CT features were identified as potential factors to
predict the EGFRmutation subtypes.

Construction of R-Score and the
Association Between R-Score (R-Score∗)
and EGFR Mutation Status and Subtypes
After performing ICC analysis, 425 of 475 radiomics were
identified as robust features. The LASSO logistic regression
model was performed to select the most distinguishable features
in training dataset, resulting in 11 features left (Figure 2).
Subsequently, the 11 potential predictors were consequently
conducted into a R-score by using the following formula: R-
score = −1.072477 + 0.007008 ∗ mean_10_0 + 0.038891 ∗

Homogeneity 0_90_0 + 1.86E-05 ∗ Contrast 45_45_0 + 8.54E-
05 ∗ Contrast 90_135_0 + 6.29E-05 ∗ Contrast 90_135_1 –
0.039584 ∗ skewness_1.5 – 0.254939 ∗ skewness_2 + 1.15E-
06 ∗ RLN_90_2.5 + 7.46E-05 ∗ Contrast 90_90_2.5 – 9.69E-
05 ∗ Contrast 0_0_2.5 – 6.342383311 ∗ Homogeneity 0_0_2.5.
The formula caption was presented in Supplementary Data

(Referring to the formula for calculating R-score∗).
The R-score was calculated for each lesion in two datasets of

task a. EGFR-Mut lung adenocarcinomas had a lower R-score
than EGFR-WT ones in training dataset (−0.40 ± 0.50 vs. 0.05
± 0.68, P = 0.000), which was confirmed in validation dataset
(−0.37 ± 0.51 vs. 0.01 ± 0.0.58, P = 0.000) (Table 2). The
proposed R-score showed a good performance in differentiating
EGFRmutation status with AUCs of 0.708, 0.694 in training and
validation datasets (Figures 3A,B). The Hosmer-Lemeshow test
for R-score yielded a non-significant statistic in the training and
validation datasets (P= 0.644, P= 0.657, respectively), indicating
that there was no departure from a perfect fit.

In terms of the task of predicting the EGFRmutation subtypes
(task b), 32 features were finally left after performing the
LASSO analysis (Supplementary Data). A R-score∗ was also
calculated for each lesion by using the formula presented in the
Supplementary Data. Lung adenocarcinomas with EGFR Mut
in exon 19 had a lower R-score∗ than ones with EGFR Mut in
exon 21 in training dataset (−0.39 ± 1.35 vs. 0.27 ± 1.12, P
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TABLE 2 | Basal characteristics of patients in training and validation set (task a).

Characteristics Training set (n = 322) P Validation set (n = 315) P

EGFR Mut (n = 172) EGFR WT (n = 150) EGFR Mut (n = 170) EGFR WT (n = 145)

Clinical Characteristics

Gender 0.002 0.013

Male 50 (29.1) 69 (46) 70 (41.2) 80 (55.2)

Female 122 (70.9) 81 (54) 100 (58.8) 65 (44.8)

Age (year) 61.92 ± 57.64 57.46 ± 12.59 0.001 61.85 ± 11.63 57.63 ± 11.73 0.000

Smoke 0.154 0.404

Never smoker 163 (94.8) 136 (90.7) 158 (92.9) 131 (90.3)

Current or former smoker 9 (5.2) 14 (9.3) 12 (7.1) 14 (9.7)

Radiographic Characteristics

Size (cm) 2.09 ± 1.24 1.53 ± 1.26 0.000 2.06 ± 1.31 1.65 ± 1.25 0.000

Type 0.091 0.472

Pure or part solid GGN 117 (68.0) 103 (68.7) 111 (65.3) 89 (61.4)

Solid 55 (32.0) 47 (31.3) 59 (34.7) 56 (38.6)

Margin 0.002 0.039

Easily differentiated 52 (30.2) 71 (47.3) 58 (34.1) 66 (45.5)

Uneasily differentiated 120 (69.8) 79 (52.7) 112 (65.9) 79 (54.5)

Shape 0.000 0.007

Round or oval 41 (23.8) 67 (44.7) 46 (27.1) 60 (41.4)

Irregular 131 (76.2) 83 (55.3) 124 (72.9) 85 (58.6)

Pleural retraction 0.000 0.015

Present 87 (50.6) 46 (30.7) 83 (48.8) 51 (35.2)

Absent 85 (49.3) 104 (69.3) 87 (51.2) 94 (64.8)

Bubble lucency 0.317 0.978

Present 51 (29.7) 37 (24.7) 49 (28.8) 42 (29.0)

Absent 121 (70.3) 113 (75.3) 121 (71.2) 103 (71.0)

Vascular change 0.050 0.575

Present 120 (69.8) 89 (59.3) 113 (66.5) 92 (63.4)

Absent 52 (30.2) 61 (40.7) 57 (33.5) 53 (36.6)

Bronchiole change 0.000 0.003

Present 90 (52.3) 44 (29.3) 86 (50.6) 49 (33.8)

Absent 82 (47.7) 106 (70.7) 84 (49.4) 96 (66.2)

Lobulation 0.031 0.034

Present 79 (45.9) 87 (58.0) 70 (41.2) 77 (53.1)

Absent 93 (54.7) 63 (42.0) 100 (58.8) 68 (46.9)

Spiculation 0.003 0.041

Present 87 (50.6) 51 (34.0) 80 (47.1) 85 (58.6)

Absent 85 (49.4) 99 (66.0) 90 (52.9) 60 (41.4)

Peripheral Emphysema 0.014 0.002

Present 3 (1.7) 11 (7.3) 6 (3.5) 19 (13.1)

Absent 169 (98.3) 139 (92.7) 164 (96.5) 126 (86.9)

Peripheral fibrosis 0.022 0.009

Present 55 (32.0) 31 (20.7) 63 (37.1) 34 (23.4)

Absent 117 (68.0) 119 (79.3) 107 (62.9) 111 (76.6)

Pleural effusion 0.177 0.506

Present 6 (3.5) 1 (0.7) 1 (0.6) 3 (2.1)

Absent 166 (96.5) 149 (99.3) 169 (99.4) 142 (97.9)

R-score −0.40 ± 0.50 0.05 ± 0.68 0.000 −0.37 ± 0.51 0.01 ± 0.0.58 0.000

Frontiers in Oncology | www.frontiersin.org 5 January 2020 | Volume 9 | Article 148599

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Non-invasively Predicting EGFR Using CT

TABLE 3 | Basal characteristics of patients in training and validation set (task b).

Characteristics Training set (n = 192) P Validation set (n = 128) P

EGFR Mut in exon 19

(n = 78)

EGFR Mut in exon 21

(n = 114)

EGFR Mut in exon 19

(n = 52)

EGFR Mut in exon 21

(n = 76)

Clinical Characteristics

Gender 0.848 0.858

Male 27 (34.6) 41 (36.0) 17 (32.7) 26 (34.2)

Female 51 (65.4) 73 (64.0) 35 (67.3) 50 (65.8)

Age (year) 59.82 ± 11.66 64.13 ± 10.47 0.013 57.77 ± 12.90 64.70 ± 11.13 0.003

Smoke 0.595 0.853

Never smoker 74 (94.9) 106 (93.0) 49 (94.2) 71 (93.4)

Current or former

smoker

4 (5.1) 8 (7.0) 3 (5.8) 5 (6.6)

Radiographic Characteristics

Size (cm) 2.07 ± 1.30 2.19 ± 1.27 0.432 1.77 ± 0.98 2.26 ± 1.39 0.051

Type 0.264 0.458

Pure or part solid GGN 48 (61.5) 79 (69.3) 33 (63.5) 53 (69.7)

Solid 30 (38.5) 35 (30.7) 19 (36.5) 23 (30.3)

Margin 0.412 0.477

Easily differentiated 21 (26.9) 37 (32.5) 16 (30.8) 28 (36.8)

Uneasily differentiated 57 (73.1) 77 (67.5) 36 (69.2) 48 (63.2)

Shape 0.869 0.064

Round or oval 17 (21.8) 26 (22.8) 17 (32.7) 14 (18.4)

Irregular 61 (78.2) 88 (77.2) 35 (67.3) 62 (81.6)

Pleural retraction 0.344 0.620

Present 41 (52.6) 52 (45.6) 29 (55.8) 39 (51.3)

Absent 37 (47.4) 62 (54.4) 23 (44.2) 37 (48.7)

Bubble lucency 0.567 0.895

Present 19 (24.4) 32 (28.1) 17 (32.7) 24 (31.6)

Absent 59 (75.6) 82 (71.9) 35 (67.3) 52 (68.4)

Vascular change 0.663 0.497

Present 55 (70.5) 77 (67.5) 34 (65.4) 54 (71.1)

Absent 23 (29.5) 37 (32.5) 18 (34.6) 22 (28.9)

Bronchiole Change 0.739 0.284

Present 45 (57.7) 63 (55.3) 21 (40.4) 38 (50.0)

Absent 33 (42.3) 51 (44.7) 31 (59.6) 38 (50.0)

Lobulation 0.113 0.831

Present 52 (66.7) 63 (55.3) 27 (51.9) 38 (50.0)

Absent 26 (33.3) 51 (44.7) 25 (48.1) 38 (50.0)

Spiculation 0.179 0.566

Present 46 (59.0) 56 (49.1) 28 (53.8) 37 (48.7)

Absent 32 (41.0) 58 (50.9) 24 (46.2) 39 (51.3)

Peripheral emphysema 0.394 0.698

Present 0 (0.0) 3 (2.6) 2 (3.8) 2 (2.6)

Absent 78 (100.0) 111 (97.4) 50 (96.2) 74 (97.4)

Peripheral fibrosis 0.673 0.216

Present 29 (37.2) 39 (34.2) 15 (28.8) 30 (39.5)

Absent 49 (62.8) 75 (65.8) 37 (71.2) 46 (60.5)

Pleural effusion 0.898 0.795

Present 1 (1.3) 3 (2.6) 1 (1.9) 2 (2.6)

Absent 77 (98.7) 111 (97.4) 51 (98.1) 74 (97.4)

R-score* −0.39 ± 1.35 0.27 ± 1.12 0.000 −0.70 ± 1.25 0.23 ± 1.12 0.000
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FIGURE 2 | Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning parameter (λ) selection in

the LASSO model used 10-fold cross-validation via minimum criteria. The area under the receiver operating characteristic (AUC) curve was plotted vs. log (λ). Dotted

vertical lines were drawn at the optimal values by using the minimum criteria. (B) LASSO coefficient profiles of the 425 texture features. A coefficient profile plot was

produced against the log (λ) sequence. Vertical line was drawn at the value selected using 10-fold cross-validation, where optimal λ (−4.497) resulted in 11

non-zero coefficients.

= 0.000) and in validation dataset (−0.70 ± 1.25 vs. 0.23 ±

1.12, P = 0.000) (Table 3). The proposed R-score∗ demonstrated
a good performance in differentiating EGFR mutation subtypes
with AUCs of 0.684, 0.708 in two datasets (Figures 4A,B). The
Hosmer-Lemeshow test for R-score∗ yielded a non-significant
statistic in the training and validation set (P = 0.295, P = 0.242,
respectively), which suggested that there was no departure from
a perfect fit.

Development and Validation of the
Radiomics Nomograms for Predicting the
EGFR Mutation Status and Subtypes
There was no multicollinearity between the significant factors
identified by univariate analysis and R-score. After performing
the multivariate analysis, sex, peripheral emphysema and R-score
were identified as independent prognostic factors of harboring
EGFR mutation (Table 4) and subsequently incorporated to
develop the radiomics-based nomogram (Figure 3C). The
constructed nomogram obtained a significantly incremental
performance for predicting EGFRmutation status comparedwith
that of sex and peripheral emphysema (Table 5). The Hosmer-
Lemeshow test for the nomogram yielded a non-significant
statistic in the training and validation set (P = 0.313, P = 0.816,
respectively), which suggested that there was no departure from a
perfect fit. Though the nomogram significantly outperformed R-
score in training dataset, the statistically difference was not found
in validation dataset (Table 5).

In terms of task b, age and R-score∗ were identified as
independent prognostic factors of predicting EGFR mutation
subtypes (Table 4) and subsequently incorporated to develop
the radiomics-based nomogram∗ (Figure 4C). The Hosmer-
Lemeshow test for the nomogram∗ yielded a non-significant

statistic in the training and validation set (P = 0.760, P =

0.413, respectively), indicating that there was no departure
from a perfect fit. Not surprisingly, the constructed nomogram∗

significantly outperformed age and potentially outperformed R-
score∗ in predicting EGFRmutation subtypes (Table 5).

DISCUSSION

Non-invasively and preoperatively predicting the EGFRmutation
status, a field attracted continuous efforts of researchers, can
overcome the disadvantages of molecular assays (e.g., high
cost, intratumoral heterogeneity, poor sample quality) well
and furtherly help clinicians to select the eligible patients
for targeted therapy. Moreover, attempting to predict the
EGFR mutation subtypes, especially those are sensitivity to
small TKIs, may provide important information for making
finer treatment scenario. In the current study, we developed
and validated two radiomics based nomograms, incorporating
clinical characteristics, CT features and radiomics, to predict the
EGFRmutation status and subtypes with promising performance
(AUC= 0.734, AUC= 0.757, respectively).

It is well-documented that the EGFRMut rate are significantly
higher in female than male (22), which is also confirmed
in our study (P = 0.002 and P = 0.013 in two datasets,
respectively). Note that smoking status, another potential clinical
factor verified by previous studies (8, 14, 17), failed to show
significant association with EGFR mutation status in the current
study. Note that smoking status is still a contentious risk factor
(23) and not recommended to use as the criteria for selecting
eligible patients (2). Another reason why the difference between
EGFR Mut and WT in terms of smoking status is diminished
may be that the incidence of lung adenocarcinomas in female
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FIGURE 3 | ROC analysis and the constructed nomogram in task a. (A,B) ROC analysis of sex, R-score, peripheral emphysema and the constructed nomogram in

training and validation datasets, respectively. (C) The constructed nomogram for predicting EGFR mutation status.

was higher than male (20, 24). Moreover, female may be less
likely to be current/former smoker than male. Wu et al. (25)
had reported that younger patients (<50 years old) with lung
adenocarcinoma had lower EGFR mutation rate, which was not
verified in multivariate logistic analysis in the current study. The
discrepancy may be contributed to the data bias (ours vs. Wu’s:
20.9 vs. 15.5%).

Many prior studies have investigated the role ofmorphological
features in predicting EGFR mutation status. The results
remain controversial. On one hand, most radiographic features
are non-quantitative subjective features and susceptible to
the discrepancy of evaluation caused by different knowledge
structure of observers. On the other hand, obvious radiographical
features are more frequently presented in advanced tumors
instead of early-stage tumors. For example, stage I lung cancers
account for 60–70% of detected lung cancers in screening
programs (26). In our study, 60.9% of included patients
were stage I lung cancers. In this context, the differentiating
performance of these semantic features may be compromised.

Peripheral emphysema was the only independent risk factors for
predicting EGFRmutation status in the current study.

Another disadvantage of semantic features is that they only
reflect few tumor information in biological level. By contrast,
radiomics method can encode a more comprehensive level of
feature abstraction and thus potentially provide better prediction
performance. Previous studies have revealed the potential
associations between these engineered features and EGFR
mutation status (12, 23, 27) and proved that the performance
of models can benefit from the integration of radiomics and
clinical features (14, 23). These results were also confirmed in
our study. Despite the promising results, the complicated process
of feature extraction and the inconvenience of formula-based
model limit its application in clinical context. Hence, an easy-to-
use way for radiomics method is urgently needed. Incorporating
multiple radiomic features into a radiomics score can tactfully
make multi-marker analyses less complicated to use (18, 28),
which is similar to the construction of multi-factor panels. In
this study, the LASSO regression model was used to select
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FIGURE 4 | ROC analysis and the constructed nomogram in task b. (A,B) ROC analysis of age, R-score* and the constructed nomogram* in training and validation

datasets, respectively. (C) The constructed nomogram* for predicting EGFR mutation subtypes.

and compress the radiomic features and thus construct the R-
score. The constructed R-score outperformed the clinical and CT
features in predicting EGFR mutation status (Table 5). Another
strategy to make radiomics method friendly use is presenting the
results in a more intuitive way, such as the nomogram (29, 30).
Nomogram is a statistic model that can provide an individual
numerical probability of a clinical event by integrating multiple
variables (31, 32). To comprehensively investigate the predictive
performance of non-invasively available variables, including
clinical factors, imaging semantic features, imaging radiomic
features, we adopted the two above-mentioned strategies to
construct a radiomics-based nomogram for predicting the EGFR
mutation status. The constructed nomogram in the current study
was conveniently used to individualized predict the probability
of harboring EGFRmutation by calculation the respective points
of three variables (sex, peripheral emphysema, and R-score),
with a promising AUC of 0.734. Another promising technique

(i.e., liquid biopsy) was consider as an alternative to test EGFR
mutations. However, the high false-negative rate (30%) need to
be further resolved (33).

In patients with NSCLC, the most commonly found EGFR
mutations are deletions in exon 19 (Exon19del in 45%) and in
exon 21 (L858R in 40%) (2). Both mutations result in activation
of the tyrosine kinase domain, and both are associated with
sensitivity to the small molecule TKIs. Nevertheless, patients
with exon 19 deletion are associated with longer PFS compared
to those with L858R mutation after first-line EGFR-TKIs (34,
35). In addition, the incidence of T790M mutation, which is
associated with acquired resistance to reversible EGFR-TKIs
(36), might be different between exon 19 deletions and L858R
mutations (6), resulting in different treatment scenarios. As a
result, furtherly predicting the specific EGFR mutation subtypes
may be clinically important. Inspired by the satisfied results of
predicting EGFRmutation status, the potential relations between
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TABLE 4 | Multivariate logistic regression of risk characteristics for predicting the

EGFR mutation status and subtypes in training datasets.

Characteristic OR (95% CI) P

Task a

Sex 2.291 (1.329–3.949) 0.003

Peripheral emphysema 5.412 (1.292–22.669) 0.021

R-score 2.262 (1.660–4.415) 0.000

Age 0.988 (0.965–1.012) 0.329

Size 1.58 (0.768–1.458) 0.729

Margin 1.362 (0.769–2.413) 0.290

Shape 1.343 (0.742–2.431) 0.330

Pleural retraction 0.702 (0.392–1.257) 0.234

Bronchiole change 0.661 (0.328–1.329) 0.245

Lobulation 1.278 (0.726–2.250) 0.395

Spiculation 0.953 (0.489–1.860) 0.888

Peripheral fibrosis 1.166 (0.561–2.240) 0.681

Task b

Age 1.588 (1.041–2.421) 0.032

R-score* 1.921 (1.283–2.875) 0.002

OR, odds ratio; CI, confidence interval; NA, not available.

TABLE 5 | Predictive performance of risk factors in two datasets regarding two

tasks.

Characteristic AUC

Training dataset Validation dataset

Task a

Sex 0.585# 0.570#

Peripheral Emphysema 0.528# 0.548#

R-score 0.708# 0.694

Nomogram 0.755 0.734

Task b

Age 0.605# 0.656#

R-score* 0.684 0.708

Nomogram* 0.689 0.757

*The constructed R-score and nomogram in task b. #Significantly difference between the

performance of nomogram and other factors.

clinical factors, imaging semantic features, imaging radiomic
features, and EGFR mutation subtypes were also investigated
in our study. Age was the only independent factors that can
be used to differentiate different EGFR mutation subtypes.
No CT features were identified as potential predictors, which
is consistent with previous studies (37, 38), indicating the
difficult of predicting EGFRmutation subtypes through semantic
features (relatively low-level). This conclusion encouraged us to
investigate whether the radiomic features (relatively high-level)
might be competent on this task. Surprisingly, the constructed R-
score∗ was identified as an independent predictor and obtained
a good performance with an AUC of 0.708. A radiomics-
based nomogram∗, incorporating age and R-score∗, achieved a
better performance (AUC = 0.757), indicating the efficiency of
radiomic features in different medical tasks.

We may conclude that radiomics outperformed the clinical
and semantic features in both tasks (see Table 5). The diagnostic
benefits may due to the possession of more presentative and
discriminative information of radiomics, which could reflect
the tumor spatial heterogeneity, tumor microenvironment, as
well as tumor gene patterns. Yet, completely interpreting the
association between radiomics and the complex biological
processes (EGFR mutation status in the current study) remains
an intractable challenge. The interpretability warrants further
investigation. Please note that one of the implications of our
study was to introduce the nomogram, which was easily used in
clinical practice and may facilitate the clinical transformation of
radiomics researches.

There are several limitations should be noted. First, although
the imaging normalization and reproductive analysis can
mitigate the influence of radiomic feature variabilities, it cannot
make the current study completely immune to the potential
confounding variability caused by different CT scanning
parameters (39, 40). Paradoxically, studies with homogeneous
images must sacrifice the amount of data. How to balance it
well is difficult for each radiomics-based research. Second, this
was a single-center study and lacked of external validation,
indicating the potential data selection bias. Conducting a
multi-center study and validating the constructed model in
an independent external dataset may not only improve the
generalization and robustness of a model efficiently, the
models can also substantially benefit from diversified data
from different regions, races and countries. Third, the current
study narrowly focused on EGFR mutation status and subtypes.
Constructing a nomogram which could cover all clinical relevant
EGFR mutation and even other genetic mutations (e.g., ROS-
1, ALK) may be interesting and worth investigating in the
future work.

CONCLUSION

Radiomics-based nomogram, incorporating clinical
characteristics, CT features and radiomic features, can non-
invasively and efficiently predict the EGFR mutation status
and thus potentially fulfill the ultimate purpose of precision
medicine. The methodology is a possible strategy to predict
EGFR mutation subtypes, providing the support of clinical
treatment scenario.
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Immuno-oncology is an ever growing field that has seen important progress across the

spectrum of cancers. Responses can be deep and durable. However, as only a minority

of patients respond to checkpoint inhibition, predictive biomarkers are needed. Cancer

is a genetic disease arising from the accumulation of somatic mutations in the DNA

of affected cells. Tumor mutational burden (TMB), represents the number of somatic

mutations in a tumor that form neoantigens, responsible for the immunogenicity of

tumors. Randomized controlled trials have so far failed to show a survival benefit when

stratifying patients by tissue TMB. TMB has also been evaluated in plasma (PTMB). PTMB

is anticipated to represent the biology of the entire cancer, whereas obtaining tissue of

an amenable primary or a metastatic lesion may be prone to sampling bias because of

tumor heterogeneity. For this reason, we are evaluating the correlation between TMB and

PTMB, and prospectively evaluating the impact of these biomarkers on clinical outcomes.

We also discuss the technical difficulties inherent to performing and comparing these

analyses. Furthermore, we evaluate the correlation between the evolution of PTMB during

an immunotherapy treatment and response at 3 and 6 months, as we believe PTMB

may be a dynamic biomarker. In this paper, we present results from the first 4 patients in

this project.

Keywords: CtDNA, immune check inhibitor (ICI), biomarker, TMB, NSCLC

INTRODUCTION

Immuno-oncology is an ever growing field that has seen important progress across the spectrum of
cancers.While results have changed the prognosis for certain types of tumors, includingmelanoma,
lung, genito-urinary, and digestive cancers, only a minority of patients responds to treatment and
reaps these benefits. Different biomarkers have been developed with the goal of predicting response
to treatment (1). Yet, only one has reached the maturity needed for clinical utility, programmed
death ligand-1 (PD-L1). PD-L1 expression, assessed on tumor cells and immune-cells, correlates
with response rate and survival in non-small-cell lung cancer (NSCLC).
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In front line management of advanced NSCLC, the Keynote
024 trial concluded that patients with tumors expressing ≥50%
PD-L1 derive greater clinical outcomes with pembrolizumab, a
PD-1 immune checkpoint inhibitor (ICPI), than with platinum-
based chemotherapy, both in terms of response rate (44. vs.
27.8%) and overall survival (OS), with a 3 year OS of 43% (2).
The Keynote 042 trial went on to show front-line ICPI activity in
all PD-L1 subsets of NSCLC, though higher PD-L1 expression is
predictive of response (3).

The 5 year overall survival data of the Keynote 001 trial,
presented at the American Society for Clinical Oncology
(ASCO) 2019 conference, revealed durable long-term responses
to immune-checkpoint inhibition (ICPI), and an unprecedented
5-year OS of 13.4–29.6% (4–6). This is a drastic improvement
over pre-ICPI 5 year survival rates, which were below 5% (7).

However, these results also underline that despite being
exposed to potential adverse effects of therapy, the majority of
patients do not derive a durable benefit from ICPI, even in the
selected high PD-L1 population. This highlights the need for
further predictive biomarkers for ICPI.

It is known that cancer is a genetic disease and that
neoplastic transformation results from the accumulation of
somatic mutations in the DNA of affected cells. The genetic
modifications in tumors can include non-synonymousmutations
comprising mainly missense mutations, as well as synonymous
mutations, insertions or deletions, splice site mutations and copy
number gains and losses. Tumor mutational burden (TMB),
represents the number of somatic mutations in a tumor, but
there is no consensus as to which mutations should be included
in the calculation: some authors report all mutations (8, 9),
others use only non-synonymous mutations (10), and yet others
(11–13) consider only mutations that alter the sequence of a
protein (i.e., missense and indels within exons). The former
vary in prevalence between 0.01 mutations/megabase pair (Mbp)
and 400 mutations/Mbp. In this paper, we elected to report
miscoding mutations, i.e., mutations that yield the translation of
novel peptide epitopes, since it is thought that neoantigens are
responsible for the immunogenicity of the tumor by eliciting T
cell responses. This is the basis for the hypothesis that higher
TMB should allow for greater benefit from ICPI.

This hypothesis has some clinical data in its favor. For
instance, tumors known, through DNA sequencing, to harbor
multiple acquired mutations, such as microsatellite unstable
tumors, melanoma and non-small-cell lung cancer, are those with
the best response to ICPI (8). Furthermore, studies have shown
improved response rates (RRs) and progression free survival
(PFS) in patients with tumors deemed to have high tissue TMB
(9, 11). Yet, there appears to be no correlation between OS
with single-agent ICPI and TMB in NSCLC, while the predictive
value of TMB in combined PD-1 blockade and anti- cytotoxic
TIL antigen-4 (CTLA4) inhibition showed promising PFS data
(14, 15). Unfortunately, the recently published Checkmate 227
trial has now negated these early results, showing no association
between TMB and OS (12).

TMB has also been evaluated in plasma (PTMB). PTMB is
anticipated to represent the biology of the entire cancer, whereas
obtaining tissue of an amenable primary or a metastatic lesion

may be prone to sampling bias because of tumor heterogeneity
(16). However, while tissue samples can be microdissected to
yield a high percentage of tumor cells, circulating cell free
DNA (ccfDNA) can be more challenging to interpret in this
regard. Identifying circulating tumor DNA (ctDNA), which
can be present as a minute fraction of total ccfDNA, can be
limiting for next-generation sequencing (NGS) analysis (17). In a
recent publication comparing TMB and PTMB by whole exome
sequencing in various cancer types, the sensitivity for mutation
detection was 53% in ccfDNA. The lower sensitivity was, as
expected, often associated with lower ctDNA levels. Meanwhile,
the sensitivity of ctDNA NGS compared to WES was 92%,
suggesting that NGS may be a valid surrogate detection method,
like in tissue (13).

Important clinical questions remain to be answered: is there
a correlation between NGS-based TMB and PTMB in NSCLC?
Will one be a stronger predictor of response to immunotherapy?

For this reason, we are evaluating the correlation between
TMB and PTMB, and prospectively evaluating the impact of these
biomarkers on clinical outcomes. We also discuss the technical
difficulties inherent to performing and comparing these analyses.
Furthermore, we evaluate the correlation between the evolution
of PTMB during an immunotherapy treatment and response at 3
and 6 months, as we believe PTMBmay be a dynamic biomarker.
In this paper, we present results from the first 4 patients in
this project.

METHODS

Patients
We selected 4 consecutive stage IV NSCLC patients before
the introduction of pembrolizumab, an anti-PD-1 checkpoint
inhibitor. Patients and tumor characteristics were collected from
medical records, pathology, and radiology reports.

Samples
Blood was drawn and collected in Streck tubes before treatment
and after 3 months of treatment with pembrolizumab. Plasma
was prepared by centrifugation 10min at 1,600 × g, collected,
spun again at 16,000 × g for 10min, and stored at −80◦C until
used. The tissue sample was collected at diagnosis.

DNA Extraction
Cell-free DNA was prepared from 4 to 5ml plasma with
the MinElute ccfDNA kit (Qiagen) or the Cobas cfDNA kit
(Roche) according to the manufacturer instructions. Tumor
DNA was prepared from formalin-fixed paraffin-embedded
(FFPE) samples using the QIAamp DNA FFPE Tissue kit
(Qiagen). Germline DNA was extracted from whole blood with
QIAamp DNA blood mini kit (Qiagen). DNA was stored at
−20◦C until used.

Sequencing
A custom 443-gene, 2 073Mbases SureSelect-HS library (Agilent)
was built from 10 ng ccfDNA or 50 ng genomic DNA. Paired-
end sequencing, 2 × 150 nt, was performed on a NextSeq500
sequencer (Illumina).
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TABLE 1 | Patient and tumor characteristics.

Patient Age Sex Histology PD-L1 (%) TMB

(mut/mbp)

Time 0

PTMB

(mut/Mbp)

3 month

PTMB

(mut/Mbp)

ICPI Line 3 month

response

6 month

response

TTF

PIT-063 74 Male ADC 90 6.3 1.4 0.0 Pembro 1 Response Response 14 (ongoing)

PIT-069 66 Male ADC 75 8.7 2.9 0.5 Pembro 1 Response Dissociated 15

PIT-075 66 Male Squamous 10 3.4 5.8 9.6 Pembro 2 Response / 14

PIT-077 67 Female ADC 70 1.4 4.3 12.1 Pembro 1 Progression Death 4

ADC, adenocarcinoma; PD-L1, programmed death ligand-1; TMB, tumormutation burden; PTMB, plasmamutation burden; Pembro, pembrolizumab; ICPI, immune checkpoint-inhibitor;

TTF, time to treatment failure; Mut/Mbp, mutations per megabase pair.

Analysis
Data from plasma samples were preprocessed with the AGeNT
package (Agilent) for molecular tag deduplication, then variants
were called with SiNVICT (18) retaining level 5 variants, LoFreq
(19) v 2.1.2, single sample mode with parameter a = 10–9 for
plasma samples, OutLyzer (20) v 2.0, “calling” command, with
default parameters or SNVer (21) v 0.5.3 with default parameters.
For PTMB calculations, only miscoding variants (exonic variants
with the potential of modifying the protein sequence: missense,
non-sense, and indels), with a frequency <30% and absent from
whole blood DNA were counted, the total was normalized to the
total size of the regions sequenced. Tumor data was analyzed
with a combination of Strelka (22) v 2.9.6 and MuTect2 (23) v
4.1.0.0, only variants called by both callers, with frequency >2%,
frequency in tumor >4-fold higher than in normal tissue and
average base quality >20 were retained. For TMB calculations,
only miscoding variants were considered, for tumor data in
table I only mutations with a frequency >5% were counted. For
Figure 3, tumor data was re-analyzed with SiNVICT, using the
same parameters and same counting criteria as for PTMB, for the
sake of comparison.

Outcomes
Response was evaluated radiologically using the immune RECIST
criteria (24) and clinically. Progression was defined as radiologic
progression or the appearance of new cancer related symptoms or
death. Time to treatment failure was calculated from the start of
immunotherapy to its interruption due to progression requiring
subsequent systemic therapy.

RESULTS

Patients
Of the four included in this preliminary analysis, three had
adenocarcinoma, one squamous cell carcinoma. Three patients
were male, one female. No patients harbored any druggable
driver mutations, analyzed by next-generation sequencing. Three
patients had a high PD-L1 expression (above 50%). The age range
spanned from 66 to 74 years old (Table 1).

Amount of Cell-Free DNA
We measured the amount of cell-free DNA recovered and
normalized it to the amount of plasma processed (Figure 1). In
most cases, cell-free DNA yield matched the values we routinely

FIGURE 1 | Total cell-free DNA yield. Amount of DNA removed from the first

(Plasma 1, concomitant to surgery) and second (Plasma 2, after 3 months

therapy) plasma samples, expressed as ng ccfDNA per ml plasma.

obtain with healthy controls, around 10 ng/ml plasma. Patient
PIT-063 had significantly higher cell-free DNA levels at the time
of the first blood draw (23 ng/ml plasma), but this remains within
the physiological range, as it is well-known that cell-free DNA
levels can vary considerably for a given individual, depending,
for instance on physical exercise or even psychosocial stress (25).
Patient PIT-77 displayed low amounts of cell-free DNA at the first
blood draw, but very high levels at the second, with an almost
100-fold increase over a 3-month period. We assumed that, in
this case, the increase was due to a higher amount of ctDNA,
which was confirmed by mutation analysis (see below).

Correlation Between Mutations Found in
Tumor and Plasma
Bioinformatic identification of somatic mutations in sequencing
data is a two-step process. During the initial, straightforward step,
individual sequence reads are aligned to the human reference
genome, and divergences from the reference (variants) are
collated. If molecular barcodes are used, reads can be aggregated
based on the original DNA molecule they were amplified from,
allowing for some level of error polishing (26). The second
and most critical step is to classify variants: some will be
germline polymorphisms that are easy to recognize as variant
frequencies will approach 50 or 100%, depending on whether
the patient is heterozygous or homozygous. The main difficulty

Frontiers in Oncology | www.frontiersin.org 3 February 2020 | Volume 10 | Article 142109

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Friedlaender et al. TMB in Plasma and Tissue

FIGURE 2 | Correlation between tumor and plasma samples (Top) percent of

tumor mutations that were found in the first (time 0) and second (3 months)

plasma samples. (Bottom) percent of plasmatic mutations that existed in the

original tumor.

lies in the interpretation of low frequency variants, some of
which correspond to genuine somatic mutations, while others are
background noise, i.e., PCR errors or sequencing mistakes. This
filtering process is particularly crucial in the context of mutation
burden analysis which essentially tallies passenger mutations,
most of which will have appeared in subclones of the tumor.
As a result, mutation frequencies are expected to be low in the
tumor and even lower in plasma, owing to dilution of ctDNAwith
ccfDNA from normal cells.

Numerous software packages have been proposed to sift
somatic mutations from background noise (27). We extensively
tested several, based on different underlying algorithms:
SiNVICT (18) (Poisson model with additional heuristic filters),
OutLyzer (20) (noise level estimation by recursive Thompson
tau tests), SNVer (21) (allele frequency analysis by binomial-
binomial model) and LoFreq (19) (allele frequency analysis by
Poisson-binomial model). To evaluate the performance of these
programs, we used the mutations identified in the tumor as
a “truth set” and asked how many of these could be detected
in plasma and identified as somatic mutation by a given
variant caller.

Most mutations found in the tumor were also present in the
corresponding plasma samples, albeit at low frequencies (<3%).
As a result, none of the software packages we tested succeeded
in calling a major fraction of these mutations. In our hands, the
best programs were SiNVICT and LoFreq, the latter slightly more

performant. For this reason, the data presented hereafter were
produced with LoFreq, although analysis with SiNVICT led to
identical conclusions.

The number of miscoding tumor mutations for patients
PIT-063, PIT-069, PIT-075, and PIT-077 was 13, 18, 7, and
7, respectively. Of these, the fraction that LoFreq identified in
plasma samples varied from zero to 100% (Figure 2, top panel).
In particular, all tumor mutations were detected in the first
plasma sample of PIT-075 and a large fraction in both samples of
PIT-077, whereas for PIT-063 and PIT-069 few mutations were
detected in the first plasma sample, and none in the second.

We also considered the problem from the opposite angle
and asked how many of the variants called by the software did
correspond to genuine tumor mutations. All software packages
called an implausibly high number of variants (often several
hundreds) and LoFreq was no exception. We attempted to
identify somatic mutations among these by retaining only
variants with a frequency lower than 30%, as variants that
were more common than this were likely germline in nature.
However, when we checked for the presence of these variants in
leukocyte DNA, we found a large fraction of them, indicating that
these were not genuine tumor mutations. We thus systematically
sequenced leukocyte DNA in each patient and considered only
low-frequency variants that were absent from leukocyte DNA as
genuine somatic mutations. Among those identified in the first
set of plasma samples, only 33–67% corresponded to mutations
that had been found in the tumor (Figure 2, bottom panel). In
the second set of plasma samples, a much lower fraction (0–8%)
of presumably somatic mutations actually matched mutations
found in the original tumor.

Mutation Burden and Mutation Frequency
We then calculated mutation burden by considering only
miscoding mutations among those retained (i.e., called by
LoFreq, with a frequency inferior to 30% and absent from
leukocyte DNA), and normalizing this number for the size of
the target region sequenced (Figure 3, top panel and Table 1).
All 4 patients had TMB inferior to 10 mutations per megabase
(Mbp); the corresponding mutation burden in the synchronous
plasma samples was generally lower, inferior to 5 mutations per
Mbp. The notable exception was patient PIT-075 who displayed a
PTMB similar to, even slightly higher than his TMB. At the time
of the second blood draw, after 3 months therapy, PTMB was
zero for patient PIT-063 and very low for PIT-069, whereas it had
notably increased for PIT-075, and reached almost 12 mutations
per Mbp for PIT-077.

We also considered the impact of mutation frequencies (i.e.,
the percentage of mutant reads at a given genomic position)
on mutation count, as low-frequency mutations, being harder
to distinguish from background, are more likely to be missed.
Among our 4 patients, PIT-063 had the lowest average mutation
frequency in plasma, and also the lowest plasma mutation
burden (Figure 3, bottom panel). Average mutation frequencies
were slightly higher for PIT-069 and PIT-075, although still
inferior to 3%. By contrast, patient PIT-077 showed low
mutation frequencies in the first plasma sample but markedly
elevated frequencies in the second, with an average of 14.5%.
This phenomenon may be partly responsible for the higher
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FIGURE 3 | Mutation profile (Top) mutation burden in the tumor and in the two

plasma samples, expressed as the number of miscoding mutations per

megabase. (Bottom) Average frequency of the alternate allele in the tumor

and in the two plasma samples. Error bars are the standard deviation.

mutation burden we calculated for this sample, by making it
easier for the software to distinguish somatic mutations from
background errors.

DISCUSSION

Correlations With Clinical History
The 4 patients included in this pilot study illustrate different
clinical and pathophysiological scenarios, in their initial situation
and subsequent evolution.

Patient PIT-063 had a high TMB, yet the lowest initial PTMB.
Most mutations identified in the tumor were present in plasma,
but at very low frequencies (<1%), making it almost impossible
for the software to distinguish them from background error
noise. A compounding factor may be that this patient presented
higher than average ccfDNA levels. Given the low mutation
frequencies observed, it is likely that most of his circulating
DNA did not originate from the tumor, and may just reflect
a physiological fluctuation which, unfortunately, contributed to
further dilute ctDNA and made mutation detection even more
challenging. After 3 months of checkpoint inhibitor therapy,
PTMB was down to zero. The clinical evolution was favorable,
with a very good partial response at 3 months, maintained
at 6 months.

This patient is a perfect illustration of the difficulties inherent
to circulating DNA analysis: when a tumor does not release
ctDNA into the blood stream, or does so in minute quantities, it
is virtually impossible to detect tumor-born mutations, no matter
how sophisticated the sequencing technique and how performant
the analysis software. From a diagnostic/prognostic point of
view, it is important to identify such situations, to distinguish
them from real low-TMB cases. In other words, one needs a
way to quantify the fraction of cell-free DNA that originates
from the tumor. A possible method is to analyze the plasma for
driver mutations identified in the tumor, e.g., epidermal growth
factor receptor (EGFR) exon 21 p.L858R or Kirsten rat sarcoma
(KRAS) exon 2 p.G12D. Such driver mutations are presumably
an early event in tumorigenesis, thus they should be present
in all tumor cells, and their frequency in plasma should thus
fairly reflect the proportion of ctDNA. In cases when such a
mutation was not identified in the tumor, or when no tumor
tissue is available, another possibility would be to study cell-
free DNA methylation. It has been shown that methylation
markers at precise genomic locations can be used to determine
the tissue of origin of circulating DNA (28) and in particular to
identify ctDNA, as methylation is globally perturbed in cancer
cells (29). This approach, however, has not yet been shown to be
quantitative and could not be applied to our samples. We thus
chose the former approach for PIT-063, using a TP53 stop-gain
mutation that was present at 33% in the tumor, but only at 0.9% in
plasma, thereby confirming our hypothesis that very little ctDNA
is present in this patient’s ccfDNA.

Patient PIT-069 was similar to PIT-063, with low mutation
frequencies and a PTMB largely inferior to his TMB. His PTMB
had significantly decreased after 3 months of immunotherapy,
as well as the average mutation frequency (the amount of
ccfDNA was similar at both time points, ruling out a dilution
effect). Yet, none of the mutations identified in this second
plasma sample were found in the original tumor. This likely
represents an example of clonal evolution within the tumor, with
novel passenger mutations appearing in numerous subclones,
and being detected at low frequencies in the plasma. The
clinical evolution entailed a dissociated response, with a notable
regression of some metastases at 3 and 6 months, yet the
progression of others at 6 months. Treatment was continued, and
ultimately, radiotherapy was used on the progressive lesions. The
newly identified clones in the plasma may thus correspond to
those involved in the progression of the refractory metastases.

Patient PIT-075 was the only one with an initial PTMB
matching its TMB. Mutation frequencies in the plasma were the
highest of the 4 patients, with average levels of ccfDNA, likely
indicating that the tumor was releasing significant amounts of
ctDNA in the blood flow. It should be noted that PIT-075 was the
only patient enrolled to have squamous histotype. As such, the
question arises as to whether the high ctDNA release and PTMB
could be related to histology. While current data suggests similar
PTMB between ADC and squamous histotypes, we did not find
information comparing their ctDNA release (30).

After 3 months of therapy, PTMB had significantly increased,
whereas the average mutation frequency had declined, thereby
ruling out a detection bias. The clinical evolution mirrors
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the decrease in mutation frequency, with a very good partial
response. There was no 6-month radiological evaluation, as it
was declined by the patient, but he remains asymptomatic at 15
months after treatment initiation.

In this patient, mutation burden analysis in the plasma was
successful and matched that in the tumor. Both values were
largely inferior to 10 mutations/Mb, the cut-off used in the
Checkmate 227 trial (12) as a threshold for high tissue mutation
burden, but the latter study counted all mutations in the coding
sequence (including synonymous) whereas we only considered
miscoding mutations. Counting synonymous mutations for this
patient would result in higher values: 4.8 for TMB and 8.7 for
PTMB, the latter approaching the 10 mutations/Mb threshold.
In patients treated with combination immunotherapy (anti PD-
1 and anti-CTLA4 antibodies), with tumors expressing PD-L1 on
< 1% of cells, high TMBwas associated with a 1 year progression-
free survival rate of 45%, as opposed to 18% with low TMB.
It is important to note that ultimately, this trial did not show
any survival difference by TMB (11). A preplanned exploratory
analysis from the MYSTIC trial showed an OS benefit in patients
with PTMB > 16 mutations/Mbp in front-line combined anti-
PD-L1 and anti-CTLA4 immunotherapy for advanced NSCLC
(31). However, the Neptune trial, which prospectively assessed
the role of PTMB in this same setting with the same treatment
failed to show any predictive relevance of PTMB in the primary
analysis (32). There appears to be a correlation between mutation
burden and response in our patient. While this may be a
coincidence, the decrease in mutational frequency suggests a
dynamic role of PTMB.

Patient PIT-077 had the lowest amount of ccfDNA and
one of the highest average mutation frequencies among our
4 patients. It can be assumed that the tumor was releasing a
fair amount of ctDNA at the time of the first blood sampling.
Her initial PTMB was 4.3 mutations/Mbp, but after 3 months
of immunotherapy, the molecular situation had significantly
worsened, with a high PTMB (12.1 miscoding mutations/Mbp),
high mutations frequencies (14.5% in average) and very high
levels of ccfDNA (73 ng/ml plasma). This likely indicates disease
progression, with a tumor that accumulated novel mutations
(only 8% were present in the initial tumor), and released large
amounts of ctDNA into the blood flow. The clinical evolution
supports the biological hypothesis, with clear disease progression
at 3 months and cancer-related mortality at 6 months.

This patient was illustrative of a situation in which liquid
biopsy proved superior to a traditional tumor biopsy, in that it
allowed us to non-invasively detect a drastic increase in PTMB
and in average mutation frequency after 3 months, which were in
line with the poor, eventually fatal evolution of the patient.

Lessons Learned
Although limited in the number of patients, this pilot study
allowed us to draw important methodological conclusions
pertaining to the analysis of mutation burden in the plasma.

First and foremost, the key to a valid analysis is reliable
identification of genuine somatic mutations, originating from
the tumor. This is a particularly difficult problem in the case
of mutation burden analysis since, by definition, passenger

mutations originate from distinct cells and are expected to be
present only in small subclones within a tumor. As a result,
one can expect mutation frequencies to be quite low in plasma,
making it difficult to distinguish genuine mutations from PCR or
sequencing errors.

There are several ways to address this issue. One is to
reduce background noise via technical improvements to DNA
sequencing or library synthesis. In this respect, the advent of
molecular barcodes was a major step forward, as it allows the
identification of sequencing mistakes and PCR errors occurring
after the second PCR cycle. Yet, we found it insufficient in
the case of mutation burden analysis. A second key factor is
bioinformatic processing, and the development of highly efficient
algorithms to discriminate mutations from background noise.
Here also, despite the release of a number of specific software
packages in the recent years, we did not find one that was fully
efficient for the purpose of mutation burden analysis.

A critical point, in our experience, is the need to sequence
leukocyte DNA. We observed that a simple mutation frequency
filter is not sufficient to reliably identify somatic mutations. For
one, because it is conceivable that a somaticmutationmay reach a
frequency approaching 50%, e.g., in advanced cases when a tumor
is releasing large amounts of ctDNA. But more importantly, the
bulk of cell-free DNAwas shown to originate from hematopoietic
cells (33) and it is known that even normal individuals can
accumulate clonal mutations in various leucocyte lineages upon
aging, a phenomenon known as clonal hematopoiesis (34).
Although somatic, these mutations do not originate from the
tumor and should not be tallied when calculating PTMB. The
only way to exclude them from analysis it to perform two rounds
of sequencing, one on plasma and one on leucocytes, obtained
either from whole blood or from the buffy coat resulting from
plasma preparation.

A second conclusion of this study is that mutation burden
measurements in plasma rarely match those in the tumor. There
could be several reasons for this: it may happen that a tumor
releases very low amounts of ctDNA, as in the case of PIT-
063, making it virtually impossible to identify tumor mutations
in plasma. Furthermore, as the amount of ccfDNA originating
from normal cells fluctuates rapidly, it may dilute ctDNA in
various proportions depending when phlebotomy is performed.
This is an important consideration to keep in mind if one
intends to make use of PTMB for patient follow up over an
extended period of time. A possible solution would be to perform
several closely spaced blood draws (e.g., 3 or 4 in a day) and
sequence them in parallel, or to select the one with the lowest
ccfDNA yield for sequencing. This may, however, impose an
extra burden on the patient and significantly increases the cost
of the analysis.

Conversely, as many tumors (e.g., lung and kidney) are
genetically heterogeneous, a surgical biopsy may not account
for the whole collection of mutations a tumor comprises. It was
shown that ctDNA analysis provides a more complete reflection
of the mutational landscape than a surgical biopsy, both in the
main tumor (35) and in eventual metastases (36). Thus, provided
the above limitations are addressed, PTMB may prove a more
reliable prognostic indicator than TMB.
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Ultimately, whether mutation burden is predictive or not of
response to ICPI treatments, the analytical complexity involved
with the biomarker could limit its reproducibility and reliability.
While mutation burden has potential, it currently does not
deserve a role in therapeutic decision-making. Nonetheless, the
potential value of PTMB during therapy, especially given the
difficulty in interpreting radiological response to immunotherapy
(37), remains to be better elucidated.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Local Ethical Committee in Geneva. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

AA, AF, TM, and TN designed the study. AA and AF provided
the samples. LH performed sequencing. YC and TN performed
bioinformatic analyses. AF and TN wrote the paper. All authors
reviewed and approved the paper.

REFERENCES

1. Friedlaender A, Bauml J, Banna GL, Addeo A. Identifying successful

biomarkers for patients with non-small-cell lung cancer. Lung CancerManage.

(2019) 8:LMT17. doi: 10.2217/lmt-2019-0009

2. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fülöp A,

et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-

based chemotherapy for advanced non-small-cell lung cancer with PD-L1

tumor proportion score of 50% or greater. J Clin Oncol. (2019) 37:537–

46. doi: 10.1200/JCO.18.00149

3. Mok TSK, Wu Y-L, Kudaba I, Kowalski DM, Cho BC, Turna HZ,

et al. Pembrolizumab versus chemotherapy for previously untreated, PD-

L1-expressing, locally advanced or metastatic non-small-cell lung cancer

(KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet.

(2019) 393:1819–30. doi: 10.1016/S0140-6736(18)32409-7

4. Novello S, Milella M, Tiseo M, Banna G, Cortinovis D, Di Maio M, et al.

Maintenance therapy in NSCLC: why? To whom? Which agent? J Exp Clin

Cancer Res. (2011) 30:50. doi: 10.1186/1756-9966-30-50

5. Pabani A, Butts CA. Current landscape of immunotherapy for the treatment

of metastatic non-small-cell lung cancer.Curr Oncol. (2018) 25(Suppl. 1):S94–

102. doi: 10.3747/co.25.3750

6. Addeo A, Banna GL, Metro G, Di Maio M. Chemotherapy in combination

with immune checkpoint inhibitors for the first-line treatment of patients with

advanced non-small cell lung cancer: a systematic review and literature-based

meta-analysis. Front Oncol. (2019) 9:264. doi: 10.3389/fonc.2019.00264

7. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. SEER

Cancer Statistics Review, 1975–2016. Available online at: https://seer.cancer.

gov/csr/1975_2016 (accessed January 07, 2020).

8. Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. Tumor

mutational burden is predictive of response to immune checkpoint inhibitors

in MSI-high metastatic colorectal cancer. Ann Oncol. (2019) 30:1096–

103. doi: 10.1093/annonc/mdz134

9. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,

et al. Tumor mutational load predicts survival after immunotherapy across

multiple cancer types. Nat Genet. (2019) 51:202–6. doi: 10.1038/s41588-018-

0312-8

10. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al.

Mutational landscape of metastatic cancer revealed from prospective clinical

sequencing of 10,000 patients. Nat Med. (2017) 23:703–13. doi: 10.1038/

nm.4333

11. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-

Valette C, et al. Nivolumab plus Ipilimumab in lung cancer with

a high tumor mutational burden. N Engl J Med. (2018) 378:2093–

104. doi: 10.1056/NEJMoa1801946

12. HellmannMD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, Carcereny

Costa E, et al. Nivolumab plus Ipilimumab in advanced non-small-cell lung

cancer. N Engl J Med. (2019) 381:2020–31. doi: 10.1056/NEJMoa1910231

13. Koeppel F, Blanchard S, Jovelet C, Genin B, Marcaillou C, Martin E,

et al. Whole exome sequencing for determination of tumor mutation

load in liquid biopsy from advanced cancer patients. PLoS ONE. (2017)

12:e0188174. doi: 10.1371/journal.pone.0188174

14. Addeo A, Banna GL, Weiss GJ. Tumor mutation burden-from hopes to

doubts. JAMA Oncol. (2019) 5:934–5. doi: 10.1001/jamaoncol.2019.0626

15. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ,

et al. Cancer immunology. mutational landscape determines sensitivity to

PD-1 blockade in non-small cell lung cancer. Science. (2015) 348:124–

8. doi: 10.1126/science.aaa1348

16. Zhang Y, Chang L, Yang Y, Fang W, Guan Y, Wu A, et al. The correlations

of tumor mutational burden among single-region tissue, multi-region tissues

and blood in non-small cell lung cancer. J Immunother Cancer. (2019)

7:98. doi: 10.1186/s40425-019-0581-5

17. Fenizia F, Pasquale R, Roma C, Bergantino F, Iannaccone A, Normanno

N. Measuring tumor mutation burden in non-small cell lung cancer:

tissue versus liquid biopsy. Transl Lung Cancer Res. (2018) 7:668–

77. doi: 10.21037/tlcr.2018.09.23

18. Kockan C, Hach F, Sarrafi I, Bell RH, McConeghy B, Beja K, et al.

SiNVICT: ultra-sensitive detection of single nucleotide variants

and indels in circulating tumour DNA. Bioinformatics. (2017)

33:26–34. doi: 10.1093/bioinformatics/btw536

19. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, et al. LoFreq:

a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-

population heterogeneity from high-throughput sequencing datasets. Nucleic

Acids Res. (2012) 40:11189–201. doi: 10.1093/nar/gks918

20. Muller E, Goardon N, Brault B, Rousselin A, Paimparay G, Legros A, et al.

OutLyzer: software for extracting low-allele-frequency tumor mutations from

sequencing background noise in clinical practice.Oncotarget. (2016) 7:79485–

93. doi: 10.18632/oncotarget.13103

21. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a statistical tool for

variant calling in analysis of pooled or individual next-generation sequencing

data. Nucleic Acids Res. (2011) 39:e132. doi: 10.1093/nar/gkr599

22. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, et al.

Strelka2: fast and accurate calling of germline and somatic variants. Nat

Methods. (2018) 15:591–4. doi: 10.1038/s41592-018-0051-x

23. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al.

Sensitive detection of somatic point mutations in impure and heterogeneous

cancer samples. Nat Biotechnol. (2013) 31:213–9. doi: 10.1038/nbt.2514

24. Schwartz LH, Litière S, de Vries E, Ford R, Gwyther S, Mandrekar S, et al.

RECIST 1.1-Update and clarification: from the RECIST committee. Eur J

Cancer. (2016) 62:132–7. doi: 10.1016/j.ejca.2016.03.081

25. Hummel EM, Hessas E, Müller S, Beiter T, Fisch M, Eibl A, et al. Cell-

free DNA release under psychosocial and physical stress conditions. Transl

Psychiatr. (2018) 8:236. doi: 10.1038/s41398-018-0264-x

26. Koessler T, Addeo A, Nouspikel T. Implementing circulating tumor DNA

analysis in a clinical laboratory: a user manual. Adv Clin Chem. (2019)

89:131–88. doi: 10.1016/bs.acc.2018.12.004

27. Xu C. A review of somatic single nucleotide variant calling algorithms for

next-generation sequencing data. Comput Struct Biotechnol J. (2018) 16:15–

24. doi: 10.1016/j.csbj.2018.01.003

Frontiers in Oncology | www.frontiersin.org 7 February 2020 | Volume 10 | Article 142113

https://doi.org/10.2217/lmt-2019-0009
https://doi.org/10.1200/JCO.18.00149
https://doi.org/10.1016/S0140-6736(18)32409-7
https://doi.org/10.1186/1756-9966-30-50
https://doi.org/10.3747/co.25.3750
https://doi.org/10.3389/fonc.2019.00264
https://seer.cancer.gov/csr/1975_2016
https://seer.cancer.gov/csr/1975_2016
https://doi.org/10.1093/annonc/mdz134
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/nm.4333
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1056/NEJMoa1910231
https://doi.org/10.1371/journal.pone.0188174
https://doi.org/10.1001/jamaoncol.2019.0626
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1186/s40425-019-0581-5
https://doi.org/10.21037/tlcr.2018.09.23
https://doi.org/10.1093/bioinformatics/btw536
https://doi.org/10.1093/nar/gks918
https://doi.org/10.18632/oncotarget.13103
https://doi.org/10.1093/nar/gkr599
https://doi.org/10.1038/s41592-018-0051-x
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1016/j.ejca.2016.03.081
https://doi.org/10.1038/s41398-018-0264-x
https://doi.org/10.1016/bs.acc.2018.12.004
https://doi.org/10.1016/j.csbj.2018.01.003
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Friedlaender et al. TMB in Plasma and Tissue

28. Sun K, Jiang P, Chan KCA,Wong J, Cheng YKY, Liang RHS, et al. PlasmaDNA

tissue mapping by genome-wide methylation sequencing for noninvasive

prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA.

(2015) 112:E5503–12. doi: 10.1073/pnas.1508736112

29. Xu R-H, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al.

Circulating tumour DNA methylation markers for diagnosis

and prognosis of hepatocellular carcinoma. Nat Mater. (2017)

16:1155–61. doi: 10.1038/nmat4997

30. Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li

Y, et al. Blood-based tumor mutational burden as a predictor of

clinical benefit in non-small-cell lung cancer patients treated with

atezolizumab. Nat Med. (2018) 24:1441–8. doi: 10.1038/s41591-018-

0134-3

31. Peters S, Cho BC, Reinmuth N, Lee KH, Luft A, Ahn M-J, et al.

Abstract CT074: tumor mutational burden (TMB) as a biomarker

of survival in metastatic non-small cell lung cancer (mNSCLC):

blood and tissue TMB analysis from MYSTIC, a Phase III study

of first-line durvalumab ± tremelimumab vs chemotherapy. Cancer

Res. (2019) 79 (Suppl. 13):CT074. doi: 10.1158/1538-7445.AM2019-

CT074

32. Update on the Phase III NEPTUNE trial of Imfinzi plus tremelimumab

in Stage IV non-small cell lung cancer. Available online at: https://www.

astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-

iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-

cell-lung-cancer-21082019.html (citéd November 20, 2019).

33. Lui YYN, Chik K-W, Chiu RWK, Ho C-Y, Lam CWK, Lo YMD. Predominant

hematopoietic origin of cell-free DNA in plasma and serum after sex-

mismatched bone marrow transplantation. Clin Chem. (2002) 48:421–

7. doi: 10.1093/clinchem/48.3.421

34. Steensma DP. Clinical Implications of clonal hematopoiesis.

Mayo Clin Proc. (2018) 93:1122–30. doi: 10.1016/j.mayocp.2018.

04.002

35. Reinert T, Schøler LV, Thomsen R, Tobiasen H, Vang S,

Nordentoft I, et al. Analysis of circulating tumour DNA to monitor

disease burden following colorectal cancer surgery. Gut. (2016)

65:625–34. doi: 10.1136/gutjnl-2014-308859

36. DeMattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CKY, Nuciforo P, et al.

Capturing intra-tumor genetic heterogeneity by de novo mutation profiling

of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. (2014)

25:1729–35. doi: 10.1093/annonc/mdu239

37. Solinas C, Porcu M, Hlavata Z, De Silva P, Puzzoni M, Willard-Gallo K,

et al. Critical features and challenges associated with imaging in patients

undergoing cancer immunotherapy. Crit Rev Oncol Hematol. (2017) 120:13–

21. doi: 10.1016/j.critrevonc.2017.09.017

Conflict of Interest: AA has received research funding from Boehringer

Ingelheim, and has received compensation from Bristol-Myers Squibb,

AstraZeneca, Merck Sharpe & Dohme, Takeda, Pfizer, Roche and Boehringer

Ingelheim for participating on advisory boards.

AF has received compensation from Roche, Pfizer, Astellas and Bristol-Myers

Squibb for service as a consultant.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Friedlaender, Nouspikel, Christinat, Ho, McKee and Addeo. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Oncology | www.frontiersin.org 8 February 2020 | Volume 10 | Article 142114

https://doi.org/10.1073/pnas.1508736112
https://doi.org/10.1038/nmat4997
https://doi.org/10.1038/s41591-018-0134-3
https://doi.org/10.1158/1538-7445.AM2019-CT074
https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html
https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html
https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html
https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html
https://doi.org/10.1093/clinchem/48.3.421
https://doi.org/10.1016/j.mayocp.2018.04.002
https://doi.org/10.1136/gutjnl-2014-308859
https://doi.org/10.1093/annonc/mdu239
https://doi.org/10.1016/j.critrevonc.2017.09.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 21 February 2020

doi: 10.3389/fonc.2020.00181

Frontiers in Oncology | www.frontiersin.org 1 February 2020 | Volume 10 | Article 181

Edited by:

Christian Rolfo,

University of Maryland Medical

System, United States

Reviewed by:

Janaki Deepak,

University of Maryland, Baltimore,

United States

Guilin Qiao,

University of Illinois at Chicago,

United States

*Correspondence:

Xuejun Hu

huxuejun2015@126.com

Yibo Fan

fany_bo@hotmail.com

†These authors share first authorship

‡These authors share

senior authorship

Specialty section:

This article was submitted to

Thoracic Oncology,

a section of the journal

Frontiers in Oncology

Received: 05 August 2019

Accepted: 03 February 2020

Published: 21 February 2020

Citation:

Zhao H, Zheng C, Wang Y, Hou K,

Yang X, Cheng Y, Che X, Xie S,

Wang S, Zhang T, Kang J, Liu Y,

Pan D, Qu X, Hu X and Fan Y (2020)

miR-1323 Promotes Cell Migration in

Lung Adenocarcinoma by Targeting

Cbl-b and Is an Early Prognostic

Biomarker. Front. Oncol. 10:181.

doi: 10.3389/fonc.2020.00181

miR-1323 Promotes Cell Migration in
Lung Adenocarcinoma by Targeting
Cbl-b and Is an Early Prognostic
Biomarker
Huan Zhao 1,2†, Chunlei Zheng 3,4†, Yizhe Wang 1, Kezuo Hou 3,4, Xianghong Yang 5,

Yang Cheng 1, Xiaofang Che 3,4, Shilin Xie 1, Shuo Wang 3,4, Tieqiong Zhang 1, Jian Kang 6,

Yunpeng Liu 3,4, Dianzhu Pan 2, Xiujuan Qu 3,4, Xuejun Hu 1*‡ and Yibo Fan 3,4*‡

1Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang,

China, 2Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China, 3Department of

Medical Oncology, The First Hospital of China Medical University, Shenyang, China, 4 Key Laboratory of Anticancer Drugs
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Purpose: MicroRNAs are known to regulate cellular processes in non-small cell

lung cancer (NSCLC) cells and predict prognosis. However, identification of specific

microRNAs in NSCLC as potential therapeutic targets is controversial. We aim to

determine the clinical significance of miR-1323 in the prognosis of patients with lung

cancer and the potential mechanism.

Patients and methods: A bioinformatics approach was used to screen the importance

microRNA in NSCLC through the online GEO database (GSE42425). The relationship

between expression level of miR-1323 and overall survival of lung cancer patients

was analyzed. Additionally, an independent corhort including 53 NSCLC cases that

underwent resection validated the connection between miR-1323 and LUAD patients’

overall survival. Next, the function of miR-1323 was studied in vitro by transient

transfection. A more in-depth mechanism was studied through luciferase reporter

gene experiments.

Results: High miR-1323 expression correlated with poor survival in NSCLC patients

(P = 0.011), and in lung adenocarcinoma (LUAD) patients (P = 0.015) based on GEO

database (GSE42425). In the independent cohort based on our hospital, high miR-1323

expression was associated with LUAD patients (P = 0.025). Moreover, transfection

with mimics of miR-1323 showed an increased migratory capacity in LUAD A549 and

HCC827 cells. In addition, E3 ubiquitin-protein ligase Casitas B-lineage Lymphoma-b

(Cbl-b) was found to be the target genes of miR-1323 and significantly down regulated

after mimics of miR-1323 transfection, and high Cbl-b expression predicted better

prognosis in NSCLC and LUAD (P = 0.00072 and P = 0.02, respectively).

Conclusion: The miR-1323 promoted LUAD migration through inhibiting Cbl-b

expression. High miR-1323 expression predicted poor prognosis in LUAD patients.

Keywords: lung adenocarcinoma, miR-1323, CBLB, prognosis, biomarker
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INTRODUCTION

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-
related death and accounts for 80–85% of all lung cancer cases
(1). The prognosis of patients with NSCLC is very poor and hence
the majority of patients are diagnosed at an advanced stage owing
to the lack of cancer-specific symptoms. Although epidermal
growth factor receptor (EGFR) has emerged as a major target for
NSCLC therapy, almost all patients on this treatment inevitably
acquire drug resistance, but the prognosis of patients remains
poor (2). Therefore, identification of new targets in lung cancer is
urgently needed.

A previous study has shown that microRNAs are involved
in multiple aspects of lung cancer such as cell proliferation,
apoptosis, invasion, and EMT (3–6). Additionally, the survival
of lung cancer patients has been predicted by a series of
microRNAs such as miR-133b, miR-93-5p (7, 8). However,
specific microRNAs playing a significant prognostic role in
NSCLC are not determined.

Gene Expression Omnibus(GEO) Database (https://www.
ncbi.nlm.nih.gov/gds/) is a gene expression database created
and maintained by The National Center for Biotechnology
Information (9). It contains high-throughput gene expression
data submitted by research institutions around the world. Almost
all gene expression detection data involved in the studies can
be found in this database. Therefore, in this study, we used
the online GEO Database to screen and determine the role
of miR-1323 in predicting prognosis in lung cancer patients,
which makes great significance for early screening and diagnosis.
Previously study showed that knocking down of miR-1323 has
been shown to restore radiosensitivity in radiation-resistance
lung cancer cell (10). Besides, miR-1323 also suppressed the
expression of PRKDC and enhanced DNA repair. However,
whether miR-1323 is involved in regulating the prognosis of lung
cancer patients is not known. We determined the expression of
miR-1323 in lung cancer patients’ samples from GEO datasets
and frozen sections, and found that miR-1323 predicted poor
survival in LUAD, whose mechanismmight through promote the
migration ability of lung cancer cells in situ. Furthermore, we
found that the way for miR-1323 to regulate migration of LUAD
was by targeting Cbl-b and high Cbl-b expression predicted better
survival in NSCLC and LUAD patients.

MATERIALS AND METHODS

Patients and Tissue Collection
Primary LUAD tissues (n = 53) were obtained from NSCLC
patients with permission of Shengjing Hospital of China
Medical University (Shenyang, China) between December 2009
and 2010. All the patients underwent the surgery and were
histomorphology confirmed. The current study was examined
and approved by the Research Ethics Committee of Shengjing
Hospital of China Medical University.

Bioinformatics Analysis
GEO Database was used to screen vital prognostic marker
miRNA in early-stage lung adenocarcinoma. The search

terms include following key words: [(“lung neoplasms” OR
(“lung neoplasms” OR “lung cancer”)) AND [“mirnas” OR
(“micrornas” OR “MicroRNA”)] AND (“gene expression” OR
“expression”)] AND “stage.” Suitable gene set was selected for
subsequent analysis.

GEO2R, which is a online tool provided by official, allows
users to compare two or more groups of Samples in a GEO
Series and identify genes that are differentially expressed across
experimental conditions. We divided all samples into good
prognosis groups and poor prognosis groups according to
median survival time and use GEO2R to analysis differentially
expressed genes between two groups.

The corresponding clinical data were also acquired from the
GEO database. The expression value of miRNAs were collected
for each case and then divided into miR-1323 high expression
and miR-1323 low expression groups. Correlation of miR-1323
expression level and clinicopathologic parameters was evaluated
by Spearman assay. Kaplan-Meier analysis were performed to
do the survival analysis. The relationship between miR-1323
and clinical stges of LUAD patients was analyzed by OncomiR
database (11). MicroRNA target predictions were performed
by online databases based on different prediction methods,
including miRDB (12), miRWalk (13), Targetscan (14), starBase
(15). The annotation of predicted gene symbols was done by
DAVID Bioinformatics Resources 6.7 (16), Kaplan- Meier Plotter
(17) was used to screen the target mRNA related with prognosis
of LUAD.

RNA Isolation and Quantitative Real-Time
PCR
Total RNA was purifed from formalin-fixed, paraffin-embedded
tissue sections using miRNeasy FFPE Kit (Qiagen, USA) in
accordance with manufacturer’s protocol. RNA was quantified
and purified at absorbance of 260/280 nm using NanoDrop
spectrophotometer. cDNA was synthesized using the One
Step PrimeScript@ miRNA (Takara, Naha, Japan). miR-1323
quantifcation was done using SYBR@ Premix Ex TaqTM II
(Takara) Kit. qRT-PCR experiment was conducted in triplicates,
normalized to U6 Small nuclear RNA and performed on the
Applied Biosystems 7500 Thermocycler. Relative expression were
calculated based on 2-11Ct method.

Cells and Cell Culture
The human lung adenocarcinoma cell lines (A549 and HCC827)
were obtained from ATCC. The cells were cultured in an
humidified atmosphere with 95%air and 5%CO2 at 37◦C,and
supplemented with RPMI-1640 medium (Gibco, ThermoFisher,
Shanghai, China) with 10% heat-inactivated fetal bovine serum,
streptomycin (100 U/mL) and penicillin (100 U/mL). A549 and
HCC827 cells were split every 2–3 days at a concentration of
1.5∗105 and cells/ml.

Transient Transfection
Before Wound healing assays, Transwell assays, WB assays,
ELISA and Dual luciferase reporter assays, cells were transfected
with plasmids, miR-1323 mimics, or Cbl-b siRNAs at indicated
doses and times using jetPRIME R© (Polyplus Transfection,
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New York, USA) following the manufacturer’s instructions.
qRT-PCR and Western blot was performed to verify the
transfection effciency.

Western Blot
Protein expression were assessed through Western blot analysis.
Cell lysates were obtained using RIPA lysis [0.1%SDS, 1%Triton-
100, 1 mmol EDTA (pH 8.0), 150 mmol/L NaCl, 10 mmol/L Tris-
HCl (pH 7.5)] supplemented with protease inhibitors (100µg/ml
PMSF and 2µg/ml Aprotitin). The protein level was measured
by Coomassie brilliant blue method. Total protein extract was
separated by SDS-PAGE and electrophoretically transferred onto
a PVDF membrane. After blocking with 5% non-fat milk
in TTBS buffer, membranes were incubated with antibodies
[β-actin (1:1000, sc-47778, Santa Cruz Biotechnology), Cbl-b
(1:250, sc-8006, Santa Cruz Biotechnology), Cyclin E (1:1000, sc-
377100, Santa Cruz Biotechnology), Occludin (1:1000, 331500,
Life Technologies)] overnight at 4◦C. Membranes were then
incubated for 30min with secondary antibodies. Protein was
detected using an ECL reagent in the Electrophoresis Gel Imaging
analysis system.

Transwell
Transwell migration assays were performed to measure cell
migratory ability. 1.0 × 104 cells were seeded in the top chamber
of 24-well transwell plates, Medium supplemented with serum
in the lower chamber was used to attract the cells in the top
chamber which were suspended in medium without serum or
growth factors. After migration at 37◦C for 24 h, the non-
migratory cells were removed by cotton wool. The migratory
cells on the membrane were stained with 0.1% Giemsa stain
solution for 2 h and the cells were quantified by counting the
number of cells in randomly chosen 4 fields under microscope
at 200-fold magnification.

Wound Healing Assay
Migration of A549 and HCC827 cells was investigated by wound
healing assay. Viable cells were plated at 3 × 105 cells per well in
six-well culture plates using growth media containing 10% FBS.
After the cells were attached, cells were transfected with miR-
1323 mimic or Cbl-b siRNAs for 48 h. As the cells reached semi-
confluence, in vitro scratch wounds were created by scraping
the cell monolayers with a 1ml sterile pipette tip. After washing
away suspended cells, the cells were treated with normal growth
media containing lower concentration FBS, in order to eliminate
the effect of proliferation on results. Photomicrograph was taken
immediately (time 0 h) with an inverted microscope equipped
with a digital camera, and the wounded cultures were allowed
to grow for 24 h at 37◦C. At this time, another photomicrograph
was taken at the same position. Photos were randomly selected
per hole for comparative analysis. Migration was quantified
by counting cell numbers at the indicated distances from the
wound edge. Data shown are representative of minimum three
independent experiments.

ELISA
After treated A549 cells by transient transfection for 24 or 48 h,
the culture supernatants were collected and the number of cells
was counted. The levels of interleukin-6 (IL-6) were analyzed by
human IL-6 ELISA kit (Biolegend, San Diego,USA.) according
to the manufacturer’s protocol and the optical density (OD) was
measured at 450 nm with a microplate reader. Finally, IL-6 level
was adjusted by the total number of cells.

Dual Luciferase Reporter Assay
Dual luciferase reporter assay was performed according to
our previously study (18). We initially obtained the 3′-
UTR sequence of Cbl-b was obtained through gene synthesis
(OriGene, Rockville, MD, USA), and cloned into the vector
pMirTarget through two restriction enzyme cutting sites (SgfI-
MluI), resulting in the generation of SC209114. All reagents
and methods are provided by OriGene Technologies (OriGene,
Rockville, MD, USA). The sequencing results were compared
with the standard template sequences of the BLAST software
on the PUBMED and CHROMAS software to identify the gene
mutation loci. In order to generate the Cbl-b mutant reporter,
the seed region was mutated to remove all complementary
nucleotides to miR-1323. A549 cells were co-transfected with
firefly luciferase reporter plasmids (0.5 µg), pRL-TK luciferase
control vector (0.005 µg) and miR-1323 or NC (50 nmol)
in the 24-well plates. Luciferase assays were performed 24 h
after transfection, using the dual-luciferase reporter assay system
(Promega, Madison, WI, USA) according to the manufacturer’s
protocol (18).

Statistical Analysis and Graphing
Kaplan-Meier was performed to do survival analysis. X-tile
program was used to choose the optimal cutoff value. Sperarman
correlation analysis and Student’s t-test and was used to analyze
the comparisons between two miR-1323 expression levels and
clinicopathological characteristics of patients. P < 0.05 was
considered to be statistically significant. Statistical analyses were
performed using SPSS 18.0 software (SPSS, Inc., Chicago, IL)
and GraphPad Prism 7 (GraphPad, La Jolla, CA) were used for
statistical analysis.

RESULTS

miR-1323 Was High Expression in Early
NSCLC With Poor Prognosis
Previous studies on NSCLC implied the prognostic predictive
value of microRNAs, and microRNA targeting showed great
potential as a novel therapeutic strategy for NSCLC. In order
to explore the important roles of microRNAs playing in early
NSCLC, we initially searched for a group of data from the GEO
database (GSE42425), which included 71 NSCLC lung tissues of
stage I, and compared their microRNA expressions.

As shown in Figure 1, 363 miRNAs were found to be
differently expressed in patients with short overall survival than
in those with long overall survival according to the criteria of
fold change >1.2. Among these miRNAs, 168 showed higher
expression in NSCLC patients with poor prognosis, and 79
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FIGURE 1 | Screening process of vital microRNA of early NSCLC.

miRNAs were chosen as they were human-origin miRNA.
Afterwards, we searched the literature and screened out 65
miRNAs that had been identified their potential crucial roles
in tumors. Since we hoped to find the key miRNA that could
serve as clinical markers or targets for early diagnosis in NSCLC,
48 miRNAs were excluded owing to the weaker relationship
with cancer. Among the remaining 17 miRNAs, only six were
reported to be associated with lung cancer. During the process
of analysis of these six miRNAs, we surprisingly found that
they caused different effects to prognosis according to varies of
pathological types. Two miRNAs (miR-1323, miR-4796) might
be the alternative marker for LUAD (Figures 2A,B), while one
miRNA (miR-3935, Figure 2C) is pathological type non-specific
indication andthreemiRNAs (miR-411-3p, miR-1248, miR-4791)
have a clear indication for prognosis of lung squamous cell
carcinoma (LUSC, Figures 2D–F). Since miR-4796 was reported
that its low expression was associated with primary resistance
of EGFR-tyrosine kinase inhibitors (EGFR-TKIs), which is the
first-line treatment of LUAD. Furthermore, little literature had
concerned about it. Thus, we chose miR-1323 for further
experiments. The characteristics of the patients in GSE42425

are shown in Table 1. We found that there was no significant
association between the expression levels of miR-1323 and other
clinicopathological parameters except histological type, which
predicts that miR-1323 has important prognostic significance in
lung adenocarcinoma.

Validation the Effect of miR-1323 in an
Independent Cohort of LUAD Patients
In order to verify the prognosis predictive function of miR-1323
expression in LUAD, we selected 53 LUAD cases that underwent
resection at Shengjing Hospital of China Medical University
(Table 2). The cohort, analyzed for the effect of prognosis,
included 53 patients (30 men, 23 women) with a median age at
surgery of 59 years (range, 35–75 years). Of these, 37 (69.8%)
patients were at clinical stage I or II, and 16 (30.2%) were at
stage III. The median survival duration was 57 months. Using
surgically resected and paraffin sections from these cases, we
performed qRT-PCR, and found that the expression level of miR-
1323 in the paraffin sections ranged from 0.000085 to 0.056.
Using the X-tile program, we chose an optimal cut-off value to
divide the patients into two groups (miR-1323 low expression
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FIGURE 2 | KM survival curve and log-rank test for patients with six miRNAs high xpression in NSCLC, LUAD, and LUSC using GEO database. Using GSE42425

from GEO database, the expression of (A) miR-1323, (B) miR-4796-3p, (C) miR-3935, (D) miR-411-3p, (E) miR-1248, (F) miR-4791, and with OS in NSCLC, LUAD,

and LUSC.
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TABLE 1 | Characteristics of patients in GSE42425.

Characteristic Number miR-1323 expression P-value

High Low

Age, years 68 (46.0–

83.0)

0.614

Median (range)

≤68.0 36 (50.7) 23 (47.9) 13 (56.5)

>68.0 35 (49.3) 25 (52.1) 10 (43.5)

Gender, no. (%) 0.607

Male 34 (47.9) 24 (50.0) 10 (43.5)

Female 37 (52.1) 24 (50.0) 13 (56.5)

Histological type, no (%) 0.056

LUAD 41 (40.6) 24 (50.0) 17 (73.9)

LSCC 30 (39.1) 24 (50.0) 6 (26.1)

Race, no (%) 0.677

White 65 (91.5) 44 (91.7) 21 (91.3)

Black 4 (6.3) 2 (4.3) 2 (8.7)

Asian 1 (1.6) 1 (2.0) 0 (0.0)

American indian 1 (1.6) 1 (2.0) 0 (0.0)

History of smoking, no (%) 0.929

Never 8 (11.3) 5 (10.4) 3 (13.0)

Former 43 (60.6) 29 (60.4) 14 (60.8)

Current 20 (28.2) 14 (29.2) 6 (26.1)

Stage, no (%) 0.613

IA 38 (53.5) 27 (56.3) 11 (47.8)

IB 33 (46.5) 21 (43.7) 12 (52.2)

Status of recurrence of cancer 0.405

No 39 (54.9) 28 (58.3) 11 (47.8)

Yes 32 (45.1) 20 (41.7) 12 (52.2)

LUAD, lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; BAC,

bronchioloalveolar carcinoma; AS, adenosquamous carcinoma.

and miR-1323 high expression). Kaplan Meier survival analysis
results showed high miR-1323 expression was found to indicate
poor prognosis in LUAD (P = 0.0253, Figure 3A). In detail,
higher expression of miR-1323 was associated with shorter
overall survival (OS) in NSCLC and LUAD. These suggest that
miR-1323 would like to be used as a specific early prognostic
marker for LUAD to guide clinical treatment.

Cox univariate and multivariate regression analysis was
performed on the prognostic value of pathological parameters
such as age, gender, T stage, N stage, M stage, and miR-1323
expression using the above data. Univariate analysis showed
that T-stage, N-stage, and miR-1323 expression levels were
prognostic factors for lung adenocarcinoma (P < 0.1, Table 3).
Further applying of Cox regression model, further multivariate
analysis of factors with P < 0.1 in univariate analysis showed
that N-stage and miR-1323 expression in tumor patients were
independent prognostic factors for lung adenocarcinoma. These
results suggest that miR-1323 is an independent risk factor
for the prognosis of lung adenocarcinoma.These data further
vertified the important role of mir-1323 in guiding prognosis for
LUAD patients.

TABLE 2 | Correlation of clinical features of NSCLC samples with miR-1323

expression levels of NSCLC cases.

Characteristic Number miR-1323 expression P

High

expression

Low

expression

Age, years, no. (%) 0.884

Median (range) 59.0

(35.0–75.0)

≤59.0 27 (50.9) 13 (52.0) 14 (50.0)

>59.0 26 (49.1) 12 (48.0) 14 (50.0)

Gender, no. (%) 0.033*

Male 30 (56.6) 12 (42.9) 18 (72.0)

Female 23 (43.4) 16 (57.1) 7 (28.0)

EGFR mutant state, no. (%) 0.674

19-Del 15 (28.3) 7 (25.0) 8 (32.0)

L858R 18 (34.0) 11 (39.3) 7 (28.0)

Unknown 20 (37.7) 10 (35.7) 10 (40.0)

Depth of invasion, no (%) 0.471

T1+T2 47 (88.7) 24 (85.7) 23 (92.0)

T3+T4 6 (11.3) 4 (14.3) 2 (8.0)

Lymph node status, no (%) 0.442

N0–1 31 (58.5) 15 (53.6) 16 (64.0)

N2–3 22 (41.5) 13 (46.4) 9 (36.0)

TNM Stage, no (%) 0.354

I+II 37 (69.8) 18 (64.3) 19 (76.0)

III 16 (30.2) 10 (35.7) 6 (24.0)

**p < 0.05.

LUAD, lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; BAC,

bronchioloalveolar carcinoma; AS, adenosquamous carcinoma.

miR-1323 Promotes Migration of A549 and
HCC827 Cells
Considering that mir-1323 has such a conductive effect on
the prognosis of LUAD patients, we wonder that how it
participates in regulating biological behavior and if it could
be a novel target for clinical treatment. OncomiR, an online
resource for exploring miRNA dysregulation in cancer, indicated
that mir-1323 expression was correlated with pathologic M
Status and N status (Figure 3E). Considering the Kaplan–Meier
survival analysis showed that LUAD patients with high miR-
1323 expression had shorter overall survival shown in Figure 2,
we speculated higher miR-1323 expression might imply higher
migration ability for LUAD. In order to investigate the effect of
miR-1323 on LUAD, lung cancer cell lines A549 and HCC827
were transfected with an miR-1323 mimics or a negative control
(NC) for 24 h (Figure 4A). The experimental results of both
transwell assays and wound healing assays showed that miR-
1323 significantly increased the migration of A549 cells and
HCC827 cells post-transfection compared to the negative control
groups (Figures 4B–E), which indicated the way of miR-1323
leading poor prognosis of LUAD patients was by promoting
tumor cell metastasis.
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FIGURE 3 | KM survival curve and pathological stage for miR-1323 expression in LUAD cases. (A) KM survival curve of OS for 54 LUAD cases. (B) Pathological

stage, (C) T stage, (D) N stage of 54 LUAD cases. (E) The relation between clinical parameters in LUAD and hsa-miR-1323 by ONCOMIR.

TABLE 3 | Univariate and multivariate analysis of the influence of clinicopathological features on prognosis in lung adenocarcinoma.

Variables Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age (years) 0.985 0.941–1.032 0.530

Gender (male vs. female) 1.548 0.580–4.126 0.383

T staging 2.560 0.840–7.803 0.098*

N staging 2.595 1.005–6.701 0.049** 2.541 0.983–6.567 0.054*

EGFR mutant state 1.044 0.732–1.489 0.811

mir-1323 2.937 1.045–8.255 0.041** 2.881 1.024–8.108 0.045**

**p < 0.05, *p < 0.1.
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FIGURE 4 | Overexpression of miR-1323 significantly promotes the migration of A549 cells and HCC827 cells. (A) A549 cells and HCC827 cells were transfected

with miR-1323 mimics or NC. (B) qRT-PCR was used to confirm the overexpression efficiency of miR-1323 mimics. (C,D) Transwell assays and (E) wound healing

assays was to detect the migration of A549 cells and HCC827 cells. t-test was used to assess statistically signifificant differences between groups.Mean ± SD, results

of three independent experiments, **p < 0.01, ****p < 0.0001.

Cbl-b Is the Target of miR-1323 in NSCLC
and Related With Patients’ Prognosis
To examine the mechanisms through which miR-1323 exerts its
lung cancer-promoting effects, we used bioinformatic algorithms
(Figure 5A) and identified 251 potential target genes of miR-
1323, among which only four genes are common tumor-
associated genes related with prognosis of patients with
lung adenocarcinoma in the Kaplan- Meier Plotter database
(P < 0.05). After miR-1323 overexpression in A549 cells, only
the protein expression level of Cbl-b was obviously suppressed

among these candidates (Figure 5B). The level of IL-6 was

generally measured by ELISA (Figure 5C). Since the expression

level of IL-6 was negatively correlated with miR-1323 mimics in
a time-dependent manner in A549 cells, which is inconsistent
with the fact that IL-6 promotes inflammation and promotes
cancer as it was reported, it wouldn’t be considered as the
main target gene of miR-1323 in the development of lung

adenocarcinoma. Additionally, using computational algorithms,
we identified that the 3′UTR of Cbl-b mRNA contains a
complementary binding site for the miR-1323 seed region
(Figure 5D). We also performed 3′UTR luciferase reporter
assays to validate whether miR-1323 directly targets Cbl-b.
Cotransfection of miR-1323 with the wild type 3′UTR of Cbl-
b significantly repressed the relative luciferase (P < 0.05), and
cotransfection of miR-1323 with the mutated 3′UTR of Cbl-b has
no effects (P = 0.100), suggesting that miR-1323 targets Cbl-b
directly (Figure 5E). These results indicate that Cbl-b is a target
gene of miR-1323.

miR-1323 Promotes the Migration of
NSCLC Cells Through Inhibiting Cbl-b
To investigate the detailed relationship between miR-1323 and
Cbl-b and the effect of Cbl-b on the migration in NSCLC cells,
we further transfect Cbl-b siRNA and a negtive control in A549
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FIGURE 5 | miR-1323 can promotes the migration of A549 cells through inhibiting Cbl-b. (A) A schematic view of miR-1323 predicted target genes through four

miRNA databases of different mechanisms. The A549 cells were transfected with miR-1323 mimic or NC, (B) WB detected the expression of proteins and (C) Elisa

detected the secretory level of IL-6 in A549 cells. (D) The bindng site of miR-1323 to Cbl-b 3′UTR. (E) The A549 cells were co-transfected with pMirTarget-Cbl-b WT

(or MUT) plasmid, miR-1323 mimic (or NC), and pRL-TK. The dual luciferase reporter assay detected the activity of luciferase. The histogram shows the relative

activity of luciferase. t-test was used to assess statistically signifificant differences between groups.Mean ± SD, results of three independent experiments, *p < 0.05.

FIGURE 6 | Decreasing the expression of Cbl-b increases the migration ability of A549 cells. A549 cells were transfected with Cbl-b siRNA or NC, (A) WB detected

the expression of Cbl-b in A549 cells. (B,C) Wound healing assays and (D,E) transwell assays showed the migration ability of A549 cells. t-test was used to assess

statistically signifificant differences between groups.Mean ± SD, results of three independent experiments, *p < 0.05, ****p < 0.0001.

and HCC827 cells. The transfection efficiency was ensured by
western blot analysis (Figure 6A). Treatment with Cbl-b siRNA
significantly promoted the cell migration when compared to that
with the negtive control in both A549 cells (Figures 6B–E). These

results emphasize miR-1323 inhibits the expression of Cbl-b and
promotes the metastasis of tumor cells, leading to poor prognosis
in patients with early LUAD. Besides, we used the Kaplan-Meier
plotter and found that Cbl-b overexpression was associated with
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FIGURE 7 | KM survival curve and log-rank test for patients with Cbl-b high or low expression in different pathological types of NSCLC and LUAD at Stage I, Stage II,

Stage III. Online Kaplan Meier plotter Database was used to analysis. (A) KM survival curve of Cbl-b in non-small cell lung cancer (NSCLC), lung adenocarcinoma

(LUAD), lung squamous carcinoma (LUSC). (B) KM survival curve of Cbl-b in different pathological stage in LUAD.

a long overall survival time in NSCLC (P = 0.00072) and in
LUAD (P= 0.02,), but there is not significant differences in LUSC
(Figure 7). Additionally, high Cbl-b expression was significantly
associated with better prognosis in stage I (P= 0.00031), whereas
there was no significant association in stage II and III (P = 0.07
and P = 0.65, Figure 7). To summarize, Cbl-b, whose low
expression indicates poor prognosis in stage I, is the target of
miR-1323 of NSCLC patients and the correlation between Cbl-b
and prognosis depends on histological type and clinical stage.

DISCUSSION

Previous studies have shown that microRNAs participate in

lung cancer development and progression, and may be potential
prognostic biomarkers for lung cancer (19, 20). In this study,
miR-1323 was selected through an online database, and was
found to predict the survival of lung cancer patients. We
validated miR-1323 in an independent cohort and demonstrated

that high miR-1323 expression predicted poor survival in LUAD.
Mechanistically, miR-1323 promoted the migration of lung
cancer cells by targeting Cbl-b.

It is well-known that microRNAs are involved in multiple
biological processes such as cell differentiation, proliferation,
apoptosis, EMT, and cell migration, through targeting gene
expression (21–23). Previously, a study has shown that miR-1323
promoted radiation-resistant lung cancer cells (10). However,
the effect of miR-1323 in LUAD is unknown. In the present
study, we examined the expression of miR-1323 in 53 LUAD, and
found that its high expression predicted poor survival in LUAD
(P = 0.0253). It is worth noting that the data from the GEO
database (GSE42425) came from different populations, including
the Whites, Blacks, Asians, and American Indians, but mainly
the Whites. The patients’ sample data from our results is mainly
the Asians. However, both cohorts show that the expression of
miR-1323 affects the prognosis of patients with LUAD. These
results validated miR-1323 as a potential prognostic marker in
LUAD patients.
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The executive effect of miR-1323 in LUAD is still unknown.
In the present study, we found that miR-1323 promoted cell
migration in LUAD cell lines A549 and HCC827. A previous
study has shown that PRKDC was the target gene of miR-1323,
which was involved in radiation resistance.In the present study,
we used bioinformatics tools to predict the potential target genes
of miR-1323 and found Cbl-b as a potential target gene, which
was validated by the dual luciferase reporter gene assay. Cbl-b was
found to be a direct target gene of miR-1323. Cbl-b is the second
member of the c-Cbl RING finger E3 ubiquitin protein ligases. It
targets tyrosine-kinase receptors and growth signaling proteins
for ubiquitination and down regulation (24–26). Our previous
studies demonstrated that Cbl-b inhibited migration of gastric
cancer and breast cancer cell (27, 28). However, whether Cbl-b
is involved in the migration of lung cancer cells was unknown.
In the present study, we first demonstrated Cbl-b was the target
gene of miR-1323, and inhibited the migration of A549 cells.
Additionally, analysis of an online database showed that Cbl-b
is associated with the survival of LUAD patients in stage I.

In conclusion, our present study highlights the important
significance of miR-1323 in predicting the poor survival in early
LUAD and regulating of lung adenocarcinoma cells metastasis
by targeting Cbl-b. We provide a potential early diagnosis
biomarker for lung adenocarcinoma, which could help lung
cancer patients development effective and appropriate strategies
as early as possible when transferred into clinical practice.
However, the mechanism of miR-1323 needs to be further
explored. Our team will devote ourselves to in-depth research
based on present results.
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Immune checkpoint blockade (ICB) therapies that target programmed cell death 1 (PD1)

and PD1 ligand 1 (PDL1) have demonstrated promising benefits in lung adenocarcinoma

(LUAD), and tumor mutational burden (TMB) is the most robust biomarker associated

with the efficacy of PD-1-PD-L1 axis blockade in LUAD, but the assessment of TMB

by whole-exome sequencing (WES) is rather expensive and time-consuming. Although

targeted panel sequencing has been developed and approved by the US Food and

Drug Administration (FDA) to estimate TMB, we found that its predictive accuracy

for ICB response was significantly lower than WES in LUAD. Given that previous

studies were mainly focusing on genomic variations to explore surrogate biomarkers

of TMB, we turned to examine the transcriptome-based correlation with TMB in this

study. Combining three immunotherapeutic cohorts with two independent The Cancer

Genome Atlas (TCGA) datasets, we revealed that the expression of mutS homolog

2 (MSH2), one of the most crucial genes involved in DNA mismatch repair (MMR)

pathway, was the strongest feature associated with increased TMB in multivariate

analysis. Furthermore,MSH2 expression also displayed a significantly positive correlation

with smoking signature while an inverse association with MMR deficiency (MMRd)

signature in LUAD. More importantly, high expression of MSH2 markedly correlated

with increased PD-L1 expression and CD8+ T cell infiltration, both suggesting a

prominent immunotherapy-responsive microenvironment in LUAD. Notably, detecting

MSH2 expression is much easier, faster, and cheaper than TMB in clinical practice. Taken

together, this study demonstrates the association ofMSH2 expression with TMB and the

immune microenvironment in LUAD.MSH2 expression may be developed as a potential

surrogate biomarker of TMB to identify ICB responders in LUAD.
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INTRODUCTION

Recent clinical trials with immune checkpoint blockade (ICB)
therapies have demonstrated durable clinical responses in
patients with non-small cell lung cancer (NSCLC), but only a
minority of patients respond (1–3). The combination of ICB
therapies can improve response rates but also result in more
severe adverse effects than single-agent therapy (4). Previous
studies have reported that tumor mutational burden (TMB) (1–
3, 5–7), programmed death-ligand 1 (PD-L1) expression (5, 8),
CD8+ T cell infiltration (1, 9, 10), and DNA mismatch repair
deficiency (MMRd) (5, 11) could affect the efficacy of PD-1
blockade immunotherapy (5, 12, 13). However, only TMB and
PD-L1 expression are validated as predictive biomarkers for
ICB response in phase III clinical trials across multiple cancer
types (5, 7).

Currently, TMB performs much better than other biomarkers
for predicting ICB response in NSCLC (1–3). High TMB can
potentially generate higher immunogenic neoantigens presented
on the tumor cell surface and then facilitate immune recognition
of tumor cells as foreign (1, 2, 7). However, the assessment of
TMB is expensive and time-consuming (6, 14). Alternatively,
PD-L1 expression assessed by immunohistochemistry (IHC) is
much cheaper and timelier to select candidates for ICB therapies,
but many patients whose tumors are PD-L1-positive do not
respond (1). Additionally, the localization (on tumor-infiltrating
immune cells or tumor cells) and positivity threshold of PD-
L1 expression for predicting ICB efficacy are still undetermined,
which may affect its clinical application (1, 5, 6, 8, 15). Therefore,
we hypothesized that other factors, which highly correlated with
increased TMB and were as convenient as PD-L1 expression to
be detected, might also be developed as potential biomarkers to
predict ICB response in NSCLC.

To test our hypothesis, we recruited three well-studiedNSCLC
immunotherapeutic cohorts (1–3) and one multidimensional
non-immunotherapeutic The Cancer Genome Atlas (TCGA)
dataset. As previous studies reported (2, 10, 16–19), TCGA
samples without ICB therapies are still informative to explore
tumor immune escape and can also derive surrogate biomarkers
for ICB therapies. Combining these four cohorts, we revealed that
MSH2 expression was the most robust feature associated with
increased TMB and smoking signature in multivariate analysis
and might be developed as a potential surrogate biomarker of
TMB for identifying ICB responders in lung adenocarcinoma
(LUAD), one of the commonest types of NSCLC (20, 21).

MATERIALS AND METHODS

Clinical Immunotherapeutic Patients
Given the intratumoral heterogeneity across different cancer
subtypes, it is more reliable to discover the specific determinants
for ICB efficacy within the same cancer subtype (5), so we
only focused on the LUAD subtype according to its dominating
proportion in previous NSCLC immunotherapeutic cohorts (1–
3). We collected three LUAD cohorts containing both clinical
and genomic characteristics, which were initially reported in
Science (1), Journal of Clinical Oncology (JCO) (3), and Cancer

Cell (2) journals. For the Science-LUAD cohort, it contained 29
LUAD patients treated with PD-1 blockade (pembrolizumab)
(1). For the Cancer Cell-LUAD cohort, it involved 59 LUAD
patients treated with PD-1 plus CTLA-4 blockade (nivolumab
plus ipilimumab) (2). For the JCO-LUAD cohort, it contained 186
LUAD patients who had received anti-PD-(L)1 monotherapy or
in combination with anti-CTLA-4 (3).

TCGA-LUAD Datasets Without
Immunotherapy
Non-immunotherapeutic TCGA-LUAD datasets were extracted
from the UCSC Xena multi-omics database platform (22)
(https://tcga.xenahubs.net), including somatic mutation (n =

543) and RNA-seq expression (n = 576) profiles. We first
removed adjacent normal samples fromRNA-seq expression data
and then only analyzed those LUAD samples that had both
genomic and transcriptomic profiles (n= 478).

Tumor Mutational Burden (TMB) Estimates
TMB was defined as the number of somatic non-synonymous
single nucleotide variants. Raw somatic mutation data in
three immunotherapeutic cohorts were extracted from the
respective Supplementary Materials (1–3). Mutation profiles
were assessed by whole-exome sequencing (WES) on the
Illumina platform in Science-LUAD (1) and Cancer Cell-LUAD
(2) cohorts while determined by MSK-IMPACT targeted
panel sequencing on specific cancer-associated genes in JCO-
LUAD (3) cohort. The detailed methodology for generating
mutation calls has previously been described (1–3). For the
TCGA-LUAD dataset, somatic mutation data were retrieved
from the UCSC Xena multi-omics database platform (https://
xenabrowser.net/datapages/?dataset=TCGA.LUAD.sampleMap
%2Fmutation_broad&host=https%3A%2F%2Ftcga.xenahubs.
net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443) and preprocessed at the Broad Institute Genome
Sequencing Center (22). WES data were generated on the
Illumina platform. Mutation calls were calculated using the
MuTect method (23), and only calls with variant allele frequency
(VAF) >4.0% were included (22). The R package “maftools”
(24) was then used to calculate the total number of somatic
non-synonymous point mutations within each sample.

RNA-seq and Gene Set Enrichment
Analysis (GSEA)
For three immunotherapeutic cohorts, RNA-seq data were
not available. For TCGA-LUAD datasets, RNA-seq data were
assessed using the Illumina RNA sequencing platform. We
downloaded the level 4 gene expression data from the UCSC
Xena platform (22). The pre-processing and quality control
of expression data have previously been described (22). The
unit of mRNA expression value is pan-cancer normalized
log2 (norm_count+1).

For pathway enrichment analysis, we used MSigDB
(Molecular Signatures Database) of KEGG gene sets (25) to
enrich the significant pathways, which were determined by a list
of genes that highly correlated with increased TMB (Table S2;
AUC > 0.65, P < 0.0001). For the enriched results, a P > 0.05
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was considered statistically significant. We also recruited another
tool, GSEA software (http://software.broadinstitute.org/gsea/
index.jsp) (25), to confirm the pathway we enriched. GSEA
integrates the expression data with phenotypes’ information
to determine whether a gene set significantly correlates with
a defined phenotype. The normalized enrichment score
(NES) and the nominal P-value are two primary statistics
to examine the GSEA results. The ranking metric score is
used to measure the correlation of a gene with a phenotype,
with a positive value indicating a correlation with the first
phenotype and a negative value indicating a correlation with
the second.

Mutational Signature Analysis
We used the “SignatureAnalyzer” R package (26, 27) to calculate
the percentage of mutation signature within each tumor sample.
“SignatureAnalyzer” can capture the non-negative matrix
factorization algorithm (NMF) to decipher mutation signatures
within cancer genomes, and then it automatically calculates
the optimal number of mutation signatures (W) and the
fraction of mutation signature in an individual sample. Mutation
Annotation Format (MAF) files are available in the TCGA-LUAD
dataset (http://gdac.broadinstitute.org/) and necessary for this
analysis. The detailed method of mutation signature analysis
has been described (https://software.broadinstitute.org/cancer/
cga/msp).

Immune Cellular Infiltration Estimates
The abundance of tumor-infiltrating immune cells (CD8+ T
cells, T-regulatory cells, and macrophages) in LUAD samples was
assessed using the CIBERSORT algorithm (28). CIBERSORT
is an influential deconvolution method that uses support
vector regression to quantify the cellular components from
bulk tissue gene expression profiles. Based on gene expression
data, CIBERSORT can accurately estimate the immune
composition within a given tumor sample. We extracted
the relative proportion of immune cells of TCGA-LUAD
samples from the Pan-Cancer Atlas (https://www.cell.com/pb-
assets/consortium/PanCancerAtlas/PanCani3/index.html) (18)
and then compared them according to the indicated MSH2
expression status.

Statistical Analyses
Statistical analyses were performed using R software (version
3.5.2) and GraphPad Prism software (version 7.0.0). Student’s
t-test or Mann-Whitney U test was used to determine the
differences between two groups. Kruskal-Wallis test was
used to determine the differences among three or more
groups. We used ROC curves with the highest Youden
index to determine the optimum cut-off of TMB and
MSH2 expression.

The proportion of gene mutation was compared using
Fisher’s exact test. Pairwise correlations were calculated using the
Spearman correlation formula. Multivariate logistic and linear
regression models were conducted to assess the impact of gene
expression on TMB, adjusting for other covariates described. All
reported p-values were two-sided.

RESULTS

Clinical and Genomic Characteristics of
Selected Cohorts
We retrieved many previous studies and cancer databases,
only collecting four high-quality LUAD datasets that contained
both clinical and genomic information: 29 LUAD patients
treated with anti-PD-1 therapy (Science-LUAD) (1), 59
LUAD patients treated with PD-1 plus CTLA-4 blockade
(Cancer Cell-LUAD) (2), 186 LUAD patients treated with
anti-PD-1/PD-L1 therapies or in combination with anti-
CTLA-4 therapy (JCO-LUAD) (3), and 478 LUAD patients
without immunotherapy (TCGA-LUAD) (Figure 1; Table S1).
Pre-therapy tissues from LUAD patients were assessed by
whole-exome sequencing (WES) in Science-LUAD, Cancer
Cell-LUAD, and TCGA-LUAD cohorts while targeted panel
sequencing (MSK-IMPACT panel, covering specific cancer-
related genes) in JCO-LUAD dataset (Figure 1; Table S1).
Since TCGA-LUAD datasets had more samples than the
other three cohorts, we randomly divided it into two
independent cohorts to further validate our hypothesis
(Discovery-LUAD and Validation-LUAD, respectively) (Figure 1;
Table S1).

TMB was defined as the total number of somatic non-
synonymous point mutations. Except for the JCO-LUAD cohort
[median six and interquartile range (IQR) 3-11] assessed
by targeted panel sequencing, the quantity and range of
TMB in TCGA-LUAD (median 178 and IQR 80-326 in the
Discovery-LUAD cohort; median 167 and IQR 68-313 in the
Validation-LUAD cohort) were similar to that in Science-
LUAD (median 201 and IQR 109-302) and Cancer Cell-
LUAD (median 143 and IQR 40-296) cohorts (Figure 2A),
suggesting the homogeneity of these cohorts as previously
reported (1, 2).

WES Outperformed Targeted Panel
Sequencing for Assessing TMB as an ICB
Biomarker
Previous studies reported that TMB assessed by WES or
targeted panel sequencing was significantly associated with
improved efficacy of ICB therapies in LUAD (1–3). Moreover,
the assessment of TMB by targeted panel sequencing also
highly correlated with WES (r = 0.86, P < 0.001) (3).
However, using receiver operator characteristic (ROC)
curves as previously suggested (1–3, 16), we found that
WES-based TMB achieved consistently better performance
than targeted panel sequencing for predicting ICB response
in LUAD (Figure 2B; AUC = 0.82 (Science-LUAD), 0.80
(Cancer Cell-LUAD), and 0.60 (JCO-LUAD), respectively).
Additionally, TMB assessed by WES [Figure 2B; AUC
= 0.82 (Science-LUAD); and 0.80 (Cancer Cell-LUAD),
respectively] also performed better than PD-L1 expression
detected by IHC for predicting ICB response in LUAD
[Figure S1A; AUC = 0.61 (Cancer Cell-LUAD); and 0.69
(JCO-LUAD), respectively].
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FIGURE 1 | Flowchart of four selected clinical cohorts for statistical analysis. NSCLC, non–small cell lung cancer; WES, Whole-Exome Sequencing; LUAD, lung

adenocarcinoma; PD-1, programmed cell death-1; CTLA-4, cytotoxic T lymphocyte antigen-4; MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling

of Actionable Cancer Targets; TCGA, The Cancer Genome Atlas; ICB, immune checkpoint blockade.

FIGURE 2 | WES outperformed targeting-sequencing for assessing TMB as an ICB biomarker. (A) Quantitative analysis of TMB between TCGA- LUAD and the other

three published LUAD cohorts for immunotherapy. (B) Receiver operating characteristic (ROC) curves for the correlation of TMB with clinical response to ICB therapies

in the three cohorts. AUC, area under a ROC curve; Cutpoint, the Youden index-associated cutoff value of TMB. (C) Samples in the Discovery-LUAD cohort were

stratified into two groups based on the Youden index-associated cutpoint of TMB from the Science-LUAD cohort. TMB-High: ≥166.5; TMB-Low: <166.5. ****P <

0.0001, ns, non significant.

MSH2 Expression Significantly Correlated
With Increased TMB and Performed Better
Than PD-L1 on Predicting TMB in LUAD
Given that transcriptomic data in three immunotherapeutic
cohorts were not available, we turned to use multidimensional
TCGA-LUAD datasets, which contained both genomic and
transcriptomic features, to further explore the potential
determinants associated with increased TMB in LUAD.

To demonstrate the potential clinical usefulness of TMB for
predicting ICB response in LUAD, the Youden index was used

to choose the optimum cut point of TMB (16, 29). The index-

associated cut point of TMB in Science-LUAD was very close
to that in the Cancer Cell-LUAD cohort (Figure 2B; TMB =

166.5 and 186, respectively), which was also very approximate

to a previous report in NSCLC (TMB = 178) (1). Given that

Science-LUAD cohort was only treated with PD-1 blockade and

Frontiers in Oncology | www.frontiersin.org 4 February 2020 | Volume 10 | Article 168130

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jia et al. MSH2 Expression and Increased TMB

FIGURE 3 | MSH2 expression highly correlated with increased TMB and performed better than PD-L1 on predicting TMB in the Discovery-LUAD cohort. (A) Volcano

plot of AUC and rank sum P-values demonstrating the positive correlation of transcriptomic features with increased TMB in the Discovery-LUAD cohort. AUC, area

under a ROC curve. (B) Pathway enrichment analysis of genes whose expression significantly and positively associated with increased TMB (AUC > 0.65, P <

0.0001), with P > 0.05 considered statistically significant. (C) Quantitative analysis of PD-L1, MSH2, and MSH6 mRNA expression in two groups according to

indicated TMB status. (D) ROC curves for the association of PD-L1, MSH2, and MSH6 mRNA expression with TMB status. ALL1: the combination of PD-L1, MSH2,

and MSH6 mRNA expression. ****P < 0.0001, **P < 0.01.

performed better than Cancer Cell-LUAD cohort on predicting
ICB efficacy (Figure 2B; AUC = 0.82 and 0.80, respectively),
we stratified the Discovery-LUAD cohort into two groups based
on the TMB cutoff from Science-LUAD cohort (Figure 2C; TMB
= 166.5).

According to the above TMB-defined groups in theDiscovery-
LUAD cohort, we performed the ROC test to all genes,
examining the association of TMB with all transcriptomic
features (Figure 3A). A list of genes, which highly and positively
correlated with increased TMB (AUC > 0.65, P < 0.0001),
were significantly enriched in the mismatch repair (MMR)
pathway (Figures 3A,B; Tables S2, S3), consistent with the result

of gene set enrichment analysis (GSEA) (Figure S2A). Notably,
MSH2 and MSH6 are two key cancer-related MMR genes
and were as similar as PD-L1 expression significantly up-
regulated in patients with high TMB in Discovery-LUAD cohort

(Figures 3A–C; Table S3). These results could be reasonably
speculated that patients with high TMB would potentially
accelerate the expression of MMR-related genes to repair the
impaired genome.

Additionally, we also examined the impact of MSH2 and
MSH6 expression on TMB in the context of PD-L1 expression.

There were moderate correlations of TMBwithMSH2 andMSH6
expression (Figure S3A; r = 0.46 and 0.39, respectively) while no
significant association with PD-L1 expression (Figure S3A; r =
0.13). In multivariate analysis incorporating MSH2, MSH6, and
PD-L1 expression, MSH2 expression was the most robust gene
associated with increased TMB in the Discovery-LUAD cohort
(Figure 3D; Figures S3B,C). Of note, the ROC test incorporating
MSH2, MSH6, and PD-L1 expression did not significantly
improve the predictive ability for TMB compared with MSH2
expression alone [Figure 3D; AUC = 0.74 (MSH2) and 0.76
(ALL1), respectively].

MSH2 Expression Outperformed Other
MMR-Related Genes for Predicting TMB in
LUAD
The MMR pathway is crucial for maintaining genomic integrity,
and the deficiency of MMR (MMRd) is also highly sensitive to
ICB therapies (11, 30). The potential mechanism is that tumors
with MMRd can result in microsatellite instability (MSI) and are
a specific subset of high TMB tumors (5). However, in LUAD, the
positivity rate of MMRd/MSI assessed by genomic variations is
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FIGURE 4 | MSH2 expression outperformed other MMR-related genes for predicting TMB in the Discovery-LUAD cohort. (A,B) Quantitative analysis of PMS2 and

MLH1 mRNA expression in two groups based on TMB status. (C) Pairwise correlations between TMB and four MMR-related gene expression. Cross indicated no

significant correlation (P > 0.05); r: Spearman correlation coefficient. (D) ROC curves for the association of MSH2, MSH6, PMS2, and MLH1 mRNA expression with

TMB status. ALL2: the combination of MSH2, MSH6, PMS2, and MLH1 mRNA expression. (E,F) Forest plots for univariate and multivariate logistic or linear analysis

of TMB with indicated gene expression. Of note, MSH6 expression was not analyzed in multivariate regression model given its tight correlation with MSH2 expression.

OR, odds ratio. ns, not significant.

<1% and much lower than the objective response rate to PD-
1 blockade in unselected patients (13, 19, 30–33). Given that
previous studies were mainly focusing on genomic variations
to explore the MMRd mechanism in LUAD (13, 33) and our
data showed that MSH2 expression was strongly associated with
increased TMB in Discovery-LUAD cohort (Figure 3; Figure S3),
we further examined the transcriptome-based MMRd status in
LUAD patients with high TMB.

MSH2, MSH6, PMS2, and MLH1 are four genes that play a
critical role in DNA MMR (13, 30). Four proteins codified by
these genes function in heterodimer pairs (MSH2-MSH6 and
MLH1-PMS2) to preserve genomic integrity (13, 30). In clinical
practice, the inactivation of one of the four genes detected by
next-generation sequencing (NGS) or IHC suggests an MMRd
mechanism within a tumor (13, 30). However, MSH2 and MLH1
are obligatory partners for forming the two heterodimers, while
MSH6 and PMS2 can be replaced by other MMR proteins,
such as MSH3, PMS1, and MLH3 (13, 30). We observed that
MSH2 was significantly mutated in patients with high TMB,
but it only accounted for 5.7% of high TMB tumors in LUAD
(Figures S4A–D). In addition, except for the other two MMR
genes, MLH1 and PMS2 were not significantly up-regulated
in patients with high TMB (Figures 3C, 4A,B), suggesting a
low abundance of MLH1-PMS2 heterodimers existed in high
TMB tumors. Furthermore, MSH2 whose expression displayed

the strongest correlation with increased TMB than the other
three MMR genes (Figure 4C), and the ROC test incorporating
MSH2,MSH6, PMS2, andMLH1 expression did not significantly
improve the predictive ability for TMB compared with MSH2
expression alone [Figure 4D; AUC = 0.74 (MSH2); and 0.75
(ALL2), respectively].

Interestingly, using both multivariate logistic and linear
regression analysis, we revealed that TMB displayed a
significantly positive association with MSH2 expression
while an inverse correlation with MLH1 expression in
Discovery-LUAD cohort (Figures 4E,F). Furthermore, GSEA
incorporating all MMR-related genes also confirmed these
findings (Figures S2B,C). These results suggested that down-
regulated MLH1 expression in patients with high TMB might
result in the dysfunction of the MMR machinery and then
potentially facilitate the accumulation of mutations in LUAD.

To further consolidate and extend our findings, we performed
two additional analyses. First, we used multivariate regression
analysis to demonstrate thatMSH2 expression was independently
associated with increased TMB, with adjustment for patients’
sex, age, and pack-year (smoking index) in the Discovery-LUAD
cohort (Figures S5A,B). Second, we validated the hypothesis that
MSH2 expression was the strongest determinant associated with
increased TMB in another independent Validation-LUAD cohort
(Figures 5A–D).
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FIGURE 5 | MSH2 expression outperformed other indicated genes for predicting TMB in the Validation-LUAD cohort. (A) Pairwise correlations between TMB and the

indicated gene expression. Cross indicated no significant correlation (P > 0.05); r: Spearman correlation coefficient. (B) ROC curves for the association of PD-L1,

MSH2, MSH6, PMS2, and MLH1 mRNA expression with the TMB status. ALL3: the combination of PD-L1, MSH2, MSH6, PMS2, and MLH1 mRNA expression.

(C,D) Forest plots for univariate and multivariate logistic or linear analysis of TMB with the indicated gene expression. Of note, MSH6 expression was not analyzed in

multivariate regression model given its high correlation with MSH2 expression. OR, odds ratio.

MSH2 Expression Outperformed Other
MMR-Related Genes for Predicting
Smoking Signature in LUAD
It is well-known that LUAD exhibiting high TMB is strongly
associated with cigarette smoking, and smoking signature is also

highly sensitive to ICB therapies in LUAD (1, 26). Consistent
with previous studies (1, 26), we found that patients with high
TMB significantly increased the fractions of smoking signature

in LUAD (Figure 6A; Figures S6A–D). However, MMRd/MSI
signature, as determined by NGS data, displayed significantly
decreased proportions in patients with high TMB (Figure 6B;

Figures S6A–D), suggesting that genome-assessed MMRd/MSI
signature was not suitable as a potential predictor of increased
TMB and improved ICB efficacy in LUAD.

Furthermore, using multivariate regression analysis, we
demonstrated that MSH2 expression was the most robust
MMR feature positively associated with smoking signature while

inversely correlated with MMRd/MSI signature in Discovery-
LUAD cohort (Figures 6C,D), suggesting that high MSH2

expression might also be a potential predictor of increased
smoking signature in LUAD.

High Expression of MSH2 Significantly
Correlated With Increased PD-L1

Expression and CD8+ T Cell Infiltration
Within the Tumor Microenvironment
PD-L1 expression and the infiltration of CD8+ T cells are
two important biomarkers for assessing the immunotherapeutic
microenvironment in LUAD (1, 5, 10, 12). Therefore, we
further examined the association of MSH2 expression with PD-
L1 expression and CD8+ T cell infiltration within the tumor
microenvironment. We stratified the Validation-LUAD samples
into two groups according to the Youden index-associated
cutoff value of MSH2 expression (Figure 7A). We revealed that
patients with high MSH2 expression significantly increased PD-
L1 expression and CD8+ T cell infiltration while decreased
the infiltration of T-regulatory cells (Tregs) (Figures 7B–D). It
has been reported that tumor-associated macrophages (TAMs)
were also important for assessing the efficacy of anti-PD-
1/PD-L1 therapies (34). We found that inflammatory M1
macrophages, but not pro-tumor M2, were also significantly
infiltrated into the tumor tissues with high MSH2 expression
(Figures S7A,B). These results suggested that patients with

Frontiers in Oncology | www.frontiersin.org 7 February 2020 | Volume 10 | Article 168133

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jia et al. MSH2 Expression and Increased TMB

FIGURE 6 | MSH2 expression positively correlated with smoking signature but negatively associated with MMRd signature in the Discovery-LUAD cohort. (A,B)

Quantitative analysis of smoking and MMRd/MSI signature in two groups based on the TMB status. (C) Forest plot for univariate and multivariate linear analysis of

smoking signature with the four MMR-related gene expression. (D) Forest plot for univariate and multivariate linear analysis of MMRd/MSI signature with the four

MMR-related gene expression. Of note, MSH6 expression was not analyzed in multivariate regression model given its tight correlation with MSH2 expression.

****P < 0.0001.

high MSH2 expression displayed a significant immunotherapy-
responsive microenvironment in LUAD.

Of particular note, one LUAD patient who derived durable
clinical benefit from anti-PD-1 therapy showed the strong
staining of both PD-L1 expression and CD8+ T cell infiltration.
Moreover, this patient also displayed the strongest staining of
MSH2 expression among the four key MMR proteins, which
directly supported our hypothesis that MSH2 expression might
be a potential surrogate biomarker of TMB to predict ICB
response in LUAD [Figures 7E,F; raw IHC data retrieved from
Dong et al. (10)].

DISCUSSION

ICB-based therapies targeting CTLA-4 or PD-1 have shown a
promising future in multiple cancer types, but the molecular
mechanism between them is completely different (35).
Additionally, anti-PD-1 therapy performs much better than
anti-CTLA-4 therapy on the efficacy, survival, and adverse
events (5, 35). Therefore, this study mainly focused on LUAD for
anti-PD-1 therapy.

TMB is one of the most important biomarkers for predicting
ICB response in NSCLC (1–3, 7), and it also shows predictive
efficacy for ICB therapies in other types of solid tumors (7, 36),
but it still has some limitations (5, 6, 14, 19). For example, the
cut-offs of TMB for identifying ICB responders are different for
different tumor types, and the test platform for assessing TMB
has also not been standardized (5, 14, 19). Thus, more studies
are turning to develop surrogate biomarkers that highly correlate
with the TMB status, such as genetic mutations of DNA damage
response pathways and TP53/KRAS (10, 19, 37). However, these
mutations are positive for only a minority of patients, and the
broad detection of these TMB-related gene mutations in clinical
practice remains challenging (19). Titin (TTN) is the longest
gene within the whole genome, and its mutations have also
been proposed as a surrogate TMB biomarker for predicting
ICB response in solid tumors (19). However, TTN mutations
are not the cause of high TMB in tumors, and its mutations
also account for a small cohort of candidates (29.68%) (19,
38). In addition, targeted panel sequencing, such as MSK-
IMPACT panel, has also been developed and approved by US
Food and Drug Administration (FDA) to estimate TMB, but
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FIGURE 7 | High expression of MSH2 highly correlated with increased PD-L1 expression and CD8+ T cell infiltration in the Validation-LUAD cohort. (A) Samples in

the Validation-LUAD cohort were stratified into two groups based on the Youden index-associated cutoff of MSH2 expression from Figure 5B. MSH2-High: ≥0.295

(n = 109); MSH2-Low: <0.295 (n = 128); two samples whose expression profiles were missing. (B–D) Quantitative analysis of PD-L1 expression and the infiltration of

immune cells in individual tumor tissues based on MSH2 expression. (E,F) IHC staining of PD-L1, CD8, and four MMR- related genes in one LUAD patient who

derived durable clinical benefit from anti-PD-1 therapy. raw IHC data retrieved from Dong et al. (10). ****P < 0.0001, **P < 0.01, *P < 0.05.

its predictive accuracy for ICB response is significantly lower
than WES in LUAD (Figure 2B), which suggests that it still
needs more optimizations. Moreover, blood-based TMB (bTMB)
is being developed to predict ICB response in NSCLC, while
blood samples for detecting bTMB must contain the mutated
circulating tumor DNA (ctDNA) that must be shed from the
tumor, which has limited its clinical application (39).

Unlike previous studies that focused on genomic variations
(10, 19, 37, 40), we turned to the transcriptomic landscape
to explore the potential surrogates of TMB in LUAD. We
revealed that MSH2 was the most robust MMR gene whose
expression significantly correlated with increased TMB in LUAD.
Mechanistically, given the low mutation rates of MMR-related
genes in LUAD, the transcriptome-based dysfunction of the
MMR machinery is more likely to be the cause of high TMB.
Therefore, this study mainly focuses on MMR-related gene
expression. The other nine genes (CDCA5, MCM10, GINS4,
KIAA1524, KIF2C, NUF2, CDC20, CDC7, THOC4; Figure 3A;
Table S2) showing better performance than MSH2 may also
be potential TMB indicators in LUAD, which still needs more
mechanistic investigations.

MMRd testing has primarily been developed and tested
in patients with colorectal and endometrial cancer to predict
ICB response given their relatively high positive rates (13,

30, 33, 41). Mechanistically, tumors with MMRd are often
hypermutated and can result in microsatellite instability (MSI)
within the genome. Therefore, MSI has been proposed as a
marker of MMRd in previous studies (13, 30, 33). However, in
contrast to the findings in colorectal and endometrial cancer
(13, 26), we found that MMRd/MSI signature was significantly
low in LUAD with high TMB (Figure 6B; Figures S6A–D),
suggesting that genome-based MMRd/MSI might not cause a
high mutation load in LUAD. In addition, we observed that
highMSH2 expression showed a significantly inverse association
with increased MMRd/MSI signature in LUAD (Figure 6D).
Given that the relationships between MMRd/MSI and TMB
are complex and different for different tumor types (13), more
mechanistic investigations are required to illuminate these results
in LUAD.

In previous studies (13, 30, 33), all fourMMRproteins (MSH2,
MSH6, PMS2, and MLH1) were always detected together by IHC
to determine the MMRd status within a tumor. However, the
IHC method was used to indirectly infer the mutation status of
the four MMR genes (13, 30, 33). Of particular note, in LUAD,
the IHC-based method has rarely been used to detect the MMRd
status (13, 30, 33).

Importantly, our data revealed that a transcriptome-based,
not genome-based, MMRd mechanism widely existed in LUAD,
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which might partly illuminate the cause of high TMB in LUAD.
The potential mechanism is that both MSH2 and MLH1 proteins
are essential partners for forming the MMR machinery (13, 30).
However, we observed that TMB significantly and positively
correlated with MSH2 expression but inversely correlated with
MLH1 expression in LUAD (Figures 4E,F; Figures S2B,C).
Moreover, MLH1 was the only gene whose expression was
significantly down-regulated in LUAD tissues compared with the
other threeMMR genes (Figures S8A–D).MLH1 expressionmay
be suppressed by its promoter methylation in LUAD (33, 42, 43).
These results suggested that down-regulated MLH1 expression
might impair theMMRmachinery to repair the damaged genome
and then caused more mutation load in LUAD.

One limitation of this study is that we only collected one
LUAD sample showing the direct evidence that MSH2 expression
alone could be a surrogate TMB biomarker to predict ICB
response in LUAD. Because of the lack of public LUAD data, we
could not directly validate this result in a large cohort. However,
more prospective clinical trials are required to validate this
correlation. Another limitation is that the TMB cutoff (TMB =

166.5) for stratifying LUAD samples was based on a small number
of samples, which still needs large cohorts to determine. However,
given the intratumoral heterogeneity across different cancer
subtypes (1–3, 7, 16, 17), our data are much more homogeneous
and thus more reliable to find the specific biomarkers benefiting
the specific patients. Additionally, we also recruited another
independent cohort (Validation-LUAD cohort) to validate our
conclusion and proposed a mechanistic connection between
MSH2 expression and increased TMB in LUAD.

Since ICB therapies are associated with specific adverse events,
it is profound to identify predictive biomarkers to select patients
who are more likely to derive the maximum benefits from ICB
therapies. Therefore, more multi-omic datasets are indispensable
to explore and improve the efficacy of immunotherapies. It is
possible that MSH2 expression can be applied jointly with other

factors to acquire a greater prediction performance, which is
already suggested that combining multiple biomarkers are more
robust than a single analyte for predicting ICB efficacy (7, 10, 12,
17, 29, 39).

In summary, our data suggest that MSH2 expression
highly correlates with increased TMB and the immunotherapy-
responsive microenvironment in LUAD. Prospective clinical
trials are required to further confirm these results.
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Background: Epidermal growth factor receptor (EGFR) mutation testing in plasma

cell-free DNA (cfDNA) from advanced lung cancer patients is an emerging clinical tool.

This meta-analysis was designed to determine the diagnostic accuracy of two common

PCR systems, droplet digital PCR (ddPCR) and amplification refractory mutation system

PCR (ARMS-PCR), for detecting EGFR mutation in cfDNA.

Materials andmethods: A systematic search was carried out based on PubMed, Web

of science, Embase and the Cochrane library. Data from eligible studies were extracted

and pooled to calculate the sensitivity, specificity, diagnostic odds ratio (DOR), area under

the summary receiver-operating characteristic curve (AUROC), using tissue biopsy results

as the standard method. Subgroup analyses were performed regarding EGFR mutation

type, tumor stage, and EGFR-TKI treatment.

Results: Twenty-five studies involving 4,881 cases were included. The plasma testing

sensitivity, specificity, DOR, and AUROC, compared with the matched tumor tissues,

were 72.1%, 95.6%, 38.5, 0.89 for ddPCR, and 65.3%, 98.2%, 52.8, 0.71 for

ARMS-PCR, respectively, through indirect comparison, significant differences were found

in sensitivity (P = 0.003) and specificity (P = 0.007). Furthermore, significant difference

was found in sensitivity between tumor stage subgroups (IIIB–IV subgroup vs. IA–IV

subgroup) in ARMS-PCR (73.7 vs. 64.2%, P= 0.008), but not in ddPCR (72.5 vs. 71.2%,

P = 0.756).

Conclusions: This study demonstrates that ddPCR and ARMS-PCR have a high

specificity with a practical sensitivity for detecting EGFR mutation in cfDNA, which

supports their application as a supplement or a conditional-alternative to tissue biopsy

in clinical practice for genotyping. It seems that ddPCR has a higher sensitivity than

ARMS-PCR, especially in early stages.

Keywords: lung cancer, droplet digital PCR (ddPCR), amplification refractory mutation system PCR (ARMS-PCR),

cell free DNA (cfDNA), epidermal growth factor receptor (EGFR)
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INTRODUCTION

Lung cancer remains the most frequently diagnosed cancer and
the leading cause of cancer-related mortality worldwide, with
85% of patients having non-small-cell lung cancer (NSCLC) (1–
3). Fortunately, accurate gene analysis of epidermal growth factor
receptor (EGFR) mutation in advanced NSCLC patients has
provided them great opportunities to receive optimal treatments.
Successful analysis of genotyping plays an important role in
this process (4, 5). Conventionally, detection of EGFR mutation
status in tumor tissue is the standard approach, which can be
obtained by tissue biopsy or surgery (6). However, tissue samples
are not always available or sufficient in quantity for genotyping.
Furthermore, tissue biopsy-related complications are common,
such as pneumothorax and hemoptysis (7).

Liquid biopsy is emerging as an important clinical tool and
has significant potential to offer a supplement or a conditional
alternative to tissue biopsy for tumor genotyping (6). Liquid
biopsy offers the advantages of being non-invasive, easily
accessible, and can be performed repeatedly (8). Presently,
cell-free DNA is available for liquid biopsy (9). Mature
testing platforms of EGFR mutation include next generation
sequencing technologies (NGS), digital platforms [droplet digital
PCR (ddPCR), Beads, Emulsions, Amplification, and Magnetic
(BEAMing)] and real time PCR [Cobas, Amplification Refractory
Mutation System (ARMS-PCR)]. Thress et al. demonstrated that
the Cobas EGFR Mutation Test and BEAMing dPCR had high
sensitivity (82–87%) and specificity (97%) for EGFR-sensitizing
mutations (10).Moreover, Feng et al. indicated that the sensitivity
of ddPCR was similar with ARMS in plasma EGFR detection
(80.4 vs. 76.5%), as was the specificity (89.3 vs. 100%) (11).
These findings showed the high sensitivity and specificity of PCR
platforms, suggesting that EGFR mutations can be accurately
detected in cfDNA. In addition, the PCR-based methods had the
advantages of being both rapid and inexpensive, and suitable for
detection of specific point mutations (12).

Several studies have reported promising results detecting
EGFR mutation from cfDNA of patients with lung cancer using
ddPCR and ARMS-PCR (11, 13–15). The question of interest is
whether these tissue-free methods are sufficiently accurate to be
considered a supplement or even alternative to tissue genotyping.
Therefore, we conducted this meta-analysis to determine the
diagnostic accuracy of the ddPCR system and the ARMS-PCR
system for detecting EGFR mutation in cfDNA, using tissue
biopsy results as the standard detection modality.

MATERIALS AND METHODS

This meta-analysis was conducted according to the
PRISMA Checklist.

Literature and Search Strategy
All potentially relevant studies were retrieved through search
of PubMed, Web of science, Embase and the Cochrane library
databases up to Dec 1, 2019, using a combination of key words
“lung cancer,” “EGFR,” “droplet digital PCR,” and “amplification
refractory mutation system PCR.” No search limitations were set.

The previous published articles and reviews were inspected to
identify studies not included by the initial search. This study is
registered with PROSPERO, number CRD42019120049.

Inclusion and Exclusion Criteria
Eligible studies should meet the following criteria: (i) included
patients with lung cancer diagnosed by histopathology or
cytologically; (ii) studied diagnostic accuracy of ddPCR or
ARMS-PCR for detecting EGFR sensitivity mutation based on
cfDNA or ctDNA; (iii) EGFR mutation statuses were compared
with tumor tissues.

Studies were excluded if (i) data was insufficient to calculate
the sensitivity or specificity for this meta-analysis, (ii) they
were review articles, abstracts, case reports, commentary articles,
editorials, expert opinions, non-comparative studies, letters,
unrelated to research topics, or duplicate reports.

Data Extraction
Data were extracted independently by two reviewers (Li C.C. and
Liang H.R.), and conflicts were resolved by a third reviewer (He
Q.H.). For the selected studies, the name of first author, year of
publication, country of origin, sample size, basic characteristics of
studied population, clinical stage, tumor histology, percentage of
TKI-naïve, and TKI-treated patients, techniques used for EGFR
mutation detection for both tissue sample and cfDNA, true
positive (TP), false positive (FP), false negative (NP), and true
negative (TN) were collected from eligible studies. Subgroup
analyses, and comparison of two PCR platforms were conducted
according to EGFR mutation type, tumor stage and EGFR-TKI
treatment, respectively.

Quality Assessment
Quality assessment of diagnostic accuracy studies 2 (QUADAS-
2) is a tool used to evaluate the quality of primary diagnostic
accuracy studies, including patient selection, index tests,
reference standard, and flow and timing. QUADAS-2 was
evaluated by two reviewers (CL and HL).

Statistical Analysis
Sensitivity, specificity, diagnostic odds ratio (DOR) and the
area under the summary receiver-operating characteristic curve
(AUROC) were pooled. The value of DOR is calculated by
the positive likelihood ratio (PLR)/the negative likelihood ratio
(NLR), and its value ranges from 0 to infinity, with higher value
indicating better discriminatory test performance.

We use Cochrane’s Q and the I2 statistic to examine the
heterogeneity. P ≤ 0.05 and I2 ≥ 50% mean that significant
heterogeneity existed in pooled statistics. In addition, publication
bias was detected by the Deek’s funnel plot asymmetry test and P
< 0.05 indicated the presence of publication bias.

The analysis was performed with STATA 13.0 software
(STATA corporation, College Station, TX, USA) with the
MIDAS module and Meta-Disc 1.4 (Ramón y Cajal Hospital in
Madrid, Spain).
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RESULTS

Study Selection and Quality Assessment
A total of 396 records were screened according to the search

strategy up to Dec 1, 2019. Finally, 25 full-text articles were

identified and reviewed. Of the included articles, 14 studied

ddPCR (10, 11, 15–26) and 16 studied ARMS-PCR (10, 11, 13–15,
20, 22, 27–35). Specifically, five articles made direct comparisons
between ddPCR and ARMS-PCR (10, 11, 15, 20, 22). Figure 1

summarized the flow chart. The quality assessment of each study
is summarized in Table S1.

Characteristics of Included Studies
Twenty-five studies involving 4,881 cases were identified and
included for analysis. The majority of patients were Asians with
advanced NSCLC. To assess ddPCR performance of cfDNA-
based EGFR mutation detection, a total of 1,105 samples were
used for testing EGFR mutation and compared with the result of

FIGURE 1 | Flow diagram detailing the search strategy of the included studies in this meta-analysis.
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tissue biopsy. Similarly, a total of 3,950 samples were tested and
compared with tissue biopsy to assess diagnostic performance
of ARMS-PCR. Table 1 summarized the characteristics of all
relevant studies. It should be noted that, some studies only
presented the results of mutation in exon 19 deletion and
L858R, rather than total mutations level of EGFR. Therefore,
we added the sample number of mutations of exon 19 deletion
and L858R together to get an overall result of EGFR mutation in
each study.

Overall Accuracy of the ddPCR and
ARMS-PCR Test
The plasma testing sensitivity, specificity, DOR, and AUROC,
compared with the matched tumor tissues, were 72.1%
(95% CI, 68.2–75.7%), 95.6% (95% CI, 93.5–97.1%), 38.5
(95% CI, 22.3–66.4), 0.89 (95% CI, 0.83–0.95) for ddPCR,
and 65.3% (95% CI, 62.9–67.6%), 98.2% (95% CI, 97.6–
98.7%), 52.8 (95% CI, 26.3–106.1), 0.71 (95% CI, 0.52–
0.91) for ARMS-PCR, respectively (Figure 2). There was no
publication bias for outcome measures with asymmetrical
appearance on funnel plot analysis (Figure 3), and P > 0.05 in
Deek’s test.

Comparison of ddPCR and ARMS-PCR in
Different Subgroups
Subsequently, results of the two platforms in different EGFR-
sensitizing mutations, tumor stages and EGFR-TKI treatment
status were assessed by stratified analysis (Table 2). Significant
difference in sensitivity was found between tumor stage
subgroups (IIIB–IV subgroup vs. IA–IV subgroup) in ARMS-
PCR (73.7 vs. 64.2%, P = 0.008), but not in ddPCR (72.5 vs.
71.2%, P = 0.756).

Indirect and Direct Comparison of ddPCR
and ARMS-PCR
Twenty five full-text articles were included in the indirect
comparison and the detailed characteristics of clinical stage of
the enrolled patients are summarized in Table S2. In studies
indirectly comparing the two PCR systems, there was a significant
difference in sensitivity (P = 0.003) and in specificity (P = 0.007)
(Table 3). We performed indirect comparison about sensitivity
between ddPCR and ARMS-PCR systems, better sensitivities
for ddPCR were observed in stage IIIB–IV (73.4 vs. 62.9%, P
= 0.012), TKI-naïve (72.7 vs. 64.5%, P = 0.040), and TKI-
treated (75.6 vs. 65.5%, P= 0.035) patients. Compared to ARMS-
PCR, more favorable specificity was found in the TKI-treated

TABLE 1 | Characteristics of included studies.

Study Country Sample size Age Female (%) Smoker (%) Histology Clinical stage TKI naïve (%)

Ishii et al. (16) Japan 18 50-81 89 6 NSCLC Recurrence 0

Lee et al. (18) Korea 81 32-81 62 37 NSCLC IV/recurrence 0

Sacher et al. (19) US 180 18+ 62 NA NSCLC IIIB/IV/recurrence 0, 100
†

Thress et al. (10) UK 38 NA NA NA NSCLC Advanced 0

Feng et al. (11) China 79 30–75 54 32 NSCLC Advanced 100

Xu et al. (15) China 20 37–76 50 30 NSCLC I–IV 40

Zhang et al. (22) China 122 30–85 47 42 NSCLC III–IV 100

Wang et al. (20) China 65 32–85 38 48 LC I—IV/uncertain NA

Yu et al. (21) China 22 35–74 54 NA NSCLC IIIB–IV 86

Zhang et al. (23) China 215 NA 41 44 NSCLC IIIB–IV 100

Zhu et al. (17) China 86 28–81 35 NA NSCLC IIIB–IV 100

Zhu et al. (24) China 51 60.89 ± 1.48 39 55.8 NSCLC I–IV 56.9

Li et al. (32) China 109 NA 53 33 NSCLC IIIB–IV 96.3

Cui et al. (34) China 180 37–77 48 NA NSCLC IIIB–IV 70

Douillard et al. (14) France 1060 32–82 71 39 LC IIIA–IV 100

Duan et al. (30) China 94 58 ± 11 35 51 LC IIA–IV 100

Li et al. (29) China 164 32–81 41.5 48.8 LC IIB–IV/recurrence 58.5

Liu et al. (28) China 86 28–81 35 55 NSCLC IIIB–IV NA

Ma et al. (31) China 219 26–81 34 49 LC IIIA–IV 100

Su et al. (35) China 107 29–81 58 15 NSCLC I–IV 73.8

Wan et al. (13) China 2463 NA NA NA LC I–IV 0

Xu et al. (27) China 51 25–77 39 37 NSCLC IIIB–IV 100

Zhou et al. (33) China 447 27–86 45 47 LC I–IV 98.2

Jiang et al. (25) China 50 NA NA NA NSCLC NA 100

Guo et al. (26) China 201 NA 52.2 NA NSCLC I–IV 66.2

†
Patients of this study have divided into two groups according to TKI used. TKI, tyrosine kinase inhibitors; LC, lung cancer; NSCLC, non-small-cell lung cancer.
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FIGURE 2 | The results of meta-analysis. (A) sensitivity, (B) specificity, (C) diagnostic odds ratio, and (D) SROC curve for ddPCR; (E) sensitivity, (F) specificity, (G)

diagnostic odds ratio, and (H) SROC curve for ARMS-PCR. Two articles of ddPCR had two status including prior treatment group and disease progression group.

Add 0.5 to all cells of the studies with zero.

FIGURE 3 | Assessment of publication bias by Deek’s funnel plot asymmetry test in ddPCR system.

subgroup using ddPCR (93.5 vs. 98.0%, P = 0.038). In studies
simultaneously comparing the two platforms, however, we
observed no significant difference in specificity (97.3 vs. 98.7%,
P = 0.473) and sensitivity (69.3 vs. 69.0%, P = 0.960) between
ddPCR and ARMS-PCR, regardless of EGFR mutation type and
EGFR-TKI treatment.

DISCUSSION

Precise detection of EGFR mutation in lung cancer can
allow clinicians to assign patients to highly specific treatment,

especially for those with EGFR-sensitizing mutations as a series

of clinical trials has proven (4, 5). Many retrospective studies

have reported that patients with ctDNA-based EGFR mutation

status have better clinical outcomes with EGFR-TKIs than those

without EGFR mutation (14, 36). In a prospective clinical trial
reported by Wang et al., detection of EGFR mutation in ctDNA
was a selection method to provide patients with appropriate
first-line gefitinib treatment, providing more evidence to guide
treatment decisions for those patients with advanced lung cancer
who cannot obtain tumor tissue samples (37). It is interesting
and meaningful to answer whether these tissue-free methods
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TABLE 2 | The results of meta-analysis.

Index method Included studies Sensitivity I2 P Specificity I2 P DOR I2 P AUROR

ddPCR
†

14 72.1% (95% CI, 68.2–75.7%) 58% 0.002 95.6% (95% CI, 93.5–97.1%) 53.5% 0.006 38.5 (95% CI, 22.3–66.4) 11.9% 0.317 0.89 (95% CI, 0.83–0.95)

ARMS-PCR
†

16 65.3% (95% CI, 62.9–67.6%) 63.5% 0.001 98.2% (95% CI, 97.6–98.7%) 65.9% 0.001 52.8 (95% CI, 26.3–106.1) 62.9% 0.001 0.71 (95% CI, 0.52–0.91)

SUBGROUP ANALYSIS OF EXON 19 DELETION IN TWO SYSTEMS‡

ddPCR 11 72.9% (95% CI, 67.2–78.2%) 46.0% 0.035 99.1% (95% CI, 98.2–99.7%) 18.0% 0.262 179.6 (95% CI, 85.9–375.5) 0% 0.997 0.97 (95% CI, 0.94–1.00)

ARMS-PCR 11 66.3% (95% CI, 60.9–71.3%) 44.3% 0.056 99.3% (95% CI, 98.6–99.7%) 68.9% 0.001 113.7 (95% CI, 39.9–323.4) 53.4% 0.018 0.65 (95% CI, 0.25–1.00)

SUBGROUP ANALYSIS OF L858R IN TWO SYSTEMS§

ddPCR 12 69.7% (95% CI, 63.3–75.5%) 45.6% 0.032 98.2% (95% CI, 97.0–99.0%) 31.3% 0.125 96.5 (95% CI, 53.2–175.2) 0% 0.872 0.96 (95% CI, 0.91–1.00)

ARMS-PCR 11 61.6% (95% CI, 54.9–68.0%) 51.1% 0.025 99.3% (95% CI, 98.7–99.7%) 33.8% 0.128 110.1 (95% CI, 49.7–243.8) 26.3% 0.193 0.79 (95% CI, 0.42–1.00)

SUBGROUP ANALYSIS OF STAGE IIIB–IV AND RECURRENCE IN TWO SYSTEMS

ddPCR∧ 8 73.4% (95% CI, 68.8–77.6%) 47.3% 0.048 95.7% (95% CI, 92.9–97.6%) 62.7% 0.004 34.4 (95% CI, 15.3–77.3) 27.5% 0.191 0.85 (95% CI, 0.75–0.95)

ARMS-PCR 6 62.9% (95% CI, 55.9–69.6%) 80.9% 0.001 95.6% (95% CI, 91.9–98.0%) 70.4% 0.005 24.5 (95% CI, 6.1–98.1) 65.0% 0.014 0.69 (95% CI, 0.16, 1.00)

SUBGROUP ANALYSIS OF STAGE IA–IV IN TWO SYSTEMS

ddPCR∧ 3 64.7% (95% CI, 55.2–73.3%) 59.5% 0.060 94.4% (95% CI, 88.9–97.7%) 0% 0.538 29.8 (95% CI, 12.6–70.6) 0% 0.79 0.92 (95% CI, 0.77–1.00)

ARMS-PCR∧ 4 65.1% (95% CI, 62.2–68.0%) 0% 0.929 98.0% (95% CI, 97.2–98.7%) 13.9% 0.323 88.7 (95% CI, 60.9–129.2) 0% 0.419 0.49 (95% CI, 0–1.00)

SUBGROUP ANALYSIS OF TKI-NAIVE IN TWO SYSTEMS¶

ddPCR∧ 6 72.7% (95% CI, 66.6–78.2%) 69.1% 0.006 96.6% (95% CI, 94.1–98.2%) 65.9% 0.012 62.7 (95% CI, 28.1–140.1) 14.3% 0.323 0.94 (95% CI, 0.87–1.00)

ARMS-PCR∧ 6 64.5% (95% CI, 59.1–69.6%) 56.8% 0.041 98.7% (95% CI, 97.7–99.4%) 83.1% 0.001 74.5 (95% CI, 14.9–373.8) 79.5% 0.001 0.59 (95% CI, 0.22–0.97)

SUBGROUP ANALYSIS OF TKI-TREATED IN TWO SYSTEMS

ddPCR 8 75.6% (95% CI, 69.0–81.5) 45.2% 0.090 93.5% (95% CI, 88.4–96.8%) 48.1% 0.073 29.7 (95% CI, 14.3–61.4) 0% 0.462 0.87 (95% CI, 0.79–0.96)

ARMS-PCR 8 65.5% (95% CI, 62.8–68.1%) 75.9% 0.001 98.0% (95% CI, 97.2–98.6%) 24.3% 0.235 45.4 (95% CI, 18.9–108.9) 48.3% 0.060 0.86 (95% CI, 0.66–1.00)

†
Specially, five articles made direct comparisons between ddPCR and ARMS-PCR; ‡Two articles of ddPCR did not give the results of exon 19 deletion mutation or L858R, separately; five articles of ARMS-PCR did not give the results

of exon 19 deletion mutation or L858R, separately; §One article of ddPCR only presented L858R data; ∧Three article of ddPCR and six articles of ARMS-PCR did not meet the requirements of subgroup analysis, separately. ¶One article

of ddPCR and two articles of ARMS-PCR did not give the results of TKI used, separately. DOR, diagnostic odds ratio; AUROC, area under the summary receiver-operating characteristic curve; ddPCR, droplet digital PCR; ARMS-PCR,

amplification refractory mutation system PCR; L858, exon 21 Leu858Arg; TKI, tyrosine kinase inhibitors.
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TABLE 3 | The results of direct and indirect comparison of ddPCR and ARMS-PCR.

Results of comparison Platforms P-value

Overall results Direct comparison Sensitivity: ddPCR vs. ARMS-PCR = 69.3 vs. 69.0% 0.960

Specificity: ddPCR vs. ARMS-PCR = 97.3 vs. 98.7% 0.473

Indirect comparison Sensitivity: ddPCR vs. ARMS-PCR = 72.1 vs. 65.3% 0.003

Specificity: ddPCR vs. ARMS-PCR = 95.6 vs. 98.2% 0.007

Subgroup results Direct comparison under the same platforms Sensitivity: ddPCR (19del) vs. ddPCR (L858R) = 73.2 vs. 68.4% 0.282

Specificity: ddPCR (19del) vs. ddPCR (L858R) = 99.3 vs. 98.8% 0.430

Sensitivity: ddPCR (IIIB–IV) vs. ddPCR (IA–IV) = 72.5 vs. 71.2% 0.756

Specificity: ddPCR (IIIB–IV) vs. ddPCR (IA–IV) = 93.5 vs. 98.8% 0.010

Sensitivity: ddPCR (TKI-naive) vs. ddPCR (TKI-treated) = 71.7 vs. 74.1% 0.567

Specificity: ddPCR (TKI-naive) vs. ddPCR (TKI-treated) = 96.5 vs. 95.4% 0.733

Sensitivity: ARMS-PCR (19del) vs. ARMS-PCR (L858R) = 66.3 vs. 61.6% 0.271

Specificity: ARMS-PCR (19del) vs. ARMS-PCR (L858R) = 99.3 vs. 99.3% 1.000

Sensitivity: ARMS-PCR (IIIB–IV) vs. ARMS-PCR (IA–IV) = 73.7 vs. 64.2% 0.008

Specificity: ARMS-PCR (IIIB–IV) vs. ARMS-PCR (IA–IV) = 96.3 vs. 98.3% 0.234

Sensitivity: ARMS-PCR (TKI-naive) vs. ARMS-PCR (TKI-treated) = 63.9 vs. 65.4% 0.766

Specificity: ARMS-PCR (TKI-naive) vs. ARMS-PCR (TKI-treated) = 96.7 vs. 98.5% 0.112

Indirect comparison under the different platforms Sensitivity: ddPCR (19del) vs. ARMS-PCR (19del) = 72.9 vs. 66.3% 0.087

Specificity: ddPCR (19del) vs. ARMS-PCR (19del) = 99.1 vs. 99.3% 0.673

Sensitivity: ddPCR (L858R) vs. ARMS-PCR (L858R) = 69.7 vs. 61.6% 0.080

Specificity: ddPCR (L858R) vs. ARMS-PCR (L858R) = 98.2 vs. 99.3% 0.053

Sensitivity: ddPCR (IIIB–IV) vs. ARMS-PCR (IIIB–IV) = 73.4 vs. 62.9% 0.012

Specificity: ddPCR (IIIB–IV) vs. ARMS-PCR (IIIB–IV) = 95.7 vs. 95.6% 0.959

Sensitivity: ddPCR (IA–IV) vs. ARMS-PCR (IA–IV) = 64.7 vs. 65.1% 0.934

Specificity: ddPCR (IA–IV) vs. ARMS-PCR (IA–IV) = 94.4 vs. 98.0% 0.114

Sensitivity: ddPCR (TKI-naive) vs. ARMS-PCR (TKI-naive) = 72.7 vs. 64.5% 0.040

Specificity: ddPCR (TKI-naive) vs. ARMS-PCR (TKI-naive) = 96.6 vs. 98.7% 0.064

Sensitivity: ddPCR (TKI-treated) vs. ARMS-PCR (TKI-treated) = 75.6 vs. 65.5% 0.035

Specificity: ddPCR (TKI-treated) vs. ARMS-PCR (TKI-treated) = 93.5 vs. 98.0% 0.038

ddPCR, droplet digital PCR; ARMS-PCR, amplification refractory mutation system PCR; 19del, exon 19 deletion; L858, exon 21 Leu858Arg; TKI, tyrosine kinase inhibitors.

are sufficiently accurate to be considered a supplement or even
alternative to tissue genotyping. Accordingly, this meta-analysis
was conducted to assess the diagnostic accuracy of ddPCR
system and ARMS-PCR system for detecting EGFR mutation
in cfDNA.

In this meta-analysis, using tissue test as reference, we found
that both ddPCR and ARMS-PCR had high diagnostic accuracy
when testing in plasma cfDNA. By direct comparison, there
was no significant difference between ddPCR and ARMS-PCR
in overall accuracy. However, significant difference could be
found in sensitivity and in specificity by indirect comparison.
The direct comparison of results of the two platforms reported
here suggested ddPCR had a higher sensitivity than ARMS-PCR
in subgroup analysis of stage IA–IV. Combining the result of
stratified analysis of tumor stage in sensitivity in ARMS-PCR,
which demonstrated that ARMS-PCR had a higher sensitivity
in the pure advanced lung cancer subgroup compared with
early stage patients. We suspected that the sensitivity of ddPCR
might be higher than ARMS-PCR in early stages, which warrants
more data specific to early stage lung cancers. After indirect
comparison, significant difference was also found in sensitivity
between ddPCR and ARMS-PCR in the IIIB–IV subgroup,

TKI-naïve subgroup and TKI-treated subgroup. Obvious higher
specificity for ARMS-PCR was also observed in the TKI-
treated subgroup. The indirect comparison of results of the
two platforms suggested ddPCR had a higher sensitivity and
ARMS-PCR had a higher specificity in some situations. However,
the above results showed the discordance of sensitivity and
specificity in two PCR platforms. The difference of results
between direct and indirect comparison may be caused by
insufficient sample sizes as only five articles had data for direct
comparison. Furthermore, studies demonstrated the sensitivity
of ARMS-PCR was 0.1% (38) and the sensitivity of ddPCR
was 0.001% (39) detected in plasma, ddPCR showed improved
limits of detection compared to ARMS-PCR, which may give
rise to diverse results. Studies also indicated the abundance
of ctDNA in patients with advanced stage varied from 0.1 to
53.2%, and was lower (<0.01%) in patients with early stage
cancer (40, 41). Thus, it may sometimes show different diagnostic
results in ddPCR and AMRS-PCR. In addition, by stratified
analysis of EGFR-sensitizing mutations, we found that the exon
19 deletion testing sensitivity seemed higher than L858R in
both testing systems, this is probably because tumor mutation
burden (TMB) or ctDNA in plasma from the tumor of exon
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19 deletion was higher than L858R, resulting in an increase of
cfDNA in plasma.

Based on the excellent diagnostic performances of ddPCR
and ARMS-PCR, we have reason to believe that it is rational to
use these tissue-free methods as a supplement or an alternative
option to tissue genotyping. Of note, both methods are relatively
quick and inexpensive to detect the allelic frequency of mutations
in cfDNA, but they cannot provide a comprehensive molecular
profile of cancer. Besides, the sensitivity of the PCR systems could
be limited if the proportion of tumor DNA in cfDNA is low.
Owing to the high specificity, a patient with a negative result
due to low percentage of mutant cfDNA could retest or the
diagnosis could be determined in other ways. When a positive
result is found, the patient may receive EGFR-TKI therapy,
and should be followed up to evaluate the therapeutic effect.
In addition, to validate the effectiveness and accuracy of liquid
biopsy, prospective study based on the above test platforms for
detecting EGFR mutation in cfDNA to compare lung cancer
patients with healthy people as control is required and necessary,
so as to set up an optimal cut-off point and reduce false positives.
At the same time, we can also increase sample sizes to identify the
diagnostic accuracy of ddPCR and ARMS-PCR.

To date, liquid biopsy is a complement to the tissue biopsy. If

we want to use the result of genotyping of liquid biopsy directly

in patients whose tissue samples are not available, we need to

focus on the result of specificity first. When the specificity of

liquid biopsy is increased to be consistent with tissue biopsy, it is

reasonable to use liquid biopsy as an alternative to tissue biopsy

in clinical practice for genotyping. For this reason, we should

be cautious of false positives, though research has reported that

cfDNA analysis does not involve formaldehyde fixation which
can reduce false positive results due to deamination (42). The
reasons for false positives can be divided into detection causes
and non-detection causes. Detection causes mainly include:
(i) Determination of cut-off values for EGFR mutations that
were defined too low, (ii) Single tissue biopsy specimens were
difficult to reflect the genetic characteristics of the whole tumor
on intratumor heterogeneity, which meant even the result of
cfDNA may be correct sometimes, false positive results by
tissue biopsy conduced an opposite conclusion, (iii) Non-specific
annealing of PCR primers could result in a false positive when
the concentration of wild-type template was much higher than
mutant template (20). Furthermore, the time interval between
tissue samples acquired first and plasma samples acquired later
may also cause false positives due to the tumor burdens becoming
more severe as the disease progressed. Non-detection causes are
mainly reflected in the following: (i) germline mutation, (ii)
non-tumorous EGFR mutation, (iii) subclone EGFR. Germline
mutation was caused by the change of family gene, contributing
to the generation of family background in this population,
which led to false positive results. The incorrect results of non-
tumorous EGFR mutation were similar to germline mutation. If
liquid biopsy technology can reduce false positive and increase
specificity further, it would greatly benefit, not only tissue
genotyping but also the longitudinal surveillance of clonal
evolution (43).

We acknowledge several limitations to our study. First, it
should be noted that, some studies only presented the results
of mutations in exon 19 deletion and L858R, rather than
total mutation level of EGFR. Therefore, we added the sample
number of mutations of exon 19 deletion and L858R together
to get an approximate result of EGFR mutation in each study.
Second, most publications were retrospective studies, which may
improve diagnostic accuracy artificially by setting a cut-off value,
prospective clinical trials are needed for further investigation.
Third, the diagnostic methods of ddPCR and ARMS-PCR, such
as different extraction methods of DNA, and different types of
primers and probes were not analyzed in this study. Last but not
the least, in studies directly comparing the two PCR systems, the
sample size was not large enough and the literature reports were
limited. Through indirect comparison we were able to overcome
sample selection bias to some extent however, the power of the
test was not strong enough.

CONCLUSION

This study demonstrates that both ddPCR and ARMS-PCR have
a high specificity with a practical sensitivity for detecting EGFR
mutation in cfDNA of advanced lung cancer patients, which
supports their application as a supplement or a conditional-
alternative to tissue biopsy in clinical practice for genotyping.
In addition, ddPCR-based plasma genotyping may be applied in
clinical use more often with minimal false positives.
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Background: Next-generation sequencing (NGS) needs to be validated and

standardized to ensure that cancer patients are reliably selected for target treatments.

In Italy, NGS is performed in several institutions and harmonization of wet and dry

procedures is needed. To this end, a consortium of five different laboratories, covering

the most part of the Italian peninsula, was constituted. A narrow gene panel (SiRe®)

covering 568 clinically relevant mutations in six different genes (EGFR, KRAS, NRAS,

BRAF, cKIT, and PDGFRα) with a predictive role for therapy selection in non-small cell

lung cancer (NSCLC), gastrointestinal stromal tumor, colorectal carcinoma (CRC), and

melanoma was evaluated in each participating laboratory.

Methods: To assess the NGS inter-laboratory concordance, the SiRe® panel, with a

related kit and protocol for library preparation, was used in each center to analyze a

common set of 20 NSCLC and CRC routine samples. Concordance rate, in terms of

mutation detected and relative allelic frequencies, was assessed. Then, each institution

prospectively analyzed an additional set of 40 routine samples (for a total of 160

specimens) to assess the reproducibility of the NGS run parameters in each institution.

Results: An inter-laboratory agreement of 100% was reached in analyzing the data

obtained from the 20 common sample sets; the concordance rate of allelic frequencies

distribution was 0.989. The prospective analysis of the run metric parameters obtained

by each center locally showed that the analytical performance of the SiRe® panel in the

different institutions was highly reproducible.

Conclusions: The SiRe® panel represents a robust diagnostic tool to harmonize the

NGS procedure in different Italian laboratories.

Keywords: colon cancer, lung cancer, predictive molecular pathology, next-generation sequencing, biomarkers
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INTRODUCTION

In this era of precision oncology, predictive molecular pathology
is key to assess actionable genetic targets in cancer patients (1–
3). Thus, a large and steadily increasing number of predictive
biomarkers need to be taken into account to personalize the
therapeutic strategy in different solid tumors and in different
patients (1–3). As an example, patients with metastatic colorectal
cancer (mCRC), whose tumors are mutated in exons 2-3-4 of
either Kirsten rat sarcoma (KRAS) or of neuroblastoma RAS
viral oncogene homolog (NRAS) genes, are not eligible for target
therapy with monoclonal antibodies against epidermal growth
factor receptor (EGFR) protein (4–7). In addition, in mCRC, the
National Comprehensive Cancer Network (NCCN) guidelines
(Version 2.2018) recommend to genotype the patients for v-Raf
murine sarcoma viral oncogene homolog B (BRAF) mutations,
whose adverse prognostic role is well-established (8). Similarly,
in non-small cell lung cancer (NSCLC) patients, the updated

molecular testing guideline issued by the College of American

Pathologists, the International Association for the Study of Lung
Cancer, and the Association for Molecular Pathology defines

EGFR, anaplastic lymphoma kinase (ALK), and ROS proto-
oncogene 1 receptor tyrosine kinase as the “must test” genes
to select patients for treatment with tyrosine kinase inhibitors
(9–13). Even more recently, the American Society of Clinical
Oncology established that also BRAF needs to be tested in
all patients with advanced NSCLC as a positive predictive
biomarker (14). In this rapidly evolving scenario, several are the
technologies adopted to perform a molecular analysis. Among
these, next-generation sequencing (NGS) represents a fascinating
and versatile technology which is able to simultaneously analyze
mutational hotspots in different gene targets for different cancer
patients. However, only a laboratory with skilled and experienced
personnel can reliably validate and implement NGS; moreover,
the DNA quality and quantity derived from formalin-fixed and
paraffin-embedded samples can be suboptimal and the number
of samples classified as “inadequate” for molecular analysis is
not negligible (15–19). As a result, when mutated alleles are
only present in the subclonal neoplastic population, NGS might
yield results which are not entirely consistent among the different
institutions (20, 21).

To date, a large number of gene panels are commercially
available for different clinical purposes; however, most of these
panels are quite large and their use in routine practice is not
cost-effective. Conversely, smaller gene panels seems to be more
suitable than larger panels, especially when DNA input is less
abundant and when the tested samples are represented by small
tissue biopsies, as it often occurs in metastatic NSCLC patients
(17, 18). To meet these challenges, in a previous study we have
designed, developed, and validated, for both tissue samples and
liquid biopsy specimens, a narrow NGS gene panel (SiRe R©)
that covers 568 clinically relevant mutations in six genes (EGFR,
KRAS, NRAS, BRAF, cKIT, and PDGFRα) involved in NSCLC,
gastrointestinal stromal tumor, mCRC, and melanoma (19–23).

In the current study, we aim to evaluate the performance
of the SiRe R© NGS panel in a multi-institutional study, thanks
to a consortium constituted by five different Italian laboratories

experienced in the application of NGS in a predictive molecular
pathology setting.

MATERIALS AND METHODS

SiRe® Gene Panel
The SiRe R© NGS panel was developed by the Department of
Public Health of the University of Naples Federico II (Fed II) to
assess 568 mutations in six different genes (EGFR, KRAS, NRAS,
BRAF, cKIT, and PDGFRα) as previously described (Figure 1).
This panel, together with all reagents and a dedicated protocol
(Supplementary File 1) required to produce gene libraries, was
distributed to four different institutions (Figure 2).

Study Design
This study was designed to evaluate the multi-institutional
performance of the SiRe R© gene panel-based NGS assay
(Supplementary File 1) by both a retrospective and a prospective
analysis. The retrospective analysis verified the concordance rate
among the different institutions (inter-laboratory concordance,
Table 1), whereas the prospective part evaluated the SiRe R© gene
panel-based NGS assay performance in the routine daily practice.

Briefly, the coordinating center (University of Naples Federico
II) selected from its archives a set of 20 colon or lung cases;
this set of cases was blinded and dispatched to the participating
institutions that provided the coordinator center with the run
metric parameters and with the complete list of all the mutations
detected and their relative allelic fraction (AF) by 10 working
days. Signal processing, base calling, and coverage analysis were
carried out in a blinded way in each institution by using the
SiRe R© bed files on the Torrent Suite (Thermofisher). Variants
were automatically annotated using a variant caller plug-in at
specific optimized parameters of the SiRe R© panel, as previously
reported (19). The obtained BAM files were also visually
inspected by an experienced user on the Golden Helix Genome
Browser v.2.0.7 (Bozeman,MT, USA). Details relative to the DNA
extraction procedures and to the NGS platform employed are
reported in the Supplementary Table 1.

To assess the SiRe R© gene panel-based NGS assay performance
in the routine daily practice, each institution analyzed a
distinct set of 40 colon or lung cancer tissue samples
(Supplementary Table 2), reporting the analytical success rate,
the median number of reads for the sample, the median read
length, the median number of mapped reads, the percentage
of reads on target, the average reads for amplicon, and the
uniformity of coverage. Data were compared with the previously
obtained “in-house” validation data set from the coordinator
center to assess the analytical performance of the SiRe R© kit in
different clinical settings.

All of the analyzed cases were reviewed by experienced
pathologists and featured at least 20% of neoplastic cells.

Written informed consent was obtained from all patients
and documented in accordance with the general authorization
to process personal data for scientific research purposes
from “The Italian Data Protection Authority” (http://www.
garanteprivacy.it/web/guest/home/docweb/-/docwebdisplay/
export/2485392). All information regarding human material
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FIGURE 1 | Upper (A) and frontal (B) parts of the SiRe® kit box and the related reagent tubes distributed in the internal (C) part. Permission to publish the figure was

obtained by Genedin s.r.l. (a spin-off of the Department of Public Health, University of Naples Federico II).

FIGURE 2 | Study design. The Department of Public Health of the University of Naples Federico II (A) and Genedin s.r.l. (a spin-off of the Department of Public Health,

University of Naples Federico II) (B1) develop the SiRe® NGS panel kit (B2). The kit was distributed to n = 4 different institutions [(C) University La Sapienza—Rome,

(D) Istituto Oncologico Europeo—Milan, (E) Istituto Tumori Giovanni Paolo II—Bari, (F) Consiglio Nazionale delle Ricerche—Sassari] to analyze a series of n = 160

colon/lung routine samples (G–L) (n = 40 for each institution) following the local NGS workflow, for DNA extraction (M–P), quantification (Q–T), and sequencing on

IonTorrent platforms (U–Z), after an alignment phase on a common set of n = 20 shared samples. Permission to publish the figure was obtained by Genedin s.r.l. (a

spin-off of the Department of Public Health, University of Naples Federico II).
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TABLE 1 | Mutations detected on a common sample set (n = 20) by the University of Naples Federico II with relative allelic frequencies and relative results obtained

among all the participating institutions.

Fed II Participating institutions

Sample Gene Mutation Frequencies (%) Gene Mutation Frequencies (%)

1 PIK3CA p.R88Q 15.9 PIK3CA p.R88Q 15.9; 15.9; 15.6; 15.8

PDGFRα p.V824V 47.8 PDGFR p.V824V 47.1; 51.2; 47.7; 42.6

2 KRAS p.G12C 18.9 KRAS p.G12C 18.9; 16.8; 22.8; 18.9

3 KRAS p.G12V 42.0 KRAS p.G12V 41.3; 39.9; 37.1; 42.3

4 NRAS p.G12D 36.1 NRAS p.G12D 38.9; 36.3; 39.8; 34.9

5 KRAS p.A146T 31.0 KRAS p.A146T 31.1; 31.1; 23.7; NA

KIT p.M541L 53.4 KIT p.M541L 53.1; 53.1; 47.1; NA

6 KRAS p.G13D 57.9 KRAS p.G13D 57.4; 57.4; 58.0; 65.3

7 KRAS p.G12C 36.4 KRAS p.G12C 35.1; 35.1; 40.5; 32.4

KIT p.M541L 58.4 KIT p.M541L 58.4; 58.4; 60.3; 58.3

8 KRAS p.G12D 18.1 KRAS p.G12D 18.4; 18.4; 18.7; 21.8

PIK3CA p.E545K 11.0 PIK3CA p.E545K 11.5; 11.5; 9.9; 9.3

KIT p.M541L 100.0 KIT p.M541L 99.8; 99.8; 100.0; 99.7

9 KRAS p.G12V 22.0 KRAS p.G12V 22.3; 22.3; 24.0; 22.0

10 KRAS p.G12V 11.0 KRAS p.G12V 11.0; 11.0; 7.5; 9.3

PIK3CA p.E542K 10.8 PIK3CA p.E542K 10.7; 10.7; 11.8; 10.5

11 KRAS p.G12D 14.9 KRAS p.G12D 14.4; 19.3; 17.6; 15.7

12 – WT – – WT –

13 KRAS p.G12S 27.8 KRAS p.G12S 27.1; 31.5; 27.0; 36.5

14 PDGFRα p.V824V 99.1 PDGFR p.V824V 99.1; 99.2; 99.1; 99.4

15 – WT – – WT –

16 KIT p.M541L 50.4 KIT p.M541L 46.8; 51.2; 50.3; 54.0

17 KRAS p.G13D 45.2 KRAS p.G13D 44.6; 46.5; 45.3; 46.2

PDGFR p.V824V 18.9 PDGFR p.V824V 19.7; 13.7; 18.4; 20.6

18 KRAS p.G12A 6.1 KRAS p.G12A 6.3; 5.8; 5.5; 6.2

PDGFRα p.V824V 45.8 PDGFR p.V824V 43.9; 47.6; 46.5; 48.1

19 – WT – – WT –

20 EGFR p.E746_S752>V 43.8 EGFR p.E746_S752>V 45.4; 51.1; 45.5; 40.9

BRAF, V-Raf murine sarcoma viral oncogene homolog B1; EGFR, epidermal growth factor receptor; KIT, KIT proto-oncogene, receptor tyrosine kinase; KRAS, V-Ki-Ras2 Kirsten

rat sarcoma 2 viral oncogene homolog; NA, not assessed; NRAS, neuroblastoma RAS viral (V-Ras) oncogene homolog; PDGFRα, platelet-derived growth factor; PIK3CA,

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; WT, wild type; Fed II, University of Naples Federico II. For the participating institutions, the frequencies are

reported from left to right: University La Sapienza—Rome, Istituto Oncologico Europeo—Milan, Consiglio Nazionale delle Ricerche—Sassari, Tumori Giovanni Paolo II—Bari.

was managed using anonymous numerical codes, and all
samples were handled in compliance with the Helsinki
Declaration (https://www.wma.net/fr/news-post/en-matiere-
de-transfert-des-taches-la-securite-des-patients-et-la-qualite-
des-soins-devraient-etre-primordiales/). According to the
aforementioned national guidelines, the double-blinded study
did not require an Ethical Committee approval since it did not
affect the clinical management of the involved patients’ samples.

Data Analysis
The mutations and their relative allelic frequencies concordance
rate were assessed by using an intra-class correlation coefficient
(ICC), while concordance between each institution and Federico
II was evaluated using the Linn’s concordance correlation
coefficient (CCC) and further explored using Bland-Altman
plots. CCC is a reproducibility index which allows assessing
both precision and accuracy by evaluating the degree to which

individual pairs fall on the line of perfect concordance (i.e., the
45◦ line through the origin). A Bland–Altman plot shows the
average of two measures on the x-axis and their difference on
the y-axis; it allows the evaluation of both biases—that which
occurs when the average of the differences between the two paired
measurements is significantly different from 0 and the so-called
proportional bias that refers to a significant trend between the
difference and the magnitude of the measurements, i.e., when the
difference in values increases or decreases in proportion to the
average values.

RESULTS

Inter-laboratory Agreement
As reported in “Materials andMethods,” each institution received
from the coordinating center (University of Naples Federico II)
a set of 20 cases, providing the coordinator center with the run
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metric parameters and with the complete list of all the mutations
detected and their relative AFs by 10 working days. Then, the
samples were aliquoted and shipped to each institution. The
mutations detected by the University of Naples Federico II with
relative AFs were considered as the gold standard and reported in
Table 1. The obtained results, using the SiRe R© kit, among all the
institutions were fully concordant, reaching an inter-laboratory
agreement of 100.00% (Table 1).

Prospective Evaluation of the SiRe®

Panel’s Analytical Performance in a
Routine Setting
Following the retrospective analysis aimed to assess the inter-
laboratory concordance rate, each institution prospectively
analyzed a distinct set of 40 cases, including colon or lung cancer
tissue samples. All cases (160/160) were successfully analyzed
and the success rate was 100.00% (Supplementary Table 2). The
median number of reads for the sample was 306,332.38 (ranging
from 191 to 976,243), the median number of read length was
128.20 bp (ranging from 60 to 168 bp), the median number of
mapped reads was 302,203.01 (ranging from 191 to 908,628), the
mean percentage of reads on target was 88.45% (ranging from
14.47 to 99.53%), the average reads for amplicon was 5,380.93
(ranging from seven to 20,385), and the uniformity of coverage
was 93.73% (ranging from 71.95 to 100%), in line with the data
previously obtained from our group in the “in-house” validation
experiments of the SiRe R© panel (23).

Regarding the mutant allelic frequencies distribution, a high
level of agreement was reached; in particular, the ICC was
0.989 (95% C.I.: 0.981–0.994), and comparing the mutant allelic
frequencies distribution with the gold standard, the Linn’s
concordance correlation coefficient was high for KRASmutation
(CCC: 0.977; 95.00% C.I.: 0.963–0.986), PDGFRα mutation
(CCC: 0.989; 95% C.I.: 0.974–0.996), and cKIT mutations (CCC:
0.954; 95% C.I.: 0.888–0.982).

DISCUSSION

NGS represents a fascinating and versatile technology for the
simultaneous analysis of different genes in different cancer
patients. However, NGS requires many different laboratory
steps, from DNA extraction, libraries preparation, sequencing
procedure, and data interpretation, which can lead to results
not being always fully consistent and reproducible in different
laboratories, a limit inherent to many laboratory-developed
tests. Thus, it is widely held that a reliable and cost-effective
validation and implementation of this procedure in routine
practice would benefit from a high degree of collaboration
among skilled and experienced molecular biologists belonging
to different institutions. In particular, networking is crucial to
meet the challenges related to routine clinical sample processing
as, in many cases, issues involve a suboptimal quantity and
quality of nucleic acids (15–19). Furthermore, besides driving
detection of mutations that are evenly distributed in neoplastic
tissue, resistant genomic alteration features heterogeneity in the
molecular landscape of many cancers; the detection of distinct
mutations in different subclonal neoplastic populations can only

be addressed by robust and reliable gene panels, ensuring a
uniform coverage of the target regions. In particular, small gene
panels, such as the SiRe R© NGS panel, filling an intermediate
space between allelic-specific PCR approaches and targeted re-
sequencing have several advantages (17, 18). In fact, the SiRe R©

panel has previously been designed and validated for both tissue
samples and liquid biopsy specimens to cover 568 clinically
relevant mutations in six genes (EGFR, KRAS, NRAS, BRAF,
cKIT, and PDGFRα) involved in NSCLC, gastrointestinal stromal
tumor, mCRC, and melanoma, meeting the clinical indication
for drug prescription from the European Medical Agency. In
the validation study, a high analytical sensitivity (0.005%) with
a 0.01% lower limit of detection was reported (19). We also
developed a SiRe R©-specific preparation protocol to enable the
pooling of two 16-sample libraries in each run. Thus, using
this well-standardized procedure, we were able to sequence
simultaneously up to 32 paired plasma/serum samples in <3 h
on the IonTorrent platforms, with a consequent reduction in the
total consumable cost, limiting the expense to 98 euro for the
simultaneous analysis of six different genes, which is comparable
with the cost of the most commercially available real-time PCR-
based kits (19–23).

In different European countries, the implementation
of NGS in routine diagnostic procedures, beyond pre-
analytical and technical factors, strongly depends on more
general considerations relative to the healthcare systems in
which predictive molecular pathology is practiced. While in
North American countries, tumor samples are outsourced
in large reference laboratories, thanks to the well-resourced,
reimbursement-based systems ensuring the repayment of
extensive tumor sequencing. In Italy, NGS is practiced in many
different laboratories close to the patients’ homes, each of
them using different wet and dry procedures. Needless to say,
harmonization of different laboratory practices and ofmutational
databases is strongly needed to improve and homogenize the
assessment of genomic biomarkers. To this end, this current
study was carried out to assess the feasibility of adopting the same
NGS panel in the context of a multi-institution study, thanks to
a consortium constituted by five different highly experienced
Italian laboratories whose geographical location covers a large
part of the Italian peninsula. Our data, generated from the
retrospective analysis in each participating laboratory of a set
of 20 samples, reached a high interlaboratory agreement level,
not only relative to the mutation detection but also in relation
to allelic frequencies estimation. Considering the prospective
phase of this study, to assess the analytical performance of the
SiRe R© panel in different routine settings, promising results
were obtained; in fact, an overall success rate of 100.00% was
reported, with the median values of the run metric parameters
confirming that the data obtained in the “in-house” validation
data of the SiRe R© panel can be successfully reproduced in four
different institutions.

The main limitation of the SiRe R© NGS panel relies in the
limited number of analyzed genes. In particular, as discussed
above, in the design and development of our panel, we only
focused our attention on the clinically relevant mutations in six
genes. In addition, this panel is able to identify point mutations
and indel alterations. Thus, further improvements are required
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to increase the clinical performance of the SiRe R© NGS panel. In
particular, it is necessary to expand the reference range of the
SiRe R© NGS gene panel, focusing our attention on other clinically
relevant genes and on additional alterations such as copy number
variations and gene fusions.

In conclusion, considering altogether the results obtained
from the current multi-institution study, the SiRe R© NGS panel
represents a robust diagnostic tool for mutational analysis in a
predictive molecular pathology routine setting, which is useful in
harmonizing theNGS procedures in different Italian laboratories.
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Tumor microenvironment (TME) plays a crucial role in the initiation and progression of

lung adenocarcinoma (LUAD); however, there is still a challenge in understanding the

dynamic modulation of the immune and stromal components in TME. In the presented

study, we applied CIBERSORT and ESTIMATE computational methods to calculate the

proportion of tumor-infiltrating immune cell (TIC) and the amount of immune and stromal

components in 551 LUAD cases from The Cancer Genome Atlas (TCGA) database.

The differentially expressed genes (DEGs) were analyzed by COX regression analysis

and protein–protein interaction (PPI) network construction. Then, Bruton tyrosine kinase

(BTK) was determined as a predictive factor by the intersection analysis of univariate COX

and PPI. Further analysis revealed that BTK expression was negatively correlated with

the clinical pathologic characteristics (clinical stage, distant metastasis) and positively

correlated with the survival of LUAD patients. Gene Set Enrichment Analysis (GSEA)

showed that the genes in the high-expression BTK group were mainly enriched in

immune-related activities. In the low-expression BTK group, the genes were enriched in

metabolic pathways. CIBERSORT analysis for the proportion of TICs revealed that B-cell

memory and CD8+ T cells were positively correlated with BTK expression, suggesting

that BTK might be responsible for the preservation of immune-dominant status for TME.

Thus, the levels of BTK might be useful for outlining the prognosis of LUAD patients and

especially be a clue that the status of TME transition from immune-dominant to metabolic

activity, which offered an extra insight for therapeutics of LUAD.

Keywords: BTK, tumor microenvironment, ESTIMATE, CIBERSORT, tumor-infiltrating immune cells, lung

adenocarcinoma

INTRODUCTION

Lung cancer is the main cause of cancer-related death worldwide by reason of
high recurrence rate, late detection, and poor prognosis. As a member of non-
small cell lung cancer (NSCLC), LUAD accounts for ∼40% of all lung cancer cases.
The current treatment for lung cancer, including surgical resection, chemotherapy,
and radiation, had limitation on the improvement of patient’s survival (1, 2).
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Accordingly, it is urgently needed to explore the carcinogenesis
and therapeutics of lung cancer.

Increasing evidence demonstrated the importance of the
tumor microenvironment (TME) in the tumor development.
Collaborative interactions between cancer cells and their
supporting cells contributed to the malignant phenotypes of
cancer, such as immortal proliferation, resisting apoptosis, and
evading immune surveillance. Therefore, the TME significantly
influences therapeutic response and clinical outcome in cancer
patients (3, 4). Structural components of the TME are mainly
resident stromal cells and recruited immune cells. While there
was compelling evidence for the role of stromal cell contributing
to tumor angiogenesis and extracellular matrix remodeling,
but perhaps it is still not fully understood (5). Meanwhile, a
few studies paid close attention to the impact of the immune
cells in TME on tumor growth and progression. A growing
body of studies showed that the tumor-infiltrating immune
cell (TIC) in TME served as a promising indicator for the
therapeutic effects (6). The tumor-infiltrating lymphocyte (TIL)
was significantly correlated with the 5-year survival of NSCLC,
and low lymphocyte abundance in cancer was identified as a
poor prognostic indicator in early-stage NSCLC (7, 8). This
relevance brought about the improvement of immune-based
therapeutics, resulting in the application of immune checkpoint
inhibitors for NSCLC patients (9, 10). A recent study elucidated
the role of lung cancer lineage specifiers SOX2 and NKX2-
1 in tumor cell fate and neutrophil recruitment, suggesting
that the determination of tumor immune microenvironment
might impact the nature of the tumor (11). A gene-expression
profiling analysis showed that immune activation and immune
escape in TME occur before lung cancer invasion (12). These
results suggested that the adaptive immune response within
TME might be of much importance at the earliest stage of
lung cancer. Therefore, there is a challenge in performing
precise genetic analysis that could appropriately indicate the
dynamic modulation of the immune and stromal components
in TME.

Transcriptome-sequencing patterns followed by functional
genomics analysis have shed light on the roles of different
types of cells during TME modulation. In the presented
article, we applied ESTIMATE and CIBERSORT computational
methods to calculate the TIC proportion and the ratio
of immune and stromal components of LUAD samples
from The Cancer Genome Atlas (TCGA) database and
identified a predictive biomarker, Bruton tyrosine kinase
(BTK). BTK was a non-receptor tyrosine kinase of the Tec
family, locating in the downstream of signal transduction of
B-cell antigen receptor (BCR). Upon phosphorylated, BTK
triggered several signaling pathways, which resulted in the
survival of leukemic cells in many B-cell malignancies (13,
14). Recently, some preclinical data had demonstrated that

Abbreviations: TME, tumor microenvironment; LUAD, lung adenocarcinoma;

PPI, protein–protein interaction; DEG, differentially expressed gene; BTK, Bruton

tyrosine kinase; GSEA, Gene Set Enrichment Analysis; NSCLC, non–small

cell lung cancer; TIC, tumor-infiltrating immune cell; TIL, tumor-infiltrating

lymphocyte; ICI, immune checkpoint inhibitor.

BTK was overexpressed in some solid tumors and their
periphery cells in TME such as dendritic cells, macrophages,
myeloid derived suppressor cells, and endothelial cells (15, 16),
suggesting that BTK might play a role in TME. Here we
embarked from differentially expressed genes (DEGs) generated
by comparison between immune components and stromal
components in LUAD samples and revealed that the BTK
might be a potential indicator for the alteration of TME status
in LUAD.

RESULTS

Analysis Process of This Study
The analysis process of our study is shown in in Figure 1. To
estimate the proportion of TICs and the amount of immune
and stromal component in LUAD samples, transcriptome
RNA-seq data of 551 cases were downloaded from TCGA
database followed by calculating with CIBERSORT and
ESTIMATE algorithms. DEGs shared by ImmuneScore and
StromalScore were used to constructed protein–protein
interaction (PPI) network and univariate COX regression
analysis, and then intersection analysis was performed using
the core nodes in PPI network and the top significant factors
obtained from the analysis of univariate COX regression.
BTK and CCR2 were obtained, and we focused on BTK
for the subsequent series of analysis, including survival and
clinicopathological characteristics correlation analysis, COX
regression, Gene Set Enrichment Analysis (GSEA), and
correlation with TICs.

Scores Were Correlated With the Survival
of LUAD Patients
To establish the correlation of the estimated proportion of
immune and stromal with the survival rate, Kaplan–Meier
survival analysis was used for ImmuneScore, StromalScore,
and ESTIMATEScore, respectively. The higher score estimated
in ImmuneScore or StromalScore were represented for the
larger amount of the immune or stromal components in
TME. ESTIMATEScore was the sum of ImmuneScore and
StromalScore denoting the comprehensive proportion of
both components in TME. As shown in Figure 2A, the
proportion of immune components had positive correlation
with the overall survival rate. Despite StromalScore had no
significant correlation with the overall survival rate (Figure 2B),
ESTIMATEScore still showed positive correlation with the
survival rate (Figure 2C). These results implied that the immune
components in TME were more suitable for indicating the
prognosis of LUAD patients.

Scores Were Associated With the
Clinic–Pathological Staging of LUAD
Patients
For determining the relationship between the proportion of
immune and stromal components with the clinicopathological
characteristics, we analyzed the corresponding clinical
information of LUAD cases from TCGA database. As
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FIGURE 1 | Analysis workflow of this study.

shown in Figure 3, ImmuneScore showed the negative
correlation with T classification of TMN stages (Figure 3D,
p = 0.003); StromalScore was only negatively correlated
to M classification of TMN stages (Figure 3H, p = 0.007),
and ESTIMATEScore significantly declined accompany
with the advance of TMN stages (Figure 3F, p = 0.028
and Figure 3I, p = 0.021). These results suggested
that the ratio of immune and stromal components was
associated with the progress of LUAD, such as invasion
and metastasis.

DEGs Shared by ImmuneScore and
StromalScore Were Predominantly
Presented as the Enrichment of
Immune-Related Genes
To ascertain the exact alterations of gene profile in TME
regarding immune and stromal components, the comparison
analysis between high- and low-score samples were carried out.
Compared to the median, the total 776 DEGs were obtained from
ImmuneScore (samples with high score vs. low score) Among
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FIGURE 2 | Correlation of scores with the survival of patients with LUAD. (A) Kaplan–Meier survival analysis for LUAD patients grouped into high or low score in

ImmuneScore determined by the comparison with the median. p = 0.022 by log-rank test. (B) Kaplan–Meier survival curve for StromalScore with p = 0.092 by

log-rank test. (C) Survival analysis with Kaplan–Meier method for LUAD patients grouped by ESTIMATEScore (p = 0.046 by log-rank test).

them, 626 genes were up-regulated, and 150 genes were down-
regulated (Figures 4A,C,D). Similarly, 783 DEGs were obtained
from StromalScore, consisting of 665 up-regulated genes and
118 down-regulated genes (Figures 4B–D). The intersection
analysis displayed by Venn plot showed a total of 317 up-
regulated genes sharing by high score both in ImmuneScore and
StromalScore and 62 down-regulated genes sharing by low score
as well. These DEGs (total 379 genes) were possibly determinate
factors for the status of TME. Results from gene ontology (GO)
enrichment analysis indicated that the DEGs almost mapped to
the immune-related GO terms, such as leukocyte proliferation
and T-cell activation (Figure 4E). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis also displayed
the enrichment of chemokine signaling pathway, cytokine–
cytokine receptor interaction, and hematopoietic cell lineage
(Figure 4F). Thus, the overall functions of DEGs seemed to
map on immune-related activities, which implied that the
involvement of immune factors was a predominant feature of
TME in LUAD.

Intersection Analysis of PPI Network and
Univariate COX Regression
To further explore the underlying mechanism, we constructed
PPI network based on the STRING database using Cytoscape
software [National Institute of General Medical Sciences
(NIGMS) USA]. The interactions between 379 genes are shown
in Figure 5A, and the bar plots were represented for the top 30
genes ranked by the number of nodes (Figure 5B). Univariate
COX regression analysis for the survival of LUAD patients was
performed to determine the significant factors among 379 DEGs
(Figure 5C). And then, the intersection analysis between the
leading nodes in PPI network and the top 16 factors ranked by the
p-value of univariate COX regression was carried out, and only
two factors, CCR2 and BTK, were overlapping from the above
analyses (Figure 5D).

The Correlation of BTK Expression With
the Survival and Classification of TNM
Stages in LUAD Patients
BTK played a key role in the intracellular signaling of B
lymphocytes. Ibrutinib, a BTK inhibitor, was effective for the
treatment of patients with lymphocytic malignancies. Instead,
there were no delightful results obtained from the treatment
of patients with solid tumors, for example, NSCLC and breast
cancer. In the presented study, all LUAD samples were grouped
into BTK high-expression group and BTK low-expression group
compared with the BTKmedian expression. The survival analysis
showed that LUAD patients with BTK high expression had longer
survival than that of BTK low expression (Figure 6C). After
that, the analysis of BTK combined with clinical characteristics
was performed (Supplement Table 1), and Wilcoxon rank sum
test revealed that the expression of BTK in the tumor samples
was significantly lower than that in the normal samples
(Figure 6A). Similar results were observed in the pairing analysis
between the normal and tumor tissues derived from the same
patient (Figure 6B). The above results clearly indicated that the
expression of BTK in TME was positive correlation with the
prognosis of LUAD patients. In particular, the expressions of
BTK were declined along with the progression of TNM stages
(Figures 6D–G).

BTK Had Potential to Be an Indicator of
TME Modulation
Given the levels of BTK were negatively correlated with
the survival and TNM stages of LUAD patients, GSEA
was implemented in the high-expression and the low-
expression groups compared with the median level of
BTK expression, respectively. As shown in Figure 7A and
Supplement Table 2, the genes in BTK high-expression
group were mainly enriched in immune-related activities,
such as allograft rejection, complement, and interferon
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FIGURE 3 | Correlation of ImmuneScore and StromalScore with clinicopathological staging characteristics. (A–C) Distribution of ImmuneScore, StromalScore, and

ESTIMATEScore in stage. The p = 0.053, 0.087, and 0.059, respectively, by Kruskal–Wallis rank sum test. (D–F) Distribution of three kinds of scores in T classification

(p = 0.003, 0.376, 0.028 for ImmuneScore, StromalScore, and ESTIMATEScore, respectively, by Kruskal–Wallis rank sum test). (G–I) Distribution of scores in M

classification (p = 0.081, 0.007, 0.021 for ImmuneScore, StromalScore, and ESTIMATEScore separately by Wilcoxon rank sum test). (J–L) Distribution of scores in N

classification. Similar to the preceding, p = 0.301, 0.421, 0.318, respectively, with Kruskal–Wallis rank sum test.

response. As to BTK low-expression group, the genes
were enriched in metabolic pathways, including glycolysis,
oxidative phosphorylation, and typical tumor pathways
(Figure 7B and Supplement Table 2). For C7 collection
defined by MSigDB, the immunologic gene sets, multiple
immune functional gene sets were enriched in the high
BTK expression group (Figure 7C and Supplement Table 2).
However, few gene sets were enriched in the low BTK expression
group (Figure 7D and Supplement Table 2). These results
suggested that BTK might be a potential indicator for the status
of TME.

Correlation of BTK With the Proportion of
TICs
To further confirm the correlation of BTK expression with
the immune microenvironment, the proportion of tumor-
infiltrating immune subsets was analyzed using CIBERSORT
algorithm, and 21 kinds of immune cell profiles in LUAD

samples were constructed (Figure 8). The results from
the difference and correlation analyses showed that a
total of eight kinds of TICs were correlated with the
expression of BTK (Figure 9, Supplement Figure 1, and
Supplement Table 3). Among them, five kinds of TICs were
positively correlated with BTK expression, including B-cell
memory, CD8+ T cells, monocytes, resting dendritic cells,
and resting mast cells; three kinds of TICs were negatively
correlated with BTK expression, including activated NK cells,
macrophage M0, and activated mast cells. These results further
supported that the levels of BTK affected the immune activity
of TME.

DISCUSSION

In the presented study, we attempted to identify TME-related
genes that contributed to the survival and the classification
of TNM stages in LUAD patients from the TCGA database.
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FIGURE 4 | Heatmaps, Venn plots, and enrichment analysis of GO and KEGG for DEGs. (A) Heatmap for DEGs generated by comparison of the high score group vs.

the low score group in ImmuneScore. Row name of heatmap is the gene name, and column name is the ID of samples which not shown in plot. Differentially

expressed genes were determined by Wilcoxon rank sum test with q = 0.05 and fold-change >1 after log2 transformation as the significance threshold. (B) Heatmap

for DEGs in StromalScore, similar with (A). (C,D) Venn plots showing common up-regulated and down-regulated DEGs shared by ImmuneScore and StromalScore,

and q < 0.05 and fold-change >1 after log2 transformation as the DEGs significance filtering threshold. (E,F) GO and KEGG enrichment analysis for 379 DEGs, terms

with p and q < 0.05 were believed to be enriched significantly.

BTK was identified to be involved in immune activities.
Importantly, a series of bioinformatics analysis indicated that
BTK might be an indicator for the status of TME in
LUAD patients.

TME played a critical role in the initiation and progression
of tumorigenesis. It is of great benefit to explore the potential
therapeutic targets contributing to remodeling of TME and
fostering transition of TME from tumor-friendly to tumor-
suppressed. A large number of studies had shed light on the
importance of immune microenvironment in tumorigenesis.
Our results from the transcriptome analysis upon LUAD data
in TCGA database implied that the immune components in
TME contributed to the prognosis of patients. Particularly,
the proportion of immune and stromal components in TME
significantly correlated with the progression of LUAD, such
as invasion and metastasis. These results highlighted the
significance of exploring the interaction between tumor cells

and immune cells, which provided novel insight for developing
much more effective treatment regimen. Recently, a great
advancement has been made in immunotherapy, and immune
checkpoint inhibitors (ICIs) have been approved as a first-
line drug for patients with advanced NSCLC (17). However,
programmed death 1 ligand, the most important factor, seemed
not like a good indicator to determine whether NSCLC patients
were suitable for immunotherapy (18). As a heterogeneous
tumor, NSCLC was consistently known as a non-immunogenic
tumor. Nevertheless, recent studies discovered the existence of
tumor antigen-specific cytotoxicity and clonal TIL expansion
of particular sites in NSCLC, which was opposed to the
previous understanding (19). Besides, the abundance of TILs
was significantly correlated with the 5-year survival rate of
NSCLC, and the low counts of preoperative lymphocyte
have been known as a poor prognostic signal for early-
stage NSCLC patients (7, 8). Despite promising efficacy in
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FIGURE 5 | Protein–protein interaction network and univariate COX. (A) Interaction network constructed with the nodes with interaction confidence value >0.95. (B)

The top 30 genes ordered by the number of nodes. (C) Univariate COX regression analysis with 379 DEGs, listing the top significant factors with p < 0.005. (D) Venn

plot showing the common factors shared by leading 30 nodes in PPI and top significant factors in univariate COX.

NSCLC treatment demonstrated by ICIs, a wide variety of
immune-related adverse events could not easily be ignored (20).
Therefore, the universality of ICIs as well as the susceptibility
to immune-related adverse events was a tough problem, and
it was necessary to investigate some novel candidates for
the immunotherapy of NSCLC. Here, we embarked from
the transcriptomic analysis of LUAD in TCGA database,
which revealed that the decreased expression of BTK was
significantly associated with the advanced clinicopathological
characteristics (clinical stages and distant metastasis) and poor
prognosis. Accordingly, it suggested that BTK might be a
potential prognostic marker and a therapeutic target for TME
in LUAD.

BTK is a non-receptor tyrosine kinase and a member of
Tec kinase family. As a key component of the upstream in
BCR signaling, BTK played a vital role in the proliferation
and differentiation of B cells (13, 14). A small-molecule
inhibitor of BTK, ibrutinib, had been used for the patients
with hematological malignancies (21, 22). Recently, ibrutinib
was expanded to treatment of some solid tumors, including
pancreatic cancer, breast cancer, and NSCLC. However, it
received no comforting effects as those of hematological
malignancies (15, 23, 24). Our results suggested that the
expression of BTK was decreased in the advancing stages
of LUAD patients, which seemed to be inconsistent with
hematological malignancies. Similarly, some studies had reported

Frontiers in Oncology | www.frontiersin.org 7 April 2020 | Volume 10 | Article 424161

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bi et al. BTK as Indicator for LUAD

FIGURE 6 | The differentiated expression of BTK in samples and correlation with survival and clinicopathological staging characteristics of LUAD patients. (A)

Differentiated expression of BTK in the normal and tumor sample. Analyses were performed across all normal and tumor samples with p value closing to zero by

Wilcoxon rank sum test. (B) Paired differentiation analysis for expression of BTK in the normal and tumor sample deriving from the same one patient (p = 1.601e−11

by the Wilcoxon rank sum test). (C) Survival analysis for LUAD patients with different BTK expression. Patients were labeled with high expression or low expression

depending on the comparison with the median expression level. p = 0.0015 by log-rank test. (D–G) The correlation of BTK expression with clinicopathological staging

characteristics. Wilcoxon rank sum or Kruskal–Wallis rank sum test served as the statistical significance test.

that BTK might serve as a downstream effector in KRAS- and
EGFR-activated signals in NSCLC, which might be explained
by the existence of the distinct isoform of BTK in NSCLC
(25, 26). Therefore, the discordance of response to BTK
inhibitor implied that BTK seemed to play an antitumor role
in LUAD. Further supports were derived from a series of
studies, which indicated that BTK could modulate p53 activity to
enhance tumor suppressor responses referring its antineoplastic
properties (27–29). Thus, BTK might play a double-face role
in tumor, either promoting survival or inducing apoptosis.
Besides, it has been reported that BTK might be involved
in regulating macrophage polarization in TME. Therefore,
we further analyzed the relationship between BTK expression
and TME. The GSEA results showed that immune-related
signaling pathways, such as allograft rejection, complement, and
interferon response, were significantly enriched in the BTK high-
expression group. In the BTK low-expression group, metabolic
pathways including glycolysis, oxidative phosphorylation, and
typical tumor pathways were enriched. These results implied
that BTK might participate in the status conversion of TME
from immune-dominant to metabolic-dominant. Accumulated
evidence had elucidated that BTK might be correlative to the

metabolism. Ibrutinib promoted the uptake of glucose and
glutamine and inhibited the synthesis of free fatty acid, which
might be carried out via p53 signals (28, 30). To a certain degree,
our data also showed that the balance between typical tumor
pathways and vigorous glycolysis metabolism would affect the
immunity status. The disorder of the balance could be reflected
by the correlation of BTK low expression with metabolism.
Further analysis of TIC supported this view. Accordingly, the
downregulation of BTK along with the advancing stage of
LUAD, the conversion of TME from immune-predominant to
metabolic-dominant status, and the reduction of antitumor
TICs supported that BTK might play an antitumor role
in LUAD.

It was well-known that BTK was crucial for the functions of B
lymphocytes. In the presented article, the CIBERSORT analysis
for the proportion of TICs revealed that B-cell memory was
positively correlated with BTK expression in LUAD patients.
Regarding the role of B cells in cancer, there were some
contradictory statements. A study indicated B cell as the
promoter of carcinogenesis by inducing immunosuppression.
However, the other study showed that CD40-activated B cell
was a vigorous antigen-presenting cell and was able to induce
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FIGURE 7 | GSEA for samples with high BTK expression and low expression. (A) The enriched gene sets in HALLMARK collection by the high BTK expression

sample. Each line representing one particular gene set with unique color, and up-regulated genes located in the left approaching the origin of the coordinates, by

contrast the down-regulated lay on the right of x-axis. Only gene sets with NOM p < 0.05 and FDR q < 0.06 were considered significant. And only several leading

gene sets were displayed in the plot. (B) The enriched gene sets in HALLMARK by samples with low BTK expression. (C) Enriched gene sets in C7 collection, the

immunologic gene sets, by samples of high BTK expression. Only several leading gene sets are shown in plot. (D) Enriched gene sets in C7 by the low BTK expression.

the effect of antitumor immunity (31). A recent study revealed
a correlation between the amounts of tumor-infiltrating B cells
and the survival of LUAD patients with specific mutation driver,
which suggested that tumor-infiltrating B cells might be a symbol
for the specific mutation in lung cancer cells (32). Therefore,
the positive correlation between the amounts of B-cell memory
and BTK expression in LUAD patients suggested that BTK might
be responsible for the preservation of immune-active status
in TME.

Using ESTIMATE algorithm, we determined the TME-related
genes in LUAD through the functional enrichment analysis
of LUAD samples in TCGA database. BTK was a potential
prognostic factor for LUAD patients. More interestingly, BTK
might be an indicator for the conversion of TME status
from immune-dominant to metabolic-dominant. Therefore,

further investigation should be conducted to clarify the
accuracy of a combined analysis of BTK expression, the
amounts of tumor-infltrating B-cell isoforms, and the types
of mutation-driven prior to BTK inhibitor treatment for
LUAD patients.

MATERIALS AND METHODS

Raw Data
Transcriptome RNA-seq data of 551 LUAD cases (normal
samples, 54 cases; tumor samples, 497 cases) and the
corresponding clinical data were downloaded from
TCGA database (https://portal.gdc.cancer.gov/) with
level 3.
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FIGURE 8 | TIC profile in tumor samples and correlation analysis. (A) Barplot showing the proportion of 21 kinds of TICs in LUAD tumor samples. Column names of

plot were sample ID. (B) Heatmap showing the correlation between 21 kinds of TICs and numeric in each tiny box indicating the p value of correlation between two

kinds of cells. The shade of each tiny color box represented corresponding correlation value between two cells, and Pearson coefficient was used for significance test.

Generation of ImmuneScore,
StromalScore, and ESTIMATEScore
ESTIMATE algorithm by feat of R language version 3.5.1 loaded
with estimate package (33) was used to estimate the ratio of
immune-stromal component in TME for each sample, exhibited
in the form of three kinds of scores: ImmuneScore, StromalScore,
and ESTIMATEScore, which positively correlated with the ratio
of immune, stromal, and the sum of both, respectively, which
means the higher the respective score, the larger the ratio of the
corresponding component in TME.

Survival Analysis
R language loaded with package survival and survminer was
applied for the survival analysis. 458 tumor samples out of 497

cases had a detailed survival time record, with time span from 0 to
18.7 years, which were used for survival analysis. Kaplan–Meier
method was used to plot the survival curve, and log rank as the
statistical significance test; p < 0.05 was considered significant.

Generation of DEGs Between High-Score
and Low-Score Groups Regarding
ImmuneScore and StromalScore
497 tumor samples were labeled with high score or low
score depending on the comparison to the median score in
regarding ImmuneScore and StromalScore, respectively. Package
limma was used to perform differentiation analysis of the
gene expression, and DEGs were generated by the comparison
between the high-score samples vs. the low-score samples. DEGs
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FIGURE 9 | Correlation of TICs proportion with BTK expression. (A) Violin plot showed the ratio differentiation of 21 kinds of immune cells between LUAD tumor

samples with low or high BTK expression relative to the median of BTK expression level, and Wilcoxon rank sum was used for the significance test. (B) Scatter plot

showed the correlation of 12 kinds of TICs proportion with the BTK expression (p < 0.05). The red line in each plot was fitted linear model indicating the proportion

tropism of the immune cell along with BTK expression, and Pearson coefficient was used for the correlation test. (C) Venn plot displayed eight kinds of TICs correlated

with BTK expression codetermined by difference and correlation tests displayed in violin and scatter plots, respectively.

with fold change larger than 1 after transformation of log2 (high-
score group/low-score group) and false discovery rate (FDR)
<0.05 were considered significant.

GO and KEGG Enrichment Analysis
GO and KEGG enrichment analyses using 379 DEGs were
performed with R language with the aid of packages
clusterProfiler, enrichplot, and ggplot2. Only terms
with both p- and q-value of <0.05 were considered
significantly enriched.

Heatmaps
Heatmaps of DEGs were produced by R language with
package pheatmap.

Difference Analysis of Scores With Clinical
Stages
The clinicopathological characteristics data corresponding
to the LUAD samples were downloaded from TCGA. The

analysis was performed by R language, and Wilcoxon
rank sum or Kruskal–Wallis rank sum test as the
significance test depending on the number of clinical stages
for comparison.

PPI Network Construction
PPI network was constructed by STRING database, followed
by reconstruction with Cytoscape of version 3.6.1. Nodes with
confidence of interactive relationship larger than 0.95 were used
for building network.

COX Regression Analysis
R language loaded with package survival was used for univariate
COX regression. The top 16 genes ordered by p value from small
to large in univariate COX were shown in the plot.

Gene Set Enrichment Analysis
Hallmark and C7 gene sets v6.2 collections were downloaded
fromMolecular Signatures Database as the target sets with which
GSEA performed using the software gsea-3.0 downloaded from
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Broad Institute. The whole transcriptome of all tumor samples
was used for GSEA, and only gene sets with NOM p < 0.05 and
FDR q < 0.06 were considered as significant.

TICs Profile
CIBERSORT computational method was applied for
estimating the TIC abundance profile in all tumor
samples, which followed by quality filtering that only
421 tumor samples with p < 0.05 were selected for the
following analysis.
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State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for

Cancer Medicine, Guangzhou, China

Objective: To assess the postoperative prognosis of patients with stage IB non-small

cell lung cancer (NSCLC), using a prognostic model (PM).

Methods: Patients with stage IB of NSCLC from the two academic databases {the

Surveillance, Epidemiology, and End Results [SEER-A, N = 1,746 (training cohort)], Sun

Yat-sen University Cancer Center [SYSUCC,N= 247 (validation cohort)], and SEER-B (N

= 1,745)} who had undergone lung surgery from 2001 to 2015were enrolled. The primary

clinical endpoint was cancer-specific survival (CSS). Covariate inclusion of prognostic

indicators was carried out using a multivariable two-sided P < 0.05. We identified and

integrated significant prognostic factors for survival in the training cohort to build a model

that could be validated in the validation cohort. We used univariate analysis to evaluate

the utilized ability of PM in the different races/ethnicities.

Results: CSS discrimination in the PM was comparable in both the training and

validation cohorts [C index = 0.66(SEER-A), 0.67(SYSUCC), and 0.61(SEER-B),

respectively]. Discretization with a fixed PM cutoff of 291.5 determined from the training

dataset yielded low- and high-risk subgroups with disparate CSS in the validation cohort

(training cohort: hazard ratio [HR] 2.724, 95% confidence intervals [CI], 2.074–3.577;

validation cohort: SEER-B HR 1.679, 95% CI, 1.310–2.151, SYSUCC HR 3.649, 95%

CI 2.203–6.043, all P < 0.05). Our five-factor PM was able to predict CSS; 48-month

CSS was 87% in the low-risk subgroup vs. 69% in the high-risk subgroup for the training

cohort, while in the validation cohort, they were 80 vs. 73%(SEER-B) and 84 vs. 60%

(SYSUCC), respectively. In addition, the results showed that PM with all unadjusted HR

> 1 was a significant risk prognostic indictor in white men (P < 0.001), Chinese people

(P < 0.001), and other races (P = 0.012).

Conclusion: We established and validated a PM that may predict CSS for patients with

IB NSCLC in different races/ethnicities, and thus, help clinicians screen subgroups with

poor prognosis. In addition, further prospective studies and more cases from different

regions are necessary to confirm our findings.
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INTRODUCTION

Lung cancer remains the most common cause of cancer-related
morbidity and mortality (1). In 2019, in the United States alone,
the number of new cases is estimated to reach 228,150, and the
death toll is projected to be 142,670 (2). Lung cancer is mainly
classified into non-small cell lung cancer (NSCLC) and small cell
lung cancer (2). More than 83% of lung cancers are NSCLC (2, 3).
According to the 8th edition of the American Joint Committee
on Cancer (AJCC) Staging Manual that was implemented in
January 2017, the stratification effect on the overall survival (OS)
rate is better than that in the 7th edition (4). Owing to the
tendency of late diagnosis and tumor recurrence (5), the 5-year
OS rate for NSCLC remains low at about 23% (2, 6). The decision
of administering adjuvant treatment to patients with stage IB
has been controversial. The National Comprehensive Cancer
Network guidelines recommend postoperative chemotherapy
in patients with high-risk factors, such as vascular invasion,
visceral pleural invasion, unknown lymph nodes status, and
tumor diameter >4 cm (7); the European Society for Medical
Oncology guidelines recommend that adjuvant therapy be given
to patients with a tumor diameter >4 cm (8) and the American
Society of Clinical Oncology guidelines do not recommend
routine treatment for stage IB patients (9). However, following
the implementation of the 8th edition, patients with stage IB
and tumor size >4 cm have been reassigned to stage IIA (4).
According to the 8th AJCC Staging Manual, stage IB is defined
by the following: (1) tumor size>3-4 cm, with or without visceral
pleural invasion (PL1/PL2); (2) tumor size 0–3 cm, with visceral
pleural invasion (PL1/PL2); (3) tumor size 0–3 cm, infringing the
main bronchus but with a distance≥2 cm from the carina or with
local pneumonia or with local atelectasis (4).

Many studies have confirmed that tumor size ≥4 cm and
visceral pleural invasion can worsen the prognosis of lung cancer
patients (10–14).

The 5-year OS of patients with stage IA can be as high as 84%,
while the 5-year OS of patients with stage IB is slightly poorer
at 68%.With the improvement in early screening for lung cancer,
the detection rate of stage I patients increases, and the proportion
of patients with stage IB increases (4, 6). Therefore, it is more
important to screen for high-risk factors of postoperative poor
prognosis in patients with IB as per the 8th edition of the AJCC
Staging Manual.

This study used the data of the lung cancer patients recorded
in the database of the Surveillance, Epidemiology, and End
Results (SEER) and Sun Yat-sen University Cancer Center
(SYSUCC) to transform the 8th edition of AJCC Staging Manual
based on the information provided. We further analyzed the
postoperative prognosis of patients with stage IB NSCLC using
a prognostic model (PM) and effectively stratified patients as

Abbreviations:NSCLC, non-small cell lung cancer; PM, prognostic model; SEER,

the Surveillance, Epidemiology, and End Results; SYSUCC, Sun Yat-sen University

Cancer Center; CSS, cancer-specific survival; HR, hazard ratio; CI, confidence

intervals; AJCC, the American Joint Committee on Cancer; OS, overall survival;

PL, pleural invasion; LNs, lymph nodes; AC, adenocarcinoma; SCC, squamous cell

carcinoma; BAC, bronchial alveolar carcinoma; NT, neuroendocrine tumor; TSPI,

both tumor size of > 3 cm and pleural invasion.

per the AJCC Staging Manual. We believe that this study will
provide important treatment-related information for clinicians
and patients.

MATERIALS AND METHODS

Study Cohort
The study cohort comprised 3,491 patients from the SEER
database who underwent lung surgery from January 2010 to
December 2015 and 247 patients from SYSUCC who underwent
lung surgery from January 2001 to December 2014. Patients
who met the following inclusion criteria were enrolled in the
study: (1) histopathologic confirmation of NSCLC diagnosis;
(2) no distant metastasis to the lymph nodes (LNs) or other
organs; (3) pathologically confirmed stage IB as per the 8th
edition of the AJCC Staging Manual. Patients were excluded
if they (1) had received adjuvant and neoadjuvant cytotoxic
chemotherapy or radiotherapy or immune checkpoint inhibitors
or underwent other immune therapy regimens; or (2) had a
past or current history of another malignancy. According to the
patients’ records, we translated the pathological staging into the
8th edition of AJCC. The process of patient screening is shown
in Figures 1, 2. All patient records were anonymized before
analyses. We included information regarding the following
patient information: sex, race, age at diagnosis, surgical approach,
tumor differentiation, histologic type, number of LNs removed,
positive number of LNs, tumor location, tumor extension status,
tumor size, pleural invasion (PL), pT stage, pN stage, pM
stage, pTNM stage, chemotherapy, and radiation. Patients from
the SEER database were randomized into a training cohort
(SEER-A) and a validation cohort (SEER-B). SEER-A included
1,746 patients, while the validation cohort included 1,745
patients (SEER-B) and 247 patients (SYSUCC). We obtained
approval to use SYSUCC data from the Research Data Deposit
of Sun Yat-sen University Cancer Center (Approval number:
RDDA2019001261). The primary clinical endpoint was CSS.

Surgery
According to record in the SEER database and SYSUCC,
the main approaches for lung surgery included lobectomy,
pneumonectomy, sleeve resection, and sublobectomy (wedge
resection and segmental resection). In the SEER database, the
average number of LNs removed during surgery was 9.97± 0.13,
and themedian number of LNs was 8.0. However, in the SYSUCC
data, the average number of LNs removed during surgery was
20.98± 0.79, and the median number of LNs was 19.0

Histologic Type
Patients exhibited the following histologic types: adenocarcinoma
(AC), squamous cell carcinoma (SCC), carcinoid tumor,
bronchial alveolar carcinoma (BAC), and neuroendocrine
tumor (NT).

Follow-Up
The survival time and status information was available for these
patients. In the SEER database, follow-up duration ranged from
0.0–83.0 months, with an average of 37.0 ± 0.36 months; in
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FIGURE 1 | Flow chart of the patient screening process in the the Surveillance, Epidemiology, and End Results.

FIGURE 2 | The diagram of the patient screening process in the Sun Yat-sen

University Cancer Center.

the SYSUCC, follow-up duration ranged from 1.0–202.0 months,
with an average of 68.6± 2.29 months.

Statistical Analyses
Statistical analyses were performed using SPSS Statistics 25.0
software (IBM SPSS, Inc., Chicago, IL, USA), X-tile software
(15), R version 3.5.2 and Graph pad Prism 5. Hazard ratios
(HR) with 95% confidence intervals (CIs) were calculated using

multivariate regression analysis. Correlations between groups
and clinicopathological characteristics were assessed using the
χ
2 test. We then considered information regarding pleural

invasion and tumor size and defined patients with both tumor
size >3 cm and pleural invasion (TSPI) as TSPI positive, and
the other patients as TSPI negative. Multivariate analysis was
performed to evaluate the influence of gender, age at diagnosis,
race, tumor location, tumor differentiation, surgical approach,
histologic type, tumor size and pleura invasion on CSS. A two-
sided p < 0.05 was considered statistically significant. The most
valuable prognostic factors identified using univariate analysis
were confirmed with multivariate analysis. Multivariate Cox
regression analysis was used to exclude other confounding
factors affecting survival. Prognostic indicators were included as
covariates in our multivariate analysis with a two-sided P-value
threshold of <0.05. Similarly, Kaplan–Meier analysis and log-
rank tests were used to compare survival curves between groups.
Cases were censored when cancer-related death occurred or at
the end of follow-up. CSS was selected as the primary clinical
endpoint as it was considered the most clinically relevant factor.
We adopted a model development and validation approach,
using a randomized method to extract the training and validation
data sets.

Patient demographics and clinical characteristics were
reported for the training cohort. The PM for CSS was constructed
by using the linear predictor of the finalized model derived from
the training data set. The training cohort was dichotomized into
a low-risk and high-risk subgroups using X-tile to determine the
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cutoff value of PM. A risk score cutoff was defined for classifying
patients in the validation cohorts. Concordance C index was
generated for discrimination of the multivariable PM.

In the validation cohorts, the PM was applied to calculate
the risk score, and patient discretization into the low- and high-
risk subgroups was based on the same cutoffs defined in the
training datasets.

To investigate the effect of stratification, we screened patients
from the SEER database with stage IA and IIA (stages were
translated into the 8th edition AJCC), which included 9,259
and 1,031 patients, respectively. We then compared the survival
between patients in stage IA, low-risk stage IB, high-risk stage IB,
and stage IIA.

RESULTS

Patient Characteristics
Clinical characteristics of patients in the SEER database are listed
in Table 1. Among the 3,491 patients, 1,630 (46.7%) were men
and 1,861 (53.3%) were women; 2,878 (82.4%) were white, 314
(9.0%) were black, and 288 (8.2%) were of other races. Patients’
age ranged from 22–80 years (median, 68 years). In this cohort,
the 1-, 3-, and 4-year CSS rates were 91.0, 82.0, and 77.0%,
respectively, and the median and mean times from surgery to the
last censoring date were 34.0 and 37.0 months, respectively. In
the training cohort, the 1-, 3-, and 4-year CSS rates were 91.0,
83.0, and 79.0%, respectively, and in the validation cohorts, the
1-, 3-, and 4-year CSS rates were 90.0, 80.0, and 76.0% (SEER-
B) and 92.0, 84.0, and 78.0% (SYSUCC), respectively. Clinical
characteristics of patients in the SYSUCC are listed in Table 2.

In the training cohort, the number of patients who underwent
lobectomy was 1,521 (87.1%). Of the remaining patients,
191 (10.9%) and 34 (0.2%) underwent sublobectomy and
pneumonectomy, respectively (Table 1). The main histologic
type was AC (N = 1,180, 67.6%) and SCC (N = 443, 25.4%).
In this cohort, 839 (48.1%) patients had pleural invasion, with
the remaining patients accounting for 51.9% (N = 907) of the
study population. The majority of tumors were located in the
upper lobe (N = 1,039, 59.5%), but some were in the lower lobe
(N = 547, 31.3%), some were in the middle lobe (N = 117,
6.7%), and the remaining were in other locations (N = 38, 2.2%),
including the main bronchi, multiple positions, etc. 906 (51.9%)
patients had ≤ 8 LNs removed, while 840 (48.1%) had > 8
LNs removed. Regarding the degree of tumor differentiation, 321
(18.4%) were well-differentiated, 888 (50.6%) were moderately
differentiated, 524 (30.0%) were poorly differentiated, and 13
(0.7%) were undifferentiated.

Univariate and Multivariate Analyses
Univariate and multivariate analyses were performed to
investigate the correlations between the clinical characteristics
and CSS. As shown in Table 3, univariate analyses identified the
following clinical characteristics as significant CSS prognostic
factors in patients with NSCLC: gender, age at diagnosis,
lobectomy, sublobectomy, LNs, tumor differentiation, AC, SCC,
and pleura invasion. Further multivariate analysis based on
those characteristics confirmed gender (HR 0.700, 95% CI,

TABLE 1 | The associations of clinicopathological characteristics between training

cohort (SEER-A) and validation cohort (SEER-B).

All patients

(N = 3,491)

Training Cohort

(SEER-A,

N = 1,746)

Validation

Cohort (SEER-B,

N = 1,745)

Variables No. of patients (%) P-value

Sex 0.446

Male 1,630 (46.7%) 804 (49.3%) 826 (50.7%)

Female 1,861 (53.3%) 942 (50.6%) 919 (49.4%)

Age at diagnosis

(years)

0.397

≤65 1,417 (40.6%) 721 (50.9%) 696 (49.1%)

>65 2,074 (59.4%) 1,025 (49.4%) 1,049 (50.6%)

Race 0.745

White 2,878 (82.4%) 1,430 (49.7%) 1,148 (50.3%)

Black 314 (9.0%) 166 (52.9%) 148 (47.1%)

Other 288 (8.2%) 144 (50.0%) 144 (50.0%)

Surgery Approach 0.460

Lobectomy 3,045 (87.2%) 1,521 (50.0%) 1,524 (50.0%)

Sublobectomy 382 (10.9%) 191 (50.0%) 191 (50.0%)

Pneumonectomy 62 (1.8%) 34 (54.8%) 28 (45.2%)

LNs 0.285

≤8 1,843 (52.8%) 906 (49.2%) 937 (50.8%)

>8 1,648 (47.2%) 840 (51.0%) 808 (49.0%)

Tumor grade 0.402

Grade I 616 (17.6%) 321 (52.1%) 295 (47.9%)

Grade II 1,768 (50.6%) 888 (50.2%) 880 (49.8%)

Grade III 1,075 (30.8%) 524 (48.7%) 551 (51.3%)

Grade IV 32 (0.9%) 13 (40.6%) 19 (59.4%)

Histologic type 0.337*

Carcinoid 6 (0.2%) 5 (83.3%) 1 (16.7%)

BAC 109 (3.1%) 50 (45.9%) 59 (54.1%)

AC 2,187 (62.6) 1,108 (50.7%) 1,079 (49.3%)

SCC 895 (25.6%) 443 (49.5%) 452 (50.5%)

NT 294 (8.4%) 140 (47.6%) 154 (52.4%)

Pleura invasion 0.412

Negative 1,524 (43.7%) 776 (50.9%) 748 (49.1%)

Positive 1,696 (48.6%) 839 (49.5%) 857 (50.5%)

Tumor Location 0.216

Upper lobe 2,114 (60.5%) 1,039 (49.1%) 1,075 (50.9%)

Middle lobe 210 (6.0%) 117 (55.7%) 93 (44.3%)

Lower lobe 1,068 (30.6%) 547 (51.2%) 521 (48.8%)

Other location 84 (2.4%) 38 (45.2%) 46 (54.8%)

P* value was calculated by Fisher’s exact test; P value was calculated by χ
2 test.

SEER, the Surveillance, Epidemiology, and End Results; AC, adenocarcinoma; SCC,

squamous cell carcinoma; BAC, bronchial alveolar carcinoma; NT, neuroendocrine tumor.

0.542–0.904, P = 0.006), age at diagnosis (HR 1.039, 95% CI,
1.023–1.056, P < 0.001), LNs (HR 0.974, 95% CI, 0.954–0.994, P
= 0.012), tumor differentiation (HR 1.496, 95% CI, 1.235–1.813,
P < 0.001), and pleura invasion (HR 1.459, 95% CI, 1.123–1.894,
P = 0.005) as independent prognostic factors (Table 3). Our
study revealed that these factors were significantly associated
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TABLE 2 | The clinicopathological characteristics in Sun Yat-sen University

Cancer Center.

Variables No. of patients (%)

N = 247

Sex

Male 153 (61.9%)

Female 94 (38.1%)

Race/ethnicities

Chinese 247 (100.0%)

Age (years)

≤65 170 (68.8%)

>65 77 (31.2%)

Differentiation

Grade I 32 (13.0%)

Grade II 127 (51.4%)

Grade III 88 (35.6%)

Chemotherapy

No 247 (100.0%)

Yes 0 (0.0%)

Radiation

No 247 (100.0%)

Yes 0 (0.0%)

Pleura invasion

No 54 (21.9%)

Yes 193 (78.1%)

Tumor location

Upper 133 (53.8%)

Middle 26 (10.5%)

Lower 77 (31.2%)

Other 7 (2.8%)

Surgery approach

Sublobectomy 0 (0.0%)

Lobectomy 242 (98.0%)

Pneumonectomy 5 (2.0%)

with prognosis in stage IB NSCLC patients. Therefore, the five
factors mentioned above were useful predictors of postoperative
outcome in the training cohort.

Construction of a PM
Based on the results of the training cohort information analyses,
we constructed the PM system and tested the covariates listed in
Table 4 for their association with CSS. The PM system was based
on weighting (derived from the β-coefficient of the respective
log[HRs]) of the five significant covariates in the training cohort
(Table 4) that yielded a C index of 0.66 (95% CI, 0.64–0.68)
for CSS. This model allowed us to define a high-risk subgroup
presenting a significantly reduced likelihood of survival (HR
2.724, 95%CI, 2.074–3.577; P< 0.001, Figure 3A). The PM cutoff
value was determined in order to distinguish the high-risk group
from the low-risk group, using the X-tile software. The cutoff
value was 291.5. Our five-factor PM predicted that the 12-month,
36-month, and 48-month CSS in the low-risk subgroup vs. that
in the high-risk subgroup was 95.0 vs. 87.0%, 90.0 vs. 74.0%, and

87.0 vs. 69.0%, respectively, in the training cohort, 94.0 vs. 87.0%,
85.0 vs. 75.0%, and 80.0 vs. 73.0% (SEER-B) and 96.0 vs. 81.0%,
91.0 vs. 64.0% and 84.0 vs. 60.0% (SYSUCC), respectively, in the
validation cohort.

Validation of the PM
In order to validate the predictive accuracy of the PM for CSS
in IB NSCLC, we tested the PM independently in the validation
cohort: an internal cohort of 1,745 patients and an external
cohort of 247 patients. The same PM cutoff value of 291.5
allowed us to stratify patients in the validation cohort into the
high-risk subgroup with a significantly inferior CSS or the low-
risk subgroup (SEER-B: HR 1.679, 95% CI, 1.310–2.151, P <

0.001; SYSUCC: HR 3.649, 95% CI 2.203–6.043, P < 0.001,
Figures 3B,C). The PM in the validation cohorts yielded a C
index of 0.61 [95% CI, 0.60–0.63, (SEER-B)] and 0.67 [95% CI,
0.64–0.71, (SYSUCC)] for CSS.

In the SYSUCC, the median survival time of the high-risk
subgroup was 76.0 months. However, there was no median
survival time in SEER-A, SEER-B, and low-risk subgroup
of SYSUCC.

Effect of Stratification
To observe the effect of stratification, we screened patients with
stage IA and IIA who were translated into the 8th edition AJCC
of the SEER database, which included 9,259 and 1,031 patients,
respectively. The high-risk and low-risk group stage IB patients
were compared with the stage IIA, and IA. We found that stage
IA NSCLC patients had the highest CSS in the observation
period (P < 0.001, Figure 4A). We found that there was no
significant difference between stage IA and low risk stage IB in
cancer-specific survival (P = 0.029, Figure 4B). High-risk stage
IB patients did not have a significantly lower CSS than stage IIA
patients (P = 0.87, Figure 4C).

Impact of PM on Different
Races/Ethnicities
We hoped to further explore the impact of PM on different
races/ethnicities. Accordingly, univariate analysis was used to
estimate the association between PM and CSS. Our results
showed that unadjusted HR exceeded 1 or, in other words,
PM could be a risk indictor among different races/ethnicities
(Figure 5). In addition, there were significant differences in white
men (P < 0.001), other races (P = 0.012), and Chinese people (P
< 0.001), while no significant differences were observed for black
race (P = 0.45).

DISCUSSION

The occurrence and development of NSCLC is complex, and
decisions regarding the administration of adjuvant therapy
for stage IB NSCLC patients remains controversial. Some
research studies have suggested that patients with stage
IB NSCLC could benefit from adjuvant therapy (16–18),
while other studies have reported no effects of adjuvant
chemotherapy on patients (9, 11, 12, 19–21). Studies that
have shown the benefit of adjuvant chemotherapy in stage
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TABLE 3 | Univariate and multivariate Cox regression analysis for cancer-specific survival in patients with stage IB NSCLC (Cox regression’s method is Forward: LR).

Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Gender

Male/Female 0.641 0.502–0.818 <0.001 0.700 0.542–0.904 0.006

Age at diagnosis (years)

Continuous 1.037 1.022–1.053 <0.001 1.039 1.023–1.056 <0.001

Surgery approach

Lobectomy 0.655 0.474–0.906 0.011 NA NA 0.084

Sublobectomy 1.457 1.024–2.072 0.036 NA NA 0.371

Pneumonectomy NA NA 0.137

LNs

Continuous 0.973 0.954–0.992 0.005 0.974 0.954–0.994 0.012

Tumor differentiation

Grade I vs. II vs. III vs. IV 1.486 1.246–1.771 <0.001 1.496 1.235–1.813 <0.001

Histologic type

Carcinoid NA NA 0.067

BAC NA NA 0.464

AC 0.753 0.589–0.963 0.024 NA NA 0.341

SCC 1.416 1.090–1.840 0.009 NA NA 0.921

Neuroendocrine NA NA 0.965

Tumor size

Continuous NA NA 0.062

Pleura invasion

No/yes 1.547 1.192–2.006 0.001 1.459 1.123–1.894 0.005

Tumor location

Upper NA NA 0.663

Middle NA NA 0.564

Lower NA NA 0.796

Other NA NA 0.891

NSCLC, non-small cell lung cancer; AC, adenocarcinoma; SCC, squamous cell carcinoma; BAC, bronchial alveolar carcinoma; NT, neuroendocrine tumor. The meaning of bold values

is two-sided P < 0.05.

TABLE 4 | Constructed prognostic score to predict cancer-specific survival in

stage IB NSCLC patients.

Covarite β [HR = exp (β)] Score

Gender −0.356 −0.356 * (1/2; male = 1, female = 2)

Age 0.039 0.039 * Age at diagnosis

Nodes examined −0.026 −0.026 * number of nodes examined

Grade 0.403 0.403* (1/2/3/4; Grade I = 1, Grade II = 2,

Grade III = 3, Grade IV = 4)

Pleura invasion 0.378 0.378 * (0/1; no = 0, yes = 1)

Total computed score *100

Risk stratification

Low risk ≤291.5

High risk >291.5

NSCLCL, non-small cell lung cancer.

IB patients tend to recommend adjuvant therapy for patients
with tumor size ≥4 cm (7, 8, 12, 22, 23). However, stage IB
(7th AJCC) disease with a tumor diameter >4 cm has been

classified as stage IIA (8th AJCC) (4, 24). One retrospective
study based on the 8th edition of the AJCC Staging Manual
has shown that postoperative adjuvant treatment could
benefit stage IB NSCLC patients (24). A recent meta-analysis,
which included 9 randomized collected trials, suggested that
patients with stage IB might not need adjuvant chemotherapy;
however, the stage IB was based on the 7th AJCC in all
trials (25).

Based on the above results, some researchers hoped to

provide information regarding postoperative treatment decisions
by studying the prognosis of early-stage patients. Factors such as

age, pathological type, LINE-1 hypomethylation, individualized

immune prognostic signature, quality measures, tumor size,
preoperative platelet-to-lymphocyte ratio and lymphocyte-to-

monocyte ratio, and visceral pleural invasion, were found to
influence the prognosis of early-stage patients (7, 10, 11, 13, 14,
22, 26–30). However, the above mentioned studies were unable to
individually predict the prognosis of patients. This study aimed
to construct an individualized prognostic model and to provide
useful information to support clinicians’ decisions. We hope to
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FIGURE 3 | Cancer-specific survival curve for patients with stage IB NSCLC according to the prognostic model in the training cohort (A), internal validation cohort (B),

and external validation cohort (C).

FIGURE 4 | (A) Cancer-specific survival curve for NSCLC patients with stage IA, low-risk group of IB, high-risk group of IB, and stage IIA; (B) Cancer-specific survival

curve for NSCLC patients with stage IA, and low-risk group of IB; (C) Cancer-specific survival curve for NSCLC patients with stage IIA, and high-risk group of IB.

build a simple model by using some commonly obtained patient
information. During the course of this research, we analyzed
the patients’ clinical information, including the indicators shown
in Table 1. Eventually, five meaningful indicators were selected
using univariate and multivariate analyses of the training cohort,
including gender, age at diagnosis, white race, number of nodes
removed, tumor differentiation, and pleura invasion. In this
study, we considered information regarding pleural invasion and
tumor size, based on which we defined patients with both tumor
size >3 cm and pleural invasion (TSPI) as TSPI positive, and the
rest of the patients as TSPI negative. We found that TSPI could
be a risk prognostic factor (Figure 6). During data processing,
the number of removed lymph nodes was considered to be a
protective prognostic factor (Table 3).

We constructed a PM based on the above five indicators and
successfully identified high-risk and low-risk populations in the
training and validation cohorts. Our model had a significant
impact on patient differentiation (Figure 3), because the C
index for predicting CSS rates reached 0.66(SEER-A), 0.61(SEER-
B), and 0.67(SYSUCC) in the training and validation cohorts,

FIGURE 5 | Impact of prognostic model on survival in different

races/ethnicities.

respectively. Even in comparison with stage IA and IIA, there was
no significant difference in survival between the IB stage of the
high-risk group and IIA stage (Figure 4). In terms of the clinical
application, these indicators can be easily assessed. Information
regarding sex and age can be obtained from the admission
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FIGURE 6 | Cancer-specific survival curve for stage IB NSCLC according to

the status of TSPI (0: negative, 1: positive).

records, and data on the degree of tumor differentiation, status
of pleural invasion, and number of dissected LNs can be
obtained from postoperative pathology reports. Clinicians could
use the above information and our PM to calculate scores of
NSCLC patients with stage IB after surgery, and give patients
advice on whether adjuvant therapy is necessary according
to prediction of prognosis. In addition, this study included
internal and external validation, thus promoting a wide range
of applications of the model. According to results of validation
of SYSUCC and SEER-B, we found that PM might be applied in
different races/ethnicities (Figure 5). We noticed that the clinical
popularization of gene test, such as EGFR, in some regions was
inadequate (31–33). Therefore, to some extent, this PM in these
patients who lack the results of molecular test may have a certain
value of utility.

This study has certain limitations. First, the study used
the SEER and SYSUCC database in which the distribution of
ethnic groups is not balanced. It would be recommendable to
include data from different regions in our study, which would
balance the race/ethnicity distribution and make the results
more generalized. Second, based on the limitations of the SEER
database, information on chemotherapy was not comprehensive

enough. We do not know whether neoadjuvant chemotherapy or

adjuvant chemotherapy was administered, and therefore, when
comparing with patients with high-risk stage IB to low-risk stage
IB, it is not possible to conclude that patients with adjuvant
chemotherapy have a better prognosis. In addition, the number
of removed lymph nodes is quite different between SEER and
SYSUCC, and the sample size for external validation is small so
the number of high-risk patients in the SYSUCC is also relatively
small. Thirdly, in the era of precision medicine, molecular
detection plays an important role in judging the prognosis and
treatment of patients. However, the information of driver genes
is incomplete in the data of SEER and SYSUCC. Therefore,
based on this research, information on molecular indicators
such as EGFR, KRAS, TP53, and ALK can be collected (34–37).
Information on these driver genes may increase the predictive
ability of PM on CSS. In addition, we couldn’t obtain complete
information of pathological features such as vascular invasion,
which may have an impact on prognosis, in the databases of
SEER and SYSUCC. Further, only patients with stage IB NSCLC
(8th AJCC) were enrolled; therefore, this model cannot predict or
assess CSS in patients with a tumor size ≤4 cm and may only be
applied to patients with stage IB NSCLC (8th AJCC). Eventually,
further prospective and multicenter studies are necessary to
confirm our findings.
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Background: The lung cancer staging system is insufficient for a comprehensive

evaluation of patient prognosis. We constructed a novel immunoscore model to predict

patients with high risk and poor survival.

Method: Immunoscore was developed based on z-score transformed enrichment score

of 11 immune-related gene sets of 109 immune risk genes. The immunoscore model was

trained in lung adenocarcinoma cohort from The Cancer Genome Atlas (TCGA-LUAD)

(n = 400), and validated in other two independent cohorts from Gene Expression

Omnibus (GEO), GSE31210 (n = 219) and GSE68465 (n = 356). Meta-set (n = 975)

was formed by combining all training and testing sets.

Result: High immunoscore conferred worse prognosis in all sets. It was an independent

prognostic factors in multivariate Cox analysis in training, testing and meta-set [hazard

ratio (HR)= 2.96 (2.24–3.9), P < 0.001 in training set; HR= 1.99 (1.21–3.26), P= 0.006

in testing set 1; HR= 1.48 (1.69–2.39), P= 0.005 in testing set 2; HR= 2.01 (1.69–2.39),

P< 0.001 in meta-set]. Immunoscore-clinical prognostic signature (ICPS) was developed

by integrating immunoscore and clinical characteristic, and had higher C-index than

immunoscore or stage alone in all sets [0.72 (ICPS) vs. 0.7 (immunoscore) or 0.59 (stage)

in training set; 0.75 vs. 0.72 or 0.7 in testing set 1; 0.65 vs. 0.61 or 0.62 in testing set

2; 0.7 vs. 0.66 or 0.64 in meta-set]. Genome analysis revealed that immunoscore was

positively correlated with tumor mutation burden (R = 0.22, P < 0.001). Besides, high

immunoscore was correlated with high proportion of carcinoma-associated fibroblasts

(R = 0.32, P < 0.001) in tumor microenvironment but fewer CD8+ cells infiltration

(R = −0.28, P < 0.001).

Conclusion: The immunoscore and ICPS are potential biomarkers for evaluating

patient survival. Further investigations are required to validate and improve their

prediction accuracy.

Keywords: immunoscore, lung adenocarcinoma, prognosis, immune gene set, ridge regression
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INTRODUCTION

Lung cancer ranks the top of cancer-related death worldwide
(1). Histologically, 15 percent of patients are categorized as small
cell lung cancer (SCLC) while the other 85% as non-small cell
lung cancer (NSCLC) (2). Among NSCLC, lung adenocarcinoma
(LUAD) is the most common subtype (3). Surgical resection
remains to be the standard clinical practice for patients with
early-stage LUAD (4), and the 5-year survival rate is about 60%
(5). Platin-based adjuvant chemotherapy has demonstrated the
improvement of 5-year survival for stage II–IIIA patients for
about 5%, at the price of chemotherapy-induced toxicity (6, 7).
Adjuvant immunotherapy with immune checkpoint inhibitors
has come into several clinical trials, but no definitive effectiveness
made so far (8). Although using the American Joint Committee
on Cancer (AJCC) TNM staging system improves prognostic
prediction, it is still inconclusive due to other unknown factors.
Thus, the development of new biomarkers is imperative for
stratifying risk and optimizing treatment for lung cancer patients
with early stage.

Tumor immune microenvironment (TIM) has long been
recognized as a crucial factor in cancer progression and
metastasis (9). Several studies have explored the TIM as
a prognostic biomarker in lung cancer (10). For example,
Brambilla et al. found higher CD4+/CD8+ ratio conferred
better survival in patients with NSCLC (11). Also, for cancer
cell itself, programmed cell death protein ligand 1 (PD-L1)
expression and tumor mutation burden (TMB) have been used
to predict outcome in NSCLC patients. Several investigations
have indicated that patients with high TMB or high PD-L1
expression were associated with poor survival in resected NSCLC
patients and might benefit from adjuvant chemotherapy (12,
13). However, substantial patients with low PD-L1 expression
and low TMB still have poor outcomes. Therefore, exploring
additional prognostic markers based on TIM could benefit larger
population (14).

In our research, we developed novel prognostic early-stage
lung cancer immunoscore model by integrating enrichment
score of 11 immune gene sets using ssGSEA algorithm. ssGSEA
algorithm was based on gene ranks in and out of the selected
gene set (15). To date several signatures used for phenotype
classification or survival prediction have been developed by
leveraging this algorithm (16–18). After immunoscore model
construction in the training set, we evaluated its prognostic
abilities in training, testing and meta-set. Moreover, we
built Immunoscore-clinical prognostic signature (ICPS) by
incorporating both immunoscore and clinical factors.

MATERIALS AND METHODS

Clinical Data Processing
We used three largest publically available datasets, TCGA-
LUAD, GSE31210, and GSE68465, deposited in Genomic
Data Commons (GDC) portal (https://portal.gdc.cancer.gov)
or Gene Expression Omnibus (GEO) website (https://www.
ncbi.nlm.nih.gov/geo) (19–23). Clinical and pathological
information regarding to TCGA-LUAD cohort were retrieved

from cBioportal website (https://www.cbioportal.org) with
“cdgsr” package (24–26), whereas information related to
GSE31210 and GSE68465 were obtained through “GEOquery”
package (27). Samples without overall survival (OS) information
or with OS time of 0 were excluded. We also ruled out samples
with documented neoadjuvant therapies to reduce potential
confounding bias. TNM stage were used and transformed to
AJCC staging groups. Samples with specific T subcategories (like
T2a or T2b) were converted to staging groups according to AJCC
7th edition. T1N0, T2N0, T1N1, T2N1 or T3N0 were converted
to stage 1A, 1B, 2A, 2B, respectively, conforming to AJCC 6th
edition. For GSE31210 without TNM stage information, we used
the pathological stage in the clinical file directly.

RNA-seq and Microarray Data
Preprocessing
Raw “.CEL” files of microarray data were downloaded from GEO
website and read by “affy” package with the latest brainarray
CDF files (October 2019, version 24) (28, 29). Robust multi-array
average (RMA) algorithm in “affy” package was then applied to
normalize gene expression intensity (28, 30). RMA algorithm
included background adjustment, quantile normalization, and
measurement summation when multiple probes were used to
quantify the same gene expression intensity. After normalization,
“arrayQualityMetrics” package was utilized to detect and exclude
possible outliers (31). For RNA-seq data, level 3 FPKM data were
downloaded using TCGAbiolink R package (32). FPKM values
were then transformed into TPM values, which allowed a more
direct comparison between samples as the sum of all TPMs in
each sample were the same. As a result, the inflated statistical
significance was reduced (33). TPM values were subsequently
log 2 transformed to fit a more normal distribution. Entrez
IDs were used across all platforms. Only samples with clinical
information were retained. Finally, TCGA-LUAD cohort was
used as the training set for immunoscore model construction,
which contained 400 patients with RNA-seq data and survival
information. Twomicroarray datasets, GSE31210 (n= 219) from
Affymetrix Human Genome U133 Plus 2.0 Array platform as
testing set 1, and GSE68485 (n = 356) from Affymetrix Human
Genome U133A Array platform as testing set 2, were used to
assess the immunoscore performance in predicting survival of
early-stage LUAD patients.

Immunoscore Construction
We searched Immport database (https://immport.niaid.nih.gov)
and downloaded 1811 immune-related genes from 17 categories
(18). Of 1,811 immune-related genes, 1,361 of them were
contained in the training set. Univariate Cox proportional
regression analysis was used to investigate their associations with
patient survival using “survival” package (34). Only the genes
with P-value< 0.05 and hazard ratio (HR)> 1 were screened out
as immune risk genes for further study. We then implemented
single sample gene set enrichment analysis (ssGSEA) algorithm
to quantify the enrichment score of immune risk genes in various
immune-related gene set using “GSVA” package (35). Difference
of enrichment statistic of genes in the gene set and outside
were computed, and normalized to fit a relatively uniform scale
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as Barbie et al. described (15, 35). We then transformed the
normalized enrichment score into Z-score to conform standard
normal distribution using the following algorithm:

ZNESij =
NESij −Mj

SDj

The final Z-score transformed normalized enrichment score
of sample i, immune gene set j was denoted by ZNESij.The
normalized enrichment score of sample i, immune gene set j
was denoted by NESij. The mean and standard deviation (SD)
of enrichment score across all samples in immune gene set j
were denoted by Mj and SDj, respectively. This transformation
obtained a uniform underlying distribution (mean= 0, standard
deviation = 1) of each gene set across various platform;
Immunoscore model was established by integrating all Z-score
transformed normalized enrichment score using regularized Cox
regression with the ridge penalty.

Immunoscorei =
∑n

j=1
βj ∗ ZNESij

Immunoscore of sample i was denoted by Immunoscorei.
Ridge Cox regression coefficient of gene set j was denoted by
βj and standard normal distribution transformed normalized
enrichment score of sample i, immune gene set j was denoted
by SNESij.Ridge regression was used to address the possible
collinearity (i.e., the correlated immune gene sets) to prevent
overfitting (36). It was conducted by “glmnet” package and
the tuning parameter Lambda was chosen with minimum
criteria (37). Thus, a new variable immunoscore was created
to predict patient survival. It could also be served as the
quantitative measurement of hazardous level of tumor immune
microenvironment with its biological background.

Validation of Immunoscore
After immunoscore development, we applied the same formula
to two independent testing sets, GSE31210 and GSE68485.
Meta-set was formed by combining all training and testing
sets. Univariate and Multivariate regression were used to
evaluate the predictive power of the immunoscore model in all
training, testing and meta-set. Age, stage, gender and smoking
history were included in multivariable Cox analysis. Fraction
of genome alteration in TCGA-LUAD clinical profile was also
involved as a covariate in the TCGA-LUAD cohort. Patients
were divided into high-immunoscore and low-immunoscore
subgroups based on median value in the training set. Patients
with immunoscore higher than cut-off value were assigned to
high-immunoscore subgroup, while with immunoscore lower
or equal to cut-off value were assigned to low-immunoscore
subgroup. Kaplan-Meier analysis was performed to these two
groups. Time-dependent receiver operator characteristic (ROC)
curve analysis was utilized to assess the predictive accuracy
for early-stage LUAD patients using “timeROC” package (38).
The prognostic value of immunoscore in various treatment
groups was evaluated in GSE68465, which contained detailed
information of whether patients received adjuvant chemotherapy
or radiotherapy with sufficient sample size in each category (75

patients with documented adjuvant therapy, 271 patients without
documented adjucvant therapy).

Comparison With Other Gene Expression
Signatures
The immunoscore was compared with other existing NSCLC
prognostic signature to assess its clinical utility. To date,
numerous gene expression signatures have been developed. We
selected two immune-related signatures (39, 40), one glycolysis-
based signature. In addition, another malignancy gene signature
was included, which had the top-ranked prognostic capability
when compared with random signature in lung adenocarcinoma
patient (41, 42). Detailed information regarding these signatures
was provided in Supplementary Table 3. Gene symbols in the
signatures were transformed into Entrez IDs. Using coefficients
provided in supplementary materials, continuous risk score of
each signature was computed in TCGA-LUAD, GSE31210, and
GSE68465 cohorts. For malignancy gene signature, risk score
was generated in each set by first principal component of
provided gene list. Hazard ratios of univariate and multivariate
Cox regression were used to evaluate their survival associations.
C-index derived from “coxph” function with default Efron
method to handle ties was utilized to determine their prognostic
classification capabilities.

Immunoscore-Clinical Prognostic
Signature Construction
To make full use of both immunoscore and clinical variables
in prognostic prediction, we constructed immunoscore-clinical
prognostic signature (ICPS). Stage was converted to numeric
variable. Stage IA, IB, IIA, IIB were assigned as 1, 2, 3, 4,
respectively. Stage II with no subcategories were assigned as 3.5.
Similarly, median value of ICPS in the training set was used as
the cut-off value. C-index of ICPS was compared with stage or
immunoscore alone using “compareC” package (43).

Genomic Analysis
Somatic mutation profile were downloaded from Genomic Data
Common (GDC) website. Maftools was used to summarize
the somatic mutation (44). Samples measured by Whole
Genome Amplification (WGA) of Repli-G DNA (which could be
identified by tumor barcode) were excluded to reduce possible
bias. Tumor mutation burden (TMB) was calculated as previous
study described:

TMBi = 1.0 ∗ NTMi + 1.5 ∗ TMi

Tumor mutation burden of sample i was denoted by
TMBi. Total number of nontruncating mutation and total
number of truncating mutation were denoted by NTMi and
TMi, respectively.

The silent mutation was not included in the formula as
it does not result in any change downstream. The truncating
mutation was assigned a higher weight as it is considered more
detrimental (45). Mutated genes between high-immunoscore and
low-immunoscore groups were compared by fisher exact test
using “mafcompare” function (44). Gene ontology and pathway
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analyses were then performed using differentially mutated genes
by “clusterProfiler” package (46).

Tumor Purity and Various Cell Composition
Characterization
We established our immunoscore model based on the bulk
gene expression data of the tumor. It could also be used as the
measurement of hazardous level of tumor environment (TME)
with its biological background. TME contained not only cancer
cells, but surrounding non-cancerous immune and normal cells.
To further delineate the correlation between immunoscore and
TME, we need to first figure out the TME components. TCGA-
LUAD cohort was used for TME evaluation. Tumor purity, the
percentage of cancer cell inside the tumor, could be estimated in
different ways. Aran et al. developed consensus measurement of
purity estimations (CPE), which used the median value of several
genomic algorithms and immunohistochemistry (IHC) after
normalization by combined mean and standard deviation (47).
As a result, the bias introduced by a single method or algorithm
was minimized. We also utilized Estimating the Proportion
of Immune and Cancer cells (EPIC) algorithm, a method
to predict various cell types in tumor tissue using RNA-seq
tumor gene expression profile (48). Non-log transformed TPM

data of TCGA-LUAD samples were used and the Ensemble
gene IDs were converted into the official gene symbols as
the algorithm required. The EPIC algorithm was based
on reference gene expression profiles to infer proportions
of surrounding non-malignant cells with experimental
measurements confirming its predictive robustness. Samples
with convergence code other than 0 were excluded as these might
be outliers.

Gene Set Enrichment Analysis and
Association With Clinical or Molecular
Variables
Gene set enrichment analysis was performed to assess the
association of immunoscore to the functional immune pathways.
Differential gene expression profile between high-immunoscore
and low-immunoscore subgroups was derived by “eBayes”
function using limma package (49). We run fgsea algorithm
with top 12,000 genes using C5 gene set from MsigDB
database (https://www.gsea-msigdb.org/gsea/msigdb/). Gene set
related to immune system were extracted. The correlation of
immunoscore with clinical factors and certain molecular markers
were also evaluated.

FIGURE 1 | Flowchart of the study. GSEA, gene set enrichment analysis.
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Statistical Analysis
Group comparison between a continuous variable were
conducted by t-test or ANOVA. All correlation analyses were
performed with spearman method, and considered highly
correlated when absolute value of correlation coefficient was
>0.25. False discovery rate was calculated as the adjusted
P-value. All statistical procedures were conducted by R software
version 3.6.1 (50). All p-values were two-sided and considered
statistically significant when <0.05. Gene set was with P < 0.05
and FDR < 0.25 was considered significantly enriched.

RESULT

Immunoscore Model Construction
The flowchart of our study procedures was illustrated in
Figure 1. A total of 975 patients with early-stage lung
adenocarcinoma were included in the study. Detailed clinical
information was shown in Table 1. In the training set, 109
genes were correlated with worse prognosis (HR > 1, P <

0.05, Supplementary Table 1). Gene set “TGFb family members,”
“TGFb_Family_Member” and “Interferons” contained only
1 gene and were excluded from further analysis. Z-score
transformed enrichment scores of the remaining 11 gene
set were then calculated as the method described. All of
them were correlated with poor survival in the training set
(Figure 2A; Supplementary Table 2). Ridge Cox regression was
then performed and immunoscore was derived by the sum of
all Z-score transformed enrichment scores weighed by ridge
regression coefficients (Figures 2B,C; Supplementary Table 2).
The predictive accuracy of immunoscore to 2, 3, and 5-
year survival were estimated by time-dependent receiver ROC
analysis (Figure 2D).

Validation of Immuoscore
The immunoscore of the testing sets were calculated using the
same formula. We also built a meta-set by combing all training
and testing sets. Patients were stratified into high and low-
immunoscore subgroups using median value of immunoscore
in the training set as the cut-off value (−0.0126). Kaplan–Meier
survival analysis and log-rank test was performed to compare
the difference between these two subgroups. The result exhibited
that patients from high-immunoscore subgroup were more likely
to suffer worse overall survival (P < 0.001 in the training set,
testing sets, and meta-set; Figures 3A–D). Similarly, patients
with higher score were also linked to shorter disease-free survival
(DFS) interval (P < 0.001 in training set, testing set 1 and meta-
set, P = 0.005 in testing set 2, Supplementary Figure 1). Time-
dependent ROC analyses were also performed to testing sets and
meta-set (Supplementary Figure 2).

Cox regression was used to assess its survival association.
Univariate Cox regression analysis revealed that immunoscore
was a significant risk factor in all three training and testing
sets (HR = 3.11, 95% confidence interval (CI) 2.4–4.04, P <

0.001 in training set; HR = 2.39, 95% CI 1.6–3.58, P < 0.001
in testing set 1; HR = 1.44, 95% CI 1.17–1.78, P < 0.001 in
testing set 2; HR= 1.88, 95% CI 1.63–2.17 in meta-set; Figure 4).
Multivariate Cox regression analysis indicated that immunoscore

TABLE 1 | Detailed patient clinical characteristics.

Characteristics Training set Testing set 1 Testing set 2

Source TCGA GSE31210 GSE68465

Sample size 400 219 356

Platform RNA-seq Affymetrix

Human

Genome U133

Plus 2.0 Array

Affymetrix

Human

Genome

U133A Array

AJCC stage

IA 130 (32.5) 112 (51.1) 112 (31.5)

IB 143 (35.8) 53 (24.2) 155 (43.5)

II — 54 (24.7) —

IIA 57 (14.2) — 24 (6.7)

IIB 70 (17.5) — 65 (18.3)

Age group

≤65 190 (47.5) 170 (77.6) 186 (52.2)

> 65 201 (50.2) 49 (22.4) 170 (47.8)

Smoking history

Non-smoker 57 (14.2) 112 (51.1) 40 (11.2)

Ever-smoker 333 (83.2) 107 (48.9) 243 (68.3)

Unknown 10 (2.5) — 73 (20.5)

Gender

Male 177 (45.6) 103 (46.4) 175 (49.2)

Female 211 (54.4) 119 (53.6) 181 (50.8)

Survival status

Alive 273 (68.2) 186 (84.9) 189 (53.1)

Dead 127 (31.8) 33 (15.1) 167 (46.9)

Genome alteration

≤ 0.2 170 (42.5) — —

> 0.2 229 (57.2) — —

Unknown 1 (0.2) — —

Values in parentheses are percentages.

was an independent risk factor in training (HR = 2.96, 95% CI
2.24–3.9, P < 0.001), testing set 1 (HR = 1.99, 95% CI 1.21–
3.26, P = 0.006), testing set 2 (HR= 1.48, 95% CI 1.13–1.93, P =

0.005), and meta-set (HR = 2.01, 95% CI 1.69–2.39, P < 0.001),
as shown in Figure 5. Moreover, Immunoscore could identify
patients with worse survival in all clinical subgroups in meta-set
(Supplementary Figure 3).

Comparison of Immunoscore With Other
Genomic Signatures
To assess the utility of immunoscore model, we compared
prognostic association of immunoscore against other published
genomic signatures (Supplementary Table 3). Besides Song et al.
signature, most signatures had good performance in univariate
and multivariate regression analyses (Supplementary Figure 4;
Figure 6A). Immunoscore exhibited a generally higher C-index
than other signatures in all three cohorts, except less than
Chen2 et al. signature in GSE31210 (0.72 vs. 0.726, Figure 6B).
Meanwhile, immunoscore achieved the highest mean C-index
(0.68 vs. range from 0.58 to 0.64, Figure 6B).
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FIGURE 2 | Immunoscore model construction. (A) Forest plot exhibiting different immune gene sets and patient overall survival in the training set. (B) 10-fold

cross-validation for tuning parameter selection in the ridge regression model. The partial likelihood deviance is plotted against log (λ), where λ is the tuning parameter.

Partial likelihood deviance values are shown, with error bars representing standard error (SE). The dotted vertical line on the left was drawn by minimum criteria

whereas the line on the right represented the 1-SE criteria. We chose the minimum criteria. (C) Ridge regression coefficients of the 13 immune gene sets. The dotted

line indicated the value chosen by the minimum criteria of the 10-fold validation. (D) Time-dependent receiver operator analysis (ROC) of the immunoscore in the

training set. HR.95%CI, hazard ratio with 95% confidence interval. P.adj, adjusted P-value by false discovery rate.

Immunoscore-Clinical Prognostic
Signature Construction
Stage, age and immunoscore were all independent prognostic
variables in multivariable Cox analysis in all 3 sets and meta-
set. To explore whether combing these variables would improve
prediction accuracy, coefficients of multivariate regression of
these three factors in the training-set were used to introduce a
new variable, immunoscore-clinical prognostic signature (ICPS).

ICPS = 1.06076428 ∗ immunoscore

+0.19653598 ∗ stage+ 0.01961085 ∗ age

Patients were stratified into high-ICPS and low-ICPS subgroups
using median value of ICPS in training set as the cut-off
(1.74). High-ICPS subgroup was significantly correlated with
worse survival in each set (P < 0.001, Figure 7). Figure 7

also exhibited C-index of ICPS was significantly higher than
either immunoscore or stage, in training [0.72 (ICPS) vs. 0.7
(immunoscore) and 0.59 (stage), P < 0.001 when compared with
stage], testing set 1 [0.75 (ICPS) vs. 0.72 (immunoscore) and 0.7
(stage), P = 0.015 when compared with stage], and testing set 2
[0.65 (ICPS) vs. 0.61 (immunoscore) and 0.62 (stage), P < 0.001
when compared with stage]. Moreover, C-index of ICPS was
significantly higher than both of them in meta-set [0.7 (ICPS) vs.
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FIGURE 3 | Survival analysis of the immunoscore. Kaplan–Meier curves for patient overall survival by immunoscore group in the (A) training set, (B) testing set 1, (C)

testing set 2, and (D) meta-set.

0.66 (immunoscore) and 0.64 (stage), P < 0.001 when compared
with immunoscore or stage, Figure 7].

Immunoscore, ICPS, and Adjuvant Therapy
A small subset of early-stage LUAD patient received
postoperative adjuvant chemotherapy or radiotherapy. To
investigate whether various treatment strategies had an effect to
immunoscore and ICPS model, we used GSE68465 cohort with
comprehensive documentation of adjuvant therapy. Patients
who received adjuvant therapy had a worse overall survival
(Figure 8A). It might be due to clinical practice, as adjuvant
therapy was more likely to be applied to patients with higher
stage and worse condition. Survival analysis indicated that
immunoscore and ICPS could still stratify patients with different
prognosis in each treatment group (Figures 8B,C).

Genome Analysis
To explore the possible underlying causes of difference in
immunoscore between patients, we searched GDC website
and downloaded all available somatic mutation data of lung
adenocarcinoma patients. Three hundred fifty-eight available
mutation profiles in TCGA-LUAD cohort (174 in high-
immunoscore subgroup, 148 in low-immunoscore subgroup)
were summarized by maftools. The mutation profiles of high-
immunoscore and low-immunoscore subgroups were illustrated
in Figures 9A,B, respectively. Differentially mutated genes
between low-immunocore and high-immunoscore subgroups
were identified by Fisher exact test using “mafcompare” function.
Twenty of them were shown in Figure 9C. TP53 was the most
commonly mutated gene in high-immunoscore subgroup and
had the smallest adjusted P-value. TP53 was a tumor suppressor
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FIGURE 4 | The univariate Cox analysis of the immunoscore and clinicopathological factors. The HR in training cohort was 3.11, with 95% confidence interval (CI)

from 2.44 to 4.04 (P < 0.001). The HR in testing set 1 was 2.39, with 95% CI from 1.6 to 3.58 (P < 0.001). The HR in testing set 2 was 1.44, with 95% CI from 1.17

to 1.78 (P < 0.001). The HR in meta-set was 1.88, with 95% CI from 1.63 to 2.17 (P < 0.001). HR.95%CI, hazard ratio with 95% confidence interval.

gene, encoding P53 transcriptional factor which responds to
DNA damage repair. TP53 mutation has been recently reported
to be associated with response to immunotherapy in certain
subtype of NSCLC (51). We discovered that TP53 mutation
was correlated with immunoscore. P53 mutation might induce
genome instability, increasing neoantigen load, leading to a

more dangerous tumor immune microenvironment, resulting
in higher immunoscore. Another established immunotherapy
biomarker, tumor mutation burden (TMB), was also positively
correlated with immunoscore (R = 0.22, P < 0.001, Figure 9D).
Gene ontology and KEGG pathway analyses of the differentially
mutated genes were provided in Supplementary Figure 5.
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FIGURE 5 | Multivariate Cox analysis evaluating independently predictive ability of immunoscore for patient survival. The immunoscore was able to independently

predict patient survival in training set (hazard ratio (HR) = 2.96, 95% confidence interval (CI) from 2.24 to 3.9, P < 0.001), testing set 1 (HR = 1.99, 95% CI from 1.05

to 3.81, P = 0.006), testing set 2 (HR = 1.48, 95% CI from 1.13 to 1.93, P=0.005), and meta-set (HR = 2.01, 95% CI from 1.69 to 2.39, P <0.001). HR.95%CI,

hazard ratio with 95% confidence interval.

Immunoscore and Tumor
Microenvironment
The relationship between immunoscore and tumor
microenvironment was investigated using TCGA-LUAD cohort.
Tumor purity, the percentage of cancer cells inside the tumor,
was estimated by consensus measurement of purity estimations
(CPE). Patients with high immunoscore tend to have low tumor

purity (R=−0.12, P= 0.015, Figure 10A). Patients were divided
into high-purity and low-purity subgroup using median value
of tumor purity (0.637). Kaplan-Meier survival curves indicated
high tumor purity tend to have generally worse survival, but

did not reach statistical significance (P = 0.3, Figure 10B).

We next investigated the cellular composition of TME. EPIC
algorithm, which was designed specifically for RNA-seq data,
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FIGURE 6 | Comparison of immunoscore and other existing NSCLC signatures. (A) Hazard ratio of each gene expression signature in multivariable Cox analysis. (B)

C-index of each signature in each independent dataset and mean C-index. HR.95%CI, hazard ratio with 95% confidence interval.

FIGURE 7 | Kaplan–Meier survival analysis and compare C-index of ICPS with immunoscore and stage in (A) training set, (B) testing set 1, (C) testing set 2, (D)

meta-set.
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FIGURE 8 | (A) Kaplan–Meier curves for patients who received adjuvant therapy or not (B) Kaplan–Meier curves for survival prediction by the immunoscore in patients

who received adjunctive therapy or not. (C) Kaplan–Meier curves for survival prediction by the ICPS in patients who received adjunctive therapy or not.

was used to infer the proportions of different infiltrating immune
and stromal cells. Using absolute value of 0.25 as cut-off,
cancer-associated fibroblast (CAF) (R = 0.32, P < 0.001) and
CD8T cell (R = −0.27, P < 0.001) were highly correlated
to immunoscore (Figure 10C; Supplementary Table 4). In
univariate Cox analysis, only CAF attained a borderline
significant P value (HR = 2.42, 95% CI 0.9–6.55, P = 0.081,
Figure 10D).

Immunoscore, Clinicopathological
Characteristics, and Biological Phenotypes
Gene set enrichment analysis between high-immunoscore and
low-immunoscore were conducted. Immune-related pathways
were extracted and most of them were enriched to the low
end (27 out of 29 Immune-related pathways). The relationship
between immunoscore and other clinicopathological factors were
assessed in TCGA-LUAD cohort. Higher T andN stage possessed
greater immunoscore, whereas its distribution in age, gender
and smoking status was not significantly different (Figure 11B).
Of immune checkpoint molecules, immunoscore was only
correlated to PD-L1 and LAG3 (R= 0.16, P= 0.001 for PD-L1; R
= 0.1, P = 0.04 for LAG3, Figure 11B; Supplementary Table 5).
Interestingly, Several hypoxia-inducible factor (HIF)-
1 pathway markers, like HIF-1A (R= 0.41, P < 0.001),
SLC2A1 (R = 0.6, P < 0.001), LOXL2 (R = 0.55, P < 0.001),
PDK1 (R = 0.27, P < 0.001), and LDHA (R = 0.53,
P< 0.001), were highly correlated with immunoscore
(Figure 11C, Supplementary Table 5) (52).

DISCUSSION

Lung cancer treatment has been improved dramatically during
the past decades, mainly owing to the constant discoveries of

genomic alterations during lung cancer pathogenesis. However,
the patient prognostic evaluation is still based on the AJCC
staging system. Although it is a powerful prognostic prediction
tool, it is inadequate to get a precise assessment of patient
survival. In early-stage LUAD, the AJCC staging system is far
from getting accurate prediction since about 30 percent of
patients would develop recurrence, with 2-year survival at about
17% (53). To identify this subset of patients with high risk of
recurrence and poor survival is critical since receiving adjuvant
chemotherapy or newly developed adjuvant immunotherapymay
of great benefit to them.

Up to now, Numerous gene expression signatures have been
established for the prediction of lung cancer patient survival
(41). Few of them, however, have been translated into real
clinical practice. It might be caused by several defects in
signature construction. First, some of them were trained from
a small cohort with high variance and insufficient independent
samples to test its robustness. Second, Gene expression data were
measured by different experimental strategy with batch effect,
whichmeans that the signature constructed in one specific cohort
cannot be generalized into other platforms. Third, most of the
signatures were composed of several specific genes and ignore
other possible causes, which severely decreased its stability and
could potentially lead to overfitting.

In our research, we compared immunoscore with other
gene expression signatures. Immunoscore achieved the highest
mean C-index, indicating its superior prognostic classification
capability. Of immune-related gene signatures, Li et al. (40)
signature also had good performance. Li’s signature used the
binary variable, the pairwise comparison between immune-
related gene groups, as features in model construction.
Immunoscore and Li’s signature had a lot in common, as
both of them used some sort of gene ranks (ssGSEA in
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FIGURE 9 | Mutation profile in the TCGA-LUAD cohort. (A) Mutation profile of high-immunoscore subgroup. (B) Mutation profile of low-immunoscore subgroup. (C)

Differentially mutated genes between high and low immunoscore patients. (D) Correlation between tumor mutation burden (TMB) and immunoscore. OR.95%CI, odds

ratio with 95% confidence interval. P.adj, adjusted P-value by false discovery rate.

immunoscore; pairwise comparison in Li’s signature) rather
than gene expression intensity, making them not sensitive to
preprocessing strategies and batch effect.

Our model also has its biomedical sense. It was constructed
based on enrichment score of risk genes from multiple
immune gene sets, and all selected immune gene sets were
significantly correlated with worse patient survival. Thus,
higher immunoscore indicated a more dangerous tumor
microenvironment. The top three contributors to immunoscore
were cytokine receptor, antimircrobial, and cytokine. Several
cytokine-cytokine receptors signaling pathway have been
identified to play a important role in cancer cell proliferation and

survival. Most cytokine receptors were located at cell surface,
and activated when contacting with specific cytokines. In GSEA
analysis, innate immune response activating cell surface receptor
signaling pathway ranked the top. Gene ontology analysis also
indicated several gene sets related to cell membrane are enriched
in differentially mutated genes. Overall, it implied that cell
surface signaling pathways were tightly linked to immunoscore
and disruption of these pathways might portend poor prognosis.
In addition, drugs modifying cytokine-cytokine receptor
signaling in combination with other immunotherapy might be a
promising treatment strategy. Antimicrobial pathway has been
linked to carcinogenesis, as infection by some microorganisms
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FIGURE 10 | Tumor microenvironment (TME) change associated with immunoscore. (A) Correlation between immunoscore and tumor purity. (B) Kaplan-Meier curves

of patient survival according to tumor purity in the TCGA-LUAD cohort. (C) Correlation matrix of immunoscore and cell proportions. (D) Univariate Cox analysis of

various cell type. HR.95%CI, hazard ratio with 95% confidence interval. P.adj, adjusted P-value by false discovery rate.

might lead to cell proliferation, and could be reversed by
antimicrobials agents (54).

Tumor purity and cellular composition in tumor
microenvironment were also investigated. Patients with
high immunoscore tend to have low tumor purity. Furthermore,
immunoscore was positively associated with CAFs and but
inversely associated with CD8+ T cells. CD8+ T cell has direct
cytolytic effect, whereas CAF, on the other hand, may suppress
CD8+ cell function by upregulating PD-1, PD-L1, and FAS
ligand on Treg cells (55). In addition, KEGG pathway analysis
of differentially mutated genes also found ECM-interaction
pathway abnormality. ECM stiffness might lead to activation of
cancer cells and pro-tumor effect of CAF (56). Besides, cancer cell

could induce CAF to remodel ECM, whereas CAF might sustain
cancer growth by secreting aspartate (57). Further investigations
are needed to figure out how fibroblast communicate with
other cells or molecules inside TME and give insight to novel
drug targets.

We next explored the phenotypical difference between
samples of high and low immunoscore.

Most immune-related pathways were enriched in low-
immunoscore subgroup, indicating high-immunoscore
subgroup was a “immune cold” subtype. We also discovered
multiple markers of HIF-hydroxylase oxygen-sensing pathway
to be correlated with immunoscore. HIF could enhance
tumor proliferation in TME by altering immune cell function
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FIGURE 11 | (A) Comparison of enrichment levels of immune-related pathways between high-immunoscore and low-immunoscore subgroups. (B) Distribution of

immunoscore in various clinical subgroups. (C) Correlation matrix of immunoscore and certain gene expression.
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and recruiting pro-tumor immune cells (58). For example,
expression of HIF1A in tumor-associated macrophage (TAM)
might suppress T cell function (59). More experiments and
analyses are required to elucidate how HIF pathway affect tumor
immune microenvironment as HIF1A is an incredibly promising
target for cancer therapy (60).

Our study has several advantages. First, we trained our
model in a large cohort with sufficient samples used to
test its robustness. Second, we built our immunoscore
model to predict patient outcome based on the enrichment
levels of different gene sets rather than several single
genes, making it a more comprehensive evaluation of
tumor immune microenvironment and prevent overfitting.
Third, when integrating clinical factors and immunoscore
to construct a new ICPS model, it outperformed either
immunoscore or stage alone. Fourth, immunoscore itself
could also be seen as a proxy variable, the measurement
of tumor immune microenvironment, and we found
that genome instability, several specific immune cell
proportions and functional pathway activation were correlated
to immunoscore.

We admit some limitations. First, we used publically
available datasets in retrospective manner. We did not have
all clinical information needed for the study. For example,
patients with inherent immune disorder or taking drugs with
impact on immune system should be ruled out. Second, gene
expression signatures were developed in different platform
with diverse preprocessing strategies and normalization
procedure. Although immunoscore outperformed other
signatures, it might be due to technical bias or batch effect.
Third, the immunoscore model contained several genes
with still unknown effects in LUAD, and this “black-box”
impact severely undermined the model interpretability.
More experiments are needed to elucidate their biological
associations. Finally, we cannot estimate its predictive value
to immune checkpoint inhibitors due to lack of response data
to immunotherapy. Further studies are needed to validate and
improve immunoscore model.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://portal.gdc.cancer.gov, https://www.
ncbi.nlm.nih.gov/geo.

AUTHOR CONTRIBUTIONS

ZZ, YW, and BW were responsible for the study design. The
analysis was performed by ZZ and DZ. ZZ and BWwere involved
in interpretation of the data. The manuscript was drafted by ZZ.
JX and DZ have revised the manuscript. All authors read and
approved the final manuscript.

FUNDING

This work was supported by scientific research project
of maternal and child health of Jiangsu province (Grant
Number F201865).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00691/full#supplementary-material

Supplementary Figure 1 | Survival analysis of the immunoscore. Kaplan-Meier

curves for patient disease-free survival by immunoscore group in the (A) training

set, (B) testing set 1, (C) testing set 2, and (D) meta-set.

Supplementary Figure 2 | Time-dependent receiver operator analysis (ROC) of

the immunoscore in the (A) testing set 1, (B) testing set 2, and (C) meta-set.

Supplementary Figure 3 | Subgroup analysis of immunoscore. Immunoscore

was a significant risk factor in each clinical subgroup. HR.95%CI, hazard ratio with

95% confidence interval.

Supplementary Figure 4 | Hazard ratio of each gene expression signature in

univariable Cox analysis. HR.95%CI, hazard ratio with 95% confidence interval.

Supplementary Figure 5 | Functional analysis of differentially mutated genes in

genome analysis. Top 20 (A) biological process, (B) molecular function, (C)

cellular component, and (D) KEGG pathway. KEGG, Kyoto Encyclopedia of

Genes and Genomes.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide

for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424.

doi: 10.3322/caac.21492

2. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T,

et al. Non-small-cell lung cancer. Nat Rev Dis Prim. (2015) 1:15009.

doi: 10.1038/nrdp.2015.9

3. Never-smoker NE-s. Comprehensive molecular profiling of lung

adenocarcinoma. Nature. (2014) 511:543–50. doi: 10.1038/nature13385

4. Baltayiannis N, ChandrinosM, Anagnostopoulos D, Zarogoulidis P, Tsakiridis

K, Mpakas A, et al. Lung cancer surgery: an up to date. J Thorac Dis. (2013) 5

(Suppl. 4):S425. doi: 10.3978/j.issn.2072-1439.2013.09.17

5. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt

WE, et al. The IASLC lung cancer staging project: proposals for revision

of the TNM stage groupings in the forthcoming (eighth) edition of the

TNM classification for lung cancer. J Thorac Oncol. (2016) 11:39–51.

doi: 10.1016/j.jtho.2015.09.009

6. Pisters KM, Evans WK, Azzoli CG, Kris MG, Smith CA, Desch CE, et al.

Cancer Care Ontario and American Society of Clinical Oncology adjuvant

chemotherapy and adjuvant radiation therapy for stages I-IIIA resectable

non–small-cell lung cancer guideline. J Clin Oncol. (2007) 25:5506–18.

doi: 10.1200/JCO.2007.14.1226

7. Group IALCTC. Cisplatin-based adjuvant chemotherapy in patients with

completely resected non–small-cell lung cancer. New Engl J Med. (2004)

350:351–60. doi: 10.1056/NEJMoa031644

8. Vansteenkiste J, Wauters E, Reymen B, Ackermann CJ, Peters S, De Ruysscher

D. Current status of immune checkpoint inhibition in early-stage NSCLC.

Ann Oncol. (2019) 30:1244–53. doi: 10.1093/annonc/mdz175

9. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the

tumormicroenvironment.Nat Immunol. (2013) 14:1014. doi: 10.1038/ni.2703

10. Fridman WH, Zitvogel L, Sautès–Fridman C, Kroemer G. The immune

contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. (2017)

14:717. doi: 10.1038/nrclinonc.2017.101

11. Brambilla E, Le Teuff G, Marguet S, Lantuejoul S, Dunant A, Graziano S, et al.

Prognostic effect of tumor lymphocytic infiltration in resectable non–small-

cell lung cancer. J Clin Oncol. (2016) 34:1223. doi: 10.1200/JCO.2015.63.0970

Frontiers in Oncology | www.frontiersin.org 15 May 2020 | Volume 10 | Article 691191

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.frontiersin.org/articles/10.3389/fonc.2020.00691/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/nrdp.2015.9
https://doi.org/10.1038/nature13385
https://doi.org/10.3978/j.issn.2072-1439.2013.09.17
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1200/JCO.2007.14.1226
https://doi.org/10.1056/NEJMoa031644
https://doi.org/10.1093/annonc/mdz175
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/nrclinonc.2017.101
https://doi.org/10.1200/JCO.2015.63.0970
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Prognostic Value of Immunoscore

12. Devarakonda S, Rotolo F, Tsao M-S, Lanc I, Brambilla E, Masood A,

et al. Tumor mutation burden as a biomarker in resected non-small-cell

lung cancer. J Clin Oncol. (2018) 36:2995–3006. doi: 10.1200/JCO.2018.

78.1963

13. Tsao M-S, Le Teuff G, Shepherd F, Landais C, Hainaut P, Filipits M,

et al. PD-L1 protein expression assessed by immunohistochemistry is

neither prognostic nor predictive of benefit from adjuvant chemotherapy

in resected non-small cell lung cancer. Ann Oncol. (2017) 28:882–9.

doi: 10.1093/annonc/mdx003

14. Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung

microenvironment: an important regulator of tumour growth and metastasis.

Nat Rev Cancer. (2019) 19:9–31. doi: 10.1038/s41568-018-0081-9

15. Barbie DA, Tamayo P, Boehm JS, Kim SY,Moody SE, Dunn IF, et al. Systematic

RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.

Nature. (2009) 462:108–12. doi: 10.1038/nature08460

16. Senbabaoglu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco

G, et al. Tumor immune microenvironment characterization in clear cell

renal cell carcinoma identifies prognostic and immunotherapeutically

relevant messenger RNA signatures. Genome Biol. (2016) 17:231.

doi: 10.1186/s13059-016-1092-z

17. Shen S, Wang G, Zhang R, Zhao Y, Yu H, Wei Y, et al. Development and

validation of an immune gene-set based Prognostic signature in ovarian

cancer. EBioMedicine. (2019) 40:318–26. doi: 10.1016/j.ebiom.2018.12.054

18. Verhaak RG, Tamayo P, Yang J-Y, Hubbard D, Zhang H, Creighton CJ,

et al. Prognostically relevant gene signatures of high-grade serous ovarian

carcinoma. J Clin Investig. (2012) 123:517–25. doi: 10.1172/JCI65833

19. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al.

Toward a shared vision for cancer genomic data. New Engl J Med. (2016)

375:1109–12. doi: 10.1056/NEJMp1607591

20. Yamauchi M, Yamaguchi R, Nakata A, Kohno T, Nagasaki M, Shimamura

T, et al. Epidermal growth factor receptor tyrosine kinase defines critical

prognostic genes of stage I lung adenocarcinoma. PLoS ONE. (2012) 7:e43923.

doi: 10.1371/journal.pone.0043923

21. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa

R, et al. Identification of genes upregulated in ALK-positive and

EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. (2012)

72:100–11. doi: 10.1158/0008-5472.CAN-11-1403

22. Shedden K, Taylor JM, Enkemann SA, Tsao M-S, Yeatman TJ,

Gerald WL, et al. Gene expression–based survival prediction in lung

adenocarcinoma: a multi-site, blinded validation study. Nat Med. (2008)

14:822. doi: 10.1038/nm.1790

23. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al.

NCBI GEO: archive for high-throughput functional genomic data. Nucleic

Acids Res. (2009) 37(Suppl_1):D885–90. doi: 10.1093/nar/gkn764

24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.

Integrative analysis of complex cancer genomics and clinical profiles using

the cBioPortal. Sci. Signal. (2013) 6:pl1. doi: 10.1126/scisignal.2004088

25. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA,

et al. The cBio cancer genomics portal: an open platform for exploring

multidimensional cancer genomics data. Cancer Discov. (2012) 2:401–4.

doi: 10.1158/2159-8290.CD-12-0095

26. Jacobsen A, Luna A. cgdsr: R-Based API for Accessing the MSKCC Cancer

Genomics Data Server (CGDS). R Package Version 1.3.0. (2015). Available

online at: https://CRAN.R-project.org/package=cgdsr

27. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression

Omnibus (GEO) and bioconductor. Bioinformatics. (2007) 23:1846–7.

doi: 10.1093/bioinformatics/btm254

28. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix

GeneChip data at the probe level. Bioinformatics. (2004) 20:307–15.

doi: 10.1093/bioinformatics/btg405

29. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving

gene/transcript definitions significantly alter the interpretation of GeneChip

data. Nucleic Acids Res. (2005) 33:e175. doi: 10.1093/nar/gni179

30. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf

U, et al. Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics. (2003) 4:249–64.

doi: 10.1093/biostatistics/4.2.249

31. Kauffmann A, Gentleman R, HuberW. arrayQualityMetrics—a bioconductor

package for quality assessment of microarray data. Bioinformatics. (2009)

25:415–6. doi: 10.1093/bioinformatics/btn647

32. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.

TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA

data. Nucleic Acids Res. (2015) 44:e71. doi: 10.1093/nar/gkv1507

33. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-

seq data: RPKMmeasure is inconsistent among samples. Theory Biosci. (2012)

131:281–5. doi: 10.1007/s12064-012-0162-3

34. Therneau T. A Package for Survival Analysis in S. Version 2.38 (2015).

Available online at: https://CRAN.R-project.org/package=survival

35. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis

for microarray and RNA-seq data. BMC Bioinformatics. (2013) 14:7.

doi: 10.1186/1471-2105-14-7

36. Hoerl AE, Kennard RW. Ridge regression: biased estimation

for nonorthogonal problems. Technometrics. (1970) 12:55–67.

doi: 10.1080/00401706.1970.10488634

37. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized

linear models via coordinate descent. J Stat Softw. (2010) 33:1.

doi: 10.18637/jss.v033.i01

38. Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing

time-dependent areas under receiver operating characteristic curves for

censored event times with competing risks. Stat Med. (2013) 32:5381–97.

doi: 10.1002/sim.5958

39. Song Q, Shang J, Yang Z, Zhang L, Zhang C, Chen J, et al. Identification

of an immune signature predicting prognosis risk of patients in lung

adenocarcinoma. J Transl Med. (2019) 17:70. doi: 10.1186/s12967-019-1824-4

40. Li B, Cui Y, Diehn M, Li R. Development and validation of an

individualized immune prognostic signature in early-stage nonsquamous

non–small cell lung cancer. JAMA Oncol. (2017) 3:1529–37.

doi: 10.1001/jamaoncol.2017.1609

41. Tang H, Wang S, Xiao G, Schiller J, Papadimitrakopoulou V, Minna J,

et al. Comprehensive evaluation of published gene expression prognostic

signatures for biomarker-based lung cancer clinical studies.AnnOncol. (2017)

28:733–40. doi: 10.1093/annonc/mdw683

42. Chen D-T, Hsu Y-L, Fulp WJ, Coppola D, Haura EB, Yeatman TJ, et al.

Prognostic and predictive value of a malignancy-risk gene signature in early-

stage non–small cell lung cancer. J Natl Cancer Inst. (2011) 103:1859–70.

doi: 10.1093/jnci/djr420

43. Kang L, ChenW, Petrick NA, Gallas BD. Comparing two correlated C indices

with right-censored survival outcome: a one-shot nonparametric approach.

Stat Med. (2015) 34:685–703. doi: 10.1002/sim.6370

44. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient

and comprehensive analysis of somatic variants in cancer.Genome Res. (2018)

28:1747–56. doi: 10.1101/gr.239244.118

45. Liu Z, Li M, Jiang Z, Wang X. A comprehensive immunologic portrait

of triple-negative breast cancer. Transl Oncol. (2018) 11:311–29.

doi: 10.1016/j.tranon.2018.01.011

46. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for

comparing biological themes among gene clusters. Omics. (2012) 16:284–7.

doi: 10.1089/omi.2011.0118

47. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity.

Nat Commun. (2015) 6:8971. doi: 10.1038/ncomms9971

48. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous

enumeration of cancer and immune cell types from bulk tumor gene

expression data. Elife. (2017) 6:e26476. doi: 10.7554/eLife.26476.049

49. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers

differential expression analyses for RNA-sequencing and microarray studies.

Nucleic Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

50. R Core Team.R: A language and environment for statistical computing. Vienna:

R Foundation for Statistical Computing (2019). Available online at: https://

www.R-project.org/

51. Chen Y, Chen G, Li J, Huang Y-Y, Li Y, Lin J, et al. Association of

tumor protein p53 and ataxia-telangiectasia mutated comutation with

response to immune checkpoint inhibitors and mortality in patients

with non–small cell lung cancer. JAMA Netw Open. (2019) 2:e1911895.

doi: 10.1001/jamanetworkopen.2019.11895

Frontiers in Oncology | www.frontiersin.org 16 May 2020 | Volume 10 | Article 691192

https://doi.org/10.1200/JCO.2018.78.1963
https://doi.org/10.1093/annonc/mdx003
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.1038/nature08460
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1016/j.ebiom.2018.12.054
https://doi.org/10.1172/JCI65833
https://doi.org/10.1056/NEJMp1607591
https://doi.org/10.1371/journal.pone.0043923
https://doi.org/10.1158/0008-5472.CAN-11-1403
https://doi.org/10.1038/nm.1790
https://doi.org/10.1093/nar/gkn764
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1158/2159-8290.CD-12-0095
https://CRAN.R-project.org/package=cgdsr
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/nar/gni179
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/bioinformatics/btn647
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1007/s12064-012-0162-3
https://CRAN.R-project.org/package=survival
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1002/sim.5958
https://doi.org/10.1186/s12967-019-1824-4
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.1093/annonc/mdw683
https://doi.org/10.1093/jnci/djr420
https://doi.org/10.1002/sim.6370
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.tranon.2018.01.011
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/ncomms9971
https://doi.org/10.7554/eLife.26476.049
https://doi.org/10.1093/nar/gkv007
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1001/jamanetworkopen.2019.11895
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Prognostic Value of Immunoscore

52. Luo W, Wang Y. Epigenetic regulators: multifunctional proteins modulating

hypoxia-inducible factor-α protein stability and activity. Cell Mol Life Sci.

(2018) 75:1043–56. doi: 10.1007/s00018-017-2684-9

53. Fedor D, Johnson WR, Singhal S. Local recurrence following lung cancer

surgery: incidence, risk factors, and outcomes. Surg Oncol. (2013) 22:156–61.

doi: 10.1016/j.suronc.2013.04.002

54. Alibek K, Bekmurzayeva A, Mussabekova A, Sultankulov B.

Using antimicrobial adjuvant therapy in cancer treatment: a

review. Infect Agents Cancer. (2012) 7:33. doi: 10.1186/1750-

9378-7-33

55. Nazareth MR, Broderick L, Simpson-Abelson MR, Kelleher RJ, Yokota

SJ, Bankert RB. Characterization of human lung tumor-associated

fibroblasts and their ability to modulate the activation of tumor-associated

T cells. J Immunol. (2007) 178:5552–62. doi: 10.4049/jimmunol.178.

9.5552

56. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix

modulates the hallmarks of cancer. EMBO Rep. (2014) 15:1243–53.

doi: 10.15252/embr.201439246

57. Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S,

et al. Tumor-stroma mechanics coordinate amino acid availability to

sustain tumor growth and malignancy. Cell Metab. (2019) 29:124–40.e110.

doi: 10.1016/j.cmet.2018.09.012

58. Triner D, Shah YM. Hypoxia-inducible factors: a central link between

inflammation and cancer. J Clin Investig. (2016) 126:3689–98.

doi: 10.1172/JCI84430

59. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG,

et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell

function and promotes tumor progression. Cancer Res. (2010) 70:7465–75.

doi: 10.1158/0008-5472.CAN-10-1439

60. Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long

story of a transcription factor. Acta Oncol. (2017) 56:503–15.

doi: 10.1080/0284186X.2017.1301680

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhao, Zhao, Xia, Wang and Wang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 17 May 2020 | Volume 10 | Article 691193

https://doi.org/10.1007/s00018-017-2684-9
https://doi.org/10.1016/j.suronc.2013.04.002
https://doi.org/10.1186/1750-9378-7-33
https://doi.org/10.4049/jimmunol.178.9.5552
https://doi.org/10.15252/embr.201439246
https://doi.org/10.1016/j.cmet.2018.09.012
https://doi.org/10.1172/JCI84430
https://doi.org/10.1158/0008-5472.CAN-10-1439
https://doi.org/10.1080/0284186X.2017.1301680
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 13 May 2020

doi: 10.3389/fonc.2020.00743

Frontiers in Oncology | www.frontiersin.org 1 May 2020 | Volume 10 | Article 743

Edited by:

Umberto Malapelle,

University of Naples Federico II, Italy

Reviewed by:

Francesco Pepe,

University of Naples Federico II, Italy

Dario De Biase,

University of Bologna, Italy

*Correspondence:

Shanqing Li

lsq6768@163.com

Naixin Liang

pumchnelson@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Thoracic Oncology,

a section of the journal

Frontiers in Oncology

Received: 27 November 2019

Accepted: 20 April 2020

Published: 13 May 2020

Citation:

Wu Y, Liu J, Han C, Liu X, Chong Y,

Wang Z, Gong L, Zhang J, Gao X,

Guo C, Liang N and Li S (2020)

Preoperative Prediction of Lymph

Node Metastasis in Patients With

Early-T-Stage Non-small Cell Lung

Cancer by Machine Learning

Algorithms. Front. Oncol. 10:743.

doi: 10.3389/fonc.2020.00743

Preoperative Prediction of Lymph
Node Metastasis in Patients With
Early-T-Stage Non-small Cell Lung
Cancer by Machine Learning
Algorithms

Yijun Wu 1,2†, Jianghao Liu 1,2†, Chang Han 1,2, Xinyu Liu 2,3, Yuming Chong 1,2, Zhile Wang 1,2,

Liang Gong 1,2, Jiaqi Zhang 1, Xuehan Gao 1, Chao Guo 1, Naixin Liang 1* and Shanqing Li 1*

1Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and

Peking Union Medical College, Beijing, China, 2 Peking Union Medical College, Eight-year MD Program, Chinese Academy of

Medical Sciences, Beijing, China, 3Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of

Medical Sciences and Peking Union Medical College, Beijing, China

Background: Lymph node metastasis (LNM) is difficult to precisely predict before

surgery in patients with early-T-stage non-small cell lung cancer (NSCLC). This study

aimed to develop machine learning (ML)-based predictive models for LNM.

Methods: Clinical characteristics and imaging features were retrospectively collected

from 1,102 NSCLC ≤ 2 cm patients. A total of 23 variables were included to develop

predictive models for LNM by multiple ML algorithms. The models were evaluated by the

receiver operating characteristic (ROC) curve for predictive performance and decision

curve analysis (DCA) for clinical values. A feature selection approach was used to identify

optimal predictive factors.

Results: The areas under the ROC curve (AUCs) of the 8 models ranged from 0.784

to 0.899. Some ML-based models performed better than models using conventional

statistical methods in both ROC curves and decision curves. The random forest classifier

(RFC) model with 9 variables introduced was identified as the best predictive model.

The feature selection indicated the top five predictors were tumor size, imaging density,

carcinoembryonic antigen (CEA), maximal standardized uptake value (SUVmax), and age.

Conclusions: By incorporating clinical characteristics and radiographical features, it

is feasible to develop ML-based models for the preoperative prediction of LNM in

early-T-stage NSCLC, and the RFC model performed best.

Keywords: non-small cell lung cancer, machine learning, lymph node metastasis, predictive model, cross-

validation

INTRODUCTION

Lung cancer remains the leading cause of global cancer death (1). Early-T-stage non-small
cell lung cancer (NSCLC) has been detected more frequently following the rapid development
and employment of radiographical technology (2). An accurate nodal stage is critical for
treatment decision-making (3). Currently, there are several evaluation methods, such as
computed tomography (CT), positron emission tomography/CT (PET/CT), mediastinoscopy
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and endobronchial ultrasound transbronchial needle aspiration
(EBUS-TBNA), that can be used to classify the nodal stage before
operation. However, performing mediastinoscopy or EBUS-
TBNA is not cost-effective for patients with early-stage NSCLC.
Furthermore, although CT and PET/CT have been widely used
for the preoperative evaluation of lung cancer, the incidence of
occult lymph node metastasis (LNM) in early-T-stage NSCLC
remains high and cannot be ignored (4, 5). Therefore, new
reliable methods for the preoperative prediction of LNM are
highly required.

Machine learning (ML) is an emerging computer-based
method that has been widely used for data analysis in medicine
during the past decade (6, 7). It learns from data and finds the
dataset pattern to identify the outcome (7, 8). Supervised ML is
a process in which the model is trained with fully labeled and
classified data. Compared with conventional statistical methods
such as logistic regression (LR), which relies on predetermined
models, ML can deeply detect the interactions among variations
and iteratively learn from data to update algorithms (9).

A number of predictive models have been made based on
ML algorithms. Several studies have reported effective ML-based
models for the prediction of LNM in other carcinomas, such
as breast cancer (10, 11). It was reported that radiomics could
be used to predict LNM by analyzing radiological images in
NSCLC (12). However, few reports have incorporated clinical
characteristics and radiographical features as in our study. This
study aimed to develop and validate effective ML-based models
for the prediction of LNM in patients with early-T-stage NSCLC.

MATERIALS AND METHODS

Study Population
Between January 2013 and June 2019, 1,102 patients who
underwent surgical resection for NSCLC at Peking Union
Medical College Hospital were included in this study. The
inclusion criteria were as follows: (1) single NSCLC lesion; (2)
tumor maximum diameter ≤ 2 cm on CT; and (3) receiving
lung resection with systematic lymph node dissection. The
exclusion criteria were as follows: (1) small cell lung cancer
(SCLC); (2) multiple lung cancer; (3) receiving radiotherapy
or chemotherapy before surgery; (4) distant metastasis; and (5)
incomplete clinical records. The pathological classification of
carcinomas was based on the 2015 World Health Organization
(WHO) classification (13). The clinical and pathological staging
was performed according to the 8th edition of the TNM staging
system (14). This study was approved by the Ethics Committee
of Peking Union Medical College Hospital. All patients signed
informed consent before operation.

Clinical Characteristics and
Radiographical Features
A total of 23 variables were analyzed in this study. The
patients’ clinical characteristics included age, sex, smoking status
and serum tumor biomarkers. All preoperative serum tumor
biomarkers were measured within 3 months before surgery,
including carbohydrate antigen 24-2 (CA242), squamous cell
carcinoma antigen (SCCAg), carcinoembryonic antigen (CEA),

carbohydrate antigen 19-9 (CA199), carbohydrate antigen 12-
5 (CA125), carbohydrate antigen 72-4 (CA724), carbohydrate
antigen 15-3 (CA153), neuron-specific enolase (NSE), tissue
polypeptide-specific antigen (TPS), cytokeratin 19-fragments
(Cyfra211) and pro-gastrin-releasing peptide (proGRP). CT
features were reviewed by one radiologist and two thoracic
surgeons independently, including tumor location side, tumor
maximum size, spiculation, vessel convergence, lobulation,
pleural indentation, calcification, and imaging density. If
disagreement occurred, the final result was reached by consensus.
Based on imaging density on CT, the cancer lesions were divided
into pure ground-glass opacity (pGGO), mixed GGO (mGGO)
and solid nodules. The mGGO was further divided into two
groups according to different percentages of solid components,
whose cut-off value was 50% (the ratio between the maximal
diameter of the solid component at the mediastinal window
and the maximal tumor diameter at the lung window). In
addition, the maximal standardized uptake value (SUVmax) on
PET/CT was also included. However, PET scan was not routinely
performed in early-T-stage NSCLC. All patients underwent CT
or PET scan within 60 days at our hospital before the operation.

Construction of ML-Based Models
All patients were randomly divided into training and testing
groups at a ratio of 8:2, keeping the distribution of node-
positive and node-negative data in both groups consistent.
To construct more reliable ML-based predictive models, all
continuous variables were preprocessed by z-score normalization
except for multinomial naïve Bayes (MNB) in which min-max
normalization is preferred (15). Some continuous variables with
missing data (Table S1), such as SUVmax and tumor biomarkers,
were imputed by median value (16, 17).

Eight algorithms were applied to predict LNM, including
adaptive boosting (AdaBoost), artificial neural network (ANN),
decision tree (DT), gradient boosting decision tree (GBDT),
logistic regression (LR), MNB, random forest classifier (RFC),
and extreme gradient boosting (XGBoost) (18–23). Among
all 8 algorithms, LR and MNB are considered conventional
methods, and the others are representative supervised ML-based
algorithms. Only DT, LR, and MNB were interpretable, in which
users were able to recognize function between variable and
predictive outcome.

The prediction ability of the 8 models was first evaluated
by the receiver operating characteristic (ROC) curve, which is
a conventional diagnostic test method that only pays attention
to the sensitivity and specificity but ignores the clinical utility
of predictive information. Decision curve analysis (DCA) was
performed to calculate the clinical values of these models, which
is a novel method to assess the information value between
diagnostic models by considering the possible range of a patient’s
risk and benefit preferences without actually measuring these
preferences for one particular patient (24).

Validation Strategy and Feature Selection
Overfitting is a common problem in ML, especially with
high dimensions (number of variables). To minimize the
negative influence of overfitting, some strategies, such as the
preselection of variables and cross-validation, were feasible (25,
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TABLE 1 | Univariate analysis of patients’ clinical characteristics and image

features.

Total Lymph node status P-value

pN
+

pN0

All patients 1102 116 (10.5) 986 (89.3)

Age, years 58 [51–65] 59 [53–66] 58 [50–64] 0.382

Sex

Male 403 (36.6) 52 (44.8) 351 (35.6) 0.051

Female 699 (63.4) 64 (55.2) 635 (64.4)

Smoking status

Yes 218 (19.8) 32 (27.6) 186 (18.9) 0.026

No 884 (80.2) 84 (72.4) 800 (81.1)

Tumor side

Left 461 (41.8) 49 (42.2) 412 (41.8) 0.925

Right 641 (58.2) 67 (57.8) 574 (58.2)

Tumor size, cm 1.3 [1.0–1.7] 1.7 [1.5–2.0] 1.2 [1.0–1.6] <0.001

Imaging density

pGGO 431 (39.1) 0 (0.0) 431 (43.7) <0.001

mGGO (solid <

50%)

330 (30.0) 51 (44.0) 279 (28.3)

mGGO (solid ≥

50%)

146 (13.2) 27 (23.3) 119 (12.1)

Solid nodule 195 (17.7) 38 (32.7) 157 (15.9)

Spiculation

Yes 587 (53.3) 70 (60.3) 517 (52.4) 0.106

No 515 (46.7) 46 (39.7) 469 (47.6)

Vessel convergence

Yes 234 (21.2) 17 (14.7) 217 (22.0) 0.067

No 868 (78.8) 99 (85.3) 769 (78.0)

Lobulation

Yes 403 (36.6) 52 (44.8) 351 (35.6) 0.071

No 699 (63.5) 64 (55.2) 635 (64.4)

Pleural indentation

Yes 294 (26.7) 43 (37.1) 251 (25.5) 0.007

No 808 (73.3) 73 (62.9) 735 (74.5)

Calcification

Yes 21 (1.9) 4 (3.4) 17 (1.8) 0.414

No 1081 (98.1) 112 (96.6) 969 (98.2)

Tumor SUVmax 1.3 [0.7–2.9] 5.9 [3.2–8.7] 1.2 [0.7–2.3] <0.001

CA242 6.4 [3.4–12.7] 7.5 [4.5–16.5] 6.1 [3.3–12.5] 0.131

SCCAg 0.8 [0.6–1.0] 0.8 [0.6–1.0] 0.8 [0.6–1.0] 0.473

CEA 1.89 [1.20–2.83] 3.63 [2.08–6.69] 1.79 [1.15–2.60] <0.001

CA199 10 [6.8–16.9] 12.1 [7.4–22.0] 9.9 [6.7–16.8] 0.072

CA125 10.7 [8.0–15.0] 13.3 [9.0–30.1] 10.5 [7.9–14.1] 0.001

CA724 1.9 [1.2–4.3] 2.5 [1.4–5.6] 1.9 [1.2–4.2] 0.128

CA153 9.6 [7.3–13.1] 10.6 [8.0–14.4] 9.5 [7.2–12.9] 0.030

NSE 13.6 [11.6–15.6] 13.5 [11.8–15.8] 13.6 [11.5–15.6] 0.577

TPS 46.68

[29.41–83.10]

54.22

[28.77–110.40]

46.68

[29.30–79.80]

0.492

Cyfra211 1.92 [1.42–2.68] 2.01 [1.63–2.97] 1.90 [1.40–2.62] 0.013

ProGRP 32.1 [26.0–40.5] 33.6 [26.5–45.4] 32.1 [26.0–40.1] 0.115

pGGO, pure ground glass opacity; mGGO,mixed ground glass opacity; Solid< 50%/Solid

> 50%: the ratio between the maximal diameter of the solid component at the mediastinal

window and the maximal tumor diameter at the lung window < 50%/ > 50% in

mGGO; SUVmax , maximal standardized uptake value; CA242, carbohydrate antigen 24-

2; SCCAg, squamous cell carcinoma antigen; CEA, carcinoembryonic antigen; CA199,

carbohydrate antigen 19-9; CA125, carbohydrate antigen 12-5; CA724, carbohydrate

antigen 72-4; CA153, carbohydrate antigen 15-3; NSE, neuron-specific enolase; TPS,

tissue polypeptide-specific antigen; Cyfra211, cytokeratin 19-fragments; proGRP, pro-

gastrin-releasing peptide.

26). Therefore, 5-fold cross-validation and feature selection were
performed in this study. The 5-fold cross-validation randomly
split the dataset into 5 subsets. For each repeated time, four
subsets were used as the training group and the remaining subset
was used as the testing data. This procedure was repeated 5
times, and each subset should be used exactly once as the testing
group. To rank and select meaningful variables, a classifier-
specific evaluator was used, returning a ranked list of variables for
each algorithm. The ranks of each variable in different algorithms
were compared, and the variables with high ranks were identified.

Statistical Analysis
Univariate analysis was performed using IBM SPSS 25.0 (SPSS
Inc; Chicago, IL, USA). Quantitative data were first tested for
normality by the Shapiro-Wilk test. Normal data are expressed
as the mean ± standard deviation (SD), while non-normal
data are expressed as the median with interquartile range
(IQR). Student’s t-test was used to compare normal quantitative
parameters, while the Mann-Whitney U test was used to
compare non-normal quantitative parameters. For categorical
data, Pearson’s chi square test or Fisher’s exact test was applied.
Python programming language (version 3.7, Python Software
Foundation) was used for the construction of ML models and
DCA. Student’s t-test was also used for the comparison of
different ML models (AUCs). A P-value < 0.05 was considered
statistically significant.

RESULTS

Patient Characteristics
All 1,102 patients’ clinical characteristics and radiographical
features are listed in Table 1. Univariate analysis was performed
for data without a median value imputed. LNM occurred in
10.5% (116/1102) of patients with NSCLC ≤ 2 cm. In total,
699 (63.4%) patients were female, and LNM occurred more
frequently in smokers (P = 0.026). The maximum tumor size on
CT in patients with positive nodes was significantly larger than
that in patients with negative nodes (P< 0.001). All patients had a

maximal diameter no smaller than 4mm. Tumor imaging density
(P < 0.001) and pleural indentation (P = 0.006) also presented

significant differences between node-positive and node-negative

patients. None of the patients with positive nodes in this study
had a pGGO cancer nodule. Moreover, patients with LNM were
significantly different from those without LNM in 4 serum tumor
biomarkers: CEA (P < 0.001), CA125 (P = 0.001), CA153 (P =

0.030), and Cyfra211 (P = 0.013).

Predictive Performance and Clinical Utility
of ML-Based Models
A total of 23 preoperative variables were used to develop

predictive models for LNM based on 8 algorithms. The predictive
performance of all models is shown in Figure 1 and Table 2. The

best performance was observed in the GBDT model (AUC =

0.899, SD = 0.048), which performed similarly to RFC (AUC =

0.890, SD = 0.045, P = 0.773), XGBoost (AUC = 0.883, SD =

0.047, P = 0.627), AdaBoost (AUC = 0.873, SD = 0.048, P =

0.432), and ANN (AUC = 0.868, SD = 0.049, P =0.341). All
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FIGURE 1 | Receiver operating characteristic (ROC) curve for 8 models.

AdaBoost, adaptive boosting; ANN, artificial neural network; DT, decision tree;

GBDT, gradient boosting decision tree; LR, logistic regression; MNB,

multinomial naïve Bayes; RFC, random forest classifier; XGBoost, extreme

gradient boosting.

ML-based models except DT (AUC = 0.802, SD = 0.057) were
better than the two conventional methods, LR (AUC= 0.867, SD
= 0.049, P = 0.338) and MNB (AUC = 0.784, SD = 0.058, P =

0.002). Moreover, all models performed significantly better than
using only tumor size (AUC = 0.753, SD = 0.023, P < 0.001; the
cut-off value was 1.5 cm), SUVmax (AUC = 0.734, SD = 0.024, P
< 0.001; the cut-off value was 2.8) or CEA (AUC = 0.720, SD =

0.026, p < 0.001; the cut-off value was 2.98 ng/ml).
Furthermore, the decision curve showed the clinical values

of these models (Figure 2). The net benefits of 8 models at
each threshold probability are shown in Table S2. Most of
these models presented better net benefits than two control
models that were represented by positive and negative line,
respectively. The negative line represents the net benefit is
zero when none of patients receive lobectomy with systematic
lymph node dissection (SND), assuming that all patients have
no positive nodes. On the contrary, the positive line represents
the net benefits at the time when all patients have positive nodes
and receive lobectomy with SND. Four models (RFC, XGBoost,
GBDT, and LR) performed significantly better than the others
at most of threshold points. At the range of 0.2–0.5, the LR
model was less beneficial than RFC, XGBoost and GBDT onmost
occasions. The RFC model with 9 variables introduced, which
achieved a very high AUC (0.890) and had the highest net benefits
almost across the entire range of threshold probabilities, was
regarded as the best predictive model in this study, although its
AUC value was slightly lower than that of GBDT (P = 0.773).

Variable Importance
By feature selection, the 23 variables for each algorithm were
ranked by their predictive importance (Table S3). The top 10

TABLE 2 | Predictive performance (AUC) of 8 models and using several variables

alone.

Model AUC No. of optimal

dimensions

Mean SD 95% CI

AdaBoost 0.873 0.048 0.779–0.968 7

ANN 0.868 0.049 0.772–0.964 7

DT 0.802 0.057 0.691–0.913 2

GBDT 0.899 0.044 0.813–0.985 11

LR 0.867 0.049 0.771–0.963 13

MNB 0.784 0.058 0.670–0.898 11

RFC 0.890 0.045 0.801–0.979 13

XGBoost 0.883 0.047 0.792–0.975 7

Tumor size 0.753 0.023 0.707–0.798 1

SUVmax 0.734 0.024 0.688–0.780 1

CEA 0.720 0.026 0.669–0.770 1

AUC, area under the receiver operating characteristic curve; AdaBoost, adaptive

boosting; ANN, artificial neural network; DT, decision tree; GBDT, gradient boosting

decision tree; LR, logistic regression; MNB, multinomial naïve Bayes; RFC, random forest

classifier; XGBoost, extreme gradient boosting; SUVmax , maximal standardized uptake

value; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 12-5; Cyfra211,

cytokeratin 19-fragments; CA153, carbohydrate antigen 15-3.

FIGURE 2 | Decision curve for 8 models. AdaBoost, adaptive boosting; ANN,

artificial neural network; DT, decision tree; GBDT, gradient boosting decision

tree; LR, logistic regression; MNB, multinomial naïve Bayes; RFC, random

forest classifier; XGBoost, extreme gradient boosting.

variables are shown in Figure 3. The five top-ranked predictors
were tumor size, imaging density, CEA, SUVmax, and age. The
relationship between the AUCs of models and the number of
variables were evaluated in Figure 4. The AUCs of most models
reached a plateau when 7 variables were introduced, while
those of ANN, DT, and MNB started to drop down when they
reached the highest points. The AUCs of RFC for each number
of variables are shown in Figure 5. Its AUC value reached a
plateau when 9 variables were introduced and reached the highest
value when 13 variables were introduced, but it did not increase
significantly with the change from 9 variables (AUC = 0.886) to
13 variables (AUC = 0.890) introduced. Considering the clinical
utility, the 9 top-ranked variables were identified to construct the
optimal predictive model, which included tumor size, SUVmax,
imaging density, vessel convergence sign, CEA, CA125, sex, age,
and spiculation sign.
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FIGURE 3 | Ranks of the top 10 variables for the prediction of lymph node

metastasis. Variables were ranked using a classifier-specific evaluator based

on machine learning algorithms. Each variable was ordered according to their

mean ranks. The lower rank represents more contributions to the prediction of

lymph node metastasis. For example, SUVmax was ranked 2nd, 3rd, 3rd, and

5th in RFC, GBDT, LR, and XGB, respectively. TS, tumor size; ID, imaging

density; CEA, carcinoembryonic antigen; SUVmax, maximal standardized

uptake value; VCS, vessel convergence sign on CT; CA125, carbohydrate

antigen 12-5; Cyfra211, cytokeratin 19-fragments; proGRP,

pro-gastrin-releasing peptide.

FIGURE 4 | Predictive performance (AUCs) of 8 models as number of

variables increases. AdaBoost, adaptive boosting; ANN, artificial neural

network; DT, decision tree; GBDT, gradient boosting decision tree; LR, logistic

regression; MNB, multinomial naïve Bayes; RFC, random forest classifier;

XGBoost, extreme gradient boosting.

DISCUSSION

Lobectomy with systematic lymph node dissection remains the
standard treatment for patients with early-T-stage NSCLC
(≤ 2 cm) (27). However, sublobar resection, including
segmentectomy and wedge resection, has been proposed to
achieve more precise intervention with the advancement of
imaging techniques in recent years. In addition, the reasonable
extent of lymph node dissection remains controversial. An exact
nodal status is critical for treatment selection and prognosis.

In this study, using ML algorithms, we developed 8 models
to predict LNM in 1,102 patients with NSCLC ≤ 2 cm,
incorporating their clinical characteristics and radiographical
features. ROC analysis and DCA were used to evaluate the

FIGURE 5 | Predictive performance (AUCs) of the random forest classifier

(RFC) model at each number of variables.

predictive performance and clinical values of the models,
respectively. Most of 8 models maintained high AUCs and All
ML-based models (with AUCs ranging from 0.868 to 0.899)
except DT performed better than two models using conventional
statistical methods (LR and MNB) in the prediction of LNM
(Figure 1 and Table 2).

DCA has been used for many medical studies and has shown
great clinical utility (28, 29). In the decision curve, most of these
models performed better than positive line and negative line,
indicating that the overall net benefit of giving lobectomy with
SND to patients identified by the models to have high risk of
LNMwas higher than that of giving the same surgical procedures
to all patients or no patient. Four models (RFC, XGBoost, GBDT,
and LR) performed better than the others at most of threshold
points (Figure 2). Thus, these four potential models were used
to identify variable importance by feature selection (Figure 3).
The other four models, AdaBoost, MNB, DT, and ANN, had
lower net benefits in the decision curve (Figure 2), although
they possessed high AUCs in the ROC curve. This indicated
that models with high predictive accuracy might not be clinically
practical and require further evaluation by other methods, such
as DCA.

Using conventional univariate analysis, previous studies
reported the risk factors associated with LNM in NSCLC
≤ 2 cm, including tumor size, serum CEA and imaging
density (30, 31). In addition, SUVmax was also thought to
be a risk factor in patients with cT1 NSCLC (32). Thus,
the AUCs when using tumor size (AUC = 0.753), SUVmax

(AUC = 0.734), or CEA (AUC = 0.720) alone were also
calculated, which were significantly lower than those of ML-
based models (Table 2). Thus, previous studies might not
provide precise predictive information for LNM. Reliable
predictive models for LNM in patients with NSCLC are
needed. To our knowledge, our study was the first to provide
potential models for the prediction of LNM in patients
with NSCLC by incorporating clinical characteristics and
radiographical features.
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Although most of the ML-based models in our study cannot
demonstrate the connection between the predictive variables and
the outcomes, the contribution of each variable to the models
could be inferred by feature selection. Tumor size, imaging
density, serum CEA, SUVmax, and age were indicated to be
the most contributive risk factors of LNM (Figure 3), which
was similar to the results of univariate analysis (Table 1). Since
none of the patients with pGGO NSCLC had positive nodes
in our and previous studies (30, 31), it could be inferred that
pGGO might be predictive of node-negative status in early-T-
stage NSCLC. It was also reported that a higher serum CEA
level was significantly associated with a higher incidence of LNM
(31, 33). Although only 611 patients’ SUVmax values (pN+: n
= 62, pN0: n = 549; p > 0.05) were available because some
patients did not undergo PET scans, SUVmax was ranked at 4
among the four potential models (Figure 3) and was ranked at
2 in the RFC model (Figure 4). Meanwhile, a high AUC (0.734)
for SUVmax was also obtained. Above all, SUVmax might be one
of the most important predictive factors, which was consistent
with previous studies (32, 34). Surprisingly, age showed no
significance in univariate analysis (p = 0.382) but was ranked at
the top 5 (Figure 3). This might be attributed to the surprising
superiority of ML-based models in data mining, which could
find more relations between the variables and the outcomes than
conventional methods.

According to the ROC curve (Figure 1) and decision curve
(Figure 2), the RFC model with 9 variables introduced (AUC =

0.890) was identified as the optimal model. By considering the
clinical utility, an application based on the RFC algorithm with
9 variables (AUC = 0.886) should be developed in the future.
These 9 variables were tumor size, SUVmax, imaging density,
vessel convergence sign, CEA, CA125, sex, age, and spiculation
sign. Thus, clinicians from other hospitals could benefit from
our study.

In addition to the clinical values, there were several
methodological indications in our study. First, although there
were several studies of machine learning involving NSCLC,
few of them have reported predictive models for LNM using
ML algorithms by incorporating clinical characteristics and
radiographical features. Most of them performed image analysis
by radiographical data (12) or histological slides (35). This is the
first study to predict LNM in NSCLC ≤ 2 cm, indicating the
feasibility and potential of ML algorithms applied in NSCLC.
More predictive models of NSCLC may be developed using ML
algorithms to solve clinical problems in the future. Second, based
on ROC analysis and DCA, multiple supervised ML algorithms
performed better than conventional methods. Thus, the ML
algorithms would play an important role in the analysis of large
medical datasets. Third, in addition to the ROC curve, a decision
curve was used to evaluate the clinical utility of these models.
Some models performed worse in the decision curve, although
they had very high AUCs. This provides a method to further
evaluate the clinical values of ML-based models.

There were also some limitations in our study. First,
there were some patients who received sublobar resection
(wedge resection or segmentectomy), and thus, the

incidence of LNM in this population might have been
underestimated. Second, missing data were inevitable.
This is because not all patients with early-T-stage NSCLC
receive PET scans or tumor biomarker tests. Except for
SUVmax and serum biomarkers, the clinical records of other
variables were complete. The median value was imputed to
solve this problem (16, 17). Third, this is a retrospective
study that could not completely avoid data selection and
measurement biases. More prospective studies or multicenter
studies may be needed to develop predictive models in
the future.

CONCLUSIONS

ML-based models are effective in the prediction of LNM in
NSCLC ≤ 2 cm by incorporating clinical and radiographical
characteristics. Based on ROC analysis and DCA, some
ML-based models performed better than models using
conventional methods, and the RFC model performed best.
The feature selection approach identified that tumor size,
imaging density, CEA, SUVmax, and age were the most
important predictive risk factors for LNM.
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EML4-ALK fusions are targetable oncogenic drivers in a subset of advanced non-small

cell lung cancer (NSCLC) patients that can benefit from selected ALK inhibitors. Precise

detection of ALK fusions may yield critical information for selection of appropriate therapy

and hence improve patient survival. Analysis of circulating tumor DNA (ctDNA) in liquid

biopsies using next generation sequencing (NGS) prior to or during treatment hold great

promise for disease monitoring and treatment guidance of various cancers including

NSCLC. Herein, we report a case of a 21-year-old advanced lung adenocarcinoma

patient with a low abundance (0.03%) of EML4-ALK rearrangement identified in plasma

ctDNA upon progression on two lines of chemotherapy that demonstrated long-term

complete response to alectinib (>13 months) including metastatic brain tumors. Patient’s

clinical and pathologic characteristics, computerized tomography (CT) scans and brain

magnetic resonance imaging (MRI) were reviewed retrospectively. Taken together, our

report not only reinforces the translational utility of NGS-based genomic sequencing

of liquid biopsy in guiding clinical practice, but also highlights the superior efficacy of

alectinib than chemotherapy in ALK+ NSCLC with brain metastases, albeit at a low

variant allele abundance.

Keywords: lung adenocarcinoma, ALK rearrangement, alectinib, liquid biopsy, brain metastases

INTRODUCTION

Aberrant ALK rearrangements have been recognized as central oncogenic drivers for many
solid malignancies. EML4-ALK fusions occur in ∼2–7% of advanced non-small cell lung cancer
(NSCLC) patients, and are more frequently detected in lung adenocarcinoma as well as in
never- or light- smokers or young adults (1). Despite of high overall response rates (ORR) with
the first-generation ALK inhibitor crizotinib (2), drug resistance inevitably develops with the
central nervous system (CNS) as the most common site of progressive disease in nearly 70% of
ALK+ patients undergoing crizotinib treatment. Approximately 15–35% ofALK+NSCLC patients
manifest with CNSmetastases at initial diagnosis (3), dramatically impacting patient prognosis and
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quality of life. Previous studies have provided convincing
evidence for the superior potency and improved tolerability
of alectinib over crizotinib in ALK+ patients with baseline
brain metastases or leptomeningeal disease (4, 5), which
underlines the potential efficacy of alectinib in treating ALK-
driven NSCLC, particularly in the management of those
harboring CNS metastases. Analysis of circulating tumor DNA
(ctDNA) in liquid biopsies using next generation sequencing
(NGS) provide a non-invasive approach to tumor molecular
profiling and is increasingly utilized to screen presence of
disease, guide therapy selection, and evaluate treatment response
(6). However, adequate assessment of low-abundance ctDNA
alterations and their translational significancemay be challenging
under some circumstances. In this case study, we report a lung
adenocarcinoma patient with brain metastases whose disease
progressed upon chemotherapy but responded completely to
alectinib with detection of a low-abundance EML4-ALK fusion
in plasma ctDNA.

FIGURE 1 | Schematics showing the patient’s treatment history. (A) A diagram showing the chronological changes of therapeutic regimens and serum CEA levels

during the entire course of treatment. RFA, radiofrequency ablation. (B–H) The patient’s chest computed tomography (CT) scans at different clinical time points as

shown. Arrowheads: location of the primary lung lesion in different scans. Arrows: paricardial effusion at initial diagnosis. PR, partial response; PD, progressed disease.

CASE PRESENTATION

A 21-year-old Chinese male with neither personal smoking

history nor family medical history was diagnosed with stage

IV lung adenocarcinoma with multiple metastases in cervical,

hilar and mediastinal lymph nodes, and pericardial effusion in

February 2016 (Figures 1A,B). Cervical lymph node biopsy was
performed but not the primary lung tumor due to a number of
reasons including the tumor size (1.5 cm by 1.5 cm), its proximity
to the heart, and a large accumulation of pericardial effusion
present at diagnosis. The baseline lymph node biopsy specimen,
pericardial effusion ctDNA, and plasma ctDNA samples were
immediately subject to comprehensive genomic profiling using
next generation sequencing (NGS) by targeting 382 cancer-
relevant genes, but no actionable driver mutations were detected
in any sample (Table 1). FISH or IHC against biomarkers
including ALK was not adopted for routine clinical diagnosis at
our institution in 2016. The patient soon received the first-line
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TABLE 1 | Genetic alterations identified by NGS in the patient’s FFPE and liquid

biopsy samples.

Time points (in Figure 1A) Sample type Gene AA change MAF%

At diagnosis (2016.2) FFPE (cervical lymph

node)

ARID1A p.G87X 37.00

STAT3 p.E166Q 2.00

TP53 p.T155N 61.00

Plasma ctDNA -

PR to 1st-line

chemotherapy (2016.3)

Pericardial effusion

ctDNA

BRCA1 p.Q1240X 2.00

ARID1A p.Q2100X 4.00

CTNNB1 p.D32H 4.00

TP53 p.T155N 7.00

PR to 1st-line

chemotherapy (2016.8)

Plasma ctDNA -

PD on 2nd-line

chemotherapy (2019.3)

Plasma ctDNA ARID1A p.Q2100X 0.20

TP53 p.T23N 0.40

EML4-ALK (E6:A20) 0.03

PR, partial response; PD, progressive disease; ctDNA, circulating tumor DNA; AA, amino

acid; MAF, mutant allele frequency; “-,” no somatic alterations detected.

chemotherapy of six cycles of pemetrexed (500 mg/m2) and
cisplatin (75 mg/m2) and achieved a partial response (PR)
according to the RECIST guideline version 1.1(7) (Figure 1C).
No mutation was detected in the post-chemo plasma ctDNA
sample (August 2016) using NGS by the same targeted gene
panel (Table 1). A maintenance chemotherapy continued with
ten cycles of pemetrexed (500 mg/m2). The patient demonstrated
a progression-free survival (PFS) of about 20 months in
total during the course of first-line chemotherapy until the
disease progressed with the occurrence of bone metastases in
October 2017, although the primary lung lesion remained stable
(Figure 1D).

The patient was then treated with radiofrequency (RF)
ablation for the primary lung lesion in October 2017, followed
by two cycles of second-line pemetrexed (500 mg/m2) and
carboplatin (6 mg/ml/min). In January 2018, the patient was
switched to single-agent pemetrexed (5 cycles, 500 mg/m2) due
to severe allergic reactions to carboplatin. The primary lung
tumor demonstrated durable complete response to second-line
chemotherapy (Figure 1E). However, serum CEA levels steadily
increased and reached 105.4 µg/L by February 2019 (Figure 1A).
Remarkably, an EML4-ALK fusion variant (E6:A20) was detected
at a low allele frequency (AF) of 0.03% in plasma ctDNA using
the same targeted NGS panel (Table 1). However, it could not
be validated by IHC or FISH due to an insufficient quantity of
primary lesion for biopsy. Considering that there were few or
no other treatment options, despite a low abundance of EML4-
ALK fusion, we still determined to treat this patient with alectinib
(600mg twice daily) in March 2019 upon the diagnosis of
multiple brain metastases by brain magnetic resonance imaging
(MRI; Figures 1F, 2). CEA levels declined markedly (Figure 1A)
following the treatment and a significant reduction in the
size of brain lesions was also observed (Figure 2). After 3
months, metastatic brain tumors disappeared completely, while
the primary lung lesion remained under control (Figure 1G)
and CEA levels dropped to 2.2 µg/L (Figure 1A). The patient

remained relapse-free during the entire follow-up period of about
13 months up till April 2020 (Figures 1H, 2).

DISCUSSION

Here, we describe an advanced lung adenocarcinoma case with
a low-abundance EML4-ALK fusion detected in plasma ctDNA.
This patient had a progression of disease after two lines of
chemotherapy but displayed a durable complete response to
alectinib including brain metastases. In accordance with the
results of the ALEX phase three trial (5), alectinib showed
potent systemic and CNS efficacy and low toxicity in the
patients carrying a low frequency of EML4-ALK fusion, further
consolidating alectinib as the standard of care for untreated,
advanced ALK+ NSCLC, irrespective from the presence or
absence of baseline CNS metastases.

We acknowledge that the sensitivity of fusion detection
in cell-free DNA (cfDNA) was reported to be lower than
that for mutations or indels (8), and differences in fusion
detection were also noted between different cfDNA NGS assays
(9). However, cfDNA should be considered as a rule in vs.
a rule out test even if the AF is lower than the reportable
threshold of the cfDNA assay. Furthermore, it has been largely
debated on TKI efficacy irrespective of mutation AF in advanced
NSCLC including EGFR-mutant tumors. Given that a high
abundance of EGFR activating mutation was reported to be
significantly associated with better objective response to EGFR
TKIs and greater PFS benefits (10, 11), a treatment regimen
of chemotherapy in combination with TKIs may be considered
for advanced NSCLC with EGFR activating mutations of low
AF. It is also worth noting that this EML4-ALK aberration
was not detected at diagnosis or during first-line chemotherapy
by the same NGS-based mutation panel under the same
detection threshold. This tumor-plasma discordance may be
partly explained by a high degree of tumor heterogeneity of
the patient, highlighting the importance of intra-patient tumor
heterogeneity as previously reported in EGFR-mutant NSCLC
(12–14). Together, these data underscored the translational utility
of NGS-based genomic sequencing of liquid biopsy in guiding
clinical practice, which allows a more comprehensive analysis of
tumor heterogeneity.

Although alectinib has demonstrated potent antitumor
activity against ALK-rearranged NSCLC, the disease inevitably
relapses in the clinic mainly owing to acquired therapy
resistance mediated by multiple mechanisms. A number of
ALK inhibitors including brigatinib (15) and lorlatinib (16)
have been documented to have highly selective activity against
ALK mutants resistant to first- and second- generation
ALK-TKIs. In particular, lorlatinib was reported to be
very active against almost all ALK mutants, including the
G1202R variant. More importantly, lorlatinib displayed a
strong brain-penetrant property and anticancer potency
toward intracranial metastatic tumors in a phase 1, dose-
escalation trial of advanced ALK- or ROS1-positive NSCLC
patients, most of whom had CNS metastases (17). Late
phases of clinical trials of third generation ALK inhibitors
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FIGURE 2 | Serial MRI scans showing patient’s metastatic brain tumors responded completely to alectinib therapy. The patient achieved partial response (PR) 1

month after the initiation of alectinib therapy, and the lesions disappeared (CR) completely at the 3- and 13- month post-alectinib treatment time points. Arrows:

metastatic brain tumors. CR, complete response.

are currently undergoing, which may open up a new
avenue for patients who develop brain metastases after
the acquisition of resistance mechanisms to currently
available ALK-TKIs.

In conclusion, this case report emphasizes the importance
of NGS-based genomic sequencing of liquid biopsy in disease
monitoring and therapy guidance and highlights the superior
efficacy of alectinib than chemotherapy in primary treatment of
ALK+ NSCLC patients with CNS metastases, including those
with low-abundance ALK rearrangements.

LABORATORY INVESTIGATIONS AND
DIAGNOSTIC TESTS

Comprehensive genomic profiling was performed using next
generation sequencing by targeting 382 cancer-relevant genes
in a Clinical Laboratory Improvement Amendments-certified,
College of American Pathologists-accredited laboratory (Nanjing
Geneseeq Technology, Nanjing, Jiangsu Province, China). In
brief, genomic DNA were extracted from cervical lymph
node biopsy specimen using the DNeasy Blood & Tissue
kit (Qiagen) according to the manufacturer’s protocols. Cell-
free (cfDNA) from pericardial effusion or plasma samples
was extracted using the QIAamp Circulating Nucleic Acid
kit (Qiagen). Approximately 200 ng of cfDNA was used
for subsequent library preparation using the KAPA Hyper
Prep kit (KAPA Biosystems) according to manufacturer’s
suggestions for different sample types. Sequencing library
preparation, targeted gene enrichment, and sequencing data
processing were carried out following the methods as previously
described (18).

CLINICAL PRACTICE POINTS

• An advanced lung adenocarcinoma patient with a low
abundance of EML4-ALK fusion demonstrated a durable
complete response to alectinib.

• Analysis of plasma ctDNA changes using NGS-
based liquid biopsy assays holds great promise for
tracing disease progression or recurrence and guiding
treatment decision-making.
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