
EDITED BY : Peida Zhan, Feiming Li and Hong Jiao

PUBLISHED IN : Frontiers in Psychology

COGNITIVE DIAGNOSTIC 
ASSESSMENT FOR LEARNING

https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
https://www.frontiersin.org/journals/psychology


Frontiers in Psychology 1 January 2022 | Cognitive Diagnostic Assessment for Learning

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88974-096-3 

DOI 10.3389/978-2-88974-096-3

https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/journals/psychology


Frontiers in Psychology 2 January 2022 | Cognitive Diagnostic Assessment for Learning

Topic Editors: 
Peida Zhan, Zhejiang Normal University, China
Feiming Li, Zhejiang Normal University, China
Hong Jiao, University of Maryland, College Park, United States

Citation: Zhan, P., Li, F., Jiao, H., eds. (2022). Cognitive Diagnostic Assessment for 
Learning. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88974-096-3

COGNITIVE DIAGNOSTIC 
ASSESSMENT FOR LEARNING

https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
http://doi.org/10.3389/978-2-88974-096-3
https://www.frontiersin.org/journals/psychology


Frontiers in Psychology 3 January 2022 | Cognitive Diagnostic Assessment for Learning

05 Editorial: Cognitive Diagnostic Assessment for Learning

Peida Zhan, Feiming Li and Hong Jiao

08 Online Calibration of Polytomous Items Under the Graded Response 
Model

Jianhua Xiong, Shuliang Ding, Fen Luo and Zhaosheng Luo

20 The Development of a Multidimensional Diagnostic Assessment With 
Learning Tools to Improve 3-D Mental Rotation Skills

Shiyu Wang, Yiling Hu, Qi Wang, Bian Wu, Yawei Shen and Martha Carr

39 Attribute Discrimination Index-Based Method to Balance Attribute 
Coverage for Short-Length Cognitive Diagnostic Computerized Adaptive 
Testing

Yutong Wang, Xiaojian Sun, Weifeng Chong and Tao Xin

52 Bayesian Estimation of the DINA Model With Pólya-Gamma Gibbs 
Sampling

Zhaoyuan Zhang, Jiwei Zhang, Jing Lu and Jian Tao

67 Cognitive Diagnostic Models for Rater Effects

Xiaomin Li, Wen-Chung Wang and Qin Xie

79 Spectral Clustering Algorithm for Cognitive Diagnostic Assessment

Lei Guo, Jing Yang and Naiqing Song

93 The Impact of Sample Attrition on Longitudinal Learning Diagnosis: A 
Prolog

Yanfang Pan and Peida Zhan

100 Longitudinal Learning Diagnosis: Minireview and Future Research 
Directions

Peida Zhan

104 Q-Matrix Designs of Longitudinal Diagnostic Classification Models With 
Hierarchical Attributes for Formative Assessment

Wei Tian, Jiahui Zhang, Qian Peng and Xiaoguang Yang

111 Growth Modeling in a Diagnostic Classification Model (DCM) 
Framework–A Multivariate Longitudinal Diagnostic Classification Model

Qianqian Pan, Lu Qin and Neal Kingston

128 International Comparative Study on PISA Mathematics Achievement Test 
Based on Cognitive Diagnostic Models

Xiaopeng Wu, Rongxiu Wu, Hua-Hua Chang, Qiping Kong and Yi Zhang

141 Longitudinal Cognitive Diagnostic Assessment Based on the HMM/ANN 
Model

Hongbo Wen, Yaping Liu and Ningning Zhao

157 A Semi-supervised Learning Method for Q-Matrix Specification Under the 
DINA and DINO Model With Independent Structure

Wenyi Wang, Lihong Song, Shuliang Ding, Teng Wang, Peng Gao and  
Jian Xiong

168 Measuring Skill Growth and Evaluating Change: Unconditional and 
Conditional Approaches to Latent Growth Cognitive Diagnostic Models

Qiao Lin, Kuan Xing and Yoon Soo Park

Table of Contents

https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
https://www.frontiersin.org/journals/psychology


Frontiers in Psychology 4 January 2022 | Cognitive Diagnostic Assessment for Learning

181 Developing a Learning Progression for Probability Based on the GDINA 
Model in China

Shengnan Bai

192 Cognitive Diagnostic Models for Random Guessing Behaviors

Chia-Ling Hsu, Kuan-Yu Jin and Ming Ming Chiu

205 Integrating a Statistical Topic Model and a Diagnostic Classification Model 
for Analyzing Items in a Mixed Format Assessment

Hye-Jeong Choi, Seohyun Kim, Allan S. Cohen, Jonathan Templin and 
Yasemin Copur-Gencturk

216 Automated Test Assembly for Multistage Testing With Cognitive Diagnosis

Guiyu Li, Yan Cai, Xuliang Gao, Daxun Wang and Dongbo Tu

229 Binary Restrictive Threshold Method for Item Exposure Control in 
Cognitive Diagnostic Computerized Adaptive Testing

Xiaojian Sun, Yizhu Gao, Tao Xin and Naiqing Song

https://www.frontiersin.org/research-topics/10482/cognitive-diagnostic-assessment-for-learning
https://www.frontiersin.org/journals/psychology


EDITORIAL
published: 30 November 2021

doi: 10.3389/fpsyg.2021.806636

Frontiers in Psychology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 806636

Edited and reviewed by:

Alexander Robitzsch,

IPN—Leibniz Institute for Science and

Mathematics Education, Germany

*Correspondence:

Peida Zhan

pdzhan@gmail.com

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 01 November 2021

Accepted: 15 November 2021

Published: 30 November 2021

Citation:

Zhan P, Li F and Jiao H (2021)

Editorial: Cognitive Diagnostic

Assessment for Learning.

Front. Psychol. 12:806636.

doi: 10.3389/fpsyg.2021.806636

Editorial: Cognitive Diagnostic
Assessment for Learning

Peida Zhan 1,2*, Feiming Li 1,2 and Hong Jiao 3

1College of Teacher Education, Zhejiang Normal University, Jinhua, China, 2 Key Laboratory of Intelligent Education

Technology and Application of Zhejiang, Zhejiang Normal University, Jinhua, China, 3Measurement, Statistics and Evaluation,

Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States

Keywords: cognitive diagnosis, longitudinal cognitive diagnostic assessment, assessment for learning,

computerized adaptive test (CAT), cognitive diagnosis model (CDM)

Editorial on the Research Topic:

Cognitive Diagnostic Assessment for Learning

Measuring and improving individual development are actively tackled in psychological,
educational, and behavioral sciences. In the past decades, cognitive diagnosis (Leighton
and Gierl, 2007), which objectively quantifies students’ current learning status and provides
diagnostic feedback, has been increasingly needed in different settings to measure and improve
individual development.

Although cognitive diagnosis aims to promote student learning based on diagnostic feedback
and the corresponding remedial intervention, currently, only a few studies have focused on and
evaluated the effectiveness of such feedback or remedial intervention (e.g., Wang et al., 2020; Tang
and Zhan, 2021; Wang S. et al.). One of the main reasons is that most cognitive diagnoses adopt a
cross-sectional design. This issue may also be reflected in the cognitive diagnosis models (CDMs)
or diagnostic classification models (for review, see von Davier and Lee, 2019), the primary tools
for data analysis in cognitive diagnosis. Although various CDMs have been proposed, they are only
applicable to cross-sectional data analysis (see von Davier and Lee, 2019).

By contrast, longitudinal cognitive diagnosis evaluates students’ knowledge and skills and
identifies their strengths and weaknesses over a period of time. The data collected from longitudinal
learning for diagnosis allow researchers to develop models for learning tracking, which can be used
to track individual growth over time and evaluate the effectiveness of feedback. Compared to cross-
sectional learning diagnosis, longitudinal cognitive diagnosis may provide an additional perspective
to evaluate student learning when aiming to promote student learning.

Currently, longitudinal cognitive diagnosis (e.g., Li et al., 2016; Zhan et al., 2019) mainly stays
in the model development stage and lacks practical applications and related research on issues
such as missing data, measurement invariance, and linking methods. Moreover, although some
longitudinal CDMs have been proposed, these models still have limitations that need further
exploration and improvement.

This Research Topic intends to highlight issues, practices, and methodologies dealing with
evaluating and improving individual growth in learning, especially using cognitive diagnosis. This
Research Topic presents the cutting-edge research related to quantitative methods and applications
related to student development (e.g., the development of longitudinal CDMs, the development
of longitudinal diagnostic assessments, learning progression, and the impact of sample attrition),
novel CDMs for specific test situations (e.g., random guessing behavior, rater effects, and mixed
format assessments), theoretical issues in cognitive diagnosis (e.g., parameter estimation, Q-matrix
specification, and non-parametric classificationmethod), and application issues in adaptive testings
(e.g., automated test assembly, item exposure control, online calibration, and attribute coverage).
The contributions of this special topic are elaborated as follows.
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First, new quantitative methods and applications related to
student development were proposed. Wen et al. proposed the
HMM/ANN longitudinal CDM, in which the artificial neural
network (ANN) was used as the measurement model of the
hidden Markov model (HMM) to realize longitudinal tracking
of students’ cognitive skills. Pan et al. proposed a multivariate
longitudinal CDM, in which the log-linear cognitive diagnostic
model as the measurement model component evaluates the
mastery status of attributes at each measurement occasion, and
a generalized multivariate growth curve model that describes
the growth of each attribute over time. Lin et al. proposed
longitudinal CDMs that incorporate latent growth curve
modeling and covariate extensions tomeasure the growth of skills
mastery and evaluate attribute-level intervention effects over
time. Tian et al. proposed a longitudinal CDM for hierarchical
attributes by imposing model constraints on the transition CDM.
In addition, Wang S. et al. reported developing and evaluating
a learning program that integrated a longitudinal diagnostic
assessment with two different learning interventions to diagnose
and improve mental rotation skills. Furthermore, Bai and Wu
et al. showed how to use CDMs to explore students’ learning
progression. Moreover, Pan and Zhan examined the impact
of a common type of sample attrition, namely individual-level
random attrition, on longitudinal cognitive diagnosis through a
simulation study.

Second, novel CDMs for specific test situations were proposed.
Choi et al. presented an approach in which the CDM was
used with a statistical topic model to analyze item responses in
mixed format assessments (i.e., multiple-choice and constructed-
response items). Further, to estimate rater effects on constructed
response times, Li X. et al. proposed CDMs within the
frameworks of facets models and hierarchical rater models, using
the log-linear cognitive diagnosis model as a template. Moreover,
considering some students may engage in rapid guessing without
thoughtful consideration on some items, Hsu et al. proposed
a CDM with item response and response time to model rapid
guessing behavior and enhance cognitive diagnosis.

Third, some theoretical details of cognitive diagnosis have
also been concerned. Zhang et al. proposed a highly effective
Pólya-Gamma Gibbs sampling algorithm to estimate the DINA
model based on auxiliary variables. Furthermore, Wang W.
et al. proposed a semi-supervised learning approach and
an optimal design for examinee sampling for Q-matrix
specification under the conjunctive and disjunctive model with
an independent structure. In addition to parametric models,
non-parametric diagnostic methods are also an essential method
in cognitive diagnosis. Guo et al. introduced a non-parametric
spectral clustering algorithm to cluster students according to
their responses.

Fourth, although classification accuracy is critical in cognitive
diagnostic computerized adaptive testing (CAT), attention has
increasingly shifted to item exposure control to ensure test
security and attribute balance/coverage to ensure test fairness. In
such cases, Sun et al. developed the binary restrictive threshold

method to balance measurement accuracy and item exposure.
Wang Y. et al. proposed the attribute discrimination index-based
method to balance the attribute coverage. Furthermore, online
calibration is a technique to calibrate the parameters of new
items in CAT, which seeds new items in answering operation
items and estimates the parameters of new items through the
response data of examinees on new items. Xiong et al. extended
the two most popular calibration methods, one- and multiple
EM cycle methods, to the graded response model for polytomous
data. Moreover, Li G. et al. explored the automated test assembly
in cognitive diagnostic multistage adaptive testing that can
be seen as a combination of the paper and pencil-based test
and CAT.

Finally, Zhan reviewed the current status and possible
future research directions of longitudinal cognitive diagnosis.
He pointed out that there are still many issues related to
longitudinal cognitive diagnosis worthy of discussion. For
example, (a) only binary attributes (e.g., “1” means mastery
and “0” means non-mastery) were considered in most current
studies. In the future, the polytomous attributes (Karelitz, 2004)
or probabilistic attributes (Zhan et al., 2018) can be incorporated
into longitudinal CDMs to track students’ refined development
(e.g., Zhan, 2021); (b) only item response accuracy data were
considered in most current studies. In the future, utilizing
multimodal data (e.g., item response times and eye-tracking
indices) can evaluate the growth of students in multiple aspects,
which is conducive to a more comprehensive understanding
of the development of students (e.g., Wang et al., 2018); (c)
most current studies assumed that attributes are structurally
independent. However, when attribute hierarchy (Leighton et al.,
2004) exists, the development trajectory of students is not
arbitrary and should be developed in such hierarchical order.
Therefore, incorporating the attribute hierarchy into current
longitudinal CDMs is worth exploring (e.g., Zhan and He,
2021), and (d) adaptive learning and testing system involving
longitudinal CDMs is also worthy of further study.

With 19 papers from 62 authors, this topic enhances
interdisciplinary research fields such as psychometrics, pedagogy,
psychology, statistics, computer science, educational technology,
to name a few. The categorization focused on each paper’s core
contribution though some papers can be cross-classified. The
papers’ key findings and advancements well-represent the current
state-of-the-art in the field of longitudinal cognitive diagnosis
in educational and psychological assessments. As topic editors,
we are happy to receive such a great collection of papers with
various foci and make these publications right when the concept
of assessment for/as learning is rapidly gaining popularity. We
hope these papers fill some gaps in the literature related to
longitudinal cognitive diagnosis modeling and applications. It
is expected that the methodological papers will inspire more
researchers to explore new frontiers in models and methods
for longitudinal cognitive diagnosis; in the meantime, the
methodological innovation will guide practitioners to improve
their practices.
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Computerized adaptive testing (CAT) is an efficient testing mode, which allows each

examinee to answer appropriate items according his or her latent trait level. The

implementation of CAT requires a large-scale item pool, and item pool needs to

be frequently replenished with new items to ensure test validity and security. Online

calibration is a technique to calibrate the parameters of new items in CAT, which seeds

new items in the process of answering operational items, and estimates the parameters

of new items through the response data of examinees on new items. The most popular

estimation methods include one EM cycle method (OEM) and multiple EM cycle method

(MEM) under dichotomous item response theory models. This paper extends OEM and

MEM to the graded response model (GRM), a popular model for polytomous data

with ordered categories. Two simulation studies were carried out to explore online

calibration under a variety of conditions, including calibration design, initial item parameter

calculation methods, calibration methods, calibration sample size and the number of

categories. Results show that the calibration accuracy of new items were acceptable,

and which were affected by the interaction of some factors, therefore some conclusions

were given.

Keywords: online calibration, computerized adaptive testing, graded responsemodel, squeezing averagemethod,

one EM cycle method, multiple EM cycle method

INTRODUCTION

Computerized adaptive testing (CAT), which is considered to be one of the most important
applications of item response theory (IRT; Lord, 1980), is a tailored test mode (e.g., Chang and
Zhang, 2002; Chang, 2015). The goal of CAT is to construct an optimal test for each examinee
(Meijer and Nering, 1999). Compared with the traditional paper-pencil test (PandP), CAT has
many advantages such as more flexible testing time, more diverse items, shorter test length, more
accurate ability estimation, and more timely score reporting (e.g., Weiss, 1982; Meijer and Nering,
1999; Cheng and Chang, 2009; Wang and Chang, 2011; Wang et al., 2013). Therefore, many large-
scale evaluation programs such as the Graduate Management Admission Test (GMAT) and the
Armed Services Vocational Aptitude Battery (ASVAB; Sands et al., 1997) adopted the CAT test
mode (Chang and Ying, 2009).

The implementation of CAT requires a large-scale item pool, and the maintenance and
management of item pool is critical to ensure the validity and security of CAT. After a period of
time, some operational items may be no longer suitable for use due to overexposure, obsoleteness,
or flaw, thus it is necessary to replace unsuitable items by new ones (Wainer and Mislevy,
1990; Zheng, 2014; Zheng and Chang, 2017). The new items should be precisely calibrated
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before being put into the item pool for use formally. Moreover,
the calibration accuracy of the new items has great influence
on the estimation accuracy of the examinees’ latent trait in the
ensuing CAT sessions (e.g., van der Linden andGlas, 2000; Chang
and Lu, 2010).

Wainer and Mislevy (1990) proposed two strategies for
calibrating new items based on CAT in the literature. The
first strategy is traditional offline calibration with anchor-item
design. Namely, set some anchor items between the new and
the operational items, and do equating transformation through
the collected responses to ensure the item parameters of the
new items and those of the operational items on the same scale.
Because the traditional calibration method needs to organize
P and P test in advance, there are some shortages, such as
the consumption of manpower and material resources, the easy
exposure of new items and so on. The second strategy is
online calibration, which refers to the process of assigning the
new items to examinees during the course of their adaptive
tests and then estimating the item parameters of new items
based on the collected responses. In the online calibration
framework, new items can be embedded inconspicuously within
the operational tests, and be pretested and calibrated in the same
testing environment as the operational items. Compared with the
traditional calibration, online calibration is not only time-saving
but also cost-effective. It places new items on the same scale as
the operational items without post hoc scaling.

Online calibration design and online calibration method are
two crucial aspects of online calibration (Chen and Xin, 2014).
Online calibration design refers to the way which the new items
are assigned to examinees during the CAT process, and collects
the responses of the new items. Online calibration design mainly
includes two types. One is random design, and the other is
adaptive design. Random design randomly selects a new item and
then stochastically seeds it in the current examinee’s adaptive test
(Wainer and Mislevy, 1990). Adaptive design selects the most
suitable new item according to some criterion when he or she
reaches a seeding location (He and Chen, 2019). The online
calibrationmethod uses the responses collected during the online
calibration design phase to estimate the item parameters of new
items. The most popular estimationmethods proposed for online
calibration include one EM cycle method (OEM; Wainer and
Mislevy, 1990) and multiple EM cycle method (MEM; Ban et al.,
2001).

There are many studies on online calibration based on
dichotomously scored models (e.g., You et al., 2010; Chen
et al., 2012; van der Linden and Ren, 2015; He et al., 2017,
2019). One purpose of modern item response theory research
is to exhaust all types of models to cover test data from
any “natural” form (van der Linden and Hambleton, 1997).
And compared with dichotomously scored items, polytomously
scored items have many advantages, such as measuring more
complex knowledge structure and providing higher item and
test information. Therefore, examinees’ ability can be estimated
with greater precision by the same number of items, or the same
level of precision can be obtained with fewer items. More and
more tests involving polytomously scored items have emerged.
However, online calibration of polytomously scored model is

reported rarely. Zheng (2016) extends the formula, procedure
and algorithm of online calibration under dichotomously scored
models to the generalized partial credit model (GPCM). The
extended formulas and algorithms are studied by simulation
method, and some constructive conclusions are obtained. The
graded response model (GRM; Samejima, 1969, 1996), like
GPCM, is a polytomously scored model. But they have many
differences. First, the ideas of model construction are different,
GPCM is a division model, that is, the proportion of part to
whole. In contrast, GRM is a deviation model, that is, the
difference between adjacent categories. Second, the meanings of
difficulty parameters in GRM and GPCM models are different,
GPCM emphasizes the difficulty of each step on an item, and
the difficulty value does not necessarily increase monotonously,
GRM emphasizes the difficulty of getting different scores on an
item, and the difficulty value increases monotonously. Therefore,
it is necessary to discuss online calibration based on GRM, it
is of great significance to the expansion of the item pool with
GRM items.

The structure of this article is as follows. First, the GRM, an
IRT model used in this research is introduced. Second, online
calibration method (OEM and MEM method) based on GRM is
introduced. Two methods for calculating initial item parameters
are given in detail. Third, two simulation studies are designed,
and the research results are presented. Fourth, a batch of real data
are used to verify the validity of themethod. The last part involves
conclusions, a supplementary study, discussions, and directions
for future research.

METHODOLOGY

The GRM
The GRM is an IRT model suitable for polytomous data with
ordered categories. It is an extension of two parameters logistic
model (2PLM). In GRM, an examinee’s likelihood of responding
in a particular response category is obtained by two steps. First,
category boundary response functions (CBRFs) are calculated
to determine boundary decision probabilities of t response
categories for each item. The equation for a CBRF is similar to
2PLM for dichotomous data:

p∗ijt =
1

1+ exp(−D · aj(θi − bjt))
(1)

In Equation (1), p∗ijt is the probability that an examinee with

ability level θi will respond positively at the boundary of category
t for item j where t = 1, 2, · · · fj, θi represents the ith examinee’s
ability; aj represents the item discrimination parameter or
slope for item j; bjt represents the item difficulty parameter or
category location. Importantly, the values of bjt should satisfy
monotonically increasing, that is bj1 < bj2 < · · · bjt < · · · bj,fj .

In the second step of GRM, the probability of responding
in a particular category is determined by CBRF, which
are derived by subtracting p∗ijt from the following category.

The process is illustrated in Equation (2) (adapted from
Embretson and Reise, 2000).

pijt = p∗ijt − p∗ij,t+1 (2)
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Further, make the following constraints, p∗ij0 = 1, namely, the

probability of scoring more than 0 must be 1; P∗
ij,fj+1

= 0, that

is, the probability of scoring more than the item’s full score is
naturally 0.

Extend OEM and MEM Methods to GRM
Under the dichotomous model, OEM (Wainer and Mislevy,
1990) and MEM (Ban et al., 2001) are based on the framework
of MMLE with the EM algorithm. Their main difference is the
number of EM cycles. The OEM method takes just one E step
using the posterior distribution of ability, which is estimated
based on item responses only from the operational CAT items,
and just one M step to estimate the new item parameters,
involving response data from only the new items. The MEM
method is similar mathematically to the OEM method. The first
EM cycle of the MEM method is the same as the OEM method.
The parameter estimates of new items obtained from the first
EM cycle is regarded as the initial values of the new items for
the second EM cycle. However, from the second E step, the
MEMmethod uses item responses on both the operational items
and new items to obtain the posterior distribution. For each M
step iteration, the item parameter estimates for the operational
items are fixed, whereas parameter estimates for the new items
are updated until the new item parameter estimates converge.
The principles of OEM and MEM under GRM are basically the
same as those under the dichotomous model, but there are some
differences in implementation details. The details of OEM and
MEM implementation under GRM are described below.

OEM
OEM has only one EM cycle. For each examinee i = 1, 2, · · ·Nj

who takes item j, qi denotes his/her responses to the operational
items, ηop is a vector of the known item parameters of the
operational items. The E-step of the OEM method marginalizes
the log-likelihood of new item j using qi and ηop. Based on
the common assumption that examinees are independent from
each other, the log-likelihood of item j from the Nj examinees
are summed up as the final marginalized log-likelihood of item
j to be taken to the subsequent M-step. The M-step seeks the
item parameter vector η̂j that maximizes the final marginalized
log-likelihood of item j.

These two steps are adapted from described in Muraki
(1990) of item parameter estimation. The difference between the
algorithms here for online calibration and Muraki’s algorithm is
in the computation of the two quantities: r̄jtk and f̄k, where r̄jtk is
the temporary expected frequency of the tth category response of
item j at the kth quadrature point; f̄k is the temporary expected
sample size at quadrature point k. In his original EM algorithm,
every examinee receives the same set of items. In the online
calibration setting, as described earlier in this article, each new
item j is administered to a different sample of examinees; and
each examinee who takes new item j takes a different set of
operational items. To adapt these variations, the formulae for r̄jtk

and f̄k in the EM algorithm are modified into as follows:

r̄jtk =
Nj
∑

i= 1

uijth(Xk) (3)

f̄k =
Nj
∑

i= 1

h(Xk) (4)

h(Xk) = Li(Xk)A(Xk)
K
∑

k= 1

Li(Xk)A(Xk)

(5)

Li(Xk) =
mi
∏

h= 1

fh
∏

t= 1

[pht(Xk)]
qiht (6)

Where i = 1, 2, · · · ,Nj denote the Nj examinees who received
new item j;Xk is the quadrature point;A(Xk) is the corresponding
weight, which is approximately the standard normal probability
density at the point Xk, assuming there are K quadrature points,
such that

∑K
k=1 A(Xk) = 1.Uijt is an indicator variable expressed

in a binary format; Uijt = 1 represents examinee i scored exactly
t on new item j; otherwise Uijt = 0.Li(Xk) is the likelihood of
examinee i’s response to all operational items given quadrature
point Xk; h denotes the hth operational items answered by
examinee i; fh is the number of categories of hth operational item,
pht(Xk) is the probability of correct response to the tth category of
item h at given quadrature point Xk, qiht is an indicator variable
too, which denotes the examinee i’s responses to operational item
h in a binary format to category t.

With the one EM cycle in the OEM method, the revised r̄jtk

and f̄k are inserted into theNewton-Raphon iteration in the single
EM cycle to get a set of parameter estimates.

MEM
The MEM method allows multiple EM cycles. The first cycle is
the same as OEM. Beginning with the second cycle, response data
from both the operational items and the new items are used to
update the posterior ability distribution in the E-step. Specifically,
the only change in computation fromOEM is that beginning with
the second cycle of MEM, Li(Xk) is replaced by:

Li(Xk) =





mi
∏

h= 1

fh
∏

t= 1

[pht(Xk)]
qiht









fj
∏

t= 1

[pjt(Xk)]
xijt



 (7)

Where xijt denotes examinee i’s response to new item j in the
binary format for category t.

The E-step and the M-step iterate until a certain convergence
criterion is met, for example themaximum absolute change in the
item parameters between two consecutive EM cycles are less than
a small threshold.

Calculate the Initial Value of OEM and MEM
OEM and MEM are both iterative algorithms, the initial
item parameters have a great influence on the calibration
accuracy. However, there are few reports on the calculation
of initial iteration values. In the dichotomous model, a
squeezing average method is given to compute the initial value
of difficulty parameter and a biserial correlation method
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is used to compute the initial value of discrimination
parameter (You et al., 2010). Under GRM, Xiong et al.
(2018) also proposed a methods for calculating the initial
item parameters, namely, deleting extremum and squeezing
average method and polyserial correlation coefficient method.
They had better calibration results under the experimental
conditions given in these literatures (You et al., 2010; Xiong
et al., 2018). Their theories and implementation details
are as follows.

Deleting Extremum and Squeezing Average Method
Under the dichotomous model, according to the characteristics
of the item response curve, the correctness of the examinee’s
response to a certain item is related with the ratio of his/her
ability to the difficulty parameter of the item. When the
ratio is more than 1, the correct response probability is high;
otherwise, the correct response probability is low. For the one-
parameter logistic model (1PLM), when the examinee’s ability
value is equal to the difficulty of one item, his/her correct
response probability on the item is 0.5. Therefore, as long
as the number of responses is sufficiently large for one item,
there must be some examinees whose abilities approach to
the difficulty parameter of the item (You et al., 2010), and
the abilities of these examinees can be used to estimate the
difficulty parameter of the item. The method is called “squeezing
average method.” Under GRM, for a certain item, the difficulty
of getting a high score is higher than that of getting a low
score, so the initial parameters of different category can be
squeezed out by the ability of the examinees who get the
adjacent scores.

The steps of the squeezing average method (You et al.,
2010) are described as follows. At first, put the ability values
of all examinees who answered correctly on item j into the
set correct(j), then sort correct(j) in ascending order; and put
the ability values of all examinees who answered incorrectly on
item j into the set wrong(j), then sort wrong(j) in descending
order. Second, use the low part of correct(j) and the high part
of wrong(j) to squeeze the difficulty of the item j. Because not
all examinees’ abilities in correct(j) or wrong(j) are used for
squeezing, it is worth exploring how many examinees’ abilities
are used to squeeze item difficulty parameter. An empirical value
of 18 is suggested by You et al. (2010).

Under the GRM model, GRM has multiple difficulty
parameters, so multiple squeezing processes are required. For
example, for the initial difficulty parameter of the tth category
of the new item j, the ability of the examinees who scored t and
t+1 on the item are used to squeeze. Pilot studies have shown that
the result is unstable if the sample size for squeezing is still set to
18. A more flexible range of sample size for squeezing method,
named “deleting extremum and squeezing average method,” is
proposed based on the original squeezing average method (Xiong
et al., 2018). The ability of examinees who got t score in item j are
put into one set, there are fj sets for item j, and each set is sorted in
ascending order by ability value. Then the top 5% and the bottom
5% of each set are deleted. The “deleting extremum and squeezing
average method” can be formally expressed as:

bjt =









mean





c(j,t)*95%
∑

i= c(j,t)*5%

cap(t, i, j)





+mean





c(j,t+1)∗95%
∑

i= c(j,t+1)∗5%
cap(t + 1, i, j)







 /2 (8)

Where cap(t, i, j) is the ability of the ith examinee’s who got t score
on item j, c(j, t) is the number of examinees who scored t on item
j, cap(t + 1, i, j) and c(j, t + 1) have the similar meaning.

In actual life, the evaluation of a contestant is generally
based on a set of scores given by the experts. The highest
and lowest score are removed, and then the average is taken,
deleting extremum and squeezing average method takes this
idea. The practice of choosing 5% as the extreme value in
Equation (8) is derived from the way to obtain the initial
value of the guess parameter under the three-parameter logistic
model (3PLM). Pilot study also showed that the value had better
results. It’s easy to implement and guarantee the accuracy of
parameter estimation.

Polyserial Correlation Coefficient Method
The polyserial correlation coefficient method is a common
statistical method (Olsson et al., 1982), which is used to initialize
the discrimination parameter and difficulty parameter of new
items based on the examinee’s responses. This method can be
depicted by the following steps:

Step 1: For each new item, the pass rate of each category is
calculated by using the responses of the examinees to the item,
that is, P∗jt = njt/N, where N is the total number of examinees,

and njt is the number of examinees whose scores on the new
item j are not lower than t.
Step 2: Convert P∗jt to standard normal fraction Zjt ; then

calculate the corresponding normal density function value
h(Zjt). The specific calculation formula is as follows:

yj = − ln(4P∗jt(1− P∗jt)) (9)

Zjt = sign(P∗jt −
1

2
)

√

yj(2.0611786−
5.7262204

yj + 11.640595
)

(10)

h(Zjt) = 1√
2π

exp(−1

2
Z2
jt) (11)

Step 3: Calculate the standard deviation (σj) of the score on
the new item j, and the correlation coefficient (rj) between
the score of the new item j and the total score; then the
point polyserial correlation coefficient is obtained via the
following equation:

rppj = rj ∗ σj/

fj
∑

t= 1

h(Zjt) (12)
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Step 4: Transform the point polyserial correlation coefficient
into polyserial correlation coefficient, that is:

rpj = rppj ∗ σj/

fj
∑

t= 1

h(Zjt) (13)

Step 5: Calculate the initial value of the discrimination and
difficulty of the new item j; the formula is:

aj = rpj/
√

1− rp2j bjt = −Zj,t−1/rpj (14)

Two methods of calculating the initial parameters of new
items are given. The first method is called polyserial-initial
method, abbreviated as Poly-Ini method, with this method,
both a-parameter and b-parameters are calculated by polyserial
correlation coefficient; the second method is called polyserial-
squeezing-initial method, abbreviated as Poly-Sq-Ini method,
with this method, a-parameter is calculated by polyserial
correlation coefficient method and b-parameters are obtained by
deleting extremum and squeezing average method.

SIMULATION STUDY

Research Objectives
Two simulation studies were conducted using programs written
in Python 3.7. The program simulated the entire calibration
workflow including the implementation of CAT and the
calibration of the new items, and replicated 100 times in each
circumstance. The main purpose of Study 1 is to explore the
calibration results under a set of conditions fully crossed by
two online calibration design methods (random design, adaptive
design), two initial item parameter calculation methods (Poly-Ini
method, Poly-Sq-Ini method), two calibration methods (OEM,
MEM). There are 8 combinations, each combination takes 3-
categories as an example.

The main purpose of Study 2 is to explore the calibration
results under different calibration sample size and different
number of categories. Two factors were manipulated: calibration
sample size (300, 400, 500, 600, and 700) and the number
of categories of new items (2, 3, 4, and 5). There are 20
combinations. Random design, Poly-Sq-Ini method and MEM
are adopted in each combinations.

Generation of Items and Examinees
Suppose there are 1000 operational items with various
categories (2–5 categories) in the CAT item pool, item
parameters were randomly generated under GRM from the
following distributions:

aj ∼ log normal(0, 1), bjt ∼ normal(0, 1)

j = 1, 2, · · · 1000, t = 1, 2, · · · fj,fj is the number of categories.
In addition, the generated a-parameter was truncated between
0.2 and 2.5, b-parameter was truncated between −3 and 3, and
bj1 < bj2 < · · · bjt < · · · bj,fj in this paper.

A total number of 20 new items were generated in the same
manner with the operational items.

3,000 examinees’ ability values (θ) were randomly drawn from
the standard normal distribution θ ∼ normal(0,1), and θ was
truncated between−3 and 3 too.

Simulation Details
The CAT test length is fixed 25 items, including 20 operational
items and 5 new items. During the CAT test, the maximum
Fisher information method (MFI; Lord, 1980) was chosen as
the operational item selection method for its advantage of high
accuracy. The Fisher information of an examinee i on a GRM
item j was formulated as below:

Ij(θi) = a2j

fj
∑

t= 1

pijt(1− p∗ijt − p∗ij,t+1)
2 (15)

During operational item selection, provisional θ estimates were
used to replace the θ ’s in the formulae. After each operational
item is administered, the examinee ability parameter θ̂ was
updated by expected a posteriori (EAP) method (Baker and Kim,
2004).

The number of examinees who answer each new item must
be sufficiently large to provide accurate item parameter estimates
without placing an undue burden on examinees (Wainer and
Mislevy, 1990). This paper investigates one sample size (3,000)
and assumes that each examinee answers 5 new items, thus
the number of examinees who answer each new item is
approximately 750 [(3,000×5)/20] on average as in previous
studies (e.g., Chen et al., 2012; Chen and Wang, 2016; He et al.,
2017). In Study 1, the number of examinees to each new item
is set 700. In addition, calibration accuracy may be affected by
the calibration samples per new item. In Study 2, the number of
examinees to each new item is set as 300, 400, 500, 600, 700.

In study 1, random design and adaptive design are considered.
There are some researches adopted random design to assign
the new items to the examinees during CAT due to its
convenient implementation and acceptable calibration precision
(e.g., Wainer and Mislevy, 1990; Ban et al., 2001; Chen et al.,
2012; He et al., 2017). And match-b selection method (MATB)
is selected for adaptive design in this study, which matches the
mean of b-parameters with the provisional θ̂ of examinee (Zheng,
2016). Every time an examinee reaches a seeding location, the
distance between his or her current θ̂ and themean of provisional
b-parameters was computed for each new item, and the item
with the shortest absolute distance was selected. In order to
obtain the initial parameter of new items, this study uses a
data-based method, that is, the new items are first randomly
assigned to a sub-group of examinees and are pre-estimated item
parameters, then for the remaining examinees, these new items
are selected adaptively according to their initial parameters to fit
the examinees’ current ability. The item parameters of each new
item are updated each time they receive a fixed number of new
responses (van der Linden and Ren, 2015; Zheng, 2016; He et al.,
2019), in this study, the fixed number of new responses was set
20. The proportion of the sample size used in two different phases
was specified as 1:1 in this study.
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Evaluation Criteria
The calibration accuracy of the new items was evaluated by
root mean square error (RMSE) and bias. They quantify the
recovery between the estimated and true parameter values, and
the calculation formulas based on vector are as follows (He and
Chen, 2019; He et al., 2019):

RMSEx =

√

√

√

√(

R
∑

r= 1

M
∑

j= 1

(x̂
(r)
j − x

(r)
j )

2
)/(R×M) (16)

biasx = (

R
∑

r= 1

M
∑

j= 1

(x̂
(r)
j − x

(r)
j ))/(R×M) (17)

Where x denotes the specific element in the item parameter
vector, such as a-parameter, bfj-parameters, R and M denotes
replications and the number of new items respectively.

In order to evaluate the overall recovery of b-parameters
under different categories, the average RMSE and bias of
b-parameters, named mean(b), are defined as follows:

RMSEmean(b) =

√

√

√

√

√(

R
∑

r= 1

M
∑

j= 1

fj
∑

t

(b̂
(r)
jt − b

(r)
jt )

2
)/(R×M × fj)

(18)

biasmean(b) = (

R
∑

r= 1

M
∑

j= 1

fj
∑

t

(b̂
(r)
jt − b

(r)
jt ))/(R×M × fj) (19)

Smaller RMSE indicates higher calibration precision. If bias is
close to 0, the calibration could be regarded as unbiased.

Results and Conclusion
Study 1
The results of Study 1 are shown in Tables 1, 2 and Figure 1,
using two separate criteria (RMSE and bias) to evaluate the
calibration results under different combinations. As can be seen
from Tables 1, 2 and Figure 1, (1) the RMSE values obtained
by the combination of random design, Poly-Sq-Ini method and
MEM (the combination denoted by C2) were the smallest,
and the bias obtained by C2 also had better performance,
although not always the best. Which provided the basis for the
simulation design of Study 2. (2) The calculation of initial item
parameters had a great influence on the calibration results, Poly-
Sq-Ini method had better performance under most experimental
combinations, the bias had the same trend as RMSE, which
showed that the Poly-Sq-Ini method is a feasible method. (3)
Comparing OEM and MEM, when adaptive design was adopted,
OEM and MEM generated quite comparable RMSE and bias
values, when random design was adopted, there are two aspects,
MEM was more accurate than OEM if Poly-Sq-Ini method was
adopted to compute initial item parameters, otherwise OEM
was more accurate than MEM. (4) Comparing random design
and adaptive design, the RMSE of b-parameters generated by
random design were smaller than those by adaptive design,

TABLE 1 | RMSE under different combinations.

Calibration

design

Method of

calculating initial

item parameters

Calibration

method

RMSE

a b1 b2 b3

Random Poly-Sq-Ini OEM 0.2047 0.2696 0.1567 0.2377

MEM 0.2022 0.1705 0.1522 0.2009

Poly-Ini OEM 0.2892 0.1789 0.1705 0.2306

MEM 0.2632 0.2142 0.1847 0.2595

Adaptive Poly-Sq-Ini OEM 0.2266 0.2651 0.2108 0.2501

MEM 0.2259 0.2700 0.2101 0.2433

Poly-Ini OEM 0.2324 0.3106 0.2005 0.3179

MEM 0.2324 0.3116 0.2070 0.3231

TABLE 2 | Bias under different combinations.

Calibration

design

Method of

calculating initial

item parameters

Calibration

method

bias

a b1 b2 b3

Random Poly-Sq-Ini OEM 0.1258 −0.1310−0.0549 0.0261

MEM 0.0483 −0.0423−0.0422−0.0398

Poly-Ini OEM 0.2380 0.0727−0.0367−0.1391

MEM 0.2163 0.1065−0.0292−0.1589

Adaptive Poly-Sq-Ini OEM 0.0286 0.0777 0.0099−0.0482

MEM 0.0296 0.0783 0.0126−0.0472

Poly-Ini OEM 0.1744 0.2182 0.0120−0.1887

MEM 0.1751 0.2159 0.0056−0.1875

although the a-parameters generated by random design were
not absolutely superior, the most accurate a-parameters still
came from random design. The result seems counter-intuitive,
one possible explanation for this result is that the simulated
examinee’s ability distribution is normal, random design leads
to an approximately normal distribution of ability for each new
item. For adaptive design, the distributions of ability received by
each new item may be skewed (Zheng, 2016). The other possible
explanation is that the proportion of the sample size used in
random phase and adaptive phase would affect the calibration
results (Chen et al., 2012).

Study 2
The results of Study 2 are shown in Tables 3, 4 and Figures 2–5.
As can be seen from Table 3 and Figure 2, under various
categories, with the increase of calibration sample size, the RMSE
of b-parameters were decreasing, but the decline extent was
decreasing also. While the calibration sample size had little effect
on the RMSE of a-parameters, even under 2-categories and 5-
categories, the RMSE increases with the increase of sample size.
In addition, it was an interesting observation, the RMSE of
b-parameters under different category of the same item were
different. In general, the RMSE of the middle category were
smaller, while the RMSE of the beginning and ending category
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FIGURE 1 | RMSE and bias of a- parameter and b-parameters under different combinations. C1 denotes the combination of Random, Poly-Sq-Ini and OEM; C2

denotes the combination of Random, Poly-Sq-Ini and MEM; C3 denotes the combination of Random, Poly-Ini and OEM; C4 denotes the combination of Random,

Poly-Ini and MEM; C5 denotes the combination of Adaptive, Poly-Sq-Ini and OEM; C6 denotes the combination of Adaptive, Poly-Sq-Ini and MEM; C7 denotes the

combination of Adaptive, Poly-Ini and OEM; C8 denotes the combination of Adaptive, Poly-Ini and MEM.

TABLE 3 | RMSE of different calibration sample size under different categories.

Categories RMSE Calibration sample size

300 400 500 600 700

f = 2 a 0.2730 0.2716 0.2683 0.2656 0.2722

b1 0.2495 0.2259 0.2216 0.2078 0.2060

b2 0.2876 0.2660 0.2602 0.2554 0.2470

Mean(b) 0.2706 0.2481 0.2427 0.2338 0.2286

f = 3 a 0.2189 0.2141 0.2119 0.2074 0.2033

b1 0.2413 0.2237 0.1954 0.1919 0.1865

b2 0.2127 0.1827 0.1723 0.1673 0.1568

b3 0.2674 0.2395 0.2270 0.2249 0.2156

Mean(b) 0.2439 0.2187 0.2014 0.1993 0.1899

f = 4 a 0.2166 0.2150 0.2138 0.2149 0.2081

b1 0.2989 0.2866 0.2599 0.2458 0.2262

b2 0.2232 0.1968 0.1760 0.1634 0.1577

b3 0.2357 0.2016 0.1908 0.1610 0.1659

b4 0.2996 0.2611 0.2564 0.2337 0.2294

Mean(b) 0.2722 0.2432 0.2345 0.2098 0.2007

f = 5 a 0.2340 0.2407 0.2353 0.2301 0.2208

b1 0.2837 0.2616 0.2604 0.2503 0.2491

b2 0.1929 0.1706 0.1662 0.1583 0.1511

b3 0.1693 0.1451 0.1419 0.1346 0.1210

b4 0.1950 0.1743 0.1633 0.1600 0.1462

b5 0.2672 0.2565 0.2368 0.2356 0.2257

Mean(b) 0.2284 0.2095 0.2044 0.1976 0.1873

were larger. The possible explanation for this result is that the b-
parameters in GRM were monotonically increasing, and most of
the examinees’ scores were concentrated on the middle category.
Thus there were relatively few examinees with the lowest score
and the highest score, and the sample size would affect the
estimation accuracy of new items.

As can be seen from Table 3 and Figure 3, the RMSEs of
a-parameter under 3-categories and 4-categories did not show

TABLE 4 | Bias of different calibration sample size under different categories.

Categories Bias Calibration sample size

300 400 500 600 700

f = 2 a 0.1517 0.1561 0.1488 0.1564 0.1611

b1 −0.0231 −0.0193 −0.0289 −0.0253 −0.0336

b2 −0.0976 −0.0912 −0.0979 −0.0945 −0.1047

Mean(b) −0.0603 −0.0553 −0.0634 −0.0599 −0.0692

f = 3 a 0.0479 0.0415 0.0546 0.0500 0.0398

b1 −0.0451 −0.0479 −0.0424 −0.0457 −0.0589

b2 −0.046 −0.0365 −0.0395 −0.0403 −0.0502

b3 −0.0398 −0.0385 −0.0502 −0.0435 −0.0478

Mean(b) −0.0365 −0.0409 −0.0440 −0.0432 −0.0523

f = 4 a −0.0491 −0.0445 −0.0602 −0.0477 −0.0449

b1 −0.086 −0.0829 −0.089 −0.1059 −0.0957

b2 −0.0491 −0.0354 −0.0444 −0.0544 −0.0451

b3 −0.0298 −0.0186 −0.0227 −0.0238 −0.0115

b4 0.0032 0.0132 0.0239 0.0204 0.0347

Mean(b) −0.0404 −0.0309 −0.0330 −0.0409 −0.0294

f = 5 a −0.1217 −0.1305 −0.1289 −0.1232 −0.1199

b1 −0.1567 −0.1473 −0.1699 −0.1519 −0.1568

b2 −0.0752 −0.0662 −0.0789 −0.0665 −0.0737

b3 −0.0238 −0.0155 −0.0239 −0.0126 −0.0211

b4 0.0192 0.0273 0.0294 0.0390 0.0315

b5 0.0817 0.0990 0.1018 0.1168 0.1031

Mean(b) −0.0309 −0.0205 −0.0283 −0.0150 −0.0233

noticeable difference under the same calibration sample size,
and they were noticeably smaller than those under 2-categories
and 5-categories, while the mean(b) of b-parameters under 3-
categories and 5-categories had similar RMSE values under the
same calibration sample size, and they were smaller than those
under 2-categories and 4-categories.

It can be seen from Table 4 and Figures 4, 5, the bias
of new items had the same trend as the RMSE, The
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FIGURE 2 | RMSE of a- parameter and b-parameters under different categories.

FIGURE 3 | RMSE of different calibration sample size under different categories. 2-C, 2-categories; 3-C, 3-categories; 4-C, 4-categories; 5-C, 5-categories. Figure 5

also has the same definition.

smaller the value of RMSE, the closer the value of bias
was to 0.

EMPIRICAL STUDY

In this paper, an online calibration method based on GRM
is proposed, which has a good performance in simulation
study. What is the performance on real data? Because the
construction of the real CAT item pool is expensive, it
is difficult to organize and arrange large-scale CAT tests
also. This study used the response data of 500 examinees
on 10 polytomous items (3-categories) in HSK4 (Chinese
proficiency test) to conduct an empirical study. Detailed steps are
as follows.

Step 1: 500 examinees were randomly divided into two parts.
One was the training set, including the response data of 300
examinees. The other was the testing set, including the response
data of 200 examinees.

Step 2: The ability parameters of examinees and item
parameters are estimated through the training set, then the
estimated item parameters are taken as the true parameters.

Step 3: For the testing set, the K-fold cross validation method
(Tan et al., 2014) is used to simulate and generate the operational
items and new items in CAT. In this study, leave-one-out
approach was used, that is, each test chose one as new item, and
the remaining nine items were as operation items.

Step 4: According to the responses of 200 examinees on 9
operational items and the true values of the corresponding
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FIGURE 4 | Bias of a- parameter and b-parameters under different categories.

FIGURE 5 | Bias of different calibration sample size under different categories.

item parameters, the ability values of 200 examinees
were estimated.

Step 5: According to the examinee’s ability values obtained in
step 4 and their responses to the new item, the parameters of
the new item were estimated by the new method proposed in
this study.

Step 6: Each time a different item was selected as the new
item, and then the work in step 3∼5 was repeated so that
the estimated parameters of each new item could be obtained.
Then the RMSE between the estimated parameters and the true
parameters were calculated.

Because of the limited real data, this study only analyzed
the calibrated sample of 200. The results of the analysis were
as follows:RMSEa = 0.4067, RMSEb1 = 0.4778, RMSEb2 =
0.3218, RMSEb3 = 0.3029.

DISCUSSION AND FUTURE DIRECTIONS

This research extended OEM and MEM to GRM for online
calibration, detailed description of algorithms were given in
the article. While online calibration is a complex process,
there are many factors affecting the calibration accuracy. In
order to make online calibration efficient and practicable
under GRM, various factors should be explored clearly. Two

simulation studies were conducted to investigate the calibration
results under various conditions. The results showed: (1)

both OEM and MEM were able to generate reasonably new

item parameters with 700 examinees per item, and each
has its own merits. (2) The Poly-Sq-Ini method had better

performance than Poly-Ini method under most experimental
conditions. (3) Compared to the random calibration design,
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the adaptive calibration design do not improve the calibration
accuracy in most conditions. (4) The calibration sample
size had an effect on the calibration accuracy. In most
conditions, the calibration accuracy increases with the increase
of sample size. (5) The number of categories of new items
also affected the calibration results, the calibration accuracy
of 3-categories items was higher than that of 2-categories,
and so on.

In addition, a supplementary study was conducted to
investigate the calibration accuracy of GRM online calibration
under different CAT scenarios. Eight CAT scenarios, which were
fully crossed by sample sizes (2,000 and 3,000) and test lengths
(variable-length, fixed-length with 10, 20, and 30 respectively),
were investigated. The ability estimation results of CAT and the
calibration results of new items under various CAT scenarios
were listed in Tables A1–A3. As can be seen from Table A1, for
the fixed-length CAT, the estimation accuracy of ability increased
with the increase of test length under the same sample size.
The RMSE value of variable-length CAT was close to that of
test length 10 in fixed-length CAT, which indicated that the test
length was about 10 under specified cumulative information. All
ability bias values in all CAT scenarios were very close to 0.
It showed that the simulated CAT can provide accurate ability
estimates for the examinees. As can be seen from Tables A2,
A3, (1) the calibration accuracy was acceptable in various CAT
scenarios, which showed the robustness of online calibration
method under GRM. (2) The estimation accuracy of ability had
an effect on the calibration accuracy, but the effect was not
monotonous, and there was fluctuation. (3) Under two different
sample sizes, the calibration accuracy is higher when the test
length is 20.

Several future directions for research can be identified.
First, in this paper, the b-parameters are randomly selected
from the normal distribution and then sort in ascending.
The true values of b-parameters of new items are random,
the following scenarios are possible, such as the b-parameters
under all categories of an item are less than 0, or are
greater than 0, and the difference between adjacent categories
is very large or so small. Different scenarios may lead
to different calibration results, online calibration based on
deliberately designed true parameters of new items is the next
research content.

Second, in this paper, only the match-b method is considered
in the adaptive design, other adaptive design methods are

not discussed. There are some adaptive calibration design
that practicable and perform well under dichotomously scored
models (He and Chen, 2019; He et al., 2019). How to extend
these adaptive designs to GRM, and whether it will get the same
conclusion as dichotomously scored models are the directions of
future research.

Third, the number of categories discussed in this paper was
up to 5, which means that the new items can be 2, 3, 4, and
5 categories. If there are more than 5-categories items, whether
the new online calibration method is still valid is worthy of
further study.

Fourth, there is an interesting phenomenon in the bias
of the 5-categories condition. The lower b-parameters (b1,
b2) have negative bias, and the higher b-parameters (b4,
b5) have positive bias. Does it have anything to do with
the calibration methods. Other calibration methods will be
extended to GRM in further studies, and observe whether similar
phenomenon will also occur. So as to investigate whether the
phenomenon It is related to the calibration method, whether
it is related to the number of categories of new items, or
other factors.
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APPENDIX

Table A1 | Estimation accuracy of ability under different CAT scenarios.

Sample size Test length RMSE Bias

2,000 Variable-length 0.1904 0.0007

10 0.1924 −0.0004

20 0.1340 −0.0008

30 0.1105 −0.0012

3,000 Variable-length 0.1882 0.0033

10 0.2012 −0.0001

20 0.1286 −0.0024

30 0.1057 0.0050

For variable-length CAT, the cumulative information was set to 25.

Table A2 | RMSE of new item parameters under different CAT scenarios.

Sample size Test length RMSE

a b1 b2 b3

2,000 Variable-length 0.2483 0.2109 0.1802 0.2294

10 0.2345 0.2224 0.1557 0.2182

20 0.2169 0.1954 0.1545 0.2242

30 0.2232 0.2060 0.1685 0.2357

3,000 Variable-length 0.2337 0.1921 0.1620 0.2203

10 0.2302 0.2571 0.1668 0.2143

20 0.2121 0.2102 0.1640 0.2078

30 0.2069 0.2012 0.1664 0.2235

Table A3 | Bias of new item parameters under different CAT scenarios.

Sample size Test length Bias

a b1 b2 b3

2,000 Variable-length 0.0998 −0.0005 −0.0330 −0.0685

10 −0.0719 −0.0889 −0.0088 0.0615

20 −0.0001 −0.0464 −0.0011 0.0272

30 0.0589 −0.0168 −0.0211 −0.0269

3,000 Variable-length 0.0939 −0.0117 −0.0239 −0.0458

10 −0.0650 −0.1364 −0.0486 0.0287

20 −0.0228 −0.0187 −0.0106 0.0011

30 0.0613 −0.0152 −0.0232 −0.0486

Taking 3-categories items as example and the calibration sample size is set to 500.
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This study reported on development and evaluation of a learning program that integrated

a multidimensional diagnostic assessment with two different learning interventions

with the aim to diagnose and improve three-dimensional mental rotation skills. The

multidimensional assessment was built upon the Diagnostic Classification Model (DCM)

framework that can report the binary mastery on each specific rotation skill. The two

learning interventions were designed to train students to use a holistic rotation strategy

and a combined analytic and holistic strategy, respectively. The program was evaluated

through an experiment paired with multiple exploratory and confirmatory statistical

analysis. Particularly, the recently proposed joint models for response times and response

accuracy within dynamic DCM framework is applied to assess the effectiveness of

the learning interventions. Compared with the traditional assessment on spatial skills,

where the tests are timed and number correct is reported as a measure for test-takers’

performances, the developed dynamic diagnostic assessment can provide an informative

estimate of the learning trajectory for each participant in terms of the strengths and

weaknesses in four fine-grained spatial rotation skills over time. Compared with an earlier

study that provided initial evidence of the effectiveness of building a multidimensional

diagnostic assessment with training tools, the present study improved the assessment

and learning intervention design. Using both response times and response accuracy,

thus current study additionally evaluated the newly developed program by investigating

the effectiveness of two interventions across gender, country and rotation strategy.

Keywords: mental rotation skills, learning program, diagnostic assessment, rotation strategy, longitudinal

diagnostic model

1. INTRODUCTION

Spatial ability has long been considered as an important dimension of human intelligence through
the studies in various populations and settings (e.g., Carroll, 1993; Eliot, 2012). It is an emerging
area of interest to educators as spatial ability has been linked to better performance in mathematics
and science achievement (Brownlow and Miderski, 2001; Thompson et al., 2013). The notion of
spatial ability varies across studies. Different types of spatial skills have been measured including
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spatial perception, visualization and mental rotation (e.g., Perry,
2013; Weckbacher and Okamoto, 2014). Among these various
spatial factors, mental rotation ability involves a cognitive
visualization process to mentally rotate two-dimensional (2-D)
or three-dimensional (3-D) objects. These two forms of mental
rotation, particularly 3-D mental rotation, have been commonly
associated with mathematics and science achievement (Voyer
et al., 1995). Virtually, all 2-D and 3-D mental rotation tests
involve presenting a target item and several solutions and the
test taker has to mentally rotate the target to select the correct
solution. One problem in this area is that little is known about
the psychometric qualities of spatial skills tests or how or why
students’ performance differs as a function of test items. There
are several possible causes of these problems. It may be the
degree of rotation or manipulation needed, the complexity of
the items, or the strategies used to solve items. Two strategies
have been identified in literature: analytic/verbal and holistic
(Glück et al., 2002). Holistic strategies involve rotating the entire
object whereas analytic strategies involve matching parts of
rotated objects to determine the correct answer. Both these two
strategies can produce good outcomes but the holistic strategies
are typically considered better examples of spatial processing and
they seem to be more efficient and effective for more cognitive
demanding spatial items; specifically items that require multiple,
simultaneous rotations or that are complex (Wang and Carr,
2014). Some research studies also found that the combined
analytic and holistic strategy might be more efficient than the
sole holistic or analytic strategy, and it can decrease the gender
difference (Stieff et al., 2014). Existing literature about mental
rotation strategy also concluded that male and female students,
Chinese Speakers and English Speakersmay use different rotation
strategies when solving spatial rotation questions (Weiss et al.,
2003; Geiser et al., 2008; Li andO’Boyle, 2013; Li et al., 2014; Stieff
et al., 2014).

While most studies in the literature focused on measuring the
spatial ability or on investigating how the spatial ability is related
to test-takers’ characteristics, there has been a lack of research on
investigating the factors that are related to the improvement of
spatial skills. There are emerging evidence indicating that spatial
ability can be improved (Uttal et al., 2013) and evidence that
improving spatial skills results in improved mathematics (e.g.,
Cheng and Mix, 2014). Efforts to improve spatial skills have
involved having participants practice on existing spatial skills
tests or have involved extensive training in several aspects of
spatial skills (e.g., isometric drawing). However, these instruction
are time consuming and are not responsive to individual
students’ strengths and weaknesses.

This present study reported the development of a learning
program that aims to improve mental rotation skills from a new
perspective. This computer-based learning program integrates
multiple multidimensional assessments with different learning
interventions. Particularly, the embedded multidimensional
assessments were built upon the Diagnostic Classification Model
(DCM) framework. This is a family of restricted latent class
models that can provide information concerning whether or not
students have mastered each of a group of specific skills. These
psychometric models have been used to design assessments that

measure fine-grained skills or latent attributes across various
domains, such as math skills (Bradshaw et al., 2014) and
depression (Wang et al., 2019a). In addition to these applications
of cross-sectional cognitive diagnostic assessment, the recently
development of dynamic DCMs (e.g., Kaya and Leite, 2016; Li
et al., 2016;Wang et al., 2017, 2018; Chen et al., 2018b; Zhan et al.,
2019) enable the possibility of developing longitudinal cognitive
diagnostic assessments to track skill learning and skill acquisition
over time. This current study serve as the first attempt to develop
the learning programwithin the longitudinal cognitive diagnostic
assessment framework. Another important objective of this study
is to evaluate the effectiveness of the developed learning program.
Multiple exploratory and confirmatory analysis were conducted
to evaluate the cognitive diagnostic assessment and learning
interventions. Particularly, students’ demographic information,
such as gender, country and the rotation strategy, were collected
and integrated with one of the recently developed dynamic
DCMs, the joint model of response times and response accuracy
(Wang et al., 2018, 2019b), to evaluate the learning interventions.

The rest of the paper is organized as follows. We first provide
background on the test questions for measuring mental rotation
skills, the Purdue Spatial Visualization Test: Visualization of
Rotations (PSVT: R) and the revised PSVT:R. Second, we
introduce the joint model of response times and response
accuracy within dynamic DCM framework. This is followed by
the description of the development of a new spatial rotation
learning program. An experiment study is then presented
to evaluate the learning program and understand students’
learning behavior. We report the results from this experiment
in the following section. Finally, the discussion section addresses
implications for psychometrics and training mental rotation
skills, limitations of the current study and future research study.

2. PSVT: R AND REVISED PSVT:R

The Purdue Spatial Visualization Test: Visualization of Rotations
(PSVT: R), developed by Guay (1976), is one of the most popular
tests that targets on measuring spatial visualization ability in 3-
D mental rotation of individuals aged 13 years or older. This
test has been frequently used in STEM education (Maeda and
Yoon, 2013), and has shown in general good internal consistency
reliability through several studies (Guay, 1976; Branoff, 2000;
Alkhateeb, 2004). The PSVT: R consists of 30 items including
13 symmetrical and 17 non-symmetrical 3-D objects that are
drawn in 2-D isometric format. Each item featured a reference
object that had undergone a rotation. Test-takers then considered
a new object and attempted to determine which of five options
corresponded to the same rotation as the reference object. This
test was revised by Yoon (2011) to correct the 10 figural errors
identified by Yue (2006) and the format of the instrument was
modified to avoid possible measurement errors. The revised test
is named as revised PSVT:R. Since then, the revised PSVT:R
has been used in several studies to investigate the psychometric
properties of the test questions through Item Response Theory
(IRT)Models (Maeda et al., 2013). They were also used to explore
the association of the spatial ability of undergraduate students
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with gender, STEM majors and gifted program membership
(Yoon and Mann, 2017).

3. DCMS AND DYNAMIC DCMS FOR
RESPONSE TIMES AND RESPONSE
ACCURACY

Diagnostic Classification Model (DCM), or Cognitive Diagnosis
Models (CDM), has emerged as an important statistical tool to
help with diagnosing students’ learning outcomes, such as skills
and abilities that students have at the completion of a course
or a learning program. These models assume that there are a
number of pre-specified attributesmeasured by the assessment. A
student’s latent attribute profile is denoted by a multidimensional
binary random vector with element 1 to indicate one possess
a specific attribute and 0 to denote the lack of that particular
attribute. In this way, DCMs can provide feedback regarding
the measured skills. This allows for changes to be made in
instruction, which can hopefully enhance students’ learning.
Research continues to document the benefits of DCMs as a
framework for classifying students into educationally relevant
skill profiles, and they have been used to study English-language
proficiency (Templin and Hoffman, 2013; Chiu and Köhn, 2015),
fraction subtraction (de la Torre andDouglas, 2004), pathological
gambling (Templin andHenson, 2006), skills found in large-scale
testing programs (Bradshaw et al., 2014; Li et al., 2015; Ravand,
2016), and Mental Rotation Skills (Culpepper, 2015).

The traditional DCMs are useful to classify attribute profiles
at a given point in time. Recently research has begun to consider
the role of DCMs to track learning and skill acquisition in a
longitudinal fashion (Kaya and Leite, 2016; Li et al., 2016; Wang
et al., 2017, 2018; Chen et al., 2018b; Zhan et al., 2019). In
this type of research, the multidimensional binary latent skills
for each student are assumed to be time-dependent and the
purpose is to track the change of these binary skills overtime.
Furthermore, in addition to the traditional product data, that
is the response accuracy, the process data, such as the response
times, are utilized to assess students’ skill change over time. The
joint model of response times and response accuracy (Wang
et al., 2019b) used in this study is such an example. This joint
model consists of a dynamic response model and a dynamic
response time model. The dynamic response model includes a
DCM as the measurement model to describe how test-takers
respond to the assessment items with their attribute profiles at
a given point of time, and a higher-order hidden Markov model
that describes how the latent attribute profile changes from one
time point to another, depending on the individual covariates
(Wang et al., 2017). Like the traditional DCM, the dynamic DCM
produces the output of the parameter estimation that quantify the
psychometric properties for each item. It in addition can provide
an estimate of students’ learning trajectories in terms of the
change of fine-grained skills over time. The estimated coefficients
of the transition model from which can be used to identify
the factors that are related to the transition probability and to
evaluate the intervention. The dynamic response time model
assumes students’ latent speed on answering an item changes

with the change of the latent attribute profile. It is thus directly
connected with the dynamic response model through the latent
attribute profile to provide additional information. The original
work by Wang et al. (2019b) only considers the latent individual
covariate in the dynamic response time model. In our study
we will include students’ demographic variables and problem-
solving strategies to further investigate the between and within
latent classes transitions. The details of this model are described
in the Method section.

4. THE DEVELOPMENT OF A NEW SPATIAL
ROTATION LEARNING PROGRAM

The new spatial rotation learning program reported in this study
was developed on the basis of the findings from a previous
research study (Wang et al., 2017). That old learning programwas
developed with the revised PSVT:R (Yoon, 2011) and consisted
of five testing modules and four learning modules. Each of these
modules contained 10 test questions. Four fine-grained mental
rotation skills measuring the degree and direction of rotation
were measured by test questions. That is (1) x90: 90◦ x-axis,
(2) y90: 90◦ y-axis, (3)x180: 180◦ x-axis, and (4) y180: 180◦

y-axis. These four distinct yet related skills were identified to
be measured by the revised PSVT:R through several previous
studies (e.g., Maeda et al., 2013; Culpepper, 2015; Wang et al.,
2017). To use this program, students first answered 10 questions
in a testing module without any feedback to their answers
then proceeded to a learning module in which they received
feedback about their answers to the previous 10 questions and
used a learning intervention to practice rotations. With such a
design, test-takers need to finish 50 testing questions without
feedback and to practice 40 additional questions with feedback
and intervention. Positive findings of benefits of practice, an
enhanced intervention, and the value of knowing some of
the attributes, on the probability of making a transition to a
master of a spatial skill, were demonstrated through a previous
analysis (Wang et al., 2017). However, it was also found that
a number of items had low psychometric qualities. This means
that the students with low ability on spatial skills can easily
guess the correct answer or the students with high spatial ability
might easily miss the correct answer. These items provided less
diagnostic information on measuring the spatial skills. Another
finding was that students’ performance in the 5th testing module
is relatively lower than the 4th testing module, indicating there
might be a fatigue factor due to the long testing and learning (it
took about roughly 1 h and 15 min on average for students to
finish this learning program). The following subsections provide
details on the development of a new learning program based
upon this old version of learning software.

4.1. The Learning Program Structure
Compared with the old version, the whole structure of the
learning program was redesigned to have two testing modules
and two learning modules. The structure of the learning program
is summarized by the flow chart in Figure 1. Specifically,
this program starts with a testing module, followed by two
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FIGURE 1 | Spatial rotation learning program structure.

consecutive learning modules, and finally ends with a testing
module. The main purpose of module 1 and 4 is to accurately
measure the four binary spatial skills at a given point in time.
The two learning modules, model 2 and 3, aim to improve
test-takers’ mental rotation skills. The orders of these four
modules are carefully designed thus are not exchangeable. The
rationale of the design of these modules are summarized in
section 4.2. Interventions are only provided in the learning
modules. Each module contains 10 different questions, and they
are selected based on various of item characteristics to reflect
their functioning of assessing or improving the skills. A survey
is provided at the end of the program to collect the test-takers’
demographic information, the rotation strategy used by them
during the test and their opinions about this learning program.

4.2. The Design of Module Blueprint
As described in the introduction, the learning program used
the revised PSVT:R questions to measure four rotation skills. In
fact, the original revised PSVT: R has 30 questions, and Wang
et al. (2017) developed another 20 new items following the
same item format so that a total of 50 questions are available
to use in our study. Based on the learning program structure,
40 questions were selected from the existing 50 questions to
assemble the four modules. These questions were selected based
on different item characteristics, which can be measured from
both a qualitative and quantitative point of view. The qualitative
properties include the skill(s) measured by each item and the
shape of the item. A very important component in the DCM
based assessment, is a Q matrix (Tatsuoka, 1985), that specifies
the rotation skill(s) measured by each item. The Q matrix is
usually pre-determined by panels of subject-matter experts or
estimated and validated based on the response data (e.g., Xu
and Shang, 2017). In this study, we used the Q matrix in
Wang et al. (2017), which was built based on the findings from
Guay (1980) and Culpepper (2015). According to this Q matrix,
each of the available 50 questions measures 1 or 2 skills. The
shape of an item reveals the complexity in visualizing the 3-D
object. The current 50 questions include symmetrical and non-
symmetrical 3-D objects that are drawn in 2-D isometric format.
The quantitative properties of the questions can be described
by the difficulty and discrimination of the item. The difficulty
of the PSVT: R items has been analyzed based on classical test
theory and item response theory (Yoon, 2011;Maeda et al., 2013).

The discrimination of the items describes how one item can
discriminate/differentiate the students with low spatial ability
from those with high spatial ability. Previous studies used the
two parameter and three parameter logistic models (Maeda et al.,
2013) and the deterministic input, noisy, “and” gate model
(DINA; Junker and Sijtsma, 2001) to get item discrimination
parameter estimation (Culpepper, 2015). In order to accurately
measure students’ mental rotation skills and to detect the possible
learning effect, we design the two testing modules to have
balanced and similar item quality. For the two learning modules,
the main purpose is to help students improve their spatial skills
and keep their motivation of using the learning intervention.
Thus, the first learning module contains the relative easy items
with simple shapes, with the purpose to minimize the side effect
of lack of interest in learning due to frustration of providing too
many wrong answers (as they are informed their answer is right
or wrong in the learning module). The second learning module
contains relatively harder and moderate to complex shape of
items. In addition, the analysis on the learning data (Wang et al.,
2017) revealed that the four attributes might have a hierarchical
structure that implies that students who have mastery of 180
rotations should also be skilled at 90◦ rotation. In other words,
the 90◦ rotation is the prerequisite for the 180◦ rotation. Thus,
it’s reasonable to guide students to learn the prerequisite skill first.
Based on all above analysis, the finalized targeted properties of the
items in the four modules are presented in Tables 1, 2. The next
section summarizes the details of the selection of 40 questions
based on both quantitative and qualitative analysis.

4.3. Item Pre-analysis and Validation
4.3.1. Quantitative and Qualitative Analysis
We conducted both qualitative and quantitative analysis to the 50
available questions from Wang et al. (2017) in order to select 40
from them to assemble the four modules based on the blueprint.
For the quantitative aspect, using the data from a previous
research study (Culpepper, 2015), a Rasch model was fitted to
the 50 questions to produce the item difficulty parameters. Six
raters with high spatial abilities were invited to rate the difficulty
of each item, and their scores were highly positively correlated
with the estimated difficulty parameters from the Rasch model,
ranging from 0.89 to 0.94. The item discrimination, 1 − sj − gj,
is defined based on the Deterministic Input, Noisy “And” gate
(DINA; Junker and Sijtsma, 2001) model, which describes how
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TABLE 1 | The targeted properties of the items in four modules.

Index Module 1 Module 2 Module 3 Module 4

Difficulty Balanced Easy Moderate-high Balanced

Discrimination Balanced Low-moderate Moderate-high Balanced

Shape Balanced Simple-moderate Complex-moderate Balanced

TABLE 2 | The skill(s) measured by the number of questions across four modules.

Attribute Module 1 Module 2 Module 3 Module 4 Total

x90 1 2 1 1 5

x180 1 2 1 1 5

y90 1 2 1 1 5

y180 1 3 2 1 7

x90, y90 2 1 2 2 7

x90, y180 2 0 1 2 5

x180, y90 2 0 2 2 6

well an item can discriminate subjects whomaster all the required
attributes for the item from subjects who do not master any of the
required attributes. The larger the discrimination index, themore
diagnostic information the item can provide. For the qualitative
aspect, a spatial skill domain expert examined the shape of object
in each question, and rated the complexity of the shape to the
scale of 1–5. The higher the score, themore difficult for this object
to be visualized as a 3-D object. Based on the characteristic of
the 50 available questions, a heuristic automatic test assembly
algorithm was developed to select 40 questions to assemble the
four modules. This test assembly algorithm was developed by
authors based on Armstrong’s et al. (1992) Phase II algorithm
to guarantee the four modules match the program blueprint
(Tables 1, 2). The item positions in each module are in ascending
order of item difficulty (from easy to hard).

4.3.2. 3-D Model Building
The original PSVT: R presented the 3-D object in a 2-D
isometric format. In the current study, in order to accurately
measure the four fine-grained mental rotation skills that target
on degree and direction of rotation only, all the objects in the
50 questions were reconstructed based on 3-D model building
in computer and an example is presented in Figure 2. The
3-D models were constructed using 3ds Max 2016 developed
by Autodesk. The questions in the testing modules and the
learning modules are all like the one presented in Figure 2,
which include a reference item that is rotated. Test-takers are
presented a new object and they must select one answer from
the five options that corresponds to the ending position of the
new object, rotated the same way as the reference item. In
the testing module, test-takers are not informed about whether
their questions are correct or wrong. And in the learning
module, they are informed immediately about the correct answer
correct or not after each question. In addition, in the learning
module, test-takers have the chance to interact with a learning
intervention to practice rotation. The next subsection describes
the intervention design.

FIGURE 2 | The 3D model for the objects/figures in an item.

4.4. Learning Intervention Design
4.4.1. Two Learning Interventions
We developed two types of learning interventions by using
C++ with Visual Studio 2012. One version is animation plus
interaction as shown in Figure 3. The left panel of Figure 3 shows
the testing items, the top panel on the right shows animation
of rotating the reference object from the initial position to the
final position and the bottom panel on the right allows users
to rotate the testing object from the initial position to the
final correct position by following the rotation path from the
reference one. This type of intervention intends to train test-
takers with the holistic strategy. The other intervention has the
same functions as the first one and with an additional coloring
feature (Figure 4). One of the facets of both reference and testing
objects in three panels was draw with pink color. This is designed
to help test-takers figure out the final position of the testing
object by mapping the pink facet in the initial position to its
final position. This coloring is more like training the test-takers
using an analytic strategy. Combined with the rotation functions
from the right panels, the second intervention intends to train
test-takers with a combined analytic and holistic strategy.

4.4.2. Learning Routine
In both versions of intervention, test-takers follow the same
learning routine of three steps: (a) solve the displayed testing
question on the left panel with the top and the bottom right
panels invisible, and hit the check answer button to receive the
feedback; (b) the two panels on the right are then displayed and
test-takers can press the rotate button on the top right panel to
watch the rotation animation of the reference object; (c) test-
takers need to further rotate the testing object in the bottom right
panel to the correct position. During this process, test-takers are
allowed to repeat step (b) and (c).

5. METHOD

5.1. Experiment Study
5.1.1. Sample
The participants in this experiment were undergraduate students,
18 years or older, enrolled in three Universities, one in
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FIGURE 3 | Non-colored intervention.

United States and two in China. Recruiting participants in
two countries can help us investigate whether there is cultural
difference in terms of learning spatial skills. In order to
get enough sample size, participants in both countries were
recruited by two ways. The first was to recruit participants
through the Educational Psychology or Psychology Research
Participant Pool. Participants from this source were rewarded
1 course credit after completing this study. The second was
to recruit participants through flyers and email announcement.
For those participants, they were paid with a base amount of
money and can earn additional amount of payment for each
question answered correctly. From Spring 2017 to Summer
2017, recruitment through the above two approaches yielded
585 participants. Because of the various sources of recruiting
participants, we fitted a mixture learning model (Zhang and
Wang, 2018) to exclude some participants who were identified
to be not engaged in the experiment. These participants’
response data did not reflect the measured latent attributes
and cannot be used to evaluate the learning program. Through
this procedure, a total of 548 students were included for final
data analysis.

5.1.2. Procedures and Variables
The experiment was conducted in the computer lab in each
University. The two types of learning interventions (colored
and non-colored) that corresponding to the combined and
holistic rotation training strategy were randomly assigned among
the participants. Before starting the learning program, the

participants first watched the instruction about how to use
the learning program. Researchers in the computer lab also
gave directions on how to use the program and they were
available to answer questions during the experiment. Participants
were informed that they had as much time as they wanted to
complete this assessment. They were told that this study was
conducted to understand how people solve and learn spatial
rotation tasks. The participants who received the payment
instead of the course credit were informed that the payment
were based on the number of questions answered correctly.
On average, it took 30 min for the participants to finish
the experiment.

The participants’ binary responses and their response
time to each of the 40 test questions were recorded by
the software directly. In addition to these response data,
a survey after each participant completed the experiment
collected participants’ demographic information, such as
gender (female and male), the country (China and US),
and the strategy participants used to solve the questions
(Analytic, Holistic and Hybrid). The information about the
rotation strategy used by each participant was collected based
on a self-report question in the survey. These covariates
will help us further evaluate the developed diagnostic
assessment and learning interventions across different
populations. In the survey, participants also provided their
opinions about whether the learning module can help them
learn rotation skills on the Likert scale [1 (not helpful)–5
(very helpful)].

Frontiers in Psychology | www.frontiersin.org 6 February 2020 | Volume 11 | Article 30525

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wang et al. Longitudinal Diagnostic Program for Learning

FIGURE 4 | Colored intervention.

5.2. Exploratory Statistical Analysis
5.2.1. Descriptive Statistic
Descriptive statistics, such as the number of participants (N),
the means and standard deviations of the module scores in the
learning program and themodule completion time, are presented
in Tables 3, 4 by participants’ characteristics, such as gender,
country, strategy used to solve the problem and the intervention.
A slightly increase of the mean score in module 4 compared with
module 1 can be observed. The module 3 contains the items
that are most difficult while module 2 consists of the items that
are easiest among the four modules. Thus, the average score in
module 3 is the lowest and the average score in module 2 is the
highest among the four modules across different groups. Note
that, we can hardly eyeball the “growth” based on the descriptive
statistics in different modules, as each module has different item
difficulty. In addition, the evaluation of the learning program
should target on the population who have relatively low spatial
rotation skills. However, in order to recruit participants as many
as possible in a short time, we did not conduct a separate pretest
to exclude the participants who already had a high spatial rotation
ability. Thus, the final 548 sample may mix a proportion of
participants who do not need to improve their spatial skills.
Fortunately, the joint learning models presented in the later
section can consider the item difficulty and help us identify the
participants who already mastered the four skills in the very
beginning. In terms of the completion time, participants spent
least time on completing module 2, which is consistent with

that module 2 is the easiest one. Though module 3 contains the
most difficult items, participants on average spent less time on
it compared with the module 1, which is relatively easier. This
might be due to the warm-up effect for module 1, in which
participants were still not very familiar with the questions or due
to the improvement of their spatial rotation skills so that they can
apply those skills more quickly in module 3. The distribution of
participants over country and intervention are roughly balanced,
while for gender and rotation strategy, the distributions are
unbalanced. The large proportion of the female participants and
combined rotation strategy used by participants are mainly due
to our convenience sampling procedure and self-report of the
strategy in the survey.

5.2.2. Clustering Analysis on Items
A very important component used in the joint model of response
times and response accuracy is the Q matrix, which gives the
information on which attributes are measured by each item. The
previous research studies on Q matrix estimation or validation
are in general conducted in through a confirmatory way that
assumes students’ responses follow a specific DCM (e.g., Xu and
Shang, 2017). In this study, we conduct exploratory clustering
analysis on items, using not only responses but also response
times. The item group results from the cluster analysis can
be used to compare with the existing Q and further valid it
in the future. One clustering algorithm that accounts for both
continuous and categorical data is K-prototype (Huang, 1997).

Frontiers in Psychology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 30526

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wang et al. Longitudinal Diagnostic Program for Learning

TABLE 3 | Descriptive statistics for 548 participants (response scores).

Variable Module score

N 1 2 3 4

Gender Female 401 7.00 (1.87) 8.76 (1.30) 6.34 (2.02) 7.15 (1.85)

Male 147 7.76 (1.80) 9.16 (1.05) 6.71 (1.95) 7.70 (1.85)

Country US 223 6.94 (1.85) 8.63 (1.37) 5.74 (1.92) 7.27 (1.82)

China 325 7.38 (1.89) 9.03 (1.13) 6.91 (1.92) 7.31 (1.89)

Strategy Analytic 62 7.37 (2.03) 8.84 (1.16) 6.56 (2.09) 7.52 (1.80)

Holistic 63 6.71 (2.02) 8.79 (1.05) 6.11 (1.89) 7.14 (1.88)

Combined 423 7.25 (1.83) 8.88 (1.29) 6.46 (2.01) 7.29 (1.87)

Intervention Color 264 7.07 (2.00) 9.06 (1.14) 6.58 (1.87) 7.13 (1.91)

Non-color 284 7.32 (2.00) 8.68 (1.32) 6.30 (2.11) 7.44 (1.81)

The numbers in the brackets are the standard deviation. The total score for each module

is 10.

TABLE 4 | Descriptive statistics for 548 participants (response time).

Module completion time (minute)

N 1 2 3 4

Gender Female 401 8.76 (4.30) 4.71 (2.12) 7.23 (3.49) 6.84 (3.30)

Male 147 8.13 (3.84) 4.06 (1.94) 6.52 (3.21) 5.98 (2.53)

Country US 223 7.17 (3.88) 3.84 (1.76) 6.15 (3.28) 6.15 (3.27)

China 325 9.56 (4.12) 5.01 (2.17) 7.64 (3.40) 6.92 (2.99)

Strategy Analytic 62 9.55 (4.80) 4.96 (2.45) 7.99 (4.33) 6.67 (3.24)

Holistic 63 7.27 (3.10) 3.74 (1.28) 5.78 (2.62) 5.48 (2.45)

Combined 423 8.64 (4.19) 4.59 (2.11) 7.08 (3.33) 6.77 (3.18)

Intervention Color 264 8.37 (4.07) 3.99 (1.75) 6.21 (3.15) 6.68 (3.29)

Non-color 284 8.80 (4.29) 5.05 (2.25) 7.81 (3.49) 6.55 (2.98)

The numbers in the brackets are the standard deviation.

We apply this method to group items in each module based
on the categorical responses and continuous response times in
which. The number of clusters,M, is determined by the Silhouette
index (Rousseeuw, 1987), which is commonly used in clustering
analysis (e.g., Rendón et al., 2011; Hämäläinen et al., 2017). This
index measures the similarity of an item to its cluster compared
to other clusters and its value ranges from−1 to 1. A value of 1 is
ideal as it suggests that data point is far away from other clusters.
On the contrary, value of−1 is not preferred because it indicates
that the data point is closer to other clusters than to its own. In
our study, we use the Global Silhouette value, which is the average
of the total silhouette values for all items of each cluster, to
determine the number of clusters (Bolshakova and Azuaje, 2003).
For all four modules, the average Silhouette values were highest
when M = 2. Based on this, we group items into two clusters
for each module. Note that the items can be in general classified
as two types based on the Q matrix. One are simple items which

measure only one attribute, the other are complex items which
measure more than one attributes. The clustering results from K-
prototype indicated that for each module, all simple items were
grouped together and most complex items were grouped into
another cluster. We note that four complex items, item 6 and
7 in module 1, item 23 in module 3, and item 35 in module 4,
were grouped with simple items instead. Based on the current
Q matrix, these four items all measure attributes x90 and y90.
To explore the reason of mismatching of these four items, we
compared them with item 20, 29, and 36, which also measure
attributes x90 and y90. It was found that the 3D objects in item 6,
7, 23, and 35 are in relative simple shapes compared with those
for item 20, 29, and 36, as shown in Figure 5. Moreover, the
response accuracy and response times on item 6, 7, 23, and 35
were closer to simple items than the complex itemsmeasuring the
same attributes. For example, the mean response time for item
35, simple and complex items in module 4 are 36.96, 27.04, and
50.33 s, respectively, and the mean correct response proportion
for these three groups are 0.7, 0.76, and 0.54, respectively.

5.3. Confirmatory Statistical Analysis
5.3.1. The Joint Model of Response Time and

Response Accuracy
In a longitudinal set up, such as the one in our study, the
multidimensional binary latent skills for an individual i at time

t are denoted as αi(t) = (αi1(t), ...,αiK(t))
′
, with t indexes time

and k = 1, ...,K indexes attributes and αik(t) = 0 indicating non-
mastery and 1 meaning mastery. Test-takers’ responses are also
time dependent, and the ith test-taker’s responses to J questions at
time t can be denoted asYi(t) = (Yi1(t), ...,YiJ(t)), with Yij(t) = 1
if the test-taker responded correctly to item j at time t, and 0
otherwise. In addition, the computer records the response time
on completing each test question for each test taker, denoted by
Li(t) = (Li1(t), ..., LiJ(t)). Both Yi and Li are used to provide an
estimate of each test-taker’s learning trajectory in terms of the
change of fine-grained skills over time based on responses and
also an estimate of their initial latent speed and the change of the
speed due to the latent attribute profile and other covariates.

Specifically, the joint model proposed by Wang et al.
(2019b) consists of a dynamic response model and a dynamic
response time model. The dynamic response model includes two
components. For each time t, a measurement model is used to
model P(Yij(t)|αi(t)). An example is

P
(

Yij(t) = 1|αi(t), sj(t), gj(t)
)

=
{

1− sj(t) if αi(t) � qj,

gj(t) otherwise,
(1)

where qj denotes the skills measured by item j. The notation �
indicates the test-taker i with latent attribute profile αi(t) has
mastered all the required skills for item j at time t. The model
describes by Equation (1) is the DINA model, which uses two
parameters to describe the correct response probability to each
item given the test-takers’ latent profile and the required skills
for that item. For example, if the test-taker’s latent profile at
this time is (1, 1, 0, 0)

′
, meaning he mastered the 90◦ rotations

along the x and y axes. If item j only requires 90◦ rotation along
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FIGURE 5 | Items measuring x90 and y90. Items 6,7,23, and 35 are clustered with simple items. Items 20, 29, and 36 are clustered with other complex items.

x axis, then this test-taker has probability 1 − sj(t) to answer
this item correctly. The term sj(t) is the slipping probability that
refers to the probability that the test-taker misses item j at time
t that his level of mastery suggests he would be expected to
answer correctly to it. In the other case, if this item j requires the
180◦ rotation along x axis, and this test-taker does not master
this required skill, then he has the probability gj(t) to answer

this item correctly. This probability, gj(t), is called the guessing
probability that describes the chance that the test-taker correctly
answers a question that his level of mastery would suggest he
should not. The DINA model is a very simple DCM model with
a conjunctive structure. It assumes only two correct response
probabilities for each item. Many popular CDMs, such as the
models assumes a compensatory structure or in more general
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forms can also be a candidate for this measurement portion.
In the subsequent section, we will conduct a measurement
model selection procedure to determine the most appropriate
measurement model for our data.

The second component in the dynamic response model is
a transition model, which describes how the latent attribute
profile changes from one time point to another. This transition
model assumes non-decreasing skill trajectories and conditional
independence of attribute-wise transitions given the previous
attribute pattern, and hence, it focuses onmodeling the transition
of each skill from non-mastery (0) to mastery (1), depending on
several latent and observed covariates. To model the transition
probability, we first assume the transition of an unlearned skill
from 0 to 1, depends on a general learning ability. This general
ability is denoted as a latent continuous variable for each test-
taker i as θi and the number of learned skills. In addition, as one
of the primary objectives of this study is to compare the two types
of interventions on improvement of the rotation skills across
gender, country and problem solving strategy, the variables reflect
this information are also included in this model. In summary,
the covariates we considered in the transition model are the
main effects of general learning ability θ , the mastered skill(s),
the gender, country, intervention, rotation strategy, as well
as the two-way interactions between intervention and gender,
intervention and country and intervention and rotation strategy.
It can be written as,

logit(P(αik(t + 1) = 1|αik(t) = 0))

= λ0 + λθ θi + λα

∑

l 6=k

αil(t)+ λg ∗ genderi (2)

+ λc ∗ countryi + λI ∗ IVi + λst1 ∗ Strategy1i + λst2 ∗ Strategy2i
+ λgI ∗ genderi ∗ IVi + λcI ∗ countryi ∗ IVi

+ λIst1 ∗ IVi ∗ Strategy1i + λIst2 ∗ IVi ∗ Strategy2i.

Here
∑

l 6=k αil(t) quantifies the number of mastered skills
at time t. IVi, genderi and countryi are dummy variables
representing the two levels of each categorical variable. The
Strategy1 and Strategy2 are the two dummy variables denoting
the three levels of the rotation strategies used by the test-
takers. Each of the component in the coefficient vector λ =
(λθ , λα , λg , λc, λI , λst1, λst2, λgI , λcI , λIst1, λIst2)

′
describes how the

corresponding covariate influences the odds of skill transition
from 0 to 1. These estimated values can help us evaluate the
designed learning program.

Finally, the dynamic response time model is built based on
a log-normal distribution. That is, the model assume the log of
response time on each question follows a normal distribution,
where the mean depends on a time intensity parameter(γj), the
test taker’s initial latent speed (τi), and the covariates that may
influence the speed during the learning process. The variance
of the distribution is characterized by a time discrimination
parameter (aj). The log-normal response time model is chosen
based on the analysis from a previous research study that used
the same experiment data set (Zhang and Wang, 2018). The key
part of the dynamic response time model is on defining a latent
covariate that connects the latent attribute profile and identifying
several observed covariates that may impact the speed. In our

case, we use a fixed effect model as the following specific form.

log(Lij(t)) ∼ N(γj − (τi +
∑

h=1

φhCovh),
1

aj
). (3)

The quantity
∑

h=1 φhCovh) in Equation (3) describes the
different covariates that may impact the speed. Specifically,

∑

h=1

φhCovh = φαG(αi, qj)+ φg ∗ genderi (4)

+ φc ∗ countryi + φI ∗ IVi + φst1 ∗ Strategy1i
+ φst2 ∗ Strategy2i
+ φgI ∗ genderi ∗ IVi + φcI ∗ countryi ∗ IVi

+ φIst1 ∗ IVi ∗ Strategy1i + φIst2 ∗ IVi ∗ Strategy2i.

The G(αi, qj) is the latent covariate that connects the learning
trajectory αi with the response time model. We defineG(αi, qj) =
1 is αi(t) � qj and 0 otherwise. In this way, this covariate
classify the change of speed into 2 classes on each item. The
other observed covariates in (4) are the same as those in the
transition model (2), and we are interested in investigating
whether those covariates can give us additional information on
the respond speed after controlling the latent learning trajectory.
Such information are useful to evaluate the developed learning
interventions.

In summary, the confirmatory joint model of response times
and response accuracy can produce a learning trajectory for each
test taker. In our case, if the latent profile is described based
on the order of x90, y90, x180, and y180, and for a participant

with the initial latent profile as (0, 1, 0, 0)
′
, indicating one masters

only the 90◦ rotation along y axis, then joint model can provide
an estimate of the latent profile after each stage of the learning
program. The improvement of a specific rotation skill can be
observed as the change from non-mastery (0) to mastery (1). In
addition, the estimated coefficients in the transition model (λs)
and dynamic response model (φs) can be used to evaluate the
effectiveness of the learning program cross different populations
defined by various latent and observed covariates.

5.3.1.1. Selection of the response measurement model
Before fitting the joint model, we first need to select the
appropriate measurement model for responses. The models
we consider are DINA, the deterministic-input, nopisy-or-
gate model (DINO; Templin and Henson, 2006), the reduced
reparameterized unified model (RRUM; Hartz, 2002), linear
logistic model (LLM; Maris, 1999), the additive CDM (ACDM;
de la Torre, 2011), and generalized DINA (G-DINA; de la
Torre, 2011). These models are the representatives of DCMs that
either have conjunctive/compensatory assumptions or belong
to a family of models that have more general assumptions. To
select the most appropriate model, we performed both test-
level and item-level model selection procedures, treating each
module as a mini test. These procedures were conducted using
packageGDINA (Ma et al., 2019) with Expectation-Maximization
algorithm in R version 3.5.1 (R Core Team, 2018). For the test-
level model selection, the Akaike information criterion (AIC)
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TABLE 5 | Model-data fit indices.

Module 1 Module 2 Module 3 Module 4

Model AIC BIC AIC BIC AIC BIC AIC BIC

DINA 5996.65 6147.37 3629.94 3780.66 6452.84 6603.56 5485.19 5635.91

DINO 5993.90 6144.62 3632.55 3783.27 6469.02 6619.74 5498.81 5649.53

GDINA 5979.02 6181.41 3633.79 3793.12 6464.39 6658.17 5498.36 5700.76

RRUM 5985.95 6162.51 3631.89 3786.91 6458.71 6630.96 5496.97 5673.53

LLM 5982.26 6158.81 3631.75 3786.78 6459.18 6631.43 5498.22 5674.77

ACDM 5982.03 6158.59 3631.84 3786.87 6458.79 6631.04 5499.01 5675.57

and Bayesian information criterion (BIC) were used. Table 5
represents the values of AIC and BIC for multiple models at
module level. For module 2–4, both AIC and BIC suggest that
the best measurement model is DINA. However, for module 1,
AIC suggests the GDINA and BIC suggests the DINO. The BIC
value from the DINA model is very close to the DINO. For the
item-level model selection, we apply the Wald test (de la Torre
and Ma, 2016; Ma and de la Torre, 2016) to determine the most
appropriate model for each item. The reduced models with p-
values less than the pre-specified α level were rejected. If all
reduced models were rejected for an item, the GDINAmodel was
used as the best model; if more than one reduced models were
retained, the reducedmodel with the largest p-values is selected as
the most appropriate model with prioritizing DINA and DINO.
Before doing that, we note that there are in fact 21 items that
measure only one attribute. For these items, all types of DCMs
are equivalent to the DINA model. The For the rest 19 items,
the Wald test suggests that DINA model fits best for 12 of them.
Other reduced models, such as RRUM, ACDM, and DINO, fit
best for the rest 7 items. The details of the Wald test rest are
summarized in Table 1A in Appendix. Both the test-level and
item-level results suggest the DINA model fits most of the test
questions, and also given its simple format, we choose to use the
DINA model as the measurement model in the joint model.

5.3.1.2. Model convergence result
The joint model was calibrated through a Metropolis-Hastings
within Gibbs Sampler (Wang et al., 2019b) through R (R Core
Team, 2018). The MCMC chain convergence was evaluated by
the Gelman-Rubin proportional scale reduction factor (PSRF)
(Gelman and Rubin, 1992), commonly known as R̂. Based on
this criterion, this fitted model converged quickly as that shown
in Figure 6. We can observe that after about 15,000 iterations,
the maximumGelman-Rubin proportional scale reduction factor
among all parameters fell below 1.2, indicating that parameter
estimates have stabilized.

5.3.2. Item Analysis for Testing and Learning Modules

5.3.2.1. Item parameters
The joint model of response accuracy and response times is
able to estimate two types of item parameters for each item:
the slipping and guessing parameters from the DINA model
and the item discrimination and item intensity parameters from
the log-normal response time model. The distribution of the

TABLE 6 | The mean item parameters for each module.

Function Modules s g 1 − s− g a γ

Testing Module 1 0.182 0.560 0.259 1.657 3.288

Module 4 0.193 0.514 0.293 1.560 2.970

Learning Module 2 0.065 0.757 0.178 1.978 2.680

Module 3 0.272 0.418 0.310 1.757 3.093

estimated guessing and slipping parameters for the 40 rotation
questions are summarized in terms of boxplots in Figure 7. The
items in the testing modules and learning modules are presented
separately to better compare their characteristics. In each of the
boxplot, the x axis denotes the item type in terms of the attributes
measured by that item and the y axis denotes the estimated
parameter value for an item with certain measured skills. The
distribution of the slipping and guessing parameters had the
similar pattern for the items in the testing modules (module 1
and 4) and learning modules (module 2 and 3). Specifically, the
items require only one simple skill, such as x90 or y90, tend to
have large guessing parameters and small slipping parameters.
The items require one complex skill, such as y180, or two skills,
have small guessing parameters and large slipping parameters.
The variation of the same type of item parameters is larger for
the items in the learning module than that in the testing modules.
Similarly, the distribution of the estimated time intensity and
time discrimination parameters of the 40 items are documented
in Figure 8. Again, the distribution of these parameters had the
similar pattern in the testing and learning modules. That is, the
items require one simple skill tend to have small time intensity
parameters and large time discrimination parameters. The items
require one complex skill or two skills tend to have large time
intensity parameters and small time discrimination parameters.
The average values of DINAmodel parameters and response time
model parameters for each module are presented in Table 6. The
distribution of these parameters are relatively consistent with the
test assembly requirement presented in Table 1. That is, the two
testing modules (module 1 and 4) were assembled with items
that had balanced item quality, while the two learning modules
(module 2 and 3) were designed based on their corresponding
learning functions.

Next, we focus on the analysis with some items that were
identified to have extreme item parameters. The item with the
largest guessing parameter, which is a new item created based on
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FIGURE 6 | The maximum univariate Gelman-Rubin proportional scale reduction factor from the joint model as a function of number of iterations, when uniform initial

attribute patterns were used. Dotted line represents the cutoff of 1.2.

FIGURE 7 | The estimated DINA model item parameters. The white whisker diagram represents the slipping parameters s and the gray ones represent the guessing

parameters g.

FIGURE 8 | The estimated response time model item parameters. The white whisker diagram represents the time discrimination parameter a and the gray ones

represent the time intensity parameters γ .
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FIGURE 9 | The item (ID: N10) with largest guessing parameter g.

FIGURE 10 | The item (ID:30) with the largest slipping parameter s.

the revised PSVT: R, is presented in Figure 9. This item is also
the one that has the largest item discrimination parameter. The
reference object in this item measures the 180◦ rotation along x
axis. If the participants can recognize the rotation is along the
x axis, they can easily exclude the four distractors and select
the correct option (the 4th one). It may be due to this reason,
this item has the largest guessing probability. The distractors
of this new item need to be further refined in the future to

better diagnose the test-takers’ rotation skills. For the current
learning program, this item is the second question of the first
learning module, thus the main function is to help test-takers
learn the rotation. The item with the largest slipping parameter
is presented in Figure 10. It has a relatively large time intensity
parameter as well. It measures 180◦ rotation along the x axis,
and 90◦ rotation along the y axis, and the object in this item has
the most complex shape. Again, this item may not have a good
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TABLE 7 | The estimated coefficients from the transition model.

95% credible interval

Variable Notation Mean SD Lower bound Upper bound

θ λθ 2.821∗ 0.703 1.443 4.199

Learned skills λα 0.471∗ 0.217 0.046 0.896

Gender λg −0.350 0.346 −1.028 0.328

Country λc −0.225 0.296 −0.805 0.355

IV λIV 0.165 0.355 −0.531 0.861

Strategy 1 λst1 −0.101 0.255 −0.601 0.399

Strategy 2 λst2 0.101 0.443 −0.767 0.969

Gender*IV λgI 0.226 0.312 −0.386 0.838

Country*IV λcI −0.004 0.285 −0.563 0.555

IV*Strategy 1 λIst1 0.216 0.233 −0.241 0.673

IV*Strategy 2 λIst2 0.280 0.468 −0.637 1.197

IV, Intervention; Dummy coding of the categorical variables: gender (female 1, male −1),
Country (US 1, China −1), IV: colored (1), non-colored(-1), Strategy 1: (Compare Analytic
Strategy and Holistic Strategy with Hybrid Strategy), Strategy 2: (Compare Analytic with

Holistic Strategy); *p < 0.05.

diagnostic function. However, in the current learning program, it
is the last question in the second learning module, and the main
purpose is to improve test-taker’s rotation skills.

5.3.2.2. Reliability analysis for two testing modules
A reliability analysis was conducted to evaluate the two
testing modules (module 1 and 4). In our study, classification
consistency index (CCI; Cui et al., 2012) was chosen to estimate
the test reliability. The CCI is the probability of classifying
a randomly selected examinee consistently according to two
administrations of a test. The range of CCI is between 0 and
1, and a higher values indicate a larger reliability. The CCI for
module 1 and module 4 are 0.729 and 0.931.

5.4. Evaluation the Effectiveness of the
Learning Program
The learning program is evaluated using the joint model results.
The rest of this section reports the results from the dynamic
response model and dynamic response time model portion of the
joint model.

5.4.1. Dynamic Response Model Result
The estimated coefficients from the transition model are
documented in Table 7. Based on the 95% creditable interval,
only the general learning ability θ and the learned skills were
statistically related to odds of the transition probability. This
indicates that after controlling the latent variables and based
on the response accuracy across different time points, the
two learning interventions (colored and non-colored) have the
same effectiveness in improving the spatial rotation skills across
gender, country, and the rotation strategy.

Next, we evaluate the learning program by investigating the
overall growth of spatial skills. The output from the dynamic
response model indicates that at the initial time point, that
is when the participants finished the first testing module and
before they received the first learning module, 59.5% participants

FIGURE 11 | The distribution of the number of mastered skills for non-master

group at four time point.

were estimated as mastery of four rotation skills. Because those
participants had already mastered the four skills before receiving
the learning modules, we excluded them from the following
analysis to better evaluate the learning program. We refer the
rest 222 participants who at least missed one rotation skill in
the beginning as the non-masters. The overall effectiveness of the
learning program is evaluated on summarizing the growth of the
non-masters.

5.4.1.1. The overall growth of non-masters
We first report a paired t test result that compares the test score
from module 1 and module 4, as the items in these two modules
have similar psychometric properties and can be treated as a
pretest and a post-test. On average, for the non-masters, the
module 4 test score (M = 6.032, SD = 1.780) is significantly
higher than themodule 1 test score (M = 5.716, SD = 1.638) and
with a small to median effect size, t(221) = 2.060, p = 0.04, r =
0.137. Then the results from the dynamic response model using
the item score in the four modules are explored. The overall
learning trajectory, denoted as the distribution of the number of
mastered skills at each time point, is documented in Figure 11.
From there we can observe a “growth” of the rotation skill as the
number of non-masters who mastered none of the skills reduced
from 17.6% in the beginning of the experiment to 8.5% at the
end of the experiment. There are also about 25.2% non-masters
mastered four skills in the end. Table 8 further documents the
proportion of people who mastered each skill after test module
1 and 4. The results from a χ2 test that compares the paired
proportion indicates a significant increase of mastery for each
skill with medium effect size (Cohen’s h). This demonstrates the
newly developed learning program can significantly improve the
non-masters’ four spatial rotation skills.

Next, we further investigate how the learning trajectory is
influenced by the general learning ability θ . Based on the
results from the transition model (Table 7), we can conclude
that for a specific rotation skill, the odds of transition from
non-mastery to mastery is significantly positively related to the
general learning ability θ , (λ̂θ = 2.821, p < 0.05) and the
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TABLE 8 | The Skill Mastery Rate (proportion of participants that master each

skill).

Skill Time 1 Time 4 Difference p-value Cohen’s h

x90 0.812 0.876 0.064 < 0.01 0.290

x180 0.648 0.761 0.113 < 0.01 0.374

y90 0.761 0.836 0.075 < 0.01 0.301

y180 0.628 0.730 0.102 < 0.01 0.322

Module 1 and Module 4 represent time 1 and time 2.

FIGURE 12 | The average number of mastered skills at each time point for

four learning ability groups. −0.528, −0.343, and 0.151 are the 1st, 2nd, and

3rd quartile of θ values.

number of mastered skills (λ̂α = 0.471, p < 0.05). To further
explore these two variables, the non-masters were divided into
four groups based on their estimated general learning ability θ .
For each group, the number of mastered skills at each stage of
the experiment was investigated. The three cut off points were
selected as the 1st (−0.528), 2nd (−0.343), and 3rd quantile
(0.151) of the estimated general learning ability so that group
1 consists of participants with the lowest learning ability and
group 4 consists of participants with the highest learning ability.
Figure 12 presents the average number of mastered skills at each
time point for each of the four groups. From there we can see
that, for the participants with low learning ability (group 1), their
learning rate was the lowest. While for the high learning ability
participants (group 4), the learning rate is the highest (starts
with around 1.5 skills and can master more 3–4 skills). This
figure also illustrates how the learned skills can help learn the un-
mastered skills. For the participants starting with more than one
skills (group 3 and group 4), they learned much faster than the
participants starting with 1 or <1 skill (group 1 and group 2).

5.4.2. Dynamic Response Time Model Result
The estimated coefficients for covariates (φ) in the dynamic
response time model are presented in Table 9. First, on average,
the participants who mastered the required skills for an item
spent 1.38 s more on completing this question, compared with

TABLE 9 | The estimated φs from the response time model.

95% credible interval

Variable Notation Mean SD Lower bound Upper bound

G(αi (t), qj) φα −0.327∗ 0.028 −0.382 −0.272

Gender φg −0.081∗ 0.017 −0.114 −0.048

Country φc 0.084∗ 0.016 0.053 0.115

IV φIV 0.072∗ 0.023 0.027 0.117

Strategy1 φst1 0.034∗ 0.012 0.010 0.058

Strategy2 φst2 −0.093∗ 0.033 −0.158 −0.028

Gender*IV φgI 0.017 0.018 −0.018 0.052

Country*IV φcI 0.017 0.016 −0.014 0.048

IV*Strategy1 φIst1 0.011 0.013 −0.014 0.036

IV*Strategy2 φIst2 0.038 0.032 −0.025 0.101

IV, Intervention; Dummy coding of the categorical variables: gender (female 1, male −1),
Country (US 1, China −1), IV: colored (1), non-colored(-1), Strategy 1: (Compare Analytic
Strategy and Holistic Strategy with Hybrid Strategy), Strategy 2: (Compare Analytic with

Holistic Strategy); ∗p < 0.05.

those who did not master all the required skills (φ̂α = 0.327, p <

0.05). Given the participants who had the same learning
trajectory, the male participants completed a question faster than
female participants (φ̂g = −0.081, p < 0.05); the participants
in US completed a question faster than participants from China
(φ̂c = 0.084, p < 0.05); the participants using colored
intervention completed a question faster than participants using
non-colored intervention (φ̂IV = 0.072, p < 0.05); and finally,
the average response time of participants who used analytic
strategy and who used holistic strategy were shorter than the one
who used a combined strategy (φ̂st1 = 0.034, p < 0.05), and
the participants using a holistic strategy completed a question
faster than participants using an analytic strategy (φ̂st2 = −0.093,
p < 0.05).

5.4.3. Survey Questions for Validation
According to the survey collected at the end of experiment, 68%
participants rated greater or equal to 3 regarding the questions,
“Do you think the learning program is helpful or not.” This
question used the 5 points Likert scale with 1 indicates “not very
helpful” and 5 denotes “very helpful.”

6. DISCUSSION

This study investigated the possibility of developing a learning
program that integrates a multidimensional diagnostic
assessment with two different learning interventions with
the purpose to diagnose and improve the 3-D mental rotation
skills. The program was evaluated through an experiment paired
with the statistical analysis from a joint model of response
accuracy and response times. Compared with the traditional
assessment on spatial skills, where the tests are timed and number
correct is reported as a measure for test-takers’ performances,
the proposed diagnostic assessment through the analysis from
the joint model can provide an informative estimate of the
learning trajectory for each participant in terms of the strengths
and weaknesses in four fine-grained mental rotation skills over
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time. The response times are also utilized to discover additional
information about learning across different covariates. While
the earlier study (Wang et al., 2017) provided initial evidence
of the effectiveness of building a multidimensional diagnostic
assessment with training tools, the present study improved the
assessment and learning intervention design and evaluated the
newly developed program by investigating the effectiveness of
two interventions across gender, country and rotation strategy.

The results from the joint learning model demonstrated
that learning of a specific rotation skill is significantly related
to a general learning ability and the mastered skills. Figure 7
illustrates that it is difficult for test-takers who mastered none of
four rotation skills to improve over a short time training. Table 8
indicates the learning of the four rotation skills may follow a
hierarchical structure, as the x90◦ rotation might be the easiest
one to learn and y180◦ is the most difficult to learn. Thus, to
train the test-takers with extremely low spatial ability, it’s better
to start with a relatively simple and single rotation then transfer
to more complex task. This in fact supports the current learning
program that first provides an easy learning module then a more
challenging one.

However, the current learning program is not adaptive,
meaning all the participants received the same learning modules.
The results from this study can guide a future design of the
adaptive intervention that targets at the weakness of the specific
spatial skill and provide the appropriate learning materials. In
addition, the output from the dynamic response model portion
of the joint model indicates the learning programs with the two
designed interventions had the same effectiveness to improve
the response accuracy across gender, country and rotation
strategy. However, the dynamic response time model reveals
the speed difference between the female and male participants,
participants using colored and non-colored intervention and
participants using three different rotation strategies. Such
additional information from the dynamic response time are also
helpful in designing an adaptive learning system in the future.

The output of the item parameter estimations from the joint
learning model provides new insights into the revised PSVT:
R test questions as well. As reviewed in the beginning of this
paper, the PSVT:R and revised PSVT: R test questions have been
used in many research studies and in generally were reported to
have high reliability. The item parameters estimation from the
joint learning model indicates that some test questions, especially
the ones measure a simple rotation skill can have large guessing
parameter, and the ones with complex object and combination
of multiple difficult rotation skills may not have good diagnostic
information to differentiate the participates with low spatial
ability from those with high spatial ability. Carefully examining

the distractors may improve their diagnostic functioning. Lastly,
another important component in the joint model, is the Qmatrix
which links the items and the measured attributes. The correct
inference from the joint model and the diagnostic assessment
relies on how accurate the Q matrix is. The current study used
the Q matrix from a previous study, which was mainly specified
based on subject experts’ opinions. An exploratory clustering
method was used to validate the Q matrix, using both response
times and response accuracy. It was found that attributes defined
in the Q matrix did not contain the information about the degree
of complexity of the objects. In the future, we will further validate
this Q matrix using many recent techniques in psychometrics
(e.g., Chen et al., 2018a).
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APPENDIX

TABLE 1A | The Wald test results for selecting response measurement model.

Item Model p-value Adjusted p-value

Item 1 GDINA NA NA

Item 2 GDINA NA NA

Item 3 GDINA NA NA

Item 4 DINA 0.3407 1

Item 5 GDINA NA NA

Item 6 DINO 0.1682 1

Item 7 DINO 0.3288 1

Item 8 RRUM 0.5466 1

Item 9 RRUM 0.3861 1

Item 10 DINA 0.3447 1

Item 11 GDINA NA NA

Item 12 GDINA NA NA

Item 13 GDINA NA NA

Item 14 GDINA NA NA

Item 15 GDINA NA NA

Item 16 GDINA NA NA

Item 17 GDINA NA NA

Item 18 GDINA NA NA

Item 19 GDINA NA NA

Item 20 DINA 0.3018 1

Item 21 GDINA NA NA

Item 22 GDINA NA NA

Item 23 DINA 0.2031 1

Item 24 GDINA NA NA

Item 25 GDINA NA NA

Item 26 GDINA NA NA

Item 27 ACDM 0.9331 1

Item 28 DINA 0.6384 1

Item 29 RRUM 0.088 0.792

Item 30 RRUM 0.0579 0.6374

Item 31 GDINA NA NA

Item 32 GDINA NA NA

Item 33 GDINA NA NA

Item 34 GDINA NA NA

Item 35 DINO 0.7287 1

Item 36 DINA 0.8787 1

Item 37 DINA 0.0974 1

Item 38 DINA 0.7211 1

Item 39 DINA 0.0881 1

Item 40 DINA 0.1309 1

The p-value and adjusted p-value are from the Wald test between the selected reduced

DCM model and GDINA model. Thus, those values are NA for the items are best fitted

with GDINA model.
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We propose a new method that balances attribute coverage for short-length cognitive

diagnostic computerized adaptive testing (CD-CAT). The new method uses the attribute

discrimination index (ADI-based method) instead of the number of items that measure

each attribute [modified global discrimination index (MGDI)-based method] to balance

the attribute coverage. Therefore, the information that each attribute provides can be

captured. The purpose of the simulation study was to evaluate the performance of the

new method, and the results showed the following: (a) Compared with uncontrolled

attribute-balance coverage method, the new method produced a higher mastery pattern

correct classification rate (PCCR) and attribute correct classification rate (ACCR) with

both the posterior-weighted Kullback–Leibler (PWKL) and the modified PWKL (MPWKL)

item selection method. (b) Equalization of ACCR (E-ACCR) based on the ADI-based

method leads to better results, followed by the MGDI-based method. The uncontrolled

method leads to the worst results regardless of item selection methods. (c) Both

the ADI-based and MGDI-based methods produced acceptable examinee qualification

rates, regardless of item selection methods, although they were relatively low for the

uncontrolled condition.

Keywords: balance attribute coverage, cognitive diagnostic computerized adaptive testing, attribute

discrimination index, equalization of attribute correct classification rate, examinee qualification rate

INTRODUCTION

Cognitive diagnostic assessment (CDA) has become popular in test theory research in recent
years, which is developed to measure the cognitive skills of examinees (Leighton and Gierl, 2007;
Gierl et al., 2008). Compared with classical test theory (CTT) and the most commonly used
unidimensional item response theory (UIRT), which only provide overall scores to examinees, and
multidimensional item response theory (MIRT), which provides both overall score and subscale
scores, CDA can provide more detailed information about strengths and weaknesses of examinees
for a specific content domain, so that administrators can identify whether or not examinees possess
the attributes (Yao and Boughton, 2007; Lee et al., 2012). Evidence should be obtained of model
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fit when IRT models are used in real test data, and it is the same
with CDA models (Sinharay and Haberman, 2014). Otherwise,
the misfit of models may lead to a misleading conclusion.

Computerized adaptive testing (CAT) combines test theory
with computer technology to improve testing efficiency,
which has become a promising method in psychological and
educational measurement. CAT can provide equivalent or
even higher measurement accuracy of examinees’ latent skills,
with reductions in test length of up to 50%, compared with
traditional paper-and-pencil tests (Weiss, 1982). Further, items
administered in the test are matched with examinees’ estimated
latent trait level (Mao and Xin, 2013; Chang, 2015). Recently, to
maximize the benefits of both CDA and CAT, researchers have
attempted to combine CDA with CAT and named it cognitive
diagnostic CAT (Xu et al., 2003; McGlohen and Chang, 2008;
Cheng, 2009a; CD-CAT).

In CD-CAT, many factors can affect the reliability and validity
of the test, one of which is the balance of attribute-level coverage
(Cheng, 2010; Mao and Xin, 2013). Cheng (2010) pointed out
that it is very important to make sure that each attribute in
the test has been measured adequately or the reliability of
the test will not be reduced. Furthermore, test validity will
be at risk because of inadequate attribute coverage (Cheng,
2010). To balance attribute coverage in CD-CAT, Cheng (2010)
developed the modified maximum global discrimination index
(MMGDI) to build the item selection method. The MMGDI
method is based on the global discrimination index (GDI)
developed by Xu et al. (2003). The mechanism of MMGDI is
to accumulate the Kullback–Leibler (KL) information between
conditional distribution given estimated pattern profile and
conditional distribution given each of all possible candidate
pattern profiles. However, there is a problem that the GDI
method eliminates the coverage at the attribute level. To
overcome that shortcoming, the MMGDI method uses the
maximum priority index (MPI) method to balance attribute
coverage (Cheng and Chang, 2009). In the simulation study,
Cheng (2010) showed that the new item selection method not
only improved the attribute correct classification rate (ACCR)
and the rate of attribute master pattern (AMP) but also improved
the validity of the test.

The findings from Cheng (2010) indicated that the correct
classification rate had increased when the number of items
measuring each attribute is adequate, which implied that there is
a positive correlation between the numbers of items measuring
each attribute and the correct classification rate. However,
Finkelman et al. (2009) pointed out that, in some situations, even
if the test contained adequate numbers of items to measure each
attribute, different measurement accuracy could occur across
the attributes. In other words, the number of items measuring
each attributes maybe not the essential factor that affects the
measurement accuracy of latent skills.

Note that based on the information that each item provided,
CAT can produce accurate estimates of latent skills with lesser
items. We can infer that the information each item provided may
be the essential factor that affects the accuracy of latent skills
and affects the attribute measurement precision. Consequently,
we investigated the argument whether the information that

each attribute provided can be utilized as the index to balance
attribute coverage.

The purpose of the current study is to explore a new method
based on the information provided by each attribute, instead of
the number of items used in the test to measure each attribute
in CD-CAT. The major benefit of this approach is to balance
the attribute coverage in a short-length test. There are several
reasons for choosing a short-length test: First, CDAs can be
used to design as low-stake testing, and they help teachers or
administrators to understand the performance of students and
thus determine what should be done to improve the students’
performance (Roussos et al., 2007; Hartz and Roussos, 2008;
Mao and Xin, 2013; Kaplan et al., 2015). As a consequence,
cognitive diagnostic tests would be conducted more frequently
than traditional tests in some areas such as interim assessment
(Roussos et al., 2007; Hartz and Roussos, 2008; Mao and Xin,
2013; Kaplan et al., 2015). When CD-CAT is applied to interim
assessment, the AMPs of students should be obtained with short-
length tests (Zheng and Chang, 2016). Second, to the best of our
knowledge, among the studies focused on short-length test, there
are only two applied that CD-CAT. The first one is practiced by
Wang (2013), who introduced the mutual information (MI) item
selection method in CD-CAT. And the second one is practiced
by Zheng and Chang (2016), who developed two high-efficiency
algorithms to select items in CD-CAT. But no study appears to
have considered the situation that balances attribute coverage in
the test.

The remainder of the present paper is organized as follows.
The Reduced Reparameterized Unified Model section introduces
the cognitive diagnostic model (CDM) that we have used
in this study. The Item Selection Methods section presents
two chosen methods, PWKL and MPWKL information for
CD-CAT. After that, we introduce two methods to balance
attribute coverage: one is to balance the number of items
that measures each attribute and the other one is to balance
the information that each attribute provides. In a further
section, we report the results of a simulation study to
evaluate the performance of the novel balanced attribute
coverage method.

REDUCED REPARAMETERIZED UNIFIED
MODEL

We used the reduced reparameterized unified model (RRUM) in
the current study (Hartz, 2002), because previous studies have
demonstrated that its prototype, the RUM, is very useful for
formative assessment in practice (Jang, 2005; Wang et al., 2011).
RRUM has gained more attention for educational assessment by
researchers in recent years (Kim, 2011; Feng et al., 2013; Chiu
et al., 2016). Chiu et al. (2016) also pointed out that RRUM has
more flexibility than the “deterministic inputs, noisy ‘and’ gate”
(DINA) model proposed by Junker and Sijtsma (2001). The item
response function of the RRUM can be written as

P
(

xij = 1|αi

)

= π∗
j

K
∏

k=1

r∗jk
(1−αik)qjk , (1)
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where αi = (αi1,αi2, . . . ,αiK) is the AMP of examinee i; ηi is
the residual ability parameter of examinee i, which represents
the latent trait account for attributes that are not included in
the Q-matrix (McGlohen and Chang, 2008); K is the number of
attributes. π∗

j represents the probability that examinee i possesses

all of the required attributes for item j and correctly applies them,
which is formulated as π∗

j =
∏K

k=1 πjk
qjk . And r∗

jk
represents

the ratio that examinee i lacks attribute k but correctly applies
it to item j, which can be written as P

(

Yijk = 1|αik = 0
)

, and
examinee i possesses attribute k and correctly applies it to item
j, which can be written as P

(

Yijk = 1|αik = 1
)

, so r∗
jk

can be

described as

r∗jk =
P
(

Yijk = 1|αik = 0
)

P
(

Yijk = 1|αik = 1
) , (2)

where qjk is the attribute that item j measured, and qjk = 1
presents if item jmeasures attribute k, otherwise qjk = 0.

ITEM SELECTION METHODS

Posterior-Weighted Kullback–Leibler
Information Method
KL information assumes that all candidate AMPs, αc, share
1
2K

probabilities equally that belong to the true AMP for
each examinee at each step of item selection. Cheng (2009a,b)
commented that this assumption was unnecessary and may
lead to low test efficiency. Cheng also pointed out that
different candidate AMPs should have different probabilities
to be the true AMP, and then he proposed a new item
selection method that considered the posterior probability of
examinees’ responses. That modified approach was termed
PWKL information:

PWKLj
(

α̂
)

=
2K
∑

c=1

{[

1
∑

x=0

log

(

P
(

Xj = x|α̂
)

P
(

Xj = x|αc

)

)

P
(

Xj = x|α̂
)

]

L (αc|Xt−1)

}

,

(3)

and

L
(

αc|Xt−1
)

∝





t−1
∏

j=1

P
(

xj = 1|αc
)xj [1− P

(

xj = 1|αc
)]1−xj



 p (αc ) ,

where L (αc|Xt−1) is the likelihood function, Xt−1 is response
vector of t − 1 items, and p (αc) is the prior distribution of
αc. The item t will be selected for a specific examinee with
maximum PWKL information. Simulation studies have shown
that PWKL information outperformed KL information and
Shannon entropy (SHE) algorithms in most aspects (Cheng,
2009a,b; Wang, 2013).

Modified Posterior-Weighted
Kullback–Leibler Information Method
The MPWKL method modifies the PWKL method to lead to a
more reasonable result, especially in short-length test (Kaplan
et al., 2015). The PWKL method uses point estimate, whereas
the MPWKLmethod uses the entire posterior distribution. Thus,
more information can be gained from the MPWKL than the
PWKL method. The MPWKL information method is shown
as follows:

MPWKLij =
2k
∑

d=1







2k
∑

c=1

[

1
∑

x=0

log

(

P
(

Xij = x|αd

)

P
(

Xij = x|αc

)

)

P
(

Xij = x|αd

)

π (αc|Xn−1)

]

π(αc

∣

∣

∣

∣

∣

Xn−1)

}

. (4)

METHODS FOR BALANCING ATTRIBUTE
COVERAGE

Balance Attribute Coverage Based on
Number of Items That Measure Each
Attribute
Cheng and Chang (2009) introduced the MPI method to select
items to meet the constraints in IRT-based CAT. Later, Cheng
(2010) extended the MPI method to CD-CAT for balancing
attribute coverage. The definition of the attribute-balance index
(ABI) is

ABIj =
K
∏

k=1

(

Bk − bk

Bk

)

qjk

, (5)

where Bk is the lower bound of the number of items required
to measure attribute k, bk is the number of items measuring
attribute k that has already been selected, and qjk is the element
of Q-matrix. The value of ABI is non-negative. By combining
ABI and PWKL information methods, the modified global
discrimination index (MGDI) is formulated as

MGDIj = ABIj∗PWKL
(

α̂
)

=
K
∏

k=1

(

Bk − bk

Bk

)

∗PWKLj
(

α̂
)

(6)

An item with maximum MGDI will be administered as the next
item for a specific examinee. Cheng (2010) named it maximum
MGDI (MMGDI) item selection method. It is worth noting that
the MMGDI method will be used to select the next item if ABI
is larger than 0; otherwise, the PWKL information method will
be used. When qjk = 0, which means item j does not measure

attribute k, then
[

(Bk−bk)
Bk

]qjk = 1, which does not affect MGDIj.

Balance Attribute Coverage Based on
Attribute Discrimination Index
As mentioned in the Introduction, in some situations, even
though adequate items are used to measure each attribute, the
estimated accuracy may differ across attributes (Finkelman et al.,
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2009). The number of items measuring each attribute may be the
necessary condition to improve the AMPs’ accuracy. However,
the information that each attribute provides may also be an
essential factor to increase the test accuracy. Therefore, not only
measuring each attribute with the number of items but also
information that each attribute provides can be used to balance
attribute coverage.

Henson et al. (2008) developed the attribute discrimination
index (ADI) to compute the information each attribute provided.
Then Finkelman et al. (2010) developed a binary programming
method based on ADI to assemble tests automatically for CDM.
ADI aims to compute the expected KL information between any
two AMPs, with all the attributes holding constant except the
target attribute, within the ideal response pattern (IRP; Tatsuoka,
1995). Considering that the test that measures K attributes will
produce 2K(2K − 1) possible comparisons regardless of hierarchy
among attributes, a (2K × 2K) matrix Dj will be used to contain
all these values. Dj can be written as follows:

Djuv = Eαu

[

log

(

Pαu

(

xj
)

Pαv

(

xj
)

)]

=

Pαu (1) log

(

Pαu (1)

Pαv (1)

)

+ Pαu (0) log

(

Pαu (0)

Pαv (0)

)

, (7)

where Pαu

(

xj
)

and Pαv

(

xj
)

are response probabilities of item j
given AMPs αu and αv, respectively.Djuv represents the degree to
which a master (non-master) differed from non-master (master)
for the target attribute (Henson et al., 2008).

There are 2(K−1) comparisons of AMPs that differ only for
the target attribute k. Note that the KL information between two
AMPs is not symmetric. Therefore, two ADIs can be calculated
for item j: one is the power that discriminates the master
from non-master for the target attribute and the other one
discriminates the non-master from master. The formulations of
these two ADIs are

ADIjk1 =
∑

αu ,αv∈ �1

ωk1Djuv, (8)

ADIjk0 =
∑

αu ,αv∈ �0

ωk0Djuv, (9)

where ωk1 = p (αu|αk = 1),
�k1≡

{

αuk = 1 and αvk = 0 and αum = αvn ∀m 6= n
}

,
and ωk0 = p (αu|αk = 0), �k0 ≡
{

αuk = 0 and αvk = 1 and αum = αvn ∀m 6= n
}

. In general,
ωkg is the weight of Djuv. Two situations need to be considered:
First, there is no idea about the prior information of examinees
population; then all AMPs are equally likely, which means ωkg =

1
2(K−1) ; second, the situation in which each AMP has different
prior information and the estimates of the joint probabilities of
the AMPs will be used as the weight of Djuv (Henson et al., 2008).
Henson et al. (2008) defined the ADIs under the first situation as
ADI(A) and the second as ADI(B). Noting that ADI(A) is related
to items and unrelated to the knowledge states of examinees,
therefore, this index can be used to represent the degree that

the attribute is being measured by items. As a consequence, the
ADI(A)-based ABI (ADIA-ABI) can be defined as

ADI(A) − ABIj =
K
∏

k=1

(

ADI(A)k − adi(A)k

ADI(A)k

)

qjk

, (10)

where ADI(A)k is the lower bound ADI of attribute k and
the value of ADI(A)k is the average of ADI(A)k1 and ADI(A)k0

(Finkelman et al., 2010); adi(A)k represents ADI of attribute k
that has already been selected.

The difference between the number of items measuring each
attribute-based (MGDI-based) ABI and ADI(A)-based ABI is that
Bk and bk are both positive integers and ABIs are nonnegative,
whereas ADI(A)k and adi(A)k include any values that larger than
0. ADI(A)-ABI outcomes can produce negative values in some
situations, which are undesirable. Hence, we constrain negative
values to 0 when ADI(A) − ABIj < 0. By combining ADI(A)-
ABIj with PWKL or MPWKL information, the ADI-based item
selection method can be written as

Ij
(

α̂
)

∗
[

ADI(A) − ABI
]

= Ij
(

α̂
)

∗
K
∏

k=1

(

ADI(A)k − adi(A)k

ADI(A)k

)

qjk

,(11)

where I
(

α̂
)

represents PWKL information or MPWKL
information. If ADI(A)−ABI > 0, the next item will be selected
by Equation (10); otherwise, PWKL or MPWKL information
method will be used to select the next item.

SIMULATION STUDY

Manipulated Factors
We conducted a simulation study to investigate the performance
of the ADI-based method under different conditions. We
manipulated four independent factors in the study.

Item Pool
In this study, we had designed three item pools, which all
contained 775 items and measured five attributes in total. Item
pools were constructed based on the study of Huebner et al.
(2018) andWang et al. (2011). In item pool 1, item parameters π∗

j

and r∗
jk
were generated from uniform distributions U(0.75, 0.95)

andU(0.15, 0.50), respectively. Considering that r∗
jk
was relatively

large, hence, we labeled item pool 1 as the low discrimination
(LD) item pool. In item pool 2, high discrimination (HD) item
pool, item parameters π∗

j and r∗
jk
were generated from uniform

distributions U(0.75, 0.95) and U(0.05, 0.40), respectively. In
item pool 3, hybrid discrimination (HyD) item pool, item
parameter π∗

j was also generated from uniform distributions

U(0.75, 0.95), but r∗
jk
s were generated from uniform distributions

U(0.05, 0.50) contained in both low and high discriminations.
Tables 1, 2 present the descriptive statistics of LD, HD, and HyD
item pools.

Examinee Populations
We generated three examinee populations, each one containing
3,200 examinees. The first population (denote as Unif )
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TABLE 1 | Descriptive statistics of item parameters of LD item pool, HD item pool, and HyD item pool.

π* r*1 r*2 r*3 r*4 r*5

LD item pool Min 0.750 0.151 0.153 0.151 0.152 0.152

Max 0.950 0.499 0.496 0.500 0.500 0.499

Mean 0.848 0.327 0.326 0.328 0.335 0.329

SD 0.058 0.100 0.101 0.100 0.099 0.107

HD item pool Min 0.750 0.053 0.051 0.050 0.051 0.050

Max 0.949 0.400 0.399 0.400 0.400 0.400

Mean 0.850 0.217 0.230 0.233 0.227 0.225

SD 0.056 0.100 0.103 0.102 0.097 0.104

HyD item pool Min 0.750 0.052 0.051 0.051 0.052 0.052

Max 0.950 0.495 0.500 0.499 0.498 0.498

Mean 0.854 0.266 0.270 0.269 0.278 0.282

SD 0.059 0.125 0.125 0.131 0.124 0.129

LD item pool, low discrimination item pool; HD item pool, high discrimination item pool; HyD item pool, hybrid discrimination item pool.

TABLE 2 | Descriptive statistics of attribute discrimination index for each attribute of LD item pool, HD item pool, and HyD item pool.

A1 A2 A3 A4 A5

LD item pool Number of items 341 341 341 341 341

Sum of ADIk 136.959 139.476 139.460 136.731 139.873

Mean of ADIk 0.402 0.409 0.409 0.401 0.410

HD item pool Number of items 400 400 400 400 400

Sum of ADIk 179.699 166.479 169.338 171.138 174.643

Mean of ADIk 0.449 0.416 0.423 0.428 0.437

HyD item pool Number of items 377 355 363 382 355

Sum of ADIk 173.688 165.489 164.094 167.221 151.328

Mean of ADIk 0.461 0.466 0.452 0.438 0.426

LD item pool, low discrimination item pool; HD item pool, high discrimination item pool; HyD item pool, hybrid discrimination item pool; A1-A5, attribute 1 to attribute 5; ADI, attribute

discrimination index.

assumed that the AMP of each examinee, α, was generated
from a uniform distribution of 32 possible pattern profiles
with probability 1/32. Thus, each AMP had 100 examinees;
meanwhile, each examinee had a 0.5 chance to master each
attribute. Considering that correlations among attributes are
common in practice, we used a multivariate normal distribution
to describe the relationship among attributes for the second
and third populations (denote as Norm) (de la Torre and
Douglas, 2004; Cheng, 2009b; Kunina-Habenicht et al., 2012;
Liu et al., 2016). The mastery probabilities for the five attributes
were defined as 0.45, 0.50, 0.55, 0.60, and 0.65, respectively,
in both populations. The correlations among attributes were
set at 0.5 (low correlation) for the second population and 0.8
(high correlation) for the third population. Table 3 represents
the frequencies of examinees who possess each possible number
of attributes.

We obtained nine subgroups by crossing item pools and

examinee populations. These combinations were as follows:

LD item pool with the uniform distributed population (LD-

unif ); LD item pool with the normal distributed population
and 0.5 attribute correlation (LD-norm-0.5); LD item pool
with the normal distributed population and 0.8 attribute

correlation (LD-norm-0.8); HD item pool with the uniform
distributed population (HD-unif ); HD item pool with the
normal distributed population and 0.5 attribute correlation
(HD-norm-0.5); HD item pool with the normal distributed
population and 0.8 attribute correlation (HD-norm-0.8); HyD
item pool with the uniform distributed population (HyD-unif );
and HyD item pool with the normal distributed population
and 0.5 attribute correlation (HyD-norm-0.5); and HyD item
pool with the normal distributed population and 0.8 attribute
correlation (HyD-norm-0.8).

Constraints of Attribute-Balance Coverage
We considered three levels of constraint: Level 1 did not
constrain the coverage of attribute balance, whereas level
2 and level 3 added a constraint to it. Level 2 used the
method developed by Cheng (2010), who balanced attribute
coverage via the number of items measuring each attribute.
In Cheng’s simulation study, he set the lower bound of item
number that measures each attribute at 4 (Bk = 4) for a
30-item test; in the current study, we set the lower bound
at 2 (Bk = 2) for a 10-item test. Level 3 used the method
proposed in the current study that balance attribute coverage
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TABLE 3 | Frequencies of examinees exhibiting each possible number of attributes in each population.

Number of attributes 0 1 2 3 4 5

Number of examinees Unif 100 500 1,000 1,000 500 100

Norm-0.5 166 250 378 489 650 1,267

Norm-0.8 382 225 222 279 418 1,674

TABLE 4 | Results of mastery pattern correct classification rate (PCCR).

Uncontrolled MGDI based ADI based

PWKL MPWKL PWKL MPWKL PWKL MPWKL

LD-unif 0.398 0.391 0.582 0.590 0.580 0.582

LD-norm-0.5 0.470 0.458 0.579 0.579 0.591 0.598

LD-norm-0.8 0.507 0.515 0.551 0.557 0.570 0.575

HD-unif 0.378 0.410 0.705 0.706 0.675 0.675

HD-norm-0.5 0.486 0.481 0.686 0.693 0.678 0.685

HD-norm-0.8 0.579 0.578 0.678 0.682 0.692 0.702

HyD-unif 0.390 0.395 0.686 0.678 0.665 0.661

HyD-norm-0.5 0.465 0.443 0.632 0.635 0.647 0.646

HyD-norm-0.8 0.530 0.530 0.633 0.638 0.659 0.642

Uncontrolled, attribute-balance coverage not considered; MGDI-based, balance attribute coverage via MMGDI method; ADI-based, balance attribute coverage via ADI method; PWKL,

posterior-weighted Kullback–Leibler information method; MPWKL, modified posterior-weighted Kullback–Leibler information method; LD-unif, low discrimination item pool, uniform

distribution of examinees and ignorable correlation among attributes; LD-norm-0.5, low discrimination item pool, normal distribution of examinees and moderate correlation among

attributes, correlations among attributes set at 0.5; LD-norm-0.8, low discrimination item pool, normal distribution of examinees and moderate correlation among attributes, correlations

among attributes set at 0.8; HD-unif, high discrimination item pool, uniform distribution of examinees and ignorable correlation among attributes; HD-norm-0.5, high discrimination

item pool, normal distribution of examinees and moderate correlation among attributes, correlations among attributes set at 0.5; HD-norm-0.8, high discrimination item pool, normal

distribution of examinees and moderate correlation among attributes, correlations among attributes set at 0.8; HyD-unif, hybrid discriminating item pool, uniform distribution of examinees

and ignorable correlation among attributes; HyD-norm-0.5, hybrid discriminating item pool, normal distribution of examinees and moderate correlation among attributes, correlations

among attributes set at 0.5; HyD-norm-0.8, hybrid discriminating item pool, normal distribution of examinees and moderate correlation among attributes, correlations among attributes

set at 0.8.

via the information that each attribute provided (ADI), with
1 as the lower bound of information (ADI(A)k = 1). The
reason that setting ADI(A)k = 1 was that as can be seen
from Table 2, 1 was the lower bound of information for
each attribute that can provide approximately two items that
measure each attribute, which means level 3 and level 2 had the
same constraints.

Item Selection Methods
Cheng (2010) used KL information method to select items
successively, whereas many studies have demonstrated
that PWKL information method performed better than
KL information method in terms of pattern and ACCR
(Cheng, 2009a,b; Mao and Xin, 2013; Wang, 2013; Hsu
and Wang, 2015; Zheng and Chang, 2016). And the
MPWKL information method may perform even better
than PWKL (Kaplan et al., 2015). Thus, we adopted both
the PWKL and MPWKL information methods in the
current study.

We generated a total of 54 conditions study (3 item
pools × 3 examinee populations × 3 constraints of
attribute-balance coverage × 2 item selection methods).
We fixed the number of items in the test to 10 in all

conditions. The first item was selected randomly from
the item pool, with a maximum a posteriori (MAP)
method used to estimate the examinee’s AMP, and the
prior information of AMP assumed to follow a uniform
distribution. The study procedures were implemented by
R software.

Evaluation Criteria
We evaluated results against five criteria: mastery pattern
correct classification rate (PCCR), ACCR, equalization of ACCR
(E-ACCR), item exposure index, and examinee qualification rate.
E-ACCR is the ratio between the standard deviation of ACCR
and the mean of ACCR, which represents the stability of ACCR.
Examinee qualification rate means the proportion of examinees
who satisfy the prescribed constraints (e.g., a minimum of two
items thatmeasure each attribute under theMGDI-basedmethod
in this study), which ranged from 0 to 1. The computation of
PCCR and ACCR is as follows:

PCCR =
∑N

i=1 I
(

αi = α̂i

)

N
,

ACCRk =
∑N

i=1 I
(

αik = α̂ik

)

N
,
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where N is the number of examinees and I(. . . ) is an indicator
function. And item exposure index can be expressed as

χ2 =
N
∑

j=1

(expj − J
N )

2

J
N

,

expj =
Nadministered
j

N
,

where J is the number of items, Nadministered
j is the number of

items administered to examinees.

RESULTS

Table 4 lists the estimates of PCCR for each condition. The
data summarized in the table make several meaningful points.
First, the MPWKL information method performs similarly or
even better than the PWKL information method for both
LD and HD item pools, regardless of the methods that
constrain attribute coverage and distribution of the population.
Second, compared with uncontrolled conditions, both the
PWKL and MPWKL information methods lead to better PCCR
outcomes when attribute coverage was controlled, and there
are only minor differences between the MGDI-based and ADI-
based methods. Third, the ADI-based attribute-balance method
performs better than the MGDI-based method in normal
distribution populations with 0.8 attribute correlation, regardless
of the quality of the item pool. Fourth, the PCCRs in HyD item
pools are quite complex. Both the ADI-based and MGDI-based
attribute-balance methods perform better than uncontrolled
conditions. However, the MPWKL information method does not
always perform better than the PWKL information method in
all conditions.

Figures 1–3 depict the ACCR for each condition, and Table 5

represents the summary of ACCR and E-ACCR. They document
the following results: First, the MPWKL information method
has a similar performance or even outperforms the PWKL
information method with ACCR for both LD and HD item pools
with all populations under coverage controlled conditions and E-
ACCR inmost cases. Second, the coverage of ACCR and E-ACCR
under uncontrolled conditions performs the worst, whereas
they are comparable between the MGDI-based and ADI-based
methods. And most of the E-ACCRs of the MGDI-based method
perform slightly worse than the ADI-based method. Third, in the
LD and HD item pools, when the PWKL information method
was employed, the E-ACCR for uncontrolled conditions yields
worse results than does the MGDI-based method; meanwhile,
the ADI-based method leads to the best results. Fourth, in
the HyD item pool, the ACCRs and E-ACCRs with both
the ADI-based and MGDI-based attribute-balance methods
outperform uncontrolled conditions; meanwhile, the ADI-based
attribute-balance method performs the best under the condition
of HyD-norm-0.8.

The results of the item exposure rate and examinee
qualification rate for each condition are summarized in
Table 6. The following results can be drawn from the table:
First, both PWKL and MPWKL information methods lead

to acceptable item exposure, regardless of attribute-balance
constraints, quality of item pool, and population distribution.
However, the MGDI-based attribute coverage constraint gains
the worst outcomes. When the ADI-based attribute coverage
constraint is used, it mitigates the worst result but better
than the uncontrolled attribute coverage constraint for uniform
distribution populations with HD and HyD item pools. Second,
compared with uncontrolled attribute coverage constraint, the
examinee qualification rates of bothMGDI-based and ADI-based
attribute coverage constraints produce perfect results, regardless
of item selection methods. In addition, MGDI-based and ADI-
based attribute coverage constraints lead to consistent examinee
qualification rates with both PWKL and MPWKL information
methods. Moreover, an unexpected result appears that examinee
qualification rates for uniform distribution populations with HD
and HyD item pools are extremely low.

DISCUSSION AND CONCLUSION

CD-CAT captures the advantages of both CDA and CAT,
allowing the diagnosis of strengths and weaknesses of examinees
with fewer items. CD-CAT can be used for low-stakes testing, so
it can be adopted to provide detailed information on examinees
for educators regularly (Hartz and Roussos, 2008; Mao and
Xin, 2013; Kaplan et al., 2015). Thus, educators can provide
remedial instruction for those examinees who need help. It is
worth noting that the test length of CD-CAT should not be
too long, in order to avoid increasing the burden on students.
It should deviate from the original orientation by using a
computer-based test to reduce students’ burden and improve the
efficiency of testing and learning if students do not take the test
too long.

It is critical to consider the structure of short tests to
assess the knowledge states of examinees comprehensively
in CD-CAT. It is also important that each attribute should
be measured adequately. Cheng (2010) used the number of
items measuring each attribute to balance the coverage of
attributes. The current study uses the information that each
attribute provided to balance attribute coverage, as proposed
by Henson et al. (2008). The simulation study was conducted
to evaluate the performance of the new method, and the results
showed that compared with the uncontrolled attribute coverage
under the PWKL and MPWKL information methods, the
ADI-based attribute-balance coverage method (the new method)
improved both PCCR and ACCR. The reason is that when the
attribute-balance coverage constraint is not controlled, some
attributes may not be measured adequately; thus, the ADI is
small for many examinees. Henson et al. (2008) demonstrated
that the correlations are quite high between ADI and correct
classification rates. Therefore, ADI can be used as the indicator
of correct classification rates reasonably. Moreover, Cheng
(2010) pointed out that the smallest ACCR dominated the
PCCR, and he described this phenomenon as similar to Liebig’s
law of the minimum, which means the shortest stave is the
most important factor that affects the capacity of a barrel
with staves. In sum, considering that some ADIs are slightly
smaller when attribute-balance coverage is not controlled,
the ACCRs for some attributes are lower. As a consequence,
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FIGURE 1 | Attribute correct classification rates (ACCRs) under posterior-weighted Kullback–Leibler (PWKL) and modified PWKL (MPWKL) information methods for

low discrimination (LD) item pools. (A) PWKL method based. (B) MPWKL method based.

the PCCRs under uncontrolled conditions are lower than
those of MGDI-based and ADI-based attribute-balance
coverage methods.

The present results also show that, compared with the
uncontrolled method, both the ADI-based and MGDI-based
attribute-balance coverage methods produce noticeable better
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FIGURE 2 | Attribute correct classification rates (ACCRs) under posterior-weighted Kullback–Leibler (PWKL) and modified PWKL (MPWKL) information methods for

high discrimination (HD) item pools. (A) PWKL method based. (B) MPWKL method based.
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FIGURE 3 | Attribute correct classification rates (ACCRs) under posterior-weighted Kullback–Leibler (PWKL) and modified PWKL (MPWKL) information methods for

hybrid discrimination (HyD) item pools. (A) PWKL method based. (B) MPWKL method based.

results of PCCR and E-ACCR and slightly better ones of
ACCR. Although there are no noticeable differences of E-
ACCR between the ADI-based method and the MGDI-based

method, the ADI-based method performs slightly better for
most conditions. We infer that the ADI-based attribute-balance
coverage method produces more stable ACCR than the other
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TABLE 5 | Summary of ACCR and E-ACCR.

Uncontrolled MGDI based ADI based

PWKL MPWKL PWKL MPWKL PWKL MPWKL

LD-unif M 0.838 0.835 0.888 0.890 0.885 0.886

SD 0.040 0.047 0.018 0.016 0.016 0.013

E-ACCR 4.773 5.629 2.027 1.798 1.808 1.467

LD-norm-0.5 M 0.857 0.853 0.892 0.893 0.894 0.898

SD 0.033 0.028 0.012 0.011 0.009 0.012

E-ACCR 3.851 3.283 1.345 1.232 1.007 1.336

LD-norm-0.8 M 0.865 0.866 0.889 0.892 0.895 0.895

SD 0.026 0.017 0.013 0.011 0.013 0.012

E-ACCR 3.006 1.963 1.462 1.233 1.453 1.341

HD-unif M 0.840 0.849 0.926 0.926 0.919 0.920

SD 0.084 0.079 0.019 0.018 0.015 0.015

E-ACCR 10.000 9.305 2.052 1.944 1.632 1.630

HD-norm-0.5 M 0.850 0.847 0.926 0.927 0.923 0.924

SD 0.056 0.054 0.017 0.015 0.011 0.016

E-ACCR 6.588 6.375 1.836 1.618 1.192 1.732

HD-norm-0.8 M 0.873 0.871 0.924 0.924 0.928 0.930

SD 0.037 0.040 0.015 0.017 0.010 0.010

E-ACCR 4.238 4.592 1.623 1.840 1.078 1.075

HyD-unif M 0.846 0.845 0.922 0.919 0.916 0.913

SD 0.085 0.082 0.021 0.019 0.021 0.022

E-ACCR 10.047 9.704 2.278 2.067 2.293 2.410

HyD-norm-0.5 M 0.846 0.840 0.909 0.913 0.917 0.914

SD 0.063 0.068 0.022 0.025 0.024 0.023

E-ACCR 7.447 8.095 2.420 2.738 2.617 2.516

HyD-norm-0.8 M 0.862 0.859 0.914 0.915 0.920 0.916

SD 0.058 0.056 0.025 0.024 0.021 0.018

E-ACCR 6.729 6.519 2.735 2.623 2.283 1.965

Uncontrolled, attribute-balance coverage not considered; MGDI-based, balance attribute coverage via MMGDI method; ADI-based, balance attribute coverage via ADI method; PWKL,

posterior-weighted Kullback–Leibler information method; MPWKL, modified posterior-weighted Kullback–Leibler information method; LD-unif, low discrimination item pool, uniform

distribution of examinees and ignorable correlation among attributes; LD-norm-0.5, low discrimination item pool, normal distribution of examinees and moderate correlation among

attributes, correlations among attributes set at 0.5; LD-norm-0.8, low discrimination item pool, normal distribution of examinees and moderate correlation among attributes, correlations

among attributes set at 0.8; HD-unif, high discrimination item pool, uniform distribution of examinees and ignorable correlation among attributes; HD-norm-0.5, high discrimination

item pool, normal distribution of examinees and moderate correlation among attributes, correlations among attributes set at 0.5; HD-norm-0.8, high discrimination item pool, normal

distribution of examinees and moderate correlation among attributes, correlations among attributes set at 0.8; HyD-unif, hybrid discriminating item pool, uniform distribution of examinees

and ignorable correlation among attributes; HyD-norm-0.5, hybrid discriminating item pool, normal distribution of examinees and moderate correlation among attributes, correlations

among attributes set at 0.5; HyD-norm-0.8, hybrid discriminating item pool, normal distribution of examinees and moderate correlation among attributes, correlations among attributes

set at 0.8; E-ACCR, equalization of attribute correct classification rate.

two methods. Besides, regardless of item selection methods, all
examinees satisfied the prescribed constraints when the ADI-
based and MGDI-based methods have been used, whereas the
uncontrolled method failed for some examinees.

It is worth noting that when attribute-balance coverage
is uncontrolled, the examinee qualification rates for HD and
HyD item pools with uniform distribution populations are
extremely poor under both item selection methods, for still
unknown reasons. Therefore, a further study of that effect
is needed.

Some future studies can be conducted to improve and enhance
the application of the ADI-based attribute-balance coverage
method. First, a variable-length CD-CAT can be conducted to
evaluate the performance of the ADI-based method. Under

variable-length CD-CAT, the measurement precision or standard
error is fixed, and the number of items administered to
each examinee is different. Second, there is only one RRUM
model that has been used in the current study, which is a
non-compensatory model. More models can be considered to
verify the generalization of the ADI-based attribute-balance
coverage method, especially for compensatory models. Third,
the importance of each attribute to the item is assumed to be
equal, but it is common that some traits are more important
than others when more than one attribute is to be measured in
practice (Wang et al., 2014). Thus, researchers need to take the
relative importance of each attribute into account in a future
study. Lastly, how to choose the lower bound of the ADI is
an additional important issue. The value that has been used
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TABLE 6 | Results of item exposure rate and examinee qualification rate for each condition.

Uncontrolled MGDI based ADI based

PWKL MPWKL PWKL MPWKL PWKL MPWKL

Item exposure rate LD-unif 86.147 85.108 132.439 135.525 113.967 112.526

LD-norm-0.5 78.412 80.639 117.650 116.717 99.591 98.479

LD-norm-0.8 89.486 89.497 118.588 118.641 101.490 102.526

HD-unif 107.043 105.655 135.684 134.428 105.052 106.532

HD-norm-0.5 82.523 80.432 122.876 123.406 91.325 92.422

HD-norm-0.8 97.435 98.674 130.523 129.354 96.410 96.595

HyD-unif 108.915 106.501 140.560 137.609 105.359 106.776

HyD-norm-0.5 77.463 77.452 127.192 127.473 91.535 91.059

HyD-norm-0.8 86.915 86.931 128.974 128.897 92.644 93.363

Examinee qualification rate LD-unif 0.432 0.422 1.000 1.000 1.000 1.000

LD-norm-0.5 0.504 0.510 1.000 1.000 1.000 1.000

LD-norm-0.8 0.580 0.574 1.000 1.000 1.000 1.000

HD-unif 0.258 0.264 1.000 1.000 1.000 1.000

HD-norm-0.5 0.429 0.424 1.000 1.000 1.000 1.000

HD-norm-0.8 0.516 0.508 1.000 1.000 1.000 1.000

HyD-unif 0.287 0.290 1.000 1.000 1.000 1.000

HyD-norm-0.5 0.431 0.418 1.000 1.000 1.000 1.000

HyD-norm-0.8 0.501 0.501 1.000 1.000 1.000 1.000

Uncontrolled, attribute-balance coverage not considered; MGDI-based, balance attribute coverage via MMGDI method; ADI-based, balance attribute coverage via ADI method; PWKL,

posterior-weighted Kullback–Leibler information method; MPWKL, modified posterior-weighted Kullback–Leibler information method; LD-unif, low discrimination item pool, uniform

distribution of examinees and ignorable correlation among attributes; LD-norm-0.5, low discrimination item pool, normal distribution of examinees and moderate correlation among

attributes, correlations among attributes set at 0.5; LD-norm-0.8, low discrimination item pool, normal distribution of examinees and moderate correlation among attributes, correlations

among attributes set at 0.8; HD-unif, high discrimination item pool, uniform distribution of examinees and ignorable correlation among attributes; HD-norm-0.5, high discrimination

item pool, normal distribution of examinees and moderate correlation among attributes, correlations among attributes set at 0.5; HD-norm-0.8, high discrimination item pool, normal

distribution of examinees and moderate correlation among attributes, correlations among attributes set at 0.8; HyD-unif, hybrid discriminating item pool, uniform distribution of examinees

and ignorable correlation among attributes; HyD-norm-0.5, hybrid discriminating item pool, normal distribution of examinees and moderate correlation among attributes, correlations

among attributes set at 0.5; HyD-norm-0.8, hybrid discriminating item pool, normal distribution of examinees and moderate correlation among attributes, correlations among attributes

set at 0.8.

in the current study is a variation of the number of items
measuring each attribute in the study of Cheng (2010), but how
large the ADI should be to measure each attribute adequately
is still unknown. Thus, studies that address the adequacy of
the ADI in CD-CAT will provide some guidelines for further
test administrations.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

WC and TX proposed the original concept and designed the
fundamental study of this study. YW andXSwrote the simulation
study code and organized the article. All authors contributed to
the manuscript revision.

FUNDING

This research was supported by the Cultural Experts and Four
Groups of Talented People Foundation of China.

REFERENCES

Chang, H. H. (2015). Psychometrics behind computerized adaptive testing.

Psychometrika 80, 1–20. doi: 10.1007/s11336-014-9401-5

Cheng, Y. (2009a).When cognitive diagnosis meets computerized adaptive testing:

CD-CAT. Psychometrika 74, 619–632. doi: 10.1007/s11336-009-9123-2

Cheng, Y. (2009b). “Computerized adaptive testing for cognitive diagnosis,” in

Proceedings of the 2009 GMAC Conference on Computerized Adaptive Testing,

ed D. J. Weiss. Available online at: www.psych.umn.edu/psylabs/CATCentral/

Cheng, Y. (2010). Improving cognitive diagnostic computerized adaptive

testing by balancing attribute coverage: the modified maximum global

discrimination index method. Educ. Psychol. Meas. 70, 902–913.

doi: 10.1177/0013164410366693

Cheng, Y., and Chang, H. H. (2009). The maximum priority index method

for severely constrained item selection in computerized adaptive testing.

Br. J. Math. Stat. Psychol. 62, 369–383. doi: 10.1348/000711008X3

04376

Chiu, C. Y., Köhn, H. F., and Wu, H. M. (2016). Fitting the reduced RUM with

mplus: a tutorial. Int. J. Test. 16, 331–351. doi: 10.1080/15305058.2016.1148038

de la Torre, J., and Douglas, J. (2004). Higher-order latent trait models

for cognitive diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF022

95640

Frontiers in Psychology | www.frontiersin.org 12 February 2020 | Volume 11 | Article 22450

https://doi.org/10.1007/s11336-014-9401-5
https://doi.org/10.1007/s11336-009-9123-2
www.psych.umn.edu/psylabs/
https://doi.org/10.1177/0013164410366693
https://doi.org/10.1348/000711008X304376
https://doi.org/10.1080/15305058.2016.1148038
https://doi.org/10.1007/BF02295640
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wang et al. ADI- and MGDI-Based Methods

Feng, Y., Habing, B. T., and Huebner, A. (2013). Parameter estimation of the

reduced RUM using the EM algorithm. Appl. Psychol. Meas. 38, 137–150.

doi: 10.1177/0146621613502704

Finkelman, M., Kim, W., and Roussos, L. A. (2009). Automated test assembly

for cognitive diagnosis models using a genetic algorithm. J. Educ. Meas. 46,

273–292. doi: 10.1111/j.1745-3984.2009.00081.x

Finkelman, M. D., Kim, W., Roussos, L., and Verschoor, A. (2010). A binary

programming approach to automated test assembly for cognitive diagnosis

models. Appl. Psychol. Meas. 34, 310–326. doi: 10.1177/0146621609344846

Gierl, M. J., Wang, C., and Zhou, J. (2008). Using the attribute hierarchy method

to make diagnostic inferences about examinees’ cognitive skills in algebra on

the SAT©. J. Technol. Learn. Assess. 6:1–53. Available online at: https://eric.ed.

gov/?id=EJ838616

Hartz, S. (2002). A bayesian framework for the unified model for assessing cognitive

abilities: blending theory with practice (Unpublished doctoral dissertation).

University of Illinois at Urbana-Champaign, Champaign, IL, United States.

Hartz, S., and Roussos, L. (2008). The fusion model for skills diagnosis:

blending theory with practicality. ETS Res. Rep. Ser. 2008:i-57.

doi: 10.1002/j.2333-8504.2008.tb02157.x

Henson, R., Roussos, L., Douglas, J., and He, X. (2008). Cognitive diagnostic

attribute-level discrimination indices. Appl. Psychol. Meas. 32, 275–288.

doi: 10.1177/0146621607302478

Hsu, C. L., and Wang, W. C. (2015). Variable-length computerized adaptive

testing using the higher order DINA model. J. Educ. Meas. 52, 125–143.

doi: 10.1111/jedm.12069

Huebner, A., Finkelman, M. D., and Weissman, A. (2018). Factors affecting

the classification accuracy and average length of a variable-length

cognitive diagnostic computerized test. J. Comput. Adapt. Test. 6, 1–14.

doi: 10.7333/1802-060101

Jang, E. (2005). A validity narrative: effects of reading skills diagnosis on teaching

and learning in the context of NG TOEFL (Unpublished doctoral dissertation).

University of Illinois at Urbana-Champaign, Champaign, IL, United States.

Junker, B. W., and Sijtsma, K. (2001). Cognitive assessment models with few

assumptions, and connections with nonparametric item response theory. Appl.

Psychol. Meas. 25, 258–272. doi: 10.1177/01466210122032064

Kaplan, M., de la Torre, J., and Barrada, J. R. (2015). New item selection methods

for cognitive diagnosis computerized adaptive testing. Appl. Psychol. Meas. 39,

167–188. doi: 10.1177/0146621614554650

Kim, Y.-H. (2011). Diagnosing eap writing ability using the

reduced reparameterized unified model. Lang. Test. 28, 509–541.

doi: 10.1177/0265532211400860

Kunina-Habenicht, O., Rupp, A. A., and Wilhelm, O. (2012). The impact of

model misspecification on parameter estimation and item-fit assessment

in log-linear diagnostic classification models. J. Educ. Meas. 49, 59–81.

doi: 10.1111/j.1745-3984.2011.00160.x

Lee, Y. S., de la Torre, J., and Park, Y. S. (2012). Relationships between cognitive

diagnosis, CTT, and IRT indices: an empirical investigation. Asia Pac. Educ.

Rev. 13, 333–345. doi: 10.1007/s12564-011-9196-3

Leighton, J., and Gierl, M. (eds.). (2007). Cognitive Diagnostic Assessment for

Education: Theory and Applications. Cambridge: Cambridge University Press.

Liu, Y., Tian, W., and Xin, T. (2016). An application of M2 statistic to

evaluate the fit of cognitive diagnostic models. J. Educ. Behav. Stat. 41, 3–26.

doi: 10.3102/1076998615621293

Mao, X., and Xin, T. (2013). The application of the monte carlo approach

to cognitive diagnostic computerized adaptive testing with content

constraints. Appl. Psychol. Meas. 37, 482–496. doi: 10.1177/01466216134

86015

McGlohen, M., and Chang, H. H. (2008). Combining computer adaptive testing

technology with cognitively diagnostic assessment. Behav. Res. Methods 40,

808–821. doi: 10.3758/BRM.40.3.808

Roussos, L. A., DiBello, L. V., Stout, W., Hartz, S. M., Henson, R. A., and Templin,

J. L. (2007). “The fusion model skills diagnosis system,” in Cognitive Diagnostic

Assessment for Education: Theory and Applications, eds J. Leighton andM. Gierl

(Cambridge: Cambridge University Press), 275–318.

Sinharay, S., and Haberman, S. J. (2014). How often is the misfit of item response

theory models practically significant? Educ. Meas. Issues Pract. 33, 23–35.

doi: 10.1111/emip.12024

Tatsuoka, K. K. (1995). “Architecture of knowledge structures and cognitive

diagnosis: a statistical pattern recognition and classification approach,” in

Cognitively Diagnostic Assessment, eds P. D. Nichols, S. F. Chipman, and R. L

Brennan (New York, NY: Routledge), 327–359.

Wang, C. (2013). Mutual information item selection method in cognitive

diagnostic computerized adaptive testing with short test length.

Educ. Psychol. Meas. 73, 1017–1035. doi: 10.1177/00131644134

98256

Wang, C., Chang, H. H., and Huebner, A. (2011). Restrictive stochastic

item selection methods in cognitive diagnostic computerized adaptive

testing. J. Educ. Meas. 48, 255–273. doi: 10.1111/j.1745-3984.2011.0

0145.x

Wang, C., Zheng, C., and Chang, H. H. (2014). An enhanced approach to combine

item response theory with cognitive diagnosis in adaptive testing. J. Educ. Meas.

51, 358–380. doi: 10.1111/jedm.12057

Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive

testing. Appl. Psychol. Meas. 6, 473–492. doi: 10.1177/014662168200600408

Xu, X., Chang, H., and Douglas, J. (2003). “A simulation study to compare CAT

strategies for cognitive diagnosis,” in Paper presented at the annual meeting of

the American Educational Research Association (Chicago, IL).

Yao, L., and Boughton, K. A. (2007). A multidimensional item response modeling

approach for improving subscale proficiency estimation and classification.

Appl. Psychol. Meas. 31, 83–105. doi: 10.1177/0146621606291559

Zheng, C., and Chang, H. H. (2016). High-efficiency response distribution–

based item selection algorithms for short-length cognitive diagnostic

computerized adaptive testing. Appl. Psychol. Meas. 40, 608–624.

doi: 10.1177/0146621616665196

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wang, Sun, Chong and Xin. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org 13 February 2020 | Volume 11 | Article 22451

https://doi.org/10.1177/0146621613502704
https://doi.org/10.1111/j.1745-3984.2009.00081.x
https://doi.org/10.1177/0146621609344846
https://eric.ed.gov/?id=EJ838616
https://eric.ed.gov/?id=EJ838616
https://doi.org/10.1002/j.2333-8504.2008.tb02157.x
https://doi.org/10.1177/0146621607302478
https://doi.org/10.1111/jedm.12069
https://doi.org/10.7333/1802-060101
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/0146621614554650
https://doi.org/10.1177/0265532211400860
https://doi.org/10.1111/j.1745-3984.2011.00160.x
https://doi.org/10.1007/s12564-011-9196-3
https://doi.org/10.3102/1076998615621293
https://doi.org/10.1177/0146621613486015
https://doi.org/10.3758/BRM.40.3.808
https://doi.org/10.1111/emip.12024
https://doi.org/10.1177/0013164413498256
https://doi.org/10.1111/j.1745-3984.2011.00145.x
https://doi.org/10.1111/jedm.12057
https://doi.org/10.1177/014662168200600408
https://doi.org/10.1177/0146621606291559
https://doi.org/10.1177/0146621616665196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


ORIGINAL RESEARCH
published: 10 March 2020

doi: 10.3389/fpsyg.2020.00384

Frontiers in Psychology | www.frontiersin.org 1 March 2020 | Volume 11 | Article 384

Edited by:

Peida Zhan,

Zhejiang Normal University, China

Reviewed by:

Gongjun Xu,

University of Michigan, United States

Yinghan Chen,

University of Nevada, Reno,

United States

*Correspondence:

Jiwei Zhang

zhangjw713@nenu.edu.cn

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 08 January 2020

Accepted: 19 February 2020

Published: 10 March 2020

Citation:

Zhang Z, Zhang J, Lu J and Tao J

(2020) Bayesian Estimation of the

DINA Model With Pólya-Gamma

Gibbs Sampling.

Front. Psychol. 11:384.

doi: 10.3389/fpsyg.2020.00384

Bayesian Estimation of the DINA
Model With Pólya-Gamma Gibbs
Sampling

Zhaoyuan Zhang 1, Jiwei Zhang 2*, Jing Lu 1 and Jian Tao 1

1 Key Laboratory of Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal University,

Changchun, China, 2 Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, School of Mathematics and

Statistics, Yunnan University, Kunming, China

With the increasing demanding for precision of test feedback, cognitive diagnosis

models have attracted more and more attention to fine classify students whether

has mastered some skills. The purpose of this paper is to propose a highly effective

Pólya-GammaGibbs sampling algorithm (Polson et al., 2013) based on auxiliary variables

to estimate the deterministic inputs, noisy “and” gate model (DINA) model that have

been widely used in cognitive diagnosis study. The new algorithm avoids the Metropolis-

Hastings algorithm boring adjustment the turning parameters to achieve an appropriate

acceptance probability. Four simulation studies are conducted and a detailed analysis of

fraction subtraction data is carried out to further illustrate the proposed methodology.

Keywords: Bayesian estimation, cognitive diagnosis models, DINA model, Pólya-Gamma Gibbs sampling

algorithm, Metropolis-Hastings algorithm, potential scale reduction factor

1. INTRODUCTION

Modeling the interaction between examinee’s latent discrete skills (attributes) and items at the item
level for binary response data, cognitive diagnosis models (CDMs) is an important methodology
to evaluate whether the examinees have mastered multiple fine-grained skills, and these models
have been widely used in a variety of the educational and psychological researches (Tatsuoka,
1984, 2002; Doignon and Falmagne, 1999; Maris, 1999; Junker and Sijtsma, 2001; de la Torre
and Douglas, 2004; Templin and Henson, 2006; DiBello et al., 2007; Haberman and von Davier,
2007; de la Torre, 2009, 2011; Henson et al., 2009; von Davier, 2014; Chen et al., 2015). With
the increasing complexity of the problems in cognitive psychology research, various specific
and general formulations of CDMs have been proposed to deal with the practical problems.
There are several specific CDMs, widely known among them, are the deterministic inputs,
noisy “and” gate model (DINA; Junker and Sijtsma, 2001; de la Torre and Douglas, 2004; de
la Torre, 2009), the noisy inputs, deterministic, “and” gate model (NIDA; Maris, 1999), the
deterministic input, noisy “or” gate model (DINO; Templin and Henson, 2006) and the reduced
reparameterized unifiedmodel (rRUM; Roussos et al., 2007). In parallel with the specific CDMs, the
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general CDMs have also made great progress, including the
general diagnostic model (GDM; von Davier, 2005, 2008),
the log-linear CDM (LCDM; Henson et al., 2009), and the
generalized DINA (G-DINA; de la Torre, 2011). Parameter
estimation has been a major concern in the application of
CDMs. In fact, simultaneous estimations of items and examinee’s
latent discrete skills result in statistical complexities in the
estimation task.

Within a fully Bayesian framework, a novel and highly
effective Pólya-Gamma Gibbs sampling algorithm (PGGSA;
Polson et al., 2013) based on the auxiliary variables is proposed
to estimate the commonly used DINA model in this paper.
The PGGSA overcomes the disadvantages of Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970;
Chib and Greenberg, 1995; Chen et al., 2000), which requires
to repeatedly adjust the specification of tuning parameters to
achieve a certain acceptance probability and thus increases
the computational burden. More specifically, the Metropolis–
Hasting algorithm depends on the variance (tuning parameter)
of the proposal distribution and is sensitive to step size. If the
step size is too small, the chain will take longer to traverse
the target density. If the step size is too large, there will
be inefficiencies due to a high rejection rate. In addition,
the Metropolis-Hastings algorithm is relatively difficulty to
sample parameters with monotonicity or truncated interval
restrictions. Instead, it can improve the accuracy of parameter
estimation by employing strong informative prior distributions
to avoid violating the restriction conditions (Culpepper,
2016).

The rest of this paper is organized as follows. Section
2 contains a short introductions of DINA model, its
reparameterized form, and model identifications. A detailed
implementation of PGGSA is shown in section 3. In section
4, four simulations focus on the performance of parameter
recovery for the PGGSA, the results of comparing with the
Metropolis-Hastings algorithm, the analysis of sensitivity of
prior distributions for the PGGSA, the results of comparing
with Culpepper (2015)’s Gibbs algorithm on the attribute
classification accuracy and the estimation accuracy of class
membership probability parameters. In addition, the quality
of PGGSA is investigated using a fraction subtraction test data
in section 5. We conclude the article with a brief discussion
in section 6.

2. MODELS AND MODEL
IDENTIFICATIONS

The DINA model focuses on whether the examinee i has
mastered the k attribute, where i = 1, . . . ,N, k = 1, . . . ,K. Let
αik be a dichotomous latent attribute variable with values of 0
or 1 indicating absence or presence of a attribute, respectively.

αi = (αi1,αi2, . . . ,αiK)
′
is a vector of K dimensional latent

attributes for the ith examinee. Given the categorical nature of the
latent classes, αi belongs to one of C = 2K attribute latent classes.
If the ith examinee belongs to the cth classification, the attribute

vector can be expressed as αc = (αc1,αc2, . . . ,αcK)
′
. Considering

a test consisting of J items, each item j is associated with a vector

of K dimensional item attributes, qj =
(

qj1, . . . , qjK
)′
, where

qjk =







1, if attribute k is required by item j,

0, if attribute k is not required by item j.

Therefore, a Q matrix, Q =

{

qjk
}

J×K
, can be obtained by the J

item attribute vectors. The DINA model is conjunctive. That is,
the examinee i must possess all the required attributes to answer
the item j correctly. The ideal response pattern ηij can be defined
as follows

ηij =























1, if the examinee i possesses all the required
attributes for the item j,

0, if the examinee i does not master at least one
attribute for the item j.

ηij = I
(

α
′
iqj = q

′
jqj

)

=
K
∏

k=1

α
qjk
ik
, where I (·) denotes the indicator

function. The parameters for a correct response to item j when
given ηij are denoted by sj and gj. The slipping parameter sj and
the guessing parameter gj refer to the probability of incorrectly
answering the item when ηij = 1 and the probability of
correctly guessing the answer when ηij = 0, respectively. Let
Yij denote the observed item response for the ith examinee to
response jth item, Yij = 1 if the ith examinee correct answer
the jth item, 0 otherwise. The parameters sj and gj are formally
defined by

sj = p
(

Yij = 0
∣

∣ηij = 1
)

and gj = p
(

Yij = 1
∣

∣ηij = 0
)

.

The probabilities of observing response given attributes α are
represented by

fij = p
(

Yij = 1
∣

∣αi, sj, gj
)

=
(

1− sj
)ηij

g
1−ηij
j =



















1− sj, ηij =
K
∏

k=1

α
qjk
ik

= 1,

gj, ηij =
K
∏

k=1

α
qjk
ik

= 0.

(1)

and.

hij = 1− p
(

Yij = 1
∣

∣αi, sj, gj
)

=
[

1−
(

1− sj
)ηij g

1−ηij
j

]

=



















sj, ηij =
K
∏

k=1

α
qjk
ik

= 1,

1− gj, ηij =
K
∏

k=1

α
qjk
ik

= 0.

(2)

2.1. The Reparameterized DINA Model
To describe the relationship between the attribute vector and the
observed response, we can reexpress the DINA model as follow:

p
(

Yij = 1 |αi

)

= gj +
(

1− sj − gj
)

K
∏

k=1

α
qjk
ik
, (3)
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where the model discrimination index can be defined as 1− sj −
gj = IDIj (de la Torre, 2008). Based on the traditional DINA
model, we reparameterize sj and gj from the probability scale to
the logit scale (Henson et al., 2009; DeCarlo, 2011; von Davier,
2014; Zhan et al., 2017). That is,

ζj = logit
(

gj
)

,

βj = logit
(

1− sj
)

− logit
(

gj
)

,

where logit(x) = log (x/ (1− x)) . Therefore, the
reparameterized DINA model (DeCarlo, 2011) can be written as

logit
[

p
(

Yij = 1
∣

∣αi, ςj,βj

)]

= ςj + βj

K
∏

k=1

α
qjk
ik
, (4)

where ςj and βj are the item intercept and interaction
parameters, respectively.

2.2. The Likelihood Function of the
Reparameterized DINA Model Based on
the Latent Class
Suppose that the vector of item responses for the ith examinee
can be denoted as Y i =

(

Yi1, . . . ,YiJ

) ′. Let the vector of intercept
and interaction parameters for J items be ς and β , where ς =
(

ς1, . . . , ςJ
)

and β =

(

β1, . . . ,βJ

)

. Given the categorical nature
of the latent classes, αi belongs to one of C = 2K attribute latent
classes. For the ith examinee belonging to the cth classification,

the attribute vector is expressed as αc = (αc1,αc2, . . . ,αcK)
′
.

According the Equation (4), the probability of observing Y i that
the ith examinee belonging to the cth latent class answers J items
can be written as

p (Y i |αi = αc, ς ,β ) =
J
∏

j=1

[

p
(

Yij = 1
∣

∣αc, ςj,βj

)]Yij [1− p
(

Yij = 1
∣

∣αc, ςj,βj

)]1−Yij .(5)

where αi = αc denotes the examinee i belongs to the cth latent
class. p

(

Yij = 1
∣

∣αc, ςj,βj

)

is the probability that the examinee i
in class c correctly answers the item j.

Let πc = p (αc) be the probability of examinees for each class

c, c = 1, . . . ,C, and π = (π1, . . . ,πC)
′
is C dimensional vector of

class membership probabilities, where
C
∑

c=1
πc = 1. Therefore, the

probability of observing Y i given item parameters ς , β and class
membership probabilities π can be written as

p (Y i |ς ,β ,π ) =
C
∑

c=1

πcp (Y i |αi = αc, ς ,β ) . (6)

The likelihood function based on the latent class can be written as

p (Y |ς ,β ,π ) =
N
∏

i=1

C
∑

c=1

πcp (Y i |αi = αc, ς ,β ) . (7)

2.3. Model Identification
The model identification is an important cornerstone for
estimating parameters and practical applications. Chen et al.
(2015), Xu and Zhang (2016), and Xu (2017) discuss the DINA
model identification conditions. Gu and Xu (2019) further
provide a set of sufficient and necessary conditions for the
identifiability of the DINA model. That is,
Condition 1: (1) The Q-matrix is complete under the DINAmodel
and without loss of generality, we assume the Q-matrix takes the
following form:

Q =
(

IK

Q∗

)

J×K

, (8)

where IK is the K × K identify matrix and Q∗ is a (J − K) × K
submarix of Q.
(2) Each of the K attributes is required by at least three items.
Condition 2: Any two different columns of the submatrix Q∗ in
(8) are distinct.
Under the above two conditions, Gu and Xu (2019) give the
following identifiability result.
Theorem (Sufficient and Necessary Condition) Conditions 1 and
2 are sufficient and necessary for the identifiability of all the DINA
model parameters.

3. PÓLYA-GAMMA GIBBS SAMPLING
ALGORITHM

Polson et al. (2013) propose a new data augmentation strategy
for fully Bayesian inference in logistic regression. The data
augmentation approach appeals to a new class of Pólya-
Gamma distribution rather than Albert and Chib (1993)’s
data augmentation algorithm based on a truncated normal
distribution. Next, we introduce the Pólya-Gamma distribution.

Definition: Let {Tk}+∞
k=1

is a iid random variable sequences from
a Gamma distribution with parameters λ and 1. That is, Tk ∼
Gamma (λ, 1) . A random variable W follows a Pólya-Gamma
distribution with parameters λ > 0 and τ ∈ R, denoted W ∼
PG (λ, τ), if

W
D= 1

2π

+∞
∑

k=1

Tk
(

k− 1
2

)2 + τ 2

4π2

, (9)

where
D= denotes equality in distribution. In fact, the

Pólya-Gamma distribution is an infinite mixture of gamma
distributions which provide the plausibility to sample from
Gamma distributions.

Based on Polson et al. (2013, p. 1341, Equation 7)’s Theorem
1, the likelihood contribution of the ith examinee to answer the
jth item can be expressed as

L
(

ςj,βj,αi

)

=

[

exp

(

ςj + βj

K
∏

k=1

α
qjk
ik

)]Yij

1+ exp

(

ςj + βj

K
∏

k=1

α
qjk
ik

)
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∝ exp

[

kij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)]

×
∞
∫

0

exp

















−
Wij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

2

















p
(

Wij |1, 0
)

dWij, (10)

where kij = Yij − 1
2 . p

(

Wij |1, 0
)

is the conditional density of
Wij. That is, Wij ∼ PG (1, 0) . The auxiliary variable Wij follows
a Pólya-Gamma distribution with parameters (1, 0). Biane et
al. (2001) provide proofs of Equation (10). In addition, Polson
et al. (2013) further discuss Equation (10). Therefore, the full
conditional distribution of ς ,β ,α given the auxiliary variables
Wij can be written as

p
(

ς ,β j,α |W,Y
)

∝






























N
∏

i=1

J
∏

j=1

















exp

[

kij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)]

exp

















−
Wij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

2































































×







J
∏

j=1

[

p
(

ςj
)

p
(

βj

)]







{

N
∏

i=1

p (αi)

}

. (11)

where p (ς) , p (β), and p (α) are the prior distributions,
respectively. The joint posterior distribution based on the latent
classes is given by

p
(

ς ,β j,α,π ,W |Y
)

∝







N
∏

i=1

J
∏

j=1

C
∏

c=1

[

p
(

Yij = yij
∣

∣ςj,βj,αi = αc

)

f
(

Wij

∣

∣ςj,βj,αi = αc

)]}

×







J
∏

j=1

[

p
(

ςj
)

p
(

βj

)]







{

C
∏

c=1

p (πc)

}

.

where p (ς) , p (β), and p (π) are the prior
distributions, respectively.

Step 1: Sampling the auxiliary variable Wij, given the item
intercept and interaction parameters ςj,βj and αi = αc.
According to Equation (10), the full conditional posterior

distribution of the random auxiliary variableWij is given by

f
(

Wij

∣

∣ςj,βj,αi = αc

)

∝ exp

















−
Wij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

2

















p
(

Wij |1, 0
)

, (12)

According to Biane et al. (2001) and Polson et al. (2013; p. 1341),
the density function p

(

Wij |1, 0
)

can be written as

p
(

Wij |1, 0
)

=
∞
∑

v=0

(−1)v
(

2k+ 1
)

√

2πWij
exp

[

−
(

2k+ 1
)2

8Wij

]

. (13)

Therefore, f
(

Wij

∣

∣ςj,βj,αi = αc

)

is proportional to

∞
∑

v=0

(−1)v
(

2k+ 1
)

√

2πWij
exp

















−
(

2k+ 1
)2

8Wij
−

Wij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

2

















.

(14)
Finally, the specific form of the full conditional distribution of
Wij is as follows

Wij ∼ PG

(

1,

∣

∣

∣

∣

∣

ςj + βj

K
∏

k=1

α
qjk
ik

∣

∣

∣

∣

∣

)

. (15)

Next, the Gibbs samplers are used to draw the item parameters.
Step 2: Sampling the intercept parameter ςj for each item

j. The prior distribution of ςj is assumed to follow a normal
distribution, that is, ςj ∼ N

(

µς , σ
2
ς

)

. Given Y , W, β ,
and α, the fully condition posterior distribution of ςj is
given by

p
(

ςj
∣

∣Y ,W,α,βj

)

∝
N
∏

i=1































[

exp

(

ςj + βj

K
∏

k=1

α
qjk
ik

)]Yij

1+ exp

(

ςj + βj

K
∏

k=1

α
qjk
ik

)

f
(

Wij

∣

∣ςj,βj,αi = αc

)}

p
(

ςj
)

, (16)

where f
(

Wij

∣

∣ςj,βj,αi = αc

)

is equal to the following
equation (the details see Polson et al., 2013; p. 1341)
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f
(

Wij

∣

∣ςj,βj,αi = αc

)

=
{

cosh

(

2−1

∣

∣

∣

∣

∣

ςj + βj

K
∏

k=1

α
qjk
ik

∣

∣

∣

∣

∣

)}

20

Ŵ (1)

×
∞
∑

v=0

(−1)v
(

2k+ 1
)

√

2πWij
exp

















−
(

2k+ 1
)2

8Wij
−

Wij

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

2

















. (17)

After rearrangement, the full conditional posterior
distribution of ςj can be written as follows

p
(

ςj
∣

∣Y ,W,α,βj

)

∝
N
∏

i=1































[

exp

(

ςj + βj

K
∏

k=1

α
qjk
ik

)]Yij

1+ exp

(

ςj + βj

K
∏

k=1

α
qjk
ik

)
(18)

[

cosh

(

2−1

∣

∣

∣

∣

∣

ςj + βj

K
∏

k=1

α
qjk
ik

∣

∣

∣

∣

∣

)]

× exp

















−

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

Wij

2















































p
(

ςj
)

.

Varβj ×

















µβσ−2
β +

N
∑

i=1





(

K
∏

k=1

α
qjk
ik

)2

Wij





















N
∑

i=1

(

2Yij

K
∏

k=1

α
qjk
ik

−
K
∏

k=1

α
qjk
ik

− 2ςjWij

K
∏

k=1

α
qjk
ik

)

2

N
∑

i=1





(

K
∏

k=1

α
qjk
ik

)2

Wij





































Therefore, the fully condition posterior distribution of ςj
follow normal distribution with mean

Varςj×















µςσ−2
ς +

(

N
∑

i=1

Wij

)















N
∑

i=1

2Yij − 1− 2βjWij

K
∏

k=1

α
qjk
ik

2

N
∑

i=1

Wij





























,

and variance

Varςj =
(

σ−2
ς +

(

N
∑

i=1

Wij

))−1

.

Step 3: Sampling the interaction parameter βj for each item

j. The prior distribution of βj is assumed to follow a truncated

normal distribution to satisfy the model identification restriction

(Junker and Sijtsma, 2001; Henson et al., 2009; DeCarlo, 2012;

Culpepper, 2015). That is, βj ∼ N
(

µβ , σ
2
β

)

I
(

βj > 0
)

. Similarly,

given Y ,W, ς , and α, the full condition posterior distribution of
βj is given by

p
(

βj |Y ,W,α, ς
)

∝
N
∏

i=1































[

exp

(
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∏
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ik
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1+ exp

(

ςj + βj

K
∏
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α
qjk
ik

)
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∣

∣

∣

∣
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α
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∣
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∣

∣
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× exp

















−

(

ςj + βj

K
∏

k=1

α
qjk
ik

)2

Wij

2















































p
(

βj

)

.

Therefore, the fully condition posterior distribution of ςj
follow the truncated normal distribution with mean

and variance

Varβj =







σ−2
β +

N
∑

i=1





(

K
∏

k=1

α
qjk
ik

)2

Wij











−1

(20)

Step 4: Sampling the attribute vector αi for each examinee i.
Given Y ,W, ς , and β , we can update the ith examinee’s attribute
vector αi from the following multinomial distribution

αi |Y i,W i, ς , β ∼ Multinomial (1, [λi1, . . . , λiC]) . (21)

where the probability that the attribute vector αi belongs to the
cth(c = 1, . . . ,C) class can be written as

λic = P (αi = αc |Y i,W i, ς ,β ,π )

= πcp (Y i |αi = αc, ς ,β ) f (W i |αi = αc, ς ,β )

C
∑

c=1

πcp (Y i |αi = αc, ς ,β ) f (W i |αi = αc, ς ,β )

. (22)
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Step 5: Sampling the class membership probabilities π . The
prior of π is assumed to follow a Dirichlet distribution. I.e., π =

(π1, . . . ,πC) ∼Dirichlet(δ0, . . . , δ0) . The full condition posterior
distribution of the class membership probabilities π can be
written as

π |α1, . . . ,αC ∼ Dirichlet

(

δ0 +
N
∑

i=1

I (αi = α1) , . . . , δ0

+
N
∑

i=1

I (αi = αC)

)

. (23)

4. SIMULATION STUDY

4.1. Simulation 1
4.1.1. Simulation Design
In this simulation study, the purpose is to assess the performance
of the Pólya-Gamma Gibbs sampling algorithm. Considering
the test length is J = 30, and the number of the attribute
is set equal to K = 5. The Q-matrix is shown in Table 1,
where the design of Q-matrix satisfies Gu and Xu (2019)’s DINA
model identification conditions. For the true values of the class
membership probabilities, we only consider themost general case
that the class membership probabilities are flat though all class,
i.e., πc = 1

2K
, c = 1, . . . ,C, where C = 2K . Next, two factors

and their varied test conditions are simulated. (a) two sample
sizes (N = 1000, 2000) are considered; (b) Following Huebner
and Wang (2011) and Culpepper (2015), four noise levels are
considered to explore the relationship between noise level and
recovery by constraining the true values of the item parameters.
For each item, (b1) low noise level (LNL) case: sj = gj = 0.1;
the corresponding true values of reparameterized parameters are
ζj = −2.1972, βj = 4.3945; (b2) high noise level (HNL) case :
sj = gj = 0.2; the corresponding true values of reparameterized
parameters are ζj = −1.3863, βj = 2.7726; (b3) slipping higher
than guessing (SHG) case: sj = 0.2, gj = 0.1; the corresponding
true values of reparameterized parameters are ζj = −2.1972,
βj = 3.5835; (b4) guessing higher than slipping (GHS) case: sj =
0.1, gj = 0.2; the corresponding true values of reparameterized
parameters are ζj = −1.3863, βj = 3.5835. Fully crossing the
different levels of these two factors yield 8 conditions.

4.1.2. Priors
Based on the four noise levels, the corresponding four kinds of
non-informative prior are used. I.e.,

(b1) ζj ∼ N
(

−2.1972, 105
)

,βj ∼ N
(

4.3945, 105
)

I
(

βj > 0
)

;
(b2) ζj ∼ N

(

−1.3863, 105
)

,βj ∼ N
(

2.7726, 105
)

I
(

βj > 0
)

;
(b3) ζj ∼ N

(

−2.1972, 105
)

,βj ∼ N
(

3.5835, 105
)

I
(

βj > 0
)

;
(b4) ζj ∼ N

(

−1.3863, 105
)

,βj ∼ N
(

3.5835, 105
)

I
(

βj > 0
)

,

where the purpose of using non-informative priors is to eliminate
the influence of prior uncertainty on posterior inferences.
Similarly, the non-informative Dirichlet prior distribution is
employed for the class membership probabilities π . I.e.,

(π1, . . . ,πC) ∼ Dirichlet (1, . . . , 1).

TABLE 1 | The Q matrix design in the simulation study 1.

Attribute Q(matrix) Attribute Q(matrix)

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 16 0 1 0 1 0

2 0 1 0 0 0 17 0 1 0 0 1

3 0 0 1 0 0 18 0 0 1 1 0

4 0 0 0 1 0 19 0 0 1 0 1

5 0 0 0 0 1 20 0 0 0 1 1

6 1 0 0 0 0 21 1 1 1 0 0

7 0 1 0 0 0 22 1 1 0 1 0

8 0 0 1 0 0 23 1 1 0 0 1

9 0 0 0 1 0 24 1 0 1 1 0

10 0 0 0 0 1 25 1 0 1 0 1

11 1 1 0 0 0 26 1 0 0 1 1

12 1 0 1 0 0 27 0 1 1 1 0

13 1 0 0 1 0 28 0 1 1 0 1

14 1 0 0 0 1 29 0 1 0 1 1

15 0 1 1 0 0 30 0 0 0 1 1

4.1.3. Convergence Diagnostics
As an illustration of the convergence of parameter estimates, we
only consider the low noise level (LNL) case and the number
of examinees is 1,000. Two methods are used to check the
convergence of parameter estimates. One is the “eyeball” method
to monitor the convergence by visually inspecting the history
plots of the generated sequences (Hung and Wang, 2012; Zhan
et al., 2017), and another method is to use the Gelman-Rubin
method (Gelman and Rubin, 1992; Brooks and Gelman, 1998)
to check the convergence of parameter estimates.

To implement the MCMC sampling algorithm, chains of
length 20,000 with an initial burn-in period 10,000 are chosen.
Four chains started at overdispersed starting values are run for
each replication. The trace plots of Markov Chains for three
randomly selected items and class membership probabilities are
shown in Figure 1. In addition, the potential scale reduction
factor (PSRF; Brooks and Gelman, 1998) values of all parameters
are <1.1, which ensures that all chains converge as expected. The
trace plots of PSRF values are shown in the simulation 2.

4.1.4. Evaluation Criteria for Convergence and

Accuracy of Parameter Estimations
The accuracy of the parameter estimates is measured by two
evaluation criteria, i.e., Bias and Mean Squared Error (MSE). Let
η be the interested parameter. Assume thatM = 25 data sets are
generated. Also, let η̂(m) be the posterior mean obtained from the
mth simulated data set form = 1, . . . ,M.
The Bias for parameter is defined as

Bias (η) = 1

M

M
∑

m=1

(

η̂(m) − η

)

, (24)
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FIGURE 1 | The trace plots of the arbitrarily selected item and class membership probability parameters.

and the MSE for parameter is defined as

MSE (η) = 1

M

M
∑

m=1

(

η̂(m) − η

)2
. (25)

For illustration purposes, we only show the Bias and MSE of
ς , β , and π for the four noise levels based on 1,000 sample sizes
in Figures 2, 3. In the four noise levels, the Bias of ς , β , and π

are near the zero values. However, the MSE of ς and β increase
as the number of attributes required by the item increases. In the
low noise level, the performances of the recovery for ς and β are
well-based on the results of MSE, and the MSE of ς and β are

<0.0250. The performances for the high noise level are worst in
the four diagnosticity cases. Moreover, we find that when the item
tests a attribute, the MSE of ς is not much different from that of
β . However, the MSE of β is greater than that of ς when the item
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FIGURE 2 | The Bias of intercept, interaction and the latent class parameters under four different noise levels. The Q Matrix denotes the skills required for each item

along the x axis, where the black square = “1” and white square = “0.” The αck denotes the examinee who belongs to the cth latent class whether has mastered kth

skill, where the black square = “1” for the presence of a skill and white square = “0” for the absence of a skill, αc = (αc1, . . . ,αcK )
′. Note the Bias values are estimated

from 25 replications.

requires multiple attributes. The reason is due to a fact that the
number of examinees for ηij = 1 is almost equal to that of ηij = 0
when the item tests a attribute, which is accurate for estimating
the ς and β . Along with the increase in the attributes required
by the item, the number of examinees for ηij = 1 reduces and
the number of examinees for ηij = 0 increases, thus resulting in
the MSE of β higher than that of ς . Note that the MSE of β is
dependent on the number of examinees for ηij = 1.

The average Bias and MSE for ς , β , and π based on
eight different simulation conditions are shown in Table 2. The
following conclusions can be obtained. (1) Given a noise level,
when the number of examinees increases from 1,000 to 2,000,
the average MSE for ς and β show a decreasing trend. More
specifically, when the number of examinees increases from 1,000
to 2,000, in the case of low noise level (LNL), the average MSE of
ς decreases from 0.048 to 0.034, the average MSE of β decreases
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FIGURE 3 | The MSE of intercept, interaction and class membership probability parameters under four different diagnosticity cases. The Q Matrix denotes the skills

required for each item along the x axis, where the black square = “1” and white square = “0.” The αck denotes the examinee who belongs to the cth latent class

whether has mastered kth skill, where the black square = “1” for the presence of a skill and white square = “0” for the absence of a skill, αc = (αc1, . . . ,αcK )
′. Note the

MSE values are estimated from 25 replications.

from 0.0141 to 0.0107. In the case of high noise level (HNL), the
average MSE of ς decreases from 0.0163 to 0.0117, the average
MSE of β decreases from 0.0254 to 0.0239. In the case of the
slipping higher than the guessing (SHG), the average MSE of ς

decreases from 0.0139 to 0.0078, the average MSE of β decreases
from 0.0172 to 0.0159. In the case of the guessing higher than the
slipping (GHS), the average MSE of ς decreases from 0.0088 to
0.0041, the average MSE of β decreases from 0.0198 to 0.0181.

(2) Given a noise level, when the number of examinees increases
from 1,000 to 2,000, In the case of four kinds of noises, the
average MSE of π are basically the same and close to 0 under
the conditions of four noise levels. (3) Compared with the other
three noise level, the average MSE of ς and β are largest at
high noise level. In summary, the Bayesian algorithm provides
accurate estimates for ς , β , and π in term of various numbers
of examinees.

Frontiers in Psychology | www.frontiersin.org 9 March 2020 | Volume 11 | Article 38460

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhang et al. Bayesian Estimation Method

4.2. Simulation 2
In this simulation study, we compare MH algorithm and PGGSA
from two aspects: the accuracy and convergence. We consider
1,000 examinees to answer 30 items, and the number of the
attribute is set equal to K = 5. The true values of ζj and βj are set
equal to −2.1972 and 4.3945 for each item. The corresponding
true values of sj and gj are equal to 0.1 for each item. The class
membership probabilities are flat though all classes, i.e., πc =
1
2K
, c = 1, . . . ,C, where C = 2K . We specify the following

non-informative priors to the PGGSA and MH algorithm:

TABLE 2 | The average Bias and MSE for ς , β, and π .

Number of examinees 1,000

LNL (b1) HNL (b2) SHG (b3) GHS (b4)

BIAS

ς 0.0023 0.0046 0.0042 −0.0039

β −0.1077 −0.1016 −0.0235 −0.0248

π −0.0000 −0.0000 −0.0000 −0.0000

MSE

ς 0.0048 0.0163 0.0139 0.0088

β 0.0141 0.0254 0.0172 0.0198

π 0.0000 0.0000 0.0000 0.0000

Number of examinees 2,000

BIAS

ς 0.0089 0.0089 0.0023 −0.0020

β −0.0890 0.0588 −0.0003 −0.0041

π −0.0000 0.0000 −0.0000 0.0000

MSE

ς 0.004 0.0117 0.0078 0.0041

β 0.0107 0.0239 0.0159 0.0181

π 0.0000 0.0000 0.0000 0.0000

Note that the Bias and MSE denote the average Bias and MSE for the parameters. ς

represents all intercept parameters, β represents all interaction parameters, π represents

all class membership probabilities parameters.

ζj ∼ N
(

−2.1972, 105
)

,βj ∼ N
(

4.3945, 105
)

I
(

βj > 0
)

and

(π1, . . . ,πC) ∼ Dirichlet (1, . . . , 1) .
It is known that an improper proposal distribution for MH

algorithm can seriously reduce the acceptance probability of
sampling. Most of the posterior samples are rejected. Therefore,
the low sampling efficiency is usually unavoidable, and the
reduction in the number of valid samples may lead to incorrect
inference results. In contrast, our PGGSA takes the acceptance
probability as 1 to draw the samples from fully condition
posterior distributions. The following proposal distributions for
the intercept and interaction parameters are considered in the
process of implementing MH algorithm. The sampling details of
MH algorithm, see Appendix. Note that the class membership
probabilities are updated through the same way for the PGGSA
and MH algorithms.

• Case 1: ςj ∼ N(ς
(r)
j , 0.1), βj ∼ N(β

(r)
j , 0.1)I

(

βj > 0
)

.

• Case 2: ςj ∼ N(ς
(r)
j , 1),βj ∼ N(β

(r)
j , 1)I

(

βj > 0
)

.

To compare the convergence of all parameters for the PGGSA
and MH algorithm with different proposal distributions,
the convergence of item and class membership probability
parameters are evaluated by judging whether the values of
PSRF are <1.1. From Figure 4, we find that the intercept,
interaction and class membership probability parameters have
already converged at the 5,000 step iterations for the PGGSA.
The fastest convergence is the class membership probability
parameters followed by intercept parameters. For the MH
algorithm, some parameters do not converge after 5,000 step
iterations for the proposal distributions with the variances of 0.1.
The convergence of the proposal distributions with the variances
of 1 is worse than the convergence of the proposal distributions
with the variances of 0.1, even some parameters do not reach
convergence at the end of the 10,000 step iterations. Moreover,
the Bias and MSE are used to evaluate the performances of
the two algorithms in Table 3. It has been proved that the
selection of the proposal distribution has an important influence
on the accuracy of parameter estimation. The process of finding
the proper turning parameter is time consuming. In addition,

FIGURE 4 | The trace plots of PSRF values for the simulation study 2.
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we investigate the efficiency of the two algorithms from the
perspective of the time consumed by implementing them. On a
desktop computer [Intel(R) Xeon(R) E5-2695 V2 CPU] with 2.4
GHz dual core processor and 192 GB of RAM memory, PGGSA
and MH algorithm, respectively consume 3.6497 and 4.7456 h
when Markov chain are run for 20,000 iterations for a replication
experiment, where MH algorithm is used to implement the Case
1. In summary, PGGSA is more effective than MH algorithm in
estimating model parameters.

4.3. Simulation 3
This simulation study is to show that PGGSA is sufficiently
flexible to recover various prior distributions for the item and
class membership probability parameters. The simulation design
is as follows:

The number of the examinees is N = 1, 000, and the test
length is J = 30, and the number of the attributes is set equal
to K = 5. The true values of item intercept and interaction
parameters are −2.1972 and 4.3945 for each item at low noise
level. The class membership probabilities are flat though all
classes, i.e., πc = 1

2K
, c = 1, . . . ,C, where C = 2K .

The non-informative Dirichlet prior distribution is employed
for the class membership probabilities π . I.e., (π1, . . . ,πC) ∼
Dirichlet (1, . . . , 1), and two kinds of prior distributions are
considered for the intercept and interaction parameters:

TABLE 3 | Evaluating accuracy of parameter estimation using the two algorithms

in the simulation study 2.

PGGSA MH algorithm

under Case 1

MH algorithm

under Case 2

Bias MSE Bias MSE Bias MSE

ς 0.0023 0.0048 0.0016 0.0069 0.0021 0.0081

β −0.1077 0.0141 −0.1042 0.0152 −0.1087 0.0174

π −0.0000 0.0000 −0.0007 0.0005 −0.0004 0.0011

Note that the Bias and denote the average Bias and MSE for the parameters. ς represents

all intercept parameters, β represents all interaction parameters, π represents all latent

class probabilities parameters.

TABLE 4 | Evaluating the accuracy of parameters based on different prior

distributions in the simulation study 3.

Type of prior Evaluation index ς β π

Type I Bias 0.0024 −0.1044 −0.0000

MSE 0.0047 0.0134 0.0000

Type II Bias 0.0026 −0.1059 −0.0000

MSE 0.0047 0.0138 0.0000

Type III Bias 0.0022 −0.1068 −0.0000

MSE 0.0048 0.0140 0.0000

Type IV Bias 0.0023 −0.1077 −0.0000

MSE 0.0048 0.0141 0.0000

Note that the Bias and denote the average Bias and MSE for the parameters. ς represents

all intercept parameters, β represents all interaction parameters, π represents all latent

class probabilities parameters.

(1) Informative prior: Type I: ζj ∼ N (−2.1972, 0.5) ,
βj ∼ N (4.3945, 0.5) I

(

βj > 0
)

; Type II: ζj ∼
N (−2.1972, 1) ,βj ∼ N (4.3945, 1) I

(

βj > 0
)

;
(2) Non-informative prior: Type III: ζj ∼ N

(

−2.1972, 103
)

,
βj ∼ N

(

4.3945, 103
)

I
(

βj > 0
)

; Type IV: ζj ∼
N
(

−2.1972, 105
)

,βj ∼ N
(

4.3945, 105
)

I
(

βj > 0
)

.

PGGSA is iterated 20,000 times. The first 10,000 iterations are
discarded as burn-in period. 25 replications are considered in
this simulation study. The PSRF values of all parameters for
each simulation condition are <1.1. The Bias and MSE of the ζ ,
β , and π based on two kinds of prior distributions are shown
in Table 4.

TABLE 5 | Evaluating accuracy of attribute and class membership probability

parameter estimations using PGGSA and Gibbs algorithm in the simulation

study 4.

Attribute(α) CMP(π)

Noise level Algorithm CPCR AAMA Bias MSE

LNL PGGSA 0.8740 0.9693 −0.0000 0.0000

Gibbs 0.8722 0.9688 −0.0000 0.0000

HNL PGGSA 0.5643 0.8696 −0.0000 0.0000

Gibbs 0.5697 0.8718 −0.0000 0.0000

SHG PGGSA 0.7480 0.9336 −0.0000 0.0000

Gibbs 0.7429 0.9308 −0.0000 0.0000

GHS PGGSA 0.8436 0.9310 −0.0000 0.0000

Gibbs 0.8484 0.9338 −0.0000 0.0000

Note that the CMP denotes the class membership probability. Bias and MSE denote the

average Bias and MSE for the class membership probability parameters.

FIGURE 5 | The trace plots of PSRF values for the real data.
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4.3.1. Result Analysis
From Table 4, we find that the Bias and MSE of ς , β and π

are almost the same under different prior distributions. More
specifically, the Bias of ς ranges from 0.0022 to 0.026, β ranges
from−0.1077 to−0.1044, and the Bias of π under the two kinds
of prior distributions is equal to−0.0000. In addition, theMSE of
ς ranges from 0.0047 to 0.0048, β ranges from 0.0134 to 0.0141,
and the MSE of π under the two kinds of prior distributions
is equal to −0.0000. This shows that the accuracy of parameter
estimation can be guaranteed by PGGSA, no matter what the
informative prior or non-informative distributions are chosen.

4.4. Simulation 4
The main purpose of this simulation study is to compare PGGSA
and Culpepper (2015)’s Gibbs sampling algorithm (Geman and
Geman, 1984; Tanner andWong, 1987; Gelfand and Smith, 1990;
Albert, 1992; Damien et al., 1999; Béguin and Glas, 2001; Sahu,
2002; Bishop, 2006; Fox, 2010; Chen et al., 2018; Lu et al., 2018) on
the attribute classification accuracy and the estimation accuracy
of class membership probability parameter (π).

The number of the examinees is N = 1, 000. Considering
the test length is J = 30, and the number of the attribute is set
equal to K = 5. The Q-matrix is shown in Table 1. Four noise
levels are considered in this simulation, i.e., LNL, HNL, SHG, and
GHS. The true values of item parameters under the four noise
levels, see the simulation study 1. For the true values of the class
membership probabilities, we only consider themost general case
that the class membership probabilities are flat though all classes,
i.e., πc = 1

2K
, c = 1, . . . ,C, where C = 2K .

For the prior distributions of the two algorithms, we use the
non-informative prior distributions to eliminate the influence
of the prior distributions on the posterior inference. The

non-informative Dirichlet prior distribution is employed for
the class membership probabilities π . I.e., (π1, . . . ,πC) ∼
Dirichlet (1, . . . , 1), and the non-informative prior distributions
of item parameters under the two algorithms based on the four
noise levels are set as follows

• (LNL case): PGGSA: ζj ∼ N
(

−2.1972, 105
)

,βj ∼
N
(

4.3945, 105
)

I
(

βj > 0
)

. v.s. Gibbs algorithm:
sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I

(

gj < 1− sj
)

;
• (HNL case): PGGSA: ζj ∼ N

(

−1.3863, 105
)

,βj ∼
N
(

2.7726, 105
)

I
(

βj > 0
)

. v.s. Gibbs algorithm:
sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I

(

gj < 1− sj
)

;
• (SHG case): PGGSA: ζj ∼ N

(

−2.1972, 105
)

,βj ∼
N
(

3.5835, 105
)

I
(

βj > 0
)

. v.s. Gibbs algorithm:
sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I

(

gj < 1− sj
)

;
• (GHS case): PGGSA: ζj ∼ N

(

−1.3863, 105
)

,βj ∼
N
(

3.5835, 105
)

I
(

βj > 0
)

. v.s. Gibbs algorithm:
sj ∼ Beta (1, 1) , gj ∼ Beta (1, 1) I

(

gj < 1− sj
)

.

PGGSA and Gibbs algorithm are iterated 20,000 times. The
first 10,000 iterations are discarded as burn-in period for the
two algorithms. Twenty-five replications are considered for the
two algorithms in this simulation study. The PSRF values of all
parameters for each simulation condition are <1.1. Culpepper’s
the R “dina” package is used to implement the Gibbs sampling.

The correct pattern classification rate (CPCR), the average
attribute match rate (AAMR) are used as the evaluation criteria
to evaluate the attributes. These statistics are defined as

CPCR = 1

N

N
∑

i=1

I (αi = α̂i) , AAMA = 1

N × K

N
∑

i=1

K
∑

k=1

I (αik = α̂ik) .

(26)

TABLE 6 | The Q matrix design and MCMC estimations of ς and β.

Attribute(Q Matrix) ς̂ ̂β

Item α1 α2 α3 α4 α5 EAP SD HPDI EAP SD HPDI

1 1 0 0 0 0 −2.3274 0.0277 [−2.4998,−1.9766] 3.3884 0.0662 [2.8484, 3.8721]

2 1 1 1 1 0 −1.2990 0.0225 [−1.5639,−1.0087] 3.4200 0.0947 [2.8714, 4.0615]

3 1 0 0 0 0 −1.2247 0.0276 [−1.5357,−1.0000] 4.2999 0.0294 [3.9575, 4.4999]

4 1 1 1 1 1 −1.8944 0.0358 [−2.2841,−1.5472] 3.8815 0.1217 [3.2857, 4.4977]

5 0 0 1 0 0 −1.7971 0.1042 [−2.4667,−1.2948] 2.9899 0.1145 [2.5007, 3.6131]

6 1 1 1 1 0 −2.3961 0.0113 [−2.4999,−2.1653] 3.7058 0.0817 [3.1377, 4.2461]

7 1 1 1 1 0 −2.1109 0.0322 [−2.4999,−1.8117] 4.3549 0.0223 [4.0401, 4.4998]

8 1 1 0 0 0 −1.3433 0.0409 [−1.7158,−1.0005] 4.1817 0.0558 [3.7427, 4.4999]

9 1 0 1 0 0 −1.6266 0.0566 [−2.0725,−1.1512] 4.2735 0.0384 [3.8794, 4.4998]

10 1 0 1 1 1 −1.5226 0.0246 [−1.8180,−1.2110] 4.1072 0.0796 [3.5678, 4.4999]

11 1 0 1 0 0 −1.7813 0.0681 [−2.3048,−1.2903] 4.0454 0.0884 [3.5121, 4.4999]

12 1 0 1 1 0 −2.3802 0.0119 [−2.4998,−2.1534] 4.2212 0.0481 [3.7945, 4.4994]

13 1 1 1 1 0 −1.8221 0.0399 [−2.2142,−1.4328] 3.5878 0.1009 [2.9818, 4.1937]

14 1 1 1 1 1 −2.4279 0.0058 [−2.4999,−2.2647] 3.8646 0.0982 [3.3310, 4.4741]

15 1 1 1 1 0 −2.4298 0.0060 [−2.4999,−2.2551] 4.0033 0.0765 [3.5339, 4.4946]

Note that α1 denotes the skill of subtract basic fractions, α2 denotes the skill of reduce and simplify, α3 denotes the skill of separate whole from fraction, α4 denotes the skill of borrow

from whole, α5 denotes the skill of convert whole to fraction. EAP denotes expected a posteriori estimator. SD denotes standard deviation. HPDI denotes 95% highest posterior density

intervals (HPDI).
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TABLE 7 | The posterior probability distribution of the latent class parameters for

the Fraction Subtraction Test.

Latent classes π̂

α1 α2 α3 α4 α5 EAP SD HPDI

0 0 0 0 0 1.909% 0.0003 [0.0000, 0.0542]

1 0 0 0 0 0.766% 0.0000 [0.0000, 0.0208]

0 1 0 0 0 1.743% 0.0002 [0.0000, 0.0504]

0 0 1 0 0 1.299% 0.0001 [0.0000, 0.0367]

0 0 0 1 0 2.001% 0.0002 [0.0000, 0.0533]

0 0 0 0 1 1.790% 0.0002 [0.0000, 0.0540]

1 1 0 0 0 0.677% 0.0000 [0.0000, 0.0190]

1 0 1 0 0 1.898% 0.0001 [0.0000, 0.0443]

1 0 0 1 0 0.756% 0.0000 [0.0000, 0.0203]

1 0 0 0 1 0.822% 0.0000 [0.0000, 0.0222]

0 1 1 0 0 1.162% 0.0001 [0.0000, 0.0339]

0 1 0 1 0 1.808% 0.0002 [0.0000, 0.0507]

0 1 0 0 1 1.943% 0.0003 [0.0000, 0.0567]

0 0 1 1 0 1.242% 0.0001 [0.0000, 0.0330]

0 0 1 0 1 1.165% 0.0001 [0.0000, 0.0328]

0 0 0 1 1 1.778% 0.0002 [0.0000, 0.0486]

1 1 1 0 0 10.146% 0.0039 [0.0002, 0.2029]

1 1 0 1 0 0.709% 0.0000 [0.0000, 0.0198]

1 1 0 0 1 0.764% 0.0000 [0.0000, 0.0205]

1 0 1 1 0 0.546% 0.0000 [0.0000, 0.0140]

1 0 1 0 1 1.782% 0.0001 [0.0000, 0.0419]

1 0 0 1 1 0.751% 0.0000 [0.0000, 0.0201]

0 1 1 1 0 1.326% 0.0001 [0.0000, 0.0370]

0 1 1 0 1 1.181% 0.0001 [0.0000, 0.0357]

0 1 0 1 1 1.675% 0.0002 [0.0000, 0.0473]

0 0 1 1 1 1.167% 0.0001 [0.0000, 0.0335]

1 1 1 1 0 9.680% 0.0002 [0.0667, 0.1264]

1 1 1 0 1 11.119% 0.0038 [0.0001, 0.2078]

1 1 0 1 1 0.688% 0.0000 [0.0000, 0.0195]

1 0 1 1 1 0.429% 0.0000 [0.0000, 0.0119]

0 1 1 1 1 1.119% 0.0001 [0.0000, 0.0320]

1 1 1 1 1 34.142% 0.0004 [0.2998, 0.3844]

Note that α1 denotes the skill of subtract basic fractions, α2 denotes the skill of reduce

and simplify, α3 denotes the skill of separate whole from fraction, α4 denotes the skill of

borrow from whole, α5 denotes the skill of convert whole to fraction.

where α̂i = (α̂i1,αi2, . . . ,αiK)
′
represents examinee i′s estimated

attribute patterns. Next, the evaluation results of the accuracy of
the two algorithms for attribute patterns and class membership
probability parameters are shown in Table 5.

In Table 5, we find that the results of the attributes
classification accuracy (CPCR and AAMA criteria) are basically
the same for PGGSA and Gibbs algorithm under four kinds of
noise levels. More specifically, the values of CPCR and AAMA
for two algorithms under the HNL case are lowest. At the LNL
case, the values of CPCR and AAMA for two algorithms are
the highest. In addition, the CPCR value for the SHG case is
lower than the CPCR value for the GHS, while the corresponding
AAMA values are basically the same for the SHG case and GHS

case. This indicates that slipping parameters (s) have important
influence on the CPCR. In term of the two algorithms, the Bias
and MSE of the classification membership parameters (π) are
basically the same and close to zero under the four noise levels.

5. EMPIRICAL EXAMPLE

In this example, a fraction subtraction test data is analyzed
based on Tatsuoka (1990), Tatsuoka (2002), and de la Torre
and Douglas (2004). The middle school students of 2,144 take
part in this test to response 15 fraction subtraction items, where
five attributes are measured, including subtract basic fractions,
reduce and simplify, separate whole from fraction, borrow from
whole, and convert whole to fraction. We choose 536 of 2,144
students in this study. These students are divided into 25 latent
classes based on the five attributes. The reparameterized DINA
model is used to analyze the cognitive response data.

The priors of parameters are also the same as the simulation 1.
I.e., the non-informative priors are used in this empirical example
analysis. To implement PGGSA, chains of length 20,000 with an
initial burn-in period 10,000 are chosen. The PSRF is used to
evaluate the convergence of each parameters. The trace plots of
PSRF values for all parameters is shown in Figure 5. We find that
the values of PSRF are <1.1.

The Q matrix, the expected a posteriori (EAP) estimators of
the item parameters, the corresponding standard deviation (SD),
and 95% highest posterior density intervals (HPDIs) of these
item parameters are shown in Table 6. Based on the Table 6, we
transform intercept and interaction parameters into traditional
slipping and guessing parameters to analyze item characteristics.
We find that the expected a posteriori (EAP) estimations of
the five items with the lowest slipping are item 3, item 8,
item 9, item 10, and item 11 in turn. The EAP estimations of
slipping parameters for the five items are 0.0461, 0.0585, 0.0708,
0.0754, and 0.1039. This shows that these items are not easy to
slipping compared with the other ten items. In addition, the EAP
estimations of five itemswith the highest guessing are item 3, item
2, item 8, item 10, and item 11 in turn. The EAP estimations
of guessing parameters for the five items are 0.2271, 0.2143,
0.2069, 0.1790, and 0.1441. Furthermore, we find that items 3,
8, 10, and 11 have low slipping parameters and high guessing
parameters, which indicates that these items are more likely to
be guessed correctly.

The EAP estimations of the class membership probabilities,
π̂c, c = 1, . . . , 32, and the corresponding SD and 95% HPDI
are reported in Table 7. The top five classes that the majority
of examinees are classified into these classes are respectively
“11111,”“11101,”“11100,”“11110,” and “00010.”The estimation
results show that π̂32 = 34.142% of the examinees have mastered
all the five skills, and π̂28 = 11.119% of the examinees have
mastered the four skills except the skill of borrow from whole,
and the examinees who only have mastered the three skills of
subtract basic fractions, reduce and simplify, separate whole from
fraction account for π̂17 = 10.146%, and π̂27 = 9.680% of the
examinees have mastered the four skills except the skill of convert
whole to fraction, and the examinees who only have mastered
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a skill of skill of borrow from whole account for π̂3 = 2.001%.
In addition, among the thirty-two classes, the class with the
lowest number of the examinees is π̂30 = 0.429%. I.e., when the
examinees have mastered the skills of subtract basic fractions,
separate whole from fraction, borrow from whole, and convert
whole to fraction, the proportion of examinees who do notmaster
the skill of reduce and simplify is very low. According to the π̂3 =
1.743% and π̂30 = 0.429%, we find that the skill of reduce and
simplify is easier to master than the other four skills.

6. CONCLUSION

In this paper, a novel and effective PGGSA based on
auxiliary variables is proposed to estimate the widely applied
DINA model. PGGSA overcomes the disadvantages of MH
algorithm, which requires to repeatedly adjust the specification
of tuning parameters to achieve a certain acceptance probability
and thus increases the computational burden. However, the
computational burden of the PGGSA becomes intensive
especially as the CDMs become more complex, when a large
number of examinees or the items is considered, or a large
number of the MCMC sample size is used. Therefore, it is
desirable to develop a standing-alone R package associated with
C++ or Fortran software for more extensive CDMs and large-
scale cognitive assessment tests.

In addition, Pólya-Gamma Gibbs sampling algorithm can be
used to estimate many cognitive diagnosis models, which is not
limited to the DINA model. These cognitive diagnostic models

include DINO (Templin and Henson, 2006), Compensatory

RUM (Hartz, 2002; Henson et al., 2009), and log-linear CDM
(LCDM; von Davier, 2005; Henson et al., 2009) and so on. More
specifically, first of all, the parameters of these cognitive diagnosis
models are reparameterized, and then the logit link function is
used to link these parameters with the response. Further, we can
use Pólya-Gamma Gibbs sampling algorithm to estimate these
reparameterized cognitive diagnosis models. Discussions of the
reparameterized cognitive diagnosis models based on logit link
function, see Henson et al. (2009).
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In recent decades, cognitive diagnostic models (CDMs) have been intensively
researched and applied to various educational and psychological tests. However,
because existing CDMs fail to consider rater effects, the application of CDMs to
constructed-response (CR) items that involve human raters is seriously limited. Given
the popularity of CR items, it is desirable to develop new CDMs that are capable of
describing and estimating rater effects on CR items. In this study, we developed such
new CDMs within the frameworks of facets models and hierarchical rater models, using
the log-linear cognitive diagnosis model as a template. The parameters of the new
models were estimated with the Markov chain Monte Carlo methods implemented in
the freeware JAGS. Simulations were conducted to evaluate the parameter recovery of
the new models. Results showed that the parameters were recovered fairly well and the
more data there were, the better the recovery. Implications and applications of the new
models were illustrated with an empirical study that adopted a fine-grained checklist to
assess English academic essays.

Keywords: cognitive diagnostic models, facets models, hierarchical rater models, rater effect, item response
theory

In the past few decades, extensive research has been conducted in the area of cognitive diagnosis,
and a wide range of cognitive diagnostic models (CDMs) (also called diagnostic classification
models; DCMs) has been developed to provide fine-grained information about students’ learning
strengths and weaknesses (Tatsuoka, 1985; Templin, 2004; de la Torre, 2011; Chiu and Douglas,
2013; Hansen and Cai, 2013). Popular CDMs include the deterministic inputs, noisy and gate
(DINA) model (Haertel, 1989; Junker and Sijtsma, 2001; de la Torre and Douglas, 2004),
the deterministic input, noisy or gate model (Templin and Henson, 2006), and the reduced
reparameterized unified model (Hartz, 2002). Unlike unidimensional item response theory (IRT),
which provides a single score for a student’s proficiency on a latent continuum, CDMs offer a profile
of multiple binary (mastery or non-mastery) statuses of certain knowledge or skills.

In applications of CDMs, item responses to multiple-choice items, for example, are assumed to
be objectively scored. In many situations, such as educational assessment, performance appraisal,
psychological diagnosis, medical examination, sports competition, and singing contests, responses
to constructed-response (CR) or performance-based items are evaluated by human raters. Different
raters often exhibit different degrees of severity. There are two major approaches to rater effects in
the IRT framework. One is to treat raters as a third facet, in addition to the item and person facets,
to highlight the impact of rater effects on the item scores. Examples are the Rasch facets models
(Linacre, 1989) and the random-effect facets model (Wang and Wilson, 2005). The other approach
is to employ signal detection theory to describe raters’ judgment. Examples include the hierarchical
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rater model (HRM; Patz et al., 2002) and the latent class
extension of signal detection theory (DeCarlo et al., 2011). The
facets approach and the HRM approach have very different
assumptions regarding rater behaviors, as discussed below. The
resulting measures of a person (ratee) can only be considered fair
and valid for individual comparison if rater effects are directly
accounted for in the IRT models.

Rater effects can happen in the CDM framework when
raters are recruited to mark item responses. In this study, we
adapt these two approaches (facets and HRM) to the CDM
framework to account for rater effects. Based on the same logic
above, the resulting profiles (a set of binary latent attributes)
of persons (ratees) are fair and valid for individual comparison
only when rater effects are directly accounted for in the CDMs.
The remainder of this paper is organized as follows. First, the
facets and HRM approaches within the IRT framework are
briefly introduced. Second, these two approaches are adapted
to the CDM framework to create new CDMs to account for
rater effects. Third, a series of simulations are conducted to
evaluate the parameter recovery of the new CDMs, and their
results are summarized. Fourth, an empirical example about
essay writing is provided to demonstrate applications of the new
models. Finally, conclusions are drawn and suggestions for future
studies are provided.

INTRODUCTION TO THE FACETS AND
HRM APPROACHES

The Facets Approach
In the facets approach, raters are treated as instruments to
measure ratees, just like items are. Raters are recruited to provide
their own expertise to make judgments of ratees’ performance;
therefore, the more raters there are, the more reliable the
measurement of the ratees. In the facets model (Linacre, 1989),
the log-odds (logit) of scoring k over k – 1 on item j for ratee i
judged by rater r is defined as:

log(Pijkr/Pij(k−1)r) = θi − βjk − ηr (1)

where Pijkr and Pij(k−1)r are the probabilities of receiving a score
of k and k - 1, respectively, for ratee i on item j from rater r; θi
is the latent (continuous) trait of ratee i and is often assumed
to follow a normal distribution; βjk is the kth threshold of item
j; ηr is the severity of rater r. A positive (negative) ηr decreases
(increases) the probability of receiving a high score. Equation 1
can be easily generalized to more than three facets.

In Equation 1, a rater has a single parameter ηr to account
for the rater’s degree of severity, meaning that the rater holds
a constant degree of severity throughout all ratings. In reality,
it is likely that a rater exhibits some fluctuations in severity
when giving ratings. If so, Equation 1 is too stringent, and the
assumption of constant severity needs to be relaxed. To account
for the intra-rater fluctuations in severity, Wang and Wilson
(2005) proposed adding a random-effect parameter to the facets
model, which can be expressed as:

log(Pijkr/Pij(k−1)r) = θi − βjk − (ηr + ζir) (2)

where ζir is assumed to follow a normal distribution, with mean
0 and variance σ2

r ; others have been defined in Equation 1; θ and
ζ are assumed to be mutually independent. Where appropriate,
slope parameters can be added and covariates (e.g., gender) can
be incorporated to account for variations in θ and η (Wang and
Liu, 2007). The facets models have been widely used to account
for rater effects in practice (Engelhard, 1994, 1996; Myford and
Wolfe, 2003, 2004).

The HRM Approach
In the HRM approach, it is argued that thorough scoring rubrics
can (in theory) be programmed into computers so human raters
are no longer needed (Patz et al., 2002). However, until computer
scoring is made possible (e.g., it is not cost-effective to develop
e-raters), human raters are still in demand but they are expected
to function like scoring machines (clones) as closely as possible.
Unfortunately, human judgment may deviate remarkably from
machine scoring, which brings random noise to the ratings. Only
when raters act exactly like scoring machines will a CR item
provide as much information as an objective (machine-scorable)
item does. Following this logic, increasing the number of raters
will not increase the precision of ratee measurements.

The HRM involves two steps. In the first step, the scores
provided by raters are treated as indicators of the latent (true,
or ideal) category for ratee i’s response to item j. Let ξij be the
latent category for ratee i on item j. The probability that rater r
will assign a rating k given ξij is assumed to be proportional to a
normal density with a mean ξij – φr and a standard deviation ψr:

Pijkr ∝ exp
[
−

1
2ψ2

r
[k− (ξij − φr)]

2
]

(3)

where φr represents the severity for rater r: a value of 0 indicates
the rater is most likely to provide the same rating as the latent
(true) category, a negative value indicates that the rater tends
to be lenient, a positive value implies that the rater tends to be
severe, and ψr represents the rater’s variability: the larger the
value, the less reliable (consistent) the ratings.

In the second step, the latent category ξij is used as the
indicator of a ratee’s ability via an IRT model such as the partial
credit model (Masters, 1982):

Pijl ≡ P(ξij = l |θi) =
exp

∑l
k=0

(
θi−δjk

)
∑Mj

m=0 exp
∑m

k=0
(
θi−δjk

) (4)

logit(Pijl) ≡ log (Pijl/Pij(l−1)) = θi − δjk (5)

where Mj is the maximum score of item j, δjk is the kth step
parameter of item j, θi is the latent trait for person i. By defining∑0

k=0
(
θi−δjk

)
≡ 0 and

∑m
k=0

(
θi−δjk

)
≡
∑m

k=1
(
θi−δjk

)
, the

probability of scoring 0 is Pij0=
1∑Mj

m=0 exp
∑m

k=0
(
θi−δjk

) . Note that

ξij in Equation 4 is latent rather than observed in the standard
partial credit model.

A problem in the HRM, also noted by Patz et al. (2002),
is that a relatively small value for ψr would lead to difficulties
in determining a unique value for φr because the posterior
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distribution of φr is almost uniform (DeCarlo et al., 2011).
Another limitation of the HRM is that it can account for a rater’s
severity and inconsistency, but not for other rater effects, such
as centrality. To resolve these problems, DeCarlo et al. (2011)
extended the HRM by incorporating a latent class extension of
the signal detection theory as:

Pijk∗r = F
[
ajr(ξij − cjkr)

]
, (6)

where Pijk∗r denotes the probability of assigning a rating less
than or equal to k (denoted as k∗) given ξij; F can be
a cumulative normal or logistic distribution; ajr is a slope
(sensitivity) parameter for rater r on item j; cjkr is the kth ordered
location parameter of item j for rater r. Like ψr in Equation 3,
ajr depicts how sensitive or reliable the ratings are for rater r
on item j. A close investigation of cjkr can reveal rater severity
and centrality. Further, by including an autoregressive time series
process and a parameter for overall growth, the HRM approach
is also feasible for longitudinal data (Casabianca et al., 2017).

THE LOG-LINEAR COGNITIVE
DIAGNOSIS MODEL

Cognitive diagnostic models have been applied to large-scale
educational assessments such as the Trends in International
Mathematics and Science Study (TIMSS), the Progress in
International Reading Literacy Study (PIRLS), the National
Assessment of Educational Progress (NEAP), and the Test of
English as a Foreign Language (TOEFL) to obtain information
about students’ cognitive abilities (Tatsuoka et al., 2004; Xu and
von Davier, 2008; Chiu and Seo, 2009; Templin and Bradshaw,
2013). In these datasets, both multiple-choice items and CR items
are used. For example, in the PIRLS reading comprehension test,
approximately half of the items require examinees to write down
their responses, which are then marked by human raters. In these
studies of fitting CDMs to large-scale educational assessments,
rater effects were not considered simply because existing CDMs
could not account for rater effects. To resolve this problem, we
developed new CDMs for rater effects within both the facets and
HRM frameworks. We adopted the log-linear cognitive diagnosis
model (LCDM; Henson et al., 2009) as a template because it
includes many CDMs as special cases. Nevertheless, the new
models developed in this study can also apply easily to other
general CDMs, such as the general diagnostic model (von Davier,
2008) or the generalized DINA model (de la Torre, 2011).

Under the LCDM, the probability of success (scoring 1) on
item j for person i is defined as:

Pij1 ≡ P(Xij = 1|αi) =
exp

(
λj,0 + λT

j h
(
αi, qj

))
1+ exp

(
λj,0 + λT

j h
(
αi, qj

)) (7)

logit(Pij1) ≡ log[Pij1/(1− Pij1)] = λj,0 + λT
j h(αi, qj) (8)

where αi is the latent profile of person i, λj,0 defines the
probability of success for those persons who have not mastered

any of the attributes required by item j; λT
j is a (2K

− 1) by 1
vector of weights for item j; qjk is the entry for item j in the
Q-matrix; h(αi, qj) is a set of linear combinations of αi and qj;
λT

j h(αi, qj) can be written as:

λT
j h
(
αi,qj

)
=

K∑
k=1

λjk
(
αikqjk

)
+

K∑
k=1

∑
v>k

λjkv
(
αikαivqjkqjv

)
+ ...

(9)
For item j, the exponent includes an intercept term, all main
effects of attributes, and all possible interaction effects between
attributes. By constraining some of the LCDM parameters, many
existing CDMs can be formed (Henson et al., 2009). For example,
for a three-attribute item, the DINA model can be defined as:

Pij1 =
exp

(
λj,0 + λj,123αi1αi2αi3

)
1+ exp

(
λj,0 + λj,123αi1αi2αi3

) (10)

Although we concentrate on dichotomous responses in this
study for illustrative purpose, Equation 7 can be extended to
accommodate polytomous items. Let Pijk and Pij(k−1) be the
probabilities of scoring k and k − 1 on item j for person i,
respectively. Equation 8 can be extended as:

logit(Pijk) ≡ log (Pijk/Pij(k−1)) = λj,0,k−1 + λT
j h(αi, qj), (11)

where λj,0,k−1 is the (k – 1)th intercept for item j. Equation
11 is based on adjacent-category logit. Actually, cumulative
logit (Hansen, 2013) and other approaches are also feasible
(Ma and de la Torre, 2016).

For the ease of understanding and interpretation, item
parameters in the LCDM can be expressed as follows, which
is commonly called as the guessing parameters (gj) and slip
parameters (sj):

gj =
exp

(
λj,0

)
1+ exp

(
λj,0

) (12)

sj = 1−
exp

(
λj,0 + λT

j (αi, qj)
)

1+ exp
(
λj,0 + λT

j (αi, qj)
) (13)

representing the probability of success without mastering all the
required attributes, and the probability of failure with mastering
all the required attributes, respectively.

NEW CDMs WITH THE FACETS
APPROACH

All existing CDMs involve two facets: person and item. When
items are marked by human raters, a third facet is needed to
account for rater effects. To accomplish this, Equation 8 can be
extended as:

logit(Pijr1) ≡ log[Pijr1/(1− Pijr1)] = λj,0 − ηr + λT
i h(αi, qj)

(14)

where Pijr1 is the probability of success (scoring 1) on item j for
person i marked by rater r; ηr is the severity of rater r; other terms
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have been defined. A positive (negative) ηr decreases (increases)
the probability of success. If ηr = 0 for all raters, Equation 14
simplifies to Equation 8. That is, Equation 14 is a three-facet
extension of the LCDM.

When there is a concern about intra-rater variations in
severity, ηr in Equation 14 can be replaced with ηr + ζir.
Moreover, Equation 14 can be easily generalized to include more
than three facets. For example, in the Test of Spoken English
(TSE) assessment system, examinees’ speaking tasks are marked
on multiple criteria by human raters, so four facets are involved:
ratee, task, rater, and criterion. In such cases, Equation 14 can be
extended to four facets as:

logit(Pijrs1) ≡ log[Pijrs1/(1− Pijrs1)]

= λj,0 − ηr − γs + λT
i h(αi, qj) (15)

where Pijrs1 is the probability of success (scoring 1) on task j along
criterion s for examinee i marked by rater r; γs is the threshold of
criterion s; other terms have been defined. Generalization to more
facets is straightforward. For polytomous items, Equation 14 can
be extended as:

logit(Pijrk) ≡ log (Pijrk/Pijr(k−1)) = λj,0,k−1 − ηr + λT
i h(αi, qj)

(16)

where Pijrk and Pijr(k−1) be the probabilities of scoring k and
k − 1 on item j for examinee i marked by rater r, respectively;
other terms have been defined.

NEW CDMs WITH THE HRM APPROACH

The signal detection model in the first step in the HRM approach
can be defined as in Equation 3 or 6, with the constraint of
k = 0 or 1 because of dichotomous items. For dichotomous items,
Equations 3 and 6 become equivalent, except there is a single
ψr for each rater in Equation 3, but multiple ajr (across items)
for each rater in Equation 6. The IRT model in the second step
(Equation 4 or 5) can be replaced with a CDM like the LCDM.
Using the LCDM as template, the new model can be written as:

Pij1 ≡ P(ξij = 1 |αi) =
exp

(
λj,0 + λT

j h
(
αi, qj

))
1+ exp

(
λj,0 + λT

j h
(
αi, qj

)) (17)

logit(Pij1) ≡ log[Pij1/(1− Pij1)] = λj,0 + λT
j h
(
αi, qj

)
(18)

where ξij is the latent binary category of person i on item j;
other terms have been defined. Comparing Equations 17 and
7, one finds that the category is latent in Equation 17, but
observed in Equation 7. For polytomous items, Equation 18 can
be extended as:

logit(Pijk) ≡ log (Pijk/Pij(k−1)) = λj,0,k−1 + λT
j h
(
αi, qj

)
(19)

PARAMETER ESTIMATION

Parameters in the new facets-CDM and HRM-CDMs can be
estimated by utilizing Markov chain Monte Carlo (MCMC)
methods (de la Torre and Douglas, 2004; Ayers et al., 2013),
which treat parameters as random variables and repeatedly draw
from their full conditional posterior distributions over a large
number of iterations. In this study, the freeware JAGS (Version
4.2.0; Plummer, 2015) and the R2jags package (Version 0.5-
7; Su and Yajima, 2015) in R (Version 3.3.0 64-bit; R Core
Team, 2016) were used to estimate model parameters. JAGS
uses a default option of the Gibbs sampler and offers a user-
friendly tool for constructing Markov chains for parameters,
so the derivation of the joint posterior distribution of the
model parameters becomes attainable. We used the Gelman–
Rubin diagnostic statistic (Gelman and Rubin, 1992) to assess
convergence, in which a value smaller than 1.1 is typically
regarded as convergence as a rule of thumb. In the facets-CDMs,
the rater severity was constrained at a zero mean for model
identification. Our pilot simulation supported the use of 10,000
iterations, with the first 5,000 iterations as burn-in and the
remaining 5,000 iterations for the point estimates (expected a
posteriori) and their standard errors by sampling one in every 10
values. The resulting Gelman–Rubin diagnostic statistic indicated
no convergence problem.

Two simulation studies were conducted to evaluate the
recovery of item parameters and person profiles for the two
newly proposed models with rater effects. Moreover, we evaluated
the effects of ignoring rater effects by comparing the proposed
models (with rater effect) and standard models (without rater
effect) in the simulations. In particular, Study I evaluated the item
and person recovery of the facets-CDM under different rating
designs. Study II assessed the implementation of the HRM-CDM.
One hundred replications were conducted under each condition.
For comparison, all simulated data were also analyzed with the
standard CDMs, which did not consider rater effects.

SIMULATION STUDY I: FACETS-CDM

Design
Rating design is a practical issue because it involves resource
allocation. A good rating design can save a great deal of resource
while holding acceptable precision of ratee measurement.
According to the procedures of Chiu et al. (2009), latent
ability θ of 500 ratees were drawn from a multivariate normal
distribution MVN(0, 6), with the diagonal and off-diagonal
elements of the covariance matrix taking a value of 1 and 0.5,
respectively. A correlation of 0.5 between attributes was specified
to mimic moderate to medium correlations between attributes in
educational settings. Assuming that the underlying continuous
ability for the ith ratee was θT

i = (θi1, θi2, · · · , θiK), the profile
pattern αT

i = (αi1, αi2, · · · , αiK) was determined by

αik =

 1, if θik ≥ 8−1
(

k
K + 1

)
,

0, otherwise.
(20)
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The test consisted of 10 dichotomous items measuring five
attributes, as shown in Table 1, and 10 raters. Dichotomous
responses were simulated according to the facets-CDM (Equation
11). The generating intercepts (λj,0), main effects (λj,1), two-
way interactions (λj,2), and rater severities (ηr) are listed in
Table 3, and the resulting range of the guessing parameters and
slip parameters was [0.08, 0.20] and [0.07, 0.19], respectively.

Four kinds of rating design were used: (a) completely crossed
design, where every ratee was judged by every rater; (b) balanced
incomplete design, where each ratee was judged by three raters
and each rater judged 150 ratees; (c) unbalanced incomplete
design, where each ratee was judged by three raters but different
raters judged different numbers of ratees; (d) random design,
where 20 ratees were judged by all raters and the remaining
480 ratees were judged by three raters randomly selected from
the rater pool. The completely crossed design, although seldom
used when there are a large number of ratees (e.g., several
hundred), was adopted here to provide reference information
about the parameter recovery of the facets-CDMs. In the three
incomplete designs, raters were connected by a set of common
ratees. Detailed specification of the incomplete designs is shown
in Table 2.

Analysis
The generated data were analyzed with (a) the data-generating
facets-CDM (saturated) model and (b) the standard CDM
without considering rater effects, where the ratings given by the
raters were treated as responses to virtual items with identical
item parameters. Based on prior studies (e.g., Li and Wang, 2015;
Zhan et al., 2019), a less informative normal prior was specified
for all model parameters across the two models. Specifically,
a normal prior with mean zero and standard deviation four
was assumed for the intercepts (λj,0), main effects (λj,1), two-
way interactions (λj,2), and rater severities (ηr). Moreover, a
truncated normal distribution was specified to constraint the
main effect parameters (λj,1) to be positive. In doing so, the
probabilities of correct responses increased as a function of
mastering each required attribute. To evaluate the recovery of
item parameters, we computed the bias and root mean squared
error (RMSE) of these estimates across replications. For person

TABLE 1 | Q-matrix for the ten items in the simulations.

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

6 1 1 0 0 0

7 0 1 1 0 0

8 0 0 1 1 0

9 0 0 0 1 1

10 1 0 0 0 1

1s mean the attributes are required, and 0s mean the attributes are not required.

profiles, we computed the mean accurate recovery rate. In the
completely crossed design, each item received 5,000 scores (500
ratees times 10 raters), each ratee received 100 scores (10 items
times 10 raters), and each rater gave 5,000 scores (10 items
times 500 ratees); in the three incomplete designs, each item
received approximately 1,500 scores (500 ratees times 3 raters),
each ratee received 30 scores (10 items times 3 raters) except
20 ratees received 100 scores (10 items times 10 raters) in the
random design, and each rater gave approximately 1,500 scores
(10 items times 150 ratees). In general, the more the data points,
the better the parameter estimation and profile recovery. It was
thus anticipated that when the facets-CDM was fit, the parameter
estimation and recovery rates would be better in the completely
crossed design than in the three incomplete designs. When the
standard CDM was fit, the parameter estimation and recovery
rates would be poor because the rater effects were not considered.

Results
Table 3 lists the generating values, the bias values, and the RMSE
values for the two models under the four designs. When the
facets-CDM was fit, the RMSE values were not large, ranging
from 0.07 to 0.24 (M = 0.16) in the completely crossed design,
from 0.10 to 0.52 (M = 0.23) in the balanced incomplete design,
from 0.12 to 0.51 (M = 0.23) in the unbalanced incomplete

TABLE 2 | Number of ratees under the incomplete designs in simulation
study I (Facets-CDM).

Rater

1 2 3 4 5 6 7 8 9 10

Balanced

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

Total 150 150 150 150 150 150 150 150 150 150

Unbalanced

50 50 50

68 68 68

44 44 44

58 58 58

35 35 35

51 51 51

50 50 50

55 55 55

40 40 40

49 49 49

Total 139 167 162 170 137 144 136 156 145 144

Random

Total 134 155 157 141 168 158 152 130 153 152
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TABLE 3 | Generating values, bias, root mean square error (RMSE), and profile recovery rates (%) in simulation study I (Facets-CDM).

Complete design Balanced design Unbalanced design Random design

Facets-CDM Standard CDM Facets-CDM Standard CDM Facets-CDM Standard CDM Facets-CDM Standard CDM

Par. Gen Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

λ1,0 −2.00 −0.13 0.21 0.30 0.30 −0.21 0.28 0.08 0.11 −0.12 0.22 0.16 0.19 −0.12 0.22 0.17 0.19

λ2,0 −1.40 −0.12 0.19 0.23 0.23 −0.19 0.25 0.04 0.07 −0.21 0.25 −0.02 0.06 −0.13 0.18 0.11 0.13

λ3,0 −1.79 −0.13 0.20 0.27 0.27 −0.18 0.25 0.09 0.16 −0.18 0.24 0.09 0.13 −0.20 0.25 0.10 0.14

λ4,0 −1.37 −0.15 0.21 0.20 0.20 −0.19 0.26 0.02 0.09 −0.17 0.23 0.08 0.09 −0.21 0.28 0.03 0.08

λ5,0 −1.85 −0.12 0.21 0.28 0.28 −0.28 0.31 0.01 0.09 −0.16 0.21 0.10 0.15 −0.16 0.19 0.17 0.20

λ6,0 −2.42 −0.14 0.23 0.33 0.33 −0.26 0.33 −0.06 0.16 −0.11 0.18 −0.05 0.18 −0.30 0.36 −0.05 0.13

λ7,0 −1.57 −0.10 0.20 0.26 0.27 −0.12 0.22 0.01 0.16 −0.09 0.29 −0.03 0.16 −0.11 0.24 0.07 0.10

λ8,0 −1.95 −0.10 0.21 0.31 0.32 −0.17 0.24 0.00 0.14 −0.18 0.23 −0.02 0.17 −0.19 0.24 −0.02 0.18

λ9,0 −2.07 −0.11 0.20 0.32 0.33 −0.22 0.31 −0.06 0.23 −0.09 0.18 0.03 0.13 −0.12 0.27 0.07 0.21

λ10,0 −1.69 −0.10 0.22 0.28 0.29 −0.18 0.28 −0.05 0.12 −0.08 0.29 0.02 0.16 −0.09 0.17 0.09 0.12

λ1,1 3.72 −0.01 0.09 −0.62 0.62 −0.03 0.20 −0.63 0.65 −0.13 0.18 −0.84 0.84 −0.03 0.14 −0.60 0.62

λ2,1 2.82 −0.06 0.10 −0.55 0.55 −0.15 0.21 −0.56 0.58 −0.19 0.24 −0.58 0.59 −0.18 0.20 −0.65 0.65

λ3,1 3.41 0.03 0.08 −0.55 0.56 −0.01 0.18 −0.58 0.60 −0.05 0.17 −0.61 0.62 −0.05 0.11 −0.67 0.68

λ4,1 2.91 0.01 0.08 −0.50 0.50 −0.06 0.10 −0.42 0.43 −0.09 0.14 −0.58 0.59 −0.04 0.18 −0.50 0.52

λ5,1 3.38 0.00 0.10 −0.56 0.57 −0.05 0.10 −0.53 0.54 −0.03 0.12 −0.59 0.60 −0.08 0.14 −0.63 0.65

λ6,1 1.26 0.04 0.10 −0.12 0.14 −0.02 0.18 0.02 0.16 −0.13 0.20 0.04 0.15 0.14 0.29 0.13 0.27

λ7,1 1.04 −0.04 0.07 −0.20 0.20 −0.03 0.26 −0.01 0.21 −0.15 0.28 −0.04 0.19 −0.09 0.20 −0.10 0.17

λ8,1 1.18 −0.05 0.09 −0.20 0.21 −0.03 0.15 −0.04 0.13 −0.04 0.22 0.00 0.25 −0.03 0.24 0.05 0.26

λ9,1 1.00 −0.03 0.09 −0.16 0.17 −0.01 0.20 0.05 0.23 −0.09 0.23 0.08 0.26 −0.08 0.27 0.00 0.23

λ10,1 0.96 0.00 0.07 −0.14 0.15 −0.01 0.15 0.06 0.14 −0.03 0.17 0.07 0.17 −0.04 0.10 −0.02 0.11

λ6,2 2.16 −0.01 0.24 −0.42 0.48 0.07 0.32 −0.72 0.76 0.20 0.51 −0.79 0.82 0.00 0.48 −0.70 0.81

λ7,2 2.14 0.07 0.19 −0.29 0.32 −0.13 0.39 −0.78 0.81 0.14 0.39 −0.58 0.66 0.24 0.40 −0.47 0.54

λ8,2 1.98 0.09 0.20 −0.28 0.31 −0.03 0.22 −0.56 0.59 0.13 0.43 −0.51 0.61 0.26 0.39 −0.55 0.63

λ9,2 2.05 0.08 0.15 −0.33 0.35 0.12 0.52 −0.44 0.63 0.20 0.34 −0.67 0.76 0.27 0.49 −0.38 0.51

λ10,2 2.12 −0.02 0.21 −0.39 0.43 0.10 0.27 −0.52 0.59 0.19 0.28 −0.63 0.64 0.05 0.24 −0.55 0.59

η1 0.57 −0.01 0.15 −0.01 0.18 0.09 0.17 −0.02 0.11

η2 0.59 0.01 0.13 0.05 0.17 0.11 0.18 −0.04 0.15

η3 0.70 0.04 0.16 0.04 0.17 0.12 0.18 −0.02 0.13

η4 1.83 0.00 0.17 0.05 0.15 0.10 0.18 −0.03 0.13

η5 −0.50 −0.04 0.16 −0.03 0.14 0.10 0.20 −0.07 0.18

η6 −0.56 0.03 0.16 −0.06 0.17 0.08 0.17 −0.09 0.15

η7 −0.10 0.01 0.18 0.03 0.23 0.09 0.18 −0.04 0.17

η8 −1.05 0.01 0.17 0.07 0.17 0.08 0.17 −0.03 0.17

η9 0.55 0.04 0.15 0.04 0.13 0.10 0.19 −0.04 0.14

η10 −2.03 0.02 0.19 0.10 0.24 0.16 0.21 0.04 0.14

Profile recovery

Minimum 96.41 94.27 68.80 59.83 67.44 58.61 68.42 62.40

Maximum 99.15 97.00 75.67 67.85 73.22 65.24 77.21 69.83

Mean 97.58 95.78 71.02 63.50 70.14 62.16 72.62 66.20

SD 0.66 0.64 2.14 2.77 1.45 1.83 2.89 2.29

design, and from 0.10 to 0.49 (M = 0.22) in the random
design. Such small RMSE values suggested good parameter
recovery and they were similar to those found in common
CDMs (e.g., De la Torre et al., 2010; Huang and Wang, 2014).
With respect to the recovery of the latent profile, the mean
recovery rate across profiles was 97.58% in the completely
crossed design, 71.02% in the balanced incomplete design,
70.14% in the unbalanced incomplete design, and 72.62% in
the random design. As expected, the parameter estimation and

profile recovery were better in the completely crossed design than
in the incomplete designs.

Focusing on results of the facets-CDM model, the profile
recovery rates ranged from 67 to 69% in the three incomplete
designs, where each item was rated by three raters. Such findings
indicated that if one wishes to obtain a mean profile recovery rate
of 70% from ten dichotomous items measuring five attributes,
each item should be judged by three raters (i.e., each ratee
received 30 scores). Moreover, as indicative by the results of the
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completely crossed design, if each item is judged by ten raters (i.e.,
each ratee received 100 scores), the mean profile recovery rate
could be as high as 98%.

When rater effects were ignored and the standard CDM
was fit, the RMSE values became larger, ranging from 0.14 to
0.62 (M = 0.34) in the completely crossed design, from 0.07 to
0.81 (M = 0.34) in the balanced incomplete design, from 0.06
to 0.84 (M = 0.37) in the unbalanced incomplete design, and
from 0.08 to 0.81 (M = 0.35) in the random design. The mean
recovery rate across profiles was 95.78% in the completely crossed
design, 63.50% in the balanced incomplete design, 62.16% in
the unbalanced incomplete design, and 66.20% in the random
design. Therefore, as expected, the parameter estimation in the
standard CDM was worse than those in the facets-CDM. With
respect to the recovery of the latent profile, both models yielded
a higher recovery rate in the complete design than incomplete

TABLE 4 | Q-matrix of the 52 criteria in the empirical example.

Attribute Attribute

Item 1 2 3 4 5 6 Item 1 2 3 4 5 6

1 1 1 1 1 1 0 27 0 0 1 0 0 0

2 1 0 0 0 0 0 28 0 0 1 0 0 0

3 1 0 0 0 0 0 29 0 0 1 0 0 0

4 0 1 1 1 0 0 30 0 0 1 0 0 0

5 0 1 1 1 0 0 31 0 0 1 0 0 1

6 1 0 1 1 1 0 32 0 0 1 0 0 1

7 1 1 1 1 0 0 33 0 0 1 0 0 0

8 1 1 0 0 0 0 34 0 0 1 0 0 0

9 1 1 0 0 0 0 35 0 0 1 0 0 0

10 1 1 0 0 0 0 36 0 0 1 1 0 0

11 1 0 0 1 0 0 37 0 0 1 0 0 0

12 1 1 0 1 0 0 38 0 0 1 0 0 0

13 1 0 0 0 0 0 39 0 0 1 1 0 0

14 0 1 0 0 1 0 40 0 0 1 1 0 0

15 0 1 0 0 0 0 41 0 0 0 1 0 0

16 0 1 0 0 0 0 42 0 0 0 1 0 0

17 0 1 0 0 0 0 43 0 0 0 1 0 0

18 0 1 0 0 0 0 44 0 0 0 1 0 0

19 0 1 0 0 0 0 45 0 0 1 1 0 0

20 0 1 0 0 0 0 46 0 0 0 1 0 1

21 0 1 1 1 0 0 47 0 0 0 1 0 1

22 0 1 1 1 0 0 48 0 0 1 0 0 1

23 0 1 1 1 0 0 49 0 0 0 0 0 1

24 0 1 1 1 0 0 50 0 0 0 0 0 1

25 0 1 0 0 0 0 51 0 0 1 1 1 0

26 0 0 1 0 0 0 52 0 0 1 1 1 0

1s mean the attributes are required, and 0s mean the attributes are not required.

TABLE 5 | Means and standard deviations for raters’ scorings across all indicators
in the empirical example.

Rater 1 2 3 4 5 6 7 8 9

Mean 0.41 0.74 0.68 0.68 0.57 0.58 0.55 0.84 0.59

SD 0.28 0.26 0.29 0.26 0.28 0.31 0.27 0.18 0.33

TABLE 6 | Model fit statistics of the three models in the empirical example.

Model ppp AIC BIC

DINA 0.36 17004 17625

Facets DINA 0.44 16690 17331

HRM DINA 0.56 10490 11167

ppp, posterior predictive p-value; AIC, Akaike’s information criterion; BIC, Bayesian
information criterion.

designs. This was because in the facets framework, when there are
more raters, the measurements are more precise. In the complete
design, these two models yielded almost identical recovery rates,
which was because the mean rater effect was constrained at
zero and thus canceled out. In the incomplete design, the
mean rater effect was not canceled out, so the facets model
consistently yielded a higher recovery rate (6–8% improvement)
than the standard model.

SIMULATION STUDY II: HRM-CDM

Design and Analysis
The settings were identical to those in simulation study I
except only the completely crossed design was adopted and
each ratee was judged by three or six raters. The (saturated)
HRM-CDM (Equation 17), given the latent category, was used
at the second step. At the first step, φr and ψr were fixed at
0 and 0.5, respectively, for all raters. Both the data-generating
HRM-CDM and the standard CDM (without considering rater
effects) were fit to the simulated data. In the standard CDM,
multiple ratings given to the same item response were treated
as independent responses. For example, the three sets of ratings
given by three raters were analyzed as if the test was answered by
three virtual examinees. Then, the posterior probability for each
latent attribute (or latent profile) was averaged across the three
virtual examinees to represent the examinee’s final estimate. Like
in simulation study I, it was expected that the more the raters
(the more the data points), the better the parameter estimation
and recovery rates. Further, when the standard CDM was fit, the
parameter estimation and recovery rates would be poor because
the rater effects were not considered.

Results
Detailed results for individual parameters are not presented due
to space constraints but available on request. When the HRM-
CDM was fit, the resulting RMSE values ranged from 0.11 to 0.67
(M = 0.35) and from 0.08 to 0.43 (M = 0.25) for three and six
raters, respectively; the mean profile recovery rate was 61.12 and
79.12% for three and six raters, respectively. It appeared that the
more the data points the better the parameter estimation and
recovery rates when the HRM-CDM was fit. If one wishes to
obtain a mean profile recovery rate of 80% from 10 dichotomous
items measuring five attributes, it can be found from this
simulation study that each item should be judged by six raters
(i.e., each ratee received 60 scores). If each item is judged by only
three raters (i.e., each ratee received 30 scores), the mean profile
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TABLE 7 | Estimates for the guessing and slip parameters yielded by the three
models in the empirical example.

Item Guessing Slip

DINA Facets-DINA HRM-DINA DINA Facets-DINA HRM-DINA

1 0.49 0.49 0.48 0.03 0.02 0.00

2 0.47 0.47 0.42 0.02 0.03 0.00

3 0.49 0.49 0.49 0.09 0.08 0.12

4 0.46 0.46 0.46 0.05 0.06 0.00

5 0.24 0.30 0.12 0.34 0.36 0.43

6 0.50 0.49 0.49 0.05 0.00 0.00

7 0.16 0.17 0.00 0.52 0.50 0.70

8 0.09 0.11 0.00 0.18 0.20 0.23

9 0.38 0.41 0.28 0.01 0.04 0.00

10 0.31 0.31 0.14 0.23 0.21 0.30

11 0.18 0.17 0.01 0.26 0.27 0.31

12 0.46 0.46 0.38 0.07 0.07 0.01

13 0.48 0.48 0.43 0.08 0.08 0.06

14 0.49 0.49 0.49 0.05 0.00 0.00

15 0.15 0.14 0.00 0.45 0.44 0.56

16 0.48 0.48 0.48 0.08 0.08 0.06

17 0.47 0.47 0.46 0.15 0.15 0.17

18 0.26 0.41 0.23 0.23 0.25 0.31

19 0.46 0.45 0.44 0.15 0.13 0.16

20 0.38 0.24 0.31 0.10 0.07 0.07

21 0.25 0.16 0.09 0.31 0.22 0.13

22 0.49 0.48 0.48 0.12 0.06 0.01

23 0.50 0.49 0.49 0.01 0.01 0.00

24 0.48 0.48 0.48 0.11 0.13 0.06

25 0.45 0.46 0.45 0.07 0.08 0.05

26 0.07 0.12 0.00 0.79 0.81 1.00

27 0.31 0.33 0.02 0.66 0.67 0.96

28 0.40 0.47 0.40 0.15 0.18 0.19

29 0.47 0.47 0.46 0.04 0.05 0.03

30 0.44 0.37 0.29 0.31 0.26 0.39

31 0.39 0.36 0.19 0.45 0.42 0.59

32 0.30 0.42 0.25 0.24 0.26 0.31

33 0.18 0.10 0.02 0.37 0.32 0.41

34 0.08 0.15 0.01 0.54 0.56 0.77

35 0.42 0.47 0.33 0.21 0.24 0.19

36 0.23 0.34 0.06 0.25 0.26 0.27

37 0.45 0.47 0.42 0.11 0.12 0.09

38 0.13 0.17 0.01 0.56 0.59 0.70

39 0.48 0.48 0.48 0.05 0.04 0.00

40 0.00 0.01 0.00 0.93 0.95 1.00

41 0.01 0.07 0.00 0.54 0.58 0.88

42 0.37 0.35 0.39 0.26 0.24 0.41

43 0.23 0.33 0.12 0.28 0.30 0.34

44 0.21 0.33 0.05 0.33 0.38 0.49

45 0.19 0.21 0.02 0.07 0.18 0.02

46 0.28 0.27 0.09 0.02 0.11 0.00

47 0.49 0.49 0.48 0.04 0.07 0.01

48 0.49 0.49 0.49 0.01 0.02 0.00

49 0.49 0.49 0.49 0.00 0.02 0.00

50 0.04 0.24 0.00 0.43 0.69 0.95

51 0.33 0.47 0.24 0.13 0.31 0.37

52 0.03 0.30 0.00 0.40 0.66 0.92

recovery rate could be as low as 60%. When the standard CDM
was fit, the RMSE values ranged from 0.25 to 0.91 (M = 0.57) and
from 0.08 to 0.46 (M = 0.30) for three and six raters, respectively;
the mean profile recovery rate was 56.34 and 70.84% for three and
six raters, respectively. Taken together, as anticipated, ignoring
rater effects by fitting the standard CDM would yield poor
parameter estimation and profile recovery, and the fewer the
raters, the worse the parameter and profile recovery. As for the
recovery of latent profiles, the HRM-CDM outperformed the
standard model, and its superiority (5–10% improvement) was
more obvious when more raters were included.

A comparison between the facets-CDM and HRM-CDM
revealed that the parameter estimation and profile recovery were
better in the former than in the latter. This was mainly because
each data point contributed to the parameter estimation directly
in the facets-CDM, whereas the scores given by raters provided
information about the latent category, which then provided
information about the ratee and item parameters in the HRM-
CDM. The corresponding JAGS codes for the facets-CDM and
HRM-CDM are presented in Appendix.

REAL DATA APPLICATION

The empirical study involved a total of 287 university students,
each producing one academic essay in English, which was judged
by one or two teachers (out of nine) against a 52-item checklist.
The checklist was developed on the basis of the Empirical
Descriptor-based Diagnostic Checklist (Kim, 2011). Each item
of the checklist was rated on a binary scale, where 1 = correct,
0 = incorrect. The 52 items aimed to measure six latent attributes
of academic writing, namely, content, organization, grammar,
vocabulary, conventions of the academic genre, and mechanics.
The Q-matrix of the 52 items is shown in Table 4. The data
matrix was three-dimensional: 287 examinees by 52 items by 9

TABLE 8 | Rater severity and variability yielded from the HRM DINA model in the
empirical example.

Rater 1 2 3 4 5 6 7 8 9

Severity 0.40 0.02 0.01 0.02 0.01 0.02 0.24 0.04 0.02

SE 0.02 0.05 0.06 0.06 0.05 0.06 0.00 0.07 0.02

Variability 0.37 0.84 0.69 0.70 0.53 0.52 0.76 1.28 0.49

SE 0.01 0.05 0.04 0.04 0.03 0.03 0.04 0.10 0.02

TABLE 9 | Fair scores and observed scores for selected cases in the real data.

Student Estimated Rater Observed Fair Difference
index profile scores scores

21 1,1,1,1,1,0 1 23 40 −17

23 0,1,1,1,1,1 1 13 36 −23

30 0,0,0,1,0,0 1 15 22 −7

69 1,0,1,1,0,1 8 44 38 6

230 1,1,1,1,0,1 8 42 33 9

Estimated profiles were obtained by fitting facets-DINA model. Fair scores were
calculated by DINA model with given person profile and item parameters.
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raters. Because each item on the diagnostic checklist represented
a concrete descriptor of the desirable quality of writing (e.g., item
4 “the essay contains a clear thesis statement”), the scoring rubrics
were clear and simple for the raters to follow. Thus, the HRM
framework appeared to be preferable to the facets approach. For
completeness and illustrative simplicity, three models were fitted
using JAGS, including (a) the standard DINA model, in which
the ratings from raters were treated as responses to virtual items
with identical item parameters; (b) the facet-DINA model; (c) the
HRM-DINA model. A normal prior with mean zero and standard
deviation four was specified for all item parameters across the
three models, except that a log-normal distribution with mean
zero and standard deviation four was specified for the variability
parameter (ψr) in the HRM-DINA. For the facets-DINA model,
a normal distribution with mean zero and standard deviation one
was specified for rater parameters, and the mean severity across
raters was fixed at zero for model identification. In the HRM-
DINA model, the prior distributions for φr and ψr were set as
φr ∼ N(0, 1) and log(ψr) ∼ N(0, 4), respectively.

Table 5 displays the means and standard deviations of the
ratings on the 52 descriptors given by the nine raters. Rater 1
gave the lowest mean score (M = 0.41), whereas rater 8 gave the
highest (M = 0.84). For model comparison, Table 6 presents the
posterior predictive p-values (Gelman et al., 1996) of the Bayesian
chi-square statistic, Akaike’s information criterion (AIC), and
Bayesian information criterion (BIC) for the three models. The
p-values suggested all models had a good fit. Both AIC and BIC
indicated that the HRM-DINA model was the best-fitting model.
Table 7 lists the estimates for the guessing and slip parameters
for the three models. The standard DINA model and the facets-
DINA model produced very similar estimates. In comparison,
the HRM-DINA model yielded smaller estimates for the guessing
parameters and larger estimates for the slip parameters than the
other two models.

Estimates for rater severity (φ) and variability (ψ) under the
HRM-DINA model are presented in Table 8. Among the 9 raters,
rater 1 was the most severe, followed by rater 7, while the others
had severity measures around 0. Both rater 1 and rater 7 tended to
assign ratings lower than what the ratees deserved (their severity
parameters were positive). Furthermore, the estimates for rater
variability ranged from 0.37 (rater 1) to 1.28 (rater 8), suggesting
the raters exhibited moderate to high variability in their ratings.

Regarding the attribute estimates, the mastery probabilities of
the six attributes were 50, 77, 76, 69, 63, and 73% for the standard
DINA model, 53, 81, 77, 78, 83, and 79% for the facets-DINA
model, and 50, 71, 68, 66, 75, and 74% for the HRM-DINA model.
Among the 287 students, 77 students (27%) resulted in identical
profile estimates with the three models, indicating moderate
similarity on profile estimates across the three models.

To show the effects of ignoring rater effects, we picked up five
students from the real data. For the selected cases, they were rated
either by Rater 1, who tended to be the most severe, or by Rater 8,
who tended to be most lenient. The differences between observed
and fair scores (the expected score given the item and person
parameters) are shown in Table 9. If one wants to admit students
to some program according to their observed (raw) scores, then
the ordering will be no. 69, 230, 21, 30, and 23, respectively. After

taking into consideration of the rater effect by fitting the facets-
DINA, we have fair score for each student. Now, if one wants
to admit the five students according to the fair scores, then the
ordering will be student no. 21, 69, 23, 230, and 30, respectively.
Obviously, the two rank orderings were very different, which was
because the former did not consider rater effect.

CONCLUSION AND DISCUSSION

Rater effects on CR items have been investigated extensively
within the frameworks of IRT-facets and IRT-HRM, but not
within those of CDMs. In this study, we adopted the facets
and HRM frameworks and used the LCDM as a template to
create new facets-CDM and HRM-CDM to accommodate rater
effects. We also conducted simulations to evaluate parameter
recovery of the new models under various conditions. Results
indicate that model parameters could be estimated fairly well with
JAGS package in R. Implications and applications of the new
models were demonstrated with an empirical study that assessed
English academic essays by university students. In the empirical
study, the scales of the guessing and slip parameters for standard
DINA and facets-DINA models were very similar, but they were
very different from those for the HRM-DINA model, which was
mainly because the HRM-DINA model was formed in a very
different way from the other two models. Under the HRM-DINA
model, among the 9 raters, raters 1 and 7 were the most severe. In
addition, the rater variability ranged from 0.37 to 1.28, suggesting
a moderate to high variability in their ratings.

Several limitations of the current study should be
acknowledged. First, despite our efforts in testing the new
models under different rating designs, the simulated conditions
of the present study is not comprehensive. Future studies should
be conducted to evaluate the performance of the new models
under more comprehensive conditions, such as different test
lengths, sample sizes, rater sizes, and rater designs. Second, a
good CDM test depends on the quality of the Q-matrix (Lim and
Drasgow, 2017). In this study, only one Q-matrix was used. How
the facets- and HRM-CDMs perform with different Q-matrices
needs further investigation. Third, like other simulation studies
of CDMs, the data were analyzed with the data-generating
models without looking to other potential sources of model-data
misfit, such as mis-specification of the model or Q-matrix.
Sensitivity analysis of the new models is warranted. Finally, the
long computing time for MCMC methods may be a concern
for potential users, especially for large scale data sets with long
test length and large sample size. Future attempts are needed to
develop more efficient and effective estimation programs.

Future studies can also be conducted to extend the
new facets- and HRM-CDMs. For instance, the linear
combination of parameters in the facets- or HRM-CDMs
can be extended to account for interactions among facets
(Jin and Wang, 2017). It is feasible to develop explanatory
facets- or HRM-CDMs by incorporating covariates (e.g.,
gender or language background) to account for the
variations in rater effects (Ayers et al., 2013). Large-scale
educational testing services often recruit a large number of
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raters (e.g., hundreds of raters), where it would be more
efficient to treat rater severity as a random effect following
some distributions (e.g., normal distributions). Finally,
this study focuses on dichotomous items because the
majority of existing CDMs focus on binary data. New
facets- or HRM-CDMs can be developed to accommodate
polytomous CR items, just as CDMs has been extended
to accommodate polytomous items, as shown in Equations
11, 16, and 19, or those in the literature (Hansen, 2013;
Ma and de la Torre, 2016).
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APPENDIX

(1) JAGS code for the facets-CDM in Simulation Study I.

model<-function(){
for (i in 1:n.p){

for (k in 1:n.a){
pi[i,k]∼dunif(0,1)
alpha[i,k]∼dbern(pi[i,k])}

eta2[i,1]<-0
eta2[i,2]<-0
eta2[i,3]<-0
eta2[i,4]<-0
eta2[i,5]<-0
eta2[i,6]<-alpha[i,1]*alpha[i,2]
eta2[i,7]<-alpha[i,2]*alpha[i,3]
eta2[i,8]<-alpha[i,3]*alpha[i,4]
eta2[i,9]<-alpha[i,4]*alpha[i,5]
eta2[i,10]<-alpha[i,1]*alpha[i,5]

for (j in 1:n.i){
for (k in 1:n.a) {w[i,j,k]<- alpha[i,k]*q[j,k]}

eta1[i,j]<-prod(w[i,j,k]
for (r in 1:n.r){

logit(prob[i,j,r])<-lamda0[j]+lamda1[j]*eta1[i,j]+lamda2[j]*eta12[i,j]+rater[r]
resp[i,j,r]∼dbern(prob[i,j,r])}}}

for (r in 1:n.r) {rater[r]∼dnorm(mean.r, pr.r)}
for (j in 1:n.i) {

lamda0[j]∼dnorm(mean.lamda0, pr.lamda0)
lamda1[j]∼dnorm(mean.lamda1, pr.lamda1)
lamda2[j]∼dnorm(mean.lamda2, pr.lamda2)}}

(2) JAGS code for the HRM-CDM in Simulation Study II.

model<-function(){
for (i in 1:n.p){

for (k in 1:n.a){
pi[i,k]∼dunif(0,1)
alpha[i,k]∼dbern(pi[i,k])}

for (j in 1:n.i){
for (k in 1:n.a) {w[i,j,k]<- alpha[i,k]*q[j,k]}

eta[i,j]<-prod(w[i,j,k]

for (r in 1:n.r){
logit(p[i,j,r])<-lamda0[j]+lamda1[j]*eta[i,j]
resp[i,j,r]∼dbern(p[i,j,r])
rating.prob[i,j,r]<-exp((-0.5)*pow((1-resp[i,j,r]-mu.rater[r]),2)*pow(sigma.rater[r],-2))
rating[i,j,r]∼dbern(rating.prob[i,j,r])}}}

for (j in 1:n.i){
lamda0[j]∼dnorm(mean.lamda, pr.lamda)
lamda1[j]∼dnorm(mean.lamda, pr.lamda)}

for (r in 1:n.r) {
mu.rater[r]∼dnorm(mean.mu.rater, pr.mu.rater)
sigma.rater[r]∼dlnorm(mean.sigma.rater, pr.sigma.rater)}}
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In cognitive diagnostic assessment (CDA), clustering analysis is an efficient approach
to classify examinees into attribute-homogeneous groups. Many researchers have
proposed different methods, such as the nonparametric method with Hamming
distance, K-means method, and hierarchical agglomerative cluster analysis, to achieve
the classification goal. In this paper, according to their responses, we introduce a
spectral clustering algorithm (SCA) to cluster examinees. Simulation studies are used to
compare the classification accuracy of the SCA, K-means algorithm, G-DINA model and
its related reduced cognitive diagnostic models. A real data analysis is also conducted
to evaluate the feasibility of the SCA. Some research directions are discussed in the
final section.

Keywords: cognitive diagnostic assessment, spectral clustering, K-means, G-DINA model, classification
accuracy

INTRODUCTION

In the past decades, there has been a significant increasing interest in cognitive diagnostic
assessment (CDA) that allows for the purpose of identifying the presence or absence of specific
fine-grained attributes required for solving problems on a test in educational and psychological
assessment. Researchers have proposed a variety of methods to classify examinees into several
categories by matching their attribute profiles. To sum up, there have been two major kinds of
approaches till now. One of them usually uses cognitive diagnosis models (CDMs) to estimate
the attribute profile for each examinee, which can be called parametric technique. The differences
between these CDMs are assumptions about how cognitive attributes affect examinees’ responses
in CDAs. The deterministic input; noisy “and” gate (DINA; Junker and Sijtsma, 2001), and
noisy input; deterministic “and” gate model (NIDA; Junker and Sijtsma, 2001) are the typical
conjunctive models, which require examinees must master all required attributes, thus even lacking
one required attribute will lead to a totally wrong response. Disjunctive models, such as the
deterministic input; noisy “or” gate model (DINO; Templin and Henson, 2006), suppose that if one
has mastered a subset of required attributes, even merely one, the probability of a correct response
will be sufficiently high. Other specific, interpretable CDMs include the linear logistic model (LLM;
Maris, 1999) the additive CDM (A-CDM; de la Torre, 2011) and the reduced reparameterized
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unified model (RRUM; Hartz, 2002). To subsume the above
reduced models, some general CDM frameworks has been
proposed, such as the log-linear CDM (LCDM; Henson et al.,
2009) the generalized DINA (G-DINA; de la Torre, 2011) model
and the general diagnostic model (GDM; von Davier, 2008). The
major advantage of general CDMs is that they have the largest
flexibility of fetting response data which is set under the CDM
framework, and it always should be taken into account at first
when doing parameter estimation.

The superiority of parametric models is conciseness. However,
one big issue inherently exists in the parametric technique, i.e.
sample size. Several researchers have investigated the influence
of sample size on estimation accuracy of the model parameters
and pattern/attribute correct classification rate (de la Torre et al.,
2010; Chen and de la Torre, 2013; Minchen et al., 2017). Although
the results represented that sample size had a negligible impact
on correct classification rate, most previous studies obtained this
conclusion by setting the number of examinees no less than 500.
So, there is no evidence to draw the inference that no effect
on correct classification rate when using small sample size (may
be less than 50 or 100). Virtually, the number of examinees in
one class is not large for the most part. It is doubtful whether
the performance of the parametric models is good or not when
teachers implement the cognitive diagnostic test in class with a
smaller sample size.

To address this issue, nonparametric techniques can be
treated as alternative approaches to classify examinees into
attribute-homogeneous groups, which is less restrictive and often
computationally more efficient. Better yet, many nonparametric
classification algorithms can be easily implemented in most
statistical software packages. Based on the advantages of
nonparametric techniques, many different methods have been
proposed in the CDA. For example, three different methods of
computing sum-scores (simple sum-scores, complex sum-scores,
and weighted complex sum-scores) combined with model-
based mastery sum-score cutoffs were proposed (Henson et al.,
2007). Their results indicated that the correct classification
rates of examinees’ attribute profiles from model-based sum-
scores and mastery sum-score cutoffs were able to compare
with those correct classification rates from CDM. Chiu
et al. (2009) used hierarchical agglomerative clustering and
K-means methods to group examinees into different clusters
possessing the same attribute profiles. Simulation results
demonstrated that K-means method had better performance
at the classification consistency and homogeneity of a cluster
than that of hierarchical agglomerative clustering in most
experimental conditions. Subsequently, Chiu and Douglas
(2013) proposed a nonparametric procedure that merely
relied on a given Q-matrix (Tatsuoka, 1985), and evaluated
the examinees’ attribute profiles by minimizing the distance
measures (hamming distance, weighted hamming distance, and
penalized hamming distance) between observed responses and
the expected responses of a given attribute profile. Specifically,
this procedure based on expected response patterns makes
no direct use of item parameters of any CDMs. So, it
required no parameter estimation, and can be used on a
sample size as small as 1 (recall that the sample size is

no less than 500 in CDMs based on existing studies). In
addition, the existing studies have provided plenty of evidence
that the nonparametric classification algorithms have good
performance in CDA.

The primary objective of this paper is to introduce the method
for implementing CDA using spectral clustering algorithm
(SCA), which has become one of the most prevalent modern
clustering methods in recent years. The SCA creates a graph
of objects that require classifying based on the similarity
measurement of each pair of objects (i.e. examinees in this
paper). The more similar the examinees’ attribute profiles are,
the greater probability they can interrelate with each other in
the graph. Next, the examinees’ attribute profiles can be clustered
by anatomizing the spectral graph, where the attribute profiles
within a cluster have a strong connection and different clusters
have a weak connection. Naturally, such algorithms have been
widely applied in the field of image segmentation (Shi and Malik,
2000) neural information processing (Ng et al., 2002) biology
(Zare et al., 2010) and large-scale assessment in psychology (Chen
et al., 2017). However, no study has been done to investigate the
performance of the SCA in CDA yet to our knowledge. And it
is interesting to inspect the efficiency of the SCA for clustering
examinees’ into attribute-homogeneous groups under variedly
underlying processes, such as conjunctive, disjunctive, additive,
and saturated model (de la Torre, 2011).

In the next section, the G-DINA model and its related reduced
models will be briefly reviewed. Subsequently, the K-means and
SCA algorithms are detailedly introduced in the third section.
This is followed by the simulation studies comparing SCA to
K-means algorithm and CDMs mentioned in the second section
are conducted in section “Simulation Studies,” and the section
“Analysis of Mixed Number Subtraction Data” concerns a real
data study to examine the performance of the SCA. Finally,
Summary and discussions are given in the final section.

COGNITIVE DIAGNOSTIC MODELS

First, some basic concepts and terms used in CDA are introduced.
Consider J binary item response variables for each of the I
examinees. Let Xij represent the response of examinee i to item j,
where i = 1, 2, . . ., I and j = 1, 2, . . ., J. Let αi = (αi1, αi2, ..., αiK)
denote the attribute profile of examinee i, where K is the number
of attributes measured by the test. A value of αik = 1 indicates
the ith examinee masters the kth attribute and αik = 0 otherwise.
Let qj = (qj1, qj2, ..., qjK) represent the jth row of the Q-matrix
that describes the relationship between items and attributes
(Tatsuoka, 1995). Q is a J × K matrix with the entry qjk = 1
indicating that item j requires attribute k, and qjk = 0 otherwise.

The G-DINA Model
The G-DINA model is able to distinguish 2K∗j latent classes, where
K∗j is the number of required attributes for jth item, and K∗j =∑K

k=1 qjk. For simplicity, the first K∗j attributes are treated as the
required attributes for jth item, and α∗lj is the reduced attribute
vector corresponding to the columns of the required attributes
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with l = 1, ..., 2K∗j . The probability of a correct response to jth
item by examinees with attribute profile α∗lj can be denoted by
P(Xj = 1|α∗lj) = P(α∗lj). Then, the item response function (IRF)
of the G-DINA model is as follow:

f
[

P(α∗lj)
]
= γj0 +

K∗j∑
k=1

γjkαlk

+

K∗j∑
k′=k+1

K∗j −1∑
k=1

γjkk′αlkαlk′ + ...+ γj12...K∗j

K∗j∏
k=1

αlk0

(1)

where f
[

P(α∗lj)
]

represents P(α∗lj), log[P(α∗lj)] and log it[P(α∗lj)]

in the identity, log and logit links, respectively. Moreover, γj0 is
the intercept for jth item, γjk is the main effect due to αk, γjkk′

is the interaction effect due to αk and αk′ , and γj12...K∗j is the
interaction effect due to α1, ..., αK∗j . For more details about the
G-DINA model, please refer to de la Torre (2011).

Related Reduced Models
It’s conspicuous that the G-DINA model is a saturated model
which can easily change into several popular reduced CDMs,
including the DINA model, the DINO model, the additive CDM
(A-CDM), etc. Note the symbol γ is used as item parameters
across all these models in this paper. So, if we set all terms in the
G-DINA model in identity link except γj0 and γj12...K∗j to zero, the
DINA model will be obtained, that is,

P(α∗lj) = γj0 + γj12...K∗j

K∗j∏
k=1

αlk (2)

If the intercept and main effect terms are remained with the
follwing constraints: γjk = −γjk′k′′ = ... = (−1)

K∗j +1
γj12...K∗j , for

k = 1, ..., K∗j , k′ = 1, ..., K∗j − 1, and k′′ > k′, ..., K∗j . The DINO
model can be given by

P(α∗lj) = γj0 + γjkαlk (3)

By setting all interactions to zero in the identity-link G-DINA
model, the A-CDM can be formulated as

P(α∗lj) = γj0 +

K∗j∑
k=1

γjkαlk (4)

Clearly, quite a few parameters of items and examinees require
estimating in the saturated model and its related reduced
CDMs. More often than not, one can use either marginalized
maximum likelihood estimation (MMLE) or Bayesian approach
with the Markov Chain Monte Carlo (MCMC) method to achieve
parameter estimation.

CLUSTERING METHODS FOR
COGNITIVE DIAGNOSIS

K-Means Method for Cognitive Diagnosis
K-means cluster analysis is widely used as the process of grouping
a set of subjects into clusters so that subjects within a cluster
have similarity in comparison to one another, but are dissimilar
to subjects in other clusters. This approach finds the k centroid,
where the coordinate of each centroid is the means of the
coordinate of the subjects in the cluster and assigns every subject
to the nearest centroid. Chiu et al. (2009) have made the best of
K-means method in CDA already, and showed its effectiveness
empirically for placing examinees in homogeneous groups. The
algorithm in CDA can be summarized as follows (Please refer to
Chiu et al.’s paper for details).

Step 1: Select M initial K-dimensional cluster centroids.
Step 2: Assign data points to clusters that have the
closest centroid.
Step 3:When all data points have been assigned, update the
positions of the M centroids.
Step 4: Repeat Steps 2 and 3 until the centroids
no longer change.

Although K-means is a more than effective method for
clustering, the starting values exercises a large impact on the
classified performance for this method. Having poor starting
values can result in converging to local optima (Steinley, 2003).
So, many methods of choosing starting values for the K-means
method have been proposed. Chiu et al. (2009) have investigated
the performance of K-means method in CDA with two different
kinds of starting values, called best and Ward’s cases, respectively,
which provided decent clustering results, and they should be
considered in this study. Additionally, the K-means with random
starting values will be deemed as the baseline to compare the
classification performance to other two starting values. The
introduction of starting values presents in section “The Selection
of Starting Values” subsequently.

Spectral Clustering for Cognitive
Diagnosis
As mentioned above, the SCA method was used in many research
fields. For psychological assessment study, Chen et al. (2017)
applied SCA to the context of exploratory item classification.
Through constructing a graph of items, the similar items could
be classified together and the dissimilar ones can be extracted
based on the graphical structure. Intuitively, it is straightforward
to wonder how the SCA performs on person classification
in CDA. The SCA can be available in CDA context for the
following reasons: (a) SCA creates a graph of examinees based
on the similarity measurement of each pair of examinees, where
examinees who possess the same attribute profiles tend to be
connected. (b) Cai et al. (2005) wrote that “The spectral clustering
usually clusters the data points using the top eigenvectors of
graph Laplacian, which is defined on the affinity matrix of data
points”. In order to construct the affinity matrix for binary
response data in CDA, the Gaussian kernel function can be
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applied according to Ng et al. (2002). Then, one can use SCA
to classify examinees. (c) both SCA and K-means method belong
to clustering approach, and K-means is a component of the SCA
method (Chen et al., 2017) which means both methods have the
same parts of processing data to get clustering results. Chiu et al.
(2009) had proved the feasibility of K-means in the aspect of
classifying examinees into groups with same attribute profiles. So,
the SCA should have a good chance of success in characterizing
the same structure (i.e. attribute profiles) among examinees. We
focus on the specific illustration and detail the core procedures
on how to implement the SCA in CDA [for more details about
the SCA, please refer to Von Luxburg (2007) and Chen et al.
(2017)], now that the key point of this paper is not to introduce
the SCA itself. One can easily operate this algorithm in CDA with
following steps:

Step 1: Using response data to construct similarity matrix
S, which is a I × I square matrix with element,

S(Xi, Xi′) = exp(− ‖ Xi − Xi′ ‖
2 /2σ2),

i, i′ ∈ {1, 2, ..., I} , (5)

where Xi and Xi′ are ith and i’th examinee’s response
vectors. Generally speaking, one may take σ2

= 1 as
assumption under standard normal distribution, and Eq. 5
can be considered as Gaussian Kernel. The SCA divided
examinees into diverse clusters so that examinees in the
same cluster tend to be similar, which means S(Xi, Xi′)
value tends to be large if examinees i and i’ belong to
the same cluster. Meanwhile, those who are classified into
different clusters tend to be differ from each other so as to
the values become small.
Step 2: Construct a diagonal matrix DI×I and compute the
normalized Laplacian matrix LI×I as follows:

Dii =

I∑
i′=1

Sii′ (6)

and
LI×I = I−D−

1
2 SD−

1
2 (7)

where I is a I × I unit matrix.
Step 3: Compute the first M eigenvectors u1, u2, ..., uM of
LI× I .
Step 4: Let UI×M be the matrix containing the vectors
u1, u2, ..., uM as columns.
Step 5: Derived the matrix TI×M from UI×M by
normalizing the rows to norm 1, which is set tim =

uim/(
∑

m u2
im)

1
2 .

Step 6: For i = 1,..., I, let Zi = (Zi1, Zi2, ..., ZiM) be the
vector corresponding to the ith row of TI× M .
Step 7: Cluster the points {Zi, i = 1, 2, ..., I} with the
K-means algorithm into M clusters.
Step 8: Assign the original points Xi to cluster j if and only
if the points Zi was assigned to cluster j.

According to these eight steps, examinees can be grouped
into different clusters representing different attribute profiles.

Currently, the R package “Kernlab” (Karatzoglou et al., 2004) can
implement SCA availably.

The Selection of Starting Values
K-Means With Best Starting Values
In order to group examinees into the correct attribute profiles,
Chiu et al. (2009) introduced the sum-score statistic, which was
also used in Henson et al. (2007). For the ith examinee, the sum-
score on attribute k can be defined as:

Wik =

J∑
j

Xijqjk (8)

Thus, Wi = (Wi1, Wi2, ...WiK) is the corresponding vector of K
sum-scores. The matrix WI×K is then taken as the input of cluster
analysis, with a fixed M clusters in CDA. Based on WI×K matrix,
the K-means method assigns data point Wi to the mth cluster
using Euclidean distance if

m = arg min
u∈{1,...,M}

‖Wi − ĉu ‖
2 (9)

Where ĉu is the provisional centroids of the uth cluster
during the iterative steps, and is calculated by averaging the
observations in the cluster.

A key point of using K-means method is the selection of initial
values. Let αm = (αm1, αm2, ...αmK)′ be the unique attribute
profile in the universal set of attribute profiles, where m =
1, 2, ..., M and M = 2K . For example, only four attribute profiles
exist when K = 2, and they are α1 = (0, 0), α2 = (0, 1), α3 =

(1, 0), and α4 = (1, 1), respectively. Then, the initial value matrix
(denoted as WM×K) in the ‘best’ scenario can be calculated
as follow:

WM×K = PM×JQJ×K (10)

where PM×J is the expected response matrix with entry pmj
indicating that the probability of mth attribute profile correctly
answering jth item. For instance, pmj should be calculated
according to Eq. 2 if the DINA model is selected (Chiu et al.,
2009). Note that pmj is used only as an ideal state for comparison
in simulation study. When implementing K-means in practice,
we have no idea about pmj actually, thus other starting values, i.e.
random and Ward’s, will be selected.

Clustering With Ward’s Starting Values
Ward’s method is a general agglomerative hierarchical clustering
approach originally presented by Ward (1963). The criterion of
this manner is to minimize the total within-cluster variance. To
implement this method, at each step find the pair of clusters that
leads to minimum increase in total within-cluster variance after
merging. This increase is a weighted squared distance between
cluster centroids, and can be represented as the sum of square
errors (SSE) statistic. Suppose that cluster p and q are next to be
merged. Then, the SSE for the pth cluster is computed as follow:

SSEp =

Ip∑
i=1

(Ypi − Ȳp)
′(Ypi − Ȳp) (11)
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where Ip and Iq represent the number of data in clusters p and
q, respectively. Ypi is ith data point in cluster p, and Ȳp is the
centroid of cluster p. Using the Eq. 11, the SSE for the qth cluster
can be got. So, the pth and the qth clusters are merged into a new
cluster if

SSEpq − (SSEp + SSEq) =
IpIq

Ip + Iq
(Ȳp − Ȳq)

′(Ȳp − Ȳq) (12)

is the minimum among all pairs, where SSEpq is the combined
SSE for cluster p and q.

Subsequently, the initial values are determined according
to the result of Ward’s method in the ‘Ward’s starting
values’ scenario.

Clustering With Random Starting Values
The simplest method of choosing initial values is to utilize the
random procedure. That means M data points may be selected
randomly from the data set, and be treated as the M cluster
centroid. Now that there is no prior knowledge guiding the way to
choose the starting values in ‘random’ scenario, the randomness
exerts a significant influence on the performance of this method.
Then, with random starting values, the K-means and SCA can be
considered as the baseline for the study.

Note that the ‘best’ starting value is used in K-means method
but excluded in the SCA because the dimensionality of the matrix
WM×K is different from the matrix ZI×M . However, other two
starting values can be both applied for SCA and K-means. The
SCA and K-means are comparable as the following reasons: On
the one hand, Chen et al. (2017) indicated that the K-means
method is a component of the SCA algorithm. Meanwhile,
the original materials used by both SCA and K-means method
are raw response data actually. Only difference between these
two methods is the mean to tackle raw response data. For the
K-means method, in order to get the consistency theory, raw
data was reconstructed through WI×K = XI×JQJ×K , and WI×K
matrix was used as input. On the other hand, according to
the SCA, raw response data was reconstructed as ZI×M matrix
through Steps 1 to 6 described in section “Spectral Clustering
for Cognitive Diagnosis.” And then, ZI×M matrix was treated as
input in K-means method. Based on these evidences, clustering
results from SCA are comparable with those from K-means
method in essence.

SIMULATION STUDIES

The first goal of simulation studies is to investigate the
effectiveness of clustering using the SCA in CDA, and compare
SCA with K-means method in the aspect of classification
accuracy further. These two methods pertain to clustering
approach, and the last step of SCA needs to call K-means
to accomplish clustering, which means both methods have
the same parts of processing data to get clustering results.
However, hamming distance is excluded in this paper because
this method requires prior knowledge of cognitive processes to
obtain the ideal response patterns. Then, measures of distance
between observed response patterns and ideal response patterns

can be calculated. It indicates that hamming distance method
need to know the mechanism between attributes in advance
(Chiu and Douglas, 2013). The SCA and K-means methods are
unstinted in this constraint, clustering examinees according to
their responses only.

Besides, it is not clear that the performance of K-means
method is under some particular underlying processes (e.g.
additive and saturated scenarios) because there is no research
to compare K-means with the A-CDM and G-DINA model. So,
the second goal is to examine the performances of the SCA
and K-means methods in processing various response data sets
generated by different CDMs, including the G-DINA, DINA,
DINO, and A-CDM.

Simulation Design
To evaluate the performance of the SCA in clustering examinees,
five factors were manipulated: the number of examinees I
was set to 100 or 500; The number of attributes K equaled
3, 4 or 5; The item quality was defined by two parameters,
which were denoted as 1− P(1) and P(1). Items with 1−
P(1), P(1) ∈ U(0.05, 0.15) were labeled high quality, and items
with 1− P(1), P(1) ∈ U(0.25, 0.35) were low quality (Ma et al.,
2016); Generating models were G-DINA, DINA, DINO, and
A-CDM model, respectively; Test length J = 5, 10, or 20. The
generating rules of Q-matrix were as follows: (a) ensure that there
were items at least require one attribute in Q-matrix. (b) the
remaining items were selected from all 2K

− 1 items randomly
to satisfy the predetermined test length. For each condition, 100
replications were used.

The true attribute profiles α were linked to an underlying
multivariate normal distribution (Chiu et al., 2009)
θi ∼ MVN(0K , 6), where the covariance matrix 6 is 1 ρ

. . .

ρ 1


Where ρ was set to 0.5, representing medium correlation between
attributes. Let θi = (θi1, ...θiK)′ express the latent continuous
ability for examinee i, the attribute profile αi = (αi1, ..., αiK)′ was
calculated by

αik =

 1 if θik ≥ 8−1
(

k
K+1

)
,

0 otherwise.
(13)

Evaluation Criteria
To evaluate the performance of classifications in CDA,
attribute correct classification rate (ACCR) and pattern correct
classification rate (PCCR) are commonly used as the indicators.
Nevertheless, they become available when examinees are
classified into labeled sets, which is not the case with cluster
analysis, for the reason that they manifest the consistency
between the true and estimated attribute profiles. Only when
the estimates of examinees’ attribute profiles cognized can
these indices be calculated. Obviously, it is not an issue when
researchers use CDMs to analyze response data. However, the
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cluster analysis classifies examinees into attribute-homogeneous
groups, but it cannot provide information about the estimates
of examinees’ attribute profiles (i.e. labeling problem). So,
ACCR and PCCR indices cannot be calculated in this case.
Therefore, two indices which were applied in Chiu et al. (2009)
paper were also used in this study. One was an indicator of
agreement between partitions, called the Adjusted Rand Index
(ARI), and the other was denoted as ω assessing the within-
cluster homogeneity.

The ARI was modified from Rand index, and was originally
proposed by Hubert and Arabie (1985). Given a set of
I examinees S = {O1, ..., OI}, suppose that U = {u1, ..., uR}

and V = {v1, ..., vG} represent two different partitions of the
examinees in S. Supposed that U is the external criterion, i.e.
true attribute profile in CDA, and V is a clustering result. The
ARI assumes the generalized hypergeometric distribution as the
model of randomness, i.e. the U and V partitions are picked at
random such that the number of examinees in the clusters are
fixed. Let Irg be the number of examinees that are in both classes
ur and vg , where r = 1, 2,..., R, and g = 1, 2,..., G. Let Ir• and I•g be
the number of examinees in class ur and vg , respectively. Then,
the ARI can be shown as follows:

ARI =

∑
r,g C2

Irg
−
∑

r C2
Ir•

∑
g C2

I•g /C2
I

1
2

[∑
r C2

Ir•
+
∑

g C2
I•g

]
−
∑

r C2
Ir•

∑
g C2

I•g /C2
I

(14)

which is limited between 0 and 1. The larger the ARI is, the higher
agreement between partitions is. In Eq. 14, a binomial coefficient
C2

(•) is defined as 0 when the number of classified objects is 0 or 1.
In CDA, the index ω which can be used to evaluate the within-

cluster homogeneity with respect to the true attribute profiles
measures how similar examinees from the same cluster are to one
another, and sums this over the clusters (Chiu et al., 2009). The
formula for ω is given by

ω = 1−

∑I
i=2
∑i

i′=1
∑K

k=1 |αik − αi′k| I[ĉi=ĉi′ ]∑I
i=2
∑i

i′=1 K × I[ĉi = ĉi′ ]
(15)

where ĉi represents the classified result for the ith examinee,
and I[ĉi=ĉi′ ]

is the indicator function reflecting whether or not
examinees i and i’ are classified into same cluster. This index is
also bounded between 0 and 1, and it equals 1 if true attribute
profiles are the same for all pairs of examinees clustered together.

Results
Figures 1–8 totally demonstrate the means of ARI and ω for
SCA, K-means, G-DINA model and its related reduced CDMs
over 100 replications for each condition. Classification results
of the true model are definitely the best, which provides the
upper limit of comparison across all conditions. Oppositely, the
random case just provides the lower limit of comparison to
other settings, and it has indicated the worst performance among
all methods based on simulation results. Although the “best”
scenarios are treated as the best possible case for K-means to
cluster response data, it has to use CDMs to get the expected
response pmj in advance, then W can be calculated. In this sense
it is not indeed a nonparametric method. So, we mainly compare

the performances of Ward’s linkage for two clustering methods
against the ones of other fitted CDMs in the following. The results
of SCA with random, K-means with random and K-means with
best do not present here.

According to all results, the ARI and ω values are comparable
between SCA and other methods (K-means and fitted CDMs) on
the whole. In each Figure, the lines are clearly divided into two
parts on account of item quality. The top half part presents high
quality while the bottom half part presents low quality conditions.
These results fully reflect the item quality, with a significant
influence on accuracy of classification. Take Figures 1, 2 as an
example, ARI values are all above 0.3, and ω values are all
larger than 0.81 under the SCA with high quality. However, the
lowest values of ARI and ω are 0.0284 and 0.6075, respectively,
with low quality. Figures 3–8 show the same results under
different generating CDMs. It is noted that this deterioration is
not unique for the SCA, moreover, the K-means and CDMs also
have the same tendency. It demonstrates that item quality not
only has a prominent influence on the performance of CDMs,
but also has a dramatical effect on clustering methods. So, some
important attentions should be paid to item quality in order
to promote the classification accuracy in CDA regardless of the
particular classification methods. As for two clustering methods,
SCA can obtain higher ARI and ω values, representing more
accurate clustering in most conditions, which can be concluded
from that the red dot line (the legend denoted as SCA-W) is
mostly above the green dot line (the legend denoted as Kmeans-
W) in each parts.

For sample size, the impact of this factor on classification
accuracy of these approaches is almost the same when other
factors (e.g. attribute number, test length, item quality, and true
models) are fixed, which means the clustering performance of
SCA is comparable to K-means and other fitted CDMs. As can
be seen those from eight figures, the ARI and ω values, soaring
as the sample size, become large (from 100 to 500) on the whole.
Since the relative advantage of cluster analysis applicated in small
sample size, the main outcomes had been described under 100
sample size conditions (the left half part in each figure). Note that
the similar results are presented in 500 sample size condition.
When the G-DINA is the true model, the ARI and ω values
of SCA are higher than those from K-means, DINA and DINO
models (the red dot line is above) except that the ARIs in the
conditions K = 3 and item quality is high, and K = 4 and item
quality is low, respectively. This indicates SCA can be applied
to most tests where there are a saturated underlying processes
between attributes. As for A-CDM is the true model, we can
see that SCA performs better than K-means, DINA and DINO
models when item quality is high (except K = 5). Futhermore,
SCA performs similarly as others in terms of ARIs (except K = 3
and J = 5 or 10), but ω values are consistently higher than other
methods when item quality is low, which demonstrates stronger
within-cluster homogeneity. This suggests SCA can also obtain
decent classification accuracy when the cognitive mechanism is
additive between attributes. Considering the true model is DINA
model, the ARIs from SCA are almost higher than those from
K-means and DINO model. Meanwhile, the ω values from SCA
are also the highest among these three methods when item quality

Frontiers in Psychology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 94484

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00944 June 15, 2021 Time: 11:0 # 7

Guo et al. Spectral Clustering Algorithm for CDA

FIGURE 1 | Mean values of ARI by SCA, K-means, and fitted models; True model = G-DINA.

FIGURE 2 | Mean values of ω by SCA, K-means, and fitted models; True model = G-DINA.

is low, whereas the magnitudes of ωs are affected by test length
when item quality is high. Specifically, ω values of SCA are higher
than those from K-means, A-CDM and DINO when J = 20,
and be inverse when J = 5 or 10. The results show that the
performance of SCA is acceptable when item quality is low, or J
> 20 if the underlying process is conjunctive among attributes.
Providing that DINO is the true model, the ARIs from SCA
are almost higher than those from K-means and DINA model.
Similarly, the ω values from SCA are the highest among these
three methods, especially higher than A-CDM when K = 3 and
item quality is high. This implies SCA has a patchy performance
when disjunctive process arose between attributes.

In addition, the number of attributes also affects the
classification accuracy of SCA as same as CDMs. Generally

speaking, with attribute number K increasing, the ARI and ω

values decreases. Most results conform to this pattern as shown
in Figures 1–8. However, this trend is not consistent across all
conditions. For instance, in Figure 1, for condition (I, J) = (100,
5), ARI values change from 0.3554 to 0.3628 under SCA, while
ARI values change from 0.3446 to 0.3754 under K-means when
K grows from 3 to 4. ω values change from 0.8161 (0.8055) to
0.8378 (0.8337) under SCA (K-means). Due to the randomness
of generating Q-matrix in each replication, the K-means may
arise some reversal results in some conditions. So, it may infer
that the combination of q-vectors influences the effect of attribute
number on classification accuracy.

Last, test length is a widely considered factor in CDA. Many
studies have discussed the influence of this factor on classification
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FIGURE 3 | Mean values of ARI by SCA, K-means, and fitted models; True model = A-CDM.

FIGURE 4 | Mean values of ω by SCA, K-means, and fitted models; True model = A-CDM.

accuracy (Chen et al., 2013; Chiu et al., 2009). From the results of
these simulations, as J increases, the classification abilities of all
methods tend to improve. Considering the shortest test length
condition (J = 5), most ω values are no less than 0.8 when
item quality is high, while most ω values are no less than 0.6

when item quality is low under the SCA procedure. Definitely,
the longer the test length is, the more information about the
examinees it provides, and more accurate classification will be
obtained. This indicates the SCA can be affected by test length
just like other methods.
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FIGURE 5 | Mean values of ARI by SCA, K-means, and fitted models; True model = DINA.

ANALYSIS OF MIXED NUMBER
SUBTRACTION DATA

Data Description
The data consist of 536 examinees’ responses to 11 items taken
from the mixed number fraction subtraction. The Q-matrix was
modified from five attributes to three attributes, and they were
previously used by Henson et al. (2009). The attributes defined for
this study are (1) borrowing from a whole number, (2) separating
a whole number from a fraction and (3) determining a common
denominator. Table 1 shows the 11 items and their required
attributes. It should be pointed out that the data and the Q-matrix
were got from R package ‘CDM’, and the item 12 was excluded
from the original table as shown in Henson et al.’s paper. So, there
were just 11 items in this study. Then, the SCA and K-means
algorithm with Ward’s linkage, and four CDMs were applied to
classify examinees into different clusters.

Two major criteria evaluating the classified quality were used
as those in Chiu et al. (2009) study, denoted as within-cluster
mean of W (see Eq. 10 for the definition), and square root of
mean squared residual (MSR) of W. Specifically, the mean of W
reflects how well-separated cluster means are, which can provide
good identification of examinees’ overall patterns. And MSR of
W shows that how homogeneous a cluster is. The MSR of W for
cluster m is given by

MSR(m) =

∑Im
i ‖W(m)

i − W̄(m)
‖

2

Im
(16)

where Im is the number of examinees grouped into cluster m. The
smaller the MSR is, the more homogeneous a cluster is.

Meanwhile, we also report the cluster size and mean of sum-
score as the auxiliary indicators. The classification results from
SCA, K-means, and CDMs were sorted by means of sum-score,
which can be used to infer attribute profiles in practice (Chiu
et al., 2009). The rationale is that one may get higher sum-score if
(s)he masters more attribute in a test usually.

Analysis and Results
The data were analyzed by all methods through the statistic
W. We only select the Ward’s starting values due to their
good performance in simulation studies. Note that the attribute
profiles’ labels were not available for clustering analysis, and
the results from the SCA and K-means were sorted along with
the means of sum-scores in the same cluster, illustrating how
one can infer the examinees’ attribute profiles. It means that
the mean of sum-scores in certain cluster representing α =

(0, 0, 0) is definitely the smallest among eight attribute profiles,
while the mean of sum-scores is the largest for profile α =

(1, 1, 1). Because of the acquirement of specific attribute profiles
by using the CDMs, results are listed according to the size of
attribute vectors.

When using multiple models to fit the same data, the
Akaike’s information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarzer, 1976) were
usually adopted to determine which model can provide a better
fit result. For each of these two statistics, the fitted model with a
the smaller value is selected among the set of competing models.
Table 2 shows the AIC and BIC for four CDMs fitting the fraction
subtraction data. The AIC is the smallest under the G-DINA
model, but the BIC is the smallest under A-CDM. According to
previous study, if AIC and BIC contradict each other, the BIC
may provide a better result for selecting model because BIC takes
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FIGURE 6 | Mean values of ω by SCA, K-means, and fitted models; True model = DINA.

FIGURE 7 | Mean values of ARI by SCA, K-means, and fitted models; True model = DINO.

into account both the sample size and the number of parameters
of the model (Chen et al., 2013). Based on this point, the A-CDM
provides the best fit among these four CDMs.

Due to the space limitation, only the results obtained by the
best fit model, A-CDM, are shown in the table. As can be seen
in Table 3, the A-CDM intensively grouped most examinees
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FIGURE 8 | Mean values of ω by SCA, K-means, and fitted models; True model = DINO.

into three main clusters, and the remaining clusters only have
a few examinees. In addition, the differences among W1 to W3
are comparative large under the A-CDM, so it is benificial to
identify attribute profiles of examinees. However, large MSRs are
got by using this model, which means this empirical data are not
clustered closely based on examinees’ profiles, then apart cluster
means may result in heterogeneous clustering.

In contrast, Table 4 shows that the SCA classified most data
to the profiles which stand for mastering only one attribute
(denoted as α(1)), the number of examinees is 137. The second
largest cluster size is 75, and this cluster represents the profile
α = (1, 1, 1). Similarly, the K-means method also classified most
data to the same profiles, with the clusters α(1) and α = (1, 1, 1)
are both containing 100 examinees. The distances between the
pairs of clusters in the SCA are larger than those in K-means
method according to the values of W, which means that SCA can
give well-separated clusters. In addition, the values of MSR under
these two clustering methods are smaller than those under the

TABLE 1 | Mixed number fraction subtraction and corresponding q-matrix.

Item number Item Q-matrix Item number Item Q-matrix

1 3 1
2 − 2 3

2 1 1 0 8 2− 1
3 1 0 1

2 3− 2 1
5 1 0 1 9 4 5

7 − 1 7
4 1 1 1

3 3 7
8 − 2 1 0 1 10 7 3

5 −
4
5 1 0 0

4 4 4
12 − 2 7

12 1 0 0 11 4 1
10 − 2 8

10 1 0 0

5 4 1
3 − 2 4

3 1 1 0 13 4 1
3 − 1 5

3 1 1 0

6 11
8 −

1
8 1 1 0

A-CDM. Further, MSR under SCA are smaller than those under
K-means, except one cluster (see the bold value on the second
row). This is in accord with the results from simulation study that
the SCA tends to form close and homogeneous clusters.

Finally, taking the A-CDM as the standard, Table 5 presents
the classification agreement of each two methods, including SCA,
K-means, and A-CDM. The agreement between the A-CDM
and SCA is slight higher than the other pairs with an ARI of
0.468 compared to an ARI of 0.443 for the agreement between
the A-CDM and K-means. It indicates that SCA outperformed
K-means for this data set.

SUMMARY AND DISCUSSION

The contribution of this study is to introduce the SCA into
cognitive diagnosis and compare it with the K-means method and
different CDMs in terms of classification accuracy. The clustering
methods are computationally efficient and effctive for data with

TABLE 2 | AIC and BIC for four CDMs fitting fraction subtraction data.

Models AIC BIC

G-DINA 5341.06 5550.98

DINA 5534.39 5658.63

DINO 5517.80 5642.04

A-CDM 5363.15 5525.94

Bold values mean the best models that we need to select to fit the data.

Frontiers in Psychology | www.frontiersin.org 11 May 2020 | Volume 11 | Article 94489

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00944 June 15, 2021 Time: 11:0 # 12

Guo et al. Spectral Clustering Algorithm for CDA

TABLE 3 | Classification by A-CDM.

Profile Size Mean W
√

MSR(m) Mean Sum-score

W1 W2 W3

(0 0 0) 127 0.93 0.51 0.66 1.35 1.07

(0 1 0) 109 1.55 1.94 1.37 1.34 2.83

(0 0 1) 6 3.41 1.33 3.00 0.75 4.00

(1 0 0) 9 4.70 3.56 1.22 1.19 6.11

(1 1 0) 40 3.62 4.55 1.45 1.35 7.33

(1 0 1) 6 2.59 2.83 3.50 1.03 8.00

(0 1 1) 44 4.37 2.14 2.93 1.60 4.80

(1 1 1) 195 7.09 4.63 3.62 1.37 9.88

TABLE 4 | Classification by SCA-Ward’s and K-means-Ward’s algorithm.

Size Mean W
√

MSR(m) Mean
sum-score

W1 W2 W3

59 (79) 0.03 (0.04) 0.41 (0.70) 0.07 (0.09) 0.67 (0.79) 0.61 (0.73)

62 (40) 0.13 (0.00) 0.24 (0.00) 1.26 (1.00) 0.75 (0.00) 1.63 (1.00)

71 (100) 0.18 (0.05) 1.10 (1.04) 1.82 (1.61) 0.67 (0.74) 3.10 (2.70)

137 (71) 0.88 (0.87) 1.98 (1.24) 2.28 (2.82) 1.09 (1.18) 5.14 (4.93)

58 (52) 2.24 (2.06) 3.36 (3.35) 1.60 (1.35) 1.18 (1.30) 7.21 (6.75)

32 (52) 2.78 (2.62) 3.66 (2.87) 2.94 (3.60) 0.76 (0.77) 9.38 (9.08)

42 (42) 2.40 (2.57) 3.33 (4.00) 3.86 (2.81) 0.70 (0.93) 9.60 (9.38)

75 (100) 3.00 (2.67) 4.00 (3.97) 3.96 (4.00) 0.25 (0.55) 10.93 (10.67)

Results of K-means-Ward’s present in parentheses.

TABLE 5 | ARI table for ACDM, SCA and K-means.

A-CDM SCA-Ward’s K-means-Ward’s

A-CDM – 0.468 0.443

SCA-Ward’s – 0.427

K-means-Ward’s –

any sample size. It’s easy and convenient to implement, and
researchers only need to know the number of required attributes
and their hierarchical structures. The previous study had shown
that K-means has favorable performance in clustering examinees
who possess the same attribute profiles (Chiu et al., 2009). In this
study, we introduced the SCA for grouping examinees’ attribute
profiles into specific clusters in CDA. Then, the performance of
SCA on classification accuracy was investigated under different
factors, and some interesting findings were made based on
simulation studies.

The most important factor affecting the classification accuracy
of both clustering analysis and CDMs was item quality. Generally,
the higher the item quality was, the higher the classification
accuracy was. This is because the randomness (i.e. guessing
and slipping behaviors) in the responses will decrease with high
quality leading to a more aggregated cluster for the same attribute
profile of examinees. Thus, it is not difficult to distinguish the
differences between clusters.

With the number of attribute increasing, the ARI and ω

values decrease for all methods. We know that the total number

of attribute profiles in CDA is exponential in the number of
attributes, i.e. 2K which is also the magnitude of clusters to
be identified. Obviously, the difficulty of accurately identifying
attribute profiles from a large space is considerable. Besides, as
test length increases, the classification abilities of all methods
tend to improve. This results are consistent with previous studies.
We chose short test length in simulation studies because, a)
if giving students an “embedded assessment” at the end of an
instruction period, we must prefer short tests to save lecture time
(Wang, 2013). In addition, teachers also want to get the attribute
profiles of students quickly with short test. b) some diagnostic
tests that are commonly used in CDA do not have too many
items, especially when the number of attributes is small. Based
on our simulations, the SCA can yield considerable classification
accuracy when test length is 20.

Simulation results presented here showed that the true CDM is
always the best one to fit data. However, the underlying processes
among attributes are various in real data actually, and it is hard to
define the exact relationship between them. So, the simplicity of
cluster analysis is an attractive selection without regard to specify
the underlying processes in advance. As mentioned in section
“Spectral Clustering for Cognitive Diagnosis,” the SCA could
simply implemented via the R package called ‘Kernlab’, which
means it is very easy to master by teachers and practitioners.
In this study, we investigated the performance of SCA under
four specifical processes (saturated, additive, conjunctive and
disjunctive) and compared it with other approaches. Overall,
the SCA performed comparably to fitted CDMs, and it was
basically superior to K-means method. Particularly, the ω values
from SCA were highest when the true model was A-CDM
(excluded the true model). The strength of cluster analysis was
the application in small sample size, so we mainly focused on
this point in this study. When the sample size was small, the
effectiveness of SCA varied depending on the mechanism of
attributes according to simulation results. So, integrating the role
of generating CDMs and sample size, our usage recommendation
is that the SCA is suitable for analyzing data in regard to
saturated and additive underlying processes while it has slightly
worse efficiency in conjunctive and disjunctive scenarios. With
the sample size increased, it should be pointed out that the
classification accuracy became better for all these approaches
and the differences in classification accuracy between clustering
analysis and CDMs were shrinked.

The ARIs are generally low for some conditions in this paper.
These three setting factors (i.e. item quality, test length, and
generating model) in this research are different from Chiu et al.
(2009) study. As for reason, we can see that these three factors
have significant effects on classification accuracy based on our
simulation studies. So, it is not strange that the ARIs are lower
than those of conclusions in Chiu et al.’s study. In point of fact,
the ARIs are not very low when item quality is high in this study.

Just like K-means, the SCA also suffers from the labeling
problem, and has difficulty in matching each cluster to a certain
attribute profile. This is a major issue of clustering analysis
for CDA. However, perhaps one can draw on the teachers’
experience to help to determine the students’ attribute profiles in
the classroom. This issue will be one of our future directions.
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Several directions for research can be identified. First, the
hierarchy of attributes refers to structurally independent in
this research, which means there is no prerequisite in every
required attributes. So, the correlation exists between attributes
is plausible in this case. However, there are other different
structures among the attributes, such as linear, convergent,
divergent, and unstructured hierarchical structures (Leighton
et al., 2004). The hierarchy generally defines the educational
and psychological ordering among the attributes required to
solve a test problem, so it is reasonable to infer the attribute
structures often exists in the test (Kim, 2001). Although the
performance of SCA in one of the structures has been examined
in this study, it can not directly generalize to other cases without
investigation. So, the effect of different attributes structures need
further studies.

Second, the fully connected graph, Gaussian Kernel (Eq. 5),
was used to construct similarity matrix S in this study.
However, there are different similarity graphs in the SCA,
such as the epsilon-neighborhood graph and k-nearest neighbor
graphs. Besides, two major methods, the unnormalized and the
normalized spectral clustering, can be used to calculate Laplacian
matrix. The current paper focused only on the normalized case.
In the future, other similarity graphs and unnormalized spectral
clustering method should be considered in the SCA to investigate
the classification ability for the CDA.

Third, as an initial research to propose the SCA into CDA,
the current study only investigated the SCA’s performance for the
dichotomous item responses. However, recent study proposed
a general polytomous cognitive diagnosis model for a special
type of graded responses to deal with non-dichotomous item

responses (Ma and de la Torre, 2016). So, it is necessary
to develop the clustering analysis to cope with the cognitive
diagnostic test with both dichotomous and polytomous items.
Thus, it may be reasonable to measure the similarity by methods
based on rank correlation, such as in Chen et al. (2017). It is
interesting to investigate how well the SCA performs for the
graded responses.
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Missing data are hard to avoid, or even inevitable, in longitudinal learning diagnosis
and other longitudinal studies. Sample attrition is one of the most common missing
patterns in practice, which refers to students dropping out before the end of the study
and not returning. This brief research aims to examine the impact of a common type
of sample attrition, namely, individual-level random attrition, on longitudinal learning
diagnosis through a simulation study. The results indicate that (1) the recovery of
all model parameters decreases with the increase of attrition rate; (2) comparatively
speaking, the attrition rate has the greatest influence on diagnostic accuracy, and the
least influence on general ability; and (3) a sufficient number of items is one of the
necessary conditions to counteract the negative impact of sample attrition.

Keywords: cognitive diagnosis, longitudinal learning diagnosis, missing data, sample attrition, Long-DINA model

INTRODUCTION

During the last few decades, to promote student learning, learning diagnosis (Zhan, 2020) or
cognitive diagnosis (Leighton and Gierl, 2007) through objectively quantifying the learning status
of fine-grained attributes (e.g., knowledge, skills, and cognitive processes) and providing diagnostic
feedback has been increasingly valued. Longitudinal learning diagnosis identifies students’ strengths
and weaknesses of various attributes throughout a period of time, which also can be seen as
an application of learning diagnosis through longitudinal assessments. Longitudinal learning
diagnosis not only can be used to diagnose and track students’ growth over time but also can be used
to evaluate the effectiveness of diagnostic feedback and corresponding remedial teaching (Tang and
Zhan, under review; Wang et al., 2020).

In recent years, to provide theoretical support for longitudinal learning diagnosis, several
longitudinal learning diagnosis models (LDMs) have been proposed, which can be divided into two
primary categories: the higher-order latent structure-based models (e.g., Huang, 2017; Lee, 2017;
Zhan et al., 2019a) and the latent transition analysis-based models (e.g., Li et al., 2016; Kaya and
Leite, 2017; Wang et al., 2018; Madison and Bradshaw, 2018). The former estimates the changes
in higher-order latent ability over time, and from this, it infers the changes in the lower-order
latent attributes. The latter estimates the transition probabilities from one latent class or attribute
to another or to the same latent class or attribute. The diagnostic results of these two model types
have a high consistency (Lee, 2017). Although the utility of these models has been evaluated by
some simulation studies and a few applications, the harm of ubiquitous missing data in longitudinal
designs has not yet been considered and studied.
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In practice, missing data are hard to avoid, or even inevitable,
in longitudinal learning diagnosis and other longitudinal studies.
In this current study, we focused on a type of missing data that
is common to longitudinal studies, namely, attrition (Little and
Rubin, 2020, p. 10). Attrition refers to students dropping out
prior to the end of the study and do not return. For instance,
in school-level longitudinal learning diagnosis projects, some
students may individually drop out before the end of the study
because they move to other schools that are inaccessible to the
researchers; all students in the class may even drop out altogether
because of some unforeseen classroom instructional reasons (see
the empirical example in Zhan et al., 2019a).

A higher percentage of attrition at each point in time means
the remaining data at subsequent time points provide less
diagnostic information, which may also challenge the robustness
of measurement models. Some studies have previously employed
a complete case analysis that deletes any students who dropped
out (e.g., Zhan et al., 2019a). However, this is unfair to those
students who were deleted in analysis, because they did not
receive any diagnostic feedback. Secondly, it may produce biased
results when students with complete data are systematically
different from those with missing data. Longitudinal studies are
particularly susceptible to such bias, as missing data accumulate
over time due to attrition. Therefore, it is necessary to explore
the impact of missing data caused by attrition on longitudinal
learning diagnosis. This not only helps practitioners better
understand the performance of existing longitudinal LDMs in
specific test situations with missing data but also provides a
reference to psychometricians for future research on the necessity
of imputation methods for missing data in longitudinal learning
diagnosis. However, as aforementioned, to our knowledge,
the harm of ubiquitous missing data in longitudinal designs
has not yet been considered and studied in the field of
learning diagnosis.

As a prolog, this brief research report aims to explore the
impact of various proportions of a common type of attrition
(i.e., individual-level random attrition) on longitudinal learning
diagnosis through a simulation study. For simplicity and without
loss of generality, a simple version of the longitudinal higher-
order deterministic-inputs, the noisy “and” gate (sLong-DINA)
model (Zhan et al., 2019a) is used in this study. The rest of the
paper starts with a brief review of the sLong-DINA model and
different types of sample attrition. Subsequently, a simulation
study was conducted to mimic the operational scenarios of
attrition that may be considered by the sLong-DINA model.
Finally, the authors summarize the findings and discuss potential
directions for future research.

BACKGROUND

sLong-DINA Model
The sLong-DINA model is one of the representative models of the
higher-order latent structural model-based longitudinal LDMs.
Compared with the complete version, the special dimensions
used to account for local item dependence among anchor items
at different time points (see Paek et al., 2014) are ignored

in the sLong-DINA model to reduce model complexity and
computational burden.

Let ynit be the response of person n (n = 1,..., N) to item i
(i = 1,..., I) at time point t (t = 1,..., T). The sLong-DINA model
can be expressed as follows:

First order:

logit(P(ynit = 1|αnt, γnm,λ0it,λ1it)) = λ0it + λ1it

K∏
k=1

α
qikt
nkt (1)

Second order:

logit(P(αnkt = 1|θnt, ξk, βk)) = ξkθnt − βk (2)

Third order:

θn = (θn1, . . . , θnT)
′
∼ MVNT(µ, 6) (3)

where αnt = (αn1t ,..., αnKt)′ denotes person n’s attribute profile
at time point t, αnkt∈{0, 1}, and αnkt = 1 if person n masters
attribute k (k = 1,..., K) at time point t and αnkt = 0 if not; λ0it
and λ1it are the intercept and interaction parameter for item i at
time point t, respectively; qikt∈{0, 1} is the element in an I-by-
K Qt-matrix at time point t, where qikt = 1 if item i requires
attribute k at time point t and qikt = 0 if not; θnt is person
n’s general ability at time point t; ξ k and βk are the slope and
difficulty parameters of attribute k at all time points, respectively,
because the same latent structure is assumed to be measured at
different time points; µ = (µ1,..., µT)′ is the mean vector and6 is
a variance–covariance matrix:

6 =

 σ2
1
...

. . .

σ1T · · · σ2
T


where σ1T is the covariance of the first and Tth general abilities.
As a starting and reference point for subsequent time points, θn1
is constrained to follow a standard normal distribution.

There are two reasons why we did not consider using a
general or saturated model (e.g., Huang, 2017; Madison and
Bradshaw, 2018). First, general models always need a large
sample size to obtain a robust parameter estimate (Jiang and
Ma, 2018; Ravand and Robitzsch, 2018). Thus, it is difficult for
small-scale educational projects (e.g., school- and classroom-level
assessments) to meet this requirement. Second, the parameters in
general models are often hard to interpret in practice. Adequate
parameter constraints are essential for obtaining interpretable
and meaningful insights from the model, which are particularly
important in educational and psychological applications to fulfill
the need for accountability.

Sample Attrition
Sample attrition is one of the common sources of missing
data in longitudinal studies (Little and Rubin, 2020) and refers
to when students drop out prior to the end of the study
and do not return. In practice, there are four typical types
of sample attrition: individual-level random attrition, class-
level random attrition, individual-level nonrandom attrition,
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and class-level nonrandom attrition. More specifically, (a) the
individual-level random attrition reflects the common scenario
in which sample size decreased monotonically over time for
individual reasons, such as illness, transferring to another
school, and reluctance to participate; (b) the class-level random
attrition can be seen as an extreme case of individual-level
random attrition, where the whole class students drop out
for some unpredictable reasons; for example, the testing time
may conflict with other course time due to adjusting the
curriculum schedule; (c) individual-level nonrandom attrition
typically occurs when an individual has achieved a predetermined
learning goal, such as mastering the target attributes; thus,
some students may feel that there is no need to waste
time on follow-up remediation and then quit the follow-up
section(s); and (d) class-level nonrandom attrition may occur
when the teacher finds that the vast majority of students
(e.g., 80%) in the class have mastered the target attributes,
then she/he may decide to quit the follow-up section(s)
to ensure normal teaching progress. More discussions about
sample attrition can be found in Goodman and Blum (1996)
and Little and Rubin (2020).

This brief research aims to explore the impact of the
individual-level random attrition, which is the simplest type of
sample attrition, on longitudinal learning diagnosis. As this is a
prolog or preliminary study, we hope that more researchers could
continue to study the effects of different types of sample attrition
and different types of missing data on longitudinal learning
diagnosis (cf., Muthén et al., 2011; Zheng, 2017).

SIMULATION STUDY

Design and Data Generation
In the simulation study, three factors were manipulated. First,
the sample size at the starting time point was varied to be either
N = 200 or 400 students. According to the national situation
in the authors’ country, sample sizes of 200 and 400 translate
to approximately 5 and 10 classes with 40 students in each. In
real school-level longitudinal learning diagnosis projects, more
classes and more students per class are rare. Second, the random
attrition rate at each time point (from time point 2) equaled
M1 = 0% (baseline), 5, 10, 20, 40, and 60% (all the decimal points
that might occur in proportional sampling are deleted). The third
manipulated variable was test length at each time point at two
levels of relatively short (It = 15) and relatively long (It = 30).

According to the authors’ practical experience in longitudinal
learning diagnosis (e.g., Tang and Zhan, under review), two or
three test times (i.e., one or two sessions of diagnostic feedback
and/or remedial teaching) are sufficient for almost all students
to master the target fine-grained attributes. Thus, three time
points were considered (T = 3) in this brief study. In addition,
four attributes (K = 4) were measured. The first four items for
It = 15 and the first eight items for It = 30, respectively, were
used as anchor items. The simulated Q-matrices were presented
in Figure 1. In practice, it is common to use high-quality items
as anchor items, and thus the anchor item parameters were
fixed as λ0it = −2.197 and λ1it = 4.394. In such a case, the

aberrant response (i.e., guessing and slipping) probabilities are
approximately equal to 0.1. In addition, the results of Zhan et al.
(2019b) indicate that assuming guessing and slipping parameters
to follow a negative correlation is more realistic. Thus, non-
anchor item parameters were generated from a bivariate normal
distribution with a negative correlation coefficient as follows:(

λ0it
λ1it

)
∼ MVN2

((
−2.197
4.394

)
,

(
1.0 −0.6
−0.6 1.0

))
This setting leads the guessing and slipping probabilities for
all items to follow a positively skewed distribution (mean
≈ 0.1, minimum ≈ 0.01, and maximum ≈ 0.6). Attribute slope
parameters were fixed at ξ k = 1.5 for all attributes, and attribute
difficulty parameters were fixed at β = (−1, −0.5, 0.5, 1). For the
general abilities on different time points, the correlations among
them were set as 0.9. Between two consecutive time points, the
overall mean growths were set at 1, and the overall scale changes
were set at

√
1.25.

Furthermore, the response data without attrition (i.e.,
M1 = 0%) were generated from the sLong-DINA model based
on the above-generated parameters. For the response data with
attrition, a different proportion of students were randomly
sampled as attrition from time point 2. Then, these selected
students’ responses were modified as missing (i.e., NA), and
students who had been drawn out did not appear in the
subsequent section(s). In other words, some students were
dropped out from time point 2, while some others were
dropped out until time point 3. The data were generated by
using R software, and the data generation code is available
from the authors.

Analysis
In this brief study, the parameters of the sLong-DINA model
are estimated using the Bayesian Markov chain Monte Carlo
method via Just Another Gibbs Sampler (JAGS) software. The
prior distribution of the model parameters and the corresponding
JAGS code are displayed in Supplementary Table S1 in the
online supporting materials. More details about how to use the
JAGS code for Bayesian CDM estimation can be found in a
tutorial by Zhan et al. (2019c).

Thirty replications were implemented in each condition. For
each replication, two Markov chains with random starting points
were used and 15,000 iterations were run for each chain. The
first 10,000 iterations in each chain were discarded as burn-
in. Finally, the remaining 10,000 iterations were used for the
model parameter inferences. The potential scale reduction factor
(PSRF; Brooks and Gelman, 1998) was computed to assess the
convergence of each parameter. Values of PSRF less than 1.1 or
1.2 indicate convergence. The results indicated that PSRF was
generally less than 1.1, suggesting acceptable convergence for the
setting specified.

To evaluate parameter recovery, the bias and the root mean
square error (RMSE) were computed as bias(v̂) =

∑R
r=1

v̂r−v
R

and RMSE(v̂) =
√∑R

r=1
(v̂r−v)2

R , where v̂ and v are the estimated
and true values of the model parameters, respectively; R is
the total number of replications. In addition, the correlation
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between the true values and estimated values (Cor) for some
parameters (e.g., general abilities) were computed to evaluate
the recovery. For attribute recovery, the attribute and pattern
correct classification rate (i.e., ACCR and PCCR) were computed
to evaluate the classification accuracy of individual attributes
and profiles: ACCR =

∑R
r=1

∑N
n=1

I(α̂nkr=αnkr)/NR and PCCR =∑R
r=1

∑N
n=1

I(α̂nr=αnr)/NR, where I(·) is an indicator function.
In reference to Zhan et al. (2019a), two kinds of PCCR were
considered in this brief research, namely, the PCCR and the
Longitudinal PCCR. The former focuses on whether K attributes
can be correctly recovered at a given time point, while the latter

focuses on whether all TK attributes can be correctly recovered
(e.g., if T = 3, the pattern contains 12 attributes).

RESULTS

Figure 2 presents the recovery of item parameters. First,
one of the most important results is that, with the increase
of the attrition rate, the recovery of item parameters
decreases, which manifests as larger bias, higher RMSE,
and lower Cor. Second, increasing the number of classes

1* 2* 3* 4* 5 6 7 8 9* 10* 11* 12* 13* 14* 15 16 17 18 19 20 21 22 23 24 25* 26* 27* 28* 29* 30
α1(1)
α2(1)
α3(1)
α4(1)

α1(2)
α2(2)
α3(2)
α4(2)

α1(3)
α2(3)
α3(3)
α4(3)

FIGURE 1 | Simulated K-by-I Q′-matrices in simulation study. “*” Denotes items used in the I = 15 conditions; gray means “1” and blank means “0”; time point is in
parentheses.

FIGURE 2 | The recovery of item parameters in simulation study. M1, attrition rate; N, sample size; I, test length; Bias, mean bias across all items; RMSE, mean root
mean square error across all items; Intercept, item intercept parameter; Interaction, item interaction.
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FIGURE 3 | The recovery of attributes in simulation study. M1, attrition rate; N, sample size; I, test length; ACCR, attribute correct classification rate; PCCR, pattern
correct classification rate; time point is in parentheses.

FIGURE 4 | The recovery of general ability parameters in simulation study. M1, attrition rate; N, sample size; I, test length; Bias, mean bias across all persons; RMSE,
mean root mean square error across all persons; Cor, correlation between generated and estimated values; time point is in parentheses.

(i.e., sample size) and test length yields better recovery of
item parameters, and the former is more influential. Third,
intercept parameters were generally estimated more accurately
than interaction parameters, mainly because the number of
individuals who mastered all required attributes is typically

less than the number of individuals who do not master all
required attributes.

Figure 3 presents the recovery of attributes. With the increase
of the attrition rate, the classification accuracy quickly decreases,
particularly for the Longitudinal PCCR. Since there is no attrition
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at time point 1, the PCCR of time point 1 is primarily affected
by test length. Then, for the PCCR of time points 2 and 3,
their downward trend is almost consistent with that of the
Longitudinal PCCR. Therefore, if the PCCR is maintained above
80% and the Longitudinal PCCR is maintained above 60%, an
attrition rate of less than or equal to around 20% and around
40% is acceptable for short tests and long tests, respectively.
In addition, there is a significant result that deserves attention,
which is that the classification accuracy of time point 3 is better
than that of time point 2; this was also found in the study
of Zhan et al. (2019a). Although we currently do not know
how to interpret this phenomenon, it is at least not negative
for longitudinal learning diagnosis. Furthermore, increasing the
number of classes and test length yields higher classification
accuracy, but the former has a limited effect.

Figure 4 presents the recovery of general ability parameters.
Similarly, with the increase of the attrition rate, the recovery
of general ability parameters gradually decreases, which is
manifested as higher RMSE and lower Cor (bias is less affected).
Compared with item parameters and attributes, the attrition rate
has less impact on general ability parameters.

CONCLUSION AND DISCUSSION

This brief research examined the impact of individual-level
random attrition on longitudinal learning diagnosis. The results
indicate that (1) the recovery of all model parameters decreases
with the increase of attrition rate; (2) comparatively speaking,
the attrition rate has the greatest influence on the diagnostic
accuracy, and the least influence on general ability; and (3) a
sufficient number of items is one of the necessary conditions to
withstand the negative impact of sample attrition. For relatively
short tests (e.g., 15 items), a random attrition rate of 20% or
less is necessary to achieve an acceptable longitudinal diagnostic
accuracy (i.e., longitudinal PCCR> 0.6); conversely, for relatively
long tests (e.g., 30 items), a random attrition rate of 40% or
less is necessary.

In summation, the results of this brief study have
demonstrated that sample attrition or missing data have a
significant impact on diagnostic accuracy of longitudinal
learning diagnosis. Therefore, the topics of sample attrition
and missing data are worth studying in longitudinal learning
diagnosis. As a prolog to future research, the current study only
considered some simple cases and left many issues for further
discussion. First, this brief research only explores the impact
of sample attrition on the sLong-DINA model. Whether the
conclusions apply to other longitudinal LDMs is still worth
further study in the future. Second, in a different manner from
attrition that was focused on this brief research (i.e., monotone
missing pattern), a student can be missing at one follow-up
time and then measured again at one of the next, resulting in
a non-monotone missing pattern. Students’ returning indicates
that more information is contained in the data. Thus, it can be
inferred that the negative influence of the non-monotone missing
pattern on longitudinal learning diagnosis is less than that of
attrition. However, the specific degree of its impact remains

to be determined. Third, the number of simulation conditions
in this brief study is still limited. More independent variables
(e.g., the number of attributes and the attribute hierarchies)
and more complex test situations (e.g., more time points) can
be considered in future studies to provide more reference
information for practitioners.

Fourth, in practice, students are nested in classes, and classes
are further nested in schools. Such a multilevel data structure is
not considered in the current study. By utilizing multilevel LDMs
(e.g., Huang, 2017; Wang and Qiu, 2019) in future research,
the multilevel data structure can be considered and the impact
of class-level attrition can also be studied. Fifth, similar to
the Andersen’s longitudinal Rasch model (Andersen, 1985), for
general ability, the sLong-DINA model focuses on the estimates
at different time points rather than a specific growth trend (i.e.,
linear or non-linear). If practitioners focus on the latter, the
growth curve LDMs (Huang, 2017; Lee, 2017) can be used. Sixth,
only the individual-level random attrition was considered in this
brief study, while the impact of other three types of attrition (i.e.,
class-level random attrition, individual non-random attrition,
and class-level non-random attrition) on longitudinal learning
diagnosis still remains to be further studied.

Seventh, in further studies, it would be much more interesting
to explore the impact of different missing mechanisms upon
the parameter recovery of longitudinal LDMs, instead of just
generating data based on the missing completely at random
scenario (i.e., random attrition), such as the missing at random
with respect to both observed outcomes and covariates and the
missing at random with respect to covariates only (Muthén
et al., 2011; Zheng, 2017). Eighth, in longitudinal assessments, for
meaningful comparisons, it is necessary to ensure that the same
construct is measured across time points. In the presence of item
parameter drift, a special case of differential item functioning, the
interpretation of scores across time points or change scores would
not be valid. Thus, the consequences of ignoring item parameter
drift in longitudinal learning diagnosis is worthy of further
attention (cf., Meade and Wright, 2012; Lee and Cho, 2017).
Ninth, in Bayesian estimation, the prior distribution reflects the
beliefs of the data analyst. The posterior distribution of model
parameters will be affected by their prior distribution, particularly
for a small sample size or a limited number of items. The choice
of prior distribution is also worthy of attention (da Silva et al.,
2018; Jiang and Carter, 2019). In practice, we recommend that
the data analyst selects appropriate prior distributions based
on the actual situation rather than copy those given in the
Supplementary Table S1.

Last but most important, this brief research is only a superficial
study of the missing data in longitudinal learning diagnosis. In
the broader field of longitudinal studies, methodologists have
been studying missing data for decades and have proposed
many methods and techniques to address this issue (see, Daniels
and Hogan, 2008; Enders, 2010; Young and Johnson, 2015;
Little and Rubin, 2020), such as the traditional imputation
methods (e.g., arithmetic mean imputation, regression
imputation, and similar response pattern imputation),
likelihood-based methods, Bayesian iterative simulation
methods, and multiple imputation methods. The performance
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of these methods in longitudinal learning diagnosis is well
worth further study.
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INTRODUCTION

The basic premise of “teaching students according to their aptitude” is to have a relatively objective
and accurate understanding of the students’ current learning statuses (e.g., knowledge mastery
level, learning motivation, learning attitude, and learning mode) and the developments/changes
they undergo over time (e.g., did the students’ knowledge mastery level improve, are the students’
learning motivations enhanced). Measuring and improving individual development are topics that
are actively tackled in psychological, educational, and behavioral studies.

In the past decades, learning diagnosis, which objectively quantifies students’ current learning
status and provides diagnostic feedback, has drawn increasing interest (Zhan, 2020).When focusing
on fine-grained attributes (e.g., knowledge, skills, and cognitive processes), learning diagnosis can
also be regarded as an application of cognitive diagnosis (Leighton and Gierl, 2007) in learning
assessment. Although learning diagnosis aims to promote student learning based on diagnostic
feedback and the corresponding remedial teaching (intervention), currently, only a few studies
have focused on and evaluated the effectiveness of such feedback or remedial teaching (c.f., Tang
and Zhan, submitted; Wu, 2019; Wang L. et al., in press; Wang S. et al., 2020). One of the main
reasons is that cross-sectional design, which cannot measure individual growth in learning, is
adopted by most current learning diagnoses. This issue may also be reflected in current learning
diagnosis models (LDMs) or alternatively cognitive diagnosis models (for review, see Rupp et al.,
2010; von Davier and Lee, 2019), which are the main tools for data analysis in learning diagnosis.
Although various LDMs have been proposed and suggested by previous research, most of them
are only applicable to cross-sectional data analysis, such as the deterministic inputs, noisy “and”
gate (DINA) model (Junker and Sijtsma, 2001), the deterministic inputs, noisy “or” gate (DINO)
model (Templin and Henson, 2006), the log-linear cognitive diagnosis model (LCDM) (Henson
et al., 2009), and the generalized DINA (GDINA) model (de la Torre, 2011).

By contrast, longitudinal learning diagnosis evaluates students’ knowledge and skills and
identifies their strengths and weaknesses over a period of time. The data collected from longitudinal
learning diagnosis provide researchers with the opportunities to develop models for learning
tracking, which can be used to track individual growth over time as well as to evaluate the
effectiveness of feedback. Compared to cross-sectional learning diagnosis, longitudinal learning
diagnosis is more helpful when aiming to promote student learning.

Currently, longitudinal learning diagnosis is a new research direction that mainly stays in the
model development stage and lacks practical applications and related topic research (e.g., missing
data, measure invariance, and linkingmethods). Moreover, although some longitudinal LDMs have
been proposed, these models still have some limitations that need to be further studied. Thus, for
the rest of this opinion article, I will first make a minireview of current longitudinal LDMs and
then I will elaborate on several future research directions that I believe are worth studying. With
this opinion article, I hope to elicit more research attention toward longitudinal learning diagnosis.
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MINIREVIEW

To provide theoretical support for data analysis in longitudinal
learning diagnosis, longitudinal LDMs are needed. However,
the latent variables (namely, attributes) in LDMs are categorical
(typically, binary). Therefore, the methods for modeling growth
for continuous latent variables (e.g., longitudinal item response
theory models) cannot be directly extended to capture growth
in the mastery of attributes. For example, the change in the
mastery of attributes cannot be directly modeled by the variance-
covariance methods when assuming that multiple continuous
latent variables follow a multivariate normal distribution (e.g.,
von Davier et al., 2011).

To this end, in recent years, several longitudinal LDMs
have been proposed. They are summarized in Table 1. Current
longitudinal LDMs can mainly be divided into two categories:
the latent transition analysis (Collins and Wugalter, 1992)-based
models (e.g., Li et al., 2016; Kaya and Leite, 2017; Chen et al.,
2018a; Madison and Bradshaw, 2018; Wang et al., 2018a) and
the higher-order latent structural (de la Torre and Douglas,
2004)-based models (e.g., Huang, 2017; Lee, 2017; Zhan et al.,
2019a). The diagnostic results of these two model types have high
consistency (Lee, 2017).

The latent transition analysis-based methods estimate the
transition probabilities from one latent class/attribute to another
or the same latent class/attribute. Two main differences exist in
these models. First, different measurement models were used.

TABLE 1 | Summary of longitudinal cognitive diagnosis models.

Basic

method

References Basic model Learning tracking

Latent

transition

analysis (LTA)

Li et al., 2016 DINA LTA with attribute-level

transition probability matrix

Kaya and Leite,

2017

DINA, DINO LTA with attribute

pattern-level transition

probability matrix

Madison and

Bradshaw, 2018

LCDM LTA with attribute

pattern-level transition

probability matrix

Chen et al., 2018a DINA LTA with attribute

pattern-level transition

probability matrix

Wang et al., 2018a DINA LTA with modeled

attribute-level transition

probabilities

Higher-order

latent

structural

model

Lee, 2017 DINA Latent growth curve model

Huang, 2017 GDINA Multilevel latent growth

curve model

Zhan et al., 2019a Testlet-DINA,

DINA

Variance-covariance

method

The article collection ended at April 11th 2020; listing only the first article of the proposed

model; DINA, deterministic-inputs, noisy “and” gate model Junker and Sijtsma, 2001;

DINO, deterministic-inputs, noisy “or” gate model Templin and Henson, 2006; LCDM, log-

linear cognitive diagnosis model Henson et al., 2009; GDINA, generalized deterministic-

inputs, noisy “and” gate model de la Torre, 2011; Testlet-DINA, deterministic-inputs, noisy

“and” gate model for testlet design (see e.g., Zhan et al., 2019b).

Reduced LDMs, e.g., the DINA model and the DINO model,
were used by Li et al. (2016), Kaya and Leite (2017), Chen
et al. (2018a), and Wang et al. (2018a), but a generalized
LDM, i.e., the LCDM, was used by Madison and Bradshaw
(2018). Second, the attribute-level transition probability matrix
(i.e., attributes are transited independently from one other) was
used by Li et al. (2016) and Wang et al. (2018a), but the
attribute pattern-level transition probability matrix was used
by Kaya and Leite (2017), Chen et al. (2018a), and Madison
and Bradshaw (2018). In addition, different from Li et al.
(2016), Kaya and Leite (2017), Chen et al. (2018a), and Madison
and Bradshaw (2018), who directly estimated the transition
probabilities, Wang et al. (2018a) used a set of covariates, such
as a time-invariant general learning ability and intervention
indicators, to model the transition probabilities. The effectiveness
of different learning interventions was further considered by
Zhang and Chang (2019). Additionally, to reduce modeling
complexity, Chen et al. (2018a) and Wang et al. (2018a) assumed
learning trajectories to be non-decreasing (i.e., respondents did
not forget). However, this non-decreasing assumption may only
be suitable for short-time interval assessments. Furthermore,
by incorporating response times into LDMs (Wang et al.,
2018a, 2019; Zhan et al., 2018a; Zhang and Wang, 2018)
used response times to assist in measuring students’ growth in
attribute mastery.

Meanwhile, the higher-order latent structural model-based
methods estimate the changes in a higher-order latent ability over
time to further infer the changes of lower-order latent attributes.
One of the representative models is the longitudinal higher-
order DINA (Long-DINA) model (Zhan et al., 2019a), which is
a multidimensional extension of the higher-order DINA model
(de la Torre and Douglas, 2004). However, multidimensionality
does not refer to different general abilities, but rather, the same
general ability measured at different time points. As noted by
Zhan et al. (2019a), the latent growth curve model instead
of the variance-covariance method can also be employed in
the third order. Lee (2017) proposed a growth curve DINA
model, which can be seen as an alternative of the long-DINA
model that incorporates the latent growth curve model but
ignores the local item dependence among anchor or repeat items.
Furthermore, Huang (2017) proposed amultilevel GDINAmodel
for assessing growth, which can be seen as an extension of
Lee’s (2017) model in both measurement model part (i.e., from
DINA model to GDINA model) and latent structural model part
(i.e., from one-level growth curve model to multilevel growth
curve model).

FUTURE RESEARCH DIRECTION

Although the utility for analyzing the longitudinal learning
diagnosis data of these longitudinal LDMs has been evaluated
by some simulation studies and a few applications, these models
are not without limitations, which need to be further studied.
Based on current research on longitudinal learning diagnosis,
I believe that the following are directions that are worthy of
further study.
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(1) A systematic comparison between different longitudinal
LDMs, which can provide theoretical suggestions for
practitioners in choosing suitable models.

(2) Only binary attributes (e.g., “1” means mastery and
“0” means non-mastery) were considered in all current
longitudinal LDMs. However, in actual teaching, it is
challenging to use binary attributes to describe the growth
of students, as they can be classified into only four categories
between two adjacent time points, i.e., 0→ 0, 0→ 1, 1→
0, and 1→ 1. Some small but existing growths are ignored,
which in turn may lead students, especially those with low
motivation to learn, to conclude that the current diagnostic
feedback is ineffective or to abandon remedial action.
Thus, further studies can attempt to extend the current
models to handle polytomous attributes (Karelitz, 2004) and
probabilistic attributes (Zhan et al., 2018b) because they can
describe the learning growth in a more refined way than
binary attributes.

(3) Only outcome data (or item response accuracy) were
considered in most current longitudinal LDMs. Although
a few studies have incorporated item response time into
current models (e.g., Wang et al., 2018b), future studies
may attempt to introduce other types of process data (e.g.,
number of trial and error and operation process), or even
biometric data (e.g., eye-tracking data; Man and Harring,
2019). Utilizing multimodal data can evaluate the growth
of students in multiple aspects, which is conducive to a
more comprehensive understanding of the development of
students (Zhan, 2019).

(4) All current longitudinal LDMs assumed that attributes
are structurally independent, in that mastery of one
attribute is not a prerequisite to the mastery of
another. However, when attribute hierarchy (Leighton
et al., 2004) exists, the development trajectory of
students is not arbitrary and should be developed in
such hierarchical order. Therefore, incorporating the
attribute hierarchy into current longitudinal LDMs is
worth trying.

(5) A limited number of attributes at each time point were
assumed in current longitudinal LDMs. In practice, a large
number of attributes may involve more than 10 or 15
attributes at each time point. In such cases, using current
longitudinal LDMs with existing parameter estimation
algorithms may lead to unrobust parameter estimation.
Thus, more powerful or efficient algorithms or special
strategies may need to be introduced.

(6) The simultaneity estimation strategy was adopted by
almost all current longitudinal LDMs. This involves the
reintegration of response data frommultiple time points into

one large response matrix, which is then analyzed as a whole

(Zhan et al., 2019a). However, this strategy requires subjects
to wait until all the tests end before an analysis of the results
becomes available. Thus, using this strategy cannot provide
timely diagnostic feedback to either students or teachers. In
light of the foregoing, new estimation strategies for timely
diagnostic feedback should be further studied (e.g., Zhan,
2020).

(7) In addition to theoretical and methodological studies, the
corresponding applied studies should also be strengthened.
For example, a few studies have focused on and evaluated
the effectiveness of diagnostic feedback or remedial
teaching in promoting learning (cf. Tang and Zhan,
submitted). Moreover, effective and systematic intervention
methods based on longitudinal diagnostic feedback are also
worth studying.

(8) Adaptive learning system involving LDMs is also
worthy of further study (e.g., Chen et al., 2018b; Tang
et al., 2019). This system can diagnose an individual’s
latent attribute profile online while the assessment is
being conducted.

(9) Compared with cross-sectional learning diagnosis, the
diagnostic accuracy and validity of longitudinal learning
diagnosis used to depict the learning trajectories are more
worthy of attention by researchers and practitioners. In
addition to choosing a suitable longitudinal LDM, many
factors such as the quality of the longitudinal test itself,
the setting of a cognitive model, students’ response attitude,
cheating, and missing data will also affect the accuracy
and validity of the diagnostic results. The impact of these
factors on the longitudinal learning diagnosis and the
corresponding compensation or detection methods are also
worthy of further discussion.

Overall, there are still many issues related to longitudinal learning
diagnosis that are worthy of discussion. In view of the advantages
of longitudinal learning diagnosis compared with cross-sectional
learning diagnosis, the former is more in line with the idea
of assessment for learning (Wiliam, 2011) and the needs of
formative assessments.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No. 31900795) and the MOE
(Ministry of Education in China) Project of Humanities and
Social Sciences (Grant No. 19YJC190025).

REFERENCES

Chen, Y., Culpepper, S. A., Wang, S., and Douglas, J. (2018a). A hidden Markov

model for learning trajectories in cognitive diagnosis with application to spatial

rotation skills. Appl. Psychol. Meas. 42, 5–23. doi: 10.1177/0146621617721250

Chen, Y., Li, X., Liu, J., and Ying, Z. (2018b). Recommendation system for adaptive

learning. Appl. Psychol. Meas. 42, 24–41. doi: 10.1177/0146621617697959

Collins, L. M., and Wugalter, S. E. (1992). Latent class models for stage-

sequential dynamic latent variables. Multivariate Behav. Res. 27, 131–157.

doi: 10.1207/s15327906mbr2701_8

Frontiers in Psychology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1185102

https://doi.org/10.1177/0146621617721250
https://doi.org/10.1177/0146621617697959
https://doi.org/10.1207/s15327906mbr2701_8
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhan Longitudinal Learning Diagnosis

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika 76,

179–199. doi: 10.1007/s11336-011-9207-7

de la Torre, J., and Douglas, J. A. (2004). Higher-order latent trait models for

cognitive diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF02295640

Henson, R., Templin, J., and Willse, J. (2009). Defining a family of cognitive

diagnosis models using log-linear models with latent variables. Psychometrika

74, 191–210. doi: 10.1007/s11336-008-9089-5

Huang, H.-Y. (2017). Multilevel cognitive diagnosis models for assessing

changes in latent attributes. J. Educ. Meas. 54, 440–480. doi: 10.1111/jedm.

12156

Junker, B. W., and Sijtsma, K. (2001). Cognitive assessment models with few

assumptions, and connections with nonparametric item response theory. Appl.

Psychol. Meas. 25, 258–272. doi: 10.1177/01466210122032064

Karelitz, T. M. (2004).Ordered Category Attribute Coding Framework for Cognitive

Assessments (Unpublished doctoral dissertation). University of Illinois at

Urbana Champaign, Champaign, IL, United States.

Kaya, Y., and Leite, W. L. (2017). Assessing change in latent skills

across time with longitudinal cognitive diagnosis modeling: an

evaluation of model performance. Educ. Psychol. Meas. 77, 369–388.

doi: 10.1177/0013164416659314

Lee, S. Y. (2017). Growth Curve Cognitive Diagnosis Models for Longitudinal

Assessment (Unpublished doctoral dissertation). University of California,

Berkeley, CA, United States.

Leighton, J. P., and Gierl, M. J. (2007). Cognitive Diagnostic Assessment

for Education: Theory and Applications. Cambridge University Press.

doi: 10.1017/CBO9780511611186

Leighton, J. P., Gierl, M. J., and Hunka, S. M. (2004). The attribute hierarchy

method for cognitive assessment: a variation on Tatsuoka’s rule-space

approach. J. Educ. Meas. 41, 205–237. doi: 10.1111/j.1745-3984.2004.tb0

1163.x

Li, F., Cohen, A., Bottge, B., and Templin, J. (2016). A latent transition analysis

model for assessing change in cognitive skills. Educ. Psychol. Meas. 76, 181–204

doi: 10.1177/0013164415588946

Madison, M. J., and Bradshaw, L. P. (2018). Assessing growth in a

diagnostic classification model framework. Psychometrika 83, 963–990.

doi: 10.1007/s11336-018-9638-5

Man, K., and Harring, J. R. (2019). Negative binomial models for visual

fixation counts on test items. Educ. Psychol. Meas. 79, 617–635.

doi: 10.1177/0013164418824148

Rupp, A. A., Templin, J., and Henson, R. A. (2010). Diagnostic Measurement:

Theory, Methods, and Applications. New York, NY: Guilford Press.

Tang, X., Chen, Y., Li, X., Liu, J., and Ying, Z. (2019). A reinforcement learning

approach to personalized learning recommendation system. Br. J. Math. Stat.

Psychol. 72, 108–135. doi: 10.1111/bmsp.12144

Templin, J., and Henson, R. A. (2006). Measurement of psychological

disorders using cognitive diagnosis models. Psychol. Methods 11, 287–305.

doi: 10.1037/1082-989X.11.3.287

von Davier, M., and Lee, Y.-S. (2019). Handbook of Diagnostic Classification

Models: Models and Model Extensions, Applications, Software Packages. New

York, NY: Springer. doi: 10.1007/978-3-030-05584-4

von Davier, M., Xu, X., and Carstensen, C. H. (2011). Measuring

growth in a longitudinal large-scale assessment with a general latent

variable model. Psychometrika 76, 318–336. doi: 10.1007/s11336-011-

9202-z

Wang, L., Tang, F., and Zhan, P. (in press). Effect analysis of individualized

remedial teaching based on cognitive diagnostic assessment: taking “linear

equation with one unknown” as an example. J. Psychol. Sci.

Wang, S., Hu, Y., Wang, Q., Wu, B., Shen, Y., and Carr, M. (2020). The

development of a multidimensional diagnostic assessment with learning

tools to improve 3-D mental rotation skills. Front. Psychol. 11:305.

doi: 10.3389/fpsyg.2020.00305

Wang, S., Yang, Y., Culpepper, S. A., and Douglas, J. A. (2018a). Tracking

skill acquisition with cognitive diagnosis models: a higher-order,

hidden markov model with covariates. J. Educ. Behav. Stat. 43, 57–87

doi: 10.3102/1076998617719727

Wang, S., Zhang, S., Douglas, J., and Culpepper, S. (2018b). Using response times

to assess learning progress: a joint model for responses and response times.

Meas. Interdisciplinary Res. Perspect. 16, 45–58. doi: 10.1080/15366367.2018.1

435105

Wang, S., Zhang, S., and Shen, Y. (2019). A joint modeling framework of responses

and response times to assess learning outcomes. Multivariate Behav. Res. 55,

49–68. doi: 10.1080/00273171.2019.1607238

Wiliam, D. (2011). What is assessment for learning? Stud. Educ. Eval. 37, 3–14.

doi: 10.1016/j.stueduc.2011.03.001

Wu, H.-M. (2019). Online individualised tutor for improving mathematics

learning: a cognitive diagnostic model approach. Educ. Psychol. 39, 1218–1232.

doi: 10.1080/01443410.2018.1494819

Zhan, P. (2019). A Cognitive Diagnosis Model for Analysis Multisource Data

in Technology-Enhanced Diagnostic Assessments. Invited Report at School of

Mathematics and Statistics, Northeast Normal University, Changchun, China.

Retrieved from: http://math.nenu.edu.cn/info/1063/4271.htm (accessed April

11, 2020).

Zhan, P. (2020). A Markov estimation strategy for longitudinal learning

diagnosis: providing timely diagnostic feedback. Educ. Psychol. Measure.

doi: 10.1177/0013164420912318

Zhan, P., Jiao, H., and Liao, D. (2018a). Cognitive diagnosis modelling

incorporating item response times. Br. J. Math. Stat. Psychol. 71, 262–286.

doi: 10.1111/bmsp.12114

Zhan, P., Jiao, H., Liao, D., and Li, F. (2019a). A longitudinal higher-

order diagnostic classification model. J. Educ. Behav. Stat. 44, 251–281.

doi: 10.3102/1076998619827593

Zhan, P., Jiao, H., Man, K., and Wang, L. (2019b). Using JAGS for Bayesian

cognitive diagnosis modeling: a tutorial. J. Educ. Behav. Stat. 44, 473–503.

doi: 10.3102/1076998619826040

Zhan, P., Wang, W.-C., Jiao, H., and Bian, Y. (2018b). Probabilistic-input,

noisy conjunctive models for cognitive diagnosis. Front. Psychol. 9:997.

doi: 10.3389/fpsyg.2018.00997

Zhang, S., and Chang, H. (2019). A multilevel logistic hidden Markov model

for learning under cognitive diagnosis. Behav. Res. Methods 52, 408–421.

doi: 10.3758/s13428-019-01238-w

Zhang, S., and Wang, S. (2018). Modeling learner heterogeneity: a mixture

learning model with responses and response times. Front. Psychol. 9:2339.

doi: 10.3389/fpsyg.2018.02339

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhan. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 1185103

https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/BF02295640
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1111/jedm.12156
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/0013164416659314
https://doi.org/10.1017/CBO9780511611186
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x
https://doi.org/10.1177/0013164415588946
https://doi.org/10.1007/s11336-018-9638-5
https://doi.org/10.1177/0013164418824148
https://doi.org/10.1111/bmsp.12144
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1007/978-3-030-05584-4
https://doi.org/10.1007/s11336-011-9202-z
https://doi.org/10.3389/fpsyg.2020.00305
https://doi.org/10.3102/1076998617719727
https://doi.org/10.1080/15366367.2018.1435105
https://doi.org/10.1080/00273171.2019.1607238
https://doi.org/10.1016/j.stueduc.2011.03.001
https://doi.org/10.1080/01443410.2018.1494819
http://math.nenu.edu.cn/info/1063/4271.htm
https://doi.org/10.1177/0013164420912318
https://doi.org/10.1111/bmsp.12114
https://doi.org/10.3102/1076998619827593
https://doi.org/10.3102/1076998619826040
https://doi.org/10.3389/fpsyg.2018.00997
https://doi.org/10.3758/s13428-019-01238-w
https://doi.org/10.3389/fpsyg.2018.02339
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


ORIGINAL RESEARCH
published: 30 July 2020

doi: 10.3389/fpsyg.2020.01694

Frontiers in Psychology | www.frontiersin.org 1 July 2020 | Volume 11 | Article 1694

Edited by:

Hong Jiao,

University of Maryland, College Park,

United States

Reviewed by:

Lietta Marie Scott,

Arizona Department of Education,

United States

Gongjun Xu,

University of Michigan, United States

*Correspondence:

Jiahui Zhang

nellykim@126.com

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 02 February 2020

Accepted: 22 June 2020

Published: 30 July 2020

Citation:

Tian W, Zhang J, Peng Q and Yang X

(2020) Q-Matrix Designs of

Longitudinal Diagnostic Classification

Models With Hierarchical Attributes for

Formative Assessment.

Front. Psychol. 11:1694.

doi: 10.3389/fpsyg.2020.01694

Q-Matrix Designs of Longitudinal
Diagnostic Classification Models
With Hierarchical Attributes for
Formative Assessment
Wei Tian, Jiahui Zhang*, Qian Peng and Xiaoguang Yang

Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China

Longitudinal diagnostic classification models (DCMs) with hierarchical attributes can

characterize learning trajectories in terms of the transition between attribute profiles

for formative assessment. A longitudinal DCM for hierarchical attributes was proposed

by imposing model constraints on the transition DCM. To facilitate the applications of

longitudinal DCMs, this paper explored the critical topic of the Q-matrix design with a

simulation study. The results suggest that including the transpose of the R-matrix in the

Q-matrix improved the classification accuracy. Moreover, 10-item tests measuring three

linear attributes across three time points provided satisfactory classification accuracy for

low-stakes assessment; lower classification rates were observed with independent or

divergent attributes. Q-matrix design recommendations were provided for the short-test

situation. Implications and future directions were discussed.

Keywords: Q-matrix, longitudinal DCMs, hierarchical attributes, TDCM, HDCM

INTRODUCTION

Diagnostic cognitive models (DCMs; or cognitive diagnostic models, CDMs) have received
increasing attention because the latent variable modeling approach to diagnostic assessment can
shed light on the learning process (Rupp et al., 2010). A variety of latent variable models have been
proposed in recent decades including specific models (e.g., the Deterministic Input, Noisy “and”
Gate, DINA; Junker and Sijtsma, 2001) and generalized frameworks (e.g., the log-linear cognitive
diagnostic model, LCDM; Henson et al., 2009). Two recent directions aim to address hierarchical
attributes (Gierl et al., 2010; Templin and Bradshaw, 2014) and the mastery of attributes in
longitudinal data (Li et al., 2016; Kaya and Leite, 2017; Wang et al., 2017; Madison and Bradshaw,
2018a,b), respectively.

The transition DCM (TDCM), proposed by Madison and Bradshaw (2018a,b), is a longitudinal
model combining the LCDM and the latent transition analysis (LTA). The TDCM have been used
on tests measuring independent attributes (Madison and Bradshaw, 2018a,b). However, empirical
studies have suggested the presence of interdependencies among attributes in many educational
cases (e.g., Gierl et al., 2010; Templin and Bradshaw, 2014). The incorporation of attribute hierarchy
into the Q-matrix and the model parameterization has become important research topics in recent
years. One of the approaches to modeling the attribute relationships is to impose a hierarchical
structure in which mastering an attribute could be a prerequisite to mastering another attribute
(Tatsuoka, 1983; Leighton et al., 2004; Templin and Bradshaw, 2014). Taking this approach,
Templin and Bradshaw (2014) extended LCDM to its hierarchical form—hierarchical diagnostic
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classification model (HDCM). Similarly, the longitudinal model
TDCM can be constrained to incorporate hierarchical attributes.
Following this line of thinking, we proposed the hierarchical
transition DCM (H-TDCM) and explored the effects of Q-matrix
designs on its classifications in this study.

The Q-matrix design, as a core element of the DCM-based
test design, has not been adequately addressed in the context
of longitudinal DCMs, since existing research focuses on model
development and applications of longitudinal DCMs (e.g., Kaya
and Leite, 2017; Madison and Bradshaw, 2018a,b). The Q-matrix
links the items and the latent constructs to be measured (i.e.,
attributes) (Tatsuoka, 1983). Rows of the Q-matrix correspond
to items, columns correspond to attributes, and its binary
elements indicate whether an item measures an attribute (to
put it differently, whether mastery of an attribute is required
to succeed on an item). The row vectors of the Q-matrix are
also called q-vectors. The Q-matrix plays important roles, both
theoretically and statistically. From a theoretical perspective,
cognitive theories could have a real impact on testing practice
through the Q-matrix. This is especially true when the attributes
are related to each other according to the cognitive theory. From
a statistical perspective, the Q-matrix plays a significant role in
model identification (Xu and Zhang, 2016; Xu, 2017; Köhn and
Chiu, 2018; Gu and Xu, 2019a, forthcoming) and classification
accuracy (DeCarlo, 2011; Madison and Bradshaw, 2015; Liu et al.,
2017; Tu et al., 2019).

The identifiability conditions need to be satisfied for
consistent estimation of the model parameters. Gu and Xu
(2019a) identified the sufficient and necessary condition for
identification of DINA and DINO. It requires that each attribute
is measured by at least three items with a Q-matrix in the

form Q =
(

ITK ,
(

Q′)T
)T

(T denotes transpose), in which any

two different columns of the submatrix Q′ are distinct (Gu and
Xu, 2019a). The indentifiability issue is more complicated for
saturated models (e.g., GDINA) and details on strict or generic
identification can be found in Gu and Xu (forthcoming). The
identification condition for hierarchical DCMs has also been
discussed (Gu and Xu, forthcoming).

However, the Q-matrices that lead to identification may
provide varying classification accuracy rates (DeCarlo, 2011;
Madison and Bradshaw, 2015). To provide guidance for test
construction practices based on DCMs, researchers explored
the effects of different Q-matrix designs on the classification
accuracy. For example, on the effects of Q-matrix designs
with independent attributes, DeCarlo (2011) and Madison
and Bradshaw (2015) have found that including more items
measuring each attributes in isolation could help increase
classification accuracy for DINA and LCDM.

When attribute hierarchies are involved, there has not been
a consensus on the Q-matrix design regarding whether all q-
vectors are eligible (Templin and Bradshaw, 2014; Tu et al.,
2019). When a test involves K independent attributes, there
are 2K − 1 distinct q-vectors. Consider a linear hierarchy with
three attributes: α1 → α2 → α3. Attribute α2 has direct
relationships with the other two attributes while Attribute α1

and α3 have an indirect relationship. The reachability matrix

FIGURE 1 | Example of R-matrix and Q-matrix for three linear attributes.

or R-matrix can be used to capture both direct and indirect
relationships (Tatsuoka, 1983; Gierl et al., 2000; Leighton et al.,
2004). The R-matrix for three attributes under a linear hierarchy
is presented in Figure 1. Some researchers argued that an item
cannot measure a higher-level attribute without measuring its
prerequisite(s) (Leighton et al., 2004; Köhn and Chiu, 2018; Tu
et al., 2019), referred to as the restricted Q-matrix approach.
According to the restricted Q-matrix approach, only three q-
vectors are allowed in the Q-matrix in the case of three linear
attributes, which correspond to the three column vectors of the
R-matrix. In contrast, some studies use all 2K − 1 = 7 q-vectors
in the Q-matrix as in an independent-attribute situation (Liu
and Huggins-Manley, 2016; Liu et al., 2017), referred to as the
unstructured Q-matrix approach.

Tu et al. (2019) took the restricted Q-matrix approach
in a simulation study and emphasized the importance of
containing the transpose of the R-matrix in the Q-matrix.
Figure 1 provided an example Q-matrix containing the transpose
of the R-matrix, RT . Liu et al. (2017), taking the unstructured
Q-matrix approach, proposed different approaches to generate
Q-matrices with linear, divergent, convergent, or unstructured
attributes under the hierarchical diagnostic classification model
(HDCM; Templin and Bradshaw, 2014). The adjacent approach
(allowing each item to measure at most two attributes with direct
relationships) was found to lead to higher classification accuracy
in a shorter test (Liu et al., 2017).

To sum up, the purposes of the current study are 2-fold: First,
the H-TDCM was defined to incorporate hierarchical attributes
in the longitudinal DCM. Second, different Q-matrix designs
were explored for TDCM and H-TDCM with a Monte Carlo
simulation study. Both longitudinal models are based on LCDM,
which is a general framework without limitations of the model
fit assumptions. The rest of the paper is organized as follows.
The next section briefly introduces LCDM, HDCM, and TDCM
before defining the H-TDCM. Then, previous studies on the Q-
matrix design are reviewed, followed by a simulation study on Q-
matrix designs for TDCM andH-TDCM. The paper is concluded
with a discussion of the limitations and educational implications.

MODELS

LCDM, HDCM, and TDCM
The LCDM (Henson et al., 2009) is a general diagnostic model
that parameterizes the effects of the attributes measured by the
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item on the probability of a correct response given examinee
attribute profile. The LCDM subsumes many specific DCMs,
including the DINA model (Junker and Sijtsma, 2001) and the
DINO model (Templin and Henson, 2006).

Examinee attribute profiles are denoted by vectors αc =
(αc1, . . . αck, . . . , αcK), where c = 1, . . . ,C and αck takes
the value of 0 or 1, indicating the non-mastery or mastery,
respectively, of the kth attribute. The LCDM classifies examinees
into one of the C = 2K attribute profiles assuming independent
attributes. The number of attribute profiles decreases accordingly
with hierarchical attributes.

For each item measured on a test, the LCDM item response
function models the attributes mastery effects on the item
response in terms of an intercept, the main effect for each
attribute measured by the item, and the interaction term(s) that
correspond to each possible combination of multiple attributes
measured by the item. The general form of the LCDM item
response function can be expressed as

P(Xic = 1|αc) =
exp(λi,0 + λTi h(αc, qi))

1+ exp(λi,0 + λTi h(αc, qi))
(1)

where λi,0 is the intercept parameter of item i, λi contains all
other item parameters including the main effects and interaction
terms for item i, qi denotes the q-vector of item i, the superscript
T denotes transpose, and the function h results in a linear
combination of αc and qi.

λi,0 + λTi h
(

αc,qi
)

= λi,0 + λi,1,(k)αckqik + λi,2,(l(k))αckαclqikqil

+λi,3,(m(l,k))αckαclαcmqikqilqim + . . . (2)

Templin and Bradshaw (2014) proposed the hierarchical
diagnostic classification models (HDCM) to address hierarchical
attributes. Specifically, two changes are made to LCDM. First, the
attribute profile space is limited and αc in Equations (1) and (2) is
replaced by α∗

c for notation. When a linear hierarchy is assumed,
the number of mastery profiles is reduced from the original C =
2K to C = K + 1. The second change is that model constraints
are imposed on LCDM. Specifically, some model parameters of
the measurement model are fixed as zero.

Madison and Bradshaw (2018a,b) combined LCDM with
latent transition analysis (LTA) to produce TDCM. LTA is a
longitudinal latent class model that classifies examinees into
latent classes and captures the latent class transitions over
time (Collins and Lanza, 2010). As a conventional latent class
analysis, it consists of the structural model and the measurement
model. It is also a special case of the latent or hidden Markov
model (HMM; Baum and Petrie, 1966). LTA parameterizes the
probabilities of each latent class transitioning from one latent
class to another between each time point in addition to latent
class proportions and item parameters (i.e., the parameters
estimated in conventional latent class analysis. LCDM serves as
the measurement model of LTA. The LTA-DINA (Li et al., 2016)
and LTA-DINO (Kaya et al., 2016) can be seen as special cases of
the TDCM.

H-TDCM
The proposed H-TDCM combined the features of HDCM and
TDCM to deal with hierarchical attributes in longitudinal data.
The attribute hierarchy is imposed on TDCM by constraining
corresponding item parameters in the measurement model as
in HDCM and the structural parameters that are specific to
TDCM. Specifically, model parameters for the main effects of
nested attributes and some interaction terms are constrained
as zero in light of the prerequisite relationships among them.
Also, similar constraints are set on the transition parameters and
prevalence parameters.

Given the expression of LTA (Collins and Lanza, 2010, p. 198),
the probability of an examinee’s response vector on I items over
T time points is given by

P
(

Y = y
)

=

Structural
︷ ︸︸ ︷

C
∑

α∗
c1
=1

. . .

C
∑

α∗
cT
=1

δα∗
c1

τα∗
c2 |c1

. . . τα∗
cT |cT−1

Measurement
︷ ︸︸ ︷

T
∏

t=1

I
∏

i=1

Ri
∏

ri,t=1

[ρi,ri,t |α∗
ct
,qi ]

I(yi,t=ri,t)

=

Structural
︷ ︸︸ ︷

∑C

α∗
c1
=1

. . .
∑C

α∗
cT
=1

δα∗
c1

τα∗
c2 |c1

. . . τα∗
cT |cT−1

Measurement
︷ ︸︸ ︷

∏T

t=1

∏I

i=1

∏Ri

ri,t=1

[

exp(λi,0 + λTi h(α
∗
ct
, qi))

1+ exp(λi,0 + λTi h(α
∗
ct
, qi))

]I(yi,t=ri,t )

,

(3)

where i = 1, 2, . . . , I; item i has Ri response categories; yi,t is
the examinee’s response to item i at time point t and I

(

yi,t = ri,t
)

is an indicator function that is equal to 1 when the response is
ri,t , and equal to 0 otherwise; each sum ranges over each of the C
attribute profiles at each time point, the first product is over the T
time points, and the second product is over the I items; if the test
measures K attributes with a certain hierarchical structure, the
attribute profile at Time Point t is α∗

ct
=

(

α1t , . . . ,αkt , . . . ,αKt

)

,
for simplicity, Ct = C.

There are three types of parameters to be estimated (similar
to the case of TDCM) in Equation (3). The first type includes
HDCM item parameters λi,0 and λi. The second type is the
probability of membership in attribute profile c at time point 1,
denoted as δαc1

; and the third is the probability of transitioning
between different attribute profiles (from αct−1 to αct ) between
time point t−1 to time point t, denoted as ταct |αct−1

, usually
expressed as a multinomial regression model (e.g., Reboussin
et al., 1998; Nylund, 2007):

ταct |αct−1
=

exp(act + bTct |ct−1
dct−1 )

∑C
ct=1 exp

(

act + bTct |ct−1
dct−1

)

=
exp(act + bTct |ct−1

dct−1 )

1+
∑C−1

ct=1 exp
(

act + bTct |ct−1
dct−1

) , t ≥ 2; (4)
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FIGURE 2 | Three attribute hierarchies with three attributes and their R-matrix. (A) Independent. (B) Divergent. (C) Linear.

We take for example a test measuring three linear attributes
(α1 → α2 → α3 ). The C = 4 attribute profiles are the rows in









α11 α12 α13

α21 α22 α23

α31 α32 α33

α41 α42 α43









=









0 0 0
1 0 0
1 1 0
1 1 1









. (5)

Four item parameters are to be estimated including the intercept
effect λi,0, the main effect λi,1,(1), the second-order interaction
effect λi,2,(2(1)), and the third-order interaction effect λi,3,(3(2,1)):

λi,0+ λTi h
(

α∗
c ,qi

)

= λi,0 + λi,1,(1)αc1qi1 + λi,2,(2(1))αc1αc2qi1qi2

+λi,3,(3(2,1))αc1αc2αc3qi1qi2qi3 (6)

Note that Equation (3) is a general form of the H-TDCM. The
combination of LTA and any other specific hierarchical CDM can
be realized by imposing parameter constraints. The H-TDCM, in
turn, can be seen as a special case of TDCM, and the two models
can be compared with a likelihood-ratio difference test (Collins
and Lanza, 2010). When the attribute hierarchy exists, H-TDCM
is supposed to provide a more succinct model with a better fit
than TDCM (Templin and Bradshaw, 2014).

SIMULATION STUDY

Design
The simulation study aimed to explore the effects of different
Q-matrices on the classifications of TDCM with or without an
attribute hierarchy. There has been a need for short tests that
measure a couple of fine-grained attributes in the classroom
setting. The simulation conditions approximated a practical
formative assessment over a learning period of 2–4 weeks. A
limited number of attributes would be focused on within such
a short period, and time for testing is also very limited so
short sessions are preferred. This short test is supposed to
be administered three times: at the beginning, in the middle,
and approaching the end of the learning period. Therefore,

the simulations only consider three-attribute tests administered
over three time points. Three attribute hierarchies (independent,
divergent, and linear) are considered. The three attribute
hierarchies with three attributes and the associated R-matrices are
presented in Figure 2.

As mentioned earlier, there are two general approaches to
Q-matrix design with hierarchical attributes—the restricted and
the unstructured Q-matrix approaches. The restricted Q-matrix
approach only allows q-vectors in the transpose of the R-matrix,
denoted as RT (Leighton et al., 2004; Köhn and Chiu, 2018;
Tu et al., 2019), and the general guideline is to contain several
RTs in the Q-matrix to obtain acceptable classification accuracy
(Tu et al., 2019). We took the unstructured Q-matrix approach,
which means an item can measure all possible combinations
of attributes as in an independent-attribute situation (Liu and
Huggins-Manley, 2016; Liu et al., 2017), because there exists no
empirical evidence against the possibility of items measuring a
higher-level attribute without measuring its prerequisite(s). With
three attributes in a test, there are seven q-vectors corresponding
to seven item types. However, it remains an open question
whether it is still beneficial to contain RTs in the Q-matrix
even though the unstructured approach was adopted. For each
attribute hierarchy, three Q-matrix designs were used. The
first Q-matrix design does not contain RT , denoted as Q1.
The second and third Q-matrix designs include one or two
RTs, which are denoted as Q2 and Q3, respectively. Crossing
two factors (i.e., attribute hierarchy and Q-matrix design) led
to a total of 9 conditions. The simulation study focused on
the Q-matrix design; thus, all Q-matrices were assumed to be
correctly specified.

The item parameters are assumed to be time-invariant for
the attribute profiles to retain the same meaning over time.
Previous studies have shown that the examinee sample size barely
has an impact on the classification rates of DCMs (de la Torre
et al., 2010; Kaya and Leite, 2017). The effect of sample sizes
was explored in Madison and Bradshaw (2018a) with TDCM.
Therefore, the sample size was not manipulated but set to be
1,000 in each condition. The attribute profile of examinees
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TABLE 1 | Classification rates of three Q-matrix designs.

Independent Divergent Linear

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

PROFILE CORRECT CLASSIFICATION RATES

Time 1 0.517 0.550 0.557 0.582 0.651 0.671 0.710 0.731 0.725

Time 2 0.522 0.553 0.556 0.595 0.667 0.681 0.725 0.749 0.736

Time 3 0.536 0.577 0.577 0.606 0.680 0.693 0.734 0.761 0.744

Mean 0.525 0.560 0.563 0.594 0.666 0.682 0.723 0.747 0.735

MARGINAL CORRECT CLASSIFICATION RATES

Time 1 α1 0.723 0.784 0.821 0.938 0.937 0.917 0.931 0.929 0.901

Time 1 α2 0.833 0.838 0.809 0.714 0.795 0.840 0.864 0.887 0.904

Time 1 α3 0.831 0.807 0.810 0.855 0.858 0.860 0.864 0.872 0.885

Mean 0.796 0.810 0.813 0.836 0.863 0.872 0.886 0.896 0.897

Time 2 α1 0.704 0.774 0.809 0.929 0.925 0.903 0.915 0.913 0.881

Time 2 α2 0.827 0.835 0.803 0.716 0.804 0.845 0.848 0.875 0.890

Time 2 α3 0.828 0.796 0.798 0.857 0.859 0.864 0.927 0.932 0.937

Mean 0.787 0.802 0.804 0.834 0.863 0.871 0.897 0.907 0.903

Time 3 α1 0.713 0.784 0.816 0.927 0.924 0.901 0.912 0.912 0.877

Time 3 α2 0.835 0.840 0.806 0.724 0.811 0.852 0.849 0.876 0.890

Time 3 α3 0.834 0.807 0.808 0.864 0.864 0.868 0.944 0.947 0.950

Mean 0.794 0.810 0.810 0.838 0.866 0.874 0.902 0.912 0.906

Three Q-matrix designs Q1, Q2, and Q3 included zero, one, or two R-matrix transposes.

followed a uniform distribution. Ten-item tests were generated
under each condition.

To avoid the effects of item quality, we fixed the item
parameters over all conditions: The intercept effect was −1, the
main effect was 2, and the interaction effect was 1. As a result,
P(X = 1|α = 0) ranged from 0.1 to 0.3, and P(X = 1|α = 1) was
between 0.7 and 1.0. There are 8, 5, and 4 attribute profiles under
independent, divergent, and linear hierarchies, respectively.
With three independent attributes, there were 23 attribute
profiles: c1 (0, 0, 0), c2 (0, 0, 1), c3 (0, 1, 0), c4 (0, 1, 1), c5 (1, 0, 0),
c6 (1, 0, 1), c7 (1, 1, 0) , and c8 (1, 1, 1). The divergent hierarchy
condition had c1 (0, 0, 0) , c5 (1, 0, 0) , c6 (1, 0, 1) , c7 (1, 1, 0) , and
c8(1, 1, 1). Three linear attributes led to four attribute profiles:
c1 (0, 0, 0) , c5 (1, 0, 0) , c7 (1, 1, 0) , and c8(1, 1, 1).

Mplus 7.4 (Muthén and Muthén, 1998–2015) was used
to generate and analyze the response data of three time
points based on TDCM or H-TCDM via maximum likelihood
estimation. We include the Mplus syntax for estimation as
an Supplementary Material. Evaluation criteria include the
marginal correct classification rates (MCCRs) for each attribute
and the correct classification rates (CCRs) for each attribute
profile. Each simulation condition was replicated 100 times.

RESULTS

The correct classification rates are presented in Table 1. The
results suggested that including the transpose of the R-matrix
in the Q-matrix (i.e., Q2) increased the profile CCRs and
marginal CCRs at each time point for independent, divergent,
and linear hierarchies. Including one more transpose of the R-
matrix (i.e., Q3) further slightly increased the CCRs except for
the linear hierarchy. Another interesting finding is that the profile

CCRs tended to increase with time. The CCRs at Time 3 were
the highest. This trend was found under each combination of
attribute hierarchy and Q-matrix design. The increase with time
was not found in the marginal CCRs for independent attributes.
Within the divergent or linear hierarchy, the marginal CCRs of
the highest-level attribute (i.e., α2 and α3 under the divergent
hierarchy and α3 under the linear hierarchy) increased with time
while the lowest-level attribute (i.e., α1) had decreasing CCRs
with time.

Comparing the three attribute hierarchies revealed that the
CCRs generally increased as the relationship between attributes
became stronger, andmeanwhile, the number of attribute profiles
became smaller. The profile CCRs were above 0.7, and the
marginal CCRs were above 0.85 under the linear hierarchy with
10-item tests. The classifications for the independent attributes
were the most difficult.

DISCUSSION

This paper proposed H-TDCM for hierarchical attributes in the
longitudinal DCM by imposing model constraints on TDCM.
The simulation study explored Q-matrix designs with different
numbers of R-matrices. The CCRs generally increased with
stronger dependencies between attributes, which is consistent
with the findings of Templin and Bradshaw (2014) with LCDM.
Ten-item tests for three linear attributes lead to profile CCRs
above 0.7 and marginal CCRs above 0.85 at each time point,
which might to acceptable for low-stakes classroom assessment.
However, longer tests are needed for independent or divergent
attributes to obtain acceptable classification rates. The profile
CCRs increased with time, which means the attribute profile
estimate from the final test would be the most accurate among
several tests. The final attribute profile estimation may benefit
from information from all the previous tests and provides a
relatively accurate picture of the learning outcome, which is a
desirable property for the longitudinal model.

Regarding the Q-matrix design, we took the unstructured
Q-matrix approach (Liu and Huggins-Manley, 2016; Liu et al.,
2017) by allowing all possible q-vectors, but explored Q-matrix
designs containing different numbers of RT . Simulation results
showed that including one R-matrix transpose in the Q-matrix
increased the CCRs in the case of independent attributes. Note
that although the identification issue of CDMs and the Q-matrix
design are usually treated as two separate research areas, the
identification requirement may not always be satisfied in the Q-
matrix design studies, especially for more complicated models
and shorter tests.

First, we looked at the results for independent attributes.
A closer look at the Q-matrices revealed that the first Q-
matrix design (Q1) did not measure α1 in isolation; the
second Q-matrix design (Q2) contained only one identity
matrix and measured α1 in isolation only once. This explained
the much lower classification rates for α1 compared with
other attributes. This finding with the TDCM agrees with the
results of conventional DCMs (DeCarlo, 2011; Madison and
Bradshaw, 2015). From the identification perspective, it has
been proven that including two identity matrices in the Q-
matrix is necessary for a saturated DCM such as LCDM with
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TABLE 2 | RT as a submatrix in the Q-matrix ensures a separable Ŵ -matrix.

q-vector Attribute profile

000 100 110 111

100 0 1 1 1

110 0 0 1 1

111 0 0 0 1

independent attributes (Gu and Xu, forthcoming). UnderQ1 and
Q2 for independent attributes, the model parameters suffered
from the non-identifiability issue and the consequence was
reflected in the lower profile CCRs with Q1 and Q2 than with Q3

inTable 1. It also explains why themarginal CCRs of α1 underQ1

and Q2 were substantially lower than those under Q3, while the
marginal CCRs of the other two attributes did not differ much
between Q-matrix designs.

Including RT in the Q-matrix also increases the classification
rates for the hierarchical cases in this study, which is consistent
with the empirical findings from Tu et al. (2019). The
results for hierarchical attributes can also be explained from
the identification perspective as discussed in Gu and Xu
(forthcoming). For a generalized multi-parameter DCM such as
LCDM or HDCM, the concept of a separable Ŵ -matrix was
introduced (Gu and Xu, forthcoming). The rows and columns
of the Ŵ -matrix is indexed by the items and the attribute profiles,
respectively. An entry of the Ŵ -matrix equals to 1 if an attribute
profile has the highest correct response probability on an item
and 0 otherwise. A Ŵ -matrix is said to be separable if any two
column vectors of are distinct. The separability of theŴ -matrix is
necessary for strict identification.We show thatRT as a submatrix
in the Q-matrix ensures a separable Ŵ -matrix in Table 2. It can
be further shown that the matrix of RT is in the form of











1 ∗ · · · ∗
∗ 1 · · · ∗

...
...
. . .

...
∗ ∗ · · · 1











K×K

after some row permutation, in which ∗ takes the value of 0 or
1 and K is the number of attributes. Two RTs were contained in
Q3, which led to a separable Ŵ -matrix. As a result, Q3 always
ensures the identification of the model, while the first design may
lead to non-identification issues (Gu and Xu, forthcoming). In
contrast, Q2 contained one RT and at least one identity matrix
instead of two RTs, which does not affect themodel identification.
Therefore, Q2 and Q3 showed similar classification rates. One
major difference between the two designs is that Q2 contains
more single-attribute items and fewer multiple-attribute items.
Under the linear hierarchy, for example,Q3 has at least two items
with q=(111), which has seven item parameters to be estimated.
The parameter recovery of such items may be more difficult than
single-attribute items, and the classification rate may suffer. As a
result, the performance of Q2 turned out to be better than Q3 for
the linear hierarchy.

This study aimed to demonstrate the classification
performance of the H-TDCM with a short test and provide
practical guidelines for the applications of this longitudinal
model for formative classroom assessment. For the current
setting of short tests and only a few attributes, we recommend
that the Q-matrix contains (1) two identity matrices for
independent attributes, (2) two RTs for a divergent hierarchy,
and (3) one RT and one identity matrix for a linear hierarchy.
Besides, each attribute should be probed by at least three items.
However, it should be noted that the current simulation study
assumes that it is possible to develop items of all types of
q-vectors with equal easiness, which may not be true for certain
subject areas. For example, it may be more difficult to develop
items that measure each attribute in isolation.

The formative classroom assessment has received renewed
attention recently with the development of curriculum reform.
The fusion of curriculum, instruction, and the assessment
requires timely and constructive feedback that is closely
connected to a curriculum and are based on students’ learning
history (e.g., Bennett, 2015; Gotwals, 2018; Shepard et al., 2018).
Such feedback can be obtained from a diagnostic model that
portrays the progression of attribute profiles. To establish the
learning progression in terms of attribute profiles, however,
is not an easy task. A possible solution could be collecting
longitudinal assessment data from multiple classrooms and
applying H-TDCM. The model parameters and classification
results from H-TDCM can be used to understand the learning
process better and to give teachers and students prior information
before the learning begins. The current study focused on
short tests for classroom applications where the attribute
hierarchy is prespecified. Future simulation research can extend
to longer tests for the purpose of exploring the learning
process by estimating the attribute hierarchy. Those who are
interested may refer to the requirement on the Q-matrix design
(Gu and Xu, 2019b).
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A multivariate longitudinal DCM is developed that is the composite of two components,

the log-linear cognitive diagnostic model (LCDM) as the measurement model component

that evaluates the mastery status of attributes at each measurement occasion, and a

generalized multivariate growth curve model that describes the growth of each attribute

over time. The proposed model represents an improvement in the current longitudinal

DCMs given its ability to incorporate both balanced and unbalanced data and to measure

the growth of a single attribute directly without assuming that attributes grow in the

same pattern. One simulation study was conducted to evaluate the proposed model in

terms of the convergence rates, the accuracy of classification, and parameter recoveries

under different combinations of four design factors: the sample size, the growth patterns,

the G matrix design, and the number of measurement occasions. The results revealed

the following: (1) In general, the proposed model provided good convergence rates

under different conditions. (2) Regarding the classification accuracy, the proposed

model achieved good recoveries on the probabilities of attribute mastery. However,

the correct classification rates depended on the cut point that was used to classify

individuals. For individuals who truly mastered the attributes, the correct classification

rates increased as the measurement occasions increased; however, for individuals who

truly did not master the attributes, the correct classification rates decreased slightly as

the numbers of measurement occasions increased. Cohen’s kappa increased as the

number of measurement occasions increased. (3) Both the intercept and main effect

parameters in the LCDM were recovered well. The interaction effect parameters had a

relatively large bias under the condition with a small sample size and fewer measurement

occasions; however, the recoveries were improved as the sample size and the number of

measurement occasions increased. (4) Overall, the proposedmodel achieved acceptable

recoveries on both the fixed and random effects in the generalized growth curve model.

Keywords: diagnostic classification model, longitudinal data analysis, growth model, cognitive diagnostic

assessment, multivariate
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INTRODUCTION

Diagnostic classification models (DCMs; e.g., Rupp et al.,
2010), also referred to as cognitive diagnosis models (CDMs;
e.g., Leighton and Gierl, 2007), are defined as a family of
confirmatory multidimensional latent-variable models with
categorical latent variables (Rupp et al., 2010). DCMs evaluate
the student’s mastery status on each latent variable from a set
of narrowly defined latent variables, referred to attributes in
the DCM literature, and then classify students into attribute
profiles that were determined as a priori (DiBello et al.,
1995). DCMs provide fine-grained and multidimensional
diagnostic information, which could help educators adjust
classroom instruction and improve student learning. Since
the traditional scale scores (e.g., IRT scores) have limits
in providing enough information to inform classroom
instruction and learning (e.g., de La Torre, 2009), DCMs
have received growing attention in the educational measurement
community as well as from educational practitioners in
recent years.

DCMs have been increasingly used for empirical data
analysis in recent years. For example, DCMs have been
retrofitted to existing large-scale assessments to identify
examinees’ mastery status of tested skills (e.g., Lee and Sawaki,
2009; George and Robitzsch, 2014; Sedat and Arican, 2015;
Ravand, 2016). In addition, some researchers successfully
demonstrated the practical uses of DCMs in test development
(Bradshaw et al., 2014). DCMs have also been applied in
one large-scale assessment program (Dynamic Learning
Maps R© alternate assessment; DLM R©; Dynamic Learning
Maps, 2016) to detect distinct patterns of skill mastery for
students with significant cognitive disabilities. However, most
applications of DCMs are static, meaning that DCMs are
used to classify individuals at a single time point. When
longitudinal data are modeled, the longitudinal DCM is used to
measure the change in the attribute profiles and mastery status
over time.

Currently, two types of longitudinal DCMs have been
proposed to analyze longitudinal data in the DCM framework.
Latent transition analysis (LTA; Collins and Wugalter,
1992)—based longitudinal DCMs (e.g., Li et al., 2016; Kaya
and Leite, 2017; Madison and Bradshaw, 2018) estimate
the probabilities of transitioning from one latent class to
another latent class or staying at the same latent class
across two measurement occasions. Higher-order DCM
(HDCM; e.g., de la Torre and Douglas, 2004; Templin
and Bradshaw, 2014)—based longitudinal DCMs (e.g.,
Huang, 2017; Zhan et al., 2019) assumes a higher-order
continuous factor to predict the mastery status of lower-
order attributes so that the changes in the higher-order
factor are used to infer the changes of lower-order attributes
over time.

These two longitudinal DCM approaches have been evaluated

by a few simulation studies and some applied research, which
has demonstrated their utility for analyzing longitudinal data in

the DCM framework. However, these models are not without

limitations. For example, LTA-based longitudinal DCMs are

restricted to the balanced data1 and assume attributes are
independent. In addition, LTA-based approach is limited to
assessing changes between only two measurement occasions
(Huang, 2017). On the other hand, HDCM-based longitudinal
DCMs assume all attributes have similar growth trajectories.
However, previous studies found attributes could change in
different ways (e.g., Li et al., 2016; Madison and Bradshaw, 2018).

So, the overarching goal of the current study is to develop
a multivariate longitudinal DCM, improves upon current
longitudinal DCMs by (1) being able to incorporate both
balanced data and unbalanced data and (2) measuring the growth
of multiple attributes that have dissimilar growth trajectories.
More specific research questions are presented in the Research
Design and Methods section.

LONGITUDINAL DIAGNOSTIC
CLASSIFICATION MODELS

Currently, two types of longitudinal DCMs have been developed
and applied to measure longitudinal data, including latent
transition analysis (LTA; Collins and Wugalter, 1992)-based
longitudinal DCMs (e.g., Li et al., 2016; Kaya and Leite, 2017;
Madison and Bradshaw, 2018), and Higher-order DCM (HDCM;
e.g., de la Torre and Douglas, 2004; Templin and Bradshaw,
2014)—based longitudinal DCMs (e.g., Huang, 2017; Zhan et al.,
2019). The definitions, model specifications, and limitations
of these two types of longitudinal DCMs are briefly reviewed
as follows.

LTA-Based Longitudinal DCMs
Latent class analysis (LCA; e.g., Lazarsfeld and Henry, 1968;
Goodman, 1974) is developed for analyzing categorical latent
variables. Latent transition analysis (LTA) is the extension of the
general LCA for longitudinal data, which enables the estimation
of both the latent class membership probability, often called
the latent status prevalence in the LTA, and the probabilities
of transitions in latent status from one measurement occasion
to the next (Lanza et al., 2003, p. 161). LTA-based longitudinal
DCMs are a composite of theDCM, as themeasurementmodel to
classify individuals into different latent classes at each time point,
and the LTA, as the structural model to estimate the transition
probability to represent the changes in latent class membership
across two measurement occasions.

A few LTA-based longitudinal DCMs have been evaluated
in simulation studies as well as applied in empirical studies.
For example, Li et al. (2016) used the LTA with DINA(the
deterministic-input, noisy-and-gate model; Junker and Sijtsma,
2001) as the measurement model to evaluate the effectiveness of
an intervention for four cognitive skills across four measurement
occasions for a sample of 109 seventh-grade students. This study
provided base-rates of cognitive skills at each measurement
occasion and three conditional transition probabilities from
Occasion 1 to Occasion 2, Occasion 2 to Occasion 3, and
Occasion 3 to Occasion 4, respectively. The results showed that

1In the current study, the balanced data refers to equal time intervals and

unbalanced data refers to unequal time intervals.
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attributes had different base-rates at the beginning and different
conditional transition probabilities over time.

Madison and Bradshaw (2018) proposed the transitional
diagnostic classification model (TDCM) to measure growth in
attributemastery for pre-test and post-test data, where the LCDM
was adopted as the measurement model along with the LTA
as the structural model. A simulation study showed that the
TDCM could provide accurate and reliable classification and
transition probabilities overtime under the variations in the
number of attributes, sample size, Q-matrix, pre-test, and post-
test base-rates, and marginal mastery transition probabilities.
Additionally, the TDCM was applied to two empirical studies.
In both studies, four mathematic skills were assessed before and
after an intervention. The results showed that the base-rates of
all attributes were improved after the intervention. However,
the improvement differed by attributes and the groups, e.g., the
control group or the intervention groups.

Furthermore, Chen et al. (2018) proposed a family of
first-order hidden Markov models (FOHM) to model the
learning trajectories with the CDM framework. Compared to the
aforementioned LTA-based longitudinal DCMs that estimated
the transition probabilities between two measurement occasions,
FOHMs could estimate a transition probability matrix across
multiple measurement occasions, which shows the probabilities
of remaining in the same latent stage or learning some attributes
or even losing some attributes from time t to t + 1. Such that
it could provide an entire learning trajectory across time. Also,
Chen et al. (2018) emphasized that there might be different types
of learning trajectories, including the unstructured trajectories
and non-decreasing trajectories. And, FOHMs are very flexible
to estimate not only the most general trajectories but also some
more parsimonious trajectories. So, even though the number
of parameters in the transition probability matrix increases
exponentially with the number of measurement occasions
increasing, the restricted learning patterns could reduce the
number of parameters.

Higher-Order DCM-Based Longitudinal
DCMs
Higher-order DCMs (HDCMs) parameterize the structural
model of general DCMs in a certain way to reduce the numbers
of structural parameters. Several approaches have been utilized
to construct the structural model (e.g., Hartz, 2002; de la Torre
and Douglas, 2004; Rupp and Templin, 2008). The majority
of HDCM-based longitudinal DCMs are parameterized using
the logistic regression models (e.g., Huang, 2017; Zhan et al.,
2019), which are composites of two model components. The
first component is the HDCM, where a higher-order continuous
factor, θrt , is assumed to predict the mastery statuses of multiple
lower-order attributes at time t. The second component is the
univariate growth curve models (GCMs; e.g., Raghavarao and
Padgett, 2014; Hoffman, 2015), which describes the inter- and
intra-individual differences in changes of this higher-order factor
over T time points.

Recently, Huang (2017) proposed an HDCM-based
longitudinal DCM, where a G-DINA model was used to

evaluate the mastery status of attributes at each time point. Then,
the Rasch model was utilized to construct the higher-order
DCM at each time point. Last, a univariate GCM was applied
to describe the growth of the higher-order factor over time.
In addition, a set of time-invariant predictors (e.g., gender,
age) were included to predict the random intercept and slope.
This HDCM-based longitudinal DCM was evaluated in three
simulation studies which varied several factors, including the
sample size, the test length, the number of attributes, the item
difficulty, and the number of measurement occasions. The
results showed that a large sample size (1,000 individuals),
enough items (30 items), and more measurement occasions (3
measurement occasions) could improve the parameter recovery
and classification accuracy. Additionally, this HCDM-based
longitudinal DCM was retrofitted to an empirical testing data,
which assessed four attributes in a group of 4,177 high school
students across three measurement occasions. The results
showed that attributes differed in both the initial base-rates
and the amount of improvement of the base-rates, for example,
the base-rates of the “geometry” attribute were 0.90, 0.89,
and 0.92 across three measurement occasions; however, the
base-rates of the “number” attribute were 0.36, 0.49, and 0.58
across three measurement occasions. These results indicated
different attributes developed different growth rates. Also, Zhan
et al. (2019) developed a Long-DINA model, where (1) a DINA
model was used to determine the mastery status of attributes
at each time point, (2) the examinee’s general ability at each
measurement occasion was predicted by mastery status of
attributes through a 2PL multidimensional higher-order latent
structural model, and (3) the mean differences between the
general abilities estimated from different measurement occasions
represented the growth of examinees. Furthermore, the main
improvement of this model was that incorporated specific factors
in the DINA model to capture local item dependence due to
the repeated measure rather than assuming the measurement
invariance across time.

Limitations of Current Longitudinal DCMs
Even though the current longitudinal DCMs have provided a few
approaches to analyze longitudinal data in the DCM framework;
these longitudinal DCMs have limitations that could restrict
their usage with empirical data. As discussed above, LTA-based
longitudinal DCMs could estimate the changes of attributes
directly over time. However, this method required balanced
data. In other words, the time interval between measurement
occasions cannot be accounted for in themodel. Thismight result
in inaccurately estimated transition probabilities if examinees
have a different time interval between administrations. On
the other hand, HDCM-based longitudinal DCMs estimate
the growth of the higher-order factor via the univariate
GCM framework, which could cooperate both balanced and
unbalanced data. However, HDCM-based longitudinal models
measure the growth of higher-order factors to indicate the
growth of lower-order attributes, indicating multiple attributes
should have similar growth patterns. While empirical studies’
demonstrated attributes had different growth patterns, some
attributes were improved over time, and some attributes had a
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nearly consistent base-rate over time. For example, Madison and
Bradshaw (2018) measured the changes in mastery status for four
mathematics skills using pre- and post-test data and found the
base-rate of one attribute was almost constant, where the base-
rates changed from 0.65 to 0.70. However, base-rates of another
three attributes improvedmore, ranging from 0.38 to 0.58, 0.38 to
0.51, and 0.59 to 0.73, respectively. Therefore, it is not reasonable
to assume all attributes have the same growth patterns such
that the growth of the higher-order factor cannot represent the
changes in lower-order attributes well.

Therefore, there is a need to improve the current longitudinal
DCMs. The motivation for the current study is to improve
the current longitudinal DCMs by developing a multivariate
longitudinal DCM, which could incorporate both balanced and
unbalanced data, and measure the growth of attributes directly
without assuming that attributes have similar growth patterns.

RESEARCH DESIGN AND METHOD

Multivariate Longitudinal Diagnostic
Classification Models
The proposed multivariate longitudinal DCM is a composite
of two components, the LCDM as the measurement model
component that evaluates the mastery status of attributes at each
measurement occasion, and a generalized multivariate growth
curve model (e.g., GCM;MacCallum et al., 1997; Goldstein, 2011;
Hoffman, 2015) as the structural model component that describes
the changes of attributes over time via a logistic link function.

Model Specification
Let xi denote the item response of item i. Only the binary
item response was considered in the current study; however,
polytomous item responses could be incorporated as well. Let
t = 1, 2, . . . , T denotes the number of measurement occasions;
k = 1, 2, . . . , K denote the number of attributes; and αk

rt =
α1
rt, α2

rt, ..., α
k
rt denote the attribute profile at time t.

A three-level model is considered in the current study; Level 1
is the item level, Level 2 was the within-person level, and Level 3
is the between-person level.

In Level 1, the LCDM estimates the probability of individual
r answering item i correct given profile αr at time t, as shown in
Equation (1), where λi,0 is the intercept parameter of the LCDM,
indicating the logit of guessing the item i correctly without
mastering any attributes, λTi is a vector of size (2K − 1) × 1
with main effect and interaction parameters for item i at Time T,
qi is the set of Qmatrix entries for item i, and h

(

αrt , qi
)

is a vector
of size

(

2K − 1
)

× 1 with linear combinations of the αrt and qi.
For example, as shown in Table 2, the item 4 measures both

Attribute 1 and Attribute 2 across all measurement occasions,
such that, Equation (1) expresses the probability of a correct
response to Item 4 is a function of the intercept (λ1,0), the simple
main effects of attribute 1 (λ1,1,(1)) and attribute 2 (λ1,1,(2)),
interaction effects between these two attributes (λ1,2,(1,2)), and the
mastery status of two attributes. The intercept represents the log-
odds of a correct answer for individuals who did not master any
of the attributes. The simple main effects of attributes represent
the increase in log-odds for individuals who have mastered only

one of the attributes. Moreover, the interaction represents the
change in log-odds for individuals who have mastered both
attributes. Since the attributes are all dichotomous, α1 = 1
indicates attribute 1 is mastered, while α1 = 0 indicates attribute
1 is not mastered. As mentioned, as a general diagnostic model,
the LCDM is able to subsume other frequently used DCMs. Using
the same example, when twomain effects are fixed to 0, the DINA
model is achieved (Bradshaw and Madison, 2016).

P (X4 = 1|αc) =
exp(λ1,0+λ1,1,(1)(α1)+λ1,1,(2)(α2)+λ1,2,(1,2)(α1·α2))

1+exp(λ1,0+λ1,1,(1)(α1)+λ1,1,(2)(α2)+λ1,2,(1,2)(α1·α2)) (1)

In Level 2, αkrt represents the mastery status of attribute k at time
t, Timert represents the time variable for individual i at time
t. Then, the log-odds of P(αkrt = 1), indicating the probability
of mastering attribute k at time t, are predicted by the random
intercept βkr0 and random slope β

k
r1.

In Level 3, the random intercept βk0r and random slope β
k
1r are

predicted by the average initial level γ
k
00 and average slope γ

k
10,

respectively. uk0r and uk1r represent the individual r′s deviations
from the average initial level and growth rate for attribute k.

Level 1 πirt = P (Xirt = 1|αrt) = exp(λi,0 + λTi h(αrt , qi))

1+ exp(λi,0 + λTi h(αrt , qi))

(2)

Level 2 logit
(

P
(

αk
rt = 1

))

= βk
r0 + βk

r1Timert + ǫkrt (3)
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(7)

As shown in Equation (3), ǫkrt are the Level 2 residuals, which
follow a multivariate normal distribution with means of 0 and
TK × TK covariance matrix of R, the diagonal elements are π

2

3 ,
and off-diagonal elements are fixed to 0, indicating there are
no covariances among ǫrt across constructs. In Level 3 variance
[uk0r , uk1r] ∼ MVN(0, G), G is a KP × KP covariance matrix,
and P is the number of Level 2 random effects (Pan, 2018).

Research Questions
The purpose of the current study is to develop a multivariate
longitudinal DCM and evaluate it under several conditions.

This study aims to answer the following research questions:
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(1) Does the proposed model provide satisfied classification
accuracy under different conditions?

(2) Do the sample size, the growth patterns, and the number
of measurement occasions, the G matrix design, and their
interactions impact the item parameter recoveries in the
measurement model?

(3) Do the sample size, the growth patterns, and the number
of measurement occasions, the G matrix design, and their
interactions impact the fixed and random effects recoveries
in the generalized growth curve model?

Simulation Design
To answer three research questions listed above, a simulation
study was conducted, which included four design factors, (1) the
sample size; (2) the growth patterns across attributes; (3) the G
matrix design; and (4) the number of measurement occasions.
Factors including the Q-matrix, the test length, the initial base-
rate, and the item parameters were fixed. Simulation conditions
are described below.

Design Factors

Sample size
The current study varied the sample size by 100, 200, and 300 to
investigate the requirement for the sample size in the proposed
model. Previous simulation studies in longitudinal DCMs used
to have a large sample size that normally ranged from 500 to
3,000 (e.g., Kaya and Leite, 2017; Zhan et al., 2019; Madison and
Bradshaw, 2018). However, the empirical studies usually had a
relatively smaller sample size, normally ranging from 100 to 400
(e.g., Li et al., 2016). Therefore, it was useful to investigate the
sufficient sample size for the proposedmodel to detect the growth
of attributes over time, which could guide applied researchers to
collect adequate participants without a waste of time and money.

Growth patterns across attributes
The proposed multivariate longitudinal DCM improves the
current HDCM-based longitudinal DCMs in its potential for
estimating the growth of attributes without assuming that
attributes have similar growth trajectories. To examine if the
proposed model could measure attributes with different growth
patterns and attributes with similar growth patterns equally well,
two different growth patterns across attributes were considered
in the current study: (1) the even growth pattern in which
attributes had similar growth patterns over time and (2) the
uneven growth pattern in which attributes had different growth
patterns over time.

Figure 1 describes these two conditions, where T1–T5
represent the first to the fifth measurement occasion; A1, A2,
and A3 represent Attribute 1, Attribute 2, and Attribute 3,
respectively.

Under the even growth pattern condition, the base-rates of
all three attributes were improved from the first measurement
occasion to the last measurement occasion. Under the uneven
growth pattern condition, the base-rates of Attributes 2 and
3 were improved across five measurement occasions, but the
base-rates of Attribute 1 kept constant over time.

Gmatrix design
The G matrix plays an important role in the multivariate
GCM, which reflects the relationships between outcomes
across time. It is one of the main interests in the
longitudinal studies that measure multiple outcomes over time
(e.g., Hoffman, 2015).

To examine if the proposed multivariate longitudinal DCM
can detect the relationships among attributes, two types of G
matrices are considered in the current study: (1) under the
equal correlation condition, all attributes had equal correlations
between intercept, slopes, and intercept and slope, meaning that
attributes are equally correlated, and (2) under the unequal
correlation condition, as described in Figure 1, Attribute 2 and
Attribute 3 had equal correlations between intercept, slopes, and
intercept and slope, but Attribute 1 had lower correlations with
Attribute 2 and 3. Table 1 presents the two types of G matrices
and corresponding correlation matrices.

Number of measurement occasions
Previous simulation studies in HDCM-based longitudinal DCMs
showed inconsistent results in the impacts of the number of
measurement occasions on the classification accuracy. Huang
(2017) found the number of measurement occasions (e.g., 2 or
3 measurement occasions) did not influence the classification
accuracy significantly. However, Zhan et al. (2019) found the
classification accuracy slightly increased as the number of
measurement occasions increased. For the growth model, more
measurement occasions are associated with good parameter
recoveries (e.g., Preacher et al., 2008). To examine whether the
number of measurement occasions impacted the performance
of the proposed multivariate longitudinal DCM, the number
of measurement occasions varied between 3 and 5 in the
current study.

Fixed Conditions

Test length
A test of 30 binary items was simulated in the current study. The
test length fell within the range of applied research as well as
simulation studies in the longitudinal DCMs (e.g., Huang, 2017;
Kaya and Leite, 2017; Madison and Bradshaw, 2018).

Q-matrix
As discussed above, DCMs are able to incorporate both the
simple structure and the complex structure of the Q-matrix.
In the current study, a complex structure of the Q-matrix was
specified as shown in Table 2. Each item measures up to two
attributes and attributes were assessed by equal numbers of
items. This Q-matrix design was suggested by previous applied
research and simulation studies (e.g., Bradshaw and Templin,
2014; Bradshaw et al., 2014; Kaya and Leite, 2017; Madison and
Bradshaw, 2018).

Initial base-rates
The initial base-rate was fixed to 0.20, 0.25, and 0.30 for Attribute
1, Attribute 2, and Attribute 3, respectively. The previous
empirical studies on measuring growth of attributes found initial
base-rates ranged from 0.02 to 0.90 and suggested an easier
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FIGURE 1 | Two patterns of growth across attributes.

TABLE 1 | G matrix specification and corresponding correlation matrix.

Equal correlation condition Unequal correlation condition

u10 u11 u20 u21 u30 u31 u10 u11 u20 u21 u30 u31

CORRELATION MATRIX

u10 1.0 1.0

u11 0.20 1.0 0.10 1.0

u20 0.90 0.10 1.0 0.90 0.01 1.0

u21 0.10 0.25 0.20 1.0 0.01 0.01 0.20 1.0

u30 0.90 0.10 0.90 0.10 1.0 0.10 0.01 0.90 0.10 1.0

u31 0.10 0.25 0.10 0.25 0.20 1.0 0.01 0.01 0.10 0.25 0.20 1.0

COVARIANCE MATRIX

σ 2
u10

σ 2
u11

σ 2
u20

σ 2
u21

σ 2
u30

σ 2
u31

σ 2
u10

σ 2
u11

σ 2
u20

σ 2
u21

σ 2
u30

σ 2
u31

σ 2
u10

0.1500 0.1500

σ 2
u11

0.0173 0.0500 0.0173 0.0500

σ 2
u20

0.1350 0.0087 0.1500 0.1350 0.0009 0.1500

σ 2
u21

0.0087 0.0125 0.0173 0.0500 0.0009 0.0005 0.0173 0.0500

σ 2
u30

0.1350 0.0087 0.1350 0.0087 0.1500 0.1350 0.0009 0.1350 0.0087 0.1500

σ 2
u31

0.0087 0.0125 0.0087 0.0125 0.0173 0.0500 0.0009 0.0005 0.0087 0.0125 0.0173 0.0500

uk0 and uk1 represent the random intercept and slope for attributes; σ 2
uk0

and σ 2
uk0

represent the random intercept and slope variance for attributes. Bold values means the correlation of

this parameter itself.

attribute might have a base-rate approximately 0.60, a medium
attribute might have a base-rate approximately 0.40, and a hard
attribute might have a base-rate ∼0.20 (Madison and Bradshaw,
2018); therefore, the base-rates are set to 0.20, 0.25, and 0.30 to
mimic the hard, medium-hard, and medium attributes at the first
measurement occasion.

Fixed effects (γk00, γ
k
01)

The linear growth of the log-odds of the probability of mastering
attributes was considered in the current study. It should be noted
that the linear growth of the log-odds of the probability did not
necessarily result in the linear growth of base-rates over time.
Table 3 presents the fixed effects under both even and uneven
growth pattern conditions.

Time variables
The current study planned to mimic the context of the interim
assessments, which are administered several times within a
school year (Great Schools Partnership, 2013). The common
interval ranges from 6 to 8 weeks, such that individuals might
receive the assessment at different times. Therefore, the current
study set the time interval to 8 weeks and the unit of time to 1
week. The mean and standard deviation of time variables at each
measurement occasion was fixed to µtime = (0, 8, 16, 24, 32)
and σtime = 1, such that each individual had his/her own time
variable at each measurement occasion to mimic the unbalanced
data design.

As shown in Table 3, γ00 = −1.38 is the log-odds of the
probability of 0.2, meaning at the first measurement occasion, the
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TABLE 2 | Q-matrix design.

Item Attribute 1 Attribute 2 Attribute 3 Item Attribute 1 Attribute 2 Attribute 3

1 1 0 0 16 1 1 0

2 0 1 0 17 1 0 1

3 0 0 1 18 0 1 1

4 1 1 0 19 1 0 0

5 1 0 1 20 0 1 0

6 0 1 1 21 0 0 1

7 1 0 0 22 1 1 0

8 0 1 0 23 1 0 1

9 0 0 1 24 0 1 1

10 1 1 0 25 1 0 0

11 1 0 1 26 0 1 0

12 0 1 1 27 0 0 1

13 1 0 0 28 1 1 0

14 0 1 0 29 1 0 1

15 0 0 1 30 0 1 1

average probability of mastering Attribute 1 is 20%2. γ01 = 0.05
is growth rates of Attribute 1 in the log-odds scale, meaning that
when time is increasing by one unit, the log-odds of probability
of mastering Attribute 1 is increased by 0.05 in average, which is
equal to the probability of mastery is increased by 0.008.

Table 4 presents the average base-rates of attributes across
five measurement occasions, which was obtained by using the
mean of the time variable and fixed effects shown in Table 3.
Under the even growth pattern condition, the probabilities of
mastery of three attributes were improved by 0.35, 0.38, and
0.39, respectively, across the time, and under the uneven pattern
condition, the base-rate of Attribute 1 had a constant of 0.20, and
the probabilities of mastery were improved by 0.38 and 0.39 for
Attributes 2 and 3, respectively. This amount of improvement fell
in the range of improvement of base-rates found in the previous
studies (Li et al., 2016; Madison and Bradshaw, 2018).

Item parameters
The intercepts of all items were fixed to −1.5 indicating the
probability of having a correct answer was 0.18. The simple main
effects of all items were fixed to 1.5, indicating the probability of
having a correct answer was 0.50 given mastering this attribute.
The interaction effects between two attributes were fixed to 0.50,
indicating the probability of having a correct answer was 0.88,
given mastering two attributes.

Data Generation Procedures
Data were generated in R, version 3.4.2 (R Core Team, 2017).
Each condition was replicated 100 times.

Data generation procedures included two stages: first, the
probability of mastery was generated for each attribute at five
measurement occasions, then the mastery statuses of them was
generated; lastly, the item response data was generated, which are
proceeded as follows:

2This equation describes the relationships between the log odds of probability and

fixed effects. log
(

probability
1−probability

)

= log
(

0.2
1−0.2

)

= −1.38.

Generate the linear predictors of the probability of mastery
for each attribute by using the intercept and slope parameters,
time variables, and G matrix for each individual;
Convert this linear predictor into the probability of mastery;
A binary mastery status for each attribute is randomly
drawn from the binomial distribution with the probability of
mastering attributes.
Generate the probability of having a correct answer for each
item using a prespecified Q-matrix, item parameters, and
person profiles.
A binary item response is randomly sampled from the
binomial distribution with the probability obtained from the
last step.

Analysis Plan and Outcome Variables
A Markov Chain Monte Carlo (MCMC) algorithm was adopted
to estimate model parameters, which was implemented in the
JAGS software (Plummer, 2003) by using the R2jags package
(Su and Yajima, 2015) in the programming environment R (R
Core Team, 2017). The JAGS syntax and more details of MCMC
analyses can be found in the Supplementary Material.

The LCDM was applied to estimate the mastery statuses
of attributes at each measurement occasion. For example, as
described in the Q-matrix in Table 2, item 4 measured both
Attribute 1 and Attribute 2. Thus, the probability of providing
a correct answer to item 4 given the latent class c at Time t can be
expressed as follows:

π4ct = P (x4ct = 1|αct) =
exp(λ4,0+λ4,1,(1)(α1)+λ4,1,(2)(α2)+λ4,2,(1,2)(α1·α2))

1+exp(λ4,0+λ4,1,(1)(α1)+λ4,1,(2)(α2)+λ4,2,(1,2)(α1·α2)) (8)

For items that only measure one attribute, only the intercept and
the main effect of this item were included in the equation.

The generalized multivariate GCM was applied to measure
the changes in mastery statuses of attributes over time. First,
as suggested by MacCallum et al. (1997), Curran et al. (2012),
and Hoffman (2015), a synthesized variable was created, which
was a composite of multiple outcome variables (αk

rt in the
current study), then a series of dummy variables as exogenous
predictors were adopted to control which specific outcomes were
referenced within different parts of the model. Let dvrt denote
the synthesized variable, which contained individual r′s mastery
statuses for three attributes across four measurement occasions.
A total of three dummy variables, A1, A2, and A3, were included
in the model to distinguish which specific element belonged to
which specific outcome variables, where A1 was equal to 1 for
Attribute 1 and A1 was equal to 0 for other attributes. Therefore,
the probability of mastering attribute αk

rt (k = 1, 2, 3) at time t
could be described as follows:

logit
(

P
(

dvrt = 1
))

= A1
[

(

γ 1
00 + u10r

)

+ (γ 1
10 + u11r

)

Timert]

+A2[(γ 2
00 + u20r)+ (γ 2

10 + u21r)Timert]

+A3[(γ 3
00 + u30r)+ (γ 3

10 + u31r)Timert]

(9)

where the main effects of A1, A2, and A3 represent the initial
levels for three attributes, and the interaction effects between
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TABLE 3 | Initial level and growth rates of linear predictors.

Even growth patterns Uneven growth patterns

A1 A2 A3 A1 A2 A3

γ00 −1.38 −1.10 −0.85 −1.38 −1.10 −0.85

γ01 0.05 0.04 0.05 0 0.04 0.05

A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3.

TABLE 4 | Base-rates of attributes over time.

T1 T2 T3 T4 T5

EVEN GROWTH PATTERN

A1 0.20 0.27 0.36 0.45 0.55

A2 0.25 0.32 0.40 0.49 0.58

A3 0.30 0.39 0.49 0.60 0.59

UNEVEN GROWTH PATTERN

A1 0.20 0.20 0.20 0.20 0.20

A2 0.25 0.32 0.40 0.49 0.58

A3 0.30 0.39 0.49 0.60 0.59

A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; T1–T5 represent the

first measurement occasion to the fifth measurement occasion.

dummy variables and time scores represent the growth rates
for attributes.

Once data analysis was finished, the following outcome
variables across all 100 replications were obtained for
all conditions:

(1) Gelman-Rubin diagnostic (R̂) of parameters, including item
parameters in the LCDM and both fixed effects and random
effects parameters in the generalized growth curve model.

(2) The distribution of estimated parameters, including the
mean, standard deviation, and quantiles.

Evaluation Criteria
Convergence rates, the classification accuracy of attributes at
each measurement occasion, and the parameter recovery were
evaluated in the current study to examine the performance of the
proposed model under different conditions.

Convergence Rates
Convergence was assessed by using the Gelman-Rubin diagnostic
(R̂), also referred to as the “potential scale reduction factor”
(Gelman and Rubin, 1992). Suppose there are m independent
Markov chains, R̂ is given by:

√

R̂ =
√

n− 1

n
+ 1

n

B

W
(10)

where B is the variance between the means of the m chains,W is
the average of them within-chain variances, and n is the number
of iterations of the chain after discarding the iterations as burn-
in. If the algorithm converges, R̂ is approaching 1, indicating a

stationary distirbution has been achieved because the marginal
posterior variance (weighted combo of between and within-chain
variance) are equal to the within-chain variances. In the current
study, R̂ was calculated for all model parameters, and we adopted
the criteria of R̂ < 1.2 as the indicator of convergence as
suggested by the previous study (e.g., Sinharay, 2003).

In one replication, if one or more parameters had the R̂ larger
than 1.2, this replication was regarded as non-converged. After a
total of 100 replications, the convergence rates for this condition
was calcualted and reported. Only the results from the converged
replications were kept and used in the following analysis.

Classification Accuracy
The classification accuracy was evaluated by using (1) the bias
of estimated probability of attribute mastery, (2) the correct
classification rates for each mastery status, and (3) Cohen’s kappa
(Cohen, 1960).

The bias of the estimated probability of attribute mastery was
the difference between the estimated and the true probability
of attribute mastery. The correct classification rates for each
mastery status included (1) the correct classification rates for
individuals who truly mastered an attribute, and (2) the correct
classification rates for individuals who truly did not master an
attribute. Cohen’s kappa measures the agreement between the
true and the estimated mastery status.

The estimated class membership was obtained by applying 0.5
as the cutpoint, meaning that an individual with an estimated
probability larger than 0.5 would be classified as mastery,
vice versa.

Parameter Recovery
The bias andmean squared error (MSE) of estimated parameters,
including item parameters from the measurement model,
intercept and slope parameters, and variance and covariance
parameters from the structural model were computed to assess
the parameter recovery in each condition.

Biasθ =
∑R

r = 1

∑N
i (θ̂ir − θi)

RN
= θ̂ ir − θi (11)

MSEθ =
∑R

r = 1

∑N
i = 1

(

θ̂ir − θi

)2

RN
(12)

where θ represents the estimated parameter, which is the mean of
the sample distribution obtained from the Bayesian estimation. R
is the number of replications; N is the number of elements in the
set of θ .
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A factorial analysis of variance was adopted to assess the
impact of design factors on outcome variables. In all analyses,
the α level was controlled at 0.05 level, and partial η2 was
adopted as themeasure of effect sizes. According to Cohen (1988)
convention, partial η2 values of 0.01, 0.06, and 0.14 were regarded
as small, medium, and large effects.

RESULTS

Convergence Rates
As aforementioned, the Gelman-Rubin diagnostic (R̂) of
item parameters in the LCDM, fixed effects andrandom
effects parameters in the generalized growth curve model
were evaluated, and we adopted the criteria of R̂ < 1.2 as
the indicator of convergence as suggested by the previous
study (e.g., Sinharay, 2003). When all the parameters,
including the item parameters in the LCDM, fixed effects,
and the random effects parameters in the generalized
growth curve model were converged in one replication,
this replication was regarded as converged. Results found
that the average convergence rate is 0.95 under the
conditions with three measurement occasions (MO = 3).
And, the average convergence rate is 0.97 under the
conditions with five measurement occasions (MO = 5).
The details in convergence rates can be found in the
Supplementary Material. Only the converged replications
were used in the following analyses.

Classification Accuracy
The classification accuracy was evaluated by using (1)
bias of the estimated probability of attribute mastery, (2)
correct classification rates for each mastery status, and
(3) Cohen’s kappa.

The average bias of probability of attribute mastery under the
conditions whenMO = 5 showed that the probability of attribute
mastery was recovered well under most conditions. The average
bias of the probability of attribute mastery was all close to 0 under
most conditions. Similar patterns were found whenMO = 3. For
the sake of page limits, only the average bias from the condition
MO = 5 in Table 5, the summary of MO = 3 could be found in
the Supplementary Material.

Table 6 presents the average correct classification rates for
individuals who truly mastered attributes, and Table 7 presents
the correct classification rates for individuals who truly did not
master attributes under different conditions when MO = 5. The
average correct classification rates were very low for individuals
who truly mastered the attributes at the first measurement
occasion (T = 1), but the correct classification rates improved
as the number of measurement occasions increased as shown in
Table 6. For individuals who truly did not master the attributes,
Table 7 shows that the correct classification rates were perfect at
the first measurement occasion, and then decreased to about 0.9
at the following measurement occasions.

This pattern might be due to the cut point of 0.5 used in the
current study. The true mastery status was randomly generated
through a binomial distribution with the true probability of
mastery, such that, there is still some probabilities of mastering

attributes, even the probability is very low. However, the
estimated probability of attribute mastery was very low on the
first two measurement occasions; the majority of individuals’
probabilities were lower than 0.5. After 0.5 was set as the cut
point to classify individuals into mastery or non-mastery classes,
most of the individuals were classified into the non-mastery
class even they truly mastered the attributes by design. With the
increasing of measurement occasions, the estimated probabilities
for individuals who truly mastered the attributes were increasing
to be larger than 0.5, thus the cut point of 0.5 can classify them
correctly. Such that, the correct classification rate was very low
on the first two measurement occasion, but it increases as the
measurement occasions increase.

The similar patterns were found when MO = 3, which
could be found in the Supplementary Material. In summary,
even though the probability of attribute mastery were recovered
well, the correct classification rates depended on the individuals’
mastery status and the cut point that was adopted to
classify individuals.

Cohen’s kappa was calculated to evaluate the degree of
agreement between the estimated and true mastery status.
Table 8 presents the average kappa under different conditions
when MO = 5. The calculation of kappa required that both
true and estimated mastery status should have at least two levels;
however, estimated mastery status only had one level under
some conditions, especially at the first measurement occasion.
Therefore, kappa was not applicable under some conditions.
Results found that kappa values improved as time increased. This
pattern might be due to the same reason as discussed above
that the estimated probability of mastery was very low for all
individuals at the first and second measurement occasions, such
that after applying 0.5 as the cutpoint, the most of individuals
who truly mastered the attributes were falsely classified to non-
mastery. Therefore, kappa values were low at the beginning but
improved as the number of measurement occasions increased.
Similar patterns were foundwhenMO = 3, which could be found
in the Supplementary Material.

In summary, the agreement between true and estimated
mastery status improved as the number of measurement
occasions increased, and it was influenced by the cutpoint applied
to classify individuals.

Parameter Recovery
The bias and mean square error (MSE) of the estimated
parameters were computed to assess the parameter recovery in
each condition through the simulation. Then, ANOVA tests were
conducted to assess the impact of the design factors on the bias
and MSE values of the estimated parameters of the measurement
model and the structural model, respectively.

Measurement Model Parameter Recovery
There were three sets of item parameters in the LCDM: the
intercept (λ0), the main effect (λαk ), and the interaction effect
(λαkαk′ ) parameters. Therefore, the average bias and MSE of
all three sets of item parameters were assessed to evaluate the
measurement model parameter recoveries.
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TABLE 5 | Bias of probability of attribute mastery (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 . . 0.01 . . . . . . . . . . . .

N200 . . . . . . . . . . . . . . .

N300 . . . . . . . . . . . . . . .

gam2 N100 . . 0.01 . . . . −0.01 . . . . . . .

N200 . . . . . . . . . . . . . . .

N300 . . . . . . . . . . . . . . .

G2 gam1 N100 . 0.01 . . . . . . . . . . . . .

N200 . . . . . . . . . . . . . . .

N300 . 0.01 . . . . . . . . . . . . .

gam2 N100 0.01 . 0.01 . −0.01 . . −0.01 . . −0.01 . . . .

N200 . . . . . . . . . . . . . . .

N300 . . . . . . . . . . . . 0.01 0.02 0.01

T1–T5 represent the first to the fifth measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of 100,

200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth pattern

across attributes and unequal growth patterns across attributes, respectively; · represents <0.001.

TABLE 6 | Average correct classification rates for individuals who truly mastered attribute (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 0 0.04 0.06 0.69 0.73 0.76 0.86 0.88 0.88 0.90 0.91 0.92 0.92 0.94 0.94

N200 0.03 0.02 0.03 0.70 0.73 0.77 0.86 0.87 0.89 0.91 0.91 0.92 0.93 0.93 0.94

N300 0.02 0.02 0.03 0.70 0.73 0.77 0.87 0.87 0.88 0.91 0.91 0.91 0.93 0.93 0.94

gam2 N100 0.04 0.04 0.07 0.60 0.71 0.76 0.80 0.86 0.89 0.87 0.90 0.92 0.90 0.92 0.93

N200 0 0.02 0.03 0.62 0.73 0.77 0.82 0.86 0.89 0.88 0.91 0.92 0.90 0.93 0.94

N300 0.01 0.02 0.02 0.64 0.73 0.77 0.82 0.88 0.88 0.88 0.91 0.92 0.90 0.93 0.94

G2 gam1 N100 0.05 0.08 0.07 0.69 0.73 0.75 0.87 0.87 0.88 0.91 0.91 0.91 0.93 0.94 0.93

N200 0 0.03 0.04 0.70 0.73 0.76 0.86 0.87 0.88 0.90 0.91 0.92 0.92 0.93 0.94

N300 0.02 0.02 0.03 0.69 0.73 0.76 0.86 0.86 0.88 0.90 0.90 0.91 0.91 0.92 0.93

gam2 N100 0.05 0.04 0.07 0.64 0.70 0.75 0.82 0.86 0.87 0.88 0.91 0.92 0.90 0.92 0.94

N200 0.02 0.02 0.04 0.63 0.73 0.77 0.83 0.87 0.89 0.87 0.91 0.91 0.90 0.93 0.94

N300 0.02 0.02 0.02 0.64 0.74 0.76 0.83 0.87 0.88 0.88 0.91 0.91 0.90 0.93 0.93

T1–T3 represent the first to the third measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of

100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth

pattern across attributes and unequal growth patterns across attributes, respectively.

As presented in Table 9, the proposed model achieved
good parameter recoveries in intercept and main effect
parameters, but the interaction parameters had relatively large
bias and MSE values under most conditions. However,
the recovery of the interaction effect parameters was
improved as the sample size and the number of measurement
occasions increased.

Since the bias and MSE values of item parameters were not

consistent across conditions, ANOVA tests were conducted to

examine the impact of design factors on them. When MO =
3, results found that the sample size had small to large effects

on the recoveries on the intercept and main effects parameters

(η2
λ0Bias

= 0.05, η2
λαBias

= 0.15; η2
λ0MSE

= 0.67, η2
λαBias

= 0.74).
A large sample size was associated with good recoveries. The
recoveries of interaction effect parameters were influenced by
the sample size, the G matrix, and the growth pattern. The
sample size had large effects on both the bias (η2λαkα

k
′
bias

=0.66)

and MSE (η2λαkα
k
′
MSE

=0.53). Similarly, a large sample size

resulted in better recoveries. Both the growth pattern and the
G matrix design had small effects on interaction parameter
recoveries (the growth pattern: η2λαkα

k
′
bias

=0.02, η2λαkα
k
′
MSE

=0.02;

the G matrix: η2λαkα
k
′
bias

=0.02, η2λαkα
k
′
MSE

=0.02); the
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TABLE 7 | Average correct classification rates for individuals who truly did not master attribute (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 1 1 1 0.87 0.83 0.79 0.88 0.87 0.85 0.92 0.90 0.89 0.94 0.94 0.93

N200 1 1 1 0.86 0.83 0.79 0.87 0.87 0.86 0.92 0.91 0.90 0.94 0.94 0.93

N300 1 1 1 0.86 0.82 0.79 0.87 0.87 0.86 0.91 0.91 0.90 0.94 0.94 0.93

gam2 N100 1 1 0.99 0.91 0.84 0.79 0.91 0.87 0.86 0.94 0.91 0.90 0.96 0.94 0.93

N200 1 1 1 0.91 0.83 0.79 0.91 0.87 0.85 0.94 0.91 0.89 0.95 0.93 0.93

N300 1 1 1 0.90 0.82 0.78 0.90 0.87 0.85 0.93 0.91 0.90 0.96 0.94 0.93

G2 gam1 N100 1 1 0.99 0.86 0.82 0.80 0.86 0.86 0.85 0.91 0.90 0.90 0.94 0.93 0.93

N200 1 1 1 0.85 0.82 0.79 0.87 0.86 0.85 0.91 0.91 0.89 0.94 0.94 0.93

N300 1 1 1 0.85 0.82 0.79 0.86 0.85 0.85 0.91 0.90 0.89 0.93 0.92 0.92

gam2 N100 1 1 0.99 0.90 0.85 0.80 0.90 0.86 0.85 0.94 0.91 0.90 0.96 0.94 0.94

N200 1 1 1 0.90 0.82 0.79 0.90 0.87 0.86 0.94 0.92 0.90 0.95 0.94 0.93

N300 1 1 1 0.89 0.82 0.79 0.90 0.87 0.85 0.93 0.91 0.89 0.94 0.92 0.91

T1–T3 represent the first to the third measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of

100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth

pattern across attributes and unequal growth patterns across attributes, respectively.

TABLE 8 | Average kappa (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 . . . 0.57 0.55 0.55 0.74 0.75 0.72 0.82 0.81 0.81 0.87 0.88 0.86

N200 . . . 0.56 0.56 0.56 0.73 0.74 0.74 0.82 0.82 0.82 0.87 0.87 0.87

N300 . . . 0.56 0.55 0.56 0.73 0.73 0.74 0.83 0.82 0.82 0.87 0.87 0.87

gam2 N100 . . . 0.54 0.55 0.55 0.72 0.72 0.75 0.82 0.81 0.82 0.86 0.86 0.86

N200 . . . 0.56 0.56 0.56 0.73 0.73 0.73 0.82 0.82 0.81 0.86 0.86 0.87

N300 . . . 0.55 0.55 0.55 0.73 0.74 0.74 0.82 0.82 0.82 0.86 0.87 0.87

G2 gam1 N100 . . . 0.56 0.55 0.55 0.72 0.72 0.73 0.82 0.81 0.81 0.87 0.86 0.87

N200 . . . 0.56 0.55 0.55 0.73 0.73 0.74 0.82 0.82 0.81 0.87 0.87 0.86

N300 . . . 0.54 0.55 0.55 0.72 0.71 0.73 0.80 0.80 0.80 0.85 0.84 0.85

gam2 N100 . . . 0.56 0.55 0.55 0.72 0.72 0.73 0.82 0.82 0.82 0.86 0.86 0.87

N200 . . . 0.54 0.55 0.55 0.73 0.74 0.75 0.81 0.83 0.82 0.85 0.87 0.87

N300 . . . 0.54 0.55 0.54 0.73 0.74 0.73 0.81 0.81 0.80 . . .

T1–T5 represent the first to the fifth measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of 100,

200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth pattern

across attributes and unequal growth patterns across attributes, respectively; ‘.’ presents the kappa for this condition was not applicable.

growth and the equal correlations conditions resulted in
better recoveries.

When MO = 5, the item parameter recoveries were mainly
influenced by the sample size. The sample size had small to
large effects on the recoveries of intercept and main effects
(η2

λ0Bias
= 0.01, η2

λ0MSE
= 0.33; η2

λαBias
= 0.05, η2

λαMSE
=

0.37), and large effects on the recoveries of interaction effects
(η2λαkα

k
′
bias

=0.19, η2λαkα
k
′
MSE

=0.17). The parameter recoveries were

improved as the sample size increased. In addition, the recoveries
of intercept parameters were influenced by the growth pattern
slightly. The non-growth condition had a slightly better intercept
parameter recoveries, although the effect sizes were very small.

For the sake of page limits, the details of ANOVA results could be
found in the Supplementary Material.

In summary, the item parameter recoveries were mainly
influenced by the sample size, especially for the interaction effect
parameters. In general, the larger sample size resulted in the
better item parameter recoveries.

Structural Model Parameter Recovery
Recoveries of both fixed effects and random effects in the
growth model were evaluated in this study. The fixed effects
included the intercept and slope parameters for each attribute

(γ
Ak
00 , γ

Ak
01 ), and the random effects included the variance of
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TABLE 9 | Summary of measurement model parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

λ0 λαk λαkαk′ λ0 λαk λαkαk′

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

G1 gam1 N100 0.03 0.05 −0.09 0.13 0.58 0.60 0.03 0.03 −0.07 0.07 0.31 0.24

N200 0.02 0.03 −0.06 0.07 0.32 0.27 0.00 0.02 −0.03 0.04 0.15 0.11

N300 0.02 0.02 −0.04 0.04 0.23 0.17 0.01 0.01 −0.03 0.03 0.11 0.07

gam2 N100 0.04 0.05 −0.08 0.13 0.62 0.68 0.02 0.03 −0.07 0.07 0.33 0.27

N200 0.03 0.03 −0.06 0.07 0.36 0.31 0.01 0.02 −0.03 0.04 0.16 0.11

N300 0.01 0.02 −0.04 0.04 0.24 0.19 0.00 0.01 −0.02 0.03 0.09 0.07

G2 gam1 N100 0.04 0.05 −0.09 0.13 0.62 0.66 0.03 0.04 −0.07 0.07 0.31 0.25

N200 0.02 0.03 −0.05 0.07 0.36 0.32 0.02 0.02 −0.04 0.04 0.17 0.11

N300 0.01 0.02 −0.03 0.05 0.25 0.20 0.01 0.01 −0.02 0.03 0.10 0.07

gam2 N100 0.03 0.05 −0.08 0.13 0.66 0.73 0.02 0.03 −0.06 0.07 0.34 0.28

N200 0.03 0.03 −0.06 0.07 0.39 0.36 0.02 0.02 −0.04 0.04 0.18 0.13

N300 0.01 0.02 −0.03 0.05 0.28 0.26 0.01 0.01 −0.02 0.03 0.11 0.08

λ0, λαk , and λαkαk′ represents the intercept, main effect, and interaction effect parameters of the LCDM; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200,

and N300 represent the sample size of 100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1

and gam2 represent the same growth pattern across attributes and unequal growth patterns across attributes, respectively.

intercept and slope parameters for each attribute (δ
u
Ak
0

, δ
u
Ak
1

)

as well as the covariance among intercept and slope parameters
(δ

u
Ak
0 ,u

A
k
′

0

δ
u
Ak
1 ,u

A
k
′

1

δ
u
Ak
0 ,u

A
k
′

1

).

Recovery of the fixed effects
Table 10 presents the summary of average bias and MSE of fixed
effects under all conditions when MO = 5, which reveals that
the proposed model achieved good recoveries on the intercept
parameters for Attributes 2 and 3, and slope parameters for
all attributes, indicated by the small MSE values and the bias
values being close to zero. However, the intercept parameter
of Attribute 1 had relatively larger bias than other parameters.
WhenMO = 3, similar patterns were found, which can be found
in the Supplementary Material.

The bias and MSE of intercept parameters were not consistent
across different conditions, so ANOVA tests were conducted
to investigate if the design factors influenced the intercept
parameter recoveries for both MO = 3 and MO = 5
conditions. As shown in Table 11, when MO = 3, the
sample size had small effects on the MSE values of intercept

parameters (η2
A1
γ00

= 0.03, η2
A2
γ00

= 0.04, η2
A3
γ00

= 0.03).
A large sample size was associated with small MSE values.
However, the bias of fixed effects was not influenced by the
design factors.

When MO = 5, ANOVA tests found that the sample size
had small effects on the MSE values of intercept parameters for

Attribute 2 and 3 (η2
A2
γ00

= 0.01, η2
A3
γ00

= 0.01). Similarly,
the bias of intercept parameters was not influenced by the
design factors.

In summary, the intercept parameters of Attributes 2 and 3

and all the slope parameters were recovered well in the current

study, but the intercept parameters of Attribute 1 had a relatively

large bias. ANOVA tests found that the sample size had small

effects on theMSE values of intercept parameters; a larger sample

size resulted in smaller MSE values. However, no design factors

were associated with the bias of intercept parameters.

Recovery of the random effects
Regarding the recovery of variance parameters, the average bias
and MSE values of the variance of intercept and slope for all
attributes were examined, the results reveal that the proposed
model achieved good recoveries in both the intercept and slope
variance parameters in both MO = 3 and MO = 5. The details
of the summary of random variance recoveries could be found in
the Supplementary Material.

Since bias of intercept variance parameters were not consistent
across all conditions, ANOVA tests were conducted to examine
the impact of design factors on them. As shown in Table 12,
when MO = 3, results found that the sample size had medium
effects on the bias of intercept variance parameters (η2δ

u
A1
0

=

0.14; η2δ
u
A2
0

= 0.13; η2δ
u
A3
0

= 0.11); the large sample size had

large bias values.
When MO = 5, similar patterns were found. The variance

of intercept and slope parameters were recovered well. Since
the recoveries of the variance of intercept parameters were
varied by conditions, ANOVA tests were conducted to investigate
the impact of design factors on them. As showed in Table 12,
the sample size had small effects (η2δ

u
A1
0

= 0.02; η2δ
u
A2
0

=

0.02; η2δ
u
A3
0

= 0.02); the larger sample size had larger bias values.

In summary, the proposed model achieved good recoveries on
the variance of intercept and slope parameters. Moreover, a large
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TABLE 10 | Summary of fixed effects recoveries (MO = 5).

γ A1
00 γ A1

01 γ A2
00 γ A2

01 γ A3
00 γ A3

01

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

G1 gam1 N100 −0.11 0.08 . 0.01 0.01 0.04 . 0.01 0.02 0.06 .

N200 −0.13 0.06 −0.01 . 0.02 0.05 . . 0.05 0.05 . .

N300 −0.10 0.04 . . −0.01 0.03 0.01 . 0.03 0.04 −0.01 .

gam2 N100 −0.12 0.08 0.01 0.01 0.01 0.06 . 0.01 0.01 0.05 . 0.01

N200 −0.13 0.06 −0.02 0.01 0.02 0.05 0.01 . 0.05 0.06 0.01 0.01

N300 −0.15 0.06 −0.01 . . 0.04 0.01 . 0.10 0.04 −0.01 .

G2 gam1 N100 −0.14 0.09 −0.01 0.01 −0.01 0.07 . 0.01 0.07 0.08 0.01 0.01

N200 −0.16 0.06 0.01 0.01 0.01 0.04 . . 0.03 0.04 −0.01 0.01

N300 −0.11 0.06 0.01 0.01 −0.02 0.04 0.01 . 0.01 0.03 −0.01 .

gam2 N100 −0.12 0.07 −0.01 0.01 −0.03 0.07 −0.01 0.01 0.04 0.07 0.01 0.01

N200 −0.13 0.07 0.01 . −0.04 0.05 . . 0.06 0.05 . .

N300 −0.11 0.05 . . −0.02 0.03 0.01 . 0.06 0.04 . .

γ k
00 and γ k

01 represents the intercept and slope parameters of attributes; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample

size of 100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same

growth pattern across attributes and unequal growth patterns across attributes, respectively; represents <0.001.

TABLE 11 | ANOVA results of fixed effects parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

Bias MSE Bias MSE

Design factors Df F η
2 p F η

2 P df F η
2 p F η

2 p

γ A1
00

G 1 0.1 . 0.75 0.37 . 0.54 1 0.05 . 0.82 1.05 . 0.31

SZ 2 0.06 . 0.94 14.93 0.03 . 1 2.04 . 0.15 1.11 . 0.29

G×SZ 2 0.42 . 0.66 0.83 . 0.43 1 1.19 . 0.28 0.11 . 0.74

Residuals 1128 0.5 0.5 770 0.5 0.5

γ A2
00

G 1 0.89 . 0.35 2.78 . 0.1 1 2.57 . 0.11 0.37 . 0.55

SZ 2 0.72 . 0.49 22.14 0.04 . 1 1.02 . 0.31 8.58 0.01 .

G × SZ 2 0.05 . 0.95 0.23 . 0.79 1 0.22 . 0.64 0.08 . 0.78

Residuals 1128 0.5 0.5 770 0.5 0.5

γ A3
00

G 1 2.31 . 0.13 0.28 . 0.6 1 1.26 . 0.26 0.42 . 0.52

SZ 2 0.03 . 0.97 15.78 0.03 . 1 0.2 . 0.65 6.65 0.01 0.01

G × SZ 2 1.07 . 0.34 1.46 . 0.23 1 0.38 . 0.54 1.4 . 0.24

Residuals 1128 0.5 0.5 770 0.5 0.5

G represents G matrix design; gamma represents the growth patterns; SZ represents the sample size; · represents <0.001.

sample size was associated with large bias values of the variance
of intercept parameters.

Regarding the recovery of covariance parameters, on
average, the proposed model achieved good recoveries
on the covariance among intercept and slope parameters
for both MO = 5 and MO = 3. However, the
covariance between intercepts had a lightly larger bias
than other sets of parameters. Details of the summary
of covariance parameter recoveries could be found in the
Supplementary Material.

When MO = 3, As shown in Table 13, ANOVA tests found
that the sample size had medium effects (η2 = 0.13) on the bias
of covariance between intercept parameters; a large sample size
was associated with a large bias.

Similar patterns were found when MO = 5, ANOVA tests
showed the sample size had medium effects on the bias values
of covariance between intercept parameters; a larger sample size
was associated with a larger bias value.

On average, the proposed model achieved good recoveries on
the covariance among intercept and slope parameters. The bias
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TABLE 12 | ANOVA results of random variance parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

Bias MSE Bias MSE

Design factors Df F η2 p F η2 p Df F η2 p F η2 p

γ A1
00

G 1 0.10 . 0.75 1.53 . 0.22 1 2.21 . 0.14 . . 0.97

SZ 2 89.68 0.14 . 1.27 0.02 . 1 14.49 0.02 . 2.35 . 0.13

G × SZ 2 2.58 . 0.08 1.12 . 0.33 1 0.01 . 0.94 0.19 . 0.66

Residuals 1128 0.50 0.50 770 0.50 0.50

γ A2
00

G 1 0.08 . 0.78 2.79 . 0.10 1 . . 0.97 0.54 . 0.46

SZ 2 84.06 0.13 . 11.79 0.02 . 1 13.35 0.02 . 4.22 0.01 0.04

G × SZ 2 1.78 . 0.17 2.19 . 0.11 1 0.01 . 0.92 1.48 . 0.22

Residuals 1128 0.50 0.50 770 0.50 0.50

γ A3
00

G 1 0.14 . 0.71 3.54 . 0.06 1 0.64 . 0.43 . . 1.

SZ 2 72.67 0.11 . 7.26 0.01 . 1 14.08 0.02 . 6.48 0.01 0.01

G × SZ 2 3.01 0.01 0.05 2.37 . 0.09 1 0.08 . 0.77 0.59 . 0.44

Residuals 1128 0.50 0.50 770 0.50 0.50

G represents G matrix design; gamma represents the growth patterns; SZ represents the sample size; · represents <0.001.

TABLE 13 | ANOVA results of random covariance parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

Bias MSE Bias MSE

Design factors Df F η
2 p F η

2 p df F η
2 p F η

2 p

δ
u
Ak
0 ,u

A
k
′

0

G 1 0.16 . 0.69 3.2 . 0.07 1 0.82 . 0.37 0.1 . 0.75

SZ 2 81.22 0.13 . 6.96 0.01 . 1 5.32 0.01 0.02 5.81 0.01 0.02

G × SZ 2 2.87 0.01 0.06 2.04 . 0.13 1 0.25 . 0.62 0.7 . 0.4

Residuals 1128 0.5 0.5 770 0.5 0.5

G represents G matrix design; gamma represents the growth patterns; SZ represents the sample size; · represents <0.001.

of covariance among intercept parameters was influenced by the
sample size; the larger sample size resulted in larger bias values.

DISCUSSION

Performance of the Multivariate
Longitudinal DCM
Model Convergence
Overall, the proposed model achieved satisfactory convergence
rates; however, the proposed achieved a slightly higher
convergence rates when MO = 5 than MO = 3, which was
reasonable since more measurement occasions would provide
more information to help the estimation and the model be
converged. Also, as shown in the Supplementary Material, the
conditions with five measurement occasions had more chains
and a longer chain length for each chain than the conditions
with three measurement occasions, which might have led to an

improvement in the convergence rates. Therefore, the number
of chains and the chain length might be not sufficient for the
conditions with three measurement occasions.

Classification Accuracy
The bias of the estimated probability of attribute mastery, the
correct classification rates for each mastery status, and Cohen’s
kappa was used to evaluate the classification accuracy of the
proposed model.

The probability of attribute mastery was recovered well in
the current study consistently across all measurement occasions,
which indicated that the proposed model could provide accurate
estimates of probabilities of attribute mastery.

Regarding correct classification rates, results found different
patterns for individuals who truly mastered the attributes
and individuals who truly did not master the attributes. For
the individuals who truly mastered the attributes, the correct
classification rates improved significantly as the number of
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measurement occasions increased. However, for individuals who
truly did not master the attributes, the correct classification
rates decreased slightly as the number of measurement occasions
increased. This pattern might be due to that we adopted the
cut point of 0.5 to classify the individuals. Since the estimated
probabilities of attribute mastery for most of the individuals
were lower than 0.5 on the first two measurement occasions,
individuals would be classified into the non-mastery status, even
some of them truly mastered the attributes by design. As a
result, the correct classification rates were low for individuals
who truly mastered the attributes on the first two measurement
occasions. As the number of measurement occasions increased,
the estimated probability of mastery increased, such that correct
classification rates increased. Due to the same reason, Cohen’s
kappa increased as the number of measurement occasions
increased. Therefore, the cutpoint had influenced the correct
classification rates and kappa values of the current model.

Parameter Recoveries
The bias and mean square error (MSE) of the estimated
parameters were computed to assess the parameter recovery in
each condition through the simulation.

Measurement model parameter recoveries
Regarding the item parameter recoveries, conditions with three
and five measurement occasions illustrated similar patterns.
The proposed model achieved good parameter recoveries in
intercept and main effect parameters, but poor interaction effect
parameter recoveries. However, the recoveries of the interaction
effect parameters were improved as the sample size and the
number of measurement occasions increased. In addition, results
from the ANOVA tests found the sample size had large impact
on the interaction effects recoveries. Nonetheless, this result
was expected. Previous research showed that the intercept
and main effect parameters were easier to recover than the
two-way interaction effect parameters. The recoveries of the
interaction effect parameters were problematic when the sample
size was <1,000 (e.g., Choi et al., 2010; Kunina-Habenicht
et al., 2012). Therefore, these results suggested that a large
sample size was necessary to achieve good item parameter
recoveries in the LCDM framework, especially for the interaction
effect parameters. The maximum sample size (n = 300) in
the current study was not sufficient for obtaining accurate
interaction effect parameters, especially for the conditions with
three measurement occasions.

Structural model parameter recoveries
Both the recoveries of fixed effects and random effects in the
generalized growth curve model were evaluated.

Regarding the recoveries of the fixed effects, overall, the
proposedmodel achieved good intercept recoveries for Attributes
2 and 3, and slope recoveries for all attributes, but relatively poor
recoveries for Attribute 1 intercept. Attribute 1 had relatively
small intercept value by design (γ A1

00 = −1.38), therefore, the
small intercept value might have led to enlarge the bias. To
avoid the influence of the small value of the intercept parameter,
the time variable could be centered at the medial measurement

occasions (T = 2 when MO = 3, or T = 3 when MO = 5),
such that there would be sufficient information to estimate the
intercept parameters.

Regarding the recoveries of the random effects, on average,
the proposed model achieved good recoveries on the random
effects, including the variance of intercept and slope parameters
of each attribute as well as the covariance among intercept
and slope parameters within and crossed attributes. To improve
the model convergence, the current study adopted the true
variance-covariance matrix in the population as the prior of the
estimated variance-covariance matrix, which might have led to
good recoveries of the random effects.

Conclusion and Recommendations
The current study developed a multivariate longitudinal DCM
that could measure growth in attributes over time, and it
evaluated this proposed model using a simulation study. The
results revealed the following: (1) In general, the proposed model
provided good convergence rates under different conditions.
(2) Regarding the classification accuracy, the proposed model
achieved good recoveries on the probabilities of attribute
mastery. For individuals who truly mastered the attributes,
the correct classification rates increased as the measurement
occasions increased; however, for individuals who truly did not
master the attributes, the correct classification rates decreased
slightly as the numbers of measurement occasions increased.
Cohen’s kappa increased as the number of measurement
occasions increased. (3) Both the intercept and main effect
parameters in the LCDM were recovered well. The interaction
effect parameters had a relatively large bias under the condition
with a small sample size and fewer measurement occasions;
however, the recoveries were improved as the sample size and
the number of measurement occasions increased. (4) Overall, the
proposed model achieved acceptable recoveries on both the fixed
and random effects in the generalized growth curve model.

In summary, a large sample size is recommended for applying
the proposed model to the real data. When the sample size
is small, the scale with a simple structure of the Q matrix
is recommended, because the interaction effects in the LCDM
might not be estimated accurately with the small sample size.
Also, applied researchers are suggested to center the time variable
at the medial measurement occasion to improve the recovery
of the intercept parameter in the generalized growth curve
model. Additionally, when doing the MCMC analysis, multiple
chains with the longer chain length are recommended to achieve
satisfied model convergence rates.

Therefore, when practitioners try to measure students’
growth in the DCM framework using the proposed model,
they should use a larger sample size, an assessment with less
complex Q-matrix design, and multiple chains with longer chain
length to maximize the convergence rates and the accuracy of
parameter estimates.

Contributions and Limitations
In the current study, a multivariate longitudinal DCM was
developed to analyze longitudinal data under the DCM
framework. It represents an improvement in the current
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longitudinal DCMs given its ability to incorporate both balanced
and unbalanced data and to measure the growth of a single
attribute directly without assuming that attributes grow in the
same pattern. The current study had several limitations. First,
the true variance-covariance matrix was used as the prior
for the random effects parameters in the generalized growth
curve model in the current study; however, the true variance-
covariance matrix is unknown when fitting the model to the real
data. Therefore, future studies could adopt a non-informative
variance-covariance matrix as the prior, then evaluate if the
proposed model could achieve satisfying recoveries on the
random effects as well. Second, local item dependency was not
incorporated in the current study. However, in real longitudinal
data, repeated measures always have some degree of local item
dependence (e.g., Cai, 2010). Therefore, future research could
simulate local item dependence with the common items to
mimic real data. Third, only three or five measurement occasions
were included in the current model. The small number of
measurement occasions might have limited the reliability and
accuracy of the estimation of the growth curve model (e.g.,
Finch, 2017). In the future, more measurement occasions could
be included to examine the performance of the proposed model
comprehensively. Fourth, the definition of the time variable in
longitudinal studies is very crucial. In the current study, we
follow a conventional way to use the length of time between
adjacent measurement occasions as the time variable. However,
in reality, students likely have spent different lengths of time
learning different attributes. So, in the future, we suggest using
the number of hours spent on learning an attribute as the time
variable if the data is available. In addition, we applied the cut-
score to the average of the post burn-in probability of master to
obtain a binary master status of one iteration on each condition,
meaning that we cannot obtain a posterior distribution of
the mastery status. So, we suggest future researchers applying

the cut-score within MCMC analysis to obtain a posterior
distribution of mastery status, which should provide a more
accurate estimated mastery status. Last but not least, due to the
limited data resources, we did not find a real dataset to evaluate
the proposed model. We plan to add a real data application
if some longitudinal diagnose assessment data is available in
the future.
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As one of the most influential international large-scale educational assessments, the
Program for International Student Assessment (PISA) provides a valuable platform for
the horizontal comparisons and references of international education. The cognitive
diagnostic model, a newly generated evaluation theory, can integrate measurement
goals into the cognitive process model through cognitive analysis, which provides a
better understanding of the mastery of students of fine-grained knowledge points. On
the basis of the mathematical measurement framework of PISA 2012, 11 attributes have
been formed from three dimensions in this study. Twelve test items with item responses
from 24,512 students from 10 countries participated in answering were selected, and
the analyses were divided into several steps. First, the relationships between the 11
attributes and the 12 test items were classified to form a Q matrix. Second, the cognitive
model of the PISA mathematics test was established. The liner logistic model (LLM)
with better model fit was selected as the parameter evaluation model through model
comparisons. By analyzing the knowledge states of these countries and the prerequisite
relations among the attributes, this study explored the different learning trajectories of
students in the content field. The result showed that students from Australia, Canada,
the United Kingdom, and Russia shared similar main learning trajectories, while Finland
and Japan were consistent with their main learning trajectories. The primary learning
trajectories of the United States and China were the same. Furthermore, the learning
trajectory for Singapore was the most complicated, as it showed a diverse learning
process, whereas the trajectory in the United States and Saudi Arabia was relatively
simple. This study concluded the differences of the mastery of students of the 11
cognitive attributes from the three dimensions of content, process, and context across
the 10 countries, which provided a reference for further understanding of the PISA test
results in other countries and shed some evidence for a deeper understanding of the
strengths and weaknesses of mathematics education in various countries.

Keywords: PISA, cognitive diagnosis, educational evaluation, international comparison, mathematics education
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INTRODUCTION

Initiated by the Organization for Economic Cooperation and
Development (OECD) in 1997, the Program for International
Student Assessment (PISA) is held every 3 years to assess the
fundamental knowledge and critical competencies needed for
students approximately 15 years old to participate in society.
PISA emphasizes the abilities of students in reasoning from
school knowledge and the application of the knowledge to
environments outside school (OECD, 2019a). As one of the most
influential educational assessment programs globally, PISA has
had a large impact on educational practice and reform in many
countries by increasing the scopes of tests and strengthening the
interpretation of results, thus influencing the decision-making
processes for the improvement of national education policies
(Breakspear, 2012; OECD, 2013b). For example, the results
from PISA 2000 have given rise to a national “PISA shock”
in Germany, which has led to massive and rapid educational
reforms (Ertl, 2006). Similar educational impacts have also
happened in Japan (Takayama, 2008), Denmark (Egelund,
2008), Finland (Dobbins and Martens, 2012), and a number
of other European countries (Grek, 2009). The United States,
Russia, Japan, and other countries have successively formulated
a series of education policies and regulations, forming education
quality standards to strengthen the monitoring of the quality
of education in the stage of compulsory education. Borrowing
from the assessment method of PISA, Singapore has changed
the national education assessment model and indicated a new
direction for the reform of the national education assessment
(Stacey et al., 2015). Mathematics, as one of the core tests
in PISA, has also been extensively studied; for instance,
educational equity issues have been studied through assessing
the opportunities of learning for students (Duru-Bellat and
Suchaut, 2005; Luyten, 2017; Hansen and Strietholt, 2018), the
gender differences in PISA performance (Steinthorsdottir and
Sriraman, 2008; Kyriakides et al., 2014), PISA performance
differences in age (Sprietsma, 2010), the relationship between
PISA performance and social achievement (Knowles and Evans,
2012), the influence of language on PISA performance (El
Masri et al., 2016), the heterogeneity of PISA performance
(Wößmann, 2005), etc. However, these studies have focused on
either the factors that affect PISA achievements or the impact
of PISA achievements on society and education. Few studies
have analyzed PISA items, possibly because the PISA items are
rarely open to the public. The analyses of the characteristics
of mathematics education in different countries through PISA
items are of indispensable significance to promote the reform
and advancement in mathematics education. To improve
the development, mathematics educators, mathematicians,
measurement experts, and educational statisticians have been
advised to collaborate in research projects to recognize the
potential values of concept discussions and secondary analyses
that are directly applicable to the existing school systems
(Ferrini-Mundy and Schmidt, 2005).

PISA uses item response theory (IRT) in its scaling to
overcome the limitations of scoring methods based on number
correct or percentage correct. To report the population mean

of each subscale, plausible values have been drawn from a
posteriori distribution by combining the IRT scaling of the
test items with a latent regression model using information
from the student context questionnaire in a population model
(OECD, 2015). Such design is ideal for obtaining accurate
rankings for each participating country. However, providing
the diagnostic information on the mastery or non-mastery
of the examinees of each skill being measured may not be
efficient. Under this context, cognitive diagnostic models (CDMs)
have risen as advanced psychometric models to support the
next-generation assessments aimed at providing fine-grained
feedback for students and teachers in the past few decades
(Leighton and Gierl, 2007; Templin and Bradshaw, 2014;
Chang et al., in press). Researchers have called for additional
measurement approaches for reporting and interpreting PISA
results (Rutkowski and Rutkowski, 2016). Combining modern
statistical methods with cognitive theories, CDMs have been
widely utilized in educational and psychological assessment. One
of the advantages of using CDMs is their ability to identify
the strengths and weaknesses in a set of fine-grained skills (or
attributes) when difficulty exists in inferring skill mastery profiles
of examinees through traditional methods, such as classical test
theory (CTT) and IRT (Choi et al., 2015). Therefore, CDMs
have been developed to provide fine-grained information for
researchers and educators on the cognitive skills or attributes
that are required to solve a particular item, allow applications
in various instructional practices, and resolve the limitations
that exist in the IRT and CTT models (De La Torre, 2009).
By integrating the test objectives into the cognitive process
model, CDMs have gained increased attention among the
educational and psychological assessments recently (Stout, 2002;
Tatsuoka, 2002; Chen and Chen, 2016). Moreover, they can
reflect the psychological and cognitive characteristics of the
subjects (Templin and Henson, 2010). In the field of mathematics
education, diverse cognitive models of mathematics learning
and teaching have been developed (Carpenter and Moser, 1982;
Greeno, 1991; Rumelhart, 1991; Schneider and Graham, 1992;
Zhan et al., 2018) and validated by empirical evidence. It lays
a foundation for CDMs that provide the measurement and
diagnoses in mathematics educational issues.

The objective of the research is to employ a CDM as an
analytic tool to analyze the data set consisting of 10 countries,
including China, the United States, Russia, the United Kingdom,
Japan, Finland, Singapore, and Australia on the basis of the
PISA test contents. The research finding will be based on
the mastery levels for the 11 attributes from three aspects,
content, process, and context. Through exploring the knowledge
states and learning trajectories of the 11 attributes, the study
provides new information about mathematics education in the
10 countries regarding the strengths and weaknesses of each the
11 attributes in the study.

COGNITIVE MODEL CONSTRUCTION

Given that PISA tests the fundamental knowledge and key
competence necessary for students to participate in the future,
the test items are all carried out in specific realistic situations. As

Frontiers in Psychology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 2230129

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02230 September 7, 2020 Time: 18:48 # 3

Wu et al. PISA Cognitive Diagnostic Analysis

far as the mathematics test items are concerned, students need to
apply the mathematical knowledge and skills they have learned
to solve a practical problem comprehensively. It has a detailed
description of the test items. Therefore, an in-depth cognitive
diagnostic analysis of the measurement results can be performed
according to the existing coding.

Cognitive Attributes
Attributes play fundamental core roles in cognitive diagnosis
measurement. The quality of attributes is directly related to
the effectiveness of the cognitive diagnostic evaluation. To
some extent, the essence of a cognitive diagnosis is the
diagnosis of cognitive attributes. No uniform definition has
been given regarding the cognitive attributes in the field of
measurement. Attributes are productive rules, project types,
program operations, general cognitive tasks (Tatsuoka, 1987), or
posited knowledge and thinking skills (Tatsuoka et al., 2004); a
description of the procedures, skills, processes, strategies, and
knowledge a student must possess to solve a test item (Dogan and
Tatsuoka, 2008); or the processing skills and knowledge structure
required to complete a certain task (Leighton and Gierl, 2007).
The attributes may be of a different nature; they may also be the
knowledge, strategies, skills, processes, and methods necessary
to complete the task, which is a description of the internal
processing of the psychology of students in problem-solving (Cai
et al., 2018). Conclusively, the cognitive attribute can be taken
as a way of classification to understand the knowledge states of
students more precisely on the basis of a certain standard (Wu
et al., 2020). According to the definitions of cognitive attributes
and the test items provided by the PISA assessment framework,
each test item in PISA is defined from three aspects (dimensions),
namely, the main subject area involved in the test question, the
main mathematical process of problem-solving, and the contexts
the test questions are based on (OECD, 2019b). Therefore, the
cognitive attributes of PISA test questions can be constructed
according to the definition of these three dimensions. We define
the term attribute as a mathematical skill or content knowledge
that is required to solve a test item. The dimensions, attributes in
each dimension, and the corresponding definitions are shown in
Table 1.

In Table 1, the four attributes in the content dimension
include almost all the mathematics content in the stage of
compulsory education. This division is relatively clear in
maintaining a consistent granularity in the various parts. The
three attributes of the mathematical process are the same
as the reality, mathematization, and recreation described by
the famous mathematician Freudenthal (2012). Mathematical
operation is the process of recreation in the field of mathematics,
and it is an important method in searching for the essential
relationship through a superficial phenomenon. The context
attributes include each field that students can encounter in the
future, and it is an important carrier for training students to see
the world with the “eyes” of mathematics.

Q-Matrix
Many test items have been included in PISA so far. However, in
terms of mathematical tests, only test items publicized in 2012

are available, and no items can be obtained from other years.
Even though PISA 2012 has many items, there are only 12 of
them jointly tested by the students in the 10 countries we studied.
Therefore, this study has selected 12 test items in PISA 2012 for
cognitive diagnostic analysis. In PISA, each mathematics item is
intended to target all three attributes in one dimension, which
can be considered as a latent construct or dimension (OECD,
2014a). The Q-matrix in the cognitive diagnostic assessment we
have constructed is a matrix used to connect test items and
cognitive attributes, in which 1 represents the corresponding
attribute that is considered in the test item, and 0 is the opposite.
The Q-matrix has built a bridge between the observable responses
of students and their unobservable cognitive states (Tu et al.,
2019). According to the mark of the test item in the PISA 2012
manual, the Q-matrix is obtained, as shown in Table 2.

MODEL SELECTION AND INSTRUMENT
ANALYSIS

Participants
In this study, the 12 items in PISA 2012 were selected, and the
students who completed these 12 items all at the same time were
selected as the research objects across the globe. The participants
were from the United Kingdom (GBR, 3,811), Finland (FIN,
2,661), and Russia (RUS, 1,666) in Europe; China (CHI, 1,763,
including the data selected from Hong Kong, Macau, Shanghai,
and other places), Japan (JPN, 1,904) and Singapore (SGP, 1,667)
in Asia; the United States (USA, 1,630) and Canada (CAN,
6368) in North America; Australia (AUS, 4,342) in Oceania, and
Saudi Arabia in Africa (ALB, 1,402). Given that Brazil, Chile,
Colombia, Argentina, and other countries that participated in the
PISA 2012 math test in South America did not participate in these
12 tests, no comparable data from South America were available,
and no data from Antarctica could be obtained either. The
maximum representativeness of the data selection was reached.

Model Selection
Researchers have developed hundreds of measurement models
since the cognitive diagnostic assessment theory was proposed.
Measurement models are based on different hypotheses,
parameters, mathematical principles, and actual situations.
Therefore, the comparison and selection of models have played
a vital role in the cognitive diagnosis and evaluation process.
A large number of cognitive diagnosis practices have shown
that choosing an appropriate cognitive diagnostic model is an
important prerequisite for an accurate diagnosis or classification
of subjects (Tatsuoka, 1984). To obtain a model with a better
fit, this study evaluates the parameters of eight models, namely,
DINA (Haertel, 1989; Junker and Sijtsma, 2001; De La Torre,
2009), DINO (Templin and Henson, 2006, 2010), RRUM (Hartz,
2002), ACDM (De La Torre, 2011), LCDM (Henson et al., 2009),
LLM (Hagenaars, 1990, 1993; Maris, 1999), G-DINA (De La
Torre, 2011), and Mixtures Model (von Davier, 2010). Using the
LLM and GDINA packages (version 2.8.0) in software R, 2, 451
datasets for model comparisons are selected from 10 countries
through the stratified sampling at a ratio of 10:1 in each country.

Frontiers in Psychology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 2230130

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02230 September 7, 2020 Time: 18:48 # 4

Wu et al. PISA Cognitive Diagnostic Analysis

TABLE 1 | Dimensions of PISA’s cognitive attributes.

Dimension No. Attribute Definition

Content N1 Change and relationships Use mathematical language such as algebraic expressions, equations, functions, inequalities to
describe the relationship between quantity and graphic

N2 Space and shape Mainly involves the relationship between planes, points, lines, and planes in space, and the virtual
rotation of graphics, etc.

N3 Quantity Quantity integrates the quantification of the attributes of objects, relationships, situations, and
entities in the world, understands the various manifestations of these quantifications, and judges,
interprets, and demonstrates the quantity

N4 Uncertainly and data Perception of change, probability and opportunity, representation, evaluation, interpretation of
uncertainty-centric data

Process P1 Mathematization Use mathematical language to describe and explain problems in real life, and convert relevant
information into mathematical quantities

P2 Mathematical operation Use mathematical concepts, facts, procedures, and reasoning to identify, calculate, reason, and
analyze problems

P3 Mathematical reality Ability to apply the results of mathematical solutions to real problems and make assessments and
inferences on the results

Contexts C1 Personal The project’s involvement is based on personal scenarios, mainly focused on the activities of
individuals, families or peers

C2 Occupational Involving various fields of future work, career scenarios may be related to any level of the workforce,
from unskilled jobs to high-level occupational jobs

C3 Societal Social issues are concentrated in one’s community, the focus of the problem is the community
perspective

C4 Scientific Problems in the scientific category involve the application of mathematics in nature, as well as
problems and topics related to science and technology

TABLE 2 | Q-matrix of 12 test items in PISA.

Items Attributes

N1 N2 N3 N4 P1 P2 P3 C1 C2 C3 C4

PM00QF01 0 0 1 0 0 0 1 1 0 0 0

PM903Q03 1 0 0 0 0 1 0 0 1 0 0

PM918Q01 0 0 0 1 0 0 1 0 0 1 0

PM918Q02 0 0 0 1 0 0 1 0 0 1 0

PM918Q05 0 0 0 1 0 1 0 0 0 1 0

PM923Q01 0 0 1 0 0 1 0 0 0 0 1

PM923Q03 0 1 0 0 0 1 0 0 0 0 1

PM923Q04 1 0 0 0 1 0 0 0 0 0 1

PM924Q02 0 0 1 0 1 0 0 1 0 0 0

PM995Q01 0 1 0 0 0 1 0 0 0 0 1

PM995Q02 0 1 0 0 1 0 0 0 0 0 1

PM995Q03 0 0 1 0 1 0 0 0 0 0 1

The comparison results on parameter statistics, such as deviation,
Akaike’s information criterion (AIC), and Bayesian information
criterion (BIC) are shown in Table 3 below.

In Table 3, the number of parameters represents the load in the
operation of the model, which is closely related to the complexity
of the Q-matrix and its attributes. The smaller the number, the
smaller the load in the model comparisons. Deviation represents
how much an indicator deviates from reality in the model. The
smaller the deviation, the greater the degree to which the model
fits. In the model comparisons, the AIC and the BIC are mainly
used as the reference standards. The AIC is for measuring the
goodness of statistical model fit, which is based on the concept of
entropy and provides a standard that weighs the complexity of the
estimated model and the goodness of the fitted data. The smaller

the AIC is, the better the data fits the model. Similarly, the smaller
the BIC is, the better the data fits the model (Vrieze, 2012). The
results in Table 3 show that the values for Deviation, BIC and
AIC of the LLM are the smallest. Therefore, the LLM has a better
fit than those in the other models and was preliminarily selected.

Effectiveness Analysis of the Instrument
Reliability
The reliability of the cognitive diagnostic evaluation can be
examined from two aspects. One is to treat the test as a
common test, and Cronbach’s (α) coefficient is calculated under
classic evaluation theory (CTT). The other is to calculate
the consistency of the retest of attributes. In our study, we
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TABLE 3 | Parameter statistics comparison of different models.

Models Number of parameters Deviation AIC BIC

DINA 2071 29550.05 33692.05 45712.66

DINO 2071 29550.46 33692.45 45713.05

RRUM 2095 28758.58 32948.32 45108.22

ACDM 2095 28791.63 32981.18 45141.09

LCDM 2143 28484.78 32770.78 45209.29

LLM 2095 28229.28 32419.22 44579.13

G-DINA 2143 28498.63 32784.62 45223.13

Mixed Model 2097 28498.02 32691.94 44863.65

∗Red rectangular box means the smallest index.

followed Templin and Bradshaw (2013) to estimate the test-
retest reliability for our test by simulating repeated testing
occasions through repeated draws from an examinee’s posterior
distribution. A three-step process is usually used for binary
attributes, relying upon the correlation of the mastery statuses
between two hypothetical independent administrations of the
same test. α = 0.7687 > 0.7, which is an indication of
high reliability under CTT theory. The above index of 11
attributes are 0.8941, 0.8372, 0.9124, 0.8541, 0.8193, 0.8512,
0.8135, 0.7942, 0.8135, 0.9721, and 0.9014 accordingly. Data
indicators are obtained through the flexCDMs analysis platform
(Tu, 2019). The reliability indexes of these attributes are
all greater than 0.7. Therefore, they have a high degree of
reliability in general.

Item Discrimination
Cognitive diagnostic assessment measures the accuracy of
cognitive attribute analysis and the quality of test items through
item discrimination (Wang et al., 2018). The discrimination
degree of the cognitive diagnostic test dj is defined as

dj = Pj (1)− Pj(0),

where Pj (1) refers to the probability of mastering all attributes
of item j when answering the question. Pj(0) refers to the
probability of answering the question correctly without mastering
all the attributes of item j. The smaller dj is, the smaller
the impact of mastering attributes on the answer is, and the
smaller the difference is. In contrast, the difference is greater.
A large degree of discrimination is a sign of high-quality test
questions. The item discrimination dj of the 12 items in this
study are in turn equal to 0.902, 0.8497, 0.6901, 0.3174, 0.5758,
0.7457, 0.7716, 0.5213, 0.5912, 0.8078, 0.6142, and 0.5721. All
the item discriminations are acceptable except for the fourth
item, which is 0.3174. The item discrimination for items 1,
2, 6, 7, and 10 are all greater than 0.7, which has a good
discrimination effect.

RESEARCH ANALYSIS AND RESULTS

According to the results of the above model selection, the LLM
had the best model fit. Therefore, the LLM was used to evaluate
the parameters of the research data. The Bayesian expected a

posteriori estimation (EAP) was used in the process. The Bayesian
method attempts to calculate the posterior mean or median
rather than a certain extreme value—the mode, the characteristic
of which was to use posterior distribution to summarize the data
and determine the inference. The posterior estimation is expected
to be simple, efficient, and stable, and it is a better choice in the
capacity parameter estimation method (Chen and Choi, 2009).
The distribution of these 11 attributes from the 24,512 students
were assessed initially. Then, the distribution of the attribute
in each country was measured. The results for the proportional
distribution of the 11 attributes in the 10 countries are in Table 4.

The following discussions are the analyses of the proportional
and knowledge states of attribute mastery through the three
dimensions of content, process, and context. The proportional
distribution of attribute mastery can reflect the differences
of attributes in all the countries. Knowledge states can help
understand the mastery mode of the attributes of students
in different countries and further speculate on the learning
trajectories of students.

Comparative Analysis of Attribute
Mastery Probability
Content Attribute
The PISA math test involves four content aspects, namely,
change and relationships, space and shape, quantity, data and
uncertainty, each of which accounts for one quarter of the
test (OECD, 2013a). These four overarching ideas ensure the
assessment of a sufficient variety and depth of mathematical
content and demonstrate how phenomenological categories
relate to more traditional strands of mathematical content
(OECD, 2010). Almost all content in the junior high school
learning has been covered. The probability of mastery of the 10
countries [Saudi Arabia in Africa (ALB), Australia (AUS), Canada
(CAN), China (CHI), Finland (FIN), the United Kingdom (GBR),
Japan (JPN), Russia (RUS), Singapore (SGP), the United States
(USA)] of the four attributes is shown in Figure 1.

As can be seen from the distribution in Figure 1, China
performed best in the three attributes of N1 (change and
relationships), N2 (space and shape), and N3 (quantity), and
it scored much higher than other countries. In the N4 (data
and uncertainty) attribute, Japan performed best, and China was
second only to Japan. In contrast, Chinese students still had
much room for improvement in the study of N4 (data and
uncertainty). Moreover, students from China, Singapore, Japan,
Finland, and other countries had advantages in grasping each
content attribute compared with those in other countries, such
as the United States and Saudi Arabia, who showed evident
weakness in the content attribute. The result was also consistent
with the overall ranking of PISA (OECD, 2014b). In terms of
the distribution of the four attributes, all countries performed
better in the N4 (data and uncertainty) attribute than in the other
three attributes. The United Kingdom, Finland, Saudi Arabia,
and Australia had a low level of mastery of the N1 (change and
relationships) attribute, less than 30%, and the probability of
mastery was less than half of that of China, Singapore, and other
countries. The United States performed relatively poorly on the
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TABLE 4 | Proportional distribution of 11 attributes in 10 countries.

Country Content attribute Process attribute Context attribute

N1 N2 N3 N4 P1 P2 P3 C1 C2 C3 C4

Saudi Arabia 0.246 0.258 0.237 0.388 0.233 0.259 0.248 0.223 0.183 0.381 0.238
Australia 0.273 0.427 0.466 0.699 0.436 0.445 0.526 0.460 0.244 0.701 0.445
Canada 0.411 0.467 0.523 0.742 0.491 0.500 0.578 0.509 0.330 0.741 0.488
China 0.740 0.743 0.749 0.882 0.744 0.753 0.771 0.754 0.693 0.796 0.737
Finland 0.262 0.492 0.586 0.759 0.521 0.554 0.599 0.535 0.204 0.754 0.527
United Kingdom 0.251 0.441 0.491 0.690 0.451 0.450 0.558 0.486 0.215 0.688 0.453
Japan 0.456 0.556 0.568 0.886 0.538 0.558 0.636 0.585 0.431 0.897 0.504
Russia 0.442 0.451 0.441 0.633 0.442 0.454 0.546 0.479 0.366 0.637 0.430
Singapore 0.635 0.651 0.642 0.791 0.635 0.633 0.661 0.651 0.613 0.721 0.636
United States 0.396 0.372 0.425 0.684 0.396 0.407 0.522 0.416 0.297 0.695 0.392

N2 and N3 attributes, especially in the N2 attribute, which was
less than half of that of China. On the basis of the above line
graph, the differences in content dimensions of the countries can
be drawn, which can provide a reference for the countries to
formulate curriculum and learning plans. However, change and
relationship, as “one of the most fundamental disciplinary aims
of the teaching of mathematics may overlap with other content
areas in mathematics as it involves ‘functional thinking”’ (OECD,
2013a). Across the globe, algebra and measurement questions
were significantly more difficult than number, geometry, and
data (OECD, 2010). The students from the United States were
strong in some content and quantitative reading skills but weak
in others, particularly in geometry (Tatsuoka et al., 2004).

Process Attribute
The attributes of mathematical processes involved in the PISA
math test consist of three aspects, which are the formation
of mathematical scenarios; the concepts, facts, processes, and
reasoning of applied mathematics; and the interpretation,
application, and evaluation of mathematical results, which
account for 25, 50, and 25% (OECD, 2013a), respectively. For
interpretation convenience, these three processes are abbreviated
as mathematization (P1), mathematical operation (P2), and
realization (P3). The probability distribution map of the process
attributes in 10 countries are shown in Figure 2.

According to Figure 2, the performance of each country
in the attribute P3 (realization) was better than others in the
process attributes, and no big difference was observed in the
performance of P1 (mathematization) and P2 (mathematical
operation). China, Japan, and Singapore had a better grasp of
the process attributes and a relatively balanced performance. It
showed that the students in these countries have reached a very
good level in mastering the process attributes. The United States
and Saudi Arabia had low performance in the mathematical
process, and the development was uneven, especially in the
mathematization (P1) attribute. Their performance was much
lower, only reaching approximately 25% and approximately one-
third of that of China. Meanwhile, the mastery of process
attributes in other countries was over 40%. Therefore, a
considerable number of students had mastered the process
attributes. Overall, students were better in the mastery of the
process attributes than the content attributes.

FIGURE 1 | Probability distribution map of content attributes in 10 countries.

FIGURE 2 | Probability distribution map of process attributes in 10 countries.

Context Attribute
The context questionnaires in the PISA math test involved four
parts, namely, the personal (C1), occupational (C2), societal (C3),
and scientific contexts (C4). These contexts were necessary for the
future student life, and each context accounted for a quarter of the
test questions. The context attributes of probability distribution
map in 10 countries is shown in Figure 3.

As can be seen from Figure 3, China performed the best in the
personal (C1), occupational (C2), scientific contexts (C3) except
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FIGURE 3 | Probability distribution map of 10 countries’ context attributes.

for the societal contexts (C3) while Japan performed the best in
the societal contexts (C3). Singapore had a relatively balanced
and good performance for all the four contexts. Additionally, the
United Kingdom, the United States, Russia, and Australia had
similar performance in the context attribute, and Saudi Arabia
performed relatively lower in all the dimensions. In general,
the performance of the societal attribute was superior to the
other context attributes and the occupational attribute (C2) was
worse than the other three attributes. The differences among
the personal context and societal context attributes were not
large, which reached a relatively certain and balanced level. The
occupational attribute (C2) for Saudi Arabic, Finland and the
United Kingdom showed an obvious lower performance than the
other countries, which accounted for only 20% approximately.
At the same time, the probability of mastering the attribute C3
(social situation) was significantly higher than that of the other
three attributes.

Comparative Analysis of Knowledge
States
Content Attribute
Knowledge states (KS) refer to a set of arrays consisting of 0
or 1. It represents the mastery of the subject of a certain field
of knowledge, skills, etc., where 1 indicates that the subject has
mastered the corresponding attributes, and 0 indicates that the
subject has not mastered the corresponding attributes (Tatsuoka,
2009). For example, (1111) indicates that the subject has mastered
all the attributes, and (0010) indicates that the subject has
mastered only the third attribute but not the other three. In
this study, through the classification analysis of the attributes of
each student, the top five knowledge states of content attributes
in the 10 countries were counted, and the proportions of the
corresponding knowledge states were calculated.

Table 5 shows that seven countries ranked first (1111) in
the knowledge states except for Saudi Arabia, Australia, and
the United Kingdom, indicating that a large percentage of
students had mastered all content attributes. The proportion of
knowledge states (0000) in which no attribute was being mastered
was also relatively high. Except for China, all the countries

ranked in the top two in this attribute, which indicated that
a large number of students in most countries did not have
any attributes. The knowledge states (0000) in China ranked
third, and the proportion only accounted for approximately
10%. The data from almost all the countries supported that the
attribute N4 (data and uncertainty) was a prerequisite for the
other attributes in the statistical process of knowledge states. The
data from Russia further showed that N3 was the premise of
N2, and N2 was the premise of N1. Clearly, a linear learning
trajectory of N4→ N3→ N2→ N1 was present. The data for
Singapore did not show a clear learning trajectory. The so-called
learning trajectories were the hierarchical structure of knowledge
states, which characterized the relationship among knowledge
states with partial order relationships (Duschl et al., 2011). The
structure provided a cognitive sequence for learning the content
and supported the effective organization of lesson plans and
teaching arrangements. A detailed analysis is provided in 4.4.

Process Attribute
Table 6 summarized the knowledge states and the corresponding
proportion of the top five process attributes in the 10 countries.
Except for the United States, Russia, Australia and Saudi Arabia,
the knowledge states of the countries (111) ranked first, that is,
most students had mastered all process attributes. Similar to the
content attribute, the knowledge states (000) were ranked at the
top two in all the countries, which showed that some students
had not mastered any of the process attributes. Notably, the
knowledge states that ranked third in all the countries was (001),
which showed that the P3 attribute was particularly important
in the learning process. Moreover, this attribute became a
prerequisite for learning other process attributes. It was also
found that almost all data supported a linear learning trajectory
such as P3→ P2→ P1.

Context Attribute
Table 7 shows the knowledge states of the top five in the
context attributes for the 10 countries. China, Canada, Japan and
Singapore ranked the first in the knowledge state (1111), which
indicated that a considerable number of students had mastered all
the attributes in the contexts. The knowledge states (0000) were
ranked at the top two in all the countries, which showed that
some students had not mastered any of the context attributes.
Additionally, attribute (1011) has a higher percentage among
most of the countries, which fully explained that the attribute
occupational contexts (C2) is a relatively difficult attribute for
most students. More importantly, all the countries except for
Singapore supported societal contexts (C3) as a prerequisite
attribute of other contexts, which provided a cognitive basis for
students to solve the mathematics problems. Students tended to
approach the problems related to the societal contexts initially
and then deal with the problems related to the other contexts.

Analysis of Learning Trajectories in the
Content Area
The biggest advantage of the cognitive diagnostic assessment
is that it can grasp the cognitive laws of the subjects more
deeply. Then, it can design scientific and reasonable learning
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TABLE 5 | Top five knowledge states of content attributes in 10 countries.

Country 1st KS 2nd KS 3rd KS 4th KS 5th KS

State Rate State Rate State Rate State Rate State Rate

Saudi Arabia (0000) 0.583 (1111) 0.220 (0001) 0.147 (0101) 0.012 (1100) 0.011

Australia (0000) 0.302 (1111) 0.263 (0001) 0.230 (0111) 0.161 (0011) 0.033

Canada (1111) 0.399 (0000) 0.256 (0001) 0.218 (0111) 0.065 (0011) 0.047

China (1111) 0.739 (0001) 0.136 (0000) 0.108 (0011) 0.007 (0101) 0.006

Finland (1111) 0.256 (0000) 0.236 (0111) 0.235 (0001) 0.160 (0011) 0.085

United Kingdom (0000) 0.300 (1111) 0.250 (0001) 0.204 (0111) 0.182 (0011) 0.049

Japan (1111) 0.452 (0001) 0.311 (0000) 0.113 (0111) 0.108 (1011) 0.012

Russia (1111) 0.415 (0000) 0.356 (0001) 0.184 (1011) 0.015 (0111) 0.011

Singapore (1111) 0.620 (0000) 0.196 (0001) 0.141 (0101) 0.014 (0011) 0.010

United States (1111) 0.354 (0000) 0.317 (0001) 0.248 (1011) 0.036 (0011) 0.025

TABLE 6 | Knowledge states of the top five process attributes in 10 countries.

Country 1st KS 2nd KS 3rd KS 4th KS 5th KS

State Rate State Rate State Rate State Rate State Rate

Saudi Arabia (000) 0.710 (111) 0.229 (001) 0.045 (011) 0.014 (010) 0.012

Australia (000) 0.474 (111) 0.431 (001) 0.075 (011) 0.014 (101) 0.006

Canada (111) 0.485 (000) 0.418 (001) 0.078 (101) 0.010 (010) 0.004

China (111) 0.716 (000) 0.194 (001) 0.049 (110) 0.024 (101) 0.007

Finland (111) 0.523 (000) 0.395 (001) 0.051 (011) 0.027 (010) 0.006

United Kingdom (111) 0.442 (000) 0.442 (001) 0.100 (101) 0.010 (011) 0.007

Japan (111) 0.539 (000) 0.362 (001) 0.079 (011) 0.019 (010) 0.002

Russia (000) 0.453 (111) 0.438 (001) 0.089 (011) 0.016 (101) 0.005

Singapore (111) 0.629 (000) 0.332 (001) 0.032 (110) 0.004 (100) 0.002

United States (000) 0.478 (111) 0.386 (001) 0.104 (011) 0.021 (101) 0.010

TABLE 7 | Knowledge states of the top five context attributes of 10 countries.

Country 1st KS 2nd KS 3rd KS 4th KS 5th KS

State Rate State Rate State Rate State Rate State Rate

Saudi Arabia (0000) 0.555 (0010) 0.143 (1111) 0.090 (1011) 0.086 (0100) 0.024

Australia (0000) 0.290 (1111) 0.221 (0010) 0.220 (1011) 0.214 (1010) 0.021

Canada (1111) 0.287 (0000) 0.244 (0010) 0.197 (1011) 0.187 (1010) 0.031

China (1111) 0.625 (0000) 0.171 (1011) 0.100 (0010) 0.039 (0110) 0.033

Finland (1011) 0.310 (0000) 0.238 (0010) 0.194 (1111) 0.185 (1010) 0.034

United Kingdom (0000) 0.293 (1011) 0.243 (0010) 0.209 (1111) 0.199 (1010) 0.029

Japan (1111) 0.374 (0010) 0.267 (1011) 0.130 (0000) 0.105 (1010) 0.066

Russia (0000) 0.316 (1111) 0.288 (0010) 0.152 (1011) 0.131 (0100) 0.035

Singapore (1111) 0.513 (0000) 0.246 (1011) 0.097 (0110) 0.053 (1010) 0.018

United States (0000) 0.300 (1111) 0.249 (0010) 0.236 (1011) 0.129 (0110) 0.031

and remedial programs accordingly. The learning trajectories
are related to the development of the cognitive laws of learners
and the corresponding arrangement of learning knowledge and
skills. It is a learning roadmap that strictly follows the cognitive
laws of students. The so-called learning trajectories, that is,
the hierarchical structure of knowledge states, characterizes
the relationship between knowledge states with partial order
relationships (Tatsuoka, 2009). In the process of establishing the
learning trajectories, the understanding of students regarding

the concepts is assumed to follow the order of easiness to
difficulty, that is, students first grasp the basic attributes in
the attribute hierarchy, and then grasp higher-order attributes,
which are more difficult. Therefore, attributes at lower levels
should be easy to grasp, and attributes at higher levels should
be difficult to grasp. On the basis of this feature, through
the cluster analysis of different knowledge states, the learning
trajectories can be drawn on the basis of the inclusion
relationship shown in Figure 4. In this diagram, different
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FIGURE 4 | Students’ learning trajectories in 10 countries.

learning trajectories can be selected for students with different
knowledge states.

In the process of construction of the learning trajectories,
the knowledge state of each participant is firstly obtained
through parameter evaluation, which is the participant’ mastery
of each attribute. Then, the participants with the same knowledge
state are classified and categorized to establish the trajectory
relationship among the knowledge states. The red path is
the main trajectory among them, which contains the largest
percentage of the participants who own the knowledge states in
each level, to some extent, it represents the learning trajectory of
a certain group. For instance, in Figure 4, compared with (1010)
in the attribute mastering mode, the subjects belonging to the
knowledge state (1011) have mastered all the attributes belonging
to the knowledge states (1010) and other attributes. Therefore,
(1010) ⊂ (1011), which entails an inclusive relationship between
the two knowledge states, that is, the trajectory is (1010)
→ (1011). According to CHI in Figure 4, (0000) ⊂ (0001)
⊂ (0011) ⊂ (1011) ⊂ (1111) exists. Therefore, the learning
trajectory in red shown in CHI in Figure 4 is (0000) →
(0001) → (0011) → (0111) → (1111). According to Figure 4,
Australia, Canada, the United Kingdom, and Russia have the
same learning trajectory. The students have three trajectories
to master all the attributes from not mastering any attributes
in these countries. However, the most important trajectory

is shown in red: (0000) → (0001) → (0011) → (0111) →
(1111). Most students first obtain N4 (uncertainty and data),
then N3 (quantity), then N2 (space and shape), and finally N1
(relationship and change). The learning trajectories of Finland
and Japan are more complicated than those of Australia, Canada,
the United Kingdom, and Russia. As shown in Figure 4, same
as their main learning trajectory, they all follow the trajectory
of (0000) → (0001) → (0011) → (0111) → (1111). The
learning trajectory in China is also relatively complex, and it
has multiple learning trajectories. The main learning trajectory
is (0000) → (0001) → (0011) → (1011) → (1111), that is,
most students grasp N4 (uncertainty and data) first, then N3
(quantity), and N1 (change and relationships), and finally N2
(space and shape). A difference is observed in the order of
obtaining N1 and N2. The learning trajectory in Singapore
is the most complicated and has the most diverse learning
trajectories. The main learning trajectory is (0000) → (0001)
→ (0101) → (1101) → (1111), that is, most students grasp
N4 (uncertainty and data) first, then N2 (space and shape),
then N1 (change and relationships), and finally N3 (quantity).
The learning trajectories of the United States and Saudi Arabia
were comparatively simple and the main learning trajectories
of the United States and China are the same. These trajectories
are not only directly related to the cognitive order of students
but also influenced by factors, such as national curriculum
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arrangements and extracurricular tutoring (De Lange, 2007).
As can be seen from Figure 4, students in different knowledge
states can choose different learning trajectories according to their
own characteristics and the learning resources around them,
which also reflect the diverse choices of learning. The learning
trajectories from the low to the top ends represent different ability
levels, reflect the ability relationship among knowledge states,
describe the development process of students, and shows the
clear development of trajectory and direction for students from
low-level learning to high-level learning abilities. Therefore, the
learning trajectories not only provide students with personalized
and refined diagnostic reports but also provide a basis for the
remedial teaching of teachers.

DISCUSSION

With the advancement of educational globalization, international
understanding and international educational references have
enabled us to apply the latest achievements to developmental
promotion (Wu et al., 2019). PISA, as a product of the
development of educational globalization, provides data support
for us to understand basic education worldwide and to
compare and learn from one another. PISA also reports
the motivation, self-confidence, learning strategies, and the
environmental background information of students, including
the social, economic, cultural, and educational aspects and
population distribution related to knowledge and skills (OECD,
2004). The analysis results in this study provided by PISA
have surpassed the ranking comparison among the respective
fields of countries. It has also offered a unique globalized
perspective on how students attain fine-grained attributes and
correct the misconception that “correctly answered” items entail
that the examinee has attained all the knowledge required to
solve the items.

One fact revealed in the PISA 2012 is that all countries that
participated have a sizable share of low performers, including
those with the highest performance and equity outcomes. On
average, 23% of students are low performers in mathematics
across all the participating countries; however, the shares of low
performers in mathematics vary significantly from country to
country (OECD, 2016). Among the 10 countries participating
in this study, the proportions of students with low performance
in mathematics in the United States, Russia, and Saudi Arabia
are higher than average. Additionally, students from different
countries have unbalanced performances in various fields of
mathematical study. These conclusions are consistent with
the above research. The magnitude of the cognitive ability
differences between countries is large, and a likely reason
for the difference is the Flynn effect, which massively raised
the average IQ in economically advanced countries in the
20th century (Meisenberg and Woodley, 2013). Other studies
have suggested that the cognitive disparities between advanced
industrial societies and less developed countries have been
diminishing (Weede and Kämpf, 2002; Meisenberg and Lynn,
2012). Given the positive correlation between IQ (or IQ growth)
and economic growth observed, this trend is probably related to a

reduction in the degree of economic inequality among countries
(Meisenberg and Woodley, 2013).

In terms of the student performances, these 10 countries
have large differences in the attributes. However, the conclusion
can be quite similar if the students are examined from the
aspect of mathematical literacy or creativity. The creativity of
students in mathematics is positively related to their achievement
in mathematics at the student level within schools. However,
the relationship is the opposite among countries (Sebastian and
Huang, 2016). Some researchers and educators have realized
that academic performance measured through standardized
tests narrowly focuses on a few subjects that emphasize
identifying correct answers and avoiding mistakes, which
ultimately discourages student creativity and critical thinking
(Zhao, 2012; Chomsky and Robichaud, 2014; Darling-Hammond
and Turnipseed, 2015). On the basis of the findings, consistent
top performers in PISA tests, such as Shanghai, Singapore, Korea,
and Japan, have started revising their curriculum to increase
their emphasis on creative thinking skills (Shaheen, 2010; Kim,
2011). From the aspect of mathematical literacy, Jablonka (2003)
discussed the fundamental nature of mathematical literacy. The
contexts may be familiar to some students but not to others. Any
attempt to use a single instrument to assess mathematical literacy
beyond the most local context appears to be self-defeating.
Cultural differences exist among countries, and the invariance of
the test items also need to be tested accordingly.

In the analysis of learning trajectories, there are two reasons
that we only presented the results of content attributes but not the
results of the other two attributes. First, in the current research
of mathematics education, the learning trajectories are mostly
aimed at the its content but not the context or process. Whether
there are any learning paths in the process or context attributes,
or whether it meets the assumptions of the learning paths, the
conclusions are still to be uncovered (Clements and Sarama,
2004; Daro et al., 2011; Wilson et al., 2013). Second, through
data analysis, it is found that there are no rules in the process
or context attribute, therefore there is no further analysis of the
learning trajectories of these two attributes (Confrey et al., 2014).
However, the learning trajectories in educational practice is the
concept about change longitudinally–how to trace a student’s
mastery of the attributes change over time with increasing
instruction. The test items in PISA that we studied is cross-
sectional due to unavailability of data in the other years. Simply
finding relatively large numbers of students in various knowledge
states does not imply that individual students move through
those states in any specific order. Even if the paths identified
reflect reality, there is “correlation does not imply causation”
argument to be made; an association between country and these
patterns does not imply that specific educational practices lead
to those differences. Finally, assuming that the paths are indeed
correct, because the data are a single point in time, the silly
assertion that these are forgetting paths (i. e., students move
from understanding to ignorance) is equally consistent with the
data observed. None of this says the learning paths identified
are wrong. But any findings from these cross-sectional data are
speculative and open to alternative interpretation. They require
additional evidence from other sources in order to be evaluated,
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for instance, studying longitudinally could be an alternative better
examination option (Zhan et al., 2019; Zhan, 2020).

Although this study has conducted a more in-depth analysis
of the PISA items and results by using the newly emerging
measurement method, many areas still need improvement. The
study has provided detailed information on 11 attributes in 10
countries in terms of three dimensions, namely, content, process,
and context. The division of attributes depends on the coding
of existing test questions in PISA without deeper mining in
the fields. Later research can divide the attributes in a more
detailed way and compare them latently to obtain the advantages
and disadvantages of different countries in finer granularity.
Additionally, we suggest that questionnaires be sent out to mine
the reasons for the difference further. We also need to admit
that measuring the change in student achievement at the country
level is more robust than measuring student achievement in any
single wave of assessment. More methodological and educational
research is required to understand the longitudinal trends at
the country level (Klieme, 2016). In the end, analyzing the
learning situation of students should focus not only on their
test scores but also on their external environment, such as the
family and school environments. An analysis of the relationship
of test scores to variables external to the test can provide another
important source of validity evidence (American Educational
Research Association, and National Council on Measurement in
Education, 2014). Multilevel hierarchical analysis is an important
methodology to be taken into consideration in future research.
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Cognitive diagnostic assessment (CDA) is able to obtain information regarding the
student’s cognitive and knowledge development based on the psychometric model.
Notably, most of previous studies use traditional cognitive diagnosis models (CDMs).
This study aims to compare the traditional CDM and the longitudinal CDM, namely, the
hidden Markov model (HMM)/artificial neural network (ANN) model. In this model, the
ANN was applied as the measurement model of the HMM to realize the longitudinal
tracking of students’ cognitive skills. This study also incorporates simulation as well
as empirical studies. The results illustrate that the HMM/ANN model obtains high
classification accuracy and a correct conversion rate when the number of attributes is
small. The combination of ANN and HMM assists in effectively tracking the development
of students’ cognitive skills in real educational situations. Moreover, the classification
accuracy of the HMM/ANN model is affected by the quality of items, the number of
items as well as by the number of attributes examined, but not by the sample size. The
classification result and the correct transition probability of the HMM/ANN model were
improved by increasing the item quality and the number of items along with decreasing
the number of attributes.

Keywords: cognitive diagnostic assessment, longitudinal assessment, hidden Markov model, SSOM neural
network, reading comprehension

INTRODUCTION

Cognitive diagnostic assessment (CDA) combines cognitive psychology with psychometrics to
diagnose and evaluate the knowledge structure and cognitive skills of students (Leighton and
Gierl, 2007; Tu et al., 2012). Compared to the traditional academic proficiency assessment,
the results of CDA report specific information regarding the strengths and the weaknesses of
students’ cognitive skills. At present, researchers developed various cognitive diagnostic models
(CDMs) to realize the diagnostic classification of cognitive skills. Deterministic inputs, noisy “and”
gate (DINA) model (Macready and Dayton, 1977; Haertel, 1989; Junker and Sijtsma, 2001), the
deterministic inputs, noisy “or” gate (DINO) model (Templin and Henson, 2006), and other
models are representative and widely applied. However, traditional CDMs, such as DINA and
DINO, are static models that classify students’ cognitive skills on a cross-sectional level. In
the education context, students’ knowledge and skills are continually developing, and educators
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are more concerned with how their cognitive skills develop over
time. Notably, traditional CDM cannot model the trajectory of
skills development.

In the psychometric field, researchers have used multi-
dimensional Item Response Theory (IRT) models to assess the
development of students’ abilities (Andersen, 1985; Embretson,
1991). These studies utilized multi-dimensional IRT models to
measure a single capability at different points in time. With
the development of computer algorithms, the hidden Markov
model (HMM) can be used to realize the transformation
analysis of potential categories (Collins and Lanza, 2010).
Currently, DINA and DINO models have been applied as
measurement models under the framework of HMM (Li et al.,
2016; Kaya and Leite, 2017). Chen et al. (2017) used the first-
order HMM to trace learning trajectory. Additionally, Wang
et al. (2018) integrated the CDM with a higher-order HMM,
which included covariates, to model skill transition and explain
individual differences.

This research mentioned above used HMM to realize the
transformation analysis of potential states. The methods combine
HMM and traditional CDMs, such as DINA and DINO, which
are based on the framework of the IRT (Tu et al., 2012). As
a result, the methods should satisfy the three basic hypotheses
of unidimension, local independence, and monotonicity of
capability. The problem is that the data collected in practice can
hardly satisfy these three hypotheses. In recent years, researchers
have attempted to develop more applicable models to new models
to overcome these deficiencies. For instance, Hansen (2013)
proposed a unidimensional hierarchical diagnostic model to track
the growth of skill, in which local dependence was accounted for
through using random-effect latent variables. Furthermore, Zhan
et al. (2019) proposed a longitudinal diagnostic classification
modeling approach by using a multidimensional higher-order
latent structure to explain the relationship among multiple
latent attributes, and the local item dependence was well
taken into account.

The method mentioned above requires parameter estimation,
which involves a large sample size to achieve high accuracy.
When the sample size is small, the accuracy of parameter
estimation will be affected (Chen et al., 2013), thus seriously
influencing the accuracy of the cognitive skill classification
of students (Gierl et al., 2008; Cao, 2009; Shu et al., 2013).
Some researchers proposed to apply non-parametric methods to
classify cognitive skills under a small sample size. For instance,
Chiu et al. (2018) used general non-parametric classification
method to estimate the student’s attribute pattern through
minimizing the distance between the observed response and the
ideal response when sample sizes are at the classroom level.
With the development of artificial intelligence, ANN has been
widely applied in various fields. And it is claimed that non-
parametric artificial intelligence pattern recognition technology
can be utilized to achieve CDA. The advantage is that ANN can
perform non-parameter estimation and the bias of the potential
classification model can be overcome (Gierl et al., 2008; Cao,
2009; Wang et al., 2015). Additionally, ANN has a relatively
high accuracy in small samples, so it can avoid the above-
mentioned disadvantages.

Recently, an increasing number of studies have attempted to
combine ANNs and CDA (Gierl et al., 2008; Cao, 2009; Shu
et al., 2013; Wang et al., 2015, 2016). At present, there are
hundreds of artificial neural networks (ANN), among which
the supervised self-organizing map (SSOM) is one of the more
popular neural networks. SSOM has been widely used in network
traffic classification, decoding analyses, and metabolic profiling
and demonstrates good classification performance (Wongravee
et al., 2010; Hu, 2011; Hu et al., 2011; Lu et al., 2020). The SSOM
can activate the network features near the physical location of
the neurons according to the similar input mode used to achieve
classification, so it has a strong applicability in various fields.
Consequently, it is worth further exploring whether it is possible
to apply ANN (e.g., SSOM) as the measurement model of HMM
so as to achieve the accurate classification of students’ cognitive
skills while also tracking the development of their skills.

This study aims to explore whether it is possible to establish
an HMM/ANN model through using ANN as the measurement
model of HMM. This will be used to accurately track the change
in students’ cognitive skills and to validate the effectiveness of this
model in the actual education situation of the small sample.

TECHNICAL BACKGROUND

An Overview of the Artificial Neural
Network
Scientists Warren McCulloch and Walter Pitts first proposed the
ANN in 1943, which mimics the basic principle of the biological
nervous system. It is a network structure system created by a large
number of interconnected neurons similar to the neurocyte in
the human brain. In ANN, the neurons are usually organized
into layers, such as the input layer and the output layer,
and information processing is achieved through adjusting the
connection between the nodes of each layer (Han, 2006).

The connection between the input and the output layers of
ANN can be obtained through performing the training and the
testing phases. In the training phase, the input data and the
output data (or those only containing input data) of the training
set will be applied to train the network. This is done to determine
the number of hidden layer neurons as well as the connection
weight between layers of neurons. Then, the neural network
will be well trained. During the testing phase, a well-trained
neural network will be provided a new set of input data that
can obtain the output value based on the weight of connections
between neurons.

According to the classification of learning paradigm, ANN can
be divided into supervised learning and unsupervised learning.
The most significant feature of supervised learning is that the data
of the input and the output layer of the training set are known,
and the output layer is the category label corresponding to the
data characteristics of the input layer. The supervised neural
network determines the connection weight of the layers through
establishing the relationship between the input and the output
layers. When there is new data input, the determined connection
weights can assist in obtaining the output value. Notably, the
characteristic of unsupervised learning is that only the data in
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the input layer is known, while the data in the output layer is
unknown. Unsupervised neural network reveals the innate law
of the data by learning the input data, which is more applicable to
cluster analysis.

Supervised Self-Organizing Map
As depicted in Figure 1, the SSOM consists of three layers:
the input layer, the competition layer, and the output layer.
The number of output layers is consistent with the number of
classification categories. SSOM is based on the original structure
of the self-organizing mapping neural network (Kohonen, 1982,
1990, 2001), adding an output layer to become a supervised
neural network, to better realize the classification of data with
category labels. In SSOM, the part from the output layer to the
competition layer is unsupervised learning, and the competition
layer to the output layer is supervised learning. Moreover, the
input layer to the competition layer and the competition layer
to the output layer are all connected (Zhao and Li, 2012).
Notably, it is necessary for the learning and the training of this
neural network to adjust the weights from the input layer to the
competition layer and from the competition layer to the output
layer simultaneously. SSOM can use the existing category marker
information to assist clustering and help improve the adjustment
rules of neuron weight in the winning neighborhood. This is done
so as to make it easier to select winning neurons (Hu et al., 2011).

In the training phase of SSOM, the input training samples
Xi = (X1, X2, X3 . . . . . . Xn) are known, and n is the number of
neurons in the input layer. According to formula (1), the winning
neuron g in the competitive layer can be obtained. Dj is the
distance from input layer Xi to the neuron j in the competition
layer, from which the winning neuron g with the smallest distance
from the input layer Xi is found.

Dg = min
(
Dj
)
= min||Xi −Wij||, j = 1, 2, . . . , m (1)

Among them, ||·|| is the distance function; Wij represents
the weighting coefficient between the input layer neuron i
and the competition layer neuron j; m is the number of
competition layer neurons.

The next step is to adjust the weight, which is mainly divided
into three phases:

(1) Yk = (Y1, Y2, Y3 . . . . . . Yk) is the output value of the input
layer Xi, k represents the number of neurons in the output
layer, while the output category corresponding to the
winning neuron g in the competition layer is Og .

(2) Calculate the winning neighborhood Nc(t) of the winning
neuron g.

(3) If Og = Yi, then the weight coefficient is adjusted according
to formula (2, 3) in the winning neighborhood; if Og 6=

Yk,then it is adjusted according to formula (4, 5).

Wij = Wij + η1
(
Xi −Wij

)
(2)

Wjk = Wjk + η2
(
Yk −Wjk

)
(3)

Wij = Wij + µη1
(
Xi −Wij

)
(4)

Wjk = Wjk + µη2
(
Yk −Wjk

)
(5)

Wij represents the weight coefficient between the input layer
neuron i and the competition layer neuron j; Wjk represents the
weight coefficient between the competition layer neuron j and the
output layer neuron k; η1, η2 represents the learning rate from
the input layer to the competition layer and from the competition
layer to the output layer, respectively; µ is the weight coefficient.
After adjusting the weights, the output layer becomes an ordered
feature graph which reflects the output pattern.

Hidden Markov Model
The HMM is also known as the potential transformation analysis
model (Collins and Wugalter, 1992). As depicted in Figure 2,
the model contains two interconnected random processes. One
describes a Markov chain of state transition and the other
is a sequence of observations related to states. The reason
why it is referred to as the HMM is because, in these two
random processes, the first random process, namely, the sequence
of state transition, is unobserved and can only be inferred
from the observation sequence of the other random process
(Rabiner, 1989).

HMM can be described by five parameters:

N: N is the number of states of the Markov chain in the model.
The N state is denoted as S = {s1, s2, s3 . . . sN}, and the state
of the Markov chain at time t is qt , qt ∈ (s1, s2, s3 . . . sN ).
M: M is the number of possible observations for each state.
M observations are denoted as V = {v1, v2, v3 . . . vM}, and
the observed value at time t is Ot , Ot ∈ (v1, v2, v3 . . . vN).

π: π is initial-state probability, π = (πi, i = 1, . . . , N).

πi = P(q1 = si) (6)

0 ≤ πi ≤ 1,

N∑
i=1

πi = 1 (7)

A: A is the state transition probability matrix (aij)N×N , which
describes the state transition probability at different points in
time. Among them:

aij = P(qt = sj| qt−1 = si), 1 ≤ i ≤ N (8)

0 ≤ aij ≤ 1,

N∑
j=1

aij = 1

B: B is an observation probability matrix, namely, the
item response probability matrix (bjk)N×N . In the educational
measurement field, it refers to the probability that the individual
in each potential state makes a correct or specific response to each
item. Among them:

bjk = P(Ot = vk| qt = sj) (9)

1 ≤ j ≤ N, 1 ≤ k ≤ M (10)
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FIGURE 1 | Basic structure of self-organizing map and supervised self-organizing map, respectively.

FIGURE 2 | Hidden Markov model.

0 ≤ bjk ≤ 1,

N∑
k=1

bjk = 1 (11)

That is, in state j, the probability that the observation is k.
In general, HMM consists of two parts. One of which is a

Markov chain (namely, the transition model), which is utilized
to describe the change of the hidden state. It is described by
the initial state π and the transition probability matrix A, and
different π and A determine the different topological structures
of the Markov chain and affect the complexity of the model. The
other part is the measurement model (namely, the observation
probability), which is determined by the observation probability
matrix B, connecting the observation score and the hidden state.

HMM/ANN Model
HMM is composed of two parts: the Markov chain and the
measurement model. It has a very strong modeling capability
of dynamic temporal sequence, which can help us solve
issues in timing changes and provide an excellent theoretical
framework for realizing the longitudinal tracking of cognitive

skills. However, HMM does not have a strong classification
ability and cannot be directly used for longitudinal CDA as
the measurement model in HMM is not suitable for cognitive
diagnosis analysis. The observed probability in HMM represents
the probability that the individual in each potential state makes a
correct or specific response to each item. HMM can be regarded
as an exploratory method to mark the potential state which is
based on the item response probability (Nylund et al., 2007).
However, CDA is different. This is because the categories of
attributes or attribute mastery patterns are known in CDA, and it
is necessary to obtain the probability of each category, which is a
type of confirmatory process. ANN, on the contrary, has a strong
classification ability, which can make up for this shortcoming.
Considering the respective superiority of HMM and ANN, it is
worth further exploring whether the HMM and the ANN can be
combined to realize longitudinal CDA.

At present, there are several ways to combine HMM with
ANN, one of which is to calculate the observation probability
of the HMM through the ANN model, taking ANN as the
measuring model of HMM (Bourlard and Morgan, 1997), as
shown in Figure 3. The concrete implementation method is
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FIGURE 3 | Hidden Markov model/artificial neural network model.

to use ANN model to calculate the observation probability of
HMM, that is, to calculate the observation sequence probability
value under each state through the ANN model. Then, the
transformation probability of the observation sequence is
obtained through the Markov chain in HMM.

SIMULATION STUDY

Research Question
The simulation study includes the following question:

Can the HMM/ANN model accurately track the
development of students’ cognitive skills?

Method
Data Generation
This study simulates longitudinal data with three time points
(T1/T2/T3) based on the DINA model, and several key factors
were manipulated, including the number of items (20 or 40),
the number of attributes (3 or 6), sample size (200, 500, or
1,000) as well as item discrimination (high or mixed). High item
discrimination indicates smaller slip and guess parameters, which
are randomly generated on the uniform distribution U(0, 0.20).
The mixed discriminability contains both small and large slip
and guess parameters, which were randomly generated based on
the uniform distribution U(0, 0.40). The selection of these factor
levels is based on typical settings in recent simulation studies
(e.g., Henson and Douglas, 2005; Rupp and Templin, 2008;
Templin et al., 2008; de La Torre and Lee, 2010; Cui et al., 2016).
Notably, based on the item and attribute level, four Q matrices
were established. The Q matrices, along with item parameters for
20 items, are presented in Table 1.

To evaluate whether the HMM/ANN model can accurately
track the development of students’ cognitive skills, this study fixes
the initial mastery probability as well as the transition probability
of each attribute. Through combining these two probabilities, the
attribute mastery probability and the increase of the attribute
mastery probability at time points T2 and T3 can be obtained.
Based on previous studies (Madison and Bradshaw, 2018) on the
setting of the initial attribute mastery probability, this study sets
the initial attribute mastery probability as 0.4, 0.4, and 0.2 under
the condition of three attributes. Notably, this study assumes that
it is unlikely that students’ mastery of the first two attributes will
decrease in a relatively short teaching period, while the mastery

of the third attribute may decline. Consequently, the transition
probability of attribute loss is 0.1, 0.08, and 0.38, respectively.
Under the condition of six attributes, the initial attribute mastery
probability is 0.4, 0.4, 0.3, 0.3, 0.2, and 0.2. Meanwhile, the
attribute loss transfer probability is 0.03, 0.04, 0.13, 0.25, 0.43,
and 0.54, respectively. The correlation coefficient between the
attributes at the initial time point is fixed at 0.5.

Table 2 depicts the transition probability matrix of each
attribute under the conditions of the three and six attributes.
In the matrix, 0 indicates that the student did not master the
attribute, whereas 1 indicates that the student mastered the
attribute. The matrix (from left to right) reflects the probability of
students moving from non-mastery to non-mastery, from non-
mastery to mastery, from mastery to non-mastery, and from
mastery to mastery. Table 3 illustrates the probability and the
growth rate of students’ attribute mastery at each time point.

To simulate the observed item response, the students’ “true”
attribute pattern must be generated. In order to ensure an equal
representation of the different attribute patterns, we assumed
that student attribute patterns satisfy a uniform distribution.
According to the students’ “true” attribute pattern, Q matrix, item
slid and guess parameter, and students’ responses to each item
were simulated. To train the neural network, input and output
data are essential, that is, students’ “true” attribute patterns and
their response to items are required, which cannot be obtained
through practice. Therefore, the ideal response, the ideal response
vector, and its related true attribute pattern are utilized to train
the neutral network. Furthermore, since we set the transition
probability of each attribute, our simulated data can reflect the
growth of cognitive skills. There are 2× 2× 3× 2 = 24 conditions
for each point in time. To obtain stable simulation results, each
condition was repeated 30 times. Specifically, the R.3.1.0 (R
Development Core Team, 2006) software CDM package was
applied to generate data.

SSOM for CDA
The SSOM was used to classify the simulated item response.
SSOM is comprised of three layers: the input layer, the
competition layer, and the output layer. The number of nodes in
the input layer of SSOM is the number of items (20 or 40), and
the input data is the students’ response to each item. The number
of nodes in the output layer represents the number of attribute
mastery pattern categories, and three or six skills correspond to
the 23 = 8 or 26 = 64 attribute mastery pattern, and the data in the
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TABLE 1 | Q matrices and item parameters used in the simulation (20 items).

Item Discrimination Discrimination

k = 3 High Mixed k = 6 High Mixed

A1 A2 A3 s g s g A1 A2 A3 A4 A5 A6 s g s g

1 1 1 0 0.16 0.04 0.33 0.1 1 0 1 1 0 0 0.08 0.17 0.4 0.35

2 0 1 1 0.17 0.15 0.24 0.28 1 1 0 0 0 1 0 0.05 0.35 0.09

3 1 1 0 0.01 0.1 0.26 0.24 1 0 1 1 0 1 0.03 0.15 0.21 0.22

4 1 1 1 0.17 0.05 0.12 0.22 0 1 0 1 1 0 0.11 0.05 0.4 0.21

5 0 1 1 0.1 0.13 0.37 0.15 1 0 0 0 1 0 0.03 0.14 0.39 0.03

6 0 1 0 0.12 0.07 0.35 0.04 0 0 1 0 0 1 0.03 0.13 0.02 0.02

7 1 0 0 0.07 0.15 0.09 0.34 1 1 0 1 0 1 0.19 0.02 0.31 0.16

8 1 0 1 0.08 0.17 0.39 0.14 1 1 1 1 1 0 0.18 0.19 0.03 0.14

9 0 1 0 0.03 0.1 0.19 0.36 1 0 0 1 0 0 0.07 0.06 0.28 0.16

10 0 1 1 0.16 0.07 0.31 0.3 1 1 0 0 0 0 0.03 0.19 0.3 0

11 1 0 1 0.1 0.17 0.11 0.38 0 0 0 1 0 0 0.08 0.16 0.06 0.05

12 0 1 0 0.16 0.11 0.3 0.04 0 0 0 1 0 0 0.06 0.05 0.11 0.32

13 1 0 1 0.13 0.1 0.33 0.19 1 0 0 1 0 0 0 0 0.32 0.21

14 0 1 1 0.03 0.13 0.09 0.18 0 1 0 0 1 1 0.12 0.04 0.33 0

15 1 0 1 0.05 0.17 0.37 0.39 1 1 1 1 1 1 0.05 0.04 0.08 0.11

16 1 1 0 0.05 0.01 0.29 0.06 0 1 0 1 1 1 0.15 0.06 0.12 0.12

17 1 0 1 0.14 0.05 0.39 0.1 0 0 1 0 0 0 0.05 0.16 0.32 0.09

18 1 0 0 0.1 0.17 0.31 0.01 1 1 0 0 0 1 0.07 0.01 0.22 0.04

19 0 1 0 0.11 0.03 0.12 0.19 1 0 0 0 0 1 0.06 0.05 0.32 0.05

20 0 1 1 0.14 0.18 0.18 0.06 1 1 1 1 0 1 0.2 0.04 0.14 0.23

TABLE 2 | Conditional transition probability.

Number of attributes Attribute T1–T2 T2–T3

0 1 0 1

A1 0 0.55 0.45 0 0.66 0.34

3 1 0.03 0.97 1 0.06 0.94

A2 0 0.71 0.29 0 0.82 0.18

1 0.03 0.97 1 0.05 0.95

A3 0 0.93 0.07 0 0.9 0.1

1 0.87 0.13 1 0.54 0.46

A1 0 0.45 0.55 0 0.36 0.64

1 0.03 0.97 1 0.02 0.98

A2 0 0.56 0.44 0 0.42 0.58

1 0.04 0.96 1 0.05 0.95

6 A3 0 0.61 0.39 0 0.54 0.46

1 0.13 0.87 1 0.14 0.86

A4 0 0.72 0.28 0 0.46 0.54

1 0.25 0.75 1 0.06 0.94

A5 0 0.78 0.22 0 0.42 0.58

1 0.43 0.57 1 0.18 0.82

A6 0 0.83 0.17 0 0.59 0.41

1 0.54 0.46 1 0.12 0.88

output layer is the attribute mastery pattern. Notably, there are
two phases to implement SSOM to estimate the attribute patterns
of the simulated item response:

Step 1: Training phase

This study simulates the data of the training set, applying
the simulated ideal item response as the input value of the
training set and the true attribute pattern as the output value
of the training set. The input and the output layers are
known, so only the number of neurons in the competing
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TABLE 3 | Attribute mastery probability and growth rate.

Number of attributes Attribute T1 (%) T2 (%) Growth rate T3 (%) Growth rate

3 A1 Non-mastery probability 0.6 0.37 0.23 0.23 0.14

Mastery probability 0.4 0.63 0.77

A2 Non-mastery probability 0.6 0.46 0.14 0.34 0.11

Mastery probability 0.4 0.54 0.66

A3 Non-mastery probability 0.8 0.7 0.1 0.62 0.08

Mastery probability 0.2 0.3 0.38

6 A1 Non-mastery probability 0.6 0.34 0.26 0.15 0.20

Mastery probability 0.4 0.66 0.85

A2 Non-mastery probability 0.6 0.35 0.25 0.20 0.15

Mastery probability 0.4 0.65 0.80

A3 Non-mastery probability 0.7 0.51 0.19 0.39 0.12

Mastery probability 0.3 0.49 0.61

A4 Non-mastery probability 0.7 0.57 0.13 0.45 0.11

Mastery probability 0.3 0.43 0.55

A5 Non-mastery probability 0.8 0.68 0.12 0.55 0.13

Mastery probability 0.2 0.32 0.45

A6 Non-mastery probability 0.8 0.74 0.06 0.64 0.10

Mastery probability 0.2 0.26 0.36

layer needs to be determined. Cui et al. (2016) empirically
suggested that the number of nodes in the competing
layer should be set to four to 10 times the number of
attribute mastery patterns. This study conducted experiments
on the number of neurons in the competitive layer under
the conditions of three and six attributes and discovered
that the number of neurons had no profound impact on
the classification accuracy. Consequently, the structure of
the neurons in the competitive layer was finally set to
10∗10 and 20∗20 under the conditions of three and six
attributes, respectively.

Moreover, the classification accuracy of SSOM is greatly
influenced by the number of iterations. The more iterations, the
higher the classification accuracy. As the number of iterations
increases, however, so does the elapsed time. Because of this, it
is necessary to determine the appropriate number of iterations.
This study further explored the classification accuracy of SSOM
under different iterations through experiments to determine
the iterations. Firstly, the number of iterations was set to
1, and the classification accuracy of the training set was
recorded. Then, the number of iterations was increased one
by one and the process was repeated until the accuracy of
the training set became stable. The accuracy of the training
set was stable after two iterations under the condition of
three attributes, and the accuracy was 99.5% and 100% for
20 and 40 items. As a result, the number of iterations
under this condition is determined to be two. Additionally,
the accuracy of the training set became stable after four
and seven iterations under the condition of six attributes,
20 and 40 items.

Step 2: Testing phase

After determining the structure and the number of iterations
of the SSOM and training the neural network, the well-trained

network can perform the diagnostic classification of cognitive
skills on the simulated observed item response. If the attribute
mastery patterns of the simulation data are estimated, the
attribute accuracy rate (ACCR) and the pattern accuracy rate
(PCCR) will be calculated through comparing the “true” and
the estimated attribute mastery pattern. These two indicators
were used as the primary criteria to evaluate the classification
accuracy of SSOM. The training and the testing of SSOM were
implemented through using the PyCharm software.

The Implementation of the HMM/ANN Model
In this study, the HMM is taken as the overall model, in
which SSOM is used for the measurement model to realize the
classification of the item response at each time point, while the
transition model part is a Markov model. We actually performed
two steps to complete the entire model:

Step 1: SSOM is used to calculate the observation
probability of HMM

Based on the two phases mentioned in “SSOM for
CDA” the SSOM model is used to calculate the probability
of the observation sequence in each state, that is, to
obtain the information of the attribute mastery pattern
at each time point. This is actually the completion of the
measurement model of HMM.

Step 2: Calculate the transition probability for HMM

Then, the Markov model in HMM was implemented to
obtain information of students’ attribute growth. The transition
probability of the attribute mastery pattern between time points
was calculated by applying the Markov chain. Meanwhile,
Matlab was used to calculate the transformation probability. By
comparing the true value and the estimated value of attribute
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transfer probability, the average correct transformation rates of
the HMM/ANN model was evaluated.

Results
Table 4 presents the classification accuracy of SSOM under the
three attributes at each time point. Notably, the number of items
has a positive influence on the classification accuracy—the larger
the number of items, the higher the classification accuracy of
SSOM. For instance, compared with 20 items, the classification
accuracy of the attribute mastery pattern by SSOM increased
from 0.91 to 0.97 under the condition of high discrimination,
500 samples, and 40 items. Furthermore, the discrimination
has a positive influence on the classification accuracy. With the
decrease of item discrimination, the classification accuracy of
each attribute and the attribute mastery pattern also decrease.

For instance, the classification accuracy of the attribute pattern
by SSOM is between 0.91 and 0.92 under the condition of
500 samples and high discrimination. Meanwhile, in the case
of mixed discrimination, the classification accuracy is between
0.74 and 0.80. This is consistent with our expectations, and
items with low discrimination are difficult to distinguish as
to whether students have mastered or not. Additionally, the
influence of sample size is relatively small or absent, with
the other conditions unchanged. The classification accuracy
of the attribute pattern is between 0.84 and 0.91 under the
condition of 200 samples, 20 items, and high discrimination.
Moreover, the classification accuracy of the attribute pattern
is between 0.91 and 0.92, under the same condition of
500 and 1,000 samples. It can be seen that, under the
condition of 200 samples and 20 items, the classification

TABLE 4 | Attribute classification accuracy (k = 3).

Sample size Number of items Item discrimination Time point Classification accuracy

A1 A2 A3 Attribute mastery pattern

200 20 High (0, 0.2) T1 0.9 0.97 0.96 0.84

T2 0.93 0.98 0.98 0.87

T3 0.95 0.98 0.98 0.91

Mixed (0, 0.4) T1 0.84 0.89 0.9 0.75

T2 0.88 0.92 0.92 0.74

T3 0.91 0.94 0.94 0.79

40 High (0, 0.2) T1 0.99 0.98 0.98 0.97

T2 0.98 0.98 0.99 0.94

T3 0.98 0.98 0.99 0.94

Mixed (0, 0.4) T1 0.93 0.88 0.92 0.75

T2 0.89 0.84 0.93 0.68

T3 0.87 0.84 0.94 0.68

500 20 High (0, 0.2) T1 0.94 0.98 0.98 0.91

T2 0.94 0.98 0.99 0.92

T3 0.94 0.98 0.99 0.91

Mixed (0, 0.4) T1 0.8 0.89 0.93 0.74

T2 0.8 0.91 0.94 0.78

T3 0.8 0.92 0.93 0.8

40 High (0, 0.2) T1 0.99 0.99 0.99 0.97

T2 0.99 0.99 0.99 0.96

T3 0.99 0.99 0.99 0.98

Mixed (0, 0.4) T1 0.89 0.91 0.91 0.71

T2 0.84 0.93 0.9 0.69

T3 0.82 0.94 0.9 0.69

1,000 20 High (0, 0.2) T1 0.94 0.97 0.99 0.91

T2 0.94 0.98 0.99 0.92

T3 0.93 0.98 0.98 0.92

Mixed (0, 0.4) T1 0.8 0.91 0.94 0.68

T2 0.81 0.91 0.93 0.65

T3 0.82 0.92 0.92 0.61

40 High (0, 0.2) T1 0.99 0.99 0.99 0.99

T2 0.99 0.99 0.99 0.99

T3 0.99 0.99 1 0.99

Mixed (0, 0.4) T1 0.87 0.9 0.89 0.71

T2 0.83 0.92 0.89 0.71

T3 0.82 0.93 0.91 0.76
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accuracy of SSOM is slightly lower than that of 500 or
1,000. Meanwhile, under the condition of 200 samples, 40
items, and high discrimination, the classification accuracy of
the attribute pattern is between 0.94 and 0.97, which is very
close to the classification accuracy under the condition of
sample size 500 and 1,000. Generally, SSOM has a slightly
different classification accuracy under the sample size of 200,
500, and 1,000, but its classification accuracy is generally
relatively consistent.

Table 5 illustrates the classification accuracy of SSOM under
the six-attributes condition. Through comparing Tables 4,
5, it can be seen that when the number of attributes
increased from three to six, the classification accuracy of
SSOM decreases sharply. For instance, the classification accuracy

of the attribute mastery pattern at the first time point is
0.91 under the condition of three attributes, 20 items, 500
samples, and a high degree of discrimination. Under the
same condition, however, when the number of attributes
is six, the classification accuracy of the attribute mastery
pattern is 0.65. This is consistent with previous studies (Cui
et al., 2016). When the number of attributes increases, the
classification accuracy of both ANN and traditional CDM
is poor. Moreover, the influence of sample size, number
of items, and item discrimination is consistent with the
results under the condition of three attributes, which will not
be repeated here.

Table 6 depicts the correct transition rate of the attribute
mastering patterns obtained through the HMM/ANN model

TABLE 5 | Attribute classification accuracy (k = 6).

Sample size Number of items Item discrimination Time point Classification accuracy

A1 A2 A3 A4 A5 A6 Attribute mastery pattern

200 20 High (0, 0.2) T1 0.74 0.71 0.74 0.85 0.82 0.90 0.45

T2 0.78 0.78 0.79 0.86 0.80 0.62 0.37

T3 0.86 0.89 0.83 0.88 0.80 0.83 0.56

Mixed (0, 0.4) T1 0.64 0.61 0.64 0.72 0.68 0.80 0.35

T2 0.73 0.73 0.70 0.75 0.71 0.52 0.31

T3 0.77 0.82 0.76 0.79 0.73 0.71 0.44

40 High (0, 0.2) T1 0.71 0.74 0.81 0.81 0.79 0.86 0.43

T2 0.86 0.87 0.82 0.89 0.90 0.90 0.63

T3 0.91 0.93 0.89 0.92 0.93 0.96 0.71

Mixed (0, 0.4) T1 0.59 0.62 0.74 0.70 0.66 0.81 0.33

T2 0.76 0.77 0.73 0.79 0.74 0.78 0.39

T3 0.86 0.85 0.78 0.84 0.76 0.85 0.57

500 20 High (0, 0.2) T1 0.89 0.87 0.93 0.95 0.98 0.85 0.65

T2 0.87 0.88 0.93 0.94 0.93 0.88 0.76

T3 0.9 0.91 0.94 0.94 0.94 0.82 0.72

Mixed (0, 0.4) T1 0.77 0.8 0.84 0.8 0.81 0.74 0.36

T2 0.77 0.8 0.83 0.8 0.82 0.74 0.37

T3 0.84 0.84 0.86 0.81 0.83 0.71 0.36

40 High (0, 0.2) T1 0.88 0.9 0.82 0.92 0.94 0.92 0.7

T2 0.89 0.92 0.87 0.91 0.94 0.92 0.75

T3 0.89 0.91 0.9 0.91 0.94 0.94 0.73

Mixed (0, 0.4) T1 0.77 0.8 0.74 0.82 0.77 0.8 0.44

T2 0.79 0.83 0.77 0.78 0.83 0.84 0.45

T3 0.83 0.84 0.8 0.85 0.78 0.86 0.49

1,000 20 High (0, 0.2) T1 0.87 0.89 0.91 0.94 0.93 0.88 0.58

T2 0.87 0.88 0.91 0.94 0.93 0.86 0.56

T3 0.9 0.92 0.93 0.94 0.93 0.83 0.64

Mixed (0, 0.4) T1 0.81 0.77 0.73 0.82 0.83 0.87 0.36

T2 0.78 0.81 0.81 0.82 0.84 0.74 0.35

T3 0.86 0.86 0.84 0.81 0.84 0.71 0.39

40 High (0, 0.2) T1 0.88 0.9 0.84 0.92 0.92 0.91 0.65

T2 0.89 0.91 0.85 0.91 0.94 0.93 0.65

T3 0.89 0.92 0.89 0.91 0.94 0.95 0.68

Mixed (0, 0.4) T1 0.84 0.85 0.77 0.85 0.75 0.85 0.45

T2 0.79 0.82 0.76 0.79 0.82 0.85 0.44

T3 0.85 0.86 0.81 0.81 0.82 0.89 0.52
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TABLE 6 | Correct transition rate of attribute master pattern.

Number of attributes Sample size Number of items Item discrimination Correct transition rate

T1–T2 T2–T3

3 200 20 High 0.95 0.96

Mixed 0.91 0.92

40 High 0.98 0.99

Mixed 0.91 0.93

500 20 High 0.98 0.97

Mixed 0.92 0.9

40 High 0.98 0.98

Mixed 0.9 0.87

1,000 20 High 0.98 0.98

Mixed 0.94 0.95

40 High 0.99 0.99

Mixed 0.92 0.94

6 200 20 High 0.98 0.97

Mixed 0.98 0.98

40 High 0.99 0.99

Mixed 0.98 0.97

500 20 High 0.98 0.97

Mixed 0.97 0.97

40 High 0.98 0.99

Mixed 0.97 0.98

1,000 20 High 0.98 0.97

Mixed 0.97 0.96

40 High 0.98 0.99

Mixed 0.98 0.98

under each simulation condition. Under the condition of
three attributes, the HMM/ANN model demonstrates a high
correct transition rate from time 1 to time 2 and time 2
to time 3. The discrimination also has a positive influence
on the correct transition rate. Notably, the correct transition
rate is higher under the high-discrimination condition than
in the mixed-discrimination condition. Under the condition
of high discrimination, the HMM/ANN model has a high
correct transition rate, which is 0.95–0.99. Under the mixed-
discrimination condition, the correct transition rate is reduced,
which is 0.87–0.95. The influence of the number of items
on the HMM/ANN model is not clear in this simulation
study. For example, under the condition of 20 items, the
correct transition rate of the HMM/ANN model is 0.90–
0.98. Meanwhile, under the condition of 40 items, the
correct transition rate was 0.87–0.99. Additionally, the correct
transition rate of the HMM/ANN model was also unaffected by
the sample size.

Under the condition of six attributes, the correct transition
rate of the HMM/ANN model is at a high level, ranging
from 0.97 to 0.99, and it was difficult to identify the
influence of sample size, the number of items, and the quality
of items.

Even in the case of six attributes, the classification accuracy of
ANN is reduced, but it does not affect the correct transition rate
of the longitudinal model. This may be attributed to the fact that
when six attributes are examined, there will be 26 = 64 attribute

mastery patterns, forming a 64∗64 transfer probability matrix,
which is too large, thus affecting the calculation of the correct
transition rate.

EMPIRICAL STUDY

Research Question
The empirical study includes the following question:

What is the effectiveness of the HMM/ANN model in
real situations through tracking students’ mastery and
development of cognitive skills based on actual reading
literacy assessment data?

Method
The empirical study analyzed the data of a reading literacy
assessment completed by a school in Beijing. There were 190
students who completed the same reading passage—book in grade
4 (2015) and grade 5 (2016), which contains a total of eight
items. All eight items are scored 0 (incorrect) or 1 (correct).
The selected short test examines three skills of acquisition,
integration, and evaluation and are examined by two, three,
and three questions. The skills examined by each item are
displayed in Table 7.

The quality of the eight items is good. In terms of the
fourth-grade test, the items have medium discriminations
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TABLE 7 | The Q matrix of empirical data.

Item Acquisition Integration Evaluation

1 1 0 0

2 1 0 0

3 0 1 0

4 0 1 0

5 0 0 1

6 0 0 1

7 0 0 1

8 0 1 0

between 0.31 and 0.46, except for item 6 which has
low discrimination of 0.21. For the fifth-grade test, the
discrimination is lower than 0.3 (0.28 and 0.29), except for
items 1 and 6. The other items have medium discrimination
between 0.31 and 0.43.

The three-layer SSOM network structure was selected in
the empirical study. Training of the neural network needs to
include both input and output data. In the empirical study,
however, we only have the input data in the testing set, namely,
the observed item responses of students. To train the SSOM,
it is necessary to have both input and output data, that is,
the true attribute patterns of students and their response to
items, which cannot be obtained in empirical data. Drawing
from previous experience, we simulated the ideal item response
and true attribute patterns based on the Q matrix of empirical
data, which are used as the input and the output data of
the training set. R.3.1.0 (R Development Core Team, 2006)
CDM package was used to generate the training set data,
and then PyCharm was used to train and test the SSOM.
The determination of the number of nodes in the SSOM
competition layer and the number of iterations is the same as
in the simulation study. Finally, the network structure of the
competition layer was set to 9∗9, and the number of iterations
was determined to be three. Afterward, the observed responses
were classified by the well-trained neural network. Similar to
the simulation study, ACCR and PCCR were used as the main
criteria to evaluate the classification accuracy of SSOM. As
mentioned earlier, we simulated the ideal item response and
the true attribute mastery patterns based on the Q matrix of
the empirical data, so ACCR and PCCR can be successfully
calculated by comparing the true and the estimated attribute
mastery patterns. Then, Matlab was applied to calculate the
transformation probability matrix.

Results
Table 8 reflects the classification accuracy of SSOM for
the three attributes examined in the fourth- and the fifth-
grade tests as 0.97, 0.98, and 0.90 and 0.98, 0.95, and 0.91,
respectively. The classification accuracy of the attribute master
pattern is 0.87and 0.85, respectively. Notably, the results of
the empirical study are similar to those of the simulation
study. SSOM provided an accurate classification at two time
points when the tests examined fewer skills and the quality of
items was higher.

TABLE 8 | The classification accuracy of supervised self-organizing map.

Acquisition Integration Evaluation Attribute mastery
pattern

Fourth grade 0.98 0.99 0.91 0.87

Fifth grade 0.98 0.95 0.91 0.85

The development of students’ reading ability with time is
displayed in Figure 4. The reading ability of students has
improved during year 1. For example, the average reading ability
increased from 0.55 to 1.40 from the fourth to the fifth grade.

Figure 5 illustrates the mastery of each attribute in grades
four and five. In total, the mastery probability of these three
attributes increases with time. For fourth-grade students, the
attribute mastery probability is between 0.53 and 0.81, and
the average mastery probability is 0.72. The attribute mastery
probability is between 0.72 and 0.93 for fifth-grade students,
and the average mastery probability is 0.68. Moreover, it can
be observed that the mastery probability of acquisition and
integration demonstrates the same growth trend. Additionally,
the growth trend of evaluation is flatter, and the growth range
of the three attributes is between 0.04 and 0.19.

Table 9 depicts the transformation probability matrix of each
attribute. The four cells in each 2∗2 matrix represent (from left
to right) non-mastery to non-mastery, non-mastery to mastery,
mastery to non-mastery, as well as mastery to mastery. For
the attributes of acquisition, integration, and evaluation, the
probability from non-mastery to mastery is 0.80, 0.66, and 0.71,
and the probability from mastery to non-mastery is 0.05, 0.19,
and 0.14, respectively. This suggests that the majority of students
can achieve the transition from non-mastery to mastery at the
two time points, and a small percentage of students return from
mastery to non-mastery.

Table 10 illustrates the transformation probability matrix of
eight attribute mastery patterns. It can be seen that, among
students who did not master any skills (000) in the fourth grade,
there were still 25% of students who did not even master three
skills in the fifth grade, and 38% of the students were able to
master all three skills in the fifth grade, which shows a dramatic
improvement. For students who fully mastered the three skills
(111) in the fourth grade, 71% were still able to master the three
skills in the fifth grade. For other categories of attribute mastery
patterns, 40–63% of students were able to master all skills in
the fifth grade.

Longitudinal CDA can also assist in obtaining information
regarding individuals. For example, the student with ID 3410105
scored 0.25 on average on eight items in the fourth grade, and
their attribute mastery pattern was “100”. In the fifth grade, they
scored 0.75, and their attribute mastery pattern was “111,” which
means that they mastered all three skills. It can be seen that,
after a year’s study, the students’ reading skills have significantly
improved and they are able to master integration and evaluation
skills. For the student with ID 3430308, they scored 0.38 on
average on eight items in the fourth grade, and their attribute
mastery pattern was “100”. When the student was in the fifth
grade, they scored 0.50, but their attribute mastery pattern
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FIGURE 4 | The change in students’ reading ability.

FIGURE 5 | The change of attribute mastery probability.

was also “100”. Which indicates that they had not mastered
integration and evaluation skills.

DISCUSSION

HMM/ANN Model Achieved Fine-Grained
Longitudinal Tracking of Students’
Cognitive Skills
Previously, researchers tracked the development of cognitive
skills in three ways. Firstly, they used the Multidimensional

Item Response Theory (MIRT; Andersen, 1985; Embretson,
1991) to track changes in students’ abilities. The second was
to integrate traditional CDMs, such as the DINA and the
DINO models, within the framework of HMM (Li et al.,
2016; Kaya and Leite, 2017; Madison and Bradshaw, 2018;
Hung and Huang, 2019). The third was to construct higher-
order latent structures for measuring growth to explain the
relationship among multiple latent attributes (Hansen, 2013;
Zhan et al., 2019). The HMM/ANN model proposed in this study
is a further enrichment of longitudinal CDMs. Meanwhile, the
second approach is consistent with the overall idea of establishing
the HMM/ANN model to realize the longitudinal tracking of the

Frontiers in Psychology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 2145152

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02145 September 7, 2020 Time: 18:50 # 13

Wen et al. Longitudinal Cognitive Diagnostic Assessment HMM/ANN

TABLE 9 | The transition probability matrix of attributes.

Attribute Transition matrix

Acquisition Fifth grade

0 1

Fourth grade 0 0.20 0.80

1 0.05 0.95

Integration Fifth grade

0 1

Fourth grade 0 0.34 0.66

1 0.19 0.81

Evaluation Fifth grade

0 1

Fourth grade 0 0.29 0.71

1 0.14 0.86

cognitive skills of students in this study. Notably, both utilized
the processing capability of HMM for time-series changes and
integrated the diagnostic classification model.

Compared with the MIRT method, the combination of these
two models can achieve fine-grained longitudinal tracking of
students’ cognitive skills. Meanwhile, the method based on MIRT
can only obtain how students develop in a single ability. However,
students with the same original score may master different skills.
Compared with combining HMM with traditional CDMs, the
HMM/ANN model proposed in this study has an advantage
in the classification accuracy of cognitive skills. As mentioned
before, traditional CDM is based on the framework of IRT, and
the accuracy of model parameter estimation and classification
will be affected when the data are unable to meet the strong
hypothesis of IRT or the sample size is small. Because it is
not necessary for ANN to perform parameter estimation, it can
also obtain a higher classification accuracy when the data do
not meet the assumptions of unidimension, local independence,
and monotonicity or when the samples are small (Cao, 2009;
de La Torre et al., 2010; Chen et al., 2013). This study also
supports this. Moreover, the third method takes the problem

of local item dependence into account and overcomes the
defects of its application in the real educational situation to
some extent. However, it still used in the parameter estimation
method. In contrast, the HMM/ANN model is non-linear and
is not affected by the characteristics of sample distribution and
data types. It does not need to meet the strong assumption
of IRT or require parameter estimation and is relatively less
affected by the sample size. Consequently, the HMM/ANN
model is more suitable for data collected in real educational
situations and does not need a large scale to obtain good
results, and it can also effectively track the changes in the
cognitive skills of students in the context of small sample size in
schools or classes.

In addition, considering how well the model matches the
data, the HMM/ANN model may not always be more powerful
than other longitudinal CDMs. For example, based on the DINA
model to generate data, the DINA model is used to estimate
the model so that the model truly fits the data, and the result
will be more powerful than the ANN model; however, when the
model and the data are misfit, the advantages of ANN are obvious
(Cui et al., 2016).

The Classification Accuracy of SSOM in
the HMM/ANN Model Is Affected by
Some Factors
The SSOM applied in this study can accurately classify
cognitive skills when the test examines three attributes. However,
when multiple attributes are incorporated in the test, SSOM
demonstrates a lower classification accuracy. This result can
be explained because, in the process of algorithm operation,
it does not establish a direct mapping relationship between
the students’ response (input data) and the mastery of each
skill (output data). It instead initially obtains the attribute
mastery patterns based on the response to the input, and finally
outputs the mastery of each skill. As the number of attributes
increases, the total number of attribute mastery patterns increases
exponentially. When the test examined only three attributes,
there were a total of 23 = 8 attribute mastery patterns, and each
student was classified into one of the eight attribute mastery
patterns. Meanwhile, when the number of attributes increases
to six, 26 = 64 attribute mastery patterns are generated. To
classify students into the correct attribute mastery patterns, it

TABLE 10 | Transition probability matrix of attribute mastery pattern.

T2 (fifth grade)

000 001 010 100 110 011 101 111

T1 (fourth grade) 000 0.25 0 0.13 0.13 0 0.13 0 0.38

001 0 0.04 0.04 0.22 0 0 0.13 0.57

010 0 0 0.13 0 0.13 0.13 0 0.63

100 0 0.07 0 0 0.13 0 0.33 0.47

110 0 0 0 0 0.3 0 0.3 0.4

011 0 0 0.13 0 0.13 0.13 0 0.63

101 0 0.02 0.02 0.02 0.12 0 0.24 0.56

111 0 0.02 0.01 0.01 0.06 0.02 0.16 0.71
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is necessary to identify the students’ mastery and non-mastery
of each of the six attributes. If one attribute is misclassified,
the entire attribute mastery pattern is misclassified as well
(Cui et al., 2016).

The classification accuracy of SSOM is also affected by other
factors. The greater the number of items and the higher the
quality of those items, the higher the classification accuracy
of SSOM. The items with low discrimination are not suitable
for distinguishing the students’ mastery of skills, and it also
affects the accuracy of the estimation of attributing mastery
(Roussos et al., 2005). The sample size has little influence on the
classification accuracy of SSOM. Notably, SSOM’s classification
results are relatively accurate both in empirical as well as in
simulation studies, with sample sizes of 200, 500, or 1,000.
Despite so, however, SSOM’s classification accuracy is slightly
lower than that of 500 or 1,000 samples under the condition
of 20 items and 200 samples. However, when the number of
questions increased, the classification accuracy of SSOM was
relatively consistent under the condition of three sample sizes.
Since the ANN does not need parameter estimation, the sample
size has little influence on the accuracy of its classification
(Gierl et al., 2008; Shu et al., 2013). Furthermore, SSOM is
essentially a clustering algorithm, so it is more affected by the
number of categories.

The advantage of applying the HMM/ANN model in a
real educational situation is that its measurement model is
ANN, which does not require parameter estimation under the
framework of IRT. When the data cannot meet the hypothesis
of IRT and the sample size is small, ANN can assist in obtaining
accurate classification results, which makes CDA more widely
applied in daily teaching.

Teachers can make use of this model to understand
the development of students’ cognitive skills, understand
the advantages and disadvantages of students’ skill mastery,
and adjust teaching strategies or teaching priorities in a
timely manner. However, the application of this longitudinal
cognitive diagnosis model should be conducted cautiously.
As the results highlight, ANN does not perform well under
all conditions. To obtain a more accurate classification and
accurately track the development of students’ cognitive skills,
teachers and educators should examine the appropriate number
of attributes and design high-quality items when applying the
HMM/ANN model so as to ensure the accurate classification of
cognitive skills.

CONCLUSION, LIMITATIONS, AND
FURTHER STUDY

This study constructs a new theoretical model of longitudinal
CDA, which combines HMM with ANN, making full use of
HMM’s advantages to process time series information and
the advantages of ANN to process non-linear information
to realize the tracking of cognitive skills. This is a useful
exploration of the longitudinal CDM and will help promote the
technical development of the longitudinal CDA. The purpose
of this study was to verify the effectiveness of the proposed

HMM/ANN model in longitudinal cognitive diagnostic analysis
under different conditions. The results of the simulation and
the empirical studies illustrate that the HMM/ANN model can
accurately classify cognitive skills and track the development
of students’ cognitive skills. Consequently, it is reasonable to
use the developed model to track the development of students’
cognitive skills. Additionally, the classification accuracy of SSOM
is better when the number of attributes is low, the number of
items is high, and the quality of items is better. Furthermore,
the sample size has a slight influence on the classification
accuracy of SSOM.

The simulation results demonstrate that the HMM/ANN
model has a high correct transition rate under various
simulation conditions. When the cognitive skills examined
were relatively small, the correct transition rate of HMM/ANN
was consistent with the classification accuracy of ANN. When
the classification accuracy of ANN was low, the correct
transition rate was also relatively low, which is consistent with
previous studies (Kaya and Leite, 2017). When a relatively
large number of skills were examined, the correct transition
rate of the HMM/ANN model was overestimated. Meanwhile,
as skills increased, the attribute mastery patterns increased
exponentially, forming a larger transformation probability
matrix of the attribute mastery pattern. However, the students’
attribute mastery pattern is usually concentrated in several
categories, so the correct transformation probability has been
overestimated. In the empirical study, the HMM/ANN model
can assist in obtaining information concerning the students’
mastery of each reading skill as well as with the development
of reading skills.

This study is a new attempt in using ANN in longitudinal
CDA, and there are some limitations and prospects. First, when
the number of attributes examined is large, the ANN still
cannot achieve better classification results. In future studies, the
diagnostic classification model should be further optimized so
as to explore the CDMs applicable to classify more attributes.
Second, the development of students’ mastery of skills in the
empirical study does not explain whether the development is
caused by teachers’ instruction or if it is from the students’
natural development. However, this does not affect the results of
this study because the focus is to verify whether the proposed
HMM/ANN model can accurately track the development of
students’ cognitive skills. Moreover, it is necessary for the
HMM/ANN model to be verified in more educational contexts,
so the application of other types of ANNs in CDA can
be further tested. Finally, this study did not compare the
HMM/ANN model with more longitudinal CDMs because
we are more inclined to provide an alternative model rather
than to judge whether HMM/ANN has an absolute advantage.
In the future, we will further compare this model with a
more powerful model.
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Cognitive diagnosis assessment (CDA) can be regarded as a kind of formative

assessments because it is intended to promote assessment for learning and modify

instruction and learning in classrooms by providing the formative diagnostic information

about students’ cognitive strengths and weaknesses. CDA has two phases, like

a statistical pattern recognition. The first phase is feature generation, followed by

classification stage. A Q-matrix, which describes the relationship between items

and latent skills, corresponds to the feature generation phase in statistical pattern

recognition. Feature generation is of paramount importance in any pattern recognition

task. In practice, the Q-matrix is difficult to specify correctly in cognitive diagnosis and

misspecification of the Q-matrix can seriously affect the accuracy of the classification

of examinees. Based on the fact that any columns of a reduced Q-matrix can be

expressed by the columns of a reachability R matrix under the logical OR operation, a

semi-supervised learning approach and an optimal design for examinee sampling were

proposed for Q-matrix specification under the conjunctive and disjunctive model with

independent structure. This method only required subject matter experts specifying a

R matrix corresponding to a small part of test items for the independent structure in

which the R matrix is an identity matrix. Simulation and real data analysis showed that

the new method with the optimal design is promising in terms of correct recovery rates

of q-entries.

Keywords: cognitive diagnostic assessment, Q-matrix, the augment algorithm, the reachability matrix, the

conjunctive model, the disjunctive model

INTRODUCTION

In educational assessment, cognitive diagnostic assessment (CDA) that combines psychometrics
and cognitive science has received increased attention recently (Leighton and Gierl, 2007; Tatsuoka,
2009; Rupp et al., 2010). This approach potentially provides useful diagnostic information regarding
students’ strengths and weaknesses, and can facilitate individualized learning (Chang, 2015).
Cognitive diagnostic models (CDMs) often utilize a Q-matrix (Embretson, 1984; Tatsuoka, 1990,
1995, 2009). Tatsuoka (2009) pointed out that “Tatsuoka (1990) organized the underlying cognitive
processing skills and knowledge that are required in answering test items correctly in a Q-matrix,
in which the rows represent attributes and the columns represent items.” The entries of a Q-matrix

157

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.02120
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.02120&domain=pdf&date_stamp=2020-09-10
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:viviansong1981@163.com
https://doi.org/10.3389/fpsyg.2020.02120
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02120/full


Wang et al. A Semi-supervised Learning Method

are 1 or 0, denoted by qkj. If attribute k is involved in correctly
answering item j, then qkj = 1, and qkj = 0 otherwise. The
definition of Q-matrix in Tatsuoka (1990) is used in our study.
Recently, one common representation of a Q-matrix is that
in which the rows represent items and the columns represent
attributes (Ma and de la Torre, 2020; Zhan et al., 2020). It should
be noted that the representation of the Q-matrix that they used
in the study differs from the traditional one.

Cognitive diagnostic assessment has two phases, like statistical
pattern recognition and classification methodology. The first
phase is feature generation, and then classification stage follows.
The specification of Q-matrix corresponds to the feature
extractor phase in statistical pattern recognition and classification
problems. Feature generation is of paramount importance in any
pattern recognition task. So, the Q-matrix plays a very important
role in establishing the relation between latent attribute patterns
and ideal/latent response patterns.

In practice, the Q-matrix is difficult to specify correctly in
cognitive diagnostic assessment (Jang, 2009; DeCarlo, 2011)
and misspecification of the Q-matrix can seriously affect the
accuracy of both item parameter estimates and the classification
of examinees (de la Torre, 2008; Rupp and Templin, 2008).
Researchers have proposed several quantitative methods for
deriving or refining Q-matrix. These methods can be classified
into two categories (Xu and Desmarais, 2018): (a) the
unsupervised method, including but not limited to the q-
matrix method (Barnes, 2003, 2011), the non-negative matrix
factorization technique (Desmarais, 2011; Desmarais et al.,
2012; Desmarais and Naceur, 2013) or alternate least-square
factorization method (Desmarais et al., 2014; Xu and Desmarais,
2016), the data-driven approach (Liu et al., 2012, 2013), and
the exploratory factor analysis method (Barnes, 2003; Close,
2012; Wang et al., 2018b, 2020), and (b) the supervised method,
including the sequential EM-based δ method (de la Torre, 2008)
and its extension ς2 method (de la Torre and Chiu, 2016),
the Bayesian approach (DeCarlo, 2012), the non-parametric Q-
matrix refinement method (Chiu, 2013), the stepwise reduction
algorithm (Hartz, 2002), the EM-based methods (Wang et al.,
2018a), the residual-based or item fit statistic approach (Chen,
2017; Kang et al., 2018) and so on.

The unsupervised method is deriving a Q-matrix only from
test data or item responses. The unsupervised method is very
useful because there are many existing tests without specifying
the Q-matrix but with test response data. However, it would be
difficult to identify the number of latent skills and be slightly
more difficult to understand results from real data. A study of
Beheshti et al. (2012) found that the number of latent skills
estimated from real data is not well-aligned with the assessment
of experts.

The supervised method can incorporate the information
of experts’ Q-matrix and test response data to refine or
validate the provisional Q-matrix. If the provisional Q-matrix
is unknown for an existing test, the supervised methods cannot
be used. Furthermore, this method often needs a high-quality
provisional Q-matrix for a whole test. If the provisional Q-
matrix is specified by subject matter experts but contains a large
amount of misspecification, it will be difficult for the recovery
of a high-quality Q-matrix through the supervised method,

because the performance of the supervised method relies on the
precision of classification of attribute patterns resulting from the
provisional Q-matrix (de la Torre, 2008; Rupp and Templin,
2008).

Specifying a Q-matrix for a whole test by experts can be a
time-consuming and fatigue process. The purpose of this study is
to propose a semi-supervised method for Q-matrix specification
in order to check whether only some of items needs to be
identified by experts. The semi-supervised method falls between
unsupervised and supervised methods.

MODEL AND METHOD

Model
Let K be the number of attributes. Let Xij be a binary random
variable to denote the response of examinee i to item j, i =
1, 2, . . . ,N, j = 1, 2, . . . , J. Let αi be a column vector to denote an
attribute mastery pattern or a knowledge state from the universal
set of knowledge states. Moreover, Q-matrix that specifies the
item-attribute relationship is a K × J matrix, in which entry
qkj = 1 if attribute k is required for answering item j correctly;
otherwise, qkj = 0.

The item response function for the deterministic inputs, noisy
“and” gate (DINA) model (Haertel, 1989; Junker and Sijtsma,
2001; Chiu and Douglas, 2013) is as follows:

Pj(αi) = P(Xij = 1|αi) = g
1−ηij

j (1− sj)
ηij , (1)

where a deterministic latent response ηij =
∏K

k=1 α
qkj
ki

indicates
whether or not examinee i possesses all of the attributes required
by item j. A value of ηij = 1 means that examinee i has mastered
all of the attributes required by item j, and ηij = 0 otherwise. The
slip parameter sj refers to the probability of an incorrect response
to the item j when ηij = 1, and the guessing parameter gj refers
to the probability of a correct response to item j when ηij = 0.
Let B = (ηij) be a deterministic latent response matrix for the
DINA model.

The item response function for the deterministic inputs, noisy
“or” gate (DINO) model (Templin and Henson, 2006; Chiu and
Douglas, 2013) is as follows:

Pj(αi) = P(Xij = 1|αi) = (1− sj)
wijg

1−wij

j , (2)

where wij = 1 −
∏K

k=1 (1− αki)
qkj is a deterministic latent

response. As in the DINA model, sj and gj are the slip and
guessing parameters of item j. The DINA and DINO model are
conjunctive and disjunctive models (Maris, 1999), respectively.
Let W = (wij) be a deterministic latent response matrix for the
DINO model.

A Semi-supervised Learning Approach for the

Conjunctive Model
In the rule space method (Tatsuoka, 2009) or the attribute
hierarchy method (Leighton et al., 2004), the adjacency matrix
denoted byA represents the direct relationship among attributes.
We denote the entry in row k1 and column k2 of A by ak1k2 . If a
direct prerequisite relation exists from attribute k1 to attribute
k2, then ak1k2 = 1, and ak1k2 = 0 otherwise. Let R denote
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a reachability matrix of order (K,K) to specify the direct and
indirect relationships among attributes. The Rmatrix is given by
R = (A+ I)K with respect to Boolean operations, where I is an
identity matrix. The reduced Q matrix denoted byQr is obtained
by removing the items (columns) that do not satisfy the specified
relationships from the incidence Q matrix. The columns of Qr

and the zero vector forms the student matrix denoted by Qs in
which the columns forms the universal set of attribute patterns.
If K attributes are independent, A is a zero matrix, R with K
columns is an identity matrix, Qr with 2K − 1 columns does
not include the zero vector, and Qs with 2K columns contains
all possible combinations of attribute patterns.

We assume that the cognitive requirement for the multiple
skills within an item is conjunctive (Maris, 1999), that is,
answering an item correctly requires mastery of all the skills
required by that item. For the conjunctive model, Example 1 will
show the relationship of latent responses on items with q-vectors
corresponding to R andQr.

Example 1 for an independent structure. Let K = 2, R =
[

r1 r
2

]

=
[

1 0
0 1

]

, Qr =
[

q1 q2 q3
]

=
[

1 0 1
0 1 1

]

, and Qs =
[

α1 α2 α3 α4

]

=
[

0 1 0 1
0 0 1 1

]

.

GivenQs and a test Q-matrix ofQr, a latent response matrix B =

[

η1 η2 η3

]

=









0 0 0
1 0 0
0 1 0
1 1 1









can be calculated, in which the entry in

row i and column j is the deterministic latent response of ηij. If 0
corresponds to F (false) and 1 corresponds to T (true), the logical
conjunction and disjunction operators, ∨ and ∧, can be applied
to two binary vectors of equal length, by taking the bitwise AND
or OR of each pair of bits at corresponding positions. It can be
observed that η3 = η1∧η2, where η3 = η1∧η2 is the conjunction
of η1 and η2. This is because the relationship q3 = q1∨q2 is true,
where q1 ∨ q2 is the disjunction of q1 and q2.

Example 1 illustrates the following fact. For the conjunctive
model, consider two latent response matrices denoted by B1

and B2 from two tests corresponding two Q-matrices Qr and
R, where denoted as a reachability matrix. It means that B1

and B2 can be generated, respectively from the reduced Q-
matrix and the reachability matrix based on the universal set of
attribute patterns. From the example above, then any columns
of the B1 can be expressed by the columns of the B2 under the
logical AND operation. This is because the augmented algorithm
proposed by Ding et al. (2008, 2009) in the generalized Q-
matrix theory (Ding et al., 2015) provided the useful fact that
any columns of the reduced Q-matrix can be expressed by
the columns of the reachability matrix under the logical OR
operation. The argument in Example 1 can be adapted to prove
the following theorem.

Theorem 1. For the conjunctive model, if K attributes are
independent, then qj = ∨l∈Sjrl if and only if ηij = ∧l∈Sjηil, where
αi is any column of Qs and Sj is a subset of {1, 2, . . . ,K}.

Proof : If qj = ∨l∈Sjrl, we need to consider two cases, when
ηij = 1 and ηij = 0. If ηij = 1 for αi as a column of Qs,
we know that αki = 1 for all attributes k with qkj = 1 by the

definition of the deterministic latent response. That is, examinee
i has mastered all the skills required by item j. Since qj = ∨l∈Sjrl,
then by the definition of conjunction, we can conclude that αki =
1 for all attributes k with rkl = 1 for all l ∈ Sj. We now use the
definition of the deterministic latent response to conclude that
ηil = 1 for all l ∈ Sj, that is, ∧l∈Sjηil = 1. This shows that
ηij = ∧l∈Sjηil when ηij = 1. If ηij = 0 for αi as a column
of Qs, we know that αki = 0 for at least one of attributes with
qkj = 1 by the definition of the deterministic latent response.
That is, examinee i has not mastered all the skills required by
item j. Since qkj = 1 and qj = ∨l∈Sjrl, there is an item l in Sj
such that rkl = 1. This means that item l measured attribute k.
Since αki = 0, then by the definition of the deterministic latent
response, it follows that ηil = 0 for at least one of items in Sj,
that is, ∧l∈Sjηil = 0. This show that ηij = ∧l∈Sjηil when ηij = 0.
Next, we try to prove the converse. First suppose that there exists
an attribute k ∈ {1, 2, . . . ,K} such that ∨l∈Sjrkl = 1 and qkj = 0.
Since ∨l∈Sjrkl = 1, we know that there exists an item l ∈ Sj with
rkl = 1. Due to the arbitrariness of αi, let αi = 1 − ek, where

1 = (1 1 . . . 1)
T
and ek is the vector with a 1 in the kth entry

and 0’s elsewhere. This is a contradiction, because we know that
ηij = 1, while ∧l∈Sjηil = 0. Similarly, we assume that there exists
an attribute k ∈ {1, 2, . . . ,K} such that ∨l∈Sjrkl = 0 and qkj = 1.
One can still take αi = 1−ek. This is also a contradiction, because
we know that ηij = 0, while ∧l∈Sjηil = 1. The proof is complete.

The important fact about Theorem 1 is that if a latent
response matrix is calculated from a Q-matrix, the relationship
between the columns in the Q-matrix can be constructed
from the relationship between the corresponding columns
in the latent response matrix. It should be noted that an
observed item response is a function of an underlying latent
response and slip and guessing parameters. In other words,
the noise introduced in the process is due to slip and
guessing parameters.

Next, we will introduce a semi-supervised learning method
for Q-matrix specification for the conjunctive model by using
the result of Theorem 1 and considering the noise in item
responses. Without loss of generality, we begin by arbitrarily
assigning q-vector qj to item j. Given a test Q-matrix, written as
Qt = [RK×K qj] = [r1 r2 . . . rK qj], where R is a reachability
matrix specified by subject matter experts and the remaining qj is
unknown. Let U = [XN×K YN×1] be an item response matrix
on Qt , where N is the sample size. The estimate of qj can be
written as

q̂j = ∨rk∈Ŝjrk, (3)

where logical OR is applied to the corresponding entries of the
columns in the following set of Ŝj

Ŝj = argmin
S∈P({r1,r2 ,...,rK })−∅

(Yj −∧rk∈SXk)
T(Yj −∧rk∈SXk), (4)

where P({r1, r2, . . . , rK}) is the power set of the set {r1, r2, . . . , rK}.
The exhaustive method with time complexity O(2K) provided a
simple way to find a global solution of Ŝj.
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A Semi-supervised Learning Approach for the

Disjunctive Model
For the disjunctive model, the deterministic latent response on
an item is correct if and only if an examinee has mastered at
least one of the skills required by the item. This is illustrated in
Example 2. Similar to what we did in Example 1, Example 2 will
show the relationship of latent responses on items with q-vectors
corresponding to R andQr.

Example 2 for an independent structure. Let K = 2, R =
[

r1 r
2

]

=
[

1 0
0 1

]

, Qs =
[

α1 α2 α3 α4

]

=
[

0 1 0 1
0 0 1 1

]

, and

Qr =
[

q1 q2 q3
]

=
[

1 0 1
0 1 1

]

. FromQs andQr, a latent response

matrix W1 =
[

w1 w2 w3

]

=









0 0 0
1 0 1
0 1 1
1 1 1









can be calculated, in

which the entry in row i and column j is the deterministic latent
response of wij. It can be observed that w3 = w1 ∨ w2. This is
because the relationship q3 = q1 ∨ q2 is true.

Consider a latent responsematrix, denoted byW2 =
[

w1 w2

]

,
corresponding to the R matrix. The fact illustrated in Example 2
is that any columns of theW1 can be expressed by the columns of
theW2 under the logical OR operation for the disjunctive model.
This is also because the augmented algorithm proposed by Ding
et al. (2008, 2009) in the generalized Q-matrix theory (Ding et al.,
2015) provided the useful fact that any columns of the reducedQ-
matrix can be expressed by the columns of the reachability matrix
under the logical OR operation. The following theorem gives the
precise statement.

Theorem 2. For the disjunctive model, if K attributes are
independent, then qj = ∨l∈Sjrl if and only if wij = ∨l∈Sjwil,
where αi is any column ofQs and Sj is a subset of {1, 2, . . . ,K}.

Proof: If qj = ∨l∈Sjrl, we need to consider two cases, when
wij = 1 and wij = 0. If wij = 1 for αi as a column of Qs,
we know that αki = 1 for at least one of attributes k with
qkj = 1 by the definition of the deterministic latent response.
That is, examinee i has mastered at least one of the attributes
required by item j. Without loss of generality, we assume αki = 1
and qkj = 1. Since qj = ∨l∈Sjrl, then by the definition of
disjunction, we can conclude that rkl = 1 is true for at least
one of l ∈ Sj. From the definition of the deterministic latent
response, it follows that there is at least one item l ∈ Sj such that
wil = 1, that is, ∨l∈Sjwil = 1. This show that wij = ∨l∈Sjwil

when wij = 1. If wij = 0 for αi as a column of Qs, we know
that wki = 0 for all of attributes with qkj = 1 by the definition
of the deterministic latent response. That is, examinee i has
not mastered any skills required by item j. Since qj = ∨l∈Sjrl,
examinee i has not mastered any skills required by any item
l ∈ Sj. If we suppose that examinee i has mastered at least one
of attributes required by an item l ∈ Sj, then wij = 1, which
is a contradiction. It means that item l measured attribute k. It
follows that wil = 0 for all of items in Sj, that is, ∨l∈Sjwil = 0,
directly from the definition of the deterministic latent response.
This show that wij = ∨l∈Sjwil when wij = 0. Next, we use a proof
by contradiction to prove the converse. First assume that there
exists an attribute k ∈ {1, 2, . . . ,K} such that ∨l∈Sjrkl = 1 and

qkj = 0. Since ∨l∈Sjrkl = 1, we know that there exists an item
l ∈ Sj with rkl = 1. Due to the arbitrariness of αi, let αi = ek,
where ek is the vector with a 1 in the kth entry and 0’s elsewhere.
Then, we havewil = 1 and wij = 0. Sincewij = ∨l∈Sjwil, we
know that wij = 1 and arrive at a contradiction. Similarly, we
assume that there exists an attribute k ∈ {1, 2, . . . ,K} such that
∨l∈Sjrkl = 0 and qkj = 1. One can still take αi = ek. This is also a
contradiction, because we know that wij = 1, while ∧l∈Sjwil = 0.
The proof is complete.

The important fact about Theorem 2 is that one can derive
the relationship between the columns of a Q-matrix from
the relationship between the columns of corresponding latent
response matrix. For considering the noise introduced in item
responses due to slipping and guessing, we will introduce a semi-
supervised learning method for Q-matrix specification for the
disjunctive model by using the result of Theorem 2. Without
loss of generality, we begin by arbitrarily assigning a q-vector
to qj. Given a test Q-matrix, written as Qt = [RK×K qj] =
[r1 r2 . . . rK qj], where R is a reachability matrix specified by
subject matter experts and the remaining qj is unknown. Let
U = [XN×K YN×1] be an item response matrix on Qt . The
estimate of qj can be written as

q̂j = ∨rk∈Ŝjrk, (5)

where logical OR is applied to the corresponding entries of the
columns in the following set of Ŝj

Ŝj = argmin
S∈P({r1,r2 ,...,rK })−∅

(Yj −∨rk∈SXk)
T(Yj −∨rk∈SXk), (6)

where P({r1, r2, . . . , rK}) is the power set of the set {r1, r2, . . . , rK}.
The exhaustive method with time complexity O(2K) provided a
simple way to find a global solution of Ŝj.

A SIMULATION STUDY

Study Design
A simulation study was conducted to investigate the performance
of the new method under five factors, such as sample size, item
parameters for items corresponding to a reachability matrix, item
parameters for new or raw items with unknown q-vectors, two
cognitive diagnostic models (the DINA and DINO model), and
two designs. Five attributes were considered in the simulation
study. Matlab 2015a and R-3.6.1 were used for estimating
unknown Q-matrix and analyzing real data below.

In the simulation study, a test Q-matrixQt = [R Qr] consists
of an identity or a reachability matrix and a reduced Q-matrix,
where the reduced Q-matrix with 31 items includes all non-zero
possible q-vectors. The number of examinees has 10 levels, such
as N =30, 60, . . . , and 300. Item parameters for R andQr have 10
levels, such as 0, 0.05, . . . , and 0.45. In general, for the DINA or
DINO model, a high quality or “good” item will have small slip
and guessing parameters (Rupp et al., 2010), which means that
the noise are small.

Random and optimal designs were considered in the
simulation study. For the random design, attribute patterns for
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examinees were generated by taking each of the 25 possible
patterns with equal probability for each sample size. From the
proof of Theorem 1 above, we know that the following set of
attribute patterns for examinees plays a very important role
in discriminating latent response vectors of different q-vectors
under the DINA model

SDINA = {1− e11− e2, . . . , 1− eK}{











0
1
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1











,











1
0
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1











, . . . ,











1
1
...
0











} (7)

where ek is the vector with a 1 in the kth entry and 0’s
otherwise. From the proof of Theorem 2 above, another set
of attribute patterns for examinees plays a very important role
in discriminating latent response vectors of different q-vectors
under the DINO model as follows

SDINO = {e1, e2, . . . , eK}{
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0
...
1











}, (8)

where ek is the vector with a 1 in the kth entry and 0’s otherwise.
For the optimal design, attribute patterns for examinees
under the DINA or DINA model were randomly drawn with
replacement from the set of SDINA or SDINO, respectively. Optimal
designs for two models are possible to meet the needs of learners
at different stages of skills and knowledge acquisition. For
example, the attribute patterns in SDINO containing only one skill.
This condition is really improbable for summary assessments in
real situations, but is expected to be common for novice learners
with respect to the new content to be learned in formative
assessments or classroom assessments.

Data Simulation
Simulated data were generated using five attributes. Based on
the simulated Q-matrix, item parameters, and attribute patterns,
item responses are generated in the following way

Xij =
{

1, if u ≤ Pj(αi),
0, otherwise,

(9)

where u is a random value from a Uniform (0, 1) distribution and
Pj(αi) is the item response function of the DINA or DINOmodel.
A total of 4,000 conditions were simulated (10 sample sizes × 10
item parameters × 10 item parameters × 2 models × 2 designs).
Thirty replication data sets were simulated for each condition.

Evaluation Criterion
The performance of the new method is evaluated in terms of the
correct recovery rate (CRR) of q-entries. The correct recovery
rate equals the ratio of the number of correct q-entries in the
estimated Q-matrix to the total number of q-entries (Chiu, 2013)

CRR = 1

KM

K
∑

k=1

M
∑

j=1

I(q̂kj = qkj), (10)

TABLE 1 | Mean and standard deviation (in brackets) of correct recovery rate of

q-entries for two models and two designs.

Sample

size

The DINA model The DINO model

Random

design

Optimal

design

Random

design

Optimal

design

30 0.651 (0.126) 0.720 (0.147) 0.653 (0.126) 0.721 (0.146)

60 0.699 (0.145) 0.769 (0.153) 0.700 (0.144) 0.770 (0.151)

90 0.725 (0.149) 0.796 (0.152) 0.726 (0.149) 0.796 (0.151)

120 0.742 (0.151) 0.815 (0.149) 0.743 (0.151) 0.815 (0.148)

150 0.756 (0.153) 0.827 (0.146) 0.754 (0.153) 0.829 (0.145)

180 0.764 (0.153) 0.839 (0.143) 0.765 (0.153) 0.838 (0.144)

210 0.772 (0.153) 0.847 (0.141) 0.772 (0.151) 0.846 (0.141)

240 0.779 (0.152) 0.854 (0.138) 0.777 (0.152) 0.854 (0.138)

270 0.784 (0.151) 0.858 (0.137) 0.783 (0.152) 0.858 (0.137)

300 0.789 (0.151) 0.863 (0.135) 0.789 (0.152) 0.864 (0.135)

Mean 0.746 (0.154) 0.819 (0.151) 0.746 (0.154) 0.819 (0.150)

where M = 31 is the number of columns of the unknown Q-
matrixQr, qkj is an (k, j)th entry of the simulatedQr, and q̂kj is an

(k, j) entry of the Q̂r estimated from the new method. The mean
and standard deviation of the CRR values of the 30 replications
were reported for each condition.

Results
Table 1 lists descriptive statistics of correct recovery rate of q-
entries for two models and two designs across other conditions.
It is clear that the mean of correct recovery rates of q-entries
tends to increase as sample size increases, but sample size has
slightly affected the standard deviations of correct recovery rates.
It should be noted that the mean of correct recovery rates of the
optimal design is larger than that of the randomdesign. The semi-
supervised learningmethod for q-matrix specification performed
similarly under two cognitive diagnostic models. In addition,
since there are 32 possible attribute patterns, no all attribute
patterns can be observed in the first sample size condition (N =
30). This might lead to lower rate of correct recovery observed
for this condition.

Table 2 shows the correct recovery rates of q-entries from
the new method with sample size of 300 for the DINA model
under the random design. From correct recovery rates of q-
entries, when item parameters for items with known (i.e., the
reachability matrix) and unknown q-vectors are ≤0.2, most of
the average of correct recovery rates of q-entries for the semi-
supervised method are larger than or equal to 0.9. From trends
of marginal means of last rows and columns in Table 2, item
parameters of the reachability matrix have a relatively larger
impact on the performance of the semi-supervised method than
item parameters with unknown q-vectors.

Table 3 presents the correct recovery rates of q-entries from
the new method with sample size of 300 for the DINA model
under the optimal design. From correct recovery rates of q-
entries, when item parameters for items with known and
unknown q-vectors are ≤0.25, the average of correct recovery
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TABLE 2 | The correct recovery rates of q-entries with sample size of 300 for the DINA model and random design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 0.999 0.998 0.993 0.974 0.929 0.837 0.665 0.939

0.05 1.000 1.000 0.997 0.995 0.991 0.976 0.946 0.908 0.791 0.642 0.925

0.10 0.994 0.992 0.984 0.984 0.967 0.954 0.927 0.857 0.767 0.632 0.906

0.15 0.974 0.968 0.958 0.954 0.932 0.915 0.866 0.807 0.724 0.608 0.870

0.20 0.927 0.922 0.910 0.901 0.881 0.860 0.826 0.776 0.692 0.591 0.829

0.25 0.866 0.846 0.850 0.839 0.825 0.802 0.776 0.733 0.652 0.567 0.775

0.30 0.791 0.801 0.782 0.793 0.760 0.735 0.727 0.670 0.624 0.563 0.725

0.35 0.728 0.718 0.720 0.709 0.709 0.698 0.683 0.637 0.604 0.546 0.675

0.40 0.673 0.686 0.681 0.680 0.668 0.643 0.620 0.608 0.589 0.527 0.638

0.45 0.647 0.634 0.623 0.620 0.615 0.612 0.604 0.575 0.575 0.537 0.604

M 0.860 0.857 0.851 0.847 0.835 0.819 0.795 0.750 0.686 0.588 0.789

The bold values are larger than 0.9.

TABLE 3 | The correct recovery rates of q-entries with sample size of 300 for the DINA model and optimal design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.991 0.939 0.780 0.971

0.05 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.981 0.917 0.754 0.965

0.10 1.000 1.000 1.000 0.999 0.998 0.995 0.981 0.955 0.871 0.714 0.951

0.15 1.000 1.000 0.998 0.992 0.988 0.981 0.959 0.915 0.841 0.688 0.936

0.20 0.986 0.986 0.982 0.973 0.962 0.952 0.918 0.875 0.785 0.661 0.908

0.25 0.959 0.952 0.947 0.933 0.926 0.909 0.879 0.829 0.754 0.624 0.871

0.30 0.930 0.914 0.912 0.909 0.883 0.865 0.832 0.786 0.712 0.610 0.835

0.35 0.886 0.888 0.880 0.865 0.847 0.813 0.780 0.724 0.662 0.573 0.792

0.40 0.847 0.834 0.816 0.804 0.774 0.753 0.721 0.679 0.629 0.562 0.742

0.45 0.749 0.738 0.717 0.720 0.688 0.687 0.656 0.619 0.581 0.556 0.671

M 0.936 0.931 0.925 0.920 0.907 0.895 0.872 0.835 0.769 0.652 0.864

The bold values are larger than 0.9.

rates of q-entries for the semi-supervised method are larger than
or equal to 0.9. However, item parameters for known q-vectors
have slightly larger impact on the performance of the semi-
supervised method than for unknown q-vectors, because the row
means decreased more quickly than the column means. We need
to compare the Tables 2, 3 to see which designs are promising.
The number of correct recovery rates above 0.9 in Table 3 were
found to be larger than that of Table 2. Tables 4, 5 show the
correct recovery rates of q-entries from the new method with
sample size of 300 for the DINO model under the random and
optimal design. It can be observed that results for the DINO
model are the same as those for the DINAmodel described above.

REAL DATA ANALYSIS

The purpose of the real data analysis is to examinee whether the
proposed method is promising for a non-independent structure
under the conjunctive model based on an intuitive fact from the
following example.

Example 3 for an unstructured hierarchy under the
conjunctive model. Let K = 3, R = [r1 r2 r3] =




1 1 1
0 1 0
0 0 1



, Qr = [q1 q2 q3 q4] =





1 1 1 1
0 1 0 1
0 0 1 1



, and

Qs =
[

α0 α1 α2 α3 α4

]

=





0 1 1 1 1
0 0 1 0 1
0 0 0 1 1



. From the ideal

response matrix B =
[

η1 η2 η3 η4

]

=













0 0 0 0
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1













, it can be

observed that η4 = η2 ∧η3 or η4 = η1 ∧η2 ∧η3. This is because
the relationship q4 = q2 ∨ q3 or q4 = q1 ∨ q2 ∨ q3 is true.

A common data set pertaining to fraction-subtraction data
contains 20 items and 536 examines (de la Torre and Douglas,
2004). In our real data analysis, we focused on the analysis
of a subset of test items where the expert Q-matrix comes
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TABLE 4 | The correct recovery rates of q-entries with sample size of 300 for the DINO model and random design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 0.999 0.998 0.990 0.976 0.929 0.840 0.685 0.942

0.05 1.000 0.999 0.998 0.996 0.991 0.980 0.946 0.889 0.796 0.650 0.925

0.10 0.996 0.991 0.992 0.985 0.968 0.945 0.918 0.848 0.767 0.639 0.905

0.15 0.971 0.969 0.963 0.947 0.931 0.912 0.864 0.806 0.724 0.604 0.869

0.20 0.927 0.921 0.915 0.905 0.885 0.854 0.819 0.763 0.687 0.578 0.825

0.25 0.855 0.854 0.865 0.842 0.831 0.797 0.773 0.733 0.665 0.572 0.779

0.30 0.787 0.795 0.789 0.774 0.763 0.743 0.722 0.677 0.629 0.571 0.725

0.35 0.734 0.721 0.717 0.720 0.720 0.686 0.662 0.634 0.597 0.550 0.674

0.40 0.677 0.678 0.689 0.675 0.660 0.654 0.623 0.624 0.573 0.536 0.639

0.45 0.632 0.630 0.628 0.633 0.611 0.608 0.600 0.586 0.571 0.525 0.603

M 0.858 0.856 0.856 0.848 0.836 0.817 0.790 0.749 0.685 0.591 0.789

The bold values are larger than 0.9.

TABLE 5 | The correct recovery rates of q-entries with sample size of 300 for the DINO model and optimal design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.939 0.780 0.971

0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.973 0.916 0.744 0.963

0.10 1.000 1.000 1.000 1.000 0.998 0.994 0.983 0.954 0.873 0.715 0.952

0.15 0.998 0.999 0.996 0.995 0.985 0.978 0.957 0.922 0.836 0.695 0.936

0.20 0.991 0.986 0.982 0.970 0.961 0.946 0.916 0.873 0.795 0.666 0.909

0.25 0.957 0.951 0.951 0.935 0.925 0.909 0.885 0.829 0.752 0.628 0.872

0.30 0.922 0.910 0.913 0.902 0.894 0.866 0.840 0.772 0.705 0.595 0.832

0.35 0.887 0.882 0.870 0.862 0.842 0.807 0.787 0.731 0.678 0.571 0.792

0.40 0.838 0.830 0.812 0.802 0.788 0.749 0.715 0.675 0.620 0.560 0.739

0.45 0.737 0.733 0.733 0.703 0.690 0.663 0.645 0.619 0.595 0.544 0.666

M 0.933 0.929 0.926 0.917 0.908 0.891 0.872 0.834 0.771 0.650 0.863

The bold values are larger than 0.9.

from Table 7 both in de la Torre (2008) or DeCarlo (2012).
The labels given to the five skills are (A1) performing basic
fraction-subtraction operation, (A2) simplifying/reducing, (A3)
separating whole numbers from fractions, (A4) borrowing one
from whole number to fraction, and (A5) converting whole
numbers to fractions.

We assumed the corresponding Q-matrix of items 3, 8, 9,
12, and 10 known since these item parameters are relatively
small and the q-vectors of other items are combinations of q-
vectors for these five items. Then, the semi-supervised method
was applied to estimate q-vectors for the other 10 items. Results
in Table 6 show that the agreement rate of q-entries between
the estimate and expert Q-matrix on the 10 items is 84%. The
estimated q-entries suggest that items 4, 7, 13, 14, and 15 do
not require attribute 2 (simplifying/reducing). Item 4 (similar
to item 14) do not required attribute A2, which is consistent
with results from DeCarlo (2012). Items 7, 13, and 15 can
be answered correctly by using attributes required by item 12.

The estimated q-vector of item 1 has largest discrepancy with
the expert q-vector. The reason might be that solving item
1 correctly needs to find a common denominator and then
performs basic fraction-subtraction operation. The guessing and
slip parameter of item 1 are 0.0001 and 0.2769 under the
expert q-vector, respectively. The guessing and slip parameter
of item 1 are 0.3408 and 0.0716 under the estimated q-vector,
respectively. Since item 1 requires an extra attribute (i.e., find
a common denominator), the slip parameter for the expert q-
vector is relatively large, while the estimated q-vector contains
some unnecessary attributes, the guessing parameter is relatively
large. In the estimated Q-matrix, attribute A4 has been added to
item 11.The guessing probability of item 11 increased sensibly
(from 0.10 to 0.48). It indicated that attribute A4 is not necessary
for item 11 because this item is different from items 7, 12,
and so on.

The generalized DINAmodel (GDINA; de la Torre, 2011), the
DINA model, the linear logistic model (LLM; Fischer, 1995), and
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TABLE 6 | The expert and estimated Q-matrix and item parameters estimates of the DINA model for the fractional subtraction data.

No. Items The expert Q-matrix and item parameters

estimates of the DINA model

The estimated Q-matrix and item

parameters estimates of the DINA model

A1 A2 A3 A4 A5 ĝ ŝ A1 A2 A3 A4 A5 ĝ ŝ

1
3

4
− 3

8
1 0 0 0 0 0.00 0.28 1 0 1 1 1 0.34 0.07

2 3
1

2
− 2

3

2
1 1 1 1 0 0.21 0.12 1 1 1 1 0 0.21 0.11

3
6

7
− 4

7
1 0 0 0 0 0.14 0.04 1 0 0 0 0 0.10 0.05

4 3− 2
1

5
1 1 1 1 1 0.12 0.13 1 0 1 1 1 0.12 0.18

5 3
7

8
− 2 1 0 1 0 0 0.34 0.25 1 0 1 0 0 0.35 0.25

6 4
4

12
− 2

7

12
1 1 1 1 0 0.03 0.23 1 1 1 1 0 0.03 0.23

7 4
1

3
− 2

4

3
1 1 1 1 0 0.07 0.08 1 0 1 1 0 0.07 0.08

8
11

8
− 1

8
1 1 0 0 0 0.16 0.05 1 1 0 0 0 0.09 0.04

9 3
4

5
− 3

2

5
1 0 1 0 0 0.08 0.06 1 0 1 0 0 0.04 0.04

10 2− 1

3
1 0 1 1 1 0.17 0.07 1 0 1 1 1 0.15 0.09

11 4
5

7
− 1

4

7
1 0 1 0 0 0.10 0.10 1 0 1 1 0 0.48 0.07

12 7
3

5
− 4

5
1 0 1 1 0 0.03 0.13 1 0 1 1 0 0.05 0.14

13 4
1

10
− 2

8

10
1 1 1 1 0 0.13 0.16 1 0 1 1 0 0.13 0.16

14 4− 1
4

3
1 1 1 1 1 0.02 0.20 1 0 1 1 1 0.01 0.24

15 4
1

3
− 1

5

3
1 1 1 1 0 0.01 0.18 1 0 1 1 0 0.01 0.19

The bold values are the changes.

the reduced reparametrized unified model (R-RUM; Hartz, 2002)
were applied to fit the fraction-subtraction data with the expert
or estimated Q-matrix. Under the DINAmodel, the means of the
estimates of the guessing and slip parameter for the expert Q-
matrix are 0.1080 and 0.1381, respectively, while for the revised
Q-matrix, they are 0.1440 and 0.1295, respectively. It means
that the estimates of the slip parameter become lower, but the
guessing parameters tend to be larger. Table 7 presents fit results
for the fraction subtraction data using the expert and estimated q-
matrix. The LLM with the estimated Q-matrix is the best-fitting
CDM and the R-RUM with the estimated Q-matrix is slightly
worse, whereas the estimatedQ-matrix performed worse than the
expert Q-matrix only in the DINA model.

CONCLUSION AND DISCUSSION

The supervised methods rely on a provisional Q-matrix for a
whole test, the estimates of examinees’ attribute patterns and
their accuracy. It is not suitable for the case of a provisional
Q-matrix with a large amount of misspecification. The purpose
of this study is to propose the semi-supervised method under
independent structure based on item responses and a reachability
R matrix corresponding to a small part of test item specified by
subject matter experts. The new method doesn’t need to estimate
examinees’ attribute patterns. The main conclusion of this study
is that the new method will play a very important role in assist

subject matter experts for Q-matrix specification because it is
hard to correctly specify a Q-matrix with a large number of test
items by subject matter experts. It may be useful for cognitive
diagnostic assessment to facilitate teaching and learning.

The generalized Q-matrix theory has been shown that each
column in the reduced Q-matrix can be expressed as a logical
disjunction of some of columns of the reachability matrix.
With the aid of this theory, this study takes a look inside a
latent response matrix and reveals an interesting and useful
relationship hidden in its columns. If a latent response matrix
is calculated from a Q-matrix under the conjunctive model, a
column in the latent response matrix is the conjunction of some
other columns in this matrix if and only if the corresponding
column of the Q-matrix can be written as the disjunction of
their corresponding columns. While for the disjunctive model,
the columns of the latent response matrix have exactly the
same disjunction relationships as the columns of the Q-matrix.
Because any conjunction or disjunction relationship among the
columns of a latent response matrix would imply a disjunction
relationship among the columns of a Q-matrix, then we are
expected that the relationship between the columns in the
Q-matrix can be constructed from the relationship between
the corresponding columns in an observed response matrix,
resulting from the latent response matrix by adding the noise
or random errors. Another reason for this expectation is that
each entry in the observed response matrix is modeled as
a noisy observation of the corresponding entry in the latent
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TABLE 7 | Fit results for the fraction subtraction data using the expert and

estimated Q-matrix.

Q-matrix CDM –LL2 AIC BIC

Expert Q-matrix GDINA 6,695 7,133 8,071

Estimated Q-matrix GDINA 6,548 6,910 7,686

Expert Q-matrix DINA 6,912 7,034 7,295

Estimated Q-matrix DINA 7,030 7,152 7,413

Expert Q-matrix LLM 6,595 6,781 7,179

Estimated Q-matrix LLM 6,523 6,707 7,102

Expert Q-matrix R-RUM 6,696 6,882 7,280

Estimated Q-matrix R-RUM 6,543 6,727 7,122

−2LL, −2 log likelihood; AIC, Akaike’s information criterion; BIC, Bayesian

information criterion (Chen et al., 2013).

response matrix through slip and guessing parameters (Junker
and Sijtsma, 2001) and the discrepancies between the latent and
observed response matrices are considered as random errors
(Tatsuoka, 1987).

From the key theoretical results above, the semi-supervised
method and an optimal design were then proposed for Q-matrix
specification based on test response data and a reachabilitymatrix
specified by subject matter experts, and the simulation study was
conducted to investigate the performance of the newmethod and
the optimal design for examinee sampling in terms of the CRR
of q-entries. From the CRR of q-entries, it is clear found that:
(a) for the random design, when item parameters for items with
known and unknown q-vectors are≤0.20, the average of CRRs of
q-entries for the semi-supervised method is larger than or equal
to 0.9, (b) for the optimal design, when item parameters for items
with known and unknown q-vectors are ≤0.25, the average of
CRRs of q-entries for the semi-supervised method is larger than
or equal to 0.9, and (c) item parameters of the reachability matrix
have a larger impact on the performance of the semi-supervised
method than item parameters with unknown q-vectors.

Finally, based on the results obtained in this study, some
problems worthy of study in the future are put forward. First,
how to effectively use the most of data or information on some
other items for which experts have also specified q-vectors,
because as the increase of the number of item specified q-
vectors, the time complexity (more specifically, exponential time)
of the exhaustive method grows much faster? If the number of
items is increased to double or triple the number of attributes
corresponding to the reachability matrix, one should investigate
whether choosing a small part of items with high quality will
reduce the noise of the responses and improve the estimation of
q entries of unknown items. Second, in the simulation study, we
know exactly how many attributes all items include. However,
in the real situation, some items with unknown Q-matrix may
mix additional attributes not specified in the reachability matrix
because we haven’t reviewed all items. Thus, we should explore
a novel or revised method for identifying the possibility of
extra attribute(s). Third, if the Q-matrix obtained from the
semi-supervised method is taken as an initial matrix or a

provisional Q-matrix of the existing supervised methods, is it
possible to further improve the recovery of Q-matrix? From
the results of the study, it can be seen that item parameters
or random errors of item responses have an impact on the
recovery of Q-matrix. If there is a method to reduce noise
in item responses, the recovery of Q-matrix may be further
improved. We only considered the small set of items with known
q-vectors and fixed item parameters. Additional work is needed
to further examine the impact of not only error patterns for
known q-vectors but different item parameters for test items.
Fourth, the current study focused on the DINA and DINO
model only. In the future, the proposed method should be
applied to general families of cognitive diagnostic models such
as the generalized DINA model (de la Torre, 2011), the log-
linear cognitive diagnostic model (Henson et al., 2009), the
general diagnostic model (von Davier, 2008), testlet cognitive
diagnosis model (Zhan et al., 2018), or polytomous cognitive
diagnosis models (Chen and de la Torre, 2018; Ma, 2019). Lastly,
since only the independent attribute structure in the simulation
study and hierarchy structures for the conjunctive model in
real data analysis were considered, the proposed method for
other attribute hierarchies with different cognitive assumptions
is worth studying.
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During the past decade, cognitive diagnostic models (CDMs) have become prevalent in
providing diagnostic information for learning. Cognitive diagnostic models have generally
focused on single cross-sectional time points. However, longitudinal assessments have
been commonly used in education to assess students’ learning progress as well
as evaluating intervention effects. Thus, it becomes natural to identify longitudinal
growth in skills profiles mastery, which can yield meaningful inferences on learning.
This study proposes longitudinal CDMs that incorporate latent growth curve modeling
and covariate extensions, with the aim to measure the growth of skills mastery and
to evaluate attribute-level intervention effects over time. Using real-world data, this
study demonstrates applications of unconditional and conditional latent growth CDMs.
Simulation studies show stable parameter recovery and classification of latent classes
for different sample sizes. These findings suggest that building on the well-established
growth modeling frameworks, applications of covariate-based longitudinal CDM can
help understand the effect of explanatory factors and intervention on the change of
attribute mastery.

Keywords: cognitive diagnostic model, covariate extension, latent growth curve, longitudinal analysis, learning
progression

INTRODUCTION

Growth of knowledge and skills are important indicators of learning, which commonly results from
the implementation of interventions such as course materials, instructional curriculum, teaching
methods, and policies. For educational systems and educators, it is important to understand the
changes in learning by evaluating the intervention effects. To quantify these effects, longitudinal
assessments or pre-and post-test designs have been widely used and the raw score has been
examined to reveal the progress in learning. Longitudinal assessment designs involve repeated
observations of variables over a period of time while pre-and post-test designs focus on two
measurements that are taken before and after a treatment. However, simple comparison between
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time points may lack reliability and validity (Linn and Slinde,
1977); therefore, researchers may seek applying psychometric
models to measure students’ knowledge and aptitude that are
characterized as latent constructs. Item response theory (IRT)
allows psychometrically specifying students’ ability as continues
latent variables and has a tradition to employ longitudinal
models to assess the growth in ability (Andersen, 1985; Fischer,
1989; Embretson, 1991). The multidimensional IRT models are
useful to measure how the unidimensional ability increase over
a period of time, yet it is hard to diagnose the increment
when the latent constructs are correlated with one another over
repeated measures.

In recent years, cognitive diagnostic models (CDMs), also
known as diagnostic classification models (DCMs), have drawn
increasing attention from researchers, as provides diagnostic
information for learning and instruction (Bradshaw and Levy,
2019). Several CDMs and assessments have been developed to
evaluate examinees’ mastery status on a set of cognitive skills
(e.g., DiBello et al., 1995; Bradshaw et al., 2014; Culpepper, 2019;
Culpepper and Chen, 2019). Most commonly, CDMs have been
used to assess students’ skills profiles at a single time point rather
than measuring changes in skills proficiency over time. However,
it is important for educators to know the students’ learning
trajectories to achieve learning goals as well as the effects of
intervention on the growth of student skills.

In this regard, latent transition analysis (LTA; Collins and
Wugalter, 1992) has been incorporated to the recent development
of CDM to evaluate changes in skills mastery. For example, Li
et al. (2016) employed DINA model as the measurement model in
an LTA to demonstrate a means of analyzing change in cognitive
skills over time. Similarly, Kaya and Leite (2017) developed
a model combining the LTA and deterministic input noisy
“and” gate (DINA; Junker and Sijtsma, 2001) and deterministic
input noisy “or” gate (DINO; Templin and Henson, 2006)
CDMs to address within-individual and between-groups change
in follow-up measurements of learning. In addition, Madison
and Bradshaw (2018a) proposed the Transition Diagnostic
Classification Model (TDCM) that combined log-linear cognitive
diagnosis model (LCDM; Henson et al., 2009) and with LTA
to provide a more general framework for measuring growth
in cognitive diagnostic modeling. Compared to the models
proposed by Li et al. (2016) and Kaya and Leite (2017) that
assume specific item response structures and place constraints on
parameters, TCDM use a general DCM framework that subsume
early models and combine it with LTA. They further extended the
TDCM to model multiple groups (MG-TDCM), thereby enabling
the examination of group differential growth in attribute mastery
in pre-and posttest design (Madison and Bradshaw, 2018b).

To model the learning trajectory, Wang et al. (2018) proposed
a family of learning models that use higher-order, hidden
Markov model (HO-HMM) to model attribute transition and
incorporate CDM framework to understand individualized
learning trajectory. Furthermore, Chen et al. (2018) proposed a
class of dynamic CDM models to trace learning trajectories. They
focused on investigating different types of learning trajectories
and developed a Bayesian Modeling framework to estimate
these learning trajectories. Focusing on modeling the growth in

the higher-order latent trait, Lee (2017) proposed longitudinal
growth curve cognitive diagnosis models (GC-CDM) that trace
changes in the higher-order latent traits to incorporate learning
over time into the cognitive assessment framework. Likewise,
Huang (2017) embedded a multilevel structure into higher
order latent traits and extended the generalized deterministic
input, noisy “and” gate (G-DINA) mode to a multilevel higher
order CDM, which enable the measurement of changes in
the latent trait in longitudinal data. Most recently, Zhan
et al. (2019) proposed a longitudinal diagnostic classification
modeling approach for assessing learning growth in both
repeated measures design and anchor-item design. Different
from the LTA-based methods providing attribute-level transition
probability matrix, the proposed longitudinal DINA model
(Long-DINA) is able to provide quantitative values of overall and
individual growth.

Although various longitudinal CDMs have been developed to
measure the transition of examinees’ attribute mastery statuses
over time, fewer studies focus on the intervention effects that
drive the changes in skill mastery from the perspectives of
covariates extension and latent growth curve model. In this
research study, we proposed two latent growth CDMs by using
unconditional and conditional approaches to trace changes
in latent attributes over time as well as allowing a flexible
parameterization to specify covariates that can be meaningful in
studying a longitudinal data structure.

Different from other longitudinal CDMs in the literature,
the latent growth CDMs proposed in this study is motivated
by the well-established growth curve modeling framework
that are commonly used in social sciences to measure latent
growth (e.g., Duncan et al., 2013). And as such, it becomes
important to link the longitudinal CDM framework to existing
techniques in the social sciences, to prompt more generalizable
and flexible model extensions. Although some previous studies
have incorporated growth curve model into CDM, they mainly
focused on extending the higher-order latent trait to model the
growth in learning, which assumes associations between different
latent attributes, that the probability of having the skills depends
on a higher order overall ability. Moreover, a focus on attribute-
level changes and their impact over time can be handled and
specified in the latent growth CDM framework, as proposed in
this paper. In this study, we incorporate covariate extensions
and latent growth curve model into the attribute-level of CDM
framework instead of the higher-order latent trait level. In this
way, we can monitor changes in the attribute level directly under
the independence assumption for attributes probabilities.

The study consists of three parts: A real-world data analysis
and two simulation studies. We first demonstrate the model
application using real-world data to motivate the rationale
for the latent growth framework and to monitor changes in
students’ skills mastery and intervention effects. The ensuing
sections include two simulation studies conducted separately to
examine the parameter recovery of the proposed models. In this
manner, the simulation studies with varying longitudinal design
components provide comprehensive inference for different
number of time points, sample sizes, and covariate specification
conditions. Findings from this study could help researchers
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apply the latent growth CDMs in practice and promote the
development of longitudinal CDMs.

COGNITIVE DIAGNOSTIC MODELS

Cognitive diagnostic models were designed to classify examinees
into skill profiles that indicate their mastery in fine-grained
skills or attributes based on their performance on a set of items
(Rupp et al., 2010). It refers to a class of psychometric models
where patterns of attributes mastery have been represented as
latent classes. Distinguish from IRT models that latent traits are
continuous, CDMs examine categorical latent traits. Different
kinds of CDMs have been developed in literature and various
generalizations of CDMs have also been proposed including the
LCDM (Henson et al., 2009), general diagnostic model (GDM;
von Davier, 2008), and the generalized DINA model (G-DINA;
de la Torre, 2011).

Reparameterized DINA (RDINA) Model
In this study, we use the DINA model to demonstrate the
framework, which can be applied to other CDM families and
generalizations of DINA models (e.g., von Davier, 2008; de la
Torre, 2011). The DINA model is developed with the idea that
in order to answer an item j correctly, the examinee i must
have mastered all of the required skills (Tatsuoka, 1985). The

binary latent variable ηij =
k∏

k=1
α

qik
ik indicate whether the ith

examinee has mastered the set of attributes α [i.e., attributes,
α = (α1, α2, ..., αk,)′] to solve the jth item, where ηij = 1
means the presence of the necessary set of attributes, and ηij = 0
otherwise. As specified by the Q-matrix, qik is either zero or one,
indicating whether the attribute k is required for solving item j.
This study uses the reparameterized deterministic inputs noisy
“and” gate (DeCarlo, 2011) to apply the longitudinal framework,
as it facilitates incorporating covariates as intervention effects in
latent growth curve model. The RDINA takes the logit of the
traditional DINA model

logit p(Yij = 1|ηij) = fj + djηij (1)

The fj parameter indicates the log odds of a false alarm that is the
probability of getting item j correct given the examinee do not
have the requisite skills. The parameter dj provides a measure of
how well the item can discriminate an examinee with or without
the mastery of required skills. The guessing and slip parameters
used in the DINA model can be recovered by exponentiating the
RDINA parameters (DeCarlo, 2011)as:

gj = exp
(
fj
)
/
[
1+ exp

(
fj
)]

(1.1)

sj = 1− exp(fj + dj)/
[
1+ exp(fj + dj)

]
(1.2)

Covariate Extension to the RDINA Model
Various latent class models have incorporated covariates as
extensions (Dayton and Macready, 1988; DeCarlo, unpublished).
In the DINA model, covariates can be specified either at the
item level and/or attribute level. Park and Lee (2014) proposed

a covariate extension to the RDINA model by applying a latent
class regression framework. In particular, when a discrete or a
continuous covariate, Z, is introduced into a latent class model,
an examinee’s response probability can be expressed as

p(Yi1,Yi2, . . . ,Yij|Z) =
∑
α

p(α|Z)
∏

j

p(Yij|α,Z) (2)

where p(Yi1,Yi2, . . . ,Yij|Z) represents response probability
conditioning on covariate Z, p(α|Z) represents the covariate
affecting the attribute probability, p(Yij|α, Z) represents the
covariate affecting the response probability. In particular, the
effects of the covariate on the response probability and attribute
probability are shown as following:

logitp(Yij|α,Z) = fj + djηij + ljZ (3)

logitp(αk|Z) = bk + hkZ (4)

where the parameter lj reflects the changes in the guessing and
slip parameter for a unit change in Z. Similarly, the parameter
hk indicates the changes in the attribute difficulty parameter (bk),
when the covariate Z is conditional on the attribute level.

Relationship Between RDINA and
General Diagnostic Model
The RDINA model was employed in this study to establish the
framework; however, the parameterization used in its covariate
extension can be extended and reparameterized as special cases
of the GDM (von Davier, 2005; Park and Lee, 2019). In the
GDM, the observed response X is modeled for i items, x response
categories, and j respondents as follows:

P
(
X = x|i, j

)
= exp

[
f (λxi, θj)

]
/

{
1+

∑
m

exp
[
f (λxi, θj)

]}
(5)

GDM item parameters are the λxi = (βxi,qi, γxi), which include
slope parameters and the Q-matrix specification, qi. In the DINA
where attributes are binary, the skill vector for examinee j, θj =

(αj1, ..., αjk), are binary values. As shown in von Davier (2014,
p. 58), the DINA can be parameterized as a special case of the
GDM as follows:

P
(
Xvi = 1|q∗i,, a

∗
)
=

exp(βi +
∑

k γika∗kq∗ik)
1+ exp(βi +

∑
k γika∗kq∗ik)

(6)

When a covariate Z introduced to Eq. 5, the following hk
parameters are added:

P
(
Xvi = 1|q∗i,, a

∗,Z
)
=

exp(βi +
∑

k γika∗kq∗ik + hkZ)
1+ exp(βi +

∑
k γika∗kq∗ik + hkZ)

(7)

Taking the logit simplifies the model to the item-level of
covariate extension approach as presented in Eq. 4.

Latent Growth Curve Model
Latent growth curve model has been widely used in longitudinal
analysis to estimate growth over time, such as examining
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the treatment effects in the pre-post intervention study. As a
special case of structural equation model (SEM), latent growth
modeling formwork extend SEM to represent repeated measures
of dependent variables as a function of time and other measures.
Based on the research of Tucker (1958), Rao (1958), Meredith
and Tisak (1984) and Meredith and Tisak (1990) furthered
SEM to model the interindividual differences in change. To
model the changes in a variable over time, latent growth curve
model assumes that there is a systematic trajectory of change
underlying the repeated measures of the variable. In particular,
for i (i = 1,2,. . .,n) subjects measured at j (j = 1,2,. . .,t) occasions,
the measurement model of latent growth curve model can be
expressed as

yij = λ0jη0i + λ1jη1i + εij (8)

where yij is the outcome variable for individual i at time j. η0i
and η1i represent latent trajectory parameters: individual’s initial
level (i.e., intercept) and rate of change over time (i.e. slopes). εij
represent time-specific error for person i. In the structural model
of latent growth curve model, these latent trajectory parameters
become outcome variables that can be expressed as:

η0i = µ0 + e0i (8.1)

η1i = µ1 + e1j (8.2)

where µ0 represents the sample mean initial level, e0i represents
the deviations from mean initial level for individual i; µ1
represents the sample mean rate of change, e1i represents the
deviations from mean rate of change for individual i.

In latent growth curve model, λ0j is fixed at 1 for all j
occasions. It should be noted that the equations presented
above are considered as an unconditional latent growth curve
model because there is no covariate involved. A conditional
latent growth curve model that contains covariates can be
specified by adding predictors of the outcome variable into Eq
8. The corresponding covariates effects on the latent trajectory
parameters could be included in Eqs 8.1 and 8.2.

The Latent Growth Cognitive Diagnostic
Model
Motivated from latent growth curve models and RDINA
model with covariate extensions, we propose two latent growth
curve CDMs (LG-CDMs) using unconditional and conditional
approaches to track the changes in examinees’ latent attributes as
well as evaluating the effects of covariate at the latent attributes
level. For the LG-CDMs, an examinee i’s response probability
p(Yij = 1|ηij) was specified by the RDINA model, which was
shown in the above Eq. 1.

Unconditional LG-CDM
Motivated from the unconditional latent growth curve model
with random intercept and random slope, we develop an
Unconditional LG-CDM that includes unconditional latent
growth curve to the attribute level of CDM framework as linear
model. At the attribute level αk = (α1, α2, ..., αk,)′, we assume
a linear relationship between time and attributes to model the
changes in attributes over time. When no covariate is specified,

Eq. (9) shows the latent growth model with time effect on the
probabilities of the K attributes p(αk|time) as

logit p(αk|time) = bk + γk (time)+ ζk + εtk, εtk ∼ N(0, 1)

(9)

Equation 9 represents time is conditioned on the attributes
probability, which can be viewed as a predictor of the
attribute patterns. Following the interpretation of the RDINA
model with covariate extension, bk represents the fixed-effect
attributes difficulty parameter. ζk represents the random intercept
parameter for attribute k, which allows estimation for each
attribute, accounting for individual examinee differences at
baseline. Similarly, γk represents the random slope parameter for
attribute k, which allows differences in examinee rates of growth.
εtk represents time-specific error for attribute k. Eq. 9.1 shows
the associated equation for the random intercept that follows a
normal distribution with mean µ0k and variance of σ0k . Eq. 9.2
shows the association equation for the random slope that also
follows a normal distribution with mean µ1ki and variance of
σ1k. e0k and e1k represent the deviations from mean initial level
and mean rate of change for attribute k, which are random-effect
parameters introduced by the latent growth curve model. In this
study, the mean and variance of both random effects are fixed to
0 and 1, respectively.

ζk = η0k = µ0k + e0k (9.1)

γk = η1k = µ1k + e1k (9.2)

Where η0 and η1 represent latent trajectory parameters:
individual’s initial level and rate of change over time, which was
specified in the latent growth curve model framework.

Conditional LG-CDM
In addition, we also propose a Conditional LG-CDM based
on the conditional latent growth curve model with random
intercept and random slope to evaluate the effects of covariate
(e.g., intervention effect) on changes in the attribute level. In
particular, covariate vector Z, is introduced into the latent growth
curve model effecting on the random effects. Z could be either
discrete or continuous covariate. Equation (10) represents the
latent growth model with both time and covariate effects on the
attribute probability p(αk|time,Z) as

logit p(αk|time,Z) = bk + γk (time)+ hk
(
Z
)
+ ζk + εtk,

εtk ∼ N(0, 1)
(10)

The interpretation of Conditional LG-CDM is similar to the
Unconditional LG-CDM that bk represents the attributes
difficulty parameter, ζk represents the random intercept
parameter, and γk represents the random slope parameter. Both
random effects follow the normal distribution with fixed mean
of 0 and variance of 1 for model identification. εtk represents
time-specific error for attribute k. What’s more, the parameter
hk represents the regression coefficient of the covariate vector
Z, which reflects the shift in the attribute difficulty bk, random
intercept ζk and random slope γk when the covariate is present to
affect the attribute. Specifically, Eq. 10.1 shows the term for the

Frontiers in Psychology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 2205171

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02205 September 10, 2020 Time: 19:36 # 5

Lin et al. Unconditional and Conditional LG-CDMs

respective covariate coefficient (h0k) affecting random intercept
parameter for each attribute k. Equation 10.2 shows the term for
the respective covariate coefficient (h1k) affecting random slope
parameter for each attribute k.

ζk = η0k + h0k(Z) (10.1)

γk = η1k + h1k(Z) (10.2)

Likewise, η0k and η1k represent attribute’s initial level and rate of
change, which can be extended as shown in Eqs 8.1 and 8.2.

From the perspective of multilevel model, Unconditional LG-
CDM and Conditional LG-CDM can be viewed as three-level
model where the first level is the time level that involves multiple
repeated measures of the same examinee (shown in Eqs 9.1 and
9.2; Eqs 10.1 and 10.2). The second level is the item at individual
level that the RDINA model was used to specify an examinee i’s
item response (shown in Eq. 1). And the third level is the attribute
at individual level that the latent growth curve model was used
to specify the change of attributes over time and the covariate
effect (Eqs 9 and 10).

In addition, time effect could be specified at the item level as
well. Modeled with the RDINA, we let Yijt be an examinee i’s
response for item j at time t, given the binary latent variable ηijt
and time. The response probability of a person i getting item j
correctly at time t is shown as following:

logit p(Yijt = 1|ηijt,time) = fj + djηijt + ρj(time)+ ξijt + ϕijt

(11)

ξijt = η0i = µ0 + e0i (11.1)

ρj = η1i = µ1 + e1i (11.2)

where ξijt represents the random intercept parameter that allows
variation in baseline for item response probability p(Yijt = 1|ηijt,
time). The ρj represents the random slope parameter that allows
growth rate of item response probability vary across time. ϕijt
is the error term.

Taken together, this study focuses on applying the latent
growth curve model into the attribute-level of CDM to analyze
how the attributes mastery change over time. There are
several advantages to using the Unconditional LG-CDM and
Conditional LG-CDM, including that they directly estimate the
learning trajectory parameters on the attribute level but also
allow covariates effects involved to estimate the intervention
effects simultaneously.

REAL-WORLD DATA ANALYSIS

Methods
Real-world data analysis was conducted to motivate the potential
of the LG-CDMs and demonstrate its application. We used the
pretest and posttest data of a mathematics test (N = 879) in
the real-world analysis. The mathematic test was developed in a
large scale education study that investigated the difficulties for
the disabled students in solving mathematic problems (Bottge
et al., 2014, 2015). Specifically, an instructional method of

Enhanced Anchored Instruction (EAI) was employed in the
study to help improve the mathematics achievement of disabled
students (Bottge et al., 2003). The design of cluster-randomized
controlled trial was used to assign clusters of middle school
students to a treatment group or a control group. In the treatment
group, students received EAI video sessions about mathematics
problem-solving and in the control group, students received
instruction method as usual. To evaluate effectiveness of EAI
instructional method, the mathematics test was administrated
before and after the instructional period and the assessment
data was collected. Thus, the dataset consisted of 21-item
responses to the test measured four attributes over two time
points. A Q-matrix was identified for the four attributes that
corresponded to the four instructional units, including α1: ratios
and proportional relationships, α2: measurement and data, α3:
number systems (fractions), and α4: geometry (graphing). Each
test item was mapped to one attribute (Appendix). Two latent
growth curve CDMs were fit, Unconditional LG-CDM and
Conditional LG-CDM.

Data analyses were conducted using Latent GOLD 5.0
(Vermunt and Magidson, 2013).

Two statistics were used to examine attribute classification –
(1) proportion correctly classified (Pc) and (2) Lambda (λ)
(Clogg, 1995), where both are based on the maximum posterior
probability to examine the quality of classification. In particular,
Eq. (12) shows the use of estimated posterior probabilities
in obtaining an estimate of the expected proportion of cases
correctly classified for attribute k (αk):

Pc =
∑

s

[
ns ×max p(αk|Yi1,Yi2, . . . ,YiJ)

]
/N (12)

where s represents each unique response pattern, ns is the
frequency of each pattern (i.e., number of cases with a
particular pattern), max p(αk|Yi1,Yi2, . . . ,YiJ) represents the
maximum posterior probability for a given response pattern
vector (Yi1,Yi2, . . . ,YiJ), N is the total number of cases in a latent
class response pattern.

λ makes a correction for classification that can occur by
chance, which can be expressed as

λ =
Pc −max p(αk)

1−max p(αk)
(13)

where p(αk) represents the latent class size with p (αk) > 0.
Meanwhile, λ also reflects the relative reduction in classification
error (Kruskal and Goodman, 1954; Clogg, 1995).

Both expectation-maximization (EM) and Newton-Raphson
algorithms were used to obtain maximum likelihood (ML) or
posterior mode (PM) estimates. The PM estimation uses a prior
distribution to smooth solutions that are near the boundary of the
parameter space. Therefore, this method can avoid a boundary
estimation issues that are commonly associated with latent class
models (DeCarlo, 2011). In addition, to avoid problems of local
maxima, 100 sets of starting values were used to obtain the global
maximum. Finally, to check for local identification, the rank of
the Jacobian matrix was examined to be of full rank as specified
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as a required condition for local identification in latent class
regression models (Huang and Bandeen-Roche, 2004).

Results
Model Fit and Classification
Real-world data converged successfully for the two models,
unconditional latent growth curve CDM (Unconditional LG-
CDM) and conditional latent growth curve CDM (Conditional
LG-CDM). Table 1 shows the classification results. The results
show that the Pc estimates are the same for the two LG-CDMs
across four mathematics attributes, indicating a satisfactory
classification as all statistics are greater than 0.91. For example,
with Pc of 0.96 for attribute 2, one would expect that 96% of
the cases would be correctly classified into attribute 2. However,
it should be noted that if simply classifies all the cases into the
attribute with the largest size, then the correctly classification
can be achieved but may due to the chance. λ provides a
correction for this situation when calculating the proportion
correctly classified. The results show that λ are similar for the four
attributes across two models and are slightly lower than Pc. For
example, the λ classification on attribute 1 in Conditional LG-
CDM is 0.70, indicating that the proportion correctly classified
increase 70% by using the observers’ response pattern over simply
classifying all cases into the attribute with the largest size.

Attribute Prevalence
Table 2 shows the attribute prevalence for the four attributes.
The attribute prevalence represents the latent class sizes of the
four attributes (DeCarlo, 2011). Overall, the attribute prevalence
was consistent across the two models. The probabilities of
all attributes prevalence are above 0.50, indicating that more
than half of the students mastered each of the attribute. The
attribute prevalence for Attribute 2 (Measurement and Data)

TABLE 1 | Classification: proportion correctly classified (Pc) and Lambda (λ).

Models Classification Attributes

α1 α2 α3 α4

Unconditional LG-CDM Pc 0.91 0.96 0.92 0.93

λ 0.79 0.90 0.84 0.82

Conditional LG-CDM Pc 0.91 0.96 0.92 0.93

λ 0.70 0.90 0.84 0.82

Classification statistics based on Clogg (1995). Conditional LG-CDM
considered EAI instruction. Attributes as follows: α1: Ratios and Proportional
Relationships; α2: Measurement and Data; α3: Number Systems (Fractions); α4:
Geometry (Graphing).

TABLE 2 | Attribute prevalence.

Model α1 α2 α3 α4

Unconditional LG-CDM 0.57 (0.03) 0.62 (0.02) 0.53 (0.03) 0.62 (0.08)

Conditional LG-CDM 0.57 (0.03) 0.62 (0.02) 0.53 (0.03) 0.62 (0.02)

Values in parenthesis are standard errors. Attributes based on the EAI instruction
are as follows: α1: Ratios and Proportional Relationships; α2: Measurement and
Data; α3: Number Systems (Fractions); α4: Geometry (Graphing).

and Attribute 4 (Geometry) had slightly higher probabilities than
the attribute prevalence for Attribute 1 (Ratios and Proportional
Relationships) and Attribute 3 (Number Systems).

Item Parameters
Table 3 shows the item parameters (f j and dj) for the
Unconditional LG-CDM and Conditional LG-CDM, which are
estimated from the RDINA model. Calculating the exponential
of the f j and dj parameters, one can obtain guessing and slip
parameters of the DINA model (shown in Eqs 1.1 and 1.2).
Overall, the item parameters are consistent across the two models.
Derived from Eqs 1.1 and 1.2, the average guessing and slip
parameters estimates for Unconditional LG-CDM were 0.22 and
0.35; for Conditional LG-CDM were 0.22 and 0.36. With respect
to each attribute, the average guessing and slip parameters were
respectively the same across the two models: for the attribute of
Ratios and Proportional Relationships were 0.14 and 0.49; for
the attribute of Measurement and Data were 0.28 and 0.23; for
the attribute of Number Systems (Fractions) were 0.28 and 0.23;
for the attribute of Geometry (Graphing) were 0.25 and 0.36.
In particular, for both Unconditional LG-CDM and Conditional
LG-CDM, Item 2 (Attribute of Measurement and Data) has the
greatest guessing estimates while Item 17 (Attribute of Ratios and
Proportional Relationships) has the greatest slip estimates.

Attribute Parameters and Growth
Table 4 summarized the attribute-level parameters for the
Unconditional LG-CDM and Conditional LG-CDM, which

TABLE 3 | Item parameters for Unconditional and Conditional LG-CDM.

Unconditional LG-CDM Conditional LG-CDM

Item Attributes fj dj fj dj

Y1 α1 −2.09 (0.02) 1.97 (0.17) −2.10 (0.16) 1.98 (0.17)

Y2 α2 −0.24 (0.08) 2.06 (0.13) −0.24 (0.08) 2.06 (0.13)

Y3 α2 −2.61 (0.17) 1.92 (0.19) −2.62 (0.18) 1.92 (0.19)

Y4 α3 −1.87 (0.13) 1.87 (0.14) −1.88 (0.13) 1.87 (0.14)

Y5 α3 −1.14 (0.11) 2.34 (0.13) −1.14 (0.11) 2.34 (0.13)

Y6 α3 −0.74 (0.09) 1.88 (0.12) −0.74 (0.09) 1.89 (0.12)

Y7 α3 −3.73 (0.42) 3.57 (0.41) −3.75 (0.43) 3.58 (0.42)

Y8 α3 −0.96 (0.09) 1.14 (0.12) −0.96 (0.09) 1.14 (0.12)

Y9 α2 −0.76 (0.09) 2.21 (0.12) −0.76 (0.09) 2.21 (0.12)

Y10 α2 −0.97 (0.10) 2.84 (0.13) −0.97 (0.10) 2.84 (0.13)

Y11 α2 −0.59 (0.09) 3.09 (0.15) −0.59 (0.09) 3.09 (0.15)

Y12 α2 −1.38 (0.11) 3.03 (0.14) −1.38 (0.11) 3.02 (0.14)

Y13 α1 −0.64 (0.10) 2.01 (0.13) −0.63 (0.10) 1.99 (0.13)

Y14 α1 −2.61 (0.23) 2.93 (0.22) −2.60 (0.22) 2.91 (0.22)

Y15 α4 −0.99 (0.10) 1.91 (0.13) −0.99 (0.10) 1.91 (0.13)

Y16 α4 −0.70 (0.10) 1.82 (0.12) −0.70 (0.10) 1.82 (0.12)

Y17 α1 −3.41 (0.27) 1.94 (0.29) −3.49 (0.28) 2.02 (0.30)

Y18 α4 −0.27 (0.09) 2.35 (0.14) −0.27 (0.09) 2.35 (0.14)

Y19 α4 −1.77 (0.13) 1.96 (0.15) −1.76 (0.13) 1.96 (0.15)

Y20 α4 −1.41 (0.11) 1.47 (0.13) −1.41 (0.11) 1.47 (0.13)

Y21 α4 −1.92 (0.14) 1.63 (0.15) −1.93 (0.14) 1.64 (0.15)

Values in parenthesis are standard errors. Attributes based on the EAI instruction
are as follows: α1: Ratios and Proportional Relationships; α2: Measurement and
Data; α3: Number Systems (Fractions); α4: Geometry (Graphing).
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include attribute difficulty (bk), intercept and slope of
latent growth curve (η0 and η1), and regression coefficients
(hk) for the intervention effect. In general, the estimates
of random intercept and random slope were very close,
indicating that the examinees’ initial level and growth rate
are similar for the two models. As the Conditional LG-CDM
incorporates covariate in addition to the Unconditional LG-
CDM, regression coefficients (hk) of the covariate indicate
shifts in the attributes difficulty as a result of the treatment
effect (EAI). Results show that the parameter estimates of
four attributes difficulty are all lower in the Conditional
LG-CDM than the Unconditional LG-CDM, suggesting that
all attributes were easier to be mastered when involving
the treatment effect. In particular, Attribute 1 (Ratios and
Proportional Relationships) and Attribute 4 (Geometry)
yielded greater differences between the two models then
Attribute 2 (Measurement and Data) and Attribute 3 (Number
Systems), with a difference of 0.34 and 0.37 units. While
most treatment effects were not significant, Attribute 4
(Geometry) had significant treatment effect, shifting the
difficulty parameter by 0.24 units.

SIMULATION STUDY I

Methods
Simulation studies were conducted to evaluate parameter
recovery and classification of the two models: (a) Unconditional
LG-CDM; (b) Conditional LG-CDM. In simulation study 1,

TABLE 4 | Attribute difficulty, growth curve and intervention effect parameters.

Unconditional LG-CDM Conditional LG-CDM

Parameter Estimate p value Estimate p value

η0 (Random Intercept) 0.44 (0.11) 0.46 (0.15)

η1 (Random Slope) 0.04 (0.00) 0.03 (0.00)

h0k (Treatment Effect on
random intercept)

– – 0.30 (0.19) 0.13

h1k (Treatment Effect on
random slope)

– – 0.09 (0.00) <0.001

b1 (Attribute 1 Difficulty) −0.11 (0.09) −0.45 (0.11)

h1 (Treatment Effect for
Attribute 1)

– – 0.40 (0.27) 0.13

b2 (Attribute 2 Difficulty) 0.16 (0.07) −0.04 (0.09)

h2 (Treatment Effect for
Attribute 2)

– – 0.09 (.25) 0.72

b3 (Attribute 3 Difficulty) −0.23 (0.08) −0.44 (0.10)

h3 (Treatment Effect for
Attribute 3)

– – 0.02 (0.26) 0.95

b4 (Attribute 4 Difficulty) 0.16 (0.04) −0.11 (0.04)

h4 (Treatment Effect for
Attribute 4)

– – 0.24 (0.00) <0.001

(1) Parameter hk indicates shift in the attributes difficulty due to mastery in treatment
effect (EAI), based on the Conditional LG-CDM model. (2) Values in parenthesis
represent standard errors. (3) Attributes based on the EAI instruction are as follows:
α1: Ratios and Proportional Relationships; α2: Measurement and Data; α3: Number
Systems (Fractions); α4: Geometry (Graphing).

the EAI real-world results were used as generating population
(true) values. Following the data structure of the real-world
data example, the 21-item response data were generated for
two time points; four attributes and Q-matrix were specified as
well. Two sample size of 1000 and 2000 were examined across
a specification of the four attributes. Therefore, the simulation
study includes a total of four simulation conditions ( = 2
models× 2 sample size conditions).

Data were generated and fit using Latent GOLD 5.0 (Vermunt
and Magidson, 2013). One hundred replications were fitted for
each condition. Parameters were estimated using PM estimation
and the parameter recovery were evaluated for each condition
using three measures: (a) Bias, (b) % Bias, and (c) mean square

error (MSE). Here, Bias (x) = 1
N

N∑
n=1

[ên (x)− e(x)], % Bias =

|Bias(x)/e(x)| × 100%, MSE (x) = 1
N

N∑
n=1

[ên (x)− e(x)]2, where

x is an arbitrary indicator of a parameter, e(x) is the generating
(true) parameter value, and ên (x) is the nth replicate estimate of
parameter x among a total of N = 100 replications. Similar to
the real-world data analysis, we set up 100 starting values, and
the Jacobian matrix was examined to be of full rank for local
identification. EM (expectation-maximization) and Newton-
Raphson algorithms were used to avoid a boundary estimation
issue using PM estimation. The syntax of unconditional and
conditional models is available from the authors upon request.

Results
Parameter Recovery
Table 5 shows the parameter recovery results (Bias, % Bias, and
MSE) by sample size (1,000 and 2,000) for the two models.
Overall, the parameter recovery revealed consistent estimates.
Percent bias for item-level parameters were very close in the
two models except item discrimination parameter dj was slightly
higher in the Conditional LG-CDM model. The parameter dj
provides a measure of how well the item can discriminate an
examinee with or without the mastery of required skills. The
overall % bias associated with random effects were all less than
2.0% regardless of models. In Conditional LG-CDM, % bias of
random effects were lower (≤ 1.0%). The intervention effect on
attributes in the conditional model had % bias of 37.4% when
sample size is 1000. However, it dramatically dropped to 4% when
the sample size increase to 2000. The % bias of attribute difficulty
parameter are lower in the Unconditional LG-CDM model (6.7
and 3% at the sample sizes of 1,000 and 2,000).

Classification
Simulation classification indices were summarized in Table 6.
The results of the two LG-CDM models agree very much. Both Pc
and λ showed excellent classification rates on the four attributes
in the two models. The classification index was little influenced
by the sample sizes.

Cross Fitting of Simulated Data to Other Models
What’s more, a cross fitting analysis was conducted to examine
the consequences on parameter estimates and classification
on fitting incorrect models. Data were generated using the
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TABLE 5 | Simulation I results: parameter recovery.

Model Level Parameter Sample n = 1,000 Sample n = 2,000

Bias % Bias MSE Bias % Bias MSE

Unconditional LG-CDM Random Effects λ 0.007 1.8% 0.002 −0.002 0.5% 0.001

Attribute Difficulty bk −0.002 6.7% 0.002 0.000 3.1% 0.001

Item fj −0.013 1.6% 0.024 −0.001 0.6% 0.007

dj 0.015 0.9% 0.030 0.002 0.4% 0.009

Conditional LG-CDM Random Effects λ 0.001 0.3% 0.001 −0.002 0.4% 0.001

hk 0.002 0.7% 0.003 −0.003 1.0% 0.004

Attribute Difficulty bk 0.000 18.2% 0.022 0.000 16.9% 0.002

Intervention Effect hk 0.002 37.4% 0.018 −0.001 4.0% 0.018

Item fj −0.009 1.6% 0.022 −0.002 0.7% 0.007

dj 0.011 1.5% 0.030 0.003 0.5% 0.010

Simulation based on 100 data replications.

Unconditional LG-CDM and Conditional LG-CDM and fit
with incorrect models one-off, including RDINA model and
RDINA model with covariate. The RDINA and RDINA with
covariate models do not have a longitudinal component, thereby
providing a relative comparison for ignoring the longitudinal
component to the model. Model fit indices, Pc and % bias
of parameters (random effects, intervention effect, item, and
attribute) are presented in the Table 7. All the statistics
selected the correct models. For the sample size of 2000, the
correct models had higher Pc, lower AIC/BIC value as well as
lower % bias in both item and attribute parameter estimates.
Meanwhile, when fitting with the incorrect models, lower Pc,
higher AIC/BIC and higher % bias were shown in the outputs.
The greatest impact of fitting incorrect models was found in
the % bias of attribute and item parameters. When using
Conditional LG-CDM generated data and fit with the RDINA
with covariates, % bias was more than 101% for the item
parameter and attribute difficulty parameter. Similarly, when
fitting generated data with RDINA, % bias were also high for the
attribute parameter. It is noticeable when data generated using
Conditional LG-CDM were fit using Unconditional LG-CDM,
% bias are lower than the incorrect RDINA and RDINA with
covariate model.

TABLE 6 | Simulation classification I: proportion correctly classified (Pc) and
Lambda (λ).

Models Classification α1 α2 α3 α4

Unconditional LG-CDM (n = 1,000) Pc 0.91 0.98 0.94 0.94

λ 0.80 0.95 0.87 0.84

Conditional LG-CDM (n = 1,000) Pc 0.91 0.98 0.94 0.94

λ 0.80 0.94 0.87 0.84

Unconditional LG-CDM (n = 2,000) Pc 0.97 0.99 0.98 0.98

λ 0.93 0.99 0.97 0.96

Conditional LG-CDM (n = 2,000) Pc 0.97 0.99 0.98 0.98

λ 0.93 0.99 0.97 0.96

Classification statistics based on Clogg (1995).

SIMULATION STUDY II

Methods
We conducted an additional simulation study, where three
time points were simulated to examine parameter recovery and
classification of the proposed Unconditional and Conditional
LG-CDMs. As the data of simulation study I were generated
using population (true) values derived from the empirical
data that was limited to two time points, the condition was
expanded to include more time points in simulation study II
so that the potentials of the Unconditional and Conditional
LG-CDMs can be fully discussed. In simulation study II, to
generate data, we referred to the simulation study design
conducted by De La Torre and Douglas (2004) to specify the
Q-matrix and item parameters, as generating population (true)
value: 30 items with five attributes and 1,000 examinees were
used across 100 replications. Table 8 shows the transposed
Q-matrix that each attribute appears alone, in pair, or in a
triple the same number of times as other attributes. Similar to
Simulation Study I, 100 data replications were generated and
fit using Latent GOLD 5.0 (Vermunt and Magidson, 2013).
Parameters were estimated using PM full name estimation
and the parameter recovery were evaluated for each condition
using three measures: (a) Bias, (b) % Bias, and (c) mean
square error (MSE).

Results
Parameter Recovery
Table 9 shows the parameter recovery results of three time
points simulation by sample size 1,000 for the two models.
Bias, % bias and MSE were lower for item level parameters
(discrimination parameter dj and false rate parameter f j) in the
two models, indicating model estimates are consistent in the item
level. The results of parameter recovery for attribute difficulty are
slightly high as well as for the intervention effect on attribute
difficulty. Furthermore, the bias and % bias of random effects
(random intercept and random slope) are noticeably high in
both models, probably because more time points are involved
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TABLE 7 | Cross fitting of simulated data.

Data fit Statistics Data generating conditions (Sample n = 2,000)

Unconditional LG-CDM Conditional LG-CDM

RDINA AIC 98964.26 98945.77

BIC 99234.79 99235.29

Pc 0.87 0.87

Attribute Difficulty (% Bias) 91.1% 88.4%

Item (% Bias) 28.1% 28.0%

RDINA with covariates AIC – 98847.14

BIC – 99161.84

Pc – 0.87

Attribute Difficulty (% Bias) – 101.1%

Intervention Effect (% Bias) – 64.5%

Item (% Bias) – 101.2%

Unconditional LG-CDM AIC 91921.67 98728.2

BIC 92157.24 98997.04

Pc 0.98 0.97

Random Effects (% Bias) 0.5% 13.3%

Attribute Difficulty (% Bias) 3.1% 46.1%

Item (% Bias) 0.5% 1.1%

Conditional LG-CDM AIC – 91971.63

BIC – 92236.65

Pc – 0.98

Random Effects (% Bias) – 0.7%

Attribute Difficulty (% Bias) – 16.9%

Intervention Effect (% Bias) – 4.0%

Item (% Bias) – 0.6%

Results of the correct model fit were bolded.

in the simulation study that ask for more estimations to reach
consistent recovery.

Classification
Table 10 summarized classification results of three time
points simulation. For both LG-CDMs, Pc estimates suggested
satisfactory proportion of cases are correctly classified for

TABLE 8 | The transposed Q-matrix for the simulation study II.

Item

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0

2 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

3 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1

4 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

5 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

Attribute 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

2 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

3 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1

4 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1

5 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1

all attributes (Pc > 0.85). Yet, it should be noted that the
classification rates of λ were lower on the second and fourth
attributes compared to the other attributes, which may due to the
over correction for classification error.

TABLE 9 | Simulation II results: parameter recovery.

Model Level Parameter Sample n = 1,000

Bias % Bias MSE

Unconditional LG-CDM Random Intercept λo −0.592 118.4% 0.354

Random Slope λ1 0.312 62.4% 0.098

Attribute Difficulty bk −0.311 39.0% 0.123

Item fj 0.073 5.1% 0.059

dj −0.046 2.7% 0.088

Conditional LG-CDM Random Intercept λo −0.548 109.6% 0.304

h0k 0.035 11.8% 0.007

Random Slope λ1 0.315 63.1% 0.101

h1k −0.222 74.1% 0.053

Attribute Difficulty bk −0.297 37.7% 0.122

Intervention Effect hk 0.001 20.6% 0.173

Item fj 0.065 4.7% 0.058

dj −0.038 2.5% 0.082

Simulation based on 100 data replications.
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TABLE 10 | Simulation classification II: proportion correctly classified (Pc) and
lambda (λ).

Models Classification α1 α2 α3 α4 α5

Unconditional LG-CDM (n = 1,000) Pc 0.89 0.86 0.98 0.96 0.95

λ 0.72 0.47 0.79 0.36 0.76

Conditional LG-CDM (n = 1,000) Pc 0.90 0.88 0.98 0.97 0.94

λ 0.76 0.50 0.81 0.35 0.81

Classification statistics based on Clogg (1995).

DISCUSSION AND CONCLUSION

Cognitive diagnostic models have become increasingly important
in educational measurement by estimating skill profiles that
indicate the examinee’s mastery in fine-grained skills based on
their performance (Rupp et al., 2010). In most prior studies,
CDMs have been applied to single cross-sectional time diagnosis
instead of tracking the changes in skills or attributes. However,
learning is a process during which students acquire knowledge
and improve their skills. As learning progress, students’ skills
mastery and knowledge could change over time. In addition,
the implementation of particular intervention may influence
students’ learning trajectory, which is important for educators
to know in order to evaluate learning and instruction. In this
study, we propose two latent growth CDMs, Unconditional LG-
CDM and Conditional LG-CDM, to assess students’ change in
skills mastery over time and evaluate the intervention effect on
the growth of skill mastery.

Results from the real-world data analysis showed that the
latent growth curve model and covariate extension such as
intervention effect, could be used to link with a CDM. The
statistics of model classification and attribute prevalence agree
very much and are excellent for the two LG-CDMs, indicating
both models are well specified to provide consistency results.
In particular, although the latent class size of Attribute 1 and
Attribute 3 are slightly lower than Attribute 2 and Attribute 4,
more than half of the students mastered each attribute. Moreover,
results showed that the estimates of attribute difficulty of the
Conditional LG-CDM was generally lower than the estimates of
the Unconditional LG-CDM. The decrease in attribute difficulty
indicated that the attributes have been shifted and implies
that it become easier for students to master the attributes
when involving educational intervention, which was further
confirmed by the results of growth curve and intervention effect
parameters. Both the Unconditional LG-CDM and Conditional
LG-CDM examined the students’ performance at baseline and
the growth rate. Although the baseline performance is slightly
different, the grow rates are similar across the two models.
Thus, the LG-CDMs could inform the researchers and educators
that the EAI method has little effect on the growth rate of
student’ ability. However, with the help of Conditional LG-
CDM that incorporate the covariates extension into CDM, we
can tell that the treatment EAI method does improve students’
mastery on the attribute 1 and attribute 4. In other words,
if the students were assigned to the treatment group that
receiving the EAI teaching method, they would show progress

in math learning, especially in the skills of geometry and
ratio/proportional relationships.

The simulation studies showed that the parameters were
consistently recovered in general, indicating that incorporating
latent growth curve and covariate extension at the attribute
level did not affect model estimation. In simulation study I,
both attribute and item level estimates were stable with sample
size of 1,000 and 2,000 for the Unconditional LG-CDM. For
the Conditional LG-CDM, additional attention may be given
to the attribute difficulty parameter (bk) and intervention effect
parameter (hk), percentage bias of 18.2% and 37.4% for the
sample size of 1,000. However, with the sample size increase to
2,000, the % bias of intervention effect declines rapidly to 4%. The
recovery of random parameters was excellent across two models,
with bias of random intercepts are less than 2.0% in the sample
size of 1,000 and 2,000.

In Simulation Study II, more time points and items were
involved to fully examine the performance of proposed LG-
CDMs in terms of parameter recovery. The item level estimates
were satisfactory with sample size of 1,000. Although the bias
and % bias of attribute difficulty parameter and intervention
effect parameters are slightly high, it is expected that they would
decrease obviously when the sample size increase. However,
it should be noted that the recovery of random effects for
data with three time-point specifications were modest and may
depend on study design. Thus, latent growth models may need
more specifications or constrains on random intercept and
random slope parameters to achieve stable recovery. Besides,
the classification indices of the both simulation studies were
consistent across different conditions. The results obtained from
this study help to advance CDMs to better measuring the change
in learning over time.

Researchers and educators have long used pre-post assessment
to evaluate the effects of new curriculum and teaching method
on students’ learning. Meanwhile, it is important to know
students’ learning trajectory to achieve learning goal. Cognitive
diagnostic models have provided a diagnostic framework to
measure students’ mastery in fine-grained skills and different
kinds of longitudinal analysis have been incorporate to the CDM
to evaluate changes in skills profile mastery (e.g., Li et al.,
2016; Kaya and Leite, 2017). Different from other longitudinal
CDMs, the LG-CDMs described in this article incorporate well-
established latent growth curve model that is more widely
used in the social studies. Additionally, covariate extension
was integrated to signify the intervention effect. Dayton and
Macready (1988) introduced the use of covariate to affect the
attribute. Park et al. (2017) included both observed and latent
explanatory variables as covariates in the explanatory CDM to
inform learning and practice. Thus, this approach is meaningful
in the CDM for its diagnostic purpose. In this study, latent
growth curve and covariates are both specified at the attribute
level. In addition, latent growth curve could be also specified at
the item level, contributing to the multilevel studies on CDMs.
Meanwhile, more attributes and covariates could be incorporated
in specifying the items and explaining the relationship among
them. In the empirical study, it is likely to have items that are
of high slip and guessing estimates in the test (Lee et al., 2011),
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therefore, it is important for the researchers to carefully develop
and validate the Q-matrix used for CDM analyses.

For the future studies, different types of variance-covariance
structures could be specified in the model. For example,
all the parameters could be freely estimated (unstructured)
in the covariance structure to explore their relationships in
model estimation. Meanwhile, future studies could conduct a
comprehensive investigation of the measurement invariance,
building on the foundational simulation studies conducted in this
paper. For example, additional parameters could be included to
examine their effects on model identification and their impact
on the measurement invariance. Furthermore, the item level fit
statistics could be developed in the future studies for the item-
level effects in the LG-CDMs, which provides suitable item level
fit information for the studies that involve multiple time points.
In the current field of education, individualized learning has been
emphasized, which allows students to construct learning progress
at own pace. This study provides a flexible framework to diagnose
skill mastery as well as advancing the longitudinal CDMs to better
measuring the change in learning over time.
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APPENDIX

TABLE A1 | The Q-matrix for the real-world data analysis.

Attribute

Item α1 α2 α3 α4

1 1 0 0 0

2 0 1 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 1 0

6 0 0 1 0

7 0 0 1 0

8 0 0 1 0

9 0 1 0 0

10 0 1 0 0

11 0 1 0 0

12 0 1 0 0

13 1 0 0 0

14 1 0 0 0

15 0 0 0 1

16 0 0 0 1

17 1 0 0 0

18 0 0 0 1

19 0 0 0 1

20 0 0 0 1

21 0 0 0 1
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Developing a Learning Progression
for Probability Based on the GDINA
Model in China
Shengnan Bai*

School of Mathematics and Statistics, Northeast Normal University, Changchun, China

This research focuses on developing a learning progression of probability for middle
school students, and it applies the GDINA model in cognitive diagnosis models
to data analysis. GDINA model analysis firstly extracted nine cognitive attributes
and constructed their attribute hierarchy and the hypothesized learning progression
according to previous studies, curriculum standards, and textbooks. Then the cognitive
diagnostic test was developed based on Q-matrix theory. Finally, we used the GDINA
model to analyze a sample of 1624 Chinese middle school students’ item response
patterns to identify their attribute master patterns, verify and modify the hypothesized
learning progression. The results show that, first of all, the psychometric quality of the
measurement instrument is good. Secondly, the hypothesized learning progression is
basically reasonable and modified according to the attribute mastery probability. The
results also show that the level of probabilistic thinking of middle school students is
improving steadily. However, the students in grade 8 are slightly regressive. These
results demonstrate the feasibility and superiority of using cognitive diagnosis models
to develop a learning progression.

Keywords: probability, learning progression, GDINA model, attribute hierarchy, learning pathway

INTRODUCTION

Learning progression is defined as ‘descriptions of the successively more sophisticated ways of
thinking about a topic that can follow one another as children learn about and investigate a
topic over a broad span of time (e.g., 3–5 years)’ (National Research Council, 2007). Although
different perspectives of concern formed different definitions of learning progression (Catley
et al., 2005; Duncan and Cindy, 2009; Mohan et al., 2009), they all focus on the study of
core knowledge to investigate students’ cognitive development process. It seems that learning
progression is an important channel for the dialogue among theoretical researchers, curriculum
planners, educational decision-makers and exam examiners, a bridge between learning research and
classroom teaching, and a tool with the most potential to connect curriculum standards, teaching
and evaluation and promote the consistency of the three.

Quantitative analysis plays an essential part in developing a learning progression. The initial
research on learning progression was built on descriptive statistical results. At present, the most
effective and widely used method is Rasch measurement theory (Liu and Collard, 2005; Liu and
McKeough, 2005; Johnson, 2013; Todd and Romine, 2016), which estimates the item difficulty
parameter as the same level as the students’ ability parameter (Rasch, 1960/1980). Rasch analysis
assumes unidimensionality, that is, a single trait affects the responses of the participants (Wilson,
2005; Chen et al., 2017a). However, because the core concept covers a wide range of attributes, it is
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difficult to strictly satisfied the unidimensionality assumption
in practice. The learning progression constructed by the above
two quantitative analysis methods is a linear step-by-step
development process of students as they increase in grade or as
time goes by, and the ability level of students is estimated mainly
through the total score of the test.

Since the core concepts are directly related to the internal
logical structure of the discipline, they are not all linear, so
students can understand core concepts through different learning
pathways (Alonzo and Steedle, 2008). In recent years, the research
on the learning progression of core concepts has been integrated
into the process of individual cognitive structure gradually
becoming complete. Since the beginning of the last century,
psychometrics and cognitive psychology have been increasingly
dissatisfied with assessing the ability level of the individual
from macro perspective, so a new generation of psychometrics
theory has developed a cognitive diagnosis model for the purpose
of diagnosing students’ cognitive process, processing skills or
knowledge structure. Therefore, researchers began to use it as a
quantitative analysis method to provide technical support for the
construction of learning progression evaluation system, so as to
deeply evaluate student’ knowledge structure (Derek and Alonzo,
2012; Chen et al., 2017b; Gao et al., 2017).

Compared with traditional methods, cognitive diagnosis
models have the following advantages. First, cognitive diagnosis
models directly integrate cognitive variables to estimate the
attribute mastery pattern (AMP) of each student, thus realizing
the measurement and evaluation of individual’s cognitive level
from the micro perspective. Second, the attributes that students
have and have not mastered can be identified from their
responses to the test items. These attributes are distributed at
different levels of learning progression, which helps to verify
and modify the hypothesized learning progression. Third, it
is beneficial to promote personalized education. Each level of
learning progression based on the cognitive diagnosis models
has multiple AMPs, that is, there are multiple learning pathways
from the low level to high level, so as to provide targeted
teaching according to the individual student’s AMP. Generalized
Deterministic Inputs, Noisy and Gate (GDINA) model (de la
Torre, 2011), as a saturated cognitive diagnosis model, breaks
through the assumptions of the previous simplified cognitive
diagnosis models on attribute action mechanism, making the
model more flexible and widely used. Whereas, there are few
studies have been done on learning progression based on
the GDINA model.

As one of the most basic core qualities throughout the
mathematics curriculum, probability literacy has now become
an indispensable quality for every citizen to enter the society
(Scheaffer, 1984; Biehler, 1994; Aitken, 2009). However, studies
have repeatedly shown that students always have different degrees
of cognitive difficulties in the development of probabilistic
thinking. Jones et al. (1997, 1999) proposed a framework to
describe students’ cognition of probability, in which students’
understanding of probability concepts is divided into subjective
level, transitional level, informal quantitative level and numerical
level. English, Fischbein and Lecoutre found that students cannot
naturally understand the sample space, because the basic results

in different orders should be distinguished and counted as
different results (Fischbein and Gazit, 1984; Lecoutre et al., 1990;
English, 1993). Whereas, further analysis shows that although
previous research on probability investigated all knowledge
points, they did not pay enough attention to the core knowledge.
Thus, the introduction of learning progression provides a new
research perspective for probability.

As shown in the above literature review, from the perspective
of students, there are many stubborn misunderstandings and
preconceptions in the learning of probability concepts (Green,
1982; Fischbein and Gazit, 1984; Fischbein et al., 1991; Williams
and Amir, 1995; Moritz et al., 1996; Potyka and Thimm,
2015). However, Liu and Thompson’s research provided a
rich description of the kinds of difficulties experienced by
teachers in developing coherent and powerful understandings of
probability (Liu and Thompson, 2007). From the perspective of
empirical research, the existing studies on learning progression
ignored the establishment of a cognitive model, so the
probabilistic cognitive structure of individual students cannot
be systematically described. Additionally, the nature of cognitive
diagnosis and learning progression is very consistent, so using it
as a measurement tool to construct the learning progression of
probability is well worth further exploration.

To address the issues already outlined and to begin to fill
the gaps in the previous research, the present study attempts
to: (a) judge whether developed measurement instrument
is appropriate to evaluate learning progression of students’
probability; (b) verify and modify the hypothesized learning
progression by the results of the GDINA model analysis; (c)
identify what levels of students’ AMPs and provide proper
learning pathways accordingly.

HYPOTHESIZED LEARNING
PROGRESSION

The current course distribution of probability concept is as
follows: intuitive perception of probability concepts through
experiments, games and other activities is arranged in grades 4 to
6. The systematic study of preliminary probability is set in grade
9, which is mainly the teaching of one-dimensional probability
concepts. Further probability knowledge is arranged in grade
11. The curriculum goals are to deeply learn two-dimensional
probability concepts and to preliminarily understand relevant
probability concepts of finite dimensions. On this basis, the
attribute selection, the attribute hierarchy and the hypothesized
learning progression are studied one by one.

Attribute Selection
According to the basic process of cognitive diagnosis, the
cognitive attributes contained in probability should be extracted
first (Tatsuoka, 2009; de la Torre, 2011; Basokcu, 2014; Rupp
and van Rijn, 2018). The most common probability concepts in
previous research were the following: randomness, sample space,
probability of an event, probability comparisons (Fischbein, 1975;
Biggs and Collis, 1982; Liu and Zhang, 1985; Jones et al., 1997,
1999; Li, 2003; Piaget and Inhelder, 2014; He and Gong, 2017).
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Other studies have also explored students’ ability to make
probability estimation (Acredolo et al., 1989). However, the
components mentioned above do not explicitly indicate the
impact of dimensions.

Taking into account previous studies, curriculum standards
and textbooks, students’ understanding of one-dimensional
probability concepts and two-dimensional probability concepts
is not synchronized (Liu and Zhang, 1985; Jones et al., 1997;
Li, 2003). Hence, when identifying cognitive attributes, the
probability was not only divided into randomness, sample space,
probability of an event, probability comparisons and probability
estimation, but also the effect of dimension was considered.
Consequently, we obtained the nine cognitive attributes of
probability as follows.

A1: Randomness: distinguish between certain events,
random events, and impossible events.
A2: One-dimensional sample space: list all possible
outcomes of a one-dimensional event.
A3: Two-dimensional sample space: list all possible
outcomes of a two-dimensional event.
A4: One-dimensional probability comparisons: compare
the probability of one-dimensional events.
A5: Two-dimensional probability comparisons: compare
the probability of two-dimensional events.
A6: Probability of a one-dimensional event: calculate the
probability of a one-dimensional event by definition.
A7: Probability of a two-dimensional event: calculate the
probability of a two-dimensional event by definition.
A8: Probability estimation of a one-dimensional
event: estimate the probability of a one-dimensional
event by frequency.
A9: Probability estimation of a two-dimensional
event: estimate the probability of a two-dimensional
event by frequency.

Attribute Hierarchy
On the basis of attributes selected before, the attribute hierarchy
was constructed by considering previous studies and the
curricular sequences of the relevant probabilistic content in the
curriculum standards and textbooks. Some studies suggested
that the understanding of randomness is the starting point
for probabilistic thinking, and this ability increases with age
(Williams and Amir, 1995; Chan, 1997; Jones et al., 1997). This
indicates that randomness is a precondition of sample space
and probability estimation. Furthermore, the understanding of
sample space is central to understanding probability (Van de
Walle et al., 2016). He and Gong (2017) found that students aged
6 to 14 must master the sample space in order to perform well in
calculating the probability of an event by definition. Zhang’s team
demonstrated that students’ understanding of the sample space is
superior than probability comparisons (Zhang et al., 1985). This
indicates that sample space is a premise of probability of an event
and probability comparisons.

Considering the impact of dimensions on students’
understanding of probability, students who can consistently
list all possible outcomes of a one-dimensional event were often

inconsistent or unsystematic in listing all possible outcomes of a
two-dimensional event (Liu and Zhang, 1985; Jones et al., 1997;
He and Gong, 2017). Moreover, probability estimation is an
intuitive way to understand the probability of an event through
a large number of repeated experiments. Chapin et al. (2003)
argued that students in grades 3 to 5 can initially understand
the relationship between the frequency and probability of
a one-dimensional event. However, interviews with middle
school teachers revealed that students also made some errors
in estimating the probability of a two-dimensional event,
indicating that probability estimation of a one-dimensional
event is the prerequisite of probability estimation of a two-
dimensional event. As such, the attribute hierarchy was
constructed (Figure 1). Thereafter, the attribute hierarchy was
tested through mathematics curriculum standards, mathematics
textbooks, and interviews with teachers. Attribute hierarchy was
found to be basically consistent with the curricular sequences
and instructional sequences of the related mathematical topics.

Hypothesized Learning Progression
In light of the above analysis, we developed the hypothesized
learning progression of probability for middle school students
relied on the previous studies, curriculum standards and
textbooks. Considering the influence brought by the dimensions,
students’ understanding of probability was investigated from
five aspects: randomness, sample space, probability of an event,
probability comparisons and probability estimation. We then
used the SOLO (Structure of the Observed Learning Outcome)
taxonomy that developed from Piaget’s cognitive development
phase theory to clarify the learning progression levels (Biggs and
Collis, 1982, 1991).

In the hypothesized learning progression of probability (see
Table 1), Level 1 does not involve any attributes of probability,
indicating that the probabilistic thinking of students at Level 1

FIGURE 1 | The attribute hierarchy.
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TABLE 1 | Hypothesized learning progression of probability.

Level Content Attributes

1 Students cannot master any attributes
related to probability.

None

2 Students begin to understand the
one-dimensional probability concepts, but
they cannot transfer their understanding of
one-dimensional probability concepts to
two-dimensional probability concepts.

At least one of A1, A2, A4,
A6, and A8

3 Students can perform two-dimensional
sample space and probability estimation of
a two-dimensional event.

Further master at least one
of A3 and A9

4 Students can understand two-dimensional
probability comparisons and probability of a
two-dimensional event. Furthermore, they
can build a connection between
one-dimensional probability concepts and
two-dimensional probability concepts.

Further master A5 and A7

has not yet begun to develop. When the students reach Level
2, students begin to understand the one-dimensional probability
concepts, indicating that they have mastered at least one of A1,
A2, A4, A6, and A8. On the basis of Level 2, students at Level
3 can perform two-dimensional sample space and probability
estimation of a two-dimensional event, indicating that students’
mastery of A3 and A9. At last, when students reach Level 4,
they can understand two-dimensional probability comparisons
and probability of a two-dimensional event. This indicates that
students have mastered all attributes of probability. So far,
we established the correspondence between the hypothesized
learning progression levels and the attributes of probability,
which will help to verify and modify the hypothesized learning
progression through the analysis of GDINA model.

MATERIALS AND METHODS

Item Design
The Q-matrix (Table 2), which is established by the selected
attributes and their attribute hierarchy, presented the
correspondence between each item and each attribute and
was used to guide the item design. Q-matrix is based on the
design principles proposed by Tu et al. (2012). The first is that the
item assessment patterns should include the Reachability Matrix.
The second is that each attribute is measured no less than three
times. In the Q-matrix, ‘1’ means that the attribute is measured
in this item, and ‘0’ means that the attribute is not measured in
this item. For instance, ‘100000000’ means that item 1, item 2,
item 3, and item 4 only measure A1, and ‘100000011’ means that
item 24, item 25 and item 26 measure A1, A8, and A9.

Five mathematics teachers, two subject experts, two
mathematics educators and two psychometricians were invited
to develop the instrument. The mathematics teachers came
from key middle schools in Fujian, Shanxi, Henan and Inner
Mongolia, as well as a teaching and research staff from Qinghai
Province. The subject experts consisted of a professor and an
associate professor who study probability and statistics. The

TABLE 2 | Q-matrix of attributes and items.

Attribute

Item A1 A2 A3 A4 A5 A6 A7 A8 A9

1 1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0

5 1 1 0 0 0 0 0 0 0

6 1 1 0 1 0 0 0 0 0

7 1 1 0 0 0 0 0 0 0

8 1 1 0 1 0 0 0 0 0

9 1 1 0 0 0 0 0 0 0

10 1 1 0 1 0 0 0 0 0

11 1 1 0 0 0 1 0 0 0

12 1 1 0 0 0 1 0 0 0

13 1 1 0 0 0 1 0 0 0

14 1 1 1 0 0 0 0 0 0

15 1 1 1 0 1 0 0 0 0

16 1 1 1 0 0 0 0 0 0

17 1 1 1 0 1 0 0 0 0

18 1 1 1 0 0 0 0 0 0

19 1 1 1 0 1 0 0 0 0

20 1 1 1 0 0 0 1 0 0

21 1 1 1 0 0 0 1 0 0

22 1 1 1 0 0 0 1 0 0

23 1 0 0 0 0 0 0 1 0

24 1 0 0 0 0 0 0 1 1

25 1 0 0 0 0 0 0 1 1

26 1 0 0 0 0 0 0 1 1

mathematics educators were composed of two professors engaged
in mathematics education research. The psychometricians were
comprised of a professor and a Ph.D. candidate who do research
in psychometrics.

Based on the Q-matrix, curriculum standards and textbooks,
the study developed a cognitive diagnostic test of probability,
which consists of 26 items and each item corresponds to a specific
item assessment pattern (IAP). All items are in multiple-choice or
short-answer format. All items are dichotomous, with the correct
score of ‘1’ and the wrong score of ‘0.’ Table 3 presents some
example items and their corresponding IAPs.

Participants and Procedure
According to the level of economic development, mainland
China can be divided into four types: the most developed areas,
the developed areas, the moderately developed areas and the
underdeveloped areas. Since the moderately developed areas
cover 23 provinces and cities, accounting for a large part of the
mainland (Xie and Lu, 2011), the schools and corresponding
students in these areas were selected in this study.

In the end, six junior high schools and five high schools were
selected from the moderately developed areas. A total of 1624
students participated in this study (Table 4). To ease the tension
of the students during the test, we informed them that their test
results will not affect their academic rankings this semester. The
time allocated to the test was 40 min.
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TABLE 3 | Example items from the probability test.

Item number Content IAP

1 Roll a fair dice and the number rolled is greater
than 6. Please determine the type of this event.
(A) Certain (B) Random (C) Impossible

100000000

7 Randomly select a number from the set {1, 2,
3, 4, 5}. Please write out how many possible
outcomes there are.

110000000

18 Roll two fair dice and observe the number on
the up side. Please list all possible outcomes of
the numbers rolled by the two dice.

111000000

TABLE 4 | Structure description of the sample.

Grade 7 8 9 10 11

Total number 323 333 302 354 312

Data Analysis
Instrument Functioning
Parscale 4.1, R and SPSS 22.0 were used to investigate the
psychometric quality of the developed measurement instrument.
First, the rationality of attribute selection and the attribute
hierarchy should be attested. Specifically, we performed a linear
regression analysis to see if the attributes measured by the item
can predict the item difficulty level. We used the hierarchy
consistency index (HCI) to measure the degree of matching
between the actual item response pattern (IRP) and the expected
response pattern under the attribute hierarchy. Second, the test
reliability and test validity should be explored. Attribute test–
retest reliability was used as the test reliability measure under
Cognitive Diagnosis Theory, indicating the internal consistency
of each attribute (Templin and Bradshaw, 2013). As for test
validity, since our study used a cognitive diagnosis model,
the identifiability of the Q-matrix was used as evidence of
the test validity. Third, the quality of each item should be
explored. This includes the examination of item fitting index,
item difficulty and item discrimination. In addition, students
with abnormal responses were identified and analyzed by
participant fitting index.

GDINA Model Analysis
In cognitive diagnosis assessment, the ability of each student is
presented as AMP (attribute master pattern). Attribute refers
to the knowledge, skills and strategies required for a student
to correctly complete a test item. AMP is a description of
whether a student has mastered each attribute. Where, ‘1’ means
that the attribute is mastered, and ‘0’ means that the attribute
is not mastered.

The GDINA model was used to classify students into different
AMPs represented by the observed IRPs. First, the rationality
of attribute selection and attribute hierarchy should be verified.
Then, the identifiability of Q-matrix and the psychometric quality
of the cognitive diagnostic test must be judged. Finally, student’s
AMP was estimated from his or her IRP through the classical
estimation method. Ideally, a student should only correctly
answer items that measure the attributes he or she mastered, and
incorrectly answer items that measure at least one attribute that

he or she did not master. For more information about the GDINA
model estimation program, please refer to de la Torre (2011). The
above analysis was performed using the GDINA model program
in the R package (CDM package). The item response function of
the GDINA model is as follows:

P(Xij = 1|α∗ιj) = δj0 +

K∗j∑
k=1

δjkαιk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αιkαιk′ + · · ·

+ δj12····K∗j

K∗j∏
k=1

αιk

The function above can be decomposed into the sum of the
effects due to the presence of specific attributes and all their
possible interactions. δj0 is the intercept of item j, called the
baseline probability, that is, the probability that the participant
answers the item correctly without mastering all the attributes
measured by this item. The value is a non-negative value and can
be regarded as the guessing parameter. δjk is the main effect of
attribute k on item j, which is generally a non-negative value. It
represents the effect of increasing the probability of answering
this item correctly because the participant has mastered the
attribute k. The larger the value, the greater the contribution of
mastering the attribute to the correct item j. δjkk′ is the interaction
effect of attribute k and attribute k′ on item j. δj12····K∗j measures
the interaction effect between all attributes for item j.

Learning Progression Verification and Modification
Due to the correspondence between the hypothesized
learning progression levels and the attributes contained
in probability presented in Table 1, the attribute mastery
probability analyzed by the GDINA model was used to verify
and modify the hypothesized learning progression. Students
are expected to develop a successively more sophisticated
understanding of probability based on the hypothesized learning
progression levels.

First, students will master the attributes regarding the one-
dimensional probability concepts. Then, students will enter the
initial stage of two-dimensional probabilistic thinking, that is,
they will continue to learn the sample space and compare the
probability of two-dimensional events. It ends with students
being able to build a connection between one-dimensional
probability concepts and two-dimensional probability concepts.
If the hypothesized learning progression is reasonable, the
attributes at higher levels are generally more difficult to master
than the attributes at lower levels.

RESULTS

Instrument Functioning
In this study, a cognitive diagnostic test was developed under the
guidance of the GDINA model. Tu et al. (2012) suggested to first
attest the rationality of the attribute selection and the attribute
hierarchy. For attribute selection, the result of linear regression
analysis with the item difficulty as the dependent variable and the
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columns of the Q-matrix as the independent variables shows that
the adjusted R2 value is 0.875. This means the explanatory power
of the selected attributes to the item difficulty is 87.5%, which
verifies the attribute selection. For attribute hierarchy, Cui and
Leighton (2009) proposed that it is feasible to use HCI index to
test the rationality of attribute hierarchy. Wang and Gierl (2007)
pointed out that if the mean value of HCI index is greater than 0.6,
the attribute hierarchy has good rationality. Based on the current
data, the mean value of HCI index is 0.90, which proves that the
attribute hierarchy is reasonable.

Regarding the quality of cognitive diagnostic test, the
reliability and validity needs to be checked. Based on attribute
test–retest reliability, the internal consistency value of each
attribute ranges from 0.88 to 0.99, indicating that each attribute
has good reliability. Then the test was prepared according to the
design principles of Q-matrix proposed by Tu et al. (2012), which
can confirm the validity of the test.

As for the quality of each item, the item fitting index RMSEA
for all items is less than 0.08, with an average of 0.03, indicating
that each item has a good fit to GDINA model. The item difficulty
index under CTT shows that the difficulty value of most items is
between 0.37 and 0.84, with an average of 0.62, and only seven
items have difficulty values higher than 0.84. The estimation
of item difficulty under IRT shows that the difficulty range is
between −3.41 and 0.95. As for the item discrimination, when
the discrimination is greater than 0.4, the item is considered
excellent (Ray and Margaret, 2003; Tu et al., 2019), and all items
meet the standard.

According to the participant fitting index, if the index is
greater than −2, the participant’s response is in good agreement
with the model. In this study, 94.6% of the students’ responses
have a good fit.

Learning Progression Verification and
Modification
GDINA Model Analysis
The results of the GDINA model analysis show that 1624
students are classified into 34 AMPs (Table 5). All students
mainly concentrated in the following six AMPs: AMP 1, 4,
11, 13, 31, and 34.

Further analysis of these AMPs reveals that 94.6% of students
can develop a perception of randomness because they have
mastered A1. 93.11% of students are able to list all possible
outcomes of a one-dimensional event due to their proficiency in
A1 and A2. 84.62% of students can calculate the probability of a
one-dimensional event, in view of their mastery of A1, A2, and
A4. 84.56% of students know how to compare the probability of
one-dimensional events, which stems from their mastery of A1,
A2, and A6. 63.36% of students can estimate the probability of
a one-dimensional event because of their mastery of A1 and A8.
61.71% of students can form good one-dimensional probabilistic
thinking as they have mastered A1, A2, A4, A6, and A8.

By shifting the discussion of students’ probabilistic thinking
from one-dimensional to two-dimensional, 60.91% of
students can build a connection from one-dimensional to
two-dimensional on the probability estimation (A8, A9), with

a slightly reduced proportion of the latter. The percentage of
students who can migrate from one-dimensional sample space
(A2) to two-dimensional sample space (A3) drops significantly
to 58.19%. The number of students able to progress from one-
dimensional probability comparisons (A4) to two-dimensional
probability comparisons (A5) decreases from 84.62 to 50.06%.
The proportion of students who can calculate the probability of
a two-dimensional event by definition (A7) is 40.16%. However,
only 30.79% of students have mature probabilistic thinking
(A1–A9). In summary, we can find that middle school students
have basically formed a good one-dimensional probabilistic
thinking, but the development of students’ two-dimensional
probabilistic thinking is not optimistic.

In terms of the classification of students in each grade, students
in grade 7 are mainly concentrated in AMP 1, 4, 6, 11, 13, 29,
31 and 34, which indicates that they have a good mastery of A1,
A2, A4, and A6. Students in grade 8 are mainly concentrated in
AMP 1, 2, 4, 6, 9, 11, 13, 31 and 34, and the AMP 34 showed
that students in grade 7 had more percentage than grade 8. This
phenomenon may be due to the fact that after learning probability
concepts in primary school, students in grade 8 have not been
exposed to probability concepts for a longer period of time than
students in grade 7, so their performance is somewhat backward.
Students in grade 9 are mainly concentrated in AMP 11, 13, 31,
32 and 34, indicating that they have further mastered A3, A8, and
A9 on the basis of grades 7 and 8. Students in grades 10 are mainly
concentrated in AMP 11, 13, 25, 31, 32 and 34, which means that
they have made great progress in probability estimation (A8, A9).
Students in grades 11 are mainly concentrated in AMP 13, 25, 31
and 34, which shows that they can master almost all the attributes,
and the proportion of students with mature probabilistic thinking
increases from 7.43 to 58.65%.

Learning Progression Verification and Modification
Process
The attribute mastery probability, which can be estimated by
GDINA model analysis, is used to verify the hypothesized
learning progression. If the hypothesized learning progression
can truly reflect the development of students’ probabilistic
thinking, the attribute mastery probability should be directly
affected by the level of the attributes in hypothesized learning
progression. That is, the attributes at a higher level should be
more difficult to master, while the attributes at a lower level
should be easier to master.

The GDINA model analysis shows that the order of attribute
mastery probability from high to low is A1 (0.94), A2 (0.93),
A6 (0.85), A4 (0.84), A8 (0.63), A9 (0.61), A3 (0.58), A5 (0.50),
A7 (0.41). According to this result, in the one-dimensional
probability concepts, A1, A2, A4, and A6 are relatively easy
to master, except for the probability estimation of a one-
dimensional event (A8). Then, A3, A8, and A9 are at a moderate
difficulty level. Moreover, A5 and A7 are more difficult to
master. This indicates that the attribute mastery probability
levels are basically consistent with the hypothesized learning
progression levels. However, the attribute mastery probability of
A8 at the Level 2 of the hypothesized learning progression is
lower than expected.
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TABLE 5 | Classification of students’ AMPs.

AMP Total (%) Grade 7 (%) Grade 8 (%) Grade 9 (%) Grade 10 (%) Grade 11 (%)

1 000000000 5.54 11.46 13.21 2.98 0.00 0.00

2 100000000 1.29 1.86 4.20 0.33 0.00 0.00

3 100000010 0.06 0.31 0.00 0.00 0.00 0.00

4 110000000 4.86 8.36 14.11 1.32 0.28 0.00

5 110000011 0.06 0.00 0.30 0.00 0.00 0.00

6 110001000 2.22 4.64 5.11 0.99 0.28 0.00

7 110001010 0.12 0.00 0.60 0.00 0.00 0.00

8 110001011 0.62 1.24 1.20 0.33 0.28 0.00

9 110100000 2.65 3.41 6.61 2.98 0.28 0.00

10 110100011 0.25 0.62 0.60 0.00 0.00 0.00

11 110101000 9.91 15.48 13.51 15.56 4.80 0.64

12 110101010 0.74 1.86 1.20 0.66 0.00 0.00

13 110101011 13.49 18.89 14.71 6.95 14.12 12.18

14 111000000 0.06 0.31 0.00 0.00 0.00 0.00

15 111001000 0.31 0.31 0.30 0.33 0.28 0.32

16 111001111 0.06 0.00 0.00 0.00 0.28 0.00

17 111010000 0.06 0.00 0.30 0.00 0.00 0.00

18 111011011 0.12 0.31 0.00 0.00 0.28 0.00

19 111100000 0.06 0.00 0.00 0.33 0.00 0.00

20 111101000 1.54 1.86 1.80 2.65 1.13 0.32

21 111101010 0.06 0.00 0.00 0.00 0.00 0.32

22 111101011 1.29 1.55 0.30 1.66 1.98 0.96

23 111101100 0.74 0.62 0.90 1.66 0.28 0.32

24 111101110 0.25 0.62 0.30 0.00 0.00 0.32

25 111101111 3.76 0.31 0.90 1.32 8.19 7.69

26 111110000 0.18 0.62 0.00 0.00 0.28 0.00

27 111110011 0.12 0.00 0.00 0.66 0.00 0.00

28 111110111 0.25 0.00 0.00 0.00 0.85 0.32

29 111111000 3.76 7.74 3.90 3.31 2.54 1.28

30 111111010 0.37 0.00 0.00 0.33 1.13 0.32

31 111111011 10.10 8.36 6.01 7.95 14.97 12.82

32 111111100 3.45 1.55 2.40 6.62 4.24 2.56

33 111111110 0.86 0.31 0.60 1.32 1.13 0.96

34 111111111 30.79 7.43 6.91 39.74 42.37 58.65

So as to modify the hypothesized learning progression, we
first determine the transition points of the hypothesized learning
progression levels from the perspective of the attribute mastery
probability. According to the GDINA model analysis, the mastery
probability of all attributes is within the range of 0.4 to 0.95.
Meanwhile, 5.5% of the students still cannot master any attributes
related to probability (see Table 5). Therefore, the Level 1 of
learning progression is set so that students cannot master any
attributes. Next, we divide 0.4 to 0.95 into three parts, and
each part corresponds to a learning progression level. Based on
the perspective of attribute mastery probability, the modified
learning progression is presented in Table 6.

Students’ Understanding Levels of
Probability
Regarding the modified learning progression, middle school
students are classified into Level 2, Level 3 and Level 4, with
more students at Level 3 and Level 4. This implies that the
one-dimensional probabilistic thinking of middle school students

is basically mature, and the development of two-dimensional
probabilistic thinking (A3, A5, A7, A9) is relatively slow, which
is consistent with the three stages of the probabilistic cognitive
development proposed by Piaget and Inhelder (2014).

As for the learning progression levels of students in different
grades, students in grade 7 are classified into four levels on
average, with more students at Level 2 and Level 3, but still
11.46% of the students cannot master any attributes. This implies
that although the vast majority of students can recognize the
concept of randomness, there are still a few students in the
embryonic stage of probabilistic thinking, which confirms the
previous research conclusions (Moritz et al., 1996; Chan, 1997;
He and Gong, 2017).

Students in grade 8 are mainly classified into Level 2, and
averaged at the other three levels. However, there are more
students at Level 1 and Level 2 than in grade 7, suggesting
that the probabilistic thinking levels of students in grade 8 are
slightly degraded compared with grade 7. This may be because
the teaching of probability concepts is mainly set in grade 9, while
students in grade 8 have not learned the probability concepts
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TABLE 6 | Modified learning progression of probability.

Level Content Attributes

1 Students cannot understand any attributes
related to probability.

None

2 Students begin to understand the four
one-dimensional probability concepts
(randomness, sample space, probability of an
event and probability comparisons). But they
cannot perform well in probability estimation of
a one-dimensional event, and they cannot
transfer their understanding of probability
concepts from one-dimensional to
two-dimensional.

At least one of A1, A2,
A4, and A6

3 Students can perform probability estimation
and two-dimensional sample space. And they
cannot integrate all the two-dimensional
probability concepts.

Further master at least
one of A3, A8, and A9

4 Students can understand two-dimensional
probability comparisons and probability of a
two-dimensional event. Furthermore, they can
build a connection between one-dimensional
probability concepts and two-dimensional
probability concepts.

Further master A5 and
A7

for a long time, which leads to their backward thinking. This
suggests that the teaching of probability should be properly
arranged for each grade.

Students in grade 9 are mainly classified into Level 3 and
Level 4, which indicates that they have basically mastered all
one-dimensional probability concepts, and the two-dimensional
probabilistic thinking is also developing steadily. Students in
grades 10 and 11 are mainly classified into Level 4, with 42.37 and
58.65% of them reaching the AMP (111111111), which implies
that about half of them have not yet formed a mature probabilistic
thinking. That is to say, although students have mastered the two-
dimensional sample space, they are unable to effectively establish
a connection between two-dimensional probability concepts,
which makes the previous studies confirmed again (Liu and
Zhang, 1985; Li, 2003; He and Gong, 2017).

In short, middle school students develop a successively more
sophisticated understanding of the concepts involved in the
learning progression levels, but the reasons for the decline of
students in grade 8 still need to be further explored.

DISCUSSION

The current study aimed to develop a learning progression for
probability. To this end, we built a new measurement instrument
based on cognitive diagnosis theory for data collection and
data analysis. The findings will be discussed from the learning
progression for probability, the types probability AMPs for
students, learning progression verification and modification and
practical implications.

Learning Progression for Probability
The learning progression for probability, based on the cognitive
diagnosis theory, is presented in Table 6. Students at Level 1

cannot master any attributes. In particular, 5.5% of the students
are at Level 1, and the number of students at Level 1 decline
as the grade progresses. This confirms the research conclusion
of He and Gong, there are still a small number of middle
school students who do not understand the concepts related to
probability (He and Gong, 2017). Thus, although the curriculum
of junior high school should be spiraling upward in primary
school, those students whose probabilistic thinking has not yet
sprouted cannot be completely ignored.

Students at Level 2 can master at least one of one-dimensional
probability concepts, with the exception of probability
estimation, which combines the Uni-Structural level with
the Multi-Structural level in Li’s research (Li, 2003). By contrast,
contemporary students have made progress in probability,
suggesting that formal teaching in the early stage of secondary
school has achieved good results. It is worth noting that the
probability estimation found by Li’s research is out of step with
the development of other one-dimensional probability concepts
(Li, 2003). This may be due to the dispersion of the probability
content in the junior high school. Some suggestions are also put
forward for the classroom setting, which implies that we should
pay more attention to the cultivation of probability estimation
thoughts, and should not ignore the importance of probability
estimation as the foundation of statistics learning in the future.

Students at Level 3 can further master probability estimation
of a one-dimensional event, two-dimensional sample space and
probability estimation of a two-dimensional event. Logically
speaking, mastering one-dimensional probability concepts is the
prerequisite for continuing to learn two-dimensional probability
concepts. Meanwhile, the construction of sample space is
the prerequisite for probability calculation and probability
comparisons. This is similar to the conclusions of earlier
studies by Lecoutre, Fischbein, and English that students cannot
naturally understand the sample space, because the basic results
in different orders should be distinguished and counted as
different results (Lecoutre et al., 1990; Fischbein et al., 1991;
English, 1993).

Students at Level 4 can further develop probability of
a two-dimensional event and two-dimensional probability
comparisons. These two attributes belong to the last stage of
probabilistic cognitive development proposed by Piaget and
Inhelder — the stage of formal operation, thus verifying the
setting of Level 4 (Piaget and Inhelder, 2014). In discipline
logic, the sample space is the basis of probability of an event
and probability comparisons. However, not all students who
mastered the two-dimensional sample space can enter Level 4,
and the reasons are worth exploring. Referring to the answers
of these students, some students have not formed a stable
understanding of the sample space and are in a wandering
stage and some students have a lack of calculation formula or
calculation ability in the process.

The Types Probability AMPs for Students
There are 34 AMPs for students based on the GDINA model
analysis. As can be seen from Table 6, students’ AMPs for
probability can be summarized into two types through the
correspondence between learning progression levels and AMPs.
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The first type of AMPs is to master all the attributes at a lower
level and then develop the attributes at the next level, such
students account for 86.89% of the total. For instance, AMP
12 (110101010) indicates that students in this category have
mastered A1, A2, A4, A6, and A8, that is, after mastering all the
attributes at Level 2, they have developed A8 at Level 3.

It is worth noting that there is another type of AMPs. After
developing partial attributes at a low level, students develop
the attributes at the next level, reciprocating cycles, and finally
forming mature probabilistic thinking. Such students account for
13.11% of the total, mainly at Level 3 and Level 4. Looking at
the attribute hierarchy (see Figure 1), because the probability
estimation A8 and A9 are independent of the other attributes,
these two attributes may be the hardest for some students to
master. For example, AMP 32 (111111100) indicates that students
in this category have mastered A1–A7, but have not mastered
A8 and A9, that is, they have mastered all attributes of Level 2
and Level 4, but for Level 3, they have only mastered A3, and we
believe that they have reached Level 4.

To sum up, most students develop probabilistic thinking in
a spiraling manner, while a few develop probabilistic thinking
by learning each knowledge point independently. This result
indicates that the curriculum, teaching and evaluation should
attach importance to the cultivation and investigation of core
knowledge and ability, and further thinking is still needed
on how to form a good cognitive structure for students
around core knowledge.

Learning Progression Verification and
Modification
As the levels of learning progression correspond to the attributes
contained in probability, the results of GDINA model analysis are
used to verify and modify the hypothesized learning progression.
On the one hand, the order of attribute mastery probability
is basically consistent with the levels of hypothesized learning
progression, that is, the attributes at a low level are easier to
master, while the attributes at a high level are more difficult to
master. However, the attribute mastery probability of probability
estimation of a one-dimensional event is lower than expected,
which implies that students who can perform well on other
one-dimensional probability concepts (A1, A2, A4, and A6) still
perform poorly on probability estimation of a one-dimensional
event (A8). On the other hand, the AMPs of each grade students
can also be used to verify and modify the hypothesized learning
progression. The AMPs of students in grades 7 and 8 show that
they can perform well in A1, A2, A4 and A6, and slightly worse

on A8. The AMPs of students in grade 9 indicate that they have
further mastered A3, A8, and A9 on the basis of grades 7 and 8.
Students in grades 10 and 11 can master almost all the attributes.
The above analysis means that students’ understanding of all one-
dimensional probability concepts is not completely synchronized
in junior high school.

From the attribute hierarchy, the probability estimation of a
one-dimensional event (A8), which is an approximation of the
probability of an event from the experimental perspective, is
independent of A2–A7. Therefore, A8 may be more difficult to
master than A1, A2, A4, and A6. This finding may be due to the
fact that students in the second learning phase (grades 4 to 6) have
already begun the initial study of probability, but the curriculum
standards and textbooks for this phase focus on one-dimensional
probability concepts and do not formally introduce probability
estimation. It is not until the third learning phase (grade 9) that
students begin to systematically contact the idea of probability
estimation. This result shows that it is unreasonable to put A8 at
the Level 2 and adjust it to the Level 3.

Compared with the hypothesized learning progression, the
modified learning progression has obvious advantages. From the
macro perspective, the modified learning progression combines
the experience of subject experts, front-line teachers, and the
students’ actual learning conditions, which is closer to the
development characteristics of students’ probabilistic thinking
in each grade. From the micro perspective, each student’s
path from a lower level to a higher level is not unique.
Starting from the student’s current AMP and taking AMP 34
(111111111) as the learning target, a path can be selected to
match the learning progression and attribute hierarchy. This
suggests that the learning progression constructed by the GDINA
model includes both macroscopic and microscopic observations,
which can improve the theoretical nature of teaching decision-
making, enhance the operability of teaching practice, and provide
possibility for students’ self-improvement, so as to promote the
integration of curriculum, teaching and evaluation.

Practical Implications
Through the GDINA model analysis, this study used cross-
sectional data to construct a learning progression for probability.
Although no longitudinal data has been collected for verification,
the attribute hierarchy, learning progression and the student’s
AMP can still be helpful to front-line teachers. Before teaching,
the results of this study can provide a more scientific analysis
of learning situations for teaching design. After teaching, the
cognitive diagnostic test in this study can be used to check the

TABLE 7 | Individual information of three students.

ID Score AMP IRP Non-mastered attributes and remedy pathway

67 14 110101000 11111111111110000100000000 A3, A5, A7, A8, A9

A8→A9→A3→A5→A7

179 14 110101011 11011110111110000000001101 A3, A5, A7

A3→A5→A7

529 14 110100011 11111111110000000000001111 A3, A5, A6, A7

A6→A3→A5→A7
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learning effect of students, thereby providing a plan for teaching
review and teaching remedy.

Many researchers pointed out that students’ learning pathways
are not unique (Baroody et al., 2004), and teachers can
find several remedy pathways for students with specific
AMP to master all attributes by combining the learning
progression and attribute hierarchy. In addition, teachers
can gather students with specific AMP, which is more
effective. For example, for students with AMP (110100000),
the remedy pathway may be A8→A9→A6→A3→A5→A7 or
A6→A8→A9→A3→A5→A7. In the first remedy pathway,
students will first learn probability estimation, then learn
probability of a one-dimensional event, and finally learn
the sample space, probability comparison, and probability of
a two-dimensional event. In the second remedy pathway,
students will first develop a good one-dimensional probabilistic
thinking, and then gradually develop a mature two-dimensional
probabilistic thinking.

Furthermore, a student’s individual diagnostic report,
including individual test score, IRP, AMP and non-mastered
attributes, can be used to conduct an in-depth analysis of the
student’s knowledge state and provide personalized remedial
suggestions. For example, Table 7 shows the individual
information of three students. Even if they have the same score,
they may have different IRPs, AMPs, and remedy pathways.
This directly demonstrates the significant advantages of using
cognitive diagnosis assessment to develop learning progression.

Limitations and Future Work
Although this study has the above findings and implications,
there are still some limitations. First, this study used cross-
sectional data to construct a learning progression for probability,
but learning progression itself is a developmental concept, so
longitudinal data can be collected for more in-depth exploration
in the future. In addition, some scholars have recently explored
longitudinal cognitive diagnosis theory (Li et al., 2016; Zhan et al.,
2019; Zhan, 2020), so longitudinal tracking data can be collected
under the guidance of longitudinal cognitive diagnosis theory
to build learning progression that can reveal more about the
laws of education. Second, the effect of the constructed learning
progression is not fully explored in this study, so that future
research can use remedy pathways to examine the validity of

the cognitive diagnosis results. For example, students can be
divided into an experimental group and a control group. Courses
and teaching are arranged for the students in the experimental
group according to the learning progression, while the students
in the control group follow the normal teaching plan. If there
is a significant difference in performance between the two
groups at the end of the course, we believe that the learning
progression is effective. Further exploration can group students
with a specific AMP and select different remedy pathways to find
the most effective way for these students. In addition, realizing
the computerization of students’ diagnostic reports and targeted
remedial suggestions is also the direction of future development.
That is, computer programs need to be programmed to report
results automatically, which can help students achieve self-
remedy learning.
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Many test-takers do not carefully answer every test question; instead they sometimes
quickly answer without thoughtful consideration (rapid guessing, RG). Researchers have
not modeled RG when assessing student learning with cognitive diagnostic models
(CDMs) to personalize feedback on a set of fine-grained skills (or attributes). Therefore,
this study proposes to enhance cognitive diagnosis by modeling RG via an advanced
CDM with item response and response time. This study tests the parameter recovery
of this new CDM with a series of simulations via Markov chain Monte Carlo methods in
JAGS. Also, this study tests the degree to which the standard and proposed CDMs fit
the student response data for the Programme for International Student Assessment
(PISA) 2015 computer-based mathematics test. This new CDM outperformed the
simpler CDM that ignored RG; the new CDM showed less bias and greater precision
for both item and person estimates, and greater classification accuracy of test results.
Meanwhile, the empirical study showed different levels of student RG across test items
and confirmed the findings in the simulations.

Keywords: response time, rapid guessing, G-DINA model, DINA model, DINO model

INTRODUCTION

Cognitive diagnostic models (CDMs) assess whether test-takers have the skills needed to answer test
questions (attributes), so that their test results can give them diagnostic feedback on their strengths
and weaknesses in these attributes (Rupp et al., 2010). Specifically, a CDM analysis determines
whether a person shows mastery (vs. non-mastery) of a set of fine-grained attributes (latent class).
Teachers, clinicians and other users of test scores can use such specific information on each student
or client to adapt and improve their instructions/interventions more effectively, compared to a
simple, summative score.

However, some test-taking behaviors can distort current CDM results and thereby jeopardize the
validity of their assessments. Recently, researchers have proposed different approaches to account
for test-taking behaviors when assessing test-taker performance and item characteristics. In this
study, we focus on two frequently-observed test-taking behaviors during actual tests: solution
attempt and rapid guessing (RG; Wise and Kong, 2005). In a solution attempt, test-takers carefully
try to find answers to test questions. By contrast, RG refers to test-takers quickly answering
test questions without thoughtful consideration (e.g., Wise and DeMars, 2006). For instance,

Frontiers in Psychology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 570365192

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.570365
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.570365
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.570365&domain=pdf&date_stamp=2020-09-25
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.570365/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-570365 September 24, 2020 Time: 19:51 # 2

Hsu et al. Random Guessing Behaviors in CD

Meyer (2010) integrated a two-class mixture Rasch model (Rost,
1990) to classify a test-taker as either making a solution attempt
or RG, but not allowing different behaviors by the same person
during a test. To address this limitation, Wang and Xu (2015)
proposed a model with a latent indicator to allow each test-
taker to engage in either a solution attempt or RG on each item.
Furthermore, the indicator can depend on either a test-taker’s RG
propensity or on an item-level feature (Wang et al., 2018). As RGs
are typically much shorter than solution attempts, CDMs can use
a test-taker’s reaction time (RT) to each test question to properly
model RGs and distinguish them from solution attempts (but not
necessarily pre-knowledge answers, e.g., Wang et al., 2018). As no
published study has proposed and tested a CDM that models RG,
we do so in this study.

This study proposes a new framework of CDMs to recognize
different test-taking behaviors by using RT and item responses
simultaneously. This new class of CDMs: (1) models two test-
taking behaviors (RG vs. solution attempt) for each item-person
concurrence, (2) allows multiple switch points between RG and
solution attempts among the items for each test-taker, (3) thereby
yields person and item estimates with greater accuracy, and (4)
generalizes to available CDMs, RT functions and other kinds of
dissimilar behaviors.

The generalized DINA model (G-DINA, de la Torre,
2011) conceptualizes and shows the utility of this framework.
Specifically, the two special cases of the G-DINA model, the
deterministic input, noisy “and” gate (DINA) model (Junker
and Sijtsma, 2001) and its counterpart, the deterministic input,
noisy “or” gate (DINO) model (Templin and Henson, 2006)
are simple to compute, estimate, and interpret, so they serve as
illustrations. Nevertheless, researchers can extend this approach
to other CDMs, especially G-DINA-liked formulation CDMs,
such as the general diagnostic model (GDM; von Davier, 2005)
and the linear logistic model (Maris, 1999).

After we present the functions for describing RT and item
response, we specify the new model. Next, our simulation
study illustrates the new model’s performance, followed by its
application to real data. Lastly, we discuss the implications of
this study for identifying test-taking behaviors and improving the
estimation accuracy of both person and item parameters.

A NEW CDM FRAMEWORK

The new model requires distinct functions to separately specify
two fundamentals for an item, RT and item response, while
two main facets, person and item, affect the observed RT and
item response. This section describes the adopted RT and item
response functions, before specifying the new model.

The Lognormal RT Model
As cognitive test data typically resemble a lognormal distribution
more closely than a normal distribution, we use a lognormal
function to characterize RT (van der Linden, 2006, 2007). Let
RTij be the observed RT of person i (i = 1, 2, . . ., I) to item j
(j = 1, 2, . . ., J). In the lognormal function, the two parameters of
person speed and time intensity, respectively, represent the two

facts, person and item, as follows,

log
(
RTij

)
∼ N(βj − τi, 1/κ2

j ) (1)

where τi indicates the average speed of test-taker i on a test
(person speed); βj indicates the mean time that the population
needs to resolve item j (time intensity); and κ2

j indicates
the dispersion of the logarithmized RT distribution (time
discrimination parameter) of item j.

The G-DINA Model
The G-DINA model loosens some restrictions of the DINA model
and its saturated form is equivalent to other general CDMs via
link functions (de la Torre, 2011). Hence, the G-DINA model
can (a) present different CDMs with similar formulations via
various constraints and (b) substantially reduce the number of
latent classes for an item – especially for models with more than
five attributes. The original G-DINA model with identity link can
be expressed as

P
(
α∗ij

)
= δj0 +

K∗j∑
k=1

δjkαik +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αikαik′ · · · + δj12···K∗j

K∗j∏
k=1

αik (2)

For test-taker i, the reduced attribute vector α∗ij has the required
attributes for item j. The intercept for item j, δj0 represents the
probability of a correct response without the required attributes
(baseline probability). The main effect δjk reflects the extent to
which mastery of a single attribute αk changes the probability
of a correct response. The interaction effect δjkk′ indicates the
extent to which mastery of both attributes αk and αk′ changes the
probability of a correct response. The interaction effect δj12···K∗j
reflects the extent to which mastery of all the required attributes
α1, α2, · · · , and αK∗j changes the probability of a correct response.

Like most CDMs, the G-DINA model requires a J × K
Q-matrix (Tatsuoka, 1983), in which K knowledge attributes are

required to correctly answer J items. K∗j =
K∑

k=1
qjk is the number

of required attributes for item j, where qjk = 1 if the correct
response to item j requires attribute k; and 0 otherwise. As the
number of required attributes for item j is smaller than that of
the all attribute vectors (K∗j < K), the G-DINA model can reduce

the number of required latent classes (2K
∗
j < 2K) for an item.

To illustrate the G-DINA-like formulations, we use two common
cases: the DINA and DINO.

The DINA Model
In the non-compensatory DINA, individuals are classified into
one of two latent classes for an item: (a) the attribute vectors
have all of an item’s required attributes (mastery) or (b) the
attribute vectors are missing at least one of the item’s required
attributes (non-mastery). The two latent classes’ corresponding
probabilities for a correct response entail that (a) mastery
individuals do not slip, or (b) non-mastery individuals guess
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correctly (Junker and Sijtsma, 2001). Thus, the DINA model can
be re-formed by setting to zero, all G-DINA model parameters
except δj0 and δj12···K∗j

P
(
α∗ij

)
= δj0 + δj12···K∗j

K∗j∏
k=1

αik (3)

In Eq. 3, δj0 = gj is the probability of a correct response to item j
for a non-mastery test-taker i, where gj is the guessing parameter
for item j; δj0 + δj12···K∗j = 1− sj is the probability of a correct
response to item j for a mastery test-taker i, where sj is the
slipping parameter for item j. In the DINA, a mastery test-taker
with all the required attributes (K∗j ) for item j generally answers
it correctly and other test-takers generally answer it incorrectly.
Like the DINA, Eq. 3 shows that except for the attribute vector
α∗j = 1K∗j (in which 1K∗j is a vector of ones with length K∗j ), other

latent classes (2K
∗
j − 1) have the same probability of correctly

answering item j. As shown in Eq. 3, this probability increases
only after mastering all the required attributes. Under the DINA
model assumption (Junker and Sijtsma, 2001), the G-DINA has
two parameters per item (see Eq. 3).

The DINO Model
Unlike the non-compensatory DINA, the compensatory DINO
only entails at least one of the required attributes to answer an
item, so the parameters in G-DINA are set to

δjk = (−1) δjk′k′′ = · · · = (−1)K
∗
j +1

δj1,2,··· ,K∗j (4)

where k = 1, · · · ,K∗j , k
′

= 1, 2, · · ·K∗j − 1, and k
′′

>

k
′

, · · · ,K∗j . The orders of the interactions vary the alternating
sign, and the quantities of the main effects and interactions have
the same value.

P
(
α∗ij

)
= δj0 + δjkαik. (5)

For a test-taker i with at least one of the required attributes, the
probability of answering item j without slipping (s

′

j) is δj0 + δjk =

1− s
′

j. Likewise, for a test-taker i with none of the required
attributes, the probability of correctly answering item j is the
guessing parameter, δj0 = g

′

j . Unlike the DINA, all latent classes
except for the attribute vector α∗j = 0K∗j (a vector of zeros and of
length K∗j ) have the same probability of correctly answering item
j. Like the DINA, the DINO only needs two parameters for an
item (Eq. 5, Templin and Henson, 2006).

To use both information of RT and item response, two
functions must be specified. Hence, RT-GDINA, RT-DINA
and RT-DINO jointly model RT and item response with
the lognormal distribution (Eq. 1) and G-DINA, DINA and
DINO, respectively.

New Class of CDMs
We introduce a new class of G-DINA to account for varying test-
taking behaviors. RT (RTij) and item response (Yij) are modeled
individually. As test-takers can switch between RG and solution

behaviors, like Wang and Xu (2015), a latent indicator (ξ) is
employed, where if test-taker i tries to solve item j, ξij = 1 (0
otherwise; RG is specified in this study). Incorporating this latent
indicator into the lognormal RT model extends Eqs 1–6{

log
(
RTij

)
∼ N

(
βj − τi, 1/κ2

j

)
, if ξij = 1;

log
(
RTij

)
∼ N

(
β0, 1/κ2

0
)
, if ξij = 0.

(6)

indicates that the logarithmized RT is normally distributed as
Eq. 1 if test-taker i solves item j from solution attempt (ξij = 1),
and it is normally distributed with mean time intensity β0 and
time discrimination κ2

0 if test-taker i responds to item j with a RG
(ξij = 0). For a RG on item j by test-taker i, RT is constant.

Likewise, adding ξij to the G-DINA yields

P
(
α∗ij

)
= ξij

(
δj0 +

K∗j∑
k=1

δjkαik +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αikαik′ · · · + δj12···K∗j

K∗j∏
k=1

αik

)
+
(
1− ξij

)
δ∗j (7)

The G-DINA model is the underlying model for a solution
attempt on item j by test-taker i (ξij = 1). We assume that a
RG on item j by test-taker i (ξij = 0) yields δ∗j . For simplicity,
like Wise and DeMars (2006), we assume that test-taker i has
the same probability of correctly answering item j both by RG
and by guessing with none of the required attributes (δ∗j = δj0),
that is, guessing randomly for all options. Hence, Eq. 7 can be
re-written as

P
(
α∗ij

)
= δj0 + ξij

( K∗j∑
k=1

δjkαik +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αikαik′ · · · + δj12···K∗j

K∗j∏
k=1

αik

)
(8)

The latent indicator ξij in Eqs 6–8 is a binary result of test-taker i
on item j’s behavior (solution attempt vs. RG). It can be modeled
by a Bernoulli distribution with πj, the marginal probability of
the solution attempt. Using the DINA and DINO to identify RGs
and solution attempts, Eqs 3 and 5 are re-written, respectively, as
Eqs 8 and 9.

P
(
α∗ij

)
= δj0 + ξijδj12···K∗j

K∗j∏
k=1

αik (9)

P
(
α∗ij

)
= δj0 + ξijδjkαik (10)

If test-taker i tries to solve item j (ξij = 1), Eqs 6, 8–10
reduce, respectively, to Eqs 1–3, and 5. Thus, the lognormal,
G-DINA, DINA, and DINO are special cases of our proposed
new CDM framework. Likewise, jointly modeling RT and
item response with a latent indicator via Eqs 6 and 8–10
are, respectively, represented as RT-GDINA-RG, RT-DINA-RG
and RT-DINO-RG.
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To illustrate this approach, we combine the lognormal
RT distribution and the easy-to-understand DINA and DINO
models, with the latent indicator ξ (RT-DINA-RG, RT-DINO-
RG) and without it (RT-DINA, RT-DINO). We estimate
their parameters via the Bayesian method with the Markov
chain Monte Carlo (MCMC) algorithm in the freeware JAGS
(Plummer, 2017). For the JAGS code and the priors for the
estimated parameters of the RT-DINA-RG and RT-DINO-RG
models (see Appendix).

SIMULATION STUDY 1: PARAMETER
RECOVERY OF RT-DINA-RG

Design
In simulation study 1, we evaluated the parameter recovery of
the RT-DINA-RG for a test of 30 dichotomous items measuring
five non-compensatory attributes. See the artificial Q-matrix in
Table 1. The guessing (gj) and slipping (sj) parameters were
randomly generated, respectively, from the uniform distributions
of U(0.05, 0.3) and U(0.05, 0.2), which reflect a high quality
test. This data-generating procedure for the 30 simulated items

TABLE 1 | Specified Q-matrix and item parameters in simulation 1.

Item q1 q2 q3 q4 q5 πj

1 1 0 0 0 0 0.9

2 0 1 0 0 0 0.9

3 0 0 1 0 0 0.9

4 0 0 0 1 0 0.9

5 0 0 0 0 1 0.9

6 1 0 0 0 0 0.8

7 0 1 0 0 0 0.8

8 0 0 1 0 0 0.8

9 0 0 0 1 0 0.8

10 0 0 0 0 1 0.8

11 1 1 0 0 0 0.9

12 1 0 1 0 0 0.9

13 1 0 0 1 0 0.9

14 1 0 0 0 1 0.9

15 0 1 1 0 0 0.9

16 0 1 0 1 0 0.8

17 0 1 0 0 1 0.8

18 0 0 1 1 0 0.8

19 0 0 1 0 1 0.8

20 0 0 0 1 1 0.8

21 1 1 1 0 0 0.9

22 1 1 0 1 0 0.9

23 1 1 0 0 1 0.9

24 1 0 1 1 0 0.9

25 1 0 1 0 1 0.9

26 1 0 0 1 1 0.8

27 0 1 1 1 0 0.8

28 0 1 1 0 1 0.8

29 0 1 0 1 1 0.8

30 0 0 1 1 1 0.8

yielded item discrimination indices (IDI) that ranged from
0.51 to 0.88, indicating a test with high measurement quality
(Lee et al., 2012).

We manipulated two conditions. In the RG condition, the
marginal probability of RG (1− πj) was set for items at two
levels: 0.1 and 0.2 (Wang et al., 2018). To describe the dynamic
latent indicator of person i on item j in the RG condition, the
ξ-parameter was generated from a Bernoulli distribution with
probability either of 0.8 or 0.9. In the RT-DINA-RG, mean
item time intensity (β0) and item discrimination (κ0) were (a)
set, respectively, at 2 and 1.6 for rapid guessers (ξij = 0) and
(b) generated, respectively, from U(2, 4) and U(0.15, 2) for
normal test-takers (ξij = 1). In non-RG condition, RG never
occurs, and the RT-DINA served as the data-generating model,
yielding parameters similar to the RT-DINA-RG. Mean item
time intensity and item discrimination can be generated to
accommodate various test situations (e.g., Man et al., 2018), but
they do not affect the use of the proposed model. Therefore, we
leave this interesting topic for further study.

We simulated 1,000 test-takers across conditions, and each
test-taker had generated five latent attributes with positive
correlations, following Henson and Douglas (2005) procedure.
Specifically, we randomly generated 1,000 vectors with five
values, αi = (αi1, αi2, αi3, αi4, αi5)

′

, i = 1, 2, . . ., 1,000,
from a multivariate normal distribution with no interaction,
MVN(0.5, 6) with 6 diagonal elements of 1.0 and others of
0.5. A cut-off value of 0.253 (z0.6) indicated mastery of the
attribute (if αik > 0.253, αik = 1; otherwise, αik = 0), yielding
∼60% mean mastery of each attribute, which generally ranged
from easy to moderate. The person speed parameter (τi) was
generated from N(0, 0.32). Each condition was replicated 100
times from an R script.

Both the RT-DINA and RT-DINA-RG were fit to these data
to test three hypotheses: (1) with some RG, the RT-DINA-
RG efficiently recovers item and person estimates; (2) ignoring
RG via the RT-DINA yields biased item parameter estimates,
less accurate classification of attribute mastery, and less reliable
person speed estimates; and (3) with no RG, the RT-DINA-RG
performs as well as the RT-DINA. To evaluate the recovery of
item parameters, the bias and root mean squared error (RMSE)
were computed as dependent variables:

Bias
(
ν̂
)
=

100∑
r=1

(
ν̂r − ν

)
/100 (11)

RMSE
(
ν̂
)
=

√√√√ 100∑
r=1

(
ν̂r − ν

)2
/100 (12)

where ν and ν̂r indicate respectively, true and estimated values
in the r-th replication of an item parameter. We examined
test-takers’ true and estimated latent classes to evaluate the
classification accuracy of each attribute. The reliability of the
person speed parameter was computed as:

Reliability
(
τ̂
)
= Correlation

(
τ̂, τ

)2 (13)
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FIGURE 1 | Parameter recovery for the RT-DINA and RT-DINA-RG under the RG condition in simulation 1.

Results
In the RG condition, the RT-DINA-RG generally yielded
unbiased parameter estimates, whereas the RT-DINA
overestimated the slipping parameters and underestimated
the item intensity, guessing, and time discrimination parameters
(see Figure 1). Greater RG increased the severities of slipping
overestimation and time intensity underestimation. For test-
takers without the required attributes, RG did not influence
the success rate, so ignoring RG did not substantially influence
estimation of the guessing parameters. Across five attributes and

100 replications, mean classification accuracy was higher for the
RT-DINA-RG than the RT-DINA (0.936> 0.924), suggesting that
ignoring RG reduces the accuracy of attribute classification. Also,
the RT-DINA-RG outperformed the RT-DINA on reliability of
the person speed parameter (M: 0.66> 0.57).

In the non-RG condition, both RT-DINA and RT-DINA-
RG recovered the parameters well (see Figure 2). The bias and
RMSE for the π-parameter in the RT-DINA-RG were nearly
zero. Also, both models yielded practically identical classification
accuracy (M = 96.6%) and reliability of person speed parameter
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FIGURE 2 | Parameter recovery for the RT-DINA and RT-DINA-RG under the non-RG condition in simulation 1.

(M = 0.76) across 100 replications. Hence, overfitting the RT-
DINA-RG to data without RG showed no significant harm. In
brief, the simulation results supported our three hypotheses.

SIMULATION STUDY 2: PARAMETER
RECOVERY OF RT-DINO-RG

Design
Study 2 simulated compensatory attributes and analyzed
parameter recovery by the RT-DINO and RT-DINO-RG. The
item responses and RTs were generated for (a) the RG condition
with the RT-DINO-RG and (b) the non-RG condition with
the RT-DINO. The parameters, data generation and evaluation

criteria were the same as those in simulation study 1. Paralleling
study 1, we test three hypotheses: (1) with some RG, the RT-
DINO-RG efficiently recovers item and person estimates; (2)
ignoring RG via the RT-DINO yields biased item parameter
estimates and less accurate classification of attribute mastery;
and (3) with no RG, the RT-DINO-RG performs as well as
the RT-DINO.

Results
The study 2 results resemble the study 1 results (see Figure 3).
In the RG condition, the RT-DINO-RG recovered the
parameters well, whereas the RT-DINO overestimated the
slipping parameters and underestimated the item intensity,
guessing, and time discrimination parameters. Greater RG
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FIGURE 3 | Parameter recovery for the RT-DINO and RT-DINO-RG under the RG condition in simulation 2.

increased the severities of slipping overestimation and time
intensity underestimation. The RT-DINO-RG outperformed the
RT-DINO on both mean classification accuracy (0.946 > 0.922)
across five attributes and reliability of the person speed parameter
(M: 0.64> 0.57).

In the non-RG condition, both RT-DINO and RT-DINO-RG
recovered the item parameters well (see Figure 4). The bias and
RMSE for π-parameter in the RT-DINO-RG model were very
small. Also, both models had practically identical classification
accuracy (M = 98.4%) and reliability of person speed parameter
(M = 0.71) across replications. In sum, these simulation results
supported our three hypotheses.

REAL DATA ANALYSIS

To illustrate a RT-GDINA-RG application, we analyzed a PISA
2015 mathematics test with 22 questions. After screening
out students with missing responses, we analyzed 5,158
students’ responses. The PISA 2015 mathematics assessment
framework (OECD, 2017a,b) and the released computer-based
mathematics items’ log-file databases covered eight attributes:
change and relationships (α1), quantity (α2), space and shape
(α3), uncertainty (α4), occupational (α5), societal (α6), scientific
(α7), and personal (α8). The Q-matrix for the mathematics test
shows two cognitive attributes for each item (see Table 2). We fit
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FIGURE 4 | Parameter recovery for the RT-DINO and RT-DINO-RG under the non-RG condition in simulation 2.

the four CDM models (RT-DINA, RT-DINO, RT-DINA-RG, RT-
DINO-RG) to these data. Superior models have lower deviance
information criteria (DIC; Spiegelhalter et al., 2002).

The results indicate both compensatory attributes and RG.
DICs showed that the compensatory models outperformed
the non-compensatory ones (RT-DINO < RT-DINA:
1,351,697 < 1,433,173; and RT-DINO-RG < RT-DINA-RG:
1,327,068 < 1,360,978) suggesting that the eight attributes’
relationships were more compensatory than non-compensatory.
Also, the RG models outperformed the simpler models
(RT-DINO-RG < RT-DINO: 1,327,068 < 1,351,697; and RT-
DINA-RG < RT-DINA: 1,360,978 < 1,433,173), showing
substantial RG. As the data indicated both compensatory

attributes and RG, the RT-DINO-RG showed the best fit.
Hence, we examine the RT-DINO and RT-DINO-RG results
in greater detail.

Like study 2, the RT-DINO estimated higher slipping
parameters and lower guessing parameters, compared to the RT-
DINO-RG (slipping: MRT-DINO > MRT-DINO-RG: 0.27 > 0.22;
guessing: MRT-DINO < MRT-DINO-RG: 0.28 < 0.30). Also, the
mean discrimination power of RT-DINO-RG exceeded that of
RT-DINO (IDIM(RT-DINO-RG) > IDIM(RT-DINO): 0.47 > 0.45).
Ranging from 0.74 to 0.99, RT-DINO-RG’s RG estimates
(π) moderately correlated (r = 0.49) with the difference
in the slipping parameters of RT-DINO and RT-DINO-RG
(see Figure 5), supporting the simulation study 2 finding of
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TABLE 2 | Specified Q-matrix for the real data.

Item Label q1 q2 q3 q4 q5 q6 q7 q8

1 CM033Q01S 0 0 1 0 0 0 0 1

2 CM474Q01S 0 1 0 0 0 0 0 1

3 DM155Q02C 1 0 0 0 0 0 1 0

4 CM155Q01S 1 0 0 0 0 0 1 0

5 DM155Q03C 1 0 0 0 0 0 1 0

6 CM155Q04S 1 0 0 0 0 0 1 0

7 CM411Q01S 0 1 0 0 0 1 0 0

8 CM411Q02S 0 0 0 1 0 1 0 0

9 CM803Q01S 0 0 0 1 1 0 0 0

10 CM442Q02S 0 1 0 0 0 1 0 0

11 DM462Q01C 0 0 1 0 0 0 1 0

12 CM034Q01S 0 0 1 0 1 0 0 0

13 CM305Q01S 0 0 1 0 0 1 0 0

14 CM496Q01S 0 1 0 0 0 1 0 0

15 CM496Q02S 0 1 0 0 0 1 0 0

16 CM423Q01S 0 0 0 1 0 0 0 1

17 DM406Q01C 0 0 1 0 0 1 0 0

18 DM406Q02C 0 0 1 0 0 1 0 0

19 CM603Q01S 0 1 0 0 0 0 1 0

20 CM571Q01S 1 0 0 0 0 0 1 0

21 CM564Q01S 0 1 0 0 0 1 0 0

22 CM564Q02S 0 0 0 1 0 1 0 0

FIGURE 5 | Relationship between π-parameter in the RT-DINO-RG and the
difference in the slipping parameters between the RT-DINO the RT-DINO-RG
models. Numbers are item identifiers; πEst is RG estimates; and SRT-DINO –
SRT-DINO-RG is the difference in the slipping parameters of RT-DINO and
RT-DINO-RG.

overestimated slipping parameters when ignoring RGs. Also, the
πs of items 1–11 were generally lower than those of items 12–
22. If these items appeared on the test in this sequence (item
position information was not publicly available), these π results

FIGURE 6 | Probability density function of RT for the RT-DINO-RG.

suggest that test-taker accuracy depended on their completion
speed (speededness).

The RT-DINO-RG also uses response time to recognizes RGs
and solution attempts, showing estimated mean time intensity
(β0) of 3.21 and time discrimination (κ0) of 0.70. The various
probability density functions of response time for RGs and
solution attempts in the RT-DINO-RG (see Figure 6) suggest that
students used varied answering strategies to spend more time on
some items and less time on others (including RGs). The RT-
DINO and RT-DINO-RG did not consistently classify mastery
of the eight attributes [Cohen’s κ ranged from 0.48 (quantity)
to 0.98 (occupational), see Table 3]. Notably, few students
had knowledge of the third attribute (space and shape). The
simulation studies suggest that the RT-DINO-RG classifications
are more reliable than the RT-DINO ones.

DISCUSSION

CDMs assess whether test-takers have the needed skills
(attributes) to answer each test question and give suitable
diagnostic feedback, but they have not adequately modeled RG
vs. solution attempts with reaction times. Hence, this study

TABLE 3 | Mastery of attributes for the RT-DINO and RT-DINO-RG.

Attributes

α1 α2 α3 α4 α5 α6 α7 α8

RT-DINO 0.090 0.381 0.057 0.133 0.173 0.235 0.366 0.349

RT-DINO-RG 0.234 0.359 0.036 0.151 0.168 0.166 0.254 0.361

Cohen’s k 0.483 0.861 0.644 0.899 0.975 0.762 0.721 0.885
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developed a new class of CDMs based on the G-DINA model (de
la Torre, 2011), namely RT-GDINA-RG, with a latent indicator
to jointly utilize both item responses and RTs to model RG and
solution attempts to enhance cognitive diagnosis. We propose
two models based on the DINA and DINO models, namely
RT-DINA-RG and RT-DINO-RG.

The RT-DINA-RG and RT-DINO-RG were evaluated
via (a) simulation studies with Markov chain Monte
Carlo methods in JAGS and (b) real data analysis by
analyzing the PISA 2015 computer-based mathematics
test. Complementing Wang and Xu (2015) person-level
manipulation of RG, this study manipulated RG at the item
level (Wang et al., 2018). The simulation results and real data
analysis showed that the RT-DINA-RG and RT-DINO-RG
recovered parameters well and assessed test-takers’ diagnostic
results more accurately. In contrast, ignoring RGs by fitting
simpler models yielded biased parameters, less reliable
person speed parameter, and less classification accuracy of
test results.

Hence, this study extends research showing how analyses
of RT improves cognitive assessments of test-takers (e.g.,
van der Linden, 2008; Lee and Chen, 2011; Wang and Xu,
2015). When test-takers rapidly guess, the RT-GDINA-RG yields
greater accuracies in person parameters, item parameters, and
cognitive results. Therefore, researchers or users should use
the RT-GDINA-RG to depict a data if RGs might occur. The
choice of RT-GDINA-RG model (i.e., RT-DINA-RG or RT-
DINO-RG) depends on the nature of the test items. If a
test item’s needed underlying constructs can compensate for
one another, then RT-DINO-RG is suitable. If the underlying
constructs cannot compensate for one another, then RT-DINA-
RG is suitable.

Moreover, the person and item parameters of the RT-GDINA-
RG were assumed to be, respectively, independent in this
study. As attributes and item parameters of a CDM are often
related in practice, we capture the relations between them with
correlational structures (e.g., van der Linden, 2007). Note that the
commonly-used multivariate normal distribution to specify the
relations among person parameters is not feasible for the discrete
feature of attributes in CDMs. Following Zhan et al. (2018),
one can address this problem by using a higher-order latent
trait to link the correlated attributes (de la Torre and Douglas,
2004), and then assuming that the person parameters (i.e., the
higher-order latent trait and person speed) follow a bivariate
normal distribution.

In addition, this study assumes the same probability of
correctly answering an item by a RG as by guessing with none
of the required attributes for the sake of simplicity. Such a
naïve assumption can be further explored as in Wang and
Xu (2015). Further, the RT-GDINA-RG distinguishes between
solution attempt and RG for cognitive diagnosis via a latent
indicator. In addition to RG, RT-GDINA-RG can be easily
extended to adapt diverse test-taking behaviors and various
tests’ requirements. For example, we can extend CDMs to
include other test-taking behaviors such as prior knowledge/pre-
knowledge (Wang et al., 2018; Man et al., 2019) or nonresponses

(Ulitzsch et al., 2019) if and only if the probabilities of a correct
response from different latent indicators (or classes) can be
clearly defined. In a high-stakes test, individuals often use pre-
knowledge to correctly answer items with extremely short RT
(unlike solution attempts with relatively long RT and unlike
RGs with often wrong answers and short RT). Furthermore, we
can adapt the functions for depicting RT and item response
to the testing contexts, such as linear transformation (Wang
et al., 2013), a gamma distribution to depict RT for mental
rotation items (Maris, 1993), etc. (De Boeck and Jeon, 2019).
Also, the item response function can be replaced by other
CDMs, such as the GDM (von Davier, 2005) or the linear
logistic model (Maris, 1999). Future studies can investigate
these approaches.

In addition, ignoring RGs can harm the development and
application of cognitive assessments (for both high- and low-
stakes tests), distort test results, or invalidate inferences. For
example, greater precision of test parameters via the RT-
GDINA-RG ensures the quality of item bank construction and
assembly of tests, especially for large-scale assessments. Their
greater precision also reduces the number of necessary test
items to accurately assess a test-taker’s domain knowledge,
thereby enabling more subdomains to be assessed. The RT-
GDINA-RG results regarding time can also inform designers
of timed tests regarding the time needed for different solution
approaches to a test question. For example, for a timed test,
items have frequent RG might because test-takers perceive
that they lack sufficient time to attempt a solution. Thus,
such information can provide the users of test scores to set a
suitable time (e.g., increasing the response time) for completing
the test. In addition, greater accuracy in the estimation of
test scores increases users’ confidence in the results and their
subsequent inferences.

When using RT-GDINA-RG to estimate more precise person
and item parameters during RG, Q-matrix is an essential
component in CDM contexts. An identifiable Q-matrix ensures
the consistency of a CDM estimation. In this study, the
simulation studies used an identifiable Q-matrix (Xu and Zhang,
2016; Xu, 2017), and the real data analysis adopted a partially
identifiable Q-matrix (Gu and Xu, 2020). To enable consistent
CDM estimation, checking the identifiability of the Q-matrix in
advance is crucial. Besides, for ease of use, a tutorial to introduce
the RT-GDINA-RG in JAGS can be developed in future work (cf.
Curtis, 2010; Zhan et al., 2019).
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APPENDIX

JAGS Code for the RT-DINA-RG and RT-DINO-RG Models
###################
### RT-DINA-RG###
###################
RT-DINA-RG.model
{

for (i in 1:N) {
for (k in 1:5) { # five attributes

alpha[i,k]∼ dbern(ap[k])}
tau[i]∼ dnorm(0, Inv_sigma2)
for (j in 1:J) {

xi[i,j]∼ dbern(pii[j]) # 0 = RG, 1 = normal
eta[i,j]< -

pow(alpha[i,1],Q[j,1])∗pow(alpha[i,2],Q[j,2])∗pow(alpha[i,3],Q[j,3])∗p
ow(alpha[i,4],Q[j,4])∗pow(alpha[i,5],Q[j,5])

prob[i,j]< - pow(1-slip[j],eta[i,j]∗xi[i,j])∗pow(guess[j],1-eta[i,j]∗xi[i,j])
r[i,j]∼ dbern(prob[i,j])
rt.mu[i,j]< - (1-xi[i,j])∗beta.0+ xi[i,j]∗(beta[j] - tau[i])
rt_kappa[i,j]< - (1-xi[i,j])∗kappa2.0+ xi[i,j]∗kappa2[j]
RT[i,j]∼ dlnorm(rt.mu[i,j], rt_kappa[i,j])}}

# Priors
for (k in 1:5) {

ap[k]∼ dunif(0, 1)}
for (j in 1:J) {

pii[j]∼ dunif(0, 1)
slip[j]∼ dunif(0, 0.5)
guess[j]∼ dunif(0, 0.5)
beta[j]∼ dnorm(3, 0.1)
kappa2[j]∼ dgamma(0.1, 0.1)
kappa[j]< - sqrt(kappa2[j])}

Inv_sigma2∼ dgamma(0.1, 0.1)
sigma< - 1/sqrt(Inv_sigma2)
beta.0∼ dnorm(0, 0.1) %_% I(,min(beta))
kappa2.0∼ dgamma(0.1, 0.1)
kappa.0< - sqrt(kappa2.0)}

###################
### RT-DINO-RG###
###################
RT-DINO-RG.model
{

for (i in 1:N) {
for (k in 1:5) { # five alphaibutes

alpha[i,k]∼ dbern(ap[k])}
tau[i]∼ dnorm(0, Inv_sigma2)
for (j in 1:J) {

xi[i,j]∼ dbern(pii[j]) # 0 = RG, 1 = normal
eta[i,j]< - 1-pow(1-alpha[i,1],Q[j,1])∗pow(1-alpha[i,2],Q[j,2])∗pow(1-

alpha[i,3],Q[j,3])∗pow(1-alpha[i,4],Q[j,4])∗pow(1-
alpha[i,5],Q[j,5])

prob[i,j]< - pow(1-slip[j],eta[i,j]∗xi[i,j])∗pow(guess[j],1-eta[i,j]∗xi[i,j])
r[i,j]∼ dbern(prob[i,j])
rt.mu[i,j]< - (1-xi[i,j])∗beta.0+ xi[i,j]∗(beta[j] - tau[i])
rt_kappa[i,j]< - (1-xi[i,j])∗kappa2.0+ xi[i,j]∗kappa2[j]
RT[i,j]∼ dlnorm(rt.mu[i,j], rt_kappa[i,j])}}
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# Priors
for (k in 1:5) {

ap[k]∼ dunif(0, 1)}
for (j in 1:J) {

pii[j]∼ dunif(0, 1)
slip[j]∼ dunif(0, 0.5)
guess[j]∼ dunif(0, 0.5)
beta[j]∼ dnorm(3, 0.1)
kappa2[j]∼ dgamma(0.1, 0.1)
kappa[j]< - sqrt(kappa2[j])}

Inv_sigma2∼ dgamma(0.1, 0.1)
sigma< - 1/sqrt(Inv_sigma2)
beta.0∼ dnorm(0, 0.1) %_% I(,min(beta))
kappa2.0∼ dgamma(0.1, 0.1)

kappa.0< - sqrt(kappa2.0)}
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Selected response items and constructed response (CR) items are often found in the
same test. Conventional psychometric models for these two types of items typically
focus on using the scores for correctness of the responses. Recent research suggests,
however, that more information may be available from the CR items than just scores
for correctness. In this study, we describe an approach in which a statistical topic
model along with a diagnostic classification model (DCM) was applied to a mixed item
format formative test of English and Language Arts. The DCM was used to estimate
students’ mastery status of reading skills. These mastery statuses were then included
in a topic model as covariates to predict students’ use of each of the latent topics in
their written answers to a CR item. This approach enabled investigation of the effects
of mastery status of reading skills on writing patterns. Results indicated that one of the
skills, Integration of Knowledge and Ideas, helped detect and explain students’ writing
patterns with respect to students’ use of individual topics.

Keywords: text analysis, mixed format test, diagnostic classification model, structural topic model, statistical
topic models

INTRODUCTION

Selected response (SR; e.g., multiple choice or true–false) items and constructed response (CR;
e.g., short answer, long answer essay, or performance) items are often found in the same test. An
important benefit of SR items is their efficiency in being scored quickly with minimal potential for
raters’ bias. CR items, on the other hand, have been shown to be appropriate for assessing certain
types of higher order knowledge, as this type of item can be used to require students to construct
their answers and frequently show their reasoning in their answers (Brookhart, 2010).

While SR and CR items are used together, existing psychometric approaches do not
benefit from both data sources efficiently. Most psychometric models, including item response
theory models and diagnostic classification models (DCMs), have been developed for focusing
on item scores, i.e., correctness of the responses. This is true for CR items as well. The
partial credit model (Masters, 1982) and the general diagnostic model (von Davier, 2008),
for example, can be used for CR items, but these models only focus on item scores
and do not directly include analysis of students’ constructed responses, when estimating
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model parameters. As a result, any additional information
contained in the text of students’ answers is ignored.

Statistical topic models (Blei, 2012), on the other hand,
are designed to detect the latent thematic structure in the
textual data. In education, topic models have recently used. For
example, Daenekindt and Huisman (2020) used a topic model
to investigate trends in research topics in higher education by
analyzing journal abstracts. Moretti et al. (2015) explored the
use of different topics on teacher evaluation policy by examining
research articles found on the internet. Kim et al. (2017)
investigated growth and change in use of academic vocabulary
as a result of an instructional intervention, and Duong et al.
(2019) found that students’ differential use of topics in their CR
answers reflected differences in students’ reasoning associated
with differences in the instructional training of their teachers.

In this study, we present an approach in which results from
a DCM were used in a topic model as covariates to understand
the relationship between students’ mastery status of reading skills
and the latent thematic structure in students’ writing to answer
to a CR item. Specifically, a log-linear cognitive diagnostic model
(LCDM; Henson et al., 2009) was used as a DCM and a structural
topic model (STM; Roberts et al., 2013) was used as a topic
model. This combined use of the two models enabled direct
investigation of the relationships between mastery of reading
skills and use of latent topics. In the next section, we describe the
LCDM and the STM.

LOG-LINEAR COGNITIVE DIAGNOSIS
MODEL

Diagnostic classification models (Rupp et al., 2010) are
probabilistic models developed to obtain information regarding
students’ mastery status on a set of pre-determined skills. DCMs
predict response patterns for individual mastery profiles based on
the attribute structure given in the Q-matrix for a test. In this
way, the DCM provides a deterministic confirmatory framework
for the assessment. The DCM also include the capability of
accounting for uncertainties in examinees’ behavior on a test,
such as guessing or slipping. Several models have been proposed
by imposing different conditions for determining the probability
of answering the item correctly and handling these kinds of
sources of uncertainty.

As a general frame of reference for a DCM, in the LCDM, the
probability of getting a correct answer is modeled as a function
of item (j) parameters and the mastery status of the individual (i)
given the Q-matrix as follows (Henson et al., 2009):

P(Yij = 1|αi, qj) =
exp

[
λj0 + λT

j h
(
αi, qj

)]
1+ exp

[
λj0 + λT

j h
(
αi, qj

)] ,

where λj0 indicates the intercept, λj represents a vector of
coefficients indicating effects of the mastery of attributes on
the response for item j, and h

(
αi, qj

)
is a vector of linear

combinations of the αi and qj, which specifies an effect structure
of the model. h

(
αi, qj

)
can include main effect of each attribute,

two-way interactions, three-way interactions, etc., depending
on how many attributes there exist in the test. For instance,
if the effect structure includes only main effects and two-way
interactions, the model can be represented as

λT
j h
(
αi, qj

)
=

S∑
s=1

λjs
(
αsqjs

)
+

S∑
s=1

S∑
u>s

λjsu
(
αsαuqjsqju

)
where λjs represents the main effects of attribute s on item
j and λjsu represents the two-way interaction effects between
the combination of attributes s and u on item j. As indicated
earlier, this can be extended to three-way or more interaction
terms, if needed. Due to the flexibility of this effect structure,
the LCDM provides a general framework for DCMs. Further,
one can investigate whether the relationship among attributes
is compensatory or non-compensatory. For example, using a
significance test for λjsu without predetermining the magnitude
of the relationship of the two attributes s and u on item j, the
relationship between attributes s and u on item j can be tested.

STRUCTURAL TOPIC MODEL

Topic models are statistical models designed to extract the latent
topic structure in a collection of documents (Blei et al., 2003;
Griffiths and Steyvers, 2004). Latent Dirichlet allocation (LDA;
Blei et al., 2003) is one of the simplest topic models. It assumes
that each document in a corpus is a mixture of topics, and each
topic is assumed to have a multinomial distribution over a fixed
vocabulary of words. A topic is defined as a mixture over words,
where each word has a separate probability of belonging to each
topic in the model and each document is assumed to consist of
a mixture of topics. In LDA, the topics are latent variables to
be inferred from the words in a corpus which are the observed
variables. In LDA, the order of the words and the grammatical
role of the words in the text are ignored. This is called the “bag of
words” assumption (Blei et al., 2003).

Roberts et al. (2013) proposed the STM as an extension of
the LDA in which a document-level covariate structure can be
included to help detect the latent topics in the corpus of textual
data. In the STM, one or more covariates can be added to
predict the topic proportions or the word probabilities, or both.
In the current study, we focused on the use of covariates for
predicting topic proportions. To this end, the generative process
for estimating topic proportions with an STM is defined to
include a covariate structure for the topic proportions for the
document (θ) as follows (Roberts et al., 2013):

– For each document, d:

◦ Draw the topic proportions for the document (θd) ∼
LogisticNormal (µ, 6)
� µd,k = Xdγk
� γk∼ N

(
0, σ2

k
)

– For each word in the document, [n ∈ (1, · · · , Nd)]

◦ Draw word’s topic assignment (zd,n) ∼
Multinomial (θd)

Frontiers in Psychology | www.frontiersin.org 2 February 2021 | Volume 11 | Article 579199206

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-579199 October 7, 2021 Time: 11:10 # 3

Choi et al. Topic Model With Diagnostic Model

◦ Conditioning on the topic chosen, draw an observed
word from that topic (wd,n) ∼ Multinomial (βk=zd,n)

where X, γ, and 6 are covariates, coefficients, and the covariance
matrix, respectively. The coefficients for topic k (γk) follow
normal distributions (mean = 0 and variance = σ2

k). θd denotes
a vector for topic proportion for a document, βk=zd,n denotes
a vector for word probabilities, and d denotes a document
that is a sequence of N words (wd,n). The inclusion of one
or more covariates allows the model to borrow strength from
documents with similar covariate values for estimating the
document proportion (Roberts et al., 2013). In the current study,
we investigated the relationship between students’ reading ability
and students’ writing ability by using an STM in which students’
mastery status of reading skills was used as covariates to help
explain the use of topics in writing.

For the current study, the model was set to run for a maximum
of 500 EM iterations and convergence was monitored by setting
convergence tolerance 0.00001. We used the default options
for priors for γ and 6. Figure 1 depicts the model used in
the current study.

READING AND WRITING ASSESSMENT

Integrated assessments have been used in assessing English
language proficiency to enhance the authenticity and validity of
assessment (Read, 1990; Feak and Dobson, 1996; Weigle, 2004;
Plakans, 2008; Weigle and Parker, 2012). In a typical integrated
assessment, students read one or more passages and use the
information from the passages as source material to respond to
the item. Some borrowing of material is considered appropriate
(e.g., used as source material for the answer) but simply copying
is not considered appropriate (Weigle and Parker, 2012).

Reading interventions have been shown to help improve
students’ writing performance (Graham et al., 2018). Reading
and writing skills, although connected, are cognitively separate
(Fitzgerald and Shanahan, 2000; Deane et al., 2008; Schoonen,
2019). In this study, the STM topic model along with the
LDCM was used to investigate the relationships between reading
attributes and writing ability.

MATERIALS AND METHODS

Data and the Q-Matrix
The data consisted of responses of 2,323 Grade 8 students’
responses to the argumentative genre of an English and Language

Arts (ELA) test. The test was designed to provide formative
information on how well students understood concepts and could
demonstrate their knowledge in reading and writing.

Skills Measured
The test consisted of five items: three multiple choice items,
one short answer (SA) item, and one extended response
(ER) item to measure reading and writing ability. Two
scores were assigned for the ER item. A confirmatory factor
analysis supported this two-factor model: the multiple choice
and SA items formed one factor, reading ability, and the
two scores for the ER item measured the other factor,
writing ability. A non-linear internal consistency estimate
(Green and Yang, 2009; Kim et al., 2020) for this two-factor
assessment was 0.83, suggesting acceptable reliability (Kline,
2000, p.13).

The multiple choice and SA items were designed to measure
three skills: identifying key ideas (Idea), identifying the
structure of a text (Structure), and integrating knowledge
of ideas (Integration). These three skills were used to
create the entries in the Q-matrix shown in Table 1. Three
items required a single attribute to answer and one item
required two attributes to answer. For the item designed
for two attributes, the main effect of each attribute and
two-way interactions between these two attributes were
identified in the effect structure in the LCDM. Mplus
version 7.4 (Muthén and Muthén, 1998–2017) was used to
estimate the LCDM.

To measure writing ability, the ER item consisted of two
passages: one passage was about environmental facts and the
other was about economic facts. Students were instructed
to write an argumentative essay indicating whether their
congressional representative should allow the protected forest
to be developed into commercial timberland and to support
their argument with information from each of the passages.
The rubric based score of this item ranged 0–7 points. Partial
credit was awarded if part of the response was correct (See
Appendix A for the rubric). In the current study, students’
written responses to this item were used to estimate the latent
topic structure using the STM as described in more detail in
the next section.

Fitting the Topic Model
The STM topic model was used to identify latent topics in
students’ written responses to the ER item and investigate the
relationship between reading and writing ability. The first step
in applying any topic model is to preprocess the text. This is

FIGURE 1 | Schematic presentation of structural topic model for this study. Note. The squares indicate the observed variables [i.e., students’ mastery status of
reading skills (X) and words in the corpus of students’ writing (W)]; the circles indicate the parameters in the model.
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done to help the estimation process and improve interpretability
of the resulting model (Schofield et al., 2017). Preprocessing
consists of (1) removing stopwords and (2) stemming words.
Stop words are high-frequency but low-information words such
as a, the, that, it, be (am, are, is, were, have been, etc.), but,
or, etc. Stemming consists of converting words to their root
form. For instance, all verbs were converted to the present
tense, plural forms were converted to singular form, words
that have similar morphology (e.g., do, doing, and done)
were converted to a root form such as do, and typographical
errors were corrected.

After stemming words and removing stopwords, words with
a frequency of less than 10 and documents with less than 15
words were excluded. In addition, documents with a score of 0
were excluded as this indicated the responses were not scorable.
As shown in Appendix A, reasons for non-scorability included
being blank, simply copying from the passages, answers were
written in a language other than English, and answers were too
limited, off topic or generally non-responsive to the prompt.
The final data set included 2,108 students’ responses with a
total of words 270,405 in the corpus. The number of unique
words was 891 and the average answer length was 128.3 words
(SD = 76.4 words).

The next step was to determine how many latent topics
appeared in the data. This is an exploratory analysis. That
is, we estimated STM models with from 2 to 20 topics as
candidate models. For the STM, students’ mastery statuses
on each attribute were included as a set of document-
related covariates for predicting the use of topics. There
is no single best method for determining the best fitting
topic model. Roberts et al. (2014) suggested use of
semantic coherence (Mimno et al., 2011) and exclusivity
(Bischof and Airoldi, 2012). These two measures are
complementary. These indices were used in this study to
inform the selection of the best fitting topic model. In
addition, the cosine similarity (Cao et al., 2009) between
topics was estimated. The lower cosine similarity indicates
better fit as this indicates topics are distinct each other.
The R package stm (Roberts et al., 2019) was used to
estimate the STM.

RESULTS

Students’ Reading Skill Profiles
For item 4, as no significant interaction effect for attributes
1 and 3, the interaction term was dropped from the effect

TABLE 1 | Q-Matrix of three reading skills for the multiple-choice and short
response items.

Item Idea Structure Integration

Multiple-choice item 1 x

Multiple-choice item 2 x

Multiple-choice item 3 x

Short answer item 4 x X

structure in the final LCDM model. Table 2 presents item
parameter estimates for the final model. All main effects
were significant at p < 0.01. Intercepts for items 1 and
3 were significant (p < 0.01), but the intercepts for items
2 and 4 were not. Table 3 presents students’ mastery
profiles of the reading skills, the marginal proportions, and
reliabilities for each of the skills. Skill reliabilities were
relatively low, reflecting the small number of items measuring
each skill. The correlation between Idea and Structure was
0.86, the correlation between Idea and Integration was 0.67,
and the correlation between Structure and Integration was
0.57. These indicated substantial relationships between skills.
Eight different mastery profiles are possible for the three
skills in the Q-matrix. Results in Table 3, however, indicate
that only four of the eight profiles were detected. These
included students who had mastered none of three skills
(0,0,0), students who had mastered only Integration (0,0,1),
students who had mastered Idea and Integration (1,0,1),
and students who had mastered all three skills (1,1,1).
Students’ mastery statuses for each attribute obtained by this
analysis were included in the STM as covariates to predict
the use of topics.

TABLE 2 | Item parameter estimates for the log-linear cognitive diagnostic model
for students’ reading skills.

Item Intercept Main effect

Key idea Craft and
structure

Integration

Multiple-choice item 1 −0.613 1.557 – –

Multiple-choice item 2 * – 3.370 –

Multiple-choice item 3 0.434 1.967 – –

Short answer item 4 * 6.004 – 0.924

*indicates no significance with a significance level of 0.01 and – indicates not
applicable given the item.

TABLE 3 | Students’ mastery status of reading skills and reliability of each skill.

Profile* Key ideas Craft
and structure

Integration of
knowledge
and ideas

Count (%)

1 (000) 0 0 0 323 (13.90)

2 (001) 0 0 1 296 (12.74)

3 (010) 0 1 0 0 (0.00)

4 (011) 0 1 1 0 (0.00)

5 (100) 1 0 0 0 (0.00)

6 (101) 1 0 1 146 (6.28)

7 (110) 1 1 0 0 (0.00)

8 (111) 1 1 1 1,558 (67.07)

Marginal proportion** 66% 59% 51% 2,323 (100.00)

Skill reliability 0.69 0.62 0.51

*0 indicates being classified non-mastery and 1 indicates being classified mastery.
**Marginal proportion of students who have mastered each skill.
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FIGURE 2 | Comparisons semantic coherence and exclusivity among 2- to 9-topic structural topic models.

Selection of the Topic Model and
Interpretation of Topics
To detect the number of topics, STM models with from 2 to 20
topics were fit to the data as an exploratory analysis. As described
in Methods section, semantic coherence, exclusivity, and cosine
similarity were used to determine the number of topics. Figure 2
presents the results of semantic coherence and exclusivity for
each of the model with from two to nine topics. The horizontal
axis is semantic coherence and the vertical axis is exclusivity.
Models in the upper right corner would be models that are higher
in both semantic coherence and exclusivity. The best models
based on these two indices would be the three- and four-topic
models. Cosine similarity results suggested the four-topic model
was a better fit than the three-topic model. Based on these results,
the four-topic model was selected as the best-fit model.

One way to help interpret and characterize each topic in
the model is to examine (1) written responses of students
who were the highest probability users of each topic and (2)
the highest probability words for each topic. The 15 highest
probability words in each topic for the four-topic STM are
listed in Table 4. The answer of the student who was the most
frequent user of words from each topic is presented below. The
bold and underlined words are the highest frequency words for
the given topics.

In the first topic, the highest frequency words were pollution,
paper, mill, industry, coastal, and water (Pollution was used as
a stemming word for pollution, polluter, and pollutant). These
words come from the prompt (i.e., either the two passages in the
prompt or the stem of the SR items). Students had been instructed
to use information from the passages to support their arguments.

This topic was labeled Integrative Borrowing as it reflected this
use of the terms in the prompt. The following is the answer of the
student who was the most frequent user of words from this topic.

(Integrative Borrowing) Paper mills are having a negative
effect. Passage A says “Paper mills are the third largest
polluters in the United States., releasing pollutants into

TABLE 4 | The 15 high frequent words in each topic detected from
the 4-topic STM.

Topic 1 Topic 2 Topic 3 Topic 4

Integrative
borrowing

Everyday
language

Copying
from passage

Copying
from stem

Pollution Tree Georgia Forest

Paper Down Timber Protect

Mill For Acre Timber

Industry Cut More Should

Coastal If Forest Commercial

Plain Animal Coastal Animal

Water Make Plain Plant

Georgia Can For Species

Passage More Pine Representative

Fish Because Commercial Allow

Cause People Industry Because

Environment Need Grow Develop

Due Go Year Congress

Provide Get Passage Destroy

Forest Land Land Live
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FIGURE 3 | Boxplot for topic proportion distribution. The plot on the upper panel presents the distributions of marginal topic proportions. The plots on the lower two
panels present score distributions for each topic. For the plot on the lower panel, the X-axis indicates each score point and the Y-axis indicates the proportions of
use of each topic. The whiskers on the boxes indicate variability outside the upper and lower quartiles and the horizontal lines in the boxes indicate the mean usage
of the topic for the given score point.

Frontiers in Psychology | www.frontiersin.org 6 February 2021 | Volume 11 | Article 579199210

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-579199 October 7, 2021 Time: 11:10 # 7

Choi et al. Topic Model With Diagnostic Model

the air, water, and soil.” Passage A also say that “many
paper mills are working to reduce the amount of pollutants
they produce today.” But they are letting it out, and it also
effecting in passage B it says that “the fishing industry
decreases due to pollution caused by paper mills.” That
why I think paper mills are having a negative effect.

The highest frequency words in the second topic were tree,
animal, cut, and people. These words reflect use of everyday
language but not directly related to the question. This topic was
labeled as Everyday Language. The following is the answer of a
student who was a high frequency user of words from topic 2.

(Everyday Language) No because they are killing all the
plants and taking the animals homes away so how would
you feel if someone just took your house away and built
something else and just put your family out on the street
with nowhere to go, that’s how the animals feel. Your
destroying our plants life to that we need the plants and
animals were there first and they really don’t have any other
home to go to besides a zoo why do that when they can just
be free without the people harming them.

The highest frequency words in the third and fourth topics
were both borrowed directly from either the stem or the passages.
The words in the third topic were copied from the passages
(Georgia, timber, acre, coastal, plain, and pine). (Timber was used
as a stemming word for timber, timberland, and timberwood).
The words in the fourth topic were copied from the stem (forest,
protect, timber, should, commercial, representative, allow, and
congress). The followings are answers of students who were the
highest frequency users of words from the third and the fourth
topics, respectively. Characteristic of users of topics 3 and 4 is that
these words were simply copied from the passage or stem without
any clear effort to integrate the words into the argument.

(Copying from Passages) I think that the small protected
forest should not be developed into commercial timberland
because you don’t have a lot of land. The text states
in passage B that “Sixty percent of Georgia’s coastal
plain is covered in forest. The forest is one of the
most diverse ecosystems in America and includes forest,
grassland, sandhill, marsh, swamp, and coastal habitats.
Several varieties of pine and oak are the most common
trees. The growth of the ground under the long leaf
pine forest contains 150–300 plant species per acre, more
birds than any other Georgia forest type, and 60% of
the amphibian and reptile species found in the Southeast.
The Georgia state reptile, the gopher tortoise, lives in
pine forest habitats and is a key species in the ecosystem.
Though once an endangered species, the American alligator
is now very common, numbering an estimated 2 million
in the Southeast.” This shows that the forest has already
been occupied by one of the most diverse ecosystems in
America and includes many plants and many amphibian
and reptiles. In conclusion this is why I feel like the
small protected forest should not be developed into
commercial timberland.

(Copied from Stem) The representative should not allow
the protected forest to be developed into the commercial
timberland. They shouldn’t because, in passage B it states
that the soil isn’t suitable for any kind of forest. The
timberland is worth an average of $97 a year because the
land isn’t suitable for the tree’s and soil. That is why you
shouldn’t allow them to put the protected forest in the
timberland.

Figure 3 presents box plots of students’ use of individual
topics. The plot on the upper panel indicates that overall, students
used 20, 31, 22, and 27% of Topics 1, 2, 3, and 4, respectively.
The plots on the lower two panels show the rubric based score
distribution for each topic. There are two distinct patterns in
the Figure 3: (1) students who used more Integrative Borrowing
in their answers tended to have higher scores and (2) students
who used more Everyday Language in their answers tended to
have lower scores.

What Is the Relationship Between
Students’ Mastery Status of Reading
Skills and the Use of the Latent Topics in
Writing?
Table 5 presents results for the effects of students’ mastery status
of reading skills on their use of each of the four topics in the STM.

TABLE 5 | Results of STM for predicting the use of topics by mastery status
of reading skills.

Estimate SE t-test Pr(> | t|)

Topic 1: Integrative borrowing

(Intercept) 0.11 0.012 9.01 0.00

Key ideas 0.03 0.020 1.32 0.19

Craft and structure 0.02 0.017 0.98 0.33

Integration of knowledge and ideas 0.07 0.018 3.77 0.00

Topic 2: Everyday language

(Intercept) 0.49 0.015 32.54 0.00

Key ideas −0.04 0.023 −1.73 0.08

Craft and structure −0.03 0.020 −1.45 0.15

Integration of knowledge and ideas −0.15 0.020 −7.27 0.00

Topic 3: Copying from passage

(Intercept) 0.16 0.014 11.76 0.00

Key ideas 0.02 0.023 0.90 0.37

Craft and structure 0.01 0.020 0.35 0.73

Integration of knowledge and ideas 0.05 0.019 2.60 0.01

Topic 4: Copying from stem

(Intercept) 0.24 0.011 21.77 0.00

Key ideas −0.01 0.018 −0.42 0.67

Craft and structure 0.01 0.015 0.34 0.74

Integration of knowledge and ideas 0.03 0.015 2.03 0.04
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The values in Table 5 indicate the coefficients for the intercept
and for each of the three skills estimated from the DCM. The
intercept can be interpreted as the expected use of the topic when
students do not master any skills at all, and other coefficients can
be interpreted as the expected use of the topic when students
master individual skills.

The results indicate mastery status of either Key Ideas or Craft
and Structure did not have a significant impact on students’ use of
the topic. Integration of Knowledge and Ideas (Integration) was the
only skill that had a significant effect on the use of each topic at
p < 0.05. As seen in Figure 3, Integrative Borrowing and Everyday
Language tended to be related to the rubric based score. The
results in Table 5 show similar patterns. This suggests that when
students master the Integration, their probability of using the
integrative borrowing topic increases by 0.07, their probability
of using the copying from passage topic increases by 0.05, their
probability of using the copying from stem topic increases by
0.05, but their probability of using the everyday language topic
decreases by 0.15.

CONCLUSION

In this study, an approach was described a topic model to obtain
the latent thematic structure in students’ written answers to an ER
item. In the topic model, results from a DCM applied to the item
scores (i.e., the correctness of students’ answers) were included
as covariates to predict students’ use of the topics. Although
three skills were identified in the Q-matrix, only four of the
eight possible mastery profiles were present in the data. The four-
topic STM was found to be the best fit to the textual data from
the students’ answers to the test questions along with students’
reading skills as covariates. The results showed that mastery
status of Integration of Knowledge and Ideas was the pivotal skill
for the use of each of the four topics. That is, as students mastered
Integration of Knowledge and Ideas, they tended to use more
of the Integrative Borrowing topic in their writing and less of
the Everyday Language topic. CR or ER items are often used to
assess higher-order thinking skills. Rubric-based scores provide
useful information regarding students’ knowledge status with
respect to the objectives being measured on the test. There is also
information about students’ thinking and reasoning as reflected
in their answers, however, that can be missed by the rubric-based
scores alone (Cardozo-Gaibisso et al., 2020). For example, each
topic could represent a set of possible misconceptions (Shin et al.,
2019) or writing style.

The assessment used in this study was a formative assessment
and was not specifically designed to fit a DCM model. Due

to the small number of items in the assessment, the skill
reliabilities were relatively low, which is a possible limitation
of this study. Even with this limitation, however, results
demonstrate that combining results from a DCM with a topic
model enables the possibility of investigating the relationship
between the knowledge as measured by the multiple choice
items and cognitive skills used in answering to the CR items.
Topic modeling is relatively new in educational research, but
it has been found to provide a useful set of methodological
tools for extracting this added information in the text of
answers to CR items.

Some of current techniques developed in natural language
processing or machine learning may not be applicable for the
text in education as the text in education may have different
characteristics from the text in social networks or publications.
Further studies would be helpful to address important issues in
this area, such as what could be the effects of stemming methods
on latent topic structure or what methods could be used for
selecting the best fitting topic model.
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APPENDIX

Appendix A: Rubric for the extended response item

Appendix A1 |The rubric has two traits: Idea Development, Organization, and Coherence; and Language Usage and Conventions. The scale for Idea Development,
Organization, and Coherence ranges from 0 to 4, and the scale for Language Usage and Conventions ranges from 0 to 3.

Trait 1: Idea development, organization, and coherence.

If the student scored 4 points. . .

• Effectively introduced a claim or argument.

• Effectively organized the reasons, using logical reasons and evidence.

• Provided clear, relevant reasons/evidence to support the opinion.

• Acknowledged and developed counter-claims, as appropriate.

• Used linking words and phrases effectively to connect opinions and reasons.

• Maintained a formal style appropriate for the task.

• Provided a strong concluding statement or section.

If the student scored 3 points. . .

• Introduced a claim or argument.

• Included an organizational structure that supported the reasons and evidence.

• Provided reasons, facts, and evidence to develop the claim.

• Attempted to introduce a counter-claim, as appropriate.

• Used some linking words to connect opinions and reasons.

• Used a formal style fairly consistently appropriate for the task.

• Provided a concluding statement or section that follows the argument.

If the student scored 2 points. . .

• Attempted to introduce an opinion or a claim.

• Attempted to provide some organization, but structure sometimes impeded the reader.

• Attempted to provide reasons and facts that sometimes support the opinion, but the reasoning is unclear.

• Made no or little attempt to introduce a counter-claim.

• Used few linking words to connect opinions and reasons.

• Used a formal style inconsistently or the style was inappropriate for the task.

• Provided a weak concluding statement or section that does not support the argument.

If the student scored 1 point. . .

• The student did not include a claim or claims, or the claim must be inferred.

• The organizational structure was not evident, not appropriate, or was formulaic.

• There may not have been sufficient support for the claim (if stated).

• The student made no attempt to introduce a counter-claim.

• Very few, if any, linking words and phrases were used.

• Used an informal style not appropriate for the task.

• There was no conclusion, or the conclusion was not related to the essay.

If the student scored 0 points. . .

• The response was blank, copied, or too brief to score.

• The response was illegible, incomprehensible, or was written in another language.

• The response was off topic, off task, or was offensive.

(Continued)
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Appendix A1 |Continued

Trait 2: Language usage and conventions.

If the student scored 3 points. . .

• There was a variety of sentence types for meaning and interest, and sentences were clear and complete.

• Conventions and language were used appropriately.

• Errors in usage and conventions were infrequent and did not interfere with the meaning of the response.

If the student scored 2 points. . .

• There was some variety of sentence types, and most were complete.

• Demonstrated some knowledge of conventions and language.

• Minor errors in usage did not significantly interfere with the meaning of the response.

• If the student scored 1 point. . .

• There were fragments, run-ons, and other sentence structure errors.

• Conventions and language were not appropriate.

• Frequent errors in usage interfered with the meaning of the response.

If the student scored 0 points. . .

• The response was blank, copied, or too brief to score.

• The response was illegible, incomprehensible, or was written in another language.

• The response was off topic, off task, or was offensive.
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Computer multistage adaptive test (MST) combines the advantages of paper and pencil-
based test (P&P) and computer-adaptive test (CAT). As CAT, MST is adaptive based on
modules; as P&P, MST can meet the need of test developers to manage test forms and
keep test forms parallel. Cognitive diagnosis (CD) can accurately measure students’
knowledge states (KSs) and provide diagnostic information, which is conducive to
student’s self-learning and teacher’s targeted teaching. Although MST and CD have
a lot of advantages, many factors prevent MST from applying to CD. In this study, we
first attempt to employ automated test assembly (ATA) to achieve the objectives of MST
in the application of CD (called CD-MST) via heuristic algorithms. The mean correct
response probability of all KSs for each item is used to describe the item difficulty of
CD. The attribute reliability in CD is defined as the test quantitative target. A simulation
study with the G-DINA model (generalized deterministic input noisy “and” gate model)
was carried out to investigate the proposed CD-MST, and the results showed that the
assembled panels of CD-MST satisfied the statistical and the non-statistical constraints.

Keywords: cognitive diagnosis, computer multistage test, automated test assembly, cognitive diagnosis
modules, heuristic algorithms

INTRODUCTION

The computer multistage adaptive test (MST), as a “balanced compromise” between CAT and
P&P, not only can provide high measurement accuracy as CAT (Kim et al., 2015) but also can
meet the need of test developers to manage test forms and keep test forms parallel. CAT is
an item-level adaptive test; however, MST sets a module to manage items and to be adaptive
at the module level. MST allows subjects to modify the item answers in the current stage,
which is beneficial to reduce the examinees’ test anxiety and improve the measurement accuracy.
Compared with CAT, MST has many inherent advantages: (1) CAT does not allow examinees
to modify item answers, which leads to the lack of test control and generates test anxiety for
the examinees. MST can allow examinees to modify their item answers in the current stage,
which helps alleviate test anxiety while avoiding measurement mistakes caused by errors. (2) CAT
pursues the items with the maximum information during an adaptive stage, which will result from
overexposure of items with high information. In contrast, MST can effectively enhance the use
rate of item bank and control item exposure rate by constructing several parallel panels. (3) CAT
is not good at balancing the non-statistical characteristics of the test [e.g., content constraints,
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item types, enemy item (there are clues to the answers between
the items), word count, etc.]. MST can manage both statistical
and non-statistical characteristics, which can greatly improve
content validity and measurement precision. (4) Compared with
CAT online testing, MST preassembles a test before performing
the test administration, which can help test developers better
manage a test. Because of these benefits, many high-stake tests
have switched from the CAT mode to the MST mode (Wang et al.,
2015), such as the United States National Education Progress
Assessment (NAEP), the US Graduate Entrance Examination
(GRE), the Program for the International Assessment of
Adult Competencies (PIAAC), and other large examinations
(Yamamoto et al., 2018).

Currently, the classical test theory (CTT) and the item
response theory (IRT) have been widely used in education,
psychology, psychiatry, etc. However, both the CTT and the
IRT mainly focus on the examinees’ trait or competency level,
and therefore, they cannot provide further information on the
internal psychological processing, processing skills, and cognitive
structures hidden behind the results of the test scores (Embretson
and Yang, 2013). Unlike the CTT and IRT, which can only provide
an examinee’s score, cognitive diagnosis (CD) can further report
the examinee’s knowledge states (KSs), cognitive structures, and
other diagnostic information. This feature of CD can help
teachers carry out targeted teaching and promote education
development. Currently, CD, as a representation of the new
generation testing theory, has widely attracted the attention of
researchers and practitioners and has become an important area
of psychometrics research.

Recently, researchers consider that the cognitive diagnostic
model can be applied to the MST (von Davier and Cheng,
2014). It is called CD-MST, a new test mode that combines
the advantages of CD and MST. First, it can present items
with the function of CD and help test developers to manage
a CD test before administering it. Second, CD-MST can
provide rich diagnostic information to each examinee and guide
students and teachers to self-study, adaptive study, individual
teaching, remediation teaching, etc. Third, CD-MST is adaptive
in modules, where examinees can review and revise item answers.
That is closer to the examination scene and helps to reduce
examinees’ test anxiety. Finally, the adaptive CD-MST can
use fewer items to provide immediate and accurate cognitive
diagnostic feedback information, and the advantages of CD-MST
are especially highlighted in classroom assessment or practice.

Although CD-MST has many advantages, some problems
make its assembly infeasible: (1) Item difficulty index. In MST
with the IRT, the item difficulty parameter b can accurately
indicate the examinees’ traits value θ because they are in the
same scale. At this point, MST can use the b parameter to divide
the item bank and assemble modules based on item difficulty.
However, there is no item difficulty parameter in CD, and item
parameters and examinee parameters are not set on the same
scale. Even if the reduced reparameterized unified model (R-
RUM; Hartze, 2002) has a completeness parameter based on
the attribute, it is difficult to describe the item difficulty and
to explain the relationship between the attribute master pattern
and the item difficulty. Therefore, the key for CD-MST is to
develop a new item difficulty index in CD. (2) Information

or measurement precision index. MST with the IRT focus on
a continuous variable. Fisher information, a typical statistic
curving continuous variable, is used to ensure measurement
precision and to control measurement errors, but CD measures
discrete multidimensional variables, Fisher information is not
suitable. In order to ensure the test reliability, accuracy, or to
control measurement errors, selecting another robust statistical
information index of CD is worth further study.

This study aimed to address this aforementioned issue and to
develop a CD-MST framework. The rest of the paper is organized
as follows. The MST framework is briefly introduced first. Then,
the CD-MST framework is proposed, where two indexes, namely,
the item difficulty index and the information (or measurement
precision) index based on CD, and the automated test assembly
(ATA) method for CD-MST are also proposed. Furthermore, the
simulation study and the results were carried out to verify the
proposed CD-MST framework. Finally, we discuss the limitations
of this study and the further directions of CD-MST.

MST FRAMEWORK

Multistage Adaptive Test
MST is built on several parallel panels. A complete panel includes
the following elements: module, stage, and pathway, as shown
in Figure 1. In MST, the test has three adaptive stages, and
each stage contains several modules. Modules are composed
by items that are according to certain test specifications and of
different levels of item difficulty. In Figure 1, 1Medium indicates
that the item difficulty of the first stage is moderate; 2Easy,
2Medium, and 2Hard indicate that the item difficulty of the
second stage is easy, moderate, and difficult, respectively; and
3Easy, 3Medium, and 3Hard are analogous for the third stage.
Panels 1, 2, and N represent the parallel test panels. When the
test starts, examinees are randomly assigned to a pre-assembled
test panel, and then according to their responses in the first
stage, examinees are adapted to the module in the next stage
that matches their ability. A series of modules responded by
examinees is used to construct a response pathway. Each panel

FIGURE 1 | Three-stage multistage adaptive test (MST) of multiple parallel
panels.
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has seven test pathways, as shown in Figure 1 (see the arrow’s
direction in Figure 1). Among them, the solid line arrows (e.g.,
1Medium + 2Easy + 3Easy, 1Medium + 2Medium + 3Medium,
and 1Medium + 2Hard + 3Hard) denote the three primary
pathways that examinees are most likely to adapt, whereas
the dotted lines denote the four secondary pathways
(Luecht et al., 2006).

Parallel test panels are the core of MST. It needs to meet the
requirements of the test specifications. Test specifications include
both the statistical targets (e.g., test information) and the non-
statistical targets (e.g., content constraint), which ensure that
each test panel has precise reliability and validity. In MST, the
statistical and non-statistical targets mainly relate to the target
test information function (TTIF), the test length, the number of
stages and modules, the content balance, the exposure control,
etc. However, these factors are not independent from each other
when building panels, but rather are tightly integrated into the
MST architecture (Yan et al., 2014). Like in linear tests, to ensure
the safety of the test and the use rate of the item bank, MST
researchers hope to set up multiple parallel panels (Samejima,
1977). In linear tests, an item is preliminarily formed into a
fixed test form. When test information and other measurement
targets are sufficiently similar, it can be assumed that these pre-
assembled test forms are parallel. Test pathways in MST are
the same as test form in the linear test. However, modules
in MST have different difficulty levels; pathways constituted
by modules are often not parallel in statistical information.
Automated test assembly is a way to achieve parallelism between
tests and to meet the test specifications. We build parallel panels
according to specific test specifications. When two different
pathways in two different panels are parallel, the panels can be
viewed as parallel (Yan et al., 2014). It is important to note
that when parallel pathways are set up for the test specification,
it is not necessary to have parallelism between the modules
(Yan et al., 2014).

MST assembly should meet the following three goals: (1) the
module has a clear information curve enough to distinguish
between the different stages of tests; (2) the information of
corresponding pathways between panels is similar to ensure that
the panel is parallel; and (3) each pathway of each panel satisfies
non-statistical constraints (Yan et al., 2014).

Multistage Adaptive Test Design
The MST design includes the number of panels, the number of
stages in panels, the number of modules in stages, the number
of items in modules, the level of item difficulty, etc. (Yan
et al., 2014). It also involves the assembly strategies and the
assembly methods. The assembly strategies determine the item
difficulty levels, the content balance, and other elements parallel
in modules or pathways. The ATA method ensures that these
elements (statistical and non-statistical constraints) are parallel
on panels. Statistical constraints are initially determined by the
item difficulty and discrimination of the CTT (Gulliksen, 1950),
and now, the test information function (TIF) has become the
main form of statistical characteristics. The target TIF of IRT
usually uses the Fisher information, which was described in detail
by Luecht and Burgin (2003). Besides, the statistical constraints of
the target TIF need to consider whether the item bank meets test

specifications. For example, the quality and the number of items
in an item bank are required to provide a great TIF.

Multistage Adaptive Test Assembly
Strategies
After the MST design is completed, the parallel panels
need to be assembled by using MST assembly strategies,
which involve a bottom–up strategy and a top–down strategy
(Luecht and Nungester, 1998).

In the top–down strategy, parallel panels are based on the
pathways. Several parallel panels are constructed from an item
bank, and the corresponding pathways in different panels are
parallel. Here, parallel includes the statistical constraints (target
TIF) and the non-statistical constraints. The parallel pathways
contain two types of pathways, namely, the three primary parallel
pathways (see the three thick line pathways in Figure 1) and all
the parallel pathways. When the three primary parallel pathways
are used, the test specification is divided into three primary
pathways, and other pathways randomly assemble with the item
difficulty. Because the three primary pathways represent the
majority answer pathways of examinees, the panels only need to
ensure that the three primary pathways are parallel in different
panels. When all parallel pathways are used, test specifications
are divided into all possible pathways. When building parallel
MST panels with a top–down strategy, we set the target TIF
for the entire test and assign the non-statistical constraint
to the pathways.

In the bottom–up strategy, parallel panels are based on
the modules. The assembly of parallel modules is parallel
between the statistical constraints (target TIF) and the non-
statistical constraints. When the modules are parallel, we can
mix the parallel modules to assemble multiple parallel panels.
As the modules are parallel to each other, the corresponding
pathways of panels will automatically be parallel. When using
the bottom–up strategy to set up parallel MST panels, we set
different target TIF to modules with different item difficulties. In
contrast, non-statistical constraints are allocated to each module
(Yan et al., 2014).

THE CD-MST FRAMEWORK

Cognitive Diagnosis Combined With
Multistage Adaptive Test
As mentioned above, CD-MST combines the advantages of both
CD and MST. Similar to MST, CD-MST also includes similar
elements or parts, such as the panel, module, stage, pathway,
CD-MST design, assembly strategies, and assembly methods.
The main difference between MST and CD-MST is that the
latter can provide additional rich diagnostic information for each
examinee. The information can provide insight on self-study,
adaptive learning, and remediation teaching.

In the Introduction section, we noted some indexes in the
test assembly for MST, such as the item difficulty and the Fisher
information describing continuous variables and reflecting the
measurement precision. They may not be suitable for CD-MST
framework because CD mainly focuses on the multidimensional
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and discrete cognitive attributes or KSs. To develop a CD-
MST framework, we propose a new assembly method for CD-
MST as below.

CD-MST Assembly Strategy
The ATA method is the main algorithm for MST, which
currently contains heuristic methods, linear programming
methods (Zheng et al., 2012), and Monte Carlo methods (Belov
and Armstrong, 2005). The linear programming algorithm can
successfully complete the test requirements and strictly meet all
the test assembly constraints (e.g., content constraints and enemy
items) (Zheng et al., 2012). However, solving the 0–1 linear
programming problem is very complex (Theunissen, 1989) and
time consuming. With the test constraint complexity increasing,
the limited item bank cannot meet all the test constraints. It will
induce infeasible problems about overconstrained optimization
and lead to test assembly failure.

According to the heuristic algorithms, the test assembly
is decomposed into a series of local optimization problems.
Each local optimization problem is chosen as a single item
for tests (Ackerman, 1989; Lord, 1977). It uses statistical
information as a central function (such as the TIF) and
considers non-statistical constraints. Heuristic algorithms are less
computationally intensive and always effectively complete the
test assembly (Zheng et al., 2012); therefore, we used heuristic
algorithms to assemble a test for CD-MST in this study.

Item Difficulty Index for Cognitive
Diagnosis
In this study, the mean correct response probability of all KSs of
one item was used to indicate the item’s difficulty. The attribute
mastery pattern in an item is finite and known when the Q-matrix
is fixed. Therefore, the mean correct response probability of all
KSs can reflect this item’s difficulty levels, and it is expressed as:

Diffj =

∑2K

c=1 Pj (αc)

2K , (1)

where Diff j is the difficulty parameter of item j on CD, K is
the number of attributes, and Pj(ac) is the correct response
probability on item j for individuals with the KS of ac · Pj(ac),
which can be calculated by the item response function of CD
models (such as the G-DINA model, see Equation 16). The lower
the value of Diff j is, the more difficult item j is.

To investigate whether this index can represent item difficulty,
we compared Diff j and the item difficulty parameter estimated by
the IRT model (such as the Rasch model). We used the G-DINA
model (for details, see Equation 16) to generate the response data
(including 100 items, 1,000 individuals, and five independent
attributes), and then we used the G-DINA model and the
Rasch model to estimate the same response data, respectively.
We calculated each item difficulty on CD via Equation 1 and
the item difficulty parameter on Rasch model. The correlation
coefficient of item difficulty between CD and IRT reached a
value above 0.85 (p < 0.001), which clearly shows that the item
difficulty based on CD had a significantly high correlation with
the item difficulty on IRT. Therefore, the mean correct response

probability of all KSs can be viewed as an item difficulty index
under the CD framework.

Reliability of Cognitive Diagnosis
Templin and Bradshaw (2013) proposed an empirical reliability
index for CD. The reliability index defined the recalculation
consistency using the tetrachoric correlation coefficient. They
used the following steps to estimate the attribute reliability. (1)
Calculate the marginal mastery probability of attribute k for
examinee e p̂ek by using CD models. (2) Establish the replication
contingency table. For the binary attribute, four elements are
calculated as follows:

P(α.k1 = 1; α.k2 = 1) =

∑N
e=1 p̂ek p̂ek

N
, (2)

P(α.k1 = 1; α.k2 = 0) =

∑N
e=1 p̂ek(1− p̂ek)

N
, (3)

P(α.k1 = 0; α.k2 = 1) =

∑N
e=1(1− p̂ek) p̂ek

N
, (4)

P(α.k1 = 0; α.k2 = 0) =

∑N
e=1(1− p̂ek)(1− p̂ek)

N
, (5)

The attribute reliability was calculated by the tetrachoric
correlation coefficient of α.k1 and α.k2,which also represents
the re-test reliability of attribute k. More details can be
found in Templin and Bradshaw (2013).

Quantitative Targets for CD-MST
Quantitative targets include the test target reliability of CD, item
difficulty, etc. In this study, the attribute reliability of the cognitive
diagnostic model proposed by Templin and Bradshaw (2013)
was used as a metric of the test reliability. This index provides
attribute reliability to each cognitive attribute. In the study, the
reason for using reliability to assemble the test is that a good
reliability can reduce the measurement error and improve the
reliability for the test. Reliability or information has always been
used to measure the test reliability of both CTT and IRT. In
CTT, the reliability coefficient was used to control test error. In
IRT, information was used to control test error, but in CDM,
the attribute mastery patterns are discrete variables. Based on the
characteristics of CDM, Templin and Bradshaw (2013) proposed
attribute reliability to control test error and ensure reliability.
On the other hand, mainstream assembly algorithms in MST use
test information function (TIF) to assemble test pathways, for
example, Yang and Reckase (2020) used the Fisher information
to assemble test for optimal item pool design in MST, and
Xiong (2018) used the Fisher information in a hybrid strategy to
construct MST. Yamamoto et al. (2019) used test characteristic
curves (TCCs) in MST test design for PISA 2018. Whether
these studies use reliability or information, the purpose is to
control test errors and provide a greater reliability. Therefore,
borrowing the ideas from the previous studies, we used attribute
reliability to assemble tests and to control test errors because of
the characteristics of CDM and MST.
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THE NORMALIZED WEIGHTED
ABSOLUTE DEVIATION HEURISTIC FOR
CD-MST

The normalized weighted absolute deviation heuristic (NWADH;
Luecht, 1998), a popular heuristic algorithm, has been applied
to the MST assembly. The weighted deviations of constrained
targets are used in this algorithm, and the deviation of each
constraint is standard with the same scale (van der Linden and
Glas, 2000). They also are compatible with multiple contents or
classification dimensions, multiple quantitative targets, multiple
test modules, and other complex test group issues, such as
the enemy items (Luecht, 1998). Therefore, the NWADH is
employed for the test assembly in CD-MST.

In NWADH, both statistical and non-statistical constraints are
combined to set the objective function and to meet the current
test requirement. With the selection of each item, the objective
function is updated according to the measurement characteristics
of the selected item, which is done until the test assembly
is completed (Luecht, 1998). A well-designed test has a clear
test specification so that measurement properties, quantitative
targets, and other constraints should be considered in the test
assembly. The statistical and non-statistical constraints for a test
specification will be described in detail below.

Let Tk denote the target reliability of attribute k with test. uj
k

denotes the observed reliability of attribute k in the test with
a length of J items, which can be calculated by the tetrachoric
correlation coefficient, and the difference of attribute reliability
between the target attribute reliability and the observe attribute
reliability can be calculated as follows:

dJ
=

K∑
k=1

∣∣∣Tk − uJ
k

∣∣∣/K (6)

In Equation 6, J denotes the selected items in the test, and
dJ represents the mean absolute deviation between the target
attribute reliability and the observe attribute reliability with J
items. When the new item was added to the test with J items, the
test length is J+ 1 items. At this time, the difference of attribute
reliability between the target attribute reliability and the observed
attribute reliability can be calculated as Equation 7:

dJ+1
i =

K∑
k=1

∣∣∣Tk − uJ+1
k

∣∣∣/K; i ∈ RJ (7)

In Equation 7, RJ refers to the remaining items in the item bank
after selecting J items. The item i is selected from RJ . In order to
meet statistical constraints, in CD-MST, the next item i of RJ that
makes dj + 1

i with the smallest values was selected.
At the same time, in order to optimize the NWADH

algorithm, we can transform the minimizing of the absolute
deviation function in Equation 6 into the maximization, as
follows:

MAX(ei) (8)

where ei is the “priority index” and is expressed as:

ei = 1−
dJ+1

i∑
i∈RJ

dJ+1
i
; i ∈ RJ (9)

In Equation 8, ei denotes the priority index of item i. That means
that CD-MST priority selects the items to make ei with the
maximum values in the remaining item bank RJ .

Equations 6 and 9 are the NWADH algorithms (Luecht,
1998) when only considering the statistical quantitative target.
However, a complete CD-MST also needs to consider non-
statistical constraints such as content balance, item type, item
answer, and other constraints. The NWADH algorithm can
merge multiple content constraints (Luecht, 1998). When
considering the content constraints, it is necessary to give a
certain weight to constraints based on the test specifications.
In general, the weight values depend on the test specifications
that can be obtained by the pre-simulation (Luecht, 1998).
The NWADH algorithm (Equation 9) contains the content
constraints as follows:

ei
∗
=

[
1−

dJ+1
i∑

i∈RJ
dJ+1

i

]
+

ci∑
i∈RJ

ci
; i ∈ RJ (10)

where:
ci = vigWg + (1+ vig)Wg, (11)

Wg =W[max]
−

1
G

G∑
i=1

Wg . (12)

In Equation 10, ci denotes the content constraint weight for
each unselected item in the remaining item bank. In Equation
11, g denotes the total number of content constraints g = 1,
. . ., G. vig = 0 indicates that item i does not contain the
content constraint g, whereas vig = 1 indicates otherwise. Wg
represents the weight of each content constraint g. Wg represents
the mean weight of each content constraint g. In Equation 12,
W[max] represents the maximum weight values of G kinds of
content constraints. In this study, the weight of the non-statistical
constraints was according to the method proposed by Luecht
(1998). The non-statistical constraints in the study were set as
follows:

if
∑

i∈Rj−1

vi ≥ Z[max]
g , thenWg = 1, (13)

if
∑

i∈Rj−1

vi < Z[min]
g , thenWg = 2, (14)

subject to the constraints,

I∑
i=1

vig, g = 1, ..., G. (15)

Let Z[max]
g represent the maximum constraint values of constraint

g. Z[min]
g represents the minimum constraint values of constraint

g. Therefore, when tests contain non-statistical constraints, ei in
Equation 9 was instead replaced by ei

∗

in Equation 10.
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Test Assembly Procedure
After all experimental conditions are set up, the program of test
assembly, written under the NWADH (see Equations 6–15), was
run to assemble test. We briefly describe the assembly procedure
step-by-step as follows:

First: Take the hard pathway as an example; the test assembly
program is based on the initial items in the first stage to
find the new item in item bank. The new item needs to have
the largest ei

∗

value in the remaining item bank, and ei
∗

was
calculated by Equation 10.

Second: When the item with the largest ei
∗

was selected to the
hard pathway, we will select the next new item based on the new
item and initial item of the first stage. The next new item also
needs to have the largest ei

∗

in the remaining item bank.
Third: Repeat the above two steps until the test length meets

the experimental requirements. It should be noted that each item
was selected only once, which means that the selected new item
needs to be removed from the remaining item bank.

THE GENERAL COGNITIVE DIAGNOSIS
MODELS: THE G-DINA MODEL

Cognitive diagnosis models play an important role in CD.
They connect examinees’ external response and internal
knowledge structure. We need to select the appropriate cognitive
diagnostic models for the test to ensure the accuracy and
effectiveness of the test.

Generalized DINA (G-DINA; de la Torre, 2011) is an
expansion of the DINA model (Deterministic-in-put, noisy-and-
gate model; Haertel, 1984; Junker and Sijtsma, 2001). It considers
that examinees with different attribute mastery patterns have
different probability attributes. For G-DINA, K

∗

j =
∑K

k = 1 qjk,
where K

∗

j is the number of attributes k of item j. The G-DINA

model divides examinees into 2k
∗

j categories and let a
∗

lj denote
the reduced attribute mastery patterns based on the measurement

attributes of item j, l = 1, 2,..., 2k
∗

j . The G-DINA model has
different mathematical expressions depending on the function.
The three main link functions are the identify link function, logit
link function, and log link function. de la Torre (2011) pointed
out that the G-DINA model based on the identify link function
is a more general form of the DINA model, and its mathematical
equation is:

P(Xij = 1|α∗lj) = δj0 +

K∗j∑
k=1

δjkαlk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αlk′

+ ...+ δj12...k∗

K∗j∏
k=1

αlk. (16)

δj0 denotes the intercept of item j. That is, if examinees do not
master all the attributes measured by an item, the value is a non-
negative value. δjk is the main effect for αk. δjkk′ is the interaction

effect between αk and αk′ . δj12...k∗j
denotes the interaction effect

from α1,...,αk ∗j
.

SIMULATION STUDY

Simulation Design
Generated Item Bank
In the simulation study, the number of attributes and the test
length were set to five attributes and 21/25 items, respectively.
The number of panels were fixed to five or 10 panels. Therefore,
there were 2 (the test length)× 2 (the number of panels) = 4 total
conditions for this study. Across the conditions, we generated
an item bank with 1,000 items. For both IRT and CDM, the
measurement of reliability requires a certain test length to ensure
that the test reliability can be accurately measured. The test length
in the study is based on the CAT and MST. In general, 21 items
can provide a good test information in CAT. At the same time,
the test is usually divided into three or four stages in MST, and
each stage with five or seven items. Therefore, the test length was
set to 21 and 25 items in the study.

Divided the Item Difficult
For the item difficult level of divide, we referred to the approach
of MST. In MST, the item difficult level is divided by the
theta parameters because the item difficult parameters and the
theta parameters are in the same scale in IRT framework. More
specifically, the method is averaged to divide the theta value from
large to small into three intervals, and three different intervals
represent three different difficulty pathways: easy, medium, and
hard pathways. So, we used the same method to divide the
difficulty in CD-MST. In the study, item difficulty called Diff j
was described as the mean correct response probability of all
KSs of one item. The Diff j is a probability between 0 and 1.
According to the value of Diff j from item bank, three cut-points
were averaged and generated from max Diff j 0.74 to min Diff j
0.24 (see Equation 1). We can classify items into easy (0.58–
0.74), medium (0.42–0.57), and difficult (0.24–0.41) intervals for
CD-MST. The difficult interval with a low value represents the
hardest item set. The easy interval with a large value represents
the easiest item set.

Set Reliability Criteria
Templin’s attribute reliability index is a probability between
0 and 1. Educational Testing Service (2018) proposed 0.9 as
representing a very good reliability in CDM. In order to guarantee
the test reliability, we chose a high value of 0.9 as the reliability
criteria. Therefore, the attribute reliability higher than 0.90 was
set as the target reliability value for each attribute.

Set the First Stage
In the study, each panel contained three stages. The number of
items in each stage is listed in Table 1. It is worth noting that items
in the first stage only measured one attribute, whose purposes
are to prove the parameters identifiability of CD models (Xu and
Zhang, 2016) in the early stage and to improve the classification
accuracy of attributes.
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Set Quantitative Targets
Quantitative targets are defined as the target attribute reliability
proposed by Templin and Bradshaw (2013). The target attribute
reliability of each attribute was set to 0.90. The non-statistical
constraints in each panel are listed in Table 2, and it should be
noted that the test assembly needed to meet the minimum limit
constraints. For example, the content balance was divided into
four categories, where each category contained at least four items
after the test was completed.

Set Assembly Strategy
The top–down strategy was used to assemble the panels, so
the non-statistical constraints and quantitative targets would
remain parallel between the pathways. R (Version 3.5.1 64-bit;
R Core Team, 2018) was used to write the test assembly program
under the NWADH.

Simulation Process
Step 1: Knowledge states. In the study, the test included five
independent attributes, and all possible KSs were 25 = 32. The
KS of 1,000 examinees was randomly generated from 32 KSs.

Step 2: Q-matrix. The item bank included 1,000 items, and
the Q-matrix was randomly generated from 25 to 1 = 31 item
attribute patterns.

Step 3: Item parameters. It was generated by the GDINA
package (Version 2.1.15; Ma and de la Torre, 2017) in R
(Version 3.5.1 64-bit; R Core Team, 2018). According to de la
Torre (2011), the item parameters of the G-DINA model are
simulated according to Pj(0) and 1-Pj(1), and Pj(0) represents
the probability of examinees who do not master any attribute
required by item j and correctly respond to item j, 1-Pj(1)
represents the probability of examinees who master all the
attributes required by item j with wrong response to item
j. Here, the parameters Pj(0) and 1–Pj(1) were randomly
generated between uniform (0, 0.25). This simulation study was
replicated 100 times.

Step 4: Test assembly. After all experimental conditions are set
up, the program of test assembly, written under the NWADH (see
Equations 6–15), was run to assemble the test.

TABLE 1 | Number of items in each stage.

21 items for test length 25 items for test length

Pathway Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Easy 5 8 8 5 10 10

Medium 5 8 8 5 10 10

Hard 5 8 8 5 10 10

TABLE 2 | Number of non-statistical constraints in test assembly.

Constraints group Categories Constraints

Content balance 4 4

Item types 2 8

Answer balance 4 4

Enemy items 1 0

The number of each attribute 5 3

Evaluation Criteria
For this simulation study, some criteria were computed to
evaluate the target attribute reliability violated and the number of
constraints violated on each test pathway. The index of the target
attribute reliability violated is expressed as:

Dik = Rik − Tik, (17)

where Rik is the observed reliability of attribute k on pathway
i, Tikis the target reliability of attribute k on pathway i, and Dik
represents the difference between the observed reliability and the
target reliability.

The number of constraints violated on each constraint is
computed as:

V =
N∑

i=1

Vi, (18)

where Vi represents the number of constraints violated, N is the
constraint number of each test pathway, and V is the constraint
number for the test pathway.

Other criteria were reported in the results, for example, the
item difficulties based on CD, the item difficulties based on
the Rasch model, the expected number-correct score based on
CD, and the Cronbach α coefficient based on the CTT on
each test pathway.

Results
Figures 2–5 documented the results of the difference between
the observed and the target attribute reliability (i.e., Dik; see
Equation 17) under four experimental conditions. In Figures 2–
5, the points Dik represent the difference values between the target
attribute reliability and the experimental reliability value, and the
lower Dik value indicates a smaller test error. It means that the
observed reliability is closer to the target reliability 0.9. Three
lines represent different difficulty pathways. We also presented
the difference value under different experimental conditions in
Figures 2–5.

Figure 2 shows the experimental condition results for five
attributes, 21 items, and five panels, and A1–A5 represent
attributes 1–5, respectively. Each attribute reliability in each main
pathway reached about 0.9, and all the differences between the
observed and target reliability were within +0.2. It indicated
that the quantitative targets were satisfied. The results of the
three other experimental conditions (see Figures 3–5) were very
similar to the above experimental condition. Besides, the attribute
reliabilities (see Figures 2–5) had slight differences under
different item lengths. More detailed, the attribute reliability with
25 items was slightly higher than 21 items, which indicated that
the item length affected the attribute reliability, and this result
verifies that the test length also affects reliability in CD-MST.

Table 3 summarizes the item statistics for the three
primary pathways in different experimental conditions. First,
we show the item difficulty of different pathways. The results
indicated that item difficulty, in the same simulation data,
was very different among three primary pathways in the
CDM and the IRT Rasch model. More specifically, the hard
pathway with more difficult items has lower Diff j values
(mean correct response probability of all KSs) than those
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FIGURE 2 | The difference between observed and target reliability with five-attribute, 21-item, and five-panel conditions.

FIGURE 3 | The difference between observed and target reliability with five-attribute, 21-item, and 10-panel conditions.

of medium and easy pathways. The medium pathway had
a lower value of Diff j than that of the easy pathway. It
should be noted that the lower Diff j values represent the

harder item difficulty in this study. Moreover, the three
pathways also show the difference of item difficulty in IRT
Rasch model. For example, the item difficulty in the hard

Frontiers in Psychology | www.frontiersin.org 8 May 2021 | Volume 12 | Article 509844223

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-509844 April 30, 2021 Time: 20:6 # 9

Li et al. ATA for CD-MST

FIGURE 4 | The difference between observed and target reliability with five-attribute, 25-item, and five-panel conditions.

FIGURE 5 | The difference between observed and target reliability with five-attribute, 25-item, and 10-panel conditions.

pathway is higher than those of the medium and easy
pathways. Therefore, these results show that the proposed
Diff j can describe the item difficulty of CDM and can be
verified by IRT.

In addition, the standard deviation (SD) of Diff j in each
primary pathway was very small for all experimental conditions,
which showed that the items in the same pathway had very similar
difficulty levels. We also used the same data to verify the IRT
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TABLE 3 | Item difficulties and expected number-correct score statistics for each pathway.

Expected number- Expected number-

Five panels Cognitive diagnosis Rasch correct score Cronbach α 10 panels Cognitive diagnosis Rasch correct score Cronbach α

25 items item difficulties item difficulties Based on CD coefficient 25 items item difficulties item difficulties Based on CD coefficient

Pathway Mean SD Mean SD Mean SD Pathway Mean SD Mean SD Mean SD

Easy 0.6171 0.0125 –0.3868 0.0930 77.092 43.976 0.960 Easy 0.6148 0.0097 −0.9041 0.1329 153.493 83.948 0.978

Medium 0.4593 0.0143 0.5428 0.0895 57.587 28.532 0.924 Medium 0.4772 0.0213 0.2075 0.1261 119.492 59.728 0.962

Hard 0.3794 0.0150 1.0456 0.0924 47.561 27.548 0.916 Hard 0.3887 0.0143 0.9899 0.1342 97.276 56.009 0.958

Expected number- Expected number-

Five panels Cognitive diagnosis Rasch correct score Cronbach α 10 panels Cognitive diagnosis Rasch correct score Cronbach α

21 items item difficulties item difficulties Based on CD coefficient 21 items item difficulties item difficulties Based on CD coefficient

Pathway Mean SD Mean SD Mean SD Pathway Mean SD Mean SD Mean SD

Easy 0.6120 0.0139 –0.4374 0.0956 64.162 37.182 0.952 Easy 0.6099 0.0101 –0.9456 0.0849 127.912 71.358 0.974

Medium 0.4605 0.0138 0.5019 0.0950 48.533 24.348 0.910 Medium 0.4788 0.0214 –0.2315 0.0823 100.812 51.264 0.955

Hard 0.3845 0.0139 1.0091 0.0979 40.411 22.988 0.900 Hard 0.3932 0.0133 0.3654 0.0849 82.583 48.242 0.950

TABLE 4 | Number of constraints violated in each constraint group for each test pathway.

10 panels, 21 items 10 panels, 25 items 5 panels, 21 items 5 panels, 25 items

Constraint Easy Medium Hard Constraint Easy Medium Hard Constraint Easy Medium Hard Constraint Easy Medium Hard

group pathway pathway pathway group pathway pathway pathway group pathway pathway pathway group pathway pathway pathway

Content category 0 1 0 Content category 0 0 0 Content category 0 0 0 Content category 0 0 0

Item types 0 0 0 Item types 0 0 0 Item types 0 0 0 Item types 0 0 0

Answer keys 0 0 1 Answer keys 0 0 1 Answer keys 0 0 0 Answer keys 0 0 0

Attribute times 0 0 0 Attribute times 0 0 0 Attribute times 0 0 0 Attribute times 0 0 0

Enemy item 0 0 0 Enemy item 0 0 0 Enemy item 0 0 0 Enemy item 0 0 0
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difficulty via Rasch model, which results indicated that the two
types of difficulty parameters (IRT and CD) were very consistent.
From the above results, it is reasonable to use the mean correct
probability of all KSs as the item difficulty index for CD-MST.

Table 3 also displayed that the mean expected number-correct
scores were calculated under a large sample with 1,000 examinees.
It was shown in the sixtth and seventh columns of Table 3. First,
we calculated each examinee’s expected number-correct score in
each primary pathway. Then we calculated the mean and SD.
As expected, examinees had the highest mean expected number-
correct scores in the easy pathway, while they had the lowest
mean expected number-correct scores in the hard pathway. It
is theoretically reasonable because examinees usually get more
scores on easy items.

In Table 3, the Cronbach’s α coefficient was used to verify test
reliability. The α coefficients varied from 0.900 to 0.978 with an
average of 0.945, which indicates that the proposed CD-MST had
high reliability. This shows that the assembled test in the study
not only satisfies the reliability of CDM but also the reliability of
Cronbach’s α coefficient.

Table 4 documents the number of constraints violated in each
constraint group, and the constraints rae set in Table 2. As known
in Table 2, the constraint group involved 16 categories and 64
constraints. Table 4 shows that only three of 64 constraints were
not satisfied. Specifically, one content balance was not satisfied
in the medium pathway with the condition of 21 items and 10
panels, and two answer balances were not satisfied in the hard
pathway of the condition of 21 items and 25 items with 10 panels.
The overall non-statistical constraint violation rate was about
4.7%, which was an acceptable range. The results indicated that
the proposed test assembly had a very good performance in the
non-statistical constraints for CD-MST.

CONCLUSION AND DISCUSSION

The MST with the advantages of P&P and CAT is to
be applied to many large-scale international examinations.
However, the existing MST with the IRT focuses on the
examinees’ general ability and cannot provide further detailed
diagnostic information. Because CD mainly focuses on the
multidimensional and discrete cognitive attributes, some test
assembly indexes in MST (such as the item difficulty and the
Fisher information) are not suitable for CD-MST. There has
been no recent research on CD-MST. Although some studies
(such as Zheng and Chang, 2015) provided on-the-fly MST
(OMST; Zheng and Chang, 2015), which may be a practical
method of CD-MST, this may lead to many problems, such
as (1) the test developer having difficulty in managing tests
before administering, (2) the parallel of the test is difficult to
ensure, (3) and the non-statistical constraint also is difficult
to satisfy. To address the above issues, a CD-MST framework
that not only provides rich diagnostic information about the
candidates but also retains the inherent advantages of MST was
proposed in this paper. This paper also proposed and employed
two statistical indexes, namely, item difficulty and attribute
reliability, as the statistical constraints of CD-MST. In this paper,

the proposed item difficulty index is a good indicator of the
item difficulty based on CD, which has a very significant high
correlation with the item difficulty parameter based on IRT
(such as the Rasch model). The reliability index also guarantees
the reliability and measurement error of tests. These indexes
can provide statistical information, which makes it possible to
automate test assembly for CD-MST. At the same time, the results
showed that the NWADH algorithm under the CD framework
successfully satisfied the non-statistical constraints. It showed
that the proposed CD-MST framework and statistical indicators
are acceptable for CD-MST.

This study employed the NWADH heuristic method to
assemble the CD-MST under ATA. The results showed that the
statistical and non-statistical constraints were both well satisfied,
and the assembled test panels were parallel overall. At the same
time, the non-statistical constraints (such as the attribute balance
and content balance) were fully considered in CD-MST, which
helps improve the content validity and structural validity of CD-
MST. Therefore, the proposed CD-MST with NWADH heuristic
algorithms not only provides rich diagnostic information but also
retains the advantages of MST.

LIMITATIONS AND FURTHER RESEARCH

As an early exploration of CD-MST, despite the promising
results, there are still some limitations that need to be
studied further. First, even though the CD item difficulty
index, the mean correct probability of all KSs, fully represents
the item difficulty, it is verified by the IRT model. Further
research also can develop other indexes to measure the
item difficulty in CDM. For example, Zhan et al. (2018)
proposed the probabilistic-input, noisy conjunctive (PINC)
model, which defined attribute mastery status as probabilities
and reported the probability of knowledge status for examinees
from 0 to 1. According to Zhan et al. (2018), classifying an
examinee’s KSs to 0 or 1 will cause a lot of information
of examinees to be lost, so the PINC model can provide
more precise and richer information to examinees’ KSs than
the traditional CDMs. Therefore, researchers can try to use
the probability of examinees’ KSs to develop a new difficulty
index in the future.

Second, attribute reliability was regarded as a quantitative
target in this study, which is illustrative but not prescriptive.
In future studies, other reliability or information/measurement
error indicators may also be considered as quantitative targets.
For example, the classification accuracy was proposed by Cui et al.
(2012), the classification matches were proposed by Madison and
Bradshaw (2015), and the classification consistency was proposed
by Matthew and Sinharay (2018). In the future, the comparative
analysis of these reliability indexes can be applied to the test
assembly in CD-MST.

Third, the NWADH method was used in this study to
assemble the panels. Although this method can guarantee the
successful completion of the test assembly, there is still a small
violation of the constraints. For example, content constraints
were slightly violated in this study. Even if this violation
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is allowed in the NWADH method, other methods may be
considered to ensure that all constraints are met. In fact, the
linear programming method and the Monte Carlo method are
also widely used in MST. Although these two methods are
influenced by the size and quality of the item bank, they can
fully meet the test specification. Besides, Luo and Kim (2018)
proposed the mixed integer linear programming (MILP) to
assemble tests in MST. The result of the MILP method shows
that the method had the advantage of the heuristic algorithm and
0–1 linear programming algorithm. Perhaps, the MILP method
is also a reasonable ATA method for CD-MST and can resolute
the violence of constraints. Therefore, the development of new
methods that can fully meet the constraints and successfully
assemble tests is also one of the future research directions.

Finally, the test length also needs to be explored in a further
study. In the study, the difference between the reliability and
the constraints is not significant. The difference between test
length levels can be larger (e.g., 21 vs. 42) and be further
studied to explore the impact of test length. Researchers can
design the different item numbers to explore the best test
length that can provide the maximum information and meet the
test constraints.
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Although classification accuracy is a critical issue in cognitive diagnostic computerized

adaptive testing, attention has increasingly shifted to item exposure control to ensure

test security. In this study, we developed the binary restrictive threshold (BRT) method

to balance measurement accuracy and item exposure. In addition, a simulation study

was conducted to evaluate its performance. The results indicated that the BRT method

performed better than the restrictive progressive (RP) and stratified dynamic binary

searching (SDBS) approaches but worse than the restrictive threshold (RT) method in

terms of classification accuracy. With respect to item exposure control, the BRT method

exhibited noticeably stronger performance compared with the RT method, even though

its performance was not as high as that of the RP and SDBS methods.

Keywords: cognitive diagnostic computerized adaptive testing,measurement accuracy, item exposure rate, binary

searching algorithm, cognitive diagnostic assessment

INTRODUCTION

Cognitive diagnostic computerized adaptive testing (CD-CAT; Cheng, 2009, 2010; Chang, 2015)
has attracted the attention of numerous researchers and educators over the past few decades
(Wang et al., 2012). CD-CAT is a combination of a cognitive diagnostic model (CDM) and
computerized adaptive testing (CAT). A key advantage of CD-CAT is that educators can provide
remedial instruction for individuals based on the knowledge level of the individuals, which is
determined using CDM (e.g., Gierl et al., 2007). In addition, CD-CAT can generate a test tailored
to suit an individual’s latent trait levels (Mao and Xin, 2013; Chang, 2015; Lin and Chang, 2019).
Consequently, the estimation of an individual’s latent ability is more accurate when fewer items are
used compared with using traditional paper and pencil tests (Weiss, 1982).

One of the major objectives of CD-CAT is to improve classification accuracy. Numerous item
selectionmethods have been developed to achieve this objective. Item selectionmethods commonly
applied including the Kullback–Leibler method (KL; Xu et al., 2003), Shannon entropy method
(SHE; Tatsuoka and Ferguson, 2003), posterior weighted KL method (PWKL; Cheng, 2009),
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and modified PWKL (MPWKL; Kaplan et al., 2015). Several
attempts have been made to develop item selection methods
for short-length tests, such as the mutual information (MI;
Wang, 2013), posterior weighted CDM discrimination index,
and posterior weighted CDM attribute-level CDI (PWACDI)
(Zheng and Chang, 2016). All of the aforementioned item
selection methods noticeably enhance the classification accuracy
of CD-CAT. However, a major attribute of such methods is
that they focus largely on maximizing classification accuracy
rather than on controlling item exposure, which results in a
highly uneven distribution of item bank usage. Although CD-
CAT is used mainly for low-risk tests (Leighton and Gierl,
2007; Wang et al., 2011; Mao and Xin, 2013; Lin and Chang,
2019), where item exposure is not a major concern, items may
be at risk of overexposure if an individual already knows the
items before taking the test (Wang et al., 2011; Mao and Xin,
2013). In addition, it is not appropriate to administer an item
bank with a large number of underexposed items because item
bank development is a time- and money-consuming process
(Wang et al., 2011; Zheng and Wang, 2017). To establish
a balance between classification accuracy and item exposure
control, several novel item selectionmethods have been proposed
(e.g., Wang et al., 2011; Hsu et al., 2013; Zheng andWang, 2017).

Wang et al. (2011) proposed the combination of the
restrictive progressive (RP) and restrictive threshold (RT)
methods with the PWKL method to achieve item exposure
control for fixed-length tests in CD-CAT. In addition, Hsu
et al. (2013) developed the Sympson-Hetter method and
considers test overlap control, variable length, online update,
and restricted maximum information (SHTVOR) to address
item exposure with varied test length in CD-CAT. Recently,
Zheng and Wang (2017) applied the binary searching algorithm
for item exposure control in CD-CAT. They proposed the
dynamic binary searching method for varied-length tests and
the stratified dynamic binary searching (SDBS) method for
fixed-length tests. However, even though the RP method could
generate a more even distribution of item usage for fixed-length
tests, the classification accuracy was considerably decreased.
In comparison, the RT method achieved higher classification
accuracy but a more uneven distribution of item usage. The SDBS
method is a promising one-item selection method in terms of
the testing efficiency and distribution of item usage, but it has
relatively low measurement accuracy and flexibility. In addition,
the SDBS method does not take into account item parameters,
which potentially resulting in wasted item information and low
measurement accuracy. To address the shortcomings of the
aforementioned methods for fixed-length CD-CAT, we propose a
modified method inspired by Wang et al. (2011) and Zheng and
Wang (2017). The new method—the binary restrictive threshold
(BRT) method—integrates the binary searching algorithm into
the RT method.

The remainder of this paper is organized as follows: First,
two commonly used CDMs in CD-CAT, the deterministic input,
noisy “and” gate (DINA) model (Junker and Sijtsma, 2001)
and the reduced reparameterized unified model (RRUM; Hartz,
2002), are briefly introduced. Subsequently, four item control
indices—RP, RT, SDBS, and BRT—are presented to illustrate

how such indices balance the trade-off between classification
accuracy and item exposure control. Afterward, we perform a
simulation study to compare the performance of the novel item
exposure index with that of the RP, RT, and SDBS methods.
Finally, discussions and conclusions are based on the findings of
the simulation study are provided.

CDMs

The DINA Model
The DINA model is one of the most commonly used CDMs in
CD-CAT because of its simplicity and ease of explanation (e.g.,
Cheng, 2010; Chen et al., 2012). It classifies individuals into two
classes for each item: those whomaster all attributes that the item
measures and those who lack at least one attribute that the item
involves. The DINA model can be expressed as

P
(

Yij = 1|ηij
)

=
(

1− sj
)ηijgj

1−ηij ,

ηij =
∏K

k=1
(αik)

qjk ,

where Yij is the response of individual i to item j; η is the
ideal response indicating whether an individual master all the
required attributes of an item; s is the slip parameter; g is the
guess parameter; K is the number of attributes; αik denotes the
deficiency or mastery of the k attribute for individual i; and qjk is
the element of the Qmatrix.

One limitation of the DINAmodel is that it cannot distinguish
individuals who lack one attribute from those who lack more
than one attribute that a specific item measures. By contrast,
the RRUM allows the probabilities of different attribute mastery
patterns to vary across items.

The RRUM
The RRUM has attracted considerable attention in CD-CAT in
recent years (e.g., Dai et al., 2016; Huebner et al., 2018). The item
response function of the RRUM can be expressed as follows:

P
(

Yij = 1| αi
)

= π∗
j

K
∏

k=1

r∗jk
(1−αik)qjk ,

where π∗
j , the baseline parameter, refers to the probability of

correct response to item j when individuals have mastered all
attributes that the item requires; r∗

jk
, the penalty parameter,

denotes the reduction in the probability of correct response to
item j when an individual lacks attribute k.

ITEM EXPOSURE CONTROL INDICES IN
FIXED-LENGTH CD-CAT

The RP Method
Wang et al. (2011) developed this item exposure control index.
Two components are included in this method: the restrictive
component and the progressive component. The former imposes
a restriction to make sure that the maximum exposure rate
does not exceed a pre-defined value, r. The latter component
adds a stochastic element to the item selection methods to
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avoid the frequent selection of items with the largest amount of
information (Revuelta and Ponsoda, 1998). The RP method can
be expressed as follows:

RP_inf oj =
(

1− expj/r
)

[

(1− (x/J )) × Rj + inf oj × βx/J
]

,

where expj is the exposure rate for item j, x is the
number of items that have been administered, J is the test
length, Rj is a random value that is generated from a
uniform distribution U(0, max(inforj)), where infoj refers to the
corresponding information of item j, such as PWKL information,
and β is the importance parameter that is used to adjust
the relative importance of classification accuracy vs. the item
exposure control issue. A lower value of β indicates that test
security is more important than classification accuracy, and
vice versa.

The RT Method
This method is another item exposure control index that
was developed by Wang et al. (2011). It also includes two
components: a restrictive component and a threshold component
that is applied to derive an information interval. Candidate
items during each interval can be randomly administered to
individuals. The information interval is defined as follows:

RT_inf ointerval =
[

max
(

inf oj
)

− δ, max
(

inf oj
)]

,

δ =
[

max
(

inf oj
)

−min
(

inf oj
)]

× f (x) ,

f (x) = [1− (x/J )]β ,

where δ is the threshold parameter and β is the importance
parameter that determines the width of the information interval.
The higher the value of β , the narrower the information interval.
The rest of the symbols have meanings similar to those in the
RP method.

The SDBS Method
Zheng and Wang (2017) developed the SDBS algorithm, which
stratifies items on the basis of their discrimination index. This
method was inspired by the α-stratification method that is
commonly used in IRT-based CAT (Chang and Ying, 1999).
The classical testing theory (CTT)–based item discrimination
indices for the DINA model and the RRUM are

(

1− sj − gj
)

and
(

π∗
j − π∗

j

∏K
k=1 r

∗
jk
qjk

)

, respectively (Rupp et al., 2010). The

SDBS can be computed as follows:

Bm
j

=

∣

∣

∣

∣

∣

∣

∣

∑

Sm
jl
=1

p (αl|Yt−1) − 0.5

∣

∣

∣

∣

∣

∣

∣

,

Sm
jl

=
K

∏

k=1

I
(

qjk ≤ αlk

)

,

p (αl|Yt−1) =
P

(

Yj−1| αl

)

π0 (αl)

2K
∑

c=1
P

(

Yj−1|αc

)

π0 (αc)

,

where Bj is the binary searching index; Sjl is the separation for
item j and attribute profile l, where Sjl = 1 indicates that the
attribute profile l possesses all the attributes that item jmeasures
and Sjl = 0 otherwise; m represents the mth stage; p (αl|Yt−1) is

the posterior probability for the lth attribute profile conditional
on the first t – 1 item responses; Yt−1, P (Yt−1|αl) is the joint
probability of the first t – 1 items conditional on attribute profile
αl; π0 (αl) is the priori probability; and I(.) is the indicator
function, which equals 1 when the expression in the brackets is
true and equals 0 otherwise.

The SDBSmethod tends to select an item with a lower Bj value
as the next item to be administered. Because only the q-vector of
item j is used during the calculation of Bj and item parameters
(e.g., slip and guess parameter) are not taken into consideration,
items measuring similar or even different attribute profiles can
obtain consistent estimations of B.

The BRT Method
Inspired by Zheng and Wang (2017), the present study attempts
to combine the binary searching algorithmwith the RTmethod to
develop a novel item exposure control method. In particular, the
binary searching algorithm is applied first to obtain the candidate
item set that has the lowest binary searching index, B. The RT
method is then used to select items from the candidate item set.

Because the BRT method combines the binary searching
algorithm with the RT method, we expected it to achieve
lower classification accuracy but superior item exposure control
compared with the RT method. In addition, we expected the
BRT method to achieve higher classification accuracy compared
with the SDBS and BRP methods because the RT method, which
is involved in the BRT method, can yield higher classification
accuracy than the RP and SBDS methods (Wang et al., 2011;
Zheng and Wang, 2017) when applied to select the appropriate
item to be administered.

In the BRT method, items with the lowest Bj value can be
obtained first, and then the RT method is applied to randomly
select the next item from these items with the lowest Bj value. The
mathematical expression of the BRT can be defined as follows:

BRT_inf ointerval =
[

max
(

inf oj
)

− δ, max
(

inf oj
)]

,

δ =
[

max
(

inf oj
)

−min
(

inf oj
)]

× f (x) ,

f (x) = [1− (x/J )]β ,

j ∈ Q
min(Bj)

,

where Q
min(Bj)

is the q-vector of an item set with the lowest

Bj value.
The difference between the BRT and RT methods is that

an additional component, the calculated Bj value of each item,
is considered in the BRT method. According to Zheng and
Wang (2017), the additional component can be used to control
item exposure.

In summary, the steps of the BRT method are as follows:

Step 1. Randomly select an item from the item pool as the first
item to be administered to individuals;
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Step 2. Estimate each individual’s attribute profile;
Step 3. Calculate the binary researching index Bj on the basis of
the estimated attribute profile;
Step 4. Determine the candidate item set that has the lowest
binary researching index;
Step 5. Calculate the BRT index and select the appropriate item
as the next item to be administered.
Step 6. Repeat steps 2 to 5 until the terminal rule is satisfied.

SIMULATION STUDY

Simulation Design
We performed a simulation study to evaluate the performance
of the BRT method and then compared the BRT method with
other item exposure control methods that have been proposed in
previous studies (Wang et al., 2011; Zheng and Wang, 2017). In
the present study, wemanipulated factors such asmodel type, test
length, number of attributes, and item selection method. These
factors were set as follows:

Model Type
We included two model types in the present study, namely the
DINA model and RRUM, both of which are models commonly
applied in CD-CAT.

Number of Attributes
We applied four and six attributes in the present study, both of
which are number of attributes that are commonly applied in
CD-CAT (e.g., Cheng, 2009, 2010; Mao and Xin, 2013; Dai et al.,
2016; Kang et al., 2017; Huebner et al., 2018; Lin and Chang,
2019). For instance, Wang et al. (2011) adopted four attributes
in a simulation study, and Zheng and Wang (2017) applied four
and six attributes in their study.

Test Length
There are two levels with respect to test length: 25 items (short
length) and 40 items (long length). This setting is consistent with
those applied in related studies (e.g.,Wang et al., 2011; Zheng and
Wang, 2017).

Item Selection Method
Six item selectionmethods—the random, original PWKL, RP, RT,
SDBS, and BRT methods—were used in the current study.

The number of conditions was 2 (model type)× 2 (test length)
× 2 (number of attributes) × 6 (item selection method) = 48
in total, among which only the item selection method was a
within-group variable; the rest were between-group variables.
The simulation study was implemented in R software (R Core
Team, 2019), and the codes are available upon request from the
corresponding author.

Item Bank and Examinees Generation
Two different item banks were generated on the basis of the
number of attributes. Each item bank had 480 items, which is
also a setting that related studies have commonly applied (Wang
et al., 2011; Zheng and Wang, 2017). The item bank can be
represented using the Qmatrix, which describes the relationship
between items and attributes. That is, the element of theQmatrix

is 1 if the item measures the attribute, and the element is 0
otherwise. In the present study, the Q matrix was generated
entry-by-entry conditional on independence among attributes.
In addition, we assumed that each item involved at least one
attribute and measured 20% of the attributes on average, which
is similar to the case in Zheng and Wang (2017) study.

As for the item parameters, both the guessing and the
slipping parameters of the DINA model were generated from
a uniform distribution, U(0.05, 0.25). The baseline and penalty
parameters of the RRUM were generated from U(0.75, 0.95) and
U(0.20, 0.95), respectively. Other studies have also adopted such
settings (e.g., Cheng, 2010; Wang et al., 2011; Chen et al., 2012;
Mao and Xin, 2013; Zheng and Wang, 2017).

Two α matrices were generated to represent examinees’
mastery of the attributes. Two groups of examinees were
simulated, and each group was composed of 2,000 examinees.
Similar to the Q matrix, the element of the α matrix was
marked as 1 if examinees mastered the attribute and marked
as 0 otherwise. The steps for generating the α matrix followed
those proposed byWang et al. (2011), and both the threshold and
covariance among attributes were set as 0. Consistent with other
studies (e.g., Cheng, 2010; Wang et al., 2011; Chen et al., 2012;
Mao and Xin, 2013; Wang, 2013; Kaplan et al., 2015; Zheng and
Wang, 2017), only one replication was used in the present study.

The value of the importance parameter (i.e., β) for the RT
and RP methods was set to be 2. This is because Wang and her
colleagues found that the value 2 can generate a reasonable trade-
off between measurement accuracy and item usage (Wang et al.,
2011). In regard to the BRT method, the value of the importance
parameter was determined by a pilot study with varying β values.
Its result showed that the value 0.5 is sufficient to balance the
trade-off between measurement accuracy and item usage. Thus,
the value 0.5 was selected for the BRT method in the current
study. In addition, a total of five strata with equal number of
items were used for the SDBS method, which recommended by
Zheng and Wang (2017).

Evaluation Criteria
Two types of evaluation criteria were used in the current study.
The first one was correct classification rate, which includes
pattern correct classification rate (PCCR) and attribute correct
classification rate (ACCR). Higher values indicate better PCCR
and ACCR. The second criteria were item exposure control,
which includes the scaled χ2 (Chang and Ying, 1999), number
of items <2% (underused item rate; UIR) and more than 20%
(overused item rate; OIR), and the test overlap rate (TOR; Mao
and Xin, 2013). Lower values indicated favorable four item
exposure control indices. The calculation of such evaluation
criteria was performed as follows:

PCCR =
N

∑

i=1

I
(

α̂i = αi

)

/N,

ACCRk =
N

∑

i=1

I
(

α̂ik = αik

)

/N,

χ2 =
∑Nitem

j=1

(

erj − J/Nitem

)2
/(J/Nitem),
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erj =
Nadministered
j

N
,

TOR =
∑Nitem

j=1 Nadministered
j ×

(

Nadministered
j − 1

)

J × N × (N − 1)
,

where α̂i and αi denote the estimated and true attribute profiles
of examinee i, N is the number of individuals, J denotes the test
length,Nitem is the number of items in the item bank,Nadministered

j

is the number of times the jth item is administered (i.e., the
number of individuals who answer item j), and erj is the exposure
rate of item j.

RESULTS

Correct Classification Rate
Table 1 presents the correct classification rates for four attributes.
The original PWKL and the randommethods yielded the highest
and lowest PCCRs, respectively, regardless of model type and
test length. The RT method yielded the same or slightly lower
PCCRs compared with the PWKL method and much higher
PCCRs than the RP, SDBS, and BRT methods. In particular, the
differences between the RT method and the three item exposure
control methods (RP, SDBS, and BRT) were relatively small with
respect to the DINA model, which ranged from 0.003 to 0.007
for 25 items, and no difference existed among the methods for
40 items. However, the differences were slightly greater for the
RRUM, which ranged from 0.055 to 0.214 and from 0.008 to
0.052 for 25 and 40 items, respectively. The novel BRT method
yielded slightly lower PCCRs than did the RT method, while it
yielded higher PCCRs than did the RP and SDBS methods. The
differences between the BRT method and the other methods (i.e.,
the RP and SDBS methods) ranged from 0.000 to 0.004 for 25
items, and they shared similar PCCRs for 40 items conditional on
the DINAmodel. The differences ranged from 0.034 to 0.159 and
from 0.036 to 0.088, for 25 and 40 items, respectively, conditional
on the RRUM. In addition, among the four item exposure control
methods (RP, RT, SDBS, and BRT), the SDBS yielded the lowest
PCCRs under all conditions except one (J = 40, the DINA
model). Regarding ACCR, the averaged ACCRs for PWKL and
random methods were the greatest and lowest, respectively. The
BRT method yielded slightly lower average ACCRs than did
the PWKL but slightly higher average ACCRs than the RP and
SDBS methods. In addition, the SDBS yielded the lowest average
ACCRs among the four item exposure control methods.

The PCCR results for six attributes revealed similar patterns
with those for four attributes: the PWKL and random methods
yielded the highest and lowest PCCRs, respectively, regardless
of model type and test length. As for the remaining four item
selection methods, their PCCRs are illustrated in Table 2. The RT
method yielded the highest PCCRs under all conditions across
the four methods. Furthermore, the BRT method yielded lower
PCCRs than did the RT method; however, it had higher PCCRs
than the RP and SDBS methods. The SDBS method yielded the
lowest PCCR under all conditions. In addition, the differences in
the PCCRs among the methods were relatively low for the DINA
model compared with for the RRUM.

Item Exposure Control
Table 3 presents the item exposure control for four attributes.
The PWKL method had the highest scaled χ2 values, regardless
of test length and model type, which indicated that the item
exposure rate was quite skewed. In addition, the PWKL method
had the highest TOR, UIR, and OIR values. For instance, more
than 70% of the items were underused for the PWKL method,
irrespective of test length and model type. In addition, the
RT method yielded a slightly more even distribution of item
usage than did the PWKL method, but it still had higher TORs,
UIRs, and OIRs than the other methods, indicating that uneven
distribution of item usage occurred. Compared with the RT
method, the BRT method produced lower scaled χ2 values,
TORs, UIRs, and OIRs under most conditions. That is, the scaled
χ2 values that the BRT method produced were much lower than
those produced by the PWKL and RT methods. The TORs were
also lower than those of the RT under all conditions, and the
UIRs of the BRTmethod were lower than those of the RTmethod
under all conditions except one (J = 40, the DINA model). As
for the RP and SDBS methods, the SDBS method yielded slightly
better item exposure control than the RP method when the test
length was short (J = 25); however, it performed slightly worse
than the RP method when the test length was long (J = 40).
Both the RP and SDBS methods performed better than the BRT
method under all four indices (i.e., scaled χ2 value, TOR, UIR,
and OIR). The differences between the BRT method and the RP
and SDBS methods were relatively low in terms of the TOR and
OIR and higher in terms of the scaled χ2 value and UIR. In
summary, the BRT method yielded relatively poor item usage
distribution compared with the RP and SDBS methods but more
even distribution of item usage than the original PWKL and
RT methods.

Table 4 presents the results of item exposure control for six
attributes. Most of the results in the table exhibit a similar pattern
to that observed with four attributes. Specifically, the random
method had optimal item exposure control under all conditions.
As for the scaled χ2 value and TOR indices, the priority of the rest
of the five methods was the RP, SDBS, BRT, RT, and PWKL. With
respect to UIR and OIR, the RP method yielded the lowest values
under all conditions except one (J = 25, the RRUM), in which the
SDBS yielded the lowest UIR. The SDBS yielded lower UIRs and
OIRs than the BRT and RT methods under all conditions, and
the BRT method performed better than the RT method for the
two indices under most conditions.

DISCUSSION AND CONCLUSIONS

Inspired by the studies of Wang et al. (2011) and Zheng and
Wang (2017), we combined the binary searching algorithm
with the RT method to develop the BRT method for CD-CAT.
Because the core components of the SDBS method (i.e., a binary
searching algorithm) and RT method were integrated into the
BRT method, the RT method can be considered a specific case of
BRT method, which means that the RT method can be obtained
by adding some additional constraints to the BRT method. A
simulation study was performed to investigate the performance
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TABLE 1 | The correct classification for four attributes.

Item selection method J = 25 J = 40

PCCR ACCR PCCR ACCR

A1 A2 A3 A4 A1 A2 A3 A4

DINA

PWKL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RP 0.997 0.999 1.00 1.000 0.998 1.000 1.000 1.000 1.000 1.000

RT 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SDBS 0.993 0.998 0.998 0.997 0.998 1.000 1.000 1.000 1.000 1.000

BRT 0.997 0.997 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000

Random 0.876 0.952 0.978 0.970 0.964 0.962 0.990 0.992 0.994 0.985

RRUM

PWKL 0.986 0.998 0.994 0.996 0.996 0.999 1.000 1.000 1.000 1.000

RP 0.886 0.972 0.962 0.965 0.968 0.954 0.991 0.986 0.986 0.986

RT 0.975 0.994 0.992 0.994 0.994 0.998 1.000 1.000 0.999 1.000

SDBS 0.761 0.932 0.930 0.930 0.928 0.902 0.975 0.972 0.970 0.969

BRT 0.920 0.978 0.976 0.978 0.976 0.990 0.996 0.998 0.996 0.999

Random 0.572 0.865 0.874 0.865 0.864 0.716 0.913 0.930 0.923 0.904

DINA refers to the deterministic input, noisy “and” gate model; RRUM refers to the reduced reparametrized unified model; PWKL refers to the posterior weighted Kullback-Leibler; RP

refers to the restrictive progressive method; RT refers to the restrictive threshold method; SDBS refers to the stratified dynamic binary searching method; BRT refers to the binary RT

method; PCCR refers the pattern correct classification rate; and the ACCR refers to the attribute correct classification rate.

TABLE 2 | The correct classification for six attributes.

Item selection method J = 25 J = 40

PCCR ACCR PCCR ACCR

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

DINA

PWKL 0.995 0.999 0.998 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RP 0.955 0.989 0.990 0.990 0.990 0.992 0.990 0.998 1.000 0.999 0.999 1.000 1.000 1.000

RT 0.992 0.997 0.998 0.999 1.000 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SDBS 0.958 0.992 0.992 0.993 0.994 0.986 0.993 0.996 1.000 1.000 0.999 1.000 0.998 1.000

BRT 0.980 0.996 0.997 0.997 0.997 0.997 0.995 0.998 1.000 1.000 1.000 1.000 0.999 1.000

Random 0.650 0.942 0.930 0.896 0.931 0.918 0.924 0.829 0.972 0.968 0.966 0.971 0.966 0.960

RRUM

PWKL 0.904 0.977 0.983 0.982 0.984 0.984 0.980 0.984 0.997 0.996 0.996 0.998 0.998 0.998

RP 0.705 0.944 0.938 0.921 0.940 0.940 0.926 0.847 0.978 0.972 0.964 0.974 0.968 0.958

RT 0.876 0.976 0.971 0.975 0.978 0.982 0.978 0.978 0.998 0.998 0.994 0.995 0.998 0.994

SDBS 0.542 0.908 0.896 0.880 0.896 0.900 0.892 0.772 0.962 0.950 0.956 0.952 0.950 0.948

BRT 0.726 0.946 0.940 0.937 0.939 0.943 0.958 0.907 0.986 0.979 0.978 0.981 0.987 0.985

Random 0.308 0.838 0.828 0.792 0.828 0.811 0.804 0.468 0.910 0.883 0.858 0.892 0.858 0.873

of this novel item exposure control method. According to the
results, the BRT method has more discernible merits than the
PWKL and RT methods in terms of item exposure control,
irrespective of the number of attributes, model type, and test
length, although it yields slightly less accurate classification than
the PWKL and RT methods under all conditions. The BRT
method yields relatively poor item exposure control but more
accurate classification under all conditions when compared with
the RP and SDBS methods.

The results demonstrate that differences in the PCCRs
between the BRT and RT approaches are minor for the DINA
model, whereas the BRTmethod achieves superior item exposure
control to the RT method. This is especially true when the scaled
χ2 value and the TOR are examined. These findings indicate that
the BRT method, to some degree, is a good candidate for the RT
method when the DINA model is applied to CD-CAT with small
number of attributes or long length of tests. Compared with the
DINA model, the RRUM reveals larger differences in the PCCRs
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TABLE 3 | The usage of items for four attributes.

J = 25 J = 40

χ2 TOR UIR OIR χ2 TOR UIR OIR

DINA

PWKL 213.183 0.496 0.800 0.079 210.750 0.522 0.702 0.127

RP 5.116 0.062 0.000 0.000 2.475 0.088 0.000 0.000

RT 80.505 0.219 0.450 0.052 42.970 0.172 0.000 0.081

SDBS 3.949 0.060 0.010 0.000 4.488 0.092 0.000 0.000

BRT 12.837 0.078 0.208 0.000 9.604 0.103 0.027 0.010

Random 0.233 0.052 0.000 0.000 0.219 0.083 0.000 0.000

RRUM

PWKL 225.213 0.521 0.825 0.079 228.810 0.560 0.752 0.142

RP 12.477 0.078 0.265 0.000 7.688 0.099 0.000 0.000

RT 145.923 0.356 0.665 0.075 167.067 0.431 0.569 0.135

SDBS 6.844 0.066 0.017 0.002 9.960 0.104 0.002 0.023

BRT 23.454 0.100 0.338 0.012 32.619 0.151 0.258 0.075

Random 0.220 0.052 0.000 0.000 0.215 0.083 0.000 0.000

TABLE 4 | The usage of items for six attributes.

J = 25 J = 40

χ2 TOR UIR OIR χ2 TOR UIR OIR

DINA

PWKL 205.962 0.481 0.792 0.083 198.364 0.496 0.677 0.127

RP 4.952 0.062 0.000 0.000 2.272 0.088 0.000 0.000

RT 89.060 0.237 0.481 0.050 90.520 0.272 0.196 0.102

SDBS 9.333 0.071 0.190 0.000 10.053 0.104 0.010 0.021

BRT 20.152 0.094 0.298 0.008 21.490 0.128 0.144 0.050

Random 0.196 0.052 0.000 0.000 0.230 0.083 0.000 0.000

RRUM

PWKL 199.284 0.467 0.783 0.092 200.328 0.500 0.690 0.135

RP 11.023 0.075 0.210 0.000 6.650 0.097 0.000 0.000

RT 122.366 0.307 0.638 0.075 143.225 0.381 0.548 0.125

SDBS 13.047 0.079 0.125 0.008 14.427 0.113 0.029 0.031

BRT 21.810 0.097 0.275 0.015 32.583 0.151 0.183 0.075

Random 0.225 0.052 0.000 0.000 0.205 0.083 0.000 0.000

between the BRT and RT methods. That is, the RT method
produces higher PCCRs than the BRT method in all conditions.
However, the BRT method performs better than the RT method
with regard to item exposure control. These results indicate that
there is a trade-off between measure accuracy and item usage
when a selection is made from the RT and BRT methods for
the RRUM. As for how to choose reference values to interpret
the evaluation criteria (e.g., scaled χ2, overlap rate), there are
no definite answer, and reference values can be determined by
test purpose. The BRT method can be used to select items to be
administered if obtaining an even distribution of item usage is the
primary goal, wherein both item exposure control indices (i.e.,
lower scaled χ2 and overlap rate) and measurement accuracy
(i.e., higher PCCR) are important. In contrast, the RTmethod can
be applied if measurement accuracy is the major consideration,

such as classroom settings. In such situations, higher scaled χ2

and overlap rate are acceptable.
Furthermore, there might be a ceiling effect in measurement

accuracy for the DINA model. This is because values of
measurement accuracy are close to upper bound (i.e., 1.0) under
both 25 and 40 items conditions. We further investigated this
effect by conducting a pilot study with varying test length (10,
15, and 20 items) and varying number of attributes (four and
six attributes) for the DINA model. Its results showed that the
PCCRs are larger than 0.95 for the RT and BRT methods in
conditions with 15 items and four attributes and are close to
the upper bound in conditions with 20 items. The PCCRs are
close to 0.95 under conditions with 20 items and six attributes
and close to 1.0 under conditions with 25 items. These results
confirmed the ceiling effect of measurement accuracy for the
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DINA model. In addition, the pilot study also showed that
differences in the PCCRs between the RT and BRT methods are
smaller for conditions with four attributes than those with six
attributes regardless of which test length is used. In particular,
differences in the PCCRs ranged from 0.0 to 0.02 and 0.0 to
0.09 for conditions with four and six attributes, respectively.
This result indicated that the number of attributes has a positive
effect on the differences of the PCCRs between the RT and BRT
methods. The BRT method performs worse in PCCR than the
RTmethod under conditions with large number of attributes and
short length of tests.

Overall, the proposed BRT method, to some extent, can better
balance the trade-off between correct classification and item
exposure compared with prior methods. It yields slightly less
accurate classification compared with the original PWKL and RT
methods; however, it achieves superior item exposure control. In
addition, although the BRTmethod provides slightly poorer item
exposure control than do the RP and SDBS methods, it yields
more accurate measurements.

Although the current study presents promising findings, the
following potential future directions should be considered. First,
the majority of studies that have explored item exposure have
been based on the PWKL method. Other flexible methods, such
as the SHE, MI, and MPWKL, should be investigated further.
Second, both the DINAmodel and the RRUM are specific CDMs,
which assume either conjunctive or disjunctive relationships
between items in one tests. By contrast, the general CDMs relax
the constraints of the specific CDMs. That is, they allow each
item to select the optimal model to achieve optimal results
(Ravand, 2016). Whether the new method can be applied to
general CDMs is worthy of investigation in the future. It is
worth noting that a variety of CDMs have been developed for
varying situations in recent years, each of which makes specific
assumptions about the relationship between item response and
the attributes that item measured. Thus, assumptions that have
been made for a situation, to some degree, determines the
selection of a CDM. As well as data-driven model selection,
for instance, use Akaike’s information criterion and Bayesian
information criterion to select the CDMs. Third, the application
of the new method to the dual-objective CD-CAT (McGlohen
and Chang, 2008; Wang et al., 2012, 2014; Dai et al., 2016; Kang
et al., 2017; Zheng et al., 2018) could be investigated in the
future. The dual-objective CD-CAT combines the IRT model
and CDMs; therefore, it may be able to provide both an overall

score and specific diagnostic information for individuals. Because
the novel item exposure control method is proposed primarily
for single-objective CD-CAT, it requires modification before
application to dual-objective CD-CAT. Fourth, the new method
could be extended to variable-length CD-CAT in the future study.
However, it is important to note that the newmethod needs some
modifications before its application to variable-length CD-CAT.
This is because the posterior probability of an attribute profile
is usually used as termination rule in variable-length CD-CAT.
As such, the application of the new method to variable-length
CD-CAT would be more complicated than its application to
fixed-length CD-CAT. Last, true item parameters, rather than
estimated item parameters, are used in the current study. As
Huang (2018) and Sun et al. (2020) demonstrated, measurement
accuracy is decreased when estimated item parameters are
used. In other words, the reliability of item exposure control
methods is relatively low with estimated item parameters.
Therefore, further studies can consider investigating the
reliability of the BRT method when estimated item parameters
are used.
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