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Editorial on the Research Topic

Next Generation Sequencing Based Diagnostic Approaches in Clinical Oncology

Next Generation Sequencing (NGS) technologies transformed cancer genetics by providing
unprecedented access to big genomic and transcriptomic data (1, 2). Curation of cancer genetic
profiles has led to many successful applications crosslinking mutations or polymorphisms with
individual tumor response to therapies. Obviously valuable, these approaches however still cannot
generate clinically actionable information for most of the cancer patients. In turn, high throughput
RNA (transcriptome) analysis can be considered a rising star that may complement mutational
screenings (1, 3). A combination of both approaches may be synergistic for many tasks in molecular
diagnostics in oncology (4–6). Cancer mutation and expression biomarkers can not only help to set
a diagnosis but also to identify appropriate personalized molecular-based treatment (7–9).
Furthermore, novel bioinformatic approaches enable squeezing more and more clinically
meaningful data from large genetic datasets (10).

Wang et al. reviewed current progress in using RNA sequencing (RNAseq) methods in cancer
research, prognosis, and molecular diagnostics. The techniques of RNAseq have progressed rapidly
from bulk RNAseq, laser-captured micro-dissected (LCM) RNAseq, and single-cell (SS) RNAseq to
digital spatial RNA profiling, spatial transcriptomics, and direct in situ sequencing. These different
technologies have their unique strengths, weaknesses, and suitable applications in the field of clinical
oncology. For example, bulk RNAseq is a cost-effective mature technology that can be used for
confident whole-transcriptome biomarker recovery and targeted capture of gene fusions. LCM-
RNAseq interrogates tissue heterogeneity by dissecting cell type specific populations, whereas SS-
RNAseq can characterize different cell types inhabiting and surrounding tumors. Zhigalova et al.
January 2021 | Volume 10 | Article 63555515
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applied RNAseq to characterize T-cell receptor (TCR) and
immunoglobulin repertoire in an HKP1 KrasG12Dp53−/−

syngeneic mouse model of lung cancer after anti-PD-1
treatment, and observed decreased TCR diversity in response
to therapy. However, repertoire diversity was then restored in
progressing disease but remained decreased in good responders
to therapy in both CD4+ and CD8+ subsets, thus suggesting their
potential usefulness as prognostic biomarkers.

Borger et al. used RNAseq and bioinformatic analysis with
Oncofinder (11) for characterization of molecular processes
accompanying ALPPS, a novel two-staged hepatectomy that
dramatically accelerates liver regeneration and enables extensive
liver tumor resection. ALPPS specific signature included
activation of cell survival branch of IGF1R signaling pathway,
proliferation branch of ILK Pathway, and the IL-10 Pathway,
whereas the transcriptional branch of the Interferon pathway was
downregulated (p < 0.05). The PAK- and ILK-associated
pathways were also activated at an earlier time point, reflecting
acceleration of liver regeneration (p < 0.001). Molecular therapies
influencing those pathways could potentially improve the
performance of ALLPS in the future.

Poddubskaya et al. used bulk transcriptomics to identify
effective experimental drug combination for an advanced
recurrent ALK-positive lung cancer patient using Oncobox
algorithm (12) based on ranking of tumor-upregulated drug
target genes. A 48 y.o. male patient received personalized off-
label combination of crizotinib + bevacizumab + docetaxel that
led to additional stabilization for 22 months. The patient survival
after developing resistance to ALK inhibitor was longer for 16
months than previously reported average survival for such cases,
thus evidencing effectiveness of RNA-guided prescription of
cancer therapies in terms of survival and quality of life.

By experimentally in vitro validating meta-analysis of
RNAseq data for esophageal squamous cell carcinoma (ESCC),
Tang et al. identified LINC01614 non-coding (NC) RNA that was
a poor prognosis biomarker, being upregulated in ESCCs. The
knockdown of LINC01614 expression significantly inhibited the
migration of ESCC cells by restricting EMT. He et al. found that
another NC RNA, circular RNA hsa_circ_0007843, in colon
cancer SW480 cells can serve as a molecular sponge by
interacting with the microRNA miR-518c-5p that interacts
with matrix metallopeptidase 2 (MMP2). Overexpression of
hsa_circ_0007843 promoted tumor cell growth, invasion, and
migration, whereas its downregulation had opposite effects. The
possible explanation for those effects is removing the miR-518c-
5p inhibitory block on MMP2 translation.

Finally, Borisov and Buzdin concentrate on the phenomenon
that machine learning (ML) methods that had obviously
revolutionized many fields are still poorly applicable to
molecular oncology. Since plausible explanation is the small
size of related datasets, the authors consider using dynamic
data trimming (13) to filter for more relevant and informative
feature sets to apply ML for finding robust transcriptomic
biomarkers using available clinically annotated datasets, e.g. (14).

Conversely, Matrone et al. reported application of cancer
DNA sequencing to identify the primary origin of metastases in
Frontiers in Oncology | www.frontiersin.org 26
the patient’s thyroid gland in case of concomitant lung
adenocarcinoma. The patient was diagnosed with both poorly
differentiated thyroid cancer for the huge involvement of the
neck and concomitant lung adenocarcinoma. Clinical features,
imaging evaluation and available tumor markers couldn’t
support a well-defined diagnosis, and the histologic features of
the thyroid and lung biopsies confirmed the figure of two
different tumors. However, the NGS analysis showed a G12C
mutation in KRAS gene in both tissues, which is highly prevalent
in lung but not thyroid cancers. Therefore, the lung origin of the
disease was deduced, and the patient was addressed to the
appropriate therapeutic strategy.

Yuan et al. explored ERBB2 exon 20 insertion that is a
refractory oncogenic driver, by panel NGS of 59 or 1,021
genes, in 112 lung cancer patients, including 18 patients
receiving afatinib treatment. There were 66% of patients
having TP53 co-mutation, and FOXA1 was the most prevalent
co-amplified gene (in 5.5% of the cases). Patients with co-
occurring TP53 mutation showed approximately twice shorter
overall survival (OS): median OS of 14.5 versus 30.3 months, p =
0.04. ERBB2 exon 20 insertion also related to shorter
progression-free survival (PFS): median PFS of 1.2 versus 4.3
months, p < 0.05.

In a subgroup of 44 cases with ALK gene fusions out of total
1349 lung cancer patients, Liu et al. identified ALK fusion
partners using a customized NGS panel. The most common
partner was well-known gene EML4, but also a new ALK
fusion partner HMBOX1 was identified. The copy number
alterations were found in ~30% of the cases, and the most
commonly amplified genes were MDM2 and TERT.

Furthermore, Belardinilli et al. used target gene panel
sequencing to characterize 639 formalin-fixed paraffin-
embedded (FFPE) metastatic colorectal cancer (mCRC)
specimens and identified blocks of significantly cooccurring
mutations. This led to a novel stratification of mCRC patients
in eight groups characterized by specific mutational association
patterns, which was validated on a literature dataset of The
Cancer Genome Atlas (TCGA) project.

By performing whole-genome sequencing, Gao et al.
investigated genetic alterations in spinal schwannoma and
identified mutations in ATM, CHD4, FAT1, KMT2D, MED12,
NF2, and SUFU genes, and homozygous deletion was observed in
NF1, NF2, and CDKN2C. Hippo signaling pathway was most
significantly affected by the mutations identified. Shahid et al.
used 54-gene panel for target DNA sequencing of 26 acute
myeloid leukemia (AML) samples by using ultra-deep NGS
with ∼5,000-coverage. Novel somatic mutations were
identified, including those repeated in several genetically
unrelated cancers, i.e. STAG2 L526F and BCORL1 A400V.

Of note, Nikitin et al. showed that Lynch Syndrome-related
germline mutations (LS-mutations) in DNA mismatch repair
pathway genes are statistically significantly associated with breast
cancer (BC). To this end, they performed Targeted NGS of genes
MLH1, MSH2, MSH6, EPCAM, and PMS2 in a cohort of 492
healthy donors, 711 patients with hereditary BC, and 60 patients
with sporadic BC. ~10% patients with hereditary BC had at least
January 2021 | Volume 10 | Article 635555
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one germline mutation, and ~5% had predicted pathogenic
mutations in these genes.

Gao et al. explored in detail the influence of sample
preparation method on the results of target gene panel NGS. A
22-gene panel with 103 hotspots was used to detect mutations in
paired FFPE and fresh frozen tissue specimens from 118 patients
with colorectal cancer. They found that 99% of the patients one
or more detectable variants, with 226 variants in FFPE and 221 in
fresh tissue. Of the totally 129 individual variants identified, 96
variants were common for both FFPE and fresh biosamples, 27
were specific for FFPE, and 6 for fresh tissue specimens. These
findings suggest that when there is a choice, fresh frozen
specimens should be most probably considered as the
preferred type of biosamples because of a number (27/129) of
apparently artifact variants identified specific for the FFPE
tissue samples.

Another technological aspect of NGS was investigated by
Petrackova et al. who used statistical tests to assess the
sequencing coverage thresholds for a robust variant calling,
and published a coverage calculator. Using the sequencing
error only, the recommended minimum depth of coverage was
1,650 along with a threshold of no less than 30 variant reads for a
targeted clinical NGS mutation analysis. This points to an
important problem of data quality standardization in clinical
Frontiers in Oncology | www.frontiersin.org 37
NGS. However, in practice this threshold can be only applied
to target panel gene sequencing methods, whereas it is
so far unrealistic for the whole-genome or even exome
sequencing approaches.

Finally, epigenetic aspects of using NGS in oncology were
considered by Jovčevska who reviewed current progress in
sequencing and machine learning applications for the analysis
of DNA methylation in glioblastoma.
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INTRODUCTION

Personalized medicine has a huge potential of transforming healthcare standards when selection
of therapies according to standard guidelines often fails, which can be the case in oncology (1, 2),
endocrinology (3, 4), neurology (3), treatment of infectious diseases (5, 6) and hemostatic disorders
(7, 8). Nowadays, personalized approach can be based on a solid fundament of big biomedical data
obtained for an individual patient, analyzed vs. comparable datasets for other individual cases with
known clinical outcome. This can help, for example, developing new criteria for predicting response
of a cancer patient to a certain treatment.

The analysis of Big Data in oncology can benefit significantly from being empowered by
machine learning (ML) techniques (9–13) tailored for solving this “P vs. N” problem. ML is
usually defined as the study of algorithmically-built mathematical models that have been fitted
for the portion of data called the training dataset, to make predictions for the similarly-obtained
and similarly structured data called the test or validation dataset. Major principles of ML have
been formulated more than half a century ago and transformed methodology in many areas such
as engineering, physics, banking, defense, agriculture, and meteorology (11, 14). Efficiencies of
ML-based predictor/classifier models are described by specific quality metrics such as sensitivity
(Sn), specificity (Sp), area under ROC curve (AUC), accuracy rate (ACC), Matthews correlation
coefficient (MCC), or by p-values from statistical tests distinguishing one class from another (15).

However, it was only in the beginning of XXI century when such ML on Big Data became
possible in biomedicine, still not having a groundbreaking effect (16). This delay is most
probably due to relatively recent emergence of experimental methods generating big biomedical
data connected with the sufficiently developed IT infrastructure. Among those game-changing
experimental methods the major role was played by next-generation sequencing (NGS) and
novel mass-spectrometry approaches which enabled performing whole genome-, transcriptome-,
proteome-, andmetabolome analyses relatively fast and cheap (17–19), see Figure 1A. This allowed
to feed ML methods with big biomedical data thus generating beneficial outputs, also in the field
of clinical medicine. For example, over 150 scientific papers have been indexed in the PubMed
repository during last 24 months mentioningmachine learning and drug sensitivity1.

Here we will focus on applying ML for personalized medicine, primarily oncology, dealing with
attempts to generate as much as possible treatment response biomarkers from mediocre datasets.
From the point of view of classical ML approaches, most if not all of the available clinical genetic

1This is the result of a PubMed query: https://www.ncbi.nlm.nih.gov/pubmed/?term=machine$+$learning$+$drug$+

$sensitivity
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datasets are insufficient for solving the task of differentiating, e.g.,
treatment responders from non-responders (9, 20). Numbers of
features measured by NGS (e.g., mutations or gene expression
values) are far greater than numbers of individual patients with
traced clinical outcomes involved in each respective dataset.
To generate statistically significant predictions, this requires
extensive reduction of a pool of features to be considered, tomake
their number not exceeding the number of individuals analyzed
(16). To increase the number of individuals, the datasets can

FIGURE 1 | Input and output data types (A) methods for feature harmonization (B) general workflow (C) for a ML-assisted solution of typical problem in personalized

medicine; ML methods for those FDT is expected to be useful or useless (D).

be merged using cross-dataset harmonization. Different methods
can be used to harmonize data obtained using the same (21, 22) or
different experimental platforms (23, 24), or even using multiple
platforms (25) (Figure 1).

ML INPUT DATA AND WORKFLOW

For ML applications dealing with prediction of patient’s
individual response(s) on drugs and different treatment
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regimens, two types of data are most frequently
used (Figure 1A):

1. Variousmulti-omics data, i.e., mRNA,microRNA, and protein
expression levels, mutations in genomic DNA and epigenetic
profiles (primarily DNAmethylation) (26, 27). These datamay
be compared with the analogous types of data obtained on
cell cultures in relation to sensitivity to therapeutics/treatment
regimens, such as the data taken from the Broad Institute (28)
and CancerRxGene (29) projects. These examples include,
respectively, either changes of gene expression profiles
influenced by the addition of drugs to cell culturing media,
or gene expression and polymorphism/mutation profiles for
many cell lines linked with their measured sensitivities to
cancer drugs (30). These datasets are regarded plausible
models for trainingML drug sensitivity classifiers because they
have thousands of individual “cases”—pairs cell culture/drug,
each profiled in several replicates.

2. Alternatively, other types of data can be used including gender,
age, results of clinical laboratory tests, functional diagnostics
data (ECG, EEG etc.), risk factors, social anamnesis, and other
electronic health records.

A typical workflow of ML drug sensitivity assay includes the
following steps (Figure 1C):

1. Data reduction, feature selection, and building on the training
dataset. Usually, in the collected raw data, the number of
features (NF) exceeds the number of cases (NC), so that
to provide a robust ML model, one must reduce the data
to make the number of selected features (NS) lower than
NC or at least comparable to it. This goal can be achieved
in several ways. The raw data may be aggregated, e.g., in
molecular pathways (2); or co-expressed/co-mutated clusters
(31). Sometimes, the co-expression- and pathway topology-
based analysis may be combined (32).
Alternatively, they can be filtered according to specific
functional of statistical traits (e.g., only the genes coding for
tyrosine kinases are left; or genes with the highest abilities
to discriminate responders from non-responders in training
datasets) (33). The statistical methods for feature selection
may include Pearson chi-squared test (34) or correlation
test (34, 35). Other options are variance thresholding (VT),
genetic algorithms (36), univariate feature selection (UFE),
recursive feature elimination (RFE), principal component
analysis (PCA) (35), CURmatrix (37) decomposition (27) and
covariate regression (38).

2. Applying ML algorithm. The following methods may be
used: support vector machines, SVM (2, 27, 39), k nearest
neighbors, kNN (39), decision trees, DT (34, 39) or random
forest, RF (39, 40). Alternatively, one can use artificial
neural network, ANV (39), elastic net (41), back propagation
networks (42), naïve Bayesian (27), logistic (27, 39), penalized
(43), and lasso (43) regression models. In some cases,
the hybrid global-local approaches, like combination of
decision trees, random forests/SVM with kNN are used
(2, 33, 39, 44, 45).

3. Cross-validation and performance quality check. The data
obtained with the training dataset are then validated using
independent validation dataset. For the cross-validation of
machine learning methods, 5- or 10-fold cross validations
are most commonly used. For datasets with smaller number
of preceding cases (NC) the leave-one-out (LOO) scheme is
preferable (2, 33, 43).

SHIFTING THE PARADIGM

The demonstrated performance of ML classifiers was high for
problems like age recognition based on biochemical markers
(41), but significantly lower for predictions of drug response in
cancer patients (27, 46), with the exception of few reports based
on very small patient cohorts (43).

A new paradigm recently emerged of considering flexible
rather than fixed sets of features that are fitted individually
for every comparison of a biosample with the pool of
controls/training datasets (33). This can be done by means
of data trimming2—sample-specific removal of features. The
irrelevant features in a sample that don’t have significant
number of neighboring hits in the training dataset are removed
from further analyses. In a pilot application for the SVM
method of ML and high throughput gene expression data,
this enabled to dramatically increase number and quality of
biomarkers predicting responses to chemotherapy treatments for
10/10 cohorts of 46–235 cancer patients (33). Among them, in
3/10 cases basic ML applications were impossible to generate
biomarkers of a sufficient quality.

The application of flexible data trimming (FDT) procedure
prevents ML classifier from extrapolation by excluding non-
informative features. Contrary to other complex data transfer
techniques, this approach is heuristic, based on a common
geometrical sense. For each point of a validation dataset, it
takes into account only the proximal points of the training
dataset. Thus, for every point of a validation dataset, the training
dataset is adjusted to form a floating window. That was why
we called (33) our FDT method FLOating Window Projective
Separator (FloWPS).

DISCUSSION

Certainly, FloWPS is not the only possible method of data
reduction for ML in oncology. In the pilot study, a simple
PCA-based alternative was tried, which was less successful (33).

One of the major limitations of FloWPS is that it can
be time-consuming at the level of optimization of data
trimming parameters. The required computational time for such
optimization grows cubically with the number of preceding cases
in the training dataset. For example, for a 31 Gb RAM and
8·4.20 GHz CPUs computer running the Python FloWPS code
for a dataset of 46 samples (33) takes ∼20 s, whereas for a bigger
dataset of 235 samples (33) it requires already few hours.

2Data trimming is the process of removing or excluding extreme values, or outliers,

from a dataset (47).
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SVM is one of the most popular methods of ML nowadays (9,
48). However, using data trimming procedure has dramatically
improved its performance for the task of classification cancer
drug responders and non-responders. This means that it
can be highly beneficial for the other ML methods as well.
The FDT method simultaneously combines the advantages of
both global (like SVM) and local (like kNN) methods of
ML, and successfully acts even when purely local and global
approaches fail. Due to its hybrid (global + local) nature,
we expect that FloWPS may be also effective for other global
ML methods such as decision trees/random forests, neural
networks/multi-layer perceptrons, decision trees/random forests
and boosting or Bayesian methods for ML, but may be
useless for purely local approaches such as kNN or regression
models (Figure 1D).

In its first published application, the data trimming could
operate with high throughput gene expression or mutation
profiles (33). However, it can be used for any type of
Big Data in biomedicine, but not only. In this opinion
paper, we speculate that this new concept has a potential to
broadly introduce the use of ML in personalized oncology
and, possibly, significantly expand its presence in many
other fields.

AVAILABILITY OF CODE

The R package flowpspkg.tar.gz for FloWPS method and
README manual are available at GitLab through the
link: https://gitlab.com/borisov_oncobox/flowpspkg.
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The insufficient standardization of diagnostic next-generation sequencing (NGS) still

limits its implementation in clinical practice, with the correct detection of mutations at

low variant allele frequencies (VAF) facing particular challenges. We address here the

standardization of sequencing coverage depth in order to minimize the probability of false

positive and false negative results, the latter being underestimated in clinical NGS. There

is currently no consensus on the minimum coverage depth, and so each laboratory has

to set its own parameters. To assist laboratories with the determination of the minimum

coverage parameters, we provide here a user-friendly coverage calculator. Using the

sequencing error only, we recommend a minimum depth of coverage of 1,650 together

with a threshold of at least 30mutated reads for a targeted NGSmutation analysis of≥3%

VAF, based on the binomial probability distribution. Moreover, our calculator also allows

adding assay-specific errors occurring during DNA processing and library preparation,

thus calculating with an overall error of a specific NGS assay. The estimation of correct

coverage depth is recommended as a starting point when assessing thresholds of NGS

assay. Our study also points to the need for guidance regarding the minimum technical

requirements, which based on our experience should include the limit of detection (LOD),

overall NGS assay error, input, source and quality of DNA, coverage depth, number of

variant supporting reads, and total number of target reads covering variant region. Further

studies are needed to define the minimum technical requirements and its reporting in

diagnostic NGS.

Keywords: next-generation sequencing, variant allele frequency (VAF), coverage depth calculator, sequencing

error, small subclones, TP53 gene
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INTRODUCTION

Next-generation sequencing (NGS) has rapidly expanded into
the clinical setting in haemato-oncology and oncology, as it
may bring great benefits for diagnosis, selection of treatment,
and/or prognostication for many patients (1). Recently, several
articles about the validation of deep targeted NGS in clinical
oncology were published (2, 3), including a comprehensive
recommendation by the Association for Molecular Pathology
and the College of American Pathologists (1). However, the lack
of standardization of targeted NGS methods still limits their
implementation in clinical practice (4).

One challenge in particular is the correct detection of
mutations present at low variant allele frequencies (VAF) and
standardization of sequencing coverage depth (1, 5, 6). This is
especially important for mutations that have clinical impacts
at subclonal frequencies (1) such as the case of TP53 gene
mutations (TP53mut) in chronic lymphocytic leukemia (CLL)
(7, 8). TP53 aberrations (TP53mut and/or chromosome 17p
deletion) are among the strongest prognostic and predictive
markers guiding treatment decisions in CLL (9). Nowadays, the
European Research Initiative on Chronic Lymphocytic Leukemia
(ERIC) recommends detecting TP53mut with a limit of detection
(LOD) of at least 10% VAF (10), and a growing body of evidence
exists dedicated to the clinical impact of small TP53 mutated
subclones in CLL (7, 8).

Sanger sequencing and deep targeted NGS are currently the
techniques most used for TP53mut analysis (10) as well as
for analysis of other genes with clinical impacts at low allele
frequencies. Although Sanger sequencing provides a relatively
accessible sequencing approach, it lacks the sensitivity needed to
detect subclones due to its detection limit of 10–20% of mutated
alleles (10). NGS-based analysis has thus gained prominence in
diagnostic laboratories for the detection of somatic variants and
various technical developments of error correction strategies,
both computational and experimental, are being developed
for the accurate identification of low-level genetic variations
(11). We therefore address the importance of the correct
determination of sequencing depth in diagnostic NGS in order
to obtain a confident and reproducible detection, not only of
low VAF variants. Finally, we performed a dilution experiment to
confirm our theoretical calculations, and we close by discussing
our experience with diagnostic detection of TP53mut in CLL
patients and further perspectives about NGS standardization in
cancer diagnostics.

NGS SEQUENCING DEPTH AND ERROR
RATE

NGS sequencing depth directly affects the reproducibility of
variant detection: the higher the number of aligned sequence
reads, the higher the confidence to the base call at a particular
position, regardless of whether the base call is the same as the
reference base or is mutated (1). In other words, individual
sequencing error reads are statistically irrelevant when they are
outnumbered by correct reads. Thus, the desired coverage depth

should be determined based on the intended LOD, the tolerance
for false positive or false negative results, and the error rate of
sequencing (1, 11).

Using a binomial distribution, the probability of false positive
and false negative results for a given error rate as well as the
intended LOD can be calculated, and the threshold for a variant
calling for a given depth can be estimated (1). For example,
given a sequencing error rate of 1%, a mutant allele burden
of 10%, and a depth of coverage 250 reads, the probability of
detecting 9 or fewer mutated reads is, according to the binomial
distribution, 0.01%. Hence, the probability of detecting 10 or
more mutated reads is 99.99% (100–0.01%), and the threshold
for a variant calling can be defined. In other words, a coverage
depth of 250 with a threshold of at least 10 mutated reads will
have a 99.99% probability that 10% of the mutant allele load will
not be missed by the variant calling (although it can be detected
in a different proportion). In this way, the risk of a false negative
result is greatly minimized. On the other hand, the probability
of false positives heavily depends on the sequencing error rate
(as the accuracy of all analytical measurements depends on the
signal-to-noise ratio) (1, 11). In our example, the probability
of a false positive result is 0.025%; however, the rate of false
positives is not negligible when decreasing the LOD to the
value close to the error rate. Conventional intrinsic NGS error
rates range between 0.1 and 1% (Phred quality score of 20–30)
(1, 11) depending on the sequencing platform, the GC content
of the target regions (12), and the fragment length, as shown in
Illumina paired-end sequencing (13). Therefore, the detection of
variants at VAFs <2% is affected by a high risk of a false positive
result, regardless of the coverage depth. It is also important to
mention that the sequencing error rate applies only for errors
produced by sequencing itself and does not include other errors
introduced during DNA processing and library preparation,
particularly during amplification steps, which further increase
error rates (1, 11).

MINIMUM SEQUENCING COVERAGE IN
CLINICAL SETTINGS

There is currently no consensus on the minimum required
coverage in a clinical setting using deep targeted resequencing
by NGS, and so each laboratory has to set its own parameters
in order to meet sufficient quality (1, 5). To date, only a few
studies have recommended the minimum coverage criteria for
deep targeted NGS in clinical oncology: 500 depth of coverage
and a LOD of 5% (2), 300–500 depth of coverage without defying
the LOD (3), 250 depth and a LOD of 5% with threshold
adjustment to 1,000 depth of coverage is required in cases of
heterogeneous variants in low tumor cellularity samples (1), and
100 depth with at least 10 variant reads and a LOD of 10%
(10). According to the binominal data distribution, a coverage
depth of 250 should indeed be sufficient to detect 5% VAF
with a threshold of variant supporting reads ≥5 (Figure 1).
On the other hand, NGS analysis with a coverage depth of
100 along with a requirement of at least 10 variant supporting
reads as recommended by the ERIC consortium (10) would
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FIGURE 1 | LOD as a function of coverage depth according to the binomial distribution. Coverage depth needed to maintain an intended LOD (within 3–20% VAF

range) for three cumulative probability settings: for false positive probability of 0.001 and true positive of 0.999, a LOD of 20% is achieved at 61 coverage depth, a

LOD of 10% at 175, a LOD of 5% at 562, and a LOD of 3% at 1,650. For the false positive probability of 0.010 and true positive of 0.990, a LOD of 20% is achieved at

31, a LOD of 10% at 81, a LOD of 5% at 288, and a LOD of 3% at 886 coverage depth, respectively. For the false positive probability of 0.050 and true positive of

0.950, a LOD of 20% is achieved at 30, a LOD of 10% at 30, a LOD of 5% at 124, and a LOD of 3% at 392 coverage depth, respectively.

result in a false negative of 45% for samples with a LOD of
10%. To confirm these theoretic calculations, we performed two
independent dilution experiments to estimate the performance of
TP53 NGS analysis to detect 10% VAF at a depth of coverage of
100 reads. Indeed, we detected 30% of false negatives (5 positive
samples of 7 true-positive samples and 9 positive samples of
13 true-positive samples) in two independent sequencing runs.
Unfortunately, the false negative rate is often underestimated
in targeted resequencing. Also, a recent study investigating
inter-laboratory results of somatic variant detection with VAFs
between 15 and 50% in 111 laboratories with reported LODs
of 5–15% (6) shows that major errors in diagnostic NGS may
arise from false negative results, even in samples with high
mutation loads (6). Of three concurrent false positive results, all
variants were correctly detected but mischaracterised (6). Since
laboratories have not been asked to report coverage depth for
other regions than the identified variants (6), wemay only assume
that low coverage or high variant calling thresholds contributed
to the false negative results. These results further highlight the
need for standardized coverage depth parameters in diagnostic
NGS, taking into account sequencing errors as well as assay-
specific errors.

FREQUENCY OF TP53 SUBCLONAL
MUTATIONS IN CLL DETECTED THROUGH
DIAGNOSTIC NGS

In order to evaluate the occurrence of low VAF in real-world
settings, we reviewed our cohort of CLL patients examined
for TP53mut in our diagnostic laboratory. The TP53mut were
assessed as reported previously (14, 15). Briefly, TP53 (exons 2–
10 including 2 bp intronic overlap, 5′ and 3′UTR) was analyzed
using 100 ng gDNA per reaction. Amplicon-based libraries

were sequenced as paired-end on MiSeq (2x151, Illumina) with
minimum target read depths of 5,000x. The LODofTP53mut was
set up to 1%, and the variants in the range 1–3% were confirmed
by replication. Written informed consent was obtained from
all the patients who were enrolled in accordance with the
Helsinki Declaration, and the study was approved by the local
ethical committee.

Of the diagnostic cohort of 859 CLL patients (April 2016–
April 2019), 25% (215/859) were positive for TP53mut, and of
those, 52.6% (113/215) carried variants with VAF at 10% or lower.
In line with our observations, a recent study (8) reported the
presence of 63 and 84% low burden (Sanger negative) TP53muts
in CLL patients at the time of diagnosis and at the time of
treatment, respectively, and confirmed the negative impact on
the overall survival of TP53muts above 1% VAF at the time of
treatment (8).

CALCULATOR FOR DIAGNOSTIC NGS
SETTINGS FOR DETECTION OF
SUBCLONAL MUTATIONS

To assist laboratories with the determination of the minimum
proper coverage parameters, we are providing a simple, user-
friendly theoretical calculator (software) based on the binomial
distribution (Figure 2), described in the Supplementary File. A
web (or desktop) application and stand-alone source codes in
R are accessible on Github: https://github.com/mvasinek/olgen-
coverage-limit. Using this calculator, the correct parameters of
sequencing depth and the corresponding minimum number of
variant reads for a given sequencing error rate and intended
LOD can easily be determined. Moreover, users can also take into
account other errors by simply adding assay-specific errors to the
sequencing error rate and using this overall error as an input
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FIGURE 2 | OLGEN Coverage Limit calculator—a simple theoretical calculator suitable for determining the correct sequencing depth and corresponding minimum

number of variant reads according to the binomial distribution for a given sequencing error rate and intended LOD recommended for diagnostic NGS. Examples of

calculated sequencing depths and the corresponding minimum number of variant reads recommended for variants with (A) 10% VAF and 99.9% probability of

detection and (B) 3% VAF and 99.9% probability of detection.

to the calculator. For example, in our case of TP53 mutational
analysis we calculated with the overall error of ∼1.16%, thus we
set up our minimum coverage depth requirements to 2,000 with
threshold of minimum 40 reads for 3% VAF.

DISCUSSION

Although diagnostic NGS has gained prominence in clinical
settings for the assessment of somatic mutations in cancer,
insufficient standardization of sequencing parameters still limits
its implementation in clinical practice (1), mainly for variants
present at low allele frequencies (4). We, therefore, addressed the
technical question of correctly determining the sequencing depth
in diagnostic NGS in order to obtain confident and reproducible
detections of low VAF variants. In particular, we performed
theoretical calculations to determine the optimum depth of
coverage for the desired probability of detection of variants at
low allele frequencies, taking into account the sequencing error
rate. Moreover, we confirmed these theoretical calculations by
conducting dilution experiments. Based on these observations,
we recommend a depth of coverage of 1,650 or higher (together
with the respective threshold of at least 30 mutated reads) to
call ≥3% variants to achieve a 99.9% probability of variant
detection, using the conventional NGS sequencing error only.

Variants in the 1–3% VAF range can only be called if the
obtained sequence data is of high quality (average Q30 >

90%) and/or when the variants are confirmed by replication
or the orthogonal method (1, 11, 16). We are also providing
a simple, user-friendly theoretical calculator (software) to assist
laboratories with resolving the correct sequencing depth and the
corresponding minimum number of variant reads while taking
into account the sequencing error rate. Our simple calculator
may help to minimize the false positive and false negative results
in diagnostic NGS.

Nevertheless, correct sequencing depth is also influenced by
assay-specific factors (1). Errors can occur at many stages during
DNA processing and library preparation. The most common are
amplification errors introduced during NGS library preparation
(1, 12, 17). Other common sources of errors have to do with
library complexity (the number of independent DNA molecules
analyzed), DNA quality, and target region complexity etc. All
potential assay-specific errors should be addressed through test
design, method validation, and quality control.

Currently, emerging error correction strategies, both
computational and experimental, are being developed in order
to mitigate the high error rates in diagnostic NGS (11). So
far, among the most promising error correction methods
are UMI (Unique Molecular Identifiers), which correct for
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PCR errors (18), and signal-to-noise correction approaches
(11). These advances attempt to reduce the LOD, thereby
increasing sequencing accuracy needed for future opportunities
in NGS diagnosis.

In order to improve the standardization in diagnostic NGS,
the estimation of correct coverage depth is a recommended
starting point when assessing thresholds surrounding a particular
NGS assay. Nevertheless, there is still lack of published guidance
regarding the minimum technical requirements and its reporting
in NGS, particularly important in detection of clonal and
subclonal mutations in cancer diagnostics. This is mainly due
to the broad range of library preparation approaches, and
numerous variables playing a role in each specific NGS assay,
that are difficult to standardize, together with inter-laboratory
variability. Therefore, the definition of minimum technical
requirements and its reporting in NGS is highly desirable. Based
on our experience in diagnostic NGS in haemato-oncology,
we suggest to report at least following technical parameters:
LOD, overall error of NGS assay (or at least sequencing
error rate), the amount of DNA input, source, and quality
of DNA, minimum coverage depth and the percentage of
targeted bases sequenced at this minimum depth, total number
of target reads covering variant region and number of reads
supporting the variant. Special emphasis should be given to NGS
standardization of the formalin-fixed paraffin-embedded (FFPE)
samples (19, 20).

Taken together, our study highlights the importance of correct
sequencing depth and the minimum number of reads required
for reliable and reproducible detection of variants with low
VAF in diagnostic NGS. The calculation of correct sequencing
depth for a given error rate using our user-friendly theoretical
calculator (software) may help to minimize the false positive
and false negative results in diagnostic NGS, in situations related

to subclonal mutations among others. The rigorous testing
and standardized minimum requirements for diagnostic NGS is
particularly desirable to ensure correct results in clinical settings.

DATA AVAILABILITY

The datasets generated for this study are available on reasonable
request to the corresponding author.

AUTHOR CONTRIBUTIONS

AP and EK designed the study, interpreted the results, and
wrote the manuscript. AP, LS, TD, and PS performed NGS
analysis. TP collected the patient samples and clinical data. MV
performed bioinformatics analysis and wrote the calculator code.
TN prepared web application. All authors read and approved the
final version of manuscript.

FUNDING

Grant support: MZ CR VES16-32339A, in part by the MH CZ—
DRO (FNOl, 00098892).

ACKNOWLEDGMENTS

We apologize to the many authors whose articles could not be
cited because of reference limits.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.00851/full#supplementary-material

REFERENCES

1. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J,

et al. Guidelines for validation of next-generation sequencing-based oncology

panels: a joint consensus recommendation of the Association for Molecular

Pathology and College of American Pathologists. J Mol Diagn. (2017) 19:341–

65. doi: 10.1016/j.jmoldx.2017.01.011

2. D’Haene N, Le Mercier M, De Neve N, Blanchard O, Delaunoy M,

El Housni H, et al. Clinical validation of targeted next generation

sequencing for Colon and Lung cancers. PLoS ONE. (2015) 10:e0138245.

doi: 10.1371/journal.pone.0138245

3. Deans ZC, Costa JL, Cree I, Dequeker E, Edsjo A, Henderson S,

et al. Integration of next-generation sequencing in clinical diagnostic

molecular pathology laboratories for analysis of solid tumours; an expert

opinion on behalf of IQN path ASBL. Virchows Arch. (2017) 470:5–20.

doi: 10.1007/s00428-016-2025-7

4. Ivanov M, Laktionov K, Breder V, Chernenko P, Novikova E, Telysheva E,

et al. Towards standardization of next-generation sequencing of FFPE samples

for clinical oncology: intrinsic obstacles and possible solutions. J Transl Med.

(2017) 15:22. doi: 10.1186/s12967-017-1125-8

5. Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, et al.

Challenges in the introduction of next-generation sequencing (NGS) for

diagnostics of myeloid malignancies into clinical routine use. Blood Cancer

J. (2018) 8:113. doi: 10.1038/s41408-018-0148-6

6. Merker JD, Devereaux K, Iafrate AJ, Kamel-Reid S, Kim AS, Moncur JT, et al.

Proficiency testing of standardized samples shows very high interlaboratory

agreement for clinical next-generation sequencing-based oncology assays

Arch Pathol Lab Med. (2019) 143:463–71. doi: 10.5858/arpa.2018-0336-CP

7. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R, et al.

Clinical impact of small TP53 mutated subclones in chronic lymphocytic

leukemia. Blood. (2014) 123:2139–47. doi: 10.1182/blood-2013-11-539726

8. Brieghel C, Kinalis S, Yde CW, Schmidt AY, Jonson L, Andersen MA, et al.

Deep targeted sequencing of TP53 in chronic lymphocytic leukemia: clinical

impact at diagnosis and at time of treatment. Haematologica. (2019) 104:789–

96. doi: 10.3324/haematol.2018.195818

9. Campo E, Cymbalista F, Ghia P, Jager U, Pospisilova S, Rosenquist R, et al.

TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical

implications of improved diagnostics. Haematologica. (2018) 103:1956–68.

doi: 10.3324/haematol.2018.187583

10. Malcikova J, Tausch E, Rossi D, Sutton LA, Soussi T, Zenz T, et al.

ERIC recommendations for TP53 mutation analysis in chronic lymphocytic

leukemia-update on methodological approaches and results interpretation.

Leukemia. (2018) 32:1070–80. doi: 10.1038/s41375-017-0007-7

11. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation

sequencing for detecting rare and subclonal mutations. Nat Rev Genet. (2018)

19:269–85. doi: 10.1038/nrg.2017.117

12. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale

of three next generation sequencing platforms: comparison of Ion Torrent,

Frontiers in Oncology | www.frontiersin.org 5 September 2019 | Volume 9 | Article 85117

https://www.frontiersin.org/articles/10.3389/fonc.2019.00851/full#supplementary-material
https://doi.org/10.1016/j.jmoldx.2017.01.011
https://doi.org/10.1371/journal.pone.0138245
https://doi.org/10.1007/s00428-016-2025-7
https://doi.org/10.1186/s12967-017-1125-8
https://doi.org/10.1038/s41408-018-0148-6
https://doi.org/10.5858/arpa.2018-0336-CP
https://doi.org/10.1182/blood-2013-11-539726
https://doi.org/10.3324/haematol.2018.195818
https://doi.org/10.3324/haematol.2018.187583
https://doi.org/10.1038/s41375-017-0007-7
https://doi.org/10.1038/nrg.2017.117
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Petrackova et al. Sequencing Coverage Depth in NGS

Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. (2012)

13:341. doi: 10.1186/1471-2164-13-341

13. Tan G, Opitz L, Schlapbach R, Rehrauer H. Long fragments achieve lower

base quality in Illumina paired-end sequencing. Sci Rep. (2019) 9:2856.

doi: 10.1038/s41598-019-39076-7

14. Obr A, Prochazka V, Jirkuvova A, Urbankova H, Kriegova E,

Schneiderova P, et al. TP53 mutation and complex karyotype portends

a dismal prognosis in patients with mantle cell lymphoma. Clin

Lymphoma Myeloma Leuk. (2018) 18:762–8. doi: 10.1016/j.clml.2018.

07.282

15. Turcsanyi P, Kriegova E, Kudelka M, Radvansky M, Kruzova L,

Urbanova R, et al. Improving risk-stratification of patients with

chronic lymphocytic leukemia using multivariate patient similarity

networks. Leuk Res. (2019) 79:60–8. doi: 10.1016/j.leukres.2019.

02.005

16. Shin HT, Choi YL, Yun JW, Kim N, Kim SY, Jeon HJ, et al.

Prevalence and detection of low-allele-fraction variants in clinical

cancer samples. Nat Commun. (2017) 8:1377. doi: 10.1038/s41467-017-

01470-y

17. Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, et al. Analysis

of error profiles in deep next-generation sequencing data.Genome Biol. (2019)

20:50. doi: 10.1186/s13059-019-1659-6

18. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in

Unique Molecular Identifiers to improve quantification accuracy. Genome

Res. (2017) 27:491–9. doi: 10.1101/gr.209601.116

19. McDonough SJ, Bhagwate A, Sun Z, Wang C, Zschunke M, Gorman JA, et al.

Use of FFPE-derived DNA in next generation sequencing: DNA extraction

methods. PLoS ONE. (2019) 14:e0211400. doi: 10.1371/journal.pone.0211400

20. Ascierto PA, Bifulco C, Palmieri G, Peters S, Sidiropoulos N. Pre-

analytic variables and tissue stewardship for reliable next-generation

sequencing (NGS) clinical analysis. J Mol Diagn. (2019)21:756–67.

doi: 10.1016/j.jmoldx.2019.05.004

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Petrackova, Vasinek, Sedlarikova, Dyskova, Schneiderova,

Novosad, Papajik and Kriegova. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 6 September 2019 | Volume 9 | Article 85118

https://doi.org/10.1186/1471-2164-13-341
https://doi.org/10.1038/s41598-019-39076-7
https://doi.org/10.1016/j.clml.2018.07.282
https://doi.org/10.1016/j.leukres.2019.02.005
https://doi.org/10.1038/s41467-017-01470-y
https://doi.org/10.1186/s13059-019-1659-6
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.1371/journal.pone.0211400
https://doi.org/10.1016/j.jmoldx.2019.05.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


1 September 2019 | Volume 10 | Article 884

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00884
published: 19 September 2019

Frontiers in Genetics | www.frontiersin.org

MUDENG Expression Profiling 
in Cohorts and Brain Tumor 
Biospecimens to Evaluate Its Role 
in Cancer
Juhyun Shin 1,2, Jun-Ha Choi 2, Seunghwa Jung 2, Somi Jeong 2, Jeongheon Oh 2, 
Do-Young Yoon 3, Man Hee Rhee 4, Jaehong Ahn 5, Se-Hyuk Kim 6 and Jae-Wook Oh 1,2*

1 Animal Resources Research Center, Konkuk University, Seoul, South Korea, 2 Department of Stem Cell and Regenerative 
Biotechnology, Konkuk University, Seoul, South Korea, 3 Department of Bioscience and Biotechnology, Konkuk Institute of 
Technology, Konkuk University, Seoul, South Korea, 4 Department of Veterinary Medicine, College of Veterinary Medicine, 
Kyungpook National University, Daegu, South Korea, 5 Department of Ophthalmology, Ajou University School of Medicine, 
Suwon, South Korea, 6 Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea

Mu-2-related death-inducing gene (MUDENG, MuD) has been reported to be involved in 
the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-associated apoptotic 
pathway of glioblastoma multiforme (GBM) cells; however, its expression level, interactors, 
and role in tumors are yet to be discovered. To investigate whether MuD expression 
correlates with cancer progression, we analyzed The Cancer Genome Atlas (TCGA) 
database using UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA). 
Differential expression of MuD was detected in 6 and 10 cancer types, respectively. 
Validation performed using data from the Gene Expression Omnibus database showed 
that MuD expression is downregulated in KIRC tumor and correlate with higher chance 
of survival. Upregulation of MuD expression in GBM tumors was detected through GEPIA 
and high MuD expression correlated with higher survival in proneural GBM, whereas the 
opposite was observed in classical GBM subtype. GBM biospecimens analysis shows 
that MuD protein level was upregulated in three of six specimens, whereas mRNA level 
remained relatively unaltered. Therefore, MuD may exert differential effects according 
to subtypes, and/or be subjected to post-translational regulation in GBM. Correlation 
analysis between GBM cohort database and experiments using GBM cell lines revealed 
its positive effect on regulation of protein phosphatase 2 regulatory subunit B’Epsilon 
(PPP2R5E) and son of sevenless homolog 2 (SOS2). STRING database analysis indicated 
that the components of adaptor protein complexes putatively interacted with MuD but 
showed no correlation in terms of survival of patients with different GBM subtypes. In 
summary, we analyzed the expression of MuD in publicly available cancer patient data 
sets, GBM cell lines, and biospecimens to demonstrate its potential role as a biomarker 
for cancer prognosis and identified its candidate interacting molecules.

Keywords: Mu-2-related death-inducing gene, the cancer genome atlas, gene expression omnibus, patient 
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and 
malignant form of primary brain tumor (Huse and Holland, 
2010; Siegel et al., 2017). Despite recent advances in surgical and 
other therapeutic techniques, the median survival of patients 
with GBM is as low as 12 to 15 months (Jung et al., 2014; Ostrom 
et al., 2014). Aside from the conventional therapies, the selective 
induction of apoptosis in target cancer cells with pro-apoptotic 
cytokines, such as tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) (Merino et al., 2007) seems promising, 
as this strategy exhibited low toxicity to non-cancerous cells, 
including brain cells, in clinical trials (Stuckey and Shah, 
2013). However, the use of TRAIL is controversial because it is 
thought to induce apoptosis not only in cultured normal human 
hepatocytes but also in normal brain tissues (Jo et al., 2000). 
Therefore, the applicability of TRAIL for the treatment of brain 
cancer by combinatorial drug treatment strategies should be 
carefully monitored to improve its therapeutic efficacy (Stuckey 
and Shah, 2013).

One of the hallmarks and causes of GBM complexity is cellular 
heterogeneity, which poses a challenge for disease diagnosis 
and treatment (Friedmann-Morvinski, 2014; Inda et al., 2014). 
The molecular profiling of The Cancer Genome Atlas (TCGA) 
divides GBM into four distinctive subtypes, namely, classical, 
neural, proneural, and mesenchymal (Verhaak et al., 2010). Both 
classical and mesenchymal subtypes are aggressive in nature. 
Whereas the classical subtype is characterized by overexpression 
of epidermal growth factor receptor (EGFR), the mesenchymal 
subtype shows decreased neurofibromin 1 (NF1) expression and 
high transforming growth factor-β (TGF-β) and nuclear factor-κB 
(NF-κB) activities. The neural subtype is controversial because 
it is thought to originate from the substantial contamination of 
GBM samples with healthy brain tissue. Tumorigenesis of the 
proneural subtype starts from the frontal cortex of the cerebrum 
and often displays amplification of platelet-derived growth factor 
receptor α (PDGFRα) and mutations of isocitrate dehydrogenase 
1/2 (IDH1/2) and tumor protein 53 (TP53) (Verhaak et al., 2010). 
Patients with proneural subtype exhibit the best prognosis but 
may have the worst disease outcomes in the absence of IDH1 
mutations (Phillips et al., 2006; Verhaak et al., 2010; Akan et al., 
2012). Although several efforts have been directed to identify 
the critical driver pathways and therapeutic targets specific 
for each GBM subtype, very little progress has been made in 
this direction. A recent report revealed increased sensitivity of 
patients with proneural GBM to cyclin-dependent kinase 4/6 
(CDK4/6) inhibitor treatment (Li et al., 2017) and significantly 
faster recurrence after bevacizumab treatment in patients with 
classic GBM (Hovinga et al., 2019), indicating the importance of 
careful evaluation of the subtypes before treatment.

The mu-2-related death-inducing gene (MUDENG, MuD), 
also called as the adaptor-related protein complex 5 subunit Mu 
1 (AP5M1), was identified as a putative component of the fifth 
adaptor protein (AP) complex involved in endosomal transport 
(Hirst et al., 2011). MuD was reported to be involved in the 
apoptotic pathway in HeLa (Lee et al., 2008), Jurkat (Lee et al., 
2008; Shin et al., 2013), and B-JAB (Lee et al., 2008) cell lines. 

Subsequent studies demonstrated the cleavage of MuD by active 
caspase-3 during TRAIL-induced apoptotic signaling (Shin 
et al., 2013), and the subsequent activation of the anti-apoptotic 
function of MuD near the BH3-interacting domain death agonist 
(BID) and B-cell lymphoma 2 (Bcl2) junction (Choi et al., 2016). 
These studies suggest a possible role for MuD in cancer cells 
apoptotic signaling.

In the present study, we used UALCAN and GEPIA, two web-
based tools that allow in-depth analyses of RNA-sequencing 
data from TCGA database to assess MuD expression in cancer 
cohorts. In addition, we used the microarray data from the Gene 
Expression Omnibus (GEO) database to validate the selected 
results. We conducted an integrated analysis using 12 human 
brain tumor samples and GBM cancer cell lines. Furthermore, we 
identified the differential expression of MuD in tumors as well as 
the correlation between MuD expression and survival in cancer 
types, including specific GBM subtypes. We also identified the 
candidate interacting genes that were validated in GBM cell lines.

MATERIALS AND METHODS

Data Sources
The TCGA database curated by the National Institute of 
Health (NIH) comprises 2.5 petabytes of data on cohorts 
from 33 different tumor types, including genomic profiles 
from microarrays and next-generation sequencing (NGS) 
(Tomczak et al., 2015). MET500 is a database of NGS data 
from 500 patients with cancers of 30 primary sites (Robinson 
et al., 2017). Genotype-tissue expression project (GTEx) is a 
database of NGS and includes the microarray data collected 
from nearly 1,000 individuals (Consortium, 2013). As test sets, 
we used data sets available from the GEO database (Clough and 
Barrett, 2016). E-GEOD-53757 (von Roemeling et al.,  2014) 
and E-GEOD-22541 (Wuttig et al., 2012) was used for KIRC 
validation (Wuttig et al., 2012), E-GEOD-70951 (Quigley 
et al., 2017) and E-GEOD-10886 (Parker et al., 2009) for BRCA 
validation, E-GEOD-68465 (Director’s Challenge Consortium 
for the Molecular Classification of Lung Adenocarcinoma et al., 
2008) for LUAD validation and E-GEOD-23400 (Su et al., 2011) 
for ESCA.

Statistical Analysis
Analysis of the TCGA data was carried out with UALCAN 
(RRID: SCR_015827) (Chandrashekar et al., 2017), and GEPIA 
(Tang et al., 2017). The differential expression of MuD and patient 
survival were analyzed with PanCan analysis and expression on 
box plot, respectively. Cox proportional hazard analysis was 
performed with GBM-BioDP provided at the Glioblastoma 
Bio Discovery Portal (https://gbm-biodp.nci.nih.gov/) (Celiku 
et al., 2014). Patients were divided based on the diagnosed GBM 
subtype and further stratified into four quartiles as per MuD 
expression level. For each group, a Cox proportional hazard 
model was used to plot the survival of the patients from the first 
quartile versus those from the fourth quartile using age and O-6-
methylguanine-DNA methyltransferase (MGMT) methylation 
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status as covariates. The microarray data from E-GEOD-53757 
and E-GEOD-070951 processed with MAS.5 and limma (RRID 
: SCR_010943) in R, respectively, were visualized as heat maps 
using ClustVis (https://biit.cs.ut.ee/clustvis/) (Metsalu and Vilo, 
2015). Heat maps were row-centered and unit variance scaling 
was applied for rows. Principal components were calculated 
using the NIPALS PCA method included in pcaMethods R 
package, and heatmaps were plotted using heatmap R package 
(version 0.7.7). Differential expression and survival plots 
were plotted using survminer R package (version 0.4.4) after 
processing with limma package and z-score (value-mean normal 
value/normal SD) calculated by R. Student’s t-test was used to 
analyze differences between groups in the real-time quantitative 
polymerase chain reaction (RT-qPCR) and immunoblot data.

Sample Collection From Human Brain 
Tumors
This study was approved by the Konkuk University Institutional 
Review Board (IRB; 7001355-124 201512-E-041), and all 
patients signed IRB-approved consent forms. The biospecimens 
used in the present study were provided by the Ajou Human 
Bio-Resource Bank (Suwon, Korea), a member of the National 

Biobank of Korea, supported by the Ministry of Health and 
Welfare. All samples derived from the National Biobank of 
Korea were obtained with informed consent under institutional 
review board-approved protocols. We obtained 12 tissues from 
the following patients (Table 1): 10 patients diagnosed with 
glioblastoma grade IV, and healthy tissues of six of these patients; 
one patient diagnosed with oligodendroglioma grade II; and one 
patient diagnosed with ependymoma grade II. Samples were 
stored below −80°C until nucleic acid and protein extraction.

Cell Lines and Cell Culture
The U251-MG cell line (NCI-DTP Cat U-251, RRID: CVCL 
0021) was obtained from Dr Benveniste EN (University 
of Alabama at Birmingham, Birmingham, AL, USA). The 
U251-MG MuD knock-out (KO) line β18 was generated using 
clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9 plasmid SpCas9-2A-puro (PX459) V 2.0 
provided by Feng Zhang (RRID: Addgene_6288) and single 
guide RNA 5′-ACACTAATTAGTGGCGGACG-3′ designed 
with CRISPR DESIGN (http://crispr.mit.edu/). U251-MG cells 
stably expressing (SE) GFP alone (C1) and GFP-MuD (C1MuD) 
were generated by transfection using Lipofectamine 2000 and 

TABLE 1 | Differential MuD expression and survival correlation revealed by UALCAN and GEPIA.

 Project name UALCAN GEPIA GR(U) GRG) S (U) S (G)

BRCA Breast invasive carcinoma N (n = 114) N (n = 291) NS NS C No 
T (n = 1094) T (n = 1085) (HL)

CHOL Cholengiocarcinoma N (n = 9) N (n = 9) Up NS No No 
T (n = 36) T (n = 36)

COAD Colon adenocarcinoma N (n = 41) N (n = 349) Down NS No No
T (n = 286) T (n = 275)

DLBC Lymphoid neoplasm diffuse large 
B-cell lymphoma

– N (n = 337) – Up No No 
T (n = 47)

ESCA Esophageal carcinoma N (n = 11) N (n = 286) Up Up No No
T (n = 184) T (n = 182)

GBM Glioblastoma multiforme N (n = 5) N (n = 207) – Up No No
T (n = 156) T (n = 163)

KICH Kidney chromophobe N (n = 25) N (n = 53) NS Up No No 
T (n = 67) T (n = 66)

KIRC Kidney renal clear cell carcinoma N (n = 72) N (n = 100) Down Down .C C
T (n = 533) T (n = 523) (HH) (HH)

KIRP Kidney renal papillary cell 
carcinoma

N (n = 32) N (n = 60) Down NS No No
T (n = 290) T (n = 286)

LGG Lower-grade glioma N (n = 248) N (n = 207) NS Up No No
T (n = 265) T (n = 518)

LUAD Lung adenocarcinoma N (n = 29) N (n = 347) NS NS C No
T (n = 519) T (n = 483) (HL)

OV Ovarian serous 
cystadenocarcinoma

– N (n = 88) – Up No No 
T (n = 426)

PAAD Pancreatic Adenocarcinoma N (n = 4) N (n = 171) NS Up No No 
T (n = 178) T (n = 179)

READ Rectum adenocarcinoma N (n = 11) N (n = 92) Down NS No No
T (n = 166) T (n = 318)

STAD Stomach adenocarcinoma N (n = 34) N (n = 34) NS Up No No
T (n = 415) T (n = 415)

THYM Thymoma N (n = 2) N (n = 339) NS Up No No 
T (n = 120) T (n = 118)

Abbreviations of cancer types based on TCGA are given in the left column with project name. UALCAN and GEPIA sample sizes for normal (N) and tumor (T) tissues are indicated for 
comparison as available or excluded if normal tissue data were unavailable. Gene regulation (GR) upon detection was listed as Up or Down as relevant and according to UALCAN (U) and 
GEPIA (G). Survival (S) correlation with expression is listed as correlating (C). High expression = Low survival chance (HL) and High expression = High survival chance (HH).
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subsequently selected with G418 sulfate (200 µg/ml; Invitrogen, 
USA). The cells were maintained in minimum essential media 
(MEM; Gibco, USA) supplemented with 10% fetal bovine serum, 
100 U/ml penicillin, and 100 µg/ml streptomycin (Welgene, 
Daegu, Korea). All cell lines were cultivated at 37°C in a humid 
5% CO2 chamber and subcultured every 3 days after they reached 
80% to 90% confluency. The cells were not subcultured beyond 
20 passages.

RT-qPCR Analysis
RNA and proteins were extracted using Nucleospin® RNA/Protein 
(Macherey-Nagel, BMS, Korea) according to the manufacturer’s 
instructions. cDNA was synthesized using AccuPower® RT/
PCR PreMix (Bioneer, Korea). qPCR was performed with SYBR 
qPCR Mix (CellSafe, Yongin, Korea) on a CFX96 Real-Time 
System (Bio-Rad, BMS, Korea). Data were analyzed with the 
Pfaffl method (Pfaffl, 2001) using glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) gene as reference.

Immunoblot Analysis
Sample lysates were subjected to sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the 
separated bands were transferred onto polyvinylidene difluoride 
membranes. The membranes were blocked with 5% non-fat milk 
and incubated with MuD monoclonal antibody (Wagley et al., 
2013) at 4°C overnight. The blots were subsequently incubated 
with a horseradish peroxidase (HRP)-labeled anti-human IgG 
at room temperature (15–20°C) for 2 h. The immunoreactive 
bands were detected with an enhanced chemiluminescence 
substrate (Dogen, Seoul, Korea), and band intensities were 
measured with ImageJ. All primers and antibodies used are listed 
in Supplementary Table 1.

RESULTS

Differential Expression of MuD in 14 
Cancers Types
Our previous study suggested the involvement of MuD gene in 
the apoptotic pathway of the GBM cell line U251-MG induced 
by TRAIL (Choi et al., 2016). To investigate the role of MuD 
in cancer, we analyzed MuD expression data from the TCGA 
database (Cancer Genome Atlas Research et al., 2013), which 
included 35 different cancer types with normalized RNA 
expression for 33,096 cases as of December 2018. The analysis 
was performed with UALCAN, a web-based tool that facilitates 
in-depth analysis of the TCGA, and MET500 transcriptome 
databases (Chandrashekar et al., 2017) and GEPIA, which 
use the TCGA and GTEx projects databases to compare gene 
expression between tumor and normal tissues (Tang et al., 
2017). Differential regulation of MuD gene expression was 
detected in six cancer types with UALCAN and 10 cancer types 
using GEPIA for a total of 14 cancer types. In most cases, the 
sample size was larger in the GEPIA database than in UALCAN. 
MuD expression in tumors was upregulated as compared with 
that in normal tissues in 9 of the 10 cancer types identified by 

GEPIA versus only two of the eight cancer types identified with 
UALCAN. MuD expression was downregulated only in kidney 
renal clear cell carcinoma (KIRC) tumor tissues, as per GEPIA 
analysis, but three additional cancer types were identified with 
UALCAN. Both of these tools detected MuD upregulation in 
the tumor tissues from patients with esophageal carcinoma 
(ESCA) and downregulation in patients with KIRC (Table 1). 
To validate if tumor purity of the TCGA tumors might affect 
the outcome, consensus measurement of purity (CPE) as 
previously described (Aran et al., 2015) was used to select GBM 
and KIRC-TCGA tumor >0.9 and 0.7 based on tumor purity 
distribution of the samples. Results consent with UALCAN 
results, suggesting that divergent result from UALCAN and 
GEPIA is not due to TCGA tumor quality (Supplementary 
Figure 1).

Validation Using Test Data Sets
As mentioned above, both tools revealed downregulation of 
MuD in KIRC tumor tissues but failed to detect any significant 
dysregulation in breast invasive carcinoma. To validate these 
findings, we selected two test sets from EMBL-EBI ArrayExpress 
database. Microarray data of patients with renal clear cell 
carcinoma (E-GEOD-53757) and breast adenocarcinoma 
(E-GEOD-70951) as control were analyzed. Except for two 
tumor samples, all tissues from patients with renal cancer showed 
significantly downregulated MuD expression levels relative to the 
matched normal tissues (Figure 1A). In contrast, MuD expression 
in the control data set was differently regulated in tumor tissue 
as compared with normal tissue (Figure 1B), indicative of the 
absence of any correlation between MuD expression and tumor 
identity. According to both portal, ESCA was up-regulated in 
tumor. This was validated using E-GEOD-23400 (Supplementary 
Figure 2).

MuD Expression Patterns Correlated With 
Survival in Three Different Cancer Types 
Based on TCGA Database
We investigated the correlation between MuD expression and 
patient survival in selected TCGA cohorts. Kaplan-Meier 
survival curves were generated using UALCAN for three cancer 
types based on the information in the TCGA database (Figure 2). 
UALCAN use statistical analysis that divided patients into two 
groups, comparing the higher quartile to the rest based on MuD 
expression. Among patients with invasive breast cancer (BRCA), 
those with high MuD expression (n = 271) revealed significantly 
lower survival (p < 0.005) than the controls (n = 810). In LUAD, 
a similar pattern was observed in the cohort characterized with 
high MuD expression (n = 128) relative to the corresponding 
controls (n = 374) (p < 0.05). In KIRC, survival was significantly 
lower in the cohort with high MuD expression (n = 134) (p < 
0.0001) than in controls (n = 397) (Figures 2A, B, and C left 
plot). However, when equal number of samples were used to 
analyze survival chance, both BRCA and LUAD-TGCA lost 
their significance (p > 0.1) (Figures 2A, B, and C, middle plot). 
Validation using E-GEOD data shows that BRCA and LUAD 
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outcomes from TCGA database are divergent from testing data 
set. Although KIRC data from E-GEOD-22514 lack vital status 
needed to analyze survival, this can be interfered from data of 
months free of tumor and total follow-up months as previously 
tested(Chang et al., 2018). Although p value was high due to the 
small numbers of samples, higher MuD expression correlated 

with higher survival, as it was for TCGA data (Figure 2C). 
Therefore, validation shows that although UALCAN is more 
sensitive in detecting potential correlation between expression 
and survival, GEPIA give a more robust outcome, possibly due 
to the fact that UALCAN analyze survival with unbalanced 
numbers of samples.

FIGURE 1 | Heatmap showing the expression of MuD from microarray data. MuD expression in kidney renal clear cell carcinoma (A) and adjacent kidney tissue as 
well as in breast cancer (B) and adjacent breast tissue. Clustering was performed with ClustVis using NIPALS PCA method. Red–white–blue scale was used to 
depict the normalized expression level. Red, blue, green, and violet color bars were used in clear cell renal carcinoma to represent classified stages, whereas red 
and blue bars were used in breast cancer to represent the diagnosis type.

FIGURE 2 | Kaplan-Meier survival curves in TCGA cohorts and E-GEOD data sets. Survival curves based on MuD expression was plotted for breast invasive 
carcinoma (BRIA) (A), lung adenocarcinoma (LUAD) (B), and kidney renal clear cell carcinoma (KIRC) (C).
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MuD Expression Pattern Correlated With 
High Survival in Proneural GBM Subtypes 
and Low Survival in Classical GBM 
Subtypes
Differential gene regulation in GBM tissues was detected with 
GEPIA but not UALCAN (Table 1 and Supplementary Figure 3). 
As patients with GBM can be divided into subtypes with distinct 
molecular characteristics (Verhaak et al., 2010), we examined 
the survival of patients with different subtypes based on MuD 
expression. We analyzed 422 GBM samples available from 
TCGA. Patients were divided based on GBM subtype and further 
stratified into four quartiles based on MuD expression levels. For 
each subgroup, the Cox proportional hazard model was used to 
plot the survival of patients in the first quartile versus those in 
the fourth quartile, with age and MGMT methylation status as 
covariates (Figure 3). Interestingly, patients with proneural GBM 
from the fourth quartile showed significantly higher survival 
(p < 0.005), with a log-rank p < 0.005 and a hazard ratio (HR) 
value less than 1 (HR = 0.182). The age HR was slightly higher 
than 1 (HR = 1.05) and a high significance was observed (p < 
0.005), suggesting that age may have a minor negative impact 
on the survival of patients with proneural GBM. The opposite 
results were observed in patients with classical subtype GBM, 

wherein the expression HR was higher than 1 (HR = 2.531) and 
a moderate significance was reported (p < 0.1). Interestingly, 
MGMT methylation was significantly more beneficial (HR = 
4.67, p < 0.05) than age (HR = 1.005) in this group.

MuD Expression Correlated With That of 
EXOC5, PPP2R2E, and SOS2 and MuD 
Overexpression Upregulated PPP2R5E 
and SOS2
We investigated the tumor-related genes in GBM tissues that 
showed correlation with MuD expression. Based on UALCAN 
results, we identified exocyst complex component 5 (EXOC5), 
protein phosphatase 2 regulatory subunit B’Epsilon (PPP2R5E), 
and son of sevenless homolog 2 (SOS2) to exhibit high 
correlations with MuD expression in GBM tumors from TCGA 
patients (Pearson’s correlation coefficient > 0.79) (Figure 4A). 
Patient survival data based on EXOC5, PPP2R5E, and SOS2 
expression levels were available in the TCGA-GBM database, and 
the analysis with Cox proportional hazard model revealed that 
the high expression levels of these genes were associated with 
high survival in patients with proneural GBM at a log-rank P 
value cutoff of 0.05 (PP2R5E and SOS2) or close to 0.05 (EXOC5) 

FIGURE 3 | Cox proportional analysis of 422 patients with GBM from the TCGA database divided into subtypes based on MuD expression level, as analyzed with GBM 
Bio Discovery Portal for total GBM (A), Classical subtype (B), Neural subtype (C), Proneural subtype (D) and Mesenchymal subtype (E). Patients were ranked into four 
quartiles based on MuD expression level. The survival rate of the patients from the first quartile with the lowest ranked MuD expression was compared to that of the 
patients from the fourth quartile. Age and MGMT promoter methylation status were used as covariates. C, classical; M, mesenchymal; P, proneural; N, neural; QT, quartile.

24

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


MuD Expression Analysis in CancerShin et al.

7 September 2019 | Volume 10 | Article 884Frontiers in Genetics | www.frontiersin.org

(Supplementary Figure 4). Correlation in BRCA, KIRC, LUAD, 
ESCA, and CHOL were also displayed as a table for the upmost 
linked 10 genes (Supplementary Table 2). EXOC5 shows high 
correlation with MuD in all subtypes except KIRC. To further 
investigate the correlation between MuD and these genes, we 
used a GBM cell line, U251-MG, a CRISPR-Cas9-generated MuD 
KO line β18, a plasmid transfection line containing pEGFP-C1 
(C1), and a line SE MuD following MuD-GFP-C1 transfection 
(C1MuD). Although MuD KO failed to affect the expression of 
EXOC5, PPO2R5E, and SOS2, MuD stable expression increased 
PPP2R5E and SOS2 expression levels to some extent (Figure 4B). 
The expression of these genes was also investigated in the 
biospecimens mentioned below, but the Pearson’s correlation 
coefficient was insignificant, probably owing to the small sample 
number (Supplementary Figure 5).

Correlation Analysis Suggested the 
Possible Interactions Between MuD and 
Other Proteins That Affected Prognosis in 
Patients With GBM
To examine the network of proteins that potentially interact with 
MuD, we used STRING (Szklarczyk et al., 2017) (Figure 5). The 
identified interactors were found to be other components of the 
AP complexes. Survival data were unavailable for the identified 
proteins, AP5B1, AP5S1, AP5Z1 (other putative components 
of the fifth AP complex) and AP4B1 and AP4S1 (components 

of the fourth AP complex). The components of the fourth AP 
complex showed opposite patterns in terms of survival and MuD 
expression, as the first quartile patients with AP4M1 had higher 
chances of survival. Another component of the fourth complex, 
AP4E1 showed a similar pattern with MuD in proneural subclass 
but revealed a different pattern in the mesenchymal subclass, 
wherein survival chance was highly correlated with the fourth 
quartile patients of AP4E1. Components of the first AP complex 
(AP1G2 and AP1S1) as well as the third (AP3S2) and fourth 
(AP4S1) complexes showed no correlation between expression 
and survival in patients with proneural GBM (Supplementary 
Figure 6). This discrepancy among components of similar 
complexes suggests the possibility of additional roles of MuD 
aside from its involvement with the component of AP5. BioGrid 
(Chatr-Aryamontri et al., 2017) shows that besides other 
AP complex subunits, DDB1 and CUL4-associated factor 4 
(DCAF4), spatacsin vesicle trafficking-associated (SPG11), 
general transcription factor IIIC subunit 3 (GTF3C3), and paired 
box protein PAX-6 (PAX6) are candidate protein interactors 
for MuD in human cells. Further investigation is warranted to 
validate the interactions of these components with MuD.

Expression Analysis Revealed Putative 
Post-Translational Regulation of MuD
To investigate MuD expression patterns in human brain 
tumor tissues, we isolated RNA and protein from six tumor 

FIGURE 4 | Correlation between EXOC5, PPP2R5E, and SOS2 expression levels and MuD levels. Expression in GBM tissues from TCGA database (A) and expression 
of MuD, EXOC5, PPP2R5E, and SOS2 in the GBM MuD KO line β18 and MuD overexpression line C1MuD as compared with that in their respective controls (B).
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biospecimens (four GBMs, one oligodendroglioma, and one 
ependymoma) and matched normal tissues (Table 2). Of these, 
four pairs exhibited MuD upregulation in the tumors as compared 
with that in the matched normal tissues, with high significance 
in three samples (Figure 6A, lane 3, 4, and 6). Two additional 
GBM samples (Figure 4B, lanes 7 and 9) and oligodendroglioma 
and ependymoma samples (Figure 6B, lanes 11, and 12) showed 
higher MuD expression than normal tissues. These findings 
imply that MuD expression may be upregulated in brain tumors, 

at least in GBM and other glioma tissues. Interestingly, neither 
MuD mRNA and protein levels nor subtypes showed any 
significant correlation, as MuD was only upregulated in patient 
5 (Figure 7A). All but one (NEFL) subtype marker showed 
upregulation in patient 5 (Figure 7B) as compared with that in 
the other patients (Figure 7C), suggestive of the possible failure 
of gene downregulation in the tumor from this patient. As MuD 
protein expression was upregulated in at least four patients, there 
is a possibility of putative post-translational control of MuD in 

FIGURE 5 | Analysis of candidate proteins interacting with MuD. STRING analysis showing interactions between MuD (AP5M1) and other adaptor protein complex 
subunits (A). BioGRID analysis revealing the additional putative MuD interacting proteins (B).

TABLE 2 | Clinical characteristics of patients with brain tumor in this study. GB, glioblastoma; ODG, oligodendroglioma; ED, ependymoma.

Patients Tissue Tissue bcode Diagnosis WHO grade Age Gender Tissue Comment

1 ANC-13-0005 25502083 GB 4 81–85 Male Pair High necrosis rate
2 ANC-13-0028 25502722 GB 4 81–85 Female Pair –
3 ANC-13-0018 25680967 GB 4 61–65 Female Pair –
4 ANC-13-0019 25371685 GB 4 61–65 Male Pair –
5 ANC-13-0027 25333994 GB 4 71–75 Female Pair –
6 ANC-13-0052 25072638 GB 4 56–60 Female Pair –
7 ANC-13-0014 25502189 GB 4 71–75 Male Tumor –
8 ANC-13-0022 25502458 GB 4 76–80 Female Tumor –
9 ANC-14-0032 25756981 GB 4 41–45 Male Tumor –
10 ANC-15-0009 25227244 GB 4 56–60 Male Tumor –
11 ANC-14-0041 25537678 ODG 2 36–40 Female Tumor Low tumor cells 

percentage
12 ANC-15-0061 25022741 ED 2 51–55 Female Tumor –
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FIGURE 6 | Immunoblot analysis of MuD expression in six pairs of GBM (A) and GBM and astrocytoma biospecimens (B). N, normal tissue; T, tumor tissue 
*p < 0.01, **p < 0.005, ***p < 0.001.

FIGURE 7 | Rt-qPCR analysis of MuD and subtypes marker genes expression. Expression of MuD mRNA analyzed with RT-qPCR in patient tissues across GBM 
and astrocytoma brain tumor tissues (A). Expression of subtype markers in tissues from patient 5 (B) and other patients expression of subtype markers (C). mRNA 
expression was normalized to GAPDH levels (*p < 0.05).
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brain tumors without ruling out the chances of contamination 
from neighboring tissues.

DISCUSSION

MuD was identified in a screening approach aimed to reveal 
any novel genes involved in Fas-mediated apoptosis (Kawasaki 
and Taira, 2002). MuD plays a specific role in several cancer 
cells (Lee et al., 2008; Choi et al., 2016), and is thought to 
exert its functions through apoptotic signaling, considering 
its cleavage by active caspase-3 upon TRAIL stimulation (Shin 
et al., 2013). However, the detailed roles of MuD in tumors 
remain to be elucidated. Herein, our findings based on the 
careful analyses of both metadata and data from patients with 
brain tumor suggest that any alterations in MuD expression 
could be associated with tumor progression and survival in 
selected cancer types.

We used two web-based portals to evaluate the potential 
role of MuD in cancer. Although the key data source for both 
UALCAN and GEPIA data is TCGA, only two cancer types 
were detected in both portals, including KRIC and ESCA. 
This discrepancy between the two portals may be related to 
the different data processing method or owing to the use of 
additional data from MET500 and GTEx projects, respectively. 
Although more cancer types were found to exhibit MuD 
upregulation in tumors using GTEx, UALCAN was more 
prone to detect cancer types and survival correlation with 
MuD downregulation. This result may be partially attributed to 
the fact that GTEx projects collected more samples, including 
healthy tissue data, for most cancer types, whereas both 
MET500 and GTEx projects had no data on patient survival. 
As a consequence, drastic changes in p and log-rank values 
were reported. Nevertheless, we identified two cancer types, 
wherein MuD may exhibit a role in tumor development and 
serve as a potential biomarker. Our results also demonstrate 
that although large-scale data analysis may be useful in finding 
novel oncogenes and new biomarkers, the data should be 
carefully validated.

In a previous study, we reported the anti-apoptotic function 
of MuD in GBM cell lines (Choi et al., 2016) and investigated 
the correlation between MuD expression and cancer progression. 
We failed to observe any correlation between MuD expression 
and overall survival in patients with GBM. However, GEPIA 
analysis suggested the upregulation of MuD in GBM tumors, 
and MuD protein levels were markedly upregulated in human 
brain tumor tissues, including 10 GBMs. MuD mRNA level from 
the same tissues showed no correlation except one at p < 0.05. 
Although this observation may be related to the small number 
of biospecimens investigated, additional regulation of MuD may 
occur at the post-translational level. This hypothesis is consistent 
with our previous finding that MuD was downregulated following 
TRAIL stimulation without any alteration in the MuD mRNA 
level (Choi et al., 2016).

Proneural GBM differs from other GBM subgroups with 
respect to gene expression patterns and responses to drug 
treatment (Chen and Xu, 2016). The proneural GBM cohort 

showed significantly improved prognosis as compared with 
patients with other subtypes (Verhaak et al., 2010) but failed to 
respond to immunotherapy as efficiently as the mesenchymal 
GBM cohort, presumably owing to TGF-R2 deficiency (Beier 
et al., 2012). Our findings showed that higher MuD expression 
levels were associated with prolonged survival in patients 
with proneural GBM; however, this correlation could not 
be extended to all patients with GBM. Although we failed 
to notice any correlation between GBM subtypes and MuD 
expression in our biospecimens, probably owing to the small 
sample size and the markers investigated, MuD expression 
might exert differential effects based on GBM subtypes and 
MuD may serve as a potential target gene specifically for the 
treatment of proneural subtype.

Analyses of MuD protein level, localization, and interactions 
with other putative proteins suggest its importance as a 
component of the putative AP5 complex (Hirst et al., 2011). 
Clathrin AP complexes play crucial roles in protein sorting in 
diverse post-Golgi pathways and are involved in endocytosis 
(McMahon and Boucrot, 2011). In particular, the AP1 complex 
is involved in trafficking between the trans-Golgi network 
(TGN) and endosomes (Hirst et al., 2012), AP2 is associated 
with endocytosis (McMahon and Boucrot, 2011), and AP3 
mediates trafficking between the TGN/endosome and the 
vacuole/lysozyme system (Dell’Angelica, 2009). AP4 was 
thought to play a role in vacuolar sorting in plant cells (Fuji 
et al., 2016) and interact with Tepsin (Frazier et al., 2016). AP 
complexes are involved in several diseases, including X-linked 
mental retardation (Tarpey et al., 2006), Alzheimer’s disease 
(Burgos et al., 2010), and Hermansky–Pudlak syndrome 
(Dell’Angelica et al., 1999). Whereas these complexes showed 
no correlation with MuD, the two putative partner proteins of 
MuD, AP4M1, and AP4E1, are components of the AP4 complex 
and showed correlation with cancer prognosis. A recent report 
showed that AP4 promotes oncogenic phenotype and drug 
resistance in breast cancer through the regulation of a novel 
oncogene, lysosomal-associated protein transmembrane-4 
beta (LAPTM4B) (Wang et al., 2018), and induces prostate 
cancer proliferation though l-plastin regulation (Chen et al., 
2017). These studies suggest that AP complexes may play a role 
in cancer cell proliferation.

Aside from its role as a component of the AP5 complex, 
MuD is involved in cancer pathogenesis (Merino et al., 2007; 
Johnstone et al., 2008; Cullen and Martin, 2015). MuD is 
implicated in TRAIL-induced apoptosis signaling (Lee et al., 
2008; Shin et al., 2013; Choi et al., 2016). Studies have shown 
BID and Bcl2 as molecules acting upstream and downstream 
of MuD, respectively (Choi et al., 2016), suggesting that MuD 
may perform a novel role in the cancer apoptotic pathway. Our 
analysis identified several candidate genes, including EXOC5, 
PPP2R5E, and SOS2, and showed that PPP2R5E and SOS2 
expression levels correlated with MuD level in tumor cells to 
some extent. We failed to detect any correlation between MuD 
and EXOC5 expression; however, EXOC5 is adjacent to MuD 
(EXOC5 5′-UTR starts at Chr14: 57,268,899 and MuD 5′-UTR 
starts at Chr14: 57,268,888). As MuD KO or stable expression 
showed no effect on EXOC5 expression, there is a possibility 

28

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


MuD Expression Analysis in CancerShin et al.

11 September 2019 | Volume 10 | Article 884Frontiers in Genetics | www.frontiersin.org

that the correlation between EXOC5 and MuD expression may 
be related to the positional effect. A previous study using a 
KO mouse model showed that the deletion of EXOC5 led to 
apoptosis and disorganization of hair cell stereocilia bundles 
(Lee et al., 2018). PPPR2RE is known as a tumor suppressor 
gene, and its downregulation induces growth inhibition and 
apoptosis in gastric cancer cells (Liu et al., 2014). SOS2 encodes 
a Ras-specific guanine nucleotide exchange factor (Esteban 
et al., 2000), and its downregulation decreases the level of Ras 
and activation of MAP kinase kinase1/2 (MEKK1/2), ultimately 
inhibiting TNFα-induced apoptosis (Kurada et al., 2009). Not 
only PPP2R5E and SOS2 expression levels slightly correlated 
with that of MuD in GBM cell lines but also high expression of 
these genes was associated with longer survival among patients 
with proneural GBM at a moderate level (Supplementary 
Figure 7). Further study to validate the involvement of these 
genes in tumor generation linked to MuD is in progress.

Based on the database analyses, we propose that MuD 
expression may be upregulated in ESCA and downregulated in 
KIRC. Further studies should carefully validate these results to 
evaluate MuD as a biomarker with a putative prognostic role. 
In addition, MuD may play a role in the survival of patients 
with proneural GBM and could be linked to candidate gene 
regulation. Taken together, our study suggests a novel role for 
MuD in cancer.
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Non-small cell lung carcinoma (NSCLC) is the major cause of cancer-associated

mortality. Identification of rearrangements in anaplastic lymphoma kinase (ALK) gene is

an effective instrument for more effective targeted therapy of NSCLC using ALK inhibitors

dramatically raising progression-free survival in the ALK-mutated group of patients.

However, the tumors frequently develop resistance to ALK inhibitors. We describe here

a case of 48 y.o. male patient with ALK-positive NSCLC who was clinically managed

for 6.5 years from the diagnosis. The tumor was surgically resected, but 8 months later

multiple brain metastases were discovered. The patient started receiving platinum-based

chemotherapy and then was enrolled in a clinical trial of second-generation ALK inhibitor

ceritinib, which resulted in a 21 months stabilization. Following disease relapse, the

patient was successfully managed for 33 months with different lines of chemo- and

local ablative therapies. Chemotherapy regimens, including off-label combination of

crizotinib + bevacizumab + docetaxel, were selected using the cancer transcriptome

data-guided bioinformatical decision support system Oncobox. These therapies led to

additional stabilization for 22 months. Survival of our patient after developing resistance

to ALK inhibitor was longer for 16 months than previously reported average survival

for such cases. This case shows that transcriptomic-guided sequential personalized

prescription of targeted therapies can be effective in terms of survival and quality of life

in ALK-mutated NSCLC.

Keywords: NSCLC, ALK, transcriptomics, personalized oncology, gene expression
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BACKGROUND

Lung cancer is the most common type of cancer and the main
factor of cancer-related mortality. According to the reports
of World Health Organization and International Agency for
Research on Cancer, in 2018 there were ∼2.1 million new
registered cases of lung cancer and ∼1.8 million associated
deaths (1). Non-small-cell lung carcinoma (NSCLC) is diagnosed
in about 80–85% of all lung cancer cases. NSCLC response
to standard chemotherapy (typically including treatment with
platinum agents) is relatively poor with the median survival time
of <1 year after diagnosis (2).

However, the identification of proper molecular biomarkers
in NSCLC allowed to increase patient survival by specifically
selecting targeted therapeutics. One of these biomarkers is
rearrangement within the anaplastic lymphoma kinase gene
ALK which is present in about 4–7% of all NSCLC cases
(3, 4). Worldwide, ∼40,000 new NSCLC cases with mutated
ALK are detected annually. The current standards of care for
patients with advanced ALK-mutated NSCLC include therapy
with targeted ALK-specific therapeutic crizotinib and other
selective ALK inhibitors (5). The median overall survival
from the onset of treatment with crizotinib can reach 31
months (6). Although response rate on selective ALK inhibitors
is high, there is a major problem of acquiring resistance
to these therapeutics within 1–2 years from the onset of
therapy (5).

In this report, we describe a case of ALK-positive NSCLC with
brain metastases. The patient was under observation for 6.5 years
and was treated by resection surgery, stereotactic radiosurgery,
combination chemotherapies, and by several lines of targeted
therapies. After the acquisition of resistance to crizotinib, two
other targeted therapeutics were individually selected using a
bioinformatic decision support system Oncobox based on the
analysis of gene expression and activation of molecular pathways
in the patient’s tumor biosample (7, 8).

CASE PRESENTATION

The patient was 48 y.o. male diagnosed in January 2012 with ALK
mutation-positive NSCLC, stage IIA, T2b N0M0. The tumor has
demonstrated positive immunostaining for TTF-1 (SPT24) and
negative for p40 (DeltaNp63). ALK translocation was detected
using FISH (Figure 1). The patient had a 10 pack-year smoking
history but stopped smoking 3 years before the diagnosis. The
patient underwent resection surgery (lower lobe of the right lung)
and received 4 cycles of vinorelbine+ cisplatin (25 mg/m² IV on
days 1, 8, 15, and 22 of a 28-day cycle with IV cisplatin 100mg/m²
on day 1) as adjuvant therapy from February to May 2012.

Four months later (September 2012) the patient’s condition
worsened and multiple brain metastases were discovered
(maximum size – 2.9 × 3.5 cm). In October-November 2012
the patient underwent whole brain radiation therapy (linear
accelerator, a dose of 40Gy in 2Gy fractions) that resulted in
a short-term stabilization with subsequent deterioration of the
patient’s condition.

FIGURE 1 | Histological evaluation of the patent’s tumor. (A) Hematoxylin and

eosin staining microphotograph. (B) Immunohistochemical staining for TTF-1

(SPT24). (C) Immunohistochemical staining for p40 (DeltaNp63). (D) FISH

analysis for ALK-EML4 translocation.

In April 2013, following confirmation of EML4-ALK
translocation, the patient was enrolled in the clinical trial
NCT01283516 and was prescribed with a second-generation
ALK inhibitor ceritinib (750mg PO daily). Ceritinib therapy
resulted in a reduction of brain metastases and the patient’s
performance status improved significantly. Five months
later (September 2013) the patient was able to return to his
professional occupation. In February 2015, after 21 progression-
free months we observed an increase in the size of brain
metastases and the patient was excluded from the NCT01283516
protocol according to exclusion criterion of neurologically
unstable metastases.

In March-June 2015, the patient received four cycles of
pemetrexed + cisplatin therapy (500 mg/m² IV on day 1 of each
21-day cycle), which resulted in a reduction of several lesions
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TABLE 1 | Brain lesions progression.

Lesion\MRI date 2015.02.17 2015.04.13 2015.07.20 2015.09.10 2016.08.04 2016.01.24 2016.11.25

Therapy End of ceritinib Pemetrexed +

cisplatin

Topotecan,

crizotinib

Crizotinib Crizotinib,

SRS + dexamethasone

Crizotinib Crizotinib +

bevacizumab

Lesion 1,

right temporoparietal region

65 × 28 ×

30mm

65 × 23 ×

25mm

52 × 10 ×

18mm

61 × 29 ×

29mm

61 × 35 × 32mm 61 × 34 ×

30mm

51 × 35 × 30

mm

Lesion 2,

right occipital lobe.

8 × 9mm 8 × 7mm 6 × 7mm 10 × 14mm 10 × 14mm 20 × 18mm 20 × 17 mm

Lesion 3,

right occipital lobe.

19 × 14mm 19 × 14mm 15 × 10mm 25 × 17mm 18 × 17mm 14 × 12mm 13 × 12 mm

Lesion 4,

left parietal lobe,

parasagittal.

5 × 5mm 5 × 5mm 5 × 5mm 5 × 6 mm

Lesion 5,

head of left caudate

nucleus, paraventricular.

6 × 4mm 6 × 5mm 3 × 1mm 6 × 6mm 3 × 3mm Couldn’t be

visualized.

3 × 3 mm

Lesion 6,

left temporal pole.

7 × 7mm 16 × 11mm 16 × 1.1mm 16 × 11 mm

Lesion 7,

left hippocampus.

4 × 4mm 3 × 3mm 3 × 3 mm

Lesion 8,

left hippocampus.

4 × 4mm 3 × 3mm 3 × 3 mm

Sum of maximal diameters 99mm 98mm 77mm 118mm 125mm 122mm 115 mm

RECIST Stabilization Stabilization Progression Progression Stabilization Stabilization

Changes in size of eight brain lesions from February 2015 till November 2016. Red color indicates increase of lesions in comparison to previous evaluation, green color indicates

decrease.

(MRI 2015.04.13,Table 1). After that four cycles of topotecan (2.3
mg/m² PO days 1–5 of 21-day cycle) were prescribed followed by
targeted therapy with first-generation anti-ALK drug crizotinib
(250mg PO twice a day). In July 2015, MRI evaluation revealed
reduction of several metastases (Table 1, Figure 2).

After 3 progression-free months, in September 2015, the
patient’s condition worsened (headaches, unstable walking). MRI
examination showed an increase in size for all lesions previously
identified (Table 1). We performed stereotactic radiosurgery for
lesions in the right temporoparietal region (CyberKnife, a dose
of 30Gy in 6Gy fractions) and other lesions (CyberKnife, a
dose of 6Gy). Dexamethasone (4mg daily) was prescribed as
adjuvant therapy.

To identify further possible options of chemo- and targeted

therapy, we profiled gene expression in the patient’s tumor biopsy

using microarrays. Bioinformatical platform Oncobox was used

to select potentially effective targeted drugs (9, 10). Following

Oncobox report, bevacizumab was added to the treatment

regimen since May 2016 (550mg 7.5 mg/kg IV once in 3 weeks).
This resulted in a decrease of several brain lesions (Table 1, MRI

2016.08.04, 2016.10.24, and 2016.11.25; Figure 2, 2016.11.25).
In November 2016, the patient underwent another stereotactic

radiosurgery for a lesion in the left parietal lobe (Novalis, a dose

of 21.9 Gy).
In March 2017, after 10 progression-free months two lung

metastases were discovered. Based on the Oncobox report, we

added docetaxel to the treatment regimen (80 mg/m2 IV day 1 of

21-day cycle; 3 cycles). Due to significant adverse effects observed

for the patient, the docetaxel dose was reduced to 60 mg/m2 for

the next 3 cycles. InMay 2017, CT examination showed reduction
of lung lesions.

Following severe pneumonia in March 2018, the patient’s
condition significantly worsened. Examination in April indicated
growth of all previously discovered lesions and the appearance
of new metastases. Immunohistochemical testing revealed that
∼98% of tumor cells were PD-L1-positive. The treatment scheme
was changed in May 2018 and the patient received two infusions
of monoclonal anti-PD-1 antibody pembrolizumab (200mg IV
day 1 of 21-day cycle). However, the patient’s condition further
deteriorated soon after immunotherapy administration. The
patient died of brain edema in July 2018. The history of all
treatments is summarized on Table 2.

MATERIALS AND METHODS

The patient provided informed written consent for gene
expression analysis of his cancer biosample and for presentation
of relevant clinical and molecular data in this paper. The tumor
tissue sample used for gene expression analysis was obtained
during lung resection in February 2012 and stored in the
form of formalin-fixed paraffin-embedded (FFPE) tissue block
at the room temperature. For RNA extraction, we used five
250-µm-thick consecutive sections of FFPE block with tumor
cell content >80%. Gene expression profiling was performed
using microarray platform CustomArray (USA) according to the
Manufacturer’s protocol, except for the addition of the dNTPmix
containing biotinylated dUTP to the amplification reaction (final
proportion of dTTP/biotin-dUTP was 5-to-1).

Frontiers in Oncology | www.frontiersin.org 3 October 2019 | Volume 9 | Article 102634

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Poddubskaya et al. Personalized Treatment of NSCLC Case

FIGURE 2 | MRI evaluation of brain metastases dynamics at therapy lines 3 and 4 after development of the ceritinib resistance. Treatment regimens were pemetrexed

+ cisplatin (2015.04.03), topotecan followed by crizotinib (2015.07.20) and crizotinib + bevacizumab (2016.11.25). (A) Lesion 1, right temporoparietal region.

(B) Lesion 2, right occipital lobe. (C) Lesion 3, right occipital lobe.

The expression profile of 3,682 human genes was measured
and deposited in Gene Expression Omnibus repository with ID
GSE133605. For gene expression normalization, four healthy
lung tissue gene expression profiles from unrelated donors
(GEO: GSM862609-GSM862612) were used as the reference (9).
The signaling pathway activation analysis and prioritizing of
targeted therapeutics were made using Oncobox bioinformatical
platform, as previously described in Sanders et al. (10) and
Poddubskaya et al. (11).

DISCUSSION

We report here the case of ALK-mutated NSCLC treated with six
lines of therapy including several molecular-targeted drugs. Gene
expression analysis complemented genetic ALK testing and was
useful for selecting further treatment options.

The first line therapy was resection surgery and vinorelbine
+ cisplatin, which is the standard treatment for stage II NSCLC

(12). The second line was monotherapy with ceritinib—
the second-generation anti-ALK targeted drug currently
recommended as the first-line therapy for ALK-mutated NSCLC
(12) that was in the clinical trials back in 2013.

The patient developed resistance after 21 progression-free
months. Acquired resistance is well documented for crizotinib,
a first-generation anti-ALK target drug (13). Usually, ceritinib or
other second-generation anti-ALK targeted therapeutics are used
to overcome crizotinib resistance (14), and ceritinib resistance
can potentially be reversed by using afatinib, another second-
generation inhibitor of ALK (15). But back in 2015, second-
generation ALK-inhibitors were at the different stages of clinical
trials and the following treatment strategy was accepted.

First, pemetrexed + cisplatin polychemotherapy started
because this regimen combination was reported to be effective
and well-tolerated in NSCLC patients with brain metastases (16).
Then the patient was treated with topotecan, a Topoisomerase
I inhibitor that previously showed encouraging results in the
NSCLC treatment (17). Finally, the patient was prescribed with
crizotinib. To date discontinuation on ALK inhibitor therapy
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TABLE 2 | Outline of the patient treatment strategy.

Date Drug Oncobox predicted drug

efficiency score

Response Progression free

survival (months)

LINE 1

01–09.2012 Lung resection;

vinorelbine + cisplatin

−7.65 (vinorelbine);

NA (cisplatin)

No progression 7

10–11.2012 Whole brain radiation therapy Progression

LINE 2

04.2013–02.2015 Ceritinib 0.6 (ceritinib) Partial response 21

LINE 3

03–06.2015 Pemetrexed + cisplatin −0.5 (pemetrexed);

NA (cisplatin)

Stabilization 3

06.2015–09.2015 Topotecan (4 cycles), crizotinib 0.55 (topotecan); 6.15 (crizotinib) Stabilization 3

09.2015–05.2016 Stereotactic radiosurgery to multiple

lesions;

dexamethasone; crizotinib is continued

NA (dexamethasone); 6.15

(crizotinib)

Stabilization 8

LINE 4

05.2016–03.2017 Crizotinib + bevacizumab

Stereotactic radiosurgery to a single lesion

6.15 (crizotinib);

9.45 (bevacizumab)

Stabilization 10

LINE 5

03.2017–03.2018 Crizotinib + bevacizumab + docetaxel 6.15 (crizotinib); 9.45

(bevacizumab); 0.45 (docetaxel)

Stabilization until severe pneumonia 12

LINE 6

20.05.2018, 11.06.2018 Pembrolizumab NA (pembrolizumab) Not evaluable No Data

is not recommended because of possible disease flare (18, 19).
Stereotactic radiosurgery was performed because local ablative
therapy with continued administration of ALK inhibitors was
effective according to the previous reports (20).

It was recently demonstrated that genomic and transcriptomic
profiling are potentially useful for improving therapy
recommendations and patient outcomes (21). Identification
of further therapeutic schemes including combinations
crizotinib + bevacizumab and crizotinib + bevacizumab
+ docetaxel was based on the bioinformatic analysis of
tumor gene expression profile. First, bevacizumab was added
to the treatment scheme based on its positive simulated
Drug Efficiency Score (Supplementary Table 1), which
was calculated based on gene expression and activation
level of molecular pathways in the patient’s tumor using
the Oncobox platform. It revealed that Ras signaling
pathway was upregulated in the patient’s tumor (Figure 3).
The Ras pathway contains targets of both crizotinib and
bevacizumab, so potentially the achieved clinical benefit of
their combination may be linked with dual inhibition of
this pathway.

Previously, activation of Raf-MEK-ERK signaling axis of
Ras pathway was shown to be crucial for the ALK mutation-
positive tumor cell survival and dual ALK-MEK inhibition was
proposed as a new approach to battle tumor drug resistance
(22). However, in the current tumor case the Raf-MEK-ERK axis
was downregulated (Figure 3) and based on these data the dual
ALK-MEK inhibition therapy would not be recommended.

Bevacizumab and other anti-vascular endothelial growth
factor monoclonal antibodies were approved for the treatment

of NSCLC (23). Recently, clinical investigation of crizotinib +

bevacizumab combined therapy for advanced NSCLC reported
a median progression-free survival of 13 months (24). In
agreement with these results, in the case of our patient
crizotinib + bevacizumab treatment resulted in 10 progression-
free months.

When the patient progressed on crizotinib + bevacizumab
therapy, docetaxel was added to the treatment regimen
based on its positive simulated Drug Efficiency Score
(Supplementary Table 1) and because of its different
mechanism of action compared to the other therapeutics
used. Docetaxel binds to microtubules, thereby interfering
with cell proliferation and promoting cancer cell death.
Docetaxel has been also approved for NSCLC (25) and
bevacizumab + docetaxel polychemotherapy had a mean
progression-free survival of 6 months for NSCLC in
a published clinical investigation (26). However, to our
knowledge, there are no previous reports on molecular-guided
therapy with triple combination crizotinib + bevacizumab
+ docetaxel that resulted in 12 progression-free months in
our case.

The next planned line of therapy was treatment with anti-
PD-1 immunotherapeutic pembrolizumab since most of the
patient’s cancer cells were PD-1-positive. Unfortunately, severe
pneumonia most likely accelerated further progression of the
disease, and efficacy of the anti-PD-1 therapy couldn’t be assessed
due to the swift discontinuation of this treatment plan.

Overall, the patient lived for 78 months (6.5 years) after the
diagnosis and 70 months after the discovery of brain metastases.
The patient studies of ceritinib resistance development are only
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FIGURE 3 | Ras signaling pathway shown as an interacting network. This pathway was hyperactivated in the patient’s tumor tissue. Green arrows indicate activation,

red arrows–inhibition. Transcript nodes are shown in ovals, interface molecular pathways and cellular effects–in rectangles. The color depth of transcript nodes reflects

the extent of node activation (logarithms of the case-to-normal (CNR) expression rate for each node, in which “normal” is a geometric average between expression

levels in normal tissue samples). Molecular targets of crizotinib and bevacizumab are indicated by black arrows. Visualization was implemented using Oncobox

software.

represented by several published clinical cases (27–29) and
cannot be used to directly evaluate the effectiveness of our
approach. However, there are far more literature data available
for crizotinib. For male ALK mutation-positive patients treated
with one or more lines of ALK inhibitors the median overall
survival after stage IV diagnosis was found to be 48 months
(30), while in the case of our patient the overall survival was
70 months. The patient’s survival since the start of therapy
with crizotinib (line 3) was 36 months which exceeds previously
reportedmedian values of 31 (6) and 16.6months (31).Moreover,
the median overall survival after progression on crizotinib was
reported to be 25months on next-generation ALK-inhibitors and
only 6.4months on the other therapies (31). However, our patient
lived for 41 months after developing resistance to ceritinib and
for 33 months after developing resistance to crizotinib, which is
higher than both above estimates.

Therefore, this case suggests that the drug efficiency scoring

based on gene expression profiling of the patient’s tumor biopsy

biomaterial could potentially complement the standard mutation

analysis for the management of advanced cancer patients with

NSCLC. In turn, the Oncobox platform can be potentially
helpful for selecting effective treatment regimens also to the
other types of solid tumors as previously shown for metastatic
cholangiocarcinoma and ovarian cancer (9, 11).
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Background and Aims: ALPPS (associating liver partition and portal vein ligation

for staged hepatectomy), a novel 2-staged hepatectomy, dramatically accelerates liver

regeneration and thus enables extensive liver tumor resection. The signaling networks

underlying the ALPPS-induced accelerated regeneration process are largely unknown.

Methods: We performed transcriptome profiling (TP) of liver tissue obtained from a

mouse model of ALPPS, standard hepatectomy (68% model), and additional control

surgeries (sham, PVL and Tx). We also performed TP using human liver biopsies (n = 5)

taken from the occluded lobe and the future liver remnant (FLR) during the first step of

ALPPS surgery (4–5 h apart). We used Oncofinder computational tools, which covers

378 ISPs, for unsupervised, unbiased quantification of ISP activity.

Results: Gene expression cluster analysis revealed an ALPPS specific signature: the

IGF1R Signaling Pathway (Cell survival), the ILK Pathway (Induced cell proliferation),

and the IL-10 Pathway (Stability determination) were significantly enriched, whereas

the activity of the Interferon Pathway (Transcription) was reduced (p < 0.05). Further,

the PAK- and ILK-associated ISPs were activated at an earlier time point, reflecting

significant acceleration of liver regeneration (p < 0.001). These pathways, which were

also recovered in human liver biopsies, control cell growth and proliferation, inflammatory

response, and hypoxia-related processes.

Conclusions: ALPPS is not a straightforward addition of portal vein ligation (PVL) plus

transection—it is more. The early stages of normal and accelerated liver regeneration are

clearly discernible by a significantly increased and earlier activation of a small number of

signaling pathways. Compounds mimicking these responses may help to improve the

ALPPS method and further reduce the hospitalization time of the patient.
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INTRODUCTION

Liver regeneration is controlled by a cooperating, redundant
system of biological networks performing an assortment of tasks,
which together result in a coordinated response to replenish
lost liver tissue. The regenerating capacity of the liver inspired
liver surgeons to develop 2-staged strategies to perform extended
liver resections to clean the organ from multiple tumors. In the
conventional 2-staged strategies, the complete restoration of a
functional liver may take up to 8–10 weeks (1, 2). Recently,
a novel two-staged strategy has been introduced: ALPPS (for:
Associating Liver Partition and Portal vein ligation for Staged
hepatectomy) (3). In the first stage of the ALPPS procedure, the
portal vein is ligated, followed by removal of any tumor in the
future liver and an in situ split of the parenchyma between the
healthy and diseased liver (partition or transection) is performed.
In the second step, the isolated, deportalized liver is removed,
leaving behind a tumor-free, hypertrophic liver remnant (4–
6). The main advantage of the ALPPS strategy is that the
accelerated regeneration of the liver remnant, which reaches
a body-sustaining size within 7–10 days, enables the prompt
elimination of the major tumor load (4, 7).

The biological processes underlying liver regeneration
processes are complex. They involve (thyroid) hormones (8),
cytokines [IL-6 (9) and TNF (10)], growth factor responses [HGF,
TGF-β, epidermal growth factor (EGF)] (11, 12), glucose- and
bile acid metabolism (13, 14), and platelet-derived factors, such
as serotonin (15). Further studies in knockout mouse models
revealed several key switches in signal-transduction systems,
which either delay or accelerate the regenerating process. NF-κB
(16), nuclear receptors [FXR (14) and CAR (17)] have been
described as accelerators, whereas p21 (18), Socs3 (19), and Tob1
(20) act as repressors.

Recently, we reported that that Indian hedgehog (Ihh), a
secreted ligand important for fetal development, is a crucial
mediator of the regenerative acceleration triggered by ALPPS
surgery (21). Despite our increasing knowledge of the interwoven
biological signaling networks underlying normal and accelerated
liver regeneration, comprehensive whole genome analyses are
required for full recognition of the underlying pathways.
The newly developed bioinformatics tool OncoFinder enables
quantitative measurement of intracellular signaling pathway
(ISP) activation based on whole genome expression data (22,
23). The advantage of OncoFinder over alternative tools, such
as Metacore and Ingenuity Pathway Analysis (IPA), is that
it quantifies the pathway activation strength (PAS) (22–24).
PAS values represent the cumulative value of perturbations
in a signaling pathway and serve as reliable indicators of
pathological changes to the intracellular signaling machinery.
The PAS value itself serves as a robust new biomarker that can
distinguish between the pathway activation profiles in different
tissues (23, 25).

Abbreviations: ALPPS, Associating Liver Partition and Portal Vein Ligation

Surgery; LLLx, left lateral lobe resection; PAS, pathway activation strength; PVL,

portal vein ligation; Tx, parenchymal transection; TSH, two-stage hepatectomy;

FLR, functional liver remnant.

The aim of our present study was to assess comprehensively
the ISPs underlying normal and accelerated liver regeneration
in two established mouse models (26, 27), and in liver tissue
obtained from humans before and after the first step of ALPPS
surgery. The data designate that our murine ALPPS model—
despite differences—reflects ALPPS-induced accelerated liver
regeneration in humans.

METHODS

Surgery
ALPPS surgery in C57BL/6 mice (n = 3 for all procedures)
was performed as described earlier (26). In brief, a 90% PVL
was performed, leaving a 10% functional remnant consisting of
the left and a part of the right middle lobe. Then, a partial
80% transection was done through the middle lobe along the
demarcation line of the occluded/non-occluded parenchyma.
The left lateral lobe (LLL, 25% of liver volume) was also resected
to simulate the cleaning of the liver from smaller tumors as
often carried out in human ALPPS (21, 26). ALPPS surgery is
associated with some initial injury (serum ALT at around 5,000
U/I 1 day post-operation), which however declines over time
toward zero at day 7 post-operation. Serum HMGB1, released
by necrotic cells, is not elevated at any time post-operation,
indicating the absence of significant necrosis as confirmed by
histology on day 2. Very similar findings are observed for PVL
surgery, indicating that ALPPS does not augment injury (26).
Following 68% hepatectomy, injury is negligible, with ALT <100
U/I 1 day post-operation (27). Serum bilirubin is not elevated
following ALPPS, PVL, or 68% hepatectomy (26, 27). Liver
weight gain is clearly evident already at 4 h post ALPPS, steeply
rising to reach a plateau at 24 h (with step 2—resection of ligated
parts—usually performed at day 2 in mice). PVL also induces—
to a lesser extent—early liver weight gain; however, a low plateau
is reached already at 8 h post PVL (21). After 68% hepatectomy,
liver starts to gain weight more slowly, with its strongest gains
toward 48 h. This time point coincides with the hepatocellular
mitotic peak, which follows cell cycle entry around 16–20 h post
68% hepatectomy (27). In contrast, hepatocytes enter the cell
cycle already at 4 h post ALPPS, with a first mitotic peak at 8 h.
After PVL, cell cycle entry also occurs early, but only at levels
similar to transection (which does not induce regeneration), and
low numbers of mitoses are observed from 12 h onwards (21).
Therefore, ALPPS surgery accelerates mouse liver regeneration
both in time and magnitude relative to other liver surgeries.

Standard hepatectomy (partial 68% hepatectomy) in mice
was performed as described by Lehmann (27). In short, a
midline incision was performed, and the liver was freed from
ligaments. The pedicle of the left lobe was ligated (silk, 6/0)
and resected. After cholecystectomy (Prolene, 8/0; Ethicon,
Neuchatel, Switzerland), the middle lobe was ligated in 2 steps
(silk 6/0) and resected. All animal experiments conformed to
the Swiss Federal Animal Regulations and were approved by the
Veterinary Office of Zurich. Animals aged 10–12 weeks were
kept on a 12-h day/night cycle with free access to food and
water. C57BL/6 mice were obtained from Envigo (Horst, The
Netherlands). All animals were part of the same shipment, same
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age and gender, randomized, and part of the same project to
ensure similar conditions.

Tissue Specimen
Mice liver tissue was collected at different time points after
surgery (as indicated throughout the manuscript). Human liver
tissue specimens (biopsies) were obtained from the Department
of Visceral and Transplant Surgery, University Hospital Zurich
with the approval of the local ethics committees (Nr: 2015-
0547, Cantonal Ethics Committee, Zurich) and written consent
of all patients (for characteristics see Supplementary Data S-XI).
After laparotomy and initial inspection of the abdomen, liver
punch biopsies were taken of the future liver remnant (FLR)
immediately before starting ALPPS step 1 [biopsy 1]. Then,
partial ALPPS was performed as described earlier (7). Biopsy
2 was taken of the FLR immediately before closure of the
laparotomy [end of ALPPS step 1]. All biopsies were snap frozen
in liquid nitrogen and stored at −80◦C. RNA isolation and
sequencing was performed as described below.

RNA Isolation and Sequencing
RNA isolation was performed using the TRIzol Method as
described by the manufacturers (Life Technologies, Switzerland).
An equimolar RNA pool was prepared from liver tissue and/or
biopsies using DNA Column Clean-up (Qiagen, Basel, CH).
Then, 1 µg of total RNA was used for library preparation
according to the Illumina TruSeq stranded mRNA sample
preparation protocol (Illumina). The resultingmRNA library was
sequenced on an Illumina Hiseq 2,500 sequencer (Functional
Genomics Center Zürich, Zürich, CH). Sequenced reads were
aligned to the mouse and human (hg19) reference genome with
TopHat (version 2.0.10) 27 by using the -G (GTF file of Ensembl
release 75) option. Furthermore, the aligned reads were used
to quantify mRNA expression by using HTSeq-count (version
0.6.1)28 with hg19 GTF (Ensembl release 75). All data have been
deposited to the European Nucleotide Archive (ENA) under the
accession code PRJEB15593.

Differential Expression Analysis
Raw reads were filtered by quality >30 score through FASTX

toolkit and then trimmed at 5
′

and 3
′

in order to remove
index and adapter. Only the remaining reads were used for
alignment with the human genome assembly (GRCh37), where
we employed TopHat v2.0.14 (28).

Source Datasets
The signaling pathways knowledge base developed by
SABiosciences (https://www.slideshare.net/elsavonlicy/pathway-
mapreferenceguide) was used to determine structures of
intracellular pathways for OncoFinder (22, 23).

Functional Annotation of Gene Expression
Data
For the functional annotation of the primary gene expression
data, we applied our original algorithm termed OncoFinder
(22, 23). It enables calculation of the Pathway Activation Strength
(PAS), a value that serves as a qualitative measure of pathway

activation. Briefly, the algorithm utilizes the following formula
to evaluate pathway activation:

PASp =
∑

n

ARRnp · BTIFn · lg (CNRn) (1)

Here the case-to-normal ratio, CNRn, is the ratio of expression
levels for a given gene (n) in the sample to the mean value for
the control group. The Boolean flag of BTIF (beyond tolerance
interval flag) equals to zero when the CNR value has passed
simultaneously the two criteria that demark the significantly
perturbed expression level from essentially normal. First, the
expression level for the sample lies within the tolerance interval,
where p > 0.05. Second, the value of CNR differs from 1
considerably, CNR 0.66 or CNR 1.5. The discrete value of ARR
(activator / repressor role) reflects the functional role of a protein
n in the pathway (22). The pathway-specific PAS values calculated
by Oncofinder are more reliable than single gene analysis
and improves the robustness of experimental transcriptomics
data (23).

Statistical Tests
The PAS values for each normal sample were obtained using the
whole set of these normal samples as a reference. Distribution
of PAS values was estimated, assuming its Gaussian behavior.
Then, for each pathway of each sample, the probability that its
PAS value comes from this estimated distribution was calculated.
Additionally, p-values for each pathway of the entire group of
samples were calculated usingWilcoxon rank-sum test. Principal
component analyses were performed using the MADE4 package
(29). Hierarchical clustering heatmaps with Pearson distance
and average linkage were generated using heatmap.2 function
from “gplots” package (30). Pearson tau correlation matrices
were calculated in R 3.1.1 using a function of standard library
“cor” with the default settings. Correlation diagrams were built
using a function “corrplot” from the package “corrplot” sorted
with respect to hierarchical clustering. Similarities between
the pathways according to the content of similar genes were
calculated using the Jaccard coefficient. The Jaccard coefficient
measures similarity between finite sample sets and is defined as
the size of the intersection divided by the size of the union of
the sample sets. Venn diagrams were constructed using Venny
2.1 [http://bioinfogp.cnb.csic.es/tools/venny/].

miRNA Target Prediction
Focusing on differentially expressed pre-miRNAs present in our
datasets, we predicted their putative mRNA targets considering
only experimentally validated miRNA-mRNA interactions using
the Ingenuity Pathway Analysis (IPA) suite (Qiagen, Redwood
City, Calif; https://www.slideshare.net/elsavonlicy/pathway-
mapreferenceguide). We used miRTarBase for predicting targets
of miRNAs and assessed the influence of miRNAs on ISPs
using our method MiRImpact (31). Among all miRNA-targeted
mRNAs, only genes having at least 10 reads (read count ≥10)
were considered true targets for differentially expressed miRNAs
in BSM cells.
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FIGURE 1 | Venn diagrams showing the total of unique and common ISPs after 68% hepatectomy and ALPPS surgery. (A) Unique and common ISPs

activated/repressed 4 h after surgery. (B) Common ISPs activated/repressed 8 h after surgery (For details see: Table 2). (C) Per-sample enrichment scores for genes

involved in the G1/S transition phase of the mitotic cell cycle (the GO_BP_MM_G1_S_TRANSITION_OF_MITOTIC_CELL_CYCLE signature from the GSKB database),

calculated using gene set variation analysis (GSVA). (D) Cyclin E1 mRNA (Ccne1) mRNA expression. (E) Expression of p21 mRNA after ALPPS and 68% hepatectomy

(as indicated); *p < 0.005.

Gene Set Variation Analysis of Mitotic Cell
Cycle Signatures
To compare the kinetics of the expression of mitotic cell
cycle genes between ALPPS and standard hepatectomy, gene
signatures for different phases of the mitotic cell cycle were
selected from the MSigDB and GSKB online databases. For
access to the GSKB database, the gskb R package (version 1.10.0)
was used. Individual-sample gene set enrichment scores were
calculated using Gene Set Variation Analysis with the GSVA R
package, version 1.26.0. All gene set enrichment analyses were
performed within the R statistical programming environment,
version 3.4.3.

RESULTS

ALPPS Surgery Induced an Earlier Cell
Cycle Entry
To elucidate the molecular pathways responsible for accelerated
liver regeneration, hepatic RNA isolated at several time points
after ALPPS, PVL, transection, LLLx, and sham operation
was deep-sequenced. Pathway activation strength (PAS) profiles

were established using the normalized gene expression levels
of liver-expressed genes with the OncoFinder algorithm.
First, we analyzed the activation status of 378 ISPs. Using
the PAS values, we built hierarchical clustering heat maps
with Euclidean distance and average linkage for all groups
(For heatmaps see: Supplementary Data S-I). We identified
the common and unique ISPs for ALPPS and normal liver
regeneration as induced by standard hepatectomy. As shown
in Figure 1A, 160 and 72 ISPs were significantly affected
4 h after 68% hepatectomy and ALPPS, respectively. While
89 ISPs were unique for standard hepatectomy, only the
Interferon main pathway was specific for the ALPPS procedure
(PAS:−0.479740209). Likewise, 120 ISPs were shared between
the two procedures, with no unique ISPs identified for ALPPS
8 h after surgery (Figure 1B; Supplementary Data S-II). These
data indicate that the two procedures predominantly differ
quantitatively, not qualitatively. The earlier activation of the Cell
Cycle-pathway (metaphase-anaphase) 8 and 12 h after ALPPS
surgery (Supplementary Data S-III) signifies the initiation of
chromosomal replication and segregation during cell divisions.
It associated with a much earlier cell cycle entrance relative to
standard hepatectomy (Figure 1C; Supplementary Data S-IV),
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TABLE 1 | Comparing the intracellular signaling pathways (ISPs) of standard

(68%) hepatectomy and ALPPS 4h after surgery.

Intracellular signaling pathway PAS (68% Hx) PAS (ALPPS)

Androgen receptor pathway

(gonadotropin regulation)

0.080962033 0.170591759

Androgen receptor pathway (histone

modification)

0.080962033 0.170591759

Androgen receptor pathway (prostate

differentiation and development)

0.080962033 0.170591759

Androgen receptor pathway (sexual

differentiation and sexual maturation at

puberty)

0.080962033 0.170591759

ATM main pathway 0.069585724 0.164331506

ATM pathway (G2_M checkpoint

arrest)

0.192334187 0.758265977

BRCA 1 main pathway −0.01618013 −0.173732307

EGFR main pathway 0.062796782 0.101805817

ErbB family main pathway 0.05751811 0.172579526

GPCR pathway (gene expression) 0.068563364 0.123092979

HGF main pathway 0.062203501 0.112692194

HGF pathway (cell cycle progression) 0.337396472 0. 546430817

Hypoxia pathway EMT 1 0.084001749 0. 691549538

Hypoxia pathway EMT 2 0.084001749 0. 691549538

Hypoxia pathway EMT 3 0.084001749 0. 691549538

Hypoxia pathway EMT 4 0.084001749 0. 691549538

ILK Main Pathway 0.074326641 0.17275502

ILK Pathway (Apoptosis) 0.091947966 0. 169660241

ILK Pathway (Cell adhesion, cell

motility, opsonization)

0.095965334 0. 218655438

ILK pathway (cell cycle proliferation) 0.08622972 0.180086957

ILK pathway (cell migration, retraction) 0.094442075 0.206157845

ILK pathway (cell motility) 0.080839955 0.19368415

ILK pathway (cytoskeletal

reorganization)

0.115000716 0.249836663

ILK pathway (G2-phase arrest) 0.08622972 0.180086957

ILK pathway (induced cell proliferation) 0.197724934 0.186502548

ILK pathway (regulation of intermediate

filaments)

0.106090655 0.23979623

ILK pathway (regulation of junction

assembly of desmosomes)

0.095197611 0.216906194

ILK pathway (wound healing) 0.095197611 0.224489964

IL-10 pathway (stability determination) 0.053478054 1. 848219244

IL-2 main pathway 0.017026437 0. 113993181

lntegrin signaling main pathway 0.067439974 0.145964253

JNK pathway (apoptosis,

inflammation, tumorigenesis, cell

migration)

0.079482132 0.207123801

JNK pathway (insulin signaling) −0.07241052 −0.426061537

MAPK signaling main pathway 0.0519986 0.108187021

MAPK signaling pathway (cell survival,

inflammation, apoptosis,

osmoregulation)

0.212081896 0.229612073

MAPK signaling pathway (gene

expression)

0.091194477 0.149905425

mTOR pathway (actin organization) 0.059587334 0.128667337

(Continued)

TABLE 1 | Continued

Intracellular signaling pathway PAS (68% Hx) PAS (ALPPS)

p53 signaling (negative) main pathway 0.084470457 0.14626007

PAK main pathway 0.034655373 0.117954615

SMAD (negative) main pathway 0.139663741 0.315152085

SMAD (positive) main pathway 0.139663741 0.315152085

TGF beta pathway (SnON degradation) 0.166857414 0.576950547

TGF beta pathway (tumorigenesis) 0.238367734 0. 512365322

TGF beta pathway (tumor suppression) 0.238367734 0. 512365322

TNF (positive) pathway (gene

expression, cell survival)

0.157317821 0.326862624

VEGF pathway (actin reorganization) 0.114882119 0.070794654

Only ISPs with PAS values ≥0.1 are shown. The most significantly affected ISPs (PAS

values ≥ 0.5) are highlighted.

an earlier increased expression of cyclin E1 (Figure 1D) and a
decline of the cell cycle inhibitor p21 mRNA (Figure 1E). To
identify pathways that are most significantly different between
ALPPS and 68% hepatectomy, we performed a more stringent
analysis only including those pathways having PAS values ≥0.1.
We subsequently obtained 47 and 69 affected pathways after
4 and 8 h, respectively. Table 1 displays the PAS values of
these ISPs, demonstrating that the ALPPS procedure affects
the same ISPs as standard hepatectomy, but to a significantly
higher extent. Of particular interest are the highly significant
increased PAS values of the ATM Pathway (G2_M Checkpoint
Arrest), the HGF Pathway (Cell cycle progression), the EMT-
associated hypoxia pathways, and the IL-10 Pathway (Stability
determination). In addition, the three branches of the TGFβ
Pathway and 10 branches of the ILK Pathway were significantly
increased 4 h after ALPPS surgery (Table 1). The same set
of ISPs were retrieved comparing ALPPS-specific pathways to
those significantly affected 32 and 48 h after 68% hepatectomy
(Supplementary Data S-III).

Dissecting ALPPS-Induced Pathway
Activation Profiles
To further elucidate the molecular pathways responsible for
accelerated liver regeneration, hepatic RNA isolated during
the first 12 h after ALPPS, PVL, transection, LLLx, and sham
operation was analyzed. Unsupervised hierarchical clustering
separated the samples into two early groups (≤4 h post OP) and
two late groups (≥8 h post OP). The dendrogram presentation
revealed that ALPPS samples isolated 4 h after surgery grouped
together with all late samples of PVL and ALPPS (≥8 h post OP),
indicating an accelerated biological response after the ALPPS
procedure (Supplementary data S-XII). Principal Component
Analyses confirmed that the major dissimilarities between
surgical procedures occurred 4 h past surgery (data not shown).
In accordance with the expression data, the most distinctive
differences between the groups were observed 4 h after the
surgical procedures were performed. Principal Component
Analyses also confirmed that the major dissimilarities between
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FIGURE 2 | (A) Results of the principal component analysis 0.5, 1, 4, 8, and 12 h after surgery. Green dots, left lateral liver lobectomy (LLLx); Blue dots, Transection;

Red dots, portal vein ligation (PVL); Black dots, ALPPS. (B) Kinetics of the most significant PVL- and ALPPS-induced ISPs over time.

surgical procedures occurred 4 h after surgery (Figure 2A). The
observation that the samples of the same surgical procedures
hardly segregate (colored dots) underlines the excellent
reproducibility of the different surgical procedures. The PAS

data showed that ALPPS surgery significantly affected 72
ISPs, whereas PVL and transection affected 88 and 46 ISPs,
respectively. The kinetics of the most significant PVL- and
ALPPS-induced ISPs are presented in Figure 2B. Next, we
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constructed Venn diagrams to find common and distinctive
ISPs for ALPPS, PVL, and transection. As shown in Table 2,
all surgical procedures involve unique ISPs. After transection,
three unique ISPs are affected: the Glucocorticoid Receptor
Pathway (Gene expression), the Growth Hormone Pathway (Gene
expression), and the IL-2 Pathway (Actin reorganization). The
ALPPS procedure was marked by three unique upregulated
pathways [IGF1R Signaling Pathway (Cell survival), the ILK
Pathway (Induced cell proliferation), the IL-10 Pathway (Stability
determination), and the downregulation of the Interferon
Pathway (Transcription)], whereas the PVL procedure was by
twenty unique ISPs (For all ISPs see: Supplementary Data S-V;
For over-time heatmaps see: Supplementary Data S-VI).
Remarkably, the ISPs affected by ALPPS are not just the sum
of the ISPs affected by PVL plus transection, indicating that
the ALPPS procedure is synergistic rather than additive. To
define time-dependent ALPPS-specific ISP signatures indicated
by the shifted transcriptional landscape, we plotted the PAS
values as a function of time. Four hours after surgery, ten ISPs
presented with a significantly increased PAS value (Figure 3A),
five ISPs were significantly decreased (Figure 3B), whereas 19
ISPs demonstrated unique profiles (Figure 3C).

Identification of ALPPS-Specific
microRNAs
Our dataset contained 73 differentially expressed long non-
coding (lnc)RNA transcripts, of which 60 were identified
as pre-miRNAs (Supplementary Data S-VII). Assuming pre-
miRNA sequences as the precursors of mature miRNAs, we
further analyzed their expression patterns and effects on ISPs.
After removal of possible miRNA-targeted mRNA transcripts
not expressed in the liver, using miRTarBase software we
identified 28 known miRNAs, which together target 2,003
experimentally validated mRNAs (Supplementary Data S-VIII).
How the distribution of miRNA expression patterns changes
over time after ALPPS, PVL, and transection is presented in
Figure 4. We identified six miRNAs, which may serve prominent
roles in the biological processes involved in accelerated liver
regeneration. Mmu-miR 466i-3p and mmu-miR 466i-5p were
exclusively expressed 1 h after ALPPS surgery, whereasmmu-miR
675-3p andmmu-miR 675-5pwere exclusively observed 12 h after
ALPPS surgery. In addition, mmu-miR 3470a and mmu-miR-
3470b were detected 4 h after ALPPS surgery, whereas they first
appeared in the PVL samples 8 h post-surgery.

ISPs Analysis in Human ALPPS
Finally, we assessed to what extent the observations with our
mouse model of ALPPS reflect the biology of accelerated
liver regeneration in humans. Considering the difficulty of
sampling humans’ hepatic samples, we isolated RNA from
liver biopsies taken just before initiating and concluding
the first stage of the ALPPS procedure (4–5 h apart; n = 5).
Again, we built ISPs with normalized RNAseq expression data
using the OncoFinder software and plotted the PAS values of
the 35 most affected ISPs (Figure 5A). The heatmap clearly
demarcated two groups with similar ISP activation patterns
representing the biopsies taken from the occluded lobe and the

TABLE 2 | Activated and repressed ISPs unique for Transection, ALPPS, and PVL

4 h after surgery.

ISPs exclusively in ALPPS PAS

IGF1R signaling pathway (cell survival) 0.09677963

ILK pathway (induced cell proliferation) 0.18650255

IL-10 pathway (stability determination) 1.84821924

Interferon pathway (transcription) −0.47974021

ISPs exclusively in PVL

AKT pathway (cell cycle) 0.09431465

Androgen receptor pathway (cell survival and cell growth) 0.1243162

ATM pathway (cell survival) 0.05295231

cAMP main pathway 0.05587309

cAMP pathway (degradation of cell cycle regulators) −0.04355851

Erythropoeitin main pathway 0.04643793

Hedgehog pathway (repression of Hh, BMP) 0.08050423

HGF Pathway (Anoikis) 0.20617418

HIF1-Alpha main pathway 0.06045947

HIF1Alpha pathway (gene expression) 0.14085828

HIF1Alpha pathway (NOS pathway) 0.16252878

HIF1Alpha pathway (Pyruvate) 0.14085828

HIF1Alpha pathway (VEGF pathway) 0.13205464

IL-10 main pathway 0.27795708

lntegrin signaling pathway (cytoskeleton contraction integrin

modulation cell invasion and migration)

0.12105071

Interferon main pathway 0.03386061

IP3 main pathway 0.03666389

MAPK family pathway (gene Expression) 0.03057693

RAS main pathway 0.04229486

TGF beta pathway (post-transcriptional G1 arrest) 0.13784324

ISPs exclusively in transection

Glucocorticoid receptor pathway (gene expression) −0.01557421

Growth hormone pathway (gene expression) 0.02746121

IL-2 pathway (actin reorganization) 0.4806433

Positive PAS, activated ISPs; Negative PAS values, repressed ISPs. ISPs with PAS.

The most significantly affected ISPs (up and down) are highlighted.

FLR, respectively. Principal Component Analyses confirmed
the major dissimilarities between the two groups (Figure 5B).
The five most activated ISPs in the FLR were identified
as the STAT3 Pathway [G1_to_S_Cell_Cycle_Progression
and the STAT3 Pathway (Anti-Apoptosis)], the JAK-
STAT Pathway (Gene_Expression_via_MYC), the IL-10
Pathway (Stability determination), the Estrogen Pathway
(Vasodilatation), and the Akt-Signaling Pathway (Regulation
of Na+ transport). The five most repressed pathways
were identified as the Glucocorticoid Receptor Signaling
Pathway (Cell_Cycle_Arrest), the Glucocorticoid Receptor
Signaling Pathway (Histone_Deacetylation), the EGF
Pathway (Rab5_Regulation_Pathway), the IGF1R Signaling
Pathway (Glucose_Uptake), and the BRCA1 Pathway
(Base_Excision_Repair). A comprehensive list of all affected
pathways, including the PAS values, can be found in the
Supplementary Data (S-IX). Finally, we compared the ALPPS-
specific pathways identified in our mouse model to those
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FIGURE 3 | PAS values for common ISPs as a function of time after Transection-, PVL-, and ALPPS-surgery. (A) Relative to PVL and Transection, 10 ISPs presented

with a significantly increased PAS value 4 h after ALPPS surgery. (B) Significantly decreased ISPs 4 h after ALPPS surgery (relative to either PVL or transection).

(C) ISPs with a unique profile after ALPPS surgery.

obtained with human liver samples. As demonstrated in
Figure 5C, two of the four ALPPS-specific ISPs of mice are
also upregulated in humans, immediately after ALPPS surgery
step 1 [IGF1R Signaling Pathway (Cell survival) and the IL-10
Pathway (Stability determination)]. In contrast, the ILK Pathway
(Induced cell proliferation) and the IFN main pathway were
not significantly affected. In the human samples, we also
retrieved the ISPs that were highly and significantly enriched
in ALPPS when compared to standard hepatectomy, including
the ATM Pathway (G2_M Checkpoint Arrest), the HGF Pathway
(Cell cycle progression), the EMT-associated hypoxia pathways,
and the ensuing activation of the HIF1Alpha pathway via
Jun_CREB3 (Figure 5C).

DISCUSSION

The novel two-staged hepatectomy ALPPS, which combines
PVL plus a parenchymal liver transection, has gained increasing
interest among liver surgeons. Its importance lies in the
observation that ALPPS induces accelerated liver hypertrophy,
so that hepatectomy can be completed within a very short time
frame (7–10 days post stage 1). Previously, we reported that
the Ihh gene is one of the 50 most upregulated genes 4 h after

ALPPS surgery in mice and present in serum of patients shortly
after the ALPPS procedure (21). We here observed thatHedgehog
signaling is not unique to ALPPS surgery, since it is also activated
during normal liver regeneration after 68% hepatectomy—a
finding in accordance with earlier studies (32). Importantly,
however, hedgehog signaling after 68% hepatectomy was induced
primarily through shh, while ihh is the dominant morphogen
after ALPPS (21).

Our current data demonstrate that ALPPS surgery is unique
in that it induced an earlier activation of the cell cycle,
signified by increased expression of cyclin E1 and a decline
of the cell cycle inhibitor p21. In search of an ALPPS-specific
signature, we observed four ISPs that demarcated the ALPPS
procedure from PVL and transection. After ALPPS surgery,
the IGF1R Signaling Pathway (Cell survival), the ILK Pathway
(Induced cell proliferation), and the IL-10 Pathway (Stability
determination) were significantly enriched, whereas the activity
of the Interferon Pathway (Transcription) was reduced. The
IGF1R signaling pathway for cell survival has been associated
with early wound healing and liver cell proliferation via the
IGF1R/IRS1/ERK axis and activation of the cyclins A1 and
D1. Disrupting hepatic IGF1R signaling has been shown to
significantly impair hepatocyte proliferation in a mouse model
of liver regeneration, and IGFBP-1 null mutants show abnormal
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FIGURE 4 | miRNA expression patterns as a function of time after surgery (Transection, PVL and ALPPS). miRNAs specific for ALPPS, as well as miRNAs expressed

at an earlier time point, are highlighted in bold.

liver regeneration (33). Increased IGF1R signaling may thus
be reflecting an accelerated regeneration process. The integrin-
linked kinase (ILK) is a protein involved in transmitting
extracellular matrix signals and has been associated with the
termination of liver regeneration. Mice lacking hepatic ILK
expression cannot appropriately complete the liver regeneration
process, and DNA synthesis in such mice is prolonged (34). Our
data now indicate that a specific branch of the ILK pathway
is also crucial to the early phase of ALPPS-induced accelerated
liver regeneration, possibly contributing to the early matrix
production. ALPPS surgery is also unique in that it decreased the
IFN-Main Pathway and concomitantly induced a branch of the
IL10 Pathway. Earlier, it was reported that IFN-γ deficiency in
mice enhanced liver regeneration responses (35). In hepatocytes,
IFN-γ activates Stat-mediated signaling, leading to the activation
of p53, which together form transcriptionally active protein
complexes to induce the cell cycle inhibitor p21 (36). The reduced

IFN signaling may thus denote accelerated cell cycle progression
due to diminished p21 activity. Further, the dampening of IFN
signaling implies a role for IFN-γ producing cells, such as T
lymphocytes, NK and NKT cells. In response to surgery-inflicted
injury, these cells may receive signals not to enter the liver or
to silence their activity. The activation of NK and NKT cells
clearly impeded liver regeneration, which also involved IFN-γ
mediated STAT1 signaling (35). The increased activity of the
IL10 pathway is indeed suggestive of such scenarios, since it
functions to diminish inflammatory responses, hence preparing
an environment suitable for augmented regeneration as observed
after ALPPS surgery.

In addition to these ALPPS-specific signaling pathways,
we observed 10 ISPs activated at an earlier time point,
paralleling the hepatic mRNA levels peaking at 4 h post ALPPS
surgery. With nine distinctive branches, the ILK pathways
predominated these shifted ISPs. The integrin-linked kinase
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FIGURE 5 | (A) Hierarchical clustering heatmap based on the analysis of 374 intracellular signaling pathway activation profiles in human liver tissue (occluded lobe

compared to future liver remnant). Red, positive PAS scores; blue, negative PAS scores for a given pathway in a given sample. (B) Results of the principal component

analysis before and after the first step of ALPPS surgery of the human liver samples. (C) PAS values of ALPPS-specific pathways identified in our murine ALPPS

model compared to those obtained with human liver samples.

(ILK) is a PI3-kinase-dependent, serine/threonine protein kinase
that interacts with the cytoplasmic domains of both β1 and β3
integrins, possesses kinase activity, and controls an assortment
of biological activities (37). The wide-ranging functionality of
ILK pathways in numerous processes related to cell proliferation
and tissue remodeling (see: Figure 3A), as well as their early
and increased PAS values after ALPPS surgery, picture ILK as
a plausible key regulator of accelerated liver regeneration. The
earlier activation of one branch of the PAK pathway (myosin
activation), which is also a characteristic feature of ALPPS,
may reflect the above findings, since ILK and PAK1 cross-
regulate each other and together regulate cytoskeletal dynamics.
A function for PAKs has also been established in cell cycle
progression in cancers, in which PAKs are overexpressed or
hyper-activated (38).

Comparing standard hepatectomy with ALPPS surgery,
we demonstrated that 4 h after surgery the two procedures
predominantly differ quantitatively, not qualitatively. The
only ALPPS-specific signature was—as described above—the
suppression of the IFN Main Pathway, which clearly demarcated
ALPPS from standard hepatectomy. The majority of the affected
ISPs demonstrated a low but detectable activity after normal
liver regeneration. After ALPPS surgery, however, the activities
of these ISPs were dramatically increased. Of particular interest
are the four branches of the hypoxia-induced pathway, which are

8.2-fold higher in ALPPS than in standard hepatectomy. Hypoxia
signaling has been implicated in regulating the transition that
is necessary to produce the extracellular matrix but also to
initiate the regenerative capacity of EMT-like liver cells (39).
Although it has been proposed that in situ liver partition
contributes to hypoxia (40), our data explicitly demonstrate
that ligation of the portal vein suffices to induce the hypoxia
pathways (Supplementary Date S-I). Hypoxia of the FLR is thus
an immediate early event after PVL, probably due to an excess of
oxygen-poor blood from the portal vein, and a major trigger for
the accelerated ALPPS-induced regenerative response.

The importance of hypoxia as a driver of liver regeneration is
increasingly being recognized. Although HIFs have traditionally
been in the focus, HIF1A has been reported not to react toward
hypoxia in the liver. Interestingly, HIF1A’s cellular location
was associated with peroxisomes rather than the nucleus upon
exposure of hepatocytes to hypoxia (41). Conceivably, early
changes due to the altered portal flow may provide triggers
(such as activation of Kupffer cells, or the re-organization of
matrix) for regeneration but so far are unproven. When the
parenchyma expands, however, hypoxia develops in analogy to
a growing tumor. After 70%HX, hypoxia leads to HIF2A (but
not HIF1A) activation, which promotes hepatocyte mitosis and
induces VEGF production for the later angiogenic phase (42).
Thus, hypoxia imprints timely order on regeneration, with the
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start of the angiogenic phase coupled to the successful completion
of hepatocyte division. Recently, unspecific activation of HIFs
by ethyl-3,4-dihydroxybenzoate was shown to accelerate PVL
regeneration to ALPPS levels but had no discernible effect on
liver metastases (40, 43). Induction of the HIF pathway may thus
be a first clinical approach to improving liver regeneration after
68% hepatectomy or PVL.

Further, three branches of the TGFβ-pathway, the IL10-
Pathway (stability determination), and the ATM-pathway (G2-
M_Checkpoint_Arrest) are significantly enriched after the
ALPPS procedure. At the molecular level, one of the key
mediators of regenerative responses is the secreted cytokine
transforming growth factor-β (TGFβ) (44). The same branch of
the IL-10-pathway (stability_determination) is again recovered.
Relative to normal hepatectomy, the activity of the ATM main
pathway and its specific branch for G2-M checkpoint arrest
were significantly increased 4 h post ALPPS surgery. The G2-M
DNA damage checkpoint is an important cell cycle checkpoint
ensuring that cells do not initiate mitosis before repairing
damaged DNA after replication. Cells that have a defective G2-
M checkpoint enter mitosis before repairing their DNA, leading
to death after cell division.

Our comprehensive analysis demonstrated that the distinct
surgical procedures underlying ALPPS surgery—PVL and
transection—are discernible by a distinctive set of activated
and repressed ISPs. It also revealed that ALPPS surgery is
not merely an addition of the pathways induced by PVL plus
Transection. Although the molecular mechanism for this
synergism is currently unclear, it might be explained by the
presence and involvement of several unique ALPPS-specific
microRNAs. MicroRNAs (miRNAs) are short, single-stranded
RNAs that modify gene expression at the post-transcriptional
level and are heavily involved in the spatiotemporal control of
gene expression during the entire process of liver regeneration.
The number, nature and level of expressed miRNAs profoundly
depends on the organism studied, the activation status and
microenvironment of cells, as well as other unidentified
factors. In rats and mice, several miRNAs have been linked
to liver regeneration, including miR19a, miR21, and miR214
(45). Here, we recognized 28 precursor transcripts of 28
miRNA present after liver surgery (Transection, PVL, and
ALPPS) and identified four that were uniquely and specifically
enriched after ALPPS surgery.Mmu-miR 466i-3p and mmu-miR
466i-5p were uniquely expressed immediately after ALPPS
surgery, indicating they may underlie the initiation of the
accelerated regeneration process by deactivating the mRNAs
of cell cycle inhibitors. Indeed, miR 466i-3p and mmu-miR
466i-5p intervene with many targets of ISPs that keep the cells
committed and prevent them from preparing for cell cycle
entry, including the PAK Pathway (Actin_Organization), the
p38 pathway (Actin-Cytoskeleton_reorganization), the MAPK
signaling pathways, and the Jnk Pathway (Gene expression
Apoptosis Inflammation_Tumorigenesis_Cell-Migration) (see
Supplementary Data S-X). Likewise, mmu-miR 3470a and
mmu-miR-3470b were uniquely detected 4 h after the ALPPS
procedure and accordingly coincided with the ALPPS-
specific shift described earlier (21). Mmu-miR 675-3p and

mmu-miR 675-5p, both exclusively observed 12 h after ALPPS
surgery, exert a narrower range of biological activities, mainly
silencing anti-proliferative pathways. Indeed, miR-675 and its
precursor long-non-coding RNA, H19, contribute to increased
proliferation, and apoptosis inhibition (46). These ALPPS-
specific miRNAs may cooperate so that the earlier described
ALPPS-specific ISPs become prevalent—unhindered from
competing inhibitory signals and/or ISPs. Also of interest is the
observation that six of the 28 detected miRNAs target the PTEN
gene (mmu-miR-17-5p, mmu-miR-18a-5p, mmu-miR-19a-3p,
mmu-miR-19b-3p, mmu-miR-20a-5p, and mmu-miR-410-
3p), thus enhancing PI3-Kinase/Akt signaling and fatty acid
metabolism. The downregulation of PTEN may fuel liver growth
after hepatectomy due to increased β-oxidation (47).

Comparing the human data to the murine data, we observed
that they have several ISPs in common and that the direction
of change is the same, indicating our ALPPS model reflects
the major changes of accelerated regeneration in humans at the
molecular level. That not all ALPPS-specific ISPs observed in
mice are retrieved in human liver tissue may reflect distinct
kinetics of the liver regeneration process: sufficient regeneration
in our mice model is achieved 2 days post-surgery, while it
takes 7–10 days in humans. Still, the data signify that our
murine ALPPS model—despite differences—may be useful to
gain insight into the molecular background underlying ALPPS-
induced accelerated liver regeneration in humans. Considering
the close match between ISPs in mice and humans, deeper
exploration of our ALPPS model may disclose essential leads
to the development of potential therapeutic strategies targeting
specific ISPs, in particular those that counteract responses of the
immune system.

We realize that our results require further biological
validation, since RNAseq data do not give insights into protein
expression changes or activities of proteins belonging to a specific
pathway. Still, our study provides a comprehensive framework of
the signaling pathways involved in normal and accelerated liver
regeneration, which is now available for further exploration.
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The diagnosis of the primary origin of metastases to the thyroid gland is not easy,

in particular in case of concomitant lung adenocarcinoma which shares several

immunophenotypical features. Although rare, these tumors should be completely

characterized in order to set up specific therapies. This is the case of a 64-years-old

woman referred to our institution for a very advanced neoplastic disease diagnosed both

as poorly differentiated/anaplastic thyroid cancer (PDTC/ATC) for the huge involvement of

the neck and concomitant lung adenocarcinoma (LA). Neither the clinical features and the

imaging evaluation nor the tumor markers allowed a well-defined diagnosis. Moreover,

the histologic features of the thyroid and lung biopsies confirmed the synchronous

occurrence of two different tumors. The molecular analysis showed a c.34G>T (p.G12C)

mutation in the codon 12 of K-RAS gene, in both tissues. Since, this mutation is highly

prevalent in LA and virtually absent in PDTC/ATC the lung origin of the malignancy was

assumed, and the patient was addressed to the correct therapeutic strategy.

Keywords: cancer, thyroid cancer, lung cancer, mutation—genetics, molecular oncology

BACKGROUND

Metastases to thyroid gland (TGM) from other primary tumors are rare entities and frequently
reported in autoptic series (1, 2). The incidence of TGM widely varies in different series and
has been related both to the site of the primary tumors and the ethnicity of the patients. TGM
are more frequently caused by breast, lung, and kidney cancer (3–5). TGM has been reported
also in case of gastrointestinal tract cancer, mainly in the Asian population (6, 7). The clinical
presentation could be characterized by a rapid growth of a thyroid nodule with marked symptoms
of dysphagia and/or dysphonia. In other cases, TGM show a clinical silent course without specific
symptoms and were occasionally discovered after imaging procedures (neck US, CT scan, 18fdgPET-
CT, etc.) during the assessment of the primary tumor (2, 4). Concomitant metastases in other
organs are hardly ever present, and thyroid function is usually not compromised. Differential
diagnosis with primary thyroid cancer may be done by fine needle aspiration cytology followed
by immunocitochemistry evaluation. However, it is not easy to distinguish thyroid cancer from a
thyroid metastasis particularly if derived from lung adenocarcinoma. Indeed, thyroid cancer and
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lung adenocarcinoma could have several common
histopathologic features such as pale nuclei, finely granular
chromatin, occasional nuclear grooves, and intra-cytoplasmic
inclusions (2, 8, 9) that can make difficult a well-defined
distinction between the two cancer entities even after the biopsy.
Thus, in these cases, other techniques are required to perform
a differential diagnosis that is crucial for choosing the best
therapeutic strategy. We report a case of lung TGM for which
we needed to turn to a next generation sequencing method to
analyze specific molecular alterations to distinguish a primary
thyroid cancer from a TGM.

CASE PRESENTATION

A 64-years-old woman was referred to our institution for
a second opinion about a very advanced neoplastic disease
involving both the thyroid and the lung. The initial diagnosis was
a poorly differentiated/anaplastic thyroid cancer (PDTC/ATC)
with lung and bone metastases. The tumor mass was considered
not surgically resectable because of the infiltration of the
thyroid and cricoid cartilages, as well as of the carotid artery
and the right jugular vein. An emergency tracheotomy with
position of the 6mm Shiley cannula because of the severe
dyspnea, was performed. After the exclusion of contraindications
and the placement of peripherally central catheter (PICC) in
superior vena cava, a chemotherapy with Taxol (80 mg/m2) and
Carboplatinum (AUC = 2) once weekly for 4 weeks, every 6
weeks, was performed and completed.

When the patient was referred to our Department, we
discovered that she was a strong and old smoker (about 20
cigarettes daily for about 40 years). The physical examination
showed hypotonic and hypotrophic muscles, and the presence
of the enlargement of the neck with a large stiff mass;
some palpable lymph nodes were evident in latero-cervical
compartment, bilaterally. No other abnormalities were noted at
physical examination except for the presence of tracheotomy.
The patient was in medical therapy with atenolol for sporadic
arrhythmia, steroids as anti-edema and omeprazole for gastric
pain prevention.

To assess the neoplastic status of the patient, we performed
a total body CT scan with i.v. contrast medium that showed the
presence of multiple metastatic lymph nodes (max diam 17mm
in the right latero-cervical region) and a large thyroid gland with
increased dimension in particular in the right lobe (Figure 1A).
Moreover, the CT scan showed a large mass (9.0 × 4.5 cm) in
the mediastinum, linked to the thyroid mass, involving the left
upper lung lobe and occluding the left pulmonary artery branch
(Figure 1B). Multiple metastatic lymph nodes were evident in
paratracheal and paraesophageal regions. Two sclerotic lesions of
L11 and D6 were also discovered.

Surgery was not indicated for the huge infiltration of the
nearby vital structures. Radiotherapy counseling excluded the
possibility to perform an external beam radiotherapy (EBRT)
for the extension of the disease. Orthopedic counseling did not
indicate any treatment for L11 and D6 lesions because there was
no evidence of vertebral fractures. The only therapeutic option

could be a systemic therapy, themost possible specific for the type
of malignancy.

Serum tumor markers were all elevated and did not provide
any specific information. In particular, Ca 125 was 35.9 U/ml
(<35), Ca 15.3 was 169.3 U/ml (<25), Ca 19.9 was 59.3
U/ml (<39), CEA was 8.3 ng/ml (<5.2), CYFRA 21.1 was 8.8
ng/ml (<3.3).

Bronchoscopy showed the paralysis of left vocal cord with
hypomobility of the right, arytenoids edema with reduced
glottic space; the exploration of the bronchial tube showed the
infiltration of the left upper lobe bronchus (LULB) with massive
stenosis. Then, we performed a LULB brushing and a biopsy. To
confirm the histological diagnosis, we decided to perform a Tru-
Cut biopsy with 3 biopsies samples (2 left and 1 right) on the
neck mass.

The thyroid Tru-Cut biopsy showed a poorly differentiated
thyroid carcinoma (PDTC) with several anaplastic areas
(Figure 1C). The immunohistochemistry for the thyroid specific
proteins was TTF-1 focally positive, Tg, and PAX-8 negative
(Figures 1E–G). The bronchus brushing showed the presence
of an adenocarcinoma with widespread mucinous aspects,
confirmed by biopsy (Figure 1D). The immunohistochemistry
was CK7 positive, TTF-1, Napsin A, Tg, and PAX-8 negative
(Figures 1H–J).

We than hypothesized that the patient could have two
different types of cancer, PDTC/ATC of the thyroid and a
mucinous adenocarcinoma of the lung. To solve this question,
we decided to perform the molecular analysis of both the thyroid
and bronchus biopsies.

The analysis was performedwith a next generation sequencing
method based on DNA extraction and MALDI-TOF mass
spectrometry from paraffin-embedded tissues using CE-IVD
validated kits “Myriapod Lung Status” on the “MassARRAY
system” (Sequenom). Data were analyzed using the software
“MassARRAY Analyzer 4” and “iGenetics Myriapod” (Diatech
Pharmacogenetics). The analyzed genes were selected from a
series of genes whose alterations are different in the two types
of the tumors (Table 1) (10, 11).

Both, thyroid (Figures 1K,L) and lung (Figures 1M,N)
samples showed the substitution c.34G>T (p.G12C) in the codon
12 of K-RAS gene, while all the other mutations analyzed
were negative. The patient was referred to the oncology unit
who agreed with our hypothesis that the thyroid mass could
be a metastasis of the lung adenocarcinoma. The patient was
submitted to other 4 cycles of chemotherapy with the same
scheme previously performed, but she died 3 months later.

DISCUSSION

There are some oncologic cases whose diagnoses are not
easy because of the severe degree of de-differentiation of the
tumor cells. This differential diagnosis is particularly difficult
when a thyroid malignant lesion and a lung malignant
lesion are simultaneously present in the same patient.
Immunohistochemistry for some specific thyroid genes and
corresponding proteins can be helpful, but we have to consider
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FIGURE 1 | (A) CT scan section of thyroid neoplasia. (B) CT scan section of lung neoplasia. (C) Undifferentiated carcinoma with marked nuclear atypia intermixed to

thyroid follicles in thyroid Tru-cut. Magnifications: x200. (D) Adenocarcinoma with mucinous differentiation in bronchial biopsy. Magnifications: x200. (E–G)

Immunohistochemistry in thyroid Tru-cut showing focal immunoreactivity for TTF-1 and absence of immunoreactivity for Thyroglobulin and PAX-8 markers. Original

magnifications: x200. (H–J) Immunohistochemistry in bronchial biopsy showing absence of immunoreactivity for TTF-1, Thyroglobulin, and PAX-8 markers. Original

magnifications: x200. (K,L) Mass spectrometry of thyroid neoplasia with substitution c.34G>T (p.G12C) in the codon 12 of kRAS gene. (M,N) Mass spectrometry of

lung neoplasia with substitution c.34G>T (p.G12C) in the codon 12 of kRAS gene.
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TABLE 1 | Genetic mutations of LA, PDTC, and ATC.

LA PDTC ATC

EGFR* 14% / /

ALK* / 4% /

RET* / 6% /

MET 7% / /

nRAS* / 21% 18%

hRAS / 5% 6%

kRAS* 33% 2% /

BRAF* 10% 33% 45%

PIK3CA* 7% 2% 18%

pTEN / 4% 15%

EIF1AX / 11% 9%

TERT* / 40% 73%

NF1 11% / 9%

TSH-R / 2% 6%

STK11 17% 1% 6%

PAx8/PPAR gamma / 4% /

TP53 46% 8% 73%

ATM / 7% 9%

RB1 4% 1% 9%

PI3K/AKT / 11% 39%

SWI/SNF / 6% 36%

HMTs / 7% 24%

MMR / 2% 12%

KEAP1 17% / /

LA, Lung Adenocarcinoma; PDTC, Poorly Differentiated Thyroid Carcinoma; ATC,

Anaplastic Thyroid Carcinoma; *Genes analyzed in our samples after DNA extraction with

MALDI-TOF mass spectrometry [EGFR (Exon 18, mutation and deletion of codon 709

and 719; Exon 19, mutation and deletion of codon 744–759; Exon 20, mutation and

insertion of codon 767–775 and 790; Exon 21, mutation of codon 833, 835, 848, 854,

858, and 861); kRAS (Mutation codon 12, 13, 61); nRAS (Mutation in codon 12 and 61);

BRAF (Mutation in codon 466, 469, 594, 597, 600); PIK3CA (Mutation in codon 542, 545,

1,043, 1,047); ALK (Mutation in codon 1,156, 1,196, 1,269); ERBB2 (Mutation in exon

20); DDR2 (Mutation in codon 239, 638, 768); MAP2K1 (Mutation in codon 56, 57, 67);

RET (Mutation in codon 918); TERT (Mutation C228T)].

that thyroid transcription factor-1 (TTF-1) can be expressed
by both thyroid cancer and lung adenocarcinoma (12) while
thyroglobulin (Tg) is specific of thyroid cancer but, in PDTC,
and even more in ATC cases, its expression is almost completely
lost. Similarly, some serum tumor marker, such as CYFRA 21-1,
could be elevated in the majority of lung carcinoma (13) but,
although to a lesser extent, also in some cases of PDTC/ATC
(14). Based on these considerations, neither the highly elevated
values of serum tumor markers (e.g., CYFRA 21-1, CEA, Ca 125,
Ca 15.3, or Ca 19.9) nor the positivity at immunohistochemistry
of some thyroid specific genes (e.g., TTF-1 and PAX-8) were able
to distinguish the two histologies.

Both thyroid cancer and lung adenocarcinoma can have
mutations of genes involved in the MAP kinase pathways and
some of them are almost exclusive of either lung adenocarcinoma
or PDTC/ATC (Table 1) (10, 11, 15). It is indeed known that K-
RAS is frequently mutated in lung adenocarcinoma and very rare
or completely absent in PDTC and ATC, respectively (10, 11, 16).
Moreover, themost common type of K-RASmutations in thyroid

cancer are Q61K, Q61R, and G12V (10, 17). It is worth noting
that in several recent papers, which analyzed more than one
thousand molecular profiles of PDTC/ATC by next generation
sequencing, no K-RASG12Cmutation was found (10, 16, 18, 19).
At variance, K-RAS p.G12Cmutation is one of themost common
type of K-RAS mutation in LA (11).

Currently, the presence of a K-RAS mutation identifies a
subgroup of lung adenocarcinoma with a very poor prognosis
(20), as confirmed by the very short survival of our patient.

Otherwise, in a prospective way, the importance of
distinguishing the two tumors could be crucial to perform
the right treatment. Indeed, the association of dabrafenib
and trametinib demonstrated a robust clinical activity for
the treatment of ATC with BRAF V600E mutation and was
approved in USA from FDA (21). Also in case of LA, molecular
targeted therapy are available and, the results from the phase
III SELECT-1 trial including farnesyl transferase inhibition and
synthetic lethality partners such as STK 33 showed promising
biological activity against LA, in particular in p.G12C K-RAS
mutated patients (22).

Moreover, in our case, not only the positivity of K-RAS
mutation in both specimens, strongly supported the hypothesis
that the thyroid mass could be a metastasis of the lung
adenocarcinoma, but also its position in the lung lobe. The
localization in the upper lobe is peculiar of the LA (23, 24), while
PDTC/ATC metastases are usually multiple and located at the
basis of the lung.

CONCLUSIONS

This case represents a typical, although rare, case in which
the diagnosis of the malignancy was based on the molecular
signature more than the localization of the tumor mass and its
immunohistochemical and biochemical features. The case is of
interest since strongly demonstrates that nowadays the histology,
especially in more complicated and not well-differentiated cases
that can require specific therapies, needs to be associated with a
molecular pathology analysis.
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Circular RNA (circRNA), a type of RNA that is widely expressed in mammalian cells, is
considered to be essential in tumorigenesis. CircRNA can regulate target gene expression
by interacting with the corresponding microRNA (miRNA). Our preliminary results showed
that the expression levels of 1,817 circRNAs were significantly different in colon cancer
tissue compared with paracancerous tissue, of which 1,236 were upregulated and 581
were downregulated. By using RT-PCR, we confirmed that the expression of
hsa_circ_0007843, hsa_circ_0010575, hsa_circ_0007331, and hsa_circ_0001615 was
significantly higher in colon cancer tissue than in normal colonic tissue; however, the
expression levels of hsa_circ_0014879 and hsa_circRNA_401801 were not significantly
different between normal and neoplastic colonic tissue. Among the circRNAs that were
confirmed to be upregulated in colon cancer tissue, hsa_circ_0007843 was also found to
be highly expressed in colon cancer SW480 cells. Overexpression of hsa_circ_0007843
promoted the invasion and migration of SW480 cells, whereas its downregulation
suppressed their invasion and migration. Overexpression of hsa_circ_0007843
promoted tumor growth, whereas its downregulation inhibited tumor growth. We found
that hsa_circ_0007843 interacted with miR-518c-5p and suppressed its expression, and
miR-518c-5p interacted with matrix metallopeptidase 2 (MMP2) and promoted its
expression and translation. Taken together, this study demonstrated that
hsa_circ_0007843 acted as an miRNA sponge to regulate MMP2 expression by
removing the inhibitory effect of miR-518c-5p on MMP2 gene translation, which further
affected the invasive capability of SW480 cells.

Keywords: hsa_circ_0007843, matrix metallopeptidase 2, miR-518c-5p, colon cancer, invasion, migration
Abbreviations: ceRNA, competing endogenous RNA; circRNA, circular RNA; miRNA, microRNA; MMP2, metalloproteinase
2; NC, negative control; NCI, negative control inhibitor; RT-PCR, reverse transcription polymerase chain reaction; UTR,
untranslated region.
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INTRODUCTION

Colon cancer, a common gastrointestinal tumor, remains a
serious threat to human health with the 3rd highest morbidity
and mortality rate worldwide (Siegel et al., 2017). The
development of colon cancer is a multistep process in which
the abnormal expression of genes plays an important role (Qi
and Ding, 2018). Although colon cancer has been studied widely,
its pathogenesis is not fully understood. Hence, in-depth studies
are required for the further elucidation of the molecular
mechanism involved in the carcinogenesis of human colon
cancer, which will provide new insights for the diagnosis,
prognosis, and treatment of colon cancer.

Circular RNA (circRNA), a newly discovered non-coding
RNA, has become a research hotspot in relevant fields. Unlike
a linear RNA molecule that contains a 5′ cap and a 3′
polyadenylation tail, circRNA forms a covalently closed
continuous loop and therefore does not have 5′ and 3′ ends
(Memczak et al., 2013; Wang et al., 2018). CircRNAs are largely
expressed in the eukaryotic transcriptome and participate in the
regulation of gene expression (Guttman and Rinn, 2012; Holdt et
al., 2018) and can therefore be considered essential in
tumorigenesis (Arnaiz et al., 2018).

CircRNAs can regulate target gene expression by interacting
with corresponding microRNAs (miRNAs) (Zhang et al., 2015).
CircRNAs can function as miRNA “sponges” and regulate gene
transcription (Hansen et al., 2013; Sang et al., 2018). For
example, circRNA-ITCH increases ITCH gene expression by
acting as an miRNA sponge by interacting with miR-7, miR-17,
and miR-214. Overexpression of ITCH promotes the
ubiquitination and degradation of phosphorylated Dv12
protein, thereby inhibiting the Wnt signaling pathway and
suppressing the progression of cancer (Li et al., 2015).
circRNA-000284 affects proliferation and invasion of cervical
cancer cell via sponging miR-506 (Ma et al., 2018).

In the present study, we retrospectively collected colon cancer
tissue samples from newly diagnosed patients. By using
microarray analysis, we examined the circRNA expression
profile of colon cancer tissue. CircRNAs whose expression
levels were confirmed to be altered in colon cancer tissue were
subjected to further in vitro analysis. By studying the biological
function of the identified circRNAs and the molecular
mechanism involved, we hope to provide invaluable
information for the diagnosis, prognosis, and treatment of
colon cancer.
MATERIALS AND METHODS

Sample Collection
Clinical tissue specimens from patients newly diagnosed with
colon cancer were obtained from the archives of the Central
Hospital of Panyu District with informed consent from the
patients and with the approval of the institutional Ethics
Committee (Guangdong, China). In this study, we collected
tumor tissue and paired normal adjacent tissue from 30
patients with colon cancer. All of the samples were collected at
Frontiers in Genetics | www.frontiersin.org 259
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Guangzhou from 2013 to 2018. The patients ranged in age from
45 to 82 years, with an average age of 65.66 ± 12.14 years (20
men, average age 61.8 ± 10.39 years; 10 women, average age
65.6 ± 13.69 years). None of the patients received radiotherapy or
chemotherapy before surgical resection of the pathological tissue.
All of the tissue samples were immediately snap-frozen in liquid
nitrogen after surgical excision and stored at −80°C until total
RNA was extracted for further experimentation. Basic
information of the 30 selected subjects selected in this study is
shown in Table 1.

Cell Culture
293T, FIHC, HCT-116, HT-29, SW480, LOVO, and SW620 cell
lines were purchased from Yu Jia Bio Technology Co.
(Guangzhou, China). The cell lines were cultured in Dulbecco’s
Modified Eagle’s Medium/Nutrient Mixture F-12 Ham (DMEM/
F12) containing 10% fetal bovine serum and were maintained in
a humidified incubator at 37°C with 5% CO2. The medium was
changed every other day, and the cells were grown to 80–90%
confluence and digested with 0.25% trypsin and sub-cultured.
Cells in logarithmic growth with 95% viability were subjected to
further experimentation.

CircRNA Microarray Analysis
Total RNA was extracted from the colon cancer tissue samples
and paracancerous tissues (separated by a margin of 5 cm) with
the TRIzol reagent (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instruction.

The tissue samples were sent to KangChen Bio-tech Inc.
(Shanghai, China) for circRNA microarray analysis using a
human 8×15K circRNA array (Arraystar Inc., Rockville, MD),
which contains 9114 circRNA probes. Each circRNA was
identified by using a specific probe that targets the specific
splice junction of circRNA. Sample labeling and array
hybridization were performed according to the manufacturer’s
protocol (Arraystar, Inc.). The R software package (R version
3.1.2) was used to normalize the raw data and subsequent data
processing. Two groups of profile differences (tumor samples vs.
paracancerous tissue samples) and the absolute fold change for
each circRNA were computed.

Quantitative Real-Time RT-PCR
M-MLV reverse transcriptase was used for the reverse
transcription of mRNA to cDNA, which was later used as the
February 2020 | Volume 11 | Article 9
TABLE 1 | The bascial data analysis of the 30 patients.

Indicator

Male (n) 20
Female (n) 10
Mean age of male (years) 61.8 ± 10.39
Mean age of female (years) 65.6 ± 13.69
TNM stage
(I/II/III/IV ) 6/1/2/18/3
Tumor volume (<5 cm) (n) 12
Tumor volume (>5 cm) (n) 18
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PCR template. Each experiment was performed in triplicate. The
expression levels of U6 and b-actin were used as an internal
control for mRNAs. The primers used in quantitative real-time
PCR analysis are shown in Table 2.

Cell Transfection and Grouping
The design and synthesis of small interfering RNAs (siRNAs)
for hsa_circ_0007843 and matrix metallopeptidase 2 (MMP2),
the construction of a lentiviral vector overexpressing miR-
518c-5p, and the construction of a lentiviral vector expressing
si-hsa_circ_0007843 were conducted by Sangon Biotech Co.,
Ltd. (Shanghai, China). A lentiviral vector overexpressing
hsa_circ_0007843 was produced by Jisai Biotech Co., Ltd.
(Guangzhou, China). An inhibitor for miR-518c-5p was
purchased from RiboBio Co., Ltd. (Guangzhou, China).
Transfection was performed using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions
(Table 3). The transfected cells were divided into six
groups: control group (no infection), hsa_circ_0007843
group ( in fec ted wi th l en t iv i ra l vec tor expres s ing
hsa_circ_0007843), si_hsa_circ_0007843 group (infected
with lentiviral vector expressing si_hsa_circ_0007843), miR-
518c-5p group (infected with lentiviral vector overexpressing
miR-518c-5p), si-MMP2 group (transfected with si- MMP2),
and NC group (infected with lentiviral vector expressing
negative control sequence).

Colony Formation Assay
The cells were divided into four groups: control group (no
infection), hsa_circ_0007843 group (infected with lentiviral
vector expressing hsa_circ_0007843), si_hsa_circ_0007843
group ( in fec ted wi th lent iv i ra l vec tor express ing
si_hsa_circ_0007843), and NC group (infected with lentiviral
vector expressing negative control sequence). SW480 cells in
logarithmic growth were plated at a density of 100 cells/well in a
6-well plate and incubated at 37°C with 5% CO2 for 1 week. The
supernatant in each well was discarded and the cells were washed
twice with 1× phosphate-buffered saline (PBS). The cells were
fixed for 15 min in 4% paraformaldehyde and stained for 15 min
with crystal violet in methanol. Upon discarding the staining
solution, the plates were allowed to air-dry, and the colonies were
observed under a microscope.
Frontiers in Genetics | www.frontiersin.org 360
Scratch-Wound Assay
The cells were divided into four groups: control group (no
infection), hsa_circ_0007843 group (infected with lentiviral
vector expressing hsa_circ_0007843), si_hsa_circ_0007843
group ( in fec ted wi th lent iv i ra l vec tor express ing
si_hsa_circ_0007843), and NC group (infected with lentiviral
vector expressing negative control sequence). Cells in
logarithmic growth were plated and allowed to grow until
100% confluence was reached. The cell monolayer was scraped
in a straight line with a pipette tip to create a gap. Debris was
removed by washing the cells 3 times with 1× PBS. Culture
medium was added and the cells were allowed to grow for 24 and
48 h. Microscopic images were taken at 0, 24, and 48 h. For each
image, the distance between the two edges of the scratch was
measured using ImageJ software.

Transwell Assay
The cells were divided into four groups: control group (no
infection), hsa_circ_0007843 group (infected with lentiviral
vector expressing hsa_circ_0007843), si_hsa_circ_0007843
group ( in fec ted wi th lent iv i ra l vec tor express ing
hsa_circ_0007843 siRNA), and NC group (infected with
lentiviral vector expressing negative control sequence).
Matrigel (Beijing Xia Si Biotechnology Co., Ltd., Beijing,
China) was diluted in pre-chilled serum-free medium at a
volume ratio of 1:3, and 40 mL pre-chilled serum-free medium
was added into the pre-chilled transwell chamber. The Matrigel
was solidified by incubation at 37°C for 2 h. The excess liquid was
removed from the chamber and 100 and 600 mL serum-free
medium was added to the upper and lower chamber,
respectively. The plate containing the transwell chambers was
incubated overnight at 37°C. On the day after cell transfection,
1.0 × 105 cells were re-suspended in 100 mL serum-free DMEM-
F12. The cells were added to the upper transwell chamber, and
600 mL complete medium was added to the lower chamber at the
same time. After incubation at 37°C with 5% CO2 for 24 and 48
h, the surface cells and Matrigel in the upper chamber were
removed using a cotton swab and the cells were observed under
an inverted microscope. The cells at the lower surface of the
upper chamber were stained with crystal violet and washed with
33% acetic acid. The absorbance of the solution was measured at
570 nm.
TABLE 2 | The primer for gene.

Gene The sequence for primer Length (bp)

b-actin(H) F:5′-GTGGCCGAGGACTTTGATTG-3′; R:5′;-CCTGTAACAACGCATCTCATATT-3′; 73
hsa_circ_0007843 F:5′;-TCCGAAGATGGCTGAATGTG-3′; R:5′;-TCCCAATCAGGCCGCTCT-3′; 151
hsa_circ_0010575 F:5′;-CTGCCATCCAGGTGTGAA-3′; R:5′;-AGTCGTGGACGAGGAAGC-3′; 137
hsa_circ_401801 F:5′;-CAGTTTGCTGTTCATGGAGAC-3′; R:5′;-GGTGGGGACTGGTGCTAT-3′; 121
hsa_circ_0001615 F:5′;-TGATCGAACTGGCAGACG-3′; R:5′;-CTCCAGGAACACTTTGAGGA-3′; 128
hsa_circ_0007331 F:5′;-GAATGGGATTCGAGACCTG-3′; R:5′;-TTCTTCCAAAGCTGCCTGT-3′; 122
hsa_circ_0014879 F:5′;-TCTCCCTGTACGTTCTTATCTGC-3′; R:5′;-CTGCTCCCTTTGCTGGACATC-3′; 197
b-actin(H) F:5′;-GTGGCCGAGGACTTTGATTG-3′; R:5′;-CCTGTAACAACGCATCTCATATT-3′; 73
miR-518c-5p F:5′;-ATGGTTCGTGGGTCTCTGGAGGGAAGCACTTTC-3′; R:5′;-GTGCAGGGTCCGAGGT-3′; 89
MMP2 F:5′;-GATGCCGCCTTTAACTGG-3′; R:5′;-TCAGCAGCCTAGCCAGTCG-3′; 278
RT(miRNAs) 5′;-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTTCCCAT-3′;
February 2020 | Volume 1
1 | Article 9
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In Vivo Treatment
The cells were divided into four groups: control group (no
infection), hsa_circ_0007843 group (infected with lentiviral
vector expressing hsa_circ_0007843), si_hsa_circ_0007843
group (infected with lentiviral vector expressing si-
hsa_circ_0007843), and NC group (infected with lentiviral
vector expressing negative control sequence). A total of 20
athymic BALB/c nude mice (weight, 18–20 g) were purchased
from Guangdong Medical Laboratory Animal Center (Foshan,
China; animal production license, NO: 440035458020). Five cell
lines (SW480, SW480-NC, hsa_circ_0007843-SW480, and si-
circ_0007843-SW480) were digested with 0.25% trypsin, washed
with PBS, counted by trypan blue staining, and adjusted to a
concentration of 1.0 × 106 cells/mL, and 0.1-mL aliquots were
used each time. After mixing with Matrigel (Beijing Xia Si
Biotechnology Co., Ltd.), the cells were injected subcutaneously
between the abdominal ribs of specific pathogen free-grade male
nude mice aged up to 4 weeks. The tumor weight of the mice
was observed.

Luciferase Reporter Assay
The cells were divided into the following groups: control
g roup (ps iCHECK-2-c i rRNA/ps iCHECK-2-mRNA,
psiCHECK-2-cirRNA-mut/psiCHECK-2-mRNA-mut),
inhibitor group (inhibitor for miRNA + psiCHECK-2-
cirRNA/psiCHECK-2-mRNA, psiCHECK-2-cirRNA-mut/
psiCHECK-2-mRNA-mut), NC group (negative control
sequence + psiCHECK-2-cirRNA/psiCHECK-2-mRNA or
psiCHECK-2-cirRNA-mut/psiCHECK-2-mRNA-mut), NCI
group (inhibitor for negative control + psiCHECK-2-
cirRNA/psiCHECK-2-mRNA or psiCHECK-2-cirRNA-mut/
psiCHECK-2-mRNA-mut sequence), and hsa_miR-518c-5p
group (hsa_miR-518c-5p mimics + psiCHECK-2-cirRNA/
ps iCHECK-2-mRNA or ps iCHECK-2-c i rRNA-mut/
psiCHECK-2-mRNA-mut). Genomic DNA was extracted
from SW480 cells and used as the template for PCR, and
XhoI and NotI restriction sites were introduced. The PCR
amplification product was double-digested with the respective
enzymes and cloned into the psiCHECK-2 vector to generate
psiCHECK-2-cirRNA/psiCHECK-2-miRNA. A point
mutation was introduced into the ligation product to
generate the psiCHECK-2-cirRNA-mut/psiCHECK-2-
miRNA-mut vector. 293T cells were transfected with
miRNA mimics, negative control vector, miRNA inhibitor,
psiCHECK-2-cirRNA/psiCHECK-2-miRNA vector, or
psiCHECK-2-cirRNA/psiCHECK-2-miRNA-Mut vector (He
et al., 2019).
Frontiers in Genetics | www.frontiersin.org 461
A dual-luciferase assay (Promega, Madison, WI) was then
performed according to the manufacturer’s instruction.

Western Blot Analysis
The cells were divided into four groups: control group (no
infection), si_hsa_circ_0007843 group (infected with lentiviral
vector expressing si-hsa_circ_0007843), NC group (infected with
lentiviral vector expressing negative control sequence), and miR-
518c-5p group (infected with lentiviral vector overexpressing
miR-518c-5p). When the cells reached 80% confluence, the
supernatant was discarded and the cells were washed with pre-
chilled 1× PBS. Then, 320 mL cell lysis buffer (RIPA with 3.2 µL
PMSF) was added to the cells in order to extract cellular protein.
After incubation for 30 min on ice, the cells were scraped into a
1.5 mL centrifuge tube and centrifuged for 15 min at 12,000 rpm,
4°C. Protein quantification was performed using a
spectrophotometer (NanoDrop ND-1000; Thermo Fisher
Scientific, Waltham, MA). Proteins were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and
electrotransferred to polyvinylidene fluoride membranes. The
membranes were incubated with a primary antibody against
MMP2 at 4°C overnight, washed extensively with 0.1% Tween-20
in PBS, and incubated with a secondary antibody conjugated to
horseradish peroxidase (1:1,000) at room temperature for 3 h.
Immunolabeling was visualized using the ECL system.

Statistical Analysis
Data are expressed as the mean ± standard deviation and
analyzed using SPSS20.0 statistical software. Statistical
comparisons were performed using one-way analysis of variance.
RESULTS

Hsa_circ_0007843 Is Highly Expressed
in Colon Cancer Tissue and SW480 Cells
Total RNA was isolated from 4 colon cancer tissue samples and 4
paracancerous tissue samples that were separated by a margin of
5 cm. By using Arraystar circRNA microarray analysis, we
identified 1817 circRNAs with clearly different expression
profiles in colon cancer tissue, of which 1,236 were upregulated
and 581 were downregulated (Figures 1A–C). Six circRNAs with
the most significant change in expression were selected for
subsequent study. Their corresponding chromosomal locations
were analyzed using bioinformatics software. As shown in
Table 4, most of the circRNAs corresponded to protein-coding
exons. The potential miRNA targets of these circRNAs were also
predicted (Figure 1D).

By using RT-PCR, we further verified the expression profiles
of the 6 circRNAs in 26 paired colon cancer and paracancerous
tissue samples The results indicated that the expression levels of
hsa_circ_0007843, hsa_circ_0010575, hsa_circ_0007331, and
hsa_circ_0001615 were higher in colon cancer tissue compared
with normal colonic tissue (P < 0.05); however, the expression
levels of hsa_circ_0014879 and hsa_circRNA_401801 were
not different between normal and neoplastic colonic tissues
TABLE 3 | The siRNA sequence.

Gene siRNA (5´- 3´)

hsa_circ_0007843 sense: GGCAGCATACAGGAAGATGAA
antisense: UUCAUCUUCCUGUAUGCUGCC

Negative control sequence sense: UUCUCCGAACGUGUCACGUUUC
antisense: GAAACGUGACACGUUCGGAGAA

MMP2 Sense: ACUUUUCUCCUCUUUUUUCCU
antisense: GAAAAAAGAGGAGAAAAGUGG
February 2020 | Volume 11 | Article 9

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


He et al. Hsa_Circ_0007843 Regulate the Colon Cancer
(P > 0.05). Among the circRNAs that were confirmed to be
upregulated in colon cancer tissue, hsa_circ_0007843 expression
was significantly increased (Figure 1E). In vitro analysis showed
that hsa_circ_0007843 was highly expressed in colon cancer
SW480 cells compared to FIHC, HCT-116, HT-29, LOVO, and
SW620 cells (Figure 1F). Hence, hsa_circ_0007843 has the
potential to be utilized as a biomarker for the early diagnosis
of colon cancer.
Frontiers in Genetics | www.frontiersin.org 562
Hsa_circ_0007843 Affects Colon Cancer
SW480 Cell Colony Formation, Invasion,
and Migration
In order to clarify the effect of hsa_circ_0007843 on SW480 cells,
we infected the cells with hsa_circ_0007843 siRNA and a
lentiviral vector overexpressing hsa_circ_0007843. At 1 week
after infection, we observed that overexpression of
hsa_circ_0007843 significantly promoted SW480 cell colony
FIGURE 1 | Hsa_circ_0007843 expression is upregulated in colon cancer tissue and cell lines. (A) Scatter-plot showing circRNA expression variation between colon
cancer tissue samples and paracancerous tissue samples. The values of the X and Y axes represent the normalized signal values. The circRNAs above the top green
line and below the bottom green line indicates a greater than 2.0-fold change of the circRNAs between the two compared samples. (B) Volcano plots showing the
differential expression of circRNAs. (C) Hierarchical clustering heat map showing the different circRNA expression profiles of the 8 samples. (D) miRNA targets of the
6 circRNAs predicted by bioinformatics software. (E) Relative expression of the 6 circRNAs in colon cancer and paracancerous tissues. *P < 0.05. (F) Relative
expression of hsa_circ_0007843 in colon cancer cell lines by RT-PCR. Each bar represents the mean of 3 independent experiments. *P < 0.05.
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formation, whereas suppressing hsa_circ_0007843 expression
inhibited SW480 cell colony formation (Figures 2A, B).
Scratch-wound and transwell assays were performed to
examine the effect of hsa_circ_0007843 on SW480 cell
migration and invasion. Our results showed that the migration
ability of SW480 cells was significantly enhanced in the
h s a _ c i r c _ 0 0 0 7 8 4 3 g r o u p c om p a r e d w i t h t h e
si_hsa_circ_0007843, control, and NC groups (Figures 2C, D).
In addition, the transwell assay demonstrated that the number of
invading cells was obviously increased in the hsa_circ_0007843
group compared with the si_hsa_circ_0007843 group (Figures
2E, F). Therefore, these results suggested that overexpressing
hsa_circ_0007843 promoted colon cancer SW480 cell colony
formation, invasion, and migration, while suppressing its
expression inhibited SW480 cell colony formation, invasion,
and migration.

Hsa_circ_0007843 Affects Tumor Growth
SW480 tumor xenografts were established in athymic nude mice
to evaluate the effects of hsa_circ_0007843 on cancer cell growth
in vivo. Compared with the untreated animals, the application of
si-hsa_circ_0007843 and hsa_circ_0007843 significantly affected
tumor mass, whereas no effect was observed in the negative
control group (Figures 2G, H). No body weight loss or diarrhea
was detected and all animals (treated and untreated) survived.
These results showed that reducing hsa_circ_0007843 expression
effectively inhibited colon cancer growth in vivo, while
overexpression of hsa_circ_0007843 effectively promoted colon
cancer growth in vivo.

Hsa_circ_0007843 Interacts with mIR-
518c-5p, and mIR-518c-5p Interacts with
MMP2
RT-PCR was conducted to determine the relative expression
levels of miR-518c-5p and MMP2 in the colon cancer cell lines.
The results indicated that MMP2 expression was upregulated in
SW480 cel ls , whereas miR-518c-5p expression was
downregulated in these cells (Figure 3). To further confirm the
interaction between hsa_circ_0007843, miR-518c-5p, and
MMP2, hsa_circ_0007843 wild-type (hsa_circ_0007843-WT),
hsa_circ_0007843 mutant-type (hsa_circ_0007843-Mut),
MMP2-3′ untranslated region (UTR) wild-type (MMP2-3′
UTR-WT), and MMP2-3′UTR mutant type (MMP2-3′UTR-
Mut) expression vectors were constructed and co-transfected
with miR-518c-5p mimics into 293T cells, after which luciferase
activity was examined. Our results indicated that luciferase
activity was significantly decreased in 293T cells co-transfected
Frontiers in Genetics | www.frontiersin.org 663
with hsa_circ_0007843-WT, MMP2-3′UTR-WT, and miR-
518c-5p mimics, suggesting that hsa_circ_0007843 might
interact with miR-518c-5p, and miR-518c-5p might interact
with MMP2. Furthermore, luciferase activity was not affected
in 293T cells co-transfected with hsa_circ_0007843-Mut,
MMP2-3′UTR-Mut, and miR-518c-5p mimics, suggesting that
no interaction existed (Figure 4).

Hsa_circ_0007843 Suppresses mIR-518c-
5p Expression, and mIR-518c-5p
Promotes MMP2 Expression
In order to elucidate the regulatory mechanism involving
hsa_c i r c_0007843 , miR-518c -5p , and MMP2 , we
downregulated hsa_circ_0007843 expression in SW480 cells
and found that miR-518c-5p expression was upregulated, while
MMP2 expression was downregulated (Figures 5A, B, G). At
48 h after infection of SW480 cells with a lentiviral vector
overexpressing miR-518c-5p, the expression levels of
hsa_circ_0007843 and MMP2 were decreased (Figures 5C,
D, H). At 48 h after SW480 cells were infected with MMP2
siRNA, the expression level of hsa_circ_0007843 was decreased;
however, miR-518c-5p expression was increased (Figures 5E, F).
Because hsa_circ_0007843 could interact with miR-518c-5p, and
because miR-518c-5p could interact with MMP2, we concluded
that hsa_circ_0007843 interacted with miR-518c-5p to suppress
its expression, while miR-518c-5p interacted with MMP2 to
promote its expression.
DISCUSSION

In the present study, by using circRNA microarray and RT-PCR
analyses, we identified four circRNAs (hsa_circ_0007843,
hsa_circ_0010575, hsa_circ_0007331, and hsa_circ_0001615)
that were significantly upregulated in colon cancer tissue.
Among the s e f ou r c i r cRNAs , t h e exp r e s s i on o f
hsa_circ_0007843 was the most significantly increased and
thereby selected for further study. Hsa_circ_0007843 is
encoded by the ARHGAP32 (Rho GTPase activating protein
32arhgap32) gene, which is located at chr11:128993340-
129034322 (http://www.circbase.org/) and has a role in the
development of breast cancer (Ina et al., 2012). Our results
showed that hsa_circ_0007843 overexpression could promote
SW480 cell invasion and migration, whereas the downregulation
of hsa_circ_0007843 expression could suppress SW480 cell
invasion and migration. These results suggest that
hsa_circ_0007843 plays a role in colon cancer development
TABLE 4 | Differential expression of circRNA in colon cancer and paracancerous tissues was screened by CircRNA microarray.

Regulation circRNA Chrom Strand txStart txEnd circRNA_type best_transcript GeneSymbol P-value

Up hsa_circ_0007843 chr11 – 128993340 129034322 Exonic NM_001142685 ARHGAP32 0.000399138
Up hsa_circ_0007331 chr3 – 195101737 195112876 Exonic NM_012287 ACAP2 0.003367649
Up hsa_circ_0001615 chr6 – 79752559 79770535 Exonic NM_017934 PHIP 0.000555769
Up hsa_circ_0010575 chr1 – 22157474 22207995 Exonic NM_005529 HSPG2 0.002443045
Up hsa_circ_0014879 chr1 – 160206924 160231148 Exonic NM_015726 DCAF8 0.003808792
Up hsa_circRNA_401801 chr10 – 14643337 14643566 Intronic ENST00000181796 FAM107B 0.04496253
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FIGURE 2 | Hsa_circ_0007843 exerts oncogenic effects on colon cancer SW480 cells. (A) Images from the colony formation assay with different groups of SW480
cells (×40). (B) Bar figures representing the number of colonies formed in each group; each bar represents the mean of 3 independent experiments. (C) Images from
the scratch-wound assay with different groups of SW480 cells (×40). (D) Wound healing rates for the different groups of SW480 cells; each curve represents the
mean of 3 independent experiments. (E) Images from the transwell assay with different groups of SW480 cells (×40). (F) Bar figures representing the number of
invaded SW480 cells in each group; each bar represents the mean of 3 independent experiments. (G) Representative images of tumor-bearing xenograft mice. (H)
Tumor weight of the nude mice in each group; each bar represents the mean of 3 independent experiments. *P < 0.05, **P < 0.01 compared with the control and
NC groups. Control (no infection), hsa_circ_0007843 (infected with lentiviral vector expressing hsa_circ_0007843), si_hsa_circ_0007843 (infected with lentiviral vector
expressing hsa_circ_0007843 siRNA), and NC (infected with lentiviral vector expressing negative control sequence).
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FIGURE 4 | Construction of double fluorescent reporter gene vector to verify the interactions between hsa_circ_0007843, miR-518c-5p, and MMP2. (A) Target
sequences for miR-518-5p in the 3′-UTR region of wild-type MMP2. (B) Target sequences for miR-518-5p on hsa_circ_0007843. (C) Comparison of luciferase
activity in cells of different groups that were co-transfected with MMP2-3′UTR-WT; each bar represents the mean of 3 independent experiments. *P < 0.05.
(D) Luciferase activity in cells of different groups that were co-transfected with MMP2-3′UTR-Mut; each bar represents the mean of 3 independent experiments.
DP > 0.05. (E) Comparison of luciferase activity in cells of different groups that were co-transfected with hsa_circ_0007843-WT; each bar represents the mean of
3 independent experiments. *P < 0.05. (F) Luciferase activity in cells of different groups that were co-transfected with hsa_circ_0007843-Mut; each bar
represents the mean of 3 independent experiments. DP > 0.05. Control group (psiCHECK-2-cirRNA/psiCHECK-2-mRNA, psiCHECK-2-cirRNA-mut/psiCHECK-
2-mRNA-mut), inhibitor (inhibitor for miRNA + psiCHECK-2-cirRNA/psiCHECK-2-mRNA, psiCHECK-2-cirRNA-mut/psiCHECK-2-mRNA-mut), NC group
(negative control sequence + psiCHECK-2-cirRNA/psiCHECK-2-mRNA or psiCHECK-2-cirRNA-mut/psiCHECK-2-mRNA-mut), NCI group (inhibitor for negative
control + psiCHECK-2-cirRNA/psiCHECK-2-mRNA or psiCHECK-2-cirRNA-mut/psiCHECK-2-mRNA-mut sequence), hsa_miR-518c-5p group (hsa_miR-518c-
5p mimics + psiCHECK-2-cirRNA/psiCHECK-2-mRNA or psiCHECK-2-cirRNA-mut/psiCHECK-2-mRNA-mut).
FIGURE 3 | Relative expression of miR-518c-5p and MMP2 in colon cancer cell lines by RT-PCR. (A) Relative expression of miR-518c-5p; each bar represents the
mean of 3 independent experiments. *P < 0.05. (B) Relative expression of MMP2; each bar represents the mean of 3 independent experiments. *P < 0.01.
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and could be considered as a potential biomarker for the early
diagnosis of colon cancer. A previous study demonstrated that
the expression of circRNAs is highly stable and shows tissue and
developmental stage specificity (Li et al., 2015). Moreover,
circRNAs are considered to be potential biomarkers for
cancer diagnosis.

Li et al. reported that hsa_circ_002059 expression was
significantly decreased in gastric cancer tissue, and its
preoperative and post-operative levels in plasma were
significantly different, which could be affected by distant
metastasis, tumor-node-metastasis staging, sex, and age (Li
et al., 2015). A total of 698 circRNAs were shown to be
dysregulated in laryngeal carcinoma, with hsa_circ_100855
Frontiers in Genetics | www.frontiersin.org 966
having the most significant increase in expression (Xuan et al.,
2016). Hsa_circ_0001649 expression was found to be
downregulated in hepatocellular carcinoma, and was
considered to be a potential biomarker for the diagnosis and
treatment of hepatocellular carcinoma (Qin et al., 2016). Wang et
al. demonstrated that the expression of hsa_circ_001988 was
decreased in colon cancer, which might be associated with the
proliferation and eosinophilic invasion of colon cancer cells
(Wang et al., 2015). Thus, hsa_circ_0007843 could play
important roles in the pathogenesis and development of
colon cancer.

An increasing number of studies have shown that some
circRNAs have specific binding sites for miRNAs, and
FIGURE 5 | Relative expression levels of hsa_circ_0007843, miR-518c-5p, and MMP2 in SW480 cells by RT-PCR and western blotting. (A) Relative expression of
miR-518c-5p upon downregulation of hsa_circ_0007843 expression; each bar represents the mean of 3 independent experiments. *P < 0.05. (B) Relative
expression of MMP2 upon downregulation of hsa_circ_0007843 expression; each bar represents the mean of 3 independent experiments. *P < 0.01.
(C) Relative expression of hsa_circ_0007843 upon overexpression of miR-518c-5p; each bar represents the mean of 3 independent experiments. *P < 0.05.
(D) Relative expression of MMP2 upon overexpression of miR-518c-5p; each bar represents the mean of 3 independent experiments. *P < 0.01. (E) Relative expression of
hsa_circ_0007843 upon downregulation of MMP2 expression; each bar represents the mean of 3 independent experiments. *P < 0.01. (F) Relative expression of
miR-518c-5p upon downregulation of MMP2 expression; each bar represents the mean of 3 independent experiments. *P < 0.01. (G) Corresponding expression of MMP2
protein upon downregulation of hsa_circ_0007843 expression. (H) Corresponding expression of MMP2 protein upon overexpression of miR-518c-5p. Control group
(no infection), si_hsa_circ_0007843 group (infected with lentiviral vector expressing hsa_circ_0007843 siRNA), hsa_circ_0007843 group (infected with lentiviral vector
expressing hsa_circ_0007843), NC group (infected with lentiviral vector expressing negative control sequence), and miR-518c-5p group (infected with lentiviral vector
overexpressing miR-518c-5p).
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miRNAs can suppress the degradation of the corresponding
mRNAs by competitively binding to endogenous circRNAs
(Hansen et al., 2013). In the present study, we demonstrated
that the expression levels of hsa_circ_0007843 and MMP2
were upregulated in SW480 cells, whereas miR-518c-5p
expression was downregulated in these cells. These results
suggested that hsa_circ_0007843 acted as an miRNA sponge
to regulate MMP2 expression by removing the inhibitory effect
of miR-518c-5p on MMP2 gene translation. Bioinformatics
analysis and a luciferase reporter assay revealed that the 3′
UTRs of hsa_circ_0007843 and MMP2 share identical miR-
518c-5p response elements and could therefore bind
competitively to miR-518c-5p. Using RT-PCR and western
blotting analyses, we demonstrated that hsa_circ_0007843
suppressed miR-518c-5p expression, while miR-518c-5p
promoted MMP2 expression. MMP2 is considered to be
fundamental for the degradation of the extracellular matrix.
Its expression level was found to be clearly upregulated in
colon cancer, which might contribute to colon cancer cell
invasion and migration (Schwegmann et al., 2016; Hsu et al.,
2017). Hsa_circ_000984 acts as a competing endogenous RNA
(ceRNA) by competitively binding to miR-106b and effectively
upregulating CDK6 expression, thereby inducing a series of
Frontiers in Genetics | www.frontiersin.org 1067
malignant phenotypes of tumor cells (Xu et al., 2017). In
addition, hsa_circ_0055625 increases the growth of colon
cancer cells by sponging miR-106b-5p (Zhang et al., 2019).
CircCCDC66 expression is elevated in polyps and colon
cancer and is associated with poor prognosis; circCCDC66
controls multiple pathological processes, including cell
prol i ferat ion, migrat ion, invasion, and anchorage-
independent growth (Hsiao et al., 2017).

In conclusion, our results suggest that hsa_circ_0007843,
along with oncogenic characteristics, might be a potential
biomarker for the diagnosis and treatment of colon cancer.
Hsa_circ_0007843 overexpression promoted SW480 cell
invasion and migration, whereas its downregulation suppressed
SW480 cell invasion and migration. Hsa_circ_0007843
suppressed miR-518c-5p expression, while miR-518c-5p
promoted MMP2 expression. Therefore, hsa_circ_0007843
acted as an miRNA sponge to regulate MMP2 expression by
removing the inhibitory effect of miR-518c-5p on MMP2 gene
translation, which further affected the invasion and migration of
SW480 cells (Figure 6). Our findings suggested that the
hsa_circ_0007843/miR-518c-5p/MMP2 regulation axis might
play a critical role in the progression and development of
colon cancer. The ceRNA network and pathway involved
FIGURE 6 | Hsa_circ_0007843/miR-518c-5p/MMP2 regulation axis effects on invasion and migration of SW480 cells.
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might be novel clinical markers and therapeutic targets for colon
cancer patients.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by archives of the Central Hospital of Panyu District.
The patients/participants provided their written informed
consent to participate in this study. The animal study was
reviewed and approved by JiNan University.
AUTHOR CONTRIBUTIONS

JH, ZH, YBL, MH and JBZ performed the experiments. JJ, JGL
and LZ analyzed the data. JH and ZH wrote the manuscript. YGL
Frontiers in Genetics | www.frontiersin.org 1168
and JDZ designed the study and revised the manuscript. WC and
MH provided the reagents. All authors read and approved the
final manuscript.
FUNDING

This work was supported by grants from the Medical and Health
Science and Technology Project of Panyu District, Guangzhou
(No. 2017-Z04-18;2018-Z04-59;2019-Z04-02), Science and
Technology Planning Project of Guangdong Province (No.
2017ZC0372), Guangzhou Health and Family Planning
Commission Program (No. 20181A011118; 20192A011027;
No. 20191A011119), Project of Guangdong Administration of
Traditional Chinese Medicine (No. 20192073), Natural Science
Foundation of Guangdong Province (No. 2018A0303130191),
and Guangzhou Science and Technology Plan Project
(No. 201904010044).
ACKNOWLEDGMENTS

We are grateful to Lei Zheng for providing technical guidance.
REFERENCES

Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D., and Lawrie, C. H.
(2018). CircRNAs and cancer: biomarkers and master regulators. Semin.
Cancer Biol. 58, 90–99. doi: 10.1016/j.semcancer.2018.12.002

Guttman, M., and Rinn, J. L. (2012). Modular regulatory principles of large non-
coding RNAs. Nature 482, 339–346. doi: 10.1038/nature10887

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C.
K., et al. (2013). Natural RNA circles function as efficient microrRNA sponges.
Nature 495, 384–388. doi: 10.1038/nature11993

He, J. H., Han, Z. P., Yu g, L., and Zheng, L. (2019). CDX2/mir-145-5p/SENP1
pathways affect LNCaP cells invasion and migration. Front. Oncol. 9, 477. doi:
10.3389/fonc.2019.00477

Holdt, L. M., Kohlmaier, A., and Teupser, D. (2018). Molecular roles and function
of circular RNAs in eukaryotic cells. Cell Mol. Life Sci. 75, 1071–1098. doi:
10.1007/s00018-017-2688-5

Hsiao, K. Y., Lin, Y. C., Gupta, S. K., Chang, N., Yen, L., Sun, H. S., et al.
(2017). Noncoding effects of circular RNA CCDC66 promote colon cancer
growth and metastasis[J]. Cancer Res. 77, 2339. doi: 10.1158/0008-
5472.CAN-16-1883

Hsu, H. H., Kuo, W. W., Day, C. H., Shibu, M. A., Li, S. Y., Chang, S. H., et al.
(2017). Taiwanin E inhibits cell migration in human LoVo colon cancer cells
by suppressing MMP-2/9 expression via p38 MAPK pathway. Environ.
Toxicol. 32, 2021–2031. doi: 10.1002/tox.22379

Ina, Schulte, EM, Batty, JC, Pole, KA, Blood, Mo, S., et al. (2012). Structural
analysis of the genome of breast cancer cell line ZR-75-30 identifies twelve
expressed fusion genes. BMC Genomics 13, 719. doi: 10.1186/1471-2164-13-
719

Li, F., Zhang, L., Li, W., Deng, J., Zheng, J., An, M., et al. (2015). Circular RNA
ITCH has inhibitory effect on ESCC by suppressing the Wnt/b-catenin
pathway. Oncotarget 6, 6001–6013. doi: 10.18632/oncotarget.3469

Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015). Circular RNA is
enriched and stable in exosomes: a promising biomarker for cancer diagnosis.
Cell Res. 25, 981–984. doi: 10.1038/cr.2015.82
Li, P., Chen, S., Chen, H., Mo, X., Li, T., Shao, Y., et al. (2015). Using circular RNA
as a novel type of biomarker in the screening of gastric cancer. Clin. Chim. Acta
444, 132–136. doi: 10.1016/j.cca.2015.02.018

Ma, H. B., Yao, Y. N., Yu, J. J., et al. (2018). Extensive profiling of circular RNAs
and the potential regulatory role of circRNA-000284 in cell proliferation and
invasion of cervical cancer via sponging miR-506. Am. J. Transl. Res. 10 (2),
592–604.

Memczak, S. 1., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al.
(2013). Circular RNAs are a large class of animal RNAs with regulatory
potency. Nature 495, 333–338. doi: 10.1038/nature11928

Qi, L., and Ding, Y. (2018). Screening of differentiation-specific molecular
biomarkers for colon cancer. Cell Physiol. Biochem. 46, 2543–2550. doi:
10.1159/000489660

Qin, M., Liu, G., Huo, X., Tao, X., Sun, X., Ge, Z., et al. (2016). Hsa_circ_0001649:
A circular RNA and potential novel biomarker for hepatocellular carcinoma.
Cancer Biomarkers 16, 161–169. doi: 10.3233/CBM-150552

Sang, M., Meng, L., Liu, S., Ding, P., Chang, S., Ju, Y., et al. (2018). Circular RNA
ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target
MMPs. Mol. Cancer Res. 16, 1665–1675. doi: 10.1158/1541-7786.MCR-18-
0284

Schwegmann, K., Bettenworth, D., Hermann, S., Faust, A., Poremba, C., Foell, D.,
et al. (2016). Detection of early murine colorectal cancer by MMP-2/-9-guided
fluorescence endoscopy. Inflammatory Bowel Dis. 22, 82–91. doi: 10.1097/
MIB.0000000000000605

Siegel, R. L., Miller, K. D., and Jemal, A. (2017). Cancer statistics, 2017. CA Cancer
J. Clin. 67, 7–30. doi: 10.3322/caac.21387

Wang, X. 1., Zhang, Y. 2., Huang, L. 1., Zhang, J., Pan, F., Li, B., et al. (2015).
Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical
significances. Int. J. Clin. Exp. Pathol. 8, 16020–16025.

Wang, Y., Lu, T., Wang, Q., Liu, J., and Jiao, W. (2018). Circular RNAs: Crucial
regulators in the human body (Review). Oncol. Rep. 40, 3119–3135. doi:
10.3892/or.2018.6733

Xu, X. W., Zheng, B. A., Hu, Z. M., Qian, Z. Y., and Huang, C. J. (2017). Circular
RNA hsa_circ_000984 promotes colon cancer growth and metastasis by
February 2020 | Volume 11 | Article 9

https://doi.org/10.1016/j.semcancer.2018.12.002
https://doi.org/10.1038/nature10887
https://doi.org/10.1038/nature11993
https://doi.org/10.3389/fonc.2019.00477
https://doi.org/10.1007/s00018-017-2688-5
https://doi.org/10.1158/0008-5472.CAN-16-1883
https://doi.org/10.1158/0008-5472.CAN-16-1883
https://doi.org/10.1002/tox.22379
https://doi.org/10.1186/1471-2164-13-719
https://doi.org/10.1186/1471-2164-13-719
https://doi.org/10.18632/oncotarget.3469
https://doi.org/10.1038/cr.2015.82
https://doi.org/10.1016/j.cca.2015.02.018
https://doi.org/10.1038/nature11928
https://doi.org/10.1159/000489660
https://doi.org/10.3233/CBM-150552
https://doi.org/10.1158/1541-7786.MCR-18-0284
https://doi.org/10.1158/1541-7786.MCR-18-0284
https://doi.org/10.1097/MIB.0000000000000605
https://doi.org/10.1097/MIB.0000000000000605
https://doi.org/10.3322/caac.21387
https://doi.org/10.3892/or.2018.6733
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


He et al. Hsa_Circ_0007843 Regulate the Colon Cancer
sponging miR-106b[J]. Oncotarget 8, 91674–91683. doi: 10.18632/
oncotarget.21748

Xuan, L., Qu, L., Zhou, H., Wang, P., Yu, H., Wu, T., et al. (2016). Circular RNA: a
novel biomarker for progressive laryngeal cancer. Am. J. Transl. Res. 8, 932–939.

Zhang, C., Wu, H., Wang, Y., Zhao, Y., Fang, X., Chen, C., et al. (2015). Expression
patterns of circularRNAs from primary kinase transcripts in the mammary
glands of lactating rats. J. Breast Cancer 18, 235–241. doi: 10.4048/
jbc.2015.18.3.235

Zhang, J., Liu, H., Zhao, P., Zhou, H., and Mao, T. (2018). Has_circ_0055625 from
circRNA profile increases colon cancer cell growth by sponging miR-106b-5p
[J]. J. Cell. Biochem. 120, 3027–3037. doi: 10.1002/jcb.27355
Frontiers in Genetics | www.frontiersin.org 1269
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 He, Han, Luo, Jiang, Zhou, Chen, Lv, He, Zheng, Li and Zuo. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
February 2020 | Volume 11 | Article 9

https://doi.org/10.18632/oncotarget.21748
https://doi.org/10.18632/oncotarget.21748
https://doi.org/10.4048/jbc.2015.18.3.235
https://doi.org/10.4048/jbc.2015.18.3.235
https://doi.org/10.1002/jcb.27355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 13 March 2020

doi: 10.3389/fonc.2020.00310

Frontiers in Oncology | www.frontiersin.org 1 March 2020 | Volume 10 | Article 310

Edited by:

Xinmin Li,

University of California, Los Angeles,

United States

Reviewed by:

Pasquale Pisapia,

University of Naples Federico II, Italy

Manfred Dietel,

Charité Medical University of Berlin,

Berlin, Germany

*Correspondence:

Lian Jie Liu

lianjieliu@yeah.net

Chen Guang Bai

bcg709@126.com

Wei Zhang

weizhang2000cn@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Oncology

Received: 03 June 2019

Accepted: 21 February 2020

Published: 13 March 2020

Citation:

Gao XH, Li J, Gong HF, Yu GY, Liu P,

Hao LQ, Liu LJ, Bai CG and Zhang W

(2020) Comparison of Fresh Frozen

Tissue With Formalin-Fixed

Paraffin-Embedded Tissue for

Mutation Analysis Using a Multi-Gene

Panel in Patients With Colorectal

Cancer. Front. Oncol. 10:310.

doi: 10.3389/fonc.2020.00310

Comparison of Fresh Frozen Tissue
With Formalin-Fixed
Paraffin-Embedded Tissue for
Mutation Analysis Using a
Multi-Gene Panel in Patients With
Colorectal Cancer
Xian Hua Gao 1†, Juan Li 2†, Hai Feng Gong 1†, Guan Yu Yu 1, Peng Liu 1, Li Qiang Hao 1,

Lian Jie Liu 1*, Chen Guang Bai 3* and Wei Zhang 1*

1Department of Colorectal Surgery, Changhai Hospital, Shanghai, China, 2Department of Nephrology, Changhai Hospital,

Shanghai, China, 3Department of Pathology, Changhai Hospital, Shanghai, China

Background: Next generation sequencing (NGS)-based multi-gene panel tests have

been performed to predict the treatment response and prognosis in patients with

colorectal cancer (CRC). Whether the multi-gene mutation results of formalin-fixed

paraffin-embedded (FFPE) tissues are identical to those of fresh frozen tissues

remains unknown.

Methods: A 22-gene panel with 103 hotspots was used to detect mutations in paired

fresh frozen tissue and FFPE tissue from 118 patients with CRC.

Results: In our study, 117 patients (99.2%) had one or more variants, with 226 variants

in FFPE tissue and 221 in fresh frozen tissue. Of the 129 variants identified in this study,

96 variants were present in both FFPE and fresh frozen tissues; 27 variants were found in

FFPE tissues only; 6 variants were found only in fresh frozen tissues. The mutation results

demonstrated >94.0% concordance in all variants, with Kappa coefficient >0.500 in

64.3% (83/129) of variants. At the gene level, concordance ranged from 73.8 to 100.0%,

with Kappa coefficient >0.500 in 81.3% (13/16) of genes.

Conclusions: The results of mutation analysis performed with a multi-gene panel and

FFPE and fresh frozen tissue were highly concordant in patients with CRC, at both the

variant and gene levels. There were, however, some important differences in mutation

results between the two tissue types. Therefore, fresh frozen tissue should not routinely

be replaced with FFPE tissue for mutation analysis with a multi-gene panel. Rather, FFPE

tissue is a reasonable alternative for fresh frozen tissue when the latter is unavailable.

Keywords: colorectal cancer, multi-gene panel, gene mutation, fresh frozen tissue, formalin-fixed

paraffin-embedded tissue
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INTRODUCTION

The survival of patients with colorectal cancer (CRC) has
improved greatly in recent decades, because of advancements
in surgical technique, chemoradiotherapy, and targeted therapy
(1, 2). However, CRC remains the third most common cancer
and the fourth cause of cancer-related death worldwide (3).
Molecular biomarkers have been reported to play a vital role
in the early diagnosis of CRC, and individualized treatment
for metastatic CRC (4, 5). In the past decade, somatic gene
mutations of KRAS (KRAS proto-oncogene, GTPase), NRAS
(NRAS proto-oncogene, GTPase), and BRAF (B-Raf proto-
oncogene, serine/threonine kinase) have been used to predict the
outcomes of EGFR (epidermal growth factor receptor)—targeted
therapy for metastatic CRC (4). Research studies of targeted
therapy and individualized medicine have identified additional
genes associated with the development and treatment of CRC
(6). The classification of CRC based on multiple gene detection
may help to explain inter-individual differences in treatment
response and long-term outcomes. For example, the UGT1A
(UDP glucuronosyltransferase family 1 member A complex
locus) polymorphism has been reported to predict drug toxicity
(delayed severe diarrhea) in patients with CRC who receive
irinotecan-based chemotherapy (7, 8). Somatic mutations of
MLH1 (mutL homolog 1), MSH2 (mutS homolog 2), MSH6
(mutS homolog 6), and PMS2 (PMS1 homolog 2, mismatch
repair system component) in CRC tissue could be used to
screen for Lynch syndrome (9, 10). Moreover, the detection
of multiple gene mutations could offer more options for new
targeted treatment efforts in drug-resistant patients (11). Hence,
the need for combined detection of multiple gene mutations has
acquired increasing urgency.

Next generation sequencing (NGS) is an efficient and rapid
tool for the detection of single-nucleotide mutations and small-
fragment insertion/deletions. This approach has become the
standard technique for multiple gene detection (12). Compared
with the single-gene mutation detection, multiple gene detection
with NGS is a timely and cost-effective technique that requires
a small amount of DNA (13, 14). In our previous study (15),
we established a 22-gene panel, which included 103 amplicons
targeting the variants found to be most common in CRC.
Those 22 genes included KRAS, BRAF, TP53 (tumor protein
p53), EGFR, CTNNB1 (catenin beta 1), DDR2 (discoidin domain
receptor tyrosine kinase 2), ERBB2 (erb-b2 receptor tyrosine
kinase 2), ERBB4 (erb-b2 receptor tyrosine kinase 4), FBXW7
(F-box and WD repeat domain containing 7), FGFR1 (fibroblast
growth factor receptor 1), FGFR2 (fibroblast growth factor
receptor 2), FGFR3 (fibroblast growth factor receptor 3), AKT1
(AKT serine/threonine kinase 1), ALK (ALK receptor tyrosine
kinase), MAP2K1 (mitogen-activated protein kinase kinase 1),
MET (MET proto-oncogene, receptor tyrosine kinase), NOTCH1
(notch receptor 1), NRAS, PIK3CA (phosphatidylinositol-
4,5- bisphosphate 3-kinase catalytic subunit alpha), PTEN
(phosphatase and tensin homolog), SMAD4 (SMAD family
member 4), and STK11 (serine/threonine kinase 11). Use of this
panel requires only 10 ng of DNA and a single-tube multiplex
polymerase chain reaction (PCR).

Fresh frozen tissue is the preferred sample to detect gene
mutation due to its superiority in preserving DNA. However,
fresh frozen tissue is often not available in clinical practice, as
the associated protocol requires that resected tissue be snap-
frozen in liquid nitrogen 30–60min after surgical resection.
Moreover, the cost of preserving fresh frozen tissue is relatively
high, as it requires the maintenance of a constant ultralow
temperature. Compared with fresh frozen tissue, formalin-fixed
paraffin-embedded (FFPE) tissue has several advantages: (1)
preservation of the cellular and architectural morphology; (2) the
possibility of storage at room temperature for several years; (3)
easy availability, as FFPE blocks are routinely prepared in the
pathology departments of most centers. Therefore, FFPE tissue
has become the sample type used most commonly for molecular
testing (11). However, the fixation and archiving process in FFPE
often leads to the cross-linking, degradation, and fragmentation
of DNA molecules. These alterations inevitably affect the quality
and quantity of DNA extracted from FFPE tissue, which in turn
would adversely impact the accuracy with which gene mutations
are detected (16–19). Nevertheless, the detection of EGFR and
KRASmutations in DNA extracted from FFPE tissue has proven
to be highly accurate (20). The detection of gene mutations using
NGS may also be performed with DNA from FFPE samples
(13, 14, 16, 21).

In our previous study, we showed the utility of this 22-gene
panel when used with NGS to detect gene mutations in FFPE
tissue from 207 patients with CRC (15). However, whether the
gene mutation results of this multi-gene panel are concordant
between FFPE and fresh frozen tissue remains unknown. In this
study, gene mutations were detected in paired FFPE and fresh
frozen primary tumor tissue from patients with CRC using this
22-gene panel. The results obtained were compared between
tissue types at the variant and gene levels.

MATERIALS AND METHODS

Inclusion Criteria
Patients who satisfied all of the following criteria were included:
(1) pathologically proven primary CRC adenocarcinoma; (2)
history of radical surgery for a primary tumor at Changhai
Hospital (Shanghai, China) during the period from March 2015
to November 2016; (3) availability of FFPE and fresh frozen
primary tumor tissue samples.

Exclusion Criteria
Patients were excluded if they met any one of the following
criteria: (1) history of preoperative radiotherapy; (2) insufficient
FFPE or fresh frozen tumor tissue for the extraction of DNA; (3)
history of local tumor excision; (4) recurrent CRC; (5) personal
history of other tumors; (6) hereditary CRC.

Patients
All patients with CRC satisfying the above-mentioned criteria
were enrolled in the study. All the relevant clinicopathological
information was prospectively maintained in an electronic CRC
database. The study was approved by the ethical committee
at Changhai Hospital. All included patients provided their
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written informed consent. All patients were followed up
after surgery every 3 months for the first 2 years, every
6 months for the next 3 years, and every year from that
point onward.

Processing of Tumor Tissue
All tumor tissue samples were obtained from surgically resected
primary CRC tumor specimens. The resected tissue was divided
into two parts. One part was frozen in liquid nitrogen <30min
after surgery and stored at −80◦C until the time of DNA
extraction; the other part was fixed in 4% formalin for 24–72 h
and embedded in paraffin, and then stored at room temperature.
The blocks containing FFPE tissues were divided to obtain
ten consecutive sections with thickness of 10µm. Hematoxylin
and eosin staining was performed on the first section. Two
pathologists examined each stained section individually and
estimated the percentage of neoplastic cells. Sections with ≥ 40%
neoplastic cells were considered as eligible. The remaining nine
sections were pooled into a 1.5-mL tube.

DNA Isolation
The QIAamp DNA Mini Kit(Qiagen) and GeneRead DNA
FFPE kit (Qiagen) were used to extract DNA from fresh frozen
and FFPE tissues, respectively, according to the manufacturer’s
protocols. The detailed methods used for DNA extraction
from FFPE tissue samples were reported previously by our
group (15). Briefly, FFPE tissue samples were dewaxed with
deparaffinization solution, then incubated with lysis buffer
for 1 h. After incubation at 90◦C to remove cross-links,
Uracil-N-Glycosilase was added for the specific removal of
deaminated cytosine residues from the DNA. For fresh frozen
tissues, 25mg of tumor tissues were used for DNA extraction.
After being homogenized with the Bioprep-24 homogenizer,
the tissues were incubated in lysis buffer at 56◦C until the
tissues were completely lysed. RNase A was used to digest
the RNA molecules from the genomic DNA. For both FFPE
and fresh frozen tissue, DNA was eluted and quantified
with a Qubit 3.0 fluorometer and dsDNA HS assay kit
(Life Technologies).

DNA Amplification and Sequencing
For sequencing, 20 ng DNA extracted from each FFPE or
fresh frozen sample was used for library construction. In brief,
gene-specific PCR was used to amplify 103 regions in the
first round, followed by purification via size selection. The
details of the first round of PCR were showed in Table 1.
Subsequently, the second round of PCR (“indexing PCR”)
was conducted (Table 2). The 22-gene panel was purchased
from Pillar Biosciences, USA (ONCO/Reveal Lung & Colon
Cancer Panel). The details of the 22-gene panel were same
as described previously (14, 15). This process involves the
addition of Illumina index adaptors to purify the products
for sample tracking and sequencing. Lastly, the libraries were
eluted in 22 µL nuclease-free water. The final libraries were
quantified using a Qubit 3.0 fluorometer and dsDNA HS assay
kit (Life Technologies), as per the manufacturer’s protocol.
The MiSeq was used for sequencing libraries according to the

TABLE 1 | The procedure details of the first round of PCR (“gene-specific PCR”).

Temperature Time Cycles

95◦C 15min 1

95◦C 1min 5

60◦C 6min

95◦C 30 s 18

72◦C 3min

8◦C Hold 1

TABLE 2 | The procedure details of the second round of PCR (“indexing PCR”).

Temperature Time Cycles

95◦C 2min 1

95◦C 30 s 5

66◦C 30 s

72◦C 60 s

72◦C 5min 1

8◦C Hold 1

manufacturer’s protocol. Each gene library was normalized to
4 nM and combined at equal volume (4 µL). The mixed library
was then denatured with 0.2N NaOH and diluted up to the
concentration of 15 pM for sequencing with MiSeq Reagent
Kit v2 at 300 cycles (or 20 pM for v3). Sample quality of
FFPE tissues was determined by the amount of amplifiable
DNA using qPCR and sequencing libraries were evaluated
using Bioanalyzer.

Variant Analysis
Subsequently, they were annotated with the 1000 genomes
(https://www.internationalgenome.org/home), which is one of
the most frequently used databases in genetic research. Variants
were selected for known single nucleotide polymorphisms
(SNPs) and synonymous mutations. All non-coding, silent,
synonymous, unknown and common germline variants were
filtered out, as well as all variants present in 1,000G data
(22). Moreover, all variants at a locus with coverage of <200,
or variants with a variant frequency <0.05 were excluded.
The remaining mutations were assessed using the Catalog
of Somatic Mutations in Cancer (COSMIC) database (14,
23). The SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://genetics.
bwh.harvard.edu/pph2/), and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar/) online databases were used to analyze the
clinical significance of these variants.

Statistical Analysis
All data were analyzed using the Statistical Package for Social
Sciences (SPSS 22.0, Chicago, IL). Categorical parameters were
recorded as frequency and percentage; continuous parameters
were described as mean and standard deviation, or median
and interquartile range (IQR), as appropriate. Concordance
rate and Kappa coefficient were used to compare FFPE and
fresh frozen tissue in terms of mutation results, at both the

Frontiers in Oncology | www.frontiersin.org 3 March 2020 | Volume 10 | Article 31072

https://www.internationalgenome.org/home
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Gao et al. FFPE vs. Fresh Frozen Tissue

variant and gene levels. P < 0.05 (two-sided) was considered as
statistically significant.

RESULTS

Clinicopathological Features of Patients
Included in the Study
Of the 118 patients with CRC included in this study, 72 (61%)
were men. The median age (IQR) was 62 (53–69) years. Most of
the patients had TNM stage II (n = 36) or III (n= 47) disease.
Eleven (9.3%) patients received preoperative chemotherapy
(Table 3). The storage period of FFPE tissues ranged from 3 to
24 months, with a median period of 10 months.

TABLE 3 | Clinicopathological characteristics of patients included in the study.

Parameters N(%)

Gender Male 72 (61.0%)

Female 46 (39.0%)

Gross type Protruding 24 (20.3%)

Ulcerative 91 (77.1%)

Infiltrative 3 (2.5%)

Tumor position Right sided colon cancer 26 (22.0%)

Left sided colon cancer 40 (33.9%)

Rectal cancer 52 (44.1%)

Differentiation Well 0 (0.0%)

Moderate 95 (80.5%)

Poor 23 (19.5%)

T 1 2 (1.7%)

2 17 (14.4%)

3 81 (68.6%)

4 18 (15.3%)

N 0 57 (48.3%)

1 36 (30.5%)

2 25 (21.2%)

M 0 95 (80.5%)

1 23 (19.5%)

TNM I 12 (10.2%)

II 36 (30.5%)

III 47 (39.8%)

IV 23 (19.5%)

Tumor deposit No 97 (82.2%)

Yes 21 (17.8%)

Perineural invasion No 106 (89.8%)

Yes 12 (10.2%)

Vascular invasion No 101 (85.6%)

Yes 17 (14.4%)

Preoperative chemotherapy No 107 (90.7%)

Yes 11 (9.3%)

Age (years, IQR) 62 (53–69)

Diameter (cm, IQR) 4.1 (3.0–6.0)

CEA (ng/mL, IQR) 4.7 (2.0–15.4)

CA19-9 (U/mL, IQR) 5.4 (13.0–32.9)

IQR, interquartile range.

Comparisons of Gene Mutation
Characteristics Between FFPE and Fresh
Frozen Tissue
The median and interquartile of total coverage across all
genes were 3739 (2148–5866) reads for fresh frozen tissues,
which were significantly higher than those of FFPE tissues
[2,814 (1,784–3,936) reads] (P < 0.001). In our study, 117
patients (99.2%) had one or more variants, with 226 variants
in FFPE tissues and 221 in fresh frozen tissues. All variants
identified in the FFPE and fresh frozen tissues are showed
in Supplemental Table 1.

FFPE tissue analysis revealed at least one variant in
112 patients (94.9%), yielding a total of 226 variants.
Among 112 patients, 44, 39, 19, 7, 2, and 1 had one, two,
three, four, six and seven variants, respectively. The genes
mutated most frequently were TP53 (54.2%), KRAS (47.5%),
PIK3CA (21.2%), and FBXW7 (15.3%). No mutations were
identified in ALK, FGFR1, FGFR3, MET, NOTCH1, or
STK11 (Figure 1).

The analysis of fresh frozen tissue revealed the presence of
at least one variant in 105 patients (89.0%), yielding a total
of 221 variants. Among the 105 patients, 39, 36, 18, 5, 6,
and 1 patients had one, two, three, four, five and six variants,
respectively. The list of most frequently mutated genes was
similar to that developed for FFPE tissues: TP53 (72.9%), KRAS
(45.8%), PIK3CA (22.9%), and FBXW7 (12.7%). No mutations
were identified in ALK, FGFR1, FGFR3, MET, NOTCH1, or
STK11 (Figure 1).

A comparison between FFPE and fresh frozen tissue in
terms of variant characteristics and their clinical significance
was shown in Table 4. The impact of all variants were evaluated
using the Variant Impact Predictor Database (VIPdb). No
obvious difference in variant impact was found between the two
samples (Table 4).

Comparison of Gene Mutations Between
FFPE and Fresh Frozen Tissue at the
Variant Level
A total of 129 variants were identified in this study. Among
these variants, 96 were present in both FFPE and fresh
frozen tissue; 27 variants were present in FFPE tissues alone;
6 variants were present in fresh frozen tissue alone. Of
the 27 variants that existed in FFPE only, 59.3% (16/27)
were C>T/G>A or A>G/T>C transitions, 14.8%(4/27)
were G>T/T>G transversions, 7.4%(2/27) were A>C
transversions, 7.4% (2/27) were A>T/T>A transversions,
3.7%(1/27) was C>G transversion and 7.4% (2/27) were
deletion. Among the 6 variants that existed in fresh frozen
tissue only, 83.3% (5/6) were C>T/G>A or A>G/T>C
transitions, and 16.7% (1/6) was A>C transversion.
Comparison of the gene mutations at the variant level
revealed that concordance rates were 100.0% for 38.0%
(49/129) variants, and concordance rates were higher
than 94.0% for all variants (Supplemental Table 2). Kappa
coefficients were higher than 0.500 in 64.3% (83/129) of variants
(Supplemental Table 2).
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FIGURE 1 | Comparisons of mutation results between FFPE and fresh frozen tissue at the gene level, showing high concordance.

Comparison of Gene Mutations Between
FFPE and Fresh Frozen Tissue at the Gene
Level
The concordance rates of gene mutations ranged from 73.8 to
100.0% for all genes (Table 5, Figure 1). Kappa coefficients were
>0.500 in 81.3% (13/16) of genes (Table 5).

DISCUSSION

In the present study, we found that 117 patients (99.2%)
had one or more variants, with 226 variants in FFPE tissues
and 221 in fresh frozen tissues. The concordance rates of
gene mutation results in FFPE vs. fresh frozen tissue were
higher than 94% for all variants, with Kappa coefficient >0.500
in 64.3% (83/129) variants. At the gene level, concordance
ranged from 73.8 to 100.0%, with Kappa coefficient >0.500
in 81.3% (13/16) of genes. Our results indicated that the
mutation results for FFPE and fresh frozen tissue were highly
concordant at the variant and gene levels, but there were still
some important differences in mutation results between the two
tissue types.

The total coverage of fresh frozen tissues was significantly
higher than that of FFPE tissues. We hypothesized that this
could be due to the smaller DNA fragment size in FFPE tissues
as some were below the detection limit. In our study, 226
variants were identified in FFPE tissues and 221 variants were
identified in fresh frozen tissues. The more variants detected
in FFPE samples might be caused by DNA damage during
the formalin fixation process (e.g., fragmentation, degradation,
crosslinking). Of the 27 variants identified only in FFPE
tissues, 16 (59.3%) were C>T/G>A or A>G/T>C transitions.
These 16 transitions may be artifacts secondary to postmortem
deamination of cytosine or adenine to uracil or hypoxanthine

residues (20). We took special care to decrease the rate of
false-negative results by including only sections with >40%
tumor cells, because adjacent normal cells usually have no
mutations (20). In a study by Gallegos et al., the authors
compared FFPE samples with fresh frozen tissue samples
from 47 lung cancer patients in terms of EGFR and KRAS
mutations. The authors showed that the success rate of PCR
amplification was only 50% in FFPE tissues, with a false-
positive rate up to 50% (19). The high false-positive rate
may be related to tissue type and fixation method (18). The
fixation and archiving processes required for FFPE often lead
to the degradation and fragmentation of DNA. In our study,
all PCR primers were designed to make sure that the PCR
products were <200 bp, which may have contributed to the high
concordance observed.

A few small studies previously compared paired FFPE and
fresh frozen tissue from cancer patients in terms of microRNA
expression, gene expression, and DNA methylation (24–27). De
et al. compared the results of whole-exome sequencing in ten
matched FFPE and fresh frozen tissue samples from patients
with melanoma (28), and found that the average concordance
rate was 43.2% over a total of 1,299 variants for the chosen
27 genes (28). The low concordance rate may be related to the
length of PCR product. Spencer et al. compared the variants
of 27 cancer-related genes between 16 pairs of fresh frozen
and FFPE tissues from patients with lung carcinoma (29), and
found that the concordance rate was up to 96.8% in the single-
nucleotide variants. Solassol et al. compared the mutation status
of KRAS in 33 patients with metastatic CRC, using paired
fresh frozen and FFPE tumor tissues. The findings obtained
revealed a concordance rate of only 81.9% (20). Betge et al.
studied gene mutations in paired FFPE and fresh frozen tissue
samples from hepatic metastases from 10 patients with CRC.
The results revealed a high concordance between samples, with
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TABLE 4 | Comparison of fresh frozen and FFPE tissues in terms of variant

characteristics.

FFPE tissue Fresh frozen tissue

Total variants 226 221

Consequence of variants

Missense variant 195 192

Stop gained 19 17

Frameshift variant 5 5

Splice variant 5 4

Inframe deletion 2 3

Inframe insertion 0 0

Impact of variants

Moderate 197 195

High 29 26

Variant type

SNV* 216 211

Deletion 8 7

Insertion 2 3

SIFT analysis

Deleterious 159 170

Tolerated 36 22

Unknown 31 29

PolyPhen-2 analysis

Benign 56 51

Probably damaging 114 120

Possibly damaging 25 21

Unknown 31 29

Clinical significances

Likely benign 3 0

Likely pathogenic 8 17

Pathogenic 63 87

Uncertain significance 10 17

Unknown 142 100

*SNV, single-nucleotide variant (single nucleotide replacement); single nucleotide deletions

and insertions were classified separately.

21 identical variants and 2 different variants (22). All of the
above-mentioned studies used NGS to detect mutation, but the
testing method were different. The various concordance rates
may be related to the various factors such as primer, length of
PCR product, tumor type, and testing methods. These results
proved that remarkable differences existed between results of
FFPE tissues and fresh frozen tissues, which were consistent
with our finding. To the best of our knowledge, this is the first
study of its kind to systematically compare the rate of mutation
in paired fresh frozen and FFPE CRC tissue samples, at the
gene and variant levels. Furthermore, our study had a relatively
large sample size (118 patients), compared with previous
relevant studies.

Although fresh frozen tissue is the gold standard for
molecular analyses, its use in clinical practice is impractical
because of its high cost and technical difficulty (20). Based on
the results of this study, we suggest that archived tissues from
pathology departments may be used for mutation detection

TABLE 5 | Concordance of mutation results between fresh frozen and FFPE

tissues, at the gene level.

Mutation Genes a* b* c* d* Concordance# Kappa P

AKT1 1 0 1 116 99.2% 0.663 <0.001

BRAF 1 0 2 116 99.2% 0.796 <0.001

CTNNB1 0 0 1 118 100.0% 1.000 <0.001

DDR2 1 0 1 116 99.2% 0.663 <0.001

EGFR 1 1 0 114 98.3% −0.009 0.925

ERBB2 0 0 1 105 100.0% 1.000 <0.001

ERBB4 2 1 2 113 97.5% 0.559 <0.001

FBXW7 5 3 13 64 90.6% 0.706 <0.001

FGFR2 1 0 2 113 99.1% 0.796 <0.001

KRAS 16 8 46 92 85.2% 0.679 <0.001

MAP2K1 1 0 4 99 99.0% 0.884 <0.001

NRAS 3 3 2 106 94.7% 0.372 <0.001

PIK3CA 10 12 18 90 83.1% 0.512 <0.001

PTEN 5 2 6 57 90.0% 0.575 <0.001

SMAD4 5 2 6 111 94.4% 0.602 <0.001

TP53 10 35 54 73 73.8% 0.481 <0.001

*a, Mutation identified in fresh frozen tissue, but not in FFPE tissue; b, Mutation identified

in FFPE tissue, but not in fresh frozen tissue; c, Mutation identified in FFPE and fresh

frozen tissue; d, Mutation was not identified in FFPE or fresh frozen tissue; #Concordance

= (c+d)/(a+b+c+d).

with the 22-gene panel. The feasibility of using FFPE tissues for
mutation detection will facilitate future studies of CRC. However,
because the accuracy of mutation detection in FFPE tissues is
influenced by multiple factors, it is important to standardize the
procedure in order to minimize variability. Standardized
protocols should be elaborated for sample preparation,
storage room requirements, library preparation, evaluating
the quality of extracted DNA, and the exclusion of poor-quality
samples (22).

This study had some limitations. First, it was a retrospective
study of stored FFPE tissues. In clinical practice, the fixation
and embedding of specimens (which includes tissue thickness,
fixative volume, and fixation time of 24–72 h) was not strictly
controlled. Variation in the above factors may have affected
the quality of preserved DNA, leading to inaccurate results
(20). Second, the processes of fixation and embedding may
result in deamination, leading to artifactual mutations or false-
negative results. These factors may have had variable impacts
at different tumor sites (20). In this study, we only took 10
consecutive sections of FFPE tumor tissues. We were therefore
unable to rule out the possibility of intra-tumor heterogeneity
in terms of DNA deamination. Third, although it is the largest
study of its kind, larger prospective studies are required to
validate our results. The number of variants will increase
with sample size, leading to a more accurate evaluation of
concordance, which is especially important for rare variants.
Fourth, our study included FFPE specimens that had been stored
in the pathology department for <2 years. The degradation
and fragmentation of DNA in FFPE tissues may increase with
time. Therefore, our observations cannot be extrapolated to all
FFPE specimens.
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CONCLUSION

The gene mutation results of a 22-gene panel showed high
concordance between paired FFPE and fresh frozen tissue
samples, at both the variant and gene levels. This indicates
that FFPE tissues stored for <2 years may be used as an
alternative to fresh frozen tissue for detecting gene mutations in
patients with CRC. However, any alteration in the preparation
or detection process may affect the accuracy of results. Factors
that may be affected include fixation time, duration of storage
of FFPE specimens, DNA sample quality, and tools used to
analyze the variants. This should be taken into consideration
when interpreting the findings presented above. Furthermore, the
mutation results still showed some differences between tissues.
Therefore, fresh frozen tissue should not routinely be replaced
with FFPE for mutation analysis with a multi-gene panel; instead,
FFPE is a reasonable alternative for fresh frozen tissue when the
latter is unavailable. In addition, if the clinical response of EGFR-
targeted therapy were not consistent with the mutation results
based on FFPE tissue, gene mutation test might be performed
again with fresh frozen tissue.
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RNA sequencing (RNAseq) is one of the most commonly used techniques in life sciences,

and has been widely used in cancer research, drug development, and cancer diagnosis

and prognosis. Driven by various biological and technical questions, the techniques of

RNAseq have progressed rapidly from bulk RNAseq, laser-captured micro-dissected

RNAseq, and single-cell RNAseq to digital spatial RNA profiling, spatial transcriptomics,

and direct in situ sequencing. These different technologies have their unique strengths,

weaknesses, and suitable applications in the field of clinical oncology. To guide cancer

researchers to select the most appropriate RNAseq technique for their biological

questions, we will discuss each of these technologies, technical features, and clinical

applications in cancer. We will help cancer researchers to understand the key differences

of these RNAseq technologies and their optimal applications.

Keywords: RNA sequencing, bulk RNAseq, LCM-RNAseq, single-cell RNAseq, digital spatial profiling, spatial

transcriptomics, fourth-generation RNAseq, next generation sequencing

BULK RNAseq

Since Bulk RNAseq was developed over a decade ago (1), it has become a popular genomic
tool in the life science field and is shaping nearly every aspect of our understanding of genomic
functions (2). Bulk RNAseq is used in >60% of all next-generation sequencing projects, including
whole genome sequencing (WGS), whole exome sequencing (WES), MethySeq, chromatin
immunoprecipitation sequencing (ChIP-seq), and ATAC-seq. It is the most widely used genomic
technique for studying the transcriptional landscape and altered molecular pathways in human
cancers. RNAseq consists of four key steps: total RNA extraction, library construction, sequencing,
and data analysis. The biological question and RNA quality will dictate the type of library employed,
the selection of kits, sequencing type, and sequencing depth (Figure 1).

Based on the biological questions of the researcher, there are two types of bulk RNAseq that may
be employed. The first type is simple RNAseq analysis aimed at identifying differentially expressed
genes or markers (signatures), in order to understand molecular mechanisms implicated in various
biological processes or to guide for diagnosis and treatment. Single-read sequencing (1 × 50 or
1 × 75) is appropriate for these types of RNAseq experiments, and 20–30 million reads/sample
is usually a sufficient read depth. The majority of the libraries for these purposes are prepared
using the poly-A RNA selection approach. The second type of bulk RNAseq is transcriptome
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FIGURE 1 | Outline of two different types of RNA sequencing. Top is for differential gene expression and bottom is for transcriptome analysis.

sequencing, which not only achieves the goals of simple
RNAseq, but also extends our knowledge of alternative splicing,
point mutations, novel genes and transcripts, long non-coding
RNAs, and fusion transcripts. Transcriptome analysis requires
paired-end sequencing (2 × 100 or 2 × 150) at 40–50
million reads/sample from each direction, and the libraries
are usually prepared using the rRNA depletion approach. The
ENCODE guidelines (https://www.encodeproject.org/) provide
various technical details for bulk RNAseq methodology and
should be used for standards to assist in designing clinical
RNAseq experiments with suggestions on sequencing depth, read
length, replicates, and so on.

Bulk RNAseq is a cost effective and efficient tool for both
cancer research and clinical applications (3–5). Today, clinical
RNAseq is mainly used in novel gene fusion discoveries,
panel-based accompanying gene fusion diagnosis, whole
transcriptome-based biomarker (signature) discovery, and
guidance for therapeutic treatment. A good example for using
RNAseq data to detect novel, and clinically relevant, gene
fusions involved in cancer used large-scale transcriptome
analysis (6). The study employed an in-house developed
bioinformatics pipeline to detect kinase gene fusions using
nearly 7,000 cancer samples from The Cancer Genome Atlas.
The study had immediate clinical implications as it led to
the discovery of numerous novel and recurrent kinase gene

fusions, for many of which approved or exploratory drugs
now exist. Several other studies have provided additional
evidence to support the discovery of novel gene fusions
that have benefited directly from existing kinase inhibitors
or new therapeutic opportunities (7–9). For example,
whole transcriptome sequencing discovered novel FGFR
gene fusions that subsequently led to the development of
clinical trials of the tyrosine kinase inhibitors ponatinib and
BGJ398, for the treatment of cancer patients with FGFR
fusions (10).

The RNA-based gene fusion detection panel was one of the
first RNAseq applications successfully translated into routine
clinical practice (11). The Foundation One Heme is such a
clinically validated panel, an integrated DNA/RNA profiling
platform using targeted next-generation sequencing. This panel
includes 265 genes frequently involved in gene fusions in various
cancers, including FLT3, NPM1, CEBPA, BCRABL1, KIT, IDH2,
IDH1, JAK2, MPL, PML-RARA, and MLL. The gene fusions
detected by RNA sequencing can be validated by targeted DNA
sequencing included in the Heme panel. The test can be used by
physicians to identify targeted therapy options, detect alterations
for prognosis, and sub-classify sarcoma diagnoses. Another
clinically used popular gene fusion panel for a companion
diagnosis is the Lung NGS Fusion Profile offered by NEO
Genomics. This RNA-based next-generation sequencing panel
detects translocations and fusions of six genes (ALK, NTRK1,
NTRK2, NTRK3, RET, and ROS1) with known and novel fusion
partners. Point mutations in select exons of these six genes
are also frequently detected. In non-small cell lung carcinoma
(NSCLC), the gene fusions of ALK, NTRK, RET, and ROS1 are
detected with the approximate frequencies of 4–6, 1, 1–2, and
1–2%, respectively. Patients harboring such gene fusions may
respond to several specific kinase inhibitors.

Another key clinical application of RNAseq is the discovery of
biomarkers using whole transcriptome analysis. These biomarker
signatures are used for cancer diagnosis, prognosis, and
prediction. The clinical utility of gene expression signatures,
developed by use of microarray, QRT-PCR, and other classic
methods, have been well-established and used widely in routine
clinical practice, including MammaPrint, OncotypeDX, and
Prosigna for breast cancer, GeneFx for lung cancer, Prolaris
for prostate cancer, and ColoPrint for colon cancer. The
above commonly used, clinically validated signature panels
can be potentially translated into RNAseq signature panels.
In fact, translatability has been demonstrated by comparing
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gene expression signatures in breast cancer between Affymetrix
microarray and Illumina RNA-sequencing technology (12).
In addition, systematic evaluation of RNAseq-based and
microarray-based technology demonstrated that RNAseq is
better in characterizing the transcriptome of cancer, and
similar in clinical endpoint prediction, when compared with
arrays. Zhang et al. (13) and Tom Lesluyes et al. (14) also
used RNAseq technology with formalin-fixed paraffin-embedded
(FFPE) tissue, a clinically more accessible sample type. This
helped validate a prognostic signature of metastatic soft tissue
sarcomas (CINSARC), developed using microarray with frozen
tumor tissue, further demonstrating that CINSARC is a platform
and material independent prognostic signature for metastatic
sarcomas. Recently, some other RNAseq-based signatures
have been developed and validated, such as the diagnostic
signature for thyroid cancer (15), prognostic signatures for
both Neuroblastoma (16), and Lung Adenocarcinoma (17), and
predictive signatures for metastatic melanoma (18, 19).

Whole transcriptome RNAseq can also be used for guiding
therapeutic treatment. Its feasibility and clinical utility in
cancer were established in an early study of integrative clinical
sequencing (whole exome and transcriptome analyses), which
involved youths with relapsed or refractory cancer. This study
identified potentially actionable findings in 46% of patients, some
of those consequently changed treatment and genetic counseling
(20). Later, Ronbinson et al. (21) demonstrated the broad utility
of transcriptomic data in characterizing metastatic tumors and
cancer treatment.

The RNAseq–based analyses have many advantages over
DNA-based or other classic methods for clinical applications,
including precise detail about base pairs, the ability to detect
splicing variants, allele-specific expression, novel gene fusion,
non-coding RNA, and novel RNAs. It is anticipated that RNAseq
data will provide a more complete view of cancer-related genetic
alterations and there is ample evidence to support such a view.
For example, RNAseq identified an alternative breast cancer 1
(BRCA1) transcript in a subset of patients with breast cancer
that was missed by conventional genomic analysis (22); Cabanski
et al. (23) discovered a receptor tyrosine kinase (ROS1) gene
fusion involved in a novel fusion partner with TMEM106B that
was overlooked by standard FISH or PCR approaches; RNAseq
analysis found that the germline allele-specific expression (ASE)
of the transforming growth factor-beta (TGF-beta) type I
receptor (TGFBR1) is associated with an increased risk of colon
cancer (24); and RNAseq-based studies also show Long non-
coding RNAs and miRNAs have prognostic potential in lung
squamous cell carcinoma (25) and adenocarcinoma (26).

RNAseq can be applied to all tumor sample types including
tumor cell lines, fresh or frozen tumor tissues, FFPE tumor
tissues, and even liquid biopsy samples. The most accessible
clinical tissue is FFPE tissue, which normally produces a limited
amount of degraded RNA. This reality poses a challenge to
produce high quality RNAseq data. Although RNAseq can reveal
a more complete picture of genomic alterations in cancer, it is
less commonly used compared to DNA sequencing in the clinical
environment as RNA is less stable. With further technological
advances, such as the development of new RNA preservative

reagents, extraction methods, and RNA capture/hybridization
protocols, the major hurdle of RNA stability will be overcome
and the great potential of RNAseq in precision oncology will be
fully realized.

It is important to keep in mind that bulk RNAseq reveals
only an average gene expression profile from the studied tissue.
Most tumors contain heterogeneous cell populations, including
malignant cells, immune cells, fibroblasts, and vascular cells.
This heterogeneity exists not only in the same tumor types
from multiple patients, but also within various tumors from
individual patients. The resulting average gene expression profile
from tumor tissue can potentially weaken the true signals
from a specific cell type that may drive tumorigenesis or
resistance to treatments. For example, bulk RNAseq may have
low detection sensitivity for biomarker discovery when the
markers are only present in a specific cell type. This weakness
can be addressed by alternative RNAseq technologies discussed
in the following sections. The sensitivity issue for the companion
diagnosis of gene fusion panels can be alleviated by increasing
sequencing depth.

LASER CAPTURE MICRO-DISSECTED
RNAseq

Many approaches have been developed in attempts to overcome
the weaknesses of bulk RNAseq. One of the simplest approaches
is laser capture micro-dissected RNAseq (LCM-RNAseq) (27).
The key procedures of LCM-RNAseq consist of laser capture
micro-dissection of cells of interest, followed by normal RNAseq,
as illustrated in Figure 2. The majority of LCM-RNAseq employs
FFPEmaterials, however the RNA extracted from FFPEmaterials
are notoriously low quantity and quality and the LCMprocedures
further reduce the RNA integrity. As such, it is necessary to
optimize LCM-RNAseq workflow by considering two critical
factors: (1) optimizing the LCM procedures to minimize
damage of RNA, which includes proper selection of the LCM
instrument with IR laser, and (2) using a suitable RNAseq library
construction kit that is optimized for the limited amount of
degraded RNA (27), such as the SMARTer Stranded Total RNA-
Seq Kit v2 (pico input mammalian; 250 pg−10 ng RNA input).
This kit has a built-in CRIPR/CAS9-mediated rRNA depletion
procedure without an independent rRNA depletion step. The kit
is capable of depleting rRNA with only picograms of degraded
RNA, which is not possible with library construction kits that
employ a separate rRNA depletion step (normally requires
>100 ng of RNA).

As the vast resource of clinical samples are FFPE tissues,
further refining and improving existing LCM-RNAseq protocols
could have far reaching impacts in both retrospective studies
and current clinical testing of tumor samples. Recently, several
new LCM-RNAseq methods were developed to address the
constraints of the low input of degraded RNA derived from LCM
FFPE tissues. By improving pre-amplification procedures, Singh
et al. (28) claimed that sequencing data derived from as few as
10 LCM isolated single cells can reliably and sensitively measure
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FIGURE 2 | The workflow of laser capture micro-dissected RNA sequencing.

cell-state heterogeneity in tumor tissues. A new LCM- Smart-
3SEQ method was also developed that can quantify transcript
abundance better with a low amount of degraded RNA from
LCM cells (29). FFPEcap-seq is another method specifically
designed for sequencing capped 5′ ends of RNA derived from
FFPE samples. This 5′ capped RNAs-based method can also
detect enhancer RNAs that arise from distal regulatory regions
in addition to accurately capturing mRNA expression levels (30).

Due to technological limitations, the applications of LCM-
RNAseq in cancer is relatively limited. The first application
of LCM-RNAseq in cancer was performed in the normal-AIS-
invasive adenocarcinoma progression model of lung cancer
(31). The study established initial feasibility of LCM-RNASeq
in a six patient sample population with an aim to identify
biomarkers for lung cancer progression. Several studies have
recently emerged, here we provide one example that highlights
how LCM-RNAseq data can be used to deconvolve multiple cell
type-specific gene expression profiles in cancer (32). In this study,
the expression profiles of six specific tissue compartments of
human glioblastoma (BGM) were analyzed using LCM-RNAseq
techniques. These different compartments have interconnected
complex networks and create a complex micro-environment that
constantly gives signals to activate cell migration and promote
cancer cell survival and proliferation (33). By isolating cell-
specific gene expression signatures from different compartments,

the authors found an overexpression of proangiogenic genes
and pathways in pseudopalisading astrocytes cells. These
overexpressed genes and pathways were known to promote
cell survival and infiltrative growth, migration, and resistance
to cancer-targeted therapies in GBM. Civita et al. (32) also
observed a considerable up-regulation of growth factors signaling
pathways in pseudopalisading cells compared to the tumor
core. The data demonstrate that certain molecular events are
region specific and different regions are molecularly interrelated.

These findings provide potential targets for the development
of new treatments and change current clinical management of

BGM patients.
Although LCM-RNASeq can reveal cell population-specific

gene expression profiles, it is associated with two practical
issues. First, the procedure is time consuming and one can
only work on a small number of cells at a time, thus data
derived from 10 to 100 cells are generally less robust compared
to the data obtained from >1 × 106 cells of Bulk RNASeq.
Secondly, the RNA yield is of low quantity and highly degraded,
which requires more PCR cycles for amplification and thereby
leading to poor quality RNAseq data with high PCR duplicates
and possibly a biased gene expression profile. These issues
need to be addressed by further technological improvement or
alternative technologies. Interestingly, He et al. (11) develop a
new algorithm (ADVOCATE) by using LCM-RNASeq derived

Frontiers in Oncology | www.frontiersin.org 4 April 2020 | Volume 10 | Article 44781

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Changing of RNA-Seq Technologies

data from the malignant epithelium and stroma of pancreatic
ductal adenocarcinoma (PDA). These LCM-RNASeq derived
algorithms can predict the compartment–specific expression
profiles from bulk RNASeq profiles of PDA. This pilot work
provides a framework for potentially analyzing the cellular
heterogeneity of cancer and expanding the utility of the large
collection of bulk gene expression data.

SINGLE-CELL RNAseq

There are a number of different technologies available today
for single-cell RNAseq (scRNAseq) (34). The Fluidigm C1
microfluidics system represents one of the early scRNAseq
technologies. This system can process only 96 single cells
in a single run over 1 day. The throughput is increased to
800 single cells by using improved Fluidigm IFC chips (35).
Recently, microdroplet-based single-cell sequencing systems
have become dominant players. Among those, the 10x Genomics

Chromium R© system is one of the most popular systems for high-
quality scRNAseq. In contrast to LCM-RNAseq, the Chromium
technology enables rapid analysis of the gene expression profiles
of up to 10,000 individual cells in one experiment.

The Chromium scRNAseq workflow, similar to other
microdroplet scRNAseq systems, is illustrated in Figure 3. The
first critical step for scRNAseq is to isolate viable, individual
cells from targeted tissues or cultured cells. Then, the Chromium
microfluidics system is used to inexpensively generate hundreds
of thousands of microdroplets, called GEMs, which are aqueous
microdroplets surrounded by oil. Each GEM has a volume
of ∼2 nl that includes all necessary reagents for reverse
transcription (RT) and also contains a bead conjugated with a
specific 80-base pair (bp) oligo sequence. This oligo sequence
has several components, including adaptor sequences for next-
generation sequencing (NGS) (Read 1), a cell-specific 10x
barcode for identifying which cell the RNA comes from, the
random molecular tags for identifying and quantifying unique
mRNA transcripts [i.e., unique molecular identifiers (UMI)],
and polyoligo-dT primers for mRNA binding. Following cell

FIGURE 3 | The single cell RNASeq. (1) The dissociation of tissue cells and removal of dead cells and cell debris, (2) Viable cells are resuspended in the desired buffer

at a correct concentration. (3) Cell suspension is combined with RT reagents and, along with gel beads and immersion oil, introduced into Chromium Controller chip.

(4) Microfluidics chip generates single cell GEMs, a gel bead bound to a cell’s RNA molecules. (4.5) Gel beads and cell suspension, in RT mix, are pushed into the

immersion oil. (5) GEMs are transferred into PCR tubes and undergo RT-PCR to produce cDNA. (6) The cDNA, suspended in oil, is released from GEMs, removed

from oil, and amplified via PCR. (7) Libraries are completed by fragmenting the cDNA to proper insert size, followed by end repair, A-tailing, and ligation of Illumina read

2 index, all occurring in a single PCR step. (8) Sample-specific index are added and the sequence-ready libraries are sequenced by using Illumina sequencer (NextSeq

500, HiSeq3000/4000 or NovaSeq6000). (9) The 10x single cell data analysis pipeline employs Cell Ranger to align reads and perform cluster and gene expression

analysis, followed by Cell Loupe Browser to visualize and analyze the Cell Ranger data output.
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lysis, the oligo-dT on the beads hybridizes to the poly-A tail
of the released mRNA, and then RT reactions are carried out
within the microdrops. At this step, the bead-specific oligo
sequence is incorporated into the cDNA, which is used to align
sequence reads back to a specific cell. GEMs are then broken,
cDNAs are pooled together, amplified, and purified, followed
by NGS library preparation using 10x Genomics protocols. The
libraries can be sequenced by using Illumina sequencers at
the following settings with Novaseq 100 cycle sequencing kit:
28 bps for read 1 (sequencing the cell-specific 10x barcode),
8 bps for i7 (sequencing the sample barcode), and 91 bps
for read 2 (sequencing single-cell RNA). The 10x Genomics
Chromium system and its associated library construction kits are
commercially available. This system offers significant advantages
over other microfluidics systems, such as Dropseq and Fluidigm
C1, primarily in data quality and throughput. Therefore, it has
become an important analytical tool for researchers in many
disciplines, particularly in cancer research.

One key feature of tumors is their heterogeneity. The
analysis of bulk RNAseq is complicated by significant infiltration
of stroma and other type of cells in the tumor. Given the
quantitative nature of gene expression data, it can be difficult
to deconvolve the functionally relevant signals from average
signals derived from bulk RNAseq. The scRNAseq technology
offers a complementary and powerful tool to dissect intratumoral
transcriptomic heterogeneity (36), important for therapeutic
response. A good example of such is an early study on drug
resistance in a model of drug tolerance with a metastatic
breast cancer cell line. By analyzing untreated, stressed, and
drug-tolerant cell groups, authors demonstrated that drug-
tolerant cells contain specific RNA variants in genes involved
in microtubule organization, stabilization, cell adhesion and cell
surface signaling (37). This drug-tolerant-specific RNA variants
were absent in untreated or stressed cells. The generation
of specific RNA variants increases heterogeneity and ensure
the survival of a minority population that efficiently converse
stress-tolerant cells back to normal cells. Single cell analysis
can also provide insightful clue for tumor treatment. Due to
the intratumoral heterogeneity, a given targeted therapy often
eliminates a specific subpopulation of tumor cells while leaving
others unharmed. To overcome this challenge, therapeutic
strategies that can target multiple tumor subpopulations are
critical. By analyzing numerous drug target pathways in
various cell populations in metastatic renal cell carcinoma,
Kim et al. used scRNAseq technology to successfully develop
an optimized combinatorial therapeutic strategy that showed
significantly improved response in vitro and in vivo compared to
monotherapies (38).

Another major application of single cell sequencing is to
characterize known cell types, subtypes, and previously unknown
cell types within and surrounding tumors, and to identify the
gene signature for given cell types (39–41). These studies have
facilitated dissection of complex pathways in heterogeneous
tumor tissues and have provided guidance for cancer treatment.
Here, we highlight how single cell sequencing technology
was used to identify new cell types and biomarkers in T
cell infiltration. The status of T cell infiltration and their

characteristics are associated with different prognostic outcomes
(42) and it is important to the development of immunotherapies
and the prediction of their clinical responses in cancers. In
2017, Zheng et al. (40) performed a comprehensive analysis of
infiltrating lymphocytes in liver cancer and reveals distinctive
functional composition of T cells in hepatocellular carcinoma
(HCC). The study identified 11 large subsets as well as unique
subpopulations, such as CD8+FOXP3+ regulatory-like cells and
clonal TCRs, at single-cell level. They also identified LAYN,
an HCC-associated Treg marker gene, which is associated with
tumor-infiltrating exhausted CD8+ T cells and poor prognosis.
The authors have made this comprehensive single T cell database
publicly available for the wide research community (http://hcc.
cancer-pku.cn).

Today, single-cell transcriptomic analysis has revolutionized
our understanding of cancer biology, including tumor
heterogeneity and their therapeutic implications. However,
the major limitation of the technology is the level of detail
that can be resolved from the captured mRNA data. Although
the 10X genomics chromium system can capture up to 10,000
cells in a single experiment, it can only recover a few thousand
unique transcripts from a single cell. By deeper sequencing, this
problem can be alleviated to a certain degree, but is still far less
than ideal for full transcriptome analysis. In conclusion, bulk
RNAseq, LCM-RNAseq, and single-cell RNAseq all suffer from a
common weakness—lost critical spatial information due to the
micro-dissection or cell dissociation at the early stage of these
protocols, which impacts the understanding of cell functionality
and pathological changes (43). These limitations can be
addressed by recently developed spatial profiling technologies as
discussed below.

DIGITAL SPATIAL PROFILING

Each organ of a complex organism consists of diverse cell types
that often interact in highly structured manners under distinct
microenvironments. Such highly structured spatial heterogeneity
enables the organism to function correctly and efficiently. To
fully understand gene functions in a given cell type, one must
study gene expression in the context of the location of the cells
in the tissue (44). However, none of the technologies discussed
above can provide this critical spatial information. Traditionally,
immunohistochemistry and in situ hybridization have been used
to reveal spatial gene expression in tissue sections, but the
throughput of these procedures is limited to the analysis of only
one or a few genes at a time.

Recently developed digital spatial profiling (DSP) technology
has made it possible to resolve spatial gene expression
with significantly improved throughput. DSP is based on
the nCounter R© barcoding technology from NanoString
Technologies to enable spatially resolved, digital characterization
of mRNA expression in a highly multiplexed assay (up to
1,000 RNA targets). The key technology of the assay relies
upon RNA hybridization probes conjugated to photo cleavable
oligonucleotide tags. After binding of probes to their targeted
mRNA on the slide-mounted FFPE tissue sections, the slide is
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imaged. Then, the oligonucleotide tags are released from the
regions of interest on the tissue via UV exposure. Released tags
are quantified in an nCounter R© assay. The counts of a specific
tag, representing a specific mRNA, are mapped back to tissue
location (defined region of interest), yielding a spatially-resolved
digital profile of mRNA abundance (Figure 4).

The GSP technology from NanoString Technologies, called
GeoMx DSP, is commercially available and has already shown
valuable applications in elucidating tumor microenvironments,
immuno-oncology biomarker discovery, and optimizing
immunotherapy by using targeted small gene panels. Ihle
et al. (45) characterized tumor microenvironment of lytic
and blastic bone metastases in prostate cancer patients using
DSP technology, and found a distinct set of immune cell
populations and signaling pathways specifically present in lytic
or blastic types of prostate cancer. The immune cells in blastic
lesions were enriched for pSTAT3 and JAK-STAT pathway
related genes while pAKT activity and PI3K-AKT pathway
related genes were more active in lytic-type lesions. The direct

implication of this finding is that the targeted therapies for
pAKT or pSTAT3 can potentially be considered. In addition,
the immune checkpoints, such as PD-L1, were identified
in blastic prostate cancer, which can now be considered as
a new therapeutic target for blastic prostate patients with
bone metastases.

Two landmark studies demonstrated that DSP is also
a powerful tool for biomarker discoveries and optimizing
therapeutic strategy (46, 47). In these studies, authors
demonstrated that the combined ipilimumab and nivolumab
therapies had high response rates with more lymphoid
infiltration, whereas treatment with nivolumab monotherapy
had modest responses with a more clonal and diverse T cell
infiltration in responders, respectively, and that low RNA
expression of the IFN-γ signature was associated with relapse
after combinational therapies (ipilimumab + nivolumab),
while none of the patients with a high or intermediate IFN-γ
signature has relapsed in high-risk melanoma patients (47).
Both studies identified promising biomarkers for further

FIGURE 4 | The digital spatial profiling. (1) Apply high-plex oligo-labeled probes to FFPE slide. (2) Use visible wavelength low-plex imaging to establish tissue

“geography.” Select regions-of-interest (ROIs) for high-plex profiling. (3) UV-release oligo tags at selected ROIs. (4, 5) Collect and dispense released tags in microtiter

plate. (6) Repeat the procedures for each ROI. (7) Index, hybridize, and count the tags per ROI and analyze the data with nSolverTM Advanced Analysis Software.
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validation and offered possible solutions for optimizing
immunotherapy strategy.

The DSP technology is becoming popular in the digital gene
expression space. We expect that more applications of this
technology in clinical oncology will emerge in the next few
years. However, the relatively small number of mRNA targets
that can be investigated simultaneously, the requirement of
pre-knowledge of the gene, and inability to reveal sequencing
information have limited its applications on a broader scale.
Given that spatial gene expression is critical for understanding
cell identity and function in tissue content, there is compelling
reason to expect innovation to continue in the field.

SPATIAL TRANSCRIPTOMICS

A new spatial transcriptome technology has been in active
development for several years. This technology overcomes the
limitations of DSP technology by allowing scientists to study the
whole transcriptome spatially (43). It can theoretically provide
information similar to bulk transcriptome analysis along with
spatial content.

Spatial transcriptomics adopted a strategy that integrates
the features of microarray and the barcoding system of 10x
Genomics. Briefly, a fresh-frozen tissue section is imaged and
placed on a patterned, barcoded oligo-dT microarray slide.
The capture probes on the slide include a T7 promoter for
in vitro transcription (IVT), a partial Illumina handle for the
sequencing, a spatial barcode for RNA localization, a UMI for
removing amplification duplicates, and oligo-dT sequences for
capturing mRNA. The tissue is then fixed and permeabilized

to release RNA, which binds to adjacent oligo-dT sequences of
capture probes. During the cDNA synthesis, the spatial barcodes
indicating the location of each spot on the array are incorporated
into the cDNA. One strand of double stranded cDNA, which
contains the information of where the cDNA came from, is
cleaved off from the array. The libraries are completed off the
chip and then sequenced. The spatial barcode allows each read
to be mapped to the correct spatial coordinates (Figure 5). Since
spatial transcriptomics technology displays spatially-resolved
whole transcriptome data on the original tissue section, scientists
can choose all or any number of genes of interest to visualize
and analyze.

The spatial transcriptomic analysis is generally applicable to
fresh-frozen mammalian tissues and fresh plant tissues (48), and
is potentially applicable to FFPE materials (44). The application
of this powerful technology in the cancer arena is still limited and
only tested in early technology access. One critical application
is to investigate intratumor heterogeneity, which has posed a
challenge to understanding tumor progression and treatment.
Dr. Joakim Lundeberg’s group has used this technology to
explore the landscape of tumor heterogeneity in prostate cancer
(49) and melanoma (50). By profiling 6,750 and 2,200 tissue
regions in prostate and melanoma, respectively, they showed
extraordinary gene expression heterogeneity between biopsies
(distinct gene expression signature) and different regions within
the biopsy (coexistence of several expression profiles) (50).
The gene expression heterogeneity extends well-beyond cell
type or tissue type. For example, the lymphoid area adjacent
to the tumor region had a specific expression pattern (50),
non-tumor tissue in close proximity to the tumor region
displayed a gradient expression pattern and unique cancer

FIGURE 5 | The spatial transcriptomes. (1) A freshly frozen tissue section is prepared and attached onto the chip. (2) The chip contains an array of distinguishable

capture probes. The Poly-T tails of these capture probes can bind the Poly-A tails of RNA molecules. (3) The tissue section is fixed and imaged, which makes it

possible to overlay the cell tissue image and the gene expression data in a later step. (4) The tissue is permeabilized and RNA molecules can exit the cells through

small holes created in the cell membrane, and bind to the adjacent capture probes on the chip. (5) cDNA synthesis is performed on the chip. (6) The

cDNA-RNA-hybrids are cleaved off the chip, followed by library construction. (7) The libraries are sequenced. (8) Data are visualized to determine where genes are

expressed and in what quantity.
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expression profiles progress beyond pathologically defined tumor
boundaries (49). All these findings suggest that the location-
dependent gene expression is a reflection of cell-cell interactions
in tumor microenvironment and certainly impact immune
cells’ function and therapy response. This is a key area that
deserves further investigation in order to fully understand
tumor metastasis.

Spatial transcriptomics technology has also been used in
cancer diagnosis. Yoosuf et al. (51) used publicly available breast
cancer spatial transcriptomics datasets, in combination with
machine learning technique, to distinguish ductal carcinoma in
situ (DCIS) from invasive ductal carcinoma (IDC). By identifying
spatial transcriptomics signatures from known DCIS and IDC
regions and training the machine learning method, they achieved
a prediction accuracy of 95% for DCIS and 91% for IDC. This
pilot study demonstrates the power of spatial transcriptomics in
breast cancer diagnosis and subtype characterization.

The spatial transcriptomics technology does not require
specialized equipment or pre-knowledge of gene sequences, and
has a throughput higher than that of digital spatial profiling
methods. The limitation of this technology is that the currently
available product is not able to offer single-cell resolution as it
is limited by the microarray spot size and spacing. However, in
October, 2019, Stahl’s group claimed that they have improved
the spatial resolution of this technology by 1,400x so that it can
now study spatial gene expression at the single cell level, opening
the opportunity to detect tumor cells in the critical early stages
(52). In today’s clinical management of oncological patients, we
need to quickly identify resistant clones during standard targeted
therapies and discover robust, sensitive biomarkers to predict
response to immunotherapy. Given the current resolution and
sensitivity of spatial transcriptomics technology, this is an ideal
technology to resolve these unmet needs.

FOURTH-GENERATION RNAseq

The ultimate goal of RNAseq is a simple, robust, spatially-
resolved transcriptomic analysis at a single-cell resolution.
The recent developments of fourth-generation sequencing

technologies, such as in situ sequencing (ISS) and fluorescent
ISS (FISSEQ), have potential toward this final destiny (36, 52).
The detailed technologies, promises, and consequences were
reviewed by Ke et al. (53). The ISS method applied padlock
probes combined with rolling circle amplification (RCA) to
generate in situ amplified, targeted sequencing libraries that
are subsequently sequenced via sequencing-by-ligation NGS
chemistry (53). Through sequencing of a molecular barcode,
consisting of four bases in the non-target hybridization part of
the padlock probes, the ISS method can simultaneously sequence
up to 256 unique transcripts. As this method uses target-
specific padlock probes to create rolling circle amplification
products, it is used only for sequencing known genes, such
as gene panels. In contrast, the fluorescent in situ sequencing
(FISSEQ) method uses random hexamers with a sequencing
primer tag to initiate in situ RT. Different from cDNA in
ISS, the resultant cDNAs are circularized using CircLigase.
During RT, dUTP is introduced and the cDNAs are cross-
linked to tissue with the reagent BS (PEG)9 to prevent diffusion
of the cDNAs. After RCA, the products are sequenced by
using the same sequencing by ligation techniques. By applying
FISSEQ with a 30-base read length, Lee et al. obtained 156,762
reads covering 8,102 annotated genes in human primary
fibroblasts (36).

Compared to ISSmethods, FISSEQ generates random libraries
and, in principle, allows an unbiased analysis of all cellular
transcripts at a single-cell resolution. Practically, the number of
transcripts detected in each cell is low (54), since the majority of
sequenced molecules are rRNAs. In this regard, ISS technology
uses targeted gene panels and thus the sensitivity of ISS is around
two orders of magnitude higher than that of FISSEQ for any given
gene (55).

Although ISS and FISSEQ technologies each have their own
strengths in detection, these technologies are still in their very
early developmental stages and many technical aspects need to
be addressed before they can be applied in cancer research and
clinical applications. Themain bottlenecks are tissue preparation,
optimized methods for improving efficiency, computational
tools, and imaging scale. However, fourth-generation RNAseq
provides a direct in situ sequencing approach. If technical

TABLE 1 | Key strengths, weaknesses, and current suitable applications of six RNASeq technologies in clinical oncology.

Strengths Weaknesses Suitable applications

Bulk RNASeq High throughput, cost effective, mature

technology

Average gene expression profile, lack

of spatial content

Whole transcriptome-based biomarker discovery,

targeted RNAseq panel for gene fusion

LCM-RNAseq Cell type specific gene expression

profile

Time consuming, low quality data,

lack of spatial content

Tumor heterogeneity by dissecting cell type

specific population

Single cell RNASeq >10,000 single cell gene expression

profile

High cost, a limited number of unique

transcripts, lack of spatial content

Tumor heterogeneity, cell type characterization,

and discovery

Digital spatial profiling Spatial information, applicable to FFPE

materials

Limited to small number of genes

(gene panel only), lack of sequencing

information

Tumor microenvironments, immuno-oncology

biomarker discovery and optimizing

immunotherapy

Spatial transcriptomics Whole transcriptome analysis with

spatial and sequencing information

Long procedures, early stage of

technology

Tumor heterogeneity, tumor microenvironments,

optimizing immunotherapy

Fourth generation RNAseq In situ sequencing with future potential In-matured technology Not demonstrated yet

Frontiers in Oncology | www.frontiersin.org 9 April 2020 | Volume 10 | Article 44786

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Changing of RNA-Seq Technologies

obstacles can be addressed in the coming years, fourth-generation
RNAseq can potentially become a straightforward method for
high-throughput spatial transcriptomic analysis.

SUMMARY

Among six RNAseq technologies described above, each has
its own strengths, weaknesses and suitable applications, as
summarized in Table 1. We anticipate that bulk RNAseq
will remain the primary choice for clinical oncology in the
near future, the application of single cell sequencing will
further expand when it becomes more cost-effective, and
technologies with spatial content will be the final destiny in
precision oncology.
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Substantial effort is being invested in the search for peripheral or intratumoral T cell

receptor (TCR) repertoire features that could predict the response to immunotherapy.

Here we demonstrate the utility of MiXCR software for TCR and immunoglobulin

repertoire extraction from RNA-Seq data obtained from sorted tumor-infiltrating T and

B cells. We use this approach to extract TCR repertoires from RNA-Seq data obtained

from sorted tumor-infiltrating CD4+ and CD8+ T cells in an HKP1 (KrasG12Dp53−/−)

syngeneic mouse model of lung cancer after anti-PD-1 treatment. For both subsets,

we demonstrate decreased TCR diversity in response to therapy. At a later time

point, repertoire diversity is restored in progressing disease but remains decreased

in responders to therapy in both CD4+ and CD8+ subsets. These observations

complement previous studies and suggest that stably increased intratumoral CD4+

and CD8+ T cell clonality after anti-PD-1/PD-L1 therapy could serve as a predictor of

long-term response.

Keywords: tumor-infiltrating lymphocytes, TCR repertoire, RNA-Seq, anti-PD-1, T cell clonality, MiXCR

INTRODUCTION

Active tumor infiltration by CD8+ and Th1T cells has repeatedly been shown to correlate with
improved clinical outcomes in a variety of cancers (1–4). At the same time, it remains a matter of
debate which proportion of these infiltrating T cells is actually tumor-reactive and could participate
in an antitumor response (5), and this proportion may differ between different cancer types and
individual patients.

T cell receptor (TCR) repertoire analysis can reveal the clonal content of tumor-infiltrating
T cells, the presence of large clonal expansions (6), and the presence of clusters of convergent
TCR variants that potentially respond to the same antigen (7–10). However, the prognostic
and predictive value of TCR repertoire profiling in cancer immunotherapy remains a matter
of investigation.
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In a seminal work by Tumeh et al. (6), it was shown
that high intratumoral T cell clonality—indicating the presence
of large clonal expansions—may be associated with clinical
response to anti-PD-1 therapy in patients with advanced
melanoma. Furthermore, responders demonstrated a tendency
toward increased clonal expansion during therapy. Tamura
et al. (11) likewise observed increased intratumoral T cell
clonality in response to peptide vaccines and oxaliplatin-
based chemotherapy in colorectal cancer patients who exhibited
long periods of progression-free survival. A combination of
neoadjuvant ipilimumab with high-dose IFNα2b in advanced
melanoma showed higher efficiency for patients exhibiting
increased T cell clonality in the primary tumor at 6–8 weeks
following neoadjuvant therapy (12).

Several studies have also shown that the analysis of peripheral
blood TCR repertoire clonality could assist in predicting
therapeutic outcomes. In particular, response to anti-PD-1
therapy has been associated with the initial presence of clonal
peripheral blood T cell expansions in metastatic melanoma
(13), although the opposite was reported for PD-L1 blockade in
urothelial cancer (14). In another study of metastatic urothelial
cancer patients treated with anti-PD-L1, clinical response was
associated with high intratumoral T cell clonality and induced
peripheral blood expansion of major tumor-resident T cell
clones (15).

Response to anti-CTLA-4 therapy has been linked with
initially low peripheral blood TCR clonality in melanoma (13)
and pancreatic ductal adenocarcinoma (16), with the latter
study also observing increased presence of clonal expansions
over the course of therapy (16). These results are in line
with the logic of anti-CTLA-4 action via blocking regulatory
T cell (Treg)-mediated suppression of antigen-presenting cells
and interclonal competition between CD4+ T cells (17–20). This
allows multiple novel expansions to arise, thereby broadening
the peripheral TCR repertoire (21). Although anti-CTLA-4
therapy has been associated with essential remodeling and
diversification of peripheral TCR repertoires, it has also been
reported that improved clinical outcomes may be associated
with the persistence of initially high-frequency clones during
therapy (22). Using the ALICE algorithm on the data described
in Robert et al. (21) and Subudhi et al. (23), we have also recently
shown that the number of TCR sequences actively involved in
current immune response—as judged by the number of clusters
of non-randomly met (non-public) homologous TCR variants—
increases after anti-CTLA4 therapy (10), suggesting reactivation
of immune response to diverse antigens.

Notably, an increase in intratumoral T cell clonality was
also observed in response to targeted therapy with a BRAF
inhibitor, and persistence of initially detected dominant T
cell clones was associated with therapy response (24). In a
B16 mouse melanoma model, expansion of CD8+ T cells
within the tumor—but not in the periphery—was associated
with antitumor effects (25). In FGFR2K660N/p53mut lung cancer
mouse model, reduced TCR clonality was found in responders
receiving anti-PD-1 therapy in combination with an FGFR
inhibitor (26). Thus, the current data on the dependence
of response to different immunotherapies on the clonal

composition of T cell repertoires remain incomplete and
somewhat contradictory.

A recent study on the HKP1 (KrasG12Dp53−/−)
immunocompetent, syngeneic mouse lung cancer model,
which is histologically similar to human adenocarcinoma (27),
used RNA-Seq analysis of fluorescence-activated cell sorting
(FACS)-sorted tumor-infiltrating CD4+ and CD8+ T cells
in order to reveal the intrinsic features of T cell behavior
associated with early immune response to anti-PD-1 therapy
(28). This work showed that response to anti-PD-1 treatment
was correlated with T cell subset-specific alterations, although
the clonality of T cells was not specifically analyzed. However,
TCR transcripts are present in bulk RNA-Seq data and enriched
in sorted T cell RNA-Seq data, and MiXCR software allows one
to extract TCR CDR3 repertoires with near-maximal efficiency
and accuracy (29–31).

Here, we show that MiXCR efficiently extracts TCR and
immunoglobulin repertoires from RNA-Seq data obtained from
sorted tumor-infiltrating T or B cells.We applied this approach to
extract TCRα and βCDR3 repertoires from the tumor-infiltrating
T cell RNA-Seq data reported by Mittal and colleagues (28), and
compared clonality and diversity parameters in responders to
anti-PD-1 therapy vs. progressors and untreated control mice.
At 1 week after the start of therapy, we find that TCR diversity
goes down in both CD4+ and CD8+ T cells, reflecting clonal
expansion. At a later time point, about 2 weeks after the start
of the therapy, diversity remains low for responders, but reverts
back to high diversity in progressors, reflecting reduced clonal
expansion. These data demonstrate that the primary response to
anti-PD-1 immunotherapy, as expressed by clonal expansion of
T cells, is insufficient to provide sustained response to therapy,
and that stability of the intratumoral clonal T cell expansions
acquired in the course of the treatment is associated with longer-
term response.

RESULTS AND DISCUSSION

RNA-Seq based immune repertoire profiling may work well
for sorted T or B cells, where the percentage of CDR3-
covering reads is relatively high (30). This approach—preferably
using relatively long (e.g., 100+100-nt) paired-end sequencing—
makes it possible to combine transcriptomic profiling of tumor-
infiltrating lymphocyte populations of interest with relatively
deep profiling of immune repertoires.

To illustrate and validate this approach, we performed RNA-
Seq analysis on sorted T and B cells frommouse B16F0melanoma

TABLE 1 | CDR3 counts from sorted T and B cells from B16F0 melanoma.

Subset Cells sorted RNA-Seq

reads

IGH/TCRβ CDR3

containing reads

IGH/TCRβ

CDR3

clonotypes

CD19+ B cells 6,000–25,000 5–10 million 10,000–50,000 1,000–4,000

CD4+ T cells

(excluding Treg)

8,000–35,000 5–10 million 400–2,000 300–700
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FIGURE 1 | RNA-Seq-based TCR repertoire diversity in naïve and memory CD8+ T cells. Diversity metrics calculated for naïve and effector CD8+ TCR α + β

(combined) CDR3 repertoires are shown. Note that each sample is represented by 1,500 randomly chosen CDR3-covering sequencing reads for normalization.

Observed diversity is a total number of unique clonotypes in a sample, so it takes into account all clonotypes. Chao1 depends mostly on the representation of

singletons and doubletons—clonotypes represented by one and two reads, respectively. Both Chao1 and Efron-Thisted indices estimate relative total TCR diversity,

similar to the estimation of species richness. These numbers should not be, of course, understood as true total diversity, but only as a lower bound calculated based

on a given sample size. Inverse Simpson’s Diversity Index takes into account both richness and evenness. [1-normalized Shannon Wiener] represents “clonality”

metrics used in Tumeh et al. (6) and largely reflects the presence of large clonal expansions.

tumors. Tumors were excised and carefully cleaned from the
outer fibrous capsule, which contains a large amount of immune
cells, in order to focus on lymphocytes that have truly infiltrated
the tumor tissue. CD4+ T cells or CD19+ B cells were sorted from
the isolated tumor tissues, and all extracted RNA materials and
all obtained cDNA were used to generate cDNA libraries using
the Clontech Smart-Seq v4 Ultra Low Input RNA Kit. These were
sequenced on an Illumina HiSeq (100+100-nt paired-end reads),
and TCRβ or IGH CDR3 repertoires were extracted using the
MiXCR software. Table 1 shows typical counts of cells, obtained
RNA-Seq reads, CDR3 reads, and CDR3 clonotypes extracted
from RNA-Seq data for the sorted T and B cells.

To verify if the RNA-Seq-based repertoire analysis can be
informative in terms of repertoire diversity and clonality,
we extracted TCRα and TCRβ CDR3 repertoires from
transcriptomes obtained for the human naïve and effector
CD8+ T cells reported in Simoni et al. (32). For each sample,
we extracted from 399 to 1,255 distinct TCRα and from 795 to
1,579 TCRβ CDR3 clonotypes. Due to the limited repertoire
information extracted from some of the samples, we opted to
analyze joint TCRα and β repertoires in order to get better
averaged statistics for diversity metrics. For normalization (33),
we down-sampled our clonesets by extracting an equal number
of 1,500 randomly chosen CDR3-covering reads from each set
of clones. Diversity and clonality metrics were analyzed using
the VDJtools software (34); results are shown in Figure 1. This
analysis clearly distinguished naïve and effector CD8+ subsets,
as expected.

We next applied the same approach to the CD4+ and CD8+

sorted T cell RNA-Seq data obtained by Mittal and colleagues
from their syngeneic mouse model of lung cancer (28). We
extracted joint TCRα and β CDR3 repertoires from these data
using the MiXCR RNA-Seq mode. These samples were divided
into four groups: (1) controls treated with IgG2a; (2) early
response to anti-PD-1 therapy, with therapy on days 7, 10, and 13

and tumors excised at day 14 post-implantation; (3) late response
with regression, with therapy on days 7, 10, 13, and 16 and tumors
excised at day 17 or 24 post-implantation; and (4) late response
with progression, with the same treatment and excision regimen.
Note that the early response group was not split into regression
and progression due to the insufficient number of usable samples
that would have sufficient depth of TCR repertoire analysis in
terms of CDR3-covering reads.

Similar to the one described above, we analyzed joint TCRα

and β repertoires, down-sampled by extracting an equal number
of 500 randomly chosen CDR3-covering reads from each set of
clones. Datasets with fewer than 500 reads were discarded.

Our comparison of the resulting diversity and
clonality metrics yielded several findings (Figure 2,
Supplementary Figure 1). First, the diversity of TCR repertoires
in anti-PD-1-treated animals decreased at early time points
compared to controls treated by IgG2a, both in the CD4+ and
CD8+ subsets. Additionally, although the limited number of
samples did not allow us to estimate statistically meaningful
differences between responders and progressors at the early time
point (day 14), there was a trend toward more reduced CD4+

diversity among the responders. At the later time points (day
17 or 24), repertoire diversity was restored in both progressors
and responders, and in both CD4+ and CD8+ subsets. However,
the latter effect was much stronger for progressors, leading to
statistically significant differences in repertoire diversity metrics
between responders and progressors at the late time point for
both T cell subsets.

These data complement the results obtained by Mittal and
colleagues as well as the current knowledge on the association
between TCR clonality and response to anti-PD-1 therapy.
Sustained response is associated with stably increased clonality
and decreased diversity in both CD4+ and CD8+ subsets over
the course of therapy, while restoration of initial diversity seems
to be associated with disease progression.
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FIGURE 2 | TCR repertoire diversity in the course of anti-PD-1 therapy. Diversity metrics calculated for CD4+ and CD8+ TCR α + β (combined) CDR3 repertoires

extracted from the four groups of samples: control; early response (day 14); late response, regressing (days 17 and 24); and late response, progressing (days 17 and

24). Each sample is represented by 500 randomly chosen CDR3-covering sequencing reads, for normalization.

One possible interpretation is that initial proliferation of
previously suppressed PD-1+ T cell clones specific to locally
present immunogenic antigens—including both tumor and non-
tumor (e.g., viral) antigens (32, 35)—in response to anti-PD1
therapy leads to temporarily increased clonality and decreased
diversity. Notably, it has been shown that increased intratumoral
TCR clonality in adenocarcinoma is uniquely correlated with
CD8+PD-1+ T cell subsets, but not with bulk CD8+ T cells
(36). The same observation was noted in targeted analysis of
CD8+PD1+ T cell subsets in NSCLC after anti-PD-1 treatment.
Only intratumoral CD8+ T lymphocyte populations with high
PD-1 expression levels were characterized as having significantly
increased clonality (37). Thus, the pool of oligoclonal PD-1+

T cells could serve as a source for rapidly growing clonality in
response to anti-PD-1 therapy.

On the other hand, some studies show that PD-1 blockade
may unleash a novel tumor-specific TCR repertoire that was not
previously observed in the tumor (38). Experiments tracking
tumor-infiltrating TCR clones from patients with basal cell
carcinoma and squamous cell carcinoma have demonstrated that
clonal expansions of memory CD8+ T cells with an exhausted

phenotype referred to chronical activation before and after
anti-PD-1 therapy are distinct from each other. The authors
called this phenomenon “clonal replacement” and suggested
that exhaustion of tumor-infiltrating T cells limits their renewal
following checkpoint blockade. They further proposed that the
T cell response relies on the expansion of novel tumor-specific
T cell clones originating from non-tumor sites such as lymphoid
organs or rare, unexpanded clones present within the tumor (38).

The association of a prolonged response to treatment with the
stability of clonal expansions acquired during initial response, as
we have observed in this work, makes intuitive sense and may be
interpreted as evidence that a sustained immune response results
in the stable presence and proliferation of tumor-specific CD4+

and CD8+ T cells.
Our results support the concept that monitoring intratumoral

T cell clonality—for example, by measuring T cell clonality
in excised tumor samples after neoadjuvant anti-PD-1/PD-L1
therapy (6, 11, 12, 39)—is a rational strategy for predicting
long-term response.

Technically, we advocate for performing RNA-Seq on sorted
T and B cell subsets as a means to simultaneously evaluate
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both functional behavior and repertoire features in response to
immunotherapy. MiXCR currently provides the most efficient
computational solution for such analyses, either as an offline tool
(https://mixcr.milaboratory.com) or as an Illumina BaseSpace
cloud application (https://www.illumina.com/products/by-
type/informatics-products/basespace-sequence-hub/apps/
milaboratory-mixcr-immune-repertoire-analyzer.html).

METHODS

Mouse Melanoma B16F0 Tumor Model
Experiments were carried out on C57BL/6-Foxp3eGFP mice
kindly provided by Prof. A. Rudensky (Memorial Sloan-Kettering
Cancer Center) (40). Tumors were generated by subcutaneous
(s.c.) injection of 105 B16F0 cancer cells in 300 µl PBS into the
left flank of 5–7-month-old female mice. These tumor cells were
initially grown in a DMEMmedium supplemented with 10% fetal
bovine serum (FBS), 0.06% L-glutamine, 50 units/ml penicillin,
and 50µg/ml streptomycin. Cells were cultured in an incubator
at 37◦C and 5% CO2 and passaged two or three times per week.
Before injection, cells were detached by trypsin, then counted
and resuspended in PBS to a final concentration of 106 cells in
3ml. Mice with tumor diameters ranging from 0.5 to 1.2 cm were
sacrificed with isoflurane (Esteve, Italy), after which tumors were
excised and prepared for further analysis. All animal experiments
were carried out in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals (NIH
Publications No. 8023, revised 1978). The experimental protocol
was approved by the Ethical Committee of the Privolzhsky
Research Medical University Academy, Russia (EC #6, granted
April 17, 2019).

Mouse Melanoma Resection and
Lymphocyte Isolation
Tumors were excised and cleaned from the outer tumor capsule.
For lymphocyte isolation, excised tumor nodules or tumor parts
were homogenized with a gentleMACS dissociator (Miltenyi
Biotec, Germany) and incubated in 1–2ml dissociation solution
[RPMI medium supplemented with 417µg/ml Liberase TL
(Roche, Germany) and 10µg/ml DNase I (Roche, Germany) for
30min at 37◦C in a shaker]. After dissociation, cell suspensions
were passed through a 70-µm cell strainer and washed twice with
5ml of an incubation buffer (PBS, pH 7.2 containing 0.5% bovine
serum albumin and 2 mM EDTA).

Cell pellets were resuspended in 100 µl of an incubation
buffer with the following antibodies (2 µl each): CD45-
PerCP/Cy5.5 (Clone 30-F11, BioLegend), CD3-APC (Clone 145-
2C11, BioLegend), CD4-V450 (Clone RM4-5, BD Biosciences),
and CD19-PE/Cy7 (Clone 6D5, BioLegend); 400µl of incubation
buffer was added after 45–120min staining at 4◦C. CD3+CD4+

(excluding eGFP-positive Treg cells) and CD19+ subsets were
sorted with a FACSAria III cell sorter (BD Biosciences) using
the 85-µm nozzle directly into 200 µl of an RLT cell lysis buffer
(Qiagen). After sorting, the samples were vortexed and then left
at room temperature for 10min to ensure cell lysis, and finally
stored at−20◦C.

Mouse Model of Non-small-cell Lung
Cancer
Mittal and colleagues utilized an immunocompetent, syngeneic
preclinical model of early-stage non-small-cell lung cancer
(NSCLC), which has been shown to exhibit histological
similarities to human adenocarcinoma (28). Mice were injected
with 250 µg of a rat monoclonal blocking anti–PD-1 antibody
or IgG2a intraperitoneally on days 7, 10, 13, and 16 after tumor
implantation. Mice were sacrificed on day 14, day 17, or day 24
depending on the group. RNA was extracted from sorted tumor-
infiltrating CD4+ and CD8+ T cells. RNA-Seq libraries were
prepared with an Illumina TruSeq RNA Sample Preparation kit
and sequenced on an Illumina HiSeq4000 with single-end 50-bp
reads, 8 samples per lane. Samples were grouped based on the day
of tumor excision (day 14—early tumors, days 17 and 24—late
tumors) and tumor growth (progressing, regressing, or partially
regressing). For reference, see Figure 7A in Markowitz et al.
(28). There were 31 samples of intratumoral CD8+ and CD4+ T
cells in total (Supplementary Table 1). Joint TCRα and β CDR3
repertoires were extracted from raw fastq files using MiXCR
v2.1.11 (https://github.com/milaboratory/mixcr/releases/tag/v2.
1.11).
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Extensive molecular characterization of human colorectal cancer (CRC) via Next

Generation Sequencing (NGS) indicated that genetic or epigenetic dysregulation of a

relevant, but limited, number of molecular pathways typically occurs in this tumor. The

molecular picture of the disease is significantly complicated by the frequent occurrence

of individually rare genetic aberrations, which expand tumor heterogeneity. Inter- and

intratumor molecular heterogeneity is very likely responsible for the remarkable individual

variability in the response to conventional and target-driven first-line therapies, in

metastatic CRC (mCRC) patients, whose median overall survival remains unsatisfactory.

Implementation of an extensive molecular characterization of mCRC in the clinical routine

does not yet appear feasible on a large scale, while multigene panel sequencing of most

commonly mutated oncogene/oncosuppressor hotspots is more easily achievable. Here,

we report that clinical multigene panel sequencing performed for anti-EGFR therapy

predictive purposes in 639 formalin-fixed paraffin-embedded (FFPE) mCRC specimens

revealed previously unknown pairwise mutation associations and a high proportion

of cases carrying actionable gene mutations. Most importantly, a simple principal

component analysis directed the delineation of a new molecular stratification of mCRC

patients in eight groups characterized by non-random, specific mutational association

patterns (MAPs), aggregating samples with similar biology. These data were validated

on a The Cancer Genome Atlas (TCGA) CRC dataset. The proposed stratification may

provide great opportunities to direct more informed therapeutic decisions in the majority

of mCRC cases.

Keywords: mCRC, NGS, molecular stratification, mutation, genes
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INTRODUCTION

Colorectal carcinoma (CRC) is one of the most commonly
diagnosed cancers worldwide (1, 2). A large proportion of
patients develop distant metastasis, which contributes to the high
mortality reported for this tumor. With the current standard
approaches, the 5-year survival rate for metastatic CRC (mCRC)
is about 13% (1–3). These oxaliplatin or irinotecan-based
chemotherapy regimens allow a median overall survival (OS) of
about 18–20 months (4, 5). Survival rates can be significantly
improved by a “triplet” approach consisting of 5-FU, oxaliplatin,
and irinotecan chemotherapy (6) and/or by the addition of
targeted drugs, such as monoclonal antibodies directed against
angiogenesis or EGFR pathway (7). Nonetheless, median OS
for mCRC rarely exceeds 30–36 months (8–10). Unfortunately,
individual responses to these therapeutic approaches may be
dramatically different from patient to patient reflecting the broad
inter- and intratumor molecular heterogeneity.

Historically, CRC represented the first model for multistep
cancer evolution in which discrete and sequential genetic
modifications in specific oncogenes and tumor-suppressor
genes occur throughout cancer progression (11, 12). Next
Generation Sequencing (NGS) provided significant advances in
understanding the molecular basis of CRC (13–15) and indicated
that genetic or epigenetic dysregulation of a relevant, but limited,
number of molecular pathways typically occurs in human CRC
(13, 15, 16). Thismolecular picture is complicated by the frequent
occurrence of individually rare genetic aberrations, which further
expand tumor heterogeneity (13–15).

Reflecting the different biology of CRCs, Guinney et al.
recently proposed a molecular classification in four consensus
molecular subtypes (CMS): CMS1-MSI immune, CMS2-
canonical, CMS3-metabolic, and CMS4-mesenchymal (13).
Although this might have implications for prognostication
and therapy decisions, its immediate transfer to routine
diagnostic/clinical settings is seriously challenging in terms of
methodology, turnaround time, costs, and mindset. In fact,
despite NGS and other omic approaches may disclose a huge
amount of molecular details, still very few of them have yet
acquired clinical relevance. In example, the use of anti-EGFR
therapy is essentially dictated by the RAS (KRAS+NRAS) wild
type status, in the clinical routine (17, 18), which however
is largely insufficient for the positive selection of responsive
patients (19, 20). Treatment with anti-VEGF antibodies is not
driven by specific selection criteria due to lack of validated
molecular biomarkers (21, 22). Other targeted approaches (i.e.,
BRAF or PI3K inhibitors used as single agents) failed due to
resistance mechanisms (23). These evidences support the need
for a paradigm shift in personalized medicine, as suggested by
Dienstmann et al. (24): from a one-gene one-drug approach, to a
multi-gene multi-drug perspective.

The use of multigene panel sequencing has been recently

validated for clinical applications. In example, we introduced

a 22 multigene panel sequencing, which includes the clinically
relevant RAS and BRAF hotspots, as a routine for the predictive
selection of mCRC patients to be subjected to anti-EGFR therapy
(25–32). This implementation allowed us to accumulate a large

dataset to ask the question of whether application of multigene
panel sequencing to the standard diagnostics of mCRC could
provide clinically useful information, with no extra-costs in terms
of turnaround time and money.

On the basis of results obtained on 639 formalin-fixed and
paraffin-embedded (FFPE) tumor samples, here we report that
clinical genomic profiling with a multigene panel identifies
distinct molecular association patterns (MAPs) and provides
great opportunities to unveil co-occurrence of actionable gene
mutations to direct more appropriate therapeutic decisions for
the majority of mCRC patients.

PATIENTS AND METHODS

Specimen Collection
A total of 779 FFPE tumor samples from mCRC patients were
collected from Policlinico Umberto I (Rome, Italy) and from
the Department of Public Health, University Federico II, Naples,
Italy. The large majority of samples (696/779) were from the
primary site, while few (83/779) were from metastatic sites. All
samples reached the molecular pathology labs with a medical
prescription for determination of RAS/BRAF mutation status for
predictive purposes. As such, only scattered clinical-pathological
information was available for the two series. For this retrospective
observational study all investigations were approved by the
Ethics Committee of the University La Sapienza (Prot.: 88/18;
RIF.CE:4903, 31-01-2018). All information regarding human
material included in the study was managed using anonymous
numerical codes, and all samples were handled in compliance
with the principles outlined in the declaration of Helsinki. For
samples collected at the Department of Public Health, University
Federico II, we obtained written informed consent from all
patients, in accordance with the general authorization to process
personal data for scientific research purposes from “The Italian
Data Protection Authority (http://www.garanteprivacy.it/web/
guest/home/docweb/-/docwebdisplay/export/2485392).

DNA Extraction
Tissue samples with a content of tumor-vs.-non-tumor cells
below 20% (evaluated at the observation of Hematoxylin and
Eosin stained slides) were excluded from the analysis (33). The
tumor area was macroscopically dissected to concentrate tumor
tissue. Xylene was added once and ethanol was added twice
to remove all paraffin from the tissue sample (34). DNA was
extracted using QIAamp DNA FFPE Tissue kit (Qiagen GmbH,
Hilden, Germany) according to the manufacturer’s instructions.
Eluted DNAwas quantified with Qubit 2.0 Fluorometer (Thermo
Fisher Scientific, Van Allen Way, Carlasbad, CA 92008, USA)
using QubitTM dsDNA HS Assay Kit (Thermo-Fisher Scientific,
Eugene, Oregon 96492, USA).

IT-PGM Sequencing and Variant Calling
IT-PGM sequencing was achieved as described (25, 27, 35).
Approximately, 10 ng of DNA samples was required to construct
barcoded and adaptor-ligated libraries using the Ion AmpliSeq
Library kit 2.0 (Thermo Fisher Scientific, Van Allen Way,
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Carlsbad, CA 92008 USA) and Ion Xpress Barcode Adapter 1-
16 Kit (Thermo Fisher Scientific, Van Allen Way, Carlsbad, CA
92008 USA). The samples were analyzed using Ion AmpliSeq
Colon and Lung Cancer Research Panel V2 (CLV2, Thermo
Fisher Scientific, Guilford, CT 06437, USA) containing a single
primer pool to amplify hotspots and targeted regions of 22
cancer genes frequently mutated in CRCs and NSCLCs (29).
Templated spheres were prepared using 100 pM of each library
using the Ion One Touch 2.0 machine (Thermo Fisher Scientific,
Van Allen Way, Carlsbad, CA 92008 USA). Template-positive
spheres were loaded into Ion chip 314 or Ion chip 316 and
sequenced by IT-PGM machine (Thermo Fisher Scientific, Van
Allen Way, Carlsbad, CA 92008 USA). Sequencing data were
analyzed with the Ion Torrent Suite (Thermo Fisher Scientific,
http://github.com/iontorrent/TS). Variants with a quality <30
were filtered out.

For the purpose of the study, we generated a mutational data
set including only samples carrying mutations of established
clinical relevance for KRAS (mutations at codon 12, 13, 59, 61,
117, and 146), BRAF (V600E) and PIK3CA (mutations in exon
10 and 21). For TP53, we included in the study samples carrying
mutations with defined pathogenic significance according to
ClinVar and/or well-established hotspot mutations. We excluded
from the study 140 samples carrying variants of unknown
clinical significance (VUS) in these genes. For all other genes,
we listed all genetic alterations described as pathogenic, likely-
pathogenic or predicted deleterious by in silico analysis, while
benign polymorphisms were not considered.

When appropriate, PolyPhen-2 (Polymorphism Phenotyping
v2; http://genetics.bwh.harvard.edu/pph2/), PROVEAN/SIFT
(Sort Intolerant From Tolerant Subsitutions) http://provean.jcvi.
org/protein_batch_submit.php?species=human) computational
tools were used to predict the possible impact of the detected
alterations on the structure and function of the protein (18, 19).

The reference sequence used are: KRAS NM_033360.3, TP53
NM_000546.5, PIK3CA NM_006218.3, BRAF NM_004333.4,
NRAS NM_002524.4, FBXW7 NM_033632.3, SMAD4
NM_005359.5, PTEN NM_000314.6, MET NM_001127500.2,
STK11 NM_000455.4, EGFR NM_005228.4, CTNNB1
NM_001904.3, AKT1 NM_001014431.1, ERBB2 NM_004448.3,
ERBB4 NM_005235.2, FGFR1, NM_001174063.2, ALK
NM_004304.4, MAP2K1 NM_002755.3, NOTCH1
NM_017617.4, DDR2 NM_001014796.3, FGFR3 NM_000142.4,
FGFR2 NM_000141.4.

MSI Analysis
Determination of MSI status was investigated on 162 patients
(72 of the 639 cases representing the main bulk of the study
plus 90 additional cases collected at a later stage and analyzed
separately). It was carried out by analysis of BAT25, BAT26,
NR21, NR22, and NR24 mononucleotide repeats as previously
described (36). Briefly, one PCR primer of each pair was labeled
with 1 with either FAM, HEX, or NED fluorescent markers. PCR
amplification was performed under the following conditions:
denaturation at 94◦C for 5min, 35 cycles of denaturation at 94◦C
for 30 s, annealing at 55◦C for 30 s, and extension at 72◦C for
30 s. This was followed by an extension step at 72◦C for 7min.

PCR products were run on ABI PRISM 3130xl Genetic Analyzer
(16 capillary DNA sequencer, Applied Biosystem). Gene Mapper
software 5 (version 5.0, Applied Biosystems, Van Allen Way,
Carsvad, CA 92008, USA) was used to calculate the size of each
fluorescent PCR product.

Statistical Analysis
The mutational data set was organized in a matrix composed
by 20 columns and 639 rows where each row corresponds to
a different sample and each column corresponds to one of
22 different genes whose mutational pattern was characterized.
We performed a Principal Component Analysis (PCA) on this
mutational dataset in order to classify mutational patterns based
on their similarity. Each matrix element Mij (where i is a generic
sample and j is a generic gene) can assume the value 0 or 1 if
the patient i has no mutation in the gene j or the mutation is
present, respectively (37). Each principal component is a linear
combination of optimally-weighted original variables, and so it
is often possible to ascribe meaning to what the components
represent. The statistical analysis was carried out with SPSS
statistics or standard R software, version 2.13.1 (http://www.r-
project.org).

Statistical analyses on gender, tumor type, tumor location,
and MSI-H phenotype were performed on all cases for which
appropriate information was available, using both the 639 and the
90 series.

The Pearson’s Chi-square test and Fisher’s exact test of
association was used to determine the relationship between
two categories which consist in coexistence of two mutations
(pairwise association analysis). A p < 0.05 was considered
statistically significant.

TCGA Network Data set
We downloaded gene somatic mutations for 625 patients from
the TCGA data portal (https://portal.gdc.cancer.gov/) accessed
December 2018 (38, 39). We cleared this dataset from samples
carrying VUS, as we did for our dataset (see above). The resulting
data set contained 412 patients with their mutational data of the
22 genes included in the CLV2 panel.

We employed the R package TCGAbiolinks (40) to retrieve
patient’s Microsatellite Instability (MSI) status from the legacy
archive of GDC data portal (https://portal.gdc.cancer.gov/).

RESULTS

Mutation Profiling of mCRCs, Pairwise
Associations, and Identification of
Actionable Targets
Using a 22 gene panel NGS approach, we detected pathogenic
mutations in at least one of the 22 targets in 523 out of
639 (81.8%) mCRC samples (Table S1). Mutation spectra and
frequencies were in line with previous reports (14, 15, 31)
(Figure 1A). Eleven genes displayed a mutation frequency
>1.5% (mutation number >10), being TP53 and KRAS the
most frequently mutated genes (48.5 and 39.4%, respectively)
(Figure 1A). Mutations occurred less frequently (<1.5%) in the
other 11 genes (CTNNB1, AKT1, ERBB2, ERBB4, FGFR1, ALK,
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FIGURE 1 | Mutation frequencies and pairwise associations. (A) Mutation rates (and absolute numbers of the bars) in 639 metastatic colorectal cancers. (B)

Correlation Plot describing pairwise association of the mutations occurring on the 11 genes with a mutation frequency >1.5% (mutation number >10). Statistical

analysis is given Table 1. *p < 0.05.

MAP2K1,NOTCH1,DDR2, FGFR3, and FGFR2), consistent with
the “tail effect” associated with NGS profiling of tumor samples
(15) (Figure 1A).

To investigate on mutation associations, we initially
performed a pairwise association analysis for those genes with
a mutation frequency >1.5%. In agreement with previous

literature, BRAF, KRAS, NRAS mutations were mutually
exclusive, while PIK3CA and FBXW7 mutations frequently
occurred in association with KRAS mutations. BRAF and
SMAD4 mutations were associated, while TP53 and KRAS
mutations were negatively associated (Figure 1B, Table 1). We
also revealed previously unreported positive association between
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TABLE 1 | Significant pairwise associations between most frequent gene

mutations.

Genea Status Wt (%) Mut (%) pb References

KRAS (%)

TP53 Mut 200 (51.7) 110 (43.7) 0.047 (44)

PIK3CA Mut 38 (9.8) 61 (24.2) <0.001 (43)

BRAF Mut 50 (12.9) 1 (0.4) <0.001 (43)

NRAS Mut 30 (7.8) 1 (0.4) <0.001 (43)

FBXW7 Mut 20 (5.2) 23 (9.1) 0.05 (31)

EGFR Mut 3 (0.8) 8 (3.2) 0.03* New

PIK3CA (%)

FBXW7 Mut 31 (5.7) 12 (12.1) 0.02 (45)

BRAF (%)

SMAD4 Mut 23 (3.9) 6 (11.8) 0.022* (46)

PTEN Mut 18 (3.1) 5 (9.8) 0.03* New

EGFR (%)

SMAD4 Mut 26 (4.1) 3 (27.3) 0.011* New

TP53 (%)

NRAS Mut 9 (2.7) 22 (7.1) 0.01 New

aThe genes with an overall mutational rate higher than 1.5% (number of mutations >10)

were considered for statistical analysis. bChi-squared test.

*Fisher exact test.

EGFR mutations and KRAS and SMAD4 mutations, while BRAF
mutations were significantly associated with PTEN mutations
(Figure 1B, Table 1, Table S2). At variance from KRAS, NRAS
mutations were significantly associated with TP53mutations.

Overall, 374/639 (58.5%) patients carried actionable gene
mutations, as defined by Chakravarty et al. (41), and 153 patients
carried druggable alterations. Importantly, the vast majority of
patients positive or negative for specific actionable mutations
frequently carried additional relevant genetic alterations
(Table 2), which in principle could contribute to an individual
variability in patients’ responsiveness to standard and target-
driven therapies. In example, only 27 (4.2% of the entire series)
of the 99 patients carrying PIK3CA mutations were RAS/BRAF
WT and only 9 of these (1.4% of the entire series) harbored
exclusively PIK3CA mutations. On the same line, 17/639 (2.7%)
patients carried only BRAF mutations, while 34 BRAF mutant
samples also carried additional mutations.

Identification of Mutational Association
Patterns (MAPs)
Although pairwise associations might provide interesting
insights into the molecular nature of CRC and represents a
step forward in considering the molecular complexity of cancer
for prognostic and predictive purposes, we reasoned that a
more comprehensive use of the entire mutational profile of
each sample could help defining a novel and more precise
classification of CRC.

Thus, we subjected our large dataset to a principal component
analysis (PCA) with the aim to detect those genes which
better classify the different samples based on their overall
mutational profile. This approach clearly indicated that two

TABLE 2 | Frequency of co-mutation in genes carrying actionable mutations.

Status No. of pts. (%) No. of pts. (%) with

additional mutations

KRAS WT 387 (60.6) 270 (42.2)

Mut 252 (39.4) 176 (27.5)

NRAS WT 608 (95.2) 491 (76.8)

Mut 31 (4.8) 26 (4.1)

BRAF WT 588 (92.0) 471 (73.7)

Mut 51 (8.0) 34 (5.3)

PIK3CA WT 540 (84.5) 423 (66.2)

Mut 99 (15.5) 89 (13.9)

EGFR WT 629 (98.4) 512 (80.1)

Mut 10 (1.6) 9 (1.4)

MET WT 633 (99.1) 516 (80.7)

Mut 6 (0.9) 6 (0.9)

PTEN WT 618 (96.7) 501 (78.4)

Mut 21 (3.3) 20 (3.1)

AKT1 WT 634 (99.2) 517 (80.9)

Mut 5 (0.8) 4 (0.6)

ERBB2 WT 636 (99.5) 519 (81.2)

Mut 3 (0.5) 3 (0.5)

ALK WT 638 (99.8) 521 (81.5)

Mut 1 (0.2) 1 (0.2)

MAP2K1 WT 638 (99.8) 521 (81.5)

Mut 1 (0.2) 1 (0.2)

genes (TP53 and KRAS) could sharply cluster our samples into
four different subsets:TP53wt/KRASwt samples,TP53mut/KRASwt

samples, TP53wt/KRASmut samples, and TP53mut/KRASmut

samples (Figure 2). While mutations in other genes could also
aggregate our samples into distinct subsets (see for example
PIK3CA and BRAF, Figure 2), they never reached the sharp
effectiveness of TP53 and KRASmutations.

Thus, in accordance to PCA results, we stratified the 639
CRC cases into four different mutation association patterns
(MAPs) based on TP53 and KRAS mutation status (Figure 3A).
Depending on the presence/absence of mutations in genes other
than TP53 and KRAS, each MAP could be further divided in two
subsets leading to delineation of a total of eight different MAPs
(Figure 3A).

This stratification promptly revealed that 18.2% of the samples
carried nomutations in any of the 22 gene of the panel (MAP4.2),
while 29.4% harbored only one mutation in either KRAS or TP53
(MAP2.2 and MAP3.2, respectively). An additional 11.6% of the
patients only carried KRAS and TP53 mutations with no other
alterations (MAP1.2), which indicates that a large fraction of the
mCRC cohort is characterized by a very low mutation rate, as
detectable by our gene panel sequencing.

The distribution of mutations in genes other than TP53
and KRAS also occurred non-randomly among the MAPs
(Figures 3A,B) clearly defining distinct molecular profiles.
Indeed, the Pearson’s Chi-square test and Fisher’s exact test
showed statistical significance for almost all the comparisons
between the MAPs (Table S3). In details, the eight MAPs are
characterized as follows.
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FIGURE 2 | Principal component analysis indicates that four different subsets of mCRC samples may be sharply identified based on KRAS and TP53 mutation status.

Principal-component analysis of the sequencing results of 639 mCRCs indicates that the most represented genes in the first two principal components (PC) are able

to better separate the data according to their variation. PC1 and PC2 contain 51% of variation in the data. KRAS, TP53, PIK3CA, and BRAF genes have been

identified as the most important genes of PC1 and PC2. Each mutational profile has been projected in a two-dimensional space using the PC1 and PC2 to help

appreciate sample separation. Each graph indicates how PCA analysis assembles patients (dots) in four distinct groups distinguishable in the two-dimensional space.

Red dots, green dots, blue dots, and magenta dots represent samples with mutations in p53, KRAS, PIK3CA, or BRAF, respectively. While KRAS and TP53 mutations

sharply map in the four distinct groups in the two dimensional-space, both PIK3CA and BRAF mutations are much less efficient in defining the identity of the four

groups, thus indicating that the formers are more effective in creating sharp group separation.

MAP1.1. This MAP, characterized by the TP53mut/KRASmut

status, showed a high rate of PIK3CA mutations
(52.8%), rare (2.8%) BRAFV600E mutations and no NRAS
alterations. We also found a relevant number of FBXW7
mutations (27.8%), and some PTEN (11.1%) and SMAD4
mutations (8.3%), most often mutually exclusive with
PIK3CAmutations.

MAP1.2. This MAP was characterized by the
TP53mut/KRASmut status, and no additional mutations.

MAP2.1. This MAP, characterized by TP53wt/KRASmut status,
showed the highest frequency of PIK3CA mutations (62.7%).
Intriguingly, 3 out of 5 E17K AKT1 mutations occurred in
PIK3CA WT samples in this MAP, concurring to the activation
of the same pathway.

A fair amount of FBXW7 mutations (19.4%) and a few
SMAD4 mutations (9.0%), but no BRAF and rare NRAS
mutations (1.5%) occurred in MAP2.1. Coherent with the
previously mentioned KRAS pairwise association, the rare EGFR
mutations clustered in MAP1.1 and MAP2.1.

MAP2.2.ThisMAPwas characterized by theTP53wt/KRASmut

status, and no additional mutations.
MAP3.1. This MAP, characterized by TP53mut/KRASwt status,

had a high frequency of BRAF (20.5%), combined with

the highest frequency of NRAS (in a mutually exclusive
way) and SMAD4 mutations (25.0 and 18.2%, respectively).
This group also showed PIK3CA mutations in 23.9% of the
samples, at least partially non-overlapping with BRAF, NRAS,
and SMAD4 mutations, and the lowest frequency of FBXW7
mutations (5.7%).

MAP3.2.ThisMAPwas characterized by theTP53mut/KRASwt

status, and no additional mutations.
MAP4.1. In thisMAP, characterized by TP53wt/KRASwt status,

we found the highest frequency of BRAF mutations (45.1%) and
the lowest amount of SMAD4 mutations (5.6%). It also showed
mutations in PIK3CA, NRAS, and FBXW7, respectively, in 23.9,
11.3, and 21.1% of the samples.

MAP4.2. This MAP was characterized by absence
of mutations.

Importantly, the analysis of microsatellite instability (MSI)
on a test group of 162 samples revealed that 9 tumors were
MSI-H. 6 out of 9 MSI-H samples clustered into MAP4.1, 2 in
MAP3.1 and 1 in MAP4.2 (Table 3), which suggests that the
proposed mutational stratification is able to aggregate samples
with similar biology.

Mutation distribution of other genes did not vary significantly
among MAPs and/or was too low to support major conclusions.

Frontiers in Oncology | www.frontiersin.org 6 May 2020 | Volume 10 | Article 560101

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Belardinilli et al. Mutational Association Patterns in mCRC

FIGURE 3 | Mutation Association Patterns of the 639 mCRC samples according to the 22 gene panel analysis. (A) The presence of a mutation is depicted with a

specific color for each gene, while the absence is indicated in white. Four main patterns are obtained, depending on KRAS and TP53 status: MAP1, MAP2, MAP3,

and MAP4. Depending on the presence/absence of mutations in genes other than TP53 and KRAS, each MAP could be further divided in two subMAPs (MAP1.1,

MAP1.2, MAP 2.1, MAP 2.2, MAP 3.1, MAP 3.2, MAP 4.1, MAP 4.2). (B) The frequency of mutation in PIK3CA, BRAF, NRAS, FBXW7, SMAD4, and PTEN genes in

the four subMAPs is reported. The Pearson’s Chi-square test or Fisher’s exact test were carried out and shown in Table S3.

Identification of MAPs on the TCGA
Dataset
To validate MAPs in an external dataset, we accessed the TCGA
public mutational data for CRC patients. After appropriate
curation of the dataset in order to select all pathogenic mutations
potentially identifiable by our multigene panel sequencing
approach, we had 412 samples available for MAP stratification.
Of interest, the TCGA dataset included all CRC stages, and only a
minority of the cases were mCRC (Figure S1A), as already noted
by others (14, 42).

The mutation frequencies on the 22 genes included in the
CLV2 panel were largely similar between TCGA dataset and our
mCRC cohort (Figure S1B). All different MAPs exist with rather
similar rates, in TCGA dataset and our series, with MAP 4.1

and MAP4.2 representing sharp exceptions. Indeed, MAP 4.1
accounts for 11.1% of our series of mCRC samples, compared to
18.0% of the TCGA dataset, while MAP4.2 accounts for 18.2%
in our series and 5.3% of the TCGA dataset. At variance from
our cohort, TCGA dataset included 14% of MSI-H samples,
which is consistent with its stage 1-to-stage 4 composition
(14). The majority of these cases clustered in MAP4.1, possibly
providing an explanation for the different MAP4 rates between
the two datasets.

PIK3CA, BRAF, and NRAS mutation rates in the different

MAPs display similar trends in our metastatic cohort and in the

TCGA dataset (Figures S2A,B). We observed less consistency for

themutation rates of the less frequently mutated FBXW7, SMAD,
and PTEN genes.
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TABLE 3 | Associations between selected features and MAPs.

MAPs

No. % 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 p

Gender M 346 60.1 29 (8.40%) 44 (12.7%) 35 (10.1%) 37 (10.7%) 44 (12.7%) 64 (18.5%) 34 (9.8%) 59 (17.1%) 0.301

F 230 39.9 15 (6.5%) 37 (16.1%) 28 (12.2%) 26 (11.3%) 41 (17.8%) 33 (14.3%) 22 (9.6%) 28 (12.2%)

Site Rectum 89 15.5 9 (10.1%) 14 (15.7%) 17 (19.1%) 5 (5.6%) 9 (10.1%) 13 (14.6%) 6 (6.7%) 16 (18.0%) 0.058

Colon 486 84.5 35 (7.2%) 67 (13.8%) 46 (9.5%) 58 (11.9%) 76 (15.6%) 84 (17.3) 50 (10.3%) 70 (14.4%)

Side Right 183 55.3 12 (6.6%) 31 (16.9%) 23 (12.6%) 18 (9.8%) 36 (19.7%) 15 (8.2%) 34 (18.6%) 14 (7.7%) <0.0001

Left 148 44.7 12 (8.10%) 17 (11.5%) 15 (10.1%) 19 (12.8%) 24 (16.2%) 36 (24.3%) 3 (2.0%) 22 (14.9%)

MSI absent 153 94.4 19 (12.4%) 31 (20.3%) 20 (13.1%) 14 (9.2%) 25 (16.3%) 24 (15.7%) 3 (2.0%) 17 (11.1%) *<0.0001

present 9 5.6 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (22.2%) 0 (0.0%) 6 (66.7%) 1 (11.1%)

*Fisher’s exact test. Bold: statistically significant.

Correlation Between Clinical-Pathological
Features and MAPs
Next, we examined how MAP stratification correlated with
gender and tumor site, the only variables we had available for
a reasonable number of patients (Table 3). MAP stratification
did not significantly correlate with gender. Concerning tumor
site, differences in MAP distribution between colon and rectal
localization were close to statistical significance, with a trend
for MAP2.1 to be more represented and for MAP2.2 and
MAP3.1 to be less represented in rectum compared to colon
cancer (Table 3). Moreover, while MAP1 and MAP2 have similar
frequencies among right-side and left-side CRC, MAP3.2 and
MAP4.2 (accounting for by samples with no mutations or TP53
mutations only) were overrepresented in left-side CRC, and
MAP4.1 was overrepresented in right-side CRC. Of relevance, the
association ofMAP 4.1 with right side remains significant even by
omitting MSI-H cases (not shown).

DISCUSSION

The response of mCRC to current therapeutic approaches is
highly variable, reflecting the elevated heterogeneity of the
disease (7). This, together with an increasing availability of
targeted therapeutic approaches, stresses the need for more
comprehensivemolecular characterization of each tumor sample,
in order to push forward the real achievement of personalized
interventions. Despite it is clear that an extended molecular
characterization of CRC patients may significantly impact on
their clinical management (27–30), very little has entered the
clinical routine, yet.

Here, we report that a clinical genomic profiling via
multigene panel sequencing allowed identification of pairwise
mutation associations and eight distinct MAPs, providing great
opportunities to direct more informed therapeutic decisions, in
the majority of mCRC cases.

Our data confirm previously reported pairwise gene
mutation associations (31, 43–46) and unveil for the first time
EGFR/KRAS, EGFR/SMAD4, BRAF/PTEN, and NRAS/TP53
positive associations. The biological or clinical meaning of these
associations is difficult to trace, at the moment. In example, while

mutations in the EGFR tyrosine-kinase domain are mutually
exclusive with KRAS mutations and are positive predictive
biomarkers for the efficacy of tyrosine kinase inhibitors in
non-small cell lung cancer (NSCLC) (34, 47), these mutations are
rare and scarcely relevant in predicting responses to antibody-
based anti-EGFR therapy, in mCRC (48). 8/11 EGFR mutation
occurring in our mCRC cohort coexist with KRAS mutations.
On one side, this may imply that coexisting EGFR and KRAS
activating mutation might provide additional advantages to
tumor progression in mCRC. This is also supported by the
frequent co-occurrence of KRAS and PIK3CA, leading to the
constitutive activation of two different pathways downstream
of the EGFR. Alternatively, EGFR and KRAS mutations could
also exist in different subclonal mCRC populations in the
same tumor, as a result of tumor heterogeneity, driving the
activation of the same pathway. Addressing the details of
tumor heterogeneity and clonality, by tumor multisampling
and/or single cell sequencing, will be required to address
these issues.

Clinical multigene panel sequencing may easily lead to
the identification of actionable and targetable gene mutations
(27–31). More importantly, it provides awareness that specific
actionable/targetable mutations most frequently co-occur with
additional relevant genetic alterations, which in principle could
contribute to an individual variability in patients’ responsiveness
to standard and target-driven therapies. Overlooking this
molecular complexity may account for treatment failures, when
approved or innovative targeted approaches are used. The scant
success of PI3K inhibitors in mCRC may be at least in part due
to PIK3CA mutations co-occurring with RAS/BRAF mutations
(more than 70% of the PIK3CAmut patients in our cohort) (49).
It cannot be excluded that other gene mutations (occurring in an
additional 18% of the PIK3CAmut patients in our cohort) may
also provide primary resistance to PI3K inhibitors. Only 1.4% of
our entire cohort carried exclusively PIK3CAmutations, possibly
underscoring a subset of patients best suited for treatment with
PI3K inhibitors. On the same line, 2.7% (17/639) of the patients
carried only BRAF mutation, possibly representing the best
subset for a target treatment with BRAFV600E inhibitors alone, or
in combination with anti-EGFR (50, 51). Most patients carrying
BRAFV600E also carried additional mutations, at least some of
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FIGURE 4 | Molecular association pattern taxonomy and potential implications for therapies.

which might be expected to be involved in primary resistance to
anti-BRAF therapies, providing contraindication to single target
approaches. In line with this, a phase III 3-arm trial is currently
exploring the effectiveness of a triplet therapy with the BRAF
inhibitor plus MEK inhibitor associated with the anti EGFR
antibody CETUXIMAB in BRAFV600E mCRC, in the second or
third-line setting (BEACON CRC NCT02928224) (23).

Most importantly, we believe that the greatest added value
of clinical multigene panel sequencing may come from a more
comprehensive use of the entiremutational profile of each patient
to implement a more precise molecular stratification of mCRC.
In this observational study, we developed a new stratification
system into eight distinct MAPs characterized by non-random,
specific mutational combinations. We validated these findings
via TCGA data analysis, although few interesting differences
emerged. In particular, the different rate of MSI-H cases and
the different size of MAP4.1 may be due to the different stage
composition between our cohort and TCGA dataset. Whether
this is also relevant for the different size of MAP4.2 and the
different distribution of some less frequently mutated genes
remains to be determined.

Although we are aware that the lack of clinical data only allows
for a speculative proposition, we believe that our comprehensive
molecular stratification may provide the base for informed
therapeutic decisions, for the majority of mCRC patients, as
detailed below (Figure 4).

Firstly, about 50% of our cohort bears no mutations at all
(MAP4.2) or just one mutation (MAP2.2 and MAP3.2). An
additional 11.6% of patients is characterized bymutations limited
to KRAS and TP53 (MAP1.2). Even considering the almost
ubiquitous activation of the WNT pathway due to mutations
in APC, β-catenin or RNF43 genes (14), these data suggest
that the majority of mCRC develop and progress with a low
mutation load, which has significant implications for therapeutic

interventions. Of interest, the little representation of MAP4.2 in
the mixed-stages TCGA dataset compared to our mCRC cohort
seems to suggest a higher tendency to cancer progression and
a negative prognostic value to having no detectable pathogenic
mutations, in addition to being less responsive to common
therapies (27). This interesting hypothesis also needs to be
confirmed in independent series.

MAP1.1 patients (as well as MAP1.2, MAP2.1, and MAP2.2
patients) are not eligible for anti-EGFR therapy, due to KRAS
mutations. More in general, therapies directed against single
targets are likely to fail in this group of patients due to
primary resistance, as a consequence of having ≥3 gene
mutations. Appropriate multitarget combinations should instead
be considered for this group, taking advantage of the druggable
mutations detected in each patient. Inhibitors of immune-
checkpoints are effective in MSS patients (52). The presence
of ≥3 pathogenic mutations/tumor in MAP1.1 may suggest
a higher mutation rate (compared to MAP 2.2/4.2), raising
the possibility to test the efficacy of checkpoint inhibitors, in
this subset.

Due to the occurrence of multiple mutations, target driven
drug combinations also need to be considered for MAP2.1.
However, in this subset we noticed the highest frequency of
PIK3CA mutations (42/66), 5/66 PTEN mutations and 3 out
of the 5 AKT1 mutations, mutually exclusive with PIK3CA
mutations. Thus, the highest frequency of constitutive activation
of the PI3K-AKT1 pathway occurs in this TP53WT subset. It has
been shown that p53 may limit KRAS dependent transformation
(53), suggesting that p53 inactivation may be required for KRAS-
dependent cancer development. Nonetheless, KRAS and TP53
mutations are not positively associated in mCRC (31, 44), at
variance with NRAS mutations. Of interest, PI3K-AKT axis
impinges on MDM2, promoting an increased E3-ubiquitin ligase
activity, ultimately leading to p53 functional inactivation via
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increased degradation (54). Therefore, activation of the PI3K-
AKT pathway provides a functional mean to inactivate p53, in
KRAS mutant samples. Consistent with this, Singh et colleagues
found mutually exclusive occurrence of TP53 mutations and
PIK3CA amplification in squamous cell carcinomas (55). This
support the possibility that TP53 reactivation approaches, which
are being tested elsewhere (56), could also find application in
MAP2.1 mCRC (Figure 4).

Beside standard treatment including anti-VEGF, additional
intervention is hard to prospect for MAP1.2 patients, since they
lack targetable gene mutations, with the possible exception of
MEK inhibitors. Mutant TP53 reactivation approaches are yet to
come at the clinical level, but they will find potential application
also in this mCRC subset. The role of immunotherapy in this
subset and in MAP2.2 patients seems counterintuitive, due to the
low mutation rate.

Targeting EGFR as a single strategy will probably be ineffective
for most patients of MAP3.1 due to the frequent occurrence
of PIK3CA, NRAS, BRAF, or SMAD4 mutations, all of which
have been related to primary resistance to this approach (17,
43, 57, 58). Therefore, combination treatments should also be
carefully planned in this subset. Importantly, fewMSI-H patients
fall in this group creating opportunities for immune system
reactivation therapies.

In sharp contrast, MAP3.2 and MAP4.2 patients, largely
coincident with the known “quadruple negative” mCRC subset
(24, 59), are probably themost eligible to chemotherapy plus anti-
EGFR therapies, since they lack known predictable resistance
mechanisms. Of interest, these subsets are prevalent in the left
colon, consistent with the observation that TP53 mutations and
alternative mechanisms of activation of receptor tyrosine kinase
pathways characterize tumors developing in the distal colon
(14). These data also fit with the recently reported increased
chance of response to anti-EGFR treatment in left colon mCRC
(60, 61).

mCRCs of the MAP4.1 subset are predominantly localized
to the right colon, where tumors appear to be less responsive to
conventional therapies (60, 62). In this subset we detected
the highest percentage of BRAFV600E mutant patients,
suggesting multiple targeting of BRAFV600E and EGFR,
perhaps also in combination with MEK inhibitors (50, 63).
Anti-EGFR therapy alone should be possibly avoided, due
to the frequent occurrence of primary resistance mutations
in PIK3CA, NRAS, BRAF, or FBXW7 (17, 43, 57, 58). TP53
reactivation may also seem reasonable, in cases with NRAS
and PIK3CA mutations, similar to MAP2.1 patients. Finally,
MAP4.1 also includes the majority of MSI-H mCRC patients,
which are most likely to benefit from immune checkpoint
inhibitors (52).

Although we are aware that our clinical genomic profiling
does not take into account copy number variations and
genomic rearrangements that may lead to derangement of
specific oncogenic/oncosuppressive pathways, these rarely occur
in mCRC (14). It remains that the major limitation of
our study is that we had no access to homogeneously
collected clinical data, which clearly prevented us from reaching
significant clinical conclusion. In example, we cannot infer

whether any of the MAPs indicates a better response to
anti-VEGF therapy, which is still orphan of biomarkers.
Nonetheless, we believe that the simple and cost-effective
molecular stratification of mCRC compatible with clinical
settings described in this observational study will encourage us
and others to design prospective studies to specifically address its
effective value for more personalized therapeutic intervention of
mCRC patients.
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Anaplastic lymphoma kinase (ALK) fusion events account for ∼3–7% genetic alterations

in patients with non-small cell lung cancer (NSCLC). In this study, we identified the ALK

fusion patterns and a novel ALK fusion partner in 44 ALK positive NSCLC patients

using a customized HapOncoCDx panel, and identified ALK fusion partners. The most

common partner is EML4, forming the variant 1 (v1, E13:A20, 18/44), variant 2 (v2,

E20:A20, 5/44), and variant 3 (v3, E6:A20, 13/44). Moreover, we detected a new ALK

fusion partner HMBOX1. At the mutation level, TP53 is the most frequently mutated

gene (24%), followed by ALK (12%) and STED2 (12%). The median tumor mutation

burden (TMB) of these samples is 2.29 mutations/Mb, ranging from 0.76 mut/Mb to

16.79 muts/Mb. We further elaborately portrayed the TP53 mutation sites on the peptide

sequence of the encoded protein by lollipop. The mutational signature and copy number

alterations (CNAs) of the samples were also analyzed. The CNA events were found in 13

(13/44) patients, and the most commonly amplified genes were MDM2 (n = 4/13) and

TERT (n = 4/13). Together, these results may guide personalized clinical management of

patients with ALK fusion in the era of precision medicine.

Keywords: NSCLC, ALK, NGS—next generation sequencing, copy number aberrations, genomic landscape

INTRODUCTION

Anaplastic lymphoma kinase (ALK) fusion events, which are the result of ALK rearrangements,
account for∼3–7% genetic alterations in non-small cell lung cancer (NSCLC) patients (1, 2). These
oncogenic mutations could lead to the constitutive activation of the ALK tyrosine kinase domain,
and further cause tumorigenesis (3). Hitherto, multiple ALK fusion partners have been identified,
and the most normal one is echinodermmicrotubule-associated protein-like 4 (EML4), which were
observed in nearly 80% of all the ALK fusion cases (2). It is worth noting that more than a dozen of
different EML4-ALK variants have been identified in NSCLC patients. The most common variants
are variant 1 (v1, E13:A20), variant 2 (v2, E20:A20), and variant 3 (v3, E6:A20) (4).

Currently, ALK tyrosine kinase inhibitors (TKIs) are recommended for the treatment of NSCLC
patients harboring ALK fusion (5). Prior to ALK TKIs treatment, the median overall survival (OS)
of ALK fusion-positive metastatic NSCLC patients receiving chemotherapy was around 12 months
(6). However, under the sequential treatment with ALK fusion TKIs, the OS of the patients were

108
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extended to 5 years (7). The first approved is Crizotinib
which is the first generation TKI. Compared to traditional
chemotherapy, it improves the PFS and OS of ALK fusion
NSCLC patients significantly (8). Nevertheless, nearly all of
the patients would develop drug resistance within 2 years
after the initial treatment. The drug resistance was possibly
caused by a secondary mutation in the kinase domain of
ALK, the activation of alternative pathways, ALK amplification,
or epithelial-mesenchymal transition (9). To overcome the
resistance, the second-generation ALK TKIs were developed
including Ceritinib, Alectinib, and Brigatinib. They were
approved for the treatment of metastatic NSCLC patients with
ALK fusion and had progressed on or intolerant to Crizotinib.
Notably, Ceritinib and Alectinib were approved for the first-
line treatment of the ALK fusion positive metastatic NSCLC
patients (10–16). In addition, as the third generation ALK
inhibitor, Lorlatinib has also been approved for the treatment
of metastatic NSCLC patients with ALK fusion, on condition
that the disease has progressed on Crizotinib or at least one
other ALK inhibitor such as Alectinib or Ceritinib for metastatic
disease (17). It is worth noting that different ALK inhibitors have
different potencies and spectrums against acquired resistance
mutations (18).

In the era of precision medicine, the genomic profiles of
the patients may guide the planning of treatment strategy. For
the ALK fusion positive NSCLC patients, detailed genomic
profiles can elucidate the fusion partner and the rearranged
breakpoint. Moreover, the proposed resistant mutations are
critical for clinical treatment guidelines. Furthermore, several
studies reported that molecular profiling is also associated with
the prognosis of patients. Christopoulos et al. reported that
the concomitant TP53 mutation is a strong indicator of poor
prognosis in ALK fusion positive NSCLC patients (19). Their
study also reported that EML4-ALK fusion variant V3 was
associated with a more aggressive phenotype and worse overall
survival due to earlier failure of several therapeutic modalities. In
addition, they found that V3 and TP53 double positive patients
had a very high risk of death with a median OS of around 2 years.

With the development of next-generation sequencing
technologies, it is becoming more affordable to obtain the
genomic landscape of cancer patients. In this study, we aim
to demonstrate the genomic landscape of ALK fusion-positive
tumors in 44 Chinese NSCLC patients sequenced with our
customized HapOncoCDx panel which involves hybridization
capture and deep sequencing of all protein-coding exons of
464 cancer-associated genes and other selected introns of other
oncogenes and tumor suppressor genes, and illustrate their
genomic mutation patterns and characteristics, which potentially
helps to develop treatment strategy.

MATERIALS AND METHODS

Patients and Samples
Forty-four patients were enrolled from 1349 NSCLC patients
in this study. Tumor tissues were collected during surgery, and
were formalin fixed, paraffin-embedded (FFPE) and archived.
Peripheral blood (PBL) samples were also collected from each
patient as control.

DNA Extraction
DNA samples were extracted from Formalin-fixed paraffin-
embedded (FFPE) samples with QIAamp DNA FFPE tissue
kit (Qiagen). Extraction of PBL DNA was conducted using
the RelaxGene Blood DNA system (Tiangen Biotech Co., Ltd.,
Beijing, China) according to the manufacturer’s protocol. All
the DNA samples were quantified both using the Qubit 2.0
fluorometer and the Qubit dsDNA HS Assay kit (Thermo
Fisher Scientific, Inc., Waltham, MA, USA) according to the
manufacturer’s protocol.

Library Construction and Sequencing
One hundred nanogram of DNA from each sample was sheared
by the dsDNAFragmentase (New England BioLabs, Inc., Ipswich,
MA, USA), and then performed size selection (150–250 bp) using
Ampure XP beads (Beckman Coulter, Inc., Brea, CA, USA).
Library construction was performed using the KAPA Library
Preparation kit (Kapa Biosystems, Inc., Wilmington, MA, USA)
according to the manufacturer’s protocol. The concentration of
the library were assessed using the e Qubit dsDNA HS Assay
kit, and fragment length was determined on a 4200 Bioanalyzer
(Agilent Technologies, Inc., Santa Clara, CA, USA). Target
enrichment was carried out using the Agilent SureSelect XT
HS kit (Agilent Technologies) according to the manufacturer’s
Protocol. DNA sequencing was then performed on the Illumina
Novaseq 6000 system at an average depth of 2000X.

Data Analysis and Variant Calling
Raw sequences were pre-processed by fastp version 0.18.0
(https://github.com/OpenGene/fastp) (20), and clean reads were
aligned to the hg19 genome (GRch37) using Burrows-Wheeler
Aligner maximal exact matches algorithm (21). The Gencore
version 0.12.0 (https://github.com/OpenGene/gencore) (22) was
used for removing duplicate reads. Pileup files with mapping
quality ≥60 were generated using Samtools version 0.1.19
(http://www.htslib.org/) (23). Somatic variants were called using
VarScan2 version 2.3.8 (http://varscan.sourceforge.net/) (24)
[the minimum read depth 20; the variant allele frequency
(VAF) threshold ≥0.01; somatic-P ≤ 0.01; strand-filter ≥1;
others, default parameters]. CNV kit with version 0.9.3
(https://github.com/etal/cnvkit) (25) was used for copy number
variation detection, and GeneFuse version v0.6.1 (https://
github.com/OpenGene/GeneFuse) (26) for structural variation
detection. Maftools was used for visualizing somatic variant
analysis (27).

RESULTS

Sample Collection and Patient
Characteristics
Of the 1349 NSCLC cases, ALK rearrangements were detected
in 44 cases (3.26 %). Those 44 Chinese patients with locally
advanced or metastatic NSCLC were enrolled in this study,
of which 20 (45.5%) were female. All patients carry ALK
fusion events. Their mean age was 52.5 with ranging from 29
to 73. NGS was performed on 44 pairs of tumor and white
blood cell samples. All the samples that passed the histology
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quality control (HQC) yielded sufficient amounts of DNA
for NGS.

Identification of ALK Rearrangements
Using Targeted Sequencing
In order to identify ALK rearrangement from the DNA
of patients’ FFPE samples, we designed probes to cover
the intron 18 and intron 19 of ALK, as well as introns
of some well-known ALK fusion partners. We identified
ALK rearrangements and corresponding breakpoints in the
sequencing data of these patients. The statistical summary
and breakpoints of the rearrangement events are listed in
Table 1 and shown in Figures 1, 2, respectively. We found
that 43 out of 44 patients had an EML4-ALK fusion,
with variant 1 (v1, E13:A20), variant 2 (v2, E20:A20),
and variant 3 (v3, E6:A20) detected in 18, 5, and 13
patients, respectively. We also identified one novel ALK fusion
partner HMBOX1.

TABLE 1 | Fusion patterns of ALK.

Fusion type Counts Percent (%)

EML4-exon13-ALK-exon20 18 40.9

EML4-exon6-ALK-exon20 13 29.5

EML4-exon20-ALK-exon20 5 11.4

EML4-exon13-ALK-exon19 2 4.5

EML4-exon14-ALK-exon20 2 4.5

EML4-exon6-ALK-exon19 2 4.5

EML4-exon19-ALK-exon20 1 2.3

HMBOX1-exon4-ALK-exon20 1 2.3

FIGURE 1 | The statistics of different ALK rearrangement forms. The number

of each ALK fusion pattern identified in 44 NSCLC patients are shown in the

barchart.

Mutational Profiles of ALK Fusion Positive
NSCLC Patients
Genomic alterations were found in 34 (n= 34/44, 77.3%) samples
with a total of 134 alterations identified including variants of
non-synonymousmutations and splicingmutations. The detailed
information is shown in Figure 3A. The mutation landscapes of
ALK fusion positive NSCLC patients were highly heterogeneous.
The median TMB was 2.29 mut/Mb with a range between 0.76
and 16.79 mut/Mb which is similar to the TMB of the TCGA
NSCLC cohort.

We constructed a heatmap to demonstrate the somatic
mutations occurred in the tumor tissues of the patients
(Figure 3A). TP53 was most commonly altered (n = 8/34, 24%),
followed by SETD2 (n= 4, 12%), ALK (n= 4, 12%), SYNE1 (n=
3, 9%), SMAD4 (n= 3, 9%), SLX4 (n= 3, 9%), NOTCH3 (n= 3,
9%), LRP1B (n = 3, 9%), EP300 (n = 3, 9%), and CTNNB1 (n =

3, 9%).
Other genomic alterations of low frequencies are AMER1 (n

= 2, 6%), ARID1B (n = 2, 6%), CSF3R (n = 2, 6%), FAT1 (n =

2, 6%), FOXP2 (n = 2, 6%), KDM6A (n = 2, 6%), KMT2A (n
= 2, 6%),LATS1 (n = 2, 6%), MAP2K4 (n = 2, 6%), NFEL2L2
(n = 2, 6%), NOTCH1(n = 2, 6%), NTRK3 (n = 2, 6%), TERT
(n = 2, 6%), and TGFBR2 (n = 2, 6%). Alterations in ABL1,
ADH1B, ALDH2, APC, AR, ARID2, ATM, AURKA, BMPR1A,
CACNA1C, CADM2, CAMTA1, CAPN2, CARD11, CDC73,
CDK12, CREBBP, CSMD3, DNMT3A, EPHA3, ERBB4, ESR2,
EWSR1, EXT1, EZH2, FGFR1, FLCN, FOXA1, FOXL2, GATA6,
GPRIN2, HIF1A, HNF1B, JAK1, KDR, KMT2C, KMT2D,
LATS2, MAP2K1, MDM4, MYCN, NF2, NSD1, NTRK1, PTEN,
PTPRD, PZP, RARA, RIT1, RNF43, ROS1, SETBP1, SMARCA4,
SMO, SOCS6, SOX2, SPEN, STAT3, STK11, SUZ12, TSHR, and
U2AF1 were identified in one sample each (n = 1, 3%). We
further compared our results with the MSK-IMPACT study (28),
in which we extracted 45 ALK fusion positive cases that yielded
81 mutations. Overall, our results were highly consistent with the
MSK-IMPACT findings, which showed that TP53 and ALK are
the most frequently altered genes (Figure 3B).

We further studied their mutational signatures. We observed
that C>T transition occurred most frequently, followed by C>A
transition (Figure 4). This pattern is consistent with COSMIC
signature 1 that had been found in most cancer samples.

Different driver gene mutations revealed inter-tumor
heterogeneity. TP53 mutations in exon 5–8 were observed, and
we further elaborately portrayed the TP53 mutation sites on the
peptide sequence in a lollipop plot (Figure 5).

Copy Number Aberrations of ALK Fusion
Positive NSCLC Patients
Somatic copy number alterations were found in 13 (n =

13/44, 29.5%) samples. A total of 22 alterations were identified,
including gain and loss (Figure 6). MDM2 and TERT were most
commonly amplified genes (n= 4/13, 31%), followed by CCND1,
EPCAM, IKZF1, MET, MYCN, RICTOR (n = 1, 8%). Loss of
copy number wasmost frequently observed in CD274, CDKN2A,
JAK2 (n= 2/13, 15%), followed by FGFR1, FGFR3 (n= 1, 8%).
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FIGURE 2 | The breakpoint distribution in ALK and the respective fusion partners. Each arrowed line represents one fusion event. The exact breakpoints of ALK in

GRch37 are shown in the middle panel, while the fused exons of ALK fusion partners are shown in the top and bottom panels, respectively. The sequence of ALK is

exhibited reversely (from right to left), while the sequences of EML4 and HMBOX1 are represented in the forward direction. The genomic region of ALK between

299446000 and 29448500 on Chromosome 2 is divided into regions every 500 bp. Breakpoint position in ALK locate between 29446000 and 29446500 with an

orange arrow, between 29446501 and 29447000 with a blue arrow, between 29447001 and 29447500 with a green arrow, between 29447501 and 29448000 with

an yellow arrow, between 29448001 and 29448500 with a gray arrow.

FIGURE 3 | Mutational profiles of ALK positive NSCLC patients. (A) This is the oncoprint of the somatic SNVs and Indels in 34 patients in our study. Somatic

alterations included missense, nonsense, frameshift indel, in-frame indel, splice site, translation start site, multi_Hit mutations. The genes are ranked by the frequency

of the mutations across all samples. (B) This is the oncoprint of the somatic SNVs and Indels in 34 patients from the MSK-IMPACT study. Somatic alterations included

missense, nonsense, frameshift indel, in-frame indel, and splice-site mutations. The genes are ranked by the frequency of the mutations across all samples.
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FIGURE 4 | Mutational signatures of ALK fusion positive NSCLC patients. SNPs are classified into transitions and transversions. Summarized data are visualized as a

boxplot showing overall distribution of six different conversions (Top) and as a stacked barplot showing the fraction of conversions in each sample (Bottom).

FIGURE 5 | Protein variants resulted from TP53 mutations. Protein variants

caused by TP53 mutations are displayed in the lollipop plot. These sites are

considered to be mutational hot-spots.

DISCUSSION

In this study, we identified ALK rearrangement events in 44
Chinese NSCLC patients using NGS technologies. Consistent
with other studies, the most common ALK fusion partner is

EML4, and the fusion occurs in the forms of the three most
common variants. We also report a novel ALK fusion partner
HMBOX1. It implied that NGS-based assessment for ALK
fusions was accurate and comprehensive, having the unique
advantages in detecting unknown ALK fusion partners, and
identifying the exact breakpoints compared to the traditional
methods, like FISH and IHC.

At the same time, we characterized the mutational profiles
of the patients. The results were consistent with other studies,
in terms of the relatively lower frequency of TP53 mutations,
lower TMB, and fewer co-mutations compared to ALK-
negative NSCLC patients (29). Besides, we identified the copy
number alterations in their genome. Apart from the genes
with a high frequency of copy number amplification, such
as MET, MDM2, and TERT, we also identified some genes

with copy number loss, such as CD274, CDKN2A, and JAK2.

This information is important for guiding optimal clinical

treatment. For instance, the copy number loss of CD274 probably

indicates a low expression of PD-L1. MDM2 amplification had

been reported to associate with a poor clinical outcome and

significantly increased tumor growth rate with anti-PD-1/PD-L1
immunotherapies (30).

In conclusion, using our customized HapOncoCDx panel,
we not only successfully detected the ALK fusion events in
44 Chinese NSCLC patients, but also explored their genomic
mutational landscapes. To the best of our knowledge, this
is the first study that exhibited the mutational landscape of
Chinese NSCLC patients with ALK rearrangement. This result
can provide genomic information for personalized clinical
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FIGURE 6 | Copy number aberrations in 13 ALK fusion positive NSCLC patients. The names of the aberrant genes are shown in the y-axis, while each column

represents a patient. The type of copy number aberrations, including gain, normal, and loss are indicated by red, yellow, and blue, respectively.

management for patients with ALK fusion in the era of
precision medicine.
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Background: Human epidermal growth factor receptor 2 (ERBB2, HER-2) exon 20

insertion (ERBB2ex20ins) remains a refractory oncogenic driver in lung cancer. So far

there is limited data showing the co-occurring mutation background of ERBB2ex20ins

in Chinese lung cancer and its relationship with response to afatinib.

Patients and Methods: A total of 112 Chinese patients with ERBB2ex20ins identified

by next-generation sequencing from 17 hospitals were enrolled. The clinical outcomes

of 18 patients receiving afatinib treatment were collected.

Results: Among the 112 patients, insertion-site subtypes comprised of A775ins (71%;

79/112), G776indel (17%; 19/112), and P780ins (12%; 14/112). There were 66.1%

(74/112) of patients carrying TP53 co-mutation and FOXA1 was the most prevalent

co-amplified gene (5.5%, 3/55). The co-occurring genomic feature was similar among

three insertional-site subtypes and had an overall strong concordance with the western

population from the MSKCC cohort (R2
= 0.74, P < 0.01). For the prognosis, patients

with co-occurring mutation in cell-cycle pathway especially TP53 showed shorter OS

than patients without [median OS: 14.5m (95% CI:12.7–16.3m) vs. 30.3m (95% CI:

not reached), p = 0.04], while the OS was comparable among three subtypes. For
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the response to afatinib, ERBB2ex20ins as a subclonal variant was an independent

factor relating to shorter PFS [median PFS: 1.2m (95% CI: 0.8–1.6m) vs. 4.3m (95% CI:

3.3–5.3m), p < 0.05].

Conclusion: Our data revealed co-occurring TP53 represent an unfavorable prognosis

of patients with ERBB2ex20ins, emphasizing the more valuable role of the co-mutation

patterns than insertion-site subtypes in predicting prognosis of this group of patients.

Moreover, the clonality status of ERBB2ex20ins was identified as a potential indicator for

response to afatinib.

Keywords: non-small cell lung cancer, ERBB2 exon 20 insertion, co-occurring alterations, afatinib, clonality status

INTRODUCTION

Aberrations in human epidermal growth factor receptor 2
(HER-2, ERBB2) have emerged as oncogenic drivers and
therapeutic targets in 1–4% of non-small cell lung cancer
(NSCLC) and up to 6% of EGFR/KRAS/ALK-negative lung
adenocarcinoma (LUAD) (1, 2). Most of ERBB2 mutations
is characterized by inframe insertion occurring at exon 20
in the protein kinase domain (3). Prior studies showed that
pan-ERBB family inhibitor (afatinib, dacomitinib) (4, 5), ado-
trastuzumab (T-DM1) (6) as well as some new agents such as
poziotinib (7), pyrotinib (8) may elicit an objective response
in patients with ERBB2 exon 20 insertion (ERBB2ex20ins);
however, no therapy has been approved as a standard
treatment yet.

Afatinib has been demonstrated its suppressive effect on
lung cancer cell lines with ERBB2ex20ins in vivo (9). Previous
studies also revealed clinical outcomes of afatinib with a 13–19%
objective response rate (ORR) and a disease control rate (DCR)
around 70% in three separate cohorts (10–12); Nevertheless,
there exists profound efficacy heterogeneity on them, such as
patients with the same subtype displayed discordant benefits and
duration of time.

Several prior studies revealed that genetic co-alterations
were independent variables associated with unfavorable
prognosis of EGFR-TKIs (13, 14). However, because of its
low frequency, researches focused on ERBB2ex20ins have
generally been limited to insufficient number of cases from
single institution and prevent making a broad assessment
of co-existing alteration patterns of ERBB2ex20ins, which
may reflect its genomic background heterogeneity and
contribute to the variable responsiveness to the targeted
therapy. Therefore, making a comprehensive analysis of
concomitant mutation spectrum of ERBB2ex20ins in a large
cohort and correlating its co-mutation status with prognosis are
urgently warranted.

Moreover, growing number of studies are paying attention to
the clonality heterogeneity of targetable somatic alterations and
adapting the cancer-treatment strategy to taking into account
how a tumor evolves (15). It seems that therapy targeted
clonal (“trunk”) mutations may be more effective than targeted
subclonal (“branch”) ones (16, 17). Nevertheless, how the
clonality status of driver aberrations modulates the efficacy of
therapy is unclear.

Using the next-generation sequencing (NGS) method, we here
described the co-occurringmolecular spectrum of ERBB2ex20ins
in a cohort of 112 NSCLC patients from 17 hospitals in China.
We also compared our spectrum with the western population
from Memorial Sloan Kettering Cancer Center (MSKCC) and
investigated the impact of co-mutation status on the prognosis
of them. Furthermore, we retrospectively assessed the efficacy
and tried to identify efficacy predictive factors of afatinib in 18
patients with ERBB2ex20ins.

MATERIALS AND METHODS

Patient Cohort and Clinical Data Collection
We retrospectively screened 112 patients (from 17 hospitals)
harboring ERBB2ex20ins in a College of American Pathologists
(CAP) Laboratory (Geneplus-Beijing, Beijing, People’s Republic
of China) from July 2016 to December 2018. Samples of tumor
tissue, plasma or effusion were analyzed by next-generation
sequencing (NGS) assay using two versions (59 or 1,021 cancer-
related genes) of capture-based targeted sequencing panel. Gene
lists of two versions of sequencing panel are shown in Table S1.
The sample type and panel for each patient are shown in
Figure 1A. A total of 55 and 57 samples were sequenced
using 1,021 or 59-gene panel, respectively. Clinicopathological
features were abstracted from the accompanying pathology
report submitted by the ordering physician. All patients
provided written informed consent for our study. This study
was approved by the institutional review board of The
Second Affiliated Hospital of Xi’an Jiaotong University and all
participating hospital.

The sequencing data of the Memorial Sloan Kettering Cancer
Center (MSKCC) Cohort was downloaded from an open-access
database named the Cancer Genome Atlas Database, which is
publicly available at http://www.cbioportal.org [MSK-IMPACT
Clinical Sequencing Cohort (MSKCC, Nat Med 2017)] (18,
19). The data of overall survival (OS) was acquired from the
cbioportal website directly. OS was measured from the date when
the tumor specimen was collected to the date of death or last
follow-up visit (20).

Response Evaluation
The clinical outcomes of 18 patients treated with afatinib were
collected by each contributing doctor in charge and pooled for
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FIGURE 1 | (A) Sample types and sequencing panel details of study design. (B) Pie chart visualizing eight specified insertion subtypes combined with insertion site.

Multi, multiple alterations; Co-Amp, co-amplification; Co-SNV, co-single nucleotide variant. (C) Top 18 genes in the highest co-occurring frequency with ERBB2 exon

20 insertion (no relation to the total numbers analyzed). Only the genes with concurrent frequency over 5% are shown. *The genes included in the 59-gene panel.

analysis. Patients were administered afatinib depending on their
performance status and other comorbidities at a starting dose
of 30, 40, or 50mg daily. Best response evaluation was assessed
according to the Response Evaluation Criteria in Solid Tumors
(RECIST, v1.1). The progression free survival (PFS) for afatinib
treatment was defined as the time from the start of afatinib
treatment to the date of disease progression or death.

DNA Extraction
Circulating DNA and Genomic DNA for genomic testing
were isolated from 3ml of plasma or effusion and FFPE
samples, respectively. Peripheral blood lymphocytes

(PBL) DNA were extracted for germline reference
(Supplemental Online Methods).

Target Capture and Next-Generation
Sequencing
KAPA Library Preparation Kit (Kapa Biosystems, Wilmington,
MA, USA) was applied to prepare Indexed IlluminaNGS libraries
from peripheral blood lymphocytes (PBL) DNA, and tumor
DNA or plasma DNA according to the manufacturer’s protocol.
Capture probes were designed to cover coding sequences or hot
exons of 59 or extended 1,021 genes that are frequently mutated
in NSCLC and other common solid tumors (details of sequencing
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region for each gene are uploaded in Table S1). Libraries
were hybridized to custom-designed biotinylated oligonucleotide
probes (Integrated DNA Technologies, Iowa, IA, USA). DNA
sequencing was performed on the HiSeq 3000 Sequencing System
(Illumina, San Diego, CA) with 2× 101 bp paired-end reads.

Sequencing Data Analysis
Terminal adaptor sequences and low-quality data were removed
from the raw data. The BWA (0.7.12-r1039) was employed
to align clean reads to the reference human genome (hg19)
(21). MuTect2 (3.4-46-gbc02625) and GATK was applied to
call single nucleotide variants (SNVs) and small insertions and
deletions (Indels), respectively. Somatic copy number variants
(CNVs) were identified using CONTRA (2.0.8) (22). Moreover,
we employed the NoahCare Tool Kit using NCfilter (software
developed by self, version 1.5.0) for fastq data QC, NCbamInfo
(version 0.2.0) for alignment QC, NCanno (version 0.1.1)
for annotation with multiple databases, and NChot (version
0.1.0) for hotspot region variant review and recall. All final
candidate variants were all manually verified using the Integrative
Genomics Viewer (IGV) Browser.

Clonality Analysis
The subclonal architecture of all DNA samples were constructed
by PyClone run with 20,000 interactions and default parameters
(23). Variants were clustered as previously described (23), briefly,
the copy number information of each SNV was used as input for
PyClone analysis (24, 25), and the cancer cell fraction (CCF) was
inferred. Variants located in the cluster with greatest mean CCF
were defined as clonal, the rest were subclonal (23).

Statistical Analysis
All statistical analyses were performed using SPSS version
19.0 (SPSS Company, Chicago, IL). Categorical and continuous
variables were compared by Fisher’s exact test and Kruskal-
Wallis H-test, respectively. The Pearson correlation coefficient
was applied to assess the linear correlation degree of co-
occurring genes’ frequency appearing inOur Cohort andMSKCC
Cohort. The OS and PFS were estimated using the Kaplan-
Meier method and compared with the log-rank test. A multi-
variant regression model was calculated for HRs and 95% CIs.
All statistical tests were two-sided, and p < 0.05 was defined as
statistical significance.

RESULT

Patients With ERBB2 exon 20 Insertion
One hundred and twelve patients carrying ERBB2ex20ins were
screened from July 2016 to December 2018 (Figure 1A). The
clinical characteristics for these patients were summarized
in Table 1. In all, patients were predominantly in the stage
IV (80/112, 72%) and had the histology of adenocarcinoma
(68%,76/112). There were slightly more female (54%; 60/112)
than male (46%; 52/112), with a median age of 61.5 years (range:
28–87 years).

Totally, eight specific insertion types of ERBB2ex20ins were
identified. Considering the fact that certain studies discussing

TABLE 1 | Clinical characteristics of patients with ERBB2 exon 20 insertion in

different positions.

Characteristics A775ins

(n = 79)

G776indel

(n = 19)

P780ins

(n = 14)

Sum P-value

Age at initial diagnosis

Median (range) 62

(28–83)

58

(29–87)

64

(48–83)

61.5 (28–87) 0.425

Unknown 6 0 2 8

Gender

Female 39 (49%) 11(58%) 10 (71%) 60 (54%) 0.287

Male 40 (51%) 8 (42%) 4 (29%) 52 (46%)

Histology

NSCLC NOS 14 (18%) 3 (16%) 1 (7%) 18 (16%) nc

Adenocarcinoma 55 (70%) 11(58%) 10 (72%) 76 (68%)

Squamous

carcinoma

0 0 1(7%) 1(1%)

Unknown 10 (12%) 5 (26%) 2 (14%) 17 (15%)

Stage

I–III 15 (19%) 2 (10%) 2 (14%) 19 (16%) 0.850

IV 55 (70%) 14 (74%) 11 (79%) 80 (72%)

Unknown 9 (11%) 3 (16%) 1 (7%) 13 (12%)

P-values are calculated with Fisher’s exact test except for age using the Kruskal-Wallis H-

test.

ins, insertion; indel, insertion and deletion; NSCLC NOS, non-small cell lung cancer not

other specified; nc, not calculate.

the efficacy of targeted therapy for ERBB2ex20ins are always
based on the different insertion sites, we classified them into
three subtypes. The most common subtype was four amino acids
insertion at codon 775 (A775ins; 70.5%), followed by insertion
combined with deletion occurring at codon 776 (G776indel;
17.0%), and three amino acids insertion at codon 780 (P780ins;
12.5%). Multi-alterations were present in five patients, with two
patients harboring concurrent ERBB2 amplification and three
patients carrying ERBB2ex20ins with ERBB2 single nucleotide
variant (SNV) referring to p.A775_G776insYVMA+ p.R897Q,
p.P780_Y781insGSP+ p.G519R, and p.G776delinsAVGC+
p.G776A (Figure 1B).

Moreover, insertion-subtype abundance was not significantly
different among the sample types (p = 0.41; Table S2). It
indicated that distinct sample type was not biased toward the
detection of certain ERBB2 subtype.

Co-occurring Genomic Profile of ERBB2
exon 20 Insertion
Spectrum of Co-occurring Alterations and

Characteristics in Different Insertion Sites
On the basis of 59 genes strongly associated with cancer, 80.4%
(90/112) of patients had at least one additional alteration, with
48.9% (44/90) of them carrying one and 27.8% (25/90) carrying
two. Three or more concomitant alterations were present at the
rest of 23.3% (21/90) patients. TP53 was the most frequent gene
co-mutant with ERBB2ex20ins, making up 66.1% (74/112) cases,
with predominant alteration type of missense mutation (63.5%,
47/74), concentrating on exon 5, 8, 6, 7 (76.7%, 56/74; range: exon
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4-exon 11) (Figure S1A, Table S3). The remaining prevalent
co-occurring genes were LRP1B (18.2%, 10/55), EPHA5 (9.1%,
5/55), MLL3 (9.1%, 5/55), and RB1 (8.0%; 9/112) (no relation
to the total numbers analyzed). FOXA1 appeared in 5.5%
(3/55) of patients and became the most common co-mutant
gene in the form of amplification (Figure 1C). Putative driver
aberrations including EGFR (L858R or 19del), ROS1 fusions,
ALK receptor tyrosine kinase gene (ALK) rearrangement, KRAS,
BRAF (V600E) were not found in this cohort, probably mutually
exclusive from ERBB2ex20ins.

Of the pathway level, we classified the co-mutant genes
according to the pathway involved. 86.7% (78/90) of patients,
who carried at least one additional mutation, had the co-
altered genes enriched in the cell cycle, followed by receptor
tyrosine kinase/growth factor signaling (RTK) (15.2%) and DNA
damage/repair (8.9%) (Figure 2B). Furthermore, some patients
had co-mutant genes involved multiple important pathways
simultaneously, while some patients had more than one co-
mutant genes involving one single pathway (Table S4).

We also explored the co-occurring alteration feature among
A775ins (n = 79), G776indel (n = 19), and P780ins (n = 14).
No substantial discrepancy was observed among the three groups
at either the co-occurring somatic alterations (only TP53 was
included in the analysis) or pathway enriched, the clinical
details were as well (Figures S2A,C, Table 1). The location
and exon distribution of TP53 mutation were comparable in
three insertion-site subtypes (Figures S1B–E); however, when
considering TP53 mutation types, there was a tendency that
G776indel may be less adept at co-occurring with TP53 missense
mutations, with no statistically significant (p= 0.06; Figure S2B).

Spectrum Comparison With the Western Population

From the MSKCC Cohort
Next, we compared our data with the findings previously
reported by the MSKCC, which included 1,563 tumor specimens
from patients with NSCLC. Totally 30 patients harboring
ERBB2ex20ins involved in this cohort.

Overall, both the proportion of three subtypes and the
whole molecular co-occurring mutation spectrum (genes that
co-altered at a frequency over 5% in each cohort) were similar
between the two cohorts (R2 = 0.74, P < 0.01), although the co-
mutant frequencies of certain genes were higher in the MSKCC
cohort than in ours(Figure 2A, Table S5). Notably, these genes
in slightly higher frequency were in the form of copy number
variant (CNV) (Figure S2D), and it is probably caused by the
low detection rate of CNV due to the mixed plasma samples in
our samples.

For the pathway analysis, the enrichment of each pathway
in our cohort was in accord with the MSKCC cohort, with
a slightly higher frequency of cell-cycle pathway enriched in
MSKCC cohort (36.7 vs. 17.9%, P = 0.044) on account of the
higher frequency of CDKN2A alteration (Figure 2B, Table S4).

Impact of Insertional-Site Subtypes and
Co-occurring Mutational Status on OS
Based on the complete overall survival (OS) from the MSKCC
cohort, prognosis impact of ERBB2 insertion-site subtypes and

genes co-occurring over 5 or more cases in either cohort were
evaluated. Statistic descriptive of co-occurring genes included
in the analysis were summarized in Figure S3A. There was a
trend that patients harboring co-occurring genes enriched in cell-
cycle pathway showed a worse survival, with no significantly
statistic difference (p = 0.059; Figure S3B). However, worse
overall survival was seen in patients with co-mutations in TP53
[median OS:14.5m (95% CI:12.7–16.3m) vs. 30.3m (95% CI: not
reached); log-rank test], while OS was not significantly different
among three subtypes (p= 0.72, Figures 2C,D).

Prior study revealed TP53 mutation in exons 5, 7, 8,
and 9 sharing a better prognosis than other sites in the
advanced NSCLC (26). In this regard, we investigate the
prognosis value of co-occurring TP53 mutation in exons 5,
7, 8, and 9 and whether they can be even more relevant in
a specific subgroup of patients with ERBB2ex20ins mutation
(i.e., A775ins, G776indel, and P780ins subgroups) but found
negative result (log rank, p = 0.095; Fisher exact test,
p= 0.427; Figures S3C,D).

Clinical Outcomes of Afatinib for Patients
Harboring ERBB2ex20ins
Afatinib Treatment Efficacy Overview
The basic clinical and molecular characteristics of 18 patients
treated with afatinib were summarized in Table 2. Nearly all of
patients were in the advanced stage and 61.1% (12/18) of patients
receiving afatinib as 2 line or more.

Of the 18 patients, tumor remission data according to RECIST
1.1 criteria were available for 15 patients. Among them, 5
patients achieved PR (33.3%) and 4 patients achieved SD (26.7%).
All PRs were, respectively, observed in 3 separate insertion
subtypes, whereas the patients with PD only involved in the
subtype of A775ins. The median time on treatment with afatinib
was 3.7 months (95% CI: 2.1–5.3m; range: 0.7–13.4m). The
median duration time for patients responding to afatinib was
4.5 months (95% CI: 3.6–5.4m; range: 2.5 m−13.4 months). The
response details and duration of response (DoR) of afatinib for
each patient were showed in Figure 3A. One patient harboring
G776delinsVC was treated for afatinib as first-line therapy with
PR for over 13.4 months and didn’t achieve disease progression
until the last follow-up in this study. As for the rest of
patients, 3 cases (16.7%) responding to afatinib had a DoR over
6 months.

Impact of Clonality Status and Co-occurring

Mutations of ERBB2ex20ins on Afatinib Treatment

Outcome
For 18 patients treated with afatinib, we identified 54 somatic
SNVs, 4 CNVs and 18 somatic indels in 18 samples, for an average
of 4.3 somatic variants per sample. In this regard, we applied
method PyClone to evaluate whether the ERBB2ex20ins carried
by the patients were clonal or subclonal mutations.

Result revealed that ERBB2ex20ins as subclonal variants was
significantly associated with shorter PFS of afatinib [median
PFS: 1.2m (95% CI: 0.8–1.6m) vs. 4.3m (95% CI: 3.3–5.3m),
p < 0.01], while co-occurring TP53 mutation and insertion-site
subtypes had no significant impact on the efficacy of afatinib. This
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FIGURE 2 | A comprehensive comparison of the co-occurring profile between our cohort and MSKCC cohort for the frequency of (A) totally matched 28 genes (the

genes included in the analysis were matched in both cohorts’ panel with the frequency over 5%; the genes labeled are significantly different between the two cohorts).

(B) Pathway enriched (Only genes included in 59-gene panel were analyzed; *the pathway significantly different between the two cohorts). RTK, receptor tyrosine

kinase/growth factor signaling. (C) Kaplan–Meier curve showing the difference of median overall survival (OS) among patients harboring three different ERBB2

insertion subtypes. (D) Kaplan–Meier curve visualizing the effect of TP53 alteration on OS.

result remained significant when adjusted for ERBB2 insertion
subtypes, TP53 mutation, TP53 missense mutation and no. line
of afatinib [HR: 0.025 (0.002–0.41); p = 0.01)] (Figure 3B,
Table S6).

Next, we divided the patients into durable clinical benefit
(DCB) cohort and no durable benefit (NDB) cohort (The DCB
was defined as the patients achieving PR or SD and having the
duration of PFS for over 3 months; the NDB referred to the
patients having the PFS<3months). Clinical baseline parameters
for two groups of patients are displayed in Table 2 and
basically similar among each parameter. The variables including
concurrent TP53 mutation and TP53 missense mutation were
not significantly different between the two groups (data not
show, Fisher’s exact test, p > 0.05) except for the ERBB2ex20ins
clonality status (Fisher exact test, p < 0.01; Figure 3C).

Dynamic Detection and Afatinib Resistance
To gain some insight into the potential mechanism upon afatinib
resistance, we analyzed two patients conducting NGS at two
time points in the course of afatinib treatment. The clinical
characteristics and test details for two patients were summarized
in Table S7. Both patients were non-smoking female. For the
Patient#1, ERBB2 amplification [copy number (CN) = 3.1]
occurred in the repeat biopsy sample upon the progression
of afatinib. Similarly, the patient#2 also presented the ERBB2
amplification (CN = 2.74) which was undetected in the initial
plasma sample after taking afatinib for half of a month,
unfortunately, we did not examine the ERBB2 CN status at the
time of progression on afatinib. Despite this, it can be speculated
that ERBB2 amplification may represent a potential resistance
mechanism of afatinib.
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TABLE 2 | Clinical and molecular characteristics of patients treated with afatinib.

Characteristics NCB

(n = 8)

DCB

(n = 10)

Sum

(n = 18)

P-value

Age at initial diagnosis, years

Median (range) 56.5 (40–75) 54 (29–69) 55.5 (29.75)

<65 5 9 14 (77.8%) 0.28

≥65 3 1 4 (22.2%)

Gender

Female 5 5 10 (55.6%) 0.66

Male 3 5 8 (44.4%)

Tobacco use

Never 5 4 9 (50.0%) 0.15

Former or

current

3 2 5 (27.8%)

Unknown 0 4 4 (22.2%)

Histology

Adenocarcinoma

8 10 18 (100.0%)

Brain metastasis

Yes 3 4 7 (38.9%) 0.34

No 3 6 9 (50.0%)

NA 2 0 2 (11.1%)

Tumor stage

IIIa 1 0 1 (5.6%) nc

IV 6 10 16 (88.8%)

Unknown 1 0 1 (5.6%)

No. line of afatinib treatment

1 3 3 6 (27.8%) 1.00

≥2 5 7 12 (61.1%)

ERBB2ex20ins subtypes

A775 insertion 6 7 13 (72.2%) 1.00

G776 indel 1 2 3 (16.7%)

P780 insertion 1 1 2 (11.1%)

Concurrent TP53 alteration

Yes 7 6 13 (72.2%) 0.31

No 1 4 5 (27.8%)

Concurrent TP53 missense mutation

Yes 6 4 10 (55.6%) 0.19

No 2 6 8 (44.4%)

DCB, durable clinical benefit; NCB, no durable benefit; nc, not calculate.

DISCUSSION

In this study, we delineate the co-occurring alterations
and common pathway involved addicted to ERBB2ex20ins
in a representative NSCLC cohort of 112 patients and
correlate co-mutation patterns with the prognosis of patients
harboring ERBB2ex20ins. Moreover, to our knowledge, we
present the first time to examine the impact of clonality
status of oncogenic drivers in relation to the efficacy of
targeted therapy.

The recent widespread use of NGS enables us to move
researches from concentrating solely on the driver gene to the
full view of genomic co-alterations, which may have prognostic

implications. To date, somatic mutations in TP53 are the most
prevalent co-mutation in EGFR-mutant lung adenocarcinoma
(LUAD) with a frequency of 54.6–64.6% and several studies have
identified TP53 co-alteration as a negative prognosis marker,
with consistently predicting worse clinical outcomes receiving
EGFR-TKI therapy (27). In our study, TP53 ranked as the most
common accompanying somatic altered gene with a frequency
of 66%; this frequency was slightly higher than the previously
reported 51.6% (10), possibly due to the fewer proportion of
female in our cohort (28). Our results showed that patients
had a worse OS when co-occurring mutation in TP53, which is
also validated in a previous study (29). Recently, the different
prognosis value was recognized in distinct exons and alteration
types of TP53 mutation and the results were inconsistent.
Exons 5, 7, 8 and 9 were reported to share a better prognosis
than other sites (26); it is worth mentioning that the study
referred here sought to reveal the prognostic value of TP53
alterations in advanced NSCLC compared to most of studies
limited to the early stage or EGFR-mutant background (30,
31). Unfortunately, TP53 mutations in exons 5, 7, 8, and 9
did not produce more favorable prognosis than other sites
in the advanced NSCLC patients carrying ERBB2 mutation.
Clinicopathological characteristics and treatment status should
be well-defined to clearly investigate the prognosis impact
of various TP53 exons. Moreover, there is a tendency that
G776indel subtype may be less adept at co-occurring with TP53
missense mutations, however, whether this characteristic will
have a beneficial effect on the prognosis for them remains
to be explored. Interestingly, we found neither the co-mutant
frequency of TP53 nor pathway enrichment was significantly
different among three insertion subtypes, and the OS was
comparable as well. For the clinical practice, we suppose that the
co-occurring mutation status may have greater impact on the
prognosis for this subset of patients than the insertion subtypes
itself. Moving forward, the study highlightedmultiple concurrent
mutations besides ERBB2 insertion subtypes should be tested
prospectively in order to provide better predictions of prognosis
for them.

In order to systematically understand the co-mutation profile
of ERBB2ex20ins, we cataloged co-altered genes based on
existing biological pathway knowledge and the cell-cycle (86.7%),
receptor tyrosine kinase/growth factor signaling (RTK) (15.2%)
and DNA Damage/Repair (8.9%) showed predominance among
all the involved pathways. Prior study found that cell-cycle and
DNA-damage response pathway are involved in leptomeningeal
metastasis of NSCLC (32). This finding was somehow inter-
correspondent with the likely unfavorable prognosis for the
patients with the co-occurring genes enriched in the cell-cycle
pathway in our study, although the survival discrepancy was
not significant maybe on account of the insufficient follow-
up time or limited sub-group sample size. Unfortunately, we
cannot collect the detailed metastasis status for each patient;
however, for the patients treated with afatinib, we found seven
in 16 of patients having brain metastasis. Moreover, a recent
retrospective study found patients carrying ERBB2 mutations in
lung cancer developed more brain metastases on treatment than
patients with KRAS mutations [28 vs. 8%; hazard ratio (HR),
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FIGURE 3 | (A) Swimming plot visualizing the response details for afatinib in each patient (n = 18). (B) Kaplan-Meier comparing PFS for ERBB2ex20ins as clonal or

subclonal variant (p-values determined by multi-variant regression analysis and HR with 95% CI are shown). (C) The distribution of ERBB2 clonality status between the

DCB group and the NDB group. DCB, durable clinical benefit; NDB, no durable benefit.

5.2; p < 0.001] and trended more than patients with EGFR
mutations [28 vs. 16%; HR, 1.7; p = 0.06; (33)]. These findings
may underline the central nervous system (CNS) surveillance
practices in patients with ERBB2 alterations and the urgent need
for the development of novel HER2-targeted agents with active
efficacy in the CNS.

The co-occurring genomic spectrum of ERBB2ex20ins in our
cohort of Chinese people had an overall strong concordance with
the MSKCC cohort from the United States (R2

= 0.74, p <

0.01). In a retrospective study collated two cohorts of patients
with ERBB2 alteration from the MSKCC and Guangdong
General Hospital, they also found great consistency with each
other in the aspect of the prevalence and baseline clinical
parameters of patients possessing ERBB2 mutation (34). These
findings, on the one hand, can be supporting evidence for U.S.-
China collaborations in clinical trials to accelerate new drug

development for this infrequent mutation; on the one hand,
highlight the robustness of our results.

An important aspect of our study is that we found the
clonality status of ERBB2ex20ins was an independent potential
indicator for response to afatinib. It is well-known that there
exists substantial intratumor heterogeneity and tumor evolves in
a trunk-branch model. The “trunk” mutation (clonal mutation)
was known as taking place in the early development of cancer
and expected to present in every tumor subclone and region,
whereas the mutation defined as “branch” would present in a
certain fraction of tumor cells and regions (17). Thus, alterations
closer to the clonal variant were associated with numerical
greater variant allele frequency (VAF). Driver mutations in
lung cancer can occur both clonally and subclonally (35).
Rachiglio et al. (36) reported that patients harboring EGFR
alteration in a lower VAF presented shorter PFS than not,
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to some extent, this reflecting the clonality status may affect
the efficacy of TKIs. These lead us to speculate that other
small molecule TKIs in other molecularly defined cohorts
may be even more efficacious when targeting the driver
mutation as the clonal variants. In this study, however, we
should make this result conclusive with caution due to the
limited sample size, further exploration in a large cohort
named DARWIN trial (Deciphering Anti-tumor Response With
intratumor Heterogeneity; Clinical Trials No. NCT02183883) is
ongoing (37, 38).

ERBB2 amplification has been identified as a resistance
mechanism induced upon treatment with erlotinib or gefitinib
(39, 40) and was observed in 12% of tumor samples obtained
from patients at resistance to EGFR TKI therapy (41);
however, its role in afatinib resistance is unclear. Chuang
et al. (42) reported a patient carrying ERBB2ex20ins, whose
plasma samples were obtained upon progression on her initial
chemotherapy, erlotinib and afatinib, and results showed that
the ERBB2 copy number (CN) level increased over time. In
our study, we also found two patients treated with afatinib
acquired ERBB2 CN gain after taking afatinib for half of
a month and upon gained resistance; notably, for the first
patient, the biopsy from the initial lesion was taken, respectively,
before and upon progression on afatinib, which makes the
result more reliable. This makes us speculate that the patients
carrying combined ERBB2 mutation and amplification may be
less benefit from afatinib. Further basic research may explore
this hypothesis.

Admittedly, our study exists several limitations. Firstly, the
sequencing panel in the cohort is not uniform, which impeded
us making the deep understanding of co-occurring landscape
of ERBB2ex20ins, and we can only analyze co-mutant feature
of TP53 among the three insertion-site subgroups. Large-panel
NGS should be conducted uniformly in further studies when
enrolling patients for the research. Another limitation is due to
its retrospective nature, a small sample size of the study, selected
bias and various imaging intervals are inevitable in the process of
assessing the clinical outcomes of afatinib; nonetheless, the ORR
and PFS of afatinib treatment was almost correlated well with
prior studies. Furthermore, since we used single tumor sample
taken at a one-time point in the disease course, we may not verify
the true clonality status of each mutation; however, this single-
point samples may be more likely to underestimate the true
extent of heterogeneity within tumors rather than distinguishing
clonal from subclonal variants. Importantly, although multifocal
or repeated tumor biopsies is better for tracking the true
evolution process of tumor development, single sampling may be
easier to achieve in the clinical practice.

In summary, our data revealed co-occurring TP53 represent
an unfavorable prognosis of patients with ERBB2ex20ins,
highlighting the greater impact of the co-mutation patterns than
insertion-site subtypes on the prognosis of this group of patients.
Furthermore, our clinical outcome data for afatinib confirmed its
certain efficacy for patients with ERBB2ex20ins and suggested the

clonality status of ERBB2 mutation may be a potential indicator
of response to afatinib.
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Even with a rare occurrence of only 1.35% of cancer cases in the United States of

America, brain tumors are considered as one of the most lethal malignancies. The most

aggressive and invasive type of brain tumor, glioblastoma, accounts for 60–70% of

all gliomas and presents with life expectancy of only 12–18 months. Despite trimodal

treatment and advances in diagnostic and therapeutic methods, there are no significant

changes in patient outcome. Our understanding of glioblastoma was significantly

improved with the introduction of next generation sequencing technologies. This led

to the identification of different genetic and molecular subtypes, which greatly improve

glioblastoma diagnosis. Still, because of the poor life expectancy, novel diagnostic, and

treatment methods are broadly explored. Epigenetic modifications like methylation and

changes in histone acetylation are such examples. Recently, in addition to genetic

and molecular characteristics, epigenetic profiling of glioblastomas is also used for

sample classification. Further advancement of next generation sequencing technologies

is expected to identify in detail the epigenetic signature of glioblastoma that can open up

new therapeutic opportunities for glioblastoma patients. This should be complemented

with the use of computational power i.e., machine and deep learning algorithms for

objective diagnostics and design of individualized therapies. Using a combination of

phenotypic, genotypic, and epigenetic parameters in glioblastoma diagnostics will bring

us closer to precision medicine where therapies will be tailored to suit the genetic profile

and epigenetic signature of the tumor, which will grant longer life expectancy and better

quality of life. Still, a number of obstacles including potential bias, availability of data for

minorities in heterogeneous populations, data protection, and validation and independent

testing of the learning algorithms have to be overcome on the way.

Keywords: glioblastoma, next generation sequencing, diagnosis, therapy, methylation, epigenetics, machine

learning, deep learning

INTRODUCTION

This review starts with outlining the complex nature of glioblastoma by providing brief
information about its occurrence, mortality rate, molecular features, and heterogeneity. Our level
of understanding of glioblastoma genetics has remarkably increased since the introduction of next
generation sequencing. However, lack of effective patient treatment necessitates implementation
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of modern diagnostic and treatment options using newer
technological developments. One such example is exploration
of epigenetic markers for glioblastoma diagnosis and treatment.
Although epigenetics in glioblastoma is still at its infancy, it
shows potential for development of novel therapies. Moreover,
development of machine learning and deep learning algorithms
for glioblastoma patient care may improve objective disease
diagnosis and can contribute to tailoring the most effective
treatment based on patient molecular profile i.e., precision
medicine. At last, understanding the molecular background of
each patient will raise the quality of clinical care from the
current supportive classical treatment to the level of significantly
improving patient life expectancy and quality of life.

Glioblastoma
In the United States, cancer is the second leading cause of
death in both genders with the four most prevalent types being
lung, breast, prostate, and colorectal, while brain cancers account
for only about 1.35% of the cases (1, 2). However, contrary
to their rare occurrence, in the year 2016 brain tumors were
the major cause of cancer-related death among men younger
than 40 years of age and women younger than 20 years of age
(2). With 26% and 21% of the cases, brain and other nervous
system tumors represent one of the most commonly diagnosed
tumors in children and adolescents, respectively (2). Among
adults, gliomas account for almost 80% of the primary malignant
brain tumors (3). Gliomas can be classified based on location,
differentiation pattern, anaplasia, mitotic activity, and necrosis.
Moreover, according to the World Health Organization (WHO),
histologically they progress from benign (WHO grade I and II)
to malignant (WHO grade III and IV) (3). The most malignant
type is the grade IV glioblastoma which accounts for 60–70%
of all gliomas (4) and 16% of all primary brain tumors (5). The
age-adjusted annual incidence of glioblastoma is 3.19 per 100,000
people in the United States (6). Glioblastoma is most commonly
diagnosed in elderly Caucasian men with mean age of 64 years
(6–8). Genetically there are two main glioblastoma subtypes—
isocitrate dehydrogenase (IDH) wild type (or primary) and
mutant (or secondary) that are histo-pathologically the same,
but with different clinical progression (9, 10). IDH-mutant
glioblastomas tend to develop from previously diagnosed WHO
grade II or III gliomas and appear in patients younger than 50
years of age, while IDH-wild type glioblastomas appear de novo
in patients withmedian age of 60 years (3, 11). In general, patients
with IDH-mutant glioblastomas show better overall survival than
patients with IDH-wild type tumors (11).

Glioblastoma Diagnosis and Therapy
Due to unspecific symptoms like numbness, mood swings,
fatigue, and mild memory loss (12), glioblastoma is usually
diagnosed at an advanced stage, when little can be done for
the patient. Definitive diagnosis can only be done histologically,
but needs to be complemented with the recent advances in
the molecular classification. The latest WHO classification of
brain tumors (13) constitutes a combination of phenotypic and
molecular parameters of brain tumors, and that leads to greater
diagnostic accuracy. Still, in cases where molecular diagnostic

testing is not available or is inconclusive, brain tumors are
labeled as “not otherwise specified (NOS).” Standard treatment
comprises maximal surgical resection, followed by concomitant
chemotherapy with temozolomide and radiation, and then
adjuvant chemotherapy (12). Temozolomide was approved by
the US Food and Drug Administration (FDA) for treatment
of glioblastoma in the year 2005 (14). It is a small lipophilic
molecule that is absorbed completely after oral administration,
minimally binds to plasma proteins and is able to penetrate the
blood brain barrier (15). Still, this aggressive treatment gives
patients only 12–18 months post diagnosis (16, 17), while the 5-
year survival is only 9.8% (17). High mortality rate is a result of
the localization and rapid tumor growth (3). In order to improve
patient care and life expectancy, numerous alternative treatments
such as tumor treating fields (18–20), gamma knife radiosurgery
(21), and immunotherapy (22–25) are currently being explored.

DNA SEQUENCING

Sanger Sequencing
The first commercialized method for DNA sequencing named
Sanger sequencing (26) was extensively used for almost three
decades. Sanger sequencing or chain-termination sequencing is
based on the use of 2′-deoxynucleotides (dNTPs) and 2′,3′-
dideoxynucleotides (ddNTPs) for synthesis and termination of
synthesis of the complementary DNA template, respectively. This
leads to generation of fragments with different sizes which are
separated by high-resolution gel electrophoresis and analyzed to
reveal the DNA sequence. Automated Sanger sequencing used
fluorescently labeled primers or terminating ddNTPs. Excitation
of the fluorophores produced fluorescent emission in different
colors that that were used for revealing the DNA sequence.
One of the greatest accomplishments of automated Sanger
sequencing was sequencing the complete human genome (27)
that is considered the largest project of today’s mankind (28).
Still, its limitations in terms of cost, time, low throughput,
efficiency and sensitivity, drove the development of newer
sequencing technologies collectively named “next generation
sequencing” (NGS).

“Next Generation Sequencing” Boom
NGS methods are based on the same principle as Sanger
sequencing: they both use polymerases for synthesis, modified
nucleotides, and fluorescent detection (29). However, for some
NGS platforms like Illumina, Life Technologies SOLiD, Ion
Torrent Personal Genome Machine (PGM), and Roche 454
systems, the DNA template has to be clonally amplified prior
to sequencing, while for the more sensitive Heliscope and
Pacific Biosciences (PacBio) single molecule real-time (SMRT)
systems pre-amplification is not needed (30). Different NGS
platforms use different chemistry for library preparation and
sequencing (31). For example, Illumina sequencers are based on
the “sequencing by synthesis” approach with fluorescently labeled
reversible nucleotide terminator chemistry (32). On the other
hand, Ion torrent technology generates sequence templates on
a bead or sphere via emulsion PCR with sequencing-by-ligation
approach and proton release detection. At last, PacBio sequencers
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are based on SMRT sequencing with fluorescent detection (30).
One of the major advantages of NGS is increased throughput at
decreased expenditure i.e., its ability to generate large amount
of data at reasonable costs. As an example, the standard Sanger
sequencing yielded ∼6Mb DNA sequence per day at a cost of
$500/1Mb while NGS sequencers like Illumina GA (San Diego,
CA, USA), yield ∼5,000Mb DNA sequence per day at a cost of
$0.50/1Mb (33). Still, potential problems that arise are setting
the necessary infrastructure for NGS including machinery, costs
for reagents, space for sample processing, and data storage (34).
Moreover, trained personnel with adequate understanding of the
software for data analysis and interpretation is a necessity. A
more complex problem that should not be neglected is who owns
the genetic information obtained from such analysis, and to what
extent the raw data can be used for other pathologies besides
the one originally intended? These limitations of NGS are issues
that still need to be addressed together with institutional ethics
boards, researchers and participants as the technology develops.

How did NGS become so popular? After the introduction
of commercial next generation sequencers in the year 2005
(29), a new age in nucleic acid research was started. NGS is
suitable for a wide range of applications in particular for analysis
of genetic variations and mutations, mRNA, non-coding RNA,
methylation studies as well as chromatin immunoprecipitation
(ChIP)-sequencing (35). By generating genetic information from
different individuals, NGSmade it possible to perform large scale,
comparative, and evolutionary studies (36), and also helped in the
development of pharmaceuticals (37). Moreover, NGS started the
era of genomic medicine—incorporating patient’s tumor genetic
information for diagnosis, treatment, and prevention of diseases.
NGS can help in overcoming treatment challenges by identifying
druggable genetic targets. At last, with NGS the human genome
can be resequenced in order to get deeper understanding of
how genetic changes affect health and disease (38). NGS offers
enormous possibilities for increasing our understanding of
human genetics of health and disease, which will change the way
we diagnose disease and treat individuals.

Third Generation Sequencing
The best method for identification of genetic variations
crucial for disease development is DNA sequencing. The right
sequencing method is desired to be high-throughput, low-cost
and able to sequence long reads with high accuracy (39). Despite
all the advantages that next generation sequencing offers, the
short length of the obtained reads is its weak spot. This led to
the emergence of a third generation of sequencing that enables
single molecule long reads (39) such as SMRT sequencing by
PacBio (40) and nanopore sequencing originally introduced in
the year 1996 (41). The authors showed that with an electrical
field, single-stranded DNA (ssDNA), or RNA molecules can
be driven through a 1–10 nm ion channel, i.e., nanopore, in a
lipid bilayer or membrane. When passing through the nanopore,
different bases of the DNA strand will cause specific fluctuations
in the electrical current; these signals can be converted to DNA
sequence information (39). The advantage of this method is
the short time for sample preparation, electrical, or fluorescent
readout and reads in length of several kilobases of single DNA

molecules in real time (29). However, there are two possible issues
that have to be resolved: (1) Length of the recognition region
of the nanopore should not be larger than 0.5 nm—size that
is equivalent to the base-spacing in a ssDNA, otherwise signal
interference from adjacent bases will be observed (39); and (2)
The current speed of DNA translocation, 300 bases/ms, is too fast
for individual bases to be identified—ideally it should be adjusted
to 1 base/ms (39). A solution has been proposed by IBM (New
York, NY, USA) by creating a nanopore matrix i.e., a transistor
with alternating fields of metal and dielectric materials which can
control the speed of DNA translocation (42, 43).

New technological developments in the sequencing fields offer
different techniques for establishing patients’ tumors’ molecular
profiles which are expected to accelerate the development of
personalized medicine. For example, targeted sequencing will
allow detection of specific genetic changes of a predefined set of
genes; whole exome sequencing will provide information about
the coding regions of genes of interest; while RNA sequencing
will give information about the post-transcriptional changes
(44). At last, whole genome sequencing will provide a complete
in depth genetic picture for each patient, but at the cost of
great computational power, time, and resources. Because of the
high molecular diversity of glioblastoma, these technological
advancements are expected to deepen our knowledge of its
mechanisms of development and progression. At last, by
understanding how the disease works at differentmolecular levels
(transcriptomic, genetic, epigenetic, and protein), new more
powerful drugs can be designed that will be of a great benefit for
the patients.

PAVING THE ROAD TO PRECISION
MEDICINE

Cancer is a complex disease which arises as a result of
combination of hereditary i.e., genetic and environmental factors
such as physical and chemical agents, diet, lifestyle, tobacco,
and alcohol use (35). These interactions leave footprints in
the genome either as mutations or as epigenetic modifications.
Genetic changes range from single base substitutions to major
chromosomal losses, while the epigenetic modifications influence
gene expression as well as DNA replication and repair (45, 46).

Glioblastoma is a disease that is characterized with
heterogeneity at both intra- and inter-tumoral level. As a
response to its complexity, the scientific society moves away
from identification of a single gene as a cause of a disease, and
toward identification of combination of molecular changes that
eventually lead to tumor development (35). Such changes can
be commonly observed in different individuals with the same
disease. Personalized medicine implies development of drugs
for the needs of a single patient, while precision medicine refers
to the classification (or diagnosing) of individuals into genomic
subclasses which can be treated in more targeted i.e., precise
ways (47). The advantage of using NGS for diagnostics is the
simultaneous detection of a number of different markers, which
otherwise requires separate consecutive tests and prolongs the
diagnostic process.
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Genetics of Glioblastoma
During the course of The Cancer Genome Atlas (TCGA)
project glioblastomas were genetically characterized. The most
important findings included changes in three core pathways
receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/PI3K, p53,
and retinoblastoma (RB) with alterations in 88, 78, and 87%
of the analyzed cases, respectively (48). The most frequent
gene alterations were found in epidermal growth factor
receptor (EGFR—mutation in 45% of the cases), phosphatase
and tensin homolog (PTEN—inactivated in 36% of the
cases), cyclin-dependent kinase inhibitor 2A (CDKN2A—
inactivated in 52% of the cases), cyclin-dependent kinase
inhibitor 2B (CDKN2B—inactivated in 52% of the cases),
tumor protein p53 (TP53—mutated in 35% of the cases)
and RB (homozygote deletion in 11% of the cases) (11, 48).
IDH mutations are rare in primary glioblastoma patients
with EGFR and PTEN alterations, but are commonly found
in low grade gliomas and together with TP53 mutations in
high grade gliomas that evolved from low grade gliomas
(49). Later, Verhaak et al. established the molecular profile
of glioblastoma (50). In their study, using molecular
profiling they defined four glioblastoma subtypes: classical,
proneural, neural, and mesenchymal with different molecular
properties. This illustrates high glioblastoma heterogeneity at
the molecular level that is present both within (intra) and among
(inter) tumors.

Examining intratumor heterogeneity can be precisely
performed with method that allows for analysis at individual cell
resolution level, such as single-cell RNA sequencing (scRNA-seq)
(51). scRNA-seq can be used not only to analyze tumor cells,
but also non-tumor cells that shape the microenvironment and
aid in tumor progression (52, 53). Numerous research groups
are already using this technology to “shred glioblastomas to
single-cells” and contribute to their molecular understanding
(51, 54–58). One such study identified presence of different
cells within the tumor compared to cells from the surrounding
based on macrophage and microglia gene expression profiles
(52). In another study (59) the authors provided evidence that
glioblastoma stem cells shape the transcriptional and cellular
landscapes of the tumor. In a different study (51), the authors
proposed potential role of the expression levels of rare genes
in glioblastoma tumorigenesis. Using the knowledge about
molecular heterogeneity of glioblastoma, institutes already
implemented next generation sequencing panels containing a
specific set of glioblastoma-specific genes for patient diagnosis
(60). It is reasoned that the intratumoral heterogeneity reflects
the existence of different cellular subclones within the same
tumor—this is why deciding the therapeutic strategy from a
single biopsy specimen may not be enough for successful therapy
(61). Moreover, the molecular diversity of glioblastoma is further
increased during treatment—namely, tumors of patients treated
with temozolomide present with a hypermutation phenotype
(62, 63) which is associated with promotion of tumor growth and
metastasis (64). At last, transcriptome analyses are also used for
defining glioblastoma signatures that will help in precise disease
diagnosis, as well as to anticipate therapy response and patient
outcome (53).

Epigenetics of Glioblastoma
Epigenetic modifications are heritable changes that affect gene
expression, but do not change the DNA sequence itself (65,
66). Such changes are DNA methylation, histone modifications,
and chromatin remodeling (67). Histones are positively charged
proteins H1, H2A, H2B, H3, and H4 (68). Chromatin refers to
the complex of negatively charged DNA and positively charged
histone proteins, or the fundamental subunit “nucleosome” in
the nucleus. Every nucleosome consists of about 146–147 bp
DNA associated with octameric core of histone proteins—two
H3-H4 histone dimers surrounded by two H2A-H2B dimers
(69). Histone acetylation i.e., addition of acetyl groups to lysines
of H3 or H4, weakens the interactions between histones and
DNAwhich opens the accessibility to the transcription apparatus,
while histone deacetylation removes the acetyl groups which
results in histone condensation and gene inactivation (70). These
dynamic processes are maintained by histone acetyltransferases
(HAT) and deacetylases (HDAC). Histone modifications are
different in pediatric and adult gliomas. In pediatric gliomas,
the most common mutations are K27M and G34R/V on histone
variant H3.3 (71). Mutations in H3F3A show specificity for
pediatric high grade gliomas, and are not found in pediatric
low grade gliomas, embryonic tumors, or ependymomas nor
in adult glioblastoma (72). In adult gliomas, IDH1 mutations
indirectly affect H3K27 or H3K36 methylation (73). Lysine (K)
methylation at positions K4, K36, and K39 on H3 marks active
chromatin regions, while at positions K9 and K27 at H3 it marks
inactive chromatin regions (74, 75); still, lysine methylation does
not change the net charge of the histone tail (76). Another
epigenetic modification is chromatin remodeling that causes
conformation changes in chromatin which regulate the DNA-
dependent processes, replication, and repair systems as well
as centromere and telomere maintenance (67, 77). These 3D
conformational chromatin changes can affect gene expression by
regulating access to RNA polymerases and transcription factors
(77). Examples of the involvement of chromatin remodeling
in glioblastoma pathogenesis are switch/sucrose non-fermenting
(SWI/SNF) core complex (78) and Brahma-related gene 1
(BRG1), one of the catalytic subunits of the SWI/SNF chromatin
remodeling complex (79) that regulate stemness and tumorigenic
potential of glioma initiating cells.

DNA Methylation
From the four DNA bases, only cysteine and adenine can
be methylated. Yet, DNA methylation usually refers to the
covalent transfer of methyl groups to the C-5 position of the
cytosine ring to create 5-methylcytosine as shown in Figure 1.
In mammals, DNA methylation occurs on any cytosine of the
genome; however, in the majority of the cases it occurs in a 5′-
CpG-3′ dinucleotide context of somatic cells, and up to 25% of
methylation occurs in non-CpG context of embryonic cells (82).
Typically, CpG islands belong to or are near promoter regions
of genes where transcription starts (74). Adenine methylation is
observed in bacterial, plant, and lately also in mammalian DNA,
but is not that much explored and its role is largely unknown (83–
85). Methylation is needed for silencing transposable elements
and genes on the inactive X-chromosome, as well as maintaining
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FIGURE 1 | Schematic representation of DNA methylation. Cytosine methylation is mediated by a family of DNA methyltransferase enzymes DNMT1, DNMT3A, and

DNMT3B (65, 80, 81).

genome stability (86). Besides, DNA methylation plays an
important role in regulation of gene expression that has an
impact on the clinical outcome of glioblastoma patients (65, 87,
88).

DNA Methylation in Glioblastoma
Cancers in general are characterized by global hypomethylation
which is associated with gene expression, activation, and
chromosomal rearrangements of oncogenes which leads to
genomic instability, oncogene activation, and tumor progression,
as well as locus-specific hypermethylation which results in
heritable transcriptional silencing of tumor suppressor genes
(82, 89). Global hypomethylation occurs in 80% of glioblastomas
(90). DNA methylation that occurs in CpG islands in gene
promoter regions inversely correlates with gene transcription.
In glioblastomas, besides at genetic, intratumor heterogeneity
is present also at DNA methylation level. Wenger et al.
analyzed multiple spatially separated tumor specimens from 12
glioblastoma patients (38 samples total) and observed existence
of different methylation subclasses intertumorally—three
samples presented with combined existence of mesenchymal
and receptor tyrosine kinase (RTK) II subclasses, while two
contained both RTKI and RTKII at once (91). Using clustering
of IDH-mutant gliomas, Ceccarelli et al. observed existence
of three major glioma groups: Codel, IDH-mutant 1p/19q
codeleted low grade gliomas; glioma CpG island methylator
phenotype (G-CIMP)-low, IDH-mutant non-1p/19q codeleted
low and high grade gliomas with low genome-wide DNA
methylation; and G-CIMP-high, IDH-mutant non-1p/19q
codeleted low and high grade gliomas with higher level
of genome-wide DNA methylation (92). Among these, the
G-CIMP low group was found to have worst prognosis,
while G-CIMP and Codel presented with similar favorable
prognoses. The authors also analyzed IDH-wild type gliomas
and observed existence of three DNA methylation groups:
classic-like, mesenchymal-like, and IDH-wildtype low and

high grade gliomas. An interesting observation was that only
patients with low grade gliomas from the IDH-wildtype group
experienced significantly longer survival. In a different study,
Pangeni et al. performed methylation array profiling on a
panel of 23 patient-derived glioblastoma stem cell lines and
data for TCGA patients with IDH-wildtype glioblastomas (89).
Different glioblastoma subtypes were included in the analysis.
The authors observed similar bi-modal distribution of CpG
methylation in glioblastoma stem cells and glioblastoma tumors.
They also found more mesenchymal-hypermethylated than
hypomethylated genes in both glioblastoma stem cells and
glioblastoma tumors. They observed that high expression levels
of proneural-methylated genes CASP8 and FADD-like apoptosis
regulator (CFLAR) and Sp100 nuclear antigen (SP100), and
low expression levels of the mesenchymal-methylated genes
transmembrane and coiled-coil domain family 1 (TMCC1),
Rho guanine nucleotide exchange factor 7 (ARHGEF7), Notch
homolog 1, translocation-associated (NOTCH1), midnolin
(MIDN), potassium voltage-gated channel subfamily Q member
2 (KCNQ2), ataxin 10 (ATXN10), ubiquitin specific peptidase 54
(USP54), and TUB bipartite transcription factor (TUB) correlate
to poorer patient prognosis (89).

In glioblastoma, DNA methylation is closely correlated to
response to temozolomide treatment. So far, methylation of
the O6-methylguanine-DNA methyltransferase (MGMT) is the
only predictive biomarker for patient response to first-line
temozolomide chemotherapy (93, 94). MGMT is a DNA repair
protein that reverses the damage done by alkylating agents such
as temozolomide. Temozolomide adds methyl groups at N7 and
O6 sites on guanines and O3 sites of adenines in genomic DNA
and this is why it is cytotoxic to cells (14). MGMT-promoter
methylation causes gene silencing, therefore less protein is
expressed which leads to sensitivity to chemotherapy with
alkylating agents (95). In a study by Smrdel et al. the authors
compared overall survival and time to progression in patients
with and without methylated MGMT (96). Their results show
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longer overall survival (43 vs. 16months) and time to progression
(36 vs. 11 months) in patients with methylatedMGMT compared
to patients without methylated MGMT, respectively. The authors
also observed MGMTmethylation in 36 out of 38 (95%) patients
who present with long survival (more than 30 months after
diagnosis) and in only 12 out of 33 (36%) patients in the
control group (short term survival patients i.e., <30 months
after diagnosis). In general, patients with methylated MGMT
promoter respond better to temozolomide therapy and present
with longer survival (3, 63, 97, 98). These findings are in
concordance with another study where Felsberg et al. took in
consideration 67 adult patients diagnosed with glioblastoma (99).
The authors conclude that MGMT promoter hypermethylation
is associated with longer time to progression after initiation of
chemotherapy (245 vs. 100 days) and longer overall survival (692
vs. 474 days).

On the other hand, one study reports identification of a new
histone deacetylase inhibitor, 7-ureido-N-hydroxyheptanamide
derivative—CKD5, that shows strong anticancer effect in
glioblastoma in vitro and in vivo (100). The advantages of this
inhibitor are its water solubility (>1,000 mg/mL), negative result
on Ames test which indicated that CKD5 is not genotoxic and
does not introduce DNA mutations, and it showed no signs
of inducing cardiac toxicity in pre-clinical trials. However, for
glioblastoma treatment delivery methods have to be developed
as CKD5 cannot penetrate the blood brain barrier. The use of
H3K4 and H3K9 me1/2 demethylase KDM1 and H3K4 me2/3
demethylase KDM5A as potential therapeutic targets was also
tested (76). The authors of the study show that inhibiting KDM1
and KDM5A enzyme activity presents with strong antitumor
affect in wild-type and temozolomide-resistant glioblastoma
cells. Romani et al. used a multi-KDM inhibitor, JIB 04, that has
strong anti-clonogenic activity in wild-type and temozolomide-
resistant glioblastoma cells after only 4 h incubations at low
JIB 04 concentrations (0.5 and 1µM). The authors also tested
different drug combinations and showed synergistic effect of
JIB 04 and GSK J4 (selective inhibitor of KDM6A/B) on
cell proliferation and reduction of the clonogenic potential of
temozolomide-resistant glioblastoma cells. These studies show
that with targeting epigenetic changes non-traditional treatment
methods for glioblastoma patients whose tumors are resistant
to the temozolomide chemotherapy can be developed. Knowing
the aggressiveness of the tumor and its poor response to current
available treatment options, these findings give new hope for
glioblastoma patients.

Clinical Trials
Since the discovery of the altered epigenetic profiles of
cancers, epigenetics is getting more and more attention in
the research community. Histone deacetylases, the enzymes
that remove the acetyl group from histones which is initially
associated with gene repression, are often overexpressed in
cancer (100). Due to their reversible nature and role in
gene expression, epigenetic changes, especially changes in
histone acetylation, are also considered as possible therapeutic
targets (86) which can be seen from the growing number
of clinical trials based on the use of different enzyme

inhibitors. Data was obtained from the database of publicly and
privately funded clinical studies worldwide, https://clinicaltrials.
gov, using the following keywords: “glioblastoma,” “Vorinostat,”
“Romidepsin,” “Belinostat,” “Panobinostat,” “LHB589,” “Valproic
acid,” “Olaparib,” “Veliparib,” “ABT-888,” “Iniparib,” “BSI-201,”
and “CBL0137.” The search conducted on the 8th of August
2019 gave the results presented in Table 1. Still, an obstacle
in these clinical trials are our current lack of knowledge
about the mechanism of HDAC inhibitors and how they affect
cellular signaling pathways; moreover, methods for improved
penetration of the HDAC inhibitors into the brain and across the
blood brain barrier are still to be found (77).

Novel Next Generation Sequencing-Based
Diagnostic Approaches
Although the work of Verhaak et al. changed the way we diagnose
glioblastoma and increased our understanding of the disease
(50), there are still a number of patients whose tumors cannot
be classified according to the currently defined subtypes (13).
Anyway, understanding the molecular background of disease
requires availability of sets of reference samples from healthy
donors (126) for comparison.

Molecular Re-classification of Glioblastomas
Using next generation sequencing data available from TCGA,
Bolouri et al. report clustering of glioblastomas based on their
methylation profiles (127). The authors of the study used
genome wide and methylation data from a merged cohort of
glioblastomas and lower grade gliomas and obtained three big
glioma clusters: (1) oligodendrogliomas, (2) astrocytomas and
oligoastrocytomas, and (3) mostly glioblastomas with a few
astrocytomas and oligoastrocytomas (127).

More recently, Capper et al. aided in the classification of
glioblastomas that do not belong to the known entities i.e.,
WHO subclasses (128). The authors established a system for
classification of brain tumors based on their epigenetic profiles.
They generated genome-wide DNA methylation profiles of 76
histopathological entities and seven entity variants that occur
in the central nervous system. Unsupervised clustering within
each entity and across histologically similar tumor entities led
to obtaining 82 tumor classes with different DNA methylation
profiles. Of these, 29 classes were equivalent to single WHO
entities, 29 classes were subclasses of WHO entities, in eight
classes WHO entities could not be recapitulated, in 11 classes
were not identical to WHO entities, while the remaining
five classes presented with methylation profiles that are not
described by the WHO. To test clinical implementation of this
system, Capper et al. analyzed 1,104 samples or 64 different
histopathological entities of adult and pediatric brain tumors.
The majority of the samples (88%) matched an established DNA
methylation profile. From these, in 76% of the cases pathological
and methylation profiling were concordant. In the remaining
12% of the cases, methylation and pathological diagnoses were
not concordant; samples were molecularly re-evaluated and
diagnosis was changed as it was suggested by the methylation
subclassifier; diagnoses were changed into both lower (30%)
and higher (41%) WHO grades. The study demonstrates that
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TABLE 1 | List of selected glioblastoma clinical trials using drugs targeted against enzymes involved in epigenetic modifications.

Drug Role Clinical trial number Clinical trial phase Selected references

Vorinostat HDAC inhibitor NCT00762255

NCT01266031

NCT01110876

NCT03426891

NCT01342757

NCT00555399

NCT00731731

NCT00641706

NCT00238303

NCT00939991

NCT01738646

NCT01189266

NCT00268385

NCT01378481

I (completed)

I (completed)

I (terminated)

I (recruiting)

N/A

I/II

I/II

II (completed)

II (completed)

I/II

II (completed)

I/II

I

I (terminated)

(101–107)

Romidepsin HDAC inhibitor NCT00085540 I/II (completed) (108)

Belinostat HDAC inhibitor NCT02137759 II (109)

Panobinostat (LBH589) HDAC inhibitor NCT01115036

NCT00848523

II (withdrawn)

II (terminated)

(110)

Valproic acid HDAC inhibitor NCT02648633

NCT02758366

NCT01817751

NCT01861990

NCT03243461

NCT00302159

I (terminated)

II

II

I (withdrawn)

III

II (completed)

(111–117)

Olaparib PARP inhibitor NCT02974621

NCT01390571

NCT03212274

II

I (completed)

II (recruiting)

(118, 119)

Veliparib (ABT-888) PARP inhibitor NCT02152982

NCT00770471

NCT01026493

NCT03581292

NCT01514201

II/III

I (completed)

I/II (completed)

II (recruiting)

I/II (completed)

(120, 121)

Iniparib (BSI-201) PARP inhibitor NCT00687765 I (completed) (122)

CBL0137 Histone chaperone FACT inhibitor NCT01905228 I (recruiting) (123–125)

HDAC, histone deacetylase; PARP, poly(ADP-ribose) polymerase; FACT, facilitates chromatin transcription; N/A, not applicable.

variability within and among tumors can be detected with deeper
molecular analysis which can lead to more precise diagnosis and
better treatment.

Cancer methylome is a combination of DNA methylation
changes and characteristics of the cells of origin; in heterogeneous
metastatic tumors this can aid in defining the primary cancer
site (128). Although adding molecular characteristics into the
histological diagnosis of glioblastoma is beneficial for precise
diagnosis, single-gene tests based on DNA methylation analysis
likeMGMTmethylation status, fluorescence in situ hybridization
[1p/19q codeletion, EGFR, proto-oncogene C-Myc (MYC), class
E basic helix-loop-helix protein 37 (MYCN), platelet derived
growth factor receptor alpha (PDGFRA) and 19q13.42), or
immunohistochemistry (catenin beta-1 (CTNNB1) and Lin-28
homolog A (LIN28A)], have proven difficult to be standardized
(128). The studies from Bolouri et al. and Capper et al. only
illustrate the importance of implementation of methylation
profiling in glioblastoma diagnosis. Due to tumor heterogeneity it
is important for all variables to be taken in consideration for fully
informed decision about patient’s therapeutic course to be made.

Nanopore Sequencing for Same-Day Patient

Diagnosis
Further development of next generation sequencing techniques
may lead to same-day patient diagnosis with nanopore-based
systems. Similar to a small 100mV electrical current passing
through a nanopore placed in a membrane separating two
chambers with aqueous electrolytes that can be measured
with standard electrophysiological techniques, nucleobases of
electrophoretically driven ssDNA or RNA molecules would
modulate the current when passing through a suitable nanopore
(129). The ideal nanopore sequencer is characterized by
inexpensive sample preparation complemented with disposable
chip with integrated microfluidics and probes, and a portable
benchtop instrument for processing of long reads (>10,000–
50,000 nt). Using a nanopore sequencer, Jain et al. reported
sequencing and assembly of a reference human genome from
ultra-long reads up to 882 kb in length with 5x coverage
(130). The advantage of this benchtop method over next
generation sequencing is its simplicity, speed, size, and reduced
cost—nanopore can provide sequencing results faster and in
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resource-restricted areas (44). One big concern however, is the
amount of starting material; namely, ∼700 µg of human diploid
genetic material will be needed to provide adequate throughput
for the nanopore array, which, in theory, can be obtained with
routine extraction procedures (129). Still, in the time when
single-cell sequencing research is escalating (52, 55, 131) this can
be seen as a pitfall.

Meanwhile, nanopore sequencing is already being tested for
implementation in cancer diagnostics. In their retrospective
proof-of-principle study, Euskirchen et al. examined the utility of
nanopore sequencing (Oxford Nanopore Technologies, Oxford,
UK) for multimodal molecular diagnosis using previously
characterized brain tumors (132). Using deep amplicon
sequencing, the authors were able to identify single nucleotide
variants in IDH1, IDH2, TP53, H3F3A, and TERT promoter, and
diagnostically relevant alterations like 1p/19q codeletion within
minutes of sequencing. Moreover, they obtained 0.1X genome
coverage within 6 h where copy number and epigenetic profiles
matched the ones from microarray data. Because it can detect
base modifications such as 5-methylation of cytosines, nanopore
sequencing is also suitable for methylation analysis without
the need of bisulfite conversion of the DNA. This will increase
consistency during nucleic acid processing as well as significantly
reduce the time needed for sample preparation. In the study,
the authors observed good correlation between the methylation
events in CpG sites obtained with nanopore sequencing and the
corresponding microarray data.

The study by Euskirchen et al. shows the potential that
nanopore sequencing offers for timely cancer diagnosis. In
addition, due to small size and inexpensive technology,
this method of histomolecular disease classification can be
used worldwide even in regions with restricted clinical
resources. However, further optimization like for use with highly
fragmented nucleic acids originating from improperly stored or
formalin-fixed paraffin-embedded tissue samples is still needed.
Furthermore, as the method is still in developmental stages
frequent improvements of the chemistry and software challenge
its clinical implementation at this time.

Artificial Intelligence in Biomedical
Sciences
In the light of new technological developments, the use of
artificial intelligence (AI) in biomedical research will bring
glioblastoma diagnostics on an advanced level. Machine learning
is an application of artificial intelligence that allows for
computers to work on tasks, learn from the data and improve
their performance based on the gained experience (133, 134).
It is a combination of mathematics and computer science that
is based on building statistical models from large datasets i.e.,
billions or trillions data points (133). Classical statistical models
describe the relationship between covariates (e.g., clinical factors)
and a single dependent variable (e.g., outcome) obtained from
a sample population and projected to a larger population. For
instance, statistical models are suitable for deciding on treatment
strategies based on survival, while machine learning models seek
to predict the outcome using clinical factors as input features

(135).Machine learning is defined as “the study of algorithmically
built mathematical models that have been fitted for the training
dataset to make predictions for the similarly obtained and
structured validation dataset” (136). Extensive use of machine
learning in biomedical fields, either for diagnostic, or therapeutic
purposes, is conditioned by the availability of large data sets and
appropriate IT infrastructure. Large datasets containing genetic
information are generated by sequencing the human genome—
a method that became routine with the wide implementation of
next generation sequencing in research.

Machine Learning for Disease Diagnosis and Therapy
In cancer diagnostics, microscopic examination of patient
samples is crucial for determining cancer staging. However,
microscopy is based on the image interpretation of an expert
individual which can also be subjective; lately quantitative
examination of microscopy samples is required; and lastly, the
availability of such expert individuals can be limited (137). AI can
help in automated image analysis for pathological purposes with
improved diagnostic accuracy, quantification, and efficiency. One
such example is the augmented reality microscope—optical light
microscope that enables real-time integration of AI (137).

Generation of large amount of data that contains information
about human genetics allows for the development of machine
learning techniques whose algorithms are either supervised or
unsupervised clustering type. In supervised learning algorithms
learn from labeled data, while in unsupervised learning the
algorithms try to understand relationships from unlabelled
data (134).

Machine learning for therapeutic purposes will be additionally
enriched by the implementation of in silico drug discovery and
design systems. One such example is the DrugBank database
that contains quantitative, analytic and molecular information
about drugs, and drug targets (138). DrugBank is organized into
four major groups: (1). FDA approved small molecule drugs
(>700 entries), (2). FDA approved bio-tech (protein/peptide)
drugs (>100 entries), (3). Nutraceuticals or micronutrients such
as vitamins and metabolites (>60 entries), and (4). Experimental
drugs such as unapproved, de-listed and illicit drugs, enzyme
inhibitors, and potential toxins (3,200 entries). Machine learning
for drug discovery will offer a cost-effective and timely alternative
to current experimental procedures (139). Another perspective
is applying machine learning technology for predicting clinical
efficiency of drugs and individualized treatment methods (140).
This method which is named “drug scoring” or “personalized
(individual) medicine” will take into account features that
describe activation of cell signaling and metabolic pathways
which will distinguish patients who will respond to the treatment
from those who will not benefit from it. There are two principles
for drug scoring: a priori—evaluating the ability of a drug
to restore normal status or stop a physiological process that
is considered pathogenic; and a posteriori—resulting from a
machine learning process on a training dataset containing
information from patients treated with the drug in question
(140). The authors have developed a method for translating drug
efficiency results obtained using cell lines to predict clinical effect
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on humans. The use of this method can potentially reduce the
costs of drug screening.

Even though machine learning shows potential to improve
disease diagnosis and therapy, it still possesses a few limitations
such as separating causation from correlation, removing biased
data, and regulating predictive analytics (141). For machine
learning to be safely used in disease diagnosis and/or treatment,
the data which is taken into consideration has to be thoroughly
examined to ensure it is appropriate for the specific problem. For
correct identification and analysis, data must be equally collected
and annotated, and it must be representative even for minorities
in heterogeneous populations. In addition, self-implemented
risk factors like smoking should be taken in consideration
but should not be a limiting factor when deciding on future
healthcare measures. An ethical issue in deciding treatment
with machine learning can be existence of a permanent health
condition, or chronic infection, like an individual being HIV
positive. Another possible problem is bias toward populations
that provide the most data, and in some societies, toward those
that are able to afford medical procedures. As machine learning
algorithms are trained on retrospective data it is possible for
human subjectivity to influence the results; however, this can be
improved by introducing new raw data (135). Before applying

machine learning into clinical care, researchers must also
consider protecting the privacy of the patients, ensure protection
of data and patient information, and allow for equal treatment
of all affected parties (141). At last, validation and independent
testing of the machine learning algorithms must be performed
in order to exclude mistakes due to technical differences. With
all the advantages that it offers, machine learning in biomedicine
is still at the beginning of its development and requires a
multidisciplinary team to answer questions about ethical, legal,
moral, and technological issues before it can objectively aid in
better patient care.

Deep Learning
Machine learning works only with structured data which means
reduction of amount of data in the raw format, significant time
input from a medical professional to structure the data and
introduction of human subjectivity (135). On the other hand,
deep learning can use a wide range of different parameters which
can be optimized by training on labeled data for prediction.
While machine learning has already been used to determine gene
expression patterns relevant for glioblastoma patient survival
(50, 142), the use of deep learning for prognostic gene discovery
it at its beginnings (143). The advantage of deep learning is that it

FIGURE 2 | Illustration of the changes in diagnosis and treatment of glioblastomas in different medical approaches (classical, modern, and personalized). Classical

medicine relied on histological analysis of tissues, which is merely subjective, while therapy is universal for the patients which does not show much clinical success.

On the other hand, modern medicine takes in consideration both histologic and genetic components which leads to greater diagnostic accuracy [examples:

“glioblastoma, IDH-mutant” and “oligodendroglioma, IDH-mutant and 1p/19q-codeleted” (13)], while therapy is modified to suit tumor genetic profile. The trend is

moving toward personalized medicine, where diagnosis will be thorough and objective aided by automated histological image analysis, next generation sequencing

(NGS) and artificial intelligence (AI) algorithms, and therapy will be adapted not only to the genetic but also transcriptomic and epigenetic patient profile. This will result

in increased overall survival and better quality of life.
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FIGURE 3 | Glioblastoma diagnosis. This figure illustrates what all healthcare

systems have in common and aim for—which is better patient care. Starting

from the classical, to the modern, where we are now, and going toward

personalized medicine the goal is still improving patient quality of life i.e., both

disease diagnosis and patient treatment.

can model a large number of differentially expressed genes. Using
TCGA data as input, Wong et al. used deep learning to model
the relationship between genes and their corresponding proteins
on survival prognosis (143). Their model identified different
genes associated with glioblastoma survival, glioblastoma cancer
cell migration, or glioblastoma stem cells. In a different study,
Young et al. used deep learning to classify glioblastomas into
six subtypes which corresponded with significant differences in
patient survival (144). These findings are in concordance with
those from Brennan et al. who used DNA methylation data to
classify glioblastomas into six subtypes: mesenchymal, proneural,
neural and classical, as identified by Verhaak et al., supplemented
with G-C island methylation phenotype (G-CIMP) and non-G-
CIMP subtypes within the proneural subtype (145).

Although still at its infancy, the use of deep learning may
open up new possibilities for glioblastoma diagnosis. Due to
its ability to analyse large amount of data, deep learning can
aid identifying features with biological significance which are
currently unknown or too complex to be understood. Moreover,
novel applications of deep learning may reveal hidden structures
of cellular pathways and disease mechanisms. Glioblastoma
diagnosis has significantly changed through the years as it can be
seen in Figure 2. It started from histological analysis (classical)
through addition of molecular and genetic characteristics of
the individuals (modern) and is moving toward implementation
of self-learning algorithms (personalized) which will eventually

lead to the next presently unknown level. However, all these
“medicines” have a common goal that is longer life expectancy
and greater quality of life or better patient care (Figure 3). This
transition from the classical through modern to personalized
medicine was greatly aided by the massive use of NGS methods
and is able to further develop also because of them.

CONCLUSIONS

With the use of NGS researchers generate large amount of data
about transcriptomic, genomic, and epigenomic characteristics
of humans. However, so far, only a small fraction has been
proven to have clinical implementation. Understanding the
rest of the “unlocked” data will only be possible with the
development of more powerful analytic objective systems.
The potential that NGS holds for glioblastoma research and
clinical implementation is massive. Intelligent and careful use
of NGS data can change the way we diagnose and treat
glioblastomas. Studying epigenetic modifications in glioblastoma
offers potential for identification of clinical biomarkers either for
patient diagnosis or discovering drug targets. Rapid development
of different methodologies for analysis of big data may lead
to the development of individual diagnosis and patient-tailored
treatment. It is expected for in silico diagnosis to be comparable
and consistent, less variable, objective, and without human
error. However, machine learning and deep learning algorithms
have still a lot to learn before this diagnostic model can
be implemented in everyday clinical practice. At last, these
models need to be trained to understand biological systems
so they can have an “insight” into the disease biology.
This way, machine learning and deep learning models can
adapt their findings in concordance to the nature of the
analyzed disease, and simultaneously learn and change as the
disease evolves.
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Genome instability—the increased tendency of acquiring mutations in the genome and

ability of a cell to tolerate high mutation burden—is one of the drivers of cancer.

Genome instability results from many causes including defects in DNA repair systems.

Previously, it has been shown that germline pathogenic mutations in DNA Mismatch

Repair (MMR) pathway cause cancer-predisposing Lynch Syndrome. We proposed that

Lynch Syndrome-related germline mutations (LS-mutations) are associated with breast

cancer (BC). In this study, we performed Targeted Next-Generation Sequencing of MMR

pathway genes MLH1, MSH2, MSH6, EPCAM, and PMS2 in a cohort of 711 patients

with hereditary BC, 60 patients with sporadic BC, and 492 healthy donors. Sixty-nine

patients (9.7%) with hereditary BC harbored at least one germline mutation in the MMR

pathway genes, of them 32 patients (4.5%) harbored mutations in MMR pathway genes

which we define as pathogenic or likely pathogenic, and of them 26 patients (3.6%) did

not have any pathogenic mutations in DDR pathway genes, compared to two mutations

in MMR pathway genes (0.4%) detected in a group of 492 healthy donors [p = 0.00013,

OR = 8.9 (CI 95% 2.2–78.4)]. Our study demonstrates that LS-mutations are present

in patients with hereditary BC more frequently than in healthy donors, and that there

is an association of hereditary BC and mutations c.1321G>A in MLH1, c.260C>G and

c.2178G>C inMSH2, c.3217C>T inMSH6, c.1268C>G and c.86G>C in PMS2 genes.

This finding provides a rationale for including pathogenic LS-mutations into genetic

counseling tests for patients with hereditary BC.

Keywords: breast cancer, EPCAM, Lynch syndrome, MLH1, MSH2, MSH6, PMS2, Targeted Next-Generation

Sequencing
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INTRODUCTION

Genome instability is one of the key hallmarks of cancer (1). The
stability of genome is maintained in a cell by many mechanisms
including DNA repair. The repair of DNA single-base mismatch
and insertion/deletion loops occurring during DNA replication
is executed by the Mismatch Repair (MMR) pathway ensuring
mutation avoidance and precision of DNA replication (2). The
MMR pathway proteins also take part in other cellular processes,
and the whole spectrum of their diverse roles is yet to be
understood (3).

The cancer-predisposing Lynch syndrome (LS) is an
autosomal dominant disorder caused by germline mutations
in the MMR pathway genes, mainly mutL homolog 1 (MLH1),
mutS homolog 2 (MSH2), mutS homolog 6 (MSH6), epithelial
cell adhesion molecule (EPCAM), and post-meiotic segregation
increased 2 (PMS2) (3, 4). The LS can also result from mutations
located in flanking regions of MMR genes (5, 6). Predominantly,
the LS is caused by the presence of loss-of-function germline
mutations in MLH1 and MSH2 genes (7), mutations in MSH6
and PMS2 are less frequent, and EPCAM is the less frequently
mutated gene in the LS. The individuals with the LS tend to
exhibit nucleotide loss or gain within the DNA microsatellite
loci (microsatellite instability, MSI) (8), and their cells have
a “mutator phenotype” which is causative to many types
of malignancies.

The LS, originally identified as a disorder associated with
colorectal cancer and previously known as hereditary non-
polyposis colorectal cancer, is currently defined as a multi-
tumor syndrome. The LS is found to be related to plethora
of extracolonic malignancies including cancers of urinary tract,
endometrial, small bowel and others (9).

Whether LS-associated malignancies include both ovarian
cancer (OC) and breast cancer (BC) is yet an open topic
of discussion. The link between the LS-associated germline
mutations and hereditary OC has been demonstrated in several
studies, and it is estimated that 10–15% of hereditary OC are
LS-related (10). Recently, germline mutations in MSH2, MSH6,
and PMS2 genes have been found associated with BC (11, 12).
However, neither the revised Amsterdam criteria for LS diagnosis
nor the revised Bethesda criteria for MSI tests include BC (13),
despite the data suggesting the link between BC and LS. In the
recent publication “Lynch syndrome: five unanswered questions”
the authors suggest that whether BC should be included or
excluded from LS-related tumors is a perhaps the most important
question in a field of “LS tumor spectrum” (14).

BC has a strong hereditary component and in many cases is
caused by germline mutations in the predisposition genes such
as DNA damage recognition and repair (DDR) genes BRCA1,
BRCA2, and others, which are currently included into the multi-
gene panels for BC risk assessment (15, 16). Nevertheless, a
sizeable proportion of the patients with familial history of BC
do not carry germline mutations in the currently known genes.
Although some of such cases might be explained in part by
the presence of heritable epigenetic marks (“epimutations”)
leading to the disease (17), it’s possible that germline pathogenic
predisposingmutations in other, yet unknown genes exist, but are

not identified yet (the “missing heritability” phenomena) (18). If
BC is a part of LS, then pathogenic mutations in MMR pathway
genes associated with BC should be included into the clinical
genetic testing panels.

The Next Generation Sequencing (NGS) technologies are
instrumental tools in molecular diagnostic allowing rapid and
simultaneous analysis of broad panels of disease-associated
germline mutations within multiple genes. The results of NGS-
based tests for genetic risk assessment are concordant with
conventional diagnostic methods, as demonstrated for hereditary
BC and/or OC (19). Based on our pilot study indicating the
presence of germline mutations within the MMR genes in
patients with BC and familial history of cancer (20), we proposed
that BC is a part of LS. To test this, we performed TargetedNGS of
MLH1, MSH2, MSH6, EPCAM, and PMS2 genes in a big cohort
comprising of 711 patients with hereditary BC, 60 patients with
sporadic cancer, and 492 healthy donors from Volga and Central
Federal Districts, Russian Federation.

Our study demonstrates that the frequencies of the most
of causative LS germline mutations are higher in patients
with hereditary BC compared to healthy population control,
and finds the association of several germline mutations within
the genes MLH1, MSH2, MSH6, and PMS2 with hereditary
BC. This finding provides insights into the biology of LS
and BC and supports including LS-associated mutations in
genetic tests for the patients with hereditary BC in our
study population.

MATERIALS AND METHODS

Study Population
The study included 711 participants with hereditary BC and
60 participants with sporadic BC receiving a treatment for BC
(chemotherapy and/or surgical treatment) at several medical
centers in Volga Federal District, Russian Federation. The
control comprised 492 healthy donors from Volga and Central
Federal Districts, Russian Federation. The study participants
self-identified with Slavic, Tatar or Bashkir ethnicities, and
we ensured that both case and control group similarly reflect
the ethnic diversity of the population from this geographical
region. The criteria for inclusion into the patient’s cohort,
based on age of cancer manifestation, familial history of cancer,
and clinical-pathological characteristics of the disease were
previously described in our smaller scale pilot study (20).
In particular, patients were included into the hereditary BC
group if they had (1) BC diagnosis and familial history of any
cancer (including kidney cancer, esophageal cancer, stomach
cancer, lung cancer, sarcoma, colon cancer, leukemia, breast
cancer, and ovarian cancer) in the first-, or second-, or third-
degree relative or (2) BC manifestation at early age (before
30 y.o.) or (3) manifestation of triple negative BC at early
age (before 35 y.o.). The estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2
(HER2) and Ki67 status of the patients was established by clinical
pathologists as part of the routine patient care. The clinical
and demographical characteristics for the patients are shown
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in Supplementary Table 1. All study participants provided
informed consent prior enrolling to the study in accordance with
Declaration of Helsinki.

Targeted Next-Generation Sequencing
Genomic DNA was isolated from the whole blood samples
using DNA Blood Mini QIAcube Kit (Qiagen), and 100 ng
of DNA was used to generate Targeted NGS libraries. The
target enrichment, sequencing and analysis were performed
as described previously (20, 21) with slight modifications.
In particular, KAPA HyperPlus (Roche) was used for library
preparation and DNA enzymatic fragmentation, DNA was
fragmented to the size of 150–200 b.p. Concentration of the
DNA in the library was measured by Qubit (ThermoFisher
Scientific) following manufacturer’s instructions, the presence of
the primer dimers was assessed using Agilent High Sensitivity
DNA Kit (Agilent), the optimal length of the fragment including
adapter was 290–330 b.p. Next, libraries were combined
and hybridized with SeqCap EZ Choice (Roche), following
manufacturer’s recommendations. Hybridization was performed
at +47◦C for 16 h. SeqCap Capture beads were used for
enrichment, and amplification was performed using KAPA
HiFi HS MasterMix (Roche). Sequencing was performed using
MiSeq (Illumina). The gene panel included MLH1, MSH2,
MSH6, EPCAM, and PMS2 genes (MMR pathway genes). In
the study participants carrying mutations in the MMR pathway
mutational status of the other genes associated with BC, namely
namely ATM, BRCA1, BRCA2, APC, and TP53 genes (DDR
pathway genes), was also determined by NGS. Patients carrying
pathogenic mutations in DDR pathway genes were excluded
from analysis. In-silico tools SIFT, PolyPhen2, MutationTaster,
CADD, DANN,M-CAP, and REVELwere used for the prediction
of pathogenicity. All sequencing data were submitted to SRA
database and can be accessed at https://www.ncbi.nlm.nih.gov/
sra/PRJNA588789.

Statistical Analysis
The data was analyzed using standard statistical tests as described
previously (21). In particular, a two-tailed Fisher exact test
was performed using the R software v.3.3 (fisher.test function).
Statistical as significance was defined a p < 0.05.

RESULTS AND DISCUSSION

While the role of LS in hereditary OC is established and
widely accepted, it is a long-standing question whether BC
should also be classified under an umbrella of LS (22), as
results of previous studies are inconsistent and contradictory.
This lack of consistency might be explained by the inter-
population and inter-ethnic differences and result from the
unique ethnic-specific genetic traits within the study cohorts
(23). It is apparent now that the epidemiology and distribution
of pathogenic germline mutations in BC are population-specific
(24, 25). Thus, the population- and ethnic background of the
patient should be considered at the stage of the cancer risk genetic
evaluation (23, 26), as genetic risks might be mis-estimated if

based on a data obtained in a study population with different
ancestral (and, thus, genetic) background. Moreover, genetic
studies of the complex hereditary diseases in understudied
populations provide a unique opportunity to identify novel
genetic markers. Currently, a large body of data on genetics
of familial BC exists for some well-studied populations and
ethnic groups, while some populations and ethnicities remain
understudied, resulting in a so-called “social inequity in
cancer.” Hence, further studies focusing on ethnic-specific and
population-specific aspects of hereditary BC are of definite
clinical value.

Previously, we demonstrated that the spectrum and
frequencies of pathogenic nucleotide variants in DDR
pathway genes in Tatar patients with familial OC and/or
BC from Kazan region of the Volga Federal District of the
Russian Federation are different from ones reported for the
patients of Slavic descent from Moscow (21). Here, we applied
Targeted NGS to determine the prevalence and spectrum of
germline mutations in MMR pathway genes in the patients
with hereditary BC from the Volga and Central Federal
Districts of the Russian Federation and in healthy donors of
the similar ethnical backgrounds. We performed Targeted
NGS and, in a cohort comprising 711 participants with
hereditary BC, identified in 17 participants 10 mutations in
MLH1 gene (c.945C>G, c.1637A>G, c.803A>G, c.1321G>A,
c.1937A>G, c.-7C>T, c.2194A>G, c.472A>G, c.2194A>G,
andc.1090A>C), in 9 participants 5 mutations in MSH2
gene (c.260C>G, c.2178G>C, c.2178G>C, c.2197G>A,
c.815C>T), in 19 participants 19 mutations in MSH6
gene (c.4004A>C, c.2291C>A, c.2156C>T, c.2673C>G,
c.893G>A, c.2554_2556del, c.3674C>T, c.3674C>T, c.3986C>T,
c.3674C>T, c.2503C>G, c.3217C>T, c.3254dupC, c.3259C>T,
c.1063G>A, c.3951T>G, c.968C>G, c.1481C>T, c.3151G>A),
in 6 participants 3 mutations in EPCAM gene (c.557A>C,
c.859-3C>G, c.272A>T), and in 20 participants 14 mutations
in PMS2 gene (c.1642G>A, c.1268C>G, c.1268C>G, c.86G>C,
c.944G>A, c.1567T>A, c.2438G>A, c.1399G>A, c.2149G>A,
c.1630G>A,c.1753C>T, c.1595A>G, c.1630G>A, c.1901A>G).
In a group of 60 patients with sporadic BC we found no
germline mutations in MMR pathway genes. In a group of
462 healthy participants, one germline mutation in EPCAM
gene (c.859-3C>G) was found in 2 participants. All mutations
were heterozygous. The mutations included variants of
unknown/uncertain significance (VUS), Likely pathogenic
and Pathogenic mutations, based on The Human Mutations
Database (HGMD) and the ClinVar database.

The presence of the mutations in the DDR pathway genes
was also assessed in the study participants currying mutations
in the MMR pathway. Among the patients with mutations in
MMR pathway, 17 (2.4%) also harbored pathogenic mutations
in the DDR pathway genes (Supplementary Table 2). If such
mutations in DDR were present, the OR for mutation in MMR
pathway genes was calculated twice, including and excluding
cases with mutations in DDR. Only OR calculated for cases
with germline mutations in MMR pathway genes and without
pathogenic germline mutations in DDR genes was used to
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FIGURE 1 | Pathogenic mutations detected in LS genes.

assess the pathogenicity of the mutation. Some of mutations
were detected more than once in the patient cohort, the
most recurrent ones were c.1321G>A in MLH1, c.260C>G
in MSH2, and c.86G>C in PMS2 genes. The spectrum and
frequencies of the mutations in the study cohort are shown in
Supplementary Table 2. Sixty-nine patients (9.7%) harbored at
least one germline mutation in the MMR pathway genes, of
them thirty-two patients harbored mutations in MMR pathway
genes which we define as pathogenic or likely pathogenic, and
of them twenty-six patients (3.6%) did not have any pathogenic
mutations in DDR pathway genes, compared to two mutations
in MMR pathway genes (0.4%) detected in a group of 492
healthy donors [p = 0.00013, OR = 8.9 (CI 95% 2.2–78.4]
(Figure 1, Supplementary Tables 2, 3). The age of occurrence of
the clinical manifestations of disease in hereditary BC patients
with and without LS-mutations was 45.3 ± 9.7 and 47.1 ±

11.3 years, respectively, compared to 58.9 ± 9.3 in a group of
patients with sporadic BC. The percentage of HER2+ patients
in hereditary BC patients with and without LS-mutations was 34
and 30%, respectively.

We detected 10 different mutations in MLH1, 5 in
MSH2, 19 in MSH6, 3 in EPCAM, and 14 in PMS2
genes in a cohort of participants with hereditary BC, while
only one of them was found in the reference healthy
control (Figure 1, Supplementary Table 2). In the samples from
the Exome Aggregation Consortium database (http://gnomad.
broadinstitute.org/) the frequencies of these mutations are
extremely low and similar to the data obtained in our study
population in the control group (Supplementary Table 2). In
other populations, the frequency of MSH6 gene mutations was
determined as 0.2% in a study performed in Germany in a

group of patients with BC and/or OC (27), and in a study
performed in USA in a group of females with stages I to III
of BC (28). The rate of Ashkenazi Jewish founder mutations
c.3984_3987dupGTCA and c.3959_3962delCAAG within MSH6
gene in a study population comprising 1016 participants with
familial history of BC and/or OC was 0.49% (29). Additionally,
the recent case report suggests an association between sporadic
BC and biallelic mutations in MSH6 (30). In a small cohort of
triple-negative BC patients with early onset or familial history
of cancer the frequency of MSH2 gene mutations was 4% (31).
The cohort study of several families in UK suggested germline
mutation carriers in MLH1 gene are at moderate risk of BC
(32). Recently, study by Roberts et al. reported that MSH6
and PMS2 germline pathogenic variants are associated with
increased risk of BC (12). However, this association was not
confirmed in the other study (33). It was suggested that the
ascertainment bias might has affected the interpretation of the
data by Roberts et al., as the study cohort was enriched with
participants with BC diagnosis, and the BC risk in the total
study cohort doubled BC risk in the reference cohort (general
population) (33). Other studies found either no association of
PMS2with BC (34), or demonstrated that carriers of mutations in
PMS2 gene had significant standardized incidence ratios for OC
and BC (35).

The results of our study are in line with the previous
studies demonstrating an association of germline mutations in
MLH1, MSH2, MSH6, and PMS2 genes with hereditary BC.
There was also a tendency for the carriers of LS-mutations to
have earlier manifestation of the disease (45.3 ± 9.7 y.o. with
LS-mutations and 47.1 ± 11.3 y.o. without). However, given
the importance of clinical decisions in BC risk assessment,
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we agree with Evans et al. (34) that the decision of the
genetic counseling specialist should be based “on the overall
evidence available.”

We also suggest changing the classification of several
mutations characterized in this study, based on variant
interpretation standards and guidelines of the American College
of Medical Genetics and Genomics and the Association for
Molecular Pathology. In particular, currently the c.1321G>A
in MLH1 gene is defined in databases as VUS, but we suggest
that it is a Likely pathogenic mutation [OR = 10.9 (3.4–
26.6), p = 0.0001, Supplementary Table 2]. The 260C>G in
MSH2 gene is also VUS, but we suggest it should be classified
as a Pathogenic mutation [OR = 361.4 (51.9–4387.9), p =

1.359e-08, Supplementary Table 2]. The c.2178G>C in MSH2
is classified as VUS, but based on our study we suggest
that it is a Likely pathogenic mutation [OR = 53.4 (5.2–
297.8), p = 0.001, Supplementary Table 2]. The c.3217C>T
in MSH6 gene is classified as VUS, but we suggest it is
a Likely pathogenic mutation [OR = 19.5 (3.8–63.2), p =

0.0007, Supplementary Table 2]. Finally, the c.859-3C>G in
EPCAM gene is classified as VUS, but we propose that it
is a Likely Benign mutation, based on its relatively high
frequency in our healthy control group (much higher than in
the gnomAD).

The large number of the mutations within the MSH6 gene
among the patients in our study cohort is of particular interest.
The currently available MSI tests based on mononucleotide
repeat markers BAT25, BAT26, NR21, NR24, and MONO27
often give false-negative results in case of MSH6 gene (36), thus
other methods of MSI detection, such as IHC, are more sensitive.
Given that MSH6 is the most frequently mutated LS gene in BC
in our study population, we suggest using IHC as a preferential
method of MSI assessment in hereditary BC.

There are several limitations of our study. Firstly, the
populations of the Volga and Central Federal District comprise
several ethnicities, thus differences in mutation frequencies
between control and case group might be attributed to specific
genetic traits of the participants of different descent, rather
than biology of LS and BC. This highlights an importance of
ensuring that ethnic groups are equally represented in both
case and control groups. We tried to address this by recruiting
a large number of participants and ensuring that both case
and control group similarly reflect the ethnic diversity of the
population. Secondly, some patients with germline mutations
in MMR pathway genes may still have a tumor with functional
MMR proteins, as previously described (37). This advocates
for more rigorous testing, especially when choosing tailored
therapy. In future studies, this should be addressed by applying
Targeted NGS for analysis of both tumor biopsy and whole
blood tissue samples, which was beyond the scope of the
current study.

The fundamental step in cancer risk evaluation, prevention
and clinical surveillance of hereditary cancers is a detection of
predisposing germline mutations in individuals with familial
history of cancer. In many cases the therapy decisions are also
guided by the genotype of a patient (the clinical approach known
as personalized therapy) as carriers of different allelic variants

may respond to the treatment differently. For example, MSH2-
deficient cancer cells are selectively sensitive to Methotrexate,
and it’s been proposed that patients with MSH2 deficiency will
respond to the Methotrexate therapy (38). Another compound
selectively targetingMMR-deficient cancer cells is FDA approved
drug Triamterene (39). It has also been shown that patients with
high MSI and mutations in MMR genes have favorable response
to the PD-1 blockade immunotherapy in a broad spectrum
of cancers (40). Finally, several mutations in MMR pathway
genes have been found associated with radiosensitivity in BC
patients (41). Thus, determining mutation status of the MMR
pathway genes can guide personalized therapy. Additionally,
the carriers of LS-related germline mutations identified by the
genetic tests benefit from the chemoprevention therapies (42),
that would not otherwise be subscribed in the absence of a
suggestive clinical evidence and prior to the manifestation of
the disease.

The pathogenic mutations in genes from MMR pathway
result in compromised DNA repair. The defects in DNA
repair are associated with increased neoantigen load and linked
to the elevated expression of immunosuppressive PD-L1 by
the cancer cells (43). Patients with tumors expressing high
level of PD-L1 benefit from the immune checkpoint blockade
therapy, thus identification of such patients has important
clinical implications. The correlation between the level of PD-
L1 and both methylation of BRCA1 gene and its mutation
status has been found in OC (44, 45). We propose that in
hereditary BC the PD-L1 level may correlate with the presence
of pathogenic mutations in the genes from both MMR and DDR
pathways (such as BRCA1/2 and others), and suggest that in
future studies such correlation should be assessed as a potential
clinical biomarker.

In conclusion, our study demonstrates the relatively frequent
presence of the germline LS-mutations in the patients with
hereditary BC, and association of hereditary BC with c.1321G>A
in MLH1, c.260C>G and c.2178G>C in MSH2, c.3217C>T
in MSH6, and c.1268C>G and c.86G>C in PMS2 genes. We
recommend including MMR pathway genes into the multi-gene
panels for risk assessment of hereditary BC, based on the overall
clinical picture.
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Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal
expansion of blast cells that exhibit great genetic heterogeneity. In this study, we
describe the mutational landscape and its clinico-pathological significance in 26 myeloid
neoplasm patients from a South Asian population (Pakistan) by using ultra-deep
targeted next-generation DNA sequencing of 54 genes (∼5000×) and its subsequent
bioinformatics analysis. The data analysis indicated novel non-silent somatic mutational
events previously not reported in AML, including nine non-synonymous and one stop-
gain mutations. Notably, two recurrent somatic non-synonymous mutations, i.e., STAG2
(causing p.L526F) and BCORL1 (p.A400V), were observed in three unrelated cases
each. The BCOR was found to have three independent non-synonymous somatic
mutations in three cases. Further, the SRSF2 with a protein truncating somatic mutation
(p.Q88X) was observed for the first time in AML in this study. The prioritization of
germline mutations with ClinVar, SIFT, Polyphen2, and Combined Annotation Dependent
Depletion (CADD) highlighted 18 predicted deleterious/pathogenic mutations, including
two recurrent deleterious mutations, i.e., a novel heterozygous non-synonymous SNV in
GATA2 (p.T358P) and a frameshift insertion in NPM1 (p.L258fs), found in two unrelated
cases each. The WT1 was observed with three independent potential detrimental
germline mutations in three different cases. Collectively, non-silent somatic and/or
germline mutations were observed in 23 (88.46%) of the cases (0.92 mutation per case).
Furthermore, the pharmGKB database exploration showed a missense SNV rs1042522
in TP53, exhibiting decreased response to anti-cancer drugs, in 19 (73%) of the cases.
This genomic profiling of AML provides deep insight into the disease pathophysiology.
Identification of pharmacogenomics markers will help to adopt personalized approach
for the management of AML patients in Pakistan.

Keywords: genomic screening, AML, next generation sequencing, myeloid sequencing panel, novel no-silent
somatic mutation
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INTRODUCTION

Acute myeloid leukemia (AML) is the most frequent form of
acute leukemia in adults with a poor survival rate of about 5 years
only (Horton and Huntly, 2012; Cancer Genome Atlas Research
Network et al., 2013). It is caused by pathogenic variations
in normal progenitor myeloid hematopoietic cells, leading to
altered differentiation, proliferation, and self-renewal capability
of the cells (Papaemmanuil et al., 2016). In the last decade, there
has been significant increase in understanding of underlying
mutational landscape of AML (Arber et al., 2016; Papaemmanuil
et al., 2016). Consequently, the prognosis, diagnosis, and
treatment have been transformed from histological findings
to cytogenetic and genomic testing (Grimwade et al., 2010).
Analyzing the genetic alterations in AML can be helpful to
reduce ambiguities in further characterization of the molecular
heterogeneity of normal karyotype AML (Renneville et al., 2008).

Recent studies on the molecular pathogenesis have
identified prognostic significance of genetic variation and
their contribution in the pathogenesis of AML (Papaemmanuil
et al., 2016). The improved AML prognosis associated with
mutated NPM1 and biallelic mutations in the CEBPA have
resulted in a change in the disease definition (May Green
et al., 2010; Hollink et al., 2011). These recent advances have
changed the classification and introduced molecular subtypes
of the AML with gene mutations (NPM1 and CEPBA) by
the recommendation of WHO classification of hematopoietic
tumors in 2008 (Campo et al., 2008). In the revised version
of 2016, WHO classification introduced additional germline
predisposition associated with genetic alterations in the genes
CEBPA, DDX41, RUNX1, ANKRD26, ETV6, and GATA2
(Cazzola, 2016; Swerdlow et al., 2016). Further studies on genetic
landscape of AML have expanded the mutational spectrum
where TET2, DNMT3A, NPM1, SRSF2, and ASXL1 genes are
mutated frequently in elderly people (Prassek et al., 2018).

Mutational profiling plays an important role in the diagnosis
of AML and is now routinely available as a part of the diagnostic
workup. It provides diagnostic accuracy, which increases the
precision in risk stratification and helps in adopting therapeutic
options (Papaemmanuil et al., 2013; Kuo and Dong, 2015). The
development of FLT3 and IDH2 inhibitors (Lee et al., 2017;
Stein et al., 2017) is achieved only by extensive genomic studies.
With the advent of next-generation DNA sequencing (NGS),
the cost of genome sequencing has decreased significantly.
Amplicon-based targeted sequencing represents an attractive
mutation detection method in selected gene panels (Harismendy
et al., 2011; Jünemann et al., 2013). This strategy needs less
amount of DNA and provides large data of multiple genes in
a short turnaround time. Therefore, the genomic tractability
of AML makes it a feasible option for targeted NGS testing
clinically. The aim of this study was to assess the frequency
and clinico-pathological significance of frequently mutated genes
by targeting sequencing in AML cases. The targeted sequencing
panel comprises of genes involved in various biological functions
such as epigenetic regulator genes, the cohesin complex protein
encoding genes, genes of activated signaling, tumor repressor
genes, and spliceosome genes. This is the first study on molecular

characterization of AML patients from South Asia using myeloid
sequencing panel, which will be helpful in early diagnosis as well
as risk management.

MATERIALS AND METHODS

Ethical and Consent Statement
For this study, 26 AML patients were recruited and sequenced
for TruSight myeloid sequencing panel between December 2015
and 2018. These patients included 15 males and 11 females
with a median age of 35 years (range: 7–51 years). The clinical
presentation of the cases, chromosomal abnormalities, and
percentage of circulating blast cells are given in Supplementary
Table S1. The study design was approved by the Research Ethics
Committee and Review Board of NIBD, and in accordance with
the tenets of the Declaration of Helsinki. A written informed
consent was obtained from patients and their legal guardians
for participation in this study and publication of the findings.
Peripheral venous blood specimens of all the recruited patients
were collected in EDTA tubes, and stored at 4◦C till DNA
isolation and subsequent analysis.

DNA Extraction
Genomic DNA was isolated from peripheral blood by using
QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The quality of the
extracted DNA was assessed by 2% agarose gel and quantified
by Qubit DNA HS Assay Kit (Invitrogen, Thermo Fisher
Scientific, United States).

Myeloid Sequencing Panel
TruSight myeloid sequencing panel (Illumina, San Diego,
CA, United States) is designed to sequence targeted regions
of 54 genes frequently reported for somatic mutations
(complete coding exons of 15 genes and exonic hotspots of
39 genes). The genes whose complete coding exons were
sequenced include BCOR, BCORL1, CDKN2A, CEBPA, CUX1,
DNMT3A, ETV6/TEL, EZH2, KDM6A, IKZF1, PHF6, RAD21,
RUNX1/AML1, STAG2, and ZRSR2, and exonic hotspots of 39
genes include ABL1, ASXL1, ATRX, BRAF, CALR, CBL, CBLB,
CBLC, CSF3R, FBXW7, FLT3, GATA1, GATA2, GNAS, HRAS,
IDH1, IDH2, JAK2, JAK3, KIT, KRAS, KMT2A/MLL, MPL,
MYD88, NOTCH1, NPM1, NRAS, PDGFRA, PTEN, PTPN11,
SETBP1, SF3B1, SMC1A, SMC3, SRSF2, TET2, TP53, U2AF1,
and WT1. The panel consists of 568 amplicons (length range:
225–275 bp) and covers ∼141 kb of genomic region of ∼250-bp
fragment lengths.

DNA Libraries Preparation
The sequencing libraries were prepared from 50 ng of genomic
DNA per sample using TruSight myeloid sequencing panel
according to the manufacturer’s protocol. Briefly, the libraries
were prepared by annealing uniquely targeted specific oligos
at upstream and downstream to the region of interest (ROI),
followed by the removal of unbound oligos in subsequent
washing steps by using a filter plate. In extension and
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ligation step, DNA polymerase was used to connect the
hybridized upstream and downstream oligos resulting in the
formation of products containing the targeted regions of interest
flanked by sequences required for amplification. Next, the
amplification step added indexes adapters and prepared for
cluster generation. Then, the libraries were cleaned up by using
AMPure XP beads to purify PCR products. After the purification,
libraries were quantified by Qubit DNA HS Assay kit (Life
Technologies, United States).

Libraries were normalized to attain equal library
representation that pooled in batches of four samples as
per the given guideline. A Pooled Amplicon Library (PAL)
was prepared by mixing 5 µl of each of uniquely indexed
library. Then, libraries were diluted by taking 6 µl of PAL
and 594 µl of ice-cold HT1 incorporation buffer and heat-
denatured at 92◦C for 2 min. The diluted amplicon libraries
were placed on the ice water bath for 5 min, and then 600 µl
of the final sample was loaded into the sequencing reagent
cartridge kit V2 (MS-102-2002). Workflow for DNA library
preparation using Illumina TruSight myeloid sequencing panel
is given in Supplementary Figure S1. The DNA sequencing
was performed on a MiSeq instrument with standard V2 flow
cells with paired end sequencing (150 bp × 2), as per the
manufacturer’s instruction.

Sanger Sequencing
Sanger Sequencing was performed to confirm the variants
that were identified as pathogenic through standard protocol
(BigDye R© Terminator v3.1 Cycle Sequencing Kit, Applied
Biosystems R©). The status of known mutations in NPM1 and
FLT3 genes were checked by Sanger sequencing and later
by allele-specific polymerase chain reaction (PCR) and PCR-
restriction fragment length polymorphism (PCR-RFLP) analysis.
Electropherogram of identified mutation in AML cases are given
in Supplementary Figure S2.

Data Analysis
For data analysis, variants calling was performed using the
standard pipeline, as described elsewhere (Lek et al., 2016).
The alignment of short DNA sequences with human reference
genome hg19 (UCSC) was performed by using Burrows–
Wheeler Aligner (BWA-MEM) algorithm (Li and Durbin,
2009). The sequence alignment files (SAM) were converted
into binary format (BAM) files using SAMtools (Li et al.,
2009); and the removal of duplicates (PCR artifacts) was
performed using the PICARD tool1. The base quality score
recalibration (BQSR), realignment around small insertions and
deletions, and variants calling were carried out by using on-
instrument pipeline with Genome Analysis Tool Kit (GATK)
best practices (DePristo et al., 2011). The variants with
QUAL < 50, GQ < 20, and population variant allele frequency
≥1% in either gnomAD_genome or 1000 Genomes Project
were filtered out as recommended previously (Tyner et al.,
2018). Given that no matching normal tissue samples were
sequenced, a bit stringent criterion was applied for somatic

1http://picard.sourceforge.net

FIGURE 1 | Workflow for bioinformatics analysis of the DNA sequencing data.
BQSR, base quality score recalibration, QUAL, variant quality score, DP, depth
of coverage, GQ, genotype quality, VAF, variants allele fraction, CADD,
combined annotation dependent depletion.

variants; i.e., the variants with allelic fraction (VAF) less than
half of the percent circulating blast cells in each patient
(VAF < 1/2×%circulating blasts) were considered as somatic. To
find possibly pathogenic and/or deleterious somatic associated
with AML, a multi-tool prioritization approach was adopted,
as recommended by American College of Medical Genetics
and Genomics (Richards et al., 2015; Figure 1). The identified
variants were annotated with ANNOVAR (Yang and Wang, 2015)
and Variants Effect Predictor (McLaren et al., 2016) tools to
determine their functional consequences. The deleterious impact
of non-synonymous variants was assessed with SIFT, Polyphen2,
and Combined Annotation Dependent Depletion (CADD), as
described previously (Shakeel et al., 2018).

To prioritize biologically active driver mutations over inactive
passengers, the parsimony-guided unsupervised functional
impact predictor ParsSNP tool was used. This tool uses an
expectation maximization framework to find mutations that
explain tumor incidence broadly, without using predefined
training labels that can introduce biases (Kumar et al., 2016).
The identified variants were also searched in ClinVar database
(Landrum et al., 2014) for pathogenic/likely pathogenic
association with myeloid malignancies. The interaction between
the proteins with deleterious variants in the same samples was
determined using STRING database (von Mering et al., 2005).
The curation from pharmGKB database (Hewett et al., 2002)
was performed to determine variants that likely have a role in
leukemic chemotherapy.
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TABLE 1 | Total variants pertaining to various genomic regions and their
functional distribution.

Genomic region No. of variants

Exonic 146

Intronic 133

Upstream 0

Downstream 3

UTR5 2

UTR3 9

Functional Impact

Non-synonymous 71

Synonymous 61

Stop-gain 3

Splicing 2

Frameshift insertion 3

Frameshift deletion 2

Non-frameshift insertion 2

Non-frameshift deletion 3

RESULTS

This study involves determination and assessment of genetic
variations in 26 AML cases of a South Asian population
(Pakistan) through Illumina TruSight myeloid sequencing panel.
This panel was designed to identify somatic mutations in myeloid
malignancies. The median depth of coverage for coding variants
was 4979×, and average coverage was 15,477×. Likewise, for
non-coding regions, the median depth of coverage was 9558×
and average coverage was 24,348×. After filtering out the variants
with QUAL < 50, DP < 20, and GQ < 20, there were 293 variants
in 54 genes, where each patient contained on average 80 variants
(SD ± 8.5). The variants allele fraction distribution revealed the
median of 0.51 across all 26 samples (Supplementary Figure S3).

The ANNOVAR annotation was performed to evaluate the
genetic variants corresponding to different genomic locations
and their functional impact, as detailed in Table 1. The number
of non-synonymous sites was observed to be higher than that
of synonymous sites, with a nonsyn/syn ratio of 1.16. This
ratio is higher than the reported overall nonsyn/syn ratio for
germline variants in South Asian populations (1000 Genomes
Project Consortium et al., 2015). For normalization, variants
within the targeted genomic regions studied in this research were
a subset from 1000 Genomes PJL (Punjabi Lahori, Pakistan)
individuals, and nonsyn/syn ratio was determined. The PJL
healthy individuals showed a ratio of 0.88. The nonsyn/syn ratio
in targeted regions was higher in the present study AML cases
than in healthy individuals due to the higher proportion of novel
non-synonymous variants in the patients, which is persistent with
previous reports (Liu et al., 2012).

The Landscape of Somatic Mutations
Considering the variants with allelic fraction less than half of the
%circulating blasts in each case, there were 38 somatic mutations
as a whole, including 31 SNVs and 7 insertions/deletions
(1.46 mutation/case). These somatic variations comprised 23

non-silent mutations including 18 non-synonymous SNVs, 2
stop-gain SNVs, 1 splicing SNV, and 2 frameshift deletions,
and 17 silent mutations including 2 synonymous SNVs, 2
downstream SNVs, 1 3′untranslated region SNV, 7 intronic
SNVs, 2 non-frameshift insertions, and 1 non-frameshift deletion
(Figure 2 and Supplementary Table S2). Further, it was observed
that some cases contained higher number of somatic mutations in
different genes. A Kruskal-Wallis test and post hoc Dunn test of
multiple comparisons among all the cases showed a significantly
higher number of somatic mutations in two cases, AM01 and
AM03 (p < 0.01 after multiple corrections).

Strikingly, three recurrent non-silent, and five recurrent
silent somatic mutations were observed in more than one
case. The non-silent recurrent somatic mutations included a
non-synonymous SNV in CDKN2A (p.R90C) in four cases, a
non-synonymous SNV in STAG2 (p.L526F) in three cases, and
a non-synonymous SNV in BCORL1 (p.A400V) in three cases.
Notably, p.L526F(STAG2) and p.A400V(BCORL1) affected all
the transcripts of respective genes, whereas p.R90C(CDKN2A)
affected only one out of six transcripts. The VAF of p.R90C
(CDKN2A) was double in one case AM21 (VAF 0.214) than in the
other three cases who carried similar burden of this variant (VAF
0.084–0.105). The mutational burden of two other recurrent
mutations, i.e., p.L526F(STAG2) and p.A400V(BCORL1), was
similar among the cases, i.e., 0.102–0.111 and 0.08–0.106,
respectively. Further, it was noted that five genes, CSF3R,
NOTCH1, CBL, RUNX1, and BCOR, were found to have
independent non-silent mutational events in two cases each,
with VAF 0.098–0.108, 0.158–0.278, 0.1448–0.203, 0.159–0.25,
and 0.135–0.167, respectively. Two genes, KIT and EZH2, had
two coexisting mutations each (VAF 0.418–0.42 and 0.043–0.045,
respectively) in the same cases (AM03 and AM01, respectively),
affecting all the transcripts of their genes.

Curation of somatic mutations in COSMIC database
highlighted 10 mutational events not observed in the database,
whereas four mutations had been cataloged with a different
variation type at the sites than observed in this study (detailed
in Supplementary Table S2). The non-cataloged 10 mutations
also included the stop-gain SNV (p.Q88X) in SRSF2, affecting
all two transcripts of this gene, and the two recurrent non-
synonymous SNVs (p.L526F of STAG2 and p.A400V of
BCORL1). Filtration of somatic mutations with ClinVar database
highlighted three pathogenic SNVs already associated with
hematological disorders. We also assessed conservation status of
the non-silent variants sites using PhyloP conservation scores
of non-neutral substitution rates based on alignment with 100
vertebrates (Pollard et al., 2010). This analysis revealed 13
mutations in comparatively high conserved regions (PhyloP
score >4), 5 mutations in moderately conserved regions
(4 ≤ PhyloP score ≥1), and 5 mutations in non-conserved
regions (PhyloP < 1) of proteins. Among the recurrent non-
silent mutations, p.L526F was observed in the highly conserved
region of STAG2, suggesting its more profound deleterious
effect; p.A400V occurred in moderately conserved region of
BCORL1, whereas p.R90C occurred in the non-conserved
region of CDKN2A. The assessment of somatic mutations for
potentially driver role through ParsSNP tool highlighted a
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FIGURE 2 | Landscape of somatic mutations in AML. All the non-silent and synonymous somatic mutations are shown here. (A) The numbers of non-synonymous
mutations are dominantly higher than synonymous mutations at the sequenced targeted regions. (B) Percent of samples with the somatic mutation in a gene.
(C) Detail of somatic mutations in AML cases.

driver mutation p.G12S in NRAS (rs121913250), which is well
characterized and already reported recurrently in COSMIC
database (COSV54736621 and COSM563).

Co-existence of Somatic Mutations
It was also noted that seven cases carried more than one
non-silent variants; however, the genes harboring co-existing
mutations were different among all the cases. The difference
in VAF of co-existing mutations gave a clue to define the
clonal composition, i.e., a founding clone (the clone with the
highest VAF values) and the subclone (Figure 3). In AM01, the
novel p.R80H mutation in the conserved region of Runt-related
transcription factor 1 (RUNX1), might be the somatic event (VAF
0.25) followed by disrupting splice site (c.1096-2) in Cbl proto-
oncogene (CBL) (VAF 0.203) in founding clones leading to the
abnormal proliferation of hematopoietic stem cells. Analysis of
protein interaction between RUNX1 and CBL through STRING
database revealed no interaction between these two proteins,
indicating independent mutational events. Previously, a different
mutation, p.R80A, at same position of RUNX1, has been shown
to strongly reduce its binding with DNA (Bravo et al., 2001).
In AM03, the co-existing p.D419fs and p.R420fs deletions in
KIT (VAF 0.418 and 0.42) originated more probably in founding
clone, prior to the p.V1649I of BCOR (0.135) in subclone.
In AM19, the novel p.L509V mutation in CUX1 (VAF 0.366)
might be originated in founding clone, followed by p.L526F of
STAG2 (0.126) in subclone; in AM26, the p.Q88X in SRSF2 (VAF
0.214) in founding clone and p.A400V in BCORL1 (VAF 0.08)
in subclone. The co-existing somatic mutations in three other

cases, AM16 [p.R730C of DNMT3A (VAF 0.112) and p.L526F of
STAG2 (VAF 0.102)], AM23 [p.R90C of CDKN2A (VAF 0.214)
and p.N434K of RUNX1 (VAF 0.159)], and AM25 [p.T618I of
CSF3R (VAF 0.108) and p.A400V of BCORL1 (VAF 0.097)], more
probably originated in the same clones. It was noteworthy that
all the coexisting mutational events happened in genes belonging
to different biological functional categories previously described
in myeloid leukemias (Cancer Genome Atlas Research Network
et al., 2013), indicating that different underlying processes were
involved in the pathophysiology of AML in this cohort.

Germline Mutation Predisposition
In addition to the somatic mutations, the predisposition due
to germline mutations was also assessed. For this, the germline
variants with ClinVar pathogenic/likely pathogenic significance,
producing a stop-gain or stop-loss site, disrupting splicing
sites, frameshift insertions, or deletions, and non-synonymous
alterations predicted as deleterious by SIFT and Polyphen2 tools,
were brought into subsequent analysis, as described previously
(Bertelsen et al., 2019). This analysis prioritized 18 germline
variants pertaining to 15 genes including 13 non-synonymous
SNVs, a stop-gain SNV, a splice-site SNV, and 3 frameshift
insertions (Supplementary Table S3). Two recurrent mutations,
p.T358P in GATA2 affecting all three transcripts, and p.L258fs
insertion in NPM1 affecting two out of seven transcripts,
were observed in two non-related cases each. Further, WT1
was observed recruiting three independent germline mutations
in three different unrelated cases. Filtration with ClinVar
database highlighted six non-synonymous pathogenic SNVs
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FIGURE 3 | Comparison of variants allelic fraction (VAF) of co-existing non-silent somatic mutations in various cases. The mutations in RUNX1 and CBL in AM01, the
KIT mutation in AM03, the CUX1 mutation in AM19, and SRSF2 mutation in AM26 originated more likely in founding clones, followed by mutations in other genes in
subclones.

and a frameshift pathogenic insertion already associated with
hematological neoplasms. The germline variants were filtered
with COSMIC database, which revealed six novel variants
not cataloged in this database. The assessment of PhyloP
scores revealed 11 mutations in comparatively high conserved
regions, 2 mutations in moderately conserved regions, and 5
mutations in non-conserved regions of respective proteins. The
variants affecting highly conserved regions included the recurrent
p.T358P in GATA2, protein truncating p.R441X in WT1, and
splicing c.418+1 in PHF6. Exploration of protein truncating
p.R441X (rs121907909) in Ensembl genome browser2 revealed
that it affects eight protein coding transcripts introducing a
premature stop codon, whereas two protein coding transcripts
are protected through NMD pathway (Supplementary Table S4).

To explore the role of identified genetic variants in drug
response, pharmGKB database was searched. This analysis
showed a missense SNV rs1042522 (G > C) in TP53, with GG
and GC genotypes in 19 (73%) cases. These genotypes have
been found to show decreased response to cisplatin, paclitaxel,
capecitabine, and oxaliplatin anti-cancer drugs as compared to
the CC genotype.

DISCUSSION

Next-generation sequencing analysis of myeloid neoplasm
including AML and other related disorders has yielded
several significant advances in the identification of diagnostic,
prognostic, and therapeutic markers for these disorders (Arber
et al., 2016; Papaemmanuil et al., 2016). This study was designed
to screen AML patients in a clinical diagnostic setup by using
a specifically designed myeloid sequencing panel and provides

2www.ensembl.org/index.html

clinico-pathological significance of identified deleterious/non-
silent mutations in the Pakistani population. We identified
293 variants including single-nucleotide variants, and small
insertions and deletions in coding as well as in non-coding
regions in a small cohort of 26 AML patients. Sequence variants
not observed in ClinVar, dbSNP, and gnomAD were considered
as novel variants. The pathogenicity of sequence variants with
a global minor allele frequency (GMAF) of <0.1 was assessed
by using several in silico bioinformatics tools and the variants
were classified according to the ACMG criteria (Richards et al.,
2015). The deleterious impact of non-synonymous variants
was assessed with SIFT, Polyphen2, and CADD, as described
previously (Shakeel et al., 2018). Although variants were not
functionally validated using any in vitro system, in silico analyses
have generated strong and convincing scores that suggest the
possible pathogenicity of the identified variants in respective
cases. To the best of our knowledge, this is the first study to report
genetic variations in myeloid malignancies from this South Asian
population using NGS technology.

The higher nonsyn/syn ratio in AML cohort represents higher
mutation rate and/or positive selection on non-synonymous sites,
as indicated in various cancers previously (Greenman et al., 2007;
Pengyuan et al., 2012). By applying the multi-tool prioritization
approach, we were able to find at least one pathogenic/deleterious
non-silent somatic or predisposing germline mutation in 23
of the 26 cases (88.46%), where 9 cases had both the somatic
and germline mutations, 8 cases had somatic mutation only,
and 6 cases had germline mutation only. In order to explore
possible biological relationship between a predisposing germline
mutation and somatic mutational events in the cases having
coexisting germline and somatic mutations, a circos plot was
constructed, which revealed that the two cases with germline
non-synonymous mutation p.T358P in GATA2 (AM01 and
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FIGURE 4 | Co-existence of prioritized/pathogenic germline variants with the
non-silent somatic mutations in cases with both germline and somatic events.
The names of cases are mentioned above the genes with germline mutations.

AM03) had higher number of non-silent somatic mutations
(Figure 4). GATA2 encodes an endothelial transcription factor
GATA-2 that plays an essential role in gene regulation during
vascular development and hematopoietic differentiation. The
observed mutation is within the highly conserved region of
GATA2 (a zinc finger domain). Although this mutation is
novel and not cataloged in dbSNP or COSMIC databases, a
p.R361P change near the observed p.T358P mutation in the
same zinc finger domain has been shown to be associated
with Emberger syndrome (lymphedema with predisposition to
AML) (Ostergaard et al., 2011). Further, search in STRING
database showed experimental and curated pathway interaction
between GATA2 and RUNX1, the two mutated genes in AM01
(Supplementary Figure S4). It has been shown previously
through Chip-seq analysis that there is concurrent binding
of GATA2 and RUNX1 along with GATA1, FLI1, and SCL
transcription factors on promoters of a set of genes, e.g., CEBPA,
which are highly enriched for known regulators of hematopoiesis
(Timchenko et al., 1995; Tijssen et al., 2011).

The genetic heterogeneity and the complex interaction among
different oncogenic pathways in AML have been focused in
previous studies to explore its prognostic significance (Estey,
2014). The most recurrent non-silent somatic mutation p.R90C
in cyclin-dependent kinase inhibitor 2A gene (CDKN2A)
was found in four cases. The observed variant belongs to
non-conserved region of CDKN2A, yet it has been cataloged
in ClinVar associated with hereditary cancer-predisposing
syndrome with uncertain significance. The kinase inhibitor
arrests cell cycle at G1 and G2 stages and acts as a tumor

suppressor (Genecards database, 2019). The arginine-to-
cysteine substitution as a result of this variation may hamper
its ability to arrest cell cycle, leading to accelerated cell
proliferation. Although this variant is ultra-rare (alternate
allele frequency of 4.71 × 10−6 in the gnomAD database
and 8.42 × 10−6 in the ExAC database), its recurrence
in 15% of our cases suggests its likely prognostic role in
AML in this population. The second recurrent non-silent
somatic mutation p.L526F (STAG2) occurs in a conserved
domain of cohesin subunit SA-2, which is a component
of the cohesin complex required for the cohesion of sister
chromatids after DNA replication. Previously, non-silent
mutations at different sites in STAG2 were found in 1.3%
of AML cases (Thol et al., 2014), whereas, in this study,
the observed mutation was found in 11.5% cases. The third
novel recurrent mutation p.A400V was observed in BCORL1,
affecting three cases. BCORL1 encodes BCL6 corepressor
like 1 protein, which specifically inhibits gene expression
when recruited to promoter regions by sequence-specific
DNA-binding proteins such as BCL6 (Pagan et al., 2007). The
concurrence of non-silent mutations in genes belonging to
different functional categories represents the heterogeneity
of AML in this cohort, which is persistent with previous
reports (Cancer Genome Atlas Research Network et al.,
2013).

The novel non-synonymous somatic mutations p.V1675G,
p.V1649I, and p.P1398Q in conserved regions of the BCL6
co-repressor (BCOR) were found independently in 11.5%
cases (three of this cohort), which is three times higher
compared to those reported by Grossmann et al., where
BCOR gene mutations were identified in 3.8% (10 of 262) of
cytogenetically normal (CN) AML cases with poor response
(Grossmann et al., 2011). It is noteworthy that BCOR also
contained a germline deleterious non-synonymous mutation
p.S1582G. Strikingly, this mutation was also not found in
COSMIC database. Together with the germline mutation,
the frequency of BCOR non-silent/deleterious mutations
becomes 15.4% (four cases). This depicts BCOR as a high-
risk gene in the South Asian population. The BCOR encoded
protein, BCL6 co-repressor, is a component of a variant
Polycomb group repressive complex 1, and has the ability
to specifically repress gene transcription when recruited to
promoter regions by sequence-specific DNA-binding proteins
such as BCL6 and MLLT3 (Huynh et al., 2000; Sanchez et al.,
2007). It contributes as a major player in the embryonic
differentiation and mesenchymal stem cell function (Wamstad
et al., 2008; Fan et al., 2009). Recently, BCOR mutant bone
marrow cells showed significantly higher proliferation and
differentiation rates with upregulated expression of HOX genes
(Cao et al., 2016).

The novel protein truncating somatic mutation in SRSF2
generates alteration of c.C262T in exon1 of the resulting
transcript, leading to the premature termination at p.Q88X,
and causing inactivation of the RNA-binding domain (residues
1–101) of the protein. This mutation affects five protein-
coding transcripts, whereas two transcripts undergo non-sense-
mediated decay. The SRSF2 is a member of the serine/arginine
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rich (SR) class of splicing factors involved in both constitutive
and alternative mRNA splicing. Previously, dysfunctional SRSF
due to sequence variations at p.P95H position have been found
to activate aberrant alternative splicing in hematopoietic cells,
whereby, having its role in onset of myelodysplastic syndromes
(MDS) and AML (Liang et al., 2018; Masaki et al., 2019). In
this context, the truncating mutation observed in this study
would more likely result in non-functional SRSF, which would
lead to malignancy due to hampered alternative splicing in
hematopoietic cells. This study reports a first truncating mutation
in the SRSF2 RNA-binding domain in an AML case. The
other stop-gain somatic mutation in RAD21, causing a protein
truncation at p.R478X, affects two protein coding transcripts.
This variation has been cataloged in the COSMIC database
with four recurrences (COSM1735718) associated with AML.
The third and germline stop-gain mutation in WT1 causes
p.R441X truncation. Previously, the protein truncating variations
in WT1 have been shown to attenuate the TP53-induced
DNA damage response in T-cell acute lymphoblastic leukemia
(Bordin et al., 2018).

CONCLUSION

In conclusion, this is the first report of a comprehensive
analysis of somatic as well as germline mutations in AML from
Pakistan using next-generation DNA sequencing technology.
Our data strongly support and extend the spectrum of
detrimental mutations identified in previous studies employing
targeted resequencing approach for the diagnosis of AML. This
study also highlights the usefulness of panel sequencing in
cases where prognosis becomes challenging. The small cohort
size and retrospective nature, i.e., sample collection from a
single medical center, are the limiting factors of the study.
Furthermore, the novel findings of this preliminary study
require validation in a larger cohort with different time scales.
Nevertheless, the findings provide an assessment of predisposing
detrimental mutations of AML in this region and its utility in
clinical settings.
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Spinal schwannoma is the most common primary spinal tumor but its genomic
landscape and underlying mechanism driving its initiation remain elusive. The aim of the
present study was to gain further insights into the molecular mechanisms of this kind
of tumor through whole genome sequencing of nine spinal schwannomas and paired
blood samples. The results showed that ATM, CHD4, FAT1, KMT2D, MED12, NF2, and
SUFU were the most frequently mutated cancer-related genes. In addition, the somatic
copy number alterations (CNA) was potentially associated with spinal schwannoma,
among which NF2 was found to be frequently deleted in schwannoma samples. Only
a few genes were located within the amplified regions. In contrast, the deleted regions
in 15q15.1 and 7q36.1 contained most of these genes. With respect to tumorigenesis,
NF2 had the highest variant allele frequency (VAF) than other genes, and homozygous
deletion was observed in NF1, NF2, and CDKN2C. Pathway-level analysis suggested
that Hippo signaling pathway may be a critical pathway controlling the initiation of spinal
schwannoma. Collectively, this systematic analysis of DNA sequencing data revealed
that some key genes including NF1, NF2, and CDKN2C and Hippo signaling pathway
were associated with spinal schwannoma, which may help improve our understanding
about the genomic landscape of spinal schwannoma.

Keywords: hippo signaling pathway, copy number alterations, frequently mutated genes, whole genome
sequencing, spinal schwannoma

INTRODUCTION

Spinal schwannoma is the most common primary spinal tumor, accounting for almost one-third
of all spinal tumors (Seppala et al., 1995; Abul-Kasim et al., 2008), with an annual incidence of
0.3 to 0.4 per 100,000 (Seppala et al., 1995). Patients with spinal schwannoma usually have to
endure pain, spinal root deficits, pyramidal tract compression, and sphincter disorders, which
negatively affect patients’ quality of life (Lenzi et al., 2017). The gold standard treatment for
spinal schwannomas is complete surgical resection (Jinnai and Koyama, 2005; Safaee et al.,
2017). However, complete tumor removal is associated with a high incidence of complications,
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in which cutting the involved functionally relevant nerve root
is likely to result in a permanent and significant neurological
deficit (Celli et al., 2005), with up to 30% of patients developing
postoperative neurologic deteriorations (Safaee et al., 2017).
Unfortunately, there are no medical therapies available for spinal
schwannomas, while a safe and effective treatment for these
patients is urgently needed (Campian and Gutmann, 2017).
Therefore, it is of great importance to gain a comprehensive
insight into the genetic landscape of schwannoma and to
identify the potential genes driving its initiation, thereby seeking
therapeutic targets.

Schwannomas are derived from Schwann cells, the myelin-
producing cells of the peripheral nervous system. Schwannomas
can occur either spontaneously or as the hallmark tumor of
neurofibromatosis type 2. Previous studies have identified several
schwannoma-predisposing mutations. Specifically, mutation of
the NF2 gene is the most characteristic genetic risk factor for
schwannoma (Rouleau et al., 1993; Trofatter et al., 1993; Lin and
Gutmann, 2013; Pathmanaban et al., 2017; Carlson et al., 2018;
Roberts et al., 2019). Germline mutations in LZTR1 predispose
to an inherited disorder of multiple schwannomas (Piotrowski
et al., 2014). Mutation of the SMARCB1 gene was found in 45%
of familial and 7% of sporadic schwannomatosis cases (Smith
et al., 2012), and it was also reported to play a role in the
development of some sporadic spinal schwannomas (Paganini
et al., 2018). In order to determine the frequency of these
predisposing mutations in solitary schwannomas, Pathmanaban
et al. screened 135 schwannoma cases using Sanger sequencing
or next-generation sequencing, and the results showed that
NF2, LZTR1, or SMARCB1 mutations were found in 54.5% of
them (Pathmanaban et al., 2017). Furthermore, in an integrative
analysis performed by Agnihotri et al. (2016) whole exome
sequencing analysis identified recurrent mutations in NF2,
ARID1A, ARID1B, and DDR1, and RNA sequencing identified
a recurrent in-frame SH3PXD2A-HTRA1 fusion in 10% cases.
Whole exome sequencing was also performed on vestibular
schwannomas. NF2, CDC27, and USP8 were identified to be
the most common tumor-specific mutations (Havik et al., 2018).
Nevertheless, a focused attention on the genomic landscape
of schwannomas in the spine is still needed. Furthermore,
mutations in non-coding regions, such as introns, regulatory
elements, and non-coding RNA, remain widely unexplored.

In this study, whole genome sequencing analysis of nine paired
spinal schwannomas (ICD-O of 9560/0) and blood samples was
performed to provide some useful information regarding the
overall landscape of driver mutations and mutated pathways in
schwannomas genomes.

MATERIALS AND METHODS

DNA Extraction and Whole Genome
Sequencing
This study was approved by the Changzheng Hospital medical
ethics committee, and genomic DNA samples were obtained
from fresh tissues and blood samples after being resected during
surgery. All the patients were recruited with written informed

consent, in accordance with the Declaration of Helsinki. TIAN
amp Blood DNA Kit (TIANGEN Biotech Co., Ltd., Beijing,
China) was used for extracting genomic DNA from paired
schwannoma and blood samples according to the manufacturer’s
instructions. The whole genome DNA were sequenced by
Illumina X-Ten platform in Shanghai, China, and 150 bp paired-
end reads were generated.

Reads Mapping and Variants Calling and
Annotation
The whole genome paired reads of 300bp (150bp at each end)
were mapped to human reference genome (UCSC hg19 assembly)
using BWA 0.7.12 “mem” mode with default options (Li and
Durbin, 2009). The PCR duplicates of the mapped reads and
low-quality reads (BaseQ < 20) were then removed by SAMtools
“rmdup” with version 0.1.19. The resulting bam files were sorted
and indexed by SAMtools sort and index, respectively. Somatic
mutations were called by Strelka 2.8.4 software (Saunders et al.,
2012) with default options. The somatic mutations should have a
minimal of 4 read counts supporting the variant and over 20 reads
covering the locus. The somatic copy number alteration (CNA)s
were called by SAASCNV 0.3.4 (Zhang and Hao, 2015) with
P-value < 0.05. We used the ANNOVAR software for variant
annotation (Wang et al., 2010). It should be noted that all the
somatic mutations were identified in the tumor tissues but absent
in the corresponding normal tissues.

Analyses of the Somatic Mutations in
Schwannoma
The analyses included identification of potential genes driving
schwannoma initiation, and identification of frequently mutated
pathways. The potential genes driving schwannoma initiation
were identified based on the variant allele frequency (VAF), and
the frequently mutated pathways were identified based on the
number of mutated genes in the oncogenic pathways. All the
analyses were implemented in R maftools package (Mayakonda
et al., 2018). The clonality analysis was conducted in R package
CLONETv2 with default options (Carreira et al., 2014).

Significantly Amplified and Deleted
Regions
The somatic CNAs were first segmented by SAASCNV (Zhang
and Hao, 2015). The significantly amplified and deleted regions
were identified by GISTIC 2.0 on the Gene Pattern webserver
(Mermel et al., 2011). The CNAs with q-value < 0.05 were
deemed as the significantly amplified and deleted regions.

Gene Set Enrichment Analysis
The gene sets collected from KEGG pathways were used in
the enrichment analysis. The gene set enrichment analysis
(GSEA) was conducted by hypergeometric test. The GSEA was
implemented in R clusterProfiler package (Yu et al., 2012).
The pathways were considered statistically significant if the
q-value < 0.05.
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RESULTS

Clinical Characteristics and Outcomes of
the Patients
The characteristics of 9 patients are shown in Table 1. This
cohort was comprised of 4 men and 5 women, with a mean
age of 57.6 years (median 63, range 27–69). The most common
symptom was pain and hypesthesia. One patient (case 8)
was diagnosed with the recurrent schwannoma which was
totally resected 15 years ago. Tumor size ranged from 1 to
6.5 cm in the maximum diameter, with 2 of them larger than
5 cm. Schwannomatosis were diagnosed in 3 patients who
had multiple spinal schwannomas without bilateral vestibular
schwannoma. No pathogenic germline NF2 mutations were
found in these patients. Complete resection of the tumor(s) and
posterior stabilization of the spine was performed for all patients.
According to postoperative pathological examination, the tumor
cell percentages of all these samples were above 88% (Range 88–
95%). Postoperatively, all patients recovered well without surgical
complications. The mean follow-up duration was 42.9 (median
45, range 33–48) months. All patients were alive with no evidence
of disease at the last follow-up in July 2019.

Whole Genome Sequencing of Nine
Spinal Schwannomas and Paired Blood
Samples
To explore the alterations in the genome of spinal schwannoma,
we performed whole genome sequencing (WGS) to a median
depth of 36.77X (range, 32.34X to 40.59X), and identified
832 somatic mutations, which were present in tumors but
absent in paired blood samples, including 763 single nucleotide
variants (SNVs) and 69 insertion or deletions (InDels) across
the 9 patients (Figures 1A,B), with a median of 87 variants
(Figure 1C). Based on the RefSeq gene annotation, we identified
TTN, MUC4, FLG2, MUC17, OR2T4, ZNF850, FAM186A,

ALMS1, FAM47C, and ATM as the top ten mutated genes
(Figure 1D), however, only ATM was previously reported to
be implicated in cancer (Kim et al., 2014; Chen et al., 2015;
Feng et al., 2015).

Genetic Landscape of Spinal
Schwannoma
To identify the genes responsible for schwannoma, we further
investigated whether the mutated genes could be found in
the COSMIC Cancer Gene Census database (Forbes et al.,
2008), a database curating genes causally implicated in cancer.
As shown Figure 2A, ATM, accounting for 33% of the
samples, was the most frequently mutated cancer-related gene in
schwannoma, followed by CHD4 (22%), FAT1 (22%), KMT2D
(22%), MED12 (22%), NF2 (22%), and SUFU (22%). Most of
them were predicted as pathogenic by SIFT, PolyPhen-2, or
MutationTaster (Table 2). Particularly, NF2 (Neurofibromin 2)
has been widely identified as the pathogenic genes for both
sporadic and familial schwannoma (Jacoby et al., 1994; Rm et al.,
2018).

Moreover, we also profiled the somatic CNA in schwannoma
based on the GISTIC algorithm (q-value < 0.05). The
identified significantly amplified regions were 1p36.33, 2q37.3,
4q35.2, 9p24.3, 10q26.3, 11p11.12, 12p13.33, 15q26.3, 16p13.3,
and 17q25.3, while the significantly deleted regions were
12q24.31, 15q15.1, 19q13.42, 22q11.1, 22q11.21, and 22q11.23
(Figure 2B). In accordance with the somatic mutations and
InDels, NF2, harbored in the cytoband 22q11, was also identified
to be frequently deleted in the samples of schwannoma
(Supplementary Figure S1). These results indicated that NF2
played a key role in the initiation of schwannoma.

Furthermore, we also investigated the genes within these
CNA regions potentially involved in spinal schwannoma.
Only a few genes were located within the amplified regions.
whereas the deleted regions contained most of these genes

TABLE 1 | Clinical characteristics of nine patients with spinal schwannoma.

No. Sex Age Location Single/
multiple*

Primary/
recurrent

Histological
grade

Tumor
size (cm)

Adjacent
relations to
spinal canal

Shape Bone structure
destruction

Resection
mode

Follow-up
(M)

Final
Status

1 M 47 L1-2 Multiple Primary Grade I 2.5; 1.5; 1 Intraspinal Round No Total 35 NED

2 M 66 L2; S1 Multiple Primary Grade I 2.4; 1.8 Intraspinal Round No Total 47 NED

3 F 65 C6-7 Single Primary Grade I 6 Intra-
extraspinal

Irregular Yes Total 33 NED

4 F 53 L2 Single Primary Grade I 2.4 Intraspinal Ellipse No Total 48 NED

5 M 62 S1-2 Single Primary Grade I 3.5 Intra-
extraspinal

Round yes Total 43 NED

6 F 63 T1-2 Single Primary Grade I 4.3 Intra-
extraspinal

Dumbbell No Total 46 NED

7 M 27 L4-5 Single Primary Grade I 6.5 Intra-
extraspinal

Dumbbell Yes Total 45 NED

8 F 66 L1-2 Single Recurrent Grade I 4.2 Intraspinal Ellipse No Total 44 NED

9 F 69 L3-4 Multiple Primary Grade I 2; 1.1 Intraspinal Round No Total 45 NED

NED, no evidence of disease. *The three patients with multiple spinal schwannomas were diagnosed as schwannomatosis. They were sporadic schwannoma(s)
without family history.
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FIGURE 1 | The overview of the somatic mutations in spinal schwannoma. The variant classification, variant type, the number of variants per sample, and the
top-ten mutated genes in the nine spinal schwannomas are displayed in (A–D), respectively. The x-axis in (A,B,D) represent the number of mutations or samples.
The x-axis in (C) represents the nine samples.

(Supplementary Tables S1, S2). Specifically, ITPKA, LTK,
CHP, OIP5, RTF1, RPAP1, NDUFAF1, NUSAP1, INO80, EXD1,
and OIP5-AS1, fell within the cytoband of 15q15.1 (n = 6,
66.7%). The gene set enrichment analysis revealed that these
genes might participate in the maintenance of chromosomal
structure, such as DNA conformation change, chromosome

segregation, and nucleosome organization (q-value < 0.05).
In addition, we observed that XRCC2 and MLL3/KMT2C
were located within 7q36.1 (n = 5, 55.6%), which had
a q-value 0.057, slightly higher than the threshold 0.05,
however, the two genes were involved in the tumorigenesis
or progression of several malignant tumors (Figure 2B and
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TABLE 2 | The pathogenicity of the somatic mutations in spinal schwannoma by SIFT, PolyPhen-2, and MutationTaster.

Gene Symbol Effect Transcript:exon:CDS SIFT Polyphen2-
HDIV

Polyphen2-
HVAR

Mutation
Taster

Sample VAF

ATM Non-sense NM_000051:exon46:c.C6725A:p.S2242X NA NA NA D CHG004878 0.13

ATM Missense NM_000051:exon60:c.T8699C:p.L2900P D D D D CHG004882 0.13

ATM Missense NM_000051:exon24:c.T3458C:p.V1153A T B B N CHG004884 0.10

CHD4 Missense NM_001297553:exon9:c.C1460T T D B D CHG004878 0.13

CHD4 Missense NM_001297553:exon18:c.G2831A:p.G944E D D D D CHG004884 0.34

FAT1 Non-sense NM_005245:exon2:c.G370T:p.E124X A CHG004880 0.14

FAT1 Missense NM_005245:exon10:c.C6110T:p.T2037M D B B N CHG004888 0.18

KMT2D Missense NM_003482:exon34:c.G9484A:p.G3162S D B B N CHG004878 0.10

KMT2D Missense NM_003482:exon48:c.G15713A:p.R5238Q T D P D CHG004892 0.14

MED12 Missense NM_005120:exon3:c.C385A:p.L129I D D D D CHG004886 0.25

MED12 Missense NM_005120:exon28:c.G4037A:p.R1346H D P B D CHG004890 0.25

NF2 Missense NM_181830:exon14:c.G1517A:p.C506Y D D D D CHG004880 0.22

NF2 Non-sense NM_181830:exon10:c.C979T:p.Q327X A CHG004884 0.50

NF2 Inframe deletion NM_181830:exon6:c.513_557del:p.171_186del NA NA NA NA CHG004880 0.53

SUFU Missense NM_001178133:exon10:c.C1177T:p.R393W D D D D CHG004880 0.49

SUFU Missense NM_001178133:exon6:c.G691A:p.G231S D D D D CHG004886 0.11

D, deleterious; P, probably deleterious; B, benign; T, tolerant; A, disease causing automatic; N, polymorphism; NA, not available.

FIGURE 2 | The mutational landscape of spinal schwannoma. (A) The somatic mutations of cancer driver genes across the nine spinal schwannomas. (B) The
somatic copy number alterations along the chromosomes. The G-score was to evaluate the significance of the gains and losses.

Supplementary Table S1), suggesting that these genes might play
key roles in schwannoma.

The Potential Genes Driving
Schwannoma Initiation
With the whole genome sequencing data, we aimed to
identify the genes potentially driving schwannoma initiation.

In tumorigenesis, the more the VAF was close to 50%, the
earlier the mutation may occur. We then ranked the genes
based on the median of VAF across the samples (Figure 3A).
Among the genes mutated in more than one sample, NF2
had a higher VAF than other genes, followed by DEPDC5,
which were involved in mTOR signaling pathway. Furthermore,
we also conducted the subclonality analysis, and identified
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FIGURE 3 | The variant allele frequency (VAF) of the genes mutated in spinal schwannomas. (A) The numbers on the top represent the number of mutations. The
genes are ordered by the median of VAF across the mutations. (B,C) The log2 copy number ratio of chromosomes 17 and 1 in the spinal schwannoma samples.
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that NF2 gene mutations were present in all subclones
of CHG004880 and CHG004884, suggesting that NF2 was
a candidate driver in spinal schwannoma (Supplementary
Figure S2). Particularly, SOX10 and CHD4 also showed
relatively high VAF among those genes (VAF > 20%). In
addition, we also examined the five samples without NF2 gene
mutations. Interestingly, the spinal schwannoma samples of
CHG004882 and CHG004886 harbored homozygous deletion
in NF1 (Figure 3B). Homozygous deletion of CDKN2C was
observed in CHG004890 (Figure 3C). These results indicated
that the CNV loss in NF1 and CDKN2C might also contribute
to tumorigenesis of spinal schwannoma.

Identification of Frequently Mutated
Pathways in Schwannoma
To further investigate the critical pathways that controlled
the initiation of schwannoma, we mapped the genes with
somatic mutations to the oncogenic pathways. The Hippo
signaling pathway was observed to be frequently mutated in
schwannoma (Figure 4A). Combining the somatic mutations
with CNAs, we found that NF2, SAV1, LLGL1/2, and CSNK1D/E
were key regulators with mutations in Hippo signaling
pathway (Figure 4B). Particularly, NF2, SAV1, and LLGL1/2,
the upstream regulators of YAP/TAZ transcription factors,
were frequently deleted or mutated with loss-of-function
patterns, which may promote the transcription of YAP/TAZ
target genes (Figure 4B). Among the 9 samples, 6 were
detected to have mutations in the Hippo signaling pathway
(Figure 4C), accounting for 67% of the samples. These results
suggested that the Hippo signaling pathway was a critical
pathway for schwannoma.

DISCUSSION

Spinal schwannoma is the most common primary spinal tumor,
typically arising from spinal nerve roots. To investigate the
genomic landscape of the spinal tumor, we performed whole
genome sequencing of nine tumors and paired blood samples
with high coverage (Supplementary Table S3). Specifically,
we identified TTN, MUC4, FLG2, MUC17, OR2T4, ZNF850,
FAM186A, ALMS1, FAM47C, and ATM as the top ten mutated
genes. However, further analysis of those frequently mutated
genes revealed that most of them were long genes and had
lower VAF, indicating that most of these genes were passengers
following the driver genes. Particularly, ATM, accounting for
33% of the samples, was the most frequently mutated cancer-
related gene in schwannoma, followed by CHD4, FAT1, KMT2D,
MED12, NF2, and SUFU (>20%). Notably, SUFU was reported
to be responsible for meningioma (Aavikko et al., 2012), a type of
tumor from central nervous system. In accordance with previous
studies of sporadic schwannoma by next generation sequencing
(Agnihotri et al., 2016; Havik et al., 2018), NF2 was identified as
the pathogenic gene in both spinal and vestibular schwannomas.
As the other genes like CHD4, FAT1, KMT2D, and MED12 were
not detected in vestibular schwannoma, we thus speculated that
some of them might be specific in spinal schwannoma.

Moreover, we also profiled the somatic CNA in schwannoma.
NF2 gene, harbored in the cytoband 22q11, was also identified
to be frequently deleted in the samples of spinal schwannoma.
The integrative analysis of the NF2 point mutations, InDels
and copy number deletions revealed that CHG004880 and
CHG004884 had bi-allelic mutations in NF2, resulting in bi-
allelic NF2 inactivation. Consistently, the occurrence of both
somatic mutations and CNAs in NF2 has been reported to
result in schwannoma by previous studies (Jacoby et al., 1994;
Rm et al., 2018).

Furthermore, we also investigated the genes within these
CNAs in spinal schwannoma. We found that there were only a
few genes located within the amplified regions. In contrast, the
deleted regions contained a majority of genes (Supplementary
Tables S1, S2). The higher frequency in deletions than gains
suggested that the tumorigenesis of spinal schwannoma might
be caused by these deletions. Particularly, losses of XRCC2 and
MLL3/KMT2C, which were located within 7q36.1, were also
observed in the spinal schwannomas. XRCC2 and MLL3/KMT2C
were involved in homologous recombination repair and histone
modification, suggesting that loss of DNA damage repair and
epigenetic alterations might also play key roles in schwannoma.

Besides, among the somatic mutations and CNAs in the
nine spinal schwannomas, SMARCB1, SMARCE1 or LZTR1 were
absent in these spinal schwannoma tissues. As the familial spinal
schwannoma usually have germline mutations in SMARCB1,
SMARCE1 or LZTR1, to our knowledge, these mutations are not
prevalent in sporadic spinal schwannoma patients.

In addition, to identify genes potentially initiating the
schwannoma, we ranked the genes with somatic mutations by
the median of VAF across the samples (Figure 3A). Combined
with the clonality analysis, NF2 gene was a candidate driver
in spinal schwannoma. Besides NF2, SOX10 and CHD4 also
showed relatively high VAF among those genes (VAF > 20%).
Notably, a previous study reported that loss of SOX10 function
contributed to the phenotype of human Merlin-null schwannoma
cells, indicating that the mutation of SOX10 might be associated
with the initiation of schwannoma (Doddrell et al., 2013).
Moreover, the different location of CHD4 staining has been
reported to be used as a potential biomarker to differentiate
cellular schwannoma from malignant peripheral sheath tumor
(MPNST) (Wu et al., 2018). In addition, NF1 and CDKN2C were
also found to be homozygously deleted in spinal schwannoma.
To our knowledge, NF1 mutations were rarely reported in spinal
schwannoma. Exceptionally, lack of NF1 expression has been
observed in a sporadic schwannoma from a patient without
neurofibromatosis (Gutmann et al., 1995), suggesting that NF1
might be a novel driver in spinal schwannoma. Similarly, loss
of CDKN2C, a cell growth regulator that controls cell cycle G1
progression, might also contribute to spinal schwannoma by
the manner of CDKN2A (Koutsimpelas et al., 2011; Rohrich
et al., 2016). Moreover, the pathway-level analysis revealed that
Hippo signaling pathway was one of the frequently mutated
pathways (6/9, 67%), in which, NF2, SAV1, and LLGL1/2 were
frequently deleted or mutated with loss-of-function patterns.
SAV1 and LLGL1/2 have not been reported to cause the
tumorigenesis of spinal schwannoma. However, the Hippo
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FIGURE 4 | The pathways frequently mutated in spinal schwannoma. (A) The significance of the pathways frequently mutated in spinal schwannoma. The y-axis and
x-axis represent the total number of genes and the number of mutated genes in the pathways. (B) The mutated genes and frequency in Hippo signaling pathway.
(C) The number of mutated genes in Hippo signaling pathway across the nine spinal schwannomas. The x-axis represents the spinal schwannoma samples. The
Multi_Hit indicates multiple variants of a gene were identified in the same sample.

signaling pathway has been widely reported to be implicated
in schwannoma by previous studies (Nikuseva-Martic et al.,
2007; Oh et al., 2015; Brodhun et al., 2017; Zhao et al., 2018).
SAV1 promotes activation of MST-LATS kinase cascade in
Hippo signaling, which suppresses the activities of YAP/TAZ by

phosphorylation (Bae et al., 2017). LLGL1/2 have been recognized
as direct negative regulators of YAP/TAZ via phosphorylation
(Cordenonsi et al., 2011). The loss of these tumor suppressors
might lead to lower phosphorylation of YAP/TAZ, thereby
promoting YAP/TAZ to translocate to the cell nucleus.
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Admittedly, the present study still had some limitations.
First, the sample size is small, which limited the accuracy
of the conclusions. Second, the pathogenicity of the mutated
genes in schwannoma need to be further validated. Third, the
consequences of these potentially pathogenic genes and the
underlying mechanisms should be further investigated. However,
we aimed to identify the potentially pathogenic genes responsible
for schwannoma, and the systematic analysis of DNA sequencing
data improved our understanding of the genomic landscape in
spinal schwannoma.
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Esophageal squamous cell carcinoma (ESCC) is one of the most fatal malignancies of
the digestive tract, but its underlying molecular mechanisms are not known. We aim to
identify the genes involved in ESCC carcinogenesis and discover potential prognostic
markers using integrated bioinformatics analysis. Three pairs of ESCC tissues and
paired normal tissues were sequenced by high-throughput RNA sequencing (RNA-
seq). Integrated bioinformatics analysis was used to identify differentially expressed
coding genes (DECGs) and differentially expressed long non-coding RNA (lncRNA)
genes (DELGs). A protein–protein interaction (PPI) network of DECGs was established
using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website
and visualized with Cytoscape. Survival analysis was conducted by log-rank tests to
identify “hub” genes with potential prognostic value, and real-time reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) was conducted to assess expression
of these genes in ESCC tissues. TranswellTM assays were employed to examine
the migration ability of cells after knockdown of LINC01614 expression, followed
by investigation of epithelial–mesenchymal transition (EMT) by western blotting (WB).
A total of 106 upregulated genes and 42 downregulated genes were screened out
from the ESCC data sets. Survival analysis showed two hub protein-coding genes
with higher expression in module 1 of the PPI network (SPP1 and BGN) and another
three upregulated lncRNAs (LINC01614, LINC01415, NKILA) that were associated
with a poor prognosis. High expression of SPP1, BGN, LINC01614, and LINC01415
in tumor samples was validated further by RT-qPCR. In vitro experiments show that
knockdown of LINC01614 expression could significantly inhibit the migration of ESCC
cells by regulating EMT, which was confirmed by WB. These results indicate that BGN,
SPP1, LINC01614, and LINC01415 might be critical genes in ESCC and potential
prognostic biomarkers.

Keywords: expression, long non-coding RNA, esophageal squamous cell carcinoma, next-generation
sequencing, RNA-seq, bioinformatics analysis
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INTRODUCTION

Esophageal cancer is the sixth most fatal malignancy worldwide
with an overall survival rate ranging from 15 to 25% (Lagergren
et al., 2017). The two major histologic types of esophageal cancer
are ESCC and esophageal adenocarcinoma (EAC), and they
have distinct genetic profiles (Cancer Genome Atlas Research
Network, 2017). In China, >90% of cases of esophageal cancer
are ESCC (Zeng et al., 2015). A deeper understanding of the
transcriptional dysregulation of ESCC is critical for predicting
the prognosis, providing appropriate treatment, and improving
clinical outcomes (Peng et al., 2012; Wang et al., 2012; Zhang
et al., 2013; Chen et al., 2016; Huang et al., 2017).

The advent of next-generation sequencing has enabled studies
on the transcriptional features of ESCC and identification of
potential target genes (Tong et al., 2012; Wang et al., 2018).
In Tong et al. (2012) used transcriptome data from seven
ESCC samples and five non-tumor specimens to profile the
transcriptional features of ESCC. Subsequently, Wang et al.
(2018) depicted the “landscape” of lncRNAs and messenger
(m)RNAs in ESCC using RNA sequencing (RNA-seq) data from
seven pairs of tumor samples and matched normal tissues.
However, RNA-seq results from different studies are often
inconsistent owing to sample heterogeneity. Furthermore, the
small sample sizes of those studies limits the reproducibility and
reliability of their results.

In the present study, we use RNA-seq to investigate the profiles
of transcriptional features of three pairs of ESCC tissues and
paired normal mucosal tissues from Xiangya Hospital within
Central South University (Changsha, China). Furthermore,
we integrate all the public RNA-seq data from the Gene
Expression Omnibus (GEO) database and The Cancer Genome
Atlas (TCGA), including the GSE111011, GSE32424, and
TCGA_ESCC data sets, to identify potential pathogenic genes in
ESCC. A microarray data set for ESCC (GSE53625) and TCGA
data set for head and neck squamous cell carcinoma (HNSCC)
(TCGA_HNSCC) were used to explore the prognostic value of
these “hub” genes in discovery data sets. Expression of hub genes
with potential prognostic value was confirmed further by real-
time reverse RT-qPCR. Further in vitro studies were undertaken
to explore the biological function and underlying mechanism of
LINC01614, expression of which was upregulated in ESCC and
which is considered to be a potential prognostic marker.

MATERIALS AND METHODS

Ethical Approval of the Study Protocol
Ethical approval for the collection and use of all tissues was
obtained from the ethics committee of the Xiangya Hospital
of Central South University. Written informed consent was
obtained from each patient to use his/her material.

Patients and RNA-seq Data
Three samples of ESCC tumor tissue and paired normal mucosa
tissues for RNA-seq were collected from patients who had
undergone esophagectomy without neoadjuvant chemotherapy
or radiotherapy at Xiangya Hospital. Specimens were taken

from the center of the tumor. Paired normal tissues were taken
from surgically dissected tissues ∼5 cm away from the tumor.
These three pairs of tissues were snap-frozen in liquid nitrogen
after surgery and before RNA extraction. The process used for
RNA-seq is described in Supplementary File 1. Another 65
ESCC tumor specimens and 20 non-cancerous specimens were
obtained from Xiangya Hospital for use in RT-qPCR.

Another two RNA-seq data sets, GSE111011 and GSE32424,
obtained with the Illumina HiSeq 2500 and Illumina Genome
Analyzer IIx platforms, respectively, were downloaded from the
National Center for Biotechnology Information Sequence Read
Archive1 with the identifiers SRP133303 (Wang et al., 2018)
and SRP008496 (Tong et al., 2012). GSE111011 contained seven
normal samples and seven tumor samples. GSE32424 contained
five normal samples and seven tumor samples. More information
about these datasets are shown in Table 1.

Data Processing
The Xiangya Hospital data set, GSE111011, and GSE32424 were
analyzed using a particular workflow. Briefly, clean reads were
obtained from raw reads by removing adaptor sequences, reads
with >5% ambiguous bases, and low-quality reads, and, they were
then mapped and aligned to the human genome (GRCH38) using
HISAT2 (Kim et al., 2015). RNA-seq data from TCGA_ESCC
were downloaded from Firehose2. The GSE53625 data set (which
was based on GPL18109 and contained 179 ESCC and 179 paired
normal control samples) was downloaded from GEO. GSE32424
contained five normal samples and seven tumor samples. More
information about these datasets are shown in Table 1. The
RNA-seq data sets (Xiangya Hospital, GSE111011, GSE32424,
and TCGA ESCC) were defined as “discovery data sets.” The
“DEseq2” R package (R Project for Statistical Computing, Vienna,
Austria) was used to screen out differentially expressed genes
(DEGs) between ESCC and non-cancerous controls in all data
sets. Then, we screened out differentially expressed coding genes
(DECGs) and differentially expressed lncRNA genes (DELGs)
using the criteria of | log2(fold change)| > 1 and false discovery
rate (FDR) <0.01. Subsequently, the DECGs and DELGs were
used to draw volcano plots using R.

To investigate the molecular function of DECGs, we used
the “clusterProfiler” R package for Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis and for
Gene Ontology (GO) analysis with respect to three domains:
cellular component, biological process, and molecular function
(Yu et al., 2012).

Construction of a Protein–Protein
Interaction Network and Module Analysis
The STRING database3 was used to construct a PPI network
of DECGs and to investigate the relationships among them
(Szklarczyk et al., 2015) with a medium confidence of 0.400.
Cytoscape was employed to visualize the PPI network. The
MCODE (Bandettini et al., 2012) Cytoscape plugin was used
to identify highly interacted nodes in the subnetworks. The

1https://www.ncbi.nlm.nih.gov/sra
2https://gdac.broadinstitute.org
3https://string-db.org
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following parameters were set to their default values: maximum
depth = 100, degree = 2, node score = 0.2, and k-core = 2.

Survival Analysis and Validation of Hub
Genes
To explore the prognostic value of DELGs and DECGs from
the PPI network, log-rank survival analysis was carried out by
the Kaplan–Meier method in the GSE53625 and TCGA_HNSCC
data sets. X-Tile (Camp et al., 2004) was used to determine
optimal cutoff points for the log-rank test.

Reverse transcription-quantitative polymerase chain
reaction was undertaken using FastStart Universal SYBR
Green Master (ROX) (Roche, Basel, Switzerland). Each sample
was standardized by β-actin as an internal control gene. RT-qPCR
parameters were 95◦C for 10 min (holding stage), 40 cycles of
95◦C for 15 s, and 60◦C for 1 min (PCR stage), and then 95◦C for
15 s and 75◦C for 1 min (melt-curve stage). Data were analyzed
by the comparative cycle threshold (2−11Ct) method.

The sense and antisense primer sequences encoding BGN,
SPP1, LINC01614, INC01415, NKILA, and β-actin mRNA were
as in Supplementary Table 1.

Gene Set Enrichment Analysis
We wished to further explore the different biological pathways
in patients with high and low expression of target genes. GSEA
was done using R 3.6.24 employing TCGA_ESCC data. The
annotated gene set of “H: Hallmark gene sets” downloaded from
the MSigDB was used in the analysis. P < 0.05 was considered to
denote significant enrichment.

Cell Lines and Culture Conditions
Five ESCC cell lines (KYSE30, KYSE150, KYSE410, Eca109, and
TE-1) were obtained from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China). All cell lines were cultured at
37◦C with 5% CO2 in RPMI 1640 medium (Gibco, Carlsbad, CA,
United States) with 10% fetal bovine serum (FBS; Gibco).

Transfection of siRNAs
Two small interfering RNAs (siRNA-1, siRNA-2) against
LINC01614 and a scrambled control siRNA (siRNA-NC) were
purchased from Suzhou Genepharma Co., Ltd. The sequences of
the siRNAs are given in Supplementary Table 2. The knockdown
efficiency was tested by RT-qPCR 48–72 h after transfection.

Transwell Assays
Transwell assays were carried out in Transwell chambers (pore
size, 8 µm; Costar, Washington, DC, United States) according
to the manufacturer’s instructions. In brief, cells were harvested
after treatment with siRNA for 24 h or after no treatment. Then,
200 µL of serum-free medium (containing 5 × 104 cells) was
placed in the upper chamber of each insert, and 800 µL of RPMI
1640 medium with 20% FBS was placed in the lower chamber.
After incubation for 48 h at 37◦C, the remaining tumor cells
inside the upper chamber were removed with cotton swabs before
fixation and staining.

4http://www.r-project.org/

Western Blotting
Cells were lysed using total protein extraction buffer
(Beyotime Biotechnology, Shanghai, China). Equal amounts
of lysate samples were separated by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis and then immunoblotted
with primary antibodies and the corresponding horseradish
peroxidase-labeled secondary antibodies. The procedure is
described in more detail in Supplementary File 1.

Statistical Analysis
Bioinformatics analysis was carried out using R 3.6.2. The
results of the cytology experiments were analyzed using Prism
6 (GraphPad, San Diego, CA, United States). Student’s t test
was used to compare two independent continuous variables. The
unpaired t test was used to detect clinical samples of ESCC. The
log-rank test was employed for survival analyses. P < 0.05 was
regarded as significant.

RESULTS

Identification of DEGs
A flowchart of the processing and analyses of data undertaken
in our study is shown in Figure 1. A total of 99 ESCC
tissues and 27 normal tissues from different resources (Xiangya
Hospital, GSE111011, GSE32424, and TCGA_ESCC) were
analyzed by RNA-seq.

There were 816 DECGs and DELGs (377 upregulated and
439 downregulated) in the samples from Xiangya Hospital, 4754
DECGs, and DELGs (2569 upregulated and 2185 downregulated)
in the GSE111011 data set, 4814 DECGs, and DELGs (2671
upregulated and 2143 downregulated) in the GSE32424 data
set, and 7322 DECGs and DELGs (3347 upregulated and 3795
downregulated) in the TCGA data set. These are illustrated in
the volcano plots in Figures 2A–D. As shown in the Venn
diagrams in Figures 2E,F, 148 genes (106 upregulated and
42 downregulated) were consistently differentially expressed
in all four databases. These commonly expressed genes are
listed in Supplementary Table 3, including four upregulated
genes encoding lncRNAs: LINC01614, LINC01415, NKILA, and
HMGA2-AS1.

Functional Analysis of DEGs
Analysis of GO annotations showed that the upregulated
DECGs were enriched in extracellular structure organization
(ontology: biological process), collagen-containing extracellular
matrix (ontology: cellular component), and extracellular
matrix structural constituent (ontology: molecular function)
(Figures 3A–C). In analysis of the KEGG pathway,
the upregulated genes were enriched significantly in
proteoglycans and microRNAs in cancer (Figure 3D).
Moreover, the downregulated genes were enriched in the
fatty acid metabolic process (ontology: biological process),
actin cytoskeleton (ontology: cellular component), and
arachidonic acid monooxygenase activity (ontology: molecular
function) (Figures 3E–G). According to analysis of the
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FIGURE 1 | Flowchart showing the processing and analysis of data in this study.

KEGG pathway, the downregulated genes were enriched
significantly in arachidonic acid metabolism and chemical
carcinogenesis (Figure 3H).

Construction of a Protein–Protein
Interaction Network, Module Analysis,
and Selection of Hub Genes
A PPI network containing 71 nodes and 172 edges was
constructed by uploading 127 protein-coding genes to the
STRING online database and visualized using Cytoscape
(Figure 4A). In Figure 4, rectangles represent genes that were
highly expressed in ESCC tissues, whereas diamonds represent
genes with low expression in ESCC tissues. Subsequently, two
modules were extracted using the MCODE Cytoscape plugin.
Module 1 consists of 10 nodes and 29 edges (Figure 4B), and
module 2 comprises nine nodes and 31 edges (Figure 4C).
According to analysis of the KEGG pathway, module 1 was
mainly enriched in extracellular matrix–receptor interaction and
focal adhesion (Figure 4D), whereas module 2 was enriched
primarily in DNA replication (Figure 4E).

Validation of Hub Genes in Modules 1
and 2
All the hub genes in the two modules were evaluated using the
GSE53625 and TCGA_HNSCC data sets. Results show that the
hub genes had high expression in tumor samples in both data sets
which were consistent with the results from the discovery data set
(Supplementary Figure 1).

Survival Analysis of Hub Genes in
Module 1 and Differentially Expressed
lncRNAs
The prognostic value of the 10 hub genes in module 1 and
the four upregulated lncRNAs was determined using the log-
rank test. The best cutoff value for BGN and SPP1 in GSE53625
was 14.8 and 15.9 RPKM, respectively. The best cutoff value (in
RPKM) for BGN, SPP1, LINC01614, LINC01415, and NKILA in
TCGA_HNSCC was 14.1, 9.72, 3.90, 5.9, and 5.1, respectively.
The results obtained using GSE53625 and TCGA_HNSCC
show that higher expression of SPP1 and BGN was related to
worse overall survival in ESCC (Figures 5A–D) as was higher
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FIGURE 2 | DEGs in ESCC. (A–D) Volcano plots showing DEGs in the discovery data sets: Xiangya Hospital (A), GSE111011 (B), GSE32424 (C), and TCGA_ESCC
(D). Dark circles represent genes without significant differential expression (FDR > 0.01), red circles represent upregulated mRNAs with significant differential
expression [log2(fold change) >1 and FDR < 0.01], and blue circles represent downregulated mRNAs with significant differential expression [log2(fold change) <1
and FDR < 0.01]. The top 20 upregulated and downregulated genes are listed. (E,F) Venn diagrams of the overlapping DEGs, including 106 upregulated (E) and 42
downregulated (F) genes, from the four data sets.
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FIGURE 3 | Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of significant DECGs. (A–C) Analysis of GO annotations of
upregulated DECGs with respect to three domains: biological process (A), cellular component (B), and molecular function (C). (D) KEGG pathway analysis of
upregulated DECGs. (E–G) Analysis of GO annotations of downregulated DECGs with respect to three domains: biological process (E), cellular component (F), and
molecular function (G). (H) KEGG pathway analysis of downregulated DECGs. The size of a dot represents the number of genes enriched for each GO term and
KEGG pathway; colors from red to blue represent the adjusted P-value.

expression of three differentially expressed lncRNAs (LINC01614,
LINC01415, and NKILA) (Figures 5E–G).

Validation of Hub Genes in ESCC Tissue
To further investigate expression of hub genes with
prognostic value in ESCC, we undertook RT-qPCR
screening of the expression of BGN, SPP1, LINC01415,

LINC01614, and NKILA in 65 ESCC specimens and 20
non-cancerous specimens of esophageal tissue. Expression
of BGN, SPP1, LINC01415, and LINC01614 was much
higher in tumor samples than in normal esophageal tissues
(Figures 6A–D). However, there was no difference in
expression of NKILA between tumor samples and normal
samples (Figure 6E).
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FIGURE 4 | (A) Protein–protein interaction (PPI) network of DEGs constructed in STRING and visualized by Cytoscape. Rectangles represent genes highly
expressed in ESCC tissues; diamonds and green color represent genes with low expression in ESCC tissues. (B,C) Two modules selected by modular analysis with
the MCODE Cytoscape plugin (yellow, module 1; blue, module 2). (D) KEGG pathway analysis showing enrichment of module 1 genes in ECM–receptor interaction.
(E) KEGG pathway analysis showing enrichment of module 2 genes in DNA replication. Nodes that did not interact with other nodes are hidden.

Knockdown of LINC01614 Expression
Inhibits Metastasis of Esophageal
Squamous Cell Carcinoma via
Regulation of EMT
Gene set enrichment analysis revealed that the EMT gene
set was positively correlated with LINC01614 expression
(NES 3.894, P = 0.006; Supplementary Figure 2). First,
we screened LINC01614 expression in five ESCC cell
lines (KYSE150, KYSE410, KYSE30, Eca109, and TE-
1) using RT-qPCR (Figure 7A). Two cell lines (Eca109
and KYSE410) were selected for subsequent experiments
because they showed relatively high expression. Eca109
and KYSE410 cells were transfected with two siRNAs
against LINC01614: si-LINC01614#1 and si-LINC01614#2,
respectively. Scrambled siRNA-transfected cells were used
as negative controls. si-LINC01614#1 and si-LINC01614#2
showed significant knockdown efficiency (Figures 7B,C). The
results of the Transwell assay showed that the migration
rate of LINC01614 knockdown cells was less than that

of control cells (P < 0.001, Figures 7D,E). Western
blotting (WB) showed that knockdown of LINC01614
expression reduced the expression of N-cadherin and
ZEB1 in Eca109 and KYSE410 cells (Figures 7F,G).
We also explored the role of LINC01415 in ESCC:
knockdown of LINC01415 expression reduced the migration
of ESCC cells without affecting EMT-related markers
(Supplementary Figure 3).

DISCUSSION

Exploring the potential mechanisms underlying ESCC
development would be of considerable benefit for prognosis
prediction. In this study, 106 upregulated and 42 downregulated
genes were identified in discovery data sets, including four
genes encoding lncRNAs whose functions were evaluated by
in vitro studies. The MCODE plugin of Cytoscape was used to
screen out two significant modules from the PPI network of 127
protein-coding genes.
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FIGURE 5 | (A,B) Survival analysis of GSE53625 by log-rank test shows that higher expression of BGN and SPP1 is related to poor survival. (C–G) Survival analysis
of TCGA _HNSCC by log-rank test shows that higher expression of BGN (C), SPP1 (D), LINC01614 (E), LINC01415 (F), and NKILA (G) is related to poor survival in
HNSCC.

TABLE 1 | Characteristics of the data sets used in this study.

Dataset Platform Sample size Tumor type Purpose

Normal Tumor

Xiangya Illumina HiSeq 3000 3 3 ESCC Discovery

GSE111011 Illumina HiSeq 2500 7 7 ESCC Discovery

GSE32424 Illumina Genome Analyzer IIx 5 7 ESCC Discovery

TCGA_ESCC Illumina HiSeq 11 82 ESCC Discovery

GSE53625 GPL18109 (microarray) 179 179 ESCC Validation of DECGs Survival analysis

TCGA_HNSCC Illumina HiSeq 44 502 HNSCC Validation of survival analysis

The microarray data set GSE53625 was employed to explore
the prognostic value of hub genes. Of the 10 hub protein-
coding genes in module 1 of the PPI, high expression of SPP1
and BGN indicated a poor prognosis. BGN and SPP1 are

essential components of the extracellular matrix, which has a
critical role during the migration and progression of tumor cells
(Rangaswami et al., 2006; Hu et al., 2016). Extensive studies have
elucidated the crucial role of BGN in regulating the progression
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FIGURE 6 | (A–D) Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showing much higher expression of BGN (A), SPP1 (B), LINC01415 (C),
and LINC01614 (D) in ESCC tumor tissues compared with that in normal tissues (P < 0.05). (E) A similar expression of NKILA was observed in tumor and normal
samples. The mean gene expression in normal tissue was used as a reference to calculate the value of 2-11Ct. NC, negative control.

and metastasis of various malignancies, including prostate
(Jacobsen et al., 2017), gastric (Hu et al., 2016), endometrial
(Sun et al., 2016), and colon cancers (Jacobsen et al., 2017; Liu
B. et al., 2018). Similarly, osteopontin (which is encoded by
SPP1) is correlated significantly with tumor metastasis and a poor
prognosis in cancers (Briones-Orta et al., 2017; Cabiati et al.,
2017; Xu et al., 2017; Li et al., 2018; Zhao et al., 2019). However,
the prognostic value of the four upregulated lncRNAs could not
be determined owing to the deficiency of lncRNA probes in the
GSE53625 microarray platform.

The TCGA_ESCC database had limited testing power because
it contains data for 82 patients, only 31 of whom reached the
endpoint in the follow-up. Moreover, ESCC is distinct from
EAC in its genetic and epigenetic features (Cancer Genome
Atlas Research Network, 2017). Therefore, we sought another
approach for our ESCC research.

Moreover, a previous study suggests that the unmatched
norms from healthy individuals are different from paired normal
tissue, which is obtained from patients (Buzdin et al., 2018).
In this study, we initially screened the DEGs between tumor
tissue and paired normal tissues in the TCGA data set. Then,
we also profiled the DEGs between the TCGA and GTEx
databases; the latter has gene expression data obtained from
healthy individuals (Supplementary Figure 4A). Results show
that, when compared to normal tissue, the number of DEGs is
markedly higher (Supplementary Figure 4B). However, there are
still 3521 overlapped genes. Further, we detected the overlapped
genes with these DEGs, which revealed that there were 110 genes

that shared the common expression pattern. Notably, the five
genes (LINC01415, LINC01614, NKILA, SPP1, and BGN) we
selected for analysis were within the 110 genes.

According to previous studies, ESCC and HNSCC can
be considered almost a single disease entity with similar
molecular characteristics according to multiplatform data,
including data on somatic copy number alterations, DNA
methylation, and transcription (Cancer Genome Atlas Research
Network, 2017). They also have the same histology type
(i.e., squamous cell carcinoma) and field cancerization (i.e.,
upper gastrointestinal tract) and have common risk factors,
including use of tobacco and alcohol (Onochi et al., 2019).
Furthermore, similar expression of hub genes to that found
in ESCC was detected in the TCGA_HNSCC database. Thus,
we believe that combined analysis of the data for ESCC
and HNSCC is a promising approach for exploring ESCC
features. Furthermore, studies using TCGA_HNSCC have
shown the same results as those using GSE53625 (i.e., higher
expression of SPP1 and BGN indicate poor overall survival
in both data sets). Besides this, overexpression of LINC01614,
LINC01415, and NKILA was related to a poor prognosis
in HNSCC and ESCC.

To verify the reliability of these bioinformatics evaluations,
we carried out RT-qPCR to assess expression of hub genes
(BGN, SPP1, LINC01614, and LINC01415) in clinical tumor
samples. These genes had much higher expression in tumor
tissues than that in normal tissues data that were consistent with
the bioinformatics results.
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FIGURE 7 | (A) Two cell lines (Eca109 and KYSE410) were selected for subsequent experiments due to their relatively high expression among the five candidate
ESCC cell lines (KYSE150, KYSE410, KYSE30, Eca109, and TE-1). (B,C) si-LINC01614#1 and si-LINC01614#2 show significant knockdown efficiency. (D,E)
Downregulation of LINC01614 expression inhibited the migration ability of ESCC cell lines (Eca109 and KYSE410). (F,G) Knockdown of LINC01614 expression
reduced expression of N-cadherin and ZEB1 in Eca109 and KYSE410 cells. Data are the mean ± SD from three independent experiments. ***P < 0.001;
****P < 0.0001. NC, negative control.

NKILA is a nuclear factor kappa light-chain enhancer of
activated B cell (NF-κB) interacting lncRNA. It has been shown
to function as a tumor suppressor by inhibiting the NF-κB

pathway in various cancers, including breast cancer (Liu et al.,
2015; Wu et al., 2018), melanoma (Bian et al., 2017), non-small
cell lung cancer (Lu et al., 2017), nasopharyngeal carcinoma
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(Zhang et al., 2019), laryngeal cancer (Yang et al., 2018), and
ESCC (Lu et al., 2018).

Recent studies show that LINC01614 has high expression in
tumor tissues and is associated with a poor prognosis in breast
cancer (Wang et al., 2019) and non-small cell lung cancer (Sun
and Ling, 2019). LINC01614 also promotes the carcinogenesis
of lung adenocarcinoma by downregulating expression of
microRNA-217 and upregulating expression of Forkhead Box
Protein P1 (FOXP1) (Liu A. N. et al., 2018). However, the role
of LINC01614 in ESCC is not known. We show that inhibition of
LINC01614 expression (i) by siRNA could significantly suppress
migration of ESCC cells and (ii) in ESCC cell lines could decrease
expression of EMT markers, including N-cadherin and ZEB1. In
summary, LINC01614 is a novel oncogene in ESCC with a critical
role in the metastasis of ESCC cells.

Overall, by integrated bioinformatic analysis of transcriptome
data, we identified two upregulated lncRNAs (LINC01614 and
LINC01415) and two hub protein-coding genes (SPP1 and BGN)
as potential pathogenic genes and prognostic markers in ESCC.
Moreover, GSEA revealed that the EMT gene set was positively
correlated with LINC01614 expression. In vitro experiments
revealed that knockdown of LINC01614 expression suppressed
the migration ability of ESCC cell lines via EMT regulation.

However, our study is limited by an insufficient number
of samples and loss of patients to follow-up. Besides this, the
regulatory mechanism of LINC01614 in ESCC is not known.
Consequently, further clinical data and additional basic research
are required to explore the role of LINC01614 in ESCC.
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for subsequent experiments owing to their relatively high expression among the
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efficiency. (D,E) Downregulation of LINC01415 expression inhibited the migration
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