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Editorial on the Research Topic

Insights in Toxoplasma Biology and Infection—15th Biennial Meeting on Toxoplasma Biology
and Toxoplasmosis

INTRODUCTION

The 15th Biennial Meeting on Toxoplasma Biology and Toxoplasmosis was held between 19–22
June 2019 in Colombia. The Scientific Committee of this event (Figure 1) organized a program that
gathered worldwide experts discussing new knowledge advancements regarding the protozoa and
the infection caused by it. Numerous topics were addressed, including not only basic parasite-
biology mechanisms, but also immune response, diagnostic tools, development of new therapies and
public health aspects of T. gondii infection. Eleven articles and 118 authors are part of this special
Research Topic published in Frontiers in Cellular and Infection Microbiology, which offers a
comprehensive view of relevant work presented during the global conference. In this Editorial, we
will comment briefly the main aspect addressed for these works and how they improve our current
knowledge for this important zoonotic infection.

One basic mechanism of Toxoplasma biology is the process by which centromeres are held in
position at the nuclear envelope and keep track of the position of their chromosomes, without
condensing their chromatin during division. The work published on this Research Topic showed
that centromere-associated protein interacts with chromatin and that chromatin binding factors at
the centromeres mediate the maintenance of their localization at the periphery of the nucleus
(Francia et al.). This data shed light about how Apicomplexa coordinates chromosomes during
division. Another basic aspect is how T. gondii influences host cell’s biological processes. The work
reported by Vieira et al. showed the disruptive effects of this parasite in one murine myoblast cell
line, where T. gondii established a pro-inflammatory environment extended to neighboring cells and
damaged their response to myogenic stimuli. Additional evidence of the modulation of T. gondii on
inflammatory host signal pathway was provided by the transcriptome analysis by Li et al., which
analyzed how Toxoplasma-ROP18 virulent factor altered the expression of 750 genes (467
upregulated genes and 283 downregulated genes) in HEK293T cells. This data provided new
understanding into how ROP18 may influence these processes by altering the expression of genes,
transcription factors and pathways, laying the foundations for future in vitro and in vivo studies.
gy | www.frontiersin.org March 2021 | Volume 11 | Article 65263715
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Immune response in animal models others than mouse was
analyzed by Rahman et al., which showed how pigs can serve as
an interesting model for studying the T. gondii infection kinetics
in the gut. The results suggest that upon ingestion the parasite
first enters the host at the duodenum and then disseminates to
other tissues. This is associated with the activation of IFN g
secreting immune cells. These findings lay a foundation for
further study on the early stages of T. gondii intestinal
infection and might inform strategies aimed at preventing
initial invasion of the host by this parasite (Rahman et al.).

Considering the epidemiological factors of this zoonosis, Blaizot
et al. described the investigation of a toxoplasmosis outbreak in a
remote Amerindian community. This work highlighted the
probable multifactorial origin of this infection, underscoring new
life habits among an indigenous population which live in close
contact with the Amazon rainforest. Sedentary settlements had
been built in the last few decades without providing safe water
sources, increasing the risk of parasite circulation in cases of
dangerous new habits such as cat domestication. The authors
recommended the pursuit of a “One Health” strategy of research
involving medical anthropology, veterinary medicine, and public
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 26
health, for a better understandingof the transmission routes and the
presence of this zoonotic disease.

Studies in human cells about the immune response to the
parasite modified by parasite virulent proteins ROP18 and
ROP16 were reported by Hernandez-de-los-Rios et al. The
research group studied infecting cells with knockout parasite
for each of these proteins, and how the secretion by peripheral
blood polymorphic mononuclear cells of proinflammatory
cytokines was influenced by the host’s polymorphisms in the
cytokine genes. The findings suggest that the immune response
to the parasite in humans does not only depend on the presence
of parasite virulence factors like ROP16 and ROP18, but also on
the host genetic susceptibility to the infection (Hernández-de-
los-Rıós et al.).

One major aspect of human toxoplasmosis is the retinal
involvement. An interesting review by de Campos et al.
analyzed the available evidence of the effects that congenital
TORCH (Toxoplasmosis – Other – Rubella – Cytomegalovirus -
Herpes) infections may cause to the developing retina and the
cellular and molecular aspects of these diseases, with special
emphasis on congenital ocular toxoplasmosis. While some
FIGURE 1 | Scientific Committee of the XVth Biennal Toxoplasma Biology meeting from left to right: Sebastian Lourido, David Roos, Jeroen Saeij, Karen Shapiro,
Jorge Gomez-Marin, Aurelien Dumetre, Fabiana Lora- Suarez and Alejandra de-la-Torre.
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questions remain unanswered, this work gives an insight in which
key factors are implicated on retinal damage during in utero
infection, for further research in the pathophysiology of
congenital ocular toxoplasmosis (Campos et al.). Again, in
relation to ocular toxoplasmosis, Nakashima et al. investigated
the correlation of serum IgG anti-T. gondii antibody
concentrations with Nested PCR. This work was developed
considering that the influence of IgG anti-T. gondii antibodies in
molecular analysis carried out in peripheral blood remain unclear
and considering that blood transfusion and organ transplantation
represent different forms for T. gondii transmission, apart from
food and water-borne sources. Results from chronically infected
healthy blood donors showed that variations in the serum IgG
anti-T. gondii antibody concentrations do not correlate to the
parasitemia detected by Nested PCR. Similarly, Murata et al.
compared serological methods such as ELISA and ELFA, as well
as molecular cPCR, Nested PCR and qPCR, for the diagnosis of
ocular T. gondii infection. The authors showed that the combined
use of certain tests along with clinical evaluation and follow up
could be useful for the correct diagnosis of T. gondii infection
(Murata et al.).

A new strategy that is promising for diagnosis is the aptamer
assay that uses short, single-stranded oligonucleotides that bind to
targets with high affinity and specificity by folding into tertiary
structures. The detection of the virulent protein Toxoplasma ROP18
protein in human serum with aptamer, signaled that detection of
this protein was related with more severe forms of congenital
toxoplasmosis suggesting its use as prognostic biomarker (Vargas-
Montes et al.).

Finally, one major finding reported in this Research Topic is
the development of a powerful tetrahydroquinolone, JAG21,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 37
which can eliminate apicomplexan parasites in tissues
(McPhillie et al.). This is an extraordinary achievement in in
vivo models because, until now, there are no drugs that can
eliminate tissue cysts of the parasite responsible of reactivations
during the host’s period of life. The authors created a next
generation lead compound with high in vitro and in vivo
efficacy against T. gondii tachyzoites, bradyzoites and
established encysted organisms (McPhillie et al.). This
compound is promising and deserves further development
through preparation of advanced formulations and testing in
further studies of pharmacokinetics, efficacy, and safety.

In summary, this Research Topic shows significant advances
made in the study of T. gondii using in-vitro, in-vivo and animal
models. The results presented here will illuminate the pathway to
create an effective clinical response to this public health key issue.
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Toxoplasma gondii engenders the common parasitic disease toxoplasmosis in almost

all warm-blooded animals. Being a critical secretory protein, ROP18 is a major virulence

factor of Toxoplasma. There are no reports about ROP18 detection in human serum

samples with different clinical manifestations. New aptamers against ROP18 protein were

developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX).

An Enzyme-Linked Aptamer Assay (ELAA) platform was developed using SELEX-derived

aptamers, namely AP001 and AP002. The ELAA was used to evaluate total antigen from

T. gondii RH strain (RH Ag) and recombinant protein of ROP18 (rROP18). The results

showed that the ELAA presented higher affinity and specificity to RH Ag and rROP18,

compared to negative controls. Detection limit of rROP18 protein in serum samples was

measured by standard addition method, achieving a lower concentration of 1.56µg/mL.

Moreover, 62 seropositive samples with different clinical manifestations of toxoplasmosis

and 20 seronegative samples were tested. A significant association between ELAA test

positive for human serum samples and severe congenital toxoplasmosis was found (p

= 0.006). Development and testing of aptamers-based assays opens a window for low-

cost and rapid tests looking for biomarkers and improves our understanding about the

role of ROP18 protein on the pathogenesis of human toxoplasmosis.

Keywords: ROP18 protein, aptamer, SELEX, ELAA, toxoplasmosis, human serum

INTRODUCTION

Toxoplasma gondii (T. gondii) is an intracellular parasite with cosmopolitan distribution that infects
the majority of warm-blooded animals (Jones and Dubey, 2012). Nearly one third (∼25%) of
the world’s human population may be chronically infected with T. gondii (Pappas et al., 2009).
Infection in humans can cause severe ocular, neurologic, and sometimes systemic disease, especially
in immunocompromised and congenitally infected individuals (Cardona et al., 2011; Pfaff et al.,
2014). Transmission of the parasite has been demonstrated in humans by the consumption of
meat, vegetables and contaminated water (Lora-Suárez et al., 2007; Franco-Hernandez et al., 2016;
Triviño-Valencia et al., 2016). For all these reasons, Food and Agriculture Organization (FAO)
and World Health Organization (WHO) declared toxoplasmosis as a foodborne parasite infection
disease of global concern (Robertson et al., 2013).

Globally, the serological prevalence of toxoplasmosis is highly variable, ranging from 10 to 15%
in the United States, to >60% in South and Central America (Gilbert et al., 2008). Additionally, it
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has been reported that South America is the continent with
the highest burden of the disease, with congenital and ocular
toxoplasmosis frequently associated with more severe symptoms
(de-la-Torre et al., 2007; De-la-Torre et al., 2009; Torgerson
and Mastroiacovo, 2013). The high rate of ocular toxoplasmosis
in Colombia is likely attributable to exposure to more-virulent
strains of T. gondii (Ajzenberg, 2012), even if other factors, such
as inoculum exposure or the genetic background of the host, may
be involved (de-la- Torre et al., 2013). Therefore, there are some
indications that disease outcomes in humans can be influenced
by the variability of the infecting T. gondii strain (Grigg et al.,
2001; Reese et al., 2011; McLeod et al., 2012; Sánchez et al., 2014).

Experimental crosses between T. gondii strains with
different virulence patterns allowed the identification of several
polymorphic genes coding for secreted factors of the parasite,
associated with differences in the virulence in mice (Saeij et al.,
2006; Taylor et al., 2006; Talevich and Kannan, 2013). These key
virulence factors include proteins from the rhoptry family (ROP
kinases) that exert kinase or pseudokinase activities (Hunter
and Sibley, 2012) contributing to disarm innate immunity and
promote survival of the parasite (Hakimi et al., 2017). ROP18
is one of the major virulence factors of T. gondii, identified as
a serine/threonine kinase secreted into the parasitophorous
vacuole (PV) and host cytosol (Taylor et al., 2006; Talevich and
Kannan, 2013). A recent study shows that ROP18 is a conserved
virulence factor in genetically diverse strains from North and
South America (Behnke et al., 2015). Furthermore, there is a
report that demonstrates the presence of virulent alleles that code
for ROP18 in humans with ocular toxoplasmosis in Colombia,
who presents a more severe inflammatory reaction in the eye
(Sánchez et al., 2014). Currently, there is only one study that
indicates the presence of specific IgM and IgG antibodies against
ROP18 in sera from humans with toxoplasmosis (Gatkowska
et al., 2015). However, there are not any reported methods
that allow the direct detection of this protein in human serum.
ROP18 protein identification in human serum would be of great
importance in order to ascertain a possible correlation between
the presence of this virulent factor and the severity of the disease.

To perform the identification and quantification of protein
biomarkers in serum, DNA and RNA aptamers have been
used (Drolet et al., 1996; Gold et al., 2010). Aptamers are
short, single-stranded oligonucleotides, that bind to targets with
high affinity and specificity by folding into tertiary structures
(Ellington and Szostak, 1990; Tuerk and Gold, 1990). These
molecules have promising roles in clinical diagnostics and as
therapeutic agents (Zhang et al., 2019), showing some advantages
compared to antibodies, such as shorter generation time, lower
costs of manufacturing, no batch-to-batch variability, higher
modifiability, better thermal stability and higher target potential
(Zhou and Rossi, 2017). Due to these characteristics, aptamers
could be used as molecular recognition agents alternative to
antibodies in enzyme linked immunosorbent (ELISA) assays,
hence its application has given rise to the ELAA assay
(Enzyme-Linked Aptamer Assay), in which aptamers are the
recognition agents (Toh et al., 2015). This ELAA assay has
been used to recognize Leishmania infantum proteins, like H2A
histones (Ramos et al., 2007; Martin et al., 2013) and also for

detectingMycobacterium tuberculosis culture filtrate protein and
secreted antigen in sputum samples from tuberculosis patients
(Rotherham et al., 2012).

Although aptamer research in the area of parasitology is
still in the early stages, promising results have been obtained
for the main protozoan parasites, including Trypanosoma spp.,
Plasmodium spp., Leishmania spp., Entamoeba histolytica, and
Cryptosporidium parvuum. These aptamers have been used to
detect and treat the parasitic infections caused by these parasites
in human beings (Ospina-Villa et al., 2018). For T. gondii, only
one work with DNA aptamers has been reported for the detection
of anti-Toxoplasma IgG antibodies (Luo et al., 2013).

There are no aptamer-based methods for the detection of
T. gondii proteins in serum. Therefore, we developed specific
aptamers against ROP18 protein by SELEX. Those newly
identified aptamers were utilized in a direct or a sandwich ELAA
test to detect total antigen from Toxoplasma and recombinant
ROP18 protein. Moreover, human serum samples with rROP18
protein were analyzed, as well as the seropositive samples
from individuals with toxoplasmosis were evaluated with this
novel ROP18-ELAA platform (Figure 1). The newly developed
aptamer-based sensing platform for ROP18, will enhance our
understanding about the role of virulence factors on the
pathogenesis of toxoplasmosis in humans.

MATERIALS AND METHODS

Human Clinical Samples and Definition of
Clinical Manifestations
Human serum samples for the ELAA test were obtained from 62
individuals with toxoplasmosis, 20 seronegative for the infection
and 5 from individuals with a different infection as a control
of specificity. Most of the samples (n = 67) were collected at
the Center for Biomedical Research (CIBM) at the University
of Quindío and some of them with ocular toxoplasmosis (n
= 20) were recruited at the “Clínica Barraquer” in Bogotá-
Colombia, with the previous signature of the informed consent.
We included 18 serum samples from patients with toxoplasmic
lymphadenitis (IgM and IgG anti-Toxoplasma positive) with
avidity <50%; 13 from individuals with chronic-asymptomatic
infection without eye injury (IgM anti-Toxoplasma negative and
IgG anti-Toxoplasma positive); 21 from patients with ocular
toxoplasmosis diagnosed by indirect ocular fundoscopy, with
antibody levels positive in serum/aqueous humor (index <2),
with PCR for Toxoplasma B1 sequence positive and based on the
criteria previously described (De La Torre and López-Castillo,
2009); and 10 serum samples with congenital toxoplasmosis
(IgG anti-Toxoplasma positive) confirmed as described by the
European Network in congenital toxoplasmosis (Lebech et al.,
1996). In the same way, we included 20 serum samples
from seronegative individuals (IgM and IgG anti-Toxoplasma
negative) as the negative control of the assay. Additionally,
five serum samples from IgM Dengue-positive individuals
(Diagnosed by an IgG capture ELISA for Dengue, Vircell Ref.
M1018, carried out in the CIBM), were included to evaluate the
cross-reactivity of previously standardized ELAA.
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FIGURE 1 | Schematic representation of SELEX process (A) and ROP18-ELAA platform using SELEX-derived aptamers (B). This figure was created by a visual tool,

BioRender.com.

In vitro Selection of Aptamers Against T.
gondii ROP18
Two nanomoles ssDNA library (5′-ATCCAGAGTGACGCAG
CA-40N-TGGACACGGTGGCTTAGT-3′) were dissolved in 350
µL binding buffer (a solution of DPBS containing 5mM MgCl2,
0.1 mg/mL tRNA, 1 mg/mL BSA), mixed and heated at 95◦C for
5min, then snap cooled on ice to create folded ssDNA.

The snap-cooled DNA library was brought to room
temperature and incubated with 400 pmol GST-rROP18
protein that was conjugated with Glutathione Sepharose
beads at RT with rotation for 1 h. After incubation, the
supernatant containing unbound sequences was removed and
the beads were washed three times with 1mL washing
buffer (a solution of DPBS containing 5mM MgCl2). The
ssDNA-protein-bead complexes were suspended in DNase-free
water for PCR amplification of ROP 18-bound sequences
by using forward primer (5′-ATCCAGAGTGACGCAGCA-
3′) and reverse primer with biotinylated 5′ end (5′-biotin-
ACTAAGCCACCGTGTCCA-3′). PCR product was then passed
three times through the DNA synthesis column loaded with

streptavidin sepharose beads. The beads were washed again with
2.5mL of PBS. 500 µL of 200mM NaOH was added to elute the
ssDNA. The eluted ssDNA was added into a NAP5 column pre-
washed with 15mL of deionized water for desalting. 1,000 µL
of DNase-free water was allowed to pass through the column to
elute the ssDNA. The concentration of ssDNA was determined
by UV absorbance at 260 nm and concentrated by using a DNA
Speedvac dryer. Precipitated ssDNA was resuspended in binding
buffer for subsequent round of selection. After 15 rounds of
selection, the final enriched libraries were PCR-amplified and
cloned into pJET1.2/blunt cloning vector using the CloneJET
PCR Cloning Kit (Thermo Fisher Scientific) according to the
manufacturer’s instructions. One hundred fifty Colonies from
the 15th round of selection were picked and analyzed by
Sanger sequencing.

Aptamer and Antibody Anti-ROP18
Two top enriched DNA aptamers with biotin labeled were
used as recognition agents. Those aptamers are AP001 with
the sequence 5′-TCCTGGCAGCGCTTTTGCTTGTTTGCTC
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TCGTACCTGTCC-3’ and AP002 with the sequence 5′-CGCA
CCGATCCGGTGTTAATCTCGACGTCCCTTAAGTTTG-3’.
In addition, a rabbit anti-ROP18 polyclonal antibody (a gift from
the Dr. L. D. Sibley from the University of Washington, Saint
Louis, United States of America).

Toxoplasma lysate antigen from the RH strain (RH Ag) was
used as positive control, because it expresses the ROP18 protein
(Supplementary Figure S1). RH Ag was prepared as previously
reported (Torres-Morales et al., 2014) with some modifications.
Briefly, T. gondii tachyzoites from the RH strain were maintained
in vitro in human fibroblasts (HFF) at 37◦C and 5% CO2. The
antigen was obtained after recovering the tachyzoites from the
culture and centrifuged at 3,000 rpm for 5min in RPMI medium,
the tachyzoites pellet was resuspended in saline and subjected 5
times to freeze-thawing and to breakage by sonication 8 times a
20W for 20 s. Subsequently, the lysis of the parasite was verified
by microscopy. Finally, 1x protease inhibitor cocktail (dilution
1:100) was added to the antigen (Ref. I3786, Sigma-Aldrich, St.
Louis, USA), the aliquots were performed and stored at −80◦C.
The protein quantification was performed by the Bicinchoninic
Acid Protein Assay (Ref. 23227, Thermo Scientific, Rockford, IL)
by using the spectrophotometer EPOCH (BioTek Instruments,
Winooski, VT, USA) at 280 nm. The RH Ag, was evaluated at
different concentrations (from 200 to 6.25µg/ml) in order to
determine the detection limit for each assay.

In addition to RH Ag, the recombinant protein ROP18
(rROP18) of T. gondii RH strain produced in our lab was also
used as positive control in the last steps of the standardization.
In the same way, three negative controls were included: the
recombinant protein Disulfide isomerase of T. gondii (PDI);
Lucifensin-CPD, a recombinant protein from the fly Lucilia
sericata (LucGT), both produced in our lab, and bovine serum
albumin (BSA) (AMRESCO), these controls were used at a
concentration of 6.25µg/mL. Likewise, a lysate antigen from
a Knockout strain for ROP18 (KOROP18, a gift from the Dr.
Sibley, St. Louis, USA) of T. gondii was used as another negative
control of the assay, this antigen was prepared similar to RH Ag.

Enzyme-Linked Aptamer Assay (ELAA)
Standardization
For standardization of the ELAA assay, two different
configurations were evaluated: direct and sandwich ELAA
(Toh et al., 2015), in order to determine which configurations
allowed to reach a higher detection limit of RH Ag and rROP18
protein in human serum. Initially, all the conditions for direct
ELAA were standardized and based on these conditions we
performed the sandwich ELAA, in which the only additional
step was the anti-ROP18 antibody, added at the beginning of
the assay.

To standardize the general protocol, the antigens (Ag RH,
rROP18, PDI, LucGT, BSA, and KOROP18) were immobilized
in 96-well microtiter plates (NUNC) diluted in 0.1M carbonate
buffer at a pH of 9.6 (Na2CO3, 0.159 g/100mL; NaHCO3, 0.293
g/100mL) and adding 100 µL per well. The antigen incubation
was evaluated for 1 h at 37◦C, or overnight at 4◦C as previously
reported (Rotherham et al., 2012; Luo et al., 2013). After coating,
we performed 5 washes with 0.01M phosphate buffered saline

(PBS) (pH 7.4) plus 0.05% Tween 20 (PBS-T), previously used
in other studies (Martin et al., 2013; García-Recio et al., 2016).
Then, three different conditions were included for the blocking
step: 1% BSA (AMRESCO) diluted in PBS-T (Luo et al., 2013),
5% skimmed milk (Rotherham et al., 2012) in PBS-T and no
blocking, as reported in other studies (Martin et al., 2013; García-
Recio et al., 2016). Each well was blocked with 300 µL of the
blocking solution by 1 h at 37◦C. After washing three times,
biotinylated aptamers (200 nM) against ROP18 were added to
each well, these oligonucleotides were diluted in binding buffer
(PBS, 0.5% glucose, 0.1% albumin and 1MMgCl2) and incubated
for 1 h at 37◦C. Then, 5 washes were performed and 100
µL of streptavidin-horseradish peroxidase conjugate (Thermo-
Fisher) was added, evaluating three previously reported dilutions,
1:10,000 (Murphy et al., 2003), 1:15,000 (Rotherham et al.,
2012), and 1:20,000 (Balogh et al., 2010) diluted in PBS and
1% BSA for 1 h at 37◦C. Finally, after five washes, horseradish
peroxidase activity was detected by using TMB for 15min at
room temperature and stopped by adding a 5% of sulfuric acid
(H2SO4). The absorbance at 450 nm was read in an Epoch 2
spectrophotometer (BioTek Instruments, Winooski, VT, USA).
All the samples were processed in triplicate.

Aptamer Concentration and Binding
Affinity of AP001 and AP002
In order to study the binding affinity of aptamers AP001 and
AP002, 50µg/mL (5 µg/well) of RH Ag expressing ROP18
protein were plated in coating buffer and incubated in a 96-
well microtiter plate overnight at 4◦C. Then, the wells were
washed 5 times in PBS-T and then blocked 1 h with 1% BSA
in PBS. Afterwards, three washes were performed and biotin-
labeled aptamers were diluted in binding buffer at concentration
between 50 and 500 nM, and then incubated at 37◦C for 1 h.
Next, 100µL of streptavidin-HRP (1:10,000 dilution) were added
to the individual wells and developed using TMB solution as
above. Data were analyzed using non-linear regression with an
equation y= (x× Bmax) / (x+ Kd), where Bmax is the maximal
binding and Kd is the concentration of ligand required to reach
half-maximal binding.

Detection Limit of rROP18 Protein by
Direct ELAA
To identify the detection limit of the rROP18 protein in
serum, concentrations from 50 to 1.56µg/mL of the antigen
were evaluated. RH Ag and KOROP18 Ag were included at
a concentration of 50µg/mL (the maximum concentration
used for rROP18). All the antigens were diluted in a serum
sample from a seronegative individual (IgM and IgG Toxoplasma
negative). To select the serum dilution we analyze results of
absorbance after performing ELAA protocol with 1:2, 1:5, and
1:10 dilutions of serum from one seronegative individual (IgM
and IgG Toxoplasma negative) that was artificially spiked with 2.5
µg of recombinant ROP18 protein. The 1:10 serum dilution was
the only one that allowed to differentiate between the absorbance
levels of rROP18 and KOROP18 Ag (p = 0.022) and between
rROP18 and serumwithout antigen (p= 0.023). The direct ELAA
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was performed with the general protocol previously standardized
and only with one of the selected aptamers (AP001).

Aptamer-Antibody Assay: Sandwich ELAA
The aptamer-antibody assay binding was performed using the
direct ELAA described above with minor modifications. The
anti-ROP18 polyclonal antibody was coated onto a 96-well
microtiter plate overnight, diluted 1:500 in carbonate buffer and
incubated overnight at 4◦C. After washing five times with PBS-
T, unspecific ligand sites were then saturated with 300 µL of 1%
BSA diluted in PBS for 1 h at 37◦C. After 3 washes, the samples
were included: rROP18 was added at concentrations from 50
to 1.56µg/mL, in order to identify a new detection limit, RH
Ag and KOROP18 Ag were included again at a concentration
of 50µg/mL. All the antigens were diluted in the seronegative
serum sample previously indicated and were diluted 1:10 in
carbonate buffer. The samples were incubated by 2 h at 37◦Cwith
shaking. The biotinylated aptamer was then added at 300 nM
in binding buffer, followed by the HRP-conjugated streptavidin
(1:10,000). The detection limit obtained from this assay was
compared with that obtained in the direct ELAA, with the aim
to analyze if the detection limit of the protein was affected in the
presence of the antibody.

ROP18-ELAA in Human Serum Samples
The standardized direct ELAA was applied for ROP18 detection
in all the serum samples previously described (n = 87). The
20 serum samples from seronegative individuals (IgM and IgG
anti-Toxoplasma negative) were used to calculate the cut-off
point of the test (Cut off: average absorbance plus two standard
deviations). In order to normalize the data and establish a
Reactivity index (RI) for each serum, the mean absorbance of
each sample was divided by the cut-off point of the test. Serum
samples with IR> 1 were considered positive (Caballero-Ortega
et al., 2014). The serum samples were processed in duplicate
and two tests were performed per sample. The inter- and intra-
assay coefficient of variation [CV = (standard deviation of the
RI/arithmetic mean of the RI) ∗ 100] was calculated.

Bioethical Aspects
This study was conducted according to the tenets of the
Declaration of Helsinki, strictly following the Guide for Good
Laboratory Procedures. Informed written consent, according
to the regulation 008430 of 1993 of the Ministry of Health
in Colombia was obtained from all people that accepted
to participate in the study. The protocol was approved by
the Institutional Ethical Committee (Reference numbers: 5–
14-1 from Universidad Tecnológica de Pereira and 030314
from Escuela Superior de Oftalmología Instituto Barraquer de
América) approved the study.

Statistical Analysis
Data from ELAA standardization were expressed as means ±

SEM. Differences in means were compared by the Student t
test or a by non-parametric test if values were not normally
distributed. Kruskal Wallis test and the Dunn test, were used for
multiple comparisons between the standardization conditions.

Spearman correlation test was performed to evaluate associations
between quantitative variables of the population and the
Reactivity index from the ELAA test. These data were analyzed
using Graph Pad Prism 6.0 software (San Diego, CA, USA).

Differences in proportions between groups of patients were
analyzed using the Fisher exact test. In addition, the association
between the test positivity and different clinical characteristics
related to the severity of ocular and congenital toxoplasmosis
were evaluated. Epi-Info software 7.0 (Centers for Disease
Control and Prevention, Atlanta, Georgia) was used to perform
these analysis (available at: http://www.cdc.gov/epiinfo/). A p <

0.05 was considered to be statistically significant.

RESULTS

In vitro Selection of ROP18 Aptamers by
SELEX
A random ssDNA library was used to select aptamers binding
to rROP18. GST-rROP18 protein conjugated with Glutathione
Sepharose beads was used as the target. Following incubation,
the bound aptamers were separated from unbound ones, and
target-bound ssDNA were eluted and enriched at each round
of selection by amplification using PCR. A total of 15 rounds
of repeated separation-amplification cycles were completed in
order to receive high affinity and specificity of DNA aptamers
against ROP18 protein. Cloning and sequencing of aptamer
pools from the 15 rounds of cycles identified several aptamer
candidates (Figure 1A). Aptamers AP001 with the sequence
5′-TCCTGGCAGCGCTTTTGCTTGTTTGCTCTCGTACCT
GTCC-3’ and AP002 with the sequence 5′-CGCACCGATCCG
GTGTTAATCTCGACGTCCCTTAAGTTTG-3’ were the top
enriched sequences, representing 14.42% and 13.46% of the final
enriched population. These two novel ROP18 aptamers were
labeled with biotin and utilized as biorecognition elements to
construct a ELAA sensing platform. Biotin-streptavidin strategy
was used for signal production (Figure 1B).

Direct ELAA Standardization
Direct ELAA has been reported as one of the simplest and fastest
methods, in which the antigen is immobilized on the surface of
the platform, followed by a blocking step, addition of biotinylated
aptamers, then streptavidin conjugated with HRP enzyme and
the TMB substrate (Toh et al., 2015). To start with, we first
developed a direct ELAA for total antigen from Toxoplasma.
PDI, LucGT, and BSA proteins were used as negative controls.
The optimal conditions of this direct ELAA test were obtained
by evaluation of conditions, including time and temperature of
antigen incubation, blocking solution, streptavidin dilution and
aptamers concentration.

Firstly, we found that incubation of RH Ag overnight at 4◦C
allowed to reach a higher detection limit in the direct ELAA
(Figure 2). Initially, antigen incubation for 1 h at 37◦C was
evaluated, showed that the AP001 and AP002 aptamers reached
a significant antigen detection limit of 25µg/mL compared to
the negative controls (p < 0.05) (Figures 2A,B). Subsequently,
antigen incubation was analyzed overnight at 4◦C (Figure 2). We
found that detection limit improved for the condition of 4◦C
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FIGURE 2 | Detection limit of RH antigen according time and temperature. The ELAA assays were performed with AP001 (A,C) and AP002 (B,D) anti-ROP18

aptamers. We evaluated incubation 1 h at 37◦C (A,B) and 4◦C overnight (C,D). Different concentrations of T. gondii total antigen of the RH strain (RH Ag) were

evaluated and three negative controls, PDI, LucGT, and BSA were included. The data are represented with the mean of each sample evaluated in triplicate. Welch’s

t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. controls without antigen (No Ag).

overnight, reaching a detection limit of 12.5µg/mL (p < 0.01)
with both aptamers (Figures 2C,D). Overnight incubation at 4◦C
probably allowed more antigen adherence to the plate. Many
other studies using the same incubation conditions were reported
(Ramos et al., 2007; Rotherham et al., 2012; García-Recio et al.,
2016).

Regarding the blocking solution, we found that 1% BSA was
more effective compared to the other conditions (Figure 3).
For AP001 ELAA, all negative controls showed significantly
lower absorbance levels for the 1% BSA condition (p < 0.05)
(Figure 3A). In the case of AP002, lower absorbance values
were detected for the negative controls with 1% BSA, although
significant differences were only found for the blank condition
and the negative control with albumin (Figure 3B) (p = 0.019
and p = 0.028 respectively). Regarding the positive control
(RH Ag), 1% BSA and the no blocking condition allowed to

reach significantly higher levels of absorbance compared to 5%
skim milk condition (p = 0.05 and p = 0.03 for AP001 and
AP002, respectively), indicating a higher sensitivity of the assay.
However, the no blocking condition was not selected due to the
non-specificity generated for the negative controls. This could
explain why BSA ismore effective for biotin-streptavidin systems,
as it contains only one purified protein without endogenous
biotin (Alegria-Schaffer et al., 2009), thus avoiding background
interferences or non-specific interactions. That’s probably the
reason why other studies also reported the use of BSA as blocking
agent for ELAA tests with biotinylated aptamers (Vivekananda
and Kiel, 2006; Balogh et al., 2010; Luo et al., 2013). Therefore,
we continued working with 1% BSA as a blocking agent.

Related to streptavidin dilution, we found that 1:10,000
dilution allowed to reach higher absorbance levels in the positive
controls of the assay (Figures 3C,D). In AP001 ELAA, only
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FIGURE 3 | Evaluation of different blocking conditions and streptavidin dilutions for AP001 (A,C) and AP002 (B,D) ELAA test. Different blocking conditions were

evaluated: 1% bovine serum albumin, 5% skim milk and no blocking (A,B). Three different dilutions of streptavidin (1: 10,000, 1: 15,000 and 1: 20,000) were

evaluated (C,D). RH Ag was used as a positive control (50µg/ml) for both experiments. rROP18 (25µg/ml) was also used as positive control for streptavidin

experiment. Three negative controls were included, PDI, LucGT, and BSA. The data are represented by the mean ± SEM. Kruskal Wallis. *p < 0.05.

the absorbance levels for rROP18 were significantly higher for
1:10,000 dilution (p = 0.021) (Figure 3C); whereas in the ELAA
test with AP002, the absorbance was significantly higher for
both, the RH Ag and rROP18 for 1:10,000 dilution compared
to 1:20,000 dilution (p = 0.013 and p = 0.040, respectively).
Regarding the negative controls, although differences between
evaluated dilutions were found, mainly for AP002 (Figure 3D),
the absorbance levels obtained were very low for all controls
with all dilutions, with mean values of OD that ranged between
0.005 and 0.028. Therefore, considering that 1:10,000 dilution
favored the sensitivity of the experiment, it was selected for the
subsequent trials. This result agrees with other studies using
biotinylated aptamers (Murphy et al., 2003; Rotherham et al.,
2012; Stoltenburg et al., 2016).

It is worth noting that both aptamers showed a minimal
recognition profile toward three negative control proteins (PDI,
LucGT, and BSA), compared to the positive control (RH Ag).

The significantly lower absorbance levels in negative controls
suggested a higher specificity of the ELAA test.

Aptamer Concentration and Binding
Affinity of AP001 and AP002
Adirect ELAA including all the previous standardized conditions
was performed to analyze the optimal aptamer concentration.
Aptamer concentrations were analyzed from 50 to 500 nM.
We found that recognition of RH Ag was concentration-
dependent, therefore, the absorbance levels increased as the
aptamer concentrations increased (r = 1; p = 0.003; Spearman
correlation test) (Figures 4A,B). The same pattern has also been
found in other studies (Martin et al., 2013; García-Recio et al.,
2016). Based on these results, we concluded that it was possible
to continue working with an intermediate aptamer concentration
(300 nM) in the subsequent ELAA tests, since it allowed an
appropriate detection of the antigen, with acceptable absorbance
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FIGURE 4 | Concentration and Binding affinity of AP001 (A) and AP002 (B) aptamers. Ag RH was used as a positive control and different concentrations of each

aptamer (from 50 to 500 nM) were used. BSA was used as a negative control. The dissociation constant (Kd) was calculated through a non-linear regression to define

the affinity of aptamers to the RH Ag, obtaining a Kd of 62.7 nM for AP001 and a Kd of 97.7 nM for AP002 (C).

levels (OD: 0.3–0.5) and thus allowing a moderate use of the
capture reagent.

Additionally, to determine the binding affinity, we used
the absorbance and concentration data from this experiment
to calculate the dissociation constant (Kd). The data were
analyzed using a non-linear regression, where Kd is the
concentration of ligand (aptamer) required to reach half of
the maximum bond, finding that a lower value of Kd will
be obtained by the aptamer with greater affinity toward the
antigen. Regarding this analysis, we found that aptamer AP001
showed a higher affinity with a Kd value of 62.7 ± 17.27 nM;
whereas the aptamer AP002 showed a Kd of 97.7 ± 22.20 nM
(Figure 4C); these results suggested that it was feasible to
continue working with AP001 aptamer in subsequent trials with
human serum samples.

Detection Limit of rROP18 Protein in
Serum Samples by Direct ELAA and
Sandwich ELAA
In order to identify the detection limit of direct ELAA
with serum samples, rROP18 protein concentrations from

50 to 1.56µg/mL were evaluated by standard addition
method. The recombinant ROP 18 protein was added in
the seronegative human serum sample and then diluted
1:10 in coating buffer. Total Ag of the RH strain was
included as a positive control and total antigen of the
KOROP18 strain was used as a negative control. The
results indicated that recognition of the ROP18 protein
was concentration-dependent and AP001 was able to detect
rROP18 protein in serum since the minimum concentration
(1.56µg/mL), showing significant differences compared
to the serum sample without antigen KOROP18 (p =

0.028) (Figure 5A).
In comparison, we also performed a sandwich ELAA using

an anti-ROP18 polyclonal antibody as a capture agent and
the aptamer AP001 as a detection agent. The data showed
that sandwich ELAA allowed the detection of rROP18 protein
since a concentration of 3.12µg/mL (Figure 5B) in the serum.
These results indicated that the sensitivity of sandwich ELAA
was lower than the direct ELAA (1.56µg/mL). We also found
that absorbance levels obtained for sandwich ELAA were
reduced, presenting OD values between 0.054 ± 0.002 for the
minimum and 0.059 ± 0.001 for the maximum concentration
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FIGURE 5 | Evaluation of the detection limit of rROP18 protein in serum through direct (A) and sandwich (B) ELAA. Protein concentrations from 50 to 1.56µg/mL

diluted in serum from a seronegative individual for T. gondii were included. Total Ag of the RH strain (RH Ag at 50 µg / ml) was included as a positive control, and total

antigen of the KOROP18 strain (KOROP18 at 50 µg / ml) was included as a negative control. The data are represented with the average of each sample evaluated in

quadruplicate. Welch t test. *p < 0.05, **p < 0.01, ***p < 0.001 vs. the negative control KOROP18 (serum without antigen).

FIGURE 6 | Reactivity Index values obtained with ROP18-ELAA for the human serum samples. Serum samples with different clinical forms were included:

toxoplasmic lymphadenitis (n = 18), chronic-asymptomatic toxoplasmosis (n = 13), ocular toxoplasmosis (n = 21), and congenital toxoplasmosis (n = 10).

Additionally, samples with Dengue virus (n = 5) and individuals seronegative for Toxoplasma (n = 20) were included as negative controls. Two tests were performed for

each sample. The data are represented with the median and the interquartile range. Serum samples with IR > 1 are considered positive.

of rROP18 protein (Figure 5B); while in the direct ELAA the

absorbance values in the same concentration of the protein

were 0.111 ± 0.001 and 0.207 ± 0.001, respectively (Figure 5A).

Therefore, we concluded that direct ELAA was a more suitable

configuration to be applied in the serum samples of individuals

with toxoplasmosis.

ROP18-ELAA Tests in Human Serum
Samples From Individuals With
Toxoplasmosis
To validate the suitability of the ROP18-ELAA platform
on serum samples from individuals with toxoplasmosis, the
direct ELAA with AP001 aptamer was applied. A total of
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62 serum samples from individuals with different clinical
manifestations of toxoplasmosis and 20 samples from
seronegative individuals were included. The Reactivity
Index (RI) was calculated for each sample. Due to the
samples were processed in duplicate and two tests were
performed per sample, the respective variation coefficients (VC)
were calculated.

All the samples presented values lower than 10% for the
intra-assay VC and <20% for the inter-assay VC. Due to the
complexity of the human serum samples, ELAA test was positive
for 22.6% (14/62) (IC95 = 13.8–34.5%) of the total samples with
toxoplasmosis. We also found a positivity of 27.7% (5/18) (IC95
= 12.2–51.2%) in the group with toxoplasmic lymphadenitis,
no positive samples (0/13) (IC95 = 0–26.5%) for the group
with chronic-asymptomatic toxoplasmosis; 14.3% (3/21) (IC95
= 4.14–35.4%) in the group with ocular toxoplasmosis and
finally 60% of positivity (6/10) (IC95 = 31.2–83.3%) for
the group with congenital toxoplasmosis. Additionally, five
serum samples from individuals with dengue virus were
included, in which no reactivity was found for the test
(Figure 6).

The comparison of RI between the group of individuals
with toxoplasmic lymphadenitis and chronic-asymptomatic
toxoplasmosis indicated that there were no statistically significant
differences (p= 0.412). In the same way, although the percentage
of positivity was higher in the group with lymphadenitis,
no significant association was found between ELAA positivity
and the acute or chronic stage of the infection (p =

0.058). Similarly, when comparing the RI between the groups
with different clinical manifestations of toxoplasmosis, no
statistically significant differences were found between them (p
= 0.162) (Figure 6).

We found that the group with congenital toxoplasmosis had
the highest RI values (Me: 1.285 Range: 0.270–2.104) and the
highest positivity percentage in the test. So, the statistical analysis
showed a significant association between this clinical form and
the positivity for the ELAA test (p = 0.006). Additionally,
after a stratified analysis according the clinical characteristics
inside this group, we found that the positivity of the ELAA
test was associated with higher severity of the disease, in
other words the test was significantly positive for children
with severe clinical manifestations such as presence of ocular
and/or neurological symptoms than in children with congenital
asymptomatic infection (p= 0.033, Table 1).

For the group of ocular toxoplasmosis, no statistical
association was found between this clinical manifestation and
ELAA positivity (p = 0.342). In the same way, other variables
analyzed inside this group didn’t show significant associations
with the RI values obtained in the ELAA test; except for
the total number of chorioretinal scars where we found a
negative correlation (r = −0.74, p = 0.003) with the RI values
(Supplementary Table S1).

Finally, some other characteristics in the total population, like
age, gender, total IgM and IgG levels, as well as avidity percentage
were related with the positivity of the ELAA test or the RI values;
however, we didn’t find any significant association between these
variables (Supplementary Table S2).

TABLE 1 | Clinical characteristics of the relationship between population with

congenital toxoplasmosis and the ELAA positivity or RI value.

Statistical test Variable (n) p-value r

Fisher’s exact

test (ELAA %

positivity)

IgM positive (n = 10) 0.400

Sex (n = 10) 0.523

Symptoms (ocular and/or

neurologic vs. asymptomatic)

(n = 10)

0.033*

Neurologic symptoms (n = 10) 0.200

Spearman

correlation test

(RI values)

Age (n = 10) 0.624 −0.170

Total IgM (UI/ml) (n = 10) 0.441 −0.222

Total IgG (UI/ml) (n = 10) 0.664 0.161

Bold values indicates statistical significant values p< 0.05.

DISCUSSION

Previous studies have reported that T. gondii produces some
virulence factors that can modulate the host immune response
and could explain the severe manifestations of toxoplasmosis,
especially in South America (Bradley and Sibley, 2007; Etheridge
et al., 2014; Petersen et al., 2017). The ROP18 protein has been
described as one of the major virulence factors of T. gondii,
involved in the regulation of the host innate immune response,
promoting the survival and replication of the parasite (Saeij et al.,
2006; Taylor et al., 2006). IgM and IgG antibodies have been
identified against the ROP18 (Gatkowska et al., 2015) or against
peptides derived from it (Sánchez et al., 2014), which indicates
that the immune system recognizes the protein. However, until
now, the presence of the protein in serum from individuals
with toxoplasmosis has not been reported and it is unknown
if its presence could be related to the clinical manifestation of
the disease.

Although antibodies to detect ROP18 protein are available,
are difficult to obtain in developing countries and there
are no other tools to readily and routinely assess T. gondii
protein in serum. Aptamers are nucleic acids that are capable
of selective binding to targets of interest. In addition to
the easiest and cheaper production, the use of aptamers as
biorecognition tools have several advantages in terms of storage
compared to antibodies. Therefore, development and testing
of aptamers-based technology for T. gondii protein opens a
window for low-cost and rapid diagnostics that could in part
support the great demand for point-of-care diagnostics in
developing countries.

In this study, we developed DNA aptamers against ROP18
from T. gondii by the SELEX method. By utilizing those
newly enriched aptamers, we developed a novel aptamer based
biosensing platform for serum samples from people with
toxoplasmosis. A direct ELAA was initially evaluated using
recombinant protein ROP18 (rROP18) and total antigen from
T. gondii RH strain. The optimal conditions, including time and
temperature of incubation, as well as the buffer composition
and aptamer concentration were achieved, allowing a best
detection performance. Additionally, we found that AP001 was
the aptamer with the higher affinity against the antigen.
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The detection limit of the direct ELAA with aptamer AP001
was evaluated with rROP18 diluted in human serum samples.
Similarly, we developed a sandwich ELAA configuration in
order to compare which configurations allowing a greater
sensitivity. The results indicated that direct ELAA was more
sensible, allowing the detection of the protein in serum since a
concentration of 1.56µg/mL, while the sandwich configuration
showed a detection limit of 3.12µg/mL. Considering those
results, we used the direct ELAA to analyze the serum
samples from individuals with different clinical manifestations
of toxoplasmosis. Our results indicated that the presence of the
ROP18 protein was found significantly in higher proportion
in serum from people with congenital toxoplasmosis group,
but also, they had the highest RI values compared with the
other groups. These data suggested that the group of congenital
individuals may present a higher parasitic load and therefore a
possible secretion of ROP18 proteins at higher levels. Also, it
could be explained because the immune response generated in
these individuals is not as efficient to control the infection caused
by the pathogen as occurs in other clinical forms. It has been
described that clinical manifestations in congenital infection are
related to a host genetic susceptibility that lead to an insufficient
control of the parasite compared to children also congenitally
infected but without symptoms (Jamieson et al., 2010).

Additionally, we found interesting association between the
presence of ocular and/or cerebral symptoms in the group
with congenital toxoplasmosis and the positivity of ELAA test;
therefore, the presence of ROP18 could be suggested as a
biomarker related to a greater severity in this clinical form. On
the other hand, although no statistically significant association
was found between the acute or chronic stage of toxoplasmosis
and the positivity of the ELAA test, we observed a tendency
of higher percentage of positivity and elevated RI values in the
group of individuals with toxoplasmic lymphadenitis. This result
could suggest that individuals with the acute stage of the infection
and the presence of T. gondii tachyzoites in blood (Halonen and
Weiss, 2013) have more probability to be secreting the ROP18
protein. In support of this assumption, we found a negative
correlation with the number of chorioretinal scars, that could be
explained because increased number of scar indicates longer time
from acquisition that it is related to the number of recurrences in
one individual (De-la-Torre et al., 2009). Likewise, in chronic-
asymptomatic individuals (negative for the ELAA assay) the
absence of the ROP18 protein could be explained by the chronic
stage of the infection, in which the parasite is found in a dormant
stage called bradyzoite, which is slow growing and it is controlled
by the host’s immune system (Blader and Saeij, 2009).

Importantly, we didn’t find positivity in the ELAA test
with serum samples from individuals with dengue virus, which
indicated that the test was specific and did not detect antigens
from another pathogenic agent. However, it is important to
evaluate more serum samples with other parasitic diseases such
as malaria and leishmaniosis, as well as with other viral and
bacterial infections.

A relevant fact of the present study is the explanation of how
the ROP18 protein of T. gondii reaches the serum of individuals
with toxoplasmosis. Previous studies indicate that ROP18 is

secreted by the rhoptry organelles inside the host cell during
the process of parasite invasion and later it is located in the
membrane of the parasitophorous vacuole (Saeij et al., 2006;
Hunter and Sibley, 2012). However, it is possible to suggest that
the parasite secretes a certain amount of the ROP18 protein
before entering to the host cell and it also could explain the
presence of IgM and IgG antibodies in mouse and human serum
that recognize specifically the ROP18 protein (Gatkowska et al.,
2015; Grzybowski et al., 2015). Additionally, it could be assumed
that the ROP18 protein is secreted once the parasite has been
established within the host cell. A recent study shows that the
secretion of proteins by the microneme organelles is directed by
in vitro exposure to serum albumin, a host protein (Brown et al.,
2016). A similar event could occur with the rhoptry organelles,
being stimulated by any host protein to secrets some ROP
kinases. Furthermore, we can propose that the ROP18 protein
is released after the disruption of the host cell, caused by the
uncontrolled replication of the parasite. This cellular breakdown
has been reported mainly by infection with type I virulent strains
in mice, which are not effectively controlled by the immune
system of this murine host (Melo et al., 2011).

In conclusion, two ROP18-aptamers were selected by a SELEX
method and were used to standardize an ELAA test. Results
showed that AP001 aptamer had a higher affinity for rROP18 and
RH T. gondii antigen, and therefore it was used to detect ROP18
in serum samples from people with different clinical forms of
toxoplasmosis. The ELAA test with AP001 was positive in 60% of
people with congenital infection and in 22.6% of the cases with
toxoplasmosis. These results suggest that ROP18-ELAA could
be used as a potential test to identify severity of the congenital
toxoplasmosis. One limitation of this study is that were analyzed
only one sample per patient, and it would be important to have a
longitudinal follow up in order to identify how is the variation in
levels of ROP18 according evolution of symptoms and the effect
of treatment. This should be analyzed in a future study. Present
findings open new research avenues to understand the role of
virulence factors of T. gondi on the pathogenesis of toxoplasmosis
in humans.
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Toxoplasma gondii is the causative agent of toxoplasmosis, a parasitic disease with a

wide global prevalence. The parasite forms cysts in skeletal muscle cells and neurons,

although no evident association with inflammatory infiltrates has been typically found.

We studied the impact of T. gondii infection on the myogenic program of mouse

skeletal muscle cells (SkMC). The C2C12 murine myoblast cell line was infected with

T. gondii tachyzoites (ME49 strain) for 24 h followed by myogenic differentiation induction.

T. gondii infection caused a general decrease in myotube differentiation, fusion and

maturation, along with decreased expression of myosin heavy chain. The expression

of Myogenic Regulatory Factors Myf5, MyoD, Mrf4 and myogenin was modulated by

the infection. Infected cultures presented increased proliferation rates, as assessed by

Ki67 immunostaining, whereas neither host cell lysis nor apoptosis were significantly

augmented in infected dishes. Cytokine Bead Array indicated that IL-6 and MCP-1 were

highly increased in the medium from infected cultures, whereas TGF-β1 was consistently

decreased. Inhibition of the IL-6 receptor or supplementation with recombinant TGF-β

failed to reverse the deleterious effects caused by the infection. However, conditioned

medium from infected cultures inhibited myogenesis in C2C12 cells. Activation of the

Wnt/β-catenin pathway was impaired in T. gondii-infected cultures. Our data indicate

that T. gondii leads SkMCs to a pro-inflammatory phenotype, leaving cells unresponsive

to β-catenin activation, and inhibition of the myogenic differentiation program. Such

deregulation may suggest muscle atrophy and molecular mechanisms similar to those

involved in myositis observed in human patients.

Keywords: Toxoplasma gondii, myogenesis, C2C12 cells, myotube, myogenic regulatory factor, congenital
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INTRODUCTION

Toxoplasma gondii is an obligate intracellular protozoan parasite
that can cause a devastating disease in immune-compromised
patients and fetuses (Montoya and Liesenfeld, 2004; Dubey,
2008). Transmission occurs by ingestion of tissue cysts, present
in undercooked meat, or by ingestion/inhalation of sporulated
oocysts that are shed along with the feces of infected felids (Dubey
and Frenkel, 1972). The cysts rupture inside the host’s digestive
system and release the parasites, which rapidly infect host cells
and, in a few days, spread throughout the entire organism. The
ability for the parasite to cause disease is directly linked to its
replication inside a parasitophorous vacuole in the cytoplasm of
host cells. From this vacuole, parasites scavenge nutrients from
the host cell while causing reorganization of host organelles and
cytoskeletal elements, preventing host cell apoptosis and altering
host gene expression to its own benefit (Saeij et al., 2007; Wu
et al., 2016; Acquarone et al., 2017).

Upon the host’s immunological response, intracellular
tachyzoites differentiate into slow-dividing bradyzoite forms,
which, in turn modify the parasitophorous vacuole membrane,
transforming it into the newly formed cyst wall. T. gondii
displays an interesting interaction with post-mitotic cells, and
cysts can be found in the neurons and skeletal muscle fibers of
chronically infected individuals (Dubey, 1998). Intense myositis,
altered electromyograms and reduced grip strength have also
been reported in immunocompetent infected humans (Montoya
et al., 1997; Hassene et al., 2008; Cuomo et al., 2013), suggesting
that infection impairs skeletal muscle function.

In order to better characterize the interplay between T.
gondii and skeletal muscle cells (SkMC), our group used
a primary mouse SkMC culture that promotes high rates
of spontaneous tachyzoite-bradyzoite conversion (Guimarães
et al., 2008; Ferreira-da-Silva Mda et al., 2009) and leads
to the production of inflammatory intermediates, such as
prostaglandins, IFN-γ and interleukin-12 (Gomes et al., 2014).
We have also described a decrease in M-cadherin content in
primary SkMC cultures infected by T. gondii and a reduction in
the number of myotubes when muscle cells were infected with
the highly virulent RH strain (Gomes et al., 2011).

Myogenesis is a precisely coordinated differentiation program,

starting from the first weeks of embryonic development, when
somitic cells generate muscle cell progenitors, called myoblasts
(Berendse et al., 2003). These elongated mononucleated cells
progressively fuse to form long, multinucleated fibers called
myotubes that express the differentiated gene pattern of mature
muscle cells (Dedieu et al., 2002). Muscle cell early determination
and differentiation are controlled by a set of transcription
factors (McKarney et al., 1997), known as Myogenic Regulatory
Factors (MRFs), which are active at precise developmental stages
and functionally correlated to each other (De Angelis et al.,
1999). Myf5 and MyoD control paraxial muscle differentiation,
and both activate myogenin, known to be associated with
final muscle maturation. Mrf4 plays a role in determining
the fiber phenotype in postnatal life (Zhang et al., 1995),
although a potential role during early development has also been
suggested (Kassar-Duchossoy et al., 2004). The expression of

muscle-specific proteins (such as α-actin, myosin heavy and light
chain, tropomyosin, among others) is closely MRF-dependent.
Myogenesis is also crucial for SkMC repair in adult life, through
the activation and differentiation of adult muscle stem cells, also
named satellite cells.

We investigated which mechanisms underlie myogenesis
defects during T. gondii infection, using the C2C12
mouse myoblast cell line, since they allow for myogenic
differentiation process synchronization. Using this model,
we describe how T. gondii affects MRFs expression and
other mechanisms, such as proliferation, apoptosis and
cytokines/chemokines secretion and we identified defects in
the Wnt/β-catenin pathway activation, which is also involved
in myogenesis.

METHODS

Cell Culture
The mouse skeletal myoblast C2C12 cell line was purchased from
ATCC and maintained in a proliferation medium [PM, DMEM
high glucose (Sigma Aldrich) with 10% fetal bovine serum
(Cultilab, São Paulo, Brazil) and 1% antibiotic solution (Thermo
Fisher)]. Before reaching confluency, cells were dissociated with
Trypsin/EDTA solution in PBS and plated for experiments.
For myogenesis induction, cells were cultivated in PM until
reaching 70% confluency, when the medium was changed to a
differentiation medium (DM, DMEM with 2% horse serum and
1% antibiotics solution).

T. gondii Infection
Parasites from the ME49 strain were obtained from the
brains of C57Bl/6 mice infected 45 days before isolation.
Cysts were ruptured with an acid pepsin solution and free
parasites were added to Vero cell (ATCC) monolayers. After
2 weeks of culture re-infections, tachyzoites released from the
supernatant were collected and centrifuged prior to use. For
the experiments, 60,000 C2C12 cells were plated onto 13-mm
diameter glass round coverslips in 500 µl of PM per well
for 24 h. Subsequently, cultures were infected with tachyzoites
at a MOI of 3:1 parasite:host cell for 2 h. Cells were then
washed in Ringer solution, fresh PM was added, and cells
were then maintained at 37◦C for an additional 22 h. After
this period (total of 24 h of infection), half of the cultures
were switched to DM while the other half was maintained
in PM. The cultures were analyzed at 24 and 120 h after
differentiation induction, corresponding to 48 and 144 h of
infection, respectively.

Immunofluorescence
Cells were plated onto 13-mm glass round coverslips in 24-
well plates. At desired times, the conditioned medium was
collected for cytokine analyses, as described below. Cultures
were washed in PBS and fixed with 4% paraformaldehyde for
5min at 20◦C, permeabilized with a 0.5% Triton x-100 (Sigma
Aldrich) solution in PBS, blocked with 4% bovine serum albumin
solution for 30min and incubated overnight with primary
antibodies at 4◦C. The primary antibodies used in this study
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and their references are listed in Table 1. Secondary antibodies
goat anti-mouse conjugated to AlexaFluor 594 and donkey
anti-rabbit conjugated to AlexaFluor 488 (Thermo Fisher) were
incubated for 1 h at 37◦C. For necrosis assessments, live cells were
incubated with 40µg/ml propidium iodide solution diluted in
PBS for 10min. As a positive control, 0.25% Triton x-100 was
incubated on a separate coverslip for 5min at 37 ◦C. Nuclei were
visualized by incubating the cells with DAPI (4’,6-diamidino-2-
phenylindole dihydrochloride) at 0.2µg/ml for 5min at 20◦C
and slides were mounted in a DABCO solution containing
50% glycerol.

Real Time qPCR
A total of 6.6 × 105 cells were cultured in 60mm plastic
petri dishes (Corning) and total RNA was extracted using the
RNeasy kit (Qiagen). Contamination with genomic DNA was
avoided by treating the samples with DNase I (Qiagen) following
the manufacturer’s instructions. Concentrations were measured
using aNanoDrop equipment (Thermo Fisher) and RNA samples
were validated for the experiments when the 260/230 ratio was
above 1.9. A total of 1 µg of total RNA was reversely transcribed
into cDNA with Superscript III kit (Invitrogen). Real time PCR
analyses were performed with 0.5 µL of cDNA and Power
SYBR Green Master Mix (Thermo Fisher) and 0.05 µmol/L of
endogenous control (PPIA) or 0.027 µmol/L of muscle-specifics
primers. Cycling conditions were 94◦C for 10min, followed by
40 cycles of 94◦C for 30 s and 60◦C for 30 s, with a fluorescence
reading at the end of each cycle. Target gene expression data
were plotted as normalized by endogenous control (PPIA) and
relative to uninfected cells maintained in PM for each time
point, using 2−11ct. The primer sequences used herein are listed
in Table 2.

TGF-β1 Measurements
Conditioned medium was obtained from C2C12 cultures at the
different experimental conditions analyzed, as described above.
To obtain conditioned medium for cytokine assays, each well of
24-well plates was incubated with 300 µl of either PM or DM for
1 day. The medium was collected in 1.5ml centrifuge tubes and
kept on ice, centrifuged at 14,000 rpm for 5min. Supernatants
were then transferred to new tubes and the conditioned medium
was kept at −80◦C until use. Total TGF-β1 levels present in
the conditioned medium derived from C2C12 cultures were
measured using the Mouse TGF-β1 ELISA DuoSet Kit (R&D
Systems) following the manufacturer’s instructions. Proliferation
and differentiationmedia not exposed to cells were alsomeasured
to determine basal TGF-β1 levels. The results of final secretion
from the C2C12 supernatants was calculated by subtracting the
basal values of either PM or DM from each sample.

Cytokine Bead Array (CBA)
Cytokine levels were evaluated by flow cytometry in culture
supernatants of infected or uninfected C2C12 cells, in PM
or DM at 24 and 120 h of induction. IL-6, IL-10, IL-
12p70, TNF, IFN-γ, and MCP-1 were detected using a
Cytometric Bead Array (CBA) Mouse Inflammation kit (BD),
according to the manufacturer’s instructions. Data were acquired
using a FACScalibur flow cytometer (BD), and the data
analysis was performed by a CBA analysis using the FCAP
software (BD).

Treatments With Conditioned Medium
Conditioned medium (CM) obtained from C2C12 cells, as
described in Section TGF-β1 Measurements, was used to treat
fresh C2C12 cells. Cells were plated on coverslips in PM. After

TABLE 1 | List of primary antibodies used for the immunofluorescence assays.

Antibody Host species Company name Reference number Dilution

Myogenin Mouse DSHB F5D-s 1:100

MyHC type II (fast twitch) Mouse Sigma Aldrich M4276 1:400

MyHC type I Mouse DSHB MF20 1:25

MyoD Mouse DSHB D7F2-s 1:100

Desmin Rabbit Sigma Aldrich D8281 1:100

Ki67 Rabbit ABCAM ab15580 1:80

SAG1 (P30) Mouse Santa Cruz Biotechnologies Sc-52255 1:100

Cleaved Caspase-3 Rabbit Cell signaling 9661 1:400

TABLE 2 | List of primers used for RT-qPCR.

Gene name Sense sequence Anti-sense sequence References

MyHC beta (slow twitch) CGCAATGCAGAGTCAGTGAA TTGCGGAACTTGGACAGGTT Nishida et al., 2015

myogenin CTACAGGCCTTGCTCAGCTC ACGATGGACGTAAGGGAGTG Hildyard and Wells, 2014

MyoD TACAGTGGCGACTCAGATGC GAGATGCGCTCCACTATGCT Hildyard and Wells, 2014

Myf5 CTGTCTGGTCCCGAAAGAAC AGCTGGACACGGAGCTTTTA Hildyard and Wells, 2014

Mrf4 GGCTGGATCAGCAAGAGAAG CCTGGAATGATCCGAAACAC Hunt et al., 2013

PPIA (Peptidyl-prolyl cis-trans isomerase) GGCCGATGACGAGCCC TGTCTTTGGAACTTTGTCTGCAA Hunt et al., 2013
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24 h of plating, cultures were treated with CM diluted 1:1 in fresh
medium (either PM or DM). The medium was replaced daily for
5 days and cells were fixed for immunofluorescence. Untreated
controls were maintained either in PM or DM.

Dual Luciferase Reporter Assay
6 × 104 C2C12 cells/well were cultured on 24-well plates in
DMEM containing 10% fetal bovine serum (Gibco) without
antibiotics. Twenty-four hours later, cells were transfected with
200 ng TOPFLASH plasmid and 100 ng Tk-Renilla plasmid using
FuGENE HD (Promega) at 4:1 ratio. 18 h after transfection, cells
were infected with 3.6 × 105 tachyzoite T. gondii forms (ME49
strain). After 2 h, cells were washed with simple medium and
fresh proliferation medium was added. After 22 h, the medium
of half of the cells was switched to DM and/or were treated with
2µM BIO (CAS Number 667463-62-9, Sigma) for 20 h in order
to activate the Wnt/β-catenin signaling pathway. Cells were then
lysed using Passive Lysis Buffer (Promega) and Firefly and Renilla
luciferase activities were detected according to themanufacturer’s
protocol (Dual Luciferase Reporter Assay System, Promega).

Morphometric and Statistical Analyses
At least six microscopic fields were obtained from each
experimental condition in three independent experiments,
corresponding to a 0.09 mm2 area each. The relative
differentiation rate was calculated by counting the number
of nuclei inside MyHC-positive cells divided by the number
of total DAPI positive cells per microscopy field. The relative
fusion index was determined as the number of MyHC-positive
cells with more than two nuclei and divided by the total number
of cells (DAPI-positive) per microscopic field (Joulia et al.,
2003). The number of mature myotubes was estimated by the
number of MyHC-positive cells that contained at least five
myonuclei divided by the number of MyHC-positive cells per
field, multiplied by 100. Morphometric analyses of the myotube
areas were performed with the Zen Software (Zeiss) using
images acquired with a confocal Zeiss microscope (Plataforma
de Microscopia Óptica de Luz Gustavo de Oliveira Castro,
PLAMOL, UFRJ). The percentage of positive myogenin and
MyoD positive nuclei were obtained by dividing the number of
positive nuclei by the total number of DAPI positive nuclei per
microscopic field and multiplied by 100. Data were analyzed
using the GraphPad Prism software version 5.0 for Windows,
GraphPad Software, La Jolla California USA, www.graphpad.
com. A two-way ANOVA test was used applying Bonferroni’s
post-test, and changes were considered statistically significant
when p < 0.05. An unpaired Student’s T-test was applied to the
morphometric analyses, also considering statistically significant
changes when p < 0.05.

RESULTS

T. gondii Impairs C2C12 Differentiation and
Fusion
C2C12 cells were infected by T. gondii as described in the section
Method. The establishment of T. gondii infection was assessed by
light microscopy, in Giemsa-stained cells (Figures S1, S2), and

FIGURE 1 | T. gondii infection profile in C2C12 cells. The experimental design

is shown in (A) Cells are plated and infected with tachyzoites after 24 h of

plating. Then, half of the cultures have their medium changed to DM. Analyses

were carried out 24 and 120 h after myogenesis stimulus with DM. Enrichment

in muscle cells was confirmed by desmin staining (B, in green) and the

presence of tachyzoite forms of T. gondii was detected with anti-SAG1

staining (red) as shown in this representative micrograph of infected cells

treated with DM for 24 h. Cells were stained with Giemsa stain and the

percentage of infected cells was determined by light microscopy. Graphs in

(C) show the average and standard error of three independent experiments.

Scale bar = 50 µm.

by immunofluorescence to SAG1, a marker for the tachyzoite
forms of the parasite (Figure 1). Twenty-four hours post-
infection, cells were either maintained in proliferation conditions
or switched to differentiation by changing their medium for
DM. 24 h later, corresponding to 48 h post infection (hpi),
cultures maintained with PM or DM displayed a total of 4.5
± 3.3 and 6.5 ± 2% of cells bearing parasites, respectively
(Figure 1). One hundred and forty-four hours post infection,
cultures maintained in PM exhibited 29 ± 9.8% cells containing
intracellular parasites, whereas cells in DM displayed 13 ± 7.2%
parasitism (p < 0.01).

The impact of T. gondii on the capacity of C2C12 cells to
differentiate and fuse was evaluated as indicated by Giemsa
staining (Figures S1, S2) andMyHC immunostaining (Figure 2),

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 November 2019 | Volume 9 | Article 39524

www.graphpad.com
www.graphpad.com
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Vieira et al. T. gondii Alters Myogenesis in vitro

FIGURE 2 | T. gondii impairs myogenesis and myotube maturation. C2C12 cells were stained for MyHC, a terminal marker of SkMC differentiation and analyzed by

confocal microscopy (A–E). Differentiation was considered in positively MyHC-stained cells (F). Treatment with DM for 5 days greatly increased the number of stained

cells from 6 to 26% in uninfected cultures (F). T. gondii infection reduced the differentiation rate. Decreases in fusion rates were also observed in T. gondii-infected

cultures (G), as determined by the number of nuclei within MyHC-positive cells with at least two nuclei. Myotube formation was also impaired by infection in DM

treated cultures (H). The deleterious effect of the infection was also reflected in the size of the myotubes (I). Changes in myogenesis induced by the parasite were also

observed at the transcriptional level, since MyHC mRNA levels were reduced in infected cultures (J). Results of at least three independent experiments. *p < 0.05, **p

< 0.01; ***p < 0.0001, Two-Way ANOVA with Bonferroni post-test. Red dotted line represents the value of control uninfected cultures maintained in Proliferation

Medium. Scale bars in (A–C,E) = 50 µm, (D)= 20µm.

after 120 h. Cells maintained in PM exhibited low levels of
differentiation (cells with positive MyHC staining with at least
one nucleus), as indicated by <6.4 ± 0.4% MyHC positivity,
whereas uninfected dishes maintained in DM reached 26 ±

0.3% of MyHC-stained cells, either mononuclear or multinuclear
cells (Figures 2A,C,D). Notably, T. gondii infection was highly
disruptive to C2C12 differentiation, since infected cultures kept
either in PM and DM exhibited only 0.6 and 3.3%MyHC positive

stained cells, respectively (Figures 2B,E,F). While uninfected
cells in PM exhibited a low basal fusion (2.2%), uninfected
DM-treated cultures reached 23%. Infected cultures maintained
in DM presented a drastic reduction in the number of fused
cells (2.44%, p < 0.0001) when compared to uninfected cells
maintained in DM (Figure 2G). This reduction in fusion rates
led to a proportional decrease in the number of mature myotubes
in infected cultures (2.2 vs. 29.4% in uninfected controls, p <
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0.05, Unpaired Student’s t test, Figure 2H). Myotubes found
in infected cultures also displayed decreased diameter (57.8 vs.
24.2µm, p < 0.05, Unpaired Student’s t-test, Figure 2I). To
confirm that T. gondii infection impairs myocyte differentiation,
RT-qPCR for myosin heavy chain was performed. Five days after
myogenesis induction, DM-treated cultures exhibited a slight,
yet not statistically significant, increase in MyHC expression
when compared to PM (1.3-fold, p > 0.05). T. gondii-infected
dishes showed a drastic down-regulation of MyHC expression,
both in PM (90%, p < 0.05) and DM (63%, p > 0.05)
(Figure 2J).

Infection Alters MRFs
Expression/Immunoreactivity
The influence of T. gondii infection on the expression and
immunolocalization of myogenic regulatory transcription factors

(MRFs) MyoD, myogenin, Myf5, and Mrf4 (Myf6) was assessed
on C2C12 cells.

Myf5, expressed in committed satellite cells and myoblasts
showed no change after 24 h of culture in DM (Figure 3A).
However, after 120 h, non-infected cultures maintained in DM
exhibited an 83% decrease in Myf5 expression, as indicated by
RT-qPCR (Figure 3B). Interestingly, at this time point T. gondii-
infected cultures displayed higher Myf5 levels when compared
to their respective controls (1.85-fold in PM and 3.58-fold
in DM, p < 0.0001 and p < 0.01, respectively, Two-Way
ANOVAwith Bonferroni post-test), confirming their immaturity
regarding myogenesis.

Next, the presence of MyoD, an activated myoblast and
myocyte marker, was investigated. No changes in MyoD
immunostaining were detected in infected dishes after 24 h
of differentiation (48 hpi) when compared to non-infected
cultures (Figures 3C,G,E). However, at 120 h, the number of

FIGURE 3 | Infection affects early myogenic gene expression. Relative expression of Myf5 was analyzed by RT-qPCR. Myf5 levels were determined at the initial time of

myogenesis (24 h, A) and at the latest time point (120 h, B). Uninfected and infected cells in PM or DM were immunostained for MyoD (red) and DAPI (blue) at 24 (C,G)

and 120 h of induction (D,H). Quantification of MyoD-positive cells at 24 h indicate that infection led to no significant changes in the number of MyoD cells (E). After

120 h of myogenic stimulation, infected-DM cultures displayed 32% of MyoD-positive cells, whereas in uninfected DM dishes a 54% rate was observed (F). RT-qPCR

revealed that at 24 h of induction, MyoD transcript was significantly less abundant in infected-DM dishes, when compared to the controls (I). During late stage

myogenesis (120 h), T. gondii-infected cells in PM presented a 59% decrease in MyoD expression when compared to controls (J). Results of at least three

independent experiments *p < 0.05, **p < 0.01; ***p < 0.0001, Two-Way ANOVA with Bonferroni post-test. The red dotted line represents the value of control

uninfected cultures maintained in the Proliferation Medium. Scale bar = 50µm.
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MyoD-positive cells were decreased by 21% (p > 0.05) and
40% (p < 0.05, Two-way ANOVA, with Bonferroni post-test)
in infected cultures maintained in PM and DM, respectively,
when compared to uninfected ones (Figures 3D,H,F). The
RT-qPCR analysis confirmed altered MyoD expression after
T. gondii infection. After 24 h of differentiation in DM,
uninfected cultures showed no significant alteration in MyoD
expression when compared to PM, although a decreasing
trend was observed (Figure 3I). At this time point, T.
gondii infection induced a decrease in MyoD expression
in cultures maintained in PM (33%, p > 0.05) and in
DM (60%, p < 0.05, Two-way ANOVA, with Bonferroni
post-test) when compared to uninfected cultures at 24 h
(Figure 3I). The same effect was observed at 120 h of myogenesis
induction. T. gondii-infected cultures displayed a 59% (p
< 0.0001) and 40% (p > 0.05) decrease when compared
to their respective uninfected cultures in PM and DM,
respectively (Figure 3J).

Mrf4, expressed only in later stages of the myogenic process,
was analyzed by RT-qPCR. The levels of Mrf4 transcripts in
our cultures were low, with CT values near 35. No significant
changes in Mrf4 relative expression were verified in our cultures
(Figures 4A,B).

Finally, the expression and immunoreactivity of myogenin in
C2C12 cells was evaluated. At 24 h of differentiation in DM, 5%
of the uninfected cells were myogenin+ while T. gondii-infected
cultures showed only 2% of positivity (p < 0.05, Two-Way
ANOVA, with Bonferroni post-test, Figures 4C,G,E). At 120 h of
differentiation, this number increased to 28.35% when compared
to cells in PM (14.3%) (Figures 4D,H,F). T. gondii infection
induced a strong inhibition of myogenin immunoreactivity
at 120 h of differentiation (144 hpi). Infected cultures in
PM displayed 2.96% of myogenin-positive nuclei and those
kept in DM showed only 12.34% positivity. This observation
was confirmed by RT-qPCR, indicating that uninfected cells
in DM exhibited a 5.7-fold increase in myogenin expression

FIGURE 4 | Analysis of late myogenic genes expression in T. gondii-infected C2C12 cultures. After 24 h (A) and at 120 h (B) of myogenic stimulation Mrf4 expression

was assessed by RT-qPCR and no significant changes were observed. Uninfected and infected cells in PM or DM were immunostained for myogenin (red) at 24 (C,G)

and 120 h in DM (D,H). The cell nucleus was stained with DAPI (blue). At 24 h of induction, uninfected cultures treated with DM showed significant increase in the

number of myogenin-positive cells (E), accompanied by a 6-fold increase in myogenin gene expression (I). Infected cultures failed to show myogenin immunoreactivity

at 24 h (G,E), as well as mRNA expression (I). 120 h after the initiation of the myogenic stimulus, T. gondii significantly reduced number of myogenin-positive cells (F)

and expression (J). Results of at least three independent experiments. *p < 0.05, **p < 0.01; ***p < 0.0001, Two-Way ANOVA with Bonferroni post-test. Red dotted

line represents the value of control uninfected cultures maintained in Proliferation Medium. Scale bar = 50µm.
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at 24 h induction (Figure 4I), while infected C2C12 cultures
presented decreased myogenin expression when compared to
their correspondent controls (44%, p > 0.05 in PM and 63%, p
< 0.0001 in DM, Two-Way ANOVA, with Bonferroni post-test,
Figure 4I). At 120 h, T. gondii infection greatly reduced the level
of myogenin transcript in both conditions (88% in PM, p < 0.01
and 78% in DM, p < 0.05, Two-Way ANOVA with Bonferroni
post-test, Figure 4J).

T. gondii Infection Leads to a Proliferative,
Undifferentiated State of C2C12 Cells
Following the observations that infected cultures exhibited
altered MRF expression patterns and, consequently, decreased
myotube formation, we investigated whether the infection also

altered C2C12 cell proliferation using the proliferation marker
Ki67. Cells maintained in PM for 24 h exhibited an average of
84.6 ± 9% Ki67-positive cells. At 24 h of induction with DM a
slight, yet non-significant, decrease in the proportion of Ki67-
positive cells (69.3 ± 12%) was detected (Figure 5), and infected
cultures displayed comparable proliferation rates (82.4 ± 11 in
PM and 63 ± 20% in DM). At 120 h, non-infected cultures in
both PM and DM presented less Ki67 staining than non-infected

cultures at 24 h, reaching 26 ± 9 and 11.7 ± 3% of the total
cellular population, respectively. As expected, fully differentiated
myotubes did not show positive staining for Ki67 (Figure 5A).
Infected dishes kept in PM for 120 h exhibited 28.5 ± 9% of
proliferative cells (Figure 5E), very similar to what was observed
in the non-infected controls at this same time point. However,

FIGURE 5 | The C2C12 proliferation rate was altered by infection. Ki67 immunostaining was used as parameter to determine the number of mitotic cells. Micrographs

depict Ki67 staining of cultures in DM after 120 h of induction in uninfected (A,B) and T. gondii-infected dishes (C,D). 24 h after treatment with DM no changes were

detected (E). T. gondii increased the proliferation of DM-treated cultures, when compared to uninfected dishes (E). No Ki67 staining was observed in myotubes (M, in

B), whereas cells harboring tachyzoites (shown in more detail in D) displayed intense nuclear immunolabeling. Cell death was assessed by staining for cleaved

caspase-3 for apoptosis (F–H) and by propidium iodide uptake experiments for necrosis (I–K). T. gondii infection did not induce apoptotic cell death, since caspase-3

stained cells ranged from 0.1 to 0.7% in all experimental conditions (H). Treatment with Staurosporine 2µM in DMEM high glucose with no serum for 2 h was used as

a positive control (F). Tachyzoites were detected with anti-SAG1 antibody and displayed no correlation to the presence of caspase-3-stained cells (G,H). Necrosis

was calculated by the percentage of PI-stained nuclei. Triton x-100 0.25% was used as positive control (I) and led to 100% of stained cells (K). Infected C2C12 cells

at 120 h of myogenesis induction (J) displayed no significant difference when compared to uninfected cultures, both in PM or DM. N = 4, **p < 0.01, Two-Way

ANOVA with Bonferroni post-test. Scale bars: 100µm in (B,D), 20µm in (C,E).
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Ki67 positivity reached 29.8± 14% (p< 0.01, Two-WayANOVA,
with Bonferroni post-test) in infected cultures kept in DM when
compared to uninfected dishes in DM, indicating a ∼2.5-fold
increase in the number of proliferative cells (Figure 5E). A
differential quantification of Ki67-positive staining in infected
dishes was performed in order to determine whether cells
harboring parasites would be preferentially proliferating, or if
a bystander effect would be involved in increased proliferation.
In infected C2C12 cultures maintained in DM for 120 h, 46% of
Ki67-stained cells corresponded to parasitized cells (14.4% out of
29.8%, Figure 5E, red bars).

In order to exclude the possibility that increased proliferation
could be due to a compensatory mechanism in response to
parasite-induced cell death, the cultures were stained for cleaved
caspase-3, a classic effector apoptosis marker (Nicholson et al.,
1995). Staurosporine at 2µM was used as a positive control
for 2 h in uninfected cultures and presented an average of
11.75% of caspase-3 staining. The different C2C12 treatments
(differentiation and infection) did not lead to changes in
apoptosis levels (Figures 5F,H). Host cell necrosis was assessed
by permeability to propidium iodide, which indicates loss of
membrane integrity. Triton x-100 0.25% was used as the positive
control for 5min and led to positive staining in 100% of cells
(Figures 5I,K). Uninfected cultures in PM presented 1.07% cells
with positive PI staining, whereas this number reached 2.44% in
uninfected DM-treated cultures (p > 0.05, One Way ANOVA
with Bonferroni post-test). Infected cultures displayed a slight,
albeit non-statistically significant, increase in the number of PI
positive cells (Figures 5I,K).

T. gondii-Infected C2C12 Cells Display an
Altered Secretory Pattern
T. gondii infection is known to modulate host cell responses and
induce an inflammatorymilieu that can generate paracrine effects
in the cell culture. CBA was used to determine which cytokines
and chemokines were released during the infection and which
may, therefore, influence the myogenic process. Among the
tested factors (IL-6, IL-10, IL-12p70, IFN-γ, TNF, and MCP-1),
only IL-6 and MCP-1 were detected as secreted.

At 48 hpi, infected cells maintained in PM exhibited a 20-
fold increase in IL-6 (p > 0.05, Figure 6A) and a 4-fold increase
in MCP-1 (p < 0.05, Two-Way ANOVA, with Bonferroni post-
test) secretion when compared to uninfected cultures in PM
(Figure 6C). Infected C2C12 cells maintained in DM for 24 h
also displayed increased levels of secreted IL-6 compared to non-
infected cells (7-fold, p> 0.05, Figure 6A) andMCP-1 levels were
increased by 6.8-fold (p > 0.05) (Figure 6C). IL-6 was greatly
increased in infected cells in PM at 144 hpi (28,89-fold, p < 0.01,
Two-Way ANOVA, with Bonferroni post-test) but not in DM
(Figure 6B). MCP-1 levels in infected cultures at 120 h remained
comparable to uninfected cultures (Figure 6D).

TGF-β1 is an anti-inflammatory cytokine known to greatly
inhibit myogenesis in C2C12 cells (Massagué et al., 1986; Olson
et al., 1986). We hypothesized that TGF-β1 secretion could be
the mechanism through which T. gondii impaired myogenesis.
However, we observed that this cytokine was greatly reduced

in the supernatant of infected cultures, at all assessed times
(Figures 6E,F). Regardless of the culture medium, infected dishes
presented TGF-β1 secretion ranging from 71 to 114 pg/ml, while
TGF-β1 concentrations ranged between 242 and 288 pg/ml in
uninfected cultures.

In order to determine whether increased IL-6 or decreased
TGF-β secretion plays a role in myogenesis impairment in
C2C12 cells, treatments with 10µg/ml Tocilizumabe (TCZ),
a neutralizing antibody that inhibits the IL-6 receptor and
with recombinant TGF-β1 (rTGF, 0.5 ng) were performed
(Figure 7A). TCZ had no impact on myogenesis rates and
myotube formation in uninfected cultures (Figure 7B).
Treatment with TCZ of T. gondii-infected cultures led to
no significant alteration in the number of MyHC-positive cells
and myotubes (Figure 7B). rTGF addition caused no alteration
in the number of MyHC-positive cells in PM-treated cultures
(Figure 7C), although a negative effect on myogenesis in both
uninfected and infected DM-treated cultures was observed, with
reduced numbers of MyHC-positive cells (Figure 7C).

Since neither IL-6 nor TGF-β seem to be directly involved in
defective myogenesis in infected cultures, conditioned medium
transfer experiments were carried out. Uninfected C2C12 cells
were treated for 5 days with a 1:1 mixture of conditionedmedium
with fresh medium (either PM or DM, Figure 7D). Cells treated
with CM from uninfected or infected cultures maintained in PM
for 24 h (PM-Cont and PM-Inf) presented 0.96 and 0.76% of
MyHC-positive cells, respectively (Figure 7E). Cultures treated
with DM-Cont 24h displayed differentiation rates similar to that
observed in cultures maintained with DM alone (19.2%), whereas
treatment with CM from DM-Inf 24h indicated 6.2% MyHC-
positive cells (p < 0.0001, One-Way ANOVA with Bonferroni
post-test). The same effect was observed in cultures treated with
CM from DM-Cont 120 h, which displayed 5.6% of MyHC cells,
vs. 1.25% found in DM-Inf 120h-treated dishes (p < 0.01, One-
Way ANOVA, with Bonferroni post-test, Figure 7E).

Wnt/β-Catenin Pathway Activation Is
Impaired by T. gondii
Since T. gondii infection altered MRFs expression and cytokine
secretion at times as early as 24 h of induction (corresponding
to 48 hpi), we investigated an upstream myogenesis regulating
pathway, the Wnt/β-catenin pathway (Figure 8A). The effect of
the infection on the activation of theWnt/β-catenin pathway was
confirmed by dual luciferase reporter assays for the TCF/LEF
reporter. Infected cultures maintained in PM presented a 33%
reduction in luciferase activity when compared to controls
(Figure 8B, p < 0.05, unpaired Student’s T-test). In addition,
a significant decrease was observed in infected DM-treated
cultures, when compared to uninfected DM-treated controls
(Figure 8C, p < 0.05, unpaired Student’s T-test). BIO, a selective
pharmacological GSK3 inhibitor and, therefore a Wnt/β-catenin
pathway activator, was used to confirm these findings. Indeed,
luciferase activity increased ∼25-fold in uninfected cultures
treated with PM and DM (Figures 8D,E, p < 0.001 unpaired
Student’s T test). This effect was impaired in T. gondii-infected
cultures by 46 and 34% in PM and DM-treated cultures,
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FIGURE 6 | Secretory profile during T. gondii infection. Conditioned medium from C2C12 cells was assayed for INF-γ, TNF-α, IL-10, IL-12p70, IL-6, and MCP-1 with

CBA assay. The experimental design in shown in (A). IL-6 (B) and MCP-1 (C) were greatly increased with T. gondii infection, whereas a decrease of TGF- β1 secretion

was observed at both evaluated times, as assesses by ELISA (E,F). MCP-1 remained unaltered at 120 h of myogenesis (D). Results of at least three independent

experiments. *p < 0.05, **p < 0.01; ***p < 0.0001, Two-Way ANOVA with Bonferroni post-test.

respectively (Figures 8D,E, p < 0.0001 and <0.01, respectively).
However, the overall content of β-catenin remained unaltered in
T. gondii-infected cultures (data not shown).

DISCUSSION

T. gondii displays an interesting interaction with the skeletal
muscle system, in which tissue cysts are formed (Dubey, 1998).
Such tropism is important for the transmission cycle of the
parasite, since predation of infected prey by felids may favor
the sexual cycle (Dubey and Frenkel, 1972). However, the
acquired infection can cause damages to the skeletal muscle in
intermediate hosts, and clinical reports have demonstrated thatT.
gondii infection may cause intense myositis, electromyographic
abnormalities and muscle pain (Montoya et al., 1997; Hassene

et al., 2008; Cuomo et al., 2013). We used the mouse myoblast
cell line C2C12 to investigate the mechanism by which T. gondii

infection may impact skeletal muscle physiology. Previous data

from our laboratory using primary skeletal muscle cell cultures

have demonstrated that infection with the highly virulent RH

strain of the parasite reduced the number of multinucleated
cells (Gomes et al., 2011). We chose the type II strain ME49
that exhibits reduced virulence compared to the laboratory-
adapted RH strain, thus avoiding the confounding factor of high
levels of host cell lysis by the latter (Kirkman et al., 2001).
Moreover, previous observations from our group showed that
vertical transmission of T. gondii induces alterations in the
fetal myogenesis (Gomes and Barbosa, 2016). Low levels of
parasitism were detected when C2C12 cells were infected with
ME49 tachyzoites (5% at 48 hpi and 10-30% at 144 hpi). However,
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FIGURE 7 | Soluble factors released from infected cultures have an impact on myogenesis. In order to test whether increased IL-6 or decreased TGF-β1 played a role

on impairment of myogenesis, C2C12 were infected and treated with Tocilizumabe (B) or recombinant TGF-β1 (C). The experimental designs are shown in (A,D). TCZ

had no significant impact on differentiation rate in cultures maintained in DM (B). TGF-β decreased the differentiation rate, as shown by the number of MyHC-positive

cells per field in both PM and DM (C). Conditioned medium (CM) from infected C2C12 cells was used to treat fresh myoblasts. CM from DM-treated cultures

(DM-Cont) 24 and 120 h increased the differentiation rate (E), whereas DM-Inf 24 and 120 h had an opposite effect, reducing myogenesis. Results of at least three

independent experiments. **p < 0.01; ***p < 0.0001, One-Way ANOVA with Bonferroni post-test.
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FIGURE 8 | Wnt/β-catenin pathway is decreased in T. gondii-infected cultures.

The experimental design in shown in (A). Luciferase assay for TCF/LEF

promoter activation by β-catenin showed that T. gondii-infected cultures at

24 h of induction displayed significantly lower luciferase signal when compared

to controls (B,C). BIO treatment significantly increased luciferase activity in

uninfected controls (D,E). However, T. gondii infection impaired such effect. *p

< 0.05, **p < 0.01, ***p < 0.001, unpaired Student’s T test. Scale bars:

20µm.

the number of MyHC+ cells and myotubes were drastically
reduced, thus confirming that this infection displays a more
general deleterious effect on the differentiation of the C2C12 cell
population, despite the low infectivity rate. This deleterious effect
on myogenesis was also observed in proliferating cells, which
display a basal spontaneous myogenic induction, due to high
cellular density (Tanaka K. et al., 2011).

Myogenesis, characterized by myocyte differentiation and
fusion (Dedieu et al., 2002; Berendse et al., 2003) is essential in
muscle development, after birth for breathing and for muscle
growth, and also in adults for muscle regeneration, following
injury (Le Grand and Rudnicki, 2007). In order to gain insights
into the molecular mechanisms through which T. gondii impairs
myotube formation, we investigated the expression levels of
the main MRFs: Myf5, MyoD, Mrf4 and myogenin. Myf5 is
a transcription factor that, along with MyoD, is activated and
expressed in early myogenic program steps (Rudnicki et al.,
1993). We found Myf5 transcripts to be decreased in uninfected
cultures maintained in DM for 120 h when compared to cells kept
in PM, in accordance with known Myf5 decreased expression

after commitment to differentiation (Zammit et al., 2006). T.
gondii-infected cultures presented higher levels of Myf5 when
compared to their respective controls, suggesting a delay in the
myogenic program of these cells.

It is known that MyoD expression is capable of initiating
the myogenic program, even in non-muscle cells (Davis et al.,
1987; Weintraub et al., 1989). MyoD targets are related to
differentiation, such as myogenin, but also to the cell cycle,
such as Ankrd2, Cdkn1c, and calcyclin (Bean et al., 2005),
which suggested that proliferation or differentiation pathways
are mutually exclusive during myogenesis, and one depends on
inhibition of the other. We demonstrated that higher amounts
of proliferating cells are found in infected cultures, but it is
unclear if the cell cycle itself is affected by T. gondii infection.
MyoD reduction at the protein level could affect cell proliferation
by decreasing myogenin expression, one of its known targets
(Buckingham and Rigby, 2014). However, increased Myf5
expression together with decreased MyoD expression suggests
that myoblasts in infected cultures are kept in a proliferating
myogenic precursor state.

TGF is part of a family of pluripotent growth factors involved
in diverse physiological processes, including myogenesis (Liu
et al., 2001). During the maturation of C2C12 myotubes, bone
morphogenetic proteins (BMPs) are gradually down-regulated,
whereas TGF-β (1, 2, and 3) are up-regulated (Furutani et al.,
2011). TGF-β1 presents a deleterious effect onmyogenesis (Olson
et al., 1986), and it has been demonstrated that T. gondii infection
induce TGF-β secretion in macrophages (Bermudez et al., 1993).
However, our data indicate that infected C2C12 cells display
reduced TGF-β1 secretion. This behavior was also observed
by our group after T. gondii infection of neural progenitors
(Adesse et al., 2018). Regarding muscle cells, Swierzy et al. (2014)
previously demonstrated T. gondii infection effects on the TGF-
β mRNA expression of myoblasts and myotubes. In that study
T. gondii infection with the NTE strain (also type II) did not
alter TGF-β gene expression. Infected cultures were treated with
rTGF, which did not rescue the myogenesis defect. This finding
indicates that TGF-β1 found in the supernatant of uninfected
cultures may be a marker of differentiated myocytes/myotubes
and its decreased secretion in infected cultures may be only the
indication that cells remained undifferentiated.

IL-6 is a myokine (Pedersen et al., 2003) and its secretion
is increased in muscle cells following exercise acting in
physiological processes, not only in skeletal muscle but also
systemically (Forcina et al., 2018). However, excessive IL-6 levels
can lead to an acute inflammatory response. In this scenario,
muscular atrophy and satellite cell exhaustion may occur,
leading to tissue inflammation and increased ROS production,
along with insulin resistance and possible chronic inflammation
(Visser et al., 2002; Haddad et al., 2005; Carson and Baltgalvis,
2010). Pelosi et al. (2014) demonstrated that treatment with
IL-6 impaired C2C12 myogenesis, with myogenin and MyHC
downregulation, whereas MyoD and Pax7 levels remained
unaltered. Treatment with Tocilizumabe, a neutralizing antibody
for IL-6R, had no effect on myogenesis rescue in infected
cultures. This suggests that IL-6 may not be the major soluble
component involved in myogenesis defects induced by T. gondii.
Another explanation would be that IL-6-mediated defect could
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act via other receptors that are not blocked by TCZ. Other
cytokines and chemokines known to be up-regulated by T. gondii
infection not included in the CBA kit may also play an important
role in controlling the myogenic process in infected cultures.
This idea was reinforced by the fact that conditioned medium
from infected C2C12 cultures also impaired myogenesis. Indeed,
extracellular vesicles released by T. gondii or by T. gondii-infected
cells led to increased proliferation of rat myoblasts (Kim et al.,
2016; Li et al., 2018).

T. gondii possesses effector proteins that act on host cells,
which are capable of inducing the activation of the STAT3,

STAT6, and NF-κB pathways (Hakimi et al., 2017), thus leading
to the production of many cytokines and immunomodulatory
molecules that may interfere in infection latency. It has been
demonstrated that the T. gondii type II strain could induce the
NF-κB pathway through release of the GRA15 protein (Rosowski
et al., 2011). As IL-6 and MCP-1 are known NF-κB targets
(Libermann and Baltimore, 1990; Shoelson et al., 2006) this effect
could be the trigger that leads to the myogenic defects observed
in the present model. Since a pro-inflammatory profile can favor
myoblast proliferation (Arnold et al., 2007), the environment
induced by T. gondii infectionmay promote proliferation, leaving

FIGURE 9 | Schematic representation of the proposed mechanism by which T. gondii affects myogenesis. Upon serum withdrawal myoblasts begin the myogenic

process, differentiating into myocytes and expressing MRFs in a coordinated fashion, leading to formation of mature myotubes, whereas infected myoblast cultures

display undifferentiatiated cells and smaller myotubes (A). The Wnt/β-catenin pathway is activated in uninfected cultures, shutting down cell proliferation and inducing

myogenesis, with TGF-β production (B). T. gondii infection leads to cadherin down-regulation, thus destabilizing the cadherin-catenin complex, inducing β-catenin

destruction (C). In addition, intracellular parasites release effector proteins that translocate to host cell nucleus and direct the expression of inflammation-related genes

such as NF-κB, increasing secretion of pro-inflammatory molecules (IL-6 and MCP-1) and reducing anti-inflammatory cytokine TGF-β1. Hence, infected cultures

remain highly proliferative, regardless of parasitism rates.
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myoblasts unresponsive to myogenic stimulus. Moreover, T.
gondii effector proteins were also shown to affect c-Myc (Franco
et al., 2014) and p21 (Chang et al., 2015) expression, two proteins
that regulate host cell proliferation andmight explain the increase
in Ki67-positive cells found in our system.

The Wnt/β-catenin pathway is one of the regulators of the
myogenic program acting on the switch from proliferation to
differentiation in SkMCs (Tanaka S. et al., 2011; von Maltzahn
et al., 2012). The results presented herein indicate that infected
cultures presented reduced β-catenin activation despite the
maintenance of global β-catenin contents, as shown by luciferase
assays, thus indicating that infection impairs endogenous β-
catenin activation, followed by its correct translocation to the
myonucleus. β-catenin directly binds cadherins, linking this
junctional complex to the actin cytoskeleton. Interestingly, M-
cadherin transcripts and protein levels have been shown to be
down-regulated on T. gondii infection of muscle cells as early as 3
and 24 h post infection, respectively (Gomes et al., 2011). Indeed,
M-cadherin down-regulation is capable of reducing myogenesis
through reduction in active β-catenin, thus resulting in decreased
myogenesis (Wang et al., 2013). Since myogenesis induction
began at 24 hpi, it is suggested that the cadherin-catenin complex
is already dismantled and, therefore, cells cannot respond to
Wnt activation. The observation that T. gondii infection inhibits
BIO-induced activation of β-catenin pathway indicates that this
effect occurs downstream of the β-catenin destruction complex
(MacDonald et al., 2009).

In summary, our results point to a disruptive effect of T.
gondii onC2C12myogenesis, creating a pro-inflammatorymilieu
that spreads to neighboring cells and impairs their response to
myogenic stimuli (Figure 9). These findings are relevant in the
context of congenital and acquired infection and may shed light
on the impact of this parasite on muscle physiology.
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Figure S1 | Culture evaluation with Giemsa stain after 24 h of myogenesis

induction. (A,B) PM-treated cells, (C,D) DM-treated cells. Infected cultures are on

the right panels. Parasites are indicated by white arrows. Scale bars: 200µm.

Insets in (C,D) 20µm.

Figure S2 | Culture evaluation with Giemsa stain after 120 h of induction of

myogenesis. (A,B) PM-treated cells, (C,D) DM-treated cells. Infected cultures are

on the right panels. Parasites within parasitophorous vacuoles are indicated by

arrows and cyst-like structures are indicated by asterisks (∗). Scale bars: 200µm.

Insets: 20µm.
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Toxoplasma gondii ROP16 and ROP18 proteins have been identified as important

virulence factors for this parasite. Here, we describe the effect of ROP16 and ROP18

proteins on peripheral blood mononuclear cells (PBMCs) from individuals with different

clinical status of infection. We evaluated IFN-γ, IL-10, and IL-1β levels in supernatants

from PBMCs cultures infected with tachyzoites of the T. gondii wild-type RH strain

or with knock-out mutants of the rop16 and rop18 encoding genes (RH1rop16

and RH1rop18). Cytokine secretion was compared between PBMCs obtained from

seronegative individuals (n = 10), with those with chronic asymptomatic (n = 8), or

ocular infection (n = 12). We also evaluated if polymorphisms in the genes encoding for

IFN-γ , IL-10, IL-1β, Toll-like receptor 9 (TLR9), and purinoreceptor P2RX7 influenced the

production of the encoded proteins after ex vivo stimulation. In individuals with chronic

asymptomatic infection, only a moderate effect on IL-10 levels was observed when

PBMCs were infected with RH1rop16, whereas a significant difference in the levels of

inflammatory cytokines IFN-γ and IL-1β was observed in seronegative individuals, but

this was also dependent on the host’s cytokine gene polymorphisms. Infection with

ROP16-deficient parasites had a significant effect on IFN-γ production in previously

non-infected individuals, suggesting that ROP16 which is considered as a virulence

factor plays a role during the primary infection in humans, but not in the secondary

immune response.

Keywords: peripheral bloodmononuclear cells, Toxoplasma,ROP16 protein, ROP18 protein, ocular toxoplasmosis,

cytokines, polymorphisms

INTRODUCTION

Toxoplasma gondii is an obligate intracellular parasite that infects a broad range of vertebrate
hosts. In humans, the most important clinical manifestations are as follows: (i) retinochoroiditis,
being the most important cause of posterior uveitis and an important cause of blindness in
certain countries (De-la-Torre et al., 2009), (ii) congenital toxoplasmosis, a public health problem
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responsible for early childhoodmorbidity andmortality (Gómez-
Marin et al., 2011), and (iii) cerebral toxoplasmosis, the most
important cause of neurological symptoms in HIV-infected
patients (Cardona et al., 2011). There are host and parasite factors
that contribute to the clinical outcome of the infection. One
of the most extensively studied are ROP proteins, produced by
a set of specialized secretory organelles in the parasite called
the rhoptries.

In murine models, quantitative trait locus analysis has allowed
the identification of genes that contribute to differences between
virulent and non-virulent strains of the parasite (Saeij et al., 2006;
Taylor et al., 2006). These genes, which encode the polymorphic
serine/threonine (S/T) protein kinases secreted by the rhoptries,
are also called ROP kinases proteins (Peixoto et al., 2010). Two
of the most extensively studied are ROP16 (TGME49_062730)
and ROP18 (TGME49_005250) kinases. ROP16 phosphorylates
STAT3 (Ong et al., 2010) and STAT6 (Yamamoto et al., 2009)
transcription factors, thereby leading to altered cytokine profiles
and the repression of IL-12 signaling (Saeij et al., 2007) required
for the generation of IFN-γ by CD4+ and CD8+ T lymphocytes.
Both, IL-12 and IFN-γ production are essential for the host
to survive infection with T. gondii (Scharton-Kersten et al.,
1996), and the control of these proinflammatory mediators
is achieved by the induction of anti-inflammatory cytokines
such as IL-10 (Denkers et al., 2012). On the other hand, in
mice, ROP18 interferes with the function of host immunity
related GTPases by phosphorylating these proteins thus, avoiding
their interaction with the parasitophorous vacuole membrane
(Steinfeldt et al., 2010). Although the discovery of these virulence
factors in mice prompted an explosion of work to reveal the
mechanisms underlying parasite virulence, there are only a few
reports on the possible roles of these genes in the human
immune response against the parasite (Niedelman et al., 2012;
Portillo et al., 2017). Therefore, the aim of this study was to
evaluate the secretion of IFN-γ, IL-10, and IL-1β in PBMCs
from individuals with different clinical status of infection (ocular,
chronic asymptomatic, and non-infected) when stimulated with
the virulent wild-type (WT) T. gondii RH strain, and with knock-
out (KO) T. gondii rop16 and rop18mutants.

MATERIALS AND METHODS

Ethical Considerations
This study was conducted according to the tenets of the
Declaration of Helsinki, and strictly adhered to the Guide for
Good Laboratory Procedures. It was approved by the Ethics
Committee of the Universidad del Quindío, Colombia. All
patients agreed to participate in the study and signed the
informed consent according to theMinsalud 8430-resolution. The
results of pertinent clinical laboratory analysis were given to the
patient and the attending physician.

Sample Population
Peripheral blood samples were collected from 12 patients
with ocular toxoplasmosis (OT), 8 with chronic asymptomatic
infection (Asym), and 10 individuals seronegative for IgG
and IgM anti-Toxoplasma antibodies (Neg) who agreed to

participated in this study. Patients with OT were recruited
during ophthalmological consultation at the Universidad del
Quindío. The clinical diagnosis of OT was based on criteria
previously described (De-la-Torre et al., 2009). Briefly, active
OT was defined by the presence of an active creamy-white
focal retinal lesion, which eventually resulted in hyperpigmented
retinochoroidal scars in either eye. Central lesions were defined
as lesions located within the large vascular arcades. Lesion sizes
were measured in disk diameters, and the inflammation intensity
in the anterior segment was measured by counting the number
of cells in the anterior chamber using biomicroscopy, and in
the posterior pole also by visualizing the vitreous haze using
fundoscopy. The inflammation grade was registered according
to the standardization of uveitis nomenclature for the reporting
of clinical data (Jabs et al., 2005). When the lesions were
inactive, the results of the last inflammatory period were recorded
from the clinical charts. Asymptomatic patients that agreed to
participate had a serological status of chronic infection (IgG anti-
Toxoplasma positive and IgM anti-Toxoplasma negative) and a
fundoscopic eye examination negative for ocular lesions.

Parasites
The WT T. gondii strain RH or ROP16 and ROP18 null mutants
(RH1rop16 and RH1rop18) tachyzoites were maintained by
serial passes in confluent monolayers of human foreskin
fibroblast (HFF, ATCC R© SCRC-1041TM) cultured in DMEM
medium (Gibco, Grand Island, NY, USA) supplemented with 2%
fetal bovine serum (Gibco), 100µg/mL streptomycin, and 100
U/mL penicillin. After lysing the cells, the culture supernatant
was collected and centrifuged at 500 g for 5min. The cellular
debris-free tachyzoites were centrifuged at 1,800 g for 15min
and the pellet was resuspended in RPMI 1640 medium (Gibco,
Thermo Fisher Scientific, Waltham, MA, United States of
America) without supplementation.

Isolation of PBMCs and Cytokine
Quantification
About 15mL of peripheral blood, which was collected from
30 individuals as described above, was centrifuged as separate
samples in a Histopaque 1,077 g/mL (Sigma-Aldricth Produtcs,
Merck KGaA, Darmstadt, Germany) gradient. The fraction of
mononuclear cells was adjusted to 1 × 106 cells/well, after
which the cells were plated in 24-well plates and cultured in
RPMI 1640 medium (Gibco) without supplementation at 37◦C
with 5% CO2. The PBMCs were incubated with concanavalin
A (10µg/mL) or infected with T. gondii RH, RH1rop16 or
RH1rop18 live tachyzoites with a multiplicity of infection
(MOI) of 1:3 over a 24 h period. RPMI was used as control.
Supernatants were collected and IFN-γ, IL-10, and IL-1β
levels were determined using a commercial enzyme-linked
immunosorbent assay (Biolegend, San Diego, CA, USA), results
were expressed as pg/mL.

Immune-Related Host Genes
Polymorphisms
Single Nucleotide Polymorphisms (SNPs) in the genes encoding
the following proteins were evaluated: IL-1β (rs1143634,
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rs16944, rs1143627); IL-10 (rs1800871), and IFN-γ (rs2430561).
Polymorphisms in the purinoreceptor P2RX7 (rs1718119,
rs1621388, rs2230912) and in the Toll-like receptor gene, TLR-9
(rs352140), were included. Amplification products were analyzed
by capillary electrophoresis. The mini-sequencing technique or
“ddNTP primer extension” was used as previously reported
(Naranjo-Galvis et al., 2018). Briefly, after genomic DNA was
isolated from blood cells using the QIAGEN DNA mini kit
(QIAGEN), the SNP-containing regions of interest were PCR-
amplified using initiation primers. PCRs, which were carried out
in 10 µL volumes, contained 1 to 10 ng of genomic DNA, 1X
QIAGEN Multiplex PCR Master Mix (QIAGEN N.V., Venlo,
The Netherlands), 1X Q-solution and 0.2–0.6µMof each specific
primer. PCR-amplification of the fragments was performed in
a Veriti Thermal Cycler (Applied Biosystems, USA). Using this
pre-amplification product as template, multiplex reactions for the
detection of SNPs were carried out using the mini-sequencing
method (SBE, single base extension). The data were analyzed
according the color of the peaks and fragment sizes, using the
GeneMapper v3.2 software (Applied Biosystems, USA).

Western Blot Analysis
PBMCs were cultured for 24 h with RH, RH1rop16 or
RH1rop18 strains. Then, cells were lysed in RIPA buffer
(Amresco, USA) containing a protease inhibitor cocktail

(Amresco) and phosphatase inhibitor (Sigma-Aldrich,
Darmstadt, Germany). Equivalent amounts of protein
were electrophoresed on 10% SDS polyacrylamide gels and
then electroblotted onto 0.45µm nitrocellulose membranes
(10600007, GE healthcare). After blocking with 3% milk protein
for 30min at room temperature, the membranes were incubated
with the following primary antibodies: anti-phopho-STAT3 (Tyr
705) (Abcam, UK), anti-phopho-STAT6 (Tyr 641) (Abcam), and
anti-IL1β (Santa Cruz Biotechnology, USA). The membranes
were then washed three times with PBS containing Tween 20 and
incubated with polyclonal goat anti-rabbit IgG conjugated with
alkaline phosphatase (Sigma-Aldrich, Darmstadt, Germany)
for 1 h at room temperature. Positive reactions were detected
using Novex R© AP Chromogenic Substrate BCIP/NBT (Thermo
Fisher, USA). Densitometry analysis was conducted using ImageJ
(Schneider et al., 2012), and the signal value from each band was
normalized using β-actin (Ambion, USA) as the normalization
protein. PBMCs from 3 individuals were randomly selected from
each group and the normalized protein expression levels were
plotted in a histogram.

Statistical Analysis
The concentration of each cytokine was expressed in pg/mL. The
normality of the data was determined using the Kolmogorov-
Smirnov test. The non-parametric Mann–Whitney test was

FIGURE 1 | Cytokine secretion by PBMCs infected with the RH strain of T. gondii. The concentration of IFN-γ (A), IL-10 (B), and IL-1β (C) were determined by ELISA

in supernatants at 24 h post-infection (h.p.i.). A correlation analysis on RH, RH1rop16 and RH1rop18 strains for each cytokine was performed. The x axis indicates

the concentration of IFN-γ (D), IL-10 (E), and IL-1β (F) for RH infections. The y axis indicates the same cytokine as in x axes for RH1rop16 (black circles) or

RH1rop18 (red squares) T. gondii infected cells. Each point represents the concentration of cytokines of a single patient. Results (A–C) are represented as mean ±

SD; *p < 0.05, Mann-Whitney U test and the correlations were determined by Spearman’s correlation tests. OT, Ocular toxoplasmosis; Asym, Chronic asymptomatic

infection; Neg, T. gondii seronegative individuals.
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used for comparing the cytokine levels between the different
groups (OT, Asym, and Neg). To compare differences in
cytokine production under the different stimuli (RH, RH1rop16,
and RH1rop18) within the groups, non-parametric data were
analyzed usingWilcoxon signed-rank test. Bar error represent the
mean and standard deviation of each group. Correlation analyses
were based on the Spearman coefficient. Statistical significance
was defined as p < 0.05. All data were analyzed using Prism 6.01
software (GraphPad Software version 6.01, SanDiego California).

RESULTS

Clinical Characteristics of the Study
Subjects
Twenty IgG positive individuals for T. gondii (12 OT and 8
Asym), and 10 Neg individuals participated in this study, having
a mean age of 32.8 years (range: 23–61 years) and 58% female
overall. There were no significant differences in gender or age
distribution between groups.

Lower IFN-γ Production Occurred in the
Ocular Toxoplasmosis Group Compared
With the Chronic Asymptomatic Group
Independently of ROP16 and ROP18
We first investigated the cytokines secreted by the PBMCs
obtained from individuals with toxoplasmosis (OT and Asym
groups) and Neg individuals upon stimulation withWT T. gondii
RH tachyzoites. IFN-γ production after parasite infection was
higher in PBMCs from the Asymp group than in the OT group
(P = 0.0287) or the Neg group (P = 0.0205), indicating that
this cytokine tended to be higher in individuals whose infections
were resolved and did not have ocular lesions (Figure 1A). In
contrast, no significant differences were observed for IL-10 and
IL-1β secretion among groups (Figures 1B,C).

We next investigated whether differences observed in cytokine
secretion among groups was related to the T. gondii ROP16
and ROP18 virulence factors. First, we confirmed that the
mutant parasites indeed lacked the ROP18 protein (Figure S1)
or the rop16 gene (Figure S2). Then, we evaluated the cytokine

FIGURE 2 | Comparison of cytokine production by PBMCs infected with T. gondii RH, RH1rop16, and RH1rop18 in culture supernatants at 24 h. OT (A), Asym (B),

and Neg (C). *p < 0.05, **p < 0.01; Wilcoxon signed-rank test. Lines are representative of each individual. OT, Ocular toxoplasmosis; Asym, Chronic asymptomatic

infection; Neg, T. gondii seronegative individuals.
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secretion levels of PBMCs obtained from Asymp, OT, or Neg
individuals after infection with live RH1rop16 and RH1rop18
parasite strains. In the group OT, a difference in cytokine
production was not observed after ex-vivo infection with rop16
or rop18 knock-out and WT strains (Figure 2A). However, it
is important to note that PBMCs from some individuals clearly
responded differently to the KO strains when compared with
the WT strain, but this was not related with the status of
the infection. Only chronic-asymptomatic individuals (Asym)
showed a moderately significant increase in IL-10 production
when stimulated with RH1rop16 compared to WT (Figure 2B).
In seronegative (Neg) individuals, infection with RH1rop16
strain induced higher levels of IFN-γ compared with WT strain
infection. Conversely, the IL-1β concentration was lower when
infected with RH1rop16 strain (Figure 2C), showing an opposite
relationship between IFN-γ and IL-1β, which aremarkers for Th1
response. Thus, individuals with OT produced lower levels of
IFN-γ than chronic asymptomatic individuals, but this difference
seems not to be dependent of the ROP16 and ROP18 T.
gondii proteins.

We also performed a linear regression analysis with RH,
RH1rop16 and RH1rop18, in order to evaluate the production
of each cytokine (Figures 1D–F). The tendency in the levels of
each cytokine produced by the PBMCs was similar when infected
with each strain. However, a slight correlation was observed

between IFN-γ and IL-10 (Figure S3) and no correlation was
observed between IL-1β and IL-10 (Figure S4), which indicates
that the increase in these inflammatory cytokines was not
followed by the regulatory effect of IL-10 in any group of the
individuals we evaluated.

Polymorphisms in the Host’s
Immune-Related Genes Influence the
Cytokine Profile
As knocking out of T. gondii rop16 or rop18 genes did
not explain most of the differences observed in the cytokine
production between individuals or groups, we decided to evaluate
polymorphisms in the aforementioned cytokines and other genes
from the host that are immune response related. Therefore,
to determine the influence of polymorphisms on the cytokine
profile, we evaluated SNPs in encoding genes for IFN-γ , IL-10,
and IL-1β in a subgroup of 9 individuals with OT, 4 Asym,
and 5 Neg. We also included polymorphisms in encoding genes
for the purinoreceptor P2RX7 and TLR-9, these two genes
were of interests since polymorphisms in them are related
with toxoplasmic retinochoroiditis (Ferrari et al., 1997; Peixoto-
Rangel et al., 2009). As no statistical differences among clinical
groups were found we decided to perform an analysis assuming
all samples in one single group regardless of clinical condition or

FIGURE 3 | Cytokine production by PBMCs at 24 h post-infection with T. gondii RH (Black), RH1rop16 (red), and RH1rop18 (gray) was stratified by genotype of the

following SNPs: IFN-γ (rs2430561), IL-10 (rs1800871), and IL-1β (rs1143634, rs16944, rs1143627). The cytokines levels were measured by ELISA. Results are

represented by circles or square for individual data and bars are the mean ± SD; *p < 0.05, **p < 0.005. Mann-Whitney U test was performed.
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FIGURE 4 | Cytokine production by PBMCs at 24 h post-infection with T. gondii RH (Black), RH1rop16 (red), and RH1rop18 (gray) was stratified by genotype of the

following SNPs: P2RX7 (rs1718119) and TLR9 (rs352140). The levels of cytokines were measured by ELISA. Results are represented by circles or square for individual

data and bars are the mean ± SD; ***p < 0.001. Mann-Whitney U test was performed.

infecting strain. The IFN-γ, IL-10, and IL-1β levels stratified by
the reference SNP (rs) and genotype are shown in Figure 3.

The levels of IFN-γ were higher in individuals with T/T

genotype when compared with the T/A genotype (656.2 vs.

248 pg/mL, P = 0.002). In the same way, a significant

difference was observed in IL-1β polymorphism (rs 1143627),

where C/C genotype is related to higher production of this

cytokine compared with T/T genotype (P = 0.033). In contrast,

no statistical differences were found for IL-10 levels and
polymorphisms. On the other hand, when we evaluated the

influence of the genotype of the P2RX7 (rs1718119) membrane
receptor on the cytokine profile, we found that the T/T (P =

0.0004) and C/A genotype (P = 0.0009) are related to IL-1β

higher levels than the C/C genotype (Figure 4). Finally, no
statistical differences were found between TLR-9 polymorphisms
(rs352140; C/C n = 2; C/T n = 4, T/T n = 3) and the cytokines
levels we evaluated (IFN-γ mean levels: C/C 715 pg/ml vs. C/T
1402 vs. T/T 1688 pg/ml, P = 0.86; IL1-β mean levels: C/C 65 vs.
C/T 331 pg/ml vs. T/T 445 pg/ml, P= 0.54; IL10mean levels: C/C
367 pg/ml vs. C/T 692 pg/ml vs. T/T 668 pg/ml, P= 0.54).

STAT3 and STAT6 Phosphorylation Is Not
Dependent on the T. gondii ROP16 Protein
in Human PBMCs
The kinase activity of ROP16 has been shown to be essential for
downregulating the IL-12 mediated response by phosphorylating
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FIGURE 5 | Phosphorylation of STAT3 and STAT6 by ROP16 protein. PBMCs were infected with T. gondii RH or RH1rop16 strains for 24 h. STAT phosphorylation

was evaluated by Western blot of PBMCs lysates from OT and Asym individuals. The western blot results were quantified by densitometry and Mann-Whitney U test

was performed with no statistically significant differences (p > 0.05) between the stimulus in either of the clinical cases evaluated (TO and Asym). Histogram represent

mean of relative levels of protein ± SEM of three independent experiments. One representative western blot result for OT and Asym group is shown. C(-), Uninfected

PBMCs were used as a negative control; OT, Ocular toxoplasmosis; Asym, Chronic asymptomatic infection.

STAT3 and STAT6 transcription factors (Saeij et al., 2006,
2007). However, we did not find a significant difference in
proinflammatory cytokine levels (IFN-γ and IL-1β) in the OT
and Asym groups. To evaluate whether the kinase activity of
ROP16 might affect the STAT3 (Tyr 705) and STAT6 (Tyr 641)
transcription factors, we infected human PBMCs with live RH
or RH1rop16 strains over a 24 h period. The resultant cells
were lysed, and their intracellular extracts were analyzed by
western blot. In the absence of rop16 (RH1rop16), the amount
of phosphorylated STAT3 and STAT6 when separately infected
with each parasite strain was not significantly different (P > 0.05)
(Figure 5).

Immature Pro-IL-1β Levels in Human
PBMCs Were Higher in RH1rop18
Infections
It has been reported that the ROP18 virulence factor
phosphorylates the dimerization domain of the p65 NF-κB
subunit, leading to its downregulation and further reduction
of TNF-α, IL-6, and IL-12 secretion in murine and human
macrophages cell lines (Du et al., 2014). Because transcription of
the IL-1β gene is under NF-κB control, we evaluated the levels
of pro-IL-1β in cell lysates of PBMCs infected with either RH

or RH1rop18 tachyzoites. We found higher levels of pro-IL-1β
in cells infected with RH1rop18 than in cells infected with
RH tachyzoites in all groups (OT, Asym, Neg) (Figure 6).
Intriguingly, as we showed before in this work, there were no
significant difference in the secretion of IL-1β when PBMCs
are infected with RH or RH1rop18 strains (Figures 1C, 2),
suggesting the existence of a second mechanism influencing the
observed differences between the groups in the production of
this cytokine.

DISCUSSION

Cytokines have been shown to play an important role
in the pathogenesis of toxoplasmosis (Sullivan and Jeffers,
2012). Following the multiplication phase, where the parasites
disseminate throughout the body, the host’s immune system
takes control and eliminates most of the parasites, mainly by
cellular responses such as IFN-γ production driven by Th1
type responses (Pifer and Yarovinsky, 2011). Here we found
that individuals with ocular toxoplasmosis produce low levels
of IFN-γ compared with the chronic asymptomatic individuals,
suggesting that the development of this clinical manifestation
(OT) is associated with a defect to produce adequate levels of
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FIGURE 6 | Immature IL-1β in lysates from PBMCs stimulated with T. gondii RH and RH1rop18. The presence of immature pro-IL-1β was evaluated using a western

blot and quantified by densitometry. Histogram represent the mean of relative levels of protein ± SEM of three independent experiments. The OT (A), Asym (B), and

Neg (C) clinical groups are shown. *p < 0.05, Mann-Whitney U test. One representative western blot for each clinical group is shown.

IFN-γ. This finding is similar to that reported previously, where
IFN-γ levels were higher in asymptomatic individuals than in
patients with cerebral (Meira et al., 2014) or ocular (De-la-
Torre et al., 2013) toxoplasmosis. We also found that the IFN-
γ levels were higher in the asymptomatic infected group than
in the seronegative group. This finding could be related to the
release of high levels of IFN-γ during a chronic infection, by the
parasite-specific T lymphocytes, that are required to prevent cyst
reactivation (Sarciron and Gherardi, 2000).

A concomitantly produced cytokine that normally acts as a
negative feedback mechanism of IFN-γ is IL-10 (Damsker et al.,
2010). IL-10 is an immunomodulatory cytokine produced by
several cell types (Garra et al., 2004), and in OT Colombian

patients it seems to be central in the induction of the permissive
state seen in the eye (De-la-Torre et al., 2014; Torres-Morales
et al., 2014). However, we did not find any difference in
the secretion of this cytokine between groups. One possible
explanation lies in the fact that in our previous studies we
used total lysate antigen to stimulate PBMCs, but because T.
gondii release proteins that are involved in the parasite’s immune
evasion mechanisms in a highly regulated manner (Tosh et al.,
2016), the use of live parasites is recommended for this type of
immunological experiments (Acosta Davila and Hernandez De
Los Rios, 2019).

Our research group has previously suggested that severe
ocular infections in South America are caused by highly

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 December 2019 | Volume 9 | Article 41344

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hernández-de-los-Ríos et al. ROP16-ROP18 in Human Toxoplasmosis

variable T. gondii strains and are characterized by a completely
different local immune response pattern and much higher ocular
parasite loads (De-la-Torre et al., 2013; Pfaff et al., 2014),
where the lower Th1 response in Colombian patients with OT,
as compared with European patients, can be explained by a
specific modulation of the immune response by South American
strains (De-la-Torre et al., 2014). To determine whether this
immune response modulation is related to the ROP16 or ROP18
virulence factors, we stimulated the PBMCs obtained from the
chronic asymptomatic individuals, patients with OT and T.
gondii seronegative controls with the knock-out (RH1rop16 and
RH1rop18) parasite strains, separately. Our findings show that
ROP16 have a modulatory effect on the production of IFN
γ only in seronegative individuals, suggesting that secondary
response can overcome the immunoregulatory effect of this
virulent protein.

Furthermore, it has been reported that the ROP16 protein
phosphorylates host STAT3 and STAT6 transcription factors,
which limits the protective Th1 cytokine response (Butcher et al.,
2011) and rop16-deficient type I parasites fail to active STAT3/6
(Denkers et al., 2012). In our study, phosphorylation of STAT3
and STAT6 transcription factors after infection with T. gondii
RH or RH1rop16 was not different between the OT and Asym
groups. It is possible that an alternative phosphorylation pathway
or pathways are activated during the invasion process, as occurs
in other mammalian cells where T. gondii activated-signaling
mediates ROP16-independent STAT3 activation (Portillo et al.,
2017). It is also possible that chronic inflammation can set up
altered microenvironments that are encountered by circulating
PBMCs, and that abnormal cytokines profiles within these
microenvironments could alter the host’s signaling pathways
(Montag and Lotze, 2006).

The next question we addressed was whether polymorphisms
in the host’s immune system-related genes were associated with
differences in cytokine secretion from the PBMCs infected with
T. gondii. We investigated this because during toxoplasmosis
infection, polymorphisms in both IFN-γ (rs2430561) and IL-
10 (rs1800871) and the “GAG” haplotype in the IL-1β gene’s
promoter (SNPs at rs1143634, rs1143627, rs16944) are associated
with the development of OT in the Colombian population
(Naranjo-Galvis et al., 2018). Regarding the IFN-γ promoter
(SNP rs2430561) polymorphism, we found that individuals with
the T/T genotype produced higher levels of IFN-γ than those
with T/A alleles. This results are in agreement with the findings
from previous studies (De Albuquerque et al., 2009; Neves et al.,
2013; Naranjo-Galvis et al., 2018) where the A-allele was found
to enhance susceptibility to OT, and also shown the importance
of host genetics in terms of IFN-γ secretion in the anti-parasite
response. The T/T genotype has previously been reported to be
associated with protection against the retinochoroiditis caused
by toxoplasmosis (De Albuquerque et al., 2009). In the present
study, the T/T genotype and IFN-γ showed no relationship with
the clinical condition, but this may have been related to the lower
statistical power that came into play with our study.

Finally, it is known that ATP-binding to the purinergic P2X7
(encoded by P2RX7) receptor, stimulates pro-inflammatory
cytokines and can lead to killing of intracellular pathogens.
Activation of P2X7 stimulates inflammasome activation and

secretion of IL-1β (Ferrari et al., 1997). Here, we found that
individuals carrying the T-allele in P2RX7 gene (SNP rs1718119)
produced higher levels of IL-1β, whichmay represent a protective
factor against T. gondii. This result is in agreement with
previous work where the ancestral T-allele (SNP rs1718119)
was strongly protective against toxoplasmic retinochroiditis
(Jamieson et al., 2010).

In summary, our data show that in PBMCs from individuals
with chronic infection (OT and Asym), the production of
proinflammatory cytokines such as IFN-γ and IL-1β does not
seem to be influenced by ROP16 or ROP18 proteins from T.
gondii, but by the host’s polymorphisms in the cytokine genes.
These results indicate that the immune response to the parasite
in humans does no only depend on the presence of virulence
factors like ROP16 and ROP18 in the parasite, but on the genetic
susceptibility of the host to the parasitic infection also.
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Figure S1 | Verification of the absence of ROP18 protein in the total antigen

extracts by western blot. (1) Molecular weight markers. (2) T. gondii RH strain. (3)

T. gondii KO-rop18 strain.

Figure S2 | Verification of absence of rop16 gene after specific PCR in a KO

strain. (1) Molecular marker. (2) T. gondii RH strain. (3) T. gondii KO-rop16 strain.

Figure S3 | Linear regression analysis on RH, RH1rop16 and RH1rop18 strains

between IFN-γ and IL-10, showing no correlation between these cytokines.

Figure S4 | Linear regression analysis on RH, RH1rop16 and RH1rop18

strains between IL-1β and IL-10, showing no correlation between

these cytokines.
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Background: Toxoplasma gondii infects millions of individuals worldwide. This

protozoan is food and water-borne transmitted but blood transfusion and organ

transplantation constitute alternative forms for transmission. However, the influence of

IgG anti-T. gondii antibodies in molecular analysis carried out in peripheral blood still

remain unclear. This study aimed to investigate the serum IgG anti-T. gondii antibody

concentrations correlate Nested PCR results in blood donors.

Methods: 750 blood donors were enrolled. IgM and IgG anti-T. gondii antibodies

were assessed by ELISA (DiaSorin, Italy). Nested PCR was performed with primers

JW62/JW63 (288 bp) and B22/B23 (115 bp) of the T. gondii B1 gene. The mean values

of IgG concentration were compared for PCR positive and PCR Negative blood donors

using the t-test or Mann-Whitney according to the normal distribution (p-value ≤ 0.05).

Results: 361 (48.1%) blood donors presented positive serology as follow: IgM+/IgG−:

5 (0.6%); IgM+/IgG+: 21 (2.8%); IgM−/IgG+: 335 (44.7%) and 389 (51.9%), negative

serology. From 353 blood donors with positive serology tested, the Nested PCR was

positive in 38 (10.8%) and negative in 315 (89.2%). There were no differences statistically

significant between the mean values of serum IgG anti-T. gondii antibody concentrations

and the Nested PCR results.

Conclusions: In conclusion, our data show that variations in the serum IgG anti-T. gondii

antibody concentrations do not correlate T. gondii parasitemia detected by Nested PCR

in chronically infected healthy blood donors.

Keywords: Toxoplasma gondii, serology, molecular diagnosis, Nested PCR, serology assay, transfusion, blood

donation and transfusion, blood donnors
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BACKGROUND

The infection by Toxoplasma gondii is frequent around the
world and its prevalence range from <30% to more than 60%
(Pappas et al., 2009; Dubey et al., 2012; Wallon and Peyron, 2018;
Greigert et al., 2019). Different clinical forms of toxoplasmosis
resulting from the infection by this Apicomplexan parasite arises
and drawn attention especially for pregnant women, newborns
and other immunosuppressed patients (Robert-Gangneux and
Dardé, 2012; Neu et al., 2015; Rostami et al., 2019; Vidal, 2019).

T. gondii infection is a subject of social, epidemiological,
clinical and scientific interest in Brazil. The rates of
seroprevalence and the great genomic diversity of this parasite
are high around the country (Dubey et al., 2012). Among the
different ways to transmit T. gondii infection, the transfusion of
blood products has been less explored. Two studies carried out
in the past reported transmission of T. gondii by transfusion of
leucocytes and platelets but the authors reached their conclusions
after exclude other potential ways by which this parasite could
be transmitted (Siegel et al., 1971; Nelson et al., 1989). Even
so, this matter still represents a challenge for contemporaneous
transfusion medicine (Foroutan et al., 2018; La Hoz et al., 2019).

The diagnosis of infection by T. gondii is essentially serological
but there are number of published papers demonstrating that the
high sensitivity of molecular methods can offer more accurate
results on the investigation of infection by this parasite (Mattos
et al., 2011; Brenier-Pinchart et al., 2015; Robert-Gangneux et al.,
2015; Camilo et al., 2017; Murata et al., 2017; Roux et al.,
2018; Greigert et al., 2019; Lévêque et al., 2019; Pleyer et al.,
2019). The combination of serology and molecular methods has
been used to improve the diagnosis of infection by T. gondii.
One of them reported that IgG anti-T. gondii antibody low
avidity correlates positive PCR in pregnant women (Yamada
et al., 2011; Murata et al., 2016, 2017; Olariu et al., 2019).
The other one also showed that IgG anti-T. gondii antibody
low avidity correlate positive PCR among patients with ocular
toxoplasmosis (Costa-Silva et al., 2008; Mattos et al., 2011;
Tsirouki et al., 2018; Cortés et al., 2019; Greigert et al., 2019;
Rahimi Esboei et al., 2019). However, correlations between
serum anti-T. gondii antibody concentrations and molecular
diagnosis of T. gondii infection among blood donors are scarce in
the literature.

Evaluation of the serum IgG anti-T. gondii antibody
concentrations could contribute to the understanding of
the importance of these antibodies as risk biomarkers for
transfusional purposes in respect to T. gondii transfusional
transmission. The aim of this study is to test the hypothesis
that low serum concentrations of IgG anti-T. gondii antibodies
correlate T. gondii parasitemia.

METHODS

Ethics Considerations
This study was approved by Research Ethics Committee from
Faculdade de Medicina de São José do Rio Preto (case 006/2011).
All blood donors received information about the objectives of the
study and gave their informed consent.

Selection of Blood Donors
We selected a total of 750 blood donors from both genders
able to donate at Regional Blood Center from São José do Rio
Preto. All of them were seronegative for other infectious diseases
as required by Brazilian policy for blood donation—B and C
hepatitis, HIV, Chagas, syphilis, HTLV I/II (Ministério da Saúde,
2011).

Blood Sampling
Two blood samples were obtained from each blood donor by
venipuncture from peripheral blood. One of them was collected
with EDTA as anticoagulant and used to DNA extraction.
The other one was collected without anticoagulant and stored
at −20◦C until used for detection of IgM and IgG anti-
T. gondii antibodies.

Serology Assays for IgM and IgG Anti-T.
gondii Antibodies
Serological tests for specific IgM and IgG antibodies anti-
T. gondii were carried out by a commercial immunoenzymatic
assay kit (DiaSorin, Italy). IgG anti-T. gondii antibody
concentrations were defined according to the calibrators
representing the cut-off values. All the manufacturer’s
instructions were precisely followed.

DNA Extraction
Genomic DNA of buffy coat from 5mL of blood samples
collected with EDTA was extracted using PureLink Genomic
DNA Kits (Invitrogen, Carlsbad, CA), as previously described
(Mattos et al., 2011).

PCR Nested Molecular Analysis
Nested PCR was performed using the B1 gene (accession
numbers: B1 gene T. gondii = GenBank: KR559682.1) of T.
gondii genomic DNA was carried out according to the protocol
published by Okay and colleagues (Okay et al., 2009).

The first PCR reaction used the set of primers JW62
(Anti-sense: 5′-TTCTCGCCTCATTTCTGGGTCTAC-3′) and
JW63 (Sense: 5′-GCACCTTTCGGACCTCAACAACCG-3′) to
amplify a fragment of 288 base pairs. The composition of the mix
for each reaction with 25 µL of final volume was: 0.2 µL of each
primer, 100 ng of genomic DNA and 1× of Go Taq Green Master
Mix (Promega, USA). The conditions of amplification were: 1×
initial denaturation at 95◦C: 5min, 40× (denaturation at 95◦C:
45 s, annealing at 55◦C: 45 s, extension at 72◦C: 45 s), 1× final
extension at 72◦C: 5min, final at 4◦C: 30min. The amplified
fragments were electrophoresed in 2% agarose gel stained with
ethidium bromide under UV light.

The second PCR reaction used the set of primers B22 (Sense:
5′-AACGGGCGAGTAGCACCTGAGGAGA-3′) and B23 (Anti-
sense: 5′-TGGGTCTACGTCGATGGCATGACAACT-3′) to
amplify a fragment of 115 base pairs. The composition of the mix
for each reaction with 25 µL of final volume was: 1.2µM of each
primer, 0.5 µL of pre-amplified DNA and 1× of Go Taq Green
Master Mix (Promega, USA). The conditions of amplification
were: 1× initial denaturation at 95◦C: 5min, 45× (denaturation
at 95◦C: 45 s, annealing at 55◦C: 45 s, extension at 72◦C: 45 s), 1×
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TABLE 1 | Serology results and the interpretation of the serological profiles and Nested PCR for blood donors.

Serology Interpretation* Male Female OR CI 95% p**

n % n % n %

IgM+/IgG− 5 0.6 Recent infection 3 0.6 2 0.8 0.721 0.119–4.349 0.662

IgM+/IgG+ 21 2.8 Recent infection 19 3.7 2 0.8 4.721 1.090–20.440 0.030

IgM−/IgG+ 335 44.7 Chronic infection 233 46.0 102 41.8 1.188 0.872–1.618 0.308

IgM−/IgG− 389 51.9 Non-immunized 251 49.7 138 56.6 0.756 0.556–1.028 0.086

Total 750 100.0 506 244

*According to Montoya (2002).

**Calculated by exact Fisher’s test.

FIGURE 1 | Electrophoretic profile of fragments of B1 gene from T. gondii genomic DNA extracted from peripheral blood of blood donors, amplified by Nested PCR.

In (A), the first amplification is showing a fragment of 288 base pairs; in (B), the second amplification is showing a fragment of 115 base pairs. M, molecular marker;

PC, Positive Control; CN, Negative Control.

final extension at 72◦C: 5min, final at 4◦C: 30min. The amplified
fragments were electrophoresed in 2% agarose gel stained with
ethidium bromide under UV light.

Statistical Analysis
The mean values of IgG concentration were compared for blood
donors with positive and negative PCR using the t-test or Mann-
Whitney according to the normal distribution. The level of
significance was set at 5% (p-value ≤ 0.05). The GraphPad
Instat R© (GraphPad Software Inc., USA) computer program
version 3.06 was used for all analyses.

RESULTS

The serology results and their interpretation are shown in
Table 1. From the overall blood donors able to donate (n= 750),
244 were female (mean age: 32.7 ± 10.7 years), and 506 were
male (mean age: 34.7 ± 11.6) (p = 0.097). The IgM+/IgG+

serology wasmore frequent inmales than in females (p= 0.0308).
We performed the Nested PCR in 353 blood donors carrying
serum IgG antibodies (IgM+/IgG+ and IgM−/IgG+). Figure 1
shows the amplified fragment from the genomic DNA of T.
gondii extracted from peripheral blood carrying 288 and 115
bp, respectively.

There were no differences statistically significant between
the mean serum IgG anti-T. gondii antibody concentrations
and positive or negative Nested PCR results even when the

comparisons were made by gender. Table 2 shows the data from
male and female blood donors with positive and negative Nested
PCR and serum IgG anti-T. gondii antibody concentrations.

DISCUSSION

The aim of this study was to test the hypothesis that serum
concentrations of IgG anti-T. gondii antibodies correlateT. gondii
parasitemia in healthy blood donors. As the screening for anti-
T. gondii antibodies is not compulsory for blood donors in Brazil
(Ministério da Saúde, 2011) we performed serological tests to
detect IgM and IgG anti-T. gondii antibodies as well as Nested
PCR targeting B1 gene from T. gondii to detect parasitemia.

Serum IgM and IgG anti-T. gondii antibodies have been
investigated in blood donors aiming to determine the prevalence
of infection in different countries as reviewed by Foroutan-Rad
and colleagues (Foroutan-Rad et al., 2016; Foroutan et al., 2018)
as well as to estimate the risk of transfusional transmission of
this parasite (Siransy et al., 2016; Ferreira et al., 2017; Botein
et al., 2019; El-Tantawy et al., 2019). However, correlations
between serum IgG anti-T. gondii antibody concentrations and
the parasitemia determined by molecular methods have not
been explored in healthy blood donors. A correlation between
high serum IgG anti-T. gondii concentrations and negative PCR
could be explored as an indicator for low risk of transfusional
transmission of this parasite by blood products.
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TABLE 2 | Mean age, median, range, normal distribution, IgG anti-T. gondii

antibodies concentrations according to Nested PCR Positive and Negative in male

and female healthy blood donors.

Values Nested PCR (N = 353)

Positive (n = 38) Negative (n = 315)

Male

(n = 31)

Female

(n = 7)

Male

(n = 221)

Female

(n = 94)

Mean age ± SD 37.7 ± 11.2 38.7 ± 11.9 37.9 ± 10.9 35.0 ± 10.5

Median 38 33 37 34

Range 19–60 23–52 18–65 18–59

25th Percentile

(range)

28 (19–37) 23 (23–32) 28 (18–36) 27 (18–33)

75th Percentile

(range)

47 (39–60) 51 (50–52) 46 (38–65) 43 (34–59)

Normal distribution Yes Yes Yes No

IgG+

IgG ± SD (UI/mL) 196.0 ± 35.2 165.6 ± 62.7 204.0 ± 33.2 196.6 ± 39.5

Median 205.6 186.8 208.3 205.9

Range 66.1–232.1 36.1–222.8 21.4–257.3 55.2–244.7

25th Percentile

(range)

171.9

(66.1–202.1)

145.1

(36.1–168.9)

180.1

(21.4–208.2)

169.6

(55.2–205.8)

75th Percentile

(range)

219.5

(206.0–232.1)

212.5

(186.9–222.8)

227.9

(208.4–257.3)

223.6

(205.9–244.7)

Normal distribution No Yes No No

OBS: Male-PCR+ vs. Male-PCR–: p = 0.2252 (Mann–Whitney U′ = 3,887.0); Female-

PCR+ vs. Female-PCR–: p = 0.0960 (Mann–Whitney U′ = 454.00); Male-PCR+ vs.

Female-PCR+: p = 0.1065 (Mann–Whitney U′ = 152.00); Male-PCR– vs. Female-PCR–:

p = 0.2486 (Mann–Whitney U′ = 11,241.00).

In this study, we observed that none of the IgM+/IgG−

blood donors were positive for Nested PCR. Only one of the
IgM+/IgG+ presented positive Nested PCR. Moreover, male and
female blood donors with positive Nested PCR presented the
mean values of serum IgG anti-T. gondii antibody concentrations
lower in comparison to their counterpart with negative Nested
PCR. However, the differences were not statistically significant.
Therefore, low or high serum IgG anti-T. gondii antibody
concentrations do not correlate the result of molecular analysis
by Nested PCR aiming to detect genomic DNA from T. gondii in
peripheral blood from healthy blood donors.

Molecular methods, such as conventional PCR, Nested PCR,
and real-time PCR have been used either in isolation or
in association, to detect T. gondii parasitemia in acute and
chronically infected individuals since they show high sensitivity
(Brenier-Pinchart et al., 2015; Dard et al., 2016; Camilo et al.,
2017; Roux et al., 2018; Botein et al., 2019; Greigert et al., 2019). In
this study, we used the Nested PCR to target the B1 gene which is
one of the most used tests in the literature for detecting T. gondii
parasitemia (Okay et al., 2009; Mattos et al., 2011; Teixeira et al.,
2013; Roux et al., 2018). Moreover, it has been demonstrated
that the B1 gene might be targeted for molecular detection of
T. gondii parasitemia in Brazilian samples, especially when the
investigation is limited to one gene (Okay et al., 2009; Teixeira
et al., 2013).

It would be desirable to obtain T. gondii isolates from the
blood donor or the donate samples (blood bags). However, due to

the short length of parasitemia, which is apparently restricted to
the acute phase of infection, is difficult to obtain viable parasites
from blood samples. Maybe, an alternative would be to isolate
parasite’s mRNA from the donated blood but this procedure
could interfere in the routine process in blood banks and
contaminate the blood bags. Due to these difficulties, the studies
that explored molecular approaches to detect the infection
by this parasite among blood donors carry some limitations.
Molecular methods aiming to detect T. gondii genomic DNA in
the peripheral blood, such as conventional and Nested PCR are
unable to distinguish live or dead parasites as well as residual
DNA. They can only give a measure of the risk of transmission as
well as overestimate the presence of the parasite in the peripheral
blood (Rousseau et al., 2018).

The data presented here are supported by other reports.
Three Iranian studies detected T. gondii infection only in
blood donors carrying IgM anti-T. gondii antibodies by real-
time PCR (Mahmoudvand et al., 2015) and Nested PCR
(Sadooghian et al., 2017; Saki et al., 2019). In fact, there is a
strong correlation between the IgM anti-T. gondii antibodies
and parasitemia. However, parasitemia cannot be discharged in
immunocompetent individuals (potential blood donors) carrying
circulating IgG anti-T. gondii antibodies (Mattos et al., 2011;
Park, 2012), especially when these antibodies present low avidity
(Mattos et al., 2011; Yamada et al., 2011; Saki et al., 2019). All
these studies did not correlate the serum concentration of anti-T.
gondii antibodies to the PCR results.

The role of the host’s immune response is crucial to
protect chronically infected individuals (Coombes and Hunter,
2015). On the one hand, the cellular immune response led
by macrophages, T CD8 lymphocytes, Natural Killer cells and
cytokines as Interferon gama (IFN-È) protects against the
intracellular forms of the parasite. On the other hand, humoral
immune response, which is thought to play a minor role in the
immune protection of the host, seems to be effective against
T. gondii extracellular forms, such as tachyzoites (Cohen and
Denkers, 2015). The anamnestic immune response against T.
gondii is characterized by the expression of IgG antibodies with
high avidity and this class of immunoglobulins is effective at
least in three immune events: opsonization and phagocytosis,
Complement activation and Antibody-Dependent Cytotoxicity
(ADCC) byNatural Killer cells and other white blood cells (Pleass
and Woof, 2001; Filisetti and Candolfi, 2004; Ortiz-Alegría et al.,
2010).

Erbe et al. (1991) demonstrated that human myeloid and
lymphoid cells to kill T. gondii tachyzoites. These authors
concluded that opsonization allows the binding of Fc IgG portion
to Fc receptors (FcÈR) on phagocytic cells and significantly
enhances the killing of tachyzoites coated by IgG anti-T. gondii
antibodies. Additionally, Costa-Silva et al. (2012) reported that
high levels of IgG from chronically infected mice decreases
T. gondii RH strain parasitemia in comparison to those from
naive mice. Exploring an experimental model, Seeber (2000)
demonstrated the lytic activity mediated by Complement against
T. gondii tachyzoites (Seeber, 2000). Other experimental study
demonstrated the ability of IgG anti-excreted-secreted antigens
from T. gondii to agglutinate tachyzoites and kill them by
Complement lysis in a mouse model (Costa-Silva et al., 2008).
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Pleass andWoof (2001) reported that NK cells activated by IFN-γ
display Fc receptor for Fc IgG portion which binds IgG anti-
T. gondii antibodies and kills tachyzoites through ADCC (Pleass
and Woof, 2001). All these observations suggest that IgG anti-
T. gondii antibodies are effective and promote the clearance of
parasitemia in chronically infected healthy blood donors.

Despite the limitations of this study which evaluated only the
B1 gene and did not determine the IgG avidity, our data confirm
the potential parasitemia in blood donors with circulating IgG
anti-T. gondii antibodies, and demonstrate that the mean values
of serum concentration of these antibodies do not correlate
the results of Nested PCR. Also, it supports the view that
blood products collected from chronically infected blood donors
constitute a risk for transfusional transmission of T. gondii.
In conclusion, our data show that variations in the serum
IgG anti-T. gondii antibody concentrations do not correlate
T. gondii parasitemia detected by Nested PCR in chronically
infected healthy blood donors. Therefore, the use of serum IgG
anti-T. gondii antibody concentrations to estimate the risk of
transfusional transmission of this parasite does not constitute a
potential biomarker for transfusional purposes.
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Ophthalmology Clinic of a Public
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State, Brazil
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Amanda Pires Barbosa 3, Fabiana Nakashima 1†, Geraldo Magela de Faria Jr. 1,2,

Aparecida Perpétuo Silveira Carvalho 1,2, Cristina da Silva Meira Strejevitch 4,

Vera Lucia Pereira-Chioccola 4, Lilian Castiglioni 1, Luiz Carlos de Mattos 1,2,
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Ocular toxoplasmosis is one of the most common complications caused by the infection

with the parasite Toxoplasma gondii. The risk of developing eye lesions and impaired

vision is considered higher in Brazil than other countries. The clinical diagnosis is difficult

and the use of sensitive and specific laboratorial methods can aid to the correct diagnosis

of this infection. We compared serological methods ELISA and ELFA, and molecular

cPCR, Nested PCR and qPCR for the diagnosis of T. gondii infection in groups of

patients clinically evaluated with ocular diseases non-toxoplasma related (G1= 185) and

with lesions caused by toxoplasmosis (G2 = 164) in an Ophthalmology clinic in Brazil.

Results were compared by the Kappa index, and sensitivity (S), specificity (E), positive

predictive value (PPV), and negative (NPV) were calculated. Serologic methods were in

agreement with ELISA more sensitive and ELFA more specific to characterize the acute

and chronic infections while molecular methods were discrepant where qPCR presented

higher sensitivity, however, lower specificity when compared to cPCR and Nested PCR.

Keywords: ocular toxoplasmosis, toxoplasma antibodies, Toxoplasama gondii, retinochoroiditis, polimerase chain

reaction (PCR), qPCR, uveites

INTRODUCTION

Toxoplasmosis is a disease caused by the obligate intracellular parasite Toxoplasma gondii.
In immunocompetent individuals the disease is usually asymptomatic, and its infection is
commonly detected by serological tests (Saadatnia and Golkar, 2012). When symptomatic, ocular
toxoplasmosis (OT) is the most common clinical manifestation (Garweg and Peyron, 2008;
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Tsirouki et al., 2018) which can be due to congenital or acquired
infection (Montoya, 2002; Oréfice et al., 2010; Maenz et al., 2014).

The clinical manifestations result from tachyzoite invasion
into host cells from an acute infection and also in chronic
infection by the reactivation of tissue-cysts contained in
the retina which release bradyzoites, leading to an intense
inflammatory response and tissue destruction (Garweg and
Peyron, 2008; Maenz et al., 2014; Tsirouki et al., 2018).

The prevalence of ocular toxoplasmosis in Brazil is high, and
the severity and risk of ocular involvement are notably higher
compared to the United States and Europe (Glasner et al., 1992;
Garcia et al., 1999; Aleixo et al., 2009; Furtado et al., 2013; Grigg
et al., 2015). Studies in the northwestern region of São Paulo
showed that seroprevalence was 74.5%, of these, 27.3% had ocular
disease (Ferreira et al., 2014).

The high rates of ocular disease caused by T. gondii infection
in Brazil is still unknown, and it is still not clear why these strains
can cause more ocular involvement than in the rest of the world.
Genetic diversity of these strains and host immune response are
important factors that have been related to the severity of this
disease in Brazil (Grigg et al., 2001, 2015; Silveira et al., 2015;
Greigert et al., 2019).

Clinical diagnosis is challenging and serological andmolecular
tests are mostly used to confirm the disease. However, there is
still no consensus regarding which method would be the best to
identify T. gondii infection (Garweg and Peyron, 2008; Maenz
et al., 2014; Greigert et al., 2019).

Since there is no standard test for diagnosis of T. gondii
infection in Brazil, the use of methods with higher sensitivity
and specificity are essential to lead to the correct diagnosis of
this disease. The aim of this study was to evaluate the serological
andmolecular methods for diagnosis of toxoplasmosis in patients
with and without ocular lesions, suggestive of toxoplasmosis
treated at the ambulatory of Ophthalmology at the Hospital de
Base in the city of São José do Rio Preto, São Paulo, Brazil.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of the
Medicine School in São José do Rio Preto (FAMERP-
CAAE 32259714.8.0000.5415).

Patients and Clinical Samples
This is a retrospective study that evaluated 349 blood samples
from patients of both genders treated and clinically evaluated
at the ambulatory of Ophthalmology of the Fundação Faculdade
Regional de Medicina, Hospital de Base (FUNFARME), São José
do Rio Preto, São Paulo, Brazil, from 2009 to 2014. All patients
were invited to participate in the project, and signed the free
and informed consent form after receiving all the information
about the objectives and the procedures to be performed in this
research. All selected patients were immunocompetent and were
divided into two groups: Group 1 (G1): Patients with ocular
injury caused by diseases such as glaucoma, diabetic retinopathy
type I, retinal detachment, macular degeneration related to
age, uveitis of unknown cause, corneal transplantation, cataract,

macular changes, post-operative injury, among other eye diseases
not related to toxoplasma infection (N = 185), and Group 2 (G2):
Patients with uveitis characteristics of toxoplasmosis (N = 164).
The criteria for inclusion in this group was the presence
of lesions in the retina characteristics of toxoplasmosis and,
retinochoroiditis with active lesions. Ocular clinical evaluation
of all patients was performed by fundus examination, and photo
documentation using fundus photography, angiography and
OCT (Optical Coherence Tomography).

Peripheral blood samples were collected from all subjects in
a dry tube for serological analysis and in a tube containing
ethylenediaminetetraacetic acid (EDTA) for DNA extraction
and molecular tests. Serological and molecular analyses were
performed in the Immunogenetics Laboratory, Molecular
Biology Department, FAMERP, São José do Rio Preto, São
Paulo, Brazil.

Serological Diagnosis
The presence of anti-T. gondii was confirmed using the semi-
automated test by Enzyme Linked Immunosorbent assay (ELISA,
DiaSorin, Italy) using the ETI-TOXOK-M reverse plus kit for
IgM and ETI-TOXOK-G plus for IgG, and an automated
test by enzyme linked fluorescent assay (ELFA, Biomerieux,
France) using the Vidas R©Toxo IgM kits (TXM) for IgM,
Vidas R©Toxo IgG II (TXG) to IgG and Vidas R©Toxo IgG avidity
(TXGA) for IgG avidity. The detection of IgM antibodies
was performed by capture ELISA. The ELFA was performed
in automated equipment (Mini Vidas, Biomerieux, France).
Samples were considered positive for IgG antibodies by ELISA
when the concentration was >15 IU/ml and negative when the
IgG concentration was ≤15 IU/ml. For the IgM ELISA test,
the absorbance values of the samples were compared with
the average cut-off point, samples were considered positive
when the absorbance values were higher than or equal to the
cut-off limit point (>10% of the average cut-off) with the
remaining samples being considered negative. Samples results
with absorbance value between±10% of the average cut-off were
re-tested to confirm the result. By ELFA, samples were considered
positive for IgG antibodies when >8 IU/mL, indeterminate
from ≥4 to ≤8 IU/mL and negative when <4 IU/mL. For IgM
antibodies, ELFA results were positive when the reagent index
was ≥0.65 IU/mL, indeterminate from <0.65 to ≥0.55 IU/mL
and negative <0.55 IU/mL. The IgG avidity was considered low
when result was <0.200; intermediate avidity between ≤0.200
and <0.300; and high avidity when result was ≥0.300. The
performance of the tests and results interpretation were made
according to each manufacturer’s instructions.

Molecular Diagnosis
Genomic DNA Extraction

The genomic DNA was extracted from 5ml of peripheral blood
collected in EDTA tube using a commercial kit (Qiamp DNA
blood mini kit, Qiagen, Germany) according to the protocol
described by Mattos et al. (2011). The extracted DNA was
stored at −20◦C until the polymerase chain reaction (PCR)
was performed.
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Identification of Toxoplasma gondii B1 Gene

Conventional polymerase chain reaction (cPCR)
Conventional PCR (cPCR) was performed to identify T. gondii
DNA in blood samples. Two cPCR reactions were performed,
one using the JW62/63 primer pair and the other using the
B22/23 primer pair. The B22 (sense: 5′-AACGGGCGAGTAGC
ACCTGAGGAGA-3′) and B23 primers (anti-sense: 5′-TGGG
TCTACGTCGATGGCATGACAACT-3′) amplify a 115 base-pair
sequence of a specific repetitive region of the B1 gene (accession
numbers: B1 geneT. gondii=GenBank: AF146527.1) (Burg et al.,
1989; Colombo et al., 2005). The PCRmixture consisted of 8.5µL
of nuclease-free water (Promega, USA); 12.5µL of GoTaq Green
Master Mix (Promega, USA) and 1.0µL of each B22 and B23
primers (25 pmol each—IDT, USA). DNA from patients and
controls (5µL in [100 ng/µL]) were added to the PCR mixture
in a final volume of 25µL. The PCR cycling conditions consisted
of an initial denaturation step at 95◦C for 5min, 35 amplification
cycles of 45 s at 95◦C, 45 s at 62◦C, and 45 s at 72◦C with a final
extension of 5min at 72◦C in a thermocycler (Verity, Applied
Biosystems, USA). The PCR products were electrophoresed in
1.5% agarose gel using SYBR Safe stain (Invitrogen, USA).

Nested PCR
Conventional PCR was performed using the JW62 (antisense:
5′-TTCTCGCCTCATTTCTGGGTCTAC-3′) and JW63 primer
pair (Sense: 5′-GCACCTTTCGGACCTCAACAACCG-3′),
which amplifies a fragment of 288 base pairs of the T. gondii B1
gene. The PCR mixture was prepared using 6.5µL nuclease-free
water (Promega, USA), 12.5µL of GoTaq Green Master Mix
(Promega, USA) and 0.5µL of each of the JW62 and JW63
primers (10µM each primer—IDT, USA). DNA from patients
and controls (5µL in [100 ng/µL]) were added to the PCR
mixture in a final volume of 25µL. The PCR cycling conditions
consisted of an initial denaturation step at 95◦C for 5min, 40
amplification cycles of 45 s at 95◦C, 45 s at 55◦C, and 45 s at
72◦C with a final extension of 5min at 72◦C in a thermocycler
(Verity, Applied Biosystems, USA). The PCR products were
electrophoresed in 1.5% agarose gel using SYBR Safe stain
(Invitrogen, USA). The amplified product was subjected to
a second PCR (Nested PCR) using the B22/23 primer pair
following the protocol published by Okay et al. (2009) with
modifications. The PCR mixture was prepared for the second
reaction using 6.5 µL nuclease-free water (Promega, USA),
12.5 µL of GoTaq Green Master Mix (Promega, USA) and
0.5 µL of each of the B22 and B23 primers (25 pmol of each
primer—IDT, USA). Five microliters from the first amplification
reaction using the JW62/63 primer pair were added. The PCR
cycling conditions consisted of an initial denaturation step at
95◦C for 5min, 25 amplification cycles of 45 s at 95◦C, 45 s at
62◦C, and 45 s at 72◦C with a final extension of 5min at 72◦C
in a thermocycler (Verity, Applied Biosystems, USA). The PCR
products were electrophoresed in 1.5% agarose gel using SYBR
Safe stain (Invitrogen, USA).

Real-time PCR (qPCR)
Genomic DNA was also subjected to real-time PCR (qPCR)
using primers to amplify 16S rRNA gene. The primers

used in the real-time PCR reactions were forward (5′-
TGCATCCAACGAGTTTATAA-3′), reverse (5′-GGCATTCC
TCGTTGAAGATT-3′), and TaqMan (FAM-ATTGCAATAATC
TATCCCCATCACGATGCATAC-BBQ). Real-time PCR was
performed in a Step One Plus system (Applied Biosystems,
USA) using the following mixture: 4.5µL nuclease-free water,
10.0 µL 2× QuantiTect Probe PCR Master Mix, 0.5µL of
PrimeTime kit (500 nM of each primer and 250 nM of probe)
(Qiagen, Germany). DNA from patients and controls (5µL in
[100 ng/µL]) were added to the PCR mixture in a final volume
of 25µL. The PCR cycling conditions used for qPCR consisted
of an initial denaturation step at 50◦C for 2min, once at 95◦C
for 15min, 40 amplification cycles of 15 s at 94◦C and 1min at
60◦Cwith a final extension of 30 s at 50◦C. The primers and probe
used in this analysis have been described by Gunel et al. (2012).
Ultrapure water and DNA extracted from T. gondii (RH strain)
were included as negative and positive controls, respectively in
all PCR reactions (cPCR, Nested PCR and qPCR). To control
the course of DNA extraction and check for PCR inhibitors,
all samples were assayed using the HGH primer (Accession
number: HGH = GenBank: U55206.1—sense: 5′-GCCTTCCC
AACCATTCCCT-3′ and antisense: 5′-TCACGGATTTCTGTTG
TGTTTC-3′), which amplifies a 400-base-pair fragment of the
human growth hormone gene.

Statistical Analysis
IBM SPSS software v.23 was used to determine the Kappa
index (KI) and GraphPad Stat Software v. 3.06 to determine
the sensitivity, specificity, positive predictive value and negative
value. Sensitivities and specificities were calculated as: (i) percent
of sensitivity = ratio of true positives/true positives + false
negatives × 100; and (ii) percent of specificity = ratio of true
negatives/true negatives +false positives × 100. P ≤ 0.05 was
considered statistically significant. The strength of the agreement
between two serological tests was calculated using the KI. The
results are interpreted considering the ranges published by
Landis and Koch (1977) where the agreement is considered
poor, slight, fair, moderate, substantial and almost perfect when
the KI is 0, 0–0.19, 0.2–0.39, 0.4–0.59, 0.6–0.79, and 0.8–
1.0, respectively.

RESULTS

Group 1 (G1) was composed of 185 patients, 97 (52.4%) males
and 88 (47.6%) females, with an average age of 51.6 years [range:
17–85; standard deviation (SD): 19.3]. G2 was composed of
164 patients, 95 (57.9%) males and 69 (42.1%) females, with an
average age of 45.7 years (range: 10–90; SD: 19.6). The mean ages
between G1 and G2 showed a statistically significant difference
(P = 0.0054; student t-test = 2.799; df = 347; 95% confidence
interval: 1,734–9,936).

In G1, serological tests detected 6 (IgM) and 121 (IgG) positive
samples by ELISA, while 2 (IgM) and 119 (IgG) were positive
by ELFA. For G2, 10 (IgM) and 158 (IgG) samples were positive
by ELISA, while 6 (IgM) and 156 (IgG) samples were positive by
ELFA. Compared results of serological tests are shown in Table 1.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 February 2020 | Volume 9 | Article 47256

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Murata et al. Laboratorial Diagnosis for Ocular Toxoplasmosis

TABLE 1 | Comparison of serological and molecular tests of group without ocular toxoplasmosis (G1) with group with ocular toxoplasmosis (G2).

Groups Serological tests

ELISA/ELFA positive

Molecular tests

cPCR (JW62/63)/cPCR (B22/23)/Nested PCR/qPCR positive

IgM IgG

G1 (185 samples) 6 (3.2%)/2 (1.1%) 121 (65.4%)/119 (64.3%) 1 (0.5%)/1 (0.5%)/3 (1.6%)/3 (1.6%)

G2 (164 samples) 10 (6.1%)/6 (3.7%) 158 (96.3%)/156 (95.1%) 3 (1.8%)/10 (6.1%)/4 (2.4%)/14 (8.5%)

Statistical analysis of IgG in G1. ELISA vs. ELFA: P-value = 0.913; 95% CI (0.875–1.181); IgM—ELISA vs. ELFA: P-value = 0.283; 95% CI (0.613–14.677); cPCR (JW62/63) vs. Nested

PCR vs. cPCR (B22/23) vs. qPCR: P = 0.567; GL = 3; χ
2 = 2.022. Statistical analysis of IgG in G2. ELISA vs. ELFA: P-value = 0.785; 95% CI (0.967–1.06); IgM—ELISA vs. ELFA:

P-value = 0.443; 95% CI (0.619–4.481); cPCR (JW62/63) vs. Nested PCR vs. cPCR (B22/23) vs. qPCR: P = 0.012; GL = 3; χ2 = 10.936.

Statistical analysis of G1: cPCR (JW62/63) vs. Nested PCR vs. cPCR (B22/23) vs. qPCR: P = 0.567; GL = 3; χ2 = 2.022. Statistical analysis of G2: cPCR (JW62/63) vs. Nested PCR

vs. cPCR (B22/23) vs. qPCR: P = 0.012; GL = 3; χ2 = 10.936.

The KIs for the detection of anti-T. gondii IgG antibodies
in G1 was 0.97 (almost perfect agreement between the two
techniques, ELISA × ELFA), and 0.49 for IgM antibodies
(moderate agreement between the two techniques, ELISA ×

ELFA). The KIs for anti-T. gondii antibodies of G2 was 0.85
(almost perfect agreement, ELISA × ELFA), and for IgM
antibodies was 0.74 (substantial agreement between the two
techniques, ELISA× ELFA).

Regarding molecular tests on G1, one sample was positive by
one round-PCR using primer JW62/63 and by one round-PCR
using B22/23. Nested-PCR using the primer B22/23 amplified
three samples and qPCR using the 16S rRNA gene amplified
three samples. On G2, one round-PCR using primer JW62/63
amplified three samples, and 10 by one round-PCR using B22/23.
Nested-PCR using the primer B22/23 detected four samples and
qPCR 16S rRNA gene amplified 14 samples. Results are shown
in Table 1.

The sensitivity (S), specificity (E), positive predictive value
(PPV), and negative (NPV) was calculated for each serological
and molecular test separately. Results are presented in Table 2.

DISCUSSION

This study evaluated serological and molecular methods used
to identify T. gondii infection in patients treated at the
Ophthalmology Clinic in the city of São José do Rio Preto,
northwestern region of São Paulo state.

Most common enzyme immunoassays, ELISA and ELFA were
evaluated in this study. ELISA detected more positive cases
in both groups but for acute and chronic disease ELFA was
more specific.

High sensitivity and specificity of serological test is essential,
since a misdiagnosis would lead to wrong or late treatment of
these patients, which could increase the changes of eye damage
and loss of vision (Dhakal et al., 2015).

In this study, ELISA and ELFA had almost perfect agreement
when compared by the Kappa index for the identification of IgG
in both groups, indicating that these tests are very useful for the
diagnosis of chronic infection. However, for IgM, Kappa index
was moderate for G1 and with substantial agreement for G2 with
higher detection by ELISA than ELFA.

All the samples tested positive for ELISA and negative for
ELFA were also negative in the molecular tests, one sample was

TABLE 2 | Results for sensitivity (S), specificity (E), positive predictive value (PPV),

and negative predictive value (NPV) between the serological tests in G1 and G2,

performed by ELISA (DiaSorin) and ELFA (Biomerieux) and between the molecular

tests performed by cPCR (JW62/63), Nested PCR, cPCR (B22/23), and qPCR.

S (%) E (%) PPV (%) NPV (%)

ELISA IgG 96.3 34.6 56.6 91.4

ELISA IgM 6.1 96.8 62.5 53.7

ELFA IgG 95.1 35.7 56.7 89.2

ELFA IgM 3.7 98.9 75.0 53.7

cPCR (JW62/63) 1.8 99.5 75.0 53.3

Nested PCR 2.4 99.5 80.0 53.5

cPCR (B22/23) 6.1 98.4 76.7 54.2

qPCR 8.5 98.4 82.3 54.8

negative for IgG and high avidity of IgG for all samples. These
findings may suggest that those IgM results detected by ELISA
could be a result of persistence of Toxoplasma IgM in chronic
infection. False positive results might be troublesome specially
during prenatal care, as it could lead to undesirable consequences
and unnecessary treatment and interventions, therefore, assays
which do not detect these residual IgM antibodies would be ideal
(Dhakal et al., 2015; Villard et al., 2016). Unfortunately, we just
had access to one sample of these patients and consequently no
follow-up was performed. In any case, confirming the IgM test
is not easy since there is no reference method for its detection
(Dhakal et al., 2015). The use of a test that could eliminate
the risks of detecting residual IgM would be paramount, since
a follow-up study to confirm the infection is expensive and
time-consuming (Gras et al., 2004).

Automated method as ELFA have shown high sensitivity and
specificity when compared to other methods with advantages of
eliminating interferences that may occur during manual testing
(Del Bono et al., 1989; Murat et al., 2013). The evaluation
of IgM antibodies in the acute infection has been discussed
since it still can be detected in chronic infection and there is a
risk of false-positive results by cross-reactivity with antibodies,
rheumatoid factor and other viral and bacterial diseases (Naot
et al., 1981; Montoya, 2002; Bichara et al., 2012; Villard et al.,
2012). In a study conducted by Dao et al. (2003) comparing
the reaction of IgM antibodies by ELISA and ISAGA in patients
without clinical suspicion of infection by T. gondii, it was
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observed that 5 samples were positive in ELISA but none
in ISAGA. The authors concluded that the different antigen
compositions in solid phase reactions may have led to false-
positive results by ELISA (Dao et al., 2003). The difference in the
composition of the antigens of ELFA and ELISA kits may also
have contributed to the difference finding in our study.

The low specificity of the IgG in this study could be related to
high rates of seroprevalence in the region, and the permanence
of these antibodies for the whole life of the host, even without
the clinical signs of the disease. Melamed describes the difficulty
of serologic diagnosis in patients with eye injuries, as these
antibodies are present in patients with or without clinical signs
of the disease, making the proper identification of the etiologic
agent difficult (Melamed, 2009).

Since there is no standardization to detect T. gondii by PCR,
different protocols have been used (Roux et al., 2018; Greigert
et al., 2019). Selection of primer, applied technology and a more
suitable sample are some reasons for this challenge (Saadatnia
and Golkar, 2012). Several studies analyzing different targets and
samples were done and there is still no consensus of the best test
(Homan et al., 2000; Jones et al., 2000; Calderaro et al., 2006; Okay
et al., 2009; Menotti et al., 2010).

In a study conducted by Jones et al. (2000) comparing three
T. gondii genes (B1, P30, and 16S rRNA gene) in aqueous humor,
B1 was more sensitive than P30 and 16S rRNA gene, when it was
submitted to a nested-PCR. In our study, 16S rRNA gene was
more sensitive than B1 and less specific when compared to one-
round PCR with JW62/63 and nested-PCR, and same specificity
compared with one-round onB1 conventional PCR. Some factors
may have contributed for these results.

First, 16S rRNA gene is the most highly repeated region of the
gene studied (110 copies in the T. gondii genome) compared to 35
copies of B1 gene, increasing the chances for amplification (Jones
et al., 2000; Calderaro et al., 2006; Ivovic et al., 2012).

Second, the kind of specimen analyzed, as it seems that results
of molecular tests can vary according to the kind of sampling,
as shown by Calderaro et al. (2006) who found same sensitivity
between nested-PCR using B1 gene and real time PCR using 16S
rRNA gene when analyzing blood samples and less sensitivity of
16S rRNA gene when analyzing cerebrospinal fluid samples.

The sensitivity of B1 gene was higher when samples were
submitted just to one-round PCR using B22/23 primer than
compared to one-round PCR using JW62/63 and nested-PCR.
Primer B22/23 amplifies a 115-base pair sequence of B1 gene and
has been reported as highly sensitive and specific primer used to
detect T. gondii DNA in blood, cerebrospinal fluid, and amniotic
fluid (Vidal et al., 2004; Okay et al., 2009; Mattos et al., 2011;
Camilo et al., 2017; Murata et al., 2017). In a study conducted by
Camilo et al. (2017) evaluating two real time-PCR for B1 gene and
REP-529 with a conventional PCR using the B22/23 primer, the
authors found that REP-529 had better performance compared
with the B1 gene. However, the primer B22/23 had the same rate
of detection as REP-529 (Camilo et al., 2017).

The lowest detection of T. gondii DNA was observed when
samples were submitted to a cPCR using primers JW62/63 and
nested-PCR. Contrary to our results, Okay et al. (2009) found
more positive results when analyzed amniotic fluid samples using

the JW62/63 (120/467) than using the 16S rRNA gene (0/467).
The authors also submitted 50 samples from negative result on
JW62/63 to a nested-PCR using primer B22/23, which detected
more nine positive samples (Okay et al., 2009). In our study, all
samples analyzed with JW62/63 were also submitted to a nested-
PCR using the primer B22/23 irrespectively to the first one-
round result. All the samples positive on the JW62/63 were also
positive for the nested-PCR, which detected three more positive
samples, suggesting that nested-PCR can be more sensitive than
conventional PCR (Jones et al., 2000; Okay et al., 2009).

This study shows that the most common used serological
tests ELISA and ELFA are good tests for the detection of
T. gondii antibodies in the groups of patients analyzed with
higher sensitivity for ELISA but better specificity for ELFA. For
molecular tests, real time PCR using the 16S rRNA gene was the
most sensitive, however, less specific than JW62/63 and nested-
PCR using the primer B22/23.

Despite the limitation of this study related to the lack of follow
up of these patients, our results show that even with no consensus
of the best protocol to use, the combinate use of these tests with
clinical evaluation and follow up could be a great tool for the
correct diagnosis of T. gondii infection.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Medicine School in São
José do Rio Preto (FAMERP-CAAE 32259714.8.0000.5415). The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

CB and FM coordinated the experiments and designed the
study. CB, FM, LM, and VP-C wrote the manuscript. MP,
FF, RS, and AB performed the selection of clinical samples
and clinical evaluation. FM, MP, FN, AS, GF, CM, and
VP-C performed the serological and molecular diagnosis for
toxoplasmosis. FM and LC performed the statistical analyses.
All authors contributed substantially to the interpretation of
the data and to the manuscript. In addition, all authors
revised the manuscript, approved the final version submitted,
published, and agreed to be accountable for all aspects of the
work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated
and resolved.

FUNDING

This study was supported by research grants from Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 February 2020 | Volume 9 | Article 47258

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Murata et al. Laboratorial Diagnosis for Ocular Toxoplasmosis

#2012/07716-9 to LM; #2012/07750-2 to FN; #2013/15879-8
to FM; #2013/10050-5 to MP; #2018/04709-8 to VP-C;
#2014/05302-8 to LC; 2018/09448-8 to GF); by CAPES
scholarship (to GF); by Fundação de Apoio à Pesquisa e Extensão

de São José do Rio Preto (FAPERP to FM #175/2015). The

opinions, assumptions, and conclusions or recommendations
expressed in this material are strictly those of the authors and do
not necessarily reflect the views of FAPESP.

REFERENCES

Aleixo, A. L., Benchimol, E. I., Neves, E. S., Silva, C. S., Coura, L. C.,

and Amendoeira, M. R. (2009). Frequency of lesions suggestive of ocular

toxoplasmosis among a rural population in the State of Rio de Janeiro. Rev.

Soc. Bras. Med. Trop. 42, 165–169. doi: 10.1590/S0037-86822009000200014

Bichara, C. N., Canto, G. A., Tostes, C. L., Freitas, J. J., Carmo, E. L.,

Póvoa, M. M., et al. (2012). Incidence of congenital toxoplasmosis in the

City of Belém, State of Pará, Northern Brazil, determined by a neonatal

screening program: preliminary results. Rev. Soc. Bras. Med. Trop. 45, 122–124.

doi: 10.1590/S0037-86822012000100024

Burg, J. L., Grove, C. M., Pouletty, P. J., and Boothroyd, J. C. (1989). Directed

and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by

polymerase chain reaction. J. Clin. Microbiol. 27, 1787–1792.

Calderaro, A., Piccolo, G., Gorrini, C., Peruzzi, S., Zerbini, L., Bommezzadri, S.,

et al. (2006). Comparison between two real-time PCR assays and a nested-

PCR for the detection of Toxoplasma gondii. Acta Biomed. 77, 75–80. Available

online at: https://mattioli1885journals.com/index.php/actabiomedica/article/

view/1989

Camilo, L. M., Pereira-Chioccola, V. L., Gava, R., Meira-Strejevitch, C. D. S.,

Vidal, J. E., Brandão de Mattos, C. C., et al. (2017). Molecular diagnosis of

symptomatic toxoplasmosis: a 9-year retrospective and prospective study in

a referral laboratory in São Paulo, Brazil. Braz. J. Infect. Dis. 21, 638–647.

doi: 10.1016/j.bjid.2017.07.003

Colombo, F. A., Vidal, J. E., Penalva de Oliveira, A. C., Hernández, A. V., Bonasser-

Filho, F., Nogueira, R. S., et al. (2005). Diagnosis of cerebral toxoplasmosis

in AIDS patients in Brazil: importance of molecular and immunological

methods using peripheral blood samples. J. Clin. Microbiol. 43, 5044–5047.

doi: 10.1128/JCM.43.10.5044-5047.2005

Dao, A., Azzouz, N., Eloundou, N. G. A. C., Dubremetz, J. F., Schwarz, R. T.,

and Fortier, B. (2003). Unspecific reactivity of IgM directed against the low-

molecular-weight antigen of Toxoplasma gondii. Eur. J. Clin. Microbiol. Infect.

Dis. 22, 418–421. doi: 10.1007/s10096-003-0948-9

Del Bono, V., Canessa, A., Bruzzi, P., Fiorelli, M. A., and Terragna, A. (1989).

Significance of specific immunoglobulin M in the chronological diagnosis of

38 cases of toxoplasmic lymphadenopathy. J. Clin.Microbiol. 27, 2133–2135.

Dhakal, R., Gajurel, K., Pomares, C., Talucod, J., Press, C. J., and Montoya, J. G.

(2015). Significance of a positive toxoplasma immunoglobulin M test result in

the United States. J. Clin. Microbiol. 53, 3601–3605. doi: 10.1128/JCM.01663-15

Ferreira, A. I., de Mattos, C. C., Frederico, F. B., Meira, C. S., Almeida, G. C. Jr.,

Nakashima, F., et al. (2014). Risk factors for ocular toxoplasmosis in Brazil.

Epidemiol. Infect. 142, 142–148. doi: 10.1017/S0950268813000526

Furtado, J. M., Winthrop, K. L., Butler, N. J., and Smith, J. R. (2013). Ocular

toxoplasmosis I: parasitology, epidemiology and public health. Clin. Exp.

Ophthalmol. 41, 82–94. doi: 10.1111/j.1442-9071.2012.02821.x

Garcia, J. L., Navarro, I. T., Ogawa, L., de Oliveira, R. C., and Kobilka, E. (1999).

Seroprevalence, epidemiology and ocular evaluation of human toxoplasmosis

in the rural zone Jauguapitã (Paraná) Brazil. Ver. Panam. Salud. Publ. 6,

157–163. doi: 10.1590/S1020-49891999000800002

Garweg, J. G., and Peyron, F. (2008). Clinical and laboratory diagnosis

of ocular toxoplasmosis. Expert. Rev. Ophthalmol. 3, 333–346.

doi: 10.1586/17469899.3.3.333

Glasner, P. D., Silveira, C., Kruszon-Moran, D., Martins, M. C., Burnier

Júnior, M., Silveira, S., et al. (1992). An unusually high prevalence of

ocular toxoplasmosis in southern Brazil. Am. J. Ophthalmol. 114, 136–144.

doi: 10.1016/S0002-9394(14)73976-5

Gras, L., Gilbert, R. E., Wallon, M., Peyron, F., and Cortina-Borja, M. (2004).

Duration of the IgM response in women acquiring Toxoplasma gondii during

pregnancy: implications for clinical practice and cross-sectional incidence

studies. Epidemiol. Infect. 132, 541–548. doi: 10.1017/S0950268803001948

Greigert, V., Di Foggia, E., Filisetti, D., Villard, O., Pfaff, A. W., Sauer, A.,

et al. (2019). When biology supports clinical diagnosis: review of techniques

to diagnose ocular toxoplasmosis. Br. J. Ophthalmol. 103, 1008–1012.

doi: 10.1136/bjophthalmol-2019-313884

Grigg, M. E., Dubey, J. P., and Nussenblatt, R. B. (2015). Ocular

toxoplasmosis: lessons from Brazil. Am. J. Ophthalmol. 159, 999–1001.

doi: 10.1016/j.ajo.2015.04.005

Grigg, M. E., Ganatra, J., Boothroyd, J. C., and Margolis, T. P. (2001). Unusual

abundance of atypical strains associated with human ocular toxoplasmosis. J.

Infect. Dis. 184, 633–639. doi: 10.1086/322800

Gunel, T., Kalelioglu, I., Ermis, H., Has, R., and Aydinli, K. (2012). Large

scale pre-diagnosis of Toxoplasma gondii DNA genotyping by real-time

PCR on amniotic fluid. Biotechnol. Biotechnol. Equip. 26, 2913–2915.

doi: 10.5504/BBEQ.2011.0106

Homan, W. L., Vercammen, M., De Braekeleer, J., and Verschueren, H. (2000).

Identification of a 200 to 300-fold repetitive 529 bp DNA fragment in

Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int. J.

Parasitol. 30, 69–75. doi: 10.1016/S0020-7519(99)00170-8

Ivovic, V., Vujanic, M., Zivkovic, T., Klun, I., and Djurkovic-Djakovic, O. (2012).

“Molecular detection and genotyping of Toxoplasma gondii from clinical

samples,” in Toxoplasmosis-Recent Advances Subject (Rijek: InTech), 103–120.

doi: 10.5772/2845

Jones, C. D., Okhravi, N., Adamson, P., Tasker, S., and Lightman, S. (2000).

Comparison of PCR detection methods for B1, P30, and 18S rDNA genes of

T. gondii in aqueous humor. Invest. Ophthalmol. Vis. Sci. 41, 634–644.

Landis, J. R., and Koch, G. G. (1977). The measurement of observer agreement for

categorical data. Biometrics 33, 159–174. doi: 10.2307/2529310

Maenz, M., Schlüter, D., Liesenfeld, O., Schares, G., Gross, U., and Pleyer, U.

(2014). Ocular toxoplasmosis past, present and new aspects of an old disease.

Prog. Retin. Eye Res. 39, 77–106. doi: 10.1016/j.preteyeres.2013.12.005

Mattos, C. C., Meira, C. S., Ferreira, A. I., Frederico, F. B., Hiramoto,

R. M., Almeida, G. D. Jr., et al. (2011). Contribution of laboratory

methods in diagnosing clinically suspected ocular toxoplasmosis

in Brazilian patients. Diagn. Microbiol. Infect. Dis. 70, 362–366.

doi: 10.1016/j.diagmicrobio.2011.02.002

Melamed, J. (2009). Contributions to the history of ocular toxoplasmosis

in Southern Brazil. Mem. Inst. Oswaldo Cruz. 104, 358–363.

doi: 10.1590/S0074-02762009000200032

Menotti, J., Garin, Y. J., Thulliez, P., Sérugue, M. C., Stanislawiak, J., Ribaud, P.,

et al. (2010). Evaluation of a new 5
′

-nuclease real-time PCR assay targeting

the Toxoplasma gondii AF146527 genomic repeat. Clin. Microbiol. Infect. 16,

363–368. doi: 10.1111/j.1469-0691.2009.02809.x

Montoya, J. G. (2002). Laboratory diagnosis of Toxoplasma gondii infection and

toxoplasmosis. J. Infect. Dis. 185, 73–82. doi: 10.1086/338827

Murat, J. B., Hidalgo, H. F., Brenier-Pinchart, M. P., and Pelloux, H. (2013).

Human toxoplasmosis: which biological diagnostic tests are best suited

to which clinical situations? Expert. Rev. Anti. Infect. Ther. 11, 943–956.

doi: 10.1586/14787210.2013.825441

Murata, F. H. A., Ferreira, M. N., Pereira-Chioccola, V. L., Spegiorin, L. C.

J. F., Meira-Strejevitch, C. D. S., Gava, R., et al. (2017). Evaluation of

serological and molecular tests used to identify Toxoplasma gondii infection in

pregnant women attended in a public health service in São Paulo state, Brazil.

Diagn. Microbiol. Infect. Dis. 89, 13–19. doi: 10.1016/j.diagmicrobio.2017.

06.004

Naot, Y., Barnett, E. V., and Remington, J. S. (1981). Method for avoiding

false-positive results occurring in immunoglobulin M enzyme-linked

immunosorbent assays due to presence of both rheumatoid factor and

antinuclear antibodies. J. Clin. Microbiol. 14, 73–78.

Okay, T. S., Yamamoto, L., Oliveira, L. C., Manuli, E. R., Andrade Junior,

H. F., and Del Negro, G. M. (2009). Significant performance variation

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 February 2020 | Volume 9 | Article 47259

https://doi.org/10.1590/S0037-86822009000200014
https://doi.org/10.1590/S0037-86822012000100024
https://mattioli1885journals.com/index.php/actabiomedica/article/view/1989
https://mattioli1885journals.com/index.php/actabiomedica/article/view/1989
https://doi.org/10.1016/j.bjid.2017.07.003
https://doi.org/10.1128/JCM.43.10.5044-5047.2005
https://doi.org/10.1007/s10096-003-0948-9
https://doi.org/10.1128/JCM.01663-15
https://doi.org/10.1017/S0950268813000526
https://doi.org/10.1111/j.1442-9071.2012.02821.x
https://doi.org/10.1590/S1020-49891999000800002
https://doi.org/10.1586/17469899.3.3.333
https://doi.org/10.1016/S0002-9394(14)73976-5
https://doi.org/10.1017/S0950268803001948
https://doi.org/10.1136/bjophthalmol-2019-313884
https://doi.org/10.1016/j.ajo.2015.04.005
https://doi.org/10.1086/322800
https://doi.org/10.5504/BBEQ.2011.0106
https://doi.org/10.1016/S0020-7519(99)00170-8
https://doi.org/10.5772/2845
https://doi.org/10.2307/2529310
https://doi.org/10.1016/j.preteyeres.2013.12.005
https://doi.org/10.1016/j.diagmicrobio.2011.02.002
https://doi.org/10.1590/S0074-02762009000200032
https://doi.org/10.1111/j.1469-0691.2009.02809.x
https://doi.org/10.1086/338827
https://doi.org/10.1586/14787210.2013.825441
https://doi.org/10.1016/j.diagmicrobio.2017.06.004
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Murata et al. Laboratorial Diagnosis for Ocular Toxoplasmosis

among PCR systems in diagnosing congenital toxoplasmosis in São Paulo,

Brazil: analysis of 467 amniotic fluid samples. Clinics 64, 171–176.

doi: 10.1590/S1807-59322009000300004

Oréfice, F., Filho, R. C., Barboza, A. L., Oréfice, J. L., and Calucci, D. (2010).

Toxoplasmose ocular adquirida. Toxoplasmose ocular pós-natal. Rev. Bras.

Oftalmol. 69, 184–207. doi: 10.1590/S0034-72802010000300009

Roux, G., Varlet-Marie, E., Bastien, P., Sterkers, Y., and French National Reference

Center for Toxoplasmosis Network (2018). Evolution of toxoplasma-PCR

methods and practices: a French national survey and proposal for technical

guidelines. Int. J. Parasitol. 48, 701–707. doi: 10.1016/j.ijpara.2018.03.011

Saadatnia, G., and Golkar, M. (2012). A review on human toxoplasmosis. Scand. J.

Infect. Dis. 44, 805–814. doi: 10.3109/00365548.2012.693197

Silveira, C., Muccioli, C., Holland, G. N., Jones, J. L., Yu, F., de Paulo, A.,

et al. (2015). Ocular involvement following an epidemic of Toxoplasma gondii

infection in Santa Isabel do Ivaí, Brazil. Am. J. Ophthalmol. 159, 1013–1021.

doi: 10.1016/j.ajo.2015.02.017

Tsirouki, T., Dastiridou, A., Symeonidis, C., Tounakaki, O., Brazitikou, I.,

Kalogeropoulos, C., et al. (2018). A focus on the epidemiology of uveitis. Ocul.

Immunol. Inflamm. 26, 2–16. doi: 10.1080/09273948.2016.1196713

Vidal, J. E., Colombo, F. A., de Oliveira, A. C., Focaccia, R., and Pereira-Chioccola,

V. L. (2004). PCR assay using cerebrospinal fluid for diagnosis of cerebral

toxoplasmosis in Brazilian AIDS patients. J. Clin. Microbiol. 42, 4765–4768.

doi: 10.1128/JCM.42.10.4765-4768.2004

Villard, O., Cimon, B., Franck, J., Fricker-Hidalgo, H., Godineau, N., Houze,

S., et al. (2012). Network from the French national reference center for

toxoplasmosis. Evaluation of the usefulness of six commercial agglutination

assays for serologic diagnosis of toxoplasmosis. Diagn. Microbiol. Infect. Dis.

73, 231–235. doi: 10.1016/j.diagmicrobio.2012.03.014

Villard, O., Cimon, B., L’Ollivier, C., Fricker-Hidalgo, H., Godineau, N., Houze,

S., et al. (2016). Help in the Choice of Automated or Semiautomated

Immunoassays for Serological Diagnosis of Toxoplasmosis: Evaluation of Nine

Immunoassays by the French National Reference Center for Toxoplasmosis. J.

Clin. Microbiol. 54, 3034–3042. doi: 10.1128/JCM.01193-16

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Murata, Previato, Frederico, Barbosa, Nakashima, Faria, Silveira

Carvalho, Meira Strejevitch, Pereira-Chioccola, Castiglioni, de Mattos, Siqueira and

Brandão de Mattos. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 February 2020 | Volume 9 | Article 47260

https://doi.org/10.1590/S1807-59322009000300004
https://doi.org/10.1590/S0034-72802010000300009
https://doi.org/10.1016/j.ijpara.2018.03.011
https://doi.org/10.3109/00365548.2012.693197
https://doi.org/10.1016/j.ajo.2015.02.017
https://doi.org/10.1080/09273948.2016.1196713
https://doi.org/10.1128/JCM.42.10.4765-4768.2004
https://doi.org/10.1016/j.diagmicrobio.2012.03.014
https://doi.org/10.1128/JCM.01193-16
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


ORIGINAL RESEARCH
published: 16 April 2020

doi: 10.3389/fcimb.2020.00161

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 April 2020 | Volume 10 | Article 161

Edited by:

Jeroen P. J. Saeij,

University of California, Davis,

United States

Reviewed by:

Tiago W. P. Mineo,

Federal University of Uberlandia, Brazil

David Smith,

Moredun Research Institute,

United Kingdom

Julio Benavides,

Consejo Superior de Investigaciones

Científicas (CSIC), Spain

*Correspondence:

Eric Cox

eric.cox@ugent.be

Specialty section:

This article was submitted to

Parasite and Host,

a section of the journal

Frontiers in Cellular and Infection

Microbiology

Received: 09 January 2020

Accepted: 26 March 2020

Published: 16 April 2020

Citation:

Rahman M, Devriendt B, Jennes M,

Gisbert Algaba I, Dorny P, Dierick K,

De Craeye S and Cox E (2020) Early

Kinetics of Intestinal Infection and

Immune Responses to Two

Toxoplasma gondii Strains in Pigs.

Front. Cell. Infect. Microbiol. 10:161.

doi: 10.3389/fcimb.2020.00161

Early Kinetics of Intestinal Infection
and Immune Responses to Two
Toxoplasma gondii Strains in Pigs

Mizanur Rahman 1, Bert Devriendt 1, Malgorzata Jennes 1, Ignacio Gisbert Algaba 2,

Pierre Dorny 3,4, Katelijne Dierick 2, Stéphane De Craeye 2 and Eric Cox 1*

1 Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent
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Brussels, Belgium, 3Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium, 4 Laboratory of

Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University,
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Toxoplasma gondii is an obligate intracellular parasite, able to infect all homeothermic

animals mostly through ingestion of (oo)cysts contaminated food or water. Recently,

we observed a T. gondii strain-specific clearance from tissues upon infection in pigs:

while the swine-adapted LR strain persisted in porcine tissues, a subsequent infection

with the human-isolated Gangji strain cleared parasites from several tissues. We

hypothesized that intestinal immune responses shortly after infection might play a role

in this strain-specific clearance. To assess this possibility, the parasite load in small

intestinal lymph node cells and blood immune cells as well as the IFNγ secretion by

these cells were evaluated at 2, 4, 8, 14, and 28 days post oral inoculation of pigs with

tissue cysts of both strains. Interestingly, at day 4 post inoculation with the LR strain

the parasite was detected by qPCR only in the duodenal lymph node cells, while in the

jejunal and ileal lymph node cells and PBMCs the parasite was detected from day 8

post inoculation onwards. Although we observed a similar profile upon inoculation with

the Gangji strain, the parasite load in the examined cells was much lower. This was

reflected in a significantly higher T. gondii-specific serum IgG response in LR compared

to Gangji infected pigs at day 28 post inoculation. Unexpectedly, this was not reflected in

the IFNγ secretion upon re-stimulation of the cells where almost equal IFNγ secretion was

observed in both groups. In conclusion, our results show that T. gondii first enters the

host at the duodenum and then probably disseminates from this site to the other tissues.

How the early immune response influences the clearance of parasite from tissues needs

further study.

Keywords: Toxoplasma gondii, pigs, magnetic capture-qPCR, intestine, IFNγ

INTRODUCTION

The obligate intracellular protozoan parasite Toxoplasma gondii causes toxoplasmosis in all
homeothermic animals which is life-long and often asymptomatic. In immunocompromised
patients, toxoplasmosis can be fatal, while in pregnant women congenital toxoplasmosis might
result in fetal and neonatal mortality, neurologic abnormalities, chorioretinitis, and other
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symptoms reviewed by Torgerson and Mastroiacovo (2013). In
2013, the global annual incidence of congenital toxoplasmosis
was calculated to be equivalent to a disease burden of 1.20 million
disability-adjusted life years (Torgerson and Mastroiacovo,
2013).

T. gondii is an important foodborne pathogen and natural
human infection commonly results from the ingestion of raw
or undercooked meat containing tissue cysts or food/drinks
contaminated with sporulated oocysts. After ingestion, the cyst
wall protects the parasites from the gastric pH and ensures
passage to the small intestine where they excyst upon contact
with bile salts and trypsin (Dubey, 1997; Dubey et al., 1998).
Upon excystation, initial bradyzoite invasion and replication
takes place at the tips of the villi and subsequently results in the
release of tachyzoites into the lumen to colonize neighboring villi
and in the lamina propria to disseminate in the host (Dubey,
1997; Dubey et al., 1998; Coombes et al., 2013; Verhelst et al.,
2014). In mice, the proximal jejunum seems to be the preferred
replication site (Gregg et al., 2013). Transmigration through the
intestinal epithelial cells possibly involves an unusual form of
gliding motility, paracellular transmigration, penetration of the
apical cell membrane, and use of immune cells in a Trojan
horse-like mechanism (Barragan et al., 2005; Courret et al.,
2006; Gregg et al., 2013; Jones et al., 2017). In response to the
infection, neutrophils are rapidly recruited to the infected sites
and are subsequently invaded by progeny T. gondii egressing
from the infected epithelial cells (Coombes et al., 2013). Part
of the parasite invaded neutrophils migrate to the lumen and
facilitate re-infection of neighboring villi, while the rest spreads
to the draining lymph nodes and enters the blood circulation
to disseminate to other organs. In addition, many other cell
types can be invaded by T gondii including dendritic cells
(DCs), mononuclear phagocytes, NK cells, and lymphocytes
(Courret et al., 2006; Lambert et al., 2006; Coombes et al., 2013).
Interestingly, T. gondii within immune cells can sense the arrival
of these cells at the target organs via adhesion to certain surface
molecules on capillary endothelial cells, e.g., CD162 on lung
endothelial cells, and immediately egress the immune cells to
infect target organs (Baba et al., 2017).

However, most of these mouse data are inapposite for humans
and warrant further investigation in relevant large animal
models. For example, upon T. gondii infection, murine DCs
undergo maturation in response to the parasite antigen profilin
via TLR11 and TLR12. However, in humans and pigs TLR11
and TLR12 are non-functional pseudogenes (Tosh et al., 2016).
Therefore, to elicit an immune response they rely on phagocytosis
of tachyzoites and subsequent recognition of T. gondii RNA and

Abbreviations: ELISA, Enzyme-Linked ImmunoSorbent Assay; IFA, Indirect

Immunofluorescence Assay; MAT, Modified Agglutination Test; MC-qPCR,

Magnetic Capture Quantitative Polymerase Chain Reaction; Cp, Crossing

point (also known as Ct or Cq); PBS, Phosphate-buffered saline; ng/ml,

Nanogram/milliliter; TLA, Total Lysate Antigen; FACS, Fluorescence-activated cell

sorting; IFN-γ, Interferon gamma; PBMCs, Peripheral blood mononuclear cells;

LOD, Limit of detection; SD, Standard deviation; CD, Cluster of differentiation;

NK cells, Natural killer cells; IL, Interleukin; APCs, Antigen presenting cells; CTLs,

Cytotoxic T lymphocytes; Th cells, T helper cells.

DNA via TLR7,−8, and−9 (Forsbach et al., 2008; Ishii et al., 2008;
Andrade et al., 2013;Weidner et al., 2013; Betancourt et al., 2019).

In humans there is still a major knowledge gap between
the early infection of the small intestinal epithelium and the
dissemination of the parasite to other organs to establish tissue
cysts as well as the associated immune responses. To address
this gap pigs may be a particularly interesting model. Indeed,
the immune system as well as the gut physiology of pigs closely
resembles that of humans (Meurens et al., 2012). In addition,
pigs are susceptible to T. gondii infection. However, also in
pigs thorough knowledge is lacking on the initial events during
infection of the small intestine, the subsequent dissemination and
the associated small intestinal immune responses.

T. gondii virulence not only differs between animals, but
also among T. gondii strains, which in Europe belong to three
major genotypes (e.g., type I, II, and III) based on the DNA
sequence ofmultilocus analysis. Genotype II is themost prevalent
genotype in livestock species and humans (Howe and Sibley,
1995; Dubey, 2010). Our previous results showed that different
genotypes trigger variable immune responses in pigs (Jennes
et al., 2017). A genotype II strain (IBP LR) elicited stronger
IFNγ

+ T cell responses as compared to a hybrid genotype I/II
strain (IBP Gangji). These LR strain-specific immune responses
seemed to play a role in the clearance of tissue cysts upon
infection of pigs with the Gangji strain (Jennes et al., 2017).
However, our understanding on how different genotypes impact
the early infection stages of T. gondii is incomplete. In this study,
we aimed to investigate the early infection kinetics, antibody and
IFNγ response for both strains. The latter since IFNγ seems to
play a crucial role in clearance of the parasite from infected hosts
(Jennes et al., 2017).

MATERIALS AND METHODS

Animals and Ethics Statement
Thirty-six four-week-old piglets (Belgian Landrace x large white)
were obtained from a high health-status farm in Belgium
and transported to the Faculty of Veterinary Medicine, Ghent
University, where the piglets were housed in isolation units and
were given ad libitum access to feed and water. The animal
procedures were approved by the Ethical Committee (EC) of the
Faculty of Veterinary Medicine and the Faculty of Bioscience
Engineering, Ghent University (EC 2009/149) and by the EC of
Sciensano, Belgium (176 20140704-01).

T. gondii Strains
The T. gondii IPB LR and Gangji strains were used to inoculate
pigs. The LR strain was originally isolated from pigs and
belongs to genotype II, which is commonly present in the
European pig population. It is less virulent in mice than the
hybrid genotype I/II Gangji strain, which is highly virulent
in mice (Dubey et al., 2012; Jennes et al., 2017). The latter
strain was isolated from the placenta of a pregnant woman
having a congenitally infected baby (Ajzenberg et al., 2010). Both
strains were isolated and maintained at the National Reference
Laboratory for Toxoplasmosis, Sciensano, Brussels, Belgium by
passage in Swiss Webster female mice (EC: 176 20140704-01).
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FIGURE 1 | Scheme of the study. Experiment day is indicated as numbers (0–35). TLA-ELISA: T. gondii lysate antigen-specific enzyme-linked immunosorbent assay.

PBMCs, peripheral blood mononuclear cells. MCqPCR, magnetic capture real time quantitative polymerase chain reaction.

For oral inoculation, tissue cysts of both strains were harvested
from infected mouse brain tissue, counted by phase-contrast
microscopy and suspended in sterile phosphate buffered saline
(PBS) at a concentration of 1,000 tissue cysts/ml (Jennes et al.,
2017).

Antigen Preparation
T. gondii lysate antigen (TLA) was prepared from tachyzoites of
the RH-strain as previously described (Jongert et al., 2007). The
TLA antigens were concentrated and dialyzed with Amicon R©

filter units (cut-off = 10 kDa) and finally diluted in PBS. The
bicinchoninic acid (BCA) reaction (Thermo Scientific Pierce
BCA protein Assay Kit, Erembodegem, Belgium) was used to
determine the protein concentration and upon filter sterilization
with low protein binding filters (0.22µm, Millex-GV) TLA was
stored at−20◦C until further use.

Experimental Set-Up
Upon arrival, 36 four-week-old piglets (Belgian Landrace x
large white) were confirmed to be T. gondii seronegative by
the modified agglutination test (ToxoScreen DA, Biomérieux,
Capronne, France) and an immunofluorescence test (Toxo-Spot
IF, Biomérieux) as described previously (Verhelst et al., 2015).
The piglets were randomly selected with taking into account their
gender and divided into three groups: control (n = 6), LR group
(n= 15), and Gangji group (n= 15).

At day zero (D0) the piglets were inoculated with 6,000
tissue cysts of the T. gondii IPB LR strain or Gangji strain,
respectively (Figure 1). Blood was sampled at the indicated time
points to evaluate serum antibody responses by ELISA and the
presence of antigen-specific immune cells in an in vitro recall
assay. At 2, 4, 8, 14, and 28 days post infection, 3 LR strain
infected and 3 Gangji strain infected piglets, and at day 0 and
day 35, 3 control animals, were euthanized by injecting sodium
pentobarbital (20%, 0.125 ml/kg bodyweight; Nembutal; Sanofi)
and following exsanguination lymph nodes and tissue samples
were collected to assess the parasite load.

In vitro Antigen Recall Assay
Peripheral blood MCs (PBMCs) were isolated from heparinized
blood samples with density gradient centrifugation as described

(Verhelst et al., 2014). Mononuclear cells (MCs) from the
duodenum, jejunum, ileum and mediastinal lymph nodes
were harvested in RPMI (1640; Gibco, Merelbeke, Belgium)
supplemented with 100 U/ml penicillin and 100µg/ml
streptomycin (P/S; Gibco) as described (Verhelst et al.,
2011). The cell suspension was cleared with a 70µm cell strainer
(Corning, USA) and erythrocytes were lysed in lysis buffer (9:1
of 0.83% w/v NH4Cl and 2.06% w/v Tris (C4H11NO3), pH 7.2).
After washing in PBS + 1mM EDTA and centrifugation at
380 g for 10min at 18◦C, the pelleted cells were resuspended
in complete leukocyte medium [RPMI 1640 supplemented
with 10% fetal calf serum (FCS, Greiner Bio-One, Belgium),
292µg/ml L-glutamin (Gibco), 100 IU/ml penicillin and
100µg/ml streptomycin (P/S; Gibco), 100mM non-essential
amino acids (Gibco) and 100µg/ml kanamycin (Gibco)] at a
final concentration of 1× 107 cells/ml.

TheMCs were seeded in sterile 96-well flat bottom cell culture
plates (Greiner Bio-One) at 1 × 106 cells/well in complete
leukocyte medium. After an initial incubation of 1 h, the plates
were incubated with 20µg/ml TLA ormedium for 72 h at 37◦C in
a humidified atmosphere with 5%CO2. After incubation, the cell-
free supernatant was collected and stored at−20◦C until analysis
of the IFNγ concentration by ELISA.

DNA Extraction and qPCR
DNA was extracted from the isolated mononuclear cells (1.1 ×

107 cells) using the QIAamp R© DNA Mini kit (Qiagen GmbH,
Hilden, Germany) according to the manufacturer’s instructions.

The T. gondii DNA was quantified by a duplex real-time
TaqMan quantitative PCR analysis as described (Gisbert Algaba
et al., 2017). Briefly, 10 µl of the DNA extract was tested in a
final reaction volume of 25 µl containing 12.5 µl of ExTaq 2 ×

probe mix (Takara, Saint-Germain-en-Laye, France), 400 nM of
primers T2 and T3, 200 nM of primers VF1 and VR1, 66 nM of
Toxoplasma probe and 40 nM of r18S probe. Each DNA sample
was tested twice in each PCR run: one to check the presence of
T. gondii DNA and cellular r18S and the other one with only the
primers and probes to amplify the T. gondii target. The real-time
PCR was performed with the following cycling program: 3min at
95◦C, followed by 41 cycles of 15 s at 95◦C and 20 s at 60◦C on
a BioRad CFX 96 thermocycler (Hercules, California, USA). In
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each run, non-template controls were included. The qPCR results
were analyzed to obtain the quantification cycle (Cq) values using
the BioRad CFX manager software. For the quantification of T.
gondii parasite DNA, a standard curve was generated from the
Cq values of a 10 fold diluted known number of tachyzoites, i.e.,
T. gondii RH strain (Gisbert Algaba et al., 2017).

TLA ELISA
Blood samples were collected in vacuum tubes (Vacutest KIMA,
Italy) from the vena jugularis and were allowed to clot at
room temperature for 30min. Subsequently, serum samples were
collected upon centrifugation at 15,000 g for 10min, aliquoted
and stored at −20◦C until further use. TLA-specific serum
IgG responses were evaluated by ELISA as described (Verhelst
et al., 2015). Briefly, 96-well microliter plates were coated with
TLA (5µg/ml, Microbix Biosystems, Canada), serial diluted
serum samples were added and detected with HRP-conjugated
anti-porcine IgG (Bethyl Laboratories Inc., Montgomery, Texas,
USA) and ABTS, i.e., 2,2′-azino-bis (3-ethylbenzothiazoline-6-
sulphonic acid) as a substrate. On each plate previously collected
sera from positive and negative control animals, as established
by IgM and IgG immunofluorescence assay (IFA), were included.
After 45min incubation with substrate at 37◦C, the absorbance
at 405 nm was measured with a microplate reader (TECAN
Spectra Fluor, Tecan Group Ltd., Männedorf, Switzerland) and
the obtained data were analyzed in GraphPad Prism 6 software.
Serum samples from infected animals were considered positive
when exceeding the cut-off value (= mean OD405 negative
controls + 3× the standard deviation). Antibody titers were
calculated as the inverse of that dilution with a signal above the
cut-off value.

IFNγ ELISA
IFNγ secretion was determined in the supernatant (1/10, 1/20,
and/or 1/50 dilution) of MCs cultured in medium or stimulated
with antigens as described above with a sandwich ELISA using
the swine-specific IFNγ antibody pair kit (ThermoFisher). The
IFNγ concentration in the supernatants was calculated from a
regression line (4-parameter curve fit) of serially diluted standard
using the DeltaSoft JV 2.1.2 software. The limit of detection of
this ELISA was 12.3 pg/ml.

Magnetic Capture qPCR
To assess the T. gondii load in lungs and heart, these tissues were
collected upon euthanasia and the parasite load was determined
via an ISO 17025 validatedmagnetic capture qPCR (MCqPCR) as
described (Gisbert Algaba et al., 2017). This technique combines
the magnetic isolation of T. gondii-specific DNA from large tissue
samples (>100 g) with the sensitivity of qPCR. It has an improved
sensitivity of 94.12% as compared to another MCqPCR method
(Opsteegh et al., 2010).

The samples with a quantification cycle (Cq) crossing the
threshold were considered positive for T. gondii, while samples
with no Cq for the T. gondii target, but Cq of the not competitive
internal amplification control were considered negative. The
detection limit of this method is 65.4 parasites per 100 g of tissue
sample. For each round of samples, a positive control with a

known number of parasites was included to correct for possible
deviations due to manipulation errors. The number of parasites
(n◦ p) was calculated according to the following formula:

log10
(

n◦p
)

=
Cqvalue − 44.75

−3.0788

The formula resulted from a standard curve established with
known concentrations of parasites ranging from 100 to 105

spiked in 100 g of muscle tissue samples or in 50 g of brain tissue
(Gisbert Algaba et al., 2017). Log10(n

◦ p) represents the log10-
transformed parasitic load, while the Cqvalue represents the point
on the exponential amplification curve crossing the threshold.

Data Analysis
The antibody responses, IFNγ response and T. gondii parasite
load in tissue samples of the different groups are presented as
mean ± SD. Data were analyzed in GraphPad Prism 6 software
with the Friedman test and a post hoc analysis via Dunn’s test. In
all analyses p<0.05 was considered statistically significant.

RESULTS

The Parasite Load in Gut Lymph Node
Cells Indicates That T. gondii Initially
Enters the Host via the Duodenum
Since T. gondii migrate to the mesenteric lymph nodes for rapid
dissemination to the target organs via the blood circulation,
we assessed the parasite load in immune cells isolated from
small intestinal mesenteric lymph nodes (LNs) to trace the initial
entry site of the parasite. In the LR group, the parasite load
reached its maximum at D8 in all mesenteric lymph nodes as
compared to PBMCs in which the parasite load peaked at D14.
However, the parasite load in duodenal, jejunal and ileal LNs
differed considerably (Figure 2) (Table 1). T. gondii DNA in
mononucleated cells (MCs) of duodenal LNs was first detected
at day 4 post inoculation, which further increased to reach its
maximum at D8 (P = 0.0196) and then steadily dropped. In
contrast, in jejunal and ileal LNs T. gondii DNA was only first
detected at day 8 post inoculation, and subsequently decreased
following a similar pattern as the duodenal LNs. On the other
hand, in the Gangji group, the T. gondii DNA load in the MCs
of duodenal, jejunal and ileal LNs reached its peak at D8 (P =

0.045) and dropped below the detection limit at D28 (Figure 2).
Interestingly, in duodenal mesenteric LN of this group, the
parasite load was below the detection limit at D4.

The parasite dissemination from mesenteric LNs to blood was
confirmed by assessing the kinetics of the parasite DNA load in
PBMCs. In the LR group, the parasite load in PBMCs continued
to increase from D4 until its peak at D14. In contrast, in the
Gangji infected pigs, parasite DNA was only detected at D8 and
D14 post inoculation (Figure 2).

Because T. gondii infected immune cells adhesion to lung
capillary endothelial cells has been described to trigger parasite
egression to immediately coincide in lung tissue and because
T. gondii cysts preferentially develop in heart tissues during the
chronic infection stage (Baba et al., 2017), we also examined the
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FIGURE 2 | T. gondii DNA load in immune cells isolated from lymph nodes and blood. The data are presented as the number of T. gondii parasites/1.1 × 107 cells.

LN, Lymph node. The horizontal line represents the mean, *significantly different than D2, *P < 0.05.

parasite load in heart tissue and highly vascularized lung tissue
to confirm the presence of T. gondii parasites at this early stage
of infection.

As shown in Figure 3, in lungs, T. gondii was already detected
in very low amounts at D2, even before being detected in
the duodenal lymph nodes, and reached its maximum at D8

in LR (P = 0.016). At day 14 the parasite load decreased to
remain less or more stable at D28 in both LR and Gangji
groups. In heart, the parasite was detected at D4 in both groups
which then steadily increased until reaching its maximum at
D14 and D28 in LR (P = 0.032) and Gangji (P = 0.095)
groups, respectively (Figure 3). The lymph nodes draining these
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TABLE 1 | Parasite load in mononuclear immune cells isolated from lymph nodes and blood as determined by qPCR.

Group Experiment Day Animals T. gondii load

LN duodenum LN jejunum LN ileum PBMCs LN mediastinum

LR 1 0 0 0 0 0

D2 2 0 0 0 0 0

3 0 0 0 0 0

Average 0 0 0 0 0

4 0 0 0 0 0

D4 5 2.09 0 0 0 0

6 3.35 0 0 0 0

Average 1.81 0 0 0 0

7 299.91 88.66 24.59 0 64.50

D8 8 187.86 0 46.12 0 0

9 23.17 9.10 1 10.16 30.26

Average 170.31 32.59 23.90 3.39 31.58

10 23.81 5.70 2.21 79.90 11.43

D14 11 10.75 0 0 43.69 0

12 8.98 6.61 1.33 0 1.51

Average 14.51 4.10 1.18 41.20 4.31

13 0 0 0 0 0

D28 14 1.33 0 496.5 0 0

15 4.54 0 0 22.41 0

Average 1.95 0 165.50 7.47 0

Gangji 16 0 0 0 0 0

D2 17 0 0 0 0 0

18 0 0 0 0 0

Average 0 0 0 0 0

19 0 0 0 0 0

D4 20 0 4.44 0 0 0

21 0 0 0 0 0

Average 0 1.48 0 0 0

22 4.33 0 1.10 1 7.67

D8 23 81.10 29.70 1.14 1.51 12.05

24 0 0 0 0 2.13

Average 28.48 9.90 0.75 0.83 7.28

25 5.72 2.31 0 1 2.96

D14 26 0 1.09 1.27 0 0

27 0 0 0 6.88 0

Average 1.91 1.13 0.42 2.29 0.99

28 0 0 0 0 0

D28 29 1 0 0 0 0

30 0 0 5.38 8.12 0

Average 0.33 0 1.79 2.71 0

LN, Lymph node. Cut-off T. gondii DNA load: <1 parasite DNA per 1.1 × 107 cells considered as negative (0). D, day post inoculation.

Data are presented as the mean number of T. gondii parasite per 1.1 × 107 cells.

Average number of parasites is indicated in bold.

organs are connected with the thoracic duct in the mediastinum
(Riquet et al., 2000). Therefore, the parasite load in immune
cells isolated from mediastinal lymph nodes (LNs) might reflect
the parasite load in both organs. However, the parasite load

in MCs of mediastinal LN slowly increased from D4 to reach
its maximum at D8 in both LR (P = 0.045) and Gangji (P

= 0.0196) groups and subsequently decreased in a similar
manner as observed for the mesenteric LNs of LR infected pigs
(Figure 2).

T. gondii Strains Trigger Different Kinetics
of Serum IgG Responses
As the LR strain showed earlier and higher loads in lymphoid
tissues, we looked if this resulted in a more pronounced TLA-
specific IgG response. This was not the case the first week
after infection. For both strains low TLA-specific IgG responses
could already be detected at D4 after infection, which further
increased up until D8, but subsequently started to differ with
approximately 50 folds high titer in LR infected pigs at D28,
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FIGURE 3 | Presence of T. gondii DNA in the examined tissues by MCqPCR. The data are presented as the mean ± SD of the number of T. gondii parasites/10 g

tissue, *significantly different than pre-inoculation, *P < 0.05.

FIGURE 4 | Kinetics of T. gondii specific serum IgG titers of LR, Gangji and

control groups. Piglets were inoculated orally with tissue cysts of the T. gondii

IPB LR and Gangji strain on day 0. TLA, T. gondii lysate antigens; D,

experiment day. The lines are presented as the mean for LR, Gangji and

control groups, *LR vs. control, *Gangji vs. control, * or *P < 0.05.

whereas no further increase occurred in the Gangji strain infected
pigs (Figure 4) (Supplementary Table 1). Nevertheless, the TLA-
specific IgG titers significantly differed at D28 from the pre-
infection timepoint in the LR (P = 0.015) and Gangji (P =

0.025) groups.

T. gondii Infection Elicits IFNγ Secreting
Immune Cells in Blood and Lymph Nodes
To be able to correlate the parasite load in the different samples
with activation of the cellular immunity, we also assessed the
presence of T. gondii antigen experienced immune cells in the
small intestinal and mediastinal LNs and PBMCs by evaluating
their production of IFNγ in an antigen recall assay. As shown in
Figure 5, TLA stimulation triggered IFNγ secretion by PBMCs
and mediastinal LN cells from D8 onwards for LR and Gangji-
infected pigs (Figure 5). IFNγ secretion by mesenteric LN cells
was negligible. Unexpectedly, the IFNγ secretion kinetics in both
groups was almost equal, which does not correspond with the
parasite burden of immune cells and the serum IgG responses.

DISCUSSION

Oral inoculation of mice with T. gondii leads to a primary
infection in gut epithelial cells. The T. gondii progeny egressing
the epithelial cells then infects immune cells in the lamina
propria, which subsequently migrate to the adjacent lymph nodes

for dissemination in the host (Buzoni-Gatel et al., 2001; Luangsay
et al., 2003; Courret et al., 2006; Norose et al., 2008; Baba
et al., 2017). Here, we used pigs as an animal model to study

infection dynamics and associated immune responses due to the

similarity of their gastrointestinal tract with that of humans in
terms of physiology, anatomy, immunology and dimensions. We

quantified the parasite DNA load in immune cells isolated from

duodenal, jejunal, and ileal lymph nodes to be able to assess
in which part of the small intestine T. gondii first establishes
infection. In addition, we included PBMCs to assess the kinetics
of systemic spread and cells from mediastinal lymph nodes, as
the latter drain the heart, one of the most parasitized tissues after
brain during T. gondii infection (Gisbert Algaba et al., 2017).

The LR strain showed a more pronounced replication in pigs
than the Gangji strain, as evidenced by an earlier detection in
duodenal mesenteric LNs, a longer persistence in the mesenteric
LNs and blood and a higher antibody response upon infection.
The reason might be that the LR strain was isolated from
pigs and therefore is more adapted to infect pigs, whereas
the human isolated Gangji strain is not and might need to
adapt to efficiently infect pigs. A similar phenomenon was for
instance observed for influenza as human species/strains need
to adapt to pigs to establish efficient infection (Rajao et al.,
2019). That T. gondii DNA in mononucleated cells (MCs) of
duodenal LNs was first detected at day 4 post inoculation,
indicates that upon excystation the T. gondii LR strain might
first infect the duodenum. On the other hand, in the Gangji
group, the parasite load in PBMCs and MLNs was below the
detection limit until D8. Moreover, as T. gondii DNA was
detected in blood and lymph node immune cells, this seems to
indicate that the dissemination from the intestine to the lymph
nodes and other organs in pigs is at least in part immune cell
mediated and might occur via a “Trojan horse” mechanism, as
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FIGURE 5 | Kinetics of IFNγ secretion by MCs upon oral infection. The data are presented as the mean ± SD, The IFNγ concentration of the control group was below

the detection limit and thus was not included. *TLA vs. medium, *P < 0.05.

described for T. gondii dissemination in mice (Courret et al.,
2006; Sanecka and Frickel, 2012). However, this finding requires
further investigation as the presence of viable parasites in
immune cells was not assessed.

In addition to lymph node and blood immune cells, we also
assessed the parasite load in lungs and heart. Surprisingly, the
parasite load in lung tissue of the LR and Gangji strain-infected
groups was almost equal despite the more pronounced
replication of LR in mesenteric LN and blood. Interestingly,

T. gondii was detected at day 2 post inoculation in lungs,
even before we could detect it in duodenal LNs, indicating
that the parasite quickly disseminates from its initial point of
entry in the gut to the lungs. A potential route might be via
the pancreatic LNs, which drain both pancreas and cranial
duodenum or directly via the inferior pancreaticoduodenal
veins. Alternatively, since we orally inoculated the pigs, we
cannot exclude a mis-direction of some inoculant into the
respiratory tract.
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Inmice, T. gondii is able to infect vascular endothelial cells and
use these cells as a replication niche for dissemination to other
organs (Gregg et al., 2013; Konradt et al., 2016). Our results seem
to indicate that porcine lung cells support T. gondii replication.
This could be explained the oxygen levels in the tissue. In most
tissues, T. gondii requires activation of hypoxia-inducible factor
1 (HIF1) for replication at physiologically relevant oxygen levels
(3%). In lung tissue, HIF1 activation is not required as oxygen
levels range between 4 and 14% (Spear et al., 2006). However,
further studies are needed to confirm T. gondii stage conversion
from rapidly multiplying tachyzoites to the slow replicating
bradyzoites and to investigate if the replication in the lungs
might result in the formation of tissue cysts during later stages
of infection, as T. gondiiDNA did not increase beyond day 8 post
inoculation. The parasite load in heart tissue on the other hand
continuously increased from day 4 onward and remained high
until the end of the experiment in both groups. These results
agree with the fact that the heart is indeed the most parasitized
organ in early T. gondii infection stage irrespective of the strain
(Jennes et al., 2017). Based on the profile in heart tissue, we
assume that we should have detected consistent T. gondii DNA
in the mediastinal LN after D8; however, we did not. This seems
to indicate that there is drainage to other lymph nodes, such as-
peritracheobronchial lymph nodes (Riquet et al., 2000).

In addition to the quantification of the parasite load in
immune cells and tissues, antibody and cellular immune
responses were evaluated in LR and Gangji infected groups over
time as well. A robust serum IgG response was detected in both
LR and Gangji groups. However, the serum IgG response in
the LR group was stronger than in the Gangji group, which
corresponds to our previous study (Jennes et al., 2017). We
also assessed IFNγ secretion by blood and lymph node immune
cells of both groups. As expected from our previous research,
IFNγ secretion was detected in PBMCs at D14 in both LR and
Gangji groups, indicating the presence of peripheral antigen
experienced T cells in both groups (Jennes et al., 2017; Rahman
et al., 2019). For the lymph nodes, immune cells frommediastinal
and duodenal lymph nodes secreted IFNγ, while jejunal and
ileal lymph node immune cells did not secrete IFNγ upon
TLA re-stimulation. This result further supports that T. gondii
first infects duodenal epithelial cells. Unexpectedly, a similar
IFNγ secretion profile was observed for immune cells isolated
from Gangji infected pigs, although the LR strain consistently
showed a higher parasite DNA load in these tissues and a
higher antibody response than the Gangji strain. A better host
adaptation of the LR strain to pigs might explain this. In
mice, tachyzoite proliferation of a T. gondii strain has been
related to IFNγ-inducible cytoplasmic effector proteins, the 47
kDa immunity-related GTPases (IRG proteins). These proteins
can inhibit proliferation. Some T. gondii strains secrete kinases
and pseudokinases that can inactivate IRG proteins resulting
in increased replication. Adaptation of the T. gondii strain
might have resulted in sufficient overriding of the IRG control
mechanism to allow more replication (Lilue et al., 2013). A more
thorough genetic comparison of both strains might confirm this.
Whether this is due to genotype differences between both strains,
warrants further investigation. It would be interesting to study

the efficiency of both strains at invading intestinal epithelial
cells and undergoing replication via an in vitro plaque assay
(Di Cristina et al., 2017). This would provide some information
as to whether the higher parasite load of the LR strain is due
to the host response or immune escape mechanisms of the
LR strain.

Taking these results into account we assume that the parasite
burden in the small intestine is related to the serum antibody
responses. In the LR group, high parasite loads in the gut
correspond to high serum IgG responses, while in the Gangji
group low intestinal parasite loads correspond to low serum IgG
responses. Although this seems to contradict the parasite load in
the tissues, we speculate that the significant antibody responses
in the LR group restrict dissemination to the target organs, while
in the Gangji group dissemination is less restricted. This might
explain the almost equal parasite load in heart and lungs and the
similar T cell responses in both groups.

In conclusion, pigs serve as an interesting model to study
initial T. gondii infection kinetics in the gut, the associated
immune responses and the subsequent dissemination to organs.
Our data indicate that upon ingestion T. gondii first enters the
host at the duodenum and then disseminates to other tissues.
This is associated with the activation of IFNγ secreting immune
cells. However, it does not yet explain why a re-infection with
the Gangji strain in LR strain infected pigs cleared the T. gondii
DNA from tissue. Nevertheless, these findings lay a foundation to
further study the early stages of T. gondii intestinal infection and
might inform on strategies to prevent initial invasion of the host
by this parasite.
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Apicomplexan infections cause substantial morbidity and mortality, worldwide. New,

improved therapies are needed. Herein, we create a next generation anti-apicomplexan

lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve

parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved

solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces

Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and

established chronic murine infections. Moreover, JAG21 treatment leads to 100%

survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum

in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite

infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at

reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival.

Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate

selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant

promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis

and malaria.

Keywords: Toxoplasma gondii, Plasmodium falciparum, cytochrome bc1, tetrahydroquinolone, nanoformulation,

structure-guided design, transcriptomics, RPS131
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INTRODUCTION

Malaria results in the death of ∼0.5 million children a year,
with drug resistance impacting the usefulness of successive
generations of new medicines (www.who.int/malaria/
publications/world-malaria-report-2017/en/). The related
apicomplexan parasite, Toxoplasma gondii, is the most frequent
parasitic infection of humans in the world. It plays a significant
role in food-borne associated death in the USA, destruction
of the human retina (Phan et al., 2008), and death and illness
from recrudescent disease in the immune compromised or
immunologically immature (McLeod et al., 2006; McLeod and
Boyer, 2019). It has been estimated that there are 1.9 million
new cases of this congenital T. gondii infection globally over
a 10 year period, causing 12 million disability adjusted life
years (Torgerson and Mastroiacovo, 2013) from damage to
the fetal brain and eye. Toxoplasmosis is an often neglected,
untreated, or mistreated disease. There are ∼2 billion people
throughout the world who have this parasite in their brain
lifelong, some with known, severe, adverse consequences (Delair
et al., 2011; Wallon et al., 2013; Lykins et al., 2016). There are
possible additional, harmful effects for a substantial number of
chronically infected people as this parasite modulates signature
pathways of neurodegeneration, motor diseases, epilepsy, and
malignancies (Ngô et al., 2017). No medicine eliminates this
chronic, encysted form of the parasite. New and improved
medicines are greatly needed to cure Toxoplasma and Plasmodia
infections (McLeod et al., 2006). These parasites often share the
same molecular targets for medicines due to a relatively close,
apicomplexan, phylogenetic relationship (McPhillie et al., 2016).
Thus, medicine development for each of these parasites can
inform development of medicines that benefit treating the other
(Muench et al., 2007; Fomovska et al., 2012a).

One such shared molecular target is the mitochondrial
cytochrome bc1 complex that is important for the survival
of apicomplexan parasites such as Plasmodia and T. gondii.
Cytochrome b is a subunit of the cytochrome bc1 complex,
an inner mitochondrial membrane protein that is part of the
electron transport chain. Activity of this complex is integral to
oxidative phosphorylation and generation of ATP (Vercesi et al.,
1998). Cytochrome b activity appears to be necessary for the
replication and persistence of the parasite (McPhillie et al., 2016),
and is the site of action of atovaquone (McPhillie et al., 2016).
Cytochrome b is the target for quinolone-based compounds, but,
significant problems with solubility, and toxicity have been noted
with earlier cytochrome b inhibitors. In an attempt to design
novel quinolone-like inhibitors with improved solubility, and
lower toxicity, compared to known compounds in the literature,
we synthesized a series of tetrahydroquinolinones (THQs). Our
preliminary efforts were described in McPhillie et al. (2016). We
reasoned that the increased “sp3” character of the THQs (i.e.,
moving from rod-like to sphere-like 3D space) could provide
the required improvement in solubility that would allow for
optimal pharmacokinetic properties.Molecules with an increased
percentage of “sp3 character” tend to be more three-dimensional,
than their planar (“sp2-rich”) counterparts. The terms “sp2” and
“sp3” refer to the shape of their hybridized atomic orbitals, which

have trigonal planar and tetrahedral geometries, respectively.
Flat aromatic rings (“sp2-rich”) are ubiquitous in drug discovery
campaigns, but molecules with more “sp3 character” are often
more specific for their protein target and can have better
physicochemical properties. Further, we reasoned that the larger
binding pocket in the parasite enzymes (McPhillie et al., 2016),
compared to their mammalian counterparts, would provide
room for bulkier substituents to minimize effect on the human
enzyme. Within this new series of compounds, we aimed to
identify amature lead compoundwith both anti-Plasmodium and
anti-T. gondii activity.

Our work developed as follows: We recently found markedly
increased expression of cytochrome b in the currently untreatable
T. gondii bradyzoite life-cycle stage (McPhillie et al., 2016).
Thus, we set out to develop a compound that would inhibit
tachyzoites, bradyzoites, and three life cycle stages of even
drug-resistant Plasmodia. We sought to do this without a
need for a pro-drug as has been needed in other attempts to
target apicomplexan cytochrome b (Frueh et al., 2017). Our
aim was to improve upon the physicochemical properties of
napthoquinones and endochin-like quinolones (ELQs) targeting
cytochrome b, including poor aqueous solubility and toxicity
(Khan et al., 1998; Doggett et al., 2012; Capper et al., 2015; Miley
et al., 2015; McPhillie et al., 2016). The intent was further to
provide potential solutions for limitations of other compounds
active against apicomplexan parasites (Waxman and Herbert,
1969; Caumes et al., 1995). Our concurrent crystallographic
studies also enable better understanding of the interactions
between ligand and the binding pocket of the Qi site (McPhillie
et al., 2016).

Herein, we have identified a preclinical lead candidate
based on potent and selective inhibition of Plasmodium
falciparum, Plasmodium berghei, and T. gondii cytochrome bc1
for the treatment of malaria and toxoplasmosis. The candidate
compound demonstrates high efficacy in relevant in vitro and
in vivo models of the diseases, and has considerable potential
for broad-spectrum use (i.e., against T. gondii tachyzoites
and encysted bradyzoites, and drug resistant Plasmodia). The
data which follow present the creation and characterization of
this novel, broad-spectrum, anti-apicomplexan lead compound
which has promise for definitive treatment of these infections.

MATERIALS AND METHODS

Syntheses of Compounds
Synthesis of Tetrahydroquinolones (THQs)

Compounds
The THQ compounds were synthesized at the University of
Leeds as described below. Ten millimolars stock solutions were
made with 100% Dimethyl Sulfoxide (DMSO) [Sigma Aldrich]
and working concentrations were made with IMDM-C (1x, [+]
glutamine, [+] 25mM HEPES, [–] Phenol red, 10% FBS)[Gibco,
Denmark]). Compounds are shown in Figure 1A. Compound
name with “0” or no “0” between letters and number, e.g., JAG21
or JAG021, refer to the same compound. This is throughout
the manuscript. Final compounds had >95% purity determined
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by high performance liquid chromatography (HPLC), high
resolution mass spectrometry, and NMR spectrometry. Liquid
chromatography-mass spectrometry (LC-MS) and NMR
spectrometry were used to determine the integrity and purity
of all intermediates. THQ compounds were synthesized as
described in Schemes 1, 2, which describe compounds MJM170
and JAG21 as exemplars. Building blocks 1, 8, 9, and 14 were
varied to create the complete series (Figure 1A).

Synthesis of

2-Methyl-5,6,7,8-Tetrahydroquinolin-4-one (2)

Platinum oxide (0.100 g, 10mol %) was added to a solution of
4-hydroxy-2-methylquinoline (1, 1.00 g, 6.28 mmol, 1.00 eq) in
glacial acetic acid (10.0mL). The heterogeneous mixture was
catalytically hydrogenated under a balloon of hydrogen. After
22 h, TLC (10% MeOH–DCM) confirmed complete reaction.
The mixture was filtered through celite under vacuum, washing
thoroughly with EtOAc (50mL). The filtrate was concentrated
and the resulting residue purified by column chromatography
(10% MeOH–DCM) to give the desired product as a pale yellow
oil (0.917 g, 5.65 mmol, 89%); Rf 0.14 (10% MeOH–DCM); δH

(300 MHz, CDCl3) 1.74–1.76 (4H, m, CH2), 2.29 (3H, s, Me),
2.49–2.52 (2H, m, CH2), 2.67–2.70 (2H, m, CH2), 6.16 (1H, s,
Ar-H); δC (125MHz, CDCl3) 19.0 (Me), 21.8 (CH2), 22.1 (CH2),
27.1 (CH2), 112.5 (CH), 122.4 (Cq), 146.4 (Cq), 147.0 (Cq),
178.3 (Cq); Spectroscopic data consistent with literature values
(Bradbury et al., 1993).

Synthesis of

2-Methyl-3-iodo-5,6,7,8-Tetrahydroquinolin-4-One (3)

nButylamine (6.20mL, 62.8 mmol, 10.0 eq) was added to
a suspension of 2-methyl-5,6,7,8-tetrahydroquinolin-4-one (2,
1.02 g, 6.28 mmol, 1.00 eq) in DMF (10.0mL). To this
heterogeneous mixture was added I2 (1.60 g, 6.28 mmol, 1.00 eq)
in a saturated solution of KI (6.00mL). After 20 h stirring at R.T.,
a precipitate formed in the orange solution, excess iodine was
quenched with 0.1M sodium thiosulfate solution (10.0mL). The
precipitate was filtered by vacuumfiltration, washedwith distilled
H2Oand dried (Na2SO4) to give the desired product as a colorless
solid (1.76 g, 6.09mmol, quantative yield); δH (300MHz,DMSO-

d6) 1.61–1.70 (4H, m, CH2), 2.29 (2H, t, J 6.0, CH2), 2.43 (2H, s,
CH2), CH3 under DMSO peak.

Synthesis of 2-Methyl-3-Iodo-4-Ethoxy-5,6,7,8-

Tetrahydroquinoline (4)

Potassium carbonate (1.53 g, 11.1 mmol, 2.00 eq) was added
to a heterogeneous mixture of 2-methyl-3-iodo-5,6,7,8-
tetrahydroquinolin-4-one (3, 1.60 g, 5.56 mmol, 1.00 eq) in DMF
(15.0mL), and the reaction heated to 50◦C for 30min. The R.B.
flask was removed from the heating mantle and ethyl iodide
(0.67mL, 8.33 mmol, 1.50 eq) was added dropwise. The reaction
was then heated at 50◦C for 18 h. The reaction was cooled to
R.T., quenched with water (40mL). The resulting emulsion
formed which was extracted with EtOAc (50mL). EtOAc layer
were washed with water (3 × 30mL), brine (3 × 30mL), dried
(Na2SO4) and concentrated to give a pale yellow oil (1.09 g, 3.44
mmol, 61%); Rf 0.88 (1:1 Pet–EtOAc); HPLC (RT = 1.67min);
LCMS (Method A), (RT= 1.6min,m/z (ES) FoundMH+ 318.0);
δH (500 MHz, CDCl3) 1.49 (3H, t, J 7.0, ethoxy CH3), 1.73–1.78
(2H, m, CH2) 1.84–1.88 (2H, m, CH2), 2.78–2.69 (5H, m, CH2

& CH3), 2.84 (2H, t, J 6.5, CH2), 3.97 (2H, q, J 7.0, OCH2); δC

(125 MHz, CDCl3) 15.6 (CH3), 22.3 (CH2), 22.8 (CH2), 23.6
(CH2), 29.3 (CH3), 32.0 (CH2), 68.4 (OCH2), 90.9 (Cq), 124.5
(Cq), 158.3 (Cq), 158.9 (Cq), 163.9 (Cq).

Synthesis of 2-Methyl-3-(4-Phenoxyphenyl)-4-

Ethoxy-5,6,7,8-Tetrahydroquinoline (6)

2-Methyl-3-iodo-4-ethoxy-5,6,7,8-tetrahydroquinoline (4,
0.266 g, 0.839 mmol, 1.00 eq), Pd(PPh3)4 (0.048 g, 0.0419 mmol,
5 mol%) and 4-phenoxyphenylboronic acid (5, 0.270 g, 1.26
mmol, 1.50 eq) were charged to a R.B. flask under N2(g).
Degassed DMF (10.0mL) was added to the flask followed by 2M
K2CO3 (1.60mL). The flask was heated to 85◦C under N2(g).
After 15min, TLC (4:1 Pet–EtOAc) confirmed reaction was
complete. The reaction was cooled and diluted with EtOAc
(15mL), filtered through celite and partitioned between EtOAc
(10mL) and H2O (25mL). Combined organics were washed
with H2O (3 × 30mL), then brine (3 × 30mL), dried (Na2SO4)
and concentrated to give a red oil which was purified by column
chromatography (3:1 Pet–EtOAc), to give the desired product
as a pale yellow oil (0.235 g, 0.655 mmol, 78%); Rf 0.31 (3:1
Pet–EtOAc); HPLC (RT = 3.08min); δH (300 MHz, CDCl3)

1.04 (3H, t, J 7.0, ethoxy CH3), 1.76–1.93 (4H, m, 2xCH2), 2.32
(3H, s, CH3) 2.72 (2H, t, J 6.0, CH2), 2.91 (2H, t, J 6.5, CH2),
3.50 (2H, q, J 7.0, OCH2), 7.05–7.16 (5H, m, Ar-H), 7.20–7.29
(2H, m, Ar-H), 7.31–7.43 (2H, m, Ar-H); δC (125 MHz, CDCl3)

15.7 (CH3), 22.5 (CH2), 23.0 (CH3), 23.3 (CH2), 23.4 (CH2),
32.7 (CH2), 68.2 (OCH2), 118.6 (CH), 118.9 (CH), 123.4 (CH),
126.8 (Cq), 129.8 (CH), 131.5 (CH), 154.9 (Cq), 156.5 (Cq), 157.1
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SCHEME 1 | Synthesis of hit compound 7, also known as MJM170 (McPhillie et al., 2016). Synthetic scheme inspired by the route to endochin-like quinolones (ELQs)

reported by Doggett et al. (2012).

(Cq), 157.3 (Cq);m/z (ES) (Found: MH+, 360.1973. C24H26NO2

requiresMH, 360.1964).

Synthesis of 2-Methyl-3-(4-Phenoxyphenyl)-4-

Ethoxy-5,6,7,8-Tetrahydroquinoline (7,

MJM170)

Aqueous hydrobromic acid (>48%) (1.00mL) was added to
a solution of 2-methyl-3-(4-phenoxyphenyl)-4-ethoxy-5,6,7,8-
tetrahydroquinoline (6, 0.226 g, 0.630 mmol, 1.00 eq) in glacial
acetic acid (2mL). The reaction was stirred at 90◦C for 5 days,
monitoring by LMCS. The reaction was cooled to R.T. and the pH
adjusted to pH 5 with 2M NaOH. The precipitate was collected
by vacuum filtration and recrystallized from MeOH:H2O to give
the desired product as an off-white solid (0.155 g, 0.467 mmol,
74%); HPLC (RT = 2.56min); δH (500 MHz, DMSO-d6) 1.66–
1.72 (4H, m, 2xCH2), 2.08 (3H, s, CH3) 2.31 (2H, t, J 6.0, CH2),
2.56 (2H, t, J 6.0, CH2), 6.99 (2H, d, J 8.5, Ar-H), 7.06 (2H, d, J
7.5, Ar-H), 7.14–7.18 (3H, m, Ar-H), 7.40–7.43 (2H, m, Ar-H),
11.0 (1H, s, NH); δC (125 MHz, DMSO-d6) 17.7 (CH3), 21.5

(CH2), 21.8 (CH2), 21.9 (CH2), 26.2 (CH2), 117.8 (CH), 118.6
(CH), 121.2 (Cq), 123.3 (CH), 123.7 (Cq), 130.0 (CH), 131.4 (Cq),
132.3 (CH), 142.3 (Cq), 143.2 (Cq), 155.0 (Cq), 156.8 (Cq), 175.4
(Cq); m/z (ES) (Found: MH+, 332.1654. C22H22NO2 requires
MH, 332.1645).

Synthesis of

1-(4-Bromophenyl)-4-(Trifluoromethoxy)Benzene (10)

Copper (II) acetate (0.435 g, 2.39 mmol, 1.00 eq) was added to
a suspension of 4-bromophenol (8, 0.414 g, 2.39 mmol, 1.00 eq),
4-trifluoromethoxybenzeneboronic acid (9, 0.983 g, 4.79 mmol,
2.00 eq) and 4 Å molecular sieves (0.566 g) in DCM (12mL)
at R.T. A solution of triethylamine (1.7mL, 11.9 mmol, 5.00
eq) and pyridine (1mL, 11.9 mmol, 5.00 eq) was added and
the reaction was stirred for 16 h, open to the atmosphere. After
18 h, the reaction was quenched with 0.5M HCl (20mL) and the
organic layer washed with water (20mL), brine (20mL), dried
(Na2SO4), and concentrated to give a red oil which was purified
by column chromatography (hexane) to give the desired product
as a colorless oil (0.582 g, 1.75 mmol, 73%); Rf 0.58 (hexane).
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SCHEME 2 | Synthetic route to analogs of 7 (MJM170) via route A or route B. Route A is the original route to analogs but is linear and involves a tricky Suzuki step to

intermediate 12 from intermediates 4 and 10. Route B allows quicker access to analogs since intermediate 15 can be made in larger quantities and derivatives can be

synthesized via the Chan-Lam reaction to give final intermediate 12 by varying the boronic acid 16.

Synthesis of 2-Methyl-3-(4-Hydroxyphenyl)-4-

Ethoxy-5,6,7,8-Tetrahydroquinolin-4-One (15)

2-Methyl-3-iodo-4-ethoxy-5,6,7,8-tetrahydroquinoline (4,
0.400 g, 1.26 mmol, 1.00 eq), Pd(PPh3)4 (0.073 g, 0.06 mmol,
5 mol%) and 4-hydroxylphenylboronic acid (14, 0.260 g, 1.89

mmol, 1.50 eq) were charged to a R.B. flask under N2(g).
Degassed DMF (10.0mL) was added to the flask followed by 2M
K2CO3 (3.00mL). The flask was heated to 85◦C under N2(g).
After 3 h, TLC (EtOAc) confirmed reaction was complete. The
reaction was cooled to 50◦C, diluted with EtOAc (15mL) and
activated charcoal was added. After stirring for 30min, the
mixture was filtered through celite and partitioned between
EtOAc (10mL) and H2O (25mL). Combined organics were
washed with H2O (3 × 30mL), then brine (3 x 30mL), dried
(Na2SO4) and concentrated to give a brown solid which was
triturated with diethyl ether to give the desired product as a
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FIGURE 1 | Characteristics and effects of compounds on inhibition of Toxoplasma gondii replication and enzyme activity, and Structure Activity Relationship analysis.

(A) Cytochrome b/c inhibitor code, Chem Draw structure, solubility in PBS 7.4, toxicity against HFF, predicted half-life, and inhibitory effect of compounds on RH strain

tachyzoites and EGS strain bradyzoites in vitro and saffarine O assay enzyme activity. PBS Sol/Toxicity pH7.4 refers to solubility of the compound in Phosphate

Bufferred Saline (PBS) at pH 7.4. Toxicity refers to the highest concentration tested that does not show toxicity to Human Foreskin Fibroblast (HFF) in tissue culture in

WST assay; T1/2 (H) refers to the predicted half-life in human liver microsomes; T1/2 (M) refers to the predicted half-life in mouse liver microsomes. Tachy/Brady IC50

(Continued)
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FIGURE 1 | was determined in studies in which cultures of parasites in HFF were treated with varying concentrations of the compound and there was 50% inhibition

of the replication (number) of parasites. Parasites were RH-YFP expressing tachyzoites (Tachy) and EGS (Brady) strains. Studies of effects of inhibitors on HFF or on T.

gondii tachyzoites were performed with triplicate wells in at least 2 biological replicate experiments. Studies of effects on bradyzoites were performed at least twice in

at least 2 biological replicate experiments. Compounds with much less inhibition of mammalian than T. gondii cytochrome bc, relative to JAG21 effect on parasite

enzyme, in the saffarine enzyme assay (indicated by **) provide potential to further develop compounds, if unanticipated toxicity occurs from JAG21. (B) Structure

Activity Relationship analysis (SAR). The effects of changing R1 as 7-Et, 7-Me, 6-CF3, or 6-Me on activity against T. gondii RH strain tachyzoites, solubility, and stability

were compared in the SAR. Color Key in (B) Activity: Green <50 nM, Red > 1µM; Solubility in 100mM Phosphate Buffer (pH 7.4): Amber>10µM, Red <10µM;

Metabolic Stability: Green >120min, Amber 60–120min, red < 60min. SAR panel displays only representative structures and trends within the JAG compound

series. JAG21 (blue font) is highly active, has the longest predicted half-life for humans of initial compounds tested (green), combined with improved solubility, no

hERG liability, and predicted capacity to cross the blood brain barrier (BBB). Definitions of ADMET terminology are in the Materials and Methods. In summary, in the

SAR overall, nitrogen atoms were not tolerated in aryl ring marked by green c, and the 4-position was optimal for phenol substituent. Compound name with “0” or no

“0” between letters and number, e.g., JAG21 or JAG021, refer to the same compound. This is throughout the manuscript.

pale red crystalline solid (0.220 g, 0.777 mmol, 60%); Rf 0.22
(EtOAc); m.p. 225–226◦C (EtOAc); δH (500 MHz, MeOD-d4)

7.07 (d, J = 8.6Hz, 2H, H-3 & 5), 6.86 (d, J = 8.6Hz, 2H, H-2 &
6), 3.51 (q, J = 7.0Hz, 2H, CH3CH2O), 2.83 (t, J = 6.3Hz, 2H,
H-8’), 2.72 (t, J = 6.1Hz, 2H, H-5’), 2.23 (s, 3H, Me), 1.95–1.72
(m, 4H, H-6’ & 7’), 1.00 (t, J = 7.0Hz, 3H, CH3CH2O); δC (125

MHz, MeOD-d4) 164.0 (Cq), 158.1 (C-1), 157.4 (Cq), 156.1 (Cq),
132.2 (C-3 & 5), 129.1 (Cq), 127.9 (Cq), 124.9 (Cq), 116.2 (CH),
69.1 (OCH2), 32.7 (CH2), 23.9 (CH2), 23.4 (CH3), 22.9 (CH2),
22.3 (CH2), 15.7 (CH3); m/z (ES) (Found MH+, 284.1664,
C18H21NO2 requiresMH, 284.1651).

Synthesis of 2-Methyl-3-(4-Hydroxyphenyl)-4-

Ethoxy-5,6,7,8-Tetrahydroquinolin-4-One

(12)

1-(4-bromophenyl)-4-(trifluoromethoxy)benzene (10, 0.100 g,
0.30mmol, 1.00 eq), bis(pinacolato) diboron (1.10 eq), potassium
acetate (3.00 eq) and Pd(dppf)Cl2 (0.03 eq) were added to a
oven-dried flask under inert (N2) atmosphere. Anhydrous DMF
(6mL) was added and the reaction heated to 80◦C under N2 (g).
After 22 h, the reaction was cooled to R.T., fresh Pd(dppf)Cl2
(0.03 eq) added, followed by 2-methyl-3-iodo-4-ethoxy-5,6,7,8-
tetrahydroquinoline (4, 0.400 g, 1.26 mmol, 2.00 eq) and 2M
Na2CO3 (2.9mL). The reaction was heated to 80◦C for 20 h,
cooled, diluted with EtOAc (20mL), filtered through celite
and partitioned between EtOAc (20mL) and H2O (20mL).
Combined organics were washed with brine (3 × 20mL), dried
(Na2SO4) and concentrated to give a brown solid which was
purified by column chromatography (3:1 Pet–EtOAc) to give
the desired product as a colorless oil (30mg, 0.07 mmol, 23%);
HPLC (RT = 2.41min); δH (500 MHz, acetone) 7.28 (d, J =

8.7Hz, 2H, H-2
′

& 6
′

), 7.26 (d, J = 9.1Hz, 2H, H-2
′′

& 6
′′

),
7.09 (d, J = 9.1Hz, 2H, H-3

′′

& 5
′′

), 7.07 (d, J = 8.7, 2H, H-3
′

& 5
′

), 3.52 (q, J = 7.0Hz, 2H, CH3CH2O), 2.85 (t, J = 6.5Hz,
2H, H-8), 2.78 (t, J = 6.2Hz, 2H, H-5), 2.26 (s, 3H, Me), 1.89–
1.81(m, 2H, H-7), 1.81–1.72 (m, 2H, H-6), 0.93 (t, J = 7.0Hz,
3H, C H3CH2O); δC (125 MHz, acetone) δ 161.9 (Cq), 157.1
(Cq), 156.5 (Cq), 156.0 (Cq), 154.5 (Cq), 145.3 (Cq), 132.5 (Cq),

132.0 (CH), 126.7 (Cq), 123.0 (CH), 119.8 (CH), 119.0 (CH),
68.0 (OCH2), 32.5 (CH2), 23.0 (CH2), 22.9 (CH3), 22.7 (CH2),
22.5 (CH2), 15.05 (CH3); m/z (ES) (Found: MH+, 444.1792.
C25H24F3NO3 requiresMH, 444.1781).

Synthesis of

2-Methyl-3-(4-(4-(Trifluoromethoxy)Phenoxy)Phenyl)-

5,6,7,8-Tetrahydroquinolin-4-One (13,

JAG21)

Aqueous hydrobromic acid (>48%) (1.00mL) was added to
a solution of 2-methyl-3-(4-phenoxyphenyl)-4-ethoxy-5,6,7,8-
tetrahydroquinoline (12, 30.0mg, 0.07 mmol, 1.00 eq) in glacial
acetic acid (2mL). The reaction was stirred at 90◦C for 3 days,
monitoring by LMCS. The reaction was cooled to R.T. and the pH
adjusted to pH 5 with 2MNaOH. The precipitate was collected by
vacuum filtration and recrystallized fromMeOH:H2O to give the
desired product as a colorless solid (25.0mg, 0.06 mmol, 68%);
m.p.>250◦C;HPLC (RT= 2.78min); δH (500MHz,DMSO-d6)

11.07 (s, 1H, NH), 7.40 (d, J= 8.5Hz, 2H, H-2
′

& 6
′

), 7.19 (d, J =
8.6Hz, 2H, H-3

′′

& 5
′′

), 7.13 (d, J = 9.0Hz, 2H, H-3
′

& 5
′

), 7.02
(d, J = 8.5Hz, 2H, H-2

′′

& 6
′′

), 2.54 (t, J = 6.0Hz, 2H, H-8), 2.28
(t, J= 5.9Hz, 2H, H-5), 2.07 (s, 3H, Me), 1.71 (m, 2H, H-7), 1.65
(m, 2H, H-6); δC (125 MHz, DMSO-d6) 175.7 (Cq), 155.9 (Cq),
154.5 (Cq), 143.5 (Cq), 143.2 (Cq), 142.2 (Cq), 132.5 (CH), 132.2
(Cq), 123.6 (Cq), 123.0 (CH), 121.3 (Cq), 119.6 (CH), 118.2 (CH),
26.2 (CH2), 21.9 (CH2) 21.8 (CH2), 21.5 (CH2), 17.7 (CH3);
m/z (ES) (Found: MH+, 416.1492. C23H20F3NO3 requires
MH, 416.1473).

Toxoplasma gondii
Parasite Strains (Isolates)
RH-YFP tachyzoites (Gubbels et al., 2003; Fomovska et al., 2012a;
McPhillie et al., 2016), EGS strain (Vidigal et al., 2002; Paredes-
Santos et al., 2013, 2018; McPhillie et al., 2016), Pru-luciferase,
Me49, and RPS131 on the RH strain background (Hutson et al.,
2010) were prepared and passaged in human foreskin fibroblasts
[HFF] as described.
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T. gondii in vitro

In vitro Challenge Assay for T. gondii
RH strain YFP Tachyzoites. Protocol was adapted from
Fomovska et al. (2012a,b) for HFF. HFF were cultured on a
flat, clear-bottomed, black 96-well plate to 90–100% confluence.
IMDM (1x, [+] glutamine, [+] 25mM HEPES, [+] Phenol red,
10% FBS [Gibco, Denmark]) was removed and replaced with
IMDM-C(1x, [+] glutamine, [+] 25mMHEPES, [–] Phenol red,
10% FBS)[Gibco, Denmark]). RH-YFP, lysed from host cells by
passing twice through a 27-gauge needle, were counted, then
diluted to 32,000/mL in IMDM-C. HFF were infected with 3200
RH-YFP, then returned to 37◦C, CO2 (5%) incubator for 1–2 h
for infection. Various concentrations of the compounds in 20 µL
IMDM-C were added to each well. There were triplicates for each
condition. Controls were pyrimethamine/sulfadiazine (standard
treatment), 0.1% DMSO only, HFF only, and untreated cultures
of HFF infected with 2-fold dilutions of YFP expressing parasites
(called “YFP gradient” to establish amount of color from known
numbers of YFP expressing parasites). Cells were incubated at
37◦C for 72 h. Plates were read using a fluorimeter (Synergy
H4 Hybrid Reader, BioTek) to ascertain amount of relative
fluorescence units (RFU) YFP, to measure parasite burden after
treatment. Data were collected using Gen5 software with IC50

calculated by graphical analysis in Excel.
An initial screening assay of 10µM, 1µM, 100 nM, and

10 nM of the compounds was performed. Compounds were not
considered effective or pursued for further analysis if there was
no inhibition of tachyzoites at 1µM. If compounds were effective
at 1µM, another experiment was performed to assess effect at
1µM, 500, 250, 125, 62.5, and 31.25 nM.

Cytotoxicity Assays in Parallel With RH Strain

T. gondii in vitro Studies
Toxicity assays used WST-1 cell proliferation reagent (Roche)
as in Fomovska et al. (2012a). HFF were grown on a flat,
clear-bottomed, black 96-well plate. Confluent HFF were treated
with inhibitory compounds at concentrations of 10 and 50µM.
Compounds were diluted in IMDM-C, and 20 µL were added
to each designated well, with triplicates for each condition. A
gradient with 2-folddecreasing concentrations of DMSO from 10
to 0% in colorless, translucent IMDM-C was used as a control.
The plate was incubated for 72 h at 37◦C. Ten microlitre WST-1
reagent (Roche) were added to each well. Cells were incubated for
30–60min. Absorbance was read using a fluorimeter at 420 nm.
A higher degree of color change (and absorbance) indicated
mitochondrial activity and cell viability.

In vitro Challenge Assay for EGS Strain Bradyzoites
HFF cells were grown in IMDM on removable, sterile glass
cover slips in the bottom of a clear, flat-bottomed 24-well plate.
Cultures were infected with 3 × 104 EGS strain parasites per
well, in 0.5mL media. The plate was returned to incubator at
37◦C overnight. The following day, the media was removed.
Colorless IMDM and compounds were added to make various
concentrations of the drug. Total volume was 0.5mL. Two wells
had media only, as a control. Plates were returned to the 37◦C

incubator for 72 h, checked once each 24 h. If tachyzoites were
visible in the control before 72 h, cells were fixed and stained.

Cells were fixed using 4% paraformaldehyde and stained
with Fluorescein-labeled Dolichos Biflorus Agglutinin, DAPI,
and antibody to BAG1. Disks were removed, mounted on
glass slides, and visualized using microscopy (Nikon Tl7).
Slides were scanned using a CRi Panoramic Scan Whole Slide
Scanner and viewed using Panoramic Viewer Software. Effects
of compounds were quantitated by counting cysts in controls
and treated cultures. Dolichos staining delimited structures and
single organisms that remained were counted in a representative
field of view. This was then multiplied by a factor determined by
the total area of the cover slip in order to estimate the number
of cysts and organisms in each condition. When the following
forms were observed: “true cysts” with a dolichos-staining wall,
“pseudocysts” or tight clusters of parasites, and small organisms,
if there were fewer than four parasites visible in a cluster,
organisms were counted individually (as “small organisms”). The
entire scanned coverslip with all fields was also reviewed by 3
observers to confirm consistency.

Synergy Studies With RH Strain YFP Tachyzoites
Atovaquone and pyrimethamine were used to test whether they
are synergistic with JAG21. Serial dilutions of the combination
of JAG21 and either atovaquone or pyrimethamine were used
in an in vitro challenge assay as described above. The EC50
of each compound and the combination of two compounds
were determined. The effect of the combination of drugs was
calculated with the following formula:C= [A]c/[A]a+[B]c/[B]a.
If C is lower than 1, the two compounds tested have synergistic
effect; if C is>1, the two compounds tested have antagonist effect
and if C is 1 they are additive.

T. gondii and HFF Mitochondrial Membrane

Potential Measurements
The mitochondrial membrane potential was measured by the
safranine method according to Vercesi et al. (1998). Freshly
egressed T. gondii tachyzoites were filtered and washed twice
with intracellular buffer (125mM sucrose, 65mM KCl, 10mM
HEPES-KOH buffer, pH 7.2, 1mM MgCl2, and 2.5mM
potassium phosphate). After washing, the parasites were
resuspended in the same buffer at 109/mL. An aliquot of 50 µL
of this suspension was added to a cuvette containing Safranin
O, 2.5µM and Succinate 1mM in final volume of 2mL of
the intracellular buffer. The fluorescence was measured with
a Hitachi 7000 spectrofluorometer with settings Ex. 495/Em.
586. Once the baseline fluorescence was stable, 30µM digitonin
was added to permeabilize the parasites. Eighty five seconds
after permeabilization, the THQ derivatives, dissolved in DMSO,
were added. Five micromolars of FCCP (Carbonyl cyanide-4-
(trifluoromethoxy) phenylhydrazone) was used as an uncoupler
reference for calculations and its effect was considered 100%.
We used similar conditions for measuring the mitochondrial
membrane potential of mammalian cells with the following
changes: the mammalian cells were resuspended at 108/mL. We
also used 50 µL of this suspension for each experiment in a total
volume of 2mL. The substrate used for mammalian cells was
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5mM glutamate and 5mM malate. A higher concentration of
digitonin (50µM)was used to permeabilize themammalian cells.
The compounds were added at ∼400 s after permeabilization.
Each experiment was repeated at least three times in duplicates.
Statistical analysis, unpaired student t-test, was performed using
GraphPad Prism 8.0 (GraphPad Software, Inc., San Diego, CA).

Structure Activity Relationship (SAR) and

Comparison of Effect on Toxoplasma gondii and HFF

Enzyme Activity
The effects of changing R1 as 7-Et, 7-Me, 6-CF3, or 6-Me
on activity against RH strain tachyzoites, kinetic solubility,
and metabolic stability were compared. Kinetic solubility and
metabolic stability in human or murine liver microsomes were
measured. The hERG (human Ether-à-go-go-Related) liability
was also determined. The hERG gene (KCNH2) encodes
a protein Kv11.1, the alpha subunit of a potassium ion
channel. This channel conducts the rapid component of the
delayed rectifier potassium current, IKr, which is critical for
repolarization of cardiac action potentials. A reduction in
hERG currents from adverse drug effects can lead to long
QT interval syndromes. These syndromes are characterized by
action potential prolongation, lengthening of the QT interval
on surface EKG, and an increased risk for “torsade de pointes”
arrhythmias and sudden death. The MDCK-MDR1 Permeability
Assay was also performed. MDCK-MDR1 refers to the ability
of a compound to permeate across membranes of MDCK-
MDR1 (Madin Darby canine kidney [MDCK] cells with the
MDR1 gene [ABCB1], the gene encoding for the efflux protein,
P-glycoprotein (P-gp)) in vitro. Assessing transport in both
directions (apical to basolateral and basolateral to apical) across
the cell monolayers enables an efflux ratio to be determined. This
provides an indication as to whether a compound undergoes
active efflux (mediated by P-gp). This provides a prediction of
blood brain barrier (BBB) penetration potential/permeability and
efflux ratio. Effect in CACO-2 (Colon Adenocarcinoma cells) as a
permeability assay and on cytochrome P450 (CYP 450) were also
determined. CYP enzymes catalyze oxidative biotransformation
(phase 1 metabolism) of most drugs. CYP enzymes, bind to
membranes in a cell (cyto) and contain a heme pigment (chrome
and P) that absorbs light at a wavelength of 450 nmwhen exposed
to carbon monoxide. Metabolism of a drug by CYP enzymes is a
major source of variability in drug effect. These weremeasured by
Chem Partners. The relative effect on HFF and parasite enzymes
also were compared.

RPS131 Tachyzoites in Human Primary Brain

Neuronal Stem Cells in vitro for Transcriptomics and

Transcriptomics Analyses
Culture of Human Primary Brain Neuronal Stem Cells (NSC)
was as described (McPhillie et al., 2016; Ngô et al., 2017); T.
gondii RPS131 on RH strain background (Hutson et al., 2010)
was used to infect the NSC as described (McPhillie et al., 2016;
Ngô et al., 2017). RNA was isolated and prepared and used for
transcriptomic experiments as described (McPhillie et al., 2016;
Ngô et al., 2017). Briefly, NSC, initially isolated from a temporal

lobe biopsy (Walton et al., 2006) were infected with either wild-
type or RPS131 RH tachyzoites using biological duplicates at
a multiplicity of infection of 2:1 and incubated as previously
described Ngô et al. (2017). Eighteen hours post-infection,
extracellular parasites were washed out with cold PBS before
total RNA extraction. Further isolation of the mRNA fraction
was carried out with miRNeasy Mini Kit columns (Qiagen)
following manufacturer instructions and Illumina barcoded
mRNA sequencing libraries were constructed with TruSeq RNA
Sample Preparation Kits v2 (Illumina). Libraries were sequenced
as 100 bp single reads with Illumina HiSeq 2000 apparatus at a
sequencing depth of ∼3 Gbp per sample. Sequencing reads were
mapped to the human (release GRCh38) and T. gondii ME49
strain (ToxoDB release 13.0) reference genome assemblies with
hisat2 (Kim et al., 2015) and raw read counts were per gene
were estimated with HTSeq (Anders et al., 2015). Identification
of parasite genes that were differentially expressed between wild-
type and RPS131 parasites was performed with the R package
DESeq2 (Love et al., 2014) using a generalized linear model
likelihood ratio test. Identification of orthologous genes between
T. gondii and P. cynomolgi was carried out by best-reciprocal
matches between T. gondii and P. cynomolgi proteomes using
Blastp and a e-value cutoff of 1× 10−3. The list of Genes that are
differentially expressed between P. cynomolgi hypnozoites and
the liver-schizont stage was extracted from a previously published
study by Cubi et al. (2017). Gene set enrichment analysis was
carried out with the GSEA tool (Subramanian et al., 2005) using
T. gondii Gene Ontology and cell cycle gene sets developed by
Croken et al. (2014) and visualized with the Enrichment Map
application in Cytoscape (Su et al., 2014).

Toxoplasma gondii in vivo
Type II Parasites in vivo

IVIS
Balb/C mice were infected intraperitoneally (IP) with 20 × 103

T. gondii (Prugneaud strain expressing luciferase) tachyzoites.
Treatment began 2 h later with JAG21 (5 mg/kg) which was
dissolved in DMSO, administered IP in a total volume of 0.05mL.
Mice were imaged every second day starting on day 4 post
infection using an IVIS Spectrum (Caliper Life Sciences) for
minute exposures, with medium binning, 20min post injection
with 150 mg/kg of D-luciferin potassium salt solution.

Brain cysts
Brain cysts were searched for in paraffin imbedded tissue of
the surviving Prugneaud strain infected treated Balb/C mice in
the IVIS study, 30 days after infection which was 16 days after
treatment had been discontinued. All treated mice had survived.
There were no surviving untreated mice in those experiments.

In separate experiments, Balb/C mice were infected IP with
20 × 103 T. gondii Me49 strain tachyzoites. In these separate
studies of mice with established chronic infection, after 30 days,
IP treatment with JAG21 was begun each day for 14 days. JAG21
was dissolved in DMSO and administered IP in a total volume
of 0.05mL. In experiments when tafenoquine was administered
alone or with JAG21 in some groups 3 mg/kg tafenoquine
was administered once on day−1 from when JAG21 treatment
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was initiated. Cysts in brain were quantitated on day 30, 16
days after discontinuing JAG21. Immunoperoxidase staining was
performed. Parasite burden was quantitated in twoways. The first
was using a positive pixel count algorithm of Aperio ImageScope
software. Positive pixels were normalized to tissue area (mm2).
Briefly, automated quantitation was done by counting positive
pixels per square area. The entire brain in one section was
scanned for each mouse. The Cyst burden was quantitated as
units of positive pixels per mm2. The average ± S.E.M. numbers
of mm2 per slide quantitated was 30.2±1.6 square mm per mouse
for this quantification. Each highpower field of view shown in
Figure 5C is∼0.02 mm2 per field of view. Cysts on each slide for
each condition in two biological replicate experiments were also
quantitated by 2 separate observers independently and results
compared with automated counting, separately.

RPS13 1 in vivo
This G1 arrested parasite persists in tissue culture for prolonged
times in the absence of tetracycline (Hutson et al., 2010), but in
immune competent mice it cannot be rescued with teteracycline,
or LNAME (L-NG-Nitro arginine methyl ester, an analog of
arginine) used as an antagonist of nitric oxide synthase (NOS)
that inhibits NO production, or both together (Hutson et al.,
2010).

In pilot studies, herein, interferon γ receptor knockout mice
that were not treated were observed following infection. At 7 and
at 14 days following infection, spleen, and liver were removed
and immune peroxidase stained. At 14 days a group of mice
were treated with anhydrotetracycline and when a subset of these
mice died, their spleen and liver were removed and immune
peroxidase stained.

As in the pilot studies, this RPS13 1 parasite also was used to
infect interferon γ receptor knockout mice in a treatment study.
The design of this experiment with these immune compromised
mice is shown in Figure 6. In this separate study, groups of mice
were infected with RPS13 1. They were treated with tafenoquine
on day−1, or JAG21 for 14 days 2 h after infection, or the two
together with tafenoquine on day−1 and JAG21 for the first
14 days, or with diluent only for 14 days, as described above.
For the initial 14 days, no tetracycline was administered. After
that time tetracycline was administered. Mice were observed
each day. At the time they appeared to have substantial illness
or at the termination of the experiment they were euthanized,
tissues fixed in formalin and stained with hematoxylin and
eosin or immunoperoxidase stained and parasite burden
was assessed.

RH Challenge in a Study of Oral Administration of a

Novel Nano Formulation of JAG21

Nanoformulation of JAG21 for oral administration in

T. gondii studies
JAG21 was prepared using hydroxyethyl cellulose (HEC) and
Tween 80. Briefly, this dispersant solution containing 5 mg/mL
HEC and 2 mg/mL Tween 80 in water was prepared. Solid
JAG21 was added to 20 mg/mL, and the dispersion was
sonicated for 60 s using a Sonics vc50 probe-tip sonicator
set to 20 kHz to homogenize. Sonication was performed at

room temperature. Aliquots of the homogeneous dispersion
were frozen and lyophilized using a VirTis AdVantage freeze
drier. These aliquots were stored at room temperature for 5–
6 months. Prior to dosing, aliquots were reconstituted using
water. Controls containing no JAG21 were also prepared.
Following reconstitution with water, the dispersion was imaged
using a Nikon ECLIPSE E200 optical microscope set to 40x
magnification. The average particle size of the JAG21 dispersion
in HEC/Tween 80 was determined using an in-house image
analysis program. This novel method to stably formulate JAG21
was discovered after all other studies were completed and
this was the last experiment in this manuscript performed as
a consequence.

RH YFP challenge
For studies of the nano formulated JAG 21, this was administered
for 1 or 3 days by gavage in the doses shown in the results section.
These C57BL6 background mice received 2000 RH tachyzoites
IP. on day the first day of the experiment and peritoneal fluid
was collected 5 days later to quantitate fluorescence and numbers
of parasites.

Malaria Assays
Enzyme Assays

Methods for enzyme assays: Materials
P. falciparum 3D7 strain were obtained from the Liverpool
School of Tropical Medicine. Protease cocktail inhibitor was
obtained from Roche. Bradford protein assay dye reagent was
obtained from Bio-Rad. All other reagents were obtained from
Sigma-Aldrich. Decylubiquinol was produced as per Fisher et al.
(2009). In brief, 25mg of decylubiquinone were dissolved in 400
µL of nitrogen-saturated hexane. An equal volume of aqueous
1M sodium dithionite was added, and the mixture vortexed
until colorless. The organic phase containing the decylubiquinol
was collected, the solvent was evaporated under N2 and the
decylubiquinol finally dissolved in 100 µL of 96% ethanol
(acidified with 10mM HCl). Concentrations of decylubiquinol
was determined spectrophotometrically on a Cary 300 Bio
UV/visible spectrophotometer (Varian, UK) from absolute
spectra, using ε288−−320 = 8.1 mM−1.cm−1. Decylubiquinol was
stored at−80◦C and used within 2 weeks.

P. falciparum culture and extract preparation
P. falciparum strain 3D7 blood-stage cultures were maintained
by the method of Trager and Jensen (1976). Cultures contained
a 2% suspension of O+ human erythrocytes in RPMI 1640
medium containing L-glutamine and sodium carbonate, and
supplemented with 10% pooled human AB+ serum, 25mM
HEPES (pH 7.4) and 20µM gentamicin sulfate. Cultures were
grown under a gaseous headspace of 4% O2 and 3% CO2 in N2 at
37◦C. Cultures were grown to a parasitemia of 5% before use.

The protocol for the preparation of parasite extract was
adapted from Fisher et al. (2009). Free parasites were prepared
from infected erythrocytes pooled from five T75 flasks, by
adding 5 volumes of 0.15% (w/v) saponin in phosphate-buffered
saline (137mM NaCl, 2.7mM KCl, 1.76mM K2HPO4, 8.0mM
Na2HPO4, 5.5mM D-glucose, pH 7.4) for 5min, followed by
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three washes by centrifugation in RPMI containing HEPES
(25mM), and a final resuspension in potassium phosphate
buffer (50mM K2HPO4, 50mM KH2PO4, 2mM EDTA, pH7.4)
containing a protease inhibitor cocktail (Complete Mini; Roche).
Parasite extract was then prepared by disruption with a
sonicating probe for 5 s, followed by a 1min rest period on ice
to prevent the sample overheating. This process was performed
three times. The parasite extract was used immediately. The
protein concentration of the parasite extract was determined by
Bradford protein assay (Bio-Rad).

Pfbc1 native assay
P. falciparum bc1 complex cytochrome c reductase (Pfbc1)
activity was measured by monitoring cytochrome c reduction
at 550 vs. 542 nm using a Cary 300 Bio UV-Visible
Spectrophotometer (Varian, UK), using a protocol adapted
from Fisher et al. (2009).The assay was performed in potassium
phosphate buffer in a quartz cuvette and in a final volume of 700
µL. Potassium cyanide (10µM), oxidized cytochrome c (30µM),
parasite extract (100 µg protein), and compound/DMSO were
added sequentially to the cuvette, with mixing between each
addition. Test compounds were added to a final concentration
of 1µM. DMSO (0.1% v/v) and atovaquone (1µM), a known
malarial cytochrome bc1 complex inhibitor, were used as
negative and positive controls, respectively. The reaction was
initiated by the addition of 50µM decylubiquinol and allowed to
proceed for 3 min.

Malaria Parasite in vitro Studies
Malaria potency testing in vitro was performed using 4 different
P. falciparum strains, D6, TM91-C235, W2, and C2B. The D6
strain is a drug sensitive strain from Sierra Leone, the TM91-
C235 strain is a multi-drug resistant strain from Thailand, the
W2 strain is a chloroquine resistant strain from Thailand, and the
C2B strain is a multi-drug resistant strain with resistance against
atovaquone. These assays were performed as described below.

Compound Activity against Plasmodium falciparum
Compound activity against P. falciparum, was tested using
the Malaria SYBR Green I–Based Fluorescence (MSF) Assay.
The complete method for performing this microtiter assay
is described in previous work published by Plouffe et al.
(2008) and Johnson et al. (2007). In brief, this assay uses
the binding of the fluorescent dye SYBR Green I to malaria
DNA to measure parasite growth in the presence of 2-fold
diluted experimental or control. The relative fluorescence of the
intercalated SYBR Green I proportional to parasite growth, and
inhibitory compounds will result in lower observed fluorescence
compared to untreated parasites.

Cytotoxicity assays in parallel with P.falcipaum assays in

vitro
Toxicity studies also were performed with HepG2 cells (human
liver cancer immortal cell line derived from the liver tissue of a
15-year-old African American, ATCC R HB-8065TM) in parallel
with the studies of P. falciparum, with inhibitors in vitro, as
described in McPhillie et al. (2016).

P. berghei Causal Prophylaxis in vivo Model
P. berghei sporozoites were obtained from laboratory-reared
female Anopheles stephensi mosquitoes which were maintained
at 18 degrees C for 17–22 days after feeding on a luciferase
expressing P. berghei infected Swiss CD1ICR. Using a dissecting
microscope, the salivary glands were extracted from malaria-
infected mosquitoes and sporozoites were obtained. Briefly,
mosquitoes were separated into head/thorax and abdomen.
Thoraxes and heads were triturated with a mortar and pestle
and suspended in medium RPMI 1640 containing 1% C57BL/6
mouse serum (Rockland Co, Gilbertsville, PA, USA). 50–80
heads with salivary glands were placed into a 0.5mL Osaki
tube on top of glass wool with enough dissection media to
cover the heads. Until all mosquitoes had been dissected, the
Osaki tube was kept on ice. Sporozoites that were isolated
from the same batch of mosquitoes were inoculated into
C57BL/6, 2D knock-out, and 2D knock-out/2D6 knock-in
C57BL/6 mice on the same day to control for biological
variability in sporozoite preparations. On day 0, each mouse was
inoculated intravenously in the tail vein with∼10,000 sporozoites
suspended in 0.1mL volume. They were stained with a vital
dye containing fluorescein diacetate (50 mg/mL in acetone)
and ethidium bromide (20µg/mL in phosphate buffered saline;
Sigma Chemical Co, St. Louis, MO, USA) and counted in a
hemocytometer to ensure that inoculated sporozoites were viable
following the isolation procedure. Viability of the sporozoites
ranged from 90 to 100%.

Animals
The mice used in these experiments were albino C57BL/6 female
mice which were housed in accordance with the current Guide
for the Care and Use of Laboratory Animals (1996) under an
IACUC approved protocol. All animals were quarantined for 7
days upon arrival, and the animals were fed standard rodent
maintenance food throughout the study.

Test compounds, homogenization of JAG21 creating a

nanoformulation, and administration
Animals were dosed with experimental compounds based on
body weight. The suspension solution of orally administered
drugs were conducted in 0.5% (w/v) hydroxyethyl cellulose and
0.2% Tween 80 in distilled water. To insure the size of the
compounds in the dosing solution were under 50µM (measured
they were 4–6µM), the suspension was homogenized using a
homogenizer (PRO Scientific Inc, Monroe, CT, USA) with a
10mm open-slotted generator running at 20,000–22,000 rpm for
5min in an ice bath. The compounds were made fresh each day
and used immediately (always in <1/2 h). Stability beyond that
time was not determined. It was not anticipated that they would
be stable beyond that time.

Compounds were administered on 3 consecutive days (−1,
0, +1) relative to sporozoite infection or a single dose on day
0. Drug suspensions were administered to mice by oral gavage
using an 18 gauge intragastric feeder. For the 3 day dosing
regimen, compounds were administered at 0.625 mg/kg and for
the single dose regimen administered on day 0, compounds were
administered at 2.5 mg/kg.
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In vivo imaging
All of the in vivo bioluminescent imaging methods utilized
have been described previously. Briefly, JAG21 was administered
orally on days−1, 0, and 1 with respect to sporozoite inoculation.
All inoculated mice were imaged using the Xenogen IVIS-
200 Spectrum (Caliper Life Sciences, Hopkinton, MA, USA)
IVIS instrument at 24, 48, and 72 h post-sporozoite infection.
The bioluminescent imaging experiments were conducted by
IP injection of the luciferase substrate, D-Luciferin potassium
salt (Xenogen, California and Goldbio, St Louis, MO, USA),
into mice at a concentration of 200 mg/kg 15min before
bioluminescent images were obtained. Three minutes after
luciferin administration the mice were anesthetized using
isoflurane, and the mice were positioned ventral side up
on a 37◦C platform with continual anesthesia provided
through nose cone delivery of isoflurane. All bioluminescent
images were obtained using 5min exposures with f-stop =

1 and large binning setting. Photon emission from specific
regions was quantified using Living Image R© 3.0 software
(Perkin Elmer).

Additionally, blood stage parasitemia was assessed 3 days
after imaging was completed by treating small quantities of
blood obtained from tail bleeds with the fluorescent dye Yoyo-
1 measured by using a flow cytometry system (FC500 MPL,
Beckman Coulter, Miami, FL, USA) (Pybus et al., 2013; Marcsisin
et al., 2014).

Methods for Co-crystallization and Binding
Studies
Bovine Cytochrome bc1 Activity Assays
Bovine cytochrome bc1 inhibition assay was carried out in 50mM
KPi pH 7.5, 2mM EDTA, 10mM KCN, 30µM equine heart
cytochrome c (Sigma Aldrich), and 2.5 nM bovine cytochrome
bc1 at room temperature. 20mM inhibitors dissolved in DMSO
were added to the assay at a desired concentration without
prior incubation. The working concentration of DMSO in the
assay did not exceed 0.3% v/v. The reaction was initiated by
the addition of 50µM decylubiquinol (Abcam). The reduced
cytochrome c was monitored by the different absorption between
550 and 542 nm using extinction coefficient of 18.1 mM−1 cm−1

in a SPECTRAmax Plus 384 UV-visible Spectrometer. The initial
kinetic rate is determined as a zero-order reaction and used as the
specific activity of cytochrome bc1.

Bovine Cytochrome bc1 Purification Protocol

Preparation of crude mitochondria
Whole fresh bovine heart was collected after slaughter and
transported in ice. All work was carried out at 4◦C. Lean
heart muscle was cut into small cubes and homogenized in the
buffer composed from 250mM sucrose; 20mM K2HPO4; 2mM
succinic acid; 0.5mM EDTA. Buffer was added at a ratio of
2.5 L per 1 kg of muscle tissue. Ph of resulting homogenate was
adjusted to 7.8 using 2M Tris and PMSF protease inhibitor
was added to 0.1mM concentration. The homogenate was then
centrifuged in a Sorvall GS-3 rotor at 5,000 g for 20min. The
resulting supernatant was then transferred to a Sorvall GSA rotor
and centrifuged at 20,000 g for 20min. Obtained mitochondrial

pellet was washed in 50mM KPi (pH 7.5); 0.1mM PMSF buffer
before second centrifugation under the same condition. The
pellet was collected and sored at−80◦C for further use.

Solubilization of Membrane Proteins
The frozen mitochondria were thawed and re-suspended in
50mM KPi (pH 7.5); 250mM NaCl; 0.5mM EDTA; 0.1mM
PMSF buffer; a small sample was taken for quantification of total
mitochondrial proteins by BCA assay. The remaining sample was
centrifuged at 180,000 g in Beckman Ti70 rotor for 60min. The
pellet was re-suspended in the same wash buffer with the addition
1mg DDM per 1mg of protein and then centrifuged under the
same conditions for 60min. The pellet was discarded and the
supernatant was collected for ion exchange chromatography.

Purification of Cytochrome bc1
During purification the presence of protein was detected using
280 nm absorbance and the presence of heme was detected
using 415 nm Soret band peak and 562 nm absorbance. The
solubilized protein solution was applied onDEAE-Sepharose CL-
6B column (ca. 50mL, GE Healthcare) pre-equilibrated with
buffer A [50mM KPi (pH 7.5); 250mM NaCl; 0.01% w/v DDM;
0.5mM EDTA] and washed with 3 CV of buffer A. The protein
was eluted by linear gradient with buffer B [50mM KPi (pH
7.5); 500mM NaCl; 0.01%w/v DDM; 0.5mM EDTA]. Fractions
containing cytochrome bc1 were pooled and concentrated to
0.5mL using an Amicon Ultra-15 (Amicon, MWCO 100,000)
concentrator. Concentrated sample was applied to a Sephacryl-
S300 gel filtration column (ca. 120mL) pre-equilibrated in buffer
C [20mM KMOPS (pH 7.2); 100mM NaCl; 0.01%w/v DDM;
0.5mM EDTA] and eluted at a flow rate of 0.5 mL/min. Purified
cytochrome bc1 fractions were collected and concentrated to
40 mg/m. PEG fractionation with increasing concentration of
PEG4000 was used to precipitate cytochrome bc1. Precipitating
solution (100mM KMES pH 6.4; 10% PEG4000; 0.5mM EDTA)
was mixed with the protein to a desired PEG concentration. The
precipitated protein pellet was re-solubilised in buffer D (25mM
KPi pH 7.5, 100mM NaCl, 0.5mM EDTA, 0.015% DDM) and
dialysed in the same buffer in a centrifugal ultrafilter to remove
residual PEG. Five micromolars cytochrome bc1 was incubated
at 4◦C for 12 h with 50µM JAC21 (10-fold molar excess) diluted
from 20mM solution stock in DMSO.

Crystallization, Data Collection, and Refinement of

Cytochrome bc1–JAG21 Complex
The inhibitor-bound cytochrome bc1 was mixed with 1.6%
HECAMEG to the final protein concentration of 40 mg/mL.
Hanging drop method was used for crystallization. Two
microliter of final protein solution with 2 µL of reservoir
solution (50mM KPi pH 6.8, 100mM NaCl, 3mM NaN3,
10–12% PEG4000) was equilibrated over reservoir solution at
4◦C. The crystals were grown to 100µm within 4 days. The
single crystal was transferred in reservoir solution containing
increasing to 50% concentrations of ethylene glycol prior to
cryo-cooling in liquid nitrogen. X-ray data were collected from
single crystal PROXIMA2 beamline, SOLEIL light source, France
using DECTRIS EIGER X 9M detector at 0.9801Å wavelength
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up to 3.45Å resolution. Data were indexed and integrated
using iMosflm (Battye et al., 2011), and scaled using Aimless
(Evans, 2011). The starting model for refinement was 5OKD. All
ligands except co-factors were removed from the model prior to
refinement. Jelly-body refinement was carried out with Refmac5
(Murshudov et al., 2011). The inhibitor model was generated
by Jligand (Lebedev et al., 2012). The model was manually
edited in COOT (between cycle refinements. Data collection and
refinement statistics are shown in Supplemental Table 1A).

Cryo Electron Microscopy
Electron Microscopy and Image Processing
Cryo-EM was carried out as described in Amporndanai et al.
(2018). Briefly, 3 µL of sample at 5 mg/mL concentration were
applied to Quantifoil Cu R1.2/1.3, 300 mesh holey carbon grids
and plunge frozen using an FEI Vitribot (blot time 6 s, blot
force 6). Data were collected on an FEI Titan Krios with a
Falcon III direct electron detector operated in integrating mode
at 300 kV. Automated data collection was carried out using
EPU software with a defocus range of −1 to −3.5µm, and a
magnification of 75,000 × which yielded a pixel size of 1.065
Å. Data were collected for 72 h resulting in 5,356 micrographs.
The total dose was 66.4 e−/Å over a 1.5 s exposure which
was split into 59 frames. All of the processing was performed
in RELION 2.1 unless otherwise stated. The initial drift and
CTF correction was carried out using MOTIONCORR2 (Zheng
et al., 2017) and Gctf (Zhang et al., 2016), respectively. The
micrographs were examined and those with crystalline ice were
initially removed resulting in 2,960 micrographs. A subset of
∼2,000 particles were manually picked to generate 2D references
to facilitate auto-picking resulting in 439,009 particles. These
particles underwent an initial round of 2D classification with
those classes that displayed clear secondary structure detail being
taken forward to 3D classification and split into three classes.
Two of the three classes generated a high-quality cytochrome
bc1 reconstruction with secondary structure information clearly
visible. The particles from these two classes were recombined
to form the final datasets consisting of 211,916 particles in the
final reconstruction. The particles were 3D refined using C2
symmetry to produce a map with resolution 3.8 Å. The particles
also underwent movie refinement and particle polishing which
further improved the resolution of the map to 3.7 Å. A previously
refined EM structure for SCR0911 (pdb 6FO6) was fit into the
map using UCSF chimera and subsequently refined using phenix
with the correct ligand. The maps were then inspected manually
in COOT (Emsley and Cowtan, 2004) and the model corrected
for any errors in refinement and the placement of residues.

Statistical Analysis
A Pearson test was used to confirm a correlation between
increasing dose and increasing inhibition. An ANOVA and
subsequent pairwise comparison with Dunnett correction was
used to determine whether or not inhibition or toxicity at a given
concentration was statistically significant. Stata/SE 12.1 was used
for this analysis.

RESULTS

THQ Compounds Are Potent in vitro
Initially, a small library of seven compounds (Figure 1 [blue
and green font, Figure 1A] and Figure 2) were tested, and each
compound was tested at least twice against T. gondii tachyzoites.
JAG21 and JAG50 demonstrated effect below 1µM, and were
tested at lower concentrations. JAG50 and JAG21 were identified
as lead compounds given the IC50 values obtained were 33
and 55 nM, respectively. Correlation between concentration of
compound and inhibition of parasite replication (as measured by
fluorescence) was observed for all compounds except JAG46. The
relative effect on HFF and parasite enzymes were also compared,
with those marked ∗∗ in Figure 1A having the most effect on the
parasite enzyme activity relative to host HFF enzyme activity as
shown below in Figure 3.

A representative graph of these in vitro data is shown in
Figure 2A. Subsequently, a larger library of 54 compounds
was synthesized to ascertain structure-activity relationships
(SAR) (Figure 1B). Our primary aims were to block putative
metabolism of the terminal phenol ring of MJM170 and improve
the solubility across the compound series. Substituents were
generally tolerated at the meta and para positions on the phenol
ring (R1), similar to the trends observed in the ELQ series
(Vidigal et al., 2002; Doggett et al., 2012; McPhillie et al., 2016).
The incorporation of heteroatoms into the aryl rings of the
biphenyl moiety did not lead to improvements in solubility and
biological activity. Small substituents were tolerated at the 7-
position of the THQ bicyclic ring (Figure 1B; R1), improving
selectivity (see below, SAR) but not at the 6-position unlike
the ELQ series. In summary, overall, nitrogen atoms were
not tolerated in aryl ring (C) and the 4-position was optimal
for phenol substituent. Ultimately, no other compound had
all the advantages of JAG21, although some of these were
identified as potential back up compounds (marked with ∗∗),
with greater selectivity for the parasite relative to the mammalian
enzyme activity. Compound JAG21 displayed synergy against
RH strain tachyzoites with atovaquone (Figure 2C) but not with
pyrimethamine, although no antagonism was observed (data
not shown).

Cytotoxicity assays performed in parallel using HFF, WST-1
(Fomovska et al., 2012a,b), and HEP G2 cells demonstrated a
lack of toxicity at concentrations substantially in excess of the
concentrations effective against tachyzoites. Because T. gondii
grows inside cells, if a compound were toxic to host HFF
then it would make the compound appear to be spuriously
effective (Fomovska et al., 2012a,b), when in actuality only
toxicity for the host cell would be measured. Cytotoxicity to HFF
was therefore assessed for all compounds at 10µM. Results of
this experiment are in Figure 1A, toxicity column. A two-way
ANOVA and subsequent pairwise comparison found none of
the differences in absorbance, compared to the media-DMSO
vehicle controls, to be statistically significant (p > 0.05). Most of
these compounds are not toxic at 10µM (the limit of solubility)
and that cytotoxicity to cells can be attributed to DMSO in the
solution, not the compound. Dose response testing (IC50) was
performed with HEP G2 cells as described and the observed
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FIGURE 2 | JAG21 is potent in vitro against Toxoplasma gondii, tachyzoites and bradyzoites, and multiple drug resistant strains of P. falciparum. (A) JAG21 is

effective against RH-YFP tachyzoites, and does not harm human cells. Potent effect of JAG50 is also shown. A representative experiment is shown. N = triplicate

wells in at least 2 biological replicate experiments. Relative fluorescence units are shown on the vertical axis, where decrease in fluorescence compared to diluent

DMSO in media control indicates parasite inhibition (*p < 0.05). Horizontal axis indicates different treatment conditions: This shows results of testing of fibroblasts in

media (HFF), DMS0 control, positive control pyrimethamine and sulfadiazine(P/S), and concentrations of JAG21 and JAG50 utilized. Differences were not statistically

(Continued)
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FIGURE 2 | significant in the cytotoxicity assay (data not shown). (B) JAG21 is effective against EGS bradyzoites. Effect of JAG21 in reducing bradyzoites in HFF by

parasite strain EGS. HFF were infected by EGS and treated with JAG21 at concentrations indicated. Slides were stained with Dolichos Biflorus Agglutinin conjugated

with FITC (which stains the cyst wall) and DAPI, and observed with fluorescence microscopy. The red arrows point to the Dolichos enclosed organisms formed in

tissue culture. These were eliminated with treatment with JAG21. This experiment was performed >4 times. These experiments were performed with 3 different

observers reviewing slides at the microscope quantitating fields for each condition. Slides were also scanned and the scans of the slides were reviewed so all fields in

the entire slide were noted to be consistent. (C) Synergy of JAG21 and atovaquone against Rh-YFP tachyzoites in vitro. Isobologram comparing JAG21, atovoquone,

and JAG21 plus atovaquone demonstrates synergy. (D) THQs effective against drug resistant P. falciparum. Dose-response phenotypes of a panel of P. falciparum

parasite lines. IC50 values were calculated using whole-cell SYBR Green assay and listed as mean ± standard deviation of three biological replicates, each with

triplicate measurements. The D6 strain is a drug sensitive strain from Sierra Leone, the TM91-C235 strain is a multi-drug resistant strain from Thailand, the W2 strain is

a chloroquine resistant strain from Thailand, and the C2B strain is a multi-drug resistant strain with resistance against atovaquone. (E) Solubility and Stability in human

and mouse liver microsomes comparing MJM 170, JAG21, and JAG50. Performed by Chem Partners. (F) JAG21 CYP450 Inhibition, CACO-2, hERG, PPB, BBB

(MDCK-MDK1) efflux analyses. These were performed by Chem Partners and are as defined in the section Materials and Methods. RG38 is a structurally related

inactive THQ analog.

toxicity was: HEP G2 IC50 17.70µM (r2 = 0.97) for JAG21;
7.1µM (r2 = 0.98) for JAG50.

Lead compounds JAG50, JAG21, and others were tested
against EGS strain (Vidigal et al., 2002; Paredes-Santos et al.,
2013, 2018; McPhillie et al., 2016) tachyzoites and encysted
bradyzoites using methods described earlier (McPhillie et al.,
2016). We found a number of these compounds including JAG21
were highly effective against tachyzoites (RH-YFP; Fomovska
et al., 2012a) (Figures 1A, 2A,C) and bradyzoites of EGS (Vidigal
et al., 2002; Paredes-Santos et al., 2013, 2018; McPhillie et al.,
2016) (Figure 2B). For example, in a separate experiment
(data not shown) using immunofluorescence microscopy, the
following forms were observed: “true cysts” with a dolichos-
staining wall, “pseudocysts” or tight clusters of parasites, and
small organisms. If there were fewer than four parasites visible
in a cluster, organisms were counted individually (as “small
organisms”). A statistically significant reduction in the number of
true cysts and small organisms was observed at 1 and 10µM for
both compounds (p< 0.05, p< 0.005). Five hundred nanomolars
JAG21 treatment results in cultures where we do not see EGS
bradyzoites (e.g., Figure 2B).

Results against P. falciparum using methodology described
earlier (Trager and Jensen, 2005; Johnson et al., 2007; Plouffe
et al., 2008; McPhillie et al., 2016) also are shown in Figure 2D.
JAG 21 is potent against P. falciparum with IC50 values ranging
from 14 to 61 nM against a variety of drug sensitive and resistant
strains (McPhillie et al., 2016) including D6, TM91-C235, W2,
and C2B. The D6 strain is a drug sensitive strain from Sierra
Leone, the TM91-C235 strain is a multi-drug resistant strain
from Thailand, the W2 strain is a chloroquine resistant strain
from Thailand, and the C2B strain is a multi-drug resistant strain
resistant to atovaquone. Effects of other comparison compounds
are also shown in this table and range from 31 to 20,000 nM
(Figure 2D).

ADMET Superiority of JAG21
In vitro absorption, distribution, metabolism, excretion, and
toxicity (ADMET) analyses of the THQ compounds were
outsourced to ChemPartner Shanghai Ltd. ELQ-271 (synthesized
in-house) was tested as a comparison. THQs which were
potent inhibitors of T. gondii tachyzoites were assessed for their
kinetic solubility, metabolic stability in human, and mouse liver
microsomes (Figure 2E), hERG, and their ability to permeate

across MDCK-MDR1 cell membranes (in vitro measure of
blood-brain barrier (BBB) penetration potential/permeability).
Solubility, half-life, HERG, and BBB permeability/efflux results
are shown in Figure 2F. The aqueous solubility (PBS, pH 7.4)
of amorphous compounds JAG21 and JAG50 was 7 and 16µM,
respectively, which is improved over MJM170 (2µM) and ELQ-
271 (0.2µM). We also tested solubility of the microcrystalline
form of JAG21 and found that the solubility was 3.5µM. JAG21
was the most metabolically stable compound in human liver
microsomes (>99% remaining after 45min) compared with
other THQs and ELQ-271, although it displayed a much shorter
half-life of 101min in mouse liver microsomes. All THQs tested
in the MDCK-MDR1 system for blood brain barrier (BBB)
permeability (including MJM170, JAG21, and JAG50), exhibited
high permeability (Papp >10 × 106 cm/s) and low efflux (efflux
ratio <1.5).

THQs Potently Inhibit Parasite Cytochrome
bc1 (Cytbc1) Enzyme Activity
JAG21 is the most active of the initially tested THQs against T.
gondii Cytbc1, which also showed selectivity for the parasite over
the mammalian mitochondrial membrane potential (Figure 3).
Following the full SAR testing in vitro against tachyzoites, the
full set of compounds was tested against HFF; then the initial
compounds also were tested against the T. gondii and HFF
enzyme benchmarked against atovaquone, and ultimately the full
set of compounds was compared for effect against the T. gondii
and HFF enzymes.

Mitochondrial membrane potential measurements were
performed with permeabilized T. gondii tachyzoites in
suspension using safranin O, which loads into polarized
membranes [see section Materials and Methods in the
Supplemental Materials (Vercesi et al., 1998)]. T. gondii
tachyzoites were permeabilized with digitonin to allow the
mitochondrial substrate succinate to cross the membrane and
energize the mitochondrion. The fluorescence of safranin O,
which loads into energizedmitochondria was used tomeasure the
membrane potential. The energized state of the mitochondrion
is observed by a decrease in fluorescence (Figures 3A,C,E).
Trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP)
was used to depolarize the membrane, which is observed as
an increase in fluorescence (Figures 3A,B). JAG21 depolarized
the membrane potential even at concentrations as low as 2 nM
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FIGURE 3 | Effect of JAG21, and other THQ compounds on mitochondrial functions of Toxoplasma gondii, Plasmodium falciparum and HFF-hTE RT (A). Maximum

mitochondrial membrane depolarization of JAG21, JAG39, JAG46, JAG47, JAG50, and Atovaquone (4µM) and FCCP (5µM). Digitonin was added where indicated

by the arrow to permeabilize cells and permit a necessary mitochondrial substrate (Succinate) to reach intracellular organelles. The addition of the indicated

compounds is shown by the second arrow. (B) Quantification of the depolarization shown in (A). The relative depolarization of each compound was normalized to the

depolarization by FCCP which was considered 100% depolarization. (C) Effect of various concentrations of JAG21 and Atovaquone on the mitochondrial membrane

(Continued)
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FIGURE 3 | potential measured as in (A). The first arrow indicates digitonin addition and the second arrow indicates the addition of compounds at the specified

concentration. (D) Quantification of the depolarization measured in (C). The relative depolarization of each compound was normalized to the depolarization by FCCP

(100%). (E) Mitochondrial membrane depolarization of HFF-hTERT in suspension by JAG21 and atovaquone. The first arrow indicates the addition of digitonin, and

the second arrow indicates addition of the indicated compounds at the indicated concentration. (F) Quantification of the depolarization measured in (E). The relative

depolarization of each compound was normalized with the depolarization by FCCP, which was considered 100%. (B,D,E) X ± S.D., N = 3 independent experiments.

Statistical analysis (unpaired student t-test) was performed using GraphPad Prism 8.0 (GraphPad Software, Inc., San Diego, CA). **P < 0.01. ***P < 0.001. (G)

JAG21, JAG99, and MJM210 (1µM) inhibited P. falciparum cytochrome c reduction. Vehicle (DMSO)/atovaquone (1µM) were negative/positive controls, 1,290

respectively. X ± S.D., N = 4 independent experiments.

(Figures 3C,D). JAG21 and Atovaquone had similar effects
on the mitochondrial membrane potential (Figure 3D). Other
compounds like JAG46 and 47 showed almost no effect at doses
as high as 4µM (Figures 3A,B). JAG50 showed depolarizing
activity at doses of 200 nM and higher. The effect of these THQ
compounds against the T. gondii mitochondrial membrane
potential was greater than the effect on the human foreskin
fibroblast mitochondrial membrane potential (Figures 3E,F).
This is consistent with the observation that JAG21 is less toxic
against human Telomerase reverse transcriptase immortalized
(hTERT) HFF cells than atovaquone. We had newly created
THQ compounds, not yet characterized fully, that show even less
toxicity to the human fibroblast cytochrome b/c complex marked
with ∗∗ in Figure 1A. These could be developed in a second phase
of our program, were reductions in toxicity needed. However,
as data presented herein demonstrates, there are significant
advantages in the ADMET properties of JAG21, and its dramatic
efficacy in vivo,without toxicity. There may be no need to further
develop any of those potential additional leads.

Enzyme reduction of cytochrome c by P. falciparum parasite
extract (Fisher et al., 2004, 2009) is mediated by P. falciparum
bc1 complex cytochrome c reductase (Pfbc1) enzyme. All three
compounds tested (1µM) significantly inhibited the reduction
of cytochrome c by the P. falciparum parasite extract (JAG21 =

86.4 ± 3.2; JAG99 = 81.3 ± 6.0; MJM170 = 69.7 ± 11.3% of the
atovaquone response, Figure 3G. Additional data demonstrated
selective effect on P. falciparum enzyme compared with bovine
enzyme (data not shown).

Binding, Co-crystallography,
Pharmacophore, and Cryo-electron
Microscopy Studies Demonstrate
Selectivity
In binding assays and in co-crystallography (Emsley and Cowtan,
2004; Emsley et al., 2010; Battye et al., 2011; Laskowski
and Swindells, 2011; Murshudov et al., 2011; Lebedev et al.,
2012; Capper et al., 2015; McPhillie et al., 2016; Zhang
et al., 2016; Zheng et al., 2017; Amporndanai et al., 2018),
JAG21 has lower binding affinity to bovine cytochrome bc
in comparison with previous compounds that we have tested.
JAG21 “inhibits” Cytbc1 but not fully, indicating that it will
be less toxic for mammalian (bovine/human) cyt bc1 than
the apicomplexan enzymes (Figure 4A). The electron density
map in the Qi site of bovine cytochrome bc1complex with
JAG21 (Supplemental Table 1,Data Collection Statistics) reveals
an additional electron density, which allowed unambiguous

positioning of the inhibitor (Figure 4B). No additional electron
density was found within the Qo site. After the refinement, 2Fo-
Fc electron around JAG21 becomes clearer (Figure 4C). The
second aromatic ring in the tail group of the compound is less
defined due to high flexibility introduced by the oxygen linker.
The quinolone head of JAG21 is held between Asp228 and
His201 and adapted the same conformation as 4(1H)-pyridone
(GSK932121) (Capper et al., 2015) (Figure 4D) and tetrahydro-
4(1H)-quinolone (MJM170) (McPhillie et al., 2016) (Figure 4E)
by directing the NH group to His201 and the carbonyl group to
Asp228. The carbonyl of the quinolone head and OG1 atom of
Ser35 are within 3.0 Å distance that allows hydrogen bonding
and enhances the binding affinity to the bovine enzyme. The
3-diarylether tail extends along a hydrophobic channel defined
by Gly38, Ile39, and Ile42. The trifluoromethoxy group at the
phenoxy ring points toward Met190 and Met194 (Figure 4F).
CryoEM studies of the complex also demonstrate reasons for
selectivity. In Figure 4F, the density suggests that the inhibitor
can adopt two different binding poses as observed previously in
the cryo-EM structure of GSK932121 (Capper et al., 2015). The
binding pose shown in yellow, which has the strongest density,
agrees with the crystal structure and has the trifluoromethoxy
group pointing toward Met194. However, there is additional
density which could result from a second binding pose (green)
in which the trifluoromethoxy group points toward Asp228
(McPhillie et al., 2016). Figure 4F shows GSK932121 pyridone
(PDB:4D6U) (Figure 4G) MJM170 quinolone (PDB:5NMI). The
EMmap has been deposited at the EMDB (EMDB-11002).

JAG21 Is Potent in vivo
In vivo studies of JAG21 against T. gondii demonstrated
high efficacy in a variety of settings. JAG21 at 5 mg/kg/day
administered IP improves well-being and eliminates illness and
T. gondii Type II Prugneaud luciferase tachyzoites completely in
luminescence studies (Figure 5A). Further, treatment beginning
on day one after infection results in no cysts being found in
brains of these mice treated for 14 days with 5 mg/kg/day of
JAG21, when brains were evaluated 30 days after stopping JAG21
treatment in two replicate experiments. Treatment beginning
on day 30 after initiation of infection with Type II Me49
parasites results in marked, statistically significant reduction in
normal appearing cysts, free organisms, and immunoperoxidase
stained cysts detected by automated imaging of scanned slides
(Figures 5B,C, p < 0.03 experiment 1: p < 0.01 experiments
1 and 2 together, Supplemental Figure 1). The automated
analysis confirmed results from the blinded microscopic visual
quantitation of cysts and free organisms in slides by two
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FIGURE 4 | Binding studies of JAG21 to bovine bc1. (A) Bovine Cytbc1 activity assays showing 36 and 63% inhibition at 0.1 and 1µM concentration of JAG21,

respectively. N = at least 2 biological replicate experiments with similar results. (B) The Cytbc1 structure presented in cartoon style with clear omit (Fo-Fc) electron

density map for the bound JAG21 compound only in the Qi site showing selectivity within the binding pocket. Qi and Qo sites are marked by black ellipsoids. (C) The

bound JAG21 compound (orange) within the Qi site with corresponding (2Fo-Fc) electron density map contoured at 1 σ level as gray mesh. The residues which make

close interactions with the bound inhibitor are shown in stick format and labeled. (D) 2D pharmacophore analysis of JAG21 binding pocket produced using Ligplot+

LS-2011. Hydrophobic interactions are shown as red spikes, hydrogen bond with Ser35 is shown by green dashes. (E) Cryo-EM derived structure of the Cytbc1

bound JAG021 structure with corresponding density map contoured at 3 σ level suggesting two different positions for the head group represented by two regions of

density shown as yellow mesh. The Cytbc1 structure bound to the pyridone GSK932121 (PDB:4D6U) (F) and quinolone MJM170 (PDB:5NMI) (G) in the Qi site. Haem

and compounds are shown as colored sticks, Fe ion as orange sphere and hydrogen bonding as black lines. Hydrogen bonding with Ser35 is shown as black dashes.

Terms JAG021 and JAG21 used interchangeably for this same compound.

observers. Adding tafenoquine or primaquine to treatments of
active plus dormant malarias (St Jean et al., 2016; Lacerda
et al., 2019; Llanos-Cuentas et al., 2019) is partially effective

against both active and dormant phase plasmodia, when neither
treatment of active nor dormant disease alone is effective
for either in vivo. We developed experiments based on these
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observations where experiments with tafenoquine alone or with
JAG21 alone was used in the experiments with established cysts
with immune competent mice. This was to determine whether
tafenoquine might add to efficacy of JAG21. The efficacy of
treatment with JAG21 alone was so robust (Figure 5B), that
no additive effect was seen, or could have been detected, by
adding Tafenoquine to JAG21. Efficacy was shown when data
were analyzed as separate groups, i.e., control vs. JAG21 alone
(p < 0.03) or control vs. JAG21 plus tafenoquine, or grouping
the JAG21 and JAG21 plus tafenoquine results as “untreated” vs.
“treated” (p < 0.01). Analysis shown combining both treatment
groups from two replicate experiments showed similar results (p
< 0.01, Figure 5B), and when results from replicate experiments
were grouped (Supplemental Figure 1). In Figure 5C the control
mice had cysts with usual morphology (Top two panels), whereas
treated mice had very few morphologically recognizable usual
cysts that were immunostained (bottom panels).

A nano formulation homogenized (<6µM) was used
effectively orally for the P. bergheii experiments, further,
importantly, was effective in the single oral dose causal
prophylaxis in 5 C57BL/6 albino mice at 2.5 mg/kg dosed on
day 0, 1 h after intravenous administration of 10,000 P. berghei
sporozoites was completely protective. In addition, 3 dose causal
prophylaxis treatment in 5 C57BL/6 albino mice at 0.625 mg/kg
dosed on days −1, 0, and +1 also was completely protective. A
representative experiment at a higher dose (5 mg/kg) is shown,
but all experiments with the oral dosing regimen with the
nanoformulation specified above showed 100% survival 30 days
post infection with P. berghei, where all liver and blood stage
parasites were eliminated (Figures 5D,E) demonstrates not only
efficacy of JAG21 against the three life cycle stages of P. berghei,
but also demonstrates the efficacy of oral administration of the
nanoformulation when used immediately, at a low dose.

G1 Arrest, Persisters, Companion
Compounds
In mice that were treated with JAG21 early after infection
(Figure 5A) we could find no residual immunostaining for T.
gondii in brain tissue of any mice. This suggests that very
early treatment could prevent established, chronic infection, for
example in epidemics such as those that occurred in Victoria,
Canada, the U.S.A., and Brazil. In mice with established cysts,
following treatment with JAG21, we occasionally saw a small
number of cysts (Figure 5B) and amorphous immunostained
structures (Figure 5C, bottom panels). This was reminiscent of
persistence in some malaria infections (Cubi et al., 2017) and
abnormal immunostained structures we previously identified
with a conditional, tetracycline-on regulatable, mutant T. gondii
(Hutson et al., 2010 and Supplemental Figure 2). In this
1RPS13 tachyzoite, small ribosomal protein 13 can be regulated,
depending on whether anhydrotetracycline (ATc) is absent or
present, leading the ATc responsive repressor to be on or off
response elements engineered into the promoter (Hutson et al.,
2010). 1RPS13 replicates with ATc present and is arrested in
G1 when ATc is absent in HFF cultures (Hutson et al., 2010).
The dormant parasite could persist for extended periods (Hutson

et al., 2010). The parasite could be rescued from its dormant—
ATc state by adding ATc, months after removing tetracycline
from infected HFF cultures, although it could not be rescued
in immunocompetent mice with LNAME and ATc when tested
1 week after infection (Hutson et al., 2010). We wondered if
this type of dormant organism could form in vivo, whether it
could contribute in a biologically relevant way to dormancy and
recrudescence, similar to the malaria hypnozoite (Cubi et al.,
2017; Muller et al., 2019), and whether JAG21 might be able to
eliminate it, or whether a companion compound effective against
this form might be needed or work in conjunction with JAG21 if
needed. To begin to address these questions and to investigate
how close the T. gondii 1RPS13 -ATc phenotype might be to
the malaria hypnozoite, we compared the transcriptome of T.
gondii 1RPS13 in human, primary, brain, neuronal stem cells
+/– ATc to the recently published P. cynomolgi hypnozoite
transcriptome, established with single cell RNA sequencing in
laser captured organisms (Cubi et al., 2017). This analysis
identified 28 orthologous genes with similar expression pattern
in both T. gondii 1RPS13 -ATc and P. cynomolgi hypnozoites,
including the downregulation of rps13 and upregulation of
the eukaryotic initiation factor-2α kinase IF2K-B, a protein
involved in translational control in response to stress (Cubi
et al., 2017) (Figure 6A). Further. assessment of the T. gondii
1RPS13 transcriptome in the absence or presence of ATc showed
upregulation of additional IF2K members, 25 Apetela (AP) 2
transcription factors and a number of genes that participate as
protein ubiquitin ligases, and in trafficking as well as in RNA
binding, and GCN1 (Supplemental Table 2). None of them,
except for AP2VIIa-7, have been shown to be upregulated nor
downregulated during differentiation to bradyzoites. Gene set
enrichment analysis showed that in the absence of ATc, the
T. gondii 1RPS13 transcriptome is enriched in genes typically
expressed during G1, confirming previous results indicating that
downregulation of rps13 arrests the parasite at this stage of
the cell cycle (Figure 6B) (Hutson et al., 2010). Moreover, a
number of biological processes are downregulated without ATc,
including protein synthesis and degradation as well as energy
metabolism (Figure 6B). Noteworthy, some gene ontology (GO)
terms enriched in T. gondii 1RPS13 -Tc are also overrepresented
in the P. cynomolgi hypnozoite (stars in Figure 6D). Further,
without ATc the transcriptome ofT. gondii1RPS13 is compatible
with a parasite transitioning from an active replicating form
to a dormant stage, reflected by the downregulation of genes
typical of the S and M stages of the cell cycle, and of
genes that participate in energy metabolism and virulence
(Figures 6B,D, Supplemental Table 2, Supplemental Figure 2).
It has been reported that with treatment of active forms of
malaria, hypnozoites still persist, and recrudesce later (Hutson
et al., 2010; St Jean et al., 2016; Cubi et al., 2017; Lacerda
et al., 2019; Llanos-Cuentas et al., 2019). Also, compounds
that target cytochrome b/c were not effective against malaria
hypnozoites. If primaquine or tafenoquine, which do not treat
the active Plasmodium vivax parasites, were added in vivo,
hypnozoites have been shown not to recrudesce, or do so less
often (St Jean et al., 2016; Lacerda et al., 2019; Llanos-Cuentas
et al., 2019). Testing with primaquine or tafenoquine could
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FIGURE 5 | JAG21 is a mature lead that protects against Toxoplasma gondii and Plasmodium berghei in vivo. (A) JAG21 treatment for 14 days protects against T.

gondii tachyzoites in vivo. Tachyzoite challenge with Prugneaud luciferase parasites imaged with leuciferin using IVIS demonstrates that treatment with JAG21

eliminates leuciferase expressing parasites and leads to 100% survival of JAG21 treated infected mice. No cysts were found in brains of mice at 30 days after infection

when they have been treated with JAG21 for the first 14 days after infection. There were 2 biological replicate experiments with 5 mice per group with similar results.

(B) JAG21 and JAG21 plus tafenoquine markedly reduce Me49 strain brain cyst numbers in vivo in Balb/C mice at 30 days after infection. Parasites were quantitated

by scanning the entire immunoperoxidase stained slide in an automated manner and by two observers blinded to the experimental treatment using microscopic

evaluation. In each of two experiments, the numbers of mice per group were as follows: Experiment 1 had 4 diluent controls, 5 JAG21, 4 JAG21/Tafenoquine treated

mice; and Experiment 2 had 5 diluent controls, 5 JAG21, 3 JAG21/Tafenoquine treated mice. Immunoperoxidase staining was performed. Parasite burden was

quantitated using a positive pixel count algorithm of Aperio ImageScope software. Positive pixels were normalized to tissue area (mm2). Quantification was by

counting positive pixels per square area. The entire brain in one section was scanned for each mouse. The parasite burden was quantitated as units of positive pixels

per mm2. The average ± S.E.M. numbers of mm2 per slide quantitated was 30.2±1.6 mm2 per mouse for this quantification. Each high power field of view shown in

(Continued)
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FIGURE 5 | C is ∼0.02 mm2 per field of view. A representative single experiment is presented and the data from the two experiments analyzed together also

demonstrated significant differences between the untreated and treated groups (p < 0.01; Supplemental Figure 1). (C) Microscopic evaluation of the slides reveal

effect of JAG21 and JAG21 plus tafenoquine having the same pattern as the automated quantitation of immunoperoxidase stained material. There are usual

appearing cysts in the DMSO control untreated mice as shown in the top panels, and rare cysts in the treated mice with most of the brown material appearing

amorphous (bottom panels). (D) JAG21 nanoformulation dosages administered to P. berghei infected C57Bl6/albino mice compared with vehicle control. Design of

single dose and 3 day dose experiments. (E) JAG21 nanoformulation cures P. berghei sporozoites (left panel), blood (middle panel), and liver stages, leading to 100%

survival (right panel). This is with oral administration of a single dose of 2.5 mg/kg or 3 doses at 0.625 mg/kg. Single dose causal prophylaxis in 5 C57BL/6 albino

mice at 2.5 mpk dosed on day 0, 1 h after intravenous administration of 10,000 P. berghei sporozoites. Shown is 3 dose causal prophylaxis treatment in 5 C57BL/6

albino mice at 0.625 mpk dosed on days −1, 0, and +1. Representative figure showing survival (right panel), luminescence (left panel), and parasitemia quantitated by

flow cytometry (middle panel) for 5 mg/kg.

only be performed in vivo, as activity against the hypnozoite
requires hepatic metabolism of primaquine or tafenoquine (St
Jean et al., 2016; Lacerda et al., 2019; Llanos-Cuentas et al.,
2019). Tafenoquine is not active in tissue culture which is
consistent with the findings that these compounds require
hepatic metabolism. To establish a parallel in vivo system, we
studied immune compromised mice (Interferon g receptor
knockout mice with the knockout in the germline) infected with
1RPS13 herein. Although in immune competent mice 1RPS13
does not recrudesce with ATc treatment initially, beyond 3
days after infection, we found that when ATc was added after
treatment of the immune compromised mice with JAG21 dosed
intraperitoneally for 14 days, the dormant 1RPS13 parasite
could still recrudesce after JAG21 treatment was discontinued
and tetracycline added (Figure 6C and Supplemental Figure 2).
Consistent with adding tafenoquine to treatment of P.vivax
malaria with chloroquine where both medicines together were
partially effective against the active and hypnozoite forms, the
combination of JAG21 and tafenoquine had a modest effect
together on transiently improving survival time when ATc
was added when compared with JAG21 or tafenoquine alone
(Figure 6C and Supplemental Figure 2). The trend in the result
seems similar to the malaria infections where hypnozoites form,
although protection was not as robust, as in the malaria model,
and we did not achieve complete, durable protection against
1RPS13. These results in Figure 6C and Supplemental Figure 2

suggest: (a) In G1 arrested organisms that begin as tachyzoites,
they can persist in vivo even if their morphology as parasites is
difficult to discern; (b) Treatment with JAG21+Tafenoquine can
prolong time to death more robustly than other treatments; (c)
But, in these immune compromised mice at this dosage regimen
this treatment did not robustly, durably protect these mice from
death later; (d) In these immune compromisedmice, whether this
lack of complete protection was because of immune compromise,
or less than optimal duration of treatment, or suboptimal dose or
timing of treatments, or that this G1 arrested organism is harder
to treat, remains to be determined in future studies. The modest
efficacy of the two compounds, administered together, suggests
that treating both tachyzoites and the G1 arrested organisms
is important. This seems similar to P. cynomogli and P. vivax
treatment with tafenoquine and chloroquine studies, which also
showed efficacy but was not completely successful in preventing
relapse. At the time this study was performed, formulation
and dosing (including duration and timing) had not yet been
optimized formally for the T. gondii model. P. vivax treatment
requires chloroquine to treat blood schizonts and tafenoquine

to treat hypnozoites. Treatment in man, per the FDA approved
label, consists of a single dose of 300mg on day 1 co-administered
with chloroquine treatment on days 1 or 2. Both medicines have
long half-lives in humans. This treatment was relatively effective
in humans, with about a 30% recurrence rate.

Sinai et al. have demonstrated heterogeneity in the phenotypes
of organisms within established cysts. Their work found
bradyzoites within cysts are not uniform with regard to
their replication potential (Watts et al., 2015), mitochondrial
activity (Sinai, unpublished), and levels of the glucose storage
polymer amylopectin (Sinai, unpublished). These properties of
bradyzoites (Watts et al., 2015), and properties of tissue cysts
that vary during the course of infection, demonstrated that
there are unappreciated levels of complexity in the progression
of chronic toxoplasmosis (Watts et al., 2015). The analysis
(Figure 6D) of the 1RPS13 infected NSC suggests molecular
targets that are modified in this G1 arrested 1RPS13 parasite
as shown in Figure 6D and Supplemental Table 2. In the future,
with formulation and pharmacokinetics of JAG21 optimized, it
will be of interest to determine whether JAG21 can eliminate
these organisms and any residual structures as in Figure 6C,
or whether adding synergistic compounds such as atovaquone
(Figure 4B) or antisense effective against these upregulated
molecular targets, such as kinases, ATPases, AP2s (Figure 6D
and Supplemental Table 2), or a newly recognized bradyzoite
master regulator of differentiation might be effective alone or
might be synergistic with JAG21 against this 1RPS13, as well
as the conventional recognized tachyzoite and bradyzoite life
cycle stages. Chen et al. reported in the transcriptomes of
established bradyzoite in vivo cysts that EIF2kinase of stressed
parasites is present (Chen et al., 2018), but we have not found
other overlap of Chen’s transciptome with P cynomogli or
1RPS13 transcriptomes. Others have described EIF2kinase and
stress granules only in transitioning or extracellular parasites
(Watts et al., 2015). Bradyzoites within tissue cysts are not
monolithic. Thus, in future studies, single cell RNA sequencing
of bradyzoites obtained by laser capture of bradyzoites in
vivo, defined on the basis of their physiological state, may be
needed to determine whether a transcriptome signature similar
to 1RPS13 is sometimes present. This could be linked to
morphologic/immunostaining features that might functionally
distinguish them to define the character of a hypnozoite-like
state in T. gondii. We noted heterogeneity of parasite phenotype,
even in the same vacuoles, in our earlier IFA and electron
microscopic characterization of G1 arrested 1RPS13 in HFF
(Hutson et al., 2010). Heterogeneity also was found very recently
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FIGURE 6 | Toxoplasma gondii 1RPS13 transcriptome during Primary Human Brain Neuronal Stem Cell (NSC) infection and in-vivo susceptibility to JAG21 and TAF

treatment are reminiscent of literature findings with malaria hypnozoites. (A) P. cynomolgi-T. gondii best reciprocal match genes significantly upregulated (red) or

downregulated (blue) in P. cynomolgi hypnozoites compared to liver-schizont stage and in 1RPS13 after downregulation of rps13 gene expression (p ≤ 0.05, FDR ≤

0.2). (B) Gene-set enrichment analysis of 1RPS13 +/– Tc. Blue and red nodes denote gene-sets enriched in presence or absence of Tc, respectively. Node diameters

are proportional to number of genes belonging to corresponding gene-sets. Edge thickness is proportional to number of genes shared between connected nodes. (C)

Survival rate of mice infected with 100,000 1RPS13 followed by treatment with diluent, JAG21, tafenoquine (TAF) or the two together (JAG21/TAF). Then tetracycline

was added at 14 days. The combination of the two compounds resulted in improved time of survival (p < 0.03, Experiment 1; p = 0.08 Experiment 2, p = 0.002

Experiment 1+2). The full data are presented in the box below the image in (C). (C) Rx refers to treatment of mice with diluent (DMSO), Tafenoquine (TAF), or JAG21,

or JAG21 and TAF. 1RPS13 is referred to as RhRPS131 in the title of the box in (C). In Supplemental Figure 2, histological preparations that are

immunoperoxidase stained for T. gondii antigens from a pilot study were prepared (Supplemental Figure 2). These are images, in Supplemental Figure 2 of liver

and spleen from IFN γ receptor knock out mice without treatment on days 7 and 14 after infection. In those mice without any treatment there was amorphous brown

immunoperoxidase stained material in Supplemental Figure 2A. When tetracycline (aTet) was administered on day 14 after infection in drinking water, with tissues

obtained and immunostained for T. gondii antigens from mice that died or became very ill, organisms that were clearly recognizable could be seen

(Supplemental Figures 2B–E). Design of the treatment experiment with control DMSO diluent, JAG21 alone, Tafenoquine alone (TAF) or the two together (JAG/TAF)

with full data for each of the groups and with the composite analysis from replicate experiments, including numbers of mice, are shown in

Supplemental Figures 2C,D. Supplemental Figures 2C,D shows prolongation of survival time, but there is not durable protection against 1RPS13 in these

immune compromised mice treated with JAG21/TAF as described. This is summarized in C to demonstrate early prolongation of survival time with the detailed data in

Supplemental Figure 2. (D) Gene ontology enrichment analysis of 1RPS13 +/–Tc. Node and edge conventions are the same as in (B). There were at least 2

biologic replicates of each experiment.
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FIGURE 7 | Oral nanoformulation of JAG21 potently protects against 2000 highly virulent RH strain tachyzoites given intraperitoneally. (A) Following sonication

produces nanoparticles of ∼2.86µM. (B) Single oral dose of 10 mg/kg reduced intraperitoneal tachyzoites measured by RH YFP expression and counting with

hematocytometer (p < 0.03). (C) Three daily 10 mg/kg doses markedly and significantly reduces intraperitoneal parasite burden measured as fluorescence and by

hematocytometer on the fifth day (p < 0.001). No compound was administered after the third day. N = at least 2 biological replicate experiments with 5 mice per

group with similar results.

in tachyzoites and bradyzoites created by alkaline conditions in
culture across the cell cycle in vitro in HFF, using single cell RNA
sequencing (Xue et al. Biorx, 6/3/2019 in press). These authors
also noted that what had been interpreted as “noise” earlier was
found actually to be signal in a more complex environment.
These authors suggest that such heterogeneity might make
developing curative treatments more complex. Our analysis of
JAG21 effects and the 1RPS13-ATet knockdown herein begin

to help address this question: We noted that consistent with
heterogeneity in our IFAs, in our comparison with the Xue et al.’s
heterogeneous P1-6 clusters analysis, we found that most of
the up- or down-regulated genes are within P3-P5 tachyzoite
clusters. Also, consistent with the heterogeneity we observed in
our G1 arrested 1RPS13 -ATet comparison, 1RPS13 has a drop
in SAG1 and elevated SRS44 that is consistent with a brady-like
phenotype. BAG1 expression was too low overall to draw any
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conclusion about BAG1. It is also noteworthy that in our -ATet
relative to +Atet conditions in primary, human, brain, neuronal
stem cells, the master regulator of bradyzoite differentiation is
slightly overexpressed (Log2 Fold Change=0.7, adjusted p =

0.043). Although JAG21 is highly potent against tachyzoites and
bradyzoites, it did not eliminate every long-established encysted
bradyzoite or -ATet1RPS13 completely either in vitro or in IFNγ

knock-out mice in vivo. Consistent with heterogeneity, herein
JAG21 treatment of 1RPS13 and transcriptomics analyses define
a metabolically quiescent, persister, “stasis” state that is reversible
even after substantial periods of dormancy. These observations
contribute to conceptual and functional understanding of both
Plasmodia species and T. gondii infections and molecular
mechanisms whereby “persisters” might be eliminated.

An Oral Nanoformulation Is Potent Against
Virulent RH
To further develop JAG21 for practical, clinical use, our next step
was to make a formulation that is stable at room temperature,
and would be effective when administered orally: Following a
number of unsuccessful alternative methods (data not shown),
a dispersion of JAG21 was prepared using hydroxyethyl cellulose
(HEC) and Tween 80. This new formulation method is described
in the Materials and Methods. When this dispersion was imaged
using a Nikon ECLIPSE E200 optical microscope set to 40x
magnification, the average particle size of the JAG21 dispersion in
HEC/Tween 80 was determined using an in-house image analysis
program and was found to be 2.85µm (Figure 7A). Material
was re-sonciated the same way just prior to administration after
being stored for 6 months and retained the same properties
(Figure 7A) when imaged. Following administration of 2,000
highly virulent RH Strain tachyzoites intraperitoneally, the oral
nanoformulation was administered by gavage using a 21 gauge
needle. This was given either (1) as a single dose of 5, 10, or 20
mg/kg, or (2) three daily doses of 10 mg/kg given for the first
3 days after infection. After 5 days the RH strain tachyzoites in
peritoneal fluid of each mouse were quantitated by measurement
of YFP they expressed using a fluorimeter and by quantitating
parasites present in peritoneal fluid using a hemocytometer.
Parasite burden was reduced by ∼60% 5 days later following the
single doses of 10 and 20 mg/kg (representative experiment with
10 mg/kg shown in Figure 7B; p < 0.03) and markedly reduced
with three doses of 10 mg/kg administered on each of the first
3 days after intraperitoneal injection of the virulent RH strain
tachyzoites (Figure 7C, representative experiment, p < 0.001).
This is the proof of principle that will facilitate media milling,
dispersant, and a self disintegrating tablet in the future. JAG21
has real promise as a mature lead compound to treat both T.
gondii and Plasmodium species infections.

DISCUSSION

T. gondii infections are highly prevalent and the impact of this
disease can be devastatingly severe. Current treatments have
toxicity or hypersensitivity side effects. New compounds that are
without toxicity or hypersensitivity, and that are highly active

against tachyzoites would be of considerable clinical usefulness.
Further, no medicines are active against the encysted stage or
definitively curative. In addition, malaria is lethal for 1 child
every 11 s and a threat to travelers going to endemic areas.
Development of drug resistance also increases the need for new
anti-malarial compounds. Our goal in this work herein was
to identify compounds highly effective against T. gondii and
P. falciparum, and we believe we have achieved our goal by
developing lead compounds with dual activity.

To further develop the THQ series, 54 compounds
were synthesized to improve kinetic solubility, solubility in
physiologically-relevant media (FaSSIF, FeSSIF), and metabolic
stability (microsomes and hepatocytes), and other ADMET
properties. Compounds JAG50 and JAG21 were identified as
lead compounds, demonstrating potent inhibition on both
tachyzoites and bradyzoites life stages and were not toxic to
human cells in our in vitro model (HFF). In addition, both
compounds displayed low nanomolar efficacy against multiple
drug resistant strains of P. falciparum in vitro. JAG50 and JAG21
demonstrate promising ADMET properties, with JAG21 slightly
superior due to the compound’s longer metabolic stability in
human and mouse microsomes.

A striking result with JAG21 in our in vivo parasite studies
is the compound’s high efficacy against T. gondii tachyzoites
and bradyzoites. In our P. berghei in vivo model for malaria,
we observed that a single dose causal prophylaxis in 5 C57BL/6
albino mice at 2.5 mpk dosed on day 0, 1 h after intravenous
administration of 10,000 P. berghei sporozoites was achieved.
Causal prophylaxis was also observed after a 3-dose treatment in
5 C57BL/6 albinomice at 0.6mpk dosed on days−1, 0, and+1. A
representative figure at a higher dose (5 mg/kg) is shown, and all
experiments with the amounts mentioned above demonstrated
identical high efficacy in luminescence, parasitemia, and survival
results. This demonstrates that JAG21 functions better in this in
vivo model than the ELQ 300 series where prodrug formulation
is required to achieve solubility and efficacy, in contrast to the
efficacy of JAG21 at 2.5 mg/kg in a single oral dose model
resulting in cure without a prodrug. ELQ 300 (not the prodrug)
was not effective at doses between 1 and 20 mg/kg although the
prodrug was more effective (Doggett et al., 2012; Frueh et al.,
2017).

JAG50 and JAG21 are lead compounds, with JAG21 being
a superior compound due to its favorable predicted ADMET
properties, potency, efficacy, and lack of toxicity. JAG21
demonstrates increased solubility and potential for advanced
formulation. There also is potential for improving solubility
and reducing toxicity further because of the larger binding
pocket in the apicomplexan Cytbc1 enzyme compared with the
mammalian Cytbc1 enzyme. This was determined by modeling
occupancy of the structure, enzyme assays and empirically.
We have created and tested additional compounds that take
advantage of these properties, although none at present, have
the proven ADMET and marked in vivo efficacy we found to
be advantageous in our proof of principle studies of JAG21. At
present, however, our mature lead compound has sufficient drug
like properties to move to advanced formulations, suggesting
increased bulk will not be needed to reduce toxicity. It has
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selectivity as demonstrated by our enzymatic, binding, and
structure studies, although there are additional compounds that
show even greater selectivity. It is highly effective in an oral nano
preparation against P. berghei’s three life cycle stages, and with
early treatment appears to be capable of curing toxoplasmosis in
immunocompetent mice. This work demonstrates the promising
nature of this novel tetrahydroquinolone scaffold and mature
lead compound. JAG21 has the potential to become an orally
administered medicine or with partners, part of a medicine
combination that is curative for toxoplasmosis and is a
single dose cure for malaria. It is suitable for partnering
with other compounds to obviate problems with selection of
resistant mutants. We have demonstrated earlier that the parent
compound with this new scaffold is synergistic with atovaquone
and additive with cycloguanil (in proguanil) against P. falciparum
(McPhillie et al., 2016). Herein, we also found synergy between
JAG21 and atovaquone against T. gondii tachyzoites in vitro.
This compound is a mature lead compound to treat both T.
gondii and Plasmodium species infections. If utility and safety
retained, and no toxicity appears in next stage studies, this
compound may become suitable for treatment of T. gondii and
P. falciparum infections.

CONCLUSION

JAG21 has real promise as a mature lead compound to treat both
T. gondii and Plasmodium species infections, demonstrated in
vitro and in vivo. It has high efficacy against T. gondii tachyzoites
and bradyzoites, and established encysted organisms. Treatment
with a single low oral dose is effective for causal prophylaxis and
radical cure of P. berghei infections. JAG 21 has complete efficacy
against three life cycle stages of P. berghei. In terms of companion
inhibitors, JAG21, a Qi inhibitor, synergizes against tachyzoites
with atovaquone (a Qo inhibitor) in vitro. It appears able to
contribute modestly to protection of immune compromisedmice
in conjunction with tafenoquine against an initially replicating,
thenG1 arrested,T. gondii parasite that shares key transcriptomic
components with P. cynomolgi hypnozoites. Our mature lead
compound has sufficient selectivity and drug-like properties
to support ongoing efforts to further develop this compound
through preparation of advanced formulations and testing in
additional studies of pharmacokinetics, efficacy, and safety.
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A Homolog of Structural
Maintenance of Chromosome 1 Is a
Persistent Centromeric Protein
Which Associates With Nuclear Pore
Components in Toxoplasma gondii

Maria E. Francia 1*†, Sheila Bhavsar 1, Li-Min Ting 2, Matthew M. Croken 3, Kami Kim 2,

Jean-Francois Dubremetz 4 and Boris Striepen 1,5*†

1Department of Cellular Biology, University of Georgia, Athens, GA, United States, 2Morsani College of Medicine, University

of South Florida Health, Tampa, FL, United States, 3 Pathology, Molecular and Cell Based Medicine, Mount Sinai Medical

Center, New York, NY, United States, 4UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France, 5Center for

Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States

Apicomplexa are obligate intracellular parasites which cause various animal and human

diseases including malaria, toxoplasmosis, and cryptosporidiosis. They proliferate by

a unique mechanism that combines physically separated semi-closed mitosis of the

nucleus and assembly of daughter cells by internal budding. Mitosis occurs in the

presence of a nuclear envelope and with little appreciable chromatin condensation.

A long standing question in the field has been how parasites keep track of their

uncondensed chromatin chromosomes throughout their development, and hence secure

proper chromosome segregation during division. Past work demonstrated that the

centromeres, the region of kinetochore assembly at chromosomes, of Toxoplasma gondii

remain clustered at a defined region of the nuclear periphery proximal to the main

microtubule organizing center of the cell, the centrosome. We have proposed that this

mechanism is likely involved in the process. Here we set out to identify underlying

molecular players involved in centromere clustering. Through pharmacological treatment

and structural analysis we show that centromere clustering is not mediated by persistent

microtubules of the mitotic spindle. We identify the chromatin binding factor a homolog

of structural maintenance of chromosomes 1 (SMC1). Additionally, we show that both

TgSMC1, and a centromeric histone, interact with TgExportin1, a predicted soluble

component of the nuclear pore complex. Our results suggest that the nuclear envelope,

and in particular the nuclear pore complex may play a role in positioning centromeres in

T. gondii.

Keywords: centromere, cohesin, nuclear pore, centrosome, cell division, microtubues, toxoplasma, toxoplasmosis

INTRODUCTION

Apicomplexa are obligate intracellular parasites that cause various animal and human
diseases including malaria, toxoplasmosis, and cryptosporidiosis. Apicomplexan parasites
invade and replicate within the cells of their hosts. Following intracellular replication,
parasites lyse their host cell and invade a neighboring healthy cell thus perpetuating
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the infection. Apicomplexan parasites replicate by modes of
division that differ from those used by their hosts (Francia and
Striepen, 2014). Mammalian cells divide their nucleus by open
mitosis in which the nuclear envelope breaks down, giving way
to the mitotic spindle, and is immediately followed by cytokinesis
(with few exceptions). Apicomplexa, however, combine semi-
closed mitosis, in which the nuclear envelope remains practically
intact, with the generation of multiple daughter cells by budding
(Gubbels et al., 2008; Francia and Striepen, 2014; White and
Suvorova, 2018) (schematically represented in Figure 1A). In
apicomplexan cell division, daughter cells do not derive from
fission but instead are formed de novo in the mother cell cytosol.
The fundamental differences between these modes suggest that
cell division could be a rich source of druggable targets to treat
apicomplexan-caused diseases. However, many structural and
regulatory aspects of apicomplexan cell division are not well-
understood (White and Suvorova, 2018).

Direct visualization of chromosomes is impaired by the
apparent lack of chromatin condensation throughout the cell
cycle in the parasites’ nuclei. Centromeres are typically a single
location on a chromosome where kinetochore components, the
point of attachment for microtubules of the mitotic spindle,
assemble during mitosis. Centromeres are marked by the
presence of a variant histone H3, known as CenH3 or CenPA. In
the past, a T. gondii strain bearing an epitope tag in its CenH3
homolog, allowed visualization of the centromere-associated
nucleosomes, allowing themapping of the chromosomal position
of the centromeres inT. gondii, and visualization of chromosomal
dynamics duringmitosis (Brooks et al., 2011). All stages observed
in canonical eukaryotic mitosis (i.e., metaphase, anaphase, and
telophase) are present in the T. gondii mitosis. However, all
centromeres of T. gondii cluster into a single location at the
periphery of the nucleus, not only during division but also outside
of mitosis (Brooks et al., 2011). Moreover, the site of centromere
clustering is intimately related to the position of the centrosome,
the main microtubule organizing center (MTOC) of the cell,
which nucleates microtubules of the mitotic spindle during
division. Centromeres of Plasmodium falciparum were also
shown to cluster in the proximity of its centrosome equivalent
outside of mitosis (Hoeijmakers et al., 2012). Interestingly, while
T. gondii, divides by endodyogeny, assembling two daughter cells
every round of division, P. falciparum’s schizogony can yield
hundreds of daughters per division. Thus, centromere clustering
appears to be a widespread phenomenon among apicomplexans
using different modes of division (Bunnik et al., 2019).

The molecular mechanisms mediating chromatin
sequestration to defined nuclear territories and specialized
sub-compartments are unknown in Apicomplexa. Here, we set
out to identify novel molecular players involved in centromere
positioning in Toxoplasma gondii.

METHODS

Chromatin Immunoprecipitation
ChIP was performed as described in Wells and Farnham (2002),
Gissot et al. (2007), and Brooks et al. (2011). Briefly, chromatin
from SMC1-HA transgenic tachyzoites was cross-linked for

10min with 1% formaldehyde at room temperature and purified
after sonication yielding fragments of 500–1,000 bp. Chromatin
was immunoprecipitated at 4◦C overnight using a HA polyclonal
antibody (Abcam ab9110) and washed extensively. The DNA
was treated with proteinase K for 2 h and subsequently purified
using the Qiagen PCR purification kit. Hundred nanogram of
precipitated DNA was amplified using the DNA Genomeplex
whole genome amplification kit (Sigma) and subsequently
labeled using random primers coupled to a fluorochrome. Probes
were hybridized to a tiled oligonucleotide array representing the
complete T. gondii genome according to NimbleGen Systems
procedures. The array was fabricated by NimbleGen Systems and
contained 740,000 oligonucleotides representing version 4 of the
ME49 genome with an approximate spacing of 80 bp between
each oligonucleotide.

Co-immunoprecipitation (Co-IP) and Mass
Spectrometry Analysis
Approximately 1× 109 SMC1_YFP, RH1Ku80 or the HA-tagged
lines generated in this study (TgImportin1-HA, TgExportin1-
HA, TgSUN-HA), were collected by centrifugation, and washed
once with PBS. Parasites were lysed by resuspension in
hypotonic buffer (20mM Hepes, 10mM KCl, 400mMMannitol,
2 nM EDTA) supplemented with EDTA free protease inhibitor
(Roche) to ∼ 5 × 108 parasites/ml, followed by 4 cycles of
freeze/thaw with liquid nitrogen. Efficient lysis was assessed by
light microscopy. Debris and intact parasites were pelleted by
centrifugation at 10,000 g for 10min at 4◦C. Soluble fractions
were incubated overnight at 4◦C with 20 µl of the antibody
of interest. The next day, 100 µl of Sepharose bound Protein
A or Protein G (Santa Cruz) for rabbit or mouse antibody,
respectively, were added and incubated at room temperature
for 2 h. Complexes were washed six times with Co-IP wash
buffer (50mM Tris pH 8, 200mM NaCl, 2mM EDTA, 1%
NP-40) supplemented with protease inhibitor, then resuspended
in 200 µl of SDS-PAGE loading buffer and boiled for 5min.
Elution fractions were used either for mass spectrometry or
western blotting. Negative controls were performed using the
pre-immune serum for each antibody or ProteinA/G Sepharose
alone. Four independently obtained samples were analyzed.
Sample 1 consisted of proteins obtained from a wild type parasite
strain using rabbit serum raised against TgSMC1. Sample 2 was
obtained using the same a-TgSMC1 antibody but subjected to
affinity purification prior to the experiment. Sample 3 consisted
of proteins obtained from the TgSMC1-YFP strain using a-GFP
and Sample 4 was obtained from a wild type strain using a-GFP,
and served as a negative control. Figure 4A shows sample 3 as a
representative example of the immunoprecipitation scheme.

Construction of Tagged Reporter Parasites
Toxoplasma gondii RH strain parasites were maintained by serial
passage in human foreskin fibroblast (HFF) cells and genetically
manipulated as previously described (Jacot et al., 2013). To tag
the genomic locus of TgSMC1, TgExportin1, TgImportin1, and
TgSUN1 with a 3xHA or a YFP tag, ∼1,500 bp of the open
reading frame ending before the stop codon were amplified
from T. gondii genomic DNA. All primer sequences used are
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shown in Table S2. These amplicons were cloned via ligation
independent cloning (LIC) (Aslanidis and de Jong, 1990) into the
pLIC-HA-CAT or pLIC-YFP-DHFR vector, respectively, to create
in-frame fusions (Huynh and Carruthers, 2009). Transgenic
clones were established by transfection of 1Ku80-TaTi parasites
and chloramphenicol or pyrimethamine selection, respectively.
Integration was confirmed by PCR and western blot in all cases.

Protein Expression and Antibody
Production
Sequences encoding for the last 400 C-terminal amino-acids of
TgSMC1 were amplified from T. gondii cDNA and inserted into
plasmid pAVA-421 6xHis (Alexandrov et al., 2004). Recombinant
fusion protein was purified on Ni2-NTA resin (Qiagen, Hilden,
Germany). Rabbits were immunized with 1mg of purified
protein, and serum was collected after 10 weeks (Cocalico
Biologicals, Reamstown, PA, USA). Mice were immunized with
0.4mg of purified protein, and serum was collected after 3 weeks.

Fluorescence Microscopy
For immunofluorescence assays, host cells (HFF) were inoculated
onto coverslips and infected with parasites. Coverslips were
fixed 24 h after infection and processed as previously described
(Francia et al., 2011). Primary antibodies used were mouse
anti-alpha tubulin at a dilution of 1:1,000 (12G10, a gift of
Jacek Gaertig, University of Georgia), rabbit anti-Centrin1 at
1:1,000 (gift of Iain Cheeseman, MIT), mouse anti-GFP at
1:1,000–1:400 (Torry Pines Biolabs), rat anti-HA at 1:1,000 (clone
3F10, Roche), mouse anti-IMC1 mAb 45.15 at 1:1,000 (gift of
Gary Ward, University of Vermont), mouse anti-TgChromo1
at 1:1,000 (Gissot et al., 2012), mouse anti-CenH3 (Francia
et al., 2012) at 1:20, rabbit anti-MORN1 (Gubbels et al., 2006)
at 1:250, and rabbit and mouse anti-SMC1 at 1:1,000 (this
study). The secondary antibodies used were AlexaFluor 350,
AlexaFluor 488, and AlexaFluor 546 (Invitrogen), at a dilution
of 1:2,000. Images were collected on an Applied Precision Delta
Vision inverted epifluorescence microscope using a UPlans APO
100×/1.40 oil lens. Images were subjected to deconvolution and
contrast adjustment using Applied Precision software (Softworx).
For quantitative image analysis (as described in the results
section) a minimum of 50 vacuoles were scored in at least
three independent experiments. Super-Resolution images were
acquired using the Zeiss ELYRA S1 (SR-SIM)microscope. Images
were collected and processed using Zeiss Zen software. Means
and standard deviations were calculated and plotted using Graph
Pad Prism Version 5.0c (La Jolla, California, USA).

Transmission Electron Microscopy
Infected cells were fixed in 2% glutaraldehyde in sodium
phosphate buffer 0.1M, pH 7.4, followed by post-fixation with
1% osmium tetroxide in sodium phosphate buffer, alcohol
dehydration, and Epon resin embedding. Serial sections were
obtained with a Leica UCT cryo-ultramicrotome, collected in
carbon coated single hole grids and observed in a JEOL 1200 EX
transmission electron microscope.

Western Blotting
Western blotting was performed as previously described (Brooks
et al., 2011). We used anti-HA (Roche) antibodies at a dilution of
1:1,000, anti-tubulin at 1:1,000, anti-GFP at 1:500, anti-CenH3
at 1:500 and anti-SMC1 antibodies at a dilution of 1:1,000.
Pre-immune sera for anti-SMC1 antibodies were used at a
comparable dilution. Horseradish peroxidase (HRP)-conjugated
anti-rat, anti-mouse, or anti-rabbit antibody (Pierce) were used
at a dilution of 1:20,000

RESULTS

To investigate the mechanism mediating centromere clustering
in T. gondii we propose to test two alternative hypotheses.
First, we envision that a persistent microtubules spindle
could constitutively interact with centromeres, thus maintaining
their position, and ascribing the centrosome (MTOC) direct
involvement in the process (Figure 1B). Alternatively, proteins
present at the centromere mediate the interaction between it and
the nuclear envelope (Figure 1B).

We first set out to investigate whether microtubules mediate
centromere clustering. To test this, we subjected parasites to
treatment with oryzalin, a tubulin-binding drug which prevents
tubulin polymerization in Apicomplexa (Stokkermans et al.,
1996; Morrissette et al., 2004). At concentrations of 2.5mM
oryzalin prevents polymerization of microtubules into daughter
cells as well as the mitotic spindle (Stokkermans et al., 1996).
Parasites expressing TgCenH3-HA (Brooks et al., 2011), a marker
for centromeres, were subjected to treatment with 2.5mM
oryzalin for 24 h, fixed and observed by immunofluorescence
assay (IFA) staining for a-HA and a-IMC1. IMC1 (Inner
membrane complex protein 1) marks of the outline of dividing
and non-dividing parasites. In dividing parasites, IMC1 labels
the emerging daughter cell structures (Figure 1C). Upon drug
treatment, parasites continue to grow and replicate their DNA
but fail to assemble daughter cells (Figure 1C). Interphase as
well as dividing parasites treated with oryzalin exhibit continued
clustered localization for TgCenH3 (Figures 1B,C). These results
suggested that the mitotic spindle is likely not responsible for
centromere clustering during interphase. However, consistent
with previous reports that oryzalin disrupts nuclear division
(Morrissette and Sibley, 2002b), we note that oryzalin-treated
parasites frequently fail to segregate their genome properly
(Figure 1C). However, we cannot rule out incomplete spindle
disruption upon drug treatment.

To independently examine interphase nuclei in T. gondii,
we serially sectioned fixed parasites and observed them by
transmission electron microscopy (Figures 1D,E). In all cases,
the entire nucleus was sectioned and in most sets sections
spanned the entire parasite. Parasites were assigned to interphase
by the presence of a single, unduplicated centrosome, and
the absence of budding daughters. Upon three dimensional
reconstruction, we observed that while spindle microtubules are
readily observed in dividing parasites (duplicated centrosomes)
(Figure 1E) they cannot be detected in interphase parasites
(Figure 1D). Overall, we could detect intranuclear microtubules
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FIGURE 1 | Centromere clustering is not mediated by spindle microtubules. (A) Apicomplexan parasite division schematic. Apicomplexa divide by closed mitosis and

internal daughter cell assembly. Centromeres (represented as a red dot) remain clustered at the periphery of the nucleus throughout the cell cycle. (B) Alternative

(Continued)
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FIGURE 1 | models proposed to explain centromere clustering. Blue dots represent the centrosome. Blue lines represent the mitotic spindle microtubules. Red dots

represent the chromosomes’ centromeres. (C) Parasites were treated with DMSO (control) or 2.5mM Oryzalin, fixed and stained with anti-IMC1 and anti-CenH3. Both

in DMSO and Oryzalin treated samples, interphase parasites display a single TgCenH3 dot corresponding to clustered centromeres. Both Oryzalin treated and

untreated dividing parasites display duplicated TgCenH3 foci. In Oryzalin treated parasites daughter cell assembly and proper chromosome segregation is impaired as

evidenced by the presence of multiple (>2) TgCenH3 foci within a single parasite. (D) TEM series through a parasite in interphase containing a single centrosome (CE,

white arrowhead). Zoomed-in panels show consecutive series. Microtubules (MT) are not seen proximal to the centrosome (CE, white arrowheads) or the nuclear

envelope (NE, black arrowheads) at the site of centromere sequestration. (E) TEM series through a dividing nucleus. A forming daughter cell (DC) is detectable

proximal to the nucleus (Nu). The mitotic spindle organizes within the nuclear envelope (NE, black arrowheads). Zoomed-in panels show consecutive series.

Microtubules (MT, black arrows) of the mitotic spindle are clearly visible in the proximity of the centrosome (CE, white arrowhead). Note that all serial sections were

obtained from the same block, and thus were subject to identical fixation and post-fixation treatments. The scale for (D,E) is the same. (F) Parasites present in TEM

serial sections were classified as “interphase” (IP) or “dividing”, depending on the presence of a single or a duplicated centrosome respectively, and scored for the

presence of visible spindle microtubules.

in 98% of the dividing parasites (n = 13), while microtubules
were seen only in 4% of nuclei considered to be in interphase by
our morphological criteria (n = 60) (Figure 1F). The latter may
represent parasites just emerged from mitosis.

Local actin polymerization was reported to affect telomere
positioning in the P. falciparum nucleus (Zhang et al., 2011). To
assess a potential role of actin in centromere clustering, parasites
were treated with Cytochalasin D, an actin de-polymerizing
agent. Treated parasites did not exhibit centromere dispersion
(Figure S1B). Similarly, a T. gondii temperature sensitive mutant
of the nuclear actin ARP4 exhibits normal centromere clustering
at the restrictive temperature (Figure S1D) (Suvorova et al.,
2012). Taken together, our pharmacological, ultra-structural
and genetic analysis, strongly suggest that neither microtubules
nor actin filaments are responsible for persistent centromere
clustering in interphase.

We next set out to identify chromatin-binding factors
which could potentially mediate centromere clustering by in
silico identification of known centromeric proteins. Structural
Maintenance of Chromosome proteins (SMCs) are a family
of ATPases with multiple roles in chromatin organization
during mitosis and meiosis (Jeppsson et al., 2014; Uhlmann,
2016). Homologs of Structural Maintenance of Chromosomes
1 (SMC1) have been implicated in the control of gene
expression, DNA repair and recombination, cross linking of
mitotic spindle microtubules and membrane anchoring of
heterochromatin (Nasmyth and Haering, 2009; Wong, 2010).
Importantly, the yeast and Drosophila SMC1s have been
shown to directly associate with the centromeric histone H3
(Nasmyth and Haering, 2009; Wong, 2010). Searching for
homologs of the Saccharomyces cerevisiae SMCs we identified
four candidate genes for SMC proteins in the T. gondii
genome (Figure S2A). Maximum likelihood phylogenetic tree
of the full length protein coding sequences showed that each
of T. gondii’s predicted SMC protein coding genes clustered
with a given SMCs sub-class.TgME49_288700 clusters with
SMC1-like SMCs; TgME49_297800 is more closely related
to SMC2 from yeast and plants, while TgME49_106310
and TgME49_231170 are homologous to SMC3 and SMC4,
respectively (Figure S2A).

To further investigate the SMC1 homolog in T. gondii
we generated strains with an insertion of a triple HA tag
or a yellow fluorescent protein (YFP) cassette at the 3′ end
of TgME49_288700 (from here on referred to as TgSMC1,

Figure S2B). In addition, we raised mouse and rabbit anti-
sera against a recombinant C-terminal fragment of TgSMC1
consisting of the 400 C-termini amino-acids of the protein.
These anti-sera recognize a single protein of a size consistent
with the predicted molecular mass of 183 kD (or 211 for
the YFP fusion protein, respectively, Figure S2C). Using these
reagents we investigated the localization of TgSMC1 by IFA.
When co-stained with a monoclonal antibody raised against
TgCenH3 (Brooks et al., 2011) we observed that TgSMC1 nuclear
punctae coincide with TgCENH3 both in interphase and in
dividing parasites (Figures 2A,B). Interestingly, when observed
by structured Illumination super resolution microscopy (SIM-
SR), the localization of TgSMC1 is better defined as a semi-circle
arranged around the spot filled by the centromeres marked by
TgCenH3 (Figures 2C,D).

To unequivocally determine whether TgSMC1 is a
centromeric protein, we immunoprecipitated TgSMC1-
associated chromatin, and probed a microarray chip covering
most of the T. gondii genome with the precipitated DNA
(ChIP-CHIP). Significant hybridization was obtained for 10
chromosomes. The hybridization peaks for chromosomes
II, III, V, VI, and VIII-XI coincide with the position of the
centromere on these chromosomes as mapped by ChIP-CHIP
of TgCenH3 (Figure 2E). Moreover, TgSMC1 ChIP-CHIP
hybridization signal shows almost perfect overlap with the
chromatin regions bound by TgCENH3 (Figure 2F). Taken
together, TgSMC1 localization appears intimately linked to
the centromere.

Lastly, we determined potential interactors of TgSMC1
by co-immunoprecipitation (Figures 3A,B). Proteins co-
immunoprecipitated with TgSMC1 were identified by LC-MS.
TgSMC1’s elution fraction contains a significant amount of
TgCenH3, suggesting that not only do they co-localize at
the centromere but they also interact physically (Figure 3C). In
contrast, TgChromo1 (Gissot et al., 2012) which binds chromatin
immediately adjacent to the centromeres, does not co-precipitate
with TgSMC1 (Figure 3C).

The ten most abundant proteins recovered in all four
purifications are shown in Figure 3D. A complete list of LC-
MS results can be found in Table S1 ordered by ascending
order of accession number in the T. gondii genome database
(Kissinger et al., 2003). Four protein-coding genes, one being
TgSMC1, showed the highest number of unique peptides in all
three positive samples, and a 10-fold enrichment in number
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FIGURE 2 | TgSMC1 is a persistent centromeric protein. (A,B) Immunofluorescence assay. TgSMC1-YFP (green) was co-stained with anti-TgCenH3 antibodies

(green). The signals for TgSMC1 and the marker for the T. gondii centromeres show tight co-localization both in interphase (A) and dividing (B) parasites. TgSMC1

(Continued)
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FIGURE 2 | persists at the centromere both during all stages of mitosis and interphase. (C) Super Resolution (SR-SIM) image of TgSMC1-YFP stained with anti-GFP.

TgSMC1 localization appears to be in the shape of a hollow oval (D) Zoom of the SR-SIM image of TgSMC1-YFP, co-stained with anti-GFP and anti-TgCenH3.

TgSMC1 (green) appears to surround the centromeres marked by TgCenH3 (red). (E) Schematic representation of T. gondii’s chromosomes. Red asterisks indicate

the position of the centromeres, mapped previously, for each chromosome. Black arrowheads correspond to the hybridization peaks obtained from the TgSMC1-HA

cell line ChIP-CHIP experiments for each chromosome. (F) Hybridization peaks on a microarray CHIP covering the genome of T. gondii, of immunoprecipitated

chromatin from the TgSMC1-HA cell line (green line). Chromosomes III and VI are shown as representative examples. Our previous ChIP-CHIP results using the

TgCenH3-HA cell line (red line) are shown, overlaid, as reference.

of unique peptides as compared to the negative control. The
remaining three are TgME49_222380, TgME49_253730, and
TgME49_249530. The first two are annotated as proteins
belonging to the Importinb family, while the third is annotated
as Exportin 1. To further study TgSMC1’s interactors, we
generated reporter strains by introducing a 3-HA tag at the
C-terminus of the proteins encoded by TgME49_253730 and
TgME49_249530, which we named TgImportin1 (TgImp1)
and TgExportin1 (TgExp1), respectively (Figure S3A). To
validate these interactions, we performed reciprocal co-
immunoprecipitation assays. As an internal control, we also
generated a reporter strain for TgME49_288530 (TgSUN1)
which presented 2 peptides in “sample 2” but was absent from
all others. We were able to reproduce the co-precipitation
of TgSMC1 with TgImp1 or TgExp1, but we did not detect
interactions with TgSUN1 (Figure 3E). Interestingly, we found
TgCenH3 to co-precipitate with TgExp1 (Figure 3E).

Importins and exportins are nuclear proteins which interact
peripherally with transmembrane components of the nuclear
pore complex (NPC). As expected, we determined that both
TgExp1 and TgImp1 localize to the nucleus (Figure 4A). Super
resolution microscopy revealed that TgExp1 localizes to discrete
or clustered foci on the nucleus, consistent with its predicted
NPC localization (Figure 4F). However, neither TgImp1 nor
TgExp1 exclusively localize to the centromeric foci, consistent
with their predicted peripheral localization to the NPC. We
reasoned that if components of the NPC are involved in
centromere clustering, this should be observable in sections of
interphase nuclei in the vicinity of where centromeres cluster
(i.e., the centrosome). Nuclear pores are readily observed by
TEM in the T. gondii nucleus as interruptions in the nuclear
envelope or as an oval with octagonal symmetry (Figures 4B,C).
Indeed, when we observed the region of the nuclear envelope
adjacent to the centrosome in interphase parasites sectioned
perpendicularly, we could observe a pore in 84% of the nuclei
(n= 60, Figures 4D,E). Co-labeling of either TgImp1 or TgExp1
and TgSMC1 revealed that these proteins co-localize (Figure 4F).
Importantly, TgCenH3’s localization coincides or is flanked by
individual foci or clusters of TgExp1 (Figure 4G).

DISCUSSION

A long standing question in the field has been “how do
apicomplexans keep track of the position of their chromosomes,
without condensing their chromatin during division?”
Chromosomes move, organize, and cluster by interacting
with the mitotic spindle through kinetochore components
that assemble at the centromere during mitosis. Electron

microscopy studies in T.gondii, Eimeria spp., and Sarcocystis
neurona demonstrated the presence of an intranuclear spindle
(Dubremetz, 1973; Morrissette and Sibley, 2002a; Francia and
Striepen, 2014). These studies identified spindle microtubules
that link the centrosomes to what appear to be the kinetochores
of the chromosomes (Dubremetz, 1973). More recently, bona
fide residents of the mitotic spindle, such as the MT-binding
protein TgEB1, have been identified suggesting a canonical
mitotic spindle is assembled by Apicomplexa (Chen et al., 2015).
Consistently, parasites treated with microtubule-disrupting
agents fail to segregate their chromosomes properly (Morrissette
and Sibley, 2002b), and knock-down of kinetochore proteins
uncouple mitosis from cytokinesis (Farrell and Gubbels, 2014).

Our first set of experiments investigated whether cytoskeletal
elements mediated centromere clustering. We demonstrated that
neither microtubules of the mitotic spindle nor actin mediate this
process. We propose that, instead, chromatin binding factors at
the centromeres mediate the maintenance of their localization at
the periphery of the nucleus. We identified and characterized the
localization of a homolog of SMC1 in Toxoplasma gondii. SMCs
are a family of proteins containing two ATPase globular domains
at their C and N-terminals, and a hinge domain which establishes
interactions with chromatin and other SMC and non-SMC
proteins. SMCs have multiple roles in higher order chromatin
organization and dynamics, powered by the hydrolysis of ATP
(Losada and Hirano, 2005; Hirano, 2006). We determined that
TgSMC1 is a centromere-associated protein which interacts with
the centromeric histone variant H3, TgCenH3, and centromeric
chromatin. SMC1 interactions with CenH3 homologs have been
previously reported in yeast and Drosophila (Tanaka et al., 1999;
Losada and Hirano, 2000).

SMC1 homologs have a role in chromosome segregation

during mitosis as part of the cohesin complex, which ensures
themaintenance of sister chromatid cohesion until chromosomes

separate in anaphase (Onn et al., 2008). Typically, SMC1

localizes to sister chromatids, in the proximities of or at the
centromeres, during mitosis and up until late metaphase/early

anaphase, but it is absent from centromeric regions outside of
mitosis (Gruber et al., 2003; Huang et al., 2005; Peters et al.,
2008). During interphase, SMC1 homologs normally localize

to the cytosol or associate with non-centromeric chromatin
(Losada et al., 1998; Losada and Hirano, 2000). In Toxoplasma
gondii, however, we observed that TgSMC1 persists at the
centromeres throughout the cell cycle. It is possible that it
remains inactive at the centromeres outside of mitosis, and
that its activity depends on interacting partners or specific
activation during mitosis. Alternatively, TgSMC1 could play
additional roles in chromatin organization in T. gondii. Cohesin
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FIGURE 3 | TgSMC1 Co-precipitates with Peripheral Components of the

Nuclear Pore Complex. (A) Representative western blot of an

immuno-precipitation experiment from parasite lysate using an anti-TgSMC1

(Continued)

FIGURE 3 | antibody (L, lysate; I, input; FT, flow through; 1–4, washes; E,

elution). (B) Western Blot. Elutions fractions E of immunoprecipitations using

no primary antibody (No-1◦), pre-immune sera (Pre) or the following

antibodies: 1- Rabbit anti-SMC1, 2- Affinity Purified Rabbit anti-SMC1, 3, and

4- anti-GFP, and probed with mouse anti-SMC1. The strains used to generate

parasite lysates (input) are specified below. (C) Western blot. Parasite lysate or

the elution fraction of an immuno-precipitation using rabbit anti-SMC1 were

probed with the indicated antibodies. Mouse anti-HP1 recognizes

TgChromo1, a chromodomain protein which binds peri-centromeric DNA, and

was used as a control for the specificity of our pull downs (L, total lysate; E,

elution fraction). (D) The 10 most abundant co-precipitants of TgSMC1 are

listed. Complete results of the Mass spectrometry analysis of all elution

fractions of multiple immuno-precipitation experiments can be found in

Table S1. Proteins highlighted in blue were followed up. (E) TgExp1 and

TgImp1 (TgME49_249530 and TgME49_253730 respectively), which

co-immunoprecipitated with TgSMC1, were endogenously tagged with a

C-terminal 3xHA. TgSUN1 (TgME49_288530) is annotated as a hypothetical

protein containing a Sun domain. This protein was represented by 2 peptides

in the Mass spectrometry analysis of SMC1-YFP anti-GFP Co-IP, but was not

found in other samples, and was used as a negative control (Table S1).

TgSMC1 was pulled down using Rabbit anti-SMC1 antibodies in

TgSMC1-YFP, TgImp1-HA, TgExp1-HA, and TgSUN-HA cells lines, and

probed with mouse anti-SMC1 or anti-HA. Conversely, TgImp1, TgExp1, and

TgSUN were pulled down using anti-HA antibodies, and the elution fractions

were probed with anti-TgSMC1. These results recapitulate our LC-MS results.

In addition to co-precipitating with TgSMC1, TgExp1 also co-precipitates with

TgCENH3.

has been shown to contribute to gene regulation, DNA damage
repair, transcriptional control, and maintenance of higher order
chromatin structure in other systems (Peters et al., 2008). In
human cells, SMC1 has been shown to mediate transcriptional
insulation by binding chromatin boundaries in post-mitotic cells

(Parelho et al., 2008; Peric-Hupkes and van Steensel, 2008;Wendt
et al., 2008). Interestingly, in the closely related Apicomplexa

Eimeria tenella, SMC1 is part of a plaque formed at the nuclear
envelope to which telomeres attach during meiotic division (del

Cacho et al., 2010). Our results suggest that TgSMC1 could fulfill

a similar role in mediating the attachment of centromeres to the
nuclear envelope.

The latter is supported by our identification of TgSMC1

interactors. In particular, we determined that TgSMC1 co-
precipitated with soluble proteins predicted to function at

nuclear pores; TgExportin7, TgExportin1, and TgImportin1.
Nuclear pores are basket-like structure of octagonal shape and

consist of a central scaffold which spans the nuclear envelope

(Hoelz et al., 2011; Kahms et al., 2011). Proteins of the nuclear

pore are collectively known as nucleoporins (NUPs) are anchored

by transmembrane domains, and form a molecular sieve by the
presence of FG repeats in a central channel, preventing diffusion
of molecules larger than 40 KDa or 5 nm. For larger molecules
to travel through the pore, they must reversibly associate with
FG nucleoporins (Wente and Rout, 2010; Hoelz et al., 2011).
Translocation of large molecules depends on nuclear transport
receptors (NTRs), i.e., importins, exportins, and transportins
(Görlich and Kutay, 1999).

The TgSMC1 interactors identified, TgExp1 and TgImp1,
localize to discrete foci in the nucleus, and co-localize or flank
the location of centromeres in the nuclear periphery. By TEM
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FIGURE 4 | A nuclear pore is found in the proximity of the centrosome. (A) IFA of TgExp1-HA, TgImp –HA and TgSUN-HA using anti-HA antibodies reveal that these

proteins localize to the nucleus. TgSUN1 is restricted to a discrete region of the nucleus, and does not co-localize with TgSMC1. (B) TEM section perpendicular to a

nucleus (Nu). A nuclear pore (white arrowhead) is seen as a discontinuation in the nuclear envelope. (C) TEM section parallel to a nucleus (Nu). A nuclear pore (white

arrowhead) is seen as a basket-like octagonal structure on the nuclear, distant from the centrosome (Ce, black arrowhead). (D) TEM Serial sections through an

interphase nucleus reveal the presence of a nuclear pore (white arrowhead) visible as an interruption in the nuclear envelope adjacent to the centrosome (Ce, black

arrowhead). Detailed panels are zoomed in at 200% (E). The appearance of nuclear pores proximal to the centrosome (% Ce-associated NUPs) was quantified in

serial sections of both dividing (green) and non-dividing (red) parasites. Note that the mitotic spindle penetrates and interrupts the nuclear envelope during division.

Hence an interruption of the nuclear envelope, proximal to the centrosome, is observable in the vast majority of the dividing nuclei and is indistinguishable, by

microscopy, from a canonical nuclear pore. (F) SR-SIM of TgExp1-HA reveals that TgExp1 localizes to heterogenous discrete foci in the nucleus. (G) TgExp1-HA foci

co-localize with, flank or surround the localization of TgCenH3 marked by anti-TgCenH3 staining.

we established that an opening in the nuclear envelope can
be observed adjacent to the centrosome in interphase nuclei,
implying that centromeres arrange in the vicinity of an NPC.

Proteins associated peripherally with the NPC, such as NTRs,
have been shown to fulfill roles independent from their transport
function. Several transportins have been shown to exert strong

boundary activity by mediating the association of chromatin with
core components of the nuclear pore. Intriguingly, like TgExp1
and TgImp1, they all belong to the Importin-β superfamily
of NTRs. In particular Nup2, a peripheral NUP associated
with the nuclear pore basket, is essential for boundary activity
of transportins in yeast (Ishii et al., 2002; Shinkura and
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Forrester, 2002). Schizosaccharomyces pombe, a fission yeast
which divides by closed mitosis and clusters centromeres,
presents a TgExportin1 homolog, named CRM1, first identified
in a cold-sensitive mutant screen (Adachi and Yanagida,
1989). Conspicuously, CRM1 has been shown to be essential
for maintenance of centromere clustering during interphase
(Adachi and Yanagida, 1989; Funabiki et al., 1993). Interestingly,
characterization of the effect of temperature sensitive mutations
identified that a point mutation caused CRM1 to mis-localize to
the cytosol (Adachi and Yanagida, 1989), an effect that can be
mimicked on wild type CRM1 by Leptomycin B treatment (Nishi
et al., 1994; Kudo et al., 1999). At the restrictive temperature or
upon Leptomycin B treatment, centromeres of S. pombe come
apart and disperse in the nucleus.

Core nucleoporins (NUPs) have also been shown to directly
interact with chromatin, and to regulate chromatin organization
in other systems. Particularly relevant to this study; Nup98
co-precipitates with SMC1 in Drosophila (Wong and Blobel,
2008). ChIP-CHIP of Nup93 demonstrated direct chromatin
association with the nuclear pore complex in human cells
(Brown et al., 2008). Dynamic changes in the distribution of
nuclear pores on the nuclear envelope were observed by elegant
microscopy techniques during the intracellular development
of the apicomplexan Plasmodium falciparum (Weiner et al.,
2011). Late schizonts exhibit 2–6 nuclear pores per nucleus,
which cluster together and invariably are surrounded by
heterochromatin suggesting that nuclear pores associate with
specific states of chromatin condensation (Weiner et al., 2011).
Noteworthy, heterochromatin flanks the centromeres of T.
gondii (Brooks et al., 2011; Gissot et al., 2012). A recent study
which characterized the T. gondii Nup98 homolog (TgNUP302)
revealed that this protein interacted with facilitates chromatin
transcription complex (FACT) components, suggesting the
existence of an NPC-chromatin interaction in T. gondii (Courjol
et al., 2017). Therefore, centromere clustering could be part
of a more general organizational scheme of nuclear elements
in apicomplexan parasites, dependent on interactions with
components of the nuclear envelope, and in particular with
the NPC.

While we have started to unravel the mechanism by which
centromeres are held in position at the nuclear envelope, we
do not yet understand how centromeres are recruited to a
specific site on the nuclear periphery, adjacent to the centrosome.
Intriguingly, TgNUP302 was shown to physically associate to
TGGT1_246190, a coiled-coiled protein (named TgCEP530)
shown to localize at the centrosome, thereby identifying a
physical connection between the nuclear pore complex and the

centrosome (Courjol and Gissot, 2018). Together, the connection
between nuclear pore components and the centrosome, and
peripheral components of the nuclear pore-chromatin, described
herein, could be the basis of the centromere-centrosome
connection. Further study of centrosome-associated factors
could shed light on the identity of components with roles in
targeting or maintaining the position of centrosome-associated
nuclear components.
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Background: Toxoplasma gondii is a parasite of worldwide importance but its burden in

indigenous communities remains unclear. In French Guiana, atypical strains of T. gondii

originating from a complex rainforest cycle involving wild felids have been linked to

severe infections in humans. These cases of Amazonian toxoplasmosis are sporadic and

outbreaks are rarely described. We report on the investigation of an outbreak of acute

toxoplasmosis in a remote Amerindian village. We discuss the causes and consequences

of this emergence.

Methods: In May 2017, during the rainy season and following an episode of flooding,

four simultaneous cases of acute toxoplasmosis were serologically confirmed in two

families living the village. Other non-diagnosed cases were then actively screened by a

medical team alongwith epidemiological investigations. Inhabitants from nine households

were tested for T. gondii antibodies and parasite DNA by PCR when appropriate.

Samples of water, cat feces and cat rectal swabs, soil, and meat were tested for T. gondii

DNA by PCR. Positive PCR samples with sufficient DNA amounts were genotyped using

15 microsatellite markers.

Results: Between early May and early July 2017, out of 54 tested inhabitants, 20

cases were serologically confirmed. A fetus infected at gestational week 10 died but

other cases were mild. Four patients tested positive for parasite DNA and two identical

strains belonging to an atypical genotype could be isolated from unrelated patients. While

domestic cats had recently appeared in the vicinity, most families drank water from unsafe
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sources. Parasite DNA was recovered from one water sample and nine soil samples.

Three meat samples tested positive, including wild and industrial meat.

Conclusions: The emergence of toxoplasmosis in such a community living in close

contact with the Amazon rainforest is probably multifactorial. Sedentary settlements have

been built in the last few decadeswithout providing safe water sources, increasing the risk

of parasite circulation in cases of dangerous new habits such as cat domestication. Public

health actions should be implemented in these communities such as safe water supply,

health recommendations, and epidemiological surveillance of acute toxoplasmosis. A

“One Health” strategy of research involving medical anthropology, veterinary medicine,

and public health needs to be pursued for a better understanding of the transmission

routes and the emergence of this zoonosis.

Keywords: indigenous, toxoplasmosis, outbreak, rainforest (Amazon forest), parasitology

INTRODUCTION

Toxoplasma gondii is a ubiquitous parasite that may be
transmitted by the consumption of uncooked meat containing
viable tissue cysts, or food and water contaminated with oocysts
from the feces of infected felids (Hill and Dubey, 2002; Jones
and Dubey, 2010). Outbreaks of T. gondii have been linked to
water contamination (Benenson et al., 1982; Bowie et al., 1997;
Isaac-Renton et al., 1998; Aramini et al., 1999; de Moura et al.,
2006; Heukelbach et al., 2007; Meireles et al., 2015), exposure to
domestic cats (Dubey et al., 2004), consumption of meat from
infected animals (Choi et al., 1997), or contaminated vegetables
(Ekman et al., 2012). This infection is of special concern in
pregnant women and immunosuppressed patients (Hill and
Dubey, 2002). In the Amazon, the transmission cycle is complex,
involving wild animals, humans living close to the rainforest,
and atypical strains. These strains do not belong to the main
lineages of T. gondii and are responsible for severe symptoms,
including in immunocompetent patients. These atypical cases
have led to the recent description of the entity called “Amazonian
toxoplasmosis” (Dardé et al., 1998; Carme et al., 2002, 2009;
Demar et al., 2007, 2012). Autochthonous communities such
as Amerindians and Maroon people are particularly at risk,
due to their low income, lack of health care access, and the
importance of hunting and traditional agriculture. Though severe
acute toxoplasmosis has been reported in French Guiana, a few
cases have been described in Peru and Brazil (Leal et al., 2007;
Nunura et al., 2010; Neves Ede et al., 2011). This infection is likely
to be under-diagnosed in many rainforest areas of South America
(Carme and Demar-Pierre, 2006).

In French Guiana, only one major T. gondii outbreak has
been described, in the Maroon community in 2003 (Demar et al.,
2007). A unique atypical strain was isolated in five of the 11
patients and was responsible for three deaths (one adult and
two congenitally infected fetus or neonate). The high lethality
of some atypical strains implies that the emergence of T. gondii
would represent a special concern. Nevertheless, the burden of T.
gondii is still poorly documented in these remote areas. Indeed,
investigating T. gondii outbreaks in remote tropical settings is
challenging due to unspecific symptoms, shipping delays, and

difficulties in processing analyses. In addition, epidemiological
investigations may be complicated by difficulties in interviewing
patients about food and cultural habits (Robert-Gangneux and
Dardé, 2012), or in logistics. Here we describe the first outbreak
of severe acute toxoplasmosis in an Amerindian village of French
Guiana and investigate the possible routes for infection, via a One
Health approach, testing patients, soil, water, and cats.We discuss
the challenges posed by T. gondii in traditional communities of
tropical areas.

METHODS

In May 2017, during the rainy season and following an episode
of flooding (Meteo France, 2017), two adult men were seen in
outpatient consultation in the health center of Camopi. One
presented diarrhea and vomiting, and was accompanied by his
14-year-old daughter who presented similar symptoms. The
other adult presented lymphadenopathy, as did his 12-year-
old son. All patients had fever for more than 2 weeks. Given
the persistence of symptoms after symptomatic treatment, a
suspicion of Amazonian toxoplasmosis was raised and a serology
was performed, which confirmed these four cases (positive IgM
and IgG).

Camopi is an Amerindian village along the Oyapock River,
surrounded by tropical rainforest (Figure 1). This remote village
of 1,800 inhabitants can be reached from the coastal road after
1 day of canoe. Hunting and fishing are the main productive
activities. A demographic transition is under way in this village,
as habitations are increasingly sedentary. This transition provides
some benefits and new habits such as electrification, drinking
water for a few households, and domestication of cats. Teko and
Wayampi are the two ethnic groups represented in the village.

After this first epidemiological signal, advice was then
given to local physicians to spread information about this
possible outbreak throughout the village and encourage villagers
with compatible symptoms to get tested. A medical team
was dispatched to the village to perform an epidemiological
investigation and look for non-diagnosed cases. The investigation
team reached the village 1 week after the identification of
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FIGURE 1 | Map of the village of Camopi, provided by the Guiana Amazonian Park (Parc Amazonien de Guyane).

the first cases. By this time, four new cases had requested a
consultation and were serologically confirmed. During the on-
field investigation, five other patients spontaneously consulted at
the health center and were confirmed by serology.

For each confirmed case, all members of the household
were considered contact cases and investigated to look for
asymptomatic or mildly symptomatic patients who had not asked
for consultation. In case of compatible symptoms and positive
serology (positive IgM and positive IgG or IgG seroconversion on
two successive blood tests), these contact cases were requalified
as confirmed cases (Demar et al., 2007). In each household,
individuals were questioned about compatible symptoms and

serology was performed for all of them. Individuals were
questioned about food practices or other risk factors using
questionnaires evaluated during previous investigations (Demar
et al., 2007). If present, cat feces were collected and rectal cotton
swabs were used to look for carriage of T. gondii in cats. Water
samples were collected in rainwater cisterns, little streams, and
brooks. Meat samples were acquired from the inhabitants and
from stores of the Brazilian bank. Soil samples were collected
around all houses, gardens, and water sources of infected families.
Random soil samples were also collected around the village. Soil
sampling was done by electing places in the village where cats had
been spotted; sandy or muddy areas close to human habitations;
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entrances to gardens and orchards; banks of brooks and streams;
and surface runoff pathways.

All serum samples were analyzed using the EIA for
Toxoplasma-specific immunoglobulin, IgG, and IgM
(Abbot Diagnostics). Seropositivity could define either acute
toxoplasmosis (IgG+, IgM+) or chronic infection (IgG+,
IgM–) and seronegativity meant an absence of infection (IgG–,
IgM–), as in previous studies (Demar et al., 2007). When acute
toxoplasmosis was serologically confirmed, blood samples
and fetal tissues were sent to the National Reference Center
(Limoges, France) for T. gondii real-time PCR, targeting the
AF 487550 gene, strain isolation in mice (two mice for each
PCR positive samples), and genotyping with 15 microsatellite
markers and strain isolation in mice (Ajzenberg et al., 2010).
To analyze the position of the isolated strains, a neighbor-
joining tree was reconstructed from the genetic distances
Dc (Cavalli-Sforza and Edwards, 1967) using a selection of
nine reference strains (Type I, Type II, and Type III) and
42 strains previously isolated from different areas in French
Guiana (1000 bootstrap replicates). Unrooted trees were
obtained with MEGA version 6 software (Tamura et al.,
2013).

Water samples were collected using Envirocheck capsules
(Pall Life Sciences, Port Washington, NY, USA). Elution was
performed according to previous studies (Lélu et al., 2011;
Gotteland et al., 2014). Soil samples went through the first step
of treatment with Tween 80 (0.1%) and sucrose 1.20, before
a series of centrifugations. Meat samples were homogenized
with trypsin and gentamycin before incubation, filtration, and
centrifugation according to previous protocols (Mercier et al.,
2011). Rectal swabs from cats were incubated overnight at
37◦C in PBS-Tween 80 (0.1%). DNA extraction was then
performed with a QIAmp R©DNAMini Kit (Qiagen, Courtaboeuf,
France) for water, meat samples (from a 200 µl aliquot of the
final suspension), and cat rectal swabs and using a FastDNA
SPIN kit (MP Biomedical) for soil samples. Amplification of
T. gondii DNA was assessed targeting the AF 487550 gene
(Ajzenberg et al., 2010). Each DNA sample was tested in
duplicates. Samples were deemed positive when both wells
were positive and undetermined in the case of only one
positive well.

PCR analyses were performed between 1 month and 1 year
after sample collection, in the Parasitology Laboratories of
Cayenne (cats feces and rectal swabs, meat) Limoges (blood
samples), and Reims (water and soils).

Ethics Statement
Methods of this urgent investigation were approved by the
relevant Ethics and Public Health authorities (Agence Régionale
de Santé de Guyane, Santé Publique France, Collectivité
Territoriale de Guyane, Parc Amazonien de Guyane). Animal
care and use protocol as well as human investigations were
approved by the Presidency of the Collectivité Territoriale de
Guyane (Territorial Collectivity of French Guiana) on behalf
of the Comité Accès et Partages des Avantages (Committee
for Accessing Biodiversity and Sharing Benefits) under
the emergency procedure “APA-973-24” (Document N◦

340542/2017/PATDDT/DDDT//FB) according to national
(article L.331-15-56, Code de l’Environnement; decree 2013-968
approving the charter for the Guiana Amazonian Park) and
European (rule 511/2014 of the European Parliament) guidelines.
Animal experimentation conducted in Limoges respecting the
3R aspects was approved and accepted by the Ethics Committee
for Animal Experimentation n◦33 validated by the French
Ministry of National Education, Higher Education and Research
(Registration numbers: APAFIS#13914-2018030516473189 v2).
All adult patients provided a written consent for themselves and
their underage children.

RESULTS

During May and June 2017, 60 people were reached, six refused
sampling. Twenty cases out of 54 tested inhabitants (37%)
(among a population of roughly 1,800) presented a serology
compatible with acute toxoplasmosis (positivity of both IgG and
IgM anti-T. gondii). These 54 people all belonged to households
where at least one of the initial patients was diagnosed (Table 1).
Some of these contact cases turned out to be confirmed cases
after medical examination and blood tests. Confirmed cases were
observed in six adults and 14 children belonging to nine different
households. All confirmed cases, including asymptomatic ones,
presented very high levels of T. gondii IgM and IgG, a typical
feature of Amazonian toxoplasmosis which favors acute infection
rather than chronic infection with residual IgM (Table 2). Other
tested inhabitants presented a chronic infection (18.5%) or
absence of infection (44.5%). Among the 10 patients with chronic
infection, three were more than 50 years old, three were <20
years old, four were aged between 20 and 50. Sex ratio among
these patients was 1:1. An epidemiological curve and a chart of
the investigation timeline are presented in Figure 2.

Concerning confirmed cases, mean time to diagnosis was 30
days (median 38 [7–51]), median age of the cohort was 14.5
years old, sex ratio was 3:2. Clinical and biological features
of these cases are presented in Table 2. The most frequent
clinical symptoms were fever (15 patients, 75%) and cough
(eight patients, 40%). The most frequent biological disorders
were hyponatremia and hepatic cytolysis (six patients, 30%). Four
patients were asymptomatic and diagnosed in the systematic
screening of people in contact with cases. Four patients (two
adults and two children) were hospitalized due to the risk of
clinical worsening, but none of them evolved toward severe
pneumonia. Intensive care was never required. A pregnant
woman was infected at week 10 of pregnancy and a treatment
with spiramycin (rovamycin) 3 g/d was started. At week 19 of
pregnancy, fetal cardiac pulsations could no longer be heard
and intrauterine death was confirmed by echography. One
clonal strain was isolated by PCR in the fetus (liver, brain and
cardiac biopsies, and peritoneal fluid) (GUY070-KEL, ID of the
Toxoplasma Biological Resource Centre: TgH 18070) and by PCR
and mouse bioassay from the blood of a 2-year-old boy with
no family relation (GUY066-MON, TgH 18066). These strains
clearly belong to the Amazonian genetic group as shown in the
divergence tree (Figure 3).
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TABLE 1 | Epidemiological investigation of the 9 infected households, Camopi, French Guiana.

No. people living

in household

Date of first

symptoms

IgM+ IgG+

confirmed cases

IgM– IgG+
d

contact cases,

chronic infection

IgM– IgG–d contact

cases, absence of

infection

PCR +
d

confirmed cases

with parasitemia

Household 1 5 05/05/2017 5 (n = 2 adults

and n = 3 children)

0/5 0/5 0/5

Household 2 6 05/24/2017 2 (n = 1 adult and

n = 1 child)

0/6 4/6 1 (girl, age 14)

Household 3 6 05/17/2017 1 (child) 1/6 4/6 0

Household 4 6a 05/31/2017 4 (n = 1 adult and

n = 3 children)

1/5 0/5 2 (pregnant

woman and fetusc)

Household 5 5a 05/29/2017 1 (adult) 0/6 3/6 0

Household 6 6 05/08/2017 2 (children) 1/6 3/6 0

Household 7 6b 05/19/2017 3 (n = 1 adult and

n = 2 children)

0/6 1/6 1c(boy, age 2)

Household 8 7 06/20/2017 1 (child) 3/7 3/7 0

Household 9 8b 06/20/2017 1 (child) 2/6 4/6 0

aOne person refused sampling.
bTwo persons refused sampling.
cGenotyped strain.
d IgG+, positive T. gondii IgG antibodies; IgG–, negative T. gondii IgG antibodies; IgM+, positive T. gondii IgM antibodies; IgM–, negative T. gondii IgM antibodies; PCR+, positive T.

gondii DNA detection by PCR.

All households shared risk factors for T. gondii linked
to their traditional way of life: most heads of families were
hunters, and children used to eat both game meat and Brazilian
chicken. In addition, all families produced and drank homemade
caichiri (traditional cassava alcohol) and often shared it with
neighbors and relatives. Water was boiled by only one household.
Households 7 and 8 used water from deep pumps but could
have been infected when drinking caichiri prepared by other
families. Other risk factors reflected a new exposure to the
parasite due to changes in habits such as domestication of
cats and consumption of industrialized meat from stores of
Vila Brazil, a small trading post located just on the other
side of the river, on the Brazilian bank (Table 3, Figure 1).
Epidemiological features of each household are detailed in
Table 3. These households are numbered according to their
date of diagnosis. Households 1 and 2 harbored the four
first cases.

Toxoplasma gondii was detected by PCR in one water
sample out of six from a brook used by a household (Table 4).
Parasites were also detected in two out of three pieces of meat,
corresponding to frozen chicken from a Brazilian store and a
piece of game meat (peccary). Cats rectal swabs were all negative,
as were 12 samples of cat feces collected across four households.
Two soil samples collected during the investigation were clearly
positive, including one collected in front of Household 4 and one
random sample from the riverfront of the health center. Seven
soil samples were undetermined, five of them around infected
households (on the soil of the brook used by Households 5 and 2,
and close to homes of Households 4, 5, and 9) and two random
samples across the village. MS genotyping was not possible for
the PCR positive environmental and meat samples due to an
insufficient amount of DNA. Detailed results of environmental
samples and meats are presented in Table 4.

DISCUSSION

This is the largest outbreak of acute toxoplasmosis ever
reported in French Guiana, and the first one in an Amerindian
community. This epidemiological investigation provided
evidence for the spread of T. gondii in this remote area, which
until now had only reported sporadic cases. We observed several
changes in human habits in this community that may have
reinforced the exposure to T. gondii. The outbreak occurred
following an abnormal climatic event with an important episode
of flooding and warming. The conjunction of all these factors
may have paved the way for an increased parasitic circulation of
this zoonotic disease.

Though 16 patients were symptomatic, clinical presentations
lacked the respiratory severity that was often reported in
Amazonian toxoplasmosis (Carme et al., 2002; Demar et al.,
2012). As in previous studies, the involvement of an atypical
strain does not seem to be necessarily associated with a poor
outcome (Demar et al., 2007; Carme et al., 2009; Blaizot et al.,
2018). Indeed, atypical strains are characterized by a high
genotypic diversity, especially in the Amazon region, which
may correspond to diverse pathogenicity in humans and mice.
Moreover, host factors probably play an important role in the
severity of Amazonian toxoplasmosis, and genetic susceptibility
might be different in this Amerindian population. Indeed, no
respiratory involvement was reported in a T. gondii outbreak of
US military occurring in the Panama jungle (Benenson et al.,
1982) nor during the Santa Isabel outbreak in Brazil, which was
linked to an atypical strain (de Moura et al., 2006; Vaudaux
et al., 2010). Another feature of the Camopi outbreak is the
absence of eye involvement, in contrast to what occurs frequently
in Amazonian cases of T. gondii infection (Carme et al., 2009;
Blaizot et al., 2018).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 September 2020 | Volume 10 | Article 401115

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Blaizot et al. First Toxoplasmosis Outbreak in Amerindians

TABLE 2 | Clinical and laboratory features of the 20 cases of acute

toxoplasmosis, Camopi, French Guiana.

Clinical and laboratory features No. cases (%)

Clinical signsa

Asymptomatic 4/20 (20)

Fever 15/20 (75)

Cough/Pneumonia 8/20 (40)

Lymphadenopathy 6/20 (30)

Headache 6/20 (30)

Digestive signs 5/20 (25)

Myalgia 1/20 (5)

Conjunctivitis 1/20 (5)

Skin rash 1/20 (5)

Hepatomegaly 1/20 (5)

Inpatient care 5/20 (25)

Adultsb 3/6 (50)

Children 2/14 (14.3)

Laboratory disorders

Positive T. gondii IgG and IgMc

Mean levels in IU/mL (min, max):

IgG

IgM

20/20 (100)

780 (25.2–1814.4)

19.25 (4.1–31.0)

Hyponatremia 6/20 (30)

Hepatic cytolysis 6/20 (30)

Lymphocytosis 3/20 (15)

Elevated creatine kinase 3/20 (15)

High lactate dehydrogenase 3/20 (15)

High C-reactive protein 2/20 (10)

Eosinophilia 2/20 (10)

Outcomed,

Complete responsee 20/20 (100)

Death 0/20 (0)

Normal Fundoscopy at 6 months 20/20 (100)

aSplenomegaly was not detected, but proper examination with an examination table was

not possible in traditional houses.
bOne adult was hospitalized in the Dermatology Department (important skin rash), one

in the Infectious Diseases Department, and a pregnant woman was treated in the

Obstetrics Department.
cDetection threshold: 3IU/mL (IgG) and 0.6 IU/mL (IgM).
dAll confirmed cases were treated with sulfamethoxazole (1,600 mg/d) and trimethoprim

(320 mg/d) for 21 days. A fetus died at week 19 of pregnancy but was not included in this

table of born patients.
eClearance of all symptoms after 21 days of treatment.

A traditional way of life based on hunting, fishing, gathering,
and agriculture seems to be associated with accidental exposures
to wild strains of T. gondii. Indeed, seroprevalence of T. gondii
was as low as 18.5% (95%CI [8.1–28.9]) of sampled people during
this outbreak. Seroprevalence was even lower (8.3%) amongst
the tested population during the Patam outbreak (Demar et al.,
2007). In contrast, in a study of three indigenous populations
in Brazil, including Wayampi from the Brazilian bank who
are ethnically related to their French Guiana counterparts,
the authors reported a seroprevalence varying between 50
and 80% (Sobral et al., 2005). An even higher prevalence of
specific IgG antibodies was reported in Amerindians of the

Venezuelan Amazon (88%) (de la Rosa et al., 1999). These
findings show that the level of exposure to T. gondii can
be very diverse between indigenous populations of Amazonia.
In addition, the very low level of exposure in Amerindians
leaves them vulnerable to sudden outbreaks, such as the one
hereby reported. Even if our sample size is small, it should be
noted that we did not report any significant increase of the
IgG prevalence with age, in contrast with Brazilian findings
(Sobral et al., 2005). We did, however, found an equal sex
ratio between male and women with chronic infection, as in
the findings of Sobral et al. Men and women are engaged
in activities which are frequently at risk of contact with T.
gondii (hunting for men, cooking for women, agriculture for
both genders).

Wild and domestic felids possibly played an important role in
spreading oocysts throughout the village. Though seven of the
soil samples brought undetermined results, they still bear some
significance, due to the poor sensitivity of PCR and the small
amount of DNA in soil samples (Lélu et al., 2011; Gotteland
et al., 2014). Several families reported a recent domestication of
cats in the last 6 months, with multiple births of kittens which
were traded or offered as gifts. This recent breeding could have
amplified the wild cycle in the direct proximity of dwellings as
these felids can mix with their wild counterparts or can hunt
infected mammals (Carme et al., 2009; Mercier et al., 2011).
Though PCR was negative on all cat feces samples and rectal
swabs, these results do not rule out the involvement of domestic
or wild felids in this outbreak, due to the low rate of detection for
both techniques and the inconstant shedding of oocysts in felids
feces (Jones and Dubey, 2010). Though examined cats may not
have been shedding cysts at the time of the investigation, they
might have shed in the environment several weeks before and
contaminated water sources.

A hypothesis of waterborne outbreak can be supported by the
detection of T. gondii DNA in a water sample from an infected
household, consumption of unfiltered water by most inhabitants,
sharing of caichiri, and dispersion of cases throughout the village.
The 2017 rain season was one of the wettest and hottest ever
recorded in French Guiana (Meteo France, 2017), particularly in
May, when rainfalls were 32% above normal. As the outbreak
happened following this episode of rainfall, oocysts may have
contaminated rivers used as water sources. Indeed, it has been
shown that oocysts can persist in the soil and can be washed into
bodies of water via rain and river flowing (Jones andDubey, 2010;
Lélu et al., 2011). Previous reports in Vancouver and Santa Isabel
have highlighted the role of cougars or cats directly infecting
water supplies with their feces (Aramini et al., 1999; Vaudaux
et al., 2010). This scenario could also have happened in Camopi as
most brooks, including the positive one, were not protected by a
cap. Consumption of contaminated water has been incriminated
in several outbreaks of T. gondii in the Americas (Benenson
et al., 1982; Pino et al., 2009). Several oocysts-borne outbreaks
have been described in Brazil after consumption of contaminated
water (Ferreira et al., 2018). Socio-economic and logistical
factors such as low access to healthcare, poverty, and lack of
water infrastructure have been shown to contribute to oocysts
transmission (Ferreira et al., 2018). In peri-urban regions of
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FIGURE 2 | Timeline of the investigation and epidemiological curve of tested and confirmed cases, Camopi toxoplasmosis outbreak, 2017.

Brazil, high levels of environmental contamination with oocysts,
the presence of a T. gondii genetic diversity of strains, a rich
wild feline biodiversity in peri-urban, rural, and forested areas,
and the proliferation of stray and domestic cats were described
as specific factors contributing to a high prevalence of T. gondii
infections (Shapiro et al., 2019). These features are likely to be
found in many endemic areas and were observed in Camopi. A
non-archetypal strain of T. gondii, isolated from a water supply,
was identified as the causative agent of an outbreak in Brazil
(Vaudaux et al., 2010). Waterborne infections in previous reports
frequently involved hundreds of cases in urban settings due to
the contamination of big water reservoirs (Bowie et al., 1997; de
Moura et al., 2006) and cases spread over several weeks (Meireles
et al., 2015). Similarly, we observed a temporal dispersion of cases
from early May to late June. However, the rural environment
of the village and the small population along with the absence
of a common reservoir for the whole village might explain the
relatively small number of cases. Positivity of one water sample
out of six was not surprising due to a delay of water collection
after the beginning of the outbreak and the small volume used
for filtration (10L) to avoid membrane saturation due to the high
turbidity. The importance of improving the quality of drinking
and irrigation water has been emphasized by a recent review of

T. gondii outbreaks which highlighted a shift in the epidemiology
over the last 20 years, oocysts-mediated outbreaks becoming
more frequent in the 2000s (Pinto-Ferreira et al., 2019).

Toxoplasmosis has long been characterized as a food-borne
disease and consumption of uncooked gamemeat has historically
been described as a typical cause of Amazonian toxoplasmosis
(Carme et al., 2002; Demar et al., 2012). Implication of food in
this outbreak was supported by a positive PCR in both game
meat and industrial chicken samples. Villagers have changed
their habits and now tend to trust frozen meat from Brazilian
stores. A broken cold chain could have happened in groceries
as we have noticed that this area is not continuously supplied
with electricity and power outages are frequent due to the
lack of a backup generator. There is no sanitary control in
this remote settlement completely isolated from the rest of
Brazil. As for cooking, either for industrial or game meat,
heating at 60◦C for 10min is necessary to kill all cysts
in muscles (El-Nawawi et al., 2008). However, interrogated
Amerindians cooked the meat by boiling or buccan. Buccan is
a native South American name for a wooden framework on
which meat is smoked over a fire. Several men complained
of eating meat undercooked by their wives. Fresh vegetables
cultivated in rural areas are a possible source of T. gondii

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 September 2020 | Volume 10 | Article 401117

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Blaizot et al. First Toxoplasmosis Outbreak in Amerindians

FIGURE 3 | Neighbor-joining clustering of T. gondii strains from French Guiana, based on 15 microsatellite markers: circles and triangles correspond, respectively to

strains of human and animal origin; black circles correspond to the 2 strains isolated during the Camopi outbreak with 15/15 markers amplified; red, green, and dark

blue squares are reference strains of Type I, Type II, and Type III genotype, respectively.

contamination (Hohweyer et al., 2016) and the ingestion of
green vegetables has been associated with an outbreak in Saõ
Paulo (Ekman et al., 2012). All households also practiced
traditional agriculture in small gardens exposed to felids feces
but only two cassava samples could be tested and found negative
in PCR.

Amerindian populations of French Guiana have always been
exposed to toxoplasmosis due to their practice of hunting
and traditional agriculture. However, the recent domestication
of cats, which until now were very rare in the village of
Camopi, along with the shift from nomadic life to fixed
habitations, constitute new risk factors for this disease. The
brutal introduction of new life habits in a population not
prepared for Western civilization is called an acculturation
process. This phenomenon has been previously analyzed as
a factor of increased circulation of T. gondii, particularly in
communities of South America where the presence of domestic
cats is coupled with the absence of modern water supply (Chacin-
Bonilla et al., 2001; Sobral et al., 2005; Bóia et al., 2008). However,
the threat posed by acculturation on the health of Amerindians
has never been analyzed to such an extent. Moreover, one

should also bear in mind that these findings apply not only
to Native Amerindians of South America but also to non-
indigenous populations of low economic level and marginal
communities in South America (Diaz-Suárez and Estevez, 2009)
and many indigenous populations worldwide (Fan et al., 2003;
Hotez, 2010; Ngui et al., 2011). Indeed, we report among the
Teko and Wayampi people several risk factors such as close
contact with cats and dogs, consumption of undercooked game
meat, drinking un-boiled and unsafe water, children playing
in the dirt, or houses with floors made of mixed soil and
sand. Interestingly, many of these epidemiological features have
been described in indigenous populations who are over-exposed
to toxoplasmosis, such as the Orang Asli of Malaysia (Ngui
et al., 2011), or aboriginal populations of Northern Thailand
(Fan et al., 2003), and the mountainous areas of Taiwan (Fan
et al., 1998). In the same way, in Inuit communities of the
Arctic, toxoplasmosis has been associated with consumption
of caribou and seal meat, or contaminated water (Hotez,
2010).

Although a clonal atypical strain of T. gondii was identified
in two unrelated patients in this study and confirmed
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TABLE 3 | Risk factors of toxoplasmosis of the 9 infected households, Camopi, French Guiana.

Felids around the house Cooking method Water boiling Water sources Homemade products Ethnicity

Household 1 Domestic cats (n = 2) Boiling buccan No Deep well pump

Brook

Caichiri

Wasai juice

Wayampi

Household 2 No Boiling buccan

stew

No Rainwater tank

Brook

Caichiri

Wasai juice

Sugar cane juice

Teko

Household 3 Domestic kitten (n = 1) Boiling stewing Yes Rainwater tank

Brook

Caichiri Teko

Household 4 Domestic cats (n =1 adult

and n = 1 kitten)

Boiling Caichiri only Brook Caichiri

Sugar cane juice

Teko

Household 5 Wild cat (n = 1)

Domestic cats (n = 1 adult

and n = 1 kitten)

Boiling buccan

stew

Cramanioc only Rainwater tank,

brook

Caichiri Wayampi

Household 6 Puma

Jaguarondi

Domestic kitten (n = 1)

Boiling buccan Yes Deep well pump

Brook

Caichiri Wayampi

Household 7 Puma Boiling No Deep well pump Caichiri Teko

Household 8 No Boiling buccan No Deep well pump Caichiri Wayampi

Household 9 No Boiling buccan No Brook Caichiri Teko

the epidemic transmission, it did not support a specific
transmission route. Thus, the main limitation of our study
was the difficulty to isolate and compare the strains from
positive human and environmental samples. Isolation of
strains is challenging due to the transient presence of the
parasite and the difficulty in obtaining a complete genotype
due to a low amount of DNA. Another limitation derives
from the difficulties of medical interrogation in Amerindian
villages despite the presence of a translator. Hunters were
often reluctant to give away information on their hunting
practices and women who are responsible for cooking were
unwilling to answer questions. Finally, the absence of a
negative control group did not allow us to perform a real
case-control study in order to determine a specific way
of contamination.

Our findings suggest that numerous actions should be
undertaken to improve the management of toxoplasmosis in
remote tropical areas. Eradication of cats in islands has been
linked to important benefits in terms of public health (de
Wit et al., 2019) and should be contemplated in Amerindian
communities where intermingling with wild felids is particularly
dangerous, as it can enhance human contact with the wild cycle
of T. gondii. As recently suggested by Pinto-Ferreira et al. (2019),
a greater attention should be paid to the quality of drinking
and irrigation water, and to the adoption of recommendations
for tracking outbreaks with the aim of eliminating transmission
routes, avoiding exposure, or inactivating the parasite before
consumption. Another improvement in public health policies
would be the development of accurate point-of-care tests for
T. gondii in isolated areas (Begeman et al., 2017). Indeed, the
median time between the first symptoms and diagnosis for
each patient was very long in our report (38 days) due to
a lack of awareness in local clinicians and due to logistical
issues in analyzing blood samples. Point-of-care tests should

be improved to detect both IgG and IgM, in order to allow
biological confirmation of acute toxoplasmosis, and should
be tested with atypical genotypes which do not belong to
the main lineages. The burden of acute toxoplasmosis in
pregnant women has benefited from some attention, showing
that the prevalence during pregnancy can be high in low-
income, tropical countries (Rostami et al., 2019). However, one
should not forget the possible occurrence of acute toxoplasmosis
amongmen and non-pregnant, immunocompetent women, such
as in this outbreak in the village of Camopi. Additionally,
one must keep in mind that severe toxoplasmosis might
occur in other parts of the world and remain under-
diagnosed, even though numerous reports of severe acute
toxoplasmosis in South America have led to the description
of the “Amazonian toxoplasmosis” entity. Indeed, five cases of
severe toxoplasmosis in French travelers returning from West
and Central Africa have recently been reported in France (Leroy
et al., 2019).

In conclusion, the investigation of this toxoplasmosis
outbreak highlighted new life habits among this Amerindian
community. Fixed habitations have been built in the last
few decades but without providing safe water sources. These
sedentary settlements increase the risk of grouped cases,
particularly if domestic or wild felids are allowed to come in close
contact with habitations. Public health policies should target
these indigenous communities, providing safe water supply,
health recommendations, and epidemiological surveillance of
acute toxoplasmosis. Toxoplasmosis was not listed among a
recent review of Neglected Tropical Diseases in the Americas
(Hotez et al., 2008). There is consequently no roadmap
for its control in remote areas and traditional communities.
Future studies should look for possible outbreaks or emerging
circulation of T. gondii in subtropical areas, including outside
South America, in order to assess the exact burden of the disease.
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TABLE 4 | Results of Toxoplasma gondii PCR on environmental and meat samples collected during the outbreak investigation, Camopi village, French Guiana.

Cat rectal swabs Cat feces Vegetables Meat Water Soil

Household 1 Negativea (4/4) Negative (3/3) – – Negative (1 brook) Negative (3/3)

Household 2 – – – – Negative (1 brook) Undetermined (1/1) (Ct

37.8)

Household 3 Negative (2/2) Negative (2/2) – – – Negative (3/3)

Household 4 – Negative (3/3) Negative (1 fresh

cassava)

Positive (1 peccari,

Ctc 36.1)

– Positive (1/5) (Ct 29

and 33.9)

Undetermined (2/5) (Ct

39 35.5)

Negative (2/5)

Household 5 Negative (1 kitten,

1 adult)

Negative (4/4) Negative (1 fried

cassava)

– – Undetermined (1/1) (Ct

39.4)

Household 6 –b – – – Negative (1 brook) Negative (2/2)

Household 7 – – – – – Negative (2/2)

Household 8 – – – – Negative (1 deep, 1

well pump)

Negative (2/2)

Household 9 – – – – Positive (1 brook, Ct

36.6)

Undetermined (1/1) (Ct

38.2)

Random soil samples – – – – – Positive (1/33) (Ct

34.8 and 35.5)

Undetermined (2/33)

(Ct 39.3 and 38.9)

Negative (30/33)

Brazilian stores – – – Positive (2 frozen

chicken, Ct 38.1 and

36.8)

– –

a “Positive”, “negative” and “undetermined” corresponds to T. gondii PCR results. Number of tested samples and type of samples are indicated into brackets. Undetermined samples

correspond to positivity of only one well over two duplicates.
bNot assessed.
cCycle threshold.

Bold values correspond to positive PCR.
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There are certain critical periods during pregnancy when the fetus is at high risk for

exposure to teratogens. Some microorganisms, including Toxoplasma gondii, are known

to exhibit teratogenic effects, interfering with fetal development and causing irreversible

disturbances. T. gondii is an obligate intracellular parasite and the etiological agent of

Toxoplasmosis, a zoonosis that affects one third of the world’s population. Although

congenital infection can cause severe fetal damage, the injury extension depends on

the gestational period of infection, among other factors, like parasite genotype and host

immunity. This parasite invades the Central Nervous System (CNS), forming tissue cysts,

and can interfere with neurodevelopment, leading to frequent neurological abnormalities

associated with T. gondii infection. Therefore, T. gondii is included in the TORCH complex

of infectious diseases that may lead to neurological malformations (Toxoplasmosis,

Others, Rubella, Cytomegalovirus, and Herpes). The retina is part of CNS, as it is

derived from the diencephalon. Except for astrocytes and microglia, retinal cells originate

from multipotent neural progenitors. After cell cycle exit, cells migrate to specific layers,

undergo morphological and neurochemical differentiation, form synapses and establish

their circuits. The retina is organized in nuclear layers intercalated by plexus, responsible

for translating and preprocessing light stimuli and for sending this information to the

brain visual nuclei for image perception. Ocular toxoplasmosis (OT) is a very debilitating

condition and may present high severity in areas in which virulent strains are found.

However, little is known about the effect of congenital infection on the biology of retinal

progenitors/ immature cells and how this infection may affect the development of this

tissue. In this context, this study reviews the effects that congenital infections may cause

to the developing retina and the cellular and molecular aspects of these diseases, with

special focus on congenital OT.

Keywords: congenital toxoplasmosis, TORCH, retinal development, Toxoplasma gondii, congenital infections,

teratogenesis

THE RETINA AND VISION

For many vertebrates, especially humans, the main environmental perception mechanism is the
sense of vision. Vision determines physiological behaviors such as feeding, predation, and in the
case of humans, complex social behaviors, such as bonding and the ability to recognize people’s
emotions by observing their faces. This fundamental skill is permitted by the presence of the
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visual system. Visual impairment can limit people’s ability to
perform everyday tasks, and impaired interaction with the
surrounding world affects quality of life. People with visual
impairment are three times more likely to suffer from depression
and anxiety disorders and to be unemployed. Therefore, it
is particularly important to prevent and/or to treat visual
impairment and research therapeutic alternatives to vision
pathologies. The tissue responsible for the transduction of light
stimulus and pre-processing of visual information is the retina,
a highly organized network of nerve cells located in the back of
the eye.

The vertebrate retina presents a well-conserved laminar
organization with three layers of cell bodies, intercalated by two
layers of synaptic contacts (Figure 1). The outer nuclear layer
(ONL) lies in the outer portion of the retina, close to the choroid,
and contains the photoreceptor cell bodies (cones and rods). The
inner nuclear layer (INL), in turn, contains the cell bodies of
horizontal, bipolar, amacrine andMüller glia, and a small number
of interplexiform cells and displaced ganglion cells. Finally, in
the inner portion of the retina, closer to the vitreous chamber
of the eye, lies the ganglion cell layer (GCL), which comprises
the cell bodies of retinal ganglion cells (RGCs) and displaced
amacrine cells. All these neuronal cell types communicate
through synapses, forming the outer (OPL) and inner (IPL)
plexiform layers. In the innermost portion of the retina, axons
from the RGCs form the nerve fiber layer (NFL). These axons
transmit the preprocessed information from the retina to the
brain visual nuclei through the optic nerve (ON). It is important
to note that, contiguous to the photoreceptors, located in the
outermost part of the retina, lies the retinal pigmented epithelium
(RPE), an important player for appropriate retinal development
and for the physiology of the mature retina (for review, Strauss,
2005).

Photoreceptors contain photosensitive molecules (visual
pigments) that enable the transduction of the light stimulus.
These visual pigments are located in the outer portion of
photoreceptors, named the outer segment. Rods and cones
possess a specific visual pigment and, due to morphological
and neurochemical specializations, work under different light
conditions. As rods are highly sensitive to light, they mediate
vision in dim light (scotopic) conditions, such as during the

Abbreviations: ALCAM, activated leukocyte cell adhesion molecule; ARPE-19,

human retinal pigmented epithelial cells; CCL21, C-C Motif Chemokine Ligand

21; CTB, Cytotrophoblast; CMV, Cytomegalovirus; CNS, Central Nervous System;

CRA, Central Retinal Artery; CT, Congenital Toxoplasmosis; CXCL10, C-X-C

motif chemokine 10; E, Embryonic day; GCL, Ganglion Cell Layer; GFAP, glial

fibrillary acidic protein; GW, Gestational Week; HIV, Human Immunodeficiency

Virus; HSV, Herpes simplex virus; HVEM, Herpesvirus entry mediator; ICAM-1,

Intercellular AdhesionMolecule 1; IFN-γ, InterferonGamma; ILM, Inner Limiting

Membrane; INL, Inner Nuclear Layer; IPL, Inner Plexiform Layer; iPS, induced

pluripotent stem cell; NFL, Nerve Fiber Layer; OLM, Outer Limiting Membrane;

ON, Optic Nerve; ONL, Outer Nuclear Layer; OPL, Outer Plexiform Layer; OT,

Ocular Toxoplasmosis; P, Postnatal day; PCD, Programmed Cell Death; RGC,

Retinal Ganglion Cells; RPC, Retinal Progenitor Cells; RPE, Retinal Pigmented

Epithelium; RV, Rubella Virus; TEER, Transepithelial (/endothelial) Electrical

Resistance; TNF-α, Tumor Necrosis Factor alpha; TORCH, Toxoplasmosis,

Others, Rubella, Cytomegalovirus and Herpes; V-CAM, Vascular cell adhesion

protein; ZikV, Zika virus.

night. Although cones are less sensitive to light, mediating
vision in daylight conditions (photopic), the cone circuitry
is responsible for the high resolution (temporal and spatial)
capacity of the retina and for color vision (Kolb, 2003).

Bipolar cells receive information from photoreceptors
through synapses in the OPL, transferring it to ganglion cells,
in IPL synapses, forming the radial pathway of the retina.
Horizontal and amacrine cells modulate this signal through the
horizontal/lateral pathway, enriching retina performance (visual
acuity, contrast, among others).

Regarding the glial cells present in the mature retina, the
main cell types are Müller glia, astrocytes and microglia. Müller
glia is the only type of glia originated from retinal precursors
(Turner and Cepko, 1987) and the predominant retinal glia in
all species. Its cell body is located in the middle of the INL, with
processes extending throughout the entire radial thickness of the
retina, which arborize to form the outer (OLM) and inner (ILM)
limiting membranes (Figure 1) (Bringmann and Reichenbach,
2001; Newman, 2004). Astrocytes, non-retinal originated cells,
migrate to the retina through the optic nerve (ON) during
development (Stone and Dreher, 1987; Chan-Ling, 1994), and
assume a location in the NFL (Figure 1) where they establish
a close relationship with blood capillaries. The microglia, a
mesodermal originated cell, also migrates to the retina during
development (Chan-Ling, 1994) forming a resident population
located mainly in the OPL, IPL and NFL (Figure 1).

The blood supply of the mammalian retina comes from two
sources, the central retinal artery (CRA) and from choroidal
vascularization (Figure 1). In humans, the CRA is derived from
the ophthalmic artery, a branch of the internal carotid artery.
It enters the eye through the optic disc and branches into the
retina, forming peripapillary and intraretinal (inner and outer)
beds, which supply blood to the innermost layers of the retina.
The peripapillary bed is located in the innermost portion of the
NFL, while the inner intraretinal bed is located in the GCL,
and the outer intraretinal bed occupies the IPL and INL to the
OPL. Mouse retina follows the same vascular organization as the
human retina but, interestingly, in the rat retina, the peripapillary
bed is absent. The outermost layers of the retina, especially the
ONL, depend on the choroidal vascularization supply (Zhang,
1994).

RETINAL DEVELOPMENT

The retina is a highly organized tissue with a complex
array of synapses resulting in efficient light information
transduction, pre-processing, and transmission. Therefore,
retinal development must produce the right number of different
retinal cell types, as well as the functional circuitries. According
to this, this phenomenon is highly regulated by both intrinsic and
extrinsic factors.

The retina originates from the posterior part of the forebrain,
the diencephalon (Hamburger and Hamilton, 1951; Ambroise-
Thomas and Petersen, 2000), being a part of the central nervous
system. Optical vesicles generated from the diencephalon
undergo invaginations to form the optic cup (Smirnov and
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FIGURE 1 | Schematic organization of the vertebrate retina. (Left) Vertical section of mouse retina labeled with nuclear marker DAPI revealing the organization of the

retina in layers of cell bodies and process named as follows: ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL),

outer nuclear layer (ONL), and inner/outer segment of photoreceptors (IS/OS). (Right) The retina consists of different cell types located in specific layers. Cell bodies of

rod and cone photoreceptors (brown) are located in the ONL. Both photoreceptors perform synapses in the OPL with bipolar (purple) and horizontal (lilac) cells, which,

in turn, show the cell bodies in the outer portion of INL, as well as amacrine (yellow) cells and Müller (blue) cells. Bipolar and amacrine cells arborize in the IPL,

contacting ganglion cell dendrites. Rod bipolar cells arborizes in the inner portion of IPL. Cone bipolar cells (right pair of purple cells) are subdivided in ON and OFF

bipolar cell contacting the same cone in the OPL and synapsing, respectively, in the ON (b) or OFF portion of the IPL [dashed line shows the functional division of the

IPL in OFF (a) and ON (b) circuitries. Ganglion (orange), as well as displaced amacrine (dA) cell bodies are situated in the GCL. Axons of ganglion cells form the nerve

fiber layer (NFL), leave the retina through the optic head nerve taking the information to visual brain nuclei by optic nerve (ON). The three types of glial cells (Müller,

astrocytes, and microglia) are found in different retinal layers. Astrocytes (green) are restricted to the inner portion of the retina, in the NFL and GCL, and have a close

relation to blood vessels. Microglia (dark purple) appear preferentially in the plexiform layers (IPL and OPL). Finally, Müller cells, the predominant glia in the retina,

extend their processes radially throughout the retina forming the inner limiting membrane (ILM) and the outer limiting membrane (OLM). Muller glia processes interacts

with almost all retinal cell types, including blood vessels, displaying a crucial role in the physiology of this tissue. In mice and humans, the inner retina is vascularized by

three capillary branches of central retinal artery. The outer retina, with the avascular photoreceptor region, relies on the choriocapillaris (Ch) lying beneath the retinal

pigment epithelium (RPE)]. Scale bar: 20µm.

Puchkov, 2004; Heavner and Pevny, 2012). The inner wall of
this structure forms the retina, while the outer wall forms the
pigmented epithelium (Ambroise-Thomas and Petersen, 2000;
Smirnov and Puchkov, 2004; Fan et al., 2016).

Early vertebrate retinogenesis is characterized by two aspects:
the multipotency of retinal progenitor cells (RPC) and the
well-conserved birth order of retinal cell subtypes (Dyer and
Cepko, 2001; Marquardt and Gruss, 2002). In particular, retinal
progenitor subpopulations have the ability to originate all
neurons found in the retina, demonstrating the multipotent
nature of these cells (Wetts and Fraser, 1988). Concerning the
conserved order of retinal cell birth, ganglion cells are the first
cells to be generated while bipolar cells are typically the last
(Carter-Dawson and Lavail, 1979; Dräger, 1985; Young, 1985;
Prada et al., 1991, Figure 2). However, the generation period

of a given cell type usually overlaps and correlates with that of
another cell type during the embryonic and/or postnatal period,
depending on the species (Young, 1985; Prada et al., 1991; Cepko
et al., 1996; Georges et al., 1999; Yang, 2004; Voinescu et al.,
2009). It is noteworthy that all retinal development phenomena
(cell generation, programmed cell death and synaptogenesis,
among others) occur in a central-periphery gradient, with central
regions (fovea in the human retina) maturing first, followed by
the periphery.

In order to generate all retinal cell types, RPCs first undergo
repeated cell divisions to increase the proliferating cell pool
before chronologically leaving the cell cycle. Thus, some RPCs
leave the cell cycle earlier to originate early cell types (ganglion
and horizontal cells), while others stay in the cell cycle to generate
late cell types (bipolar cells and Müller’s glia) (Martins and
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FIGURE 2 | Time course of retinal neurogenesis in human and mice. There are two main waves of retinal cell birth from early and late progenitors. The first wave

begins around embryonic day (E) 10–18 in mice and gestational week (GW) 6–18 in humans, with ganglion (dark blue) cells being the first cell type to exit the cell

cycle, followed by horizontal (purple), cone photoreceptors (green), and amacrine cells (yellow line). Late progenitors generate rod photoreceptors (magenta line) from

E12/GW6, bipolar cells (red line) from E16/GW14 and Müller glial cells (light blue) from E18/GW18 until P7/GW30.

Pearson, 2008). As mentioned previously, the cell generation
sequence is well-conserved in vertebrate species but the specific
day that each cell type exits the cell cycle will differ (Table 1,
Figure 2). For ganglion cells, the generation period occurs from
E11 to E19 in mouse (Dräger, 1985), and from gestational week
(GW) 6 to GW14 in the human fovea (finishing at GW30 in the
whole retina).

After the cell cycle exit, immature neuron/glial cells will
migrate to a portion of the tissue, forming the retinal layers.
According to the fact that ganglion cells are the first cell type to
exit the cell cycle, the ganglion cell layer is the first to appear.
These cells begin to differentiate soon after their generation
and begin neurite growth, forming the inner plexiform layer
(IPL). RPCs maintain the generation of new cells which migrate
and form other retinal layers in a chronologically maintained
sequence of INL, ONL, OPL. In humans, Smirnov and Puchkov

(2004) described the migration of RPCs, forming INL and
ONL from GW7, which maintains a proliferative state at these
layers. The generated cells began to differentiate and generate
synapses. The first synapses in the IPL and OPL were visualized
at GW12 in the future fovea of human retina (Hollenberg
and Spira, 1973), whereas synaptophysin, a good marker for
synaptogenesis, only appeared in the OPL at GW16 (Nag and
Wadhwa, 2001). In mouse retina, a small but already detectable
number of conventional synapses in the IPL first appear at P5
(Fisher, 1979) and the first few ribbon synapses in the IPL,
from P10-P12 (Olney, 1968; Fisher, 1979). In the OPL, ribbons
in photoreceptors could be seen from P2, whereas synaptic
terminals with synaptic vesicles making synaptic contact with
other cells are only visualized from P7 (Olney, 1968).

Retinal development, as well as in the brain, involves
programmed cell death (PCD) which plays a very important
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TABLE 1 | Comparison of the temporal course of retinal development in mice and in humans.

Developmental milestone Mouse Human

Formation of the optic cup E9–9.5 (Heavner and Pevny, 2012) GW5 (Smirnov and Puchkov, 2004)

Pigmented epithelium layer

separated from the visual layer

From E13 (Fan et al., 2016) From GW6 (Smirnov and Puchkov, 2004)

Ganglion cells generation period E11–E19 (HRP retrograde labeled cells and 3H-Thy;

Dräger, 1985)

E8–E16 (peak E12) (Brn3a labeled cells and BrdU;

Voinescu et al., 2009)

GW6 to GW14 in the fovea (finishing at GW30 in the

whole retina)

IPL appearance E17 (Fan et al., 2016) GW8-9 in the fovea; GW15 temporal and GW18 far

periphery (Hendrickson, 2016)

OPL formation P4–P5 (Olney, 1968) GW11 (fovea); GW30 (far periphery) (Hendrickson, 2016;

Hendrickson and Zhang, 2017)

Ganglion cell PCD Peak P2–P4 (Young, 1984) and P15 (Péquignot et al.,

2003)

Peak GW15–20 (Georges et al., 1999)

PCD in the INL Inner INL P0–P11 (peak P4–P6)

Outer INL P5–P18 (peak P8–P10) (Young, 1984)

From GW15–35 (peak GW20) mainly in the bipolar

location

PCD in the ONL Inner rods P5–P11 (peak P7–8)

Outer rods P5–P21/24 (peak P15, Young, 1984;

Péquignot et al., 2003)

Significantly lower than other layers (GW15-GW35)

Synapses in the IPL Conventional synapses P5 (Fisher, 1979)

Ribbon synapses P10–P12 (Olney, 1968; Fisher, 1979)

GW12 (future fovea) (Hollenberg and Spira, 1973)

Synapses in the OPL P7 (Olney, 1968) GW12 in the future fovea (Hollenberg and Spira, 1973)

Invasion of vascular cells

from optic disc

From P2 (Young, 84) From GW14-15 (Hughes et al., 2000)

E, Embryonic day; P, Post-natal day; PCD, Programmed Cell Death; GW, Gestational week.

role in tissue refinement, regulating the number of specific cell
types leading to a mature tissue. PCD follows a central-peripheral
gradient, similarly to the other retinal development events
(Chavarría et al., 2013). Four PCD phases are recognized
in mouse retinal development: (1) morphogenic cell death
associated to cell death of the optic cup invagination and
closure of the optic fissure; (2) early neural cell death targeting
proliferating neuroepithelial cells and recently born neurons and
glia; (3) neurotrophic cell death affecting differentiated neurons
competing for neurotrophic supply and regulated by activity-
dependent processes, associated with intra- and extra-retinal
synaptogenesis; and (4) a late phase, with a peak at P15, probably
related with intraretinal synaptogenesis (Laemle et al., 1999;
Péquignot et al., 2003; Vecino et al., 2004; Valenciano et al., 2009;
Chavarría et al., 2013; Braunger et al., 2014; Francisco-Morcillo
et al., 2014; Vecino and Acera, 2015).

Morphogenic PCD is higher at E10.5, with most of apoptotic
cells located in the middle of the retina, decreasing progressively
from E11.5 to E13.5 (Péquignot et al., 2003; Valenciano et al.,
2009), when fissure closure in mice ends, by E13 (Strongin
and Guillery, 1981). Early PCD was described from E15.5-E17.5
(Péquignot et al., 2003) but recently it has been reported that the
elimination of RGCs also occurs from E12.5 to E16.5, through
microglia phagocytosis (see below; Anderson et al., 2019).
Neurotrophic PCD consists of two waves, the first initiating at
E18.5, when cell death begins to increase in the inner neuroblastic
layer and peaks at P2-P4, and the second peaking at P9 (Young,
1984; Péquignot et al., 2003). At P0, neurotropic PCD occurs at
a higher rate in the GCL, with a peak at P2-P4 (Young, 1984).
Georges et al. (1999) evaluated PCD in human retinas from

GW15 to GW35 and found apoptotic cells in all layers during
this period. However, the highest rate of cell death at GW15 was
found in the GCL, which was greatly decreased by GW23-24
(Georges et al., 1999). The cell death of ganglion cell population
leads to a substantial loss of axons in the NFL (∼70%) from
GW15 to GW30 (Provis et al., 1985). In the INL, the incidence of
apoptotic cells was two to eight times that observed in the GCL,
peaking at GW20 (Georges et al., 1999). Interestingly, 85–90%
of the apoptotic cells in the INL occupied the middle and outer
third location, suggesting that most INL cells undergoing PCD
were bipolar cells. Young (1984) observed the same phenomenon
in the INL of mouse retina, with significantly higher incidence of
pyknotic cells in the bipolar/Müller cell position. The window of
cell death in the inner/outer INL was also slightly different, with
inner INL undergoing PCD from P0 to P11 (peak P4–P6) and the
outer INL from P5 to P18 (peak P8–P10) (Young, 1984). PCD of
cells in theONL remain low throughout retinal development, and
occurs later on from P5 to P11 (peak P7–P8) for the inner rods
(differentiating rods found in the inner part of the ONL) and, at
a significantly lower rate, for outer rods in the ONL from P5 to
P21/24 (Young, 1984). Péquignot et al. (2003) reported a peak at
P15 in ONL as well as a second peak in the GCL. PCD in the
ONL of the human retina also occurs at a significantly lower rate
than other layers with few pyknotic nuclei found from GW15 to
GW35 (peak at GW23–GW24) (Georges et al., 1999).

The mechanisms of these PCD phases in the mouse retina
can be distinctly regulated. Morphogenic PCD related to optic
fissure closure involves BMP, FasL and Msx2 (Péquignot et al.,
2003; Wu et al., 2003; Francisco-Morcillo et al., 2006), whereas
neurotrophic PCD involves apoptotic signals, such as caspases
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and Bax (for a review, see Valenciano et al., 2009). In the mouse
retina, up to 60% of recently born retinal ganglion cells die after
birth in a Bcl2 dependent way (Bonfanti et al., 1996; Strettoi and
Volpini, 2002; Péquignot et al., 2003). Furthermore, BDNF/trkb
controls the dynamic of RGC death after birth (Pollock et al.,
2003). Trafficking of apoptotic signals through gap junctions also
regulates PCD in INL and GCL (Cusato et al., 2003). There is
also a suggestion of caspase-independent cell death mediated
by PARP-1 and AIF nuclear translocation during the first
postnatal week (Marín-Teva et al., 2011). Several other studies
on different species, have demonstrated the important role of
neurotransmitters and signaling pathways, such as glutamate,
ATP, insulin, integrins, cyclic AMP and nitric oxide in PCD
during retinal development (Martins et al., 2005; Valenciano
et al., 2009; Cossenza et al., 2014; Ventura et al., 2019a).

In the developing retina, dying cells are phagocyted mainly
by microglia, but also by neuroepithelial cells and Müller
cells, enabling a clean removal of dead cells (Francisco-
Morcillo et al., 2014; Silverman and Wong, 2018). In chick
embryo retina (E4), engulfment and lysosomal degradation of
apoptotic bodies seem to depend on autophagic cell death
(Mellén et al., 2008). Microglia are already present at E11.5,
shortly after the onset of retinal neurogenesis (Santos et al.,
2008). At E12.5 and E14.5, microglia primarily associate with
neurons, especially ganglion cells (Anderson et al., 2019).
During this period, a small percentage of microglia contact
cleaved-caspase 3-positive cells (15% at E12.5 and 7% at E16.5)
(Anderson et al., 2019). Anderson et al. have shown that
microglia phagocyte non-apoptotic neurons, in a process called
phagoptosis, regulating the elimination of RGCs in the early stage
of PCD (Anderson et al., 2019). The PCD of these neurons is
also stimulated by Nerve Growth Factor through p75 receptor,
in early (E13-15.5) but not later (E17) stages (Frade and Barde,
1999; Harada et al., 2006).

CONGENITAL TORCH DISEASES

The acronym TORCH is globally used to encompass pathogens
known for their teratogenic effects, namely Toxoplasma gondii,
Rubella virus, Cytomegalovirus, and Herpes virus. Currently,
O stands for Others and can include syphilis, parvovirus,
coxsackievirus, listeriosis, hepatitis virus, varicella-zoster virus,
Trypanosoma cruzi, enterovirus and human immunodeficiency
virus (HIV). Recently, the Zika virus was also included in
this list, after the 2015–2016 outbreaks in Latin America,
which were correlated with a high number of microcephaly
cases (Schwartz, 2017). All these diseases are teratogenic,
i.e., can cause disturbances in fetal development, leading
to malformations. Neurotropism also occurs among the
aforementioned microorganisms. In this topic, we will present
the main teratogenic pathogens, their characteristics, and how
they affect development, focusing on eye abnormalities, with
special focus given to Congenital toxoplasmosis.

The placenta is the first biological barrier that TORCH
pathogens must overcome in order to reach fetal tissues. During
normal placental development, invasive cytotrophoblasts (CTBs)

originating from anchoring chorionic villi invade the maternal
decidua. CTBs are specialized epithelial cells of the placenta
which leave the basement membrane and differentiate along
two independent pathways, depending on their location, to
initiate the blood flow to the placenta. A subset of these
cells remodels the uterine vasculature in the decidua at the
maternal-fetal interface. This process is finely controlled through
the coordinated actions of invasion- and angiogenesis-promoting
factors. The maternal decidua exhibits a distinctive multicell
nature, comprising invasive CTBs and uterine epithelial, stromal,
and endothelial cells, as well as immune cells (reviewed by
Maltepe et al., 2010).

Trophoblast cells of the human placenta, derived from the
outer cell mass of the blastocyst, are at the center of the balance
between infection responses and conception tolerance (Heerema-
McKenney, 2018). Vertical transmission (mother to fetus) of
pathogens can occur by several routes, including the following:
infection of endothelial cells in the maternal microvasculature
and spread to invasive extravillous trophoblasts, which anchor
the villous trees to the uterine wall, trafficking of infected
maternal immune cells across the placental barrier, paracellular
or transcellular transport from the maternal blood across the
villous trees and into the fetal capillaries, damage to the
villous tree and breaks in the syncytiotrophoblasts layer, and/or
transvaginal ascending infection (Coyne and Lazear, 2016). Most
TORCH agents are thought to infect the placenta and fetus from
a hematogenous route, although infection from cervical shedding
or decidua infection may also occur.

A recent study using single-cell RNA-Seq has demonstrated
that placental cells express NRP2, PDFGRA and CD46
receptors, which permit CMV invasion to host cells (Pique-Regi
et al., 2020). CMV may cross the placenta via transcytosis
of first-trimester syncytiotrophoblast cells and, in an ex vivo
infection decidual organ culture model, HCMV infects invasive
cytotrophoblasts, macrophages, and endothelial, decidual and
dendritic cells (Weisblum et al., 2011). ZikV has been shown
to infect syncytiotrophoblasts, cytotrophoblasts, decidual,
and endothelial cells, leading to increased inflammation
response, including CD68 and CD8 cell infiltration and
cytokines, chemokines and MMP secretion (Rabelo et al., 2020).
Additionally, placental cells at birth (mean gestational age 36
weeks) were shown to express AXL, CD209 and TYRO3, which
may serve as preferential receptors for the Zika virus entry
(Pique-Regi et al., 2020). Specifically, AXL was found to be
expressed in placenta cells and chorioamniotic membranes,
whereas CD209 was mostly expressed in maternal and fetal
macrophages subsets. In the same study, C1QBP (Complement
component 1 Q subcomponent-binding protein) and CALM1,
both known Rubella virus interactors (Mohan et al., 2002; Zhou
et al., 2010), were expressed in syncytiotrophoblasts throughout
the pregnancy, and to a lower extent in decidual, endometrial
and cytotrophoblast cells (Pique-Regi et al., 2020). Regarding
congenital toxoplasmosis, the in vivo mechanisms of human
transmission are poorly understood. Using in vitro explants of
human first trimester villous, Robbins et al. (2012) demonstrated
that extravillous trophoblast of anchoring villi are most
susceptible to infection, followed by villous cytotrophoblast and
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rare foci of syncytiotrophoblast infection observed near damage
areas. These findings suggested that maternal parasitemia likely
leads to decidual tissue seeding, with subsequent spread to
extravillous and villous cytotrophoblast through anchoring
villi (Robbins et al., 2012). Histopathological examinations
have shown that the placenta may exhibit lymphohistiocytic
chronic villitis, with severe and diffuse inflammation and
granulomas, immature villi and increased Hofbauer cells in
the villous stroma, chorion, and Wharton jelly (reviewed by
Costa et al., 2020). Although, the teratogenic effects of each
TORCH agent is probably caused by different mechanisms,
placental inflammation is possibly an important player in a CNS
development context, by increasing cytokine production from
reactive microglia and astrocytes and altering neurotransmitters
expression/activity (al-Haddad et al., 2019).

Congenital Rubella Syndrome
Rubella is a common disease whose etiological agent is the
Rubella virus (RV). Belonging to the Togaviridae family, this
single-stranded RNA virus is transmitted by direct contact or by
droplets through respiratory secretions. It is of extreme concern
when infecting pregnant women, due to its teratogenic ability
(Frey, 1994). The rate of congenital infection following maternal
rubella has been reported as 85% in the first trimester, 54%
at 13 to 16 weeks, 36% at 17 to 22 weeks, 30% at 23 to 30
weeks, and then 60% at 31 to 36 weeks, with an impressive 100%
transmission rate in the last month of pregnancy (Freij et al.,
1988; Boppana et al., 2017). In addition to causing miscarriages,
congenital rubella syndrome is a major cause of blindness,
deafness, heart disease and intellectual disability. These clinical
manifestations and the ability of RV to cross the placenta, causing
development impairment, are similar to those of other TORCH
pathogens (Robertson et al., 2003).

Ophthalmic pathologies are commonly found in congenital
rubella. Cataract was the first reported teratogenic effect of
gestational rubella (Gregg, 1941), as well as retinal defects, iris
adherence to the lens, microphthalmia (Töndury and Smith,
1966), subretinal vascularization and glaucoma (Freij et al., 1988).
Pigmentary retinopathy and strabismus are additional examples
of abnormalities in this condition. Each clinical manifestation
mentioned above is closely correlated with the gestational period
in which the primary infection occurs (Duszak, 2009), with
the first trimester exhibiting the most damage (Boppana et al.,
2017). Viral particles were found in the ciliary body and lacrimal
glands, which can contribute to cataractogenesis (Nguyen et al.,
2015). Studies have shown that RV infection causes changes in
actin filaments, which appear as amorphous clusters, presumably
due to actin depolymerization (Bowden et al., 1987). This
lack of organization of actin cable/bundles can result in cell
division inhibition. In fact, decreased mitotic activity has been
demonstrated in infected primary embryonic cell cultures,
while cell division deceleration has been reported in human
fetal cells infected by RV (Rawls and Melnick, 1966; Bowden
et al., 1987). The rubella virus non-structural protein, P90, can
interact with important cell cycle regulators, retinoblastoma
and cytokinesis-regulatory proteins, thus influencing cell cycle
and apoptosis (Atreya et al., 2004; for a review, see George

et al., 2019). Furthermore, downregulation of genes involved in
sensory organs and eye development have also been reported by
gene expression profiling of RV-infected human umbilical vein
endothelial cells (HUVEC) (Geyer et al., 2016). RV infection can
induce apoptosis in several cell types involving classic signaling
pathways, leading to the activation of caspases, p53, p21, and
Bcl-2 family proteins. However, PCD induced by RV infection
is observed only in non-proliferative and differentiated cells
(for a review, see George et al., 2019). These data suggest
that apoptosis is not involved in the regulation of mitotic rate
of progenitor infected cell populations. These alterations may
explain why RV infection is associated with loss of eyesight as
an ophthalmic sequelae (Geyer et al., 2016). Current studies on
congenital rubella indicate that such ophthalmic sequelae may be
correlated to the regulation of genes involved in the development
of sensory organs and to changes in the host cell cytoskeleton
that may lead to changes in mitotic pattern (George et al.,
2019). However, the molecular/cellular mechanisms responsible
for multiple retinal defects in CRS are still poorly understood.
Few studies investigating this topic are available, most focusing
on histopathological analyses performed during the autopsy of
aborted or dead fetuses.

Congenital Cytomegalovirus Infection
Cytomegalovirus (CMV) is a worldwide widespread member of
the Herpes virus family. In healthy people it is asymptomatic,
thus characterizes as an opportunistic microorganism (Landolfo
et al., 2003). Affecting about 60% of the population in developed
countries, and reaching 100% in developing countries, CMV
behaves similarly to the Herpes simplex virus (HSV). After
primary infection (symptomatic or not), the virus goes into
latency and reactivation can occur in situations of low immunity
(Griffiths et al., 2015). Cytomegalovirus can be transmitted
through direct or indirect contact with infectious body fluids
like saliva, urine, blood, semen, or cervical or vaginal secretions.
Maternal CMV infection is mainly acquired through contact
with the urine or saliva of infected individuals or sexual contact
(Cannon, 2009). Like the other pathogens described in this
review, CMV can cross the transplacental barrier, and is one of
the most hazardous TORCH pathogens.

Congenital CMV infection is common in humans, since
maternal immunity is unable to prevent reactivation of the virus
during pregnancy and prevent transmission to the fetus (Alford
et al., 1980). Factors influencing fetal transmission rates are the
trimester of exposure, maternal age, CMV serological status,
maternal immunological status and viral load (Ghekiere et al.,
2012). Congenital CMV infection can occur even if the infection
occurred before pregnancy (non-primary infection). Forms of
transmission to the fetus and baby include the transplacentary
route, perinatal route (during delivery) by cervical secretions and
blood or by breastfeeding (Malm and Engman, 2007).

The main clinical manifestations of congenital infection
commonly found in neonates are thrombocytopenia, jaundice,
hepatosplenomegaly, microcephaly and retinochoroiditis (Bale,
2014). Some ophthalmic changes caused by congenital CMV
infection may be observed in symptomatic and asymptomatic
patients. Among those found in both cases are macular
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scars, strabismus, retinochoroiditis and anterior stromal corneal
scars. Symptoms found only in symptomatic patients include
peripheral retinal scars, optic atrophy, optic nerve hypoplasia,
coloboma, microphthalmia, anophthalmia, and incomplete
cyclopia (Ghekiere et al., 2012).

Although congenital defects caused by CMV infection are
well-recognized, their pathogenesis is still poorly understood.
This is due to the fact that it is difficult to establish
adequate animal models for this type of study, since the virus
exhibits infectivity in a species-dependent manner. Some studies
focused on understanding the effects of CMV infection on
neurodevelopment and providing a basis for understanding the
damage caused to fetuses have been carried out (Cheeran et al.,
2009; Kawasaki et al., 2017). It has been demonstrated in amurine
model that developmental damage may be associated to the type
of embryonic cells susceptible to CMV infection and to the
effects of the infection on their cellular functions. Mesenchymal
stem cells are infection targets during mid-pregnancy, affecting
brain, eye and orofacial region organogenesis (Tsutsui et al.,
1993). Using neural precursor cell neurospheres obtained
from the forebrain of aborted human fetuses during the
first trimester as an in vitro model, it was demonstrated
that HCMV inhibits neuronal differentiation induction and
provokes apoptosis in infected cells (Odeberg et al., 2006).
More recently, studies using cerebral organoids derived from
human-induced pluripotent stem cells have indicated that CMV
infection can lead to severe damage to the organoid structure,
in addition to resulting in calcium signaling and neural network
activity alterations. The infection dramatically affects organoid
neurological development, reaching the developing cortical
structure to fully formed ones, with associated changes in
architecture organization and lamination depth within these
structures. Such changes may be correlated with microcephaly in
human fetuses (Brown et al., 2019; Sun et al., 2020).

Congenital Herpes Simplex Infection
The Herpes simplex virus (HSV), a member of the family
Herpesviridae viruses, has an enveloped DNA capable of
multiplying in the host cell nucleus (Liesegang, 2001). HSV
transmission is dependent on mucosal or injured skin contact
between a susceptible seronegative individual and another who
excretes HSV. Two herpes simplex virus serotypes are known,
HSV-1, correlated with oral lesions, and HSV-2, associated with
genital lesions. Both viral serotypes establish latent infection
in sensory neurons and, when reactivated, cause lesions near
or at the body’s entry sites (James and Kimberlin, 2015).
Approximately 5% of neonatal HSV infections occur in utero,
85% during the peripartum period, and the remaining 10%,
postnatally, through direct contact with infectious lesions or
secretions (Brown et al., 1997).

Congenital HSV infection is associated with high levels
of morbidity and mortality. The most common form of
transmission occurs at birth, through direct contact with
lesions or by asymptomatic viral shedding (Fa et al., 2020).
Transplacental HSV transmission was first reported in 1963,
in which the newborn exhibited herpetic lesions at birth.
During developmental follow-up, several neurological damages

associated with congenital HSV infection were observed,
such as strabismus, retinochoroiditis, hyperreflexia, and slow
speech development (Mitchell and Mccall, 1963). Additional
ocular abnormalities such as chorioretinitis, microphthalmia,
keratoconjunctivitis and optic atrophy are also found in
congenitally infected individuals (Leung et al., 2020).

Although vertical transmission by HSV is considered rare, like
other TORCH pathogens, the greatest risk of infection occurs
during early pregnancy (Fa et al., 2020). In vitro HSV infection
models of neural progenitor cells may give clues that may aid
in understanding what occurs in the developing CNS, including
the brain. It has been demonstrated in vitro that HSV can
infect undifferentiated iPS cells, neural precursors cells and iPS-
derived differentiated sensory neurons (Lee et al., 2012). Infection
by HSV is highly cytotoxic to neural progenitor cells, unlike
infection by the Varicella Zoster virus (VZV), which does not
infect undifferentiated iPS cells. Similarly, HSV-1 can successfully
infect human embryonic stem cells, whereas VZV does not
(Dukhovny et al., 2012). In the adult mouse brain, ependymal
and neural stem cells express the Herpes virus entry mediator
protein (HVEM) and in vitro studies concerning the infection of
such cells indicate reduced neuronal generation rates, as shown
by doublecortin (DCX) immunostaining, which was prevented
by microglia-derived IL-6 secretion (Chucair-Elliott et al., 2014).
Infection of mouse neural stem cells by HSV in a neurosphere
model leads to cell death, with reduction in neurosphere size
and the production of IFN-γ mediated by Toll-like receptor 3
activation (Sun et al., 2015). HSV-1 also activates the JNK and
p38 MAP kinase signaling pathways, which further contribute to
cytolytic host cell effects (Zachos et al., 1999; Diao et al., 2005;
Hargett et al., 2005). In turn, p38 and JNK are known apoptosis
regulators and may be implicated in neurodegeneration and
brain and retina neurogenic defects (Shou et al., 2003; Diao et al.,
2005; Dhanasekaran and Reddy, 2008; Shklover et al., 2015;Wang
et al., 2018; Kawamura and Kano, 2019; Kovacs et al., 2019; Lei
et al., 2020; Pang et al., 2020). Although no direct evidence has
indicated direct effects of HSV infection to retinal progenitor
cells, either in vitro, in vivo or in human cases, it is tempting to
assume that, similarly to what is observed in cortical progenitor
cells, retinal progenitor cells may be susceptible to HSV infection,
resulting in similar neurogenesis and apoptosis effects.

Congenital Zika Virus Infection
The Zika virus (ZikV) is an arbovirus, displaying a classic human-
arthropod-human vector transmission pathway. Belonging to
the Flaviviridae family, it was first described in 1947 (Dick,
1952). Initially, the pathogenesis of this disease was considered
mild, characterized by fever, rash, joint pain and conjunctivitis.
However, the relevance of ZikV infection increased after an
outbreak in 2015 in northeastern Brazil, where a sudden
increase in the birth of neonates with microcephaly was
observed (Rasmussen et al., 2016). This increase was correlated
with primary maternal ZikV infection during pregnancy after
confirmation of viral genetic material in the amniotic fluid
of pregnant women with microcephalic fetuses (Calvet et al.,
2016; de Araújo et al., 2016). Thus, it has become clear that in
addition to classical transmission, ZikV is transmitted sexually
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and congenitally and is highly teratogenic (de Araújo et al.,
2016). Therefore, ZiKV is considered an important member
of the TORCH pathogen group (Musso and Gubler, 2016).
Some authors suggest modifying the old acronym TORCH for
new TORZiCH to highlight the position of Zika virus due to
the serious congenital disorders associated with ZikV infection
(Tahotná et al., 2018).

The emerging association of congenital ZikV infection with
microcephaly demanded the beginning of research in the area
to identify possible damage to the offspring and preventive
or curative interventions. Among animal models, the mouse
model has been widely applied in several ZikV infection studies
(Caine et al., 2018). Among the reported damage from congenital
pathogenesis caused by ZikV are primary microcephaly and
microphthalmia. Although infection of neural progenitors,
neurons and glial cells have been described (Cugola et al., 2016;
Gabriel et al., 2017; Büttner et al., 2019; Ferraris et al., 2019), a
recent study based on in vitro research suggests that the primary
targets of ZikV are astrocyte cells (Ledur et al., 2020). Such
infection also affects cell migration, neurogenesis, differentiation
and cell death, leading to microcephaly in neonates (Russo et al.,
2017; Wen et al., 2017; Christian et al., 2019).

Eye abnormalities and visual problems are also observed
in neonates congenitally infected with ZikV (Ventura et al.,
2019b; Lima et al., 2020). Clinical manifestations include
microphthalmia, retinal pigment changes, chorioretinal atrophy,
vascular changes and optic nerve hypoplasia (Ventura et al.,
2016). Such anomalies opened a precedent for studies on the
development of the infected offspring retina. ZikV infection
in pregnant mice generated decreased eyeballs, optic nerve
thinning, retinal damage and impaired visual projection (Shi
et al., 2018) and impaired vascular offspring development
(Garcez et al., 2018).

It is still unclear which are the cellular targets of ZikV in
the developing human fetus. In vitro studies have reported
that ZikV infects human embryonic cortical neural progenitor
cells (hNPCs), inducing cell cycle dysregulation and increased
cell death (Tang et al., 2016). In addition, by studying the
mechanisms by which ZikV modulates the cell cycle of hNPCs,
it has been observed that the virus induces DNA breaks which,
in turn, inhibits cell cycle progression from the S phase, thus
preventing host DNA replication completion (Hammack et al.,
2019). Using an in vivo congenital ZikV infection model,
it has been verified that, besides neurogenesis impacts, the
infection also affects angiogenesis. When compared to control
offspring, ZikV-infected offspring exhibited decreased blood
vessels in the vasculature of both the cerebral cortex and the
retina (Garcez et al., 2018). Using intrauterine infection as a
vertical transmission model, congenital Zika syndrome has been
shown to generate mice with smaller eyeballs and smaller optic
nerves. Additionally, a reduction in the thickness of GCL, IPL,
and ONL and the absence of OPL was also detected, which
could be correlated to visual neural connection defects. ZikV
infection also decreased the number of ganglion cells in the
GCL, which is clearly associated to optic nerve damage (Shi
et al., 2018). It is known that retinal endothelial cells, retinal
pericytes and retinal pigmented epithelial cells are permissive

for lytic ZIKV replication and primary retinal barrier target
cells concerning infection (Alcendor, 2019). These data can
contribute to elucidate how ZikV affects retina development and
the mechanisms involved in the pathogenesis of retina lesions
after congenital infection.

Congenital Toxoplasmosis
Toxoplasmosis is a zoonosis of great interest in the context of
public health, since it affects a third of the world population,
with the protozoan parasite Toxoplasma gondii as etiological
agent (Tenter et al., 2000). Among the TORCH agents, T.
gondii is the main protozoan representative, while most display
a viral etiology. Toxoplasmosis is widely distributed across the
countries, reaching seropositivity rates that vary from <10%
to over 90% (Torgerson and Mastroiacovo, 2013). Among
the infected population, two groups of medical importance
are highlighted, immunocompromised persons and those
congenitally infected, in which the most severe forms of the
disease are observed (Furtado et al., 2011).

In Brazil, seroprevalence reaches very high numbers, of over
60% (Ozgonul and Besirli, 2016), with the presence of anti-T.
gondii antibodies present in up to 50% of children in primary
school and 50–80% of women in fertile age. The rates of
congenitally infected children in Brazil are also high, reaching
5–23 born infected out of 10,000 born alive in Brazil (for review,
Dubey et al., 2012). Some factors are determinant for such a
high seroprevalence, such as scholarity and low family income.
Therefore, social vulnerability may play an important role in high
seroprevalence rates (Mareze et al., 2019). Toxoplasmosis is still
relevant in Brazil and frequent outbreaks are observed, such as
the one that occurred in 2018 in the city of Santa Maria, in which
1,116 cases were reported by public health agents, with another
766 suspect cases (Dal Ponte et al., 2019).

Toxoplasma gondii is an opportunistic protozoan that belongs
to the Apicomplexa phylum, first described by Nicolle and
Manceaux (1908) in rodents in North Africa (Ferguson, 2009). In
that same year, it was described in Brazil in the state of São Paulo
by Splendore, thus suggesting that T. gondii is a cosmopolitan
parasite (Frenkel, 1973).

T. gondii is an intracellular obligate parasite capable of
infecting virtually all nucleated cells in the host, thus reaching
different tissues, with a preference in forming tissue cysts in
muscle and neuronal cells (Dubey, 2004). The ability of the
parasite to infect cells and persist in the tissues in a latency state,
i.e., tissue cysts, contribute to toxoplasmic retinochoroiditis.
Chronic infection reactivation by T. gondii, and consequently,
the disease, is common in congenitally infected individuals.
Different mechanisms are pointed as responsible for recurrent
ocular toxoplasmosis (OT): first, the destruction of retinal tissue
may be due to the release of parasites from tissue cysts, which
in turn invade and promote the lysis of adjacent cells; second,
the immune response generated against this parasite may be
harmful for the host’s tissue (Roberts and McLeod, 1999).
The classic clinical aspect observed in patients is an active
lesion and a fresh white elevated focus of a necrotizing lesion,
proximal to a previous pigmented scar (Pavesio and Lightman,
1996). Retinochoroiditis can be incapacitant, with most cases
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observed in young adults, correlated to untreated congenital
toxoplasmosis. Because of this, CT has great medical and socio-
economic relevance, and is the reason for the creation of pre- and
neonatal triage programs (Wong, 2006).

The first reported case of infantile toxoplasmosis with
confirmed vertical transmission dates back to 1942 (Cowen et al.,
1942). Currently, it is known that the congenital infection is the
most severe form of toxoplasmosis and occurs in the offspring
of mothers that contracted primary T. gondii infection during
pregnancy. The diagnosis is made through serological testing for
T. gondii or based on abnormal ultrasonography examination
(Bollani et al., 1967). Around 90% of individuals that acquire
toxoplasmosis will not exhibit typical signs and symptoms, which
makes the diagnostic even more difficult. In addition, symptoms
(fever, nausea and lymphadenopathy) are easily mistaken with
those of other non-teratogenic infections (Hampton, 2015).

The incidence and severity of congenital toxoplasmosis
infection depend on the gestational period when infection occurs.
The risk of vertical transmission increases over the gestational
weeks, of 15% in the 13th week, 44% in the 26th and 71% in the
36th, increasing to 90% in the last week of pregnancy. However,
severity of the damage to the fetus is inversely proportional to the
infection period. Severe manifestations are seen in the offspring
of women who acquired the infection during the beginning
of the pregnancy whereas it may be subclinical in neonates
born to mothers infected at the end of the pregnancy (Hall,
1992). Placenta physiology plays an important role and is closely
related to infectivity rates, since it is immunologically responsible
for avoiding maternal-fetal rejection and for preventing vertical
infection (Wong, 2006).

CT may manifest in the first month of life or be noticeable
as long-term ocular and neurological sequela in childhood or
even adulthood. The main consequences include spontaneous
abortions, neurological disturbances and ocular damage (Randall
and Hunter, 2011). Ophthalmological manifestations are among
the main sequelae in CT, and retinochoroiditis is the most
common, with an estimated incidence of 9–31%. Other possible
ocular manifestations include strabismus, microphthalmia,
cataracts, retinal detachment, optic atrophy, iridocyclitis,
nystagmus and glaucoma. Some of these characteristics are
apparently correlated with a retinochoroiditis process that is
then applied as a marker of CT severity (Bollani et al., 1967).

Despite ocular lesions being frequently correlated with CT,
they can be found after infection even in immunocompetent
hosts (Gazzinelli et al., 1994). For example, retinal
neovascularization, a rare complication of ocular toxoplasmosis
(OT) can be a source of vitreous hemorrhage (Gaynon et al.,
1984). Other less common abnormalities may be noticeable,
such as vascular occlusion even far from active lesions, thus
resulting in hemorrhage. Retinal detachment and subretinal
neovascularization have also been reported (Nussenblatt and
Belfort, 1994).

The first description of OT was made by Jankû in 1923,
followed by Levaditi in 1928. However, the relationship between
T. gondii infection and retinochoroiditis was only reported in
1952, as reviewed by Kim and Weiss (2004). OT has been
widely studied since then, although it still poses many challenges

regarding its physiopathology (Maenz et al., 2014). In OT, the
first tissue to be affected is the retina, followed by the choroid,
the vitreous humor and anterior chamber, which can all be
affected, but never before the retina (Nasaré and Tedesco, 2017).
Uveitis and retinochoroiditis are clinical aspects characterized
by the inflammation of the uveal tract that can occur during
the pathogenesis of OT, possibly evolving to irreversible ocular
lesions (Holland, 1999).

Although not completely clear, it is thought that T. gondii
reaches the retinal tissue using a Trojan horse mechanism,
being transported by an infected inflammatory cell through
the Blood-Retinal Barrier, similarly to described in brain
invasion (Kijlstra and Petersen, 2014; Lachenmaier et al., 2014).
In experimental models, T. gondii-infected THP-1 monocytes
have been reported as transmigrating monolayers of human
retinal pigmented epithelial cells (ARPE-19) (Song et al., 2017),
whereas direct infection of ARPE-19 cells affects their junctional
properties, including decreases in Transepithelial (/endothelial)
Electrical Resistance (TEER) (Nogueira et al., 2016). Regarding
the Blood-Retinal Barrier, Furtado and colleagues have indicated
that T. gondii can cross through retinal endothelial cells without
disturbing the integrity of the monolayer (Furtado et al., 2012),
thus penetrating the retinal layers and infecting neuronal and
glial cells (Furtado et al., 2013). Similarly, T. gondii has been
shown to infect cerebral microvascular endothelial cells, which
may serve as a niche to gain entry to the brain (Konradt et al.,
2016).

It is noteworthy that T. gondii utilizes an intricate mechanism
to disseminate through the host organism, traveling in infected
inflammatory cells, including dendritic cells, monocytes and
lymphocytes, that acquire a hypermigratory phenotype (Da
Gama et al., 2004; Seipel et al., 2010; Fuks et al., 2012;
Kanatani et al., 2015, 2017; Ueno et al., 2015; Ólafsson et al.,
2018; Bhandage et al., 2019). This phenomenon also holds
true for retinal tissue, since infected dendritic cells have been
shown to transmigrate across retinal vascular endothelium
through adhesion molecules (ICAM-1, V-CAM and ALCAM)
and chemokines (CCL21 and CXCL10) (Furtado et al., 2012).
Therefore, increasing evidence has shown that T. gondii has
developed complex mechanisms to penetrate the CNS, either in
the brain or retina.

Once inside the tissue, tachyzoites invade host cells and
proliferate, leading either to host cell lysis or to the formation
of tissue cysts, composed of bradyzoites (Kijlstra and Petersen,
2014). The preference for retinal tissue may be correlated to
a higher susceptibility of the vascular endothelium present in
the retina to T. gondii infection, and such susceptibility may
be related to easy penetration in the host cell, intracellular
proliferation rates and/or the cellular response to infection
(Smith et al., 2004).

Animal infection models used to study OT must recapitulate
aspects of the human pathology from the invasion of the host
until the development of disease. The first experimental models
had the goal of providing a better description of the disease
pathogenesis. In order to analyze the migration of the parasite
to the retinal tissue, rabbits and hamsters were infected through
distinct routes of infection, including the intracarotid and
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intraperitoneal routes, respectively (Frenkel, 1955). However,
such approaches do not mimic the natural route of infection.
Throughout the years, an increasing number of studies has
focused on experimental modeling of Toxoplasma-induced
retinochoroiditis, through the use of non-human primates, cats,
rabbits, hamsters and mice. A recent review compared mouse
strains, parasite genotypes, disease stage and inoculum dosage,
reporting that adult C57bl/6 mice were more susceptible to
infection via the oral route and developed OT very rapidly
(14 to 21 days post infection, dpi), thus becoming the model
to more closely mimic natural infection (Dukaczewska et al.,
2015). C57bl/6 mice are more susceptible to infection, with
higher lethality rates of mothers and offspring. This makes it
more difficult to develop a reliable system to be used as an
OT/CT animal model. However, the fact that these animals
are pigmented animals makes them a more appropriate model
to study retinal biology, as retinal development of albino
animals is already impaired. Thus, it is worth reinforcing the
importance of prioritizing studies with pigmented animals to
increase the chances of clinical translation to humans. Up to this
moment, very few studies were conducted in order to directly
assess the interaction between T. gondii and retinal cell types,
neither aiming at characterizing the morphological or functional
alterations induced by the parasite, nor looking for specific
tropisms for retinal cell types. Lahmar et al. (2010) reported
that neonatal infection of Swiss Webster albino mice by T.
gondii can lead to retinal layer disorganization, especially in the
GCL. This same group exhibited a discrete, qualitative alteration
in immunoreactivity for vimentin and GFAP in the retinas of
infected mice. Moreover, a reduction in the number of cells in the
ONL was also observed, thus suggesting photoreceptor depletion
(Lahmar et al., 2014). In vitro infection of retinal cells obtained
from chick embryos or retinal explants from adult or chicks
embryos demonstrate that T. gondii is capable of replicating
in these systems and that this is dependent on polyamine
production by the host cells (Moraes et al., 2004). Using RPE
and Müller cells, isolated from Lewis rats, Delair et al. (2009)
indicated that TNF-α and IFN-γ differentially restrict in vitro T.
gondii infection, thus indicating that RMC are more susceptible
to infection than RPE. Finally, it was recently described that T.
gondii disrupts correct cytokinesis patterns and the formation of
the mitotic spindle in bovine endothelial cells (Velásquez et al.,
2019). It is known that changes in spindle structure, with or
without cell cycle protein alterations, can lead to abnormal retinal
and brain cortex development (Uzquiano et al., 2018), which
could also explain how CT affects these processes.

Alterations in the profile of the structures of retinal layers,

such as detachment of the pigmented epithelium from the

ONL and irregularities in the placement of retinal layers, have

been described in the literature in congenitally infected mice,

where ocular abnormalities were more evident than in acquired
infection (Ashour et al., 2018). However, the literature lacks
studies systematically describing whether the damage found in
congenital OT is derived from alterations that occur during
the proliferation and differentiation of retinal progenitor cells
during development.

CONCLUDING REMARKS

Congenital infection by TORCH syndrome agents is a relevant
public health threat with varying degrees of severity. In the
specific case of the Rubella virus, transmission rates were greatly
reduced due to vaccination programs in the 1980s−1990s.
However, special attention must be given to antivax movement,
which has contributed to increasing the number of Measles-
Rubella cases (Hotez, 2019; Krishnendhu and George, 2019). In
2019, 1,241 new measles cases were reported in the United States
as a result of this movement (Nathala et al., 2019). Regarding
CT, this infection comprises a high epidemiologic burden and its
ensuing sequelae are irreversible which, combined with the lack
of efficient chemotherapeutic schemes represents an important
challenge in terms of basic research that aim to understand the
molecular and cellular events that lead to these malformations.

All TORCH infections can cause severe but different
neurological disabilities and ophthalmic problems. However,
the outcome may differ depending on the pathogen infection,
as exhibited in Figure 3. There is still much left to unravel
concerning the mechanisms by which each pathogen affects
eye/retinal development. One important interfering determinant
is the embryonic stage of the infection. As highlighted for
each topic, the infection period can vary greatly depending
on the pathogen, with 85% of congenital HSV occurring
during labor whereas 85% of congenital rubella infection
occurs during the first gestation trimester. Evidently, since
different retinal development phenomena occur throughout the
gestational period, as well as postnatally, different outcomes are
expected depending on the infection period. Nevertheless, these
differences per se are insufficient to explain the distinct retinal
lesions observed among TORCH infections. Target host cells
tropism and the specific molecular/cellular alterations that each
pathogen induces are probably as important as the infection
period. In the context of ocular malformations and altered
retinogenesis observed during TORCH agent infection, certain
questions remain unanswered and may serve as motivation for
further research, as follows:

1. What are the consequences of TOR(Zi)CH infection in retinal
development? What is the exact impact on cell proliferation,
morphological and neurochemical differentiation of different
cell types, synaptogenesis, programmed cell death, and
vascularization? Given the similarities found between neural
and retinal progenitor cells, including their susceptibility
to infections and the role of altered mitosis and apoptotic
balance, it seems tempting to speculate that these may
be common mechanisms by which TOR(Zi)CH agents
affect retinogenesis.

2. What cell types in the retina are affected during CT? Does the
parasite present a tropism for a specific cell type?

3. Are cases of strabismus and nystagmus related to T. gondii
infection of lateral and medial rectus muscle tissue?

4. Is there a correlation between T. gondii genotype and
clinical outcomes?

5. Finally, since some reports demonstrate that SARS-CoV-2 not
only is transmitted vertically, but cause disease in the infected
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FIGURE 3 | Main eye structures affected by each TORCH agent during development (indicated by colored circles). Clinical consequences regarding congenital T.

gondii (green symbols), Herpes simplex virus (blue), Rubella virus (magenta), Zika Virus (orange), and Cytomegalovirus (navy blue) infection are listed besides each

pathogen’s name. Viral structure representations were based on Hulo et al. (2011).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12 October 2020 | Volume 10 | Article 585727134

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Campos et al. TORCH Infections in Retinal Development

newborns, future studies will reveal whether this virus could
actually be included as a new TORCH pathogen (Muldoon
et al., 2020).
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Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the
rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions
of ROP18, we examined the transcriptional response of human embryonic kidney cells
(HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared
the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our
analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes
and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway
enrichment analyses showed that differentially expressed genes (DEGs) were significantly
enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG
pathway enrichment analysis revealed that DEGs were involved in several disease-related
pathways, such as nervous system diseases and eye disease. ROP18 significantly increased
the alternative splicing pattern “retained intron” and altered the expression of 144
transcription factors (TFs). These results provide new insight into how ROP18 may
influence biological processes in the host cells via altering the expression of genes, TFs,
and pathways. More in vitro and in vivo studies are required to substantiate these findings.

Keywords: ROP18, transcriptome, Toxoplasma gondii, differentially expressed genes, transcription factors
INTRODUCTION

Toxoplasma gondii is an opportunistic and obligate intracellular protozoan, which can establish a
persistent infection (Sibley, 2003). T. gondii infects nearly one third of the world’s human population
(Tenter et al., 2000). Strains of T. gondii are categorized into three major genotypes based on their
virulence in mice into types I, II, and III. Genotype I strains are highly virulent, whereas strains of
genotypes II and III are less virulent (Saeij et al., 2006). In general, infection of immunocompetent
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individuals is either asymptomatic or causes mild flu-like
symptoms (Beazley and Egerman, 1998; Schneider et al., 2013).
High risks of encephalitis and even death due to reactivation of a
latent infection can occur in immuno-compromised individuals
(Dubey, 2004; Weiss and Dubey, 2009; Kaye, 2011; An et al.,
2018). T. gondii can also result in adverse health consequences in
congenitally infected fetuses (Elsheikha, 2008).

In order to establish an infection, T. gondii manipulates the
host cells via altering the cellular metabolism (Ma et al., 2019),
dysregulating the gene expression (He et al., 2016), and
subverting the immune response (Yarovinsky, 2014). Infection
of T. gondii elicits the production of interferon gamma (IFN-g),
tumor necrosis factor (TNF), interleukin 10 (IL-10), IL-12, and
several cytokine receptors (Gazzinelli et al., 1996; He et al., 2016),
while reduces production of nitric oxide (Rozenfeld et al., 2005).
The parasite performs these functions by secreting a number of
effector molecules into host cell, such as dense granule proteins
(GRAs) and rhoptry proteins (ROPs) (Bradley and Sibley, 2007)
that play important roles in the regulation of immune responses
(Fox et al., 2016) and gene expression (Rastogi et al., 2020). For
example, GRA15 regulates the expression of genes in the NF-kB
pathway (Sangare et al., 2019); ROP17 inhibits the expression of
innate immune response genes (Li et al., 2019). ROP18 induces
apoptosis in mouse neuroblastoma Neuro2a cells via
endoplasmic reticulum stress-mediated apoptosis pathway
(Wan et al., 2015) and inhibits the differentiation of cultured
murine neural stem cells via inhibiting the activity of the Wnt/b-
catenin signaling pathway (Zhang et al., 2017).

ROP18 is serine/threonine phosphokinase and contributes to
the virulence of T. gondii (Hunter and Sibley, 2012). The
expression of ROP18 is higher in T. gondii genotype I strain
than in genotype III strain (Taylor et al., 2006). Deletion of
ROP18 significantly increases the survival of infected mouse
(Behnke et al., 2015). T. gondii utilizes ROP18 to prevent
disruption of parasitophorous vacuole membrane (PVM) via
phosphorylating the immunity-related GTPases (IRGs) of host
cell, and to regulate the biological processes of neurocytes
(Steinfeldt et al., 2010; Fleckenstein et al., 2012; Wan et al.,
2015; Zhang et al., 2017). Also, ROP18 via degradation of the
transcription factor (TF) p65 inhibits the NF-kB pathway and
suppresses the inflammatory responses to promote its own
survival and growth (Du et al., 2014). Besides p65, ROP18 also
targets other TFs, such as p53 and Smad1 (Yang et al., 2017).

These diverse functions of ROP18 have led us to hypothesize
that ROP18 exerts its multiple effects via reprogramming host
cell transcriptome. In the present study, we investigated
the molecular involvement and significance of ROP18 in the
pathogenesis of T. gondii infection by investigating the influence
of ROP18 on the transcriptome of HEK293T cells using RNA
sequencing (RNA-Seq).
MATERIALS AND METHODS

Cell Culture and Parasite
HEK293T (human embryonic kidney) cells were purchased from
the American Type Culture Collection (ATCC, Manassas, VA)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2141
and were cultured in high glucose Dulbecco’s modified Eagle’s
medium (Sigma-Aldrich, USA), containing 2 mM l-glutamine,
100 U/ml penicillin and 10 mg/mL streptomycin, and 10% (vol/
vol) fetal bovine serum (Gibco, New Zealand). The cultured
HEK293T cells were incubated at 37°C in humidified air with 5%
CO2. HEK293T cell line was chosen in this study due to its high
efficiency for transfection and expression of exogenous genes.
T. gondii RH strain was maintained via passage in human
foreskin fibroblast (HFF) cells. Total RNA of the T. gondii RH
tachyzoites was extracted using TRIzol reagent (Invitrogen,
USA) according to the manufacturer’s protocol. The residual
genomic DNA of T. gondii was removed using RNase-Free
DNase (Ambion, Shanghai, China).

Plasmid Construction
The coding sequence (CDS) of ROP18 of T. gondii RH strain
(GenBank No. JX045330) was amplified from total RNA
extracted from tachyzoite of T. gondii RH strain using the
primers: ROP18-F (5’-GGGGGATCCATGACACTTGGTC
CTTCAAAACTCG-3’) and ROP18-R (5’-GGGGTCGACTT
CTGTGTGGAGATGTTCCTGCTGTTC-3 ’) . The PCR
conditions were set as follows: pre-denaturation for 5 min at
98°C followed by 35 cycles of 98°C for 20 s, 56°C for 18 s, and
72°C for 30 s; 72°C for 5 min and hold at 4°C. The PCR product
was purified using Gel Extraction kit (OMEGA, China). The
purified ROP18 CDS was cloned into PCMV-N-HA vector using
BamHI and SalI restriction enzymes (NEB, USA), according to
the manufacturer’s instructions. The constructed plasmid
(PCMV-N-HA-ROP18) was transformed into E. coli DH5a
competent cells (TIANGEN, China). Single bacterial colony
was randomly selected and identified using PCR primers
ROP18-F and ROP18-R. Positive colonies were sequenced by
Genscript Corporation (Nanjing, China). The plasmid of
PCMV-N-HA-ROP18 bacterial colony was extracted using
Endofree Plasmid Kit (TIANGEN, China) following the
manufacturer’s instructions, and the extracted plasmid was
stored at −20°C until use.

Transfection of HEK293T Cells
The HEK293T cells were cultured in T-25cm2 cell culture flasks
(NEST, China). When the monolayers reached 70%–80%
confluence, transfection was performed using Xfect™

Transfection Reagent (Takara, China). Briefly, 30 µg PCMV-N-
HA-ROP18 and PCMV-N-HA (empty control vector) were diluted
separately in 300 µl Xfect™ transfection buffer. Then, 10 µl Xfect™

polymer was added and vortexed for 5 s at high speed, followed by
incubation for 10 min at room temperature. The mixture was then
added into the supernatant of the cultured cells and incubated for 4 h.
Following the incubation, the DMEMof transfected cell was replaced
with 5 ml fresh DMEM supplemented with 10% FBS. Forty-eight
hours post transfection, transfected cells were collected and used for
Western blotting, indirect immunofluorescence and transcriptome
analysis as described below.

Western Blotting
We examined whether ROP18 was correctly expressed in
HEK293T cells using Western blotting analysis. Briefly, total
November 2020 | Volume 10 | Article 586946
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protein was extracted using ProteinExt™ Mammalian Total
Protein Extraction Kit (TRAN, China). Then, 20 µg of the
extracted protein and 10 µl PageRuler™ Prestained Protein
Ladder (Thermo Scientific, USA) were electrophoresed on 12%
ExpressplusTM PAGE Gels (GenScript, China) under 120V and
then electrotransferred to PVDF membrane (Thermo,
Germany). The PVDF blotting membrane was incubated with
anti-HA tag antibody (Abcam, UK) overnight at 4°C. Then, the
PVDF membrane was washed three times with 1× TBS (Solarbio,
China) and the PVDF membrane was incubated with secondary
antibody, goat anti-mouse IgG H&L (HRP) (Abcam, UK), for 1 h
at 37°C. The PVDF membrane was washed three times by 1×
TBS. The ECL reagent (Solarbio, China) was used to detect the
targeted protein (Solarbio, China). The Western blot image was
recorded by Gel DocTM XR+ with image lab™ Software (BIO-
RAD, USA).

Indirect Immunofluorescence Assay
The transfected cells were washed three times with phosphate
buffered saline (PBS) and fixed with 4% paraformaldehyde
(Solarbio, China) for 10 min. The paraformaldehyde was
discarded and the fixed cells were washed three times with
PBS, permeabilized using 0.1% Triton X-100 (Beyotime,
China), and blocked with 5% bovine serum albumin for 1 h.
Following three times washing with PBS, primary mouse anti-
HA tag antibody (Abcam, UK) was used to recognize HA tag of
ROP18 protein. After incubation with the anti-HA tag antibody
at 4°C overnight, the residue HA-tag antibody was discarded and
the fixed cells were washed three times with PBS, and then
incubated with goat anti-mouse IgG H&L conjugated with Alexa
Fluor®555 (Abcam, UK) at 37°C for 1 h. Nucleus was counter-
stained with 10 µg/ml DAPI (Solarbio, China). Before the
immunofluorescence detection, the goat anti-mouse IgG H&L
antibody and DAPI were discarded by washing three times with
PBS. The immunofluorescence images were recorded using a
Fluorescence microscope Axiovert 100TV (Zeiss, Germany).

Total RNA Extraction and RNA Sequencing
of HEK293T Cells
Total RNA of HEK293T cells was extracted by using TRIzol Reagent
(Invitrogen China Ltd, Beijing, China) according to the
manufacturer’s instructions. All extracted RNA samples were
treated with RNase-Free DNase (Ambion, Shanghai, China) to
remove residual genomic DNA. The concentration and quality of
RNA were detected using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, Calif.). mRNAwas isolated from total RNA
using Poly-T oligo-conjugatedmagnetic beads, and thenmRNAwas
reversely transcribed into cDNA with PrimerScriptTMRT reagent
kit with gDNA Eraser (Takara, China) following the manufacturer’s
instructions. Construction of transcriptomic libraries and RNA-Seq
were performed by BGI-Shenzhen (Shenzhen, China).

Sequencing Quality and Mapping
of Sequencing Reads
Reads were trimmed to remove the adaptor primers, low-quality
reads, and very short (<50 nt) reads. The quality of RNA-Seq was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3142
checked by using the quality scores Q20 and Q30. The clean
reads were mapped against the human reference genome (ftp://
ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/current/GCF_
000001405.39_GRCh38.p13/) using SOAPaligner/SOAP2
software. Reads per kilobase per million mapped reads
(RPKM) method was used for calculation of the relative gene
expression (Mortazavi et al., 2008). rMATS software was used to
detect gene alternative splicing (AS) events among samples,
including skipped exon (SE), alternative 5’ splicing site (A5SS),
alternative 3’ splicing site (A3SS), mutually exclusive exons
(MXE) and retained intron (RI).

Bioinformatic Analysis of the Differentially
Expressed Genes
DESeq2 software was used to determine gene expression and
identify differentially expressed genes (DEGs) between the
PCMV-N-HA-ROP18 transfected cells and PCMV-N-HA
transfected (control) cells. The Benjamini and Hochberg false
discovery rate (FDR) was used to correct multiple hypothesis
testing P values. Genes with FDR adjusted P values of Fisher’s
exact test ≤ 0.05 and | log2(fold change) | ≥ 1 were deemed as
DEGs. The fold change (FC) = gene RPKM value of ROP18-
expressing HEK293T cells/gene RPKM value of control-
HEK293T cells. The gene expression data were clustered using
Euclidean distance. The functional annotation and pathways
involving the DEGs were analyzed using Gene Ontology (GO),
Reactome, and KEGG (http://www.kegg.jp/) pathway
enrichment analyses. Fisher’s exact test adjusted with FDR was
used to identify significantly enriched GO terms or pathways.
The FDR adjusted P value ≤ 0.05 was used to identify the
significantly enriched GO terms or pathways. TRRUST
database was used to identify the relationship between TFs and
their target genes. Cytoscape software was used to visualize the
relationship between DEGs, GO terms, and pathways.

Real-Time Quantitative PCR (qRT-PCR)
Validation
We examined the reliability of RNA-seq results by using qRT-
PCR. Twenty DEGs were chosen, including WNK4, TNC,
TNFRSF9, IL6R, PCK1, FRMD1, TES1, INHBA, CD44,
LINC01599, LOC400710, EIF4EBP3, LOC101929181, OR2B6,
LRRC46, FGF21, KRTAP5-2, KCNN4, SEZ6, and RNU1-2.
GAPDH was included as a reference gene. The details of all the
primers are shown in Supplementary Table S1. Briefly, total
RNA was extracted from the transfected cells, and reverse
transcribed into cDNA using PrimerScriptTMRT reagent kit
with gDNA Eraser (Takara, China). The cDNA was stored at –
80°C until use. The following qRT-PCR conditions were used for
gene amplification: 95°C for 10 min, followed by 40 cycles of
denaturing at 94°C for 15 s and 60°C for 1 min. The melt curve
analysis ranged from 72°C to 95°C to ensure that specific product
was amplified in each qRT-PCR reaction. The 2−DDCT relative
expression calculation method was used to calculate the relative
gene expression levels of the examined genes (Livak and
Schmittgen, 2001).
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RESULTS

Confirmation of ROP18 Expression
in HEK293T Cell
Sequencing of PCMV-N-HA-ROP18 showed that the CDS of
ROP18 of T. gondii RH strain had been correctly cloned into the
PCMV-N-HA plasmid. The results of Western blotting
demonstrated that ROP18 protein was correctly expressed in
HEK293T cells; however, no protein was detected in the
HEK293T cells transfected with PCMV-N-HA (Figure S1).
The efficiency of transfection was examined using indirect
immunofluorescence analysis, which demonstrated the high
expression of ROP18 in HEK293T cells. As expected, no
fluorescent signal was detected in HEK293T cells transfected
with PCMV-N-HA (Figure 1).
RNA-Sequencing and Identification
of Differentially Expressed Genes
Each sequenced sample had > 119 million raw reads and 110 to
111 million clean reads. Also, 98% and 92% clean reads have
met the sequencing quality standards of Q20 and Q30,
respectively, demonstrating the high quality of RNA-seq
data. Approximately 85%–86% clean reads were mapped to
reference human genome (Version: hg38) and 71%–72% clean
reads were aligned against reference human genes. A total of
22,460 genes were detected in the HEK293T cells, of which 283
and 467 genes had decreased and increased expression,
respectively (Figure 2A). Details of the DEGs are shown in
Supplementary Table S2. Clustering analysis of gene
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4143
expression clearly separated the data into two clusters
(ROP18-expressing cell cluster and control cell cluster),
showing the distinct transcriptomic profiles between ROP18
expressing cells and non-ROP18 expressing cells (Figure 2B).
The RNA-seq data were validated by examining the level of
expression of 20 DEGs using qRT-PCR and the results
obtained by qRT-PCR and RNA-seq were consistent (Figure
2C). Analysis of AS events showed that ROP18 had no
significant impact on the SE, A5SS, A3SS, and MXE;
however, RI event was significantly increased in ROP18-
expressing cells (Table 1).

Pathway Enrichment Analysis of DEGs
To further investigate the the cellular functions that were
significantly altered by ROP18 of T. gondii RH strain, pathway
enrichment analysis was performed. As shown in Supplementary
Table S3, the DEGs were significantly enriched in 129 pathways.
The top 30 enriched pathways were extracellular matrix (ECM)
organization, ECM-receptor interaction, ECM proteoglycans,
integrin cell surface interactions, degradation of the ECM, focal
adhesion, laminin interactions, integrin signalling pathway, non-
integrin membrane-ECM interactions, immune system, PI3K-Akt
signaling pathway, collagen formation, protein digestion and
absorption, assembly of collagen fibrils and other multimeric
structures, collagen chain trimerization, cytokine-cytokine
receptor interaction, collagen degradation, amoebiasis,
hematopoietic cell lineage, binding and uptake of ligands by
scavenger receptors, MET activates PTK2 signaling, elastic fibre
formation, human papillomavirus infection, small cell lung cancer,
molecules associated with elastic fibres, collagen biosynthesis and
FIGURE 1 | Indirect immunofluorescence of the transfected HEK293T cells. The ROP18 protein tagged with HA was stained with AlexaFluor 555 (Orange) and the
nucleus was counterstained with DAPI (Blue). The HEK293T cells transfected with PCMV-N-HA-ROP18 showed high density of orange signal, whereas HEK293T
cells transfected with PCMV-N-HA did not show any fluorescent signal.
November 2020 | Volume 10 | Article 586946
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modifying enzymes, MET promotes cell motility, neuroactive
ligand-receptor interaction, GPCR ligand binding, and signaling
by receptor tyrosine kinases. All the top 30 pahtways were
upregulated by ROP18. The details of the relationship between
the DEGs and the top 30 pathways are shown in Figure 3 and
Supplementary Table S3.

Disease Pathway Enrichment Analysis
of DEGs
The significantly enriched disease pathways were congenital
malformations, congenital malformations of the musculoskeletal
system, cardiovascular diseases, immune system diseases, nervous
system diseases, eye disease, vascular diseases, epidermolysis
bullosa, junctional, atypical hemolytic uremic syndrome,
congenital malformations of skin, hematologic diseases,
inherited thrombophilia, musculoskeletal diseases, and primary
immunodeficiency. Most of these disease related pathways were
dominated by upregulated genes. The relationships between DEGs
and disease-related pathways are shown in Supplementary
Table S4.

GO Enrichment and Transcripton Factor
Analysis of DEGs
A total of 264 GO terms were significantly enriched by DEGs.
The top 30 enriched GO terms included twenty-three biological
process GO terms (response to external stimulus, regulation of
multicellular organismal process, system development, positive
regulation of multicellular organismal process, collagen
metabolic process, cell adhesion, locomotion, cell surface
receptor signaling pathway, cellular response to cytokine
stimulus, cellular process, angiogenesis, positive regulation of
cell population proliferation, ECM organization, blood vessel
development, biological adhesion, regulation of transport,
positive regulation of biological process, response to stimulus,
cell migration, tissue migration, cell population proliferation,
regulation of cell communication, and metabolic process), five
cellular component GO terms (integral component of
membrane, cell periphery, extracellular region, extracellular
vesicle, and cell surface), and two molecular function GO
terms (ECM structural constituent and calcium ion binding)
(Figure 4 and Supplementary Table S5). We also identifed 144
differentially expressed TFs (DETFs), including 75 upregulated
TFs and 69 down-regulated TFs. As shown in Figure 5, the
DETFs were classed into 29 families. zf-C2H2, Homeobox and
HMGI/HMGY were the top 3 families that contained most
DETFs altered by ROP18 of T. gondii. We identified the target
DEGs of DETFs in the TRRUST database, where 16, 4, 2, and 1
DEGs are targeted by ETS1, RUNX2, NFATC2, and IRF9,
respectively (Figure 6).
DISCUSSION

In this study, we expressed ROP18 of RH strain in HEK293T
cells and studied the resultant effects on the cell transcriptome by
using RNA-seq approach. Sequencing of PCMV-N-HA-ROP18
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5144
plasmid showed that ROP18 eukaryotic expression plasmid has
been successfully constructed, and Western blotting showed that
ROP18 was correctly expressed in HEK293T cell (Figure S1). As
shown in Figure 1, no HA-tagged protein was detected in the
control cells, however a strong fluorescent signal was detected in
HEK293T cells transfected with PCMV-N-HA-ROP18. RNA-
seq showed that ROP18 of RH strain decreased the expression of
283 gene but increased the expressions of 467 genes of HEK293T
cells (Figure 2A and Supplementary Table S2). ROP18-
expressing cell cluster and control cell cluster were clearly
separated into two clusters, indicating the distinct
transcriptomic profiles between ROP18 expressing cells and
non-ROP18 expressing cells (Figure 2B). The qRT-PCR
validation showed an agreement between the results obtained
by qRT-PCR and RNA-seq (Figure 2C), demonstrating the
reliability of the RNA-seq data.

The GO enrichment and pathway analyses showed that DEGs
were significantly enriched in 129 pathways (Supplementary
Table S3), and 115 DEGs were linked to 14 KEGG disease
pathways (Supplementary Table S4). Most of the top 30
enriched pathways were involved in ECM, cell binding and
immune response (Figure 3). Consistent with the KEGG
analysis, most of the top 30 enriched GO terms were also
related to ECM, cell binding and immune response (Figure 4
and Supplementary Table S5). These data clearly showed that a
large number of ECM-related pathways and GO terms were
significantly enriched (Figures 3 and 4). These findings are
expected because HEK293 cells are frequently used as a model
for ECM-interaction studies because they express several b1
integrin containing subunits on their cell surface, which allow
them to adhere to a range of ECM proteins (Bodary and McLean,
1990). ECM components are critical scaffolds for adhesive cells,
and regulate proliferation, differentiation, and fate of the cells. All
these crucial processes contribute to cell migration, cellular
communication, inflammation, and histopathology. Alterations
in ECM composition, structure, abundance, or expression of
ECM genes have been shown to cause or underpin sevreal
diseases (Lamande and Bateman, 2020). Given these highly
versatile functions of ECM, it is not surprising to see
significant alterations in multiple disease-related processes
enriched by DEGs. Also, ECM plays a key role in the
morphogenesis and regulation of the neural progenitor
behavior (Long and Huttner, 2019). We also found that ECM
organization and congenital malformation processes were
significantly enriched by 47 DEGs (Figure 3) and 47 DEGs
(Supplementary Table S4), respectively. Most of the DEGs were
upregulated by ROP18. Whether alterations in the expression of
genes related to ECM or tissue defects caused by ROP18
contribute to the prenatal congenital pathologies that occur in
the fetus who become infected during pregnancy remains to
be investigated.

ECM modulates the activities of growth factors and cytokines
(Schonherr and Hausser, 2000). Also, upregulation of ECM
components has been linked to inflammatory responses
(Sorokin, 2010; Herrera et al., 2018). We identified 88
immune-related DEGs in ROP18-expressing cells, including 61
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upregulated and 27 downregulated genes (Figure 3). The
enriched innate immune system pathway was alterd by 28
upregulated genes (CR2, LPCAT1, IFIH1, LGALS3, AMPD3,
HPSE, CLU, PLD1, PROS1, CFB, NLRP1, TXK, MGAM, PLAU,
PTX3, PLPP5, NFATC2, CFI, PTPRB, ANPEP, CD68, HP, GNLY,
PRG2, ATP6V0D2, S100P, C3AR1, and CD44) and 11
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6145
downregulated genes (LCK, CLEC7A, MB21D1, PRSS3,
TICAM2, C4B, ZBP1, LYZ, TLR7, LAIR1, and CEACAM8)
(Supplementary Table S3). Also, 24 genes of cytokine-
cytokine receptor interaction pathway were significantly altered
(Figure 3 and Supplementary Table S3), including 17
upregulated genes (GDF7, ACVR1C, TGFBR2, CNTF, IL18R1,
IL1RAP, TNFSF13B, IL32, TNFSF4, TNFRSF13C, CXCL8,
INHBA, IL6R, TNFSF11, TNFRSF9, CX3CL1, and IL7) and 7
downregulated genes (TNFRSF25, IL17C, IL31, CCR4, CCL5,
IL15, and IL12RB1). In these differentially expressed cytokine-
related genes, four of them regulate the chemotaxis of immune
cells, including CXCL8, CXCL1, CCR4, and CCL5. These
chemotaxis-related genes have several biological and
immunological functions. Maintaining a balanced immune
response during T. gondii infection is essential in order to limit
the parasite proliferation, while at the same time protects the
host from the adverse effects of excessive inflammatory
pathologies (Chousterman et al., 2017). The CCL5 which
regulates the migration of eosinophils and regulatory T cells
(Griffith et al., 2014) was downregulated by ROP18. However,
A B

C

FIGURE 2 | Differentially expressed genes (DEGs) and qRT-PCR validation. (A) Volcano plot showing gene expression changes in ROP18-expressing HEK293T
cells, including 467 upregulated genes and 283 downregulated genes. Red and green colors represent upregulated and downregulated genes, respectively.
(B) Clustering analysis of DEGs and samples. The color scale bar for heat intensity indicates Log2(Fold Change); up and down indicate upregulated and
downregulated genes in ROP18-expressing cells, respectively. Columns, samples; rows, DEGs. The samples were grouped into two distinct clusters: ROP18-
expressing group and control group. (C) qRT-PCR validation of the RNA-seq results. The expressional trends of the examined DEGs were similar between qRT-PCR
and RNA-seq results. Blue and green colors represent the result of RNA-seq and qRT-PCR, respectively.
TABLE 1 | The number of alternative splicing events in ROP18-expressing
compared to non-expressing (control) HEK239T cells.

Sample SE MXE A5SS A3SS RI

Control_1 56,027 12,900 5,283 5,419 5,992
Control_2 55,326 12,675 5,215 5,401 5,954
Control_3 50,519 11,138 5,167 5,285 5,985
ROP18_1 52,504 11,444 5,161 5,349 6,043
ROP18_2 55,771 12,523 5,274 5,485 6,100
ROP18_3 50,314 10,772 5,142 5,296 6,036
P value of T test 0.665 0.431 0.611 0.911 0.024
SE, skipped exon; A5SS, alternative 5’ splicing site; A3SS, alternative 3’ splicing site; MXE,
mutually exclusive exons; RI, retained intron.
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CXCL8 and CXCL1 that regulate the chemotaxis of CD8+

effector T cells, resident monocytes, microglia, CD8+ effector-
memory T cells, and T cells were significantly upregulated by
ROP18. Thus, it is possible that ROP18 contributes to the
recruitment of host immune cells to the infection site.

We also found that DEGs were enriched in several disease
pathways. Chorioretinitis is a common manifestation in ocular
toxoplasmosis, and a correlation exists between ROP18 allele
type and the severity of ocular inflammatory response (Sanchez
et al., 2014). As shown in Supplementary Table S4, ROP18
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7146
altered the expressions of 15 eye disease-related genes, including
EFEMP1, SLC7A14, MIP (major intrinsic protein of lens fibe),
COL25A1, CFB, SLC38A8, CFI, RIMS1, CABP4, RP1L1, CRYAB,
PROM1, CRX, KCNJ13, and VCAN. Previous studies showed
that EFEMP1 (Lin et al., 2018; Thompson et al., 2019), SLC7A14
(Jin et al., 2014), and RP1L1 (Albarry et al., 2019) are linked
to macular degeneration or retinitis pigmentosa; COL25A1,
which encodes a membrane associated collagen, is associated
with oculomotor neuron development (Shinwari et al., 2015).
Also, RP1L1 (Fujinami-Yokokawa et al., 2019), PROM1
FIGURE 3 | The relationship between the DEGs and the top 30 enriched pathways. A total of 186 DEGs were linked to the top 30 pathways. Triangles represent
the DEGs and ovals represent the pathways. Red and green triangles represent upregulated and downregulated DEGs, respectively. The details of DEGs are listed in
Supplementary Table S2.
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(Fujinami et al., 2020), CRX (Fujinami-Yokokawa et al., 2020),
CFI and CFB (Rathi et al., 2017; Shahulhameed et al., 2020), and
KCNJ13 (Toms et al., 2019) have been linked to retinopathy.
Additionally, SLC38A8 contributes to congenital nystagmus
(Weiner et al., 2020), and RIMS1 and CABP4 are associated
with dystrophy (Sisodiya et al., 2007) and synaptic disorder of
cone-rod (Littink et al., 2009), respectively. Furthermore,
alteration of CRYAB is associated with cataract (Molnar et al.,
2019), and VCAN is associated with vitreoretinal degeneration
(Tang et al., 2019). Most of these eye disease-related genes were
upregulated in HEK293T cells by ROP18 (Supplementary Table
S3). Whether the same genes are also altered in other cell lines
such as occular cell types remains to be determined. A previous
study showed that the expression of IFN-g and IL-1b was not
significantly influenced by ROP18 in peripheral blood
mononuclear cells collected from patients with ocular
toxoplasmosis (Hernandez-de-Los-Rios et al., 2019). Our
results also showed that the expression of IFN-g and IL-1b was
not significantly influenced by the expression of ROP18 protein
in HEK293T cells.

Recent studies show that T. gondii infection can induce
significant structural, functional and metabolic changes in the
brain microvascular endotehlial cells (Al-Sandaqchi et al., 2018;
Hu et al., 2018; Ma et al., 2019; Al-Sandaqchi et al., 2020; Harun
et al., 2020a; Harun et al., 2020b) and can change the neuron
subpopulations (Odorizzi et al., 2010). However, the exact
mechanisms of behavioral abnormalities and change in the
subpopulations of neurons induced by T. gondii infection
remains to be clearly defined. A previous study revealed a role
for ROP18 in increased neural apoptosis and encephalitis during
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10149
T. gondii infection (An et al., 2018). Although HEK293T cells are
not drieved from brain, our transcriptomic analysis showed that
ROP18 can alter the expressions of genes involved in several
neural activity-related pathways, neuron differentiation and
development processes. We found that the neural activity-
related pathways/GO terms were significantly enriched in
HEK293T cells following expression of ROP18 protein.
Neuroactive ligand-receptor interaction was enriched by 23
DEGs, including 13 upregulated genes and 10 downregulated
genes (Figure 5 and Table Supplementary S3). Nervous system
diseases were also enriched by 23 upregulated genes and 13
downregulated genes (Supplementary Table S4). GO
enrichment analysis showed that neuronal cell body and
neuron differentiation process were significantly altered by 10
DEGs and 13 DEGs, respectively; cell morphogenesis involved in
neuron differentiation was significantly altered by 6 upregulated
genes and 3 downregulated genes; and regulation of neuron
differentiation was significantly altered by 5 upergulated genes
and 1 downregulated genes (Supplementary Table S5). Although
the impact of ROP18 on neurons remains to be determined, our
results offer preliminary results for further investigation of the
effect of ROP18 on the neurobiology of cerebral toxoplasmosis.

RNA-seq analysis has been used to detect AS events (Filichkin
et al., 2010; Feng et al., 2013; Shen et al., 2014). Our previous
study showed that ROP17 of T. gondii can modify host AS events
(Li et al., 2019) which have significant roles in various biological
processes (Blencowe, 2006; Baralle and Giudice, 2017). We
investigated the role of ROP18 in the regulation of host AS
events by comparing five AS events, including SE, A5SS, A3SS,
MXE, and RI, in ROP18-expressing and control cells. As shown
FIGURE 6 | The interaction network showing the relationships between differentially expressed transcription factors (DETFs) and their corresponding target genes.
Ovals and triangles represent DETFs and their target genes, respectively. Red and green denote genes with increased and decreased expression, respectively.
Arrows with a T-shaped end represent inhibition or repression of gene expression, arrows with a delta-shaped end represent gene activation, and arrows with a dot-
shaped end represent unknown regulatory type. Network was constructed using Cytoscape and TRRUST database. The details of DEGs are listed in
Supplementary Table S2.
November 2020 | Volume 10 | Article 586946

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. ROP18-Mediated Transcriptional Reprogramming of HEK293T Cells
in Table 1, RI event was significantly increased in ROP18-
expressing cells. RI is a type of AS envent that can introduce
functional elements to the protein (Buckley et al., 2011) or results
in the degradation of mRNA by RNA surveillance mechanism
(Belgrader et al., 1994). This result suggests that ROP18 can
influence host biological processes via altering the RI event
within the host cells. The exact mechanism by which ROP18
alters RI event is unknown, however, we found that U2 small
nuclear RNA auxiliary factor 1 like 5 (U2AF1L5) was
significanlty downregulated (Log2FC = –1.135, FDR corrected
P value = 0) in ROP18-expressioning cells. The U2AF1L5 seems
to participate in mRNA splicing according to annotation in
NCBI database.

Analysis of the regulatory networks between DEGs and TFs is
important for elucidating the role of ROP18 in regulating the
host biological processes. ROP18 protein upregulated the
expressions of 75 TFs, but downregulated the expressions of
other 69 TFs in HEK293T cells, showing the significant impact of
ROP18 on the expression of TFs. The TFs altered by ROP18 were
classed into 29 families, and the zf-C2H2, Homeobox and
HMGI/HMGY families were the top families with the most
DETFs (Figure 6). These results suggest a marked influence of
ROP18 on the expression of TFs belonging to these three TF
families. Most DETFs of Homeobox family were upregulated,
however all DETFs of HMGI/HMGY family were downregulated
(Figure 5), suggesting that ROP18 could have a suppressive effect
on members of the HMGI/HMGY family. By searching TRRUST
database, we identified four DETFs, including ETS1, RUNX2,
NFATC2, and IRF9, which target 16, 4, 2, and 1 DEGs,
respectively (Figure 6). ETS1 induces the expression of
MMP13 (Ghosh et al., 2012), ABCB1 (Kars et al., 2010),
PTHLH (Dittmer et al., 1994), TNC (Jinnin et al., 2004),
ANPEP (Petrovic et al., 2003), PF4 (Okada et al., 2003),
TGFBR2 (Kopp et al., 2004), and MMP1 (Mix et al., 2007).
RUNX2 enhances the expression of LGALS3 (Zhang et al., 2009)
and MMP13 (Wang et al., 2004). NFATC2 suppresses the
expression of CD3G. The expression of these target genes is
consistent with the regulatory functions of the DETFs, suggesting
that ROP18 modifies host gene expression via altering the
expression of TFs. Analysis of the interaction between ROP18
and host TFs may elucidate the interplay between ROP18 and
cellular processes. Previous studies showed that ROP18 interacts
with several TFs, including SOX6, SPDEF, HMGN1, ATF3,
MLLT10, DNMT3L, MYCN, MXD4, TAF12, EPAS1, CNBP,
HMGA1, ATM, TBX3, ZNF148, p65, p53, ATF6B, and SMAD1
(Cheng et al., 2012; Du et al., 2014; Yang et al., 2017; Xia et al.,
2018). Interestingly, the expressions of these interacting TFs were
not significantly altered by ROP18. However, by searching
TRRUST database, we found that MYCN activates the
expressions of CD44 and NDRG1, EPAS1 activates the
expression of FLT1, and HMGA1 activates the expression of
CD44. In this study, CD44 (Log2FC = 2.5, FDR corrected
P-value = 1.23E-30), NDRG1 (Log2FC = 1.1, FDR corrected
P-value = 0) and FLT1 (Log2FC = 1, FDR corrected P-value =
1.16E-36) were upregulated by ROP18 stimulation. The
expression of these target genes is consistent with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11150
regulatory functions of the MYCN, EPAS1, and HMGA1.
Whether these regulatory effects depend on the phosphokinase
activity of ROP18 remains to be elucidated.

In our study, the cell cycle process was not significantly
affected by ROP18 at the gene transcriptional level. However,
another effector protein, ROP16, plays a significant role in host
cell cycle (Chang et al., 2015). The difference between these two
virulence-associated proteins (ROP16 and ROP18) in the effect
on host cell cycle may be attributed to differences in their host
target genes. In a previous study, ROP18 of RH strain was found
to interact with 492 host proteins (Xia et al., 2018). In our study,
only a few of these interacting proteins (including upregulated
DDX60, COL6A3, PTPRK, and RCAN2; downregulated LYPD5,
KIR3DX1, NPPB, and TNNI1) were significantly altered at the
gene expression level. This difference might be attributed to
variations in the behavior of the transfected host cells. Both
ROP17 and ROP18 are secretory proteins of the ROP2 family (El
Hajj et al., 2006) and have a similar location within the host cell
(Etheridge et al., 2014). By comparing the host transcriptional
responses to ROP17 (Li et al., 2019) and ROP18 in the present
study, we identified 110 and 276 genes whose expression was
decreased or increased, respectively, in both ROP17 and ROP18.
This similarity in the location inside the host cell and in the effect
on host cell transcriptome is consistent with the fact that ROP17
and ROP18 share some host cell targets (Etheridge et al., 2014).
ROP5 forms complexes with ROP18 and ROP17 to mediate the
parasite survival in mice (Etheridge et al., 2014). A link between
ROP18 allele type and virulence in mice has been reported
(Sanchez et al., 2014) and the combination of ROP18/ROP5
allele types was found to be even more predictive of T. gondii
virulence in mice (Shwab et al., 2016). Given the interaction and
overlap between the functions of ROP proteins, studying the
effect of simultaneous expression of ROP5, ROP16, ROP17, and
ROP18 on the host cell transcriptional reprogramming may
improve the understanding of the virulence mechanism of
T. gondii.
CONCLUSION

This study presents the first RNA-Seq-based analysis of the
transcriptomic responses of HEK239T cells to ROP18
expression. We identified 22,460 host genes, and the
expression of 750 genes was significantly altered by ROP18,
including 467 upregulated genes and 283 downregulated genes.
The functions of significantly altered genes were mainly involved
in ECM organization, immune responses and disease processes.
ROP18 also alters the expression of 144 TFs belonging to 29 TF
families and increased the RI pattern of AS. Our data revealed
several potential new roles of ROP18 in the transcriptional
regulation of host cells. Further investigations of the effects of a
catalytic inactive mutant of ROP18 on the host cell
transcriptome and using different cell lines (e.g. neurons and
immune cells) will deepen our understanding of T. gondii
interactions with the host cell processes. Also, using methods
such as siRNA and gene editing to alter ROP18 protein
November 2020 | Volume 10 | Article 586946
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expression can improve the evaluation of the effects of ROP18
protein with the concomitant entry of live parasites.
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