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Editorial on the Research Topic

Multi-Omics Approaches to Study Signaling Pathways

With the advent of omics technologies, tremendous progress has been made in understanding the
signaling pathways in normal and disease states across different species. Multi-omics approaches
can be categorized into two groups: molecular profiling (MPro) and molecular perturbation
(MPer) (Yao et al., 2015). The MPro grouping includes the profiling of genomic, transcriptomic,
proteomic, post-translational modifications, and interactome; and MPer includes genetic and
functional perturbations.

Omics approaches such as genomics, transcriptomics, miRNAomics, proteomics, and
metabolomics have changed the landscape of different diseases including stroke, diabetes, and
cancer. Genomic approaches such as genome wide association studies have led to the identification
of 30 loci, which were used in swaying body mass index and the risk of obesity (McCarthy, 2010).
At mRNA levels, transcriptomic profiling using cDNAmicroarrays has helped not only in detecting
the downregulation of significant tumor suppressors in breast cancer metastasis (Zheng et al., 2017)
but also enabled medical practitioners to discriminate patients with activated B-like diffuse large
B-cell lymphoma (DLBCL) from those with germinal center B-like DLBCL (Alizadeh et al., 2000).
High-throughput studies focused on microRNAs (miRNAs or miRs) in early stage breast cancer
have led to the identification of unique predictive miR signatures specific to ER, PR, and HER2
status (Lowery et al., 2009). At the protein level, an in vivo labeling technique like stable isotope
labeling with amino acids in animal cell culture, coupled with amass-spectrometry based proteomic
approach, has allowed for the comparison of different mutations in lung adenocarcinoma cell lines
in relation to EGFR signaling (Guha et al., 2008).

For this special issue, we present a collection of 12 articles, which provide a comprehensive
overview of the different biological pathways within the MPro and MPer approaches.

WGS approaches have been extensively used to unravel the different types of genomic alterations
in cancer and facilitate understanding of the mutational landscape of cancer genomes. Using
WGS, Dr. Bandapalli’s group identified candidate predisposing genes in families with a reported
recurrence of Hodgkin-lymphoma (HL), a lymphoproliferative malignancy of B-cell origin. These
variants were prioritized using an in-house pipeline “FCVPPv2.” The authors used this pipeline
along with gene/variant panels based on cancer predisposing genes and variants prioritized in
the largest familial HL cohort study reported to date, to identify high penetrance germline
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variants in the HL families. Furthermore, pathway and network
analyses of these variants have provided additional molecular
cues relevant to the molecular pathogenesis of HL that may
aid the development of targeted therapy and the screening of
individuals who are at risk of developing HL (Srivastava et al.).

MicroRNAs play a key role(s) in regulating gene expression
via either degradation of a transcript or the inhibition of its
translation. Dr. Skoblov’s group presents initial insights into
the complexity of human microRNA-mRNA interactions. They
performed a comprehensive computational analysis on HEK293
and Huh7.5 datasets and reported interesting features of human
mRNA interactome, along with more than 46,000 experimentally
confirmed mRNA-miRNA duplex regions. As part of this study,
they also developed a web-based tool, publicly available at http://
score.generesearch.ru/services/mirna/ (Plotnikova et al.).

In addition, Dr. Fang’s group performed a comprehensive
analysis of hsa-let-7i-5p miRNA in normal and pathogenic
fibroblasts and studied its role ranging from controlling cellular
phenotype to molecular signaling particularly TGF-β signaling
(Zhang et al.).

In a transcriptome study, Dr. Evelo’s group performed
computational analysis on transcriptomic data derived from
cattle breeds with different intramuscular fat deposition to
identify pathways that define marbling in beef cattle. A total of 17
pathways were significantly dysregulated between well-marbled
vs. lean-marbled beef includingMAPK and insulin signaling, and
immune response associated pathways (Roudbari et al.).

Dr. Guan’s group carried out a genome-wide analysis in gastric
cancer and identified 548 and 2,399 differentially methylated
sites and lncRNAs, respectively. The lncRNAs were able to
discriminate between normal vs. cancerous samples of gastric
origin (Song et al.).

Dr. Jolly’s group carried out a comprehensive and comparative
analysis of methods utilizing different transcriptomics signatures
to quantify the status of EMT—a cell biological process involved
in cancer metastasis and chemoresistance. They showed that
these methods exhibited a concordance among themselves in
quantifying the extent of EMT in a given sample and that tumor
cells can undergo varying degrees of EMT across tumor types.
While any of the three methods can capture the generic trend in
the EMT status of a given cell (or population), the multinomial
logistic regression EMT scoring method has an additional
advantage of being able to predict from the transcriptomic
signature of a population, whether it is comprised of “pure” single
hybrid E/M cells at the single-cell level, or an ensemble of E and
M cell subpopulations (Chakraborty et al.).

Another study, by Dr. Imhof ’s group in the context of
hemolytic disorders, described a new ontology and knowledge
graph “HemeKG,” which is publicly available at https://github.
com/hemekg/hemekg. This resource assembles heme-specific

Abbreviations: DEGs, differentially regulated genes; DLBCL, diffuse large B-cell

lymphoma; EMT, epithelial-Mesenchymal transition; FCVPPv2, familial cancer

variant prioritization pipeline; GWAS, genomewide association studies; HL,

Hodgkin-lymphoma; miRNA or miR, microRNA; MPro, molecular profiling;

MPer, molecular perturbation; NMDAR, N-methyl-D-Aspartate Receptor; SLE,

systemic lupus erythematosus; WGS, whole genome sequencing.

terms to better categorize, organize, and analyze data on the
effects of heme on cell biological and biochemical pathways
(Humayun et al.).

In a study on the brain disorder Schizophrenia, Dr. Lane’s
group used an ensemble boosting predictive framework along
with random undersampling, to assess the status of schizophrenia
in the population of Taiwan by examining the levels of D-amino
acid oxidase protein and its interaction partner, the D-amino
acid oxidase activator, in the N-methyl-D-Aspartate receptor
pathway, as well as by using melatonin levels in the tryptophan
catabolic pathway. They also evaluated the performance of
the ensemble boosting algorithm and compared it with other
widely used machine learning algorithms, including support
vector machine, and multi-layer feedforward neural networks.
Notably, they showed that it performs better in distinguishing
schizophrenia patients from healthy controls (Lin et al.).

Using an integrative approach, Dr. Domingo-Fernandez
and his group demonstrated that the choice of pathway
database could impact the results of statistical enrichment
analysis and predictive modeling. They also developed an
integrative pathway resource called “MPath” which showed that
using multiple pathway databases or integrated resources
could provide more biologically consistent results and
improved prediction performances, as opposed to using
equivalent pathways from different databases (Mubeen
et al.).

Dr. Zayed’s group employed an integrative and systematic
bioinformatics in treating ovarian cancer, and identified not only
the DEGs involved in the cell cycle, but also the hub genes
including core genes (FZD6, FZD8, CDK2, and RBBP8) strongly
linked to OC. A large majority of Frizzled receptors including
FZD6 and FZD8 were involved in the ß-catenin canonical
signaling pathway (Udhaya Kumar, Kumar, Siva, Doss, Zayed
et al.).

In a study on the autoimmune disease SLE, Dr. Zayed’s
group used a high-throughput transcriptomics platform to
identify dysregulated signaling pathways. They found that four
genes including EGR1, CD38, CAV1, and AKT1 were strongly
associated with pathways in SLE (Udhaya Kumar, Kumar, Siva,
Doss, Younes et al.).

In a study on M. tuberculosis, Dr. Gupta’s group studied
Rv1915/ICL2a protein as there has been difficulty in harvesting
the soluble protein. They overcome this by expression of C-
terminal truncated Rv1915/ICL2a in the heterologous host E. coli
BL21 (DE3) (Antil et al.).

This collective effort brings together studies covering models
from prokaryotic to eukaryotic organisms using different omics
approaches to delineate either signaling or molecules directly or
indirectly related to signaling in cancer and/or other diseases and
aberrant conditions.
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Comprehensive Analysis of Human 
microRNA–mRNA Interactome
Olga Plotnikova 1,2*, Ancha Baranova 2,3 and Mikhail Skoblov 2
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Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia, 3 School of Systems Biology, George Mason 
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MicroRNAs play a key role in the regulation of gene expression. A majority of microRNA–
mRNA interactions remain unidentified. Despite extensive research, our ability to predict 
human microRNA-mRNA interactions using computational algorithms remains limited 
by a complexity of the models for non-canonical interactions, and an abundance of 
false-positive results. Here, we present the landscape of human microRNA–mRNA 
interactions derived from comprehensive analysis of HEK293 and Huh7.5 datasets, 
along with publicly available microRNA and mRNA expression data. We show that, 
while only 1–2% of human genes were the most regulated by microRNAs, few cell 
line–specific RNAs, including EEF1A1 and HSPA1B in HEK293 and AFP, APOB, and 
MALAT1 genes in Huh7.5, display substantial “sponge-like” properties. We revealed 
a group of microRNAs that are expressed at a very high level, while interacting with 
only a few mRNAs, which, indeed, serve as their specific expression regulators. In 
order to establish reliable microRNA-binding regions, we collected and systematically 
analyzed the data from 79 CLIP datasets of microRNA-binding sites. We report 46,805 
experimentally confirmed mRNA–miRNA duplex regions. Resulting dataset is available 
at http://score.generesearch.ru/services/mirna/. Our study provides initial insight into the 
complexity of human microRNA–mRNA interactions.

Keywords: microRNA, regulation of gene expression, microRNA–mRNA interactions, microRNA-binding sites, 
miRNA-target RNA duplexes, web tool for searching microRNA-binding regions

INTRODUCTION

MicroRNAs are small noncoding RNAs that associate with Argonaute (AGO) protein to form a 
silencing complex, which then regulates a gene expression (Jonas and Izaurralde, 2015). MicroRNAs 
accomplish essential post-transcriptional regulatory step of gene expression regulation through 
either the degradation of a transcript or the inhibition of translation and are involved in key 
cellular processes, such as apoptosis, proliferation, or differentiation (He and Hannon, 2004). 
Hence, dysregulation of microRNAs may result in the development of a disease or in a malignant 
transformation (Weiss and Ito, 2017). According to some estimates, nearly all mature sequences 

Abbreviations: AGO, Argonaute; CDS, coding DNA sequence; CLASH, cross-linking, ligation, and sequencing of hybrids 
technique; CLEAR-CLIP, covalent ligation of endogenous Argonaute-bound RNA-CLIP technique; CLIP, UV cross-linking and 
immunoprecipitation technique; Exp-MiBRs, experimentally confirmed microRNA-binding regions; HITS-CLIP, high-throughput 
sequencing of RNA isolated by cross-linking immunoprecipitation; iCLIP, individual-nucleotide resolution cross-linking and 
immunoprecipitation; PAR-CLIP, photoactivatable-ribonucleoside-enhanced immunoprecipitation; UTR, untranslated region.
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of coding transcripts contain potential sites for microRNA 
regulation (Bartel, 2004; Friedman et al., 2009).

Human genome encodes approximately 2,600 mature 
microRNAs (miRBase v.22) and, according to GENCODE data 
(v.29), more than 200,000 of transcripts, including isoforms 
with slight variations. A particular microRNA may target many 
different mRNAs (Selbach et al., 2008); a particular messenger 
RNA may bind to a variety of microRNAs, either simultaneously 
or in context-dependent fashion (Uhlmann et al., 2012). Notably, 
the target regions for particular microRNAs commonly cluster 
together, thus resulting in the cooperative repression effect 
(Grimson et al., 2007; Sætrom et al., 2007). The mapping of 
microRNA–mRNA interactions is far from being complete 
due to the recognized challenge of computational prediction of 
mRNA–microRNA interactions.

In our previous study, we showed that the outputs 
generated by commonly used microRNA–mRNA interactions 
predicting software differ substantially, while failing to pinpoint 
experimentally confirmed microRNA-binding regions correctly 
(Plotnikova and Skoblov, 2018). Nowadays, many tools for the 
prediction microRNA–mRNA interactions are in development, 
all with different underlying algorithms (Agarwal et al., 2015; 
Gumienny and Zavolan, 2015; Lu and Leslie, 2016; Riffo-
Campos et al., 2016). Among most advanced algorithms, we 
should highlight the ones taking into account expression levels 
of both the microRNAs and their targets. Notably, the changes in 
expression of microRNA may also affect expression levels of other, 
non-target mRNAs—for example, due miRNA targeting of their 
upstream regulators. Consequently, newer, more comprehensive 
approaches—for example, MiRImpact (Artcibasova et al., 2016), 
PanMiRa (Li and Zhang, 2014), and ProMISe (Li et al., 2014), 
aim at explaining complex phenotypes by performing analysis of 
each microRNA along with its direct and indirect targets.

Experimental identification of direct microRNA targets 
remains a crucial step in attaining reliable prediction results. 
There are two main groups of the experimental approaches for 
a direct identification of microRNA–mRNA interactions. The 
first approach relies on a construction of reporter gene assays 
and one-by-one evaluation of possible interactions between the 
microRNA and its cognate mRNA region of interest through 
measuring the activity of the reporter (Steinkraus et al., 2016). 
Another group of techniques comprises involves a coupling of 

a cross-linking with immunoprecipitation (CLIP); this group 
represented by variety of the protocols including PAR-CLIP, 
iCLIP, HITS-CLIP, and others (Licatalosi et al., 2008; Steinkraus 
et al., 2016). CLIP group of methods identifies the microRNA-
binding regions in target mRNAs only, while information about 
pairing of a particular microRNA with a particular mRNA region 
remains obscure.

Two modifications of AGO-CLIP based technology were 
developed specifically for identifying microRNAs ligated to 
their endogenous mRNA targets as part of chimeric molecules. 
To date, AGO-CLIP-based evaluations of microRNA–mRNA 
interactomes were executed only in two human cell lines. 
Helwak and colleagues applied so-called cross-linking ligation 
and sequencing of hybrids, or CLASH, to HEK293 cell line, 
retrieving more than 18,000 high-confidence microRNA–mRNA 
interactions (Helwak et al., 2013). Later, Moore and colleagues 
used another variety of AGO-CLIP termed CLEAR (covalent 
ligation of endogenous Argonaute-bound RNAs)-CLIP for the 
study of microRNA interactome in Huh7.5 cell (Moore et al., 
2015). CLASH and CLEAR-CLIP techniques closely resemble 
each other, with the only difference that CLASH protocol 
employs HEK293 cell line over-expressed AGO1, while CLEAR-
CLIP targets endogenous AGO allowing experimenting with any 
cell line. Thus, CLEAR-CLIP does not require full denaturation 
of AGO and involves a single purification step. It is of note that 
both publications cited above concentrated on the development 
of the experimental protocol and subsequent evaluation of the 
technical aspects of analytic procedure, rather than on extracting 
biological insights from the data collected.

A flowchart at Figure 1A represents the methodology for 
analysis of microRNA–mRNA human interactome employed 
in this study. We aggregated various experimental data on 
human miRNA–mRNA interactions and then investigated 
how expression levels of each studied microRNA and each 
of its cognate mRNAs correlate, and whether the behavior of 
miRNA–mRNA pairs depends on a cell line context. In order 
to do this, we analyzed together (i) sequences and abundance 
of microRNA and their target mRNAs in CLASH dataset for 
HEK293 cell line and in CLEAR-CLIP dataset for Huh7.5 cell 
line, and (ii) expression level of microRNAs and target mRNAs 
in HEK293 and in Huh7.5 cell lines. Second, we performed 
systematic extraction of credible, experimentally confirmed 

FIGURE 1 | Analysis of human microRNA–mRNA interactome. (A) Flowchart describing main steps of human microRNA–mRNA interactome data analysis.  
(B) Distribution of the summarized lengths of 3’UTR, CDS, or 5’UTR mRNA regions in CLEAR-CLIP, CLASH, and GENCODE, respectively.
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microRNA-binding regions across CLASH/CLEAR-CLIP 
datasets and in 79 additional CLIP datasets and present them 
here as a collection.

MATERIALS AND METHODS

microRNA–mRNA Interactions
microRNA–mRNA interactome data were extracted from 
previously published CLASH (Helwak et al., 2013) and 
CLEAR-CLIP (Moore et al., 2015) datasets. CLASH data 
provide transcriptome coordinates for 18,514 miRNA–mRNA 
interactions, while CLEAR-CLIP dataset include genome 
coordinates (version hg18) for 32,712 interactions. Using 
Ensembl API (https://rest.ensembl.org/, Yates et al., 2014), the 
coordinates of CLASH microRNA–mRNA-interacting regions 
were transformed into genome coordinates. For 36 interactions, 
the transforming of their coordinates failed and, in total, we 
revealed 18,478 microRNA–mRNA interactions in 22,030 
genome regions (all interactions were located in mRNA regions, 
with 19% being divided between two exons and 36 interactions 
of three exons). We used LiftOver (https://genome.ucsc.edu/cgi-
bin/hgLiftOver, Kuhn et al., 2012) to transform CLEAR-CLIP 
interactome data from hg18 genome version into hg19. A total 
of two interactions failed to transform. Hence, resultant amount 
of interactions equaled 32,710. Genomic regions (CDS, 3’UTR, 
5’UTR, intronic, intergenic, etc.) were annotated by wAnnovar 
(Wang et al., 2010; Yang and Wang, 2015).

To compare CLASH and CLEAR-CLIP data, CLEAR-CLIP 
dataset was reduced to microRNA–mRNA interactions mapped 
to the expressed transcriptome (n = 10,032). For each of the sets 
of genomic regions (3’UTR, CDS, and 5’UTR) found in miRNA 
bound regions present in CLASH and CLEAR-CLIP, their average 
length (mean) was comparable to that calculated for all protein-
coding transcripts (N = 59,900) downloaded from GENCODE, 
version 24 (Frankish et al., 2018).

To calculate expected overlap between CLASH and CLEAR-
CLIP datasets, five independent CLASH-like and CLEAR-CLIP-
like datasets were generated. For each simulation, binding regions 
were randomly selected from CLASH/CLEAR-CLIP transcripts 
in amounts equal to detected amount of interactions.

CLASH and CLEAR-CLIP datasets were utilized to evaluate 
the amount of interactions for each of the genes as a sum of 
all interactions between microRNAs and mRNA encoded by 
each gene.

mRNA Expression
Publicly available RNAseq datasets GSE68611 (Murakawa et al., 
2015) and GSE64677 (Luna et al., 2015) were used for extracting 
and examining gene sets expressed in HEK293 and Huh7.5 cell 
lines. Each of these datasets includes two biological replicates. 
Initial quality control of sequencing outputs was performed 
using FastQC (www.bioinformatics.babraham.ac.uk/projects/
fastqc). Next, we used kallisto (Bray et al., 2016) to map raw 
reads to the human reference transcript sequences (GENCODE, 
28 version).

First, in each experiment, we calculated the gene expression 
levels as the sum of expression levels for individual gene 
transcripts. Second, we took the mean value for each gene 
between two processed datasets in each of the two cell lines. 
Finally, we kept only genes that had expression more or equal to 
1 tpm as total value and that had expression level of at the level at 
least 1 tpm in one of the two experiments.

In order to compare only genes reliably expressed both in 
HEK293 and Huh7.5 cells, only the genes expressed at levels of 
more than 10tpm or higher were included.

Gene functions were interpreted using PANTHER toolkit 
Version 12.0 (http://www.pantherdb.org/tools). We used 
InteractiVenn tool (Heberle et al., 2015) to create Venn diagrams 
in our analysis.

microRNA Expression
We downloaded microRNA expression data from the GEO 
database: two experimental replicates for HEK293 cell line 
(GSE75136 (Wissink et al., 2016)) and three experimental 
replicates for Huh7.5 cell line (GSE74014 (Bandiera et al., 
2016)). The correlations of experimental results obtained in 
two cell lines were calculated by the Spearman’s procedure. 
We used the R package “DeSeq2” (Love et al., 2014) to 
normalize microRNA expression. Particular microRNA was 
considered as expressed if its expression levels were of three 
or more counts.

CLASH and CLEAR-CLIP datasets were used to calculate 
the amount of interactions for each microRNA. The correlation 
of the amounts of interactions formed by microRNAs and 
their expression levels were estimated using the Spearman 
correlation coefficient.

In order to calculate conservative phyloP scores, for all 
microRNAs, we downloaded the coordinates of the mature 
microRNAs from miRBase (Kozomara and Griffiths-Jones, 
2014) (release 22, coordinates corresponded to the GRCh38 
human reference genome). Next, we used UCSC table browser 
(Karolchik et al., 2004) to obtain phyloP conservative values 
across 20 vertebrates for all mature microRNAs. For each 
group of microRNAs, the mean value between the phyloP 
scores was calculated.

CLIP Data
We collected 79 CLIP datasets (Supplementary Table 1) from 
the POSTAR database (Hu et al., 2016). Raw data of these CLIP 
datasets were initially pre-processed by FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx_toolkit) and then were processed by 
specialized tools for different CLIP-seq technologies: PARalyzer 
(Corcoran et al., 2011) for PAR-CLIP datasets (N = 18) and 
CIMS (Moore et al., 2014) for HITS-CLIP datasets (N = 61). 
We used python to analyze all microRNA-binding regions from 
CLIP datasets together with microRNA–mRNA interactions  
from CLASH and CLEAR-CLIP. In total, all regions were 
merged in six million nucleotides, and each position was 
characterized by the following parameters: list of supported 
experiments (GEO GSM ID), their corresponding cell lines 
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and list of interacted microRNAs (if accessible). We used 
wAnnovar to annotate genes and their parts (CDS, 3’UTR, 
5’UTR, intronic, etc.).

microRNA-Binding Regions
Our analysis of CLIPs, CLASH, and CLEAR-CLIP revealed 
156,000 regions. We used a custom python script to select 
experimentally confirmed microRNA-binding regions 
(Exp-MiBR). Exp-MiBR was defined as a region that had a 
subsequence of length L = 10, whereas each nucleotide (position) 
in this subsequence had been supported by at least n = 2 different 
datasets or chimeras. We estimated the amount of Exp-MiBRs 
for all combination of length and amount of supported datasets/
chimeras in ranges: L = 1–25 and n = 1–10 (Supplementary 
Table 2).

Exp-MiBR Application
We characterized each Exp-MiBR (total amount = 46,805) by 
the following parameters: gene information, amount and list of 
supported experiments (GEO GSM ID) and their corresponding 
cell lines, and list of interacted microRNAs (if accessible).

Besides that all the Exp-MiBRs with the corresponded 
information are available as Supplementary Table 3, we also 
provide an open-access web tool via http://score.generesearch.
ru/services/mirna. As input, the tool requires any VCF file 
(v4.0 or 4.1), no more than 20MB or a single (point) genome 
coordinate. The file or coordinate could be recorded in human 
genome assembly version 38 or 19.

Web Tool for Searching Exp-MiBRs
All microRNA-binding regions identified as experimentally 
confirmed (Exp-MiBR) and reported in this paper 
(Supplementary Table 3) may be searched by a web tool available 
online: http://score.generesearch.ru/services/mirna/.

RESULTS

Comparison of High-Throughput 
microRNA–mRNA Interactions From 
CLASH and CLEAR-CLIP Datasets
First, the sets of microRNA–mRNA interactions retrieved in 
HEK293 and in Huh7.5 by CLASH (Helwak et al., 2013) and 
CLEAR-CLIP (Moore et al., 2015) protocols were compared, 
respectively, to hg19 genome references. Although CLASH 
and CLEAR-CLIP techniques are somewhat similar, CLEAR-
CLIP study (N = 32,710) revealed almost two times more 
interactions than CLASH study (N = 18,478). One of the reasons 
for this may be due to the differences in the data processing 
procedures. While CLASH sequences were aligned to the mature 
transcriptome, CLEAR-CLIP data have been mapped to human 
genome. Because of that, CLEAR-CLIP technique was capable to 
highlight additional interaction sites located in the introns and 
the intergenic regions (~70% of all interactions).

To enable the comparison, we focused our analysis on miRNA-
binding regions residing within the mature transcriptome 

(Supplementary Table 4). Because of that, CLEAR-CLIP dataset 
was limited to about one-third of its entries (n = 10,032). Further 
analysis estimated that approximately 2–3% of the total length of 
all expressed protein-coding transcripts serve as a target for one or 
another microRNAs in either CLASH or CLEAR-CLIP datasets. 
In addition, in both datasets, the microRNA-binding regions had 
similar distribution by mRNA regions (3’UTR, CDS, 5’UTR), 
and to the distribution of the mRNA parts present in GENCODE 
(Figure 1B). Thus, we conclude that the datasets generated by 
CLASH and CLEAR-CLIP techniques are comparable.

In the experimentally obtained CLASH and CLEAR-
CLIP datasets, we detected 1,153 common miRNA–mRNA 
interactions, which were built upon combinations of 933 
interactions in CLASH and 944 interactions in CLEAR-CLIP. 
Average length of experimentally obtained interaction was at 
37.2 nt +/− 19.4 nt. Eight hundred and sixty-seven interactions 
which were common for both datasets had the length of overlap 
of more than 20 nt, with an average length of 45.8 nt +/− 13.9 nt. 
To evaluate if this overlap reflects biological phenomenon rather 
than statistical fluke, we performed computational simulation of 
CLASH and CLEAR-CLIP interactions in transcripts expressed 
in HEK293 (N = 7,299) and Huh7.5 (N = 4,977), respectively. 
For these cell lines, a common set of expressed mRNAs (n = 
3,044) was reduced to a set of randomly selected nucleotide 
fragments with the size distribution matching that for nucleotide 
fragments of CLASH and CLEAR-CLIP; then, we analyzed these 
sets of sequences for overlap. After five independent runs with 
randomly selected fragments of matching size distribution, we 
detected, on average, 7.4 +/− 1.3 interactions with an average 
length of overlapped segments at 14 nt +/− 6.7 nt. Among 
these interactions, only a fraction had the length of overlap of 
more than 20 nt (5.0 +/− 2.5). Therefore, the characteristics of 
experimentally detected patterns of miRNA–mRNA interactions 
differ from that of interactions generated by simulation of 
random events (P < 0.0001).

To investigate whether the low degree of the overlap between 
miRNA–mRNA interactions registered in CLASH and CLEAR-
CLIP datasets could be due to low degree of the overlap between 
HEK293 and Huh7.5 transcriptomes, expression data collected 
from these two cell lines were downloaded from GEO repository 
and analyzed. While about half of expressed microRNAs were 
found in both these cell lines, an overall difference of HEK293 
and Huh7.5 specific sets of highly expressed genes was evident 
(Supplementary Figures 1A, B). To find out if cell-specific 
differences in microRNA–mRNA interactomes are due to cell-
specific environment, the relationships between the levels of 
expression for individual miRNAs and their targets as well as the 
patterns of interactions for each mRNA and miRNA in the both 
cell lines were investigated in details.

Expression Analysis of microRNA–mRNA 
Interactome
mRNA Expression Analysis
To investigate the degree to which cell-specific levels of 
transcripts depend on respective microRNAs, we compared 
expression levels of each gene in HEK293 and Huh7.5 cell lines 
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then cross compared them to sets of experimentally detected 
microRNA interactions. HEK293 and Huh7.5 cell lines express 
a total of 15,8k and 14,5k genes, respectively. In each of these 
two cell lines, approximately 6.9k genes interacted with one or 
more microRNAs (Supplementary Figure 1C). Our analysis 
highlighted 1–2% of mRNAs with confirmed interactions and 
no expression detected in respective cell line. We found that 
only few of these mRNAs had more than 10 interactions each. 
A majority of them were found to have highly conservative 
paralogs, which may erroneously align with miRNAs or mRNAs 
and affect the results of miRNA mapping. A majority of non-
expressed mRNAs (about 70%) had only one interaction. It 
is possible that these mRNAs have been detected as chimeric 
reads resulting from their protection by AGO protein from 
ribonucleases. Below, we will describe a few microRNAs that 
were detected only as a part of chimeras.

In each of these cell lines, a majority of expressed mRNAs 
(57–59%) did not interact with any microRNA (Figures 2A, B). 
In CLASH and CLEAR-CLIP datasets, there were 215 and 333 
high-interacting mRNAs, respectively, with nine or more miRNA 
interactions for each.

Cell line–specific pie charts built for the miRNA–mRNA 
interactions per each mRNA were similar. Nevertheless, 
comparison of the most regulated sets of genes with nine 
or more interactions each revealed that these sets were cell-
line-specific, with only 18 genes in common. These common 
18 genes formed in average of 15.7+/−3.2 and 14.1+/− 2.4 
interactions with microRNAs in the HEK293 and Huh7.5 
cell lines, respectively. Surprisingly, cell line–specific sets of 
microRNA regulators for each of these genes were completely 
different. By PANTHER analysis of the common set of 
genes, we detected enrichment in only one Gene Ontology 

FIGURE 2 | Expression analysis of microRNA and mRNA in HEK293 and Huh7.5 cell lines. (A) and (B): Analysis of expressed genes according to amounts of 
their interactions with microRNAs in HEK293 (A) and Huh7.5 (B) cell lines. (C) and (D): Overview of the microRNA-binding regions locations in sponge-like RNAs 
expressed in HEK293/CLASH (C) and Huh7.5/CLEAR-CLIP (D) datasets. After segmenting each of the presented RNAs into 50-nt pieces, the segments that 
interacted with microRNAs were marked blue on the mRNA map. The height represents the number of interactions detected in each of the segment. For each of 
the sponge-like RNAs, both name and length are placed above the gene schematics. Colored parts of RNAs are labeled as follows: 5’UTR—yellow, coding region—
violet, 3’UTR—green, noncoding region—gray. (E) The overlaps between expressed and interacting microRNAs in HEK293 and Huh7.5 cell lines.
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(GO) category—a molecular function of RNA binding 
(Supplementary Table 5).

Further, we identified a set of mRNAs capable of interaction 
with many different types of microRNA molecules, with no 
preference to a particular miRNA. Such behavior of ambiguous 
interactions with many microRNAs is similar to that of circular 
RNAs and lncRNAs with “sponge” properties. Among “sponge-
like” mRNAs with 50 or more interactions detected in HEK293/
CLASH were those encoded by AGO1, EEF1A1, and HSPA1B 
genes. Peculiarly, in Huh7.5/CLEAR-CLIP, same property has 
been attributed to different set of mRNA, namely, APOB, AFP, 
MALAT1, and XIST. In mRNAs with “sponge-like” property, 
microRNA interaction sites were located predominantly in the 
protein-coding part of the transcript (Figures 2C, D).

Remarkably, in HEK293 cells, the most interacting mRNA 
was the one for AGO1 protein, which had been overexpressed 
on purpose, as part of CLASH protocol. In this experiment, 
AGO1-encoding mRNA yielded 88 interactions with a total of 50 
different microRNAs. Mean expression levels for AGO1-binding 
miRNAs were similar to that for all other miRNAs, at 7,279.36 
counts vs. 7,183.92 counts, respectively. In addition to AGO1 
mRNA, HEK293 cell line expressed two other mRNAs displaying 
non-specific “sponge-like” effect, HSPA1B with 77 interactions to 
41 different microRNAs and EEF1A1 with 50 interactions to 42 
microRNAs. Similar to artificially over-expressed AGO1 mRNA, 
EEF1A1 also highly expressed in HEK293 cell line (>19K tpm), 
while another “sponge-like” mRNA HSPA1B had expression level 
equals to 775 tpm.

The set of “sponge-like” mRNAs expressed in Huh7.5 cell line 
was entirely different. The set of “sponge-like” mRNAs expressed 
in Huh7.5 cell line was entirely different. We revealed two protein-
coding “sponge-like” mRNAS: AFP that formed 47 interactions 
with 32 different microRNAs, and APOB that also formed 47 
interactions with 32 different microRNAs. In set of Huh7.5 
“sponge-like” RNAs, two well-described noncoding RNAs were 
detected: MALAT1 (47 interactions to 27 microRNAs) and XIST 
(55 interactions to 31 microRNAs). In coherence to expression 
levels of “sponge-like” mRNAs in HEK293 cell line, we observed 
difference in expression levels for these mRNAs: AFP—more than 
19K tpm, APOB—358 tpm, XIST—202 tpm, and MALAT1—80 
tpm, while the averages for a gene expressed in Huh7.5 were at 
69 tpm.

Comparative Analysis of microRNA Expression 
Levels and Their mRNA-Interacting Properties
To assess the role of microRNAs in the regulation of their target 
mRNAs, we studied two HEK293 and three Huh7.5 miRNA 
profiles retrieved from RNAseq datasets deposited in GEO 
(GSE75136 and GSE74014). For each cell line, only high-quality 
datasets with very high correlation of miRNA-specific expression 
levels were selected (Pearson’s correlation r > > 0.99). For each 
miRNA, we analyzed their cell-line specific levels of expression 
by R package “DeSeq2” in order to normalize miRNA expression 
and compared these levels to the sets of experimentally detected 
microRNA–mRNA interactions retrieved from HEK293/
CLASH, and Huh7.5/CLEAR-CLIP datasets microRNA was 
considered as expressed if it had expression levels of more than 

three counts (see Methods). Less than a quarter (23.5%) of 989 
detected miRNAs was present in both cell lines (Figure 2E, 
Supplementary Table 6). Notably, many microRNAs expressed 
in the HEK293 (N = 205) and Huh7.5 (N = 194) cell lines then 
failed experimental detection as mRNA-interacting molecules in 
CLASH or CLEAR-CLIP, respectively.

On the other hand, both CLASH and CLEAR-CLIP datasets 
included 4–17% of mRNA-interacting microRNAs not detected in 
respective RNAseq datasets at all. On average, these microRNAs 
had relatively small amounts of interactions: 2.2+/−0.6 
interacting partners for 197 microRNAs present in CLASH 
dataset but absent in HEK293-based RNAseq and 5.1+/−2.2 
interacting partners for 168 miRNAs present in CLEAR-CLIP 
dataset but absent in Huh7.5-based RNAseq. For comparison, 
mean amounts of detected interactions across all microRNAs 
were at 55.8 +/−12.7 for 398 miRNAs of HEK293/CLASH and 
at 143.5 +/− 28.5 for 542 miRNAs in Huh7.5/CLEAR-CLIP. 
We could expect that these miRNAs could possibly have a low 
expression level and, therefore, had not reached a detection cut-
off in RNAseq. Alternatively, these miRNAs may be somehow 
protected from degradation by RISC.

Next, for each cell line, we kept only expressed and interacted 
microRNAs and evaluated their cell-specific expression level 
and the amount of interactions in this cell line (Supplementary 
Figure 2). For each cell line, Spearman correlation levels were 
quite low, at 0.18 and 0.29 in HEK293 (N = 335) and Huh7.5  
(N  = 342), respectively. For each miRNA, we calculated the 
cell line–specific ratios (R) of its expression level to amount of 
detected interactions (Supplementary Table 6).

Detailed analysis of this data allowed us to highlight two 
interesting types of miRNA. Type 1 comprised microRNAs with 
high expression level and relatively small amount of interactions 
with respective mRNAs. When the cut-offs for both R and 
expression levels were set as ranking at 90th percentile or higher, 
only 16 miRNAs for HEK293 (expression > 4,418 and ratio > 252) 
and 12 miRNAs in Huh7.5 (expression > 6,941 and ratio > 209) 
were classified as type 1. Notably, eight type 1 miRNAs were 
present in both cell lines examined.

Type 2 microRNAs were characterized by a low R, and many 
detected interactions with mRNAs. When the cut-off for R was set 
as ranking at 10th percentile or lower, and amounts of interactions 
at 90th percentile or higher, only 11 and 6 miRNAs for HEK293 
(amount of interactions > 150 and ratio < 0.9) and Huh7.5 
(amount of interactions > 165 and ratio < 2.5), respectively, were 
classified as type 2. Unlike the type 1 microRNAs, type 2–specific 
sets from HEK293 and Huh7.5 did not overlap.

In order to evaluate whether these types of microRNAs are 
evolutionarily constrained, for all mature microRNAs from 
miRBase, we calculated the mean of the phyloP conservative 
values in 20 vertebrates. The average cell line–specific phyloP 
scores for the type 1 and type 2 microRNAs were similar, at 0.99 
and 0.95, respectively. Notably, these scores were higher than the 
average score value calculated for all known microRNAs (0.24), 
and the score values for all microRNAs that were identified as 
expressed or interacted in HEK293 or Huh7.5 cell lines (0.74 and 
0.71, respectively). Notably, 80% of top 100 miRBase microRNAs 
with the highest conservative phyloP scores were seen either 
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as expressed or interacted (or both) in at least one of these two 
cell lines. On average, in HEK293 and Huh7.5 cells, these most 
conservative microRNAs had two times higher expression levels 
than less conservative expressed microRNAs (Supplementary 
Table 6). Overall, higher than average conservativeness of type 
1 and type 2 microRNAs may point at the relative importance of 
their functions.

Comparing Cellular Contexts for microRNA’s 
Interactions
As expected, a majority of microRNAs were concordant in two cell 
lines: their expression levels and amounts of mRNA interactions 
were similar in both cellular contexts (Supplementary Figure 
3A). Nevertheless, some miRNAs have demonstrated remarkable 
cell specificity in their ratios R (Supplementary Figures 3B, C).

For 30 microRNAs, we detected high concordance between 
their expression level and amount of experimentally detected 
interactions. Eighteen of these miRNAs had higher expression 
and mRNA-binding activity in Huh7.5 cell line, while for 
12 remaining microRNA, both mRNA-binding activity and 
expression level were higher in HEK293 cells (Supplementary 
Figure 3B). As an example, in Huh7.5 cell line, expression levels 
of MAPK1-repressing hsa-miR-194-5p (Kong et al., 2018) were 
89 times higher than that in HEK293 cells; in Huh7.5 cells, 
this microRNA displayed 336 interactions, while in HEK293, 
it formed only 7 interactions. On the other hand, in HEK293, 
expression levels of lanosterol synthase suppressing miRNA 
hsa-miR-10a-5p (Kim et al., 2018) were 450 times higher than 
that in Huh7.5 cells. In HEK293 cells, this microRNA displayed 
267 interactions, while in Huh7.5, it formed only 8 interactions. 
Such observations were expectable: microRNAs with higher 
expression level may be capable of the binding to a larger 
repertoire of targets.

Peculiarly, a total of four microRNAs have performed in 
exactly opposite way: in cells with higher expression levels, these 
microRNAs displayed lesser amounts of interactions with their 
mRNA targets (Supplementary Figure 3C). For example, in 
Huh7.5 cell line, expression levels of hsa-miR-331-3p and hsa-
miR-100-5p were at 1,030 and 916 counts, respectively, while 
in HEK293, these miRNAs had 65 and 41 expression counts, 
respectively. However, in both cases, amounts of interactions 
in Huh7.5 cell line were lesser than that in HEK293 cell line, 47 
versus 342 partners for hsa-miR-331-3p, and 1 versus 30 partners 
for hsa-miR-100-5p. To investigate if this phenomenon is due to 
the difference in the cell-specific expression levels of target genes, 
we performed an analysis of all these targets. This was not the 
case as well. As an example, only 21 out of 318 individual miRNA 
targets of hsa-miR-331-3p were active in HEK293 cell line but 
not detected in Huh7.5.

Analysis of Expanded Set of 
Experimentally Confirmed microRNA-
Binding Regions
Experimentally identified microRNA-binding regions form 
a promising basis for further queries into the basics of the 
gene expression regulation and lead to uncovering novel 

disease-causing mechanisms. To enhance a set of microRNA–
mRNA interactions retrieved from CLASH and CLEAR-CLIP 
studies, we performed the database integration of the data 
collected in cross-linking with immunoprecipitation (CLIP) 
experiments that provide information about microRNA-
binding regions of target genes but unable to identify mRNA–
microRNA pairings.

For this purpose, we collected data from 79 CLIP experiments, 
comprising 61 HITS-CLIP and 18 PAR-CLIP datasets covering 
9 different cell lines, with a majority of these data obtained 
either in HEK293 (N = 34 datasets) or Huh7.5 (N = 19 datasets) 
(Supplementary Table 1). After combining CLIP datasets with 
the data of previously mentioned CLASH and CLEAR-CLIP 
studies, approximately 156,000 unique microRNA-binding 
regions were catalogued within their respective mRNA targets.

At the next stage, the set of microRNA-binding regions was 
cleaned up to include only these satisfying following criteria: 
(i) every position in this microRNA-binding subsequence is 
supported by evidence from at least two different datasets or 
two different chimeric sequences and (ii) the length of at least 
10 nt (Figure 3A, Supplementary Table 3). MiRNA-binding 
subsequences of this kind (N = 46,805) formed a dataset of 
experimentally confirmed microRNA-binding regions (Exp-
MiBR). In this dataset, each Exp-MiBR record includes following 
attributes: genomic coordinates, gene name, type of mRNA 
part, and list of GEO GSM IDs for experiments which support 
this microRNA interaction, cellular context, and the list of 
interacting microRNAs (if accessible). The criteria for inclusion 
of individual microRNA-binding regions in Exp-MiBR database 
are justified by analysis presented in Supplementary Table 2.

Exp-MiBR subsequences (N = 46,805) were mapped to 
approximately 15,000 human genes. About one-half of Exp-
MiBRs (48%) were located in 3’UTRs, 24% in a coding part of 
the gene, 10% in introns, and 6% in intergenic parts. Remaining 
10% of the Exp-MiBRs were mapped to non-coding RNAs, being 
matched to either exonic or intronic regions of these loci. For 
8,000 of Exp-MIBRs, at least 1 bound microRNA was confirmed 
by either CLASH or CLEAR-CLIP data (Figure 3C).

Approximately 68% of Exp-MiBRs were 20–40 nt in size, closely 
matching the mean length (33 nt) for all miRNA-binding regions 
extracted from CLIPs, CLASH, and CLEAR-CLIP data (Figure 
3B). The second peak in size distribution of Exp-MiBRs was at 
75 to 80 nt, being predominantly comprised (86%) of miRNA-
interacting region extracted from CLEAR-CLIP dataset. While 
the sizes of 99% of these Exp-MiBRs were smaller than 150 nt, 
a few Exp-MiBRs were much longer than that, while remaining 
supported by many experiments. The longest Exp-MiBR of 631 nt 
was formed by the regions confirmed as microRNA-interacting 
in 54 different experiments in nine different cell lines. In addition, 
there were a few Exp-MiBRs located closely to each other. Such 
clusters of Exp-MiBRs with many interacting microRNAs do not 
display a tendency to any particular region of mRNA, as they 
may be present in CDS, 3’UTR, 5’UTR, or intergenic regions. 
As an example, chromosome 2 contains a cluster of Exp-MiBRs 
covering an area of approximately 1.5 kb in size, which is located 
between the loci of RNA5-8SP5 and MIR663B genes. According 
to CLASH and CLEAR-CLIP studies, this cluster of Exp-MiBRs 
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interacts with 52 different miRNAs (Supplementary Figure 4, 
Supplementary Table 7).

Tissue-Specific and Housekeeping 
microRNA-Binding Regions
To characterize Exp-MiBRs further, we analyzed their tissue 
specificity. Most CLIP experiments were performed either in 
HEK293 (43%) or in Huh7.5 (24%) cells, while the rest of the 
CLIP data were collected in HeLa, HFF, BC-1, BC-3, EF3D, 
LCL35, or LCL cells. In HEK293 cells, we found approximately 
9,900 unique MiBRs, while analysis of Huh7.5 cells yielded 690 
tissue-specific interacting regions (Figure 3D). Larger amounts 
of Exp-MiBRs in HEK293 as compared to that Huh7.5 cells may 
be explained either by better coverage of HEK293 transcriptome 
by various CLIPs (Supplementary Table 1), or by intrinsic cell-
specific features of miRNA interactomes.

Interestingly, some Exp-MiBRs were observed in a majority 
of studied cells, possibly reflecting a housekeeping function 

of these interactions. Approximately 1% of all Exp-MiBRs 
were found in seven or more cell lines. The functional roles 
of 351 ubiquitous Exp-MiBRs were investigated using Panther 
software. The GO analysis showed enrichment of genes 
participating in cellular process of cell cycle (FС 3.17; p-value 
1e10−8) and in molecular function of nucleic acid binding  
(FC 1.75; p-value 5e10−4).

Mitochondrial Regulation by microRNA
An analysis of Exp-MiBRs revealed that these microRNA 
interacting sequences cover 86% of the mitochondrial 
genome, including 35 out of 37 mitochondrial genes. 
Mitochondrial Exp-MiBRs (N = 37) were found in all nine 
investigated cell lines, with each Exp-MiBR discovered,  
on average, in 11 independent experiments. In total, we 
identified 182 miRNAs that bind to various mitochondrial 
RNAs, with two mitochondrial regions binding 107 out of  
182 miRNAs.

FIGURE 3 | Detailed analysis of experimentally confirmed microRNA-binding regions (Exp-MiBRs). (A) Validation of the Exp-MiBR by their independent 
occurrence in two or more datasets, or in two or more chimeric sequences from one dataset. (B) Exp-MiBRs: distribution of the lengths. On horizontal axis—
the length of the Exp-MiBRs subsequence; on vertical axis—amounts of the detected Exp-MiBRs (N). (C). Venn diagram depicting Exp-MiBRs detected in 
experiments employing three different types of identification techniques. (D) Venn diagram depicting tissue specificity of Exp-MiBRs detected in HEK293, 
Huh7.5, and all other cell lines.
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DISCUSSION

Experimental identification of microRNA-binding regions is an 
important prerequisite for querying into the basics of the gene 
expression regulation, and for uncovering novel disease-causing 
mechanisms. To date, only two sequencing-based experimental 
datasets describing full miRNA–mRNA interactomes of human 
cells, CLASH and CLEAR-CLIP, are available. In both studies, 
the primary goal was to develop and optimize the experimental 
protocol itself, while identifying miRNA–mRNA interactions in 
a particular cell line grown under different conditions. Although 
these techniques provide a unique window into miRNA targeting, 
they are not free of limitations, which preclude thorough 
mapping of entire miRNA–mRNA interactome. Nevertheless, 
intersecting CLASH and CLEAR-CLIP datasets allowed us to 
detect much larger set of validated interactions than the overlap 
of two randomly generated datasets in all five replications. 
Surprisingly, in both CLASH and CLEAR-CLIP datasets, the 
distributions of miRNA-binding regions were similar to that in 
GENCODE transcripts, and more or less even across all types of 
mRNA regions (3’UTR, CDS or 5’UTR), with no enrichment in 
miRNA-binding sites within 3’UTRs. Thus, our analysis supports 
observations of Ragan et al. (Ragan et al., 2009), rather than the 
model of Grimson et al. (Grimson et al., 2007).

Typically, miRNA–mRNA interaction networks are built 
in silico, with an aid of one or another miRNA prediction tool, 
and include thousands of mRNA targets. In our study, we 
attempted painting a holistic picture of human miRNA–mRNA 
interactome by comparing the entries from experimentally 
collected datasets describing miRNA-binding activity to the 
gene expression data. Interestingly, we found that more than 
half of mRNA transcripts do not bind to any miRNAs present 
in the same cellular environment. On the other hand, from 1 to 
2% of human transcripts interact with nine or more miRNAs, 
thus, displaying sponge-like activity (Thomson and Dinger, 
2016). It was surprising to find that more than half of mRNA 
transcripts do not bind to any miRNAs present in the same 
cellular environment. On the other hand, we observed that from 
1 to 2% of human transcripts interact with nine or more miRNAs 
each, thus, displaying sponge-like activity (Thomson and Dinger, 
2016). These observations suggest that one can figure out 
whether some mRNAs may possess such property by analyzing 
the number of its interactions and the level of its expression: 
some genes are expressed at a high level but have much fewer 
interactions than other expressed at same tpm range. This means 
that each mRNA differs in their miRNA-binding capacities, 
and some of them do it in more efficient manner than others. 
Remarkably, observed miRNA–mRNA sponge-like interactions 
were cell-line-specific, with very little overlap identified. In 
HEK293 cells, the most prominent sponge-like mRNA, with 77 
different miRNA interactions detected, was one encoding for 
AGO1. In settings of this particular experiment, this mRNA 
had been overexpressed artificially, as part of CLASH protocol. 
Two other HEK293-specific “sponge-like” mRNAs, HSPA1B and 
EEF1A1, formed 77 and 50 interactions, respectively.

For each of these mRNAs, amounts of detected interactions 
were comparable to that of a well-known circular RNA with 

sponge properties, Cdr1as (74 predicted sites) (Xu et al., 2015). 
In Huh7.5 cells, the set of RNAs with “sponge-like” activities 
included many well-described noncoding RNAs—for example, 
MALAT1 and XIST. It is peculiar that some Huh7.5-specific 
sponge-like RNAs, including those for alpha-fetoprotein (AFP) 
(Parpart et al., 2014) and APOB (Bi et al., 2014), were previously 
described as biomarkers of liver carcinoma, a tissue of origin 
for Huh7.5 cell line. In any case, presented set of experimentally 
identified miRNA–mRNA interactions allows finding a set of 
endogenous RNAs competing for any particular miRNA.

Some miRNAs expressed at relatively high levels were not 
among RNA interactors at all. About a hundred of such non-
interacting miRNAs were present in both studied cell lines. There 
is a possibility that the natural targets for these microRNAs are 
either not expressed in studied cellular contexts, or that they have 
no targets at all. In total, only 232 microRNAs had at least one 
interaction in each of studied cell lines.

For individual miRNAs, levels of their expression have 
no bearing on amounts of interactions they display, possibly 
reflecting difference in their functions depending on the cellular 
context. As an example, we revealed that, in Huh7.5 cell line, 
miR-423-3p is abundant but displays only a few interactions, 
while in HEK293 cell line, the same miRNA forms more than 
200 interactions and expressed at the quite low level. These 
observations complement previous findings of Mullokandov 
and colleagues (Mullokandov et al., 2012), who have shown that 
the binding activity of some highly expressed miRNAs may be 
weakened by either high target-to-miRNA ratio or the relocation 
of this miRNA to the nucleus. Further studies are required in 
order to investigate how RNA binding properties of individual 
miRNAs may change in response to context-dependent 
regulation by extrinsic or intrinsic factors.

Augmenting CLASH and CLEAR-CLIP datasets with 
additional 79 CLIP datasets provided us with information about 
microRNA footprints of many thousands of experimentally 
confirmed microRNA-binding regions (Exp-MiBRs) distributed 
through both coding and noncoding regions of RNA loci. At least 
some Exp-MiBRs are tissue-specific, in agreement with Clark 
and colleagues, who revealed the differences in the microRNA 
targetomes across tissues (Clark et al., 2014).

In addition to chromosomes, many Exp-MiBRs map to 
mitochondrial DNA, where they are quite abundant. Previous 
studies showed four mitochondrial regions with high degree of 
homology to microRNAs, namely, hsa-miR-4461 (chrM: 10,690–
10,712), hsa-miR-4463 (chrM: 13,050–13,068), hsa-miR-4484 
(chrM: 5,749–5,766), and hsa-miR-4485 (chrM: 2,562–2,582) 
(Sripada et al., 2012). Two of these regions encode mitochondrial 
ND4L and 16S rRNA genes and correspond to highly interacting 
Exp-MiBRs, with 70 and 63 cognate miRNAs, respectively, all 
confirmed in nine different cell lines. In both cases, previously 
identified cognate miRNAs hsa-miR-4461 and hsa-miR-4485 
were among confirmed interactors. Our study expands the 
coverage of mitochondrial genome by various miRNA-interacting 
regions to 86% of its lengths. Altogether, these findings support 
the notion that miRNA–mRNA interactions take place in a 
variety of cellular compartments, including mitochondria (Ni 
and Leng, 2015).
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The landscape of microRNA–mRNA human interactions, 
which we derived from both direct microRNA–mRNA 
interactions experimentally defined in HEK293 and Huh7.5 
cell lines, when analyzed along with microRNA and mRNA 
expression data, highlights enormous complexity of human 
microRNA–mRNA interactome. For individual miRNAs, 
levels of their expression have no bearing on amounts of 
interactions they display, possibly reflecting context depending 
difference in their functions. In this article, we show that, 
while only 1–2% of human genes are highly regulated by 
microRNAs, a few cell-specific RNAs display sponge-like 
effects, including EEF1A1 and HSPA1B in HEK293 and AFP, 
APOB, and MALAT1 genes in Huh7.5 cell lines. Some miRNAs 
might be expressed at relatively low levels and interact with 
many mRNAs. On the other hand, there is a set of microRNAs 
expressed at a very high level and interacting with only a few 
mRNAs, thus, indeed, regulating expression of their targets 
in a specific manner. Notably, microRNAs are capable of 
switching between these two modes of action, depending on 
cellular context. The question of the biological significance 
of these two miRNA groups remains open. CLASH and/or 
CLEAR-CLIP coverage of additional cell lines is warranted. It 
is notable, however, that the presence of miRNA groups, one 
with a low expression level and a high number of interactions, 
and one with opposite characteristics, was independently 
detected in both cell lines profiled.

We have also established a collection of reliable microRNA-
binding regions that we systematically extracted in course of 
an analysis of 79 CLIP datasets. This collection is available 
at http://score.generesearch.ru/services/mirna/. The promise 
of microRNAs as potential diagnostic mean and therapeutic 
target got expanded with a number of pathogenic loss-of-
function and, recently, gain-of-function mutations described 
(Grigelioniene et al., 2019). Hence, our efforts in mapping 
the human miRNA–mRNA interactome may be aided in 
untangling molecular underpinnings of hereditary and 
acquired diseases.

DATA AVAILABILITY STATEMENT

microRNA–mRNA interactome data were extracted from 
published CLASH (Helwak et al., 2013) and CLEAR-CLIP 
(Moore et al., 2015) studies. Publicly available datasets of 
RNA and microRNA expression were from GEO accessions 
“GSE68611” (Murakawa et al., 2015), “GSE64677” (Luna et al., 
2015), “GSE75136” (Wissink et al., 2016), “GSE74014” (Bandiera 
et al., 2016). GEO IDs’ of open-accessed Raw CLIP datasets are 
listed as Supplementary Table 3. All data generated during this 
study are included in this published article and its supplementary 
information files.

AUTHOR CONTRIBUTIONS

MS and OP designed the study and carried out the research. AB 
contributed to the discussion of the results. OP and AB wrote the 
paper. All authors read and approved the final manuscript.

FUNDING

This project has been funded in part by the Laboratory of 
functional genomics of the Research Centre for Medical Genetics 
and by the Laboratory of functional genome analysis of the 
Moscow Institute of Physics and Technology.

ACKNOWLEDGMENTS

We thank Andrey Marakhonov and members of the Skoblov 
laboratory for helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00933/
full#supplementary-material

REFERENCES

Agarwal, V., Bell, G. W., Nam, J. W., and Bartel, D. P. (2015). Predicting effective 
microRNA target sites in mammalian mRNAs. Elife 4, e05005. doi: 10.7554/
eLife.05005

Artcibasova, A. V., Korzinkin, M. B., Sorokin, M. I., Shegay, P. V., Zhavoronkov, A. A., 
Gaifullin, N., et al. (2016). MiRImpact, a new bioinformatic method using 
complete microRNA expression profiles to assess their overall influence on the 
activity of intracellular molecular pathways. Cell Cycle 15 (5), 689–698. doi: 
10.1080/15384101.2016.1147633

Bandiera, S., Pernot, S., El Saghire, H., Durand, S. C., Thumann, C., Crouchet, E., 
et  al. (2016). Hepatitis C virus-induced upregulation of microRNA miR-
146a-5p in hepatocytes promotes viral infection and deregulates metabolic 
pathways associated with liver disease pathogenesis. J. Virol. 90 (14), 6387–
6400. doi: 10.1128/JVI.00619-16

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. 
Cell 116 (2), 281–297. doi: 10.1016/S0092-8674(04)00045-5

Bi, Y., He, Y., Huang, J., Su, Y., Zhu, G. H., Wang, Y., et al. (2014). Functional 
characteristics of reversibly immortalized hepatic progenitor cells derived 
from mouse embryonic liver. Cell. Physiol. Biochem. 34 (4), 1318–1338. doi: 
10.1159/000366340

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal 
probabilistic RNA-seq quantification. Nat. Biotechnol. 34 (5), 525–527. doi: 
10.1038/nbt.3519

Clark, P. M., Loher, P., Quann, K., Brody, J., Londin, E. R., and Rigoutsos, I. (2014). 
Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. 
Sci. Rep. 4, 5947. doi: 10.1038/srep05947

Corcoran, D. L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R. L., 
Keene,  J. D., et al. (2011). PARalyzer: definition of RNA binding sites from 
PAR-CLIP short-read sequence data. Genome Biol. 12 (8), R79. doi: 10.1186/
gb-2011-12-8-r79

Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I., 
Loveland, J., et al. (2018). GENCODE reference annotation for the human 
and mouse genomes. Nucleic Acids Res. 47 (D1), D766–D773. doi: 10.1093/
nar/gky955

Friedman, R. C., Farh, K. K. H., Burge, C. B., and Bartel, D. P. (2009). Most 
mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19 (1), 
92–105. doi: 10.1101/gr.082701.108

Grigelioniene, G., Suzuki, H. I., Taylan, F., Mirzamohammadi, F., 
Borochowitz,  Z.  U., Ayturk, U. M., et al. (2019). Gain-of-function mutation 
of microRNA-140 in human skeletal dysplasia. Nat. Med. 1, 583. doi: 10.1038/
s41591-019-0353-2

17

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://score.generesearch.ru/services/mirna/
https://www.frontiersin.org/articles/10.3389/fgene.2019.00933/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00933/full#supplementary-material
https://doi.org/10.7554/eLife.05005
https://doi.org/10.7554/eLife.05005
https://doi.org/10.1080/15384101.2016.1147633
https://doi.org/10.1128/JVI.00619-16
https://doi.org/10.1016/S0092-8674(04)00045-5
https://doi.org/10.1159/000366340
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/srep05947
https://doi.org/10.1186/gb-2011-12-8-r79
https://doi.org/10.1186/gb-2011-12-8-r79
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1101/gr.082701.108
https://doi.org/10.1038/s41591-019-0353-2
https://doi.org/10.1038/s41591-019-0353-2


Human microRNA-mRNA InteractomePlotnik ova et al.

11 October 2019 | Volume 10 | Article 933Frontiers in Genetics | www.frontiersin.org

Grimson, A., Farh, K. K. H., Johnston, W. K., Garrett-Engele, P., Lim, L. P., 
and Bartel, D. P. (2007). MicroRNA targeting specificity in mammals: 
determinants beyond seed pairing. Mol. Cell. 27 (1), 91–105. doi: 10.1016/j.
molcel.2007.06.017

Gumienny, R., and Zavolan, M. (2015). Accurate transcriptome-wide prediction 
of microRNA targets and small interfering RNA off-targets with MIRZA-G. 
Nucleic Acids Res. 43 (3), 1380–1391. doi: 10.1093/nar/gkv050

He, L., and Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene 
regulation. Nat. Rev. Genet. 5 (7), 522–531. doi: 10.1038/nrg1379

Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., and Minghim, R. (2015). 
InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. 
BMC Bioinformatics 16, 169. doi: 10.1186/s12859-015-0611-3

Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the 
human miRNA interactome by CLASH reveals frequent noncanonical binding. 
Cell 153 (3), 654–665. doi: 10.1016/j.cell.2013.03.043

Hu, B., Yang, Y. C. T., Huang, Y., Zhu, Y., and Lu, Z. J. (2016). POSTAR: a platform 
for exploring post-transcriptional regulation coordinated by RNA-binding 
proteins. Nucleic Acids Res. 45 (D1), D104–D114. doi: 10.1093/nar/gkw888

Jonas, S., and Izaurralde, E. (2015). Towards a molecular understanding of 
microRNA-mediated gene silencing. Nat. Rev. Genet. 16 (7), 421–433. doi: 
10.1038/nrg3965

Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., 
Haussler, D., et al. (2004). The UCSC Table Browser data retrieval tool. Nucleic 
Acids Res. 32 (Database issue), D493–D496. doi: 10.1093/nar/gkh103

Kim, J. E., Hong, J. W., Lee, H. S., Kim, W., Lim, J., Cho, Y. S., et al. (2018). Hsa-
miR-10a-5p downregulation in mutant UQCRB-expressing cells promotes 
the cholesterol biosynthesis pathway. Sci. Rep. 8 (1), 12407. doi: 10.1038/
s41598-018-30530-6

Kong, Q., Zhang, S., Liang, C., Zhang, Y., Kong, Q., Chen, S., et al. (2018). LncRNA 
XIST functions as a molecular sponge of miR-194-5p to regulate MAPK1 
expression in hepatocellular carcinoma cell. J. Cell. Biochem. 119 (6), 4458–
4468. doi: 10.1002/jcb.26540

Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence 
microRNAs using deep sequencing data. Nucleic Acids Res. 42 (Database issue), 
D68–D73. doi: 10.1093/nar/gkt1181

Kuhn, R. M., Haussler, D., and Kent, W. J. (2012). The UCSC genome browser and 
associated tools. Brief. Bioinformatics 14 (2), 144–161. doi: 10.1093/bib/bbs038

Li, Y., and Zhang, Z. (2014). Potential microRNA-mediated oncogenic intercellular 
communication revealed by pan-cancer analysis. Sci. Rep. 4, 7097. doi: 10.1038/
srep07097

Li, Y., Liang, C., Wong, K. C., Jin, K., and Zhang, Z. (2014). Inferring probabilistic 
miRNA–mRNA interaction signatures in cancers: a role-switch approach. 
Nucleic Acids Res. 42 (9), e76–e76. doi: 10.1093/nar/gku182

Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., et al. (2008). 
HITS-CLIP yields genome-wide insights into brain alternative RNA processing. 
Nature 456 (7221), 464–469. doi: 10.1038/nature07488

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550. doi: 
10.1186/s13059-014-0550-8

Lu, Y., and Leslie, C. S. (2016). Learning to predict miRNA-mRNA interactions 
from AGO CLIP sequencing and CLASH data. PLoS Comput. Biol. 12 (7), 
e1005026. doi: 10.1371/journal.pcbi.1005026

Luna, J. M., Scheel, T. K., Danino, T., Shaw, K. S., Mele, A., Fak, J. J., et al. (2015). 
Hepatitis C virus RNA functionally sequesters miR-122. Cell 160 (6), 1099–
1110. doi: 10.1016/j.cell.2015.02.025

Moore, M. J., Scheel, T. K., Luna, J. M., Park, C. Y., Fak, J. J., Nishiuchi, E., et al. 
(2015). miRNA-target chimeras reveal miRNA 3’-end pairing as a major 
determinant of argonaute target specificity. Nat. Commun. 6, 8864. doi: 
10.1038/ncomms9864

Moore, M. J., Zhang, C., Gantman, E. C., Mele, A., Darnell, J. C., and Darnell, R. B. 
(2014). Mapping argonaute and conventional RNA-binding protein interactions 
with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. 
Nat. Protoc. 9 (2), 263–293. doi: 10.1038/nprot.2014.012

Mullokandov, G., Baccarini, A., Ruzo, A., Jayaprakash, A. D., Tung, N., Israelow, B., 
et al. (2012). High-throughput assessment of microRNA activity and function 
using microRNA sensor and decoy libraries. Nat. Methods. 9 (8), 840–846. doi: 
10.1038/nmeth.2078

Murakawa, Y., Hinz, M., Mothes, J., Schuetz, A., Uhl, M., Wyler, E., et al. (2015). 
RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity 
of the IKK/NF-κB pathway. Nat. Commun. 6, 7367. doi: 10.1038/ncomms8367

Ni, W. J., and Leng, X. M. (2015). Dynamic miRNA-mRNA paradigms: 
new faces of miRNAs. Biochem. Biophys. Rep. 4, 337–341. doi: 10.1016/j.
bbrep.2015.10.011

Parpart, S., Roessler, S., Dong, F., Rao, V., Takai, A., Ji, J., et al. (2014). Modulation 
of miR-29 expression by α-fetoprotein is linked to the hepatocellular carcinoma 
epigenome. Hepatology 60 (3), 872–883. doi: 10.1002/hep.27200

Plotnikova, O. M., and Skoblov, M. Y. (2018). Efficiency of the miRNA-mRNA 
interaction prediction programs. Mol. Biol. (Mosk.) 52 (3), 543–554. doi: 
10.7868/S0026898418030187

Ragan, C., Cloonan, N., Grimmond, S. M., Zuker, M., and Ragan, M. A. 
(2009). Transcriptome-wide prediction of miRNA targets in human and 
mouse using FASTH. PLoS One 4 (5), e5745. doi: 10.1371/annotation/
e0842765-3cae-4737-8b5b-96aeb12d7fb5

Riffo-Campos, Á., Riquelme, I., and Brebi-Mieville, P. (2016). Tools for sequence-
based miRNA target prediction: what to choose? Int. J. Mol. Sci. 17 (12), 1987. 
doi: 10.3390/ijms17121987

Sætrom, P., Heale, B. S., Snøve, O., Jr., Aagaard, L., Alluin, J., and Rossi, J. J. (2007). 
Distance constraints between microRNA target sites dictate efficacy and 
cooperativity. Nucleic Acids Res. 35 (7), 2333–2342. doi: 10.1093/nar/gkm133

Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and 
Rajewsky,  N. (2008). Widespread changes in protein synthesis induced by 
microRNAs. Nature 455 (7209), 58–63. doi: 10.1038/nature07228

Sripada, L., Tomar, D., Prajapati, P., Singh, R., Singh, A. K., and Singh, R. (2012). 
Systematic analysis of small RNAs associated with human mitochondria by 
deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS 
One 7 (9), e44873. doi: 10.1371/journal.pone.0044873

Steinkraus, B. R., Toegel, M., and Fulga, T. A. (2016). Tiny giants of gene regulation: 
experimental strategies for microRNA functional studies. Wiley Interdiscip. 
Rev. Dev. Biol. 5 (3), 311–362. doi: 10.1002/wdev.223

Thomson, D. W., and Dinger, M. E. (2016). Endogenous microRNA sponges: 
evidence and controversy. Nat. Rev. Genet. 17 (5), 272–283. doi: 10.1038/
nrg.2016.20

Uhlmann, S., Mannsperger, H., Zhang, J. D., Horvat, E. Á., Schmidt, C., Küblbeck, M., 
et al. (2012). Global microRNA level regulation of EGFR-driven cell-cycle protein 
network in breast cancer. Mol. Syst. Biol. 8, 570. doi: 10.1038/msb.2011.100

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation 
of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 
38 (16), e164. doi: 10.1093/nar/gkq603

Weiss, C. N., and Ito, K. (2017). A macro view of microRNAs: the discovery of 
microRNAs and their role in hematopoiesis and hematologic disease. Int. Rev. 
Cell Mol. Biol. 334, 99–175. doi: 10.1016/bs.ircmb.2017.03.007

Wissink, E. M., Fogarty, E. A., and Grimson, A. (2016). High-throughput discovery 
of post-transcriptional cis-regulatory elements. BMC Genomics 17, 177. doi: 
10.1186/s12864-016-2479-7

Xu, H., Guo, S., Li, W., and Yu, P. (2015). The circular RNA Cdr1as, via miR-7 and 
its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 5, 
12453. doi: 10.1038/srep12453

Yang, H., and Wang, K. (2015). Genomic variant annotation and prioritization 
with ANNOVAR and wANNOVAR. Nat. Protoc. 10 (10), 1556–1566. doi: 
10.1038/nprot.2015.105

Yates, A., Beal, K., Keenan, S., McLaren, W., Pignatelli, M., Ritchie, G. R., et al. 
(2014). The Ensembl REST API: Ensembl data for any language. Bioinformatics 
31 (1), 143–145. doi: 10.1093/bioinformatics/btu613

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Plotnikova, Baranova and Skoblov. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

18

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1016/j.molcel.2007.06.017
https://doi.org/10.1016/j.molcel.2007.06.017
https://doi.org/10.1093/nar/gkv050
https://doi.org/10.1038/nrg1379
https://doi.org/10.1186/s12859-015-0611-3
https://doi.org/10.1016/j.cell.2013.03.043
https://doi.org/10.1093/nar/gkw888
https://doi.org/10.1038/nrg3965
https://doi.org/10.1093/nar/gkh103
https://doi.org/10.1038/s41598-018-30530-6
https://doi.org/10.1038/s41598-018-30530-6
https://doi.org/10.1002/jcb.26540
https://doi.org/10.1093/nar/gkt1181
https://doi.org/10.1093/bib/bbs038
https://doi.org/10.1038/srep07097
https://doi.org/10.1038/srep07097
https://doi.org/10.1093/nar/gku182
https://doi.org/10.1038/nature07488
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1371/journal.pcbi.1005026
https://doi.org/10.1016/j.cell.2015.02.025
https://doi.org/10.1038/ncomms9864
https://doi.org/10.1038/nprot.2014.012
https://doi.org/10.1038/nmeth.2078
https://doi.org/10.1038/ncomms8367
https://doi.org/10.1016/j.bbrep.2015.10.011
https://doi.org/10.1016/j.bbrep.2015.10.011
https://doi.org/10.1002/hep.27200
https://doi.org/10.7868/S0026898418030187
https://doi.org/10.1371/annotation/e0842765-3cae-4737-8b5b-96aeb12d7fb5
https://doi.org/10.1371/annotation/e0842765-3cae-4737-8b5b-96aeb12d7fb5
https://doi.org/10.3390/ijms17121987
https://doi.org/10.1093/nar/gkm133
https://doi.org/10.1038/nature07228
https://doi.org/10.1371/journal.pone.0044873
https://doi.org/10.1002/wdev.223
https://doi.org/10.1038/nrg.2016.20
https://doi.org/10.1038/nrg.2016.20
https://doi.org/10.1038/msb.2011.100
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1016/bs.ircmb.2017.03.007
https://doi.org/10.1186/s12864-016-2479-7
https://doi.org/10.1038/srep12453
https://doi.org/10.1038/nprot.2015.105
https://doi.org/10.1093/bioinformatics/btu613
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1

Edited by: 
Lavanya Balakrishnan, 

Mazumdar Shaw Medical Centre, 
 India

Reviewed by: 
George C. Tseng, 

University of Pittsburgh, 
United States 
Inyoung Kim, 
Virginia Tech, 
United States

*Correspondence: 
Daniel Domingo-Fernández 

daniel.domingo.fernandez@scai.
fraunhofer.de

†ORCID: 
Charles Tapley Hoyt 

orcid.org/0000-0003-4423-4370

Specialty section: 
This article was submitted to 

 Bioinformatics and 
Computational Biology, 
 a section of the journal 

 Frontiers in Genetics

Received: 23 August 2019
Accepted: 30 October 2019

Published: 22 November 2019

Citation: 
Mubeen S, Hoyt CT, Gemünd A, 

Hofmann-Apitius M, Fröhlich H and 
Domingo-Fernández D (2019) The 

Impact of Pathway Database Choice 
on Statistical Enrichment Analysis 

and Predictive Modeling. 
 Front. Genet. 10:1203. 

 doi: 10.3389/fgene.2019.01203

The Impact of Pathway Database 
Choice on Statistical Enrichment 
Analysis and Predictive Modeling
Sarah Mubeen 1,2, Charles Tapley Hoyt 1,2†, André Gemünd 1, Martin Hofmann-Apitius 1,2, 
Holger Fröhlich 2 and Daniel Domingo-Fernández 1,2*

1 Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 
Germany, 2 Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Pathway-centric approaches are widely used to interpret and contextualize -omics data. 
However, databases contain different representations of the same biological pathway, 
which may lead to different results of statistical enrichment analysis and predictive models 
in the context of precision medicine. We have performed an in-depth benchmarking of 
the impact of pathway database choice on statistical enrichment analysis and predictive 
modeling. We analyzed five cancer datasets using three major pathway databases and 
developed an approach to merge several databases into a single integrative one: MPath. 
Our results show that equivalent pathways from different databases yield disparate results 
in statistical enrichment analysis. Moreover, we observed a significant dataset-dependent 
impact on the performance of machine learning models on different prediction tasks. 
In some cases, MPath significantly improved prediction performance and also reduced 
the variance of prediction performances. Furthermore, MPath yielded more consistent 
and biologically plausible results in statistical enrichment analyses. In summary, this 
benchmarking study demonstrates that pathway database choice can influence the results 
of statistical enrichment analysis and predictive modeling. Therefore, we recommend the 
use of multiple pathway databases or integrative ones.

Keywords: pathway enrichment, benchmarking, databases, machine learning, statistical hypothesis testing

INTRODUCTION
As fundamental interactions within complex biological systems have been discovered in experimental 
biology labs, they have often been assembled into computable pathway representations. Because 
they have proven immensely useful in the analysis and interpretation of -omics data when coupled 
with algorithmic approaches (e.g., gene set enrichment analysis, GSEA), academic and commercial 
groups have generated and maintained a comprehensive set of databases during the last 15 years 
(Bader et al., 2006). Examples include KEGG, Reactome, WikiPathways, NCIPathways, and 
Pathway Commons (Schaefer et al., 2008; Cerami et al., 2011; Kanehisa et al., 2016; Slenter et al., 
2017; Fabregat et al., 2018).

However, these databases tend to differ in the average number of pathways they contain, the 
average number of proteins per pathway, the types of biochemical interactions they incorporate, and 
the subcategories of pathways that they provide (e.g., signal transduction, genetic interaction, and 
metabolic) (Kirouac et al., 2012; Türei et al., 2016). Pathways are often also described at varying levels 
of detail, with diverse data types and with loosely defined boundaries (Domingo-Fernández et al., 
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2018). Nonetheless, most pathway analyses are still conducted 
exclusively by employing a single database, often chosen in part 
by researchers' preferences or previous experiences (e.g., bias 
towards a database previously yielding good results and ease of 
use of a particular database) (Table 1). Notably, the selection of a 
suitable pathway database depends on the actual biological context 
that is investigated, yet KEGG remains severely overrepresented 
in published -omics studies. This raises concerns and motivates 
the consideration of multiple pathway databases or, preferably, an 
integration over several pathways resources.

Several integrative resources have been developed, including 
meta-databases [e.g., Pathway Commons (Cerami et al., 
2011), MSigDB (Liberzon et al., 2015), and ConsensusPathDB 
(Kamburov et al., 2008)] that enable pathway exploration in their 
corresponding web applications and integrative software tools 
[e.g., graphite (Sales et al., 2018), PathMe (Domingo-Fernandez 
et al., 2019), and OmniPath (Türei et al., 2016)] designed to 
enable bioinformatics analyses. By consolidating pathway 
databases, these resources have attempted to summarize major 
reference points in the existing knowledge and demonstrate how 
data contained in one resource can be complemented by data 
contained in others. Thus, through their usage, the biomedical 
community has benefitted from comprehensive overviews of 
pathway landscapes which can then make for more robust 
resources highly suited for analytic usage.

The typical approach to combine pathway information with 
-omics data is via statistical enrichment analysis, also known 
as pathway enrichment. The task of navigating through the 
continuously developing variants of enrichment methods has 
been undertaken by several recent studies which benchmarked 
the performance of these techniques (Bayerlová et al., 2015; 
Ihnatova et al., 2018; Lim et al., 2018) and guide users on the 
choice for their analyses (Fabris et al., 2019; Reimand et al., 2019). 
While Bateman et al. (2014) examined the impact of choice of 
different subsets of MSigDB on GSEA, it remains unclear what 
broader impact an integrative pathway meta-database would have 
for statistical enrichment analysis. Additionally, the overlap of 
pathways within the same integrative database can induce biases 
(Liberzon et al., 2015), specifically when conducting multiple 
testing correction via the popular Benjamini–Hochberg method 
(Benjamini and Hochberg, 1995) that supposes independence of 
statistical tests. This issue is of particular concern for large-scale 
meta-databases such as MSigDB.

The aim of this work is to systematically investigate the influence 
of alternative representations of the same biological pathway 
(e.g., in KEGG, Reactome, and WikiPathways) on the results of 
statistical enrichment analysis via three common methods: the 
hypergeometric test, GSEA, and signaling pathway impact analysis 
(SPIA) (Fisher, 1992; Subramanian et al., 2005; Tarca et al., 2008) 
using five The Cancer Genome Atlas (TCGA) datasets (Weinstein 
et al., 2013). In addition, we also show that pathway activity-
based patient classification and survival analysis via single-sample 
GSEA (ssGSEA; Barbie et al., 2009) can be impacted by the choice 
of pathway resource in some cases. As a solution, we propose 
to integrate different pathway resources via a method where 
semantically analogous pathways across databases (e.g., "Notch 
signaling pathway" in KEGG and "Signaling by NOTCH" pathway 
in Reactome) are combined. This approach exploits the pathway 
mappings and harmonized pathway representations described in 
our previous work (Domingo-Fernández et al., 2018; Domingo-
Fernandez et al., 2019). We demonstrate that when aided by our 
integrative pathway database, it is possible to better capture expected 
disease biology than with individual resources, and to sometimes 
obtain better predictions of clinical endpoints. Our entire analytic 
pipeline is implemented in a reusable Python package (pathway_
forte; see Materials and Methods) to facilitate reproducing the results 
with other databases or datasets in the future.

MATERIAlS AND METhODS
In the first two subsections, we describe the pathway resources 
and the clinical and genomic datasets we used in benchmarking. 
The following sections then outline the statistical enrichment 
analysis and predictive modeling conducted in this study. Finally, 
in the last two subsections, we describe the statistical methods 
and the software implemented to conduct the benchmarking.

Pathway Databases
Selection Criteria
Numerous viable pathway databases have been made available to 
infer biologically relevant pathway activity (Bader et al., 2006). 
In this work, we systematically compared three major ones (i.e., 
KEGG, Reactome, and WikiPathways) as the subset of databases 
to benchmark. The rationale for the inclusion of these databases 
was twofold: firstly, these databases are open-sourced, well-
established, and highly cited in studies investigating pathways 
associated with variable gene expression patterns in different 
sets of conditions (Table 1). Secondly, we expected distinctions 
between these databases to be strong enough to observe variable 
results of enrichment analysis and patient classification, yet 
these databases also contain a reasonable number of equivalent 
pathways such that objective comparisons could be made, as 
outlined in our previous work (Domingo-Fernández et al., 2018).

Data Retrieval and Processing
In order to systematically compare results yielded by different 
databases, we retrieved the contents of KEGG, Reactome, and 
WikiPathways using ComPath (Domingo-Fernández et al., 2018) 

TABlE 1 | Number of publications citing major pathway resources for pathway 
enrichment in PubMed Central (PMC), 2019. To develop an estimate on 
the number of publications using several pathway databases for pathway 
enrichment, SCAIView (http://academia.scaiview.com/academia; indexed on 
01/03/2019) was used to conduct the following query using the PMC corpus: 
“<pathway resource>” AND “pathway enrichment”.

Type Pathway resource Publications

Primary KEgg 27,713
Reactome 3,765
WikiPathways 651

Integrative MSigDB 2,892
ConsensusPathDB 339
Pathway Commons 1,640
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and converted it into the Gene Matrix Transposed (GMT) file 
format. Generated networks encoded in Biological Expression 
Language (BEL; Slater, 2014) were retrieved using PathMe 
(Domingo-Fernández et al., 2019).

To test the potential utility of an integrative pathway resource, 
we used equivalent pathways across the three databases that were 
manually curated in our previous work (Domingo-Fernández 
et al., 2018; see our earlier publication for further details). In 
the following, we call these “pathways analogs” or “equivalent 
pathways” (Figure 1A), while we call a pathway found as 
analogous across all KEGG, Reactome, as well as WikiPathways 
a “super pathway”.

In a second step, we merged equivalent pathways by 
taking the graph union with respect to contained genes and 
interactions (Figures 1B, C). We have also described this 
step in more detail in our earlier work (Domingo-Fernandez 
et al., 2019).

The set union of KEGG, Reactome, and WikiPathways, 
while taking into account pathway equivalence, gave rise to an 
integrative resource to which we refer as MPath (Figure 1D). By 
merging equivalent pathways, MPath contains a fewer number 
of pathways than the sum of all pathways from all primary 
resources. In total, MPath contains 2,896 pathways, of which 238 
are derived from KEGG, 2,119 from Reactome, and 409 from 

FIgURE 1 | Schema illustrating the generation of MPath. The curated pathway mapping catalog is depicted in (A), which links equivalent pathways from different 
resources. Pathways that are shared across two resources are referred to as pathway analogs (i.e., Pathway A in Reactome and Pathway A′ in KEGG) and pathways 
that are shared across all three resources are referred to as "super pathways" (i.e., Pathway A in KEGG, Pathway A′ in Reactome, and Pathway A″ in WikiPathways). 
(B) Using these mappings, gene sets of equivalent pathways from different resources can be combined, ensuring key molecular players from the different resources are 
included. (C) Similarly, network representations of the pathways can be overlaid to generate more comprehensive pathways. (D) Finally, both the combined gene sets 
and networks representations are included in MPath. Note that pathways that are exclusive to a single database are included in MPath unchanged.
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WikiPathways, while another 129 pathways are pathway analogs 
and 26 are super pathways.

We next compared the latest versions of pathway gene 
sets from KEGG, Reactome, WikiPathways, and MPath with 
pathway gene sets from MSigDB, a highly cited integrative 
pathway database containing older versions of the KEGG and 
Reactome gene sets (Liberzon et al., 2015). We downloaded 
KEGG and Reactome gene sets from the curated gene set (C2) 
collection of MSigDB (http://software.broadinstitute.org/gsea/
msigdb/collections.jsp #C2; version6.2; July 2018). Detailed 
statistics on the number of pathways from each resource are 
presented in Table S1.

Clinical and genomic Data
We used five widely used datasets acquired from TCGA 
(Weinstein et al., 2013), a cancer genomics project that has 
catalogued molecular and clinical information for normal and 
tumor samples (Table 2). TCGA data were retrieved through 
the Genomic Data Commons (GDC; https://gdc.cancer.gov) 
portal and cBioportal (https://www.cbioportal.org) on 14-03-
2019. RNA-seq gene expression data subjected to an mRNA 
quantification analysis pipeline for BRCA, KIRC, LIHC, OV, 
and PRAD TCGA datasets were queried, downloaded, and 
prepared from the GDC through the R/Bioconductor package, 
TCGAbiolinks (R version: 3.5.2; TCGAbiolinks version: 2.10.3) 
(Colaprico et al., 2015). The data were preprocessed as follows: 
gene expression was quantified by the number of reads aligned 
to each gene and read counts were measured using HTSeq 
and normalized using fragments per kilobase of transcript per 
million mapped reads upper quartile (FPKM-UQ). HTSeq raw 
read counts also subject to the GDC pipeline were similarly 
queried, downloaded, and prepared with TCGAbiolinks. Read 
count data downloaded for the BRCA, KIRC, LIHC, and PRAD 
datasets were processed to remove identical entries, while 
unique measurements of identical genes were averaged. The 
differential gene expression analysis of cancer versus normal 
samples was performed using the R/Bioconductor package, 
DESeq2 (version 1.22.2). Genes with adjusted p value < 5% were 
considered significantly dysregulated. For all downloaded data, 
gene identifiers were mapped to HGNC gene symbols (Povey 
et al., 2001), where possible. To obtain additional information 
on the survival status and time to death, or censored survival 
times of patients, patient identifiers in the TCGA datasets 
were mapped to their equivalent identifiers in cBioPortal. 
Additionally, cancer subtype classifications or the PRAD and 

BRCA datasets were retrieved from the GDC. We would like to 
note that although there are other cohorts available (e.g., COAD 
and STAD) containing all of these modalities, we did not include 
them in this analysis because of the limited number of samples 
they contain (i.e., less than 300 patients). Detailed statistics of all 
five datasets are presented in Table 2.

Pathway Enrichment Methods
In this subsection, we describe three different classes of 
pathway enrichment methods that we tested: 1) statistical 
overrepresentation analysis (ORA); 2) functional class scoring 
(FCS); and 3) pathway topology (PT)-based enrichment 
(Figure 2) (Khatri et al., 2012; García-Campos et al., 2015; 
Fabris et al., 2019).

Overrepresentation Analysis
We conducted pathway enrichment using genes that exhibited a 
q value <0.05 using a one-sided Fisher's exact test (Fisher, 1992) 
for each of the pathways in all pathway databases. We consider a 
pathway to be significantly enriched if its q value is smaller than 
0.05 after applying multiple hypothesis testing correction with 
the Benjamini–Yekutieli method under dependency (Benjamini 
and Yekutieli, 2001).

Functional Class Scoring Methods
We selected GSEA, one of the most commonly used FCS 
methods (Subramanian et al., 2005). We performed GSEA with 
the Python package, GSEApy (version 0.9.12; https://github.
com/zqfang/gseapy), using normalized RNA-seq expression 
quantifications (FPKM-UQ) obtained for the BRCA, KIRC, 
LIHC, and PRAD datasets containing both normal and tumor 
samples (Table 2). All genes were ranked by their differential 
expression based on their log2 fold changes. Query gene 
sets for GSEA included pathways from KEGG, Reactome, 
WikiPathways, and MPath. GSEA results were filtered to 
include pathway gene sets with p values below 0.05 and a 
minimum gene set size of 10 or a maximum gene size of 3,000. 
Similarly, GSEApy was used to perform ssGSEA (Barbie et al., 
2009) (Table S2) to acquire sample-wise pathway scores using 
FPKM-UQ for BRCA, KIRC, LIHC, OV, and PRAD datasets, 
irrespective of phenotype labels (Barbie et al., 2009). Datasets 
were filtered to only include normalized expression data for 
genes found in the pathway gene sets of KEGG, Reactome, 
WikiPathways, and MPath and then used for ssGSEA. 
Expression data were ranked and sample-wise normalized 
enrichment scores were obtained.

TABlE 2 | Statistics of the five TCGA cancer datasets used in this work.

Cancer type TCgA abbreviation Tumor samples Normal samples Surviving patients Deceased patients

Breast invasive carcinoma BRCA 1,102 113 946 153
Kidney renal clear cell carcinoma KIRC 538 72 365 173
liver hepatocellular carcinoma LIHC 371 50 240 130
Prostate adenocarcinoma PRAD 498 52 498 10
Ovarian cancer OV 374 0 143 229

The statistics correspond to those retrieved from the GDC portal and cBioportal on 14-03-2019. Longitudinal statistics of survival data are presented in Figure S1.
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Pathway Topology-Based Enrichment
To evaluate PT-based methods, we selected the well-known 
and highly cited SPIA method (Tarca et al., 2008) for two main 
reasons: firstly, the guidelines outlined by a comparative study 
on topology-based methods (Ihnatova et al., 2018) recommend 
the use of SPIA for datasets with properties similar to TCGA 
(i.e., possessing two well-defined classes, full expression profiles, 
many samples, and numerous differentially expressed genes). 
Secondly, SPIA has been reported to have a high specificity while 
preserving dependency on topological information (Ihnatova 
et al., 2018). Because the R/Bioconductor's SPIA package only 
contains KEGG pathways, we converted the pathway topologies 
from the three databases used in this work to a custom format in 
a similar fashion as graphite (Sales et al., 2018) (Supplementary 
Text). We declared significance for SPIA-based pathway 
enrichment, if the Bonferroni corrected p value was <5%.

Evaluation Based on Enrichment of Pathway Analogs
To better understand the impact of database choice, we compared 
the raw p value rankings (i.e., before multiple testing correction) 
of pathway analogs across each possible pair of databases (i.e., 
in KEGG and Reactome, Reactome and WikiPathways, and 
WikiPathways and KEGG) and in each statistical enrichment 
analysis (i.e., hypergeometric test, GSEA, and SPIA) with 
the Wilcoxon signed-rank test. It assessed the average rank 
difference of the pathway analogs and reported how significantly 
different the results were for each database pair. Importantly, we 
only tested statistical enrichment of the analogous pathways in 
order to avoid statistical biases due to differences in the size of 
pathway databases.

Machine learning
ssGSEA was conducted to summarize the gene expression profile 
mapping to a particular pathway of interest within a given patient 
sample, hence resulting in a pathway activity profile for each 
patient. We then evaluated the different pathway resources with 
respect to three machine learning tasks:

 1. Prediction of tumor vs. normal
 2. Prediction of known tumor subtype
 3. Prediction of overall survival

Prediction of Tumor vs. Normal
The first task was to train and evaluate binary classifiers to predict 
normal versus tumor sample labels. This task was conducted for 
four of the five TCGA datasets (i.e., BRCA, KIRC, LIHC, and 
PRAD), while OV, which only contains tumor samples, was 
omitted. We performed this classification using a commonly used 
elastic net penalized logistic regression model (Zou and Trevor, 
2005). Prediction performance was evaluated via a 10 times 
repeated 10-fold stratified cross-validation. Importantly, tuning 
of elastic net hyper-parameters (l1, l2 regularization parameters) 
was conducted within the cross-validation loop to avoid over-
optimism (Molinaro et al., 2005).

Prediction of Tumor Subtype
The second task was to train and evaluate multi-label classifiers 
to predict tumor subtypes using sample-wise pathway activity 
scores generated from ssGSEA. This task was only conducted 
for the BRCA and PRAD datasets, similar to the work done by 
Lim et al. (2018), because the remaining three datasets included 

FIgURE 2 | Design of the benchmarking schema. The influence of alternative pathway databases on the results of statistical pathway enrichment (left) and machine 
learning classification tasks (right) are compared.
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in this work lacked subtype information. From the five breast 
cancer subtypes present in the BRCA dataset by the PAM50 
classification method (Sorlie et al., 2001), we included four 
subtypes (i.e., 194 Basal samples, 82 Her2 samples, 567 LumA 
samples, and 207 LumB samples). These four were selected as 
they constitute the agreed-upon intrinsic breast cancer subtypes 
according to the 2015 St. Gallen Consensus Conference (Coates 
et al., 2015) and are also recommended by the ESMO Clinical 
Practice Guidelines (Senkus et al., 2015). For the PRAD 
dataset, evaluated subtypes included 151 ERG samples, 27 
ETV1 samples, 14 ETV4 samples, 38 SPOP samples, and 87 
samples classified as other (Cancer Genome Atlas Research 
Network, 2014). Similar to the approach by Graudenzi et al. 
(2017), support vector machines (SVMs) (Cortes and Vapnik, 
1995) were used for subtype classification by implementing 
a one-versus-one strategy in which a single classifier is fit for 
each pair of class labels. This strategy transforms a multi-
class classification problem into a set of binary classification 
problems. We again used a 10 times repeated 10-fold cross-
validation scheme, and the soft margin parameter of the linear 
SVM was tuned within the cross-validation loop via a grid 
search. We assessed the multi-class classifier performance in 
terms of accuracy, precision, and recall.

Prediction of Overall Survival
The third task was to train and evaluate machine learning models 
to predict overall survival of cancer patients. For this purpose, a 
Cox proportional hazards model with elastic net penalty was used 
(Tibshirani, 1997; Friedman et al., 2010). Prediction performance 
was evaluated on the basis of five TCGA datasets (i.e., BRCA, 
LIHC, KIRC, OV, and PRAD) (Table 2) using the same 10 times 
repeated 10-fold nested cross-validation procedure as described 
before. The performance of the model was assessed by Harrell's 
concordance index (c-index; Harrell et al., 1982), which is an 
extension of the well-known area under receiver operating 
characteristic (ROC) curve for right censored time-to-event 
(here: death) data.

Statistical Assessment of Database Impact on 
Prediction Performance
To understand the degree to which the observed variability of area 
under the ROC curve (AUC) values, accuracies, and c-indices 
could be explained by the actually used pathway resource, 
we conducted a two-way analysis of variance (ANOVA). The 
ANOVA model had the following form:

 performance database dataset database data + + × set  

We then tested the significance of the database factor via 
an F test. In addition, we performed Wilcoxon tests analysis to 
understand specific differences between databases in a dataset-
dependent manner.

Software Implementation
The workflow presented in this article consists of three major 
components: 1) the acquisition and preprocessing of gene set 

and pathway databases; 2) the acquisition and preprocessing 
of experimental datasets; and 3) the re-implementation or 
adaptation of existing analytical pipelines for benchmarking. 
We implemented these components in the pathway_forte 
Python package to facilitate the reproducibility of this work, the 
inclusion of additional gene set and pathway databases, and to 
include additional experimental datasets.

The acquisition of KEGG, MSigDB, Reactome, and 
WikiPathways was mediated by their corresponding Bio2BEL 
Python packages (Hoyt et al., 2019; https://github.com/
bio2bel) in order to provide uniform access to the underlying 
databases and to enable the reproduction of this work as they 
are updated. Each Bio2BEL package uses Python's entry points 
to integrate in the previously mentioned ComPath framework 
in order to support uniform preprocessing and enable the 
integration of further pathway databases in the future, without 
changing any underlying code in the pathway_forte package. 
The network preprocessing defers to PathMe (Domingo-
Fernandez et al., 2019; https://github.com/pathwaymerger). 
Because it is based on PyBEL (Hoyt et al., 2018; https://github.
com/pybel), it is extensible to the growing ecosystem of BEL-
aware software.

While the acquisition and preprocessing of experimental 
datasets is currently limited to a subset of TCGA, it is extensible 
to further cancer-specific and other condition-specific datasets. 
We implemented independent preprocessing pipelines for several 
previously mentioned datasets using extensive manual curation, 
preparation, and processing with the pandas Python package 
(McKinney, 2010; https://github.com/pandas-dev/pandas). Unlike 
the pathway databases, which were amenable to standardization, 
the preprocessing of each new dataset must be bespoke.

The re-implementation and adaptation of existing analytical 
methods for functional enrichment and prediction involved 
wrapping several existing analytical packages (Table S3) in order 
to make their application programming interfaces more user-
friendly and to make the business logic of the benchmarking 
more elegantly reflected in the source code of pathway_forte. 
Each is independent and can be used with any combination of 
pathway database and dataset. Finally, all figures presented in 
this paper and complementary analyses can be generated and 
reproduced with the Jupyter notebooks located at https://github.
com/pathwayforte/results/.

Ultimately, we wrapped each of these components in a 
command line interface (CLI) such that the results presented in 
each section of this work can be generated with a corresponding 
command following the guidelines described by Grüning et al. 
(2019). The scripts for generating the figures in this manuscript 
are not included in the main pathway_forte, but rather in their 
own repository within Jupyter notebooks at https://github.com/
PathwayForte/results.

The source code of the pathway_forte Python package is 
available at https://github.com/PathwayForte/pathway-forte, 
its latest documentation can be found at https://pathwayforte.
readthedocs.io, and its distributions can be found on PyPI at 
https://pypi.org/project/pathway-forte.

The pathway_forte Python package has a tool chain consisting 
of pytest (https://github.com/pytest-dev/pytest) as a testing 
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framework, coverage (https://github.com/nedbat/coveragepy) 
to assess testing coverage, sphinx (https://github.com/sphinx-
doc/sphinx) to build documentation, flake8 (https://github.
com/PyCQA/flake8) to enforce code and documentation 
quality, setuptools (https://github.com/pypa/setuptools) to build 
distributions, pyroma (https://github.com/regebro/pyroma) to 
enforce package metadata standards, and tox (https://github.com/
tox-dev/tox) as a build tool to facilitate the usage of each of these 
tools in a reproducible way. It leverages community and open-
source resources to improve its usability by using Travis-CI (https://
travis-ci.com) as a continuous integration service, monitoring 
testing coverage with Codecov (https://codecov.io), and hosting its 
documentation on Read the Docs (https://readthedocs.org).

hardware
Computations for each of the tasks were performed on a 
symmetric multiprocessing (SMP) node with four Intel Xeon 
Platinum 8160 processors per node with 24 cores/48 threads each 
(96 cores/192 threads per node in total) and 2.1-GHz base/3.7-
GHz Turbo Frequency with 1,536-GB/1.5-TB RAM (DDR4 ECC 
Reg). The network was 100 GBit/s Intel OmniPath, storage was 
2× Intel P4600 1.6-TB U.2 PCIe NVMe for local intermediate 
data and BeeGFS parallel file system for Home directories. Table 
3 provides a qualitative description of the memory and time 
requirements for each task.

RESUlTS
The results of the benchmarking study have been divided into 
two subsections for each of the pathway methods described 
above. We first compared the effects of database selection on 
the results of functional pathway enrichment methods. In the 
following subsection, we benchmarked the performance of the 
pathway resources on the various machine learning classification 
tasks conducted.

Benchmarking the Impact on Enrichment 
Methods
Overrepresentation Analysis
As illustrated by our results, pathway analogs from different 
pathway databases in several cases showed clearly significant 

rank differences (Figure 3). These differences were most 
pronounced between Reactome and WikiPathways. For 
example, while the "Thyroxine Biosynthesis" pathway was 
highly statistically significant (q value <0.01) in the LIHC 
dataset for Reactome, its analogs in WikiPathways (i.e., 
"Thyroxine (Thyroid Hormone) Production") and KEGG 
(i.e., "Thyroid Hormone Synthesis") were not. However, the 
pathway was found to be significantly enriched in MPath. Such 
differences were similarly observed for the "Notch signaling" 
pathway in the PRAD dataset, in which the pathway was 
highly statistically significant (q value <0.01) for Reactome and 
MPath, but showed no statistical significance for KEGG and 
WikiPathways. Similar cases were systematically observed for 
additional pathway analogs and super pathways, demonstrating 
that marked differences in rankings can arise depending on the 
database used.

Gene Set Enrichment Analysis
Similar to ORA, GSEA showed significant differences between 
pathway analogs across databases in several cases (Figure 3). 
These differences were most pronounced between KEGG and 
WikiPathways in the KIRC and LIHC datasets and between 
KEGG and Reactome in the BRCA and PRAD datasets. Since 
GSEA calculates the observed direction of regulation (e.g., over/
underexpressed) of each pathway, we also examined whether 
super pathways or pathway analogs exhibited opposite signs in 
their normalized enrichment scores (NES) (e.g., one pathway 
is overexpressed while its equivalent pair is underexpressed). 
As an illustration, GSEA results of the LIHC dataset revealed 
the contradiction that the "DNA replication" pathway, one of 26 
super pathways, was overexpressed according to Reactome and 
underexpressed according to KEGG and WikiPathways, though 
the pathway was not statistically significant for any of these 
databases. However, the merged "DNA replication" pathway in 
MPath appeared as significantly underexpressed. Similarly, in 
the BRCA dataset, the WikiPathways definition of the "Notch 
signaling" and "Hedgehog signaling" pathways were significantly 
overexpressed, while the KEGG and Reactome definitions were 
insignificantly overexpressed. Interestingly, both the merged 
"Notch signaling" and merged "Hedgehog signaling" pathways 
appeared as significantly underexpressed (q < 0.05) in MPath.

Signaling Pathway Impact Analysis
The final of the three statistical enrichment analyses conducted 
revealed further differences between pathway analogs across 
databases. As expected, differences in the results of analogous 
pathways were exacerbated on topology-based methods 
compared with ORA and GSEA, as these latter methods do 
not consider pathway topology (i.e., incorporation of pathway 
topology introduces one extra level of complexity, leading to 
higher variability) (Figure 3). Beyond a cursory inspection 
of the statistical results, we also investigated the concordance 
of the direction of change of pathway activity (i.e., activation 
or inhibition) for equivalent pathways. We found that for two 
database (i.e., LIHC and KIRC), the direction of change was 
inconsistently reported for the "TGF beta signaling" pathway, 
depending on the database used (i.e., the KEGG representation 

TABlE 3 | A qualitative description of the computational costs of the analyses 
performed.

Task Relative memory 
usage

Timescale

ORA Low Seconds
GSEA Medium Minutes
ssGSEA Very high Hours
Prediction of tumor vs. normal Medium Minutes
Prediction of known tumor subtype Medium Minutes
Prediction of overall survival Medium Hours

Performing ssGSEA required on the scale of 100 GB of RAM for some dataset/database 
combinations, while the other tasks could be run on a modern laptop with no issues.
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was activated and the WikiPathways one inhibited). A similar 
effect was observed in the "Estrogen signaling pathway," 
found to be inhibited in KEGG and activated in WikiPathways 
in the LIHC dataset. The merging of equivalent pathway 
networks resulted in the observation of inhibition for both 
the "TGF beta signaling" and "Estrogen signaling" pathways in  
MPath results.

Benchmarking the Impact on Predictive 
Modeling
Prediction of Tumor vs. Normal
We compared the prediction performance of an elastic net 
penalized logistic regression classifier to discriminate normal 
from cancer samples based on their pathway activity profiles. 
The cross-validated prediction performance was measured 

FIgURE 3 | Left Distribution of raw p values of pathway analogs across databases [top to bottom: overrepresentation analysis (ORA), gene set enrichment analysis 
(GSEA), and signaling pathway impact analysis (SPIA)]. Right Significance of average rank differences of pathway analogs across pairwise database comparisons for 
the given method.
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via the AUC and precision-recall curve (see the corresponding 
Materials and Methods section). The AUC indicated no overall 
significant effect of the choice of pathway database on model 
prediction performance (p = 0.5, ANOVA F test; Figure 4). 
Similarly, the results of the precision-recall curve did not show a 
significant effect of the database selected on the model's predictive 
performance. Finally, these results were not surprising due to the 
relative ease of the classification task (i.e., all AUC values were 
close to 1).

Prediction of Tumor Subtype
We next compared the prediction performances of a multi-
class classifier predicting known tumor subtypes of BRCA 
and PRAD using ssGSEA-based pathway activity profiles. 
Figure 5 demonstrated no overall significant effect of the 
choice of pathway database (p = 0.16, ANOVA F test). We used 
Wilcoxon tests to investigate if each pair of distributions of 
the accuracies based on each database were different, but did 

not achieve statistical significance (q < 0.01) after Benjamini–
Hochberg correction for multiple hypothesis testing. While 
the lack of significance is probably due to the limited amount 
of datasets (only two contained subtype information) and 
measurements, we would like to note that MPath showed 
the best classification metrics (similar to the previous 
classification task).

Prediction of Overall Survival
As a next step, we compared the prediction performance of an 
elastic net penalized Cox regression model for overall survival 
using ssGSEA-based pathway activity profiles derived from 
different resources. As indicated in Figure 6, no overall significant 
effect of the actually used pathway database could be observed 
(p = 0.28, ANOVA F test). A limiting factor of this analysis is the 
fact that overall survival can generally only be predicted slightly 
above chance level (c-indices range between 55% and 60%) 
based on gene expression alone, which is in agreement with the 

FIgURE 4 | Comparison of prediction performance of an elastic net classifier (tumor vs. normal) using single-sample gene set enrichment analysis (ssGSEA)-based 
pathway activity profiles computed from different resources. Each box plot shows the distribution of the area under the ROC curves (AUCs) over 10 repeats of the 
10-fold cross-validation procedure.
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FIgURE 5 | Comparison of prediction performance of an elastic net classifier (BRCA and PRAD subtypes) using single-sample gene set enrichment analysis 
(ssGSEA)-based pathway activity profiles computed from different resources. Each box plot shows the distribution of the area under the ROC curves (AUCs) over 10 
repeats of the 10-fold cross-validation procedure.

FIgURE 6 | Comparison of prediction performance of an elastic net penalized Cox regression model (overall survival) using single-sample gene set enrichment 
analysis (ssGSEA)-based pathway activity profiles computed from different resources. Each box plot shows the distribution of the area under the ROC curves 
(AUCs) over 10 repeats of the 10-fold cross-validation procedure.
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literature (Van Wieringen et al., 2009; Fröhlich, 2014; Mayr and 
Schmid, 2014; Zhang et al., 2018).

DISCUSSION
In this work, we presented a comprehensive comparative study 
of pathway databases based on functional enrichment and 
predictive modeling. We have shown that the choice of pathway 
database can significantly influence the results of statistical 
enrichment, which raises concerns about the typical lack of 
consideration that is given to the choice of pathway resource 
in many gene expression studies. This finding was specifically 
pronounced for SPIA because this method is a topology-based 
enrichment approach and therefore expected to be most sensitive 
to the actual definition of a pathway. At the same time, we 
observed that an integrative pathway resource (MPath) led to 
more biologically consistent results and, in some cases, improved 
prediction performance.

Generating a merged dataset such as MPath is non-trivial. We 
purposely restricted this study to three major pathway databases 
because of the availability of inter-database pathway mappings 
and pathway networks from our previous work which enabled 
conducting objective database comparisons. The incorporation 
of additional pathway databases into MPath would first require 
the curation of pathway mappings prior to conducting the 
benchmarking study, which can be labor-intensive. Furthermore, 
performing the tasks described in this work comes with a high 
computational cost (Table 1).

Our strategy to build MPath is one of many possible 
approaches to integrate pathway knowledge from multiple 
databases. Although alternative meta-databases such as 
Pathway Commons and MSigDB do exist, the novelty of this 
work lies in the usage of mappings and harmonized pathway 
representations for generating a merged dataset. While we 
have presented MPath as one possible integrative approach, 
alternative meta-databases may be used, but would require 
that researchers ensure that the meta-databases' contents are 
continuously updated (Wadi et al., 2016).

Our developed mapping strategy between different 
graph representations of analogous pathways enabled us 
to objectively compare pathway enrichment results that 
otherwise would have been conducted manually and 
subjectively. Furthermore, they allowed us to generate super 
pathways inspired by previous approaches that have shown 
the benefit of merging similar pathway representations 
(Doderer et al., 2012; Vivar et al., 2013; Belinky et al., 2015; 
Stoney et al., 2018; Miller et al., 2019). In this case, this was 
made possible by the fully harmonized gene sets and networks 
generated by our previous work, ComPath and PathMe. A 
detailed description of the ComPath and PathMe publications, 
source code, and extensions to existing analyses (i.e., SPIA) to 
better suit the methods used in this work can be found in the 
Supplementary Text.

One of the limitations of this work is that we restricted 
the analysis to five cancer datasets from TCGA and we did 

not expand it to other conditions besides cancer. The use of 
this disease area was mainly driven by the availability of data 
and the corresponding possibilities to draw statistically valid 
conclusions. However, we acknowledge the fact that data from 
other disease areas may result in different findings. More 
specifically, we believe that a similar benchmarking study 
based on data from disease conditions with an unknown 
pathophysiology (e.g., neurological disorders) may yield even 
more pronounced differences between pathway resources. 
Additionally, further techniques for gene expression-based 
pathway activity scoring could be incorporated, such as 
Pathifier or SAS (Drier et al., 2013; Lim et al., 2016).
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Background and aims: Ovarian cancer (OC) is the seventh most commonly detected

cancer among women. This study aimed to map the hub and core genes and potential

pathways that might be involved in the molecular pathogenesis of OC.

Methods: In the present work, we analyzed a microarray dataset (GSE126519) from

the Gene Expression Omnibus (GEO) database and used the GEO2R tool to screen

OC cells and ovarian SINE-resistant cancer cells for differentially expressed genes

(DEGs). For the functional annotation of the DEGs, we conducted Gene Ontology

(GO) and pathway enrichment analyses (KEGG) using the DAVID v6.8 online server

and GenoGo MetacoreTM, Cortellis Solution software. Protein–protein interaction (PPI)

networks were constructed using the STRING database, and Cytoscape software was

used for visualization. The survival analysis was performed using the online platform

GEPIA2 to determine the prognostic value of the expression of hub genes in cell lines

from OC patients.

Results: We identified a total of 809 upregulated and 700 downregulated DEGs. GO

analysis revealed that the genes with statistically significant differences in expression

were mainly associated with biological processes involved in the cell cycle, the mitotic

cell cycle, mitotic nuclear division, organ morphogenesis, cell development, and cell

morphogenesis. By using the Analyze Networks (AN) algorithm in GeneGo, we identified

the most relevant biological networks involving DEGs that were mainly enriched in the cell

cycle (in metaphase checkpoints) and revealed the role of APC in cell cycle regulation

pathways. We found 10 hub genes and four core genes (FZD6, FZD8, CDK2, and

RBBP8) that are strongly linked to OC.

Conclusion: This study sheds light on the molecular pathogenesis of OC and is

expected to provide potential molecular biomarkers that are beneficial for the treatment

and clinical molecular diagnosis of OC.

Keywords: ovarian cancer, protein–protein interactions, Metacore, biomarkers, functional enrichment analysis,

expression profiling data, microarray
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INTRODUCTION

Ovarian cancer (OC) is the seventh most frequently detected
cancer among women worldwide (Reid et al., 2017). Epithelial
cancers represent∼90% of OC in patients with different ailments
(Cancer Genome Atlas Research Network, 2011) comprising five
distinct histological subtypes that have various distinguishable
complications, sources of cells, molecular compositions, clinical
signs, and symptoms and treatments (Matulonis et al., 2016).
Matulonis et al. (2016) reported that OC is typically detected at
the late stage, and no successful screening approaches have been
found thus far. However, patients with an increased risk of OC
with germline mutations in BRCA1, BRCA2, or additional genes
can be identified (Pennington and Swisher, 2012; Younes and
Zayed, 2019).

Proteins transported by exportin 1 (XPO1 or CMR1), such
as IkB, p53, pRb, p21, p27, and FOXO, play significant roles
as tumor suppressors. When restricted to the nucleus, they
inhibit the growth of cells and cell survival unless they are
transferred to the cytoplasm (Senapedis et al., 2014). A selective
inhibitor of nuclear export (SINE) acts along with CMR1 to block
its interaction with nuclear proteins intended to be exported
to the cytoplasm; inhibitors of CMR1 are known as SINE
compounds (Gerecitano, 2014). Recent work has also revealed
that SINE compounds enhance the proteasomal deterioration
of CMR1, increase the nuclear retention of FOXO and p53,
and contribute to enhanced apoptosis in prostate cancer cell
lines (Mendonca et al., 2014). As an outcome of resistance to
treatment, the elevated annual mortality rate is due to a variety
of diagnoses at advanced phases of the disease and recurrence
of the disease. Additionally, OC comprises several subtypes
with distinct etiologies and molecular profiles that result in
considerable variations in the inherent sensitivity to treatment
(Zyl et al., 2018). To overcome treatment resistance, there is a
need to understand the complete set of molecular mechanisms
underlying SINE resistance in OC cell lines. Therefore, the
development of OC and associated phenomena need to be
investigated, and there is an urgent need to find candidate early
diagnostic biomarkers.

Microarray-based gene expression assessment is the most
commonly used high-throughput and successful technique
used to study complicated disease pathogenesis. However,
studies performed that utilize human OC gene expression
profiling are very uncommon. In the current research, we
tried to explore the differentially expressed genes (DEGs), gene
network, pathways, and protein interactions that are unique to
OC. To detect the DEGs between OC and SINE-resistant OC
cell lines (GSE126519), we utilized a bioinformatics approach
to analyze DEG data retrieved from the Gene Expression
Omnibus (GEO) database. For the screened DEGs, functional
annotation assessment with Gene Ontology (GO) and pathway
enrichment assessment with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) were carried out using the Database
for Annotation, Visualization, and Integrated Discovery
and GeneGo MetacoreTM software. Ultimately, we found 10
potential hub genes and four core genes that were strongly
linked to OC.

MATERIALS AND METHODS

Data Preprocessing and Screening of
DEGs
The expression profiling was performed on the OC gene
dataset GSE126519, which was retrieved from GEO (Gene
Expression Omnibus database, https://www.ncbi.nlm.nih.gov/
geo/) and includes gene expression datasets from RNA-seq, high-
throughput hybridization array, DNAseq, ChIPs, and microarray
(Barrett et al., 2013). “Ovarian cancer” AND “Homo sapiens”
were the keywords used to search OC-related expression profiles
within the GEO datasets. The GSE126519 expression profiling
was conducted in arrays that included three human OC cell lines
and three SINE (selective inhibitors of nuclear export)-resistant
human OC cell lines. We utilized the GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r/) statistical tool to recalculate and assess
the genes that were expressed differently between the human OC
cell lines and the SINE-resistant human OC cell lines (Ritchie
et al., 2015). The Benjamini and Hochberg (false discovery rate)
and t-test methods were utilized with the GEO2R tool to calculate
the FDR and p-values, respectively, to identify the DEGs. We
considered p < 0.05 and a | log (fold change) | > 1 to be
statistically significant for the DEGs, and logFC≥ 1 and logFC≤

−1 were considered to indicate upregulated and downregulated
DEGs, respectively (Aubert et al., 2004).

By using all of the DEGs identified in the OC cell lines, we
constructed a volcano plot by using the Volcano Plot (https://
paolo.shinyapps.io/ShinyVolcanoPlot/) online server, which is
hosted on shinyapps.io by RStudio. The resultant DEG dataset
was collected and used for further analysis. The initial ontology of
gene (GO) and KEGG pathway enrichment analyses of the DEGs
was annotated (p < 0.05) using the online bioinformatics tool
DAVID v6.8 (https://david.ncifcrf.gov/) (Huang et al., 2009a,b).

PPI Network Construction
The online database STRING (v11.0, http://www.string-db.org/)
was used to visualize the PPIs between the statistically significant
DEG-encoded proteins in the resultant dataset (Szklarczyk et al.,
2015). The dataset contained more than 10,000 DEGs. To avoid
an inaccurate PPI network, we used a cutoff ≥ 0.9 (high-
confidence interaction score) to obtain the significant PPIs. We
used Cytoscape software v3.7.1 (http://www.cytoscape.org/) to
visualize the PPI network obtained from the STRING database
(Shannon et al., 2003). Based on the log fold change values,
the PPI network was plotted for both the upregulated and
downregulated DEGs. The interrelation analysis of the identified
genes was performed by using the GeneMANIA online tool
(Franz et al., 2018).

Analyzing the Backbone Network
The NetworkAnalyzer app in Cytoscape was utilized to explore
the networks of both the upregulated and downregulated DEGs
(Saito et al., 2012). NetworkAnalyzer computes the topological
parameters and centrality measures such as the distribution
of the node degree, the betweenness centrality, the topological
coefficients, the shortest path length, and the closeness centrality
for directed and undirected networks (Assenov et al., 2008).
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TABLE 1 | Patients’ information in GSE126519 derived from the GEO database.

Group Accession Patient no. Organism Disease state Type

OC GSM3602932 Patient 1 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602933 Patient 2 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602934 Patient 3 Homo sapiens Ovarian cancer Human ovarian cancer cell

SINE resistance OC GSM3602935 Patient 4 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602936 Patient 5 Homo sapiens Ovarian cancer Human ovarian cancer cell

GSM3602937 Patient 6 Homo sapiens Ovarian cancer Human ovarian cancer cell

GEO, Gene Expression Omnibus; OC, ovarian cancer; SINE, selective inhibitors of nuclear export.

The distribution of the node degree indicates the number of
nodes with a certain degree and is a comparative measure of the
degree to which a node parameter shares neighbors with other
nodes in terms of the topological coefficient. NetworkAnalyzer
calculates the topological coefficients for all network nodes with
more than one neighbor (Stelzl et al., 2005). The networks that
do not have multiple edges have been determined according
to the betweenness centrality, whereas the closeness centrality
computes this for all nodes and plots it against the number of
neighbors in terms of the closeness centrality (Brandes, 2001;
Newman, 2005).

GeneGo Analysis
The statistically significant DEGs were further analyzed in
Metacore and Cortellis Solution software (https://clarivate.
com/products/metacore/, Clarivate Analytics, London, UK) to
perform the GO function and pathway enrichment analyses.
GeneGo enables the fast analysis of protein networks, metabolic
pathways, and maps for the list of genes and proteins
obtained from experimental high-throughput data (MetaCore
Login|Clarivate Analytics1). We used the pathway maps tool to
identify the enriched pathways involving DEGs in terms of the
hypergeometric distribution, and the p-values were calculated
by using the default database as the background (based on
an FDR p < 0.005). Based on a significant p-value < 0.05,
graphical depictions of the molecular interactions between the
DEGs were generated.

Hub Gene Survival Analysis
A comprehensive online platform called Gene Expression
Profiling Interactive Analysis (GEPIA2, http://gepia2.cancer-
pku.cn/#index) provides fast and customized delivery of
functionalities based on TCGA (The Cancer Genome Atlas)
and genotype-tissue expression (GTEx) data. GEPIA2 evaluates
the survival effect of differentially expressed genes in a given
cancer sample. The overall survival effect of hub genes in OC
was estimated by calculating the log-rank p-value and the HR
(hazard ratio-95% confidence interval) using GEPIA2 Single
Gene Analysis. Then, the validation of the expression of the
core hub genes in OC and normal tissues was performed and
visualized in a boxplot (Tang et al., 2017).

1MetaCore Login | Clarivate Analytics Available at: https://portal.genego.com/

(accessed June 22, 2019).

FIGURE 1 | Volcano plot of the DEGs in OC compared with those in

SINE-resistant OC from the GSE126519 dataset. x-axis: log2FC, large-scale

fold changes; y-axis: –log10 of the p-value showing the statistical significance.

Each black point corresponds to one gene. The black points above the red

line and beside the blue line (left side and right side) represent log2FC ≥ 1 and

p-value < 0.05; all DEGs that were OC-related are shown below the red line,

which represents log2FC < 1 or p-value > 0.05. The position of the core

genes are named and marked in scarlet color.

RESULTS

DEG Identification
We obtained the gene expression profiles for GSE126519,
“Analysis of RNA profiles in parent and selective inhibitors of
nuclear export (SINE)-resistant OC cells” from the GEO datasets.
(Miyake and Sood, 2019) submitted the GSE126519 dataset,
which was generated on the GPL10558 platform (Illumina
HumanHT-12 V4.0 expression bead chip). The GSE126519
dataset was obtained from three patient cell lines that comprised
six samples, including three OC cell lines and three SINE-
resistant OC cell lines (Table 1). To identify the DEGs from
these two groups (OC and SINE-resistant OC), we conducted
GEO2R web-server analysis (https://www.ncbi.nlm.nih.gov/geo/
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geo2r/?acc=GSE126519) to calculate the p-values and |log2FC|
values. The resulting genes that met the cutoff criteria (|log2FC|
≥ 1.0 and p < 0.05) were considered DEGs. Overall, 8,855
genes were identified from the GEO dataset (GSE126519) with
p > 0.05 and p < 0.05 using the GEO2R tool and are
shown in Supplementary Table 1. We constructed a volcano
plot using the Shiny Volcano Plot online server by Rstudio to
compare the two groups; a total of 2708 DEGs were identified
from the GSE126519 dataset (Figure 1). Among them, 809 and
700 genes were upregulated and downregulated, respectively,

between two groups according to their log2FC and p-values
(Supplementary Table 2).

Construction of the PPI Network
To evaluate the PPIs between the DEGs, we used the STRING
tool to identify the PPI networks for both the up- and
downregulated genes. A combined score of ≥0.9 for the nodes
was considered to indicate a significant PPI interaction. Then, we
exported the resulting PPI network as a “.txt” file and imported
it as a.csv file into Cytoscape v3.7.1 software for visualization.

FIGURE 2 | The protein networks of the upregulated DEGs determined using Cytoscape are shown. The representation is as follows: spheres represent the nodes,

and the edges are shown as lines.
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The graphical representations of the PPI networks of the up- and
downregulated DEGs are shown in Figures 2, 3, respectively. The
backbone network of the up- and downregulated genes consist of
794 nodes and 676 nodes with estimated clustering coefficients
of 0.321 and 0.192, respectively. The Cytoscape plug-in Network
Analyzer was used to analyze the networks for both the up- and
downregulated DEGs. Table 2 shows the topological parameters
of the up- and downregulated PPI networks, and the topological
components, including the distribution of the node degree, the

topological coefficient, the shortest path length distribution,
the betweenness centrality, and the closeness centrality for the
individual PPI networks are shown in Figures 4A,B.

GO and Enrichment Analysis
To determine the potential GO classifications and KEGG
pathway-enriched genes from the dataset, we imported all
target DEGs into the online analysis tool DAVID to conduct
the annotation process (Supplementary Table 3). The annotated

FIGURE 3 | The protein networks of the downregulated DEGs determined using Cytoscape are shown. The representation is as follows: spheres represent the nodes,

and the edges are shown as lines.
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TABLE 2 | Topological parameters for the upregulated and downregulated PPI

network.

S. no. Topological parameters Comprehended values

Upregulated

genes

Downregulated

genes

(1) Number of nodes 794 676

(2) Clustering co-efficient 0.321 0.192

(3) Network density 0.023 0.003

(4) Network centralization 0.169 0.081

(5) Network heterogeneity 1.748 1.893

(6) Characteristic path length 3.295 4.509

(7) Average number of neighbors 18.544 2.257

results for the GO terms were divided according to the MF
(molecular function), BP (biological process), and CC (cell
component) ontologies (p< 0.05, FDR< 0.05). The results of the
GO biological process (BP) analysis revealed that the upregulated
DEGs were mainly enriched in the cell cycle, mitotic cell
cycle process, and mitotic nuclear division; the downregulated
DEGs were mainly elevated in pathways related to organ
morphogenesis, cell development, and cell morphogenesis, which
are involved in differentiation, mesenchymal development, and
cellular responses to UV. For the GO molecular function
analysis, the upregulated DEGs were significantly enriched in
nucleoside-triphosphatase activity and hydrolase activity, which
acts on acid anhydrides and phosphorus-containing anhydrides,
DNA-dependent ATPase activity, and pyrophosphatase activity,
whereas the downregulated DEGs were largely enriched in
beta-amyloid binding, carbonyl reductase (NADPH) activity,
and collagen, amide, and calcium ion binding. Concerning
the GO cell component analysis, the upregulated DEGs
were mostly enriched in the chromosome and condensed
chromosome, while the downregulated DEGs were enriched
in membrane-bound vesicles, extracellular vesicles, and the
extracellular region and organelles (Supplementary Table 3).
Moreover, we used the DAVID online tool to categorize the
DEGs involved in various signaling pathways according to
the KEGG reference pathways (p < 0.05, FDR < 0.05). By
examining the KEGG pathways, we noticed that the upregulated
DEGs were enriched in DNA replication, the cell cycle, the
nucleotide excision repair mechanism, the Fanconi anemia
pathway, and DNA mismatch repair; the downregulated DEGs
were mostly enriched in the ECM–receptor interaction, the
PI3K–Akt signaling pathway, arginine and proline metabolism,
Oligodontia-colorectal cancer syndrome, and Nevoid basal cell
carcinoma syndrome (Supplementary Table 4).

Enrichment Analysis Using MetacoreTM

Software
To understand the map pathways and the genes that were
differentially expressed in the OC patient cell lines, we
used MetacoreTM software (Calrivate Analytics) to perform
enrichment analysis (EA) using a widely known database

for protein–protein signaling. EA identified the gene IDs
of the potential targets from the DEG sets with gene
IDs via the functional ontology function in MetaCore. The
possibility of a random intersection of a gene set and the
corresponding ontological entities was determined according
to the hypergeometric intersection p-value. A reduced p-value
suggested that the object was more relevant to the dataset, which
indicated that it had a higher rating. Comparative enrichment
analysis of the DEG dataset identified the top 10 enriched
pathways, and the maps, GO cellular processes, networks, and
biomarkers (by disease) are shown in Figures 5A–D. These
are the most statistically significant data for each category
based on a very low p-value. The pictorial representation of
the top-scored pathway map (lowest p-value) is based on
the distribution of gene enrichment, as shown in Figure 6A;
similarly, the second scored map (second-lowest p-value) is
shown in Figure 6B. In Figures 6A,B, the well-characterized
proteins or protein complexes are displayed as individual
symbols; the data from all experiments are shown and linked
on the maps as thermometer-like symbols. A red upward-
facing thermometer indicates the upregulated genes, and a blue
thermometer indicates the expression level of a downregulated
gene. The AN algorithm in GeneGo was used to identify the
most relevant biological networks by prioritizing the number
of fragments of the canonical pathways in the network, as
shown in Table 3. The top regulated network processes are
presented in Supplementary Figures 1A,B, illustrating the two
major pathways involving DEGs that were commonly affected
in both OC groups. We identified several crucial hub genes,
including TCF4, frizzled family proteins (FZD2, FZD8, and
FZD6), RUNX2, CDC25 family protein (CDC25A), protein
kinase family proteins (CDK2), BRCA1, ATM, and RBBP8. The
selected hub genes were mainly involved in the regulation of the
canonical Wnt signaling pathway, cell–cell signaling mediated by
Wnt, cell cycle phase transition, and the positive regulation of the
cell cycle (Figure 6, Supplementary Figures 1A,B).

Survival Analysis and Expression Levels of
Hub Genes
GEPIA survival assessment was used to investigate the overall
association with survival of 10 hub genes from both the low-
and high-expression OC groups. As a result, we noticed that
the high expression of FZD2 (HR = 0.93) (Figure 7C), FZD8
(HR = 0.88) (Figure 7D), CDC25A (HR = 0.83) (Figure 7F),
CDK2 (HR = 0.86) (Figure 7G), and RBBP8 (HR = 0.95)
(Figure 7J) were associated with improved overall survival in
the OC cell line. However, the high expression of TCF4 (HR
= 1) (Figure 7A), FZD6 (HR = 1) (Figure 7B), RUNX2 (HR
= 1) (Figure 7E), BRCA1 (HR = 1.1) (Figure 7H), and ATM
(HR = 1.2) (Figure 7I) were linked with worse overall survival
in the OC cell line. Taken together, the results show that FZD6,
FZD8, CDK2, and RBBP8 function as core genes that have a close
relationship with OC. Furthermore, the GEPIA box plot analysis
investigated the level of expression of the core genes in 426 OC
tissue samples and 88 normal tissue samples. The boxplot in
Figures 8A–D shows a considerable increase in the level of core
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FIGURE 4 | Backbone network topology parameters. (A) The network of upregulated DEGs. (B) The network of downregulated DEGs. (1) Distribution of the node

degree. (2) Topological coefficients. (3) Shortest path length distribution. (4) Betweenness centrality. (5) Closeness centrality.

gene expression (FZD6, FZD8, CDK2, and RBBP8) in the OC
cell line.

DISCUSSION

Microarray technology is one of the most important approaches
used by many researchers worldwide to explore the expression
levels of genes involved in complex disorders (Russo et al.,
2003; Babu, 2004; Perez-Diez et al., 2013). Therefore, studying
the expression profiles of DEGs and predicting the target
genes of OC is of the utmost importance. In this study, data

from a total of three OC cell lines and three OC cell lines
with SINE resistance were obtained from the GEO database
(GSE126519). A total of 2708 DEGs were screened, including
809 upregulated and 700 downregulated genes. In silicomethods
have typically shown good efficiency, and networks have been
demonstrated to be a reliable way to depict genomic data. The
topological interpretation of upregulated and downregulated
genes is required for large PPI networks and is thus substantially
based on integrated local components, such as the distribution
node of the degree, the topological coefficient, the shortest
path length distribution, and the betweenness and closeness
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FIGURE 5 | (A) Top 10 pathway profiles; (B) top 10 GO processes; (C) top 10 process networks; (D) top 10 diseases according to biomarkers. GeneGo annotation

of the top 10 pathway profiles, GO cellular processes, process networks, and diseases according to biomarkers for the DEG datasets. (A) The canonical pathway

maps represent a set of signaling and metabolic maps comprehensively covering the relevant pathways in humans. (B) Gene Ontology (GO) cellular processes. As

most GO processes have no gene/protein content, the “empty terms” were excluded from the p-value calculations. (C) The cellular and molecular processes were

defined and annotated; each process represents a preset network of protein interactions characteristic of the process. (D) Disease folders (by biomarkers) were

organized into a hierarchical tree.

centralities (Assenov et al., 2008). These parameters were used
to analyze the nodes in individual PPI networks of the DEG
dataset to deduce their significance in networks with different
characteristics. Furthermore, we implemented GO and KEGG
pathway analyses to determine MF, BP, CC, and pathways
involving the DEGs using the DAVID online tool. The GO
BP terms and KEGG assessment indicated that the upregulated
DEGs were enriched primarily in the cell cycle, mitotic cell cycle
process, mitotic nuclear division, DNA replication, cell cycle,
nucleotide excision repair, DNA mismatch repair, and Fanconi
anemia pathways. Interestingly, mutations in mismatch repair
(MMR) and Fanconi anemia pathway-related genes in women
have been shown to be one of the primary causes of hereditary
OC (Norquist et al., 2016). Therefore, our observed results
are consistent with the role of upregulated genes in pathways
that cause OC. Similarly, the downregulated DEGs were
mainly enriched in organ morphogenesis, cell development, cell

morphogenesis, mesenchymal development and the interaction
of the ECM receptor, PI3K-Akt signaling, and arginine and
prolinemetabolism pathways. In line with this, a significant cause
of cancer would appear to be the abnormal functioning of the
cell cycle and mitosis (Kastan and Bartek, 2004; Malumbres and
Barbacid, 2009).

The findings from the STRING, Cytoscape, GO, and KEGG
analyses indicated that many pathways were primarily affected
in OC. Several studies have used Cytoscape plugins such as
MCODE, cytoHubba, CytoCluster, CytoKegg, and CytoNCA to
elucidate the core interactions in PPI networks (Lan et al., 2015;
Villaveces et al., 2015; Sriroopreddy and Sudandiradoss, 2018;
Zhang et al., 2019). To delineate the molecular interactions
and pathways identified from the STRING, GO, and KEGG
analyses, we utilized GeneGo Metacore, which has a massive
amount of information about regulatory and metabolic pathways
and contains precisely curated biological networks. To obtain a
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FIGURE 6 | (A) The cell cycle metaphase checkpoint pathway. (B) The APC cell cycle regulation pathway. The two top-scored regulated pathways were activated in

the OC cell lines. The pathway images were generated by GeneGo MetacoreTM enrichment analysis. Well-characterized proteins or protein complexes are shown as

individual symbols within the image; experimental data from all the records are connected and depicted as thermometer-like figures on the maps. Upward-facing

thermometers are shown in red and indicate upregulated gene transcripts. The linkage of proteins by arrows depicts the stimulatory and inhibitory effects or

interaction of the encoded protein on the desired protein. The hub genes (protein families) that were involved in the canonical signaling pathways are marked in a circle

(scarlet). Further explanations are provided at https://portal.genego.com/help/MC_legend.pdf.
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TABLE 3 | Most relevant biological networks were generated using GeneGo Analyze Networks (AN) algorithm.

S. no. Network name Processes Size Target Pathways p-value z score g score

1 TCF7L2 (TCF4),

Tcf(Lef), Frizzled,

RUNX2, p21

Canonical Wnt signaling pathway (50.0%), regulation of

Wnt signaling pathway (58.0%), cell-cell signaling by Wnt

(56.0%), Wnt signaling pathway (56.0%), regulation of

canonical Wnt signaling pathway (50.0%)

50 17 262 1.12e-20 21.47 348.97

2 CDC25A, CDK2,

Brca1, ATM, RBBP8

(CtIP)

Mitotic cell cycle (57.1%), mitotic cell cycle process

(53.1%), mitotic cell cycle phase transition (42.9%), cell

cycle phase transition (42.9%), positive regulation of cell

cycle (46.9%)

50 32 24 2.61e-49 41.10 71.10

3 KRMP1, FAM83D,

LMO1, CBWD1, PSF1

cGMP catabolic process (6.4%), response to

macrophage colony-stimulating factor (6.4%), cellular

response to macrophage colony-stimulating factor

stimulus (6.4%), purine ribonucleotide catabolic process

(8.5%), ribonucleotide catabolic process (8.5%)

50 35 0 5.36e-56 45.03 45.03

In this workflow, the networks were prioritized based on the number of fragments of canonical pathways on the network.

comprehensive picture of the DEGs involved in OC, we used
GeneGo MetacoreTM software to identify the most significant
genes and signaling pathways based on the calculated p-
values. Among the top 10 enriched pathways, the cell cycle
metaphase checkpoint, APC in cell cycle regulation, chromosome
separation, spindle assembly, and DNA damage/ATR regulation
of G2/M phase checkpoint/ATM were highly significant in
the DEG datasets from both groups (Figure 5A). The GO
cellular processes showed that the DEGs were enriched in a
variety of cellular processes (Figure 5B), and these processes are
mainly utilized in the enrichment analysis and to prioritize the
genes in the constructed networks. The GO process networks
were enriched in various groups. Among the top 10 process
networks, we selected the four that were the most significant
based on the calculated p-values, which included the mitotic
cell cycle, the S phase in the cell cycle, and cytoskeleton-
spindlemicrotubules (Figure 5C). The biomarkers of the diseases
distinctly showed that the DEGs with the highest representation
in the dataset were also known to contribute to other cancer
types (Figure 5D). Additionally, there were two top-scored
regulated pathways that were activated in the OC cell line that
were involved in the cell cycle: the metaphase checkpoint and
APC cell cycle regulation pathways (Figure 6). Furthermore,
we analyzed the biological network of the upregulated DEGs
in the signaling pathways by utilizing the AN algorithm in
GeneGo. As a result, we determined the two most significant
networks that were commonly affected in both of the OC groups.
The components of these networks included several crucial
hub genes, including TCF4, the frizzled family proteins (FZD2,
FZD8, and FZD6), RUNX2, a CDC25 family protein (CDC25A),
the protein kinase family proteins (CDK2), BRCA1, ATM, and
RBBP8. Among them, the TCF4, frizzled, and RUNX2 genes
are primarily involved in the regulation of the canonical WNT
signaling pathway (58%) and cell–cell signaling mediated by
WNT (56%). Genes such as CDC25A, CDK2, BRCA1, ATM,
and RBBP8 are mostly involved in the mitotic cell cycle process
(53.1%), mitotic cell cycle phase transition (42.9%), positive
regulation of the cell cycle (46.9%), and cell cycle phase transition
(42.9%). Finally, the GEPIA web server was used to assess the

association between hub gene expression and OC prognosis.
The overall survival analysis indicated that high expression of
FZD2, FZD8, CDC25A, CDK2, and RBBP8 were associated with
better survival, and high expression of TCF4, FZD6, RUNX2,
BRCA1, and ATM were associated with decreased survival in the
OC cell line. Collectively, FZD6, FZD8, CDK2, and RBBP8 were
identified as core genes that were strongly associated with overall
survival in OC. Therefore, these four genes could contribute to
OC metastasis.

Supplementary Figure 1A shows that the frizzled family
of proteins is involved in canonical Wnt signaling pathway
regulation. FZD6, also known as frizzled class receptor 6, is
a member of the “frizzled” gene family, which consists of 7-
transmembrane domain proteins that are Wnt signaling protein
receptors. Many studies have observed through mutagenesis
experiments that several residues in the intracellular loops and
the C-terminus of FZD play a prominent role in signaling (Cong
et al., 2004; Wallingford and Habas, 2005). Kim et al. (2015)
found that the expression of FZD6 was increased in colorectal
cancer (CRC) patients when compared to that in nontumor
tissues. Furthermore, they discovered that FZD6 expression in
CRC cells was negatively regulated by miR199a-5p (Kim et al.,
2015). In recent research, Corda et al. (2017) observed that the
Wnt receptor-encoding gene FZD6 is often duplicated in breast
cancer and confers a higher risk of triple-negative breast cancer.
For the assembly of the fibronectin matrix, FZD6 signaling
is intrinsically required and interferes with actin cytoskeletal
organization. The researchers concluded that in highly metastatic
forms of breast cancer, such as TNBC, the FZD6-fibronectin actin
axis could be targeted for drug treatment (Corda et al., 2017).
In our study, we observed the overexpression of frizzled class
receptor 6 in OC cell lines, and the overexpression of FZD6,
which acts as an adverse prognostic factor, was associated with
decreased survival in OC patients.

Frizzled class receptor 8 is also a “frizzled” gene family
member that serves as a Wnt signaling protein receptor (Bhanot
et al., 1996). Most frizzled receptors are also associated with the
canonical signaling pathway of beta-catenin (Dann et al., 2001).
Li et al. (2017) reported a higher level of FZD8 expression in
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FIGURE 7 | Kaplan–Meier overall survival analysis of the hub genes expressed

in OC and SINE-resistant OC cell lines. (A) TCF4 (Transcription factor 4), (B)

(Continued)

FIGURE 7 | FZD6 (Frizzled class receptor 6), (C) FZD2 (Frizzled class receptor

2), (D) FZD8 (Frizzled class receptor 8), (E) RUNX2 (Runt related transcription

factor 2), (F) CDC25A (Cell division cycle 25A), (G) CDK2 (Cyclin-dependent

kinase 2), (H) BRCA1 (Breast cancer type 1 susceptibility protein), (I) ATM

(ATM serine/threonine kinase), and (J) RBBP8 (Retinoblastoma-binding protein

8). The survival curves were plotted using the GEPIA2 web server. The genes

with high expression in the cohorts are shown in red, and the blue line

indicates the low-expression cohort. The survival curves are represented as

dotted lines, and the solid line represents the 95% confidence interval. HR

stands for hazard ratio; patient number (n) = 212. The p-values were

calculated using log-rank statistics.

bone metastases in prostate cancer (PCa), which is frequently
diagnosed among men. This research group also found that
the silencing of FZD8 suppressed the migration and invasion
of cells and the occurrence of PCa bone metastasis in vitro
and in vivo by activating the canonical β-catenin/Wnt signaling
pathway, and the data suggest that FZD8 could be a potential
therapeutic target for the treatment of bone metastasis in PCa
(Li et al., 2017). Chakravarthi et al. (2018) reported that ETS-
related gene (ERS) specifically targets and activates FZD8 directly
by binding to its promoter region rather than ETV1 and
suggested that the overexpression of ERG in PCa leads to FZD8
induction and the activation of the Wnt pathway (Chakravarthi
et al., 2018). The research group led by He et al. recently
found that miR-520b overexpression results in the inhibition
of cell proliferation, migration, and invasion in human spinal
osteosarcoma (OS) tissues and cell lines by inactivating the
Wnt/β-catenin signaling pathway through the downregulation
of FZD8 and thus provides a new spinal OS therapeutic target
(Wang et al., 2017). Similarly, Liu et al. (2019) reported a reduced
level of miR-99b-5p in non-small cell lung cancer (NSCLC) cell
lines. They validated FZD8 as a specific target of miR-99b-5p and
found that increased expression of miR-99b-5p inhibited NSCLC
proliferation, migration, and invasion in vitro (Liu et al., 2019).
The findings of our study suggest that the overexpression of FZDs
in OC results in the anomalous activation of the canonical Wnt
signaling pathway and may increase their function during the
development of OC.

As seen in Figure 6B, CDK2 is mainly involved in the APC
cell cycle regulation pathway, and the overexpression of CDK2
results in the upregulation of the G1/S phase transition, resulting
in cancer cell proliferation. CDK2 and other relevant genes that
are upregulated in OC (red circles in Supplementary Figure 1B)
are shown in the closed network of the APC cell cycle regulation
pathway; because of the increase in CDKs, APC failed to
inactivate the CDK complexes by inducing their degradation.
Liu et al. (2011) revealed that CDK2 expression was significantly
higher in laryngeal squamous cell cancer tissues when compared
to that in paired adjacent normal laryngeal tissues (Liu et al.,
2011). Duong et al. (2012) reported that low-molecular-weight
cyclin E (LMW-E) required kinase activity associated with CDK2
to induce the formation of mammary tumors by disrupting the
growth of acinar cells. They used a combination of therapy with
a CDK inhibitor (roscovitine) plus a b-Raf-targeting pan-kinase
inhibitor (sorafenib) or an mTOR inhibitor (rapamycin) to arrest
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FIGURE 8 | Based on TCGA and GTEx data in GEPIA, we validated the expression levels of the four core genes in ovarian cancer (n = 426) and normal tissues (n =

88). (A) FZD6. (B) FZD8. (C) CDK2. (D) RBBP8.

the G1/S cell cycle in breast cancer cells; thus, the b-Raf-ERK1/2-
mTOR signaling pathway could be suppressed (Duong et al.,
2012). Kanwal et al. (2016) found that the expression of CDK2
is significantly increased in OC tissues when compared to that
in normal ovarian tissues (Kanwal et al., 2016). The pathways
involving cyclin-dependent kinase (CDK) are significant and
well-established cancer treatment targets. The role of CDK2
remains controversial in several cancer types (McCurdy et al.,
2017). Many studies have suggested that CDK2 could be a crucial
factor in the progression of cancer by regulating several pathways
andmight be a prospective biomarker and indicator of prognosis.
Therefore, CDK2 and its cyclin binding partners are possible

therapeutic targets for future cancer treatments (Yin et al., 2018;
Zhang et al., 2018; Wood et al., 2019).

RBBP8, also known as retinoblastoma-binding protein 8, aids
in regulating cell proliferation and DNA repair by homologous
recombination (Fusco et al., 1998). Soria-Bretones et al. (2013)
observed decreased or no expression of RBBP8 in paraffin-
embedded breast cancer biopsy tissues from high-grade breast
cancer and nodal metastases that were acquired during tumor
removal surgery (Soria-Bretones et al., 2013). The research
group led by Rose et al. suggested that RBBP8 was significantly
hypermethylated in bladder cancer (BLCA) and was associated
with more prolonged overall survival, and they indicated that
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it may be used as a complementary marker for the detection
of BLCA in urine (Mijnes et al., 2018). Miao et al. (2019)
reported that the downregulation of the long noncoding RNA
(lncRNA) cancer susceptibility candidate 2 (CASC2, enhanced
tumor development, increased miR-18a-5p levels, and reduced
the expression of RBBP8 in nasopharyngeal carcinoma (NPC).
The upregulation of CASC2 resulted in decreased proliferation
and increased apoptotic cell death in vivo (Miao et al., 2019).
Our data clearly showed that RBBP8 was differentially expressed
and involved in cell cycle regulation (Supplementary Figure 1B).
Additionally, it contributes to the development of OC in both
groups. However, the role of RBBP8 in OC is unclear and requires
further research.

Furthermore, we conducted an interrelation analysis of the
identified hub genes to elucidate the interactions between them,
primarily among the genes that interacted with one another
directly or indirectly. As shown in Figure 9, the mitotic cell cycle
phase transition pathway interacts with the regulation of G1/S
phase transition and APC in the cell cycle regulating pathway
via the essential genes RBBP8, BRCA1, CDC25A, ATM, and
CDK2 (D’Andrilli et al., 2004; Soria-Bretones et al., 2013; Xiao

et al., 2019). In contrast, frizzled family proteins (FZD2, FZD6,
and FZD8) are directly involved in the Wnt signaling pathways
because they are receptors of Wnt proteins (Janda et al., 2012).
The TCF4 and RUNX2 genes are involved directly or indirectly
in the Wnt signaling network, resulting in tumorigenesis (Gaur
et al., 2005; Hrckulak et al., 2018; Komori, 2019). Taken
together, these findings showed that node genes involved in the
development of OC could be significant factors in cell cycle
regulation and the Wnt signaling pathway.

Overall, our systematic bioinformatics assessment
demonstrated that DEGs might play a pivotal role in the
incidence, prognosis, growth, and development of OC. In this
study, a total of 2708 DEGs and 10 hub genes were identified,
and FZD6, FZD8, CDK2, and RBBP8 could be the core genes
involved in OC and SINE-resistant OC. Expression analysis
and the correlation of the multiple genes will undoubtedly
aid in the understanding of the roles of such genes in the
growth and development of OC. Several research groups have
demonstrated that preclinical models have showed some success
in reducing tumor growth and decreasing the side effects of
existing chemotherapy drugs (Cicenas et al., 2015; Whittaker

FIGURE 9 | Interrelation analysis of the hub genes identified from different pathways. GeneMANIA was used to plot the network, which was visualized in Cytoscape.

Color code: physical interaction shown in red, coexpression shown in violet, predicted interaction shown in orange, common pathway shown in cyan, and

colocalization shown in blue. The genes FZD2, FZD6, FZD8, RUNX2, and TCF4 were involved in the frizzled and Wnt signaling network; BRCA1, RBBP8, and ATM

were involved in the mitotic cell cycle phase transition pathway; and CDC25A and CDK2 were involved in the APC cell cycle regulation pathway.
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et al., 2017; Xia et al., 2018). We need to conduct a series of
experimental studies to prove this hypothesis to obtain more
precise correlation reports. However, the findings from this study
could enhance the understanding of the molecular pathogenesis
of OC. Furthermore, the core genes and pathways might be
potential biomarkers that could be used for the detection and
targeting of OC and SINE-resistant OC cells for therapy.
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Red meat is an important dietary source that provides part of the nutritional requirements.
Intramuscular fat, known as marbling, is located throughout skeletal muscle. Marbling is a
trait of major economic relevance that positively influences sensory quality aspects. The
aim of the present study was to identify and better understand biological pathways defining
marbling in beef cattle. Pathway analysis was performed in PathVisio with publicly available
transcriptomic data from semitendinosus muscle of well-marbled and lean-marbled beef.
Moreover, for Bos taurus we created a gene identifier mapping database with bridgeDb
and a pathway collection in WikiPathways. The regulation of marbling is possibly the result
of the interplay between signaling pathways in muscle, fat, and intramuscular connective
tissue. Pathway analysis revealed 17 pathways that were significantly different between
well-marbled and lean-marbled beef. The MAPK signaling pathway was enriched, and the
signaling pathways that play a role in tissue development were also affected. Interestingly,
pathways related to immune response and insulin signaling were enriched.

Keywords: marbling, curation pathway for cow, signaling pathway, improve breeding selection,
transcriptomics profiling
INTRODUCTION

Red meat is as an important dietary source that provides part of the nutritional requirements such as
proteins, minerals, B-complex vitamins, and essential fatty acids (McAfee et al., 2010). Control of
meat quality is very important for meat producers and meat sellers to satisfy customer’s preferences
(Bernard et al., 2007). Marbling, a trait that describes the presence intramuscular fat, is of major
economic relevance for beef producing cattle that has a positive impact on sensory quality traits, such
as flavor, juiciness, and tenderness of meat. Studies have shown that marbling depends on factors
such as breed, genotype, age, diet, husbandry, and growth stages. Although in marbling the
environmental factors play an important role, the genetic background of the animals is the major
factor defining the marbling status (Yamada et al., 2006). O’Connor et al. studied the effect of breed-
type on marbling, their results demonstrated that increase in meat marbling from Bos taurus cattle
(Hereford, Red Angus, Angus, and Tarentaise breeds) can increase the tenderness, more than the Bos
February 2020 | Volume 10 | Article 1370148
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indicus cattle (Braford, Red Brangus, and Simbrah breeds)
(O’Connor et al., 1997). Although, Shackelford et al., found
that, the lower tenderness of meat from Bos indicus cattle is
mainly because of decreased postmortem proteolysis which result
from elevated calpastatin activity that the possibility existed for an
interaction between breed and the influences of marbling score
on tenderness (Shackelford et al., 1991). Also, Wulf et al.,
reported that, in Charolais and Limousin breeds, marbling
correlated with calpastatin activity and shear force. He
suggested that selection for increased marbling based on these
genetic effects, in those two breeds, might be effective for
enhancing beef tenderness (Wulf et al., 1996). There is
substantial evidence from transcriptomics studies that gene
expression profiles affect phenotypic variation for marbling
(Cesar et al., 2015). Understanding the signaling pathways that
make up the regulatory network in the marbling process can help
steer the breeding process (Thaller et al., 2003). Therefore, animal
breeding specialists have attempted system-oriented approaches
to investigate major economic traits (Lee et al., 2010). It has been
shown that marbling differences may be a function of a number of
complex interactions among biological pathways. Therefore, a
pathway analysis with differential gene expression patterns can
result in a better understanding of muscle physiological states and
their influence on beef quality and animal welfare (Hocquette
et al., 2012). The public availability of transcriptomics data from
beef producing cattle, provides new opportunities to explore the
global gene expression in muscle to investigate physiological
processes and their influence on meat sensory quality traits
(Lee et al., 2010; Hocquette et al., 2012).

Within the genomic region of marbling there are several
genes considered as parts of QTLs such as EDGPR1, Titin,
Akirin 2, and RPL27 (Takasuga et al., 2007) which were
mapped in a half-sib family of Japanese Black cattle (Yamada
et al., 2006). Thus, these genes were considered as positional
functional candidates for the genes responsible for marbling.
This study aims at identifying genes and biological pathways
regulating marbling of muscle tissue in beef cattle based on
publicly available transcriptomics data obtained from a study by
Sadkowski and coworkers (2014). We updated and extended the
pathway collection for B. taurus at WikiPathways (Slenter et al.,
2017) an online pathway repository, and a B. taurus gene product
identifier mapping BridgeDb database was created to allow
mapping of expression data to the gene databases identifiers
used in the pathways (van Iersel et al., 2010). Sadkowski et al.,
2014 measured global gene expression in skeletal muscle of three
cattle breeds, i.e., Limousin, Holstein-Friesian, and Hereford,
using Agilent microarray chips. Pathway and network analysis
were performed to select the important biological pathways
involved in marbling and their interactions.
MATERIALS AND METHODS

Transcriptomics Data Set
The study by Sadkowski et al., 2014 compared gene expression in
semitendinosus skeletal muscle of well-marbled beef (Holstein-
Frontiers in Genetics | www.frontiersin.org 249
Friesian and Hereford) versus lean-marbled beef (Limousin).
Their publicly available microarray data set was used in the
present study (NCBI GEO GSE46411). The Holstein-Friesian,
Hereford, and Limousin groups consisted of four animals each.
Samples for total RNA isolation were taken instantaneously after
slaughter from semitendinosus muscle and were kept in liquid
nitrogen for transportation and then at −80°C until analyzed.
Quality of RNA samples was evaluated using Bioanalyzer 2100
(Agilent Technologies, USA). Only samples with RIN ≥ 8 were
further analyzed (Sadkowski et al., 2014).

Agilent Microarray Data Analysis
Global gene expression was measured with Agilent Two-Color
Mi Bovine (V2) 4 x 44K Gene Expression Microarray
oligonucleotide slides (Agilent, USA). Sadkowski and
coworkers checked the quality of the data and performed
LOWESS normalization. The normalized transcriptomic data
compared well-marbled beef Holstein-Friesian (n = 4) or
Hereford (n = 4) to lean-marbled beef (n = 4). The four log10
fold change (log10FC) values for each group comparison were
averaged to obtain an estimate of the 10logFC between the entire
groups. Furthermore, a one-sample t-test was performed on both
sets of four values, comparing those to 0 (giving a p-value
indicating the significance of these values being different from
0 = no change). Bovine genes were considered to be significantly,
differentially expressed with p ≤ 0.05 and an absolute FC ≥ 1.3
(Sadkowski et al., 2014).

B. taurus Pathway Collection
The online biological pathway repository, WikiPathways (Slenter
et al., 2017), contains pathways of different species, however a B.
taurus collection was missing. We updated and extended the
pathway collection for B. taurus.We also created a B. taurus gene
identifier (ID) mapping database based on mappings present in
the Ensembl-based BridgeDb framework (van Iersel et al., 2010).
The newly created B. taurus ID mapping database was used to
annotate genes and proteins in pathways from WikiPathways
and to perform pathways analysis. A online and freely available
version of the database for the Ensembl build 85 is accessible at
(http://bridgedb.org/data/gene_database/archive/r85/Bt_Derby_
Ensembl_85.bridge.zip). Second, the WikiPathways homology
based the homology mapper which is available at GitHub
(https://github.com/PathVisio/homology.mapper) was updated
to improve homology coverage for gene products that were
annotated with different data sources. The pathways were
converted from human pathways, with a required minimum
successful conversion of at least 50% of the original human
genes. Third, we manually curated all converted pathways to
check whether the genes were correctly annotated and pathways
are relevant in B. taurus. Finally, new pathways directly derived
from cow breeding literature and not present in the
WikiPathways collection were designed in PathVisio (v3.2.0)
(Kutmon et al., 2015), the pathway creation, visualization, and
analysis tool. All pathways were uploaded in gpml format to
WikiPathways using the WikiPathways plugin (https://www.
pathvisio.org/plugin/wikipathways-plugin/) for PathVisio.
February 2020 | Volume 10 | Article 1370
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Pathway-Based Over-representation
Analysis
To analyze and visualize the molecular changes in marbling at
biological process level a pathway-based over-representation
analysis was performed in PathVisio (v3.2.0) (Kutmon et al.,
2015). The B. taurus WikiPathways pathway collection,
containing 286 pathways (6/30/2015), and the B. taurus ID
mapping database, was used in the analysis. The pathways are
ranked based on a standardized difference score (Z-score) based
on the expected value and standard deviation of the number of
significantly (p ≤ 0.05) and differentially (absolute FC ≥ 1.3)
expressed genes in a pathway. Biological pathways significantly
changed when (i) Z-score > 1.96, (ii) permuted p-value < 0.05
and (iii) minimum number of changed genes is 3. Additionally,
alterations in gene expression (log10FC and p value) when
comparing Hereford to Limousin were visualized on the B.
taurus pathways with PathVisio.

Gene Ontology Overrepresentation Analysis
To find the biological processes in which differentially expressed
genes were over represented while no pathways for these processes
were present in the B. taurus collection at WikiPathways we
performed Gene Ontology (GO) analysis via the GO-Elite web-
interface (Zambon et al., 2012). GO-Elite is a flexible tool for GO-
based over-representation analysis. To identify GO processes the
following settings in GO-Elite were used: (i) 2000 permutations, (ii)
Z-score GO pruning algorithm, (iii) Z-score threshold >1.96, (iv)
p-value threshold <0.05 and (v) minimum number of changed
genes is 3 (apart from the method specific permutations those are
the same criteria as used for the pathway analysis). This approach
not only helps to unify the characteristics and functions of the
genes but also to attain a broader perspective of the muscle
physiological processes and their influence on meat quality.

Integrated Network Analysis
To visualize the pathway and GO analysis results and their
interactions the network analysis and visualization tool,
Cytoscape (version 3.2.0), was used (Shannon et al., 2003).
First, all enriched pathways and the differentially expressed
genes present in these pathways were selected. Second, all
changed GO processes and the Differentially Expressed genes
present in these GO classes were selected. Third, both results
were combined into one network showing the interaction
between pathways and GO classes based on corresponding
differentially expressed genes. Finally, differences in gene
expression between well-marbled and lean-marbled skeletal
muscle were visualized in the network.
RESULTS

Identification of Differentially Expressed
Genes Between Well-Marbled and
Lean-Marbled Skeletal Muscle
In the selected transcriptomic data set of beef marbling 42,990
microarray reporters were measured in both lean marbling beef
Frontiers in Genetics | www.frontiersin.org 350
(Limousin) and well marbling beef (Hereford and Holstein-
Friesian) animals. Statistical analysis was performed on 29,677
reported genes that remained from the 42,990 reporters after
quality control and annotation with Ensembl gene IDs. In the
Hereford breed compared to the Limousin breed, 1,513 were
higher expressed and 1,556 lower expressed (absolute
log10FC >0.11 and p-value <0.05). When comparing the
Holstein-Friesian breed to the Limousin breed, 1,772 genes
were higher expressed and 2,458 lower expressed in the
Holstein Friesian breed. The genes that met these criteria were
used for further analysis.

Creating of B. taurus Pathway Collection
and Pathway Design
In total, 282 human pathways were converted from human
pathways to cattle pathways. All these pathways were manually
checked and are available at (https://www.pathvisio.org/
downloads/download-pathways/). Moreover, 4 pathways were
newly created based on the bovine breeding literature: Growth
hormone signaling (WP2890) (Roudbari Z and Kutmon M:
Growth Hormone (GH) Signaling (B. taurus); (https://www.
wikipathways.org/instance/WP2890), Growth hormone
receptor signaling (WP2891) (Roudbari Z, Hanspers K, Evelo
C, Kutmon M: Growth Hormone Receptor (GHR) Signaling (B.
taurus) (https://www.wikipathways.org/instance/WP2891),
IGF1-signaling (WP2892) (Roudbari Z, Evelo C, Willighagen
E, Mélius J, Hanspers K, Kutmon M: IGF1-signaling (B. taurus)
(https://www.wikipathways.org/instance/WP2892), and
Gonadotropin- releasing hormone signaling (WP2901)
(Roudbari Z, Kutmon M, Pico A, Willighagen E, Mélius J:
Gonadotropin-releasing hormone (GNRH) signaling (B.
taurus) (https://www.wikipathways.org/instance/WP2901). As
an example, the newly designed GNRH signaling pathway is
shown in Figure 1. The elements of this process are the key
factors stimulating gonadotropin release from the pituitary,
which controls the release of luteinizing hormone and follicle-
stimulating hormone, and reproductive development
in mammals.

Pathway Analysis
When comparing Hereford with Limousin breed ten biological
pathways that were formerly known to be involved in
marbling (Cui et al., 2012; Lim et al., 2013; Silva-Vignato
et al., 2017) were found to be significantly enriched in
differentially expressed genes (z-score > 1.96) (Table 1).
Four biological processes such as: The Hypertrophy Model,
P38 MAPK signaling, IL-1 signaling, and insulin signaling
pathways, which are known to be important in marbling
development are described in more detail, and the pathways
are shown in Results section. Interestingly, some pathways not
yet known to play a role in marbling were also found to be
enriched in differentially expressed genes when comparing
Hereford with Limousin breed. These included histone
modifications and vitamin D metabolism pathways, in
addition to Hereford breed that is used for meat production,
the Holstein-Friesian breed that is a dairy cattle, was also
February 2020 | Volume 10 | Article 1370
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compared with the Limousin breed. Pathway analysis revealed
that some but not all of the marbling related pathways found
for the comparison between Hereford breed and Limousin
breed were also found when comparing Holstein-Friesian
breed with Limousin. Examples of consistently affected
pathways are the P38 MAPK signaling and the Hypertrophy
Model pathways (Table 2).

Hypertrophy Model Pathway
Muscle hypertrophy is known to increase the muscle mass,
and is determined by increased protein mass per fiber which
results from an increase of protein synthesis (Glass, 2005). In
the B. taurus Hypertrophy model (http://www.wikipathways.
org/instance/WP982) the overall gene expression was higher
in skeletal muscle of Hereford and Holstein-Friesian
compared to Limousin (Figure 2). The expression of the
I l1a , I frd1, Cyr61, ATF3, and Ankrd1 genes were
significantly higher in Hereford in this pathway and the
Il18, Eif4ebp1, and Il1r1 genes were significantly lower in
the model (p-value < 0.05). Among them was IL-1 which
plays a significant role in lipid metabolism by regulating
insulin levels under physiological conditions (Matsuki et al.,
2003); Atf3 which works together with p38c in a common
pathway in the intestine to regulate lipid metabolism and
immune homeostasis (Chakrabarti et al., 2014); and Frd1,
Cyr61, and Ankrd1 genes. Two of the seven genes were
significantly lower expressed including Ef4ebp1 contributing
to the development of obesity through increased adipogenesis
and fat metabolism alterations (Le Bacquer et al., 2007) and
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Il18 gene. TNF and interleukin (IL)-1 may cause negative
inotropic effects indirectly through activation or release of IL-
18 (Mann, 2015).

p38 MAPK Signaling Pathway
The p38 Mitogen-activated protein kinase (p38 MAPK)
signaling pathway has found to be responsible for transduction
of extracellular signals to their intracellular targets in different
types of cells, including skeletal muscle cells and which leads to
several biological effects for example proliferation,
differentiation, migration, growth, apoptosis, and more
specifically to muscle cells, hypertrophy (Yu et al., 2010; Silva-
Vignato et al., 2017). The p38 MAPK is one intracellular
signaling pathway activated during the differentiation of
myogenic cell lines and this pathway is a chief regulator of
skeletal muscle development (Keren et al., 2006). The p38 MAPK
signaling pathway is a well-known pathway that affects lipid
metabolism (Zhang and Liu, 2002). In the B. taurus p38 MAPK
signal pathway five of the seven genes present were significantly
higher expressed in Hereford and Holstein-Friesian compared to
Limousin (Figure 3).

IL-1 Signaling Pathway
The IL-1 signal pathway is a major mediator of innate immune
reactions.This pathway regulates extracellular and intracellular
signaling of IL-1a or IL-1b including positive and negative-
feedback mechanisms which strengthen or terminate the IL-1
response. In reply to ligand binding of the receptor, a
complicated sequence of combinatorial phosphorylation and
FIGURE 1 | Gonadotropin-releasing hormone (GnRH) signaling (B. taurus) (based on Widmann et al., 2013) and available at https://www.wikipathways.org/instance/
WP2901.
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ubiquitination events lead to activation of nuclear factor kB
signaling and the JNK and p38 mitogen-activated protein kinase
pathways (Weber et al., 2010). The members of the B. taurus IL-1
signaling pathway (http://www.wikipathways.org/instance/
WP3271), such as IL-1a, IL-1b, MAP3K1, UBE2N, MAPK14,
REL, ATF2, and JUN were significantly up-regulated in Hereford
breed versus Limousin breed (Figure 4). Among them IL-1a
which was found to play a role as an inhibitor of the expression
of peroxisome proliferator-activated receptor gamma (PPARG),
a key transcriptional factor for adipocytes differentiation, (Um
et al., 2011). IL-1b has been reported to inhibit adipocyte
differentiation from preadipocytes and to reduce the lipid
content in mature adipocytes (Simons et al., 2005). Some of
aforementioned genes: MAP3K1, UBE2N, MAPK14, REL, ATF2
can directly bind to the peroxisome proliferator-activated
receptor promoter and activate transcription to regulate
adipocyte differentiation (Maekawa et al., 2010). The
significantly down-regulated genes are: RELA, MAPK1,
IKBKG, MAP2K4, SQSTM1, and IL1R1 (Figure 4). Some of
them are known to participate in lipid metabolism processes;
activation of p62/SQSTM1 and peroxisome proliferator-
activated receptor gamma is induced by palmitate
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internalization, which triggers lipid metabolism and limits
inflammation (Krausgruber et al., 2011).

Insulin Signaling Pathway
Genes engaged in the insulin signaling pathway regulate several
aspects of cellular function, including most notably the regulation
of cellular growth and maintaining glucose homeostasis (DeBosch
and Muslin, 2008). For Hereford vs. Limousine comparison,
twenty six genes present in the B. taurus Insulin signaling
pathway (http://www.wikipathways.org/instance/WP966) showed
significant expression differences. Fourteen genes were identified
as up-regulated in Hereford breed (SOS2, PIK3R3, PIK3CA,
PIK3C2A, CBLB, CBLC, SNAP25, JUN, EGR1, MAP3K1,
MAPK14. ENPP1, and XBP1), and twelve were down-regulated
in Hereford breed (PFKM, PFKL, ARF1, STXBP2, EIF4EBP1,
PIK3CD, GAB1, IGF1R,MAPK1, MAPK13, MAP2K4, and ELK1)
when compared to Limousin breed (Figure 5). The involvement of
some of upregulated and downregulated genes in lipid
accumulation processes were earlier confirmed, including;
PIK3CA (Foukas et al., 2013), JUN (Guo et al., 2016), EGR1
(Singh et al., 2015), p38 MAPK lipid accumulation (Sun et al.,
2012), NPP1 (Pan et al., 2011), XBP-1 (Zhao et al., 2012), 4E-
BP1/2 (Singh et al., 2015), and IGF-1R (Freude et al., 2012).
TABLE 1 | The highest ranked pathways in skeletal muscle of Hereford
compared to Limousin breed.

Pathway Positive Measured Total Z
Score

P-
value

Marbling

Hypertrophy Model 8 15 19 3.94 0.000 *
MAPK signaling
pathway

34 124 167 3.51 0.002 *

Histone Modifications 13 35 43 3.41 0.000 -
IL-1 signaling
pathway

15 41 54 3.17 0.003 *

P38 MAPK signaling
pathway

10 27 36 2.98 0.006 *

Cardiac progenitor
differentiation

11 33 54 2.72 0.006 -

T- Cell antigen
Receptor signaling
pathway

19 68 89 2.70 0.011 *

MicroRNAs in
cardiomyocyte
hypertrophy

20 73 102 2.67 0.006 *

Mitochondrial gene
expression

5 11 23 2.66 0.006 *

Physiological and
pathological
hypertrophy of the
heart

7 19 26 2.47 0.012 *

Insulin Signaling 27 111 157 2.41 0.012 *
Extracellular vesicle-
mediated signaling in
recipient cells

6 17 30 2.16 0.023 -

Toll-like receptor
signaling pathway

18 71 92 2.15 0.032 *

Vitamin D metabolism 4 10 20 2.06 0.029 -
Alpha 6 Beta 4
signaling pathway

7 22 33 2.01 0.024 -
*Pathways previously known to be related to marbling.
The pathways are ranked based on Z score. Per pathway the following is listed; Positive =
amount of genes differentially expressed, Measured = the amount of genes measured in
the study, Total = the amount of genes in the pathway and P-value = the significance level.
TABLE 2 | The highest ranked pathways in skeletal muscle of Holstein-Friesian
compared to Limousin breed.

Pathway Positive
(r)

Measured
(n)

Total Z
Score

P-
value

Marbling

P38 MAPK signaling
pathway

14 27 36 3.95 0.000 *

Quercetin and Nf-kB/
AP-1 Induced Cell
Apoptosis

7 10 26 3.77 0.000 -

Glycolysis and
Gluconeogenesis

18 40 67 3.68 0.000 -

Hypertrophy Model 9 15 19 3.67 0.001 *
MAPK Signaling
Pathway

42 124 167 3.48 0.000 *

Insulin Signaling 37 111 157 3.15 0.001 *
Eicosanoid Synthesis 8 15 38 3.04 0.000 -
Selenium Metabolism
and Selenoproteins

11 26 48 2.63 0.009 -

IL1 and
megakaryocytes in
obesity

9 20 25 2.6 0.008 *

EGF/EGFR Signaling
Pathway

34 110 156 2.5 0.019 -

Interferon type I
signaling pathways

14 37 54 2.47 0.015 -

Cori Cycle 6 12 30 2.43 0.006 -
Integrated Cancer
pathway

12 31 45 2.38 0.016 -

Myometrial Relaxation
and Contraction
Pathways

36 120 156 2.37 0.014 -

Pathogenic
Escherichia coli
infection

14 39 54 2.24 0.031 -
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*Pathways previously known to be related to marbling.
The pathways are ranked based on Z score. Per pathway the following is listed; Positive =
amount of genes differentially expressed, measured = the amount of genes measured in
the study, Total = the amount of genes in the pathway and P-value = the significance level.
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FIGURE 2 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on the Hypertrophy model. In the hypertrophy model from
WikiPathways (WP982) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The logFC (Hereford
and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed in Hereford and
Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e. p-value < = 0.05
(= significant) is shown in green and p-value > 0.05 in white.
FIGURE 3 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on the p38 MAPK signaling. In the p38 MAPK signaling
pathway from WikiPathways (WP1037) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The
logFC (Hereford and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed
in Hereford and Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e., p-value
< = 0.05 (= significant) is shown in green and p-value > 0.05 in white.
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Gene Ontology Analysis
Pathway analysis gave an insight in the biological processes
involved in marbling. However, only 69% of all measured
genes are present in the investigated pathways from the B.
taurus WikiPathways collection. In order to obtain a better
insight in the biological role of the differentially expressed
genes not present in WikiPathways a GO analysis was
performed. (Table 3). This approach not only helps to unify
Frontiers in Genetics | www.frontiersin.org 754
the characteristics and functions of the genes but also to attain a
broader perspective of the muscle physiological processes and
their influence on meat quality related to marbling.

Integrated Network of Altered Pathways
With GO-Terms
The significant pathways andGO termsweremerged together and
shown in Figure 6. Some of the highly connected nodes are IL1a,
FIGURE 4 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on IL-1 signaling. In the IL-1 signaling pathway from
WikiPathways (WP3271) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The logFC
(Hereford and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed in
Hereford and Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e.,
p-value < = 0.05 (= significant) is shown in green and p-value > 0.05 in white.
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TGFB2, PAK1, (as Pak1 deficiency led to upregulation of reverse
cholesterol transporters in ApoE−/−mice in response toWestern
diet feeding, it might be suggested that Pak1 exerts a negative
modulatory influence on these transporters and thereby might
promote lipid retention in inflamed arteries which cause
atherogenesis (Singh et al., 2015), TGFB2 (that TGF-b2 might
control adipocyte differentiation in bone marrow stromal cells in
vivo by inducing PPARg phosphorylation. Whether Smad
Frontiers in Genetics | www.frontiersin.org 855
activation induced by TGFb2 might play a role with MAPK in
the inhibition of adipocyte differentiation induced by TGFb2 in
vivo requires more investigation (Ahdjoudj et al., 2005), IL1b,
UBE2N, IRAK2, RCAN1, LRP6 (Treatment of LRP6 knockdown-
Humanmesenchymal stem cells with adipogenic supplements led
to the accumulation of fat vacuoles, which was demonstrated by
Oil RedO staining (Peröbner et al., 2012), IKBKG, TGFB3, RELA,
BCL10, FGF2 (FGF-2 treatment of human preadipocytes also
FIGURE 5 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on the Insulin signal pathway. In the Insulin signaling pathway
from WikiPathways (WP966) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The logFC
(Hereford and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed in
Hereford and Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e.
p-value < = 0.05 (= significant) is shown in green and p-value > 0.05 in white.
TABLE 3 | The enriched processes found by GO-Analysis. A description of the process together with the positive gene number, Z Score, and P-value are given.

GOID GO Name GO Type Gene Number Z Score P-value

GO:0051092 positive regulation of NF-kappa B transcription factor activity Biological process 14 4.89 0.000
GO:0009826 unidimensional cell growth Biological process 3 4.2 0.003
GO:0090257 regulation of muscle system process Biological process 11 3.3 0.001
GO:0051059 NF-kappa B binding Molecular function 5 3.3 0.002
GO:0051781 positive regulation of cell division Biological process 8 3.28 0.001
GO:0003009 skeletal muscle contraction Biological process 3 3.18 0.004
GO:0045444 fat cell differentiation Biological process 13 3.01 0.000
GO:0048009 insulin-like growth factor receptor signaling pathway Biological process 4 2.83 0.006
GO:0050431 transforming growth factor beta binding Molecular function 3 2.82 0.008
GO:0048741 skeletal muscle fiber development Biological process 3 2.26 0.020
GO:0045598 regulation of fat cell differentiation Biological process 8 2.25 0.005
GO:0007528 neuromuscular junction development Biological process 5 2.15 0.009
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resulted in increased adipocyte differentiation, suggesting that this
feature might be common to members of the fibroblast growth
factor family, although FGF-1 was consistently the more potent
adipogenic agent, particularly in cells from subcutaneous depots
(Hutley et al., 2004), IGF1R, and TLR4 (TLR4 knockdown in
H9C2 cardio myocytes decreases fatty acid-induced lipid
accumulation (Dong et al., 2012) which are present in at least
two different pathways and GO terms.
DISCUSSION

The aim of this study was to determine transcriptional profiles
of high and low marbled beef with a focus on pathways of
muscle cell origin that might play a role in the regulation of
marbling development. The regulation of marbling is suggested
to be the result of interaction of signaling pathways in muscle,
fat, and intramuscular connective tissue (Hocquette, 2010).
Identifying these processes with pathway analysis can help to
decipher the key processes involved in marbling development.
Pathway analysis revealed 17 pathways that were significantly
different (z-score > 1.96) between well-marbled and lean
marbled breeds. P38 MAPK signaling pathway well known to
affects lipid metabolism and muscle development, was enriched
Frontiers in Genetics | www.frontiersin.org 956
when we compared gene expression in well and low marbling
breeds. In addition, the signaling pathways “Hypertrophy
Model”, “MicroRNAs in cardiomyocyte hypertrophy” and
“Physiological and pathological hypertrophy of the heart” that
play a role in tissue development were affected. Interestingly, the
analyses also demonstrated that pathways related to immune
response (IL signaling, TCR signaling, and Toll-like receptor
signaling pathways) and insulin signaling, mitochondrial gene
expression and vitamin D metabolism were enriched and might
act together with pathways related to lipid metabolism. We
explored regulatory pathways that control gene expression in
bovine muscle and the relationships between gene expression
and the marbling trait to identify markers that effect on
marbling. A similar study done by (Hong et al., 2014)
investigated the biological characteristics of differentially
expressed genes in high marbled muscle in pig compared to a
low marbled muscle. They indicated that the differentially
expressed genes were clustered to three group related to
energy metabolism, protein synthesis, and immune response
in high marbling pigs. These finding suggested that the genes
related to energy metabolism, protein synthesis, and immune
response contribute to growth performance and meat quality.
Our results also showed differentially expressed genes take part
in these processes. The hypertrophy model pathway was found
FIGURE 6 | Altered pathways and GO terms in skeletal muscle of Hereford vs Limousin. In the network, pathways are shown in orange rectangles and GO Terms
are shown in green rectangles. Differentially expressed genes are shown in red (= higher expressed in Hereford) and blue (= lower expressed in Hereford). Linked
genes common between two process pathway and GO terms (green diamonds) are depicted with a hexagon shape.
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to be enriched with the highest Z score in the present study and
during muscle hypertrophy there is an equilibrium between
protein synthesis and degradation that might bring about
protein deposition, and hence muscle growth. Together, these
processes will lead to differences in muscle and fat deposition,
and for this reason animals have different proportions of ribeye
area and back fat thickness (Silva-Vignato et al.,2017). Mitogen-
activated protein kinase (MAPK) signals have been shown to
play a significant role in intracellular signaling associated with a
variety of cellular activities including cell proliferation,
differentiation, survival, and death (Yu et al., 2010). In
mammalian cel ls , three MAPK famil ies have been
characterized: classical MAPK (also known as ERK), C-Jun N-
terminal kinase/stress activated protein kinase and p38 kinase
pathways (Zhang and Liu, 2002). Each mammalian MAPK
signaling route comprises at least three components: a MAPK
kinase kinase (MAP3K), a MAPK kinase (MAP2K), and a
MAPK. Activated MAPKs phosphorylate various substrate
proteins including transcription factors such as ATF2 and Jun
(Kim & Choi, 2010). Philip and coworkers (Philip et al., 2005)
discovered that the p38 MAPK played a key role in GDF-8-
induced inhibition of proliferation and upregulation of the
cyclin kinase inhibitor p21. In addition, their results showed a
functional link between the p38 MAPK and GDF-8-activated
Smad pathways, and identify an important role for the p38
MAPK in GDF-8’s function as a negative regulator of muscle
growth (Philip et al., 2005). In comparative muscle
transcriptome associated with carcass traits of Nellore cattle,
Silva-Vignato and colleagues indicated that MAPK signaling
pathway involved in muscle and fat deposition, which are
economically important carcass traits for beef production
(Silva-Vignato et al., 2017). The third pathway found in the
present study was IL-1, the IL-1 family of cytokines includes 11
proteins encoded by 11 different genes and gene regulation of
IL-1 signal is activation of MKK4, MKK3, and MKK6 gene that
activate NF-kB and p38 MAPK pathways (Weber et al., 2010).
These two signaling pathway are needed to upregulate the
expression of the key E3 ligases, MuRF1, which mediate the
inhibition of protein synthesis (Clarke et al., 2007). Moreover,
the insulin-signal transduction pathway, which was another
pathway identified in the present study, is a highly conserved
pathway that regulates cellular growth and when insulin binding
to its cell-surface receptor, insulin receptor, activates a complex
intracellular signaling network through insulin substrate
proteins and the canonical PI3K and ERK cascades
(Hocquette et al., 2010). Interestingly, insulin signaling is one
of important factors involved in muscle development since
stimulation of glucose utilization in fat and muscle cells in
calves is occurring by enhancing insulin intracellular signaling
(Jovanović et al., 2017).

Currently, systems biology approaches have become one of
the most effective manners to accelerate the genetic
improvement of beef and dairy cattle herds (Kadarmideen,
2014). It allows the selection of desired characteristics through
the use of transcriptome profiles. The development of high
throughput data and bioinformatics tools allow the selection of
Frontiers in Genetics | www.frontiersin.org 1057
superior breeds without wasting time and money, contributing to
the widespread use of transcriptome analysis in beef cattle
operations. Our study shows in cattle that integration of
pathway expression profiles in a systems biology approach will
contribute to a better understanding of the genes and regulatory
processes involved in marbling. These novel insights can be used
in the future to take into account when improving the meat
quality in beef cattle. The molecular mechanisms which underlie
fat content in muscle can provide vital information for the
production of healthier beef for human consumption.
CONCLUSIONS

The outcome of our research is the identification of biological
pathways where we highlighted changed genes which are related
with marbling in beef cattle. These results give a better
understanding of mechanisms involving marbling in beef
cattle, which is economically important carcasses trait for meat
quality. Moreover, the genes involved in the highlighted pathways
can potentially be utilized as an early biological marker for
marbling fat content in breed-specific differences in growth
performance and meat quality.
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Abnormal DNA methylation, an epigenetic modification, has increasingly been linked to
the pathogenesis of many human cancers. However, there has been little focus on the
DNA methylation patterns of genes encoding long noncoding RNAs (lncRNAs) in gastric
cancer (GC). This study comprehensively determined DNA methylation and lncRNA
expression profiles in GC through genome-wide analysis. Differentially methylated loci
and lncRNAs were identified by integrating multi-omics data. In total, 548 differentially
methylated CpG sites in lncRNA promoters and 2,399 differentially expressed lncRNAs
were screened that were capable of distinguishing GC from normal tissues. Among them,
22 differentially methylation sites in 17 lncRNAs were inversely related to expression levels.
Further analysis of DNA methylation status and gene expression level in GC revealed that
three CpG sites (cg01550148, cg22497867, and cg20001829) and two lncRNAs (RP11-
366F6.2 and RP5-881L22.5) were significantly associated with GC patient overall survival.
Molecular function analysis showed that these abnormally methylated lncRNAs were
mainly involved in transcriptional activator activity. Our study identified several lncRNAs
regulated by aberrant DNA methylation that have clinical utility as novel prognostic
biomarkers in GC. These findings help improve the understanding of methylated
patterns of lncRNAs and further our knowledge of the role of epigenetics in
cancer development.

Keywords: DNA methylation, long non-coding RNA, epigenetics, prognosis, gastric cancer
INTRODUCTION

Gastric carcinoma (GC) is the fourth most prevalent malignancy and third leading cause of cancer
death worldwide (Torre et al., 2015). Histologically, GC demonstrates marked heterogeneity at the
cytologic level, resulting in the classification of tumor subtypes. Distinct molecular genetic profiles,
morphology, and expression of specific markers have been used to investigate the diversity and
characteristics of GC (Zouridis et al., 2012; Cancer Genome Atlas Research Network, 2014).
Therefore, identifying potential biomarkers to further understand the pathogenesis of GC is critical.
February 2020 | Volume 11 | Article 91160

https://www.frontiersin.org/articles/10.3389/fgene.2020.00091/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00091/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00091/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00091/full
https://loop.frontiersin.org/people/855541
https://loop.frontiersin.org/people/855541
https://loop.frontiersin.org/people/910457
https://loop.frontiersin.org/people/910457
https://loop.frontiersin.org/people/524383
https://loop.frontiersin.org/people/524383
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:guan_wenxian@sina.com
https://doi.org/10.3389/fgene.2020.00091
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00091
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00091&domain=pdf&date_stamp=2020-02-27


Song et al. DNA Methylation and lncRNA Expression in GC
Long noncoding RNAs (lncRNAs) are loosely defined as
RNAs more than 200 bases in length with no apparent coding
capacity (Mattick and Rinn, 2015). LncRNAs regulate gene
expression at transcriptional and post-transcriptional levels
and thus are involved in diverse biological functions.
Furthermore, recent studies have demonstrated a role for
lncRNAs in carcinogenesis (Spizzo et al., 2012; Zhuo et al.,
2019). DNA methylation, a key epigenetic mechanism, plays a
crucial role in the regulation of gene expression, genomic
imprinting, genome stabilization, and chromatin modification.
Aberrant DNA methylation has been reported to be involved in
the formation and progressions of diseases, especially cancers
(Guo et al., 2018; Xu et al., 2019). Recent studies have showed
that expression alterations of lncRNA-encoding genes mediated
by changes in methylation can subsequently affect their
downstream targets. For instance, the lncRNA C5orf66-AS1
functions as a tumor suppressor gene in GC, and aberrant
hypermethylation of the regions around its transcription start
site (TSS) is associated with its expression and is cancer-specific
(Guo et al., 2018). This study indicated that hypermethylation of
the C5orf66-AS1 promoter may serve as a potential prognostic
marker in predicting GC patient survival. Shahabi et al. identified
an epigenetically deregulated lncRNA linc00261, whose
expression was lost in lung adenocarcinoma through DNA
methylation silencing. The authors found that linc00261 acted
upstream of ATM activation to facilitate DNA damage response
activation and its loss resulted in malignant phenotypes and
predisposed lung cells to cancer development (Shahabi et al.,
2019). Additionally, lncRNAs showing aberrant DNA
methylation may serve as potential epigenetically-based
diagnostic factors. Silencing from CpG-island methylation of
promoter-induced transcribed ultraconserved regions (T-UCRs)
is common in many tumors and linked to colorectal cancer
diagnosis (Kottorou et al., 2016; Honma et al., 2017). Therefore,
elucidating the relationship between DNA methylation and
lncRNA expression is essential for understanding GC
development and potentially identifying new prognostic or
diagnostic markers.

Here, we employed multigenomic data from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
datasets to systematically characterize global DNA methylation
levels, lncRNA expression profiles, and clinical features in GC.
Our results decode the landscape of DNA methylation-mediated
regulation for lncRNAs and provide promising biomarkers in the
diagnosis and treatment of GC.
METHODS

DNA Methylation and Gene Expression
Data
The DNA methylation array data (Illumina Infinium Human
Methylation27, 450 BeadChip) were downloaded from the UCSC
Xena browser (https://xenabrowser.net/) . A Human
Methylation27 BeadChip array of GC (GSE30601) was
obtained from the GEO database (https://www.ncbi.nlm.nih.
Frontiers in Genetics | www.frontiersin.org 261
gov/geo/). Level-3 RNA-sequencing data (HTSeq-Counts and
HTSeq-FPKM-UQ) and the clinicopathological and survival
data of GC patients were also downloaded from the
Xena website.

Analysis of DNA Methylation Data
Differentially methylated CpG sites (DMCs) and differentially
methylated regions (DMRs) between GC samples and adjacent
tissues were identified using the minfi package (Version: 1.32.0;
http://www.bioconductor.org/packages/release/bioc/html/minfi.
html) (Fortin et al., 2017). Bump hunting method was applied to
identify DMRs. False discovery rate (FDR) was calculated from
multiple testing corrections of raw P-value by the Benjamini and
Hochberg method (Benjamini et al., 2001). The genomic
annotation of each CpG site was conducted using the
hm27.hg38.manifest file (http://zwdzwd.io/InfiniumAnnotation).
The coordinates of the individual lncRNA were extracted from
GENCODE v22 (https://www.gencodegenes.org/human/release_
22.html). After the preprocessing the coordinates of CpG sites and
lncRNAs, we further integrated both information based on the
genomic location, considering differentially methylated loci within
promoter regions (DNA sequences between –2,500 and 1,000 bp
relative to the putative TSS). Manhattan plot was constructed to
depict the distribution of CpG sites according to FDR via qqman
package (Version: 0.1.4; https://cran.r-project.org/web/packages/
qqman/index.html) (Turner, 2018).

Differential Long Non-Coding RNA
Expression Analysis
Read count tables were imported into the edgeR package for
identifying differentially expressed transcripts (Version: 3.7,
https://bioconductor.org/packages/release/bioc/html/edgeR.
html) (McCarthy et al., 2012). LncRNA catalogue was retrieved
from GENCODE v22. Genes with FDR < 0.05 and absolute fold
change (FC) > 2 were considered differentially expressed
lncRNAs (DElncs).

Integrated Analysis of DNA Methylation
and Long Non-Coding RNA Expression
The correlation analysis between DMCs and DElncs was
calculated and those with |coefficient of correlation| > 0.3 and
P-value < 0.05 were considered significant. The visualization of
the potential regulation of CpG sites to genes was constructed in
Cytoscape 3.7.1 (Shannon et al., 2003).

Functional Annotation and Enrichment
Analysis for Long Non-Coding RNAs
ClusterProfiler tool (Version: 3.8.1, https://bioconductor.org/
packages/release/bioc/html/clusterProfiler.html) was used to
perform Gene Ontology (GO) function and Gene Set
Enrichment Analysis (GSEA) for DElncs with the DMCs (Yu
et al., 2012). Spearman's correlation coefficients of expression
levels between DElncs and protein-coding RNAs were calculated.
The deregulated protein-coding genes were considered for GO
analysis, setting parameters as “pAdjustMethod” = “BH,”
“pvalueCutoff” = 0.05, and “qvalueCutoff” = 0.05 for multiple
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comparisons. Terms from GO (molecular function) database
slice were tested for enrichment. Mappings between GO terms
and Entrez Gene IDs relied on the regularly updated R package
org.Hs.eg.db (Version 3.10.0; https://bioconductor.org/packages/
release/data/annotation/html/org. Hs.eg.db.html). The value of
log2 (FC) calculated by edgeR package was used as ranking
metric for GSEA. We used the canonical pathways sub-collection
of the C2 collection in the Molecular Signatures Database as the
gene sets in the analysis. The leading-edge subset of genes in an
enriched gene set are defined as those that appear in the ranked
list before the point at which the running sum reaches its
maximum deviation from zero.

Statistical Analysis
Cox proportional hazard regression analyses were carried out to
compare clinical features, DNA methylation, DElncs expression,
and GC patients' prognosis. Survival curves were compared using
Kaplan-Meier Plotter with log-rank test. All statistical analysis
was two-sided and P < 0.05 was defined as statistically significant.
Statistical analysis was performed using R programming
language v.3.5.3.
RESULTS

Characteristics of the DNA Methylation
Pattern in Gastric Cancer
Because the TCGA-450k set contained only two normal samples
and the number was too small to reach statistical significance
with respect to determining the DNA methylation profile of GC,
we used the TCGA-27k set to identify DMCs and DMRs. We
obtained 6,404 CpG sites with FDR < 0.05 between 48 GC and 25
non-tumor samples and identified 1,078 DMCs with a delta-beta
value > 0.2. A total of 103 DMRs were identified based on the
following parameters: resamples = 100, cut off = 0.2, and probe
Frontiers in Genetics | www.frontiersin.org 362
number ≥ 2. The 103 DMRs included 65 hypermethylated
regions and 38 hypomethylated regions.

To identify DNAmethylation alterations in lncRNA promoter
regions, 3,010 CpG sites were examined. The methylation
distribution in lncRNAs showed a V-shaped curve around the
TSSs, indicating a relative reduction of the methylation density at
the TSS (Figure 1A). As shown by Manhattan plot (Figure 1B),
the CpG sites were distributed in all chromosomes, and 698
probes were found using the threshold of FDR < 0.05. We
subsequently validated the DNA methylation patterns of the
CpG sites of interest in an independent cohort (GSE30601) and
found that 548 probes overlapped with the 698 sites reported in
TCGA-27k set (Supplementary Table S1).

Characteristics of Long Non-Coding RNA
Expression in Gastric Cancer
To determine the lncRNA expression profile in GC, RNA-seq
data of 375 GC tumors and 32 normal tissues were retrieved
from TCGA. Among the 6,820 lncRNAs, we identified 2,399
DElncs, including upregulated 1,830 lncRNAs and 569
downregulated lncRNAs, using the criteria of FDR < 0.05 and
absolute FC > 2 (Figure 2A, Supplementary Table S2). We then
analyzed the categories of the 2,399 DElncs, as shown in Figure
2B. Long intergenic non-coding RNAs (lincRNAs) accounted for
54.3% of all DElncs, followed by antisense transcripts (30.3%).
The remaining non-coding transcript types were sense_intronic
transcripts (4.5%), processed_transcripts (3.7%), and
sense_overlapping transcripts (1.3%).

Integrated Analysis of Differential
Methylation and Long Non-Coding RNA
Expression Data
After the profiles of DNA methylation and lncRNA expression
were preprocessed, we combined the two omics data for further
analysis. By associating the 548 DMCs to 2,399 DElncs, 31
FIGURE 1 | DNA methylation patterns of genes encoding long noncoding RNAs (lncRNAs). (A) Distribution of the methylation levels around lncRNA genes in sperm
ranging from 5 kb upstream to 5 kb downstream of the transcription start site (TSS). (B) Manhattan plot of CpG sites in the promoter regions of lncRNA genes; dots
above the blue line indicate CpG sites with P value < 0.05.
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negative correlated pairs and 1 positive correlated pair were
obtained in TCGA-27k set. DNA methylation in promoters is
well known to negatively correlate with corresponding gene
expression (Mosquera Orgueira, 2015). The 31 negative
correlated pairs were validated in TCGA-450k set, and 22
probes showed a significantly inverse correlation with the
Frontiers in Genetics | www.frontiersin.org 463
promoter methylation of 17 aberrantly expressed lncRNAs
(Supplementary Table S3). We used the negatively correlated
pairs to construct a DNA methylation-regulated network that
was composed of 39 nodes, including 6 hypermethylated DMCs,
16 hypomethylated DMCs, 13 upregulated lncRNAs, and 4
downregulated lncRNAs (Figure 3A). As shown in Figure 3B,
FIGURE 3 | Relation between DNA methylation and long noncoding RNA (lncRNA) expression. (A) Correlation between differentially methylated CpGs (DMCs) and
lncRNAs. Circles and rectangles represent lncRNAs and DMCs, respectively. Red color indicates upregulated or hypermethylated, and blue indicates downregulated
or hypomethylated. (B) Correlation (P values derive from Spearman's correlation) between DNA methylation and the expression of HOX family genes associated with
five lncRNAs in matched samples.
FIGURE 2 | Differential expression profiles of long noncoding RNAs (lncRNAs) in gastric cancer (GC). (A) Volcano plot of the differentially expressed lncRNAs
between GC tumors and normal tissues. The red points represent lncRNAs that are significantly upregulated in GC while blue points represent downregulated
lncRNAs (absolute FC >2 and FDR < 0.05). (B) Pie chart shows the number of differentially expressed lncRNAs in each category.
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the expression of 5 lncRNAs (HOTAIR, HOTTIP, HOXA11-AS,
HOXB-AS4, and HOXC-AS3) generated in HOX family genes
were negatively correlated with their methylation levels. The
functions of these 17 lncRNAs are listed in Supplementary
Table S4; only 6 of the lncRNAs have been reported to
function GC (Zhang et al., 2014; Liu et al., 2015; Sun et al.,
2016; Wu et al., 2017; Liu et al., 2018; Zhang et al., 2018; Song
et al., 2019).

Impact of DNA Methylation and Long Non-
Coding RNA Expression on Gastric Cancer
Survival
Univariate Cox regression was used to evaluate the association of
the 22 probes and 17 lncRNAs with overall survival in GC and
the results identified three CpG sites (cg01550148, cg22497867,
and cg20001829) and two lncRNAs (RP11-366F6.2 and RP5-
881L22.5) with P < 0.05. Forest plot demonstrated that the
methylation of the three probes and two lncRNAs were
associated with the overall survival time of GC patients
(Figure 4A). Figure 4B shows the Kaplan-Meier curves for
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survival in GC patients according to RP11-366F6.2 and RP5-
881L22.5 expression. High expression of RP11-366F6.2 was
significantly correlated with poor survival compared with low
expression. Additionally, poor survival was observed for patients
with low expression of RP5-881L22.5 compared with patients
with high levels (P = 0.039). In the multivariate Cox analysis,
even after adjustment by tumor stage and other covariates, the
expression of the two lncRNAs was still significantly associated
with patient survival (P < 0.05, Table 1).

Association of Deregulated Long Non-
Coding RNAs With Biological Pathways
and Processes
To better understand the biological function of the 17 DElncs, we
constructed a co-expression network of deregulated protein-coding
genes and lncRNAs. Using the Spearman's correlation coefficient
above 0.8, a total of 32 deregulated mRNAs co-expressed with five
lncRNAs (ZNF667-AS1, RP5-881L22.5, HOTAIR, HOTTIP, and
HOXC-AS3) were acquired for GO enrichment analysis. Only nine
protein-coding genes associated with HOTAIR, HOXC-AC3, and
FIGURE 4 | Association of the methylation of differentially methylated CpGs (DMCs) and expression of differentially expressed long noncoding RNAs (DElncs) with
survival of GC patients. (A) Forest plot depicting correlations between the methylation of DMCs with the survival of GC patients, using the median expression of
probes as the cut-off value. (B) Kaplan-Meier analysis of overall survival for GC patients according to RP11-366F6.2 and RP5-881L22.5 expression.
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ZNF667-AS1 were assigned GO molecular function, involving
oxidoreductase activity, nucleotide diphosphatase activity, and
transcriptional activator activity (Figure 5A). In addition, GSEA
analysis was performed to identify the associated biological
processes and signaling pathways for these deregulated lncRNAs.
As an example, we explored a functionally unknown lncRNA, RP5-
881L22.5, with significantly hypomethylated promoter regions that
was upregulated in GC tissue and implicated with prognosis
(Figure 5B). The expression of RP5-881L22.5 was positively
correlated with “VECCHI_GASTRIC_CANCER_EARLY_UP”
set, in which upregulated genes could differ early GC and normal
tissue samples. The “NABA_ECM_GLYCOPROTEINS” set was
enriched in the RP5-881L22.5 low expression group, which implied
that this lncRNA could suppress tumor metastasis (Figure 5C).
DISCUSSION

Cancer involves a complex regulatory network, and therefore
integrating multiple omics data is required in the era of precision
medicine (Olivier et al., 2019). The increasing applications of
multi-omic profiling of GC have delivered new insight into the
dynamics of this cancer type. In this study, we characterized
DNA methylation in the promoters of lncRNA-encoding genes
and inferred the potential lncRNAs regulated by aberrant DNA
methylation in GC. Differential analyses were performed to
compare DNA methylation and gene expression patterns
between GC and normal tissues, and 548 DMCs and 2,399
DElncs were obtained. We thus identified lncRNAs (such as
HOTAIR, HOTTIP, HOXA11-AS, HOXB-AS4, and HOXC-
AS3) that could be regulated by aberrant DNA methylation via
combination analysis. We further divided the potentially
epigenetic regulated lncRNAs into different groups to explore
their biological and clinical relationships with GC and found that
the expressions of RP11-366F6.2 and RP5-881L22.5 were related
to the prognosis of GC.

Methylation that interferes with transcription machinery
binding to DNA has been reported to be highly associated with
repression of gene transcription (Suzuki and Bird, 2008). Our
research showed that a large number of lncRNAs were
epigenetically deregulated by promoter methylation, and
lncRNAs were globally hypomethylated, which was consistent
with the previous observation that increased global DNA
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hypomethylation was a major event for the development and
progression of cancer (Zeng et al., 2017). HOX genes are a subset
of evolutionarily conserved homeobox genes that encode a class
of important transcription factors that function in numerous
developmental processes (Quinonez and Innis, 2014). By
characterizing the transcriptional landscape of the four human
HOX loci (A–D) at five base pair resolution in 11 anatomic sites,
Rinn et al. identified 231 HOX non-coding RNAs (Rinn et al.,
2007). HOTAIR is located in the HOXC cluster and serves as a
scaffold protein by binding Polycomb repressive complex 2
(PRC2, including SUZ12, EED, and EZH2) via its 5′-domain
and the LSD1/CoREST/REST complex via its 3′-domain,
mediating gene silencing and reprogramming the overall
chromatin dynamics in GC (Qu et al., 2019). Like HOTAIR,
HOXA11-AS recruits EZH2 along with the histone demethylase
LSD1 or DNMT1, which promotes proliferation and invasion of
GC (Sun et al., 2016). HOTTIP enhances the expression of
neighboring HOXA genes, particularly HOXA13 (Chang et al.,
2016). HOXC-AS3, an antisense transcript of HOXC10,
mediates gene transcriptional regulation in the tumorigenesis
of GC by binding to YBX1 (Zhang et al., 2018). Genome-wide
screening isolated HOXB-AS4 as specifically methylated in
pancreatic cancer cells, which was useful to assess a cancer cell
fraction in DNA samples (Ishihara et al., 2018).

Therapeutic targets and prognosis prediction from a
comprehensive analysis of multi-omics data and clinical
profiles is a critical for better understanding the biological
complexity of GC. We identified two hypomethylated DElncs
(RP11-366F6.2 and RP5-881L22.5) in GC that were significantly
associated with overall survival. RP11-366F6.2, also called
MAGEA4-AS1, is located in chrX and was reported to have
significantly high expression in several tumor tissues, such as
breast cancer and laryngeal squamous cell carcinoma (Yuan
et al., 2017; Liu and Ye, 2019). Although pre-ranked GSEA
analysis for RP11-366F6.2 returned no significantly gene sets,
examining the functional roles of deregulated genes (such as
MAGEA4, MAGEA10, HOXD10 and IGF2BP1) in the leading
edge set indicated RP11-366F6.2 might be associated with tumor
invasion and metastasis (Suzuki et al., 2008; Schultz-Thater et al.,
2011; Xu et al., 2019). Regarding RP5-881L22.5, Zhu et al.
developed an eleven-lncRNA signature, including this lncRNA,
which could provide an effective individual mortality risk
prediction and risk stratification in GC patients (Zhu et al.,
2018). However, the biological functions of RP5-881L22.5 have
TABLE 1 | Univariate and multivariate Cox regression analysis of variables associated with gastric cancer (GC) patient survival.

Variables Univariate analysis Multivariate analysis

N=351 HR 95% CI P HR 95% CI P

Age (≥67/ < 67) 1.44 1.04–2.00 0.029 1.49 1.06–2.11 0.023
Sex (male/female) 1.33 0.93–1.89 0.115 1.31 0.91–1.89 0.151
Tumor_stage (III+IV/I+II) 1.85 1.29–2.63 <0.001 1.89 1.32–2.70 <0.001
RP11-366F6.2 (high/low) * 1.41 1.02–1.95 0.040 1.45 1.03–2.05 0.033
RP5-881L22.5 (high/low) † 0.70 0.51–0.99 0.037 0.68 0.49–0.96 0.030
Febru
ary 2020 | Volume 11 | A
HR, hazard ratio; CI, confidence interval.
*Using the mean expression of genes as the cut-off value.
† Using the median expression of genes as the cut-off value.
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not been determined. GSEA results revealed that RP5-881L22.5
was likely to be involved in an extracellular matrix (ECM)
interaction pathway. Glycoproteins make the ECM a cohesive
network of molecules by linking cells together with structural
components (Nallanthighal et al., 2019). Adhesive glycoproteins
can bind to ECM components to activate downstream signaling
pathways to regulate epithelial-mesenchymal transition, self-
renewal, migration, differentiation, and proliferation (Naba
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et al., 2016; Song et al., 2017). For example, the adhesion of
cancer cells to fibronectin, a major adhesive ECM glycoprotein,
remodels the tumor vasculature, enhances tumorigenicity, and
facilitates metastasis. This mechanism could partly explain why
decreased RP5-881L22.5 expression indicated a poor prognosis
for GC patients.

To investigate the effect of epigenetically deregulated lncRNA
in biological processes and pathways, an integrated analysis of
FIGURE 5 | Functional annotation for differentially methylated differentially expressed long noncoding RNAs (DElncs). (A) Circular plot of molecular function regulator
Gene Ontology Term. (B) RP5-881L22.5 promoter hypermethylation in gastric cancer (GC) tumors compared with normal tissues. (C) Gene set enrichment analysis
of RP5-881L22.5 in the The Cancer Genome Atlas (TCGA) dataset.
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DElncs and predicted mRNAs expression was performed. GO
analysis revealed that these lncRNAs were involved in
dysregulated transcriptional programs that invariably lead to
cancer. We also found that predicted mRNAs HOXC10 and
MSRB3 in GO analysis were significantly associated with overall
survival in GC patients (Kim et al., 2019; Ma et al., 2019).

Several limitations in the present study should be pointed out.
First, integrated analysis of genome-wide DNA methylation and
lncRNA expression was based on the 27K Illumina array
platform, which only contained 27,578 individual registered
probes, and thus some possibly important methylation
differences may be lacking from the current results. Second, the
results of the present study are preliminary and primarily derived
from bioinformatics analysis, and lack functional validation of
the epigenetically deregulated lncRNAs. Third, due to limited
availability of clinical data, it was not possible to obtain deeper
insights into characterizing phenotype-genotype relationships.

In conclusion, the present results provide evidence for the
changes of widespread DNA methylation of lncRNA-encoding
genes in GC patients. The candidate factors identified in this
study might function as potential molecular phenotypic
biomarkers, especially RP11-366F6.2 and RP5-881L22.5, which
were associated with prognosis. Our results help elucidate a more
detailed explanation of epigenetic mechanisms for GC and
deepen our understanding of the aberrantly methylated
patterns in lncRNA-encoding genes.
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Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts

for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of

HL, there is no clear understanding of the contribution of genes predisposing to HL.

In this study, whole genome sequencing (WGS) was performed on 7 affected and 9

unaffected family members from three HL-prone families and variants were prioritized

using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a

total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based

filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to

variants affecting amino acid sequences, variants in promoters, enhancers, transcription

factors binding sites, and microRNA seed sequences were identified from upstream,

downstream, 5′ and 3′ untranslated regions. A panel of 565 cancer predisposing and

other cancer-related genes and of 2,383 potential candidate HL genes were also

screened in these families to aid further prioritization. Pathway analysis of segregating

genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was

performed using Ingenuity Pathway Analysis software which implicated several candidate

genes in pathways involved in B-cell activation and proliferation and in the network of

“Cancer, Hematological disease and Immunological Disease.” We used the FCVPPv2

for further in silico analyses and prioritized 45 coding and 79 non-coding variants from

the three families. Further literature-based analysis allowed us to constrict this list to one

rare germline variant each in families I and II and two in family III. Functional studies

were conducted on the candidate from family I in a previous study, resulting in the

identification and functional validation of a novel heterozygous missense variant in the

tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify

the individual genes responsible for predisposition in the remaining two families and will

functionally validate these in further studies.

Keywords: familial Hodgkin lymphoma, whole genome sequencing, predisposing genes, germline variants, variant

prioritization, next generation sequencing, genetic predisposition to disease
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INTRODUCTION

Hodgkin lymphoma (HL) is a lymphoproliferative malignancy
originated in germinal center B-cells and is reported to account
for about 10% of newly diagnosed lymphomas and 1% of all de
novo neoplasms worldwide with an incidence of about 3 cases
per 100,000 people in Western countries (Diehl et al., 2004). It is
one of the most common tumors in young adults in economically
developed countries, with one peak of incidence in the third
decade of life and a second peak after 50 years of age.

Based on differences in the morphology and phenotype of the
lymphoma cells and the composition of the cellular infiltrate,
HL is subdivided into classical Hodgkin lymphoma (cHL) that
accounts for about 95% of cases and nodular lymphocyte-
predominant Hodgkin lymphoma (NLPHL) that accounts for the
remaining 5% of cases (Kuppers, 2009).

Although familial risk for HL is reported to be among the
highest of all cancers (Kharazmi et al., 2015), not many genetic
risk factors have been identified. An association between various
HLA class I and class II alleles and increased risk of HL has
been reported (Diepstra et al., 2005), while other non-HLA
susceptibility loci have been detected through genome-wide
association studies (Frampton et al., 2013; Cozen et al., 2014;
Kushekhar et al., 2014). The identification of major predisposing
genes is a more daunting task, however, rare germline variants
in KLDHC8B, NPAT, ACAN, KDR, DICER1, and POT1 gene
have been reported by different groups in high-risk HL families
(Salipante et al., 2009; Saarinen et al., 2011; Ristolainen et al.,
2015; Rotunno et al., 2016; Bandapalli et al., 2018;Mcmaster et al.,
2018).

Here we report the results of whole genome sequencing
(WGS) performed in three families with documented recurrence
of HL. We used our Familial Cancer Variant Prioritization
Pipeline (FCVPPv2) (Kumar et al., 2018) as well as two
gene/variant panels based on cancer predisposing genes and
variants prioritized in the largest familial HL cohort study to
date in order to identify possible disease-causing high-penetrance
germline variants in each family (Zhang et al., 2015; Rotunno
et al., 2016). Pathway and network analyses using Ingenuity
Pathway Analysis software also allowed us to gain insight into the
molecular mechanisms of the pathogenesis of HL. We hope that
these results can be used in the development of targeted therapy
and in the screening of other individuals at risk of developing HL.

MATERIALS AND METHODS

Patient Samples
Three families with documented recurrence of HL were analyzed
in this study, with a total number of 16 individuals (7 affected
and 9 unaffected). HL family I and family III were recruited
at the University Hospital of Heidelberg, Germany, while
family II was recruited at the Pomeranian Medical University,
Szczecin, Poland.

The study was approved by the Ethics Committee of the
University of Heidelberg and Pomeranian Medical University,
Poland. Collection of blood samples and clinical information

from subjects was undertaken with a written informed consent
in accordance with the tenets of the Declaration of Helsinki.

Germline DNA samples used for genome sequencing
were isolated from peripheral blood using QIAamp R©

DNA Mini kit (Qiagen, Cat No. 51104) according to the
manufacturer’s instructions.

Whole Genome Sequencing, Variant
Calling, Annotation and Filtering
Whole genome sequencing (WGS) of available affected and
unaffected members of the three HL families was performed
using Illumina-based small read sequencing. Mapping to
reference human genome (assembly version Hs37d5) was
performed using BWA mem (version 0.7.8) (Li and Durbin,
2009) and duplicates were removed using biobambam (version
0.0.148). The SAMtools suite (Li, 2011) was used to detect single
nucleotide variants (SNVs) and Platypus (Rimmer et al., 2014)
to detect indels. Variants were annotated using ANNOVAR, 1000
Genomes, dbSNP, and ExAC (Smigielski et al., 2000; Wang et al.,
2010; The Genomes Project Consortium et al., 2015; Lek et al.,
2016). Variants with a quality score >20 and a coverage >5×,
SNVs that passed the strand bias filter (a minimum one read
support from both forward and reverse strand) and indels that
passed all the Platypus internal filters were evaluated further
for minor allele frequencies (MAFs) with respect to the 1,000
Genomes Phase 3 and non-TCGA ExAC data. Variants with a
MAF <0.1% were deduced from these two datasets. A pairwise
comparison of shared rare variants was performed to check for
sample swaps and family relatedness.

Data Analysis and Variant Prioritization
Prioritization of Coding Variants
Variant evaluation was performed using the criteria of our
in-house developed variant prioritization pipeline (FCVPPv2)
(Kumar et al., 2018). Shortly, variants withMAF< 0.1%were first
filtered based on the pedigree data considering cancer patients as
cases and unaffected persons as controls. The probability of an
individual being aMendelian case or true control was considered.

Variants were then ranked using the CADD tool v1.3 (Kircher
et al., 2014). Only variants with a scaled PHRED-like CADD
score >10, i.e., variants belonging to the top 1% of probable
deleterious variants in the human genome, were considered
further. Genomic Evolutionary Rate Profiling (GERP) (Cooper
et al., 2005), PhastCons (Siepel et al., 2005), and PhyloP (Pollard
et al., 2010) were used to evaluate the evolutionary conservation
of a particular variant. GERP scores > 2.0, PhastCons scores
> 0.3, and PhyloP scores ≥ 3.0 were indicative of a good level
of conservation and were therefore used as thresholds in the
selection of potentially causative variants.

Next, all missense variants were assessed for deleteriousness
using 10 tools accessed using dbNSFP (Liu et al., 2016),
namely SIFT, PolyPhen V2-HDV, PolyPhen V2-HVAR, LRT,
MutationTaster, Mutation Assessor, FATHMM, MetaSVM,
MetLR, and PROVEAN. Variants predicted to be deleterious
by at least 60% of these tools were analyzed further. Prediction
scores for nonsense variants were attained via VarSome
(Kopanos et al., 2018), the final verdict on pathogenicity
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offered by VarSome was based on the following tools: DANN,
MutationTaster, FATHMM-MKL, FATHMM-XF, ALoFT,
EIGEN, EIGEN PC, and PrimateAI.

Lastly, three different intolerance scores derived fromNHLBI-
ESP6500 (Petrovski et al., 2013), ExAC (Lek et al., 2016) and a
local dataset, all of which were developed with allele frequency
data, were included to evaluate the intolerance of genes to
functional mutations. However, these scores were used merely
to rank the variants and not as cut-offs for selection. The ExAC
consortium has developed two additional scoring systems using
large-scale exome sequencing data including intolerance scores
(pLI) for loss-of-function variants and Z-scores for missense
and synonymous variants. These were used for nonsense and
missense variants, respectively.

Structural variants were analyzed using Canvas (version
1.40.0.1613) (https://academic.oup.com/bioinformatics/article/
32/15/2375/1743834) program’s SmallPedigree-WGS separately
to detect the larger copy number variants. The joint genotyped
VCF for all the samples in a family generated via Platypus was
used as the b-allele input file along with the BAM files, and the
rest of the parameters were kept default. Variants with “PASS”
filters and present in all the cases in a family were processed
further and variants overlapping common structural variants
(AF> 1%) from gnomAD (version 2.1) were marked as common
and removed. The remaining rare structural variants that affects
the known cancer predisposition genes were selected for the
manual inspection in IGV.

Analysis of Non-coding Variants
Variants located in the 3′ and 5′ untranslated regions (UTRs)
were prioritized based on their location in regulatory regions.
Putative miRNA targets at variant positions within 3′ UTRs
and 1 kb downstream of transcription end sites were detected
by scanning the entire dataset of the human miRNA target
atlas from TargetScan 7.0 (Agarwal et al., 2015) using the
intersect function of bedtools. Similarly, 5′ UTRs and regions 1 kb
upstream of transcription start sites were scanned for putative
enhancers and promoters using merged enhancer and promoter
data from the FANTOM5 consortium as well as super-enhancer
data from the super-enhancer archive (SEA) and dbSUPER.
These regions were also scanned for transcription factor binding
sites using SNPnexus (Dayem Ullah et al., 2018).

The regulatory nature and the possible functional effects of
non-coding variants were evaluated using CADD v1.3, HaploReg
V4 (Ward and Kellis, 2012), and RegulomeDB (Boyle et al.,
2012), primarily based on ENCODE data (Birney et al., 2007).
Epigenomic data and marks from 127 cell lines from the NIH
Roadmap Epigenomics Mapping Consortium were accessed via
CADD v1.3, which gave us information on chromatin states
from ChromHmm and Segway. CADD also provided mirSVR
scores to rank predicted microRNA target sites by a down-
regulation score. These scores are based on a new machine
learning method based on sequence and contextual features
extracted frommiRanda-predicted target sites (Betel et al., 2010).
Furthermore, SNPnexus was used to access non-coding scores
for each variant and to identify regulatory variants located in
CpG islands.

The final selection of 3′ UTR and downstream variants was
based on their CADD scores > 10 and whether or not they
had predicted miRNA target site matches. Similarly, upstream
and 5′ UTR variants in enhancers, promoters, super-enhancers
or transcription factor binding sites with CADD scores >10
were short-listed.

Presence of Candidate Variants in 565 Cancer

Predisposing and Other Cancer-Related Genes
In a study on cancer predisposing genes (CPGs) in pediatric
cancers, Zhang et al. compiled 565 CPGs based on review
of the American College of Medical Genetics and Genomics
(ACMG) and medical literature (Zhang et al., 2015). The
categories included genes associated with autosomal dominant
cancer-predisposition syndromes (60), genes associated with
autosomal recessive cancer-predisposition syndromes (29),
tumor-suppressor genes (58), tyrosine kinase genes (23),
and other cancer genes (395). We checked a list of genes
corresponding to our shortlisted coding and non-coding variants
for their presence in the list of genes in the aforementioned study.

Presence of Candidate Variants in Prioritized HL

Genes From a Large WES-Based Familial HL Study
In a study by Rotunno et al. (2016) 2,699 variants corresponding
to 2,383 genes were identified in 17 HL discovery families after
filtering and prioritization. We intersected our list of candidate
genes with this list of 2,383 HL genes to identify coding and
non-coding variants from our shortlist in potentially causative
HL genes.

Variant Validation
Specific variants of interest mentioned throughout the text
(DICER1, HLTF, LPP, PLK3, RAD51D, RELB, SH3GL2,
and SPTAN1) and highlighted as bold in the tables were
validated using specific primers for polymerase chain reaction
amplification designed with Primer3 (http://bioinfo.ut.ee/
primer3-0.4.0/) and Sanger sequencing on a 3,500 Dx Genetic
Analyzer (Life Technologies, CA, USA), using ABI PRISM 3.1
Big Dye terminator chemistry, according to the manufacturer’s
instructions. The electrophoretic profiles were analyzed
manually. Segregation analysis of the prioritized variants was
performed in additional family members when DNA was
available. Primer details are available on request.

Ingenuity Pathway Analysis (IPA)
IPA (Qiagen; http://www.qiagen.com/ingenuity; analysis date
15/10/2019) was used to perform a core analysis to identify
enriched canonical pathways, diseases, biological functions, and
molecular networks among genes that passed the allele frequency
cut-off, fulfilled family-based segregation criteria, met the CADD
score cut-off and were not intergenic or intronic variants. Data
were analyzed for all three families together. Top canonical
pathways were identified from the IPA pathway library and
ranked according to their significance to our input data. This
significance was determined by p-values calculated using the
right tailed Fisher’s exact test.
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IPA was also used to generate gene networks in which
upstream regulators were connected to the input dataset genes
while taking advantage of paths that involved more than one
link (i.e., through intermediate regulators). These connections
represent experimentally observed cause-effect relationships
that relate to expression, transcription, activation, molecular
modification and transport as well as binding events. The
networks were ranked according to scores that were generated
by considering the number of focus genes (input data) and the
size of the network to approximate the relevance of the network
to the original list of focus genes.

RESULTS

Whole Genome Sequencing Results
In our study, we analyzed three families with reported recurrence
of Hodgkin lymphoma. Their respective pedigrees are shown in
Figure 1.

In family I (Figure 1A), the proband (III-1) and her mother
(II-2) were diagnosed with two different histological subtypes
of classical Hodgkin lymphoma (cHL) at the ages of 7 and 34,
respectively. The daughter was diagnosed with nodular sclerosis
cHL and the mother with lymphocyte-rich cHL. The sample
of the unaffected father (II-1) was also sequenced. Family II
(Figure 1B) is characterized by a strong recurrence of HL. Five
family members were diagnosed with HL (II-3, II-4, III-3, III-
4, and III-5), of which three (III-3, III-4, and III-5) underwent
WGS. In addition, the family member (II-6), who was considered
as an obligatory carrier of the mutation, was sequenced as were
samples and four healthy family members (III-1, III-2, III-6, and
III-8) and one family member diagnosed with uterine cancer
(II-1) as controls. In family 3 (Figure 1C), II-1 and II-2 were
diagnosed with cHL, at the age of 27 and 24, respectively. Their
parents (I-1, I-2) were not affected, however one of them is
expected to be a carrier and analyzed accordingly.

WGS of 7 affected and 9 unaffected members from the three
studied families identified a total number of 98,564, 170,550, and
113,654 variants which were reduced by pedigree-based filtering
to 18,158, 465, and 26,465 in families I, II, and III, respectively.

Prioritization of Candidates According to
the FCVPPv2
After pedigree-based filtering, 130, 7, and 196 exonic variants
were left in families I, II, and III, respectively, with a prevalence of
non-synonymous and synonymous SNVs. The predominant type
of substitution was the C>T transition. Among exonic variants
fulfilling pedigree-based criteria, only variants with CADD scores
>10 were taken into further consideration and prioritized
according to deleteriousness, intolerance, and conservational
scores, as detailed in the methods section. At the end of this
process, 37 potential missense variants and 9 potential nonsense
mutations were prioritized for families I—III and are shown in
Tables 1, 2.

Pedigree-based filtering also reduced the number of
potentially interesting variants located in the untranslated
regions to 523 for 5’UTR variants (130 in family I, 5 in family II,
and 314 in family III) and 854 for 3’UTR variants (347 in family I,

10 in family II, and 497 in family III). These variants were further
prioritized based on their CADD score>10 and their localization
in known regulatory regions (Supplementary Table 1). 5′UTR
variants were analyzed by the SNPNexus tool, which allowed
us to identify 4 variants located in transcription factors binding
sites. In addition, the intersect function of bedtools was used to
identify further 15 variants located in promoter regions and 4
located in super-enhancer regions. Among variants located in
the 3′UTR region, 56 variants located in miRNA seed sequences
were selected.

Analysis of structural variants resulted in identification of a
large deletion in exons 9 and 10 (del5395) of Chek2 kinase gene
(CHEK2) in family 1 that segregates with the disease.

Candidate Variants in 565 CPGs and 2383
Potentially Causative HL Genes
Intersecting our prioritized list of candidate genes with the list
of 565 CPGs, we identified 11 variants in nine genes in coding
and selected non-coding regions (upstream and downstream
variants, 3′ and 5′ UTRs) of the known CPGs. These include
FUBP1, SEPT6, DICER1, EZR, and NCOA1 from family 1 and
BCL6, RAD51D, LPP, and PTCH1 from family 3 (Table 3).
DICER1 and PTCH1 are known in autosomal dominant cancer-
predisposition syndromes, whereas the rest are categorized as
being “other cancer genes.”

In addition to the identification of 11 variants in CPGs,
we intersected our prioritized list of genes with a list of 2,383
genes with potentially causative variants from a large WES-based
familial HL study. We found 25 variants in the coding and non-
coding regions in 23 of the HL genes, with 7 coming from family
I and 18 from family III (Table 4).

Network and Pathway Analysis With IPA
Pathway analysis of the selected variants performed with
IPA showed an enrichment of mutations in genes involved
in pathways essential for B-cell proliferation and activation,
specifically B-cell receptor signaling, and PI3K signaling
in B lymphocytes and B cell activating factor signaling
(Supplementary Table 2A, Supplementary Figures 1A,B).

Similarly, the IPA network analysis generated a
comprehensive picture of possible gene interactions between our
candidate genes (Supplementary Table 2B). The top network
is related to cancer, hematological disease and immunological
disease, which is in complete coherence with the pathogenesis of
HL. Many genes from the prioritized list of top candidates are
shown to play a role in the top networks (Figure 2).

Literature Mining, Consolidation of
Results, and Selection of Candidates
With the aim of identifying one highly penetrant dominant
variant per family, we used our pipeline results and literature-
based mining to determine the genes’ link to Hodgkin
lymphoma or immune-related processes. For family 1, we have
short-listed 5 potential candidates (DICER1, HLTF, NOTCH3,
PLK3, and RELB). Based on segregation, confirmation and
functional validation, we identified DICER1 as a candidate HL
predisposing gene by showing significant down-regulation of
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FIGURE 1 | Pedigrees of the three HL families analyzed in this study. (A) Family 1, (B) Family 2, and (C) Family 3.

tumor suppressor miRNAs in DICER1-mutated family members
(Bandapalli et al., 2018). The presence of DICER1 in the list of
565 CPGs also reinforces its status as the disease-causing variant
in this family.

In family 2, three exonic variants made it to the final list
(ALAD, CERCAM, and SPTAN1) of which SPTAN1 was shown
to be among the genes in one of the top IPA networks (Network
3; Figure 2C). No coding or non-coding variants intersected with
the panel of CPGs or HL candidate genes.

Two genes stand out in family 3, namely LPP and RAD51D.
Both genes were found in the list of 565 CPGs and LPP was
additionally found in the gene list from the large cohort of
HL families. Three variants in LPP were prioritized by the
FCVPPv2 and made it to the shortlist including one stopgain
variant (3_188123978_G_T), one 3′ UTR (3_188608373_A_T)
and one non-synonymousmissense variant (3_188123979_A_T).
LPP (LIM domain containing preferred translocation partner
in lipoma) is a member of the zyxin family of LIM proteins
that is characterized as a promoter of mesenchymal/fibroblast
cell migration. LPP has been shown to be a critical inducer
of tumor cell migration, invasion and metastasis by virtue of
its ability to localize to adhesions and to promote invadopodia
formation (Ngan et al., 2018). A genome-wide association study

of 253 Chinese individuals with B-cell NHL also identified a new
susceptibility locus between BCL6 and LPP that was significantly
associated with the increased risk of B-cell NHL (Tan et al., 2013).
On the other hand, there are no reports of an association between
RAD51D and lymphomas; however, it is a well-established
susceptibility gene in Breast-Ovarian Cancer, Familial 4 and
Hereditary Breast Ovarian Cancer Syndrome (Loveday et al.,
2011; Chen et al., 2018). The final selection of a candidate in this
family will be based on further functional studies.

DISCUSSION

In summary, WGS data analysis of three families with reported
recurrence of HL allowed us to prioritize 45 coding and 79
non-coding variants from which we subsequently selected and
validated one for family I (DICER1), short-listed three in family II
(ALAD, CERCAM, and SPTAN1) and two in family III (RAD51
and LPP), to investigate further with validation and functional
studies. For family I we have already functionally validated
DICER1 as the candidate predisposing gene in a previous study
(Bandapalli et al., 2018). However, it was important to include the
family in this paper, especially with regard to the integrity of the
pathway and network analyses. We identified pathways related to
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TABLE 1 | Top missense variants prioritized using the FCVPPv2.

Family ID Position (Hg 19) Gene Effect CADD

PHRED

Int (n/3) Del (n/10) VarSome

Score

Family_1 17_48746518_C_T ABCC3 p.P652L 22.6 2 7 Uncertain significance

Family_1 1_49052793_G_A AGBL4 p.R384C 35 2 7 Uncertain significance

Family_1 5_139909090_A_G ANKHD1,

ANKHD1-EIF4EBP3

p.N2187D 25.2 . 6 Uncertain significance

Family_1 1_160164884_T_C CASQ1 p.I183T 26.5 2 10 Likely Benign

Family_1 14_95560456_A_C DICER1 p.I1711M 24 3 7 Uncertain significance

Family_1 6_159206584_G_A EZR p.P75L 32 3 9 Uncertain significance

Family_1 12_8192537_G_A FOXJ2 p.G37R 29.9 3 9 Uncertain significance

Family_1 14_88729713_C_T KCNK10 p.A79T 27.1 3 6 Uncertain significance

Family_1 10_88705360_G_A MMRN2 p.P58L 29.8 2 7 Uncertain significance

Family_1 5_36962227_G_A NIPBL p.R154Q 27.5 3 8 Uncertain significance

Family_1 2_206614449_A_G NRP2 p.D596G 23.1 2 9 Uncertain significance

Family_1 1_45268632_C_T PLK3 p.T252M 25.3 3 6 Uncertain significance

Family_1 19_45515485_T_C RELB p.I152T 26 3 6 Uncertain significance

Family_1 6_52372363_G_C TRAM2 p.A205G 29.8 3 10 Uncertain significance

Family_1 22_18613830_C_T TUBA8 p.A450V 24.7 3 10 Uncertain significance

Family_1 X_47272364_G_A ZNF157 p.G298R 27.6 2 6 Uncertain significance

Family_2 9_116151739_G_C ALAD p.I243M 22.9 2 6 Uncertain significance

Family_2 9_131196759_G_T CERCAM p.A468S 24.5 2 7 Uncertain significance

Family_2 9_131367689_C_T SPTAN1 p.R1327C 34 3 6 Uncertain significance

Family_3 9_139917418_C_T ABCA2 p.G83S 26.3 2 7 Uncertain significance

Family_3 17_40971572_G_C BECN1 p.P85R 23.4 3 6 Uncertain significance

Family_3 8_67968830_G_T COPS5 p.P131T 23.9 3 9 Uncertain significance

Family_3 3_5246773_C_T EDEM1 p.T160M 34 3 9 Uncertain significance

Family_3 6_131191103_G_A EPB41L2 p.S736F 22.1 3 7 Uncertain significance

Family_3 8_28575243_G_A EXTL3 p.R172H 23 3 6 Likely Benign

Family_3 3_188123979_A_T LPP p.E24V 32 2 6 Uncertain significance

Family_3 14_74970734_C_T LTBP2 p.G1493R 27.7 3 10 Uncertain significance

Family_3 3_196730925_C_A MFI2 p.D662Y 34 3 6 Uncertain significance

Family_3 17_27441099_G_A MYO18A p.A843V 24.3 3 6 Uncertain significance

Family_3 19_14584756_A_G PTGER1 p.L126P 25.9 2 6 Uncertain significance

Family_3 3_49138083_G_A QARS p.R301C 34 2 9 Uncertain significance

Family_3 17_33428327_G_A RAD51D,RAD51L3-

RFFL

p.R266C 27 3 8 Benign

Family_3 11_9838541_C_T SBF2 p.R1275H 33 2 9 Likely Benign

Family_3 9_17761502_A_G SH3GL2 p.N14S 26.1 3 9 Uncertain significance

Family_3 20_35467682_G_A SOGA1 p.R46C 32 3 7 Uncertain significance

Family_3 1_43891311_G_A SZT2 p.A96T 31 3 6 Uncertain significance

Chromosomal positions, classifications, PHRED-like CADD scores, protein changes and the number of positive intolerance (Int) and deleteriousness (Del) scores are shown for

each variant. Variants of interest that were validated by Sanger sequencing in the provided family samples have been shown in bold.

B-cell proliferation and networks related to cancer, hematological
disease, immunological disease, hereditary disorders, cell death
and cell survival using IPA software, helping us to prioritize genes
with functions in the pathogenesis of HL. Interestingly, several
genes in our gene list were related to DNA repair (e.g., NOTCH3,
RAD51, and SPTAN1).

In the current study, we also identified a deletion of exon 9 and
10 in CHEK2 in family 1. The same deletion has been reported in
several unrelated patients with breast cancer of Polish origin. In
that study the deletion of exon 9 and 10 in CHEK2 was shown

to lead to a premature protein truncation at codon 381 and to
evoke a 2-fold increase in the risk of prostate cancer and a 4-
fold increase in the risk of familial prostate cancer (Cybulski
et al., 2006). The detection of mRNA of abnormal length suggests
that the deletion does not lead to complete transcript loss and
therefore, the effect of this truncating mutation on cancer risk
may differ or work in tandem with another genetic effect, may
be with DICER1 in this family but warrants further experiments.
Personalized medicine is an upcoming and promising field of
medicine in which medical decisions, practices, interventions,
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TABLE 2 | Top non-sense variants prioritized using the FCVPPv2.

Family ID Position (Hg 19) Gene Exonic classification Effect CADD Int (n/3) VarSome

score [I]

Family_1 10_88911115_AGT_A FAM35A Frameshift deletion p.2_2del 25.8 2 PM2

Family_1 3_148802664_C_T HLTF Stopgain SNV p.W11X 37 2 PP3 (4)

Family_1 1_177923437_CTG_C SEC16B Frameshift deletion p.481_481del 36 0 Uncertain significance

Family_1 15_91546350_TG_T VPS33B Frameshift deletion p.P321fs 36 3 PVS1

Family_3 7_31683260_AT_A CCDC129 Frameshift deletion p.D611fs 34 0 Uncertain significance

Family_3 1_21267855_C_T EIF4G3 Stopgain SNV p.W7X 14.54 2 PVS1, PP3 (1)

Family_3 3_188123978_G_T LPP Stopgain SNV p.E24X 40 2 PM2, PP3 (4)

Family_3 15_24921469_G_A NPAP1 Stopgain SNV p.W152X 24.8 0 PM2, PP3 (3)

Family_3 1_241958547_CAG_C WDR64 Frameshift deletion p.836_836del 37 0 Uncertain significance

[I]VarSome Scores.

PM2, Pathogenic Moderat; PP3, Pathogenic Supporting (no. of scores predicting pathogenicity); Uncertain Significance: No scores could be found for the variant in question, PVS1,

Pathogenic Very Strong.

Chromosomal positions, classifications, PHRED-like CADD scores, protein changes, the number of positive intolerance (Int) and VarSome prediction scores are included for each variant.

Variants of interest that were validated by Sanger sequencing in the provided family samples have been shown in bold.

TABLE 3 | Variants corresponding to genes present in the panel of 565 known cancer predisposition genes from a study by Zhang et al. (2015).

Gene ID HL family HL gene HL variant Variant

type

Variant

classification

HGNC approved name CADD_P

HRED

Familial

syndrome

Category

10499 1 NCOA2 8_71316112_T_TCCT

CCTCCC

Indel Upstream Nuclear receptor

coactivator 2

15.56 Other

CancerGene

8880 1 FUBP1 1_78414225_A_G SNVs UTR3 Far upstream element

(FUSE) binding protein 1

13.59 Other

CancerGene

23157 1 SEPT6 X_118751062_CGTGT_C Indel UTR3 Septin 6 10.56 Other

CancerGene

23405 1 DICER1 14_95560456_A_C SNVs Non-synonymous

SNV

Dicer 1, ribonuclease type

III

24 DICER1

syndrome,

Familial

Multinodular

Goiter

Autosomal

Dominant

7430 1 EZR 6_159206584_G_A SNVs Non-synonymous

SNV

Ezrin 32 Other

CancerGene

604 3 BCL6 3_187463568_C_A SNVs Upstream;

downstream

B-cell CLL/lymphoma 6 13 Other

CancerGene

4026 3 LPP 3_188123978_G_T SNVs Stopgain SNV LIM domain containing

preferred translocation

partner in lipoma

40 Other

CancerGene

3 LPP 3_188123979_A_T SNVs Non-synonymous

SNV

LIM domain containing

preferred translocation

partner in lipoma

32 Other

CancerGene

3 LPP 3_188608373_A_T SNVs UTR3 LIM domain containing

preferred translocation

partner in lipoma

10.5 Other

CancerGene

5892 3 RAD51D 17_33428327_G_A SNVs Non-synonymous

SNV

RAD51 paralog D 27 Other

CancerGene

5727 3 PTCH1 9_98270531_C_A SNVs Non-synonymous

SNV

Patched 1 20.4 Gorlin syndrome Autosomal

Dominant

and products are tailored to the individual patient based on their
predicted response or risk of disease. The scope of this field has
advanced rapidly with the advent of genomics and other omics
and the possibility of implicating one gene or a set of genes in
the pathogenesis of a particular disease. Thus, the identification

of germline predisposing genes could be of great value in the
screening of individuals at risk of developing HL, as well as
in the development of personalized adjuvant therapies based
on the affected pathways. In this aspect, delta-aminolevulinate
dehydratase (ALAD) from family 2 is interesting, as it is
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TABLE 4 | Variants corresponding to genes intersecting with the list of 2,383 high-risk HL genes from a study by Rotunno et al. (2016).

HL variants from Rotunno et al. (2016) Variant in matched gene from present study

Gene

symbol

Variant position IDS HL

family

Variant position CADD_PHRED

score

Variant

type

Variant

consequence

Protein

effect

ABHD16A 6_31670740_A_T 3 6_31671105_G_A 13.23 SNVs UTR5 –

C6orf62 6_24719009_T_C rs147402940 3 6_24705773_T_C 12.31 SNVs UTR3 –

CEP120 5_122758609_G_T rs141808885 1 5_122681069_C_T 12.31 SNVs UTR3 –

EDEM1 3_5257909_A_G rs139745426 3 3_5246773_C_T 34 SNVs Non-synonymous

SNV

p.T160M

EIF4G3 1_21494519_T_C 3 1_21267855_C_T 14.54 SNVs stopgain SNV p.W7X

EPB41L2 6_131202023_A_G 3 6_131191103_G_A 22.1 SNVs Non-synonymous

SNV

p.S736F

EXTL3 8_28609630_G_A rs191528081 3 8_28575243_G_A 23 SNVs Non-synonymous

SNV

p.R172H

FAM35A 10_88917757_A_G rs371636091 1 10_88911115_AGT_A 25.8 Indel Frameshift deletion p.2_2del

FUK 16_70507153_G_A 1 16_70501193_C_T 10.08 SNVs UTR3 -

HLTF 3_148757909_A_G rs61750365 1 3_148802664_C_T 37 SNVs stopgain SNV p.W11X

LPP 3_188464149_C_T 3 3_188608373_A_T 10.5 SNVs UTR3 –

LPP 3_188464149_C_T 3 3_188123978_G_T 40 SNVs stopgain SNV p.E24X

LPP 3 3_188123979_A_T 32 SNVs Non-synonymous

SNV

p.E24V

LRP6 12_12419973_G_T 3 12_12272924_AATA

TATATAT

ATATATATATATATA

TATATATA

TATAT_A

12.55 Indel UTR3 –

LTBP2 14_74983553_G_A rs145851939 3 14_74970734_C_T 27.7 SNVs Non-synonymous

SNV

p.G1493R

MAPKAP1 9_128199718_AT_ 3 9_128199770_TAA_T 14.3 Indel UTR3 –

MARCH10 17_60827878_G_A rs112201730 3 17_60885673_G_A 12.03 SNVs UTR5 –

MYO18A 17_27448659_C_T rs371862120 3 17_27441099_G_A 24.3 SNVs Non-synonymous

SNV

p.A843V

NCAM1 11_113113556_A_G 1 11_113134920_C_A 11.07 SNVs UTR3 –

NIPBL 5_36876673_G_A 1 5_36962227_G_A 27.5 SNVs Non-synonymous

SNV

p.R154Q

PHC2 1_33820711_G_A 3 1_33896663_C_A 15.12 SNVs upstream –

RCN1 11_32126524_C_T 3 11_32112681_C_T 10.66 SNVs UTR5 –

SBF2 11_9985135_TAAT_ 3 11_9838541_C_T 33 SNVs Non-synonymous

SNV

p.R1275H

SLMAP 3_57914019_A_C rs191613999 1 3_57742023_C_G 13.51 SNVs UTR5 –

SZT2 1_43885320_C_T 3 1_43891311_G_A 31 SNVs Non-synonymous

SNV

p.A96T

Variant details from both databases the present study and the study by Rotunno et al. (2016) are shown.

involved in the catalysis of the second step in the biosynthesis
of heme and also acts as an endogenous inhibitor of the 26 S
proteasome, a multi-catalytic ATP-dependent protease complex
that functions as the degrading arm of the ubiquitin system,
which is the major pathway for regulated degradation of proteins
in all eukaryotes. Down regulation of ALAD is shown to be
associated with poor prognosis in patients with breast cancer
(Ge et al., 2017) whereas the existing data on non-erythroid
spectrin αII (SPTAN1) suggest that overexpression of SPTAN1
in tumor cells reflects neoplastic and tumor promoting activity
or tumor suppressing effects by enabling DNA repair through

interaction with DNA repair proteins (Ackermann and Brieger,
2019). CERCAM is known as an unfavorable prognostic marker
in urothelial, renal, and ovarian cancers implying the importance
of the variants in these genes (Ma et al., 2016). RAD51D
from family III is particularly interesting since it is involved in
DNA repair through homologous recombination. Therefore, it is
possible that carcinomas arising in patients carrying mutations
in this gene will be sensitive to chemotherapeutic agents that
target this pathway, such as cisplatin and the PARP (poly
(ADP-ribose) polymerase) inhibitor olaparib. This has already
been demonstrated in BRCA1/2mutation-carrier cancer patients
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FIGURE 2 | The top three molecular networks identified by Ingenuity Pathway Analysis: (A) Network 1. Cancer, hematological disease, immunological disease; (B)

Network 2. developmental disorder, endocrine system disorders, hereditary disorder; (C) Network 3. RNA post-transcriptional modification, cell death and survival,

cellular movement. Genes from our input-data are shown in gray, genes from our prioritized candidate list are highlighted in peach.

(Banerjee et al., 2010; Loveday et al., 2011). This approach
can also be applied to target pathways affected by the mutated
genes. Several candidate genes were identified by IPA pathway
analysis in B cell receptor pathways, offering a valuable target
for other pharmaceutical drugs. The B cell receptor (BCR)
signaling pathway, when dysregulated, is a potent contributor
to lympomagenesis and tumor survival (Valla et al., 2018). This
pathway has been targeted in B-cell lymphomas and leukemias
with several BCR-directed agents, such as inhibitors of Bruton’s
tyrosine kinase (BTK9), spleen tyrosine kinase (SYK) and
phosphatidylinositol-3-kinase (PI3K) (Buggy and Elias, 2012;
Dreyling et al., 2017; Liu and Mamorska-Dyga, 2017). In one
study, excellent response rates could be demonstrated in certain
non-Hodgkin lymphoma subtypes, however, issues related to the

development of resistance to BTK inhibitors need to be addressed
(Valla et al., 2018).

Advancements in the field of genomics have allowed WGS
to become the state-of-the-art tool for the identification of
novel cancer predisposing genes in Mendelian diseases. It
is still a challenge to appropriately interpret the immense
amount of data generated by WGS, especially with respect
to non-coding variants. In our study, we have attempted to
interpret a selection of non-coding variants using in silico and
bioinformatic tools, however, the adequate analysis of intronic
and intergenic variants remains a challenge. There are several
reports of WGS being successfully implemented to implicate
rare, high-penetrance germline variants in cancer, for example
POT1 mutations in familial melanoma and Hodgkin lymphoma
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(Mcmaster et al., 2018; Wong et al., 2019) and POLE and
POLD1 mutations in colorectal adenomas or carcinomas (Palles
et al., 2013). In a previous study, we have used our pipeline
(FCVPPv2) to prioritize novel variants in non-medullary thyroid
cancer prone families (Srivastava et al., 2019). We have also
successfully combined our pipeline with literature review and
functional studies to identifyDICER1 as a candidate predisposing
gene in one Hodgkin lymphoma family (Bandapalli et al.,
2018). We aim to apply these methods in the remaining
Hodgkin lymphoma families and hope that these results will
facilitate personalized therapy in the studied families and
contribute to the screening of other individuals at risk of
developing HL.
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Heme is an iron ion-containing molecule found within hemoproteins such as hemoglobin
and cytochromes that participates in diverse biological processes. Although excessive
heme has been implicated in several diseases including malaria, sepsis, ischemia-
reperfusion, and disseminated intravascular coagulation, little is known about its
regulatory and signaling functions. Furthermore, the limited understanding of heme’s
role in regulatory and signaling functions is in part due to the lack of curated pathway
resources for heme cell biology. Here, we present two resources aimed to exploit this
unexplored information to model heme biology. The first resource is a terminology
covering heme-specific terms not yet included in standard controlled vocabularies.
Using this terminology, we curated and modeled the second resource, a mechanistic
knowledge graph representing the heme’s interactome based on a corpus of 46
scientific articles. Finally, we demonstrated the utility of these resources by investigating
the role of heme in the Toll-like receptor signaling pathway. Our analysis proposed a
series of crosstalk events that could explain the role of heme in activating the TLR4
signaling pathway. In summary, the presented work opens the door to the scientific
community for exploring the published knowledge on heme biology.

Keywords: heme, hemolytic disorders, signaling pathways, knowledge graphs, biological expression language

INTRODUCTION

Heme is an iron ion-coordinating porphyrin derivative essential to aerobic organisms (Zhang,
2011). It plays a crucial role as a prosthetic group in hemoproteins involved in several biological
processes such as electron transport, oxygen transfer, and catalysis (Smith and Warren, 2009;
Zhang, 2011; Kühl and Imhof, 2014; Poulos, 2014). Besides its indispensable role in hemoproteins,
it can act as a damage-associated molecular pattern leading to oxidative injury, inflammation,
and consequently, organ dysfunction (Jeney, 2002; Wagener et al., 2003; Dutra and Bozza, 2014).
Plasma scavengers such as haptoglobin and hemopexin bind hemoglobin and heme, respectively,
thus keeping the concentration of labile heme at low concentrations (Smith and McCulloh, 2015).
However, at high concentrations of hemoglobin and, consequently heme, these scavenging proteins
get saturated, resulting in the accumulation of biologically available heme (Soares and Bozza, 2016).
With respect to hemolytic diseases, the formation of labile heme at harmful concentrations has
been a subject of research for some years now (Roumenina et al., 2016; Soares and Bozza, 2016;
Gouveia et al., 2017).
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Biomedical literature is an immense source of heterogeneous
data that are dispersed throughout hundreds of journals.
Furthermore, the majority of the results are scattered and
published as unstructured free-text, or at best, presented in tables
and cartoons representing the experimental study or biological
processes and pathways. These shortcomings, combined with
the exponential growth of biomedical literature, prevent the
healthcare community and individual researchers from being
aware of all the available information and knowledge in the
literature. With the introduction of new technologies and
experimental techniques, researchers have made significant
advances in heme-related research and its role in the pathogenesis
of numerous hemolytic diseases such as sepsis (Larsen et al., 2010;
Effenberger-Neidnicht and Hartmann, 2018), malaria (Ferreira
et al., 2008; Dey et al., 2012), and β-thalassemia (Vinchi et al.,
2013; Conran, 2014; Garcia-Santos et al., 2017). In these diseases,
large amounts of heme are released from ruptured erythrocytes
and can potentially wreak havoc (Tolosano et al., 2010). Thus, it
is crucial to develop new strategies that capture and exploit the
vast amount of literature knowledge surrounding heme to better
understand its mechanistic role in hemolytic disorders.

Biological knowledge formalized as a network can be used
by clinicians as research and information retrieval tools,
by biologists to propose in vitro and in vivo experiments,
and by bioinformaticians to analyze high throughput -omics
experiments (Catlett et al., 2013; Ali et al., 2019). Further,
they can be readily semantically integrated with databases and
other systems biology resources to improve their ability to
accomplish each of these tasks (Hoyt et al., 2018). However,
enabling this semantic integration requires organizing and
formalizing the knowledge using specific vocabularies and
ontologies. Although this endeavor involves significant curation
efforts, it is key to the success of the subsequent modeling
steps. Therefore, in practice, knowledge-based disease modeling
approaches have been conducted only for major disorders
such as cancer (Kuperstein et al., 2015) or neurodegenerative
disorders (Mizuno et al., 2012; Fujita et al., 2014). In summary,
while the scarcity of mechanistic information and the necessary
amount of curation often impede launching the aforementioned
approaches, modeling and mining literature knowledge provide
a holistic picture of the field of interest. Furthermore, the
underlying models derived from such approaches have a broad
range of applications including hypothesis generation, predictive
modeling and drug discovery.

Here, we present two resources aimed at assembling
mechanistic knowledge surrounding the metabolism, biological
functions, and pathology of heme in the context of selected
hemolytic disorders. The first resource is a terminology
formalizing heme-specific terms that have until now not been
covered by other standard controlled vocabularies. The second
resource is a heme knowledge graph (HemeKG), that is, a
network comprising more than 700 nodes and more than 3,000
interactions. It was generated from 46 selected articles as the
first attempt of modeling the knowledge, which is available
from more than 20,000 heme-related publications. Finally, we
demonstrate both resources by analyzing the crosstalk between
heme biology and the TLR4 signaling pathway. The results of

this analysis suggest that the activation profile for labile heme
as an extracellular signaling molecule through TLR4 induces
cytokine and chemokine production. However, the underlying
molecular mechanism and individual pathway effectors are not
fully understood and need further exploration.

MATERIALS AND METHODS

This section describes the methodology used to generate the
mechanistic knowledge graph and its supporting terminology.
Subsequently, it outlines the approach followed to conduct
the pathway crosstalk analysis. A schematic diagram of the
methodology is presented in Figure 1.

Knowledge Modeling
In order to identify recently published articles (i.e., published
in the last 10 years) describing the role of heme in hemolytic
disorders, PubMed was queried with the following: (“heme”
AND “hemolysis”) OR (“heme” AND “thrombosis”) OR (“heme”
AND “inflammation”) AND (“2009”[Date – Publication]:
“3000”[Date – Publication]). The resulting 3,108 articles were
manually filtered by removing articles that were deemed
too general or lacked a biochemical focus, as judged by
expert opinion. After this filtering step, 6 reviews and
40 original research articles were selected for knowledge
extraction and modeling. Knowledge was manually extracted
and curated from this selected corpus using the official
Biological Expression Language (BEL) curation guidelines
from http://openbel.org/language/version_2.0/bel_specification_
version_2.0.html and http://language.bel.bio as well as additional
guidelines from https://github.com/pharmacome/curation.

FIGURE 1 | The workflow used to generate the supporting terminology and
HemeKG. The first step involves the selection of relevant scientific literature.
Next, evidence from this selected corpus is extracted and translated into BEL
to generate a computable knowledge assembly model, HemeKG. In parallel
to the modeling task, a terminology to support knowledge extraction of
articles about the heme molecule was built. Finally, HemeKG can be used for
numerous tasks such as hypothesis generation, predictive modeling and drug
discovery.
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Evidence from the selected corpus was manually translated
into BEL statements together with their contextual information
(e.g., cell type, tissue and dosage information). For instance, the
evidence “Heme/iron-mediated oxidative modification of LDL
can cause endothelial cytotoxicity and – at sublethal doses –
the expression of stress-response genes” (Nagy et al., 2010)
corresponds to the following BEL statement:

SET Cell = “endothelial cell”
a(CHEBI:“oxidised LDL”) pos bp(MESH:“Cytotoxicity,
Immunologic”).

Generation of a Supporting Terminology
During curation, a terminology was generated to support the
standardization of domain-specific terminology encountered
during the curation of articles related to the heme molecule.
The aim of the terminology is to catalog and harmonize terms
not present in other controlled vocabularies such as ChEBI
(Degtyarenko et al., 2007) for chemicals, or Gene Ontology [GO;
(Ashburner et al., 2000)] and Medical Subject Headings [MeSH;
(Rogers, 1963)] for pathologies. Thus, each term was checked
by two experts in the field assisted by the Ontology Lookup
Service [OLS; (Cote et al., 2010)] to avoid duplicates with other
terminologies or ontologies. Furthermore, we required that each
entry included the following metadata: an identifier, a label, a
definition, an example of usage in a sentence, and references to
articles in which it was described. Furthermore, a list of synonyms
was also curated in a separate file to facilitate the use of the
terminology in annotation or text mining tasks. The supporting
terminology is included in the Supplementary Material and can
also be found at https://github.com/hemekg/terminology.

Analyzing Pathway Crosstalk Between
Heme and the Toll-Like Receptor
Signaling Pathway
Crosstalk analysis aims to study how two or more pathways
communicate or influence each other. While there exist,
numerous methodologies designed to investigate pathway
crosstalk, the majority of these approaches exclusively quantify
such crosstalk based on the overlap between a pair of pathways
without delving into the nature of the crosstalk (Donato et al.,
2013). In this section, we demonstrate how combining knowledge
from HemeKG with a canonical pathway reveals mechanistic
insights on the crosstalk between two different pathways.

Because of the amount of effort required to manually
analyze crosstalk across multiple pathways, we conducted a
pathway enrichment analysis on three pathway databases [i.e.,
KEGG Kanehisa et al., 2016), Reactome (Fabregat et al., 2017),
WikiPathways (Slenter et al., 2017)] to identify pathways enriched
with the gene set extracted from the entire Heme knowledge
map. The enrichment analysis evaluated the overrepresentation
of the genes present in HemeKG for each of the pathways
in the three aforementioned databases using Fisher’s exact
test (Fisher, 1992). Furthermore, Benjamini–Yekutieli method
under dependency was applied to correct for multiple testing
(Yekutieli and Benjamini, 2001). Manual inspection of the
enrichment analysis results revealed that the Toll-like receptor

(TLR) signaling pathway was the most enriched pathway in
Reactome and WikiPathways, and the third most enriched in
KEGG (Supplementary Table S1). Therefore, this pathway was
selected for study in the subsequent investigation.

First, the three different representations of this pathway
were downloaded from each database and converted to BEL
using PathMe (Domingo-Fernández et al., 2019). Next, the
three BEL networks were combined with the HemeKG network
highlighting their overlaps (Supplementary Figures S1, S2)
in order to specifically analyze these parts of the combined
network. Finally, five experts in the field reconstructed the
hypothesized pathways from the combined network. The
hypothesized pathways were depicted following the guidelines
for scientific communication of biological networks outlined by
Marai et al. (2019).

RESULTS

Building a Mechanistic Knowledge
Graph Around Heme Biology in the
Context of Hemolytic Disorders
We introduce the first knowledge graph made publicly available
to the biomedical and bioinformatics community focused on
heme biology (Figure 2). The presented heme knowledge graph
was based on the selection of 40 original research articles
and 6 review articles related to heme and its role in several
pathways. These pathways include the tumor necrosis factor
(TNF) and nuclear factor κ-light-chain-enhancer of activated
B cells (NF-κB) signaling pathways, and the complement and
coagulation cascades, through which heme plays a role in
hemolysis, inflammation and thrombosis (Dutra and Bozza,
2014; L’Acqua and Hod, 2014; Roumenina et al., 2016; Martins
and Knapp, 2018; Vogel and Thein, 2018). The focus of the
review articles was chosen because of the relevance of these
diseases and complications to large numbers of patients (L’Acqua
and Hod, 2014; Litvinov and Weisel, 2016; Roumenina et al.,
2016; Effenberger-Neidnicht and Hartmann, 2018). All of these
pathologies are known to be interconnected and mapping them
in relation to heme is promising for the discovery of yet
overlooked links.

Following the guidelines outlined in the Methods section,
knowledge was manually extracted and encoded from each of
these 46 articles using BEL because of its ability to represent
not only causal, but also correlative and associative relationships
found in the literature, as well as corresponding provenance
and experimental contextual information. This curation exercise
resulted in HemeKG, a knowledge graph containing 775 nodes
(Table 1) and 3,051 relations (Table 2), as well as contextual
information ranging from cellular and anatomical localization
to different states of the heme molecule (Supplementary Figure
S1). Annotations, such as time point and concentration, enabled
us to capture time dependencies between entities. By using
this contextual information and the multiple biological scales
presented in the model, we have not only been able to represent
a part of heme’s interactome (Figure 2), but also established
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FIGURE 2 | The HemeKG network. Nodes are colored by their different functions in BEL (see legend).

several links to phenotypes and clinical endpoints. Both represent
essential considerations for the design of future clinical studies of
hemolytic conditions.

Finally, to facilitate the use of the curated content in this work,
BEL documents are bundled with a dedicated Python package
that enables direct access to the content, provides conversion
utilities and allows for network exploration. Both the BEL
documents and the Python package are available at https://github.
com/hemekg/hemekg.

Curating a Supporting Heme
Terminology
The specificity of our work, together with the lack of contextual
terminologies related to heme biology, prompted us to generate
a supporting terminology focused on heme. It contains more
than 50 terms that delineate heme-related entities, such as
biological processes, proteins, or pathologies that are not yet
included in other standard resources such as (GO Ashburner
et al., 2000). Building this terminology not only allowed us to
describe entities with more expressiveness, but also facilitates
text mining or annotation tasks related to the heme molecule
in the future. The terminology is available at https://github.com/
hemekg/terminology.

Dissection of the Crosstalk Between
Heme and TLR Using HemeKG
The established heme knowledge graph can be used to study the
crosstalk of heme biology with a pathway of interest. HemeKG
is of special interest in the context of hemolytic disorders, such

as malaria and sickle cell anemia, because these diseases are
associated with the release of heme into circulation. Heme can
then exert a detrimental role by regulating several proteins and
signaling pathways (Kühl and Imhof, 2014). In order to select
a pathway that highly overlaps with the generated network,
we conducted pathway enrichment analysis using three major
databases (i.e., KEGG, Kanehisa et al., 2016), Reactome (Fabregat
et al., 2017), and WikiPathways (Slenter et al., 2017). The results
of the enrichment analysis in the three databases pointed to TLR
signaling as the most enriched pathway (Supplementary Table
S1). Thus, we proceeded to analyze the crosstalk between this
pathway and heme biology by exploring the overlap between
HemeKG and the TLR pathways in the three aforementioned
databases. Although heme has been linked to numerous (TLRs)
including TLR2, TLR3, TLR4, TLR7, and TLR9 (Figueiredo et al.,
2007; Lin et al., 2010; Dutra and Bozza, 2014; Min et al., 2017;
Merle et al., 2019; Sudan et al., 2019), our analysis was prioritized
on the most well-documented interaction, the one between heme
and TLR4. Heme stimulates TLR4 to activate NF-κB secretion via
myeloid differentiation primary response 88 (MyD88)-mediated
activation of lκB (IKK) (see below). Activated IKK promotes
the proteolytic degradation of NFKBIA. The phosphorylated
IKK complex indirectly activates NF-κB and mitogen-activated
protein kinases, such as JNK (C-Jun N-terminal kinase), ERK,
and p38 leading to the secretion of TNF-α, interleukin 6
(IL6), IL1B, and keratinocyte-derived chemokine (Dutra and
Bozza, 2014). This finally results in an activation of the innate
immunity and the generation of proinflammatory factors, which
reflects the relevance of heme in several disorders comprising
inflammation and infection.
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TABLE 1 | Summary of unique nodes for each entity class.

Abundances Genes RNAs Proteins Complexes Reactions Pathologies Biological processes Total

200 4 25 226 54 17 128 121 775

Each entity class corresponds to the terms formalized in BEL (more information at https://language.bel.bio).

TABLE 2 | Summary of relationship classes.

Increase Decrease Positive correlation Negative correlation Has component Association Causes
No

change

Ontological
relations

Total

639 380 1,322 440 113 54 39 64 3,051

Each class corresponds to the relationships formalized in BEL (more information at https://language.bel.bio). The ontological relations class includes the following
relationships: has reactant, has product, and has variant.

FIGURE 3 | Consensus around the TLR4 signaling pathway in three major pathway databases. TLR4 signaling pathway visualization of KEGG (A), Reactome (B),
and WikiPathways (C). (D) Superimposing TLR4 signaling pathway from KEGG, Reactome and WikiPathways. Each color corresponds to the presence of the given
node in one or multiple databases (see Legend). MyD88, TAK1, IKK complex, MAP kinases, TNF, NF-κB, TRIF and IRF3 emerged in all three databases and also in
HemeKG. KEGG and Reactome showed identical representations of the TLR4 pathway whereas WikiPathways was different in a way that nuclear NF-κB activates
INPP5D-IRAK3 (inositol polyphosphate-5-phosphatase D IL1 receptor associated kinase 3) complex which inhibits the activity of IRAK1/IRAK4 (IL1 receptor
associated kinase 1/4).

We first investigated the consensus of the three different
representations of the TLR4 signaling pathway (Figure 3A).
We observed that, overall, all three representations share a

high degree of consensus as illustrated in Figures 3B–D. Here,
we would like to point out that while KEGG and Reactome
present practically identical representations, the WikiPathways
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FIGURE 4 | Continued
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FIGURE 4 | Overlaying the consensus TLR4 signaling pathway in databases with HemeKG (A: original overlaid network, B: overlaid network after inclusion of
literature evidence for effectors). The orange colored boxes display the common effector molecules between the canonical TLR4 signaling pathway and induced
TLR4 signaling pathway stimulated by labile heme. Heme/TLR4 activates the adaptor molecule MyD88. Activated MyD88 promotes the degradation of NFKBIA
(NF-κB inhibitor α) through phosphorylation of the IKK complex (inhibitor of nuclear factor κB kinase complex), thus promoting NF-κB (nuclear factor
κ-light-chain-enhancer of activated B cells) and MAPKs (mitogen-activated protein kinases) stimulation leading to the secretion of TNF-α, IL6, IL1B and KC
(keratinocyte-derived chemokine) (Fortes et al., 2012; Dutra and Bozza, 2014). The TRIF (Toll-like receptor adaptor molecule 1) dependent pathway is activated upon
signaling of heme through TLR4 leading to the activation of IRF3 (interferon regulatory factor 3) stimulating the secretion of interferons (i.e., IFN-α) and CXCL10
(C-X-C motif chemokine ligand 10) (Dickinson-Copeland et al., 2015). However, the activation profiles for IRAK1/2, TRAF6, TRAM, TRAF3, TBK1/IKK epsilon
complex and IRF7 are not yet studied for heme-TLR4 signaling pathway.

representation exhibits slight differences. These differences and
complementarities between pathways provide us with a more
comprehensive view of the studied pathways, as illustrated by our
previous work (Domingo-Fernández et al., 2019).

Second, in order to study the overlap between TLR4 signaling
pathway and heme biology, we overlaid the consensus network
of the pathway with HemeKG (Figure 4). Superimposing both
networks revealed that MyD88, TAK1, IKK complex, MAP
kinases, TNF, NF-κB, Toll-like receptor adaptor molecule 1
(TRIF), and interferon regulatory factor 3 (IRF3) were present in
all three databases and in our model. However, several effector
molecules, which were found in the three databases, were not
found in our heme knowledge graph (HemeKG), for example,
IL1 receptor-associated kinase proteins 1, 2, and 4 (IRAK1,
IRAK2, and IRAK4, respectively); TNF receptor-associated factor
6 (TRAF6); TAB1-3; and others (Figure 4A). Thus, we specifically
searched for literature reports of these effectors in the context of
heme signaling, by entering the respective queries in PubMed, as
this knowledge might not have been sufficiently covered by the 40
original research articles selected to establish HemeKG.

The activation profile for labile heme as an extracellular
signaling molecule through TLR4 was suggested to be similar
to the one established via Lipopolysaccharides (LPS) as signaling
molecule from standard pathway databases (Pålsson-Mcdermott
and O’Neill, 2004). This pathway begins with the induction
of TIRAP (Mal)-associated MyD88 signaling on the one hand
(Horng et al., 2002), and TRAM (TICAM-2)-associated TRIF
(TICAM-1)-signaling, on the other hand (Seya et al., 2005),
resulting in the upregulation of proinflammatory cytokines and
chemokines (Figure 4). MyD88 protein as an adaptor has
been shown to interact with IL1 receptor-associated kinase
(IRAK) proteins 1, 2, and 4 to start the signaling cascade
involving TRAF6, which is known to activate IKK in response
to proinflammatory cytokines. However, in our heme knowledge
graph the connections between IRAKs, TRAF6, and TAB proteins
were missing (Figure 4A). By taking a closer look at these
effectors in the context of heme, we found various information
for example TRAF6 indicating both a direct and indirect
link to heme-induced signaling via TLRs (Hama et al., 2012;
IJssennagger et al., 2012; Park et al., 2014; Huang et al., 2015;
Meng et al., 2017). In contrast, other effector molecules such as
IRAK and TAB proteins (Figure 4) were not described in heme
signaling so far. We then performed a PubMed search for these
missing terms in combination with “heme.” These findings led us
to refine HemeKG so that only those signaling components for
which no evidence was found manually still remain as white spots
on the map (Figure 4B).

In addition, the preceding discussion has excluded parameters
such as the concentration of labile heme available in the respective
environment. This aspect will be particularly important, if heme-
triggered signaling pathways are dependent on, or determined
by the concentration of heme. At lower concentrations of heme,
TLR4 signaling has been described to be CD14 dependent,
whereas at high concentrations of heme, TLR4 activation does
not require CD14 (Piazza et al., 2010; Figure 4). Also, there
is a need to further investigate whether heme/TLR4 induction
of the adapter molecule MyD88 is dependent or independent
of TIRAP activation, similar to the LPS/TLR4 induced TIRAP-
associated MyD88 signaling pathway. Furthermore, heme/TLR4
activates a pathway that leads to the activation of IRF3, resulting
in the production of interferons for example, IFN-α (Dutra and
Bozza, 2014) and overproduction of C-X-C motif chemokine 10
(CXCL10) (Lin et al., 2012; Dickinson-Copeland et al., 2015). In
the literature, the molecular mechanism by which heme/TLR4-
induced TRAF3 and IRF3/7 activation leads to the secretion of
IFN-α and CXCL10 is not represented. It is therefore shown as
a white box in the map (Figure 4B). Finally, the introduction of
noncanonical pathways and receptor crosstalk-triggered cascades
go beyond the scope of this work, but represent opportunities for
future studies on heme signaling.

DISCUSSION

We have presented HemeKG, the first mechanistic model in the
context of heme biology, as a viable solution to comprehensively
summarize heme-related processes by bringing knowledge from
disparate literature together. Furthermore, we have demonstrated
how combining the knowledge from the heme knowledge graph
with information available in pathway databases provides new
insights into the network of interactions that regulate heme
pathophysiology.

Because HemeKG was curated using standard vocabularies,
its content can be linked to the majority of public databases.
Therefore, enriching the HemeKG network with external data
or incorporating its integrated knowledge into other resources
is feasible. For example, the entire Bio2BEL framework1 can
be used to scale up this resource by enriching HemeKG
with dozens of widely used biomedical databases. In order to
make HemeKG accessible to a wider audience, we uploaded
it to BEL Commons - a web application for curating,
validating, and exploring knowledge assemblies encoded in BEL

1https://github.com/bio2bel
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(Hoyt et al., 2018). Users can interactively explore the network,
make modifications, integrate additional resources via Bio2BEL,
and share those modifications using its versioning system.
Furthermore, the variety of formats that our resource can be
converted to also facilitates its use by other systems biology
tools such as Cytoscape (Shannon, 2003) and NDEx (Pratt
et al., 2015). In summary, the characteristics of HemeKG make
this resource suitable not only for hypothesis generation as
presented in our case scenario, but also for clinical decision
support as previously demonstrated with other systems biology
maps (Ostaszewski et al., 2018). For instance, computational
mechanistic models are currently being used in combination
with artificial intelligence methods for a variety of predictive
applications (Khanna et al., 2018; Esteban-Medina et al., 2019;
Çubuk et al., 2019). Instead of contextless canonical pathways
as until now (i.e., pathways describing normal physiology),
HemeKG could be used for predicting drug response and for
drug repurposing in numerous related disorders such as malaria
and sepsis. Finally, the supporting terminology built during this
work could be used for a broad range of applications from data
harmonization to natural language processing.

A potential limitation of this study is that it is constrained to
a specific literature corpus as we are aware that the presented
knowledge graph captures only a part of a much larger interaction
network. This tends to be a common challenge when constructing
contextualized maps and is further compounded by the difficulty
in assessing the coverage of a network, explaining why some
nodes are missing in HemeKG compared to the three pathway
databases used in this study. Furthermore, the bias in the
scientific community against publishing negative results must
also be acknowledged. A clear example is how the hypotheses of
our crosstalk analysis could be complemented by this knowledge
gap that could reveal new interesting hypotheses. Thus, future
updates in HemeKG, as in any work of this kind, will be required
while prioritizing time and effort (Rodriguez-Esteban, 2015).
Further, advanced network-based analyses (Catlett et al., 2013)
could be used to rank heme-related pathways in the context of a
given -omics data set.

Although numerous interactions between heme and TLRs
have been described in the literature (Lin et al., 2010; Min et al.,
2017), their downstream effects have not been contextualized
(i.e., presented in a coherent/integrated manner like a knowledge
model does). The analysis we have presented focusing on the

crosstalk between heme biology and the TLR signaling pathway
has shed some light on how this crosstalk could be related to heme
biology. However, there also exist other well-known pathways
related to heme, that could be investigated by conducting similar
analyses in the future.
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The Epithelial–mesenchymal transition (EMT) is a cellular process implicated in
embryonic development, wound healing, and pathological conditions such as cancer
metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive
behavior characterized by drug resistance, tumor-initiation potential, and the ability to
evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates
that EMT is not an all-or-none process; instead, cells can stably acquire one or more
hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive
than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to
be a critical estimate of patient prognosis. Recent attempts have employed different
transcriptomics signatures to quantify EMT status in cell lines and patient tumors.
However, a comprehensive comparison of these methods, including their accuracy
in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare
three distinct metrics that score EMT on a continuum, based on the transcriptomics
signature of individual samples. Our results demonstrate that these methods exhibit
good concordance among themselves in quantifying the extent of EMT in a given
sample. Moreover, scoring EMT using any of the three methods discerned that cells
can undergo varying extents of EMT across tumor types. Separately, our analysis also
identified tumor types with maximum variability in terms of EMT and associated an
enrichment of hybrid E/M signatures in these samples. Moreover, we also found that
the multinomial logistic regression (MLR)-based metric was capable of distinguishing
between “pure” individual hybrid E/M vs. mixtures of E and M cells. Our results, thus,
suggest that while any of the three methods can indicate a generic trend in the EMT
status of a given cell, the MLR method has two additional advantages: (a) it uses a
small number of predictors to calculate the EMT score and (b) it can predict from the
transcriptomic signature of a population whether it is comprised of “pure” hybrid E/M
cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
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INTRODUCTION

The epithelial–mesenchymal transition (EMT) is a cell biological
process crucial for various aspects of tumor aggressiveness –
cancer metastasis (Jolly et al., 2017), resistance against cell death
(Huang et al., 2013), metabolic reprogramming (Thomson et al.,
2019), refractory response to chemotherapy and radiotherapy
(Kurrey et al., 2009), tumor-initiation potential (Jolly et al., 2014),
and immune evasion (Tripathi et al., 2016; Terry et al., 2017) –
thus eventually affecting patient survival (Tan et al., 2014). EMT
is a multidimensional, non-linear process that involves changes
in a compendium of molecular and morphological traits, such as
altered cell polarity, partial or complete loss of cell–cell adhesion,
and increased migration and invasion. Cells may take different
routes in this multidimensional landscape as effectively captured
by recent high-throughput dynamic approaches (Karacosta et al.,
2019; Watanabe et al., 2019). The trajectories taken by cancer cells
in the EMT landscape may depend on the dosage and duration
of the EMT induction signal (Stylianou et al., 2018; Katsuno
et al., 2019; Tripathi et al., 2020), and thus may be associated
with varying metastatic potency (Aiello et al., 2018) and varying
degrees of resistance against different drugs (Biddle et al., 2016),
thereby driving a context-specific association of patient survival
with EMT (Chikaishi et al., 2011; Tan et al., 2014; Yan et al., 2016).

Initially thought of as binary, EMT is now considered
as a complex process involving one or more hybrid
epithelial/mesenchymal (E/M) states (Jolly and Celia-Terrassa,
2019). These hybrid E/M states can be more plastic and
tumorigenic than “purely E” or “purely M” ones, thus
constituting the “fittest” phenotype for metastasis (Grosse-
Wilde et al., 2015; Bierie et al., 2017; Pastushenko et al., 2018;
Kröger et al., 2019; Tripathi et al., 2020). Consequently, the
presence and frequency of such hybrid E/M cells in primary
tumors and in circulating tumor cells (CTCs) can be associated
with poor patient survival (Jolly et al., 2019a; Saxena et al.,
2019). Computational methods aimed at quantifying EMT on a
continuous spectrum in order to enhance diagnostic, prognostic,
and therapeutic intervention are therefore indispensable.

Various methods have been developed to obtain a quantitative
measure of the extent of EMT (hereafter, referred to as EMT
score) that cells in a given sample have undergone. Here we focus
on methods accomplishing this task using the gene expression
data. First, a 76-gene EMT signature (76GS; hereafter referred
to as the 76GS method) was developed and validated using gene
expression from non-small cell lung cancer (NSCLC) cell lines
and patients treated in the BATTLE trial (Byers et al., 2013).
This scoring method calculates EMT scores based on a weighted
sum of the expression levels of 76 genes; the weight factor of a
gene is the correlation coefficient between the expression level of
that gene and that of CDH1 (E-cadherin) in that dataset; thus,
the absolute EMT scores of E samples using the 76 GS method
are relatively higher than those of M samples (Guo et al., 2019).
Second, an EMT score separately for cell lines and tumors was
developed based on a two-sample Kolmogorov–Smirnov test (KS;
hereafter referred to as the KS method). This score varies on a
scale of−1 to 1, with the higher scores corresponding to more M
samples (Tan et al., 2014). Third, a multinomial logistic regression

(MLR; hereafter referred to as the MLR method)-based model
quantified the extent of EMT in a given sample on a scale of 0–2.
This method particularly focuses on characterizing a hybrid E/M
phenotype using the expression levels of 23 genes – 3 predictors
and 20 normalizers – identified through NCI-60 gene expression
data. It consequently calculates the probability that given sample
belongs to E, M, or hybrid E/M categories. An EMT score is
assigned based on those probabilities; the higher the score, the
more M the sample is (George et al., 2017). A comparative
analysis of these methods in terms of similarities, differences,
strengths, and limitations, remains to be done.

Here, we present a comprehensive evaluation of these
methods – 76GS, KS, and MLR – in terms of quantifying EMT
and characterizing the hybrid E/M phenotype. First, we calculate
the correlations observed across different in vitro, in vivo, and
patient datasets, and observe good quantitative agreement among
the scores calculated using these three methods. This analysis
suggests that all of them, despite using varied gene lists and
methods, concur in capturing a generic trend embedded in the
multi-dimensional EMT gene expression landscape. Second, we
identify which cancer types are more heterogeneous than others
in terms of their EMT status; intriguingly, our results show
that enrichment for a hybrid E/M phenotype contributes to
heterogeneity. Third, we compare the ability of these methods
to distinguish between “pure” individual hybrid E/M cells vs.
mixtures of E and M cells that can exhibit an EMT score similar to
that of hybrid E/M samples. Our results offer proof-of-principle
that the MLR method can identify these differences. Overall, our
results demonstrate the consistency of these EMT scoring metrics
in quantifying the spectrum of EMT. Moreover, two advantages
of MLR method are highlighted – namely, the use of a small
number of predictors to calculate the EMT score, and the ability
to characterize difference between admixtures of E and M cells vs.
truly hybrid E/M cells.

MATERIALS AND METHODS

Software and Datasets
All computational and statistical analyses were performed using
R (version 3.4.0) and Bioconductor (version 3.6). Microarray
datasets were downloaded using GEOquery R Bioconductor
package (Davis and Meltzer, 2007). TCGA datasets were obtained
from the UCSC xena tools (Wang S. et al., 2019). CCLE and
NCI60 datasets were downloaded from respective websites.

Preprocessing of Microarray Data Sets
All microarray datasets were preprocessed to obtain the gene-
wise expression for each sample from probe-wise expression
matrix. To map the probes to genes, relevant platform annotation
files were utilized. If there were multiple probes mapping to one
gene, then the mean expression of all the mapped probes was
considered for that gene.

Calculation of EMT Scores
Epithelial–mesenchymal transition (EMT) scores were calculated
for samples in a particular data set using all three methods. For

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 March 2020 | Volume 8 | Article 22091

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00220 March 19, 2020 Time: 17:11 # 3

Chakraborty et al. Comparing the EMT Quantification Methods

a particular microarray data set, expression of respective gene
signatures was given as an input to calculate EMT score using all
three different methods.

76GS
The EMT scores were calculated based on a 76-gene expression
signature reported (Byers et al., 2013; Supplementary Table S1)
and the metric mentioned based on that gene signature (Guo
et al., 2019). For each sample, the score was calculated as a
weighted sum of 76 gene expression levels and the scores were
centered by subtracting the mean across all tumor samples so
that the grand mean of the score was zero. Negative scores can
be interpreted as M phenotype whereas the positive scores as E.

MLR
The ordinal MLR method predicts EMT status based on the order
structure of categories and the principle that the hybrid E/M state
falls in a region intermediary to E and M. Quantitative estimates
of EMT spectrum were inferred based on the assumptions and
equations mentioned (George et al., 2017; Supplementary Table
S2). The samples are scored ranging from 0 (pure E) to 2 (pure
M), with a score of 1 indicating a maximally hybrid phenotype.
These scores are calculated based on the probability of a given
sample being assigned to the E, E/M, and M phenotypes.

KS
The KS EMT scores were calculated as previously reported
(Tan et al., 2014; Supplementary Tables S3, S4). This method
compares cumulative distribution functions (CDFs) of E and
M signatures. First, the distance between E and M signatures
was calculated via the maximum distance between their CDFs
as follows: For CDFs FE(x) and FM(x) representing the levels
of transcript x for E and M signatures, respectively, the distance
between signatures is assessed by using the uniform norm

||FE − FM|| ≡max
x
|FE(x)− FM(x)| (1)

This quantity represents the test statistic in the subsequent
two-sample test used to calculate the EMT score. The score is
determined by hypothesis testing of two alternative hypotheses as
follows (with the null hypothesis being that there is no difference
in CDFs of M and E signatures): (1) CDF of M signature is greater
than CDF of E signature. (2) CDF of E is greater than CDF of
M signature. Sample with a positive EMT score is M whereas
negative EMT score is associated with E phenotype.

Correlation Analysis
Correlation between EMT scores was calculated by Pearson’s
correlation, unless otherwise mentioned.

Survival Analysis
All samples were segregated into 76GShigh and 76GSlow, MLRhigh

and MLRlow, KShigh and KSlow groups based on the mean values
of respective EMT score. Observed survival distributions are
graphically depicted for each method with the above-mentioned
two categories.

Mixture Curve Analysis
For each dataset analyzed using mixture curves, the most M
(pure-M) and most E (pure-E) samples were identified by
ordering samples based on MLR EMT score and selecting the top
and bottom 35 samples, respectively. The mean or median was
calculated for the pure-E and pure-M samples as a representative
of the purified E or M state in the MLR predictor space. From this,
the mixture curve is derived by taking all convex combinations
of purified states. Individual samples within a given dataset were
ranked based on their proximity to the mixture curve using the
usual l2-norm distance. The top 10, 20, 50, and 100 samples
closest to, and furthest from, the mixture curve were used as
representative mixtures of E and M populations and hybrid E/M
signatures, respectively.

RESULTS

Concordance in Capturing EMT
Response
We used three different EMT scoring methods to quantify the
extent of EMT in given transcriptomics data; each method
utilizes a distinct gene set as well as a different underlying
algorithm. In the 76GS method, the higher the score, the more
E a sample is, given that the method calculates as weighted
sum of expression levels of 76 genes, with the weight factor
being correlation coefficient with levels of the canonical E
marker CDH1 (Figure 1A). This method has no specific pre-
defined range of values, although the range of values obtained
are bounded by the maximal possible value of gene expression
detected by microarray. Unlike the 76GS method, the MLR and
KS methods have predefined scales for EMT scores. MLR and
KS score EMT on a spectrum of [0, 2] and [−1, 1] respectively,
with higher scores indicating M signatures (Figures 1B,C). While
MLR and KS methods are absolute, requiring a fixed transcript
signature for EMT score calculation, the 76GS method of EMT
scoring depends on the number and nature of samples analyzed
in a given dataset. Consequently, a hybrid E/M sample may have a
(pseudo) low 76GS score whenever the available dataset contains
more M samples, or a (pseudo) high score for datasets enriched
in E samples. Each scoring method also varies in the number
of required gene transcripts: while the MLR method utilizes 23
entries, the 76GS method requires 76 entires. The KS method
utilizes 315 and 218 transcripts for tumor samples and cell lines
samples, respectively.

We first investigated the extent of concordance in EMT scores
calculated via these three methods for well-studied cohorts of
cancer cell lines: NCI-60 and CCLE (Shankavaram et al., 2009;
Barretina et al., 2012). We expected to see a negative correlation
between EMT scores calculated via 76GS and KS methods and
that between EMT scores using 76GS and MLR methods, whereas
a positive correlation should exist between EMT scores from
the MLR and KS methods. Indeed, for both NCI-60 and CCLE
datasets, the EMT scores calculated via different methods were
found to be correlated significantly with a high absolute value of
correlation coefficients in the expected direction, when compared
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FIGURE 1 | General outline of all three EMT scoring methods. (A) 76GS score is calculated by weighted sum of 76 genes, where EMT scorei is score for ith sample,
wj is correlation of jth gene (Gj ) with CDH1 gene in that dataset to which the sample i belongs, Gij is the jth gene’s normalized expression in ith sample. (B) MLR
utilizes log2(VIM)/log2(CDH1) and log2(CLDN7) space to predict categorization of a sample into E, E/M, or M category. Where PE , PH, and PM are the probabilities of
a sample falling into each phenotype. EMT scorei is the score for ith sample, which is defined in relation to PE , PH, and PM. Figure adapted from George et al. (2017)
with permission. (C) KS score is estimated by the empirical cumulative distributions of epithelial and mesenchymal gene set, denoted by ecdf (GSmes) and ecdf
(GSepi ), respectively. EMT scorei is the maximum vertical distance between the ecdf (GSmes) and ecdf (GSepi ) (given by Eq. 1 in the section “Materials and Methods”)
for a given sample i.

pairwise (Figure 2 and Supplementary Figure S1). Given that the
three scoring methods utilize very different metrics and varying
number of genes to define and quantify EMT, it was remarkable
that all three showed such high consistency in scoring EMT for
these datasets that contained cell lines across various cancer types.

Next, we investigated whether this trend was also present
in the TCGA patient samples of different tumor types. Again,
the trend remained consistent across tumor types – a strongly
positive significant correlation between scores via MLR and KS,
and a strongly negative significant correlation between scores via
76GS and KS and those via 76GS and MLR methods (Figures 3A–
C and Supplementary Figure S2). Among all tumor types
in TCGA data, breast cancer exhibited the highest observed
correlation coefficient across methods (Figure 3C). Thus, the
association between EMT scores and patient survival was assessed
using breast cancer patient samples. The samples were scored
using all three methods and segregated into high and low groups
based on the mean value of each EMT score. The 76GSlow
subgroup can be thought of as similar to the MLRhigh and/or
KShigh ones, given their relatively strong M signature. The three
EMT scoring methods showed consistent trends in predicting
overall survival highlighting that patients with a strongly M
phenotype had better survival probability (Figure 3D), endorsing
the emerging notion that the predominance of EMT in primary
tumors and/or CTCs need not always be correlated with worse
patient survival (Tan et al., 2014; Saxena et al., 2019).

Epithelial–mesenchymal transition can be driven by
diverse biomechanical and/or biochemical stimuli in tumor
microenvironments. TGFβ is one of the best-studied drivers
of EMT, and a recent study identified a signature specific
to TGFβ-induced EMT (Foroutan et al., 2017). EMT scores
calculated via any of the three methods – KS, MLR, and 76GS –
correlated well with the scores calculated for TGFβ-induced EMT
gene signature (Supplementary Figure S3), further endorsing
the equivalence of these methods in identifying the onset of EMT.

After establishing this consistency using in vitro cell line
datasets and TCGA patient samples, we focused on several
publicly available microarray datasets including those of
EMT induction or reversal, isolation of subpopulations, etc.
Each dataset comprised a variety of samples in terms of
different cell lines, conditions, and treatments. An analysis of
different GEO datasets showed that EMT scores calculated
via these three methods, when compared pairwise, were
significantly correlated in the expected direction (Figure 4A
and Supplementary Table S5). Out of 85 different datasets,
a large percentage of them showed trends in the expected
direction (62/85 in KS vs. 76GS; 64/85 in MLR vs. 76GS;
49/85 in MLR vs. KS) (Figure 4B). Strikingly, 43 datasets
were found to be common across all three pairwise
comparisons (Figure 4C), establishing a high degree of
concordance among EMT scores calculated via these three EMT
scoring methods.
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FIGURE 2 | Scatter plot depicting the correlation between the EMT scores of cancer cell line samples calculated via three methods. Each pairwise relation is
estimated by a linear regression line (red), Pearson’s correlation coefficient (R), and p-value (p) reported in each plot. (A) NCI60 dataset and (B) CCLE dataset.

Next, we investigated specific cases where EMT/MET was
induced in various cell lines by different EMT/MET regulators.
Lung cancer cell lines A549, HCC827, and H358 in which EMT
was induced by TGFβ showed higher EMT scores using MLR
and KS methods, but lower scores via 76GS method, compared to
untreated ones (Figure 5A). Similarly, the E breast cancer cell line
MCF-7 transfected to overexpress EMT-inducing transcription
factor Snail exhibited a more M phenotype relative to the
control, as identified via all three scoring methods (Figure 5B).
Consistent trends were seen in EpRAS tumor cells treated with
TGFβ (Figure 5C), and in human mammary E cells HMLE
overexpressing one of the three EMT-inducing transcription
factors (EMT-TFs) – SNAI1 (Snail), SNAI2 (Slug), and TWIST
(Figure 5D). Interestingly, all three scoring methods suggested
that EMT induced by Snail or Slug was stronger than that induced
by Twist (Figure 5D). Further, inducing EMT via overexpression
of EMT-TFs Twist, Snail, Goosecoid, or treatment with TGFβ or
knockdown of E-cadherin was capable of altering the EMT scores
of HMLE cells (Supplementary Figure S4A).

Additionally, these three methods also captured the reversal
of EMT – M–E transition (MET) – induced by MET-inducing
transcription factor GRHL2 in MDA-MB-231 cells (Figure 5E).
Moreover, baseline differences in EMT status between two
hepatocellular carcinoma cell lines identified experimentally (Van
Zijl et al., 2011) were also recapitulated by all three scoring
methods; while HCC-1.2 (referred to as 3p) showed more E
features, HCC1.1 (referred to as 3sp) was relatively more M
(Figure 5F). We also calculated the EMT scores for the dynamic
EMT time series datasets (i.e., cases where more than two time

points were available for EMT induction); all three methods
were able to recapitulate the relevant trends in EMT scores
as expected when EMT was induced in A549 and LNCAP
cells (Supplementary Figures S4B,D). Further, all three EMT
scoring methods captured the trend in the change of EMT
status in prostate cancer E PC3 cells (PC3-Epi) and M cell
lines derived from PC3 (PC-EMT) through interactions with
macrophages (Roca et al., 2013). PC3-EMT cells transfected
with ZEB1-shRNA vector (sh4), but not with the scrambled
control (Scr), indicated an MET (Supplementary Figure S4C).
Finally, we calculated EMT scores for a population of CTCs
collected from breast cancer patients and ex vivo cancer models
and observed heterogeneity in CTCs along the E-hybrid–M
spectrum (Supplementary Figures S4E,F), reminiscent of similar
observations based on immunohistochemical staining of a few
canonical markers (Yu et al., 2013).

Variability in EMT Scores Measures
Tumor Heterogeneity
Recent studies have emphasized that intra-tumor heterogeneity
and inter-tumor heterogeneity can accelerate progression and
metastasis (Lawson et al., 2018). Thus, we were interested in
identifying which tumor types are more heterogeneous with
regard to EMT scores calculated via the three methods. We
grouped the CCLE samples by different tumor types and
calculated the mean and variance of all EMT scores across
a given tumor. The EMT scores, calculated across the three
methods, showed less variation in the EMT scores of the tumor
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FIGURE 3 | Concordance across all three EMT scoring methods in quantification of EMT and survival prediction of tumor patients. Each pairwise relation is
estimated by linear regression (red), Pearson’s correlation coefficient (R), and p-value (p), reported in each plot. (A) TCGA ovarian cancer dataset, (B) TCGA sarcoma
dataset, (C) TCGA breast cancer dataset. (D) Correlation between EMT score (high vs. low) and overall survival (OS) in breast cancer patients. Kaplan–Meier survival
analysis is performed to estimate differences in survival of 76GShigh, MLRhigh, KShigh and 76GSlow, MLRlow, KSlow groups, respectively, in GSE1456. p-values (p)
reported are based on the log rank test. HR (hazard ratio) and confidence interval (95% CI) reported are estimated using cox regression.

types of M origin such as sarcoma and lymphoma, compared
to that of the other tumor types such as breast cancer and
lung cancer (Figures 6A–C and Supplementary Table S7).
The most heterogeneous tumor types identified based on the
variance in EMT scores largely overlapped for all methods:
(a) breast cancer, (b) stomach cancer, (c) NSCLC, (d) bile
duct cancer, and (e) urinary tract cancer (Figures 6A–C). We
also calculated pairwise correlations of EMT scores across all
the tumor types and observed consistently significant trends
(Supplementary Table S8).

One of the proposed mechanisms underlying such
heterogeneity in EMT status has been E–M plasticity, i.e.,
the proclivity of individual cells in a population to obtain
and switch among multiple phenotypic states. Such plasticity
is typically seen to be higher in cells in one or more hybrid
E/M states (Pastushenko and Blanpain, 2019; Tripathi et al.,
2019, 2020). Thus, we asked whether the frequency of hybrid
E/M phenotype contributes to heterogeneity in terms of EMT
scoring. One of the EMT scoring methods – MLR – calculates the
probability of a given transcriptomic profile being associated with
the E, hybrid E/M, or M state, thus enabling us to identify hybrid

E/M samples specifically. First, we found that the variance of
EMT scores was the highest in samples identified as hybrid E/M
as compared to E and M samples (Supplementary Table S6A).
Consistently, a high correlation coefficient value in EMT scores
was maintained, when calculated separately for CCLE samples
in E, E/M, and M categories (Supplementary Table S6B). Next,
we checked the relative frequency and absolute number of
hybrid E/M samples (as defined by MLR method) across tumor
types, among the cases where EMT scores calculated via all
three methods were significantly correlated. Indeed, the tumor
types that met the three conditions – (a) total number of hybrid
E/M samples being more than 10, (b) percentage of hybrid
E/M samples being >20%, and (c) a good correlation among
all three methods – were enriched in the most variable tumor
types (Figure 6D), suggesting hybrid E/M phenotypes contribute
maximally to E–M heterogeneity (Supplementary Table S9).

We also calculated the correlations in EMT scores obtained
from each method, after segregating the cell line samples
into E, E/M, and M, based on predictions from the MLR
method. The correlation coefficients within the E, E/M, and
M subgroups of a given tumor subtype were observed to be
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FIGURE 4 | Plots depicting pairwise comparisons of all three EMT scores. (A) Volcano plots showing the correlation of different EMT scoring methods across 85
different GEO microarray datasets along with the p-values for the respective correlation coefficient values. In each case, –log10(p-value) is plotted as a function of
Pearson’s correlation coefficient. Thresholds for correlation (R < –0.3 or R > 0.3; vertical blue lines) and p-values (p < 0.05; horizontal red line) are denoted. (B) Bar
plots for different categories based on the correlation sign and statistical significance of all three pairwise comparisons across 85 datasets. p < 0.05 and R < −0.3
or R > 0.3. (C) Venn diagram showing the common GEO datasets across all pairwise comparisons that are significantly correlated in the expected direction.

somewhat different than those found for all tumor subtype
samples without any partitioning into E, E/M, and M subgroups
(Supplementary Table S8). These results suggest that while a
generic trend in terms of EMT scores is seen across the three
methods, the categorization in terms of E, E/M, and M may vary
to some degree based on the EMT scoring method used. It should
be noted that while the MLR method classifies samples into three
broad categories (E, E/M, and M), it makes no assumption on the
existence, the number, or the stability of sub-states within each
category. In fact, the scores calculated using the MLR method use
a continuous scale for EMT quantification, which measures the
extent of EMT and thus, reflects, in principle, an entire range of
different partial states of EMT.

Individual Hybrid E/M Samples Are
Different From Hybrid Mixtures of E
and M
A given transcriptomic profile may be classified as hybrid E/M
for several reasons: (a) the sample contains individually hybrid
E/M cells (hybrids), (b) the sample contains a mixture of E and
M cells (mixtures), or (c) the sample contains a combination
of hybrids and mixtures. We sought to distinguish true hybrids
from mixtures based on an additional feature of MLR scoring –
mixture curve analysis (Jia et al., 2019). This analysis quantifies
the distance of a given sample from a “mixture curve” which

connects the position of mean signatures of “pure” E and “pure”
M samples. The farther a given sample is from the mixture curve,
the higher the likelihood of that particular sample containing
truly hybrid E/M cells.

First, we determined the mixture curves based on the
CCLE samples. We ranked all cell lines in the CCLE dataset
based on their EMT scores and identified the top 35 most
E (i.e., lowest 35 in terms of MLR EMT scores) and top
35 most M samples (i.e., highest 35 in terms of EMT MLR
scores). Then, the mixture curve was determined based on the
convex combinations of mean signatures of these 35 “pure”
E and 35 “pure” M reference samples. All the CCLE cell
lines identified as hybrid E/M were then plotted alongside
the mixture curve (Figure 7A) and their distances from
the curve were calculated. While some samples fell close
to the curve, many deviated substantially (Figure 7B). We
subsequently picked the farthest and the closest 10, 20, 50,
and 100 samples from the mixture curve and calculated their
EMT scores. Intriguingly, the mean EMT score of samples
farthest from the mixture curve was different than that of
the closest samples as calculated using MLR, irrespective
of the number of samples chosen (Figure 7C). Similarly,
another “mixture curve” based on median of 35 “pure” E and
“pure” M reference samples was obtained from CCLE dataset
(Supplementary Figure S5A); the cell lines closest to either
mixture curve tended to be more E than the ones farthest
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FIGURE 5 | Bar plots showing EMT scores of different cell lines calculated using the three EMT scoring methods. (A) EMT induction is shown in three cell lines –
A549, HCC87, and NCIH358 (GSE49664). (B) EMT induction in MCF7 cell line (GSE58252). (C) EMT induction in EpRas cells (GSE59922). (D) EMT induction by
different EMT-inducing transcription factors. “a” denotes statistical significant difference (p < 0.05, n = 3, two-tailed Student’s t-test) for pairwise comparison of a
given set with untreated (first column), “b” denotes the same when compared with empty vector (EV; second column) (GSE43495). (E) MET induction by GRHL2 in
MDA-MB-231 cell line (GSE36081). (F) Two cell lines of hepatocellular carcinoma with varying EMT status (GSE26391). Each control case has been compared to
EMT/MET induced case (*p < 0.05, n = 3, two-tailed Student’s t-test; error bars represent standard deviation).

from the curve (Figure 7C and Supplementary Figure S5B).
Qualitatively, speaking 76GS and KS methods showed similar
results (Supplementary Figures S5C–F).

In order to distinguish the hybrid E/M samples from mixtures
of pure E and pure M samples, we lastly characterized the
composition of the closest and farthest hybrid E/M samples by
estimating the percentage of M phenotype (%M) in each sample
based on the convex combination “mixture curve” in the two-
dimensional space (VIM/CDH1 expression; CLDN7 expression).
While the difference in mean values of the composition (%M)
of closest and farthest samples was marginal, but their overall
distributions in terms of %M differed substantially (Figure 7D).
This analysis demonstrates the possibility of a quantifiable
compositional difference between truly hybrid E/M samples and
mixtures of E and M cells.

DISCUSSION

Epithelial–mesenchymal transition is a reversible and dynamic
process which has been shown to be activated during cancer
progression. EMT involves a multitude of changes at both
molecular and morphological levels. Various attempts to
characterize the spectrum of EMT at molecular and/or

morphological levels have been made recently, enabled by
latest developments in multiplex imaging, single-cell RNA-
seq and inducible systems (Mandal et al., 2016; Pastushenko
et al., 2018; Stylianou et al., 2018; Cook and Vanderhyden,
2019; Devaraj and Bose, 2019; Karacosta et al., 2019; Wang
W. et al., 2019; Watanabe et al., 2019; Lam et al., 2020).
These approaches have highlighted the dynamical nature of
EMT in driving cancer progression in patients (Jolly and
Celia-Terrassa, 2019), and the heterogeneity in EMT status
in cell lines and patient samples (Panchy et al., 2020; Shen
et al., 2020). Further, various approaches to quantify the EMT
spectrum of samples based on different signatures of tumor
types have been made (Foroutan et al., 2017; Puram et al.,
2017). Among all the methods available for EMT scoring, we
have compared the ones that are more generalized – KS (Tan
et al., 2014), MLR (George et al., 2017), and 76 GS (Byers
et al., 2013; Guo et al., 2019). These three methods use different
combinations of genes and metrics; however, they show a very
good concordance among them in terms of identifying an
empirical trend along the EMT axis.

Here, we compared the aforementioned EMT scoring metrics
for their ability to identify the onset and extent of EMT/MET
via calculating EMT scores for cell line cohorts NCI-60 and
CCLE, TCGA cohorts from multiple subtypes, and datasets
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FIGURE 6 | Variance and mean of EMT scores in CCLE samples grouped by tumor subtype, highlighting the most variable tumor types (circled). (A) 76GS EMT
scores, (B) MLR EMT scores, and (C) KS EMT scores. (D) Venn diagram showing the overlap between each tumor type based on the abundance of hybrid samples
as defined by the MLR method, where #EM > 10 denote the cases where the absolute number of hybrid E/M samples in a tumor subtype is >10; %EM > 20
denote the cases where the percentage of cell lines identified as hybrid E/M in a given tumor subtype is >20%.

FIGURE 7 | Distinguishing between hybrid E/M cells vs. mixtures of E and M cells. (A) Scatter plot showing CCLE cell lines that display a hybrid E/M phenotype (red)
on the mixture curve (dotted curve) determined by the mean of 35 pure E (orange) and pure M (blue) reference samples in CCLE dataset. (B) Scatter plot showing
the 100 farthest (purple) and 100 closest (green) samples based on the distance from the mixture curve. (C) Bar plots showing EMT scores of N (10, 20, 50, and
100) closest and farthest hybrid E/M samples from mixture curve. (D) Mesenchymal proportion (%M) distribution of the 100 closest and farthest hybrid samples from
mixture curve. *p < 0.05, N = 10, 20, 50 and 100, two-tailed Student’s t-test; error bars represent standard deviation.
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containing samples with overexpression and/or knockdown of
many EMT/MET inducers such as TGFβ, Snail, Slug, Twist,
E-cadherin, and GRHL2 (De Craene and Berx, 2013). The
remarkable concordance among EMT scores calculated via the
methods analyzed above suggests the existence of a macroscopic
signal that can resolve the extent of EMT in a given sample
amidst the complexity of EMT and the networks regulating
it. It is plausible that within these regulatory networks, there
exist key nodes forming one (or more) core circuit(s) which
receive(s) a large number of inputs and may have diverse
outputs, reminiscent of bow-tie structures seen in biological
networks of cell-fate decision-making (Friedlander et al., 2015).
This idea of core circuit(s) driving EMT is substantiated by
transcriptomic meta-analysis identifying common signatures for
EMT driven by distinct inducers (Taube et al., 2010; Liang
et al., 2016). For instance, one network motif commonly
found in core circuits regulating EMT and associated traits
is a mutually inhibitory feedback loop between two “master
regulators” driving opposing cell phenotypes (Hong et al., 2015;
Huang et al., 2015; Saha et al., 2018); for instance, ZEB1
driving EMT and miR-200 driving MET (Jia et al., 2017). An
intricate coupling among such feedback loops may give rise
to a spectrum of EMT phenotypes as has been seen across
cancer types in cell lines, CTCs, and primary tumor biopsies
(Armstrong et al., 2011; Huang et al., 2013; Schliekelman et al.,
2015; Andriani et al., 2016; Iyer et al., 2019; Markiewicz et al.,
2019; Varankar et al., 2019).

In addition to EMT score concordance, the three methods
showed excellent agreement in their ability to identify the most
EMT-variable tumors. Most tumors of M lineage, including
sarcoma samples, were shown to be least variable, as evidenced
by the similarity among samples having M assignment in
the CCLE dataset. This contrasts with breast cancer, NSCLC,
bile duct cancer, urinary tract cancer, and stomach cancer,
which exhibited the largest degree of variability in terms
of their inherent EMT status in addition to being less M
on average. The observations concerning the EMT status of
sarcomas, breast cancer, and NSCLC are well-supported by
existing experimental data (Blick et al., 2008; Schliekelman et al.,
2015; Jolly et al., 2019b); however, the relationship between
EMT status and heterogeneity among samples of a particular
tumor type requires further investigation. Our results also
demonstrate a link between the predominance of hybrid E/M
status and heterogeneity patterns, possibly emerging due to
relatively higher plasticity of cells in one or more hybrid E/M
phenotypes (Pastushenko et al., 2018; Tripathi et al., 2020). Our
findings are clinically relevant as tumor types having a greater
number of hybrid E/M cells may require alternative treatment
strategies compared to those containing predominantly E or
predominantly M populations, necessitating future investigations
into improved therapeutic design based on an analysis of EMT
status and variability.

This comparative analysis of the three methods shows two
key advantages of MLR method. First, it uses the least number
of genes to calculate an EMT score – 23 genes required by
MLR compared to 76 genes by 76GS, and 315 genes for tumor
and 218 genes for cell lines by KS. This feature is important

because 23 genes can be relatively easily measured experimentally
without microarray or RNA-seq. Second, the MLR method,
by virtue of its underlying theoretical framework, is capable
of isolating hybrid E/M samples and has been expanded to
identify whether the resultant gene expression is more likely to
derive from “true” individual hybrid E/M samples or admixtures
of E and M samples. While, in theory, other methods could
adopt similar adaptations to address this issue in the future,
the resolution of E, M, and hybrid E/M populations through
those methods would require analyzing a higher dimensional
subspace of the original predictors, given the large number
of genes used by those methods to calculate EMT scores.
This feature contrasts with that of MLR method, where the
mixture analysis is performed directly on the two-dimensional
EMT predictor space (CLDN7 and VIM/CDH1) utilized by
this method. Distinguishing between these possibilities is critical
because the behavior of mixtures of E and M samples vs. truly
hybrid E/M samples can be strikingly different; a recent study
showed that the presence of hybrid E/M cells is essential to form
tumors in mice, a task which could not be achieved as efficiently
by co-cultures of E and M cells alone (Kröger et al., 2019).
Previously, multiple studies have implicated the role of hybrid
E/M phenotype with worse survival (Grosse-Wilde et al., 2015;
Grigore et al., 2016). To date, it has not been established whether
it is pure hybrids or mixtures of E and M cells which correlate
with clinically observed parameters. Our results highlight the
utility of using the MLR method for effectively distinguishing
between these two possibilities, and future work should address
the relationship between the purity of hybrid E/M samples and
clinical outcome.

Our analysis shown here suffers from following limitations.
First, in terms of classifying hybrid E/M into “pure” hybrid
E/M vs. mixtures of E and M subpopulations, we have
considered mutually exclusive criteria: (a) a sample identified
as hybrid E/M at a bulk level contains mixtures of E and M
subpopulations, and (b) a sample identified as hybrid E/M at a
bulk level contains all “true” hybrid E/M cells. However, many
cell lines may contain cells in each of the three phenotypes
in varying ratios (Ruscetti et al., 2016; George et al., 2017;
Jia et al., 2019). Thus, future efforts should aim to identify
the relative proportions of these three different phenotypes
in a given sample. Second, although we show that among
the samples identified to be lying closest vs. farthest from
the “mixture curve” by MLR, all three EMT scoring metrics
suggested that the ones lying closest to the curve are more
E than the ones lying farthest from the same, we lack a
clear biological interpretation of this observation. Future efforts
will focus on comparing the morphological and functional
behavior of the CCLE cell lines identified to be closest vs.
farthest from the “mixture curve” generated based on the CCLE
samples. Third, our current efforts focus on microarray data
because the gene signatures utilized by all three methods were
identified on this platform. Although the MLR method has
been implemented on RNA-seq datasets by regressing the values
obtained from microarray and RNA-seq analysis on a case-by-
case basis (Kilinc et al., 2019; Lourenco et al., 2020), varying
sensitivity of microarray and RNA-seq methods needs to be
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incorporated for future efforts in assessing these EMT scoring
methods systematically.
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FIGURE S1 | Scatter plot depicting the correlation between the EMT scores of
cancer cell line samples, calculated via three EMT scoring methods. Each pairwise
relation is estimated by a linear regression line (red), Spearman’s correlation
coefficient (R) and p-value (p) reported in each plot. (A) NCI60 dataset and
(B) CCLE dataset.

FIGURE S2 | Scatter plot depicting the correlation between the EMT scores of
different tumor types in TCGA dataset, calculated via three methods. Each
pairwise relation is estimated by a linear regression line (red), Pearson’s correlation

coefficient (R), and p-value (p) reported in each plot. (A) Lung squamous
cell cancer, (B) colon adenocarcinoma, and (C) colon and rectal
adenocarcinoma.

FIGURE S3 | EMT score correlation with TGFβ-specific EMT scoring method
in CCLE dataset. (A) Pearson’s correlation coefficient and (B) Spearman’s
correlation. Correlation coefficient (R) and p-value (p) reported in each
plot.

FIGURE S4 | EMT scores of different EMT time series datasets and CTCs. (A)
GSE24202 – EMT induction by different EMT regulators. (B) GSE84002 – EMT
and MET induction over time by GFP, SNAI1 and SNAI2. (C) GSE43489 –
EMT/MET induction in PC3 cell line. (D) GSE17708 – EMT induction over time. (E)
GSE55470 – CTCs from breast cancer patients. (F) GSE50991 – CTCs from
ex vivo lung cancer model (∗p < 0.05, n = 3, two-tailed Student’s t-test; error bars
represent standard deviation for n = 3). Graphs (E) and (F) represent kernel
density plots.

FIGURE S5 | (A) Scatter plot showing 100 farthest and closest samples based on
the distance from mixture curve defined by median of 35 most pure E and pure M
CCLE samples. (B) MLR EMT score for N (10,20,50,100) closest and farthest
hybrid samples from median mixture curve. Bar plots showing EMT scores of N
(10, 20, 50, 100) closest and farthest hybrid samples from mean mixture curve.
(C) 76GS EMT score and (D) KS EMT score. Bar plots showing EMT scores of N
(10, 20, 50, 100) closest and farthest hybrid samples from median mixture curve.
(E) 76GS EMT score (F) KS EMT score (∗p < 0.05, N = 10, 20, 50, and 100,
two-tailed Student’s t-test; error bars represent standard deviation for the given
value of N).

TABLE S1 | 76 gene signatures.

TABLE S2 | List of predictors and normalizers used for calculation of EMT
using MLR method.

TABLE S3 | Epithelial and mesenchymal signature used in KS-statistic
(tumor signature).

TABLE S4 | Epithelial and mesenchymal signature used in KS-statistic (cell
line signature).

TABLE S5 | EMT score correlation in the list of 85 microarray GEO datasets.

TABLE S6 | EMT scores in E, E/M and M categories of CCLE samples, as defined
by MLR EMT scores. (A) Mean and standard deviation of EMT scores in E, E/M
and M samples. (B) Correlation between EMT scores across E, E/M and M
categories.

TABLE S7 | Most variable and least variable tumor types based on the coefficient
of variation of EMT scores.

TABLE S8 | Pairwise correlation between all three EMT scores in subcategories
(E, E/M, and M) across all tumor types of CCLE data.

TABLE S9 | Abundance of hybrid E/M samples in different tumor types.
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Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder that
is clinically complex and has increased production of autoantibodies. Via emerging
technologies, researchers have identified genetic variants, expression profiling of
genes, animal models, and epigenetic findings that have paved the way for a better
understanding of the molecular and genetic mechanisms of SLE. Our current study
aimed to illustrate the essential genes and molecular pathways that are potentially
involved in the pathogenesis of SLE. This study incorporates the gene expression
profiling data of the microarray dataset GSE30153 from the Gene Expression Omnibus
(GEO) database, and differentially expressed genes (DEGs) between the B-cell
transcriptomes of SLE patients and healthy controls were screened using the GEO2R
web tool. The identified DEGs were subjected to STRING analysis and Cytoscape
to explore the protein–protein interaction (PPI) networks between them. The MCODE
(Molecular Complex Detection) plugin of Cytoscape was used to screen the cluster
subnetworks that are highly interlinked between the DEGs. Subsequently, the clustered
DEGs were subjected to functional annotation with ClueGO/CluePedia to identify the
significant pathways that were enriched. For integrative analysis, we used GeneGo
MetacoreTM, a Cortellis Solution software, to exhibit the Gene Ontology (GO) and
enriched pathways between the datasets. Our study identified 4 upregulated and 13
downregulated genes. Analysis of GO and functional enrichment using ClueGO revealed
the pathways that were statistically significant, including pathways involving T-cell
costimulation, lymphocyte costimulation, negative regulation of vascular permeability,
and B-cell receptor signaling. The DEGs were mainly enriched in metabolic networks
such as the phosphatidylinositol-3,4,5-triphosphate pathway and the carnitine pathway.
Additionally, potentially enriched pathways, such as the signaling pathways induced by
oxidative stress and reactive oxygen species (ROS), chemotaxis and lysophosphatidic
acid signaling induced via G protein-coupled receptors (GPCRs), and the androgen
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receptor activation pathway, were identified from the DEGs that were mainly associated
with the immune system. Four genes (EGR1, CD38, CAV1, and AKT1) were identified
to be strongly associated with SLE. Our integrative analysis using a multitude of
bioinformatics tools might promote an understanding of the dysregulated pathways that
are associated with SLE development and progression. The four DEGs in SLE patients
might shed light on the pathogenesis of SLE and might serve as potential biomarkers in
early diagnosis and as therapeutic targets for SLE.

Keywords: systemic lupus erythematosus, protein–protein interactions, Metacore, microarray and bioinformatics,
expression profiling data, biomarkers, functional enrichment analysis

INTRODUCTION

Systemic lupus erythematosus (SLE), also known as lupus,
is a rare systemic autoimmune disease that mostly affects
middle-aged women, mainly of Asian, African, American, and
Hispanic origin (Costa-Reis and Sullivan, 2013; Cui et al.,
2013; Gurevitz et al., 2013). SLE affects an estimated 5 million
people across the world, with an incidence of 1–10 per 100,000
person-years (Pons-Estel et al., 2010). SLE is characterized
by a wide range of different autoantibodies, deposition of
immune complexes, and immune system infiltration and
inflammation within damaged organs. SLE autoantibodies invade
the patient’s kidneys, heart, skin, joints, and brain, leading to
various typical clinical symptoms. The most common clinical
symptoms of lupus are rash, arthritis, and fatigue. Severe
complications of SLE lead to nephritis, anemia, neurological
symptoms, and thrombocytopenia, eventually leading to severe
morbidity and mortality.

SLE is characterized by its clinical heterogeneity, with a
wide range of clinical manifestations reflecting its complex
etiopathogenesis (Tan et al., 1982). The clinical heterogeneity of
SLE highlights the contribution of genetic and environmental
factors to the susceptibility to the disease (Prokunina and
Alarcon-Riquelme, 2004; Harley et al., 2009; Yang and Lau,
2015; Dang et al., 2016; Wang et al., 2017). To date, the reason
for phenotypic variation in SLE is unknown. Understanding
the molecular mechanisms behind the pathogenesis of SLE
phenotypes could help in developing more efficient therapeutic
approaches and preventive strategies.

With the extensive use of gene detection methods, high-
throughput sequencing and extensive microarray data profiling
studies on SLE have been conducted, and several differentially
expressed genes (DEGs) and cellular pathways in SLE have been
identified (Borrebaeck et al., 2014; Zhu et al., 2015). Nevertheless,
until now, no particular gene has been recognized to act as a
potential marker for the diagnosis of SLE. In addition, a large
amount of data obtained from microarray technology and high-
throughput sequencing have not been fully used. Ducreux et al.
(2016) collected blood samples from SLE patients and healthy
volunteers to identify differentially expressed genes (Ducreux
et al., 2016). However, the interactions among differentially
expressed genes and key genes involved in the signaling pathways
of SLE remain to be elucidated. In addition, previous studies of
genetic factors primarily focused on single genes; nevertheless,

interactions among multiple genes may result in the multisystem
invasion characteristics observed in SLE (Smith et al., 2017).
Remarkably, studies have shown that disease−associated gene
expression networks have a potential role in the immune
response, which highlights their mechanism and therapeutic
value for SLE (Deng and Tsao, 2010; Bentham et al., 2015).

Integrating and reanalyzing the data using bioinformatics
methods may help in identifying gene regulatory pathways,
essential genes, and their associated networks in SLE disease,
which can provide new and valuable ideas for understanding
the molecular mechanisms and identifying reliable diagnostic
and therapeutic targets of SLE. Therefore, in this study, we
first conducted a comprehensive collection of genes associated
with SLE from the GEO dataset with ID GSE30153. Then,
we performed a bioinformatics analysis of these genes with
the MCODE (Molecular Complex Detection), GeneGo, and
ClueGO tools. To further explore the pathogenesis of SLE in
a more specific manner, functions and pathways identified by
the modules were used to indicate the biological processes and
biochemical pathways related to the immune system. Finally,
the genes potentially associated with arthritis, pleurisy, and
myocarditis, which are the common complications of SLE, were
compared with SLE-related genes to identify common genes
that participated in the development of SLE. To interpret the
biological relevance of these changes in gene expression, we
analyzed the microarray data via an integrated bioinformatic
analysis expanding on traditional microarray analysis methods,
namely, Gene Ontology (GO) and pathway analysis, thereby
allowing the construction of interaction networks that might
identify novel prognostic markers and therapeutic targets.

MATERIALS AND METHODS

Acquisition of Array Data and Processing
Gene expression profiling data from microarray array analysis
of the GSE30153 dataset were downloaded from the NCBI GEO
database (Gene Expression Omnibus database)1. The database
accommodates gene expression datasets from a variety of
experiments, such as DNA-seq, ChIPs, RNA-seq, microarray, and
high-throughput hybridization array (Edgar et al., 2002; Barrett
et al., 2013). GSE30153 contains 26 samples, including 17 patients

1https://www.ncbi.nlm.nih.gov/geo/
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with SLE and 9 healthy controls of human sorted B-cells obtained
by using the platform GPL570 (HG-U133_Plus_2) Affymetrix
Human Genome U133 Plus 2.0 Array (Garaud et al., 2011). The
downloaded gene expression profiling data are freely available
in the public database, and there were no human or animal
experiments conducted by any of the authors in this study.

Preprocessing of Data and DEG
Identification
Using the robust multiarray standard model, the initial
information from the dataset was subjected to quantile
normalization, background correction, and log transition
(Irizarry et al., 2003). Preprocessing included changing to gene
symbols from probe IDs using the Gene ID converter from
Entrez (Alibés et al., 2007). The statistical online tool GEO2R
uses the R/Bioconductor, and limma package v3.26.8 was used to
screen the raw gene expression data (Smyth, 2005; Barrett et al.,
2013; Ritchie et al., 2015). We performed a Benjamini–Hochberg
test (to determine the false discovery rate) and T-tests to compute
the false discovery rate (FDR) and p-values to identify the DEGs
between SLE patients and healthy control human sorted B-cells
(Benjamini and Hochberg, 1995; Aubert et al., 2004). We set
the primary criteria of | log (2 fold change) | > 1 and p < 0.05
to obtain significant DEGs from the dataset, whereas cutoffs of
log2FC ≥ 1 and log2FC ≤ −1 were used to denote upregulated
and downregulated DEGs, respectively. For high-throughput
sequencing, a logarithm to base 2 is widely used and in the initial
scaling, the doubling is equivalent to a log2FC of 1 (Love et al.,
2014). A volcano plot was constructed using a web-based tool2.
The resulting DEGs were used for further analysis.

Constructing PPI Networks
To assess the relationships between the DEGs from the GSE30153
dataset, we constructed a protein–protein interaction (PPI)
network by using Search Tool for the Retrieval of Interacting
Genes (STRING v11.0)3 (Szklarczyk et al., 2017, 2019). The
cutoff criterion was set to a high confident interaction score
of ≥0.7 to eliminate inconsistent PPIs from the dataset. We
then incorporated the results from the STRING database into
Cytoscape software (v3.7.2)4 to envisage the PPIs within the
statistically relevant DEGs (Shannon et al., 2003). The MCODE
plugin from Cytoscape was utilized to identify the interconnected
regions or clusters from the PPI network. The cluster finding
parameters were adopted, such as a degree cutoff of 2, a node
score cutoff of 0.2, a kappa score (K-core) of 5, and a max depth
of 100, which limits the cluster size for coexpressing networks
(Bader and Hogue, 2003). The top clusters from MCODE were
subjected to ClueGO v2.5.5/CluePedia v1.5.5 analysis to obtain
comprehensive GO and pathway results from the PPI network.
ClueGO combines GO and pathway analyses from KEGG
and BioCarta and provides a fundamentally structured GO or
pathway network from the PPI network (Bindea et al., 2009).

2https://paolo.shinyapps.io/ShinyVolcanoPlot/
3http://www.string-db.org/
4http://www.cytoscape.org/

Metacore GeneGo Analysis of DEGs
Metacore, a Cortellis Solution software (Clarivate Analytics,
London, United Kingdom)5, was used to perform curated
pathway enrichment analysis and GO analysis. GeneGo
facilitates the rapid assessment of metabolic pathways, protein
biological networks, and pathway maps from high-throughput
experimental data (MetaCoreLogin | Clarivate Analytics). Based
on a significance threshold of p < 0.05, a pictorial representation
of the molecular interactions of DEGs from the study groups is
generated. Determination of a hypergeometric p-value enables
the estimation of the chance that an intersection between DEGs
and ontological elements is random. An FDR < 0.05 was used as
a criterion to calculate if statistically significant DEGs constituted
a processor pathway.

RESULTS

Identification of DEGs From
the Dataset
Our study contained the gene expression profiles of the
GSE30153 dataset from the GEO database, which were submitted
by Garaud et al. (2011) based on analysis with the GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array)
(Garaud et al., 2011). The dataset encompasses 26 samples,
including 17 patients with SLE and 9 healthy controls
(Table 1). By utilizing the GEO2R online tool, we obtained
the differentially expressed genes (DEGs) from the GSE30153
dataset by comparing the SLE samples with control samples. By
calculating p-values and | log2FC | values, the top 250 DEGs
were identified. A volcano plot was constructed using the Rstudio
web server ShinyVolcanoPlot to identify DEGs by comparing
the SLE and control groups from the dataset. The volcano plot
in Figure 1 depicts all the DEGs with a log2FC against the –
log10 (p-value) between the two groups. With cutoffs of p < 0.05
and log2FC ≥ 1.0 or ≤−1, we found 4 and 13 genes that were
upregulated and downregulated, respectively, between the two
groups (Table 2). The genes that were differentially expressed
between the two groups are shown in Supplementary Table S1.

Screening of Module and Construction
of Interlinking PPI Network
To assess the protein–protein connections among the DEGs,
we used the STRING tool to compute the protein interactions
and plotted them using Cytoscape v3.7.2. Figure 2 depicts the
PPI network with 103 nodes and 201 edges. The DEGs are
represented as nodes, and the edges are interactions between the
DEGs. A combined node score of >0.4 was considered to be
significant. MCODE plugin v1.5.1 from Cytoscape was utilized
to identify the densely interlinked regions within the protein
network. As a result, we obtained the top two significant clusters
from the DEGs protein network with MCODE scores of 5.043
and 3.625. A graphical representation of these clusters is shown
in Figures 3A,B. The subnetworks, scores, number of nodes and
edges, and node IDs are tabulated in Table 3.

5https://clarivate.com/products/metacore/
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TABLE 1 | The primary characteristics of 26 studies in GSE30153 procured from the Gene Omnibus Expression database.

Group Accession Title Organism Disease state Tissue Cell type

Patient GSM746726 Patient 1 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746727 Patient 2 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746728 Patient 3 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746729 Patient 4 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746730 Patient 5 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746731 Patient 6 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746732 Patient 7 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746733 Patient 8 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746734 Patient 9 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746735 Patient 10 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746736 Patient 11 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746737 Patient 12 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746738 Patient 13 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746739 Patient 14 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746740 Patient 15 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746741 Patient 16 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell
GSM746742 Patient 17 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

Control GSM746743 Control 1 Homo sapiens Control Blood Human sorted B cell
GSM746744 Control 2 Homo sapiens Control Blood Human sorted B cell
GSM746745 Control 3 Homo sapiens Control Blood Human sorted B cell
GSM746746 Control 4 Homo sapiens Control Blood Human sorted B cell
GSM746747 Control 5 Homo sapiens Control Blood Human sorted B cell
GSM746748 Control 6 Homo sapiens Control Blood Human sorted B cell
GSM746750 Control 8 Homo sapiens Control Blood Human sorted B cell
GSM746751 Control 9 Homo sapiens Control Blood Human sorted B cell
GSM746752 Control 10 Homo sapiens Control Blood Human sorted B cell

FIGURE 1 | Pictorial representation of volcano plot for differentially expressed
genes (DEGs) in systemic lupus erythematosus (SLE) compared to controls
from the GSE30153 dataset. The X-axis represents Log2FC, large magnitude
fold changes; Y-axis represents −log10 of a p-value, high statistical
significance. Each black dot represents one gene. Black dots above red and
beside blue line (left-sided and right-sided) are log2FC ≥ 1 and p-value
<0.05, representing SLE related DEGs.

TABLE 2 | Significantly upregulated and downregulated DEGs between two
groups from GSE30153 dataset are tabulated.

GENE SYMBOL log2FC p-value

Upregulating Genes

EGR1 1.22 0.00074

DSE 1.125 0.00291

CD1C 1.068 0.00053

GPM6A 1.052 0.00097

GPM6A* 1.043 0.002981

Downregulating Genes

RRM2 −2.406 0.0027527

RRM2* −2.152 0.0030096

TYMS −1.923 0.0032032

CD38 −1.702 0.0031747

CAV1 −1.516 0.0048324

MIR7110 −1.4 0.0027212

ELL2 −1.354 0.0035256

SLC44A1 −1.219 0.0035298

SAR1B −1.176 0.0049953

MAN1A1 −1.111 0.004425

CHAC2 −1.071 0.004354

ERAP1 −1.047 0.005321

ARF4 −1.044 0.0058274

PDIA4 −1.014 0.0041988

*The asterisk denotes the DEGs with two different probes from the dataset.
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FIGURE 2 | The network demonstrates the protein–protein interaction between the DEGs identified from GSE30153 using Cytoscape. The nodes represented as
ellipse (robin’s blue) and edges as lines (gray).

Enrichment Analysis by ClueGO
The top two subnetworks from MCODE were used as an input for
analyzing the functional enrichment of PPI subnetworks using
the ClueGO/CluePedia plugin from Cytoscape. In a biologically
clustered subnetwork, ClueGO helps to visualize the biological
terms of broad gene clusters. The subnetwork enrichment
analyses of MCODE cluster 1 and cluster 2 are depicted in
Figures 4A,B. For functional enrichment analysis, we set the
statistical options based on a two-sided hypergeometric test
with a Benjamini–Hochberg correction, p ≤ 0.05, and kappa
scores ≥ 0.4 as criteria. The DEGs from cluster 1 were shown

to be enriched mostly in T-cell costimulation (GO: 0031295),
lymphocyte costimulation (GO: 0031294), negative regulation of
vascular permeability (GO: 0043116), the metaphase/anaphase
transition of the mitotic cell cycle (GO: 0007091), regulation
of the transcription involved in the G1/S transition of the
mitotic cell cycle (GO: 0000083), negative regulation of signal
transduction in the absence of ligand (GO: 1901099), and KEGG
pathways such as hematopoietic cell lineage (KEGG: 04640),
B-cell receptor signaling pathway (KEGG: 04662), ErbB signaling
pathway (KEGG: 04012), and AGE-RAGE (advanced glycation
end products and receptor for AGE) signaling pathway in diabetic

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 April 2020 | Volume 8 | Article 276107

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00276 April 28, 2020 Time: 17:31 # 6

Udhaya Kumar et al. Dysregulation of Signaling Pathways in SLE

FIGURE 3 | The MCODE (Molecular Complex Detection) plugin from Cytoscape analyzed the top two clusters derived from the network of interactions between
protein and protein. (A) Cluster 1; (B) Cluster 2. The MCODE cluster score > 3. The nodes represented as ellipse (green) and edges as lines (gray).

TABLE 3 | The interconnected regions are clustered from the GSE30153 dataset
using MCODE plugin in Cytoscape.

Cluster Score (density ×

No. of nodes)
Nodes Edges Node IDs

1 5.043 45 116 OBBP2, IL6ST,
CD1C, ABHD15,
PTPRJ, ITGAX,
UNC5B, TLR10,
CD38, GAS6,
NCF4, MAPK9,
DDAH2, PTPN6,
GAB1, ARHGAP24,
CUL3, PROX1,
CYTH4, E2F6,
TNFSF9, VEGFA,
TYMS, IL7, RRM2,
PRKCB, MPEG1,
MARCKS, SLC2A5,
ARHGAP35,
BMP6, TCF3,
AKT1, EIF4EBP2,
GNG11, CAV1,
FYN, EGR1,
SIGLEC10, CD24,
CHEK1, E2F7,
CD84, CDK6,
SRGN

2 3.625 15 29 RRM2, CKAP2,
MGLL, TCF3,
SUB1, EGR1,
POLA2, RPA1,
CHEK1, E2F7,
CASC5, DP2,
E2F6, CDK6, TYMS

complications (Figure 4A). The DEGs from cluster 2 were mainly
enriched in the regulation of the transcription involved in the
G1/S transition of the mitotic cell cycle (GO: 0000083), the
negative regulation of the G0 and G1 transitions (GO: 0070317),

and the p53 signaling pathway (KEGG: 04115) (Figure 4B).
The pathways that were activated in the enrichment analysis
were highly related to B-cell pathophysiology, resulting in events
associated with the immune system, vasculopathy, and kidney.

MetacoreTM GeneGo for Enrichment
Analysis of DEGs
Further functional enrichment analysis was carried out using
MetacoreTM GeneGo software from Clarivate Analytics to
comprehensively dissect the pathways associated with the DEGs.
Using the functional ontology feature in GeneGo, the IDs of
potential genes that were involved in the target pathways were
identified. Based on hypergeometric p-values, the probability
that the intersection of a gene set and associated ontological
objects was random was evaluated. A decreased p-value indicated
that the entity would be more significant to the DEGs,
suggesting a better score. The functional enrichment analysis
of the DEGs defined the top 10 metabolic networks, and
canonical pathway maps are depicted in Figures 5A,B. For
each classification, the significant statistical data rely on a
low p-value. The pathway maps with the lowest p-value are
shown in Figures 6A–C. These are the top-scoring signaling
pathways based on the gene enrichment distribution, which
emphasizes that the DEGs from human sorted B-cells are
triggered via oxidative stress and ROS-induced cellular signaling
(Figure 6A), chemotaxis and lysophosphatidic acid signaling
via GPCRs (Figure 6B), and androgen receptor activation
and downstream signaling in prostate cancer (Figure 6C).
The well-distinguished proteins and complexes of proteins
are shown as specific symbols6; all experimental data are
displayed and have corresponding thermometer-like symbols on
all the maps. The upregulated genes are indicated by a red
thermometer facing upwards.

6https://portal.genego.com/help/MC_legend.pdf
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FIGURE 4 | Visualization of Gene Ontology (GO) enrichment profiles from DEGs using Cytoscape software based on network analysis of ClueGO/CluePedia inferred
from MCODE cluster 1 (A) and cluster 2 (B). The plugin provides a combined enrichment analysis of clusters, including the GO biological process, molecular function,
and pathway from KEGG. The GO term/pathway network connectivity defined by edges and functional clusters on genes shared between terms (kappa score ≥ 0.4)
and displaying pathways only with p≤ 0.05. The size of the node indicates the p-value. The color code of nodes represents the functional group that they belong to.
The most important functional terms specify the pathway names within each class are indicated in bold colored characters. (A) The network enrichment analysis of
cluster 1. Each node constitutes a precise term for cluster 1; (B) The network enrichment analysis of cluster 2. Each node constitutes a precise term for cluster 2.

FIGURE 5 | The top 10 metabolic networks and pathway maps were annotated using GeneGo enrichment analysis for the genes that are differentially expressed
from SLE patients vs. healthy controls, respectively. (A) The content of these metabolic networks was annotated and defined by GeneGo Cortellis Solution software.
Each process represents a pre-set network of protein interactions characteristic for the process, and sorting was performed for the metabolic networks that are
statistically significant. (B) The pathway maps (canonical) of GeneGo display a series of signals and metabolic charts that cover human in a structured manner. The
significant expression of a gene/protein represented in histogram height.
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FIGURE 6 | The enrichment analysis from GeneGo showed three regulated pathways with the highest score that are triggered in the SLE human sorted B-cells.
(A) Oxidative stress ROS induced cellular signaling. (B) Chemotaxis lysophosphatidic acid signaling via G protein-coupled receptors (GPCRs). (C) Androgen receptor
activation and downstream signaling in prostate cancer. The image depicts the protein and protein complexes that are well characterized as a specific symbol;
laboratory data from all reports are correlated and shown on the maps as thermometer-like indicators. The red or blue color upward/downward thermometers
indicate gene transcripts with upregulation/downregulation, respectively. The proteins connected by arrows demonstrate the stimulating and inhibitory effect of the
protein. Further details are given at https://portal.genego.com/help/MC_legend.pdf.

Pathway Map Interaction Results From
Clarivate
From the MetacoreTM results, we extracted the key genes from
the enriched pathways that were differentially expressed, such
as EGR1, CD38, CAV1, and AKT1. The differential expression
of these genes was involved in the activation or inhibition
of specific protein complexes in the enriched pathway maps

(Figure 6 and Table 4). Early growth response 1 (EGR1) is
a transcription factor that interacts with the IGF-2, APEX,
SRD5A1, CD44, and EGFR genes and activates them through
transcriptional regulation. The cyclic adenosine diphosphate
(ADP) ribose hydrolase CD38 is an enzyme involved in the
activation of the genes Semaphorin 4D, CD19, and c-Cbl
through physical interactions. Caveolin 1 (CAV1) is a binding
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TABLE 4 | The interaction reports of key genes from pathway maps by Clarivate Analytics.

Network
object
“from”

Object type Network
object “to”

Object type Effect Mechanism Link info Input IDs Signal P-value PMID

EGR1 Transcription
factor

IGF-2, APEX,
SRD5A1,
CD44, EGFR

Receptor
ligand, generic
enzyme,
generic
enzyme,
generic
receptor,
receptor with
enzyme activity

Activation Transcription
regulation

EGR1 increases IGF II expression, EGR1 binds
to gene APEX promoter and activates APEX
expression, Egr-1 trans-activates the 5alpha-R1
promoter via the Egr-1-binding site at position
−60/−54, Putative EGR1 binding site is found
in gene CD44 promoter, EGR1 binds to gene
EGFR promoter and activates EGFR
expression.

EGR1 1 0.0032807 8584025; 9925986;
10606246; 11336542;
16043101; 19276347;
29092905; 29170465;
15788231; 15936112;
17194527; 18215136;
8628295; 9300687;
12670907; 15155664;
15923644; 19195913;
20357818; 25673149;
1417865; 11830539;
16750517; 17230532;
19032775; 20190820;
23763269

CD38 Generic
enzyme

SEMA4D,
CD19, c-Cbl

Generic
receptor,
generic binding
protein, generic
enzyme

Activation Unspecified,
Binding

CD31-induced activation of CD38 up-regulates
Semaphorin 4D cell-surface expression in B
cells, CD19/CD81 complex interacts with CD38
but this interaction is not required to induce
proliferation in mouse B-lymphocytes,
Fluorescence resource energy transfer and
coimmunoprecipitation showed that c-Cbl and
CD38 bind each other.

CD38 1 0.0031747 15613544; 17327405;
20570673; 22564057;
8695807; 18974118;
19635790

CAV1 Generic
binding
protein

ErbB2, MDR1,
HTR2A,
Androgen
receptor

Receptor with
enzyme activity,
transporter,
GPCR,
transcription
factor

Unspecified,
Inhibition,
activation

Binding HER2 physically interacts with caveolin-1,
Caveolin-1 interacts with p-gp, Down-regulation
of caveolin-1 by siRNA reduced the interaction
between p-gp and caveolin-1, followed by a
decrease in [3H]-Taxol and [3H]-Vinblastine
accumulation in RBE4 cells, Caveolin-1
physically interacts with HTR2A and increases
its activity, Highly conserved 9 amino acid motif
in the ligand binding domains (E domains) was
identified in human/mouse ER alpha and ER
beta, progesterone receptors A and B, and the
androgen receptor. The localization sequence
mediated palmitoylation of each SR, which
facilitated caveolin-1 association, subsequent
membrane localization, and steroid signaling.

CAV1 1 0.0048324 9374534; 9685399;
11697880; 22389470;
14622130; 15239129;
15498565; 17326770;
18485890; 19099191;
22389470; 25788263;
15190056; 8703009;
11278309; 17535799;
17940184; 18786521;
19931639; 22771325;
24375805
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TABLE 4 | Continued

Network
object
“from”

Object
type

Network
object “to”

Object type Effect Mechanism Link info Input IDs Signal P-value PMID

AKT1, AKT
(PKB)

Protein
kinase

FKHR, mTOR,
Bcl-10,
FOXO3A,
HNF3-beta,
GSK3 beta

Transcription
factor, protein
kinase, generic
binding protein

Inhibition,
activation

Phosphorylation AKT1 phosphorylates FKHR1 and decreases its
activity, Increased AKT phosphorylation
regulates different metabolic pathways in liver,
including increases in protein synthesis through
activation of mTOR/p70 (S6kinase), AKT1
phosphorylates Bcl-10 and increases its activity,
AKT1 phosphorylates FOXO3A and decreases
its activity, AKT1 phosphorylates HNF3-beta
and decreases its activity, AKT (PKB) inhibits
GSK3 alpha by phosphorylation at Ser-9.

AKT1 1 0.0010146 10102273; 10358014;
10358075; 10377430;
11030146; 12393870;
16076959; 16099987;
16230533; 16603397;
17186497; 18388859;
18391970; 18420577;
18687691; 18786403;
19703413; 20940043;
21106439; 21157483;
21238503; 21407213;
21440577; 21708191;
21779512; 26053093;
27966458; 30413788;
10567225; 10910062;
11357143; 11438723;
12767043; 14970221;
15208671; 15549092;
16818631; 17660512;
18505677; 18566586;
18566587; 18678273;
21097843; 21177249;
21302298; 21343617;
22084251; 22595285;
23686889; 23872070;
26958938; 29221131;
16280327; 10102273;
12130673; 12767043;
17570479; 17577629;
17957242; 17960591;
18391970; 18687691;
19703413; 20223831;
20399660; 21106439;
21157483; 21440577;
21621563; 21708191;
21775285; 21779512;
24518891; 27966458;
14500912; 11584303;
11701324; 12124352;
12750378; 12808085;
14966899; 14985354;
15016802; 15297258
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protein shown to interact with the ErbB2, MDR1, HTR2A,
and androgen receptor genes, and inhibition or activation is
followed by specific binding to its corresponding proteins. RAC-
alpha serine/threonine-protein kinase (AKT1) is a protein kinase
that interacts with the FKHR, mTOR, Bcl-10, FOXO3A, HNF3-
beta, and GSK3 beta genes via phosphorylation, resulting in
inhibition or activation. These genes were differentially expressed
between sorted B-cells from controls and sorted B-cells from SLE
patients and result in transcriptional regulation and inhibition of
genes/proteins within the top-scored pathway maps.

DISCUSSION

DNA microarrays and next generation sequencing (NGS)
approaches are high-throughput technologies that have resulted
in the emergence of new biomedical discoveries. Data from
microarray and gene expression profiles have enabled a deeper
understanding of the intrinsic molecular pathways of complex
mechanisms of biological systems and their responses (Russo
et al., 2003; Babu, 2004; Perez-Diez et al., 2013; Kumar et al.,
2019). It is therefore highly relevant to examine the peripheral
B-cell transcriptomes of SLE patients and healthy controls
to determine genes that are differentially regulated and their
target pathways. Our current study extracted DEGs from 17
SLE patients and 9 healthy controls from the GEO database
(GSE30153) (Garaud et al., 2011). The top 250 DEGs were
identified, including 4 upregulated and 13 downregulated genes
from the groups through bioinformatics strategies (Table 2 and
Supplementary Table S1). These identified DEGs were subjected
to ClueGO and GeneGo MetacoreTM analysis for GO and
pathway annotation, and constructed the interacting networks of
PPI and used for cluster analysis. In the network, the nodes were
considered proteins, and the edges were their interactions. Using
network topology features, the PPI network can be analyzed to
distinguish the core proteins that are involved in the pathways
(Barabási and Oltvai, 2004; Ideker and Sharan, 2008; Keskin
et al., 2016; Kumar et al., 2019). The identified DEGs from the
present study were analyzed with STRING to exploit the complex
interactions between the DEGs via text mining, evidence from
experiments, and repositories (Figure 2). We performed module
screening of the PPI networks using the MCODE plugin from
Cytoscape. As a result, we obtained significant clusters that are
densely interlinked regions in the PPI network (Figures 3A,B).
Screening of these clusters from the network might help to
identify the essential genes that are involved in the pathogenesis
and progression of SLE. The obtained clusters mostly contained
protein complexes or proteins present in the pathways in the PPI
network, and cluster visualization is essential for comprehending
the properties of the network functionally and systematically
(Krogan et al., 2006; Rahman et al., 2013).

Furthermore, to identify the functional enrichment of these
subnetworks from MCODE, we implemented the ClueGO plugin
for analysis. This revealed that the DEGs were enriched in
most essential pathways, which are highly associated with the
immune system. The GO and KEGG enrichment analyses of the
DEGs from cluster 1 showed that they were mostly enriched

in T-cell costimulation, lymphocyte costimulation, negative
regulation of vascular permeability, the metaphase/anaphase
transition of the mitotic cell cycle, regulation of the transcription
involved in the G1/S transition of mitotic cell cycle, the
hematopoietic cell lineage, the B-cell receptor signaling pathway,
the ErbB signaling pathway, the AGE-RAGE signaling pathway in
diabetic complications, and pancreatic cancer. Interestingly, the
costimulation of T-cell and lymphocyte receptors is recognized
to be important in SLE pathogenesis by enabling communicating
with B-cells for the production of autoantibodies (Shlomchik
et al., 2001; Mak and Kow, 2014). In SLE, negative regulation of
vascular permeability may be induced by different mechanisms;
the dysregulated genes from the cluster 1 subnetwork might
lead to endothelial cell damage and vasculopathy (Favero et al.,
2014; Lee et al., 2019). The differential cell signaling results in
the recruitment of various proteins and inappropriate activation
of B-cells (Zhou et al., 2009; Comte et al., 2015). Oxidative
stress is common in inflammatory disorders and results in
the increased production of reactive carbonyl groups that are
partially converted to AGEs, and the DEGs in the AGE-RAGE
signaling pathway might also be involved in the accumulation
of AGEs in SLE patients and lead to diabetic complications (de
Leeuw et al., 2007; Li et al., 2007; Kurien and Scofield, 2008;
Nienhuis et al., 2008). Interestingly, our enrichment analysis
found that the identified differential expression of the genes
(AKT1, VEGFA, CDK6, and MAPK9) that were involved in
the risk of developing pancreatic cancer in SLE patients was
due to chronic inflammation, suggesting that these genes might
be involved in the pathogenesis of SLE. Our findings are
therefore consistent with the roles of genes that are differentially
expressed in SLE-causing pathways (Figure 4A). The enrichment
analysis of the cluster 2 subnetwork showed that the DEGs
were mostly enriched in the regulation of transcription involved
in the G1/S transition of the mitotic cell cycle, the negative
regulation of the G0 and G1 transitions, and the p53 signaling
pathway. It has been reported that the proliferation of T-cells
is followed by lowered levels of cyclin-dependent kinase (CDK)
inhibitors, and alterations in the expression of CDKs in the
G0/G1 phase were seen in the lymphocytes of SLE patients
(Yamauchi and Bloom, 1997; Tang et al., 2009). The DEGs
involved in the cluster 2 subnetwork might negatively regulate
these pathways. Alterations in cyclin-CDK complex behavior and
cyclin-dependent kinase inhibitors (CDKIs) have been reported
to alter the proliferation of T-cells, oxidative stress, and immune
responses (Santiago-Raber et al., 2001; Tang et al., 2009). p53
signaling is essential for various cellular mechanisms, and defects
in this signaling pathway are associated with SLE development.
Considerably elevated levels of p53 protein are found in SLE
patients with active inflammatory disorders (Miret et al., 2003;
Veeranki and Choubey, 2010). Apoptosis dysregulation appears
to be another cause of SLE pathogenesis because the possible
sources of autoantigens are cell debris from apoptosis in SLE,
and excessive cellular senescence of the immune cells, especially
T-cells, was reported in SLE patients with peripheral blood
mononuclear cells (PBMCs) and skin lesions (Colonna et al.,
2014; Sáenz-Corral et al., 2015). Thus, our identified DEGs
(RRM2, APC, CHEK1, E2F6, TYMS, E2F7, and CDK6) from the
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cluster 2 subnetwork are highly related to and consistent with the
members of the signaling pathways associated with the immune
system, apoptosis, the cell cycle, and vasculopathy.

To clearly define the interactions between the proteins and
signaling pathways examined from the interpretation of STRING,
Cytoscape, MCODE, and ClueGO analyses, we implemented the
GeneGo Metacore software, which incorporates extensive data on
metabolic signaling pathways and their regulatory mechanisms
and contains accurately complied networks of biological systems.
By utilizing the GeneGo Metacore software, we obtained a detailed
description of the DEGs that participate in SLE pathogenesis
based on the determined p-values. Among the top 10 metabolic
networks, the phosphatidylinositol-3,4,5-triphosphate pathway,
O-hexadecanoyl-(L)-carnitine pathway, 1,2-didocosapentaenoyl-
sn-glycerol 3-phosphate pathway, and 1-linoleoyl-glycerol-3-
phosphate pathway were profoundly enriched and significant
in the SLE DEGs (Figure 5A). The increased activity of
phosphatidylinositol-3,4,5-triphosphate stimulates essential cell
signaling pathways such as the pathways involved in cell division,
survival, and the rapid increase in T-lymphocytes in SLE (Comte
et al., 2015). PI3K (phosphatidylinositol 3-kinase) is a protein
kinase that phosphorylates phosphatidylinositol 4,5-phosphate to
regulate the signaling of T-lymphocytes; an increased amount of
PI3K was also observed in an animal model of lupus (Liu et al.,
1998; Grolleau et al., 2000; Niculescu et al., 2003; Joseph et al.,
2014). Modification of the carnitine signaling pathway results
in various organ failures by producing effective responses to
pathogens (Famularo and De Simone, 1995; Famularo et al., 2004).
Thus, the DEGs involved in the O-hexadecanoyl-(L)-carnitine
pathway might lead to increased immune responses. In addition,
the top three pathways associated with the DEGs of sorted B-cells
from SLE patients were mostly enriched in oxidative stress-
and ROS-induced cellular signaling (Figure 6A), chemotaxis
and lysophosphatidic acid signaling via GPCRs (Figure 6B),
and androgen receptor activation and downstream signaling in
prostate cancer (Figure 6C). Recent findings have shown that
oxidative stress and ROS induce molecular alterations that have
adverse effects in SLE patients (Choi et al., 2016; Tsokos et al.,
2016; Lightfoot et al., 2017). Elevated oxidative stress in SLE
patients leads to the accumulation of higher amounts of oxidative
lipoproteins, which are harmful in zebrafish models and cause
additional oxidative damage to the system (Chung et al., 2007;
Park et al., 2016; Lightfoot et al., 2017). Interestingly, our study
identified the EGR1 gene as downregulated in the SLE patients in
comparison to controls, and it also plays a role in ROS signaling.
This clearly indicates that EGR1 might be required to maintain
the oxidative stress and ROS signaling pathways.

Moreover, the DEGs involved in the oxidative stress signaling
pathway might contribute to peripheral neuropathy, damage to
blood vessels, and cardiovascular events, which are the prominent
clinical conditions found in SLE patients. Chemotaxis and
lysophosphatidic acid (LPA) signaling are essential pathways in
autoimmune inflammatory disorders, and GPCRs are responsible
for regulating immune cells via LPA receptors (Yang et al.,
2005; Skoura and Hla, 2009). G2A gene knockout resulted in
the hyperresponsiveness of T-cells to T-cell receptor stimulation,
manifesting as an increased proliferation of T-cells, which may

promote inflammatory phenotypes in G2A-deficient mice (Le
et al., 2001). Various studies have suggested that LPA plays a
vital role in atherosclerosis progression and development by
promoting neutrophil and monocyte adherence and enhancing
inflammatory events (Siess et al., 1999; Smyth et al., 2008; Skoura
and Hla, 2009). The androgen receptor (AR) is a transcription
factor that is activated by a ligand and is essential for cells targeted
by the androgen response (Robeva et al., 2013; Gubbels Bupp and
Jorgensen, 2018). AR also regulates immune function in SLE via
transcriptional regulation of various genes. Our study identified
the transcription factor AR, which positively regulates the c-
Myc, SCAP, prosaposin, and KLF5 genes, which are responsible
for inflammatory responses, and promotes tumor growth factors
and cytokine signaling when activated (Figure 6C). The enriched
terms from ClueGO modules and the GeneGo-identified terms
correlated well in this study and validate the significance of the
findings from the pathway maps. The combined results from
these two enrichment analyses suggest that B-cells from SLE
patients and B-cells from healthy controls undergo differential
gene expression associated with positive regulation of kidney
development, the hematopoietic cell lineage, positive regulation
of vasoconstriction, T-cell costimulation, and regulation of
the transcription involved in the G1/S transition of the
mitotic cell cycle.

Furthermore, the interaction results from the GeneGo
analysis provided the essential genes (EGR1, CD38, CAV1, and
AKT1) from the pathway maps constructed from the DEGs.
Among them, EGR1 (early growth response 1) is a transcription
factor shown to interact with the IGF-2 (insulin-like growth
factor 2), APEX (apurinic/apyrimidinic endodeoxyribonuclease
1), SRD5A1 (steroid 5 alpha-reductase 1), CD44 (cell surface
glycoprotein CD44), and EGFR (epidermal growth factor
receptor) genes and transcriptionally regulate them by activating
or promoting their expression in sorted B-cells from patients with
SLE (Liu et al., 1995; Recio and Merlino, 2003; Lee et al., 2005;
Pines et al., 2005; Blanchard et al., 2007; Rui et al., 2008; Cullen
et al., 2010; Sauer et al., 2010). The cyclic ADP ribose hydrolase
(CD38) is also known as cluster of differentiation 38 protein,
can be found on several immune cells, and activates SEMA4D
(semaphorin-4D or cluster of differentiation 100), CD19 (B-
lymphocyte antigen CD19 or cluster of differentiation 19), and
c-Cbl (Casitas B-lineage lymphoma proto-oncogene) (Deaglio
et al., 2005, 2007; Shen and Yen, 2008; Vences-Catalán et al.,
2012). These interactions with CD38 result in the activation of
B-lymphocytes and increase immune responses in SLE patients.
The protein caveolin 1 (CAV1) has been shown to interact
with the ErbB2 (Erb-B2 receptor tyrosine kinase 2), MDR1
(multidrug resistance protein 1), HTR2A (5-hydroxytryptamine
receptor 2A), and AR (androgen receptor) genes. Several
studies have suggested that caveolin 1 physically interacts with
HER2, p-gp, HTR2A, and AR and activates/inhibits them by
binding to their specific caveolin-binding motif (Couet et al.,
1997; Lu et al., 2001; Razani and Lisanti, 2001; Bhatnagar
et al., 2004; Bennett et al., 2010, 2014; Yu et al., 2012). AKT1
is a protein kinase that interacts with FKHR (Forkhead box
protein O1), mTOR (mechanistic target of rapamycin), Bcl-10
(B-cell lymphoma/leukemia 10), FOXO3A (Forkhead box O3),
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FIGURE 7 | The interrelation analysis of genes EGR1, CD38, CAV1, and AKT1 that strongly associated to SLE. Each gene involved in different pathways via
interacting to each other. Inbuilt color code was provided to all the genes based on the STRING tool from Cytoscape.

HNF3-beta (hepatocyte nuclear factor 3-beta), and GSK3 beta
(glycogen synthase kinase three beta). The protein kinase AKT1
inhibits FKHR via phosphorylation and decreases its activity
(Biggs et al., 1999; Rena et al., 1999; Tang et al., 1999; Hay,
2011), whereas it increases its activity via phosphorylation
of mTOR (Navé et al., 1999; Sekuliæ et al., 2000; Ikenoue
et al., 2008; Thirumal Kumar et al., 2019). Additionally, AKT1
phosphorylates Bcl-10 at the specific residues Ser231 and Ser218,
increasing its activity (Yeh et al., 2006), while it inhibits the
action of FOXO3A via phosphorylation and decreases its activity,
increasing the survival of cells (Brunet et al., 1999; Linding et al.,
2007; Calnan and Brunet, 2008; Li et al., 2008; Tzivion et al.,
2011). AKT1 decreases HNF3-beta activity by phosphorylating
it at Thr156 (Wolfrum et al., 2003), whereas phosphorylation of
GSK3-beta by AKT1 occurs at Ser9 to inhibit its activity (Brazil
and Hemmings, 2001; Salas et al., 2004; Kuemmerle, 2005; Shin
et al., 2006; Markou et al., 2008). This suggests the vital genes
we identified from the DEGs of patients with SLE play essential
roles in the development and progression of SLE via different
signaling pathways to increase autoimmune responses.

In addition to the interaction analysis, we carried out
interrelation analysis for the essential genes to determine the
relationships between the genes, which implicitly or explicitly
interacted with each other. Interestingly, the identified genes
indirectly communicated with each other via molecular signaling
pathways related to mTOR signaling, apoptosis, PI3K-Akt
signaling, the hematopoietic cell lineage, positive regulation of
vasoconstriction, signaling by receptor tyrosine kinases, AGE-
RAGE signaling, and lymphocyte and T-cell costimulation
(Figure 7). EGR1 and AKT1 are directly involved in oxidative
stress via ROS and AGE-RAGE signaling, whereas CAV1 is
directly involved in tyrosine kinase receptor signaling and
lymphocyte and T-cell costimulation. CD38 is directly associated
with the hematopoietic cell lineage and positive regulation of
vasoconstriction. Overall, the dysregulation of the indicated
pathways in SLE patients is a result of differential gene expression.
The essential genes are differentially expressed between cells from
patients with SLE and cells from healthy controls and are present
in important signaling cascades, which could be a crucial factor
for SLE development.
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CONCLUSION

Taken together, the results of our comprehensive bioinformatics
analysis showed that the DEGs identified between sorted
B-cells from patients with SLE sorted B-cells from controls
could play a significant role in the growth, progression, and
development of SLE. This study identified 4 upregulated and 13
downregulated genes, including essential genes (EGR1, CD38,
CAV1, and AKT1), from the pathway enrichment analysis.
Indeed, the identified pathways from the enrichment analysis
were strongly related to the immune system, vasculopathy,
cardiovascular functions, and inflammatory responses, which
are processes that can lead to the development of SLE. The
broad understanding of SLE pathophysiology from this study
will allow us to identify and develop therapies targeting
SLE and contribute to personalized treatment strategies.
Collectively, the study findings could aid in enhancing our
understanding of the fundamental molecular processes of SLE
and provide possible strategies for early diagnosis in SLE; in
addition, combinatorial therapeutic strategies using oxidative
stress and ROS cellular signaling and lysophosphatidic acid
signaling via GPCRs might have symbiotic effects on the
molecular events in SLE.
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microRNAs regulate subcellular functions through distinct molecular mechanisms. In this
study, we used normal and pathogenic fibroblasts in pelvic fracture urethral distraction
defects (PFUDD) patients. PFUDD is a common disease that could severely affect
patients’ life quality, yet little is known about the molecular mechanism associated
with pathogenic fibrosis in PFUDD. Our data showed that let-7i-5p performs a multi-
functional role in distinct signaling transduction pathways involved in cell morphology
and cell migration in both normal and pathogenic fibroblasts. By analyzing the
molecular mechanism associated with its functions, we found that let-7i-5p regulates
through its direct target genes involved in collagen metabolism, cell proliferation and
differentiation, TGF-beta signaling, DNA repair and ubiquitination, gene silencing and
oxygen homeostasis. We conclude that let-7i-5p plays an essential role in regulating cell
shape and tissue elasticity, cell migration, cell morphology and cytoskeleton, and could
serve as a potential target for clinical treatment of urethral stricture patients.

Keywords: let-7i-5p, microRNA, cell migration, cell morphology, fibroblast

INTRODUCTION

Pelvic fracture urethral distraction defects (PFUDD) is a common disease that could severely affects
patients’ life quality, largely due to excessive fibrosis and associated urethral stricture (Zhang et al.,
2018). The current incidence of PFUDD is noted to be variable, usually between 5 and 25% of pelvic
fractures, with a frequency of 0.32–5/100,000 for men and 0.46–7.25/100,000 for women (Alwaal
et al., 2015; Barratt et al., 2018; Dixon et al., 2018). Pelvic fractures resulting in PFUDD has mortality
rates between 5 and 33% (Barratt et al., 2018). Fibrosis is a key factor responsible for pathologic
changes related to urethral stricture (in both primary or recurrent diseases; Zhao et al., 2018). Over
the last few decades, microRNAs and their regulation of fibrosis have been studied in many specific
organs, such as liver, heart, skin, kidney, and lung (Jiang et al., 2010, 2017; Vettori et al., 2012;
Zhu et al., 2013; Rajasekaran et al., 2015; Li et al., 2016; O’Reilly, 2016; Bagnato et al., 2017). The
major interests are in miR-29 and TGF-beta signaling pathway, focusing on their role of molecular
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regulation of fibrosis and/or associated excessive extracellular
matrix deposition (Rajasekaran et al., 2015; O’Reilly, 2016).
miRNAs in specific diseases, such as idiopathic pulmonary
fibrosis (IPF), together with their functions in epithelial-
mesenchymal transition (EMT) and trans-differentiation, have
also been studied (Li et al., 2016). Thus, it would be extremely
helpful to further understand molecular mechanisms and related
miRNA signaling involved in PFUDD-associated fibrosis, in
order to discover novel targets to prevent PFUDD by suppressing
urethral stricture.

Our group recently performed molecular profiling of
microRNAs in PFUDD patients and summarized a few candidate
genes that may serve regulatory functions in fibrosis (Zhang
et al., 2018). We found that miR-29 expression is moderate
in normal and pathogenic scar tissues in PFUDD patients,
and that expression of hsa-miR-29b-3p and hsa-miR-29c-3p
were both slightly downregulated in scar tissues (0.64 vs. 0.69,
scar vs. normal) from PFUDD patients (Zhang et al., 2018).
Interestingly, let-7i-5p expression appeared to be one of the
highest among all the microRNAs, and its expression showed an
increase in scar tissue comparing to normal tissue (Zhang et al.,
2018). Based on raw counts, the expression of global miRNA
in normal tissue is 1,522 ± 488 (mean ± standard error), and
in scar tissue it is 1,512 ± 483 (mean ± standard error). For
let-7i-5p, the expression is 57,325 in normal tissues and 76,083
in scar tissues. Given its impressive abundance in normal and
pathogenic fibroblasts, we hypothesize that let-7i-5p may serve
as an important regulator in cellular events. Thus, we extended
our work of microRNA analysis in PFUDD and discovered let-
7i-5p as a novel regulator in multiple cellular events in normal
and pathogenic urethral tissues. By up- or down-regulating
let-7i-5p in normal human fibroblasts and pathogenic tissues, we
evaluated the expression of possible molecular targets involved
in those cellular functions (COL1A1, COL3A1, ELN, MMP1,
VIM, FN1, ACTIN, TGFBR1, and TIMP1). Our data confirmed
that let-7i-5p regulates those cellular events in distinct signaling
pathways and the multi-functional regulations are through
corresponding downstream target genes. In conclusion, let-7i-5p
plays an essential role in regulating cell shape and tissue elasticity,
cell migration, cell morphology and cytoskeleton, and it could
serve as a potential biomarker and therapeutic target for clinical
treatment in PFUDD patients.

MATERIALS AND METHODS

Urethral Scar Samples
The study was approved by the Ethics Committee of Shanghai
Sixth People’s Hospital. Consents were obtained from all of the
patients to use their samples in scientific research. Scar tissues
in urethra (Human scar fibroblasts, or HSF) were harvested
from PFUDD patients undergoing urethroplasty (n = 5). All five
subjects are males (gender ratio is 100% male) with ages ranging
from 16 to 59. Patients’ baseline information was summarized
in Table 1. The etiology of patients with urethral stricture
was PFUDD. All the participating patients underwent primary
surgery. The mean length of stricture is 1.5 cm and the locations

TABLE 1 | Patient baseline characteristics.

Number of subject Age Gender Health status

1 59 Male PFUDD

2 50 Male PFUDD

3 16 Male PFUDD

4 43 Male PFUDD

5 44 Male PFUDD

were all at the membranous segment of urethra. Samples were
harvested after surgery, sectioned and stored at –80◦C until the
process of RNA extraction.

Human Cell Line
Normal human foreskin fibroblasts (HFF, Catalog# SCSP-106)
were provided by Stem Cell Bank, Chinese Academy of Sciences.

Cell Transfection
HSF and HFF cells were growing in 10 cm dishes in
Dulbecco’s MEM (DMEM, Gibco, Cat.# 12100-046, Carlsbad,
CA, United States) supplemented with Fetal Bovine Serum (FBS)
(Gibco, Cat.#10099-141, Carlsbad, CA, United States) to 10% by
volume and Penicillin-Streptomycin (100 µ/mL) (Gibco, Cat.#
15140122, Carlsbad, CA, United States). 80–90% confluency cells
were then detached using Trypsin (Gibco, Cat.# 25200056) and
plated at 1 × 105 cells/mL in 6-well dishes (2 mL/well), and
incubate at 37◦C overnight. The cells were transfected with
lentiviral constructs (empty control construct, customized lenti-
KD miRNA and lenti-OE miRNA from GENECHEM, Shanghai,
China) to overexpress or knock down of let-7i-5p according to
the manufacturer’s protocol. Transfection mixture was replaced
by 2 mL DMEM (10% FBS) medium after 12 h. Transfected cells
were grown for 72 h before imaging.

Imaging
To confirm stable expression of each transfected construct,
GFP expression of transfected cells was observed and evaluated
by an Olympus IX70 microscope under fluorescent channel.
For regular bright field imaging (for Transwell assay), samples
were imaged with the Olympus IX70 microscope under
bright light channel.

Cell Migration Assay
Inserts with 8 µM pore size (Corning-Costar, Lowell MA) were
used with matching 24-well transwell chambers. Cells were
suspended in serum-free DMEM medium and adjusted to 2× 105

cells/mL. 100–150 µL cell suspension were placed in the upper
chambers. The lower chambers were filled with DMEM medium
with 10% FBS (600–800 µL/well). Cells were incubated at 37C
for 24 h, the inserts were removed and inner side was wiped
with cotton swaps. The inserts were then fixed in methanol
for 30 min at room temperature, and stained with crystal
violet solution (Cat.#A100528-0025, Sangon Biotech Shanghai,
China) for 15–30 min and were peeled off after washing and
mounted on the slides. The migrated cells were imaged with an
OLYMPUS IX70 microscope using bright light channel. Six cell
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[HFF (NC (negative control)/SI ((for siRNA-led knockdown)/OE
(overexpression), or FNC/FSI/FOE and HSF (NC (negative
control)/SI ((for siRNA-led knockdown)/OE (overexpression), or
SNC/SSI/SOE] were analyzed and triplicate experiments were
done for all the cell types.

Reverse Transcription (RT)-qPCR for
miRNAs and Targeted Genes
Total RNA was extracted following standard protocol by
Servicebio, Inc. (Wuhan Servicebio Technology Co., Ltd.,
Wuhan, Hubei, China). The primers used for PCR were
designed with Primer Premier software (version 5.0; Premier
Biosoft International, Palo Alto, CA, United States; primer
sequence details are summarized in Table 2). cDNA synthesis
was performed on a GeneAmp PCR System 9700 (Applied
Biosystems; Thermo Fisher Scientific, Inc., Waltham, MA,
United States) following the manufacturer’s instructions
(RevertAid First Strand cDNA Synthesis kit, Cat.# K1622,
Thermo Fisher Scientific, Inc., Waltham, MA, United States).
qPCR was performed on a ViiA 7 Real-time PCR System
(Applied Biosystems; Thermo Fisher Scientific, Inc.) using a
PowerUp SYBR Green Master Mix (Cat.# A25778, Thermo
Fisher Scientific, Inc.). The PCR thermal procedure is (1) 95◦C,
10min, 2) 95◦C, 15s– > 60◦C, 60 s, 40 cycles. The fold change
for each miRNA was calculated using the 2−11Cq method
(Livak and Schmittgen, 2001). U6 expression level was used to

TABLE 2 | RT-PCR primers.

Gene RefSeq Primer name Primer Sequence(5′- > 3′)

NM_001101 H-ACTIN-S CACCCAGCACAATGAAGATCAAGAT

H-ACTIN-A CCAGTTTTTAAATCCTGAGTCAAGC

U6-S CTCGCTTCGGCAGCACA

U6-A AACGCTTCACGAATTTGCGT

General control
primer-A

TGGTGTCGTGGAGTCG

NM_000090.3 H-COL3A1-S TTCCTTCGACTTCTCTCCAGCC

H-COL3A1-A CCCAGTGTGTTTCGTGCAACC

NM_000501.3 H-ELASTIN-S GGCATTCCTACTTACGGGGTT

H-ELASTIN-A GCTTCGGGGGAAATGCCAAC

NM_212482.2 H-FN1-S ACACAGAACTATGATGCCGACCA

H-FN1-A TGTCCATTCCCCACGACCAT

NM_003380.3 H-VIMENTIN-S GAAGCCGAAAACACCCTGCAATC

H-VIMENTIN-A TGCAGCTCCTGGATTTCCTCT

NM_004612.3 H-TGFBR1-S GGACCCTTCATTAGATCGCCCTT

H-TGFBR1-A CAACTTCTTCTCCCCGCCACT

NM_001145938.1 H-MMP1-S TACGATTCGGGGAGAAGTGAT

H-MMP1-A AAGCCCATTTGGCAGTTGTG

NM_003254.2 H-TIMP1-S TCCTGTTGTTGCTGTGGCTGAT

H-TIMP1-A AAACTCCTCGCTGCGGTTGT

NM_000088.3 H-COL1A1-S CCAAGACGAAGACATCCCACCA

H-COL1A1-A CCGTTGTCGCAGACGCAGAT

MIMAT0000415 hsa-let-7i-5p-RT CTCAACTGGTGTCGTGGAGTCGG
CAATTCAGTTGAGAACAGCAC

hsa-let-7i-5p-S ACACTCCAGCTGGGTGAGGTAGT
AGTTTGT

normalize the mRNA expression data. Expression in six cell
types (HFF (NC/SI/OE) and HSF (NC/SI/OE) were analyzed and
triplicate experiments were done for all the cell types.

Western Blotting
Whole protein lysate was extracted using RIPA Lysis buffer
(Cat.#20101ES60, Yeasen, Shanghai, China) following
instructions by the manufacturer. Equal concentration of
protein was loaded on 5–10% SDS-PAGE gels and transferred
onto a PVDF membrane (Cat.# IPVH000010, MilliporeSigma,
Burlington, MA, United States). Primary antibodies for
COPS6, COPS8, Ago1, Elf1,Tlr4, insulin-like growth factor 1
(somatomedin C) (IGF1), Collagen Type VIII (Collagen8), IL13,
Bmp4 and tubulin were listed in Table 3. Bands were visualized
using horse-radish peroxidase (HRP) conjugated secondary
antibodies (Table 3) in conjunction with Immobilon ECL Ultra
Western HRP Substrate (Cat.#WBKLS0100, MilliporeSigma,
Burlington, MA, United States) via ImageQuant LAS 4000mini
[HFF (NC/SI/OE) and HSF (NC/SI/OE)] were analyzed
and triplicate experiments were done for all the cell types.
AlphaEaseFC software (Genetic Technologies Inc., Miami, FL,
United States) was used to analyze the density of electrophoretic
Western blot bands by Servicebio, Inc. (Wuhan Servicebio
Technology Co., Ltd., Wuhan, Hubei, China). GAPDH
expression level was used to normalize the protein expression
data. Intensity analysis was done for one of the experiments.

Enzyme Linked Immunoabsorbent Assay
(ELISA)
Supernatant of cell lysates was collected for each of six
cell types [HFF (NC/SI/OE) and HSF (NC/SI/OE)], and
the levels of MMP2, TGFβ1, and TIMP1 were quantified
using ELISA kits as per manufacturers’ instructions (Human
Matrix Metalloproteinase 2/Gelatinase A (MMP-2) ELISA
Kit, Cat.#CSB-E04675h, CUSABio, Wuhan, Hubei, China;
Human TGF-beta1 ELISA Kit, Cat.#EK1811, MultiSciences,
Hangzhou, Zhejiang, China; Human TIMP1 ELISA Kit,
Cat.#EK11382, MultiSciences).

Statistical Analysis
Student t-test were performed for let-7i-5p expression
comparison (unpaired, two tails, heteroscedastic) in six cell types
(FNC, FSI, FOE, SNC, SSI, and SOE). ANOVA One Way analysis
were also performed for validation (Supplementary File S1).

Construction of the Let-7i-5p-Target
Gene Regulatory Network and
Functional Enrichment Analysis
miTarBase database (7.0) was used to predict the target genes
of let-7i-5p1. The STRING database (www.string-db.org) was
used to establish the protein-protein interaction (PPI) network.
GO and KEGG pathway enrichment analyses were performed
to determine the biological significance of associated proteins.
Cytoscape version 3.7.2 was used to visualize the results.

1http://mirtarbase.mbc.nctu.edu.tw/php/index.php
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TABLE 3 | Commercial antibodies.

Antibody Target protein Provider Catalog number Dilution

Peroxidase-Conjugated Goat anti-rabbit IgG (H + L) Rabbit IgG (H + L) Yeasen 33101ES60 1:5000

Peroxidase-Conjugated Goat anti-mouse IgG (H + L) Mouse IgG Yeasen 33201ES60 1:5000

Rabbit Anti-Goat IgG (H + L) HRP Goat IgG (H + L) Multisciences 70-RAG007 1:5000

Rabbit-COPS6 Polyclonal Antibody COPS6 ABclonal A7072 1:1000

Rabbit-anti-COPS8/COP9 (polyclonal) COPS8/COP9 Proteintech 10089-2-AP 1:1000

Rabbit-anti-NEDD8 (polyclonal) NEDD8 Proteintech 16777-1-AP 1:1000

Rabbit-anti-CUL1 (polyclonal) Cullin-1 Proteintech 12895-1-AP 1:1000

Argonaute 1 (D84G10) XP Rabbit mAb #5053 Ago1 CST 5053T 1:1000

Rabbit-anti-ELF1 (polyclonal) Elf1 Proteintech 22565-1-AP 1:1000

Mouse-anti-TLR4 (monoclonal) Tlr4 Proteintech 66350-1-lg 1:1000

IGF1B-specific polyclonal antibody Insulin-like growth factor 1 Proteintech 20215-1-AP 1:1000

Rabbit-anti-Collagen Type VIII (polyclonal) Collagen Type VIII Proteintech 17251-1-AP 1:1000

Rabbit-anti-IL13 (polyclonal) IL13 SAB 38354 1:1000

Rabbit-anti-BMP4 (polyclonal) BMP4 Proteintech 12492-1-AP 1:1000

Mouse-anti -beta Tubulin Mouse mAb Tubulin Servibebio GB13017-2 1:1000

RESULTS

Let-7i-5p Regulates Cell Morphology and
Motility in Normal and Pathogenic
Fibroblasts
Let-7i-5p is a member of Lethal-7 (let-7) microRNA family,
which is widely observed and highly conservative across species,
from reptiles to mammals (Figure 1A). Let-7 family members
were among the first discovered microRNAs and were shown to
be an essential regulator of development in C. elegans (Reinhart
et al., 2000), and let-7 microRNA family has been reported
to regulate allergic inflammation through T cells (O’Connell
et al., 2012). In human tissues, hsa-let-7i-5p showed extremely
high expression in thyroid, and relatively high expression in
spinal cord, brain, muscle and vein, with tissue specific index
score at 0.905 (indicating a high tissue expression specificity in
thyroid; Figure 1B; Ludwig et al., 2016), suggesting a potential
role of hsa-let-7i-5p in metabolism, fibroblast proliferation
and differentiation and tissue development. However, little is
known about the role of let-7i-5p or the related molecular
mechanism involved in normal fibroblast growth or fibrosis-
related scar formation.

Based on a recent miRNA profiling using PFUDD patients’
tissues, we found that let-7i-5p expression was really high
in both normal and pathogenic fibroblasts based on miRNA
sequencing. To manipulate the knock-down or overexpression
of let-7i-5p, the miRNA level was up- and down-regulated
in normal (HFF) and pathogenic (HSF) fibroblasts using
Lenti-viral transfection and significant expression changes were
observed (Figure 1C). Dysregulation of let-7i-5p in normal
fibroblasts caused cell morphology changes yet had little influence
on that of pathogenic fibroblasts (Figure 2). Surprisingly,
either overexpression or knockdown of let-7i-5p resulted
in rounder but more spiky cells. Similar phenotypes were
reported to be caused by null-functional Dematin (an actin
binding/bundling protein), and was associated with null effect

in mutant fibroblasts and impaired wound healing process
(Mohseni and Chishti, 2008).

To see whether let-7i-5p could regulate cell motility, we
performed cell migration assay for normal and pathogenic
fibroblasts. Inhibition of let-7i-5p led to a clear promotion of cell
motility, while overexpression of let-7i-5p displayed a severely
suppression (Figure 3). The regulation patterns are similar in
both normal and pathogenic fibroblasts (Figure 3).

Let-7i-5p Regulates Cellular Processes
Through Three Distinct Signaling
Pathways
We then performed real time quantitative PCR to evaluate
the mRNA expression of potential molecular regulators in
those cellular processes. Interestingly, we found that up- or
down-regulation of let-7i-5p results in three different regulatory
patterns of those genes (Figure 4 and Table 4).

In the first group, let-7i-5p knockdown resulted in decreased
mRNA expression of COL1A1, COL3A1, and ELN in normal
fibroblasts, while overexpression of let-7i-5p resulted in
significantly increased expression of those genes (Figure 4,
Group 1). This suggests a positive correlation between let-7i-5p
and those three genes. Pathogenic status (whether the cell is
normal or pathogenic fibroblasts) doesn’t seem to affect this
regulation, as the positive regulatory pattern is consistent in
normal and fibrotic tissues for COL1A1 and ELN. The only
exception of COL3A1 in let-7i-5p knockdown pathogenic
fibroblasts, which had a slight increased expression instead of
down regulation.

In the second group, we observed quite opposite regulatory
effects on mRNA expression of MMP1 and VIM by let-7i-
5p (Figure 4, Group 2). Knockdown of let-7i-5p significantly
enhanced MMP1 and VIM expression, while overexpression of
let-7i-5p caused a decrease in expression. Strikingly, this negative
regulation is completely reversed in pathogenic fibroblasts,
as downregulation of let-7i-5p decreased the expression of
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FIGURE 1 | Let-7i-5p is conservative among different species and hsa-let-7i-5p is expressed differentially in normal human tissues. By lenti-viral infection the
let-7i-5p expression was manipulated either up or down in normal and scar tissues. (A) Let-7i-5p sequence comparison across different species. The conservative
sequences are highlighted. aca, Anolis carolinensis; ami, Alligator mississippiensis; chi, Capra hircus; cli, Columba livia; cpi, Chrysemys picta; cpo, Cavia porcellus;
dno, Dasypus novemcinctus; gmo, Gadus morhua; hsa, Homo sapiens; mdo, Monodelphis domestica; mmL, Macaca mulatta; mmu, Mus musculus; ocu,
Oryctolagus cuniculus; oha, Ophiophagus hannah; pal, Pteropus alecto; pbv, Python bivittatus; rno, Rattus Norvegicus; ssa, Salmo Salar; ssc, Sus scrofa; tch,
Tupaia chinensis; tgu, Taeniopygia guttata; xla, Xenopus laevis. (B) Hsa-let-7i-5p expression levels in normal human tissues. Data based on two individuals’
microRNA sequencing results (Ludwig et al., 2016) and average of normalized value by quantile normalization were used. (C) let-7i-5p level was up- and
down-regulated in normal and pathogenic fibroblasts by Lenti-viral transfection. *p < 0.001. F, normal fibroblasts (HFF). S, scar tissues. NC, non-transfected control.
SI, transfected by lenti-KD miRNA to knock down hsa-let-7i-5p expression. OE, transfected by lenti-OE miRNA to overexpress hsa-let-7i-5p.

MMP1 and VIM, and upregulation of let-7i-5p increased their
expression. MMP2 expression displayed a similar negative
pattern at protein level, although the expression level of MMP2
was almost doubled in control pathogenic fibroblasts (SNC)
comparing to normal control cells (FNC) (Figure 5). This
strongly suggests that regulation of MMP1 and VIM by let-7i-5p
is dependent on the pathogenic status of the fibroblasts.

The third group of regulated genes contains FN1, ACTIN,
TGFBR1, and TIMP1, which had increased expression with
either knockdown or overexpression of let-7i-5p in both normal
and pathogenic fibroblasts (Figure 4, Group 3). This suggests
dysregulated let-7i-5p could boost up the expression of those
target genes, regardless of the actual expression change of let-
7i-5p (whether it is up- or down-regulated). It is worth noting
that the enhanced expression was impressively high for all four
target genes in fibrotic cells when let-7i-5p is over-expressed
(Figure 4), suggesting that pathogenic fibroblasts could further

amplify the regulatory effect of those genes resulted from let-7i-
5p overexpression, while normal cells still maintained a retraining
ability to suppress the dysregulation of target genes caused by let-
7i-5p level changes. We also evaluated TGF-beta1, the ligand of
TgfbR1, in corresponding cell types, and observed an opposite
pattern of regulation in normal fibroblasts (Figure 5), which
indicates a negative feedback regulation of TGF-beta in response
to the TGFbetaR1 protein level changes in normal cells, and this
regulation was lost in the pathogenic cells.

Let-7i-5p Regulates Subcellular
Functions in Normal Fibroblasts Through
Direct Downstream Gene Targets
In normal human fibroblasts, manipulated let-7i-5p expression
resulted in positive regulations of COL1A1, COL3A1 and ELN),
negative regulations of MMP1 and VIM, and constitutively
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FIGURE 2 | Let-7i-5p level change results in cell morphology changes in normal fibroblasts, but not in pathogenic fibroblasts. Scale bar in bright field images, 100
µm. Scale bar in fluorescent images, 25 µm.

FIGURE 3 | Overexpression of let-7i-5p could suppress migration, while
inhibition could promote cell migration in both normal and pathogenic
fibroblasts.

increased expression of FN1, ACTIN, TGFBR1, and TIMP1 at
mRNA level. Given the fact that those molecules are involved
in different signaling transduction pathways and corresponding

subcellular functions, we performed functional enrichment
analysis for those genes and let-7i-5p. We generated let-7i-5p
centered signaling network based on protein-protein interaction
and direct binding targets for let-7i-5p (Figure 6). Our data
strongly suggest a multi-functional role of let-7i-5p in normal
fibroblasts, including protein deneddylation, posttranscriptional
gene silencing, oxygen homeostatic process (HIF-1 signaling),
regulation of fibroblast proliferation, collagen metabolic process,
pathogenic E. coli infection, neural nucleus development,
extracellular matrix disassembly, etc. (Figure 6). Among the
twenty direct targets predicted in silico, we found nine genes
(COL8A1, IL13, BMP4, LRIG3, COPS6, COPS8, AGO1, TLR4,
and IGF-1) which are predicted to interact with the molecules in
the three signaling transduction pathways and might be serving
as the connectors. To confirm let-7i-5p regulates through those
direct downstream targets, we checked their expression in normal
fibroblasts with up- or down-regulated let-7i-5p expression.
We confirmed that let-7i-5p could directly regulate collagen
metabolic process through COL8A1, fibroblast proliferation
and epithelial cell differentiation through IL13, TGFbeta
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TABLE 4 | mRNA expressions of let-7i-5p regulated targets.

Group 1 Group 2 Group 3

mRNA COL1A1 COL3A1 ELN MMP1 VIM FN1 ACTIN TGBR1 TIMP1

1 FNC Control Control Control Control Control Control Control Control Control

2 FSI Down Down Down Up Up Up Up Up Up

3 FOE Up Up Up Down Down Up Up Up Up

4 SNC Control Control Control Control Control Control Control Control Control

5 SSI Down Up Down Down Down Up Up Up Up

6 SOE Up Up Up Up Up Up Up Up Up

FIGURE 4 | Let-7i-5p regulates signaling molecules in normal and pathogenic fibroblasts. Quantitative analysis of mRNA expression levels of let-7i-5p’s downstream
targets were performed. Group 1, target genes positively regulated by hsa-let-7i-5p in normal fibroblast cells at mRNA level. Group 2, target genes negatively
regulated by hsa-let-7i-5p in normal fibroblast cells at mRNA level. Group 3, target genes constitutively upregulated in normal and pathogenic fibroblasts at mRNA
level with either suppressed or increased hsa-let-7i-5p expression. Error bar, standard error. mRNA level expression was evaluated by quantitative real-time PCR.

signaling through BMP4, DNA damage recognition, DNA
repair and ubiquitination through LRIG3, COPS6 and COPS8,
posttranscriptional gene silencing through AGO1 and ELF1 and
oxygen homeostasis through TLR4 and IGF1 (Figure 7).

DISCUSSION

Let-7i-5p Regulates Collagen Metabolic
Process and Tissue Elasticity Through
COL8A1, COL1A1, and COL3A1
The positive regulation of COL1A1, COL3A1, and ELN mRNA
expressions in normal fibroblasts was largely retained in
pathogenic cells, except for COL3A1, which has a slightly
increased expression with decreased let-7i-5p. This indicates
that the regulation of those target genes by let-7i-5p was
not interrupted in pathogenic fibroblasts, or the functions
of let-7i-5p in this specific signaling pathway is independent
of the fibrotic status of cells. Since those proteins function
together to strengthen and support connective tissues in the
body, our data suggest an independent role of let-7i-5p in
regulating collagen metabolism and tissue elasticity. This is in
concordance with several studies elucidating the association
between tissue elasticity and miRNA regulation. For example,
in primitive neuroectodermal tumor (PNET) stem cells, tissue
elasticity was suggested to promote miRNA silencing and
downregulation of target genes (Vu et al., 2015). In mouse
models, miR-29-3p could suppress the mRNA expression of

COL1A1 and COL1A3 either with or without the induction
by TGF-β1 and prevent S. japonicum-induced liver fibrosis
(Tao et al., 2018). Also, Col1a1 and Col3a1 were overexpressed
during active inflammation and murine colitis induced by
2,4,6-trinitrobenzene sulfonic acid (TNBS) hapten (Wu and
Chakravarti, 2007). Given that COL8A1 is a direct target
of let-7i-5p and it is regulated in the same positive pattern
as that for COL1A1, COL1A3 in normal cells, our data
suggest a positive regulation pattern of collagen metabolic
process by let-7i-5p through COL8A1, COL1A1, and COL3A1
(Figures 4, 7).

FIGURE 5 | Let-7i-5p regulates MMP2 and TGF-beta1 proteins in normal and
pathogenic fibroblasts (ELISA). Protein level expression was evaluated by
ELISA.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 May 2020 | Volume 8 | Article 428126

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00428 May 12, 2020 Time: 19:55 # 8

Zhang et al. Let-7i-5p in Normal and PFUDD Fibroblasts

FIGURE 6 | Let-7i-5p regulation mechanism is summarized in distinct functional pathways. Direct targets were connected to let-7i-5p by golden lines.

Let-7i-5p Regulates Extracellular Matrix
(ECM) and Cell Migration Through
MMP1, MMP2, and Vimentin
Let-7i-5p negatively regulated VIM and MMP1 in normal cells,
and this regulation was interrupted in pathogenic fibroblasts, as
their mRNA expressions were completely reversed from negative
(in normal cells) to positive (in pathogenic cells) regulatory
pattern (Figure 4). This observation indicates that let-7i-5p
functions as an upstream regulator of Vim and MMP1 and its
regulation is dependent on pathogenic status of the cells.

TGF-β1 and MMP2 protein levels were up-regulated, together
with increased cell migratory capability in pathogenic fibroblasts
comparing to normal cells (Figure 5). This is consistent with
what was reported in human hepatic stellate cells, in which
stimulation with TGF-β1 resulted in an increase in migratory
capacity and up-regulated MMP-2 activity (Yang et al., 2003).
However, in pathogenic fibroblasts with overexpressed let-7i-5p,
the cell motility was decreased comparing to control pathogenic

fibroblasts with no let-7i-5p change (Figure 3, lower right panel
and lower left panel), while TGF-β1 and MMP2 expression levels
were actually higher in let-7i-5p overexpressed pathogenic cells
than that in control pathogenic cells (Figure 4). It is worth
noting that IL13, a direct downstream target gene of let-7i-5p,
could regulate smooth muscle cell proliferation together MMP2
(Figure 6), and it is regulated by let-7i-5p in a constitutively
negative pattern (Figure 7), which is the opposite of that for
TGFbR1 (Figures 4, 7).

Let-7i-5p Regulates TGF-Beta Signaling
and Fibroblast Proliferation Through
BMP4, Fibronectin, Actin, TGFbetaR1,
TIMP1, and IL13
The third group of targets regulated by let-7i-5p contains
FN1, ACTIN, TGFBR1 and TIMP1, which are overexpressed at
mRNA level upon dysregulation of let-7i-5p, no matter let-7i-5p’s
expression is increased or decreased (Figure 4A). The consistent

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 May 2020 | Volume 8 | Article 428127

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00428 May 12, 2020 Time: 19:55 # 9

Zhang et al. Let-7i-5p in Normal and PFUDD Fibroblasts

FIGURE 7 | Let-7i-5p regulates direct target genes involved in collagen metabolism, cell proliferation, TGFbeta signaling, DNA repair and ubiquitination, gene
silencing and oxygen homeostasis. (A) Quantitative analysis of protein expression levels of target genes. Y axis represents the expression change normalized by FNC
for each protein. (B) Representative western blot images.

pattern in normal and pathogenic fibroblasts implies that the
fibrotic status of cells doesn’t affect the regulation by let-7i-5p.
Our data suggested that BMP4 is directly regulated by let-7i-5p,
yet the regulation pattern is not similar to TGFBR1 or TGFbeta1
and let-7i-5p may regulate TGF-beta signaling in a parallel route
that is independent from its regulation of BMP4.

Disruption of let-7i-5p regulation would result in
morphological changes in normal fibroblasts (Figure 2), yet the
mechanism remains unclear. In literature, let-7i-5p dysregulation
phenotype mimics that of Dematin mutations (Mohseni and
Chishti, 2008). Dematin is an actin binding/bundling protein
that regulates FAK activation through RhoA and regulate cell
morphology (Mohseni and Chishti, 2008) and is predicted to be
a conserved target of miR181a-5p, miR181b-5p, miR181c-5p,
miR181d-5p, and miR-4262 in human, yet little is known about
its regulation by those miRNAs. In addition, it was reported
that MMP1 overexpression could suppress Thioacetamide

(TAA)-induced liver fibrosis in rat model (Iimuro et al., 2003).
TIMP1’s function in fibrosis has been in argument as the
evidences are divergent from different studies, although many of
the results suggests that its expression has no effect on fibrosis
(Giannandrea and Parks, 2014).

Interestingly, we found that dysregulated let-7i-5p could result
in suppression of IL13, which is a positive regulator of fibroblast
proliferation and epithelial cell differentiation (Figure 7). It
may also play a role in JAK-STAT cascade and inflammatory
response (Figure 6).

Let-7i-5p and Its Potential Functions in
DNA Repair and Ubiquitination, Gene
Silencing and Oxygen Homeostasis
Hsa-let-7i-5p is predicted to target on several post-translational
pathways, such as DNA repair and ubiquitination (through
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TABLE 5 | miRNA associated clinical trials in urological diseases.

NCT Number Status Study title Conditions Type

NCT02470507 Active, not
recruiting

Immune Function in Acute Kidney Injury Acute Kidney Failure General miRNA profile,
observational study

NCT02289040 Completed Acute Kidney Injury Following Paediatric
Cardiac Surgery

Acute Kidney Injury General miRNA profile, in
microvesicles

NCT02315183 Completed An Observational Case Control Study to Identify
the Role of MV and MV Derived Micro-RNA in
Post CArdiac Surgery AKI

Acute Kidney Injury General miRNA profile,
observational study

NCT03373786 Completed A Study of RG-012 in Subjects With Alport
Syndrome

Alport Syndrome miR-21, renal

NCT00743054 Completed microRNA Expression in Renal Cell Carcinoma Carcinoma, Renal Cell General miRNA profile,
observational study

NCT03227055 Unknown Cardiovascular Comorbidity in Children With
Chronic Kidney Disease

Childhood Chronic Kidney Disease urine exosome miRNA

NCT01114594 Completed Pilot Study of RNA as a Biomarker for
Autosomal Dominant Polycystic Kidney Disease

Chronic Kidney Disease
Polycystic Kidney, Autosomal Dominant

General miRNA profile, urine,
observational study

NCT02147782 Recruiting Clinical Observation on Bone Metabolism
Induced by Chronic Renal Insufficiency

Chronic Renal Insufficiency
Renal Osteodystrophy

General miRNA profile,
observational study

NCT02410876 Recruiting Changes of microRNA Expression in
Obstructive and Neurogenic Bladder
Dysfunction

Disorder of the Lower Urinary Tract General miRNA profile, comparison
between BLUTD (bladder outlet
obstruction (BOO)-induced) and
NLUTD (neurogenic)

NCT00806650 Completed Anti-IMP3 Autoantibody and MicroRNA
Signature Blood Tests in Finding Metastasis in
Patients With Localized or Metastatic Kidney
Cancer

Kidney Cancer General, miRNA profile, serum,
observational study

NCT03089242 Unknown MicroRNAs in Acute Kidney Injury Kidney Injury in Cardiac Surgery -
Expression of microRNAs

General miRNA profile

NCT01731158 Unknown Sequential Therapy With Bevacizumab,
RAd001 (Everolimus) and Tyrosinekinase
Inhibitors (TKI) in Metastatic Renal Cell
Carinoma (mRCC)

Metastatic Renal Cell Carcinoma General miRNA profile

NCT03235128 Unknown Clinical Significance of Assesment of Serum
miRNA-30a in Childhood Nephrotic Syndrome

Nephrotic Syndrome Steroid-Resistant miRNA-30a, serum, observational
study

NCT00565903 Active, not
recruiting

Elucidating the Genetic Basis of the
Pleuropulmonary Blastoma (PPB) Familial
Cancer Syndrome

Cystic Nephroma
Pleuropulmonary Blastoma
Sertoli-Leydig Cell Tumor of Ovary
Medulloepithelioma Embryonal
Rhabdomyosarcoma of Cervix
Goiter
Sarcoma
Pineoblastoma
Pituitary Tumors
Wilms Tumor

General miRNA profile,
observational study

NCT01482676 Completed The Role of microRNAs in Organ Remodeling in
Lower Urinary Tract Dysfunction

Urinary Bladder Neck Obstruction
Cystitis, Interstitial Prostatic Hyperplasia

General miRNA profile,
observational study

NCT02316522 Active, not
recruiting

Epigenetic Contribution to the Pathogenesis of
Diabetic Nephropathy in Qatari Population

Type 2 Diabetes General miRNA profile,
observational study

NCT01973088 Unknown Screening and Identification of Human Urate
Transporter hURAT1 MicroRNA

Urinary Calculi miRNAs regulated by hURAT1

NCT03511924 Completed Intradialytic Resistance Training in
Haemodialysis Patients

Chronic Kidney Disease Requiring
Chronic Dialysis

Renal specific miRNA profile

NCT03591367 Completed The Potential Role Of MicroRNA-155 And
Telomerase Reverse Transcriptase In Diagnosis
Of Non-Muscle Invasive Bladder Cancer And
Their Pathological Correlation

Bladder Cancer; Bladder Disease;
Bladder Neoplasm; Micro-RNA

MicroRNAs-155

NCT04176276 Recruiting Determining Serum and Urinary Levels of
miRNA 192 and miRNA 25 in Patients With and
Without Type 2 Diabetes.

Diabetic Kidney Disease; Type2
Diabetes

miR-192 and miR-25

(Continued)
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TABLE 5 | Continued

NCT Number Status Study title Conditions Type

NCT03924089 Recruiting Oral Nutritional Supplement on Nutritional and
Functional Status, and Biomarkers in
Malnourished Hemodialysis Patients.

Malnutrition; End Stage Renal Disease Circulating miRNAs

NCT01829971 Terminated A Multicenter Phase I Study of MRX34,
MicroRNA miR-RX34 Liposomal Injection

Primary Liver Cancer; SCLC;
Lymphoma; Melanoma; Multiple
Myeloma; Renal Cell Carcinoma;
NSCLC

liposomal miR-34a mimic

NCT03942744 Recruiting The Effect of High-flux Hemodialysis and
On-line Hemodiafiltration on Endothelial
Function.

Chronic Kidney Disease Requiring
Chronic Dialysis

General miRNA profile

NCT04300387 Recruiting Chronic Kidney Disease at Northeast Taiwan:
Biomarker and Multidisciplinary Care

Chronic Kidney Disease General miRNA profile

NCT02593526 Recruiting Diuretic/Cool Dialysate Trial Chronic Kidney Insufficiency General miRNA profile

NCT03202212 Completed Effect of Mixed On-line Hemodiafiltration on
Circulating Markers of Inflammation and
Vascular Dysfunction

Chronic Kidney Failure; Dialysis Related
Complication

General miRNA profile in plasmatic
exosomes or microvesicles

NCT03780101 Recruiting Pathology and Imaging in Kidney Allografts Renal Transplant Rejection; Chronic
Kidney Diseases; Fibrosis

miR-214, miR-21 and miR-29

NCT03476460 Completed Sodium Chloride and Contrast Nephropathy Kidney Failure, Chronic; Kidney Failure,
Acute; Heart Failure; Diabetes

General miRNA profile

NCT03844412 Suspended Vestibulodynia: Understanding Pathophysiology
and Determining Appropriate Treatments

Vestibulodynia; Temporomandibular
Disorder; Fibromyalgia Syndrome;
Irritable Bowel Syndrome; Migraines;
Tension Headache; Endometriosis;
Interstitial Cystitis; Back Pain; Chronic
Fatigue Syndrome

General miRNA profile

NCT03651388 Completed Research Into the Molecular Bases of a New
Phenotype Combining Premature White Hair,
Polycystic Kidney Disease, Aortic
Dilation/Dissection and Lymphopenia

New Phenotype (Combining Premature
White Hair, Polycystic Kidney Disease,
Aortic Dilation/Dissection and
Lymphopenia)

Bcl-2-regulating miRNAs

NCT03246191 Unknown
status

Screening and Assessing the Risk Factors and
Complications of Chronic Kidney Disease

Chronic Kidney Disease General miRNA profile, circulating
microRNA

NCT02691546 Unknown
status

Screening for Chronic Kidney Disease (CKD)
Among Older People Across Europe (SCOPE)

Chronic Kidney Diseases General miRNA profile, circulating
microRNA

predicted target genes LRIG3, COPS6, COPS8, etc.) and gene
silencing by RNA/miRNA (through target genes such as AGO1).
It is also involved in homeostatic process [through predicted
target genes TLR4 and IGF1, members of HIF-1 signaling
pathway (Prabhakar and Semenza, 2015)] (Figure 6). Our data
confirmed that let-7i-5p serves as a positive regulator of COPS6,
COPS8, Ago1, and IGF-1 (Figure 7). LRIG3 is regulated in
a quite different pattern comparing to COPS6 and COPS8,
suggesting that let-7i-5p could regulate transcription-coupled
nucleotide-excision repair (through LRIG3) separately from
DNA damage recognition and protein deneddylation (through
COPS6 and COPS8).

Potential Clinical Applications of
Hsa-let-7i-5p and MicroRNAs in PFUDD
and Urological Diseases
miRNAs have been discussed as potential therapeutic targets
and clinical biomarkers in various diseases (Mlcochova et al.,
2015; Christopher et al., 2016; Ji et al., 2017). microRNAs
are under investigation in a number of recent clinical trials
for various urologic complications (e.g., urinary bladder neck

obstruction, urolithiasis, urinary tract disorders, renal carcinoma,
kidney injury, etc. (Table 5), mainly by microRNA profiling
in patients, with a few extended into studies targeting on a
specific microRNA (such as miR-21). A recent clinical trial
(NCT02639923) evaluates the correlation between serum let-7i
expression and intracranial traumatic lesions, which is based
on evidence from animal models (Balakathiresan et al., 2012).
The unique regulatory functions of let-7i-5p in fibroblast
proliferation, ECM regulation and homeostasis makes it an
interesting drug target for complications involved with fibrosis,
tissue reconstruction and cellular stress (Figure 6). We hope the
data from this study could broaden our understanding of the
function of hsa-let-7i-5p in normal and pathogenic fibroblasts
and urethral tissues, so as to facilitate clinical diagnosis, treatment
as well as tissue engineering as follow-up options for patients with
PFUDD or other urological diseases.

CONCLUSION

In this study, we analyzed let-7i-5p and its potential downstream
targets (COL1A1, COL3A1, ELN, MMP1, VIM, FN1, ACTIN,
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TGFBR1, TIMP1, MMP2) in both normal and pathogenic
fibroblasts. We found that let-7i-5p could regulate various
signaling pathways and serve distinct functions in different
cellular events, including tissue plasticity, cell motility and cell
morphology. By functional enrichment analysis, we evaluated the
potential direct targets of let-7i-5p that might be responsible for
each signaling cascade. We conclude that let-7i-5p is a multi-
functional regulator, and it could be affected by fibrosis and
pathogenic status.
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Availability of purified drug target is a prerequisite for its structural and functional

characterization. However, aggregation of recombinant protein as inclusion bodies (IBs)

is a common problem during the large scale production of overexpressed protein in

heterologous host. Such proteins can be recovered from IB pool using some mild

solubilizing agents such as low concentration of denaturants or detergents, alcohols

and osmolytes. This study reports optimization of solubilization buffer for recovery of

soluble and biologically active recombinant mycobacterial Rv1915/ICL2a from IBs. Even

though the target protein could be solubilized successfully with mild agents (sarcosine

and βME) without using denaturants, it failed to bind on Ni-NTA resin. The usual factors

such as loss of His6-tag due to proteolysis, masking of the tag due to its location

or protein aggregation were investigated, but the actual explanation, provided through

bioinformatics analysis, turned out to be presence of intrinsically disordered protein

regions (IDPRs) at the C-terminus. These regions due to their inability to fold into

ordered structure may lead to non-specific protein aggregation and hence reduced

binding to Ni-NTA affinity matrix. With this rationale, 90 residues from the C-terminal

of Rv1915/ICL2 were truncated, the variant successfully purified and characterized for

ICL and MICL activities, supporting the disordered nature of Rv1915/ICL2a C-terminal.

When a region that has definite structure associated in some mycobaterial strains such

as CDC 1551 and disorder in others for instance Mycobacterium tuberculosis H37Rv, it

stands to reason that larger interface in the later may have implication in binding to other

cellular partner.

Keywords: Mycobacterium tuberculosis H37Rv, Rv1915, isocitrate lyase 2, inclusion bodies, solubilization and

IDPRs
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INTRODUCTION

Soluble expression of potential drug targets in heterologous host
is the limiting factor for their production in amounts required for
their structure function characterization, screening of potential
inhibitors and for unraveling the mechanism of inhibition.

Although Escherichia coli is the most popular choice of host for
production of recombinant proteins, however, low or no protein
expression, incorrect folding or inclusion body formation (IBs),

protein inactivity are some common problems during expression
in this workhorse organism. Some of the factors responsible
for these difficulties are high rates of transcription and
translation processes, codon bias, absence of posttranscriptional
modification in E. coli, unfavorable environment of bacterial
cytoplasm for the formation of disulphide-bonds resulting in

misfolding/unfolding of the proteins and ultimately leading
to protein instability, aggregation and accumulation of the
recombinant protein as IBs (Vincentelli et al., 2003; Zhang et al.,
2004; Choi et al., 2006; Rosano and Ceccarelli, 2014).

IBs are the pool of partially folded or misfolded proteins
which are biologically inactive. IBs were well-characterized in
terms of their secondary structure and morphology, indicating
that they possess a native-like secondary structure which may
have biological activity (Bowden et al., 1991; Oberg et al., 1994;
Przybycien et al., 1994). IBs accounts for the 25% of total
cellular protein and are enriched in the recombinant protein
as opposed to other protein of E. coli. In fact, if functionally
active protein can be recovered from IBs, then their formation
is advantageous as it provides a method for isolation of highly
purified protein by (i) isolating IBs from the bacterial cytoplasm,
(ii) solubilizing them by using denaturing agents such as urea and
guanidine hydrochloride, followed by (iii) refolding via removal
of denaturing agents to recover bioactive protein (Rudolph and
Lilie, 1996; Vallejo and Rinas, 2004). Of these, solubility and
refolding are the two critical steps which affect the time and cost
of protein recovery, and thus determine the overall yield of active
protein (Rudolph and Lilie, 1996; Burgess, 2009). Generally, use
of high concentration of denaturing agents such as urea and
guanidine hydrochloride in presence of reducing agent is the
most commonly process for solubilization of IBs. However, the
high concentration of detergents disrupts the complete secondary
structures of the protein which may lead to the aggregation of
the protein during refolding process. This problem is overcome
by using mild solubilizing agents such as lower concentration
of detergents, alcohols, DMSO, high pH, reducing agents (Khan
et al., 1998; Process for solubilization of recombinant proteins
expressed as inclusion body, 2003; Mohan Singh and Kumar
Panda, 2005).

Mycobacterial infections, are the major concern for public
health due to the emergence of drug resistant strains of the
pathogen. During its persistence phase Mtb resides inside the
granulomas which are rich in even and odd chain fatty acids.
Activation of glyoxylate pathway allows the pathogen to utilize
acetate or propionate (degradation product of fatty acids) as
carbon sources for its growth (Bloom, 1994; McKinney et al.,
2000). The two important enzymes of this pathway are Isocitrate
lyase (ICL) and Malate synthase (MS), the former encoded by 2

genes (smaller icl1 and larger icl2/aceA) and the later by aceB,
respectively. Here it may be helpful to point out for readers that
the term “ace” came up because the genes that encode for MS,
ICL and isocitrate dehydrogenase kinase/phosphatase form an
operon aceBAK in E. coli (Chung et al., 1988) that functions
in acetate utilization. However, operonic arrangement of these
genes is not true in all organisms and therefore annotating such
genes as “ace” is a misnomer and confusing. Specially, in case
of Mtb H37Rv, the two icls that together play an important role
in pathogenesis and persistence of the bacterium, are annotated
as icl1 and aceA in literature (Cole et al., 1998; Höner Zu
Bentrup et al., 1999; Muñoz-Elías and McKinney, 2005). Due
to presence of a stop codon in between, the larger aceA (766
residues in Mtb strain CDC 1551) is split into aceAa/rv1915
(367 residues) and aceAb/rv1916 (398 residues) in Mtb H37Rv
strain (Figure 1). The authors suggest that these split genes
be termed as icl2a (rv1915) and icl2b (rv1916) for clarity and
consistency and the same has been followed in the current
study. In case of H37Rv, as evident from sequence mapping of
full length and spilt versions of ICL2, ∼90 residues involved
in the formation of domain II are present in Rv1915/ICL2a,
whereas the rest of the 59 residues of domain II are present in
Rv1916/ICL2b (Figure 1). Literature documents Mtb ICLs to be
novel antitubercular drug targets (Wang et al., 2011). The crystal
structure of ICL1 (Rv0467), determined in 2,000 by Sharma et al.
(2000), was a momentous discovery for structure-based drug
designing against Mtb. However, although some inhibitors have
been reported againstMtb Rv0467/ICL1, but no drug is available
till date to treat persistent Mtb. The possible reasons for this
failure are the undiscovered roles of split ICL2 (Rv1915 and
Rv1916) that may assist the pathogen to survive in granulomas.
In a recent study we reported structure function insights into
Rv1916/ICL2b (Antil et al., 2019), but Rv1915 is yet to be
characterized. This study reports the difficulties encountered in
obtaining soluble expression of the target protein in heterologous
host E. coli BL21 (DE3) and mainly focuses on strategies adopted
for recovery of active Rv1915/ICL2a.

MATERIALS AND METHODS

Chemicals
All chemicals used in this study are commercially available except
2-Methylisocitrate which was synthesized in the laboratory
of Dr. Sébastien Gouin, University of Nantes France. The
genomic DNA of Mycobacterium tuberculosis H37Rv, Luria-
Bertani (LB) medium for bacterial growth and Isopropyl β-
D-1-thiogalactopyranoside (IPTG) were purchased from Hi-
Media Laboratories, India. Primers used for gene amplification
were synthesized through Eurofins Genomics India Pvt. Ltd.
Restriction enzymes (NheI and HindIII), Alkaline Phosphtase
and T4 DNA Ligase were procured from Fermentas, US.
DL-Isocitric acid and Phenylhydrazine were obtained from
Sigma (India).

Cloning of rv1915
The gene coding forMtb H37Rv Rv1915/ICL2a was amplified by
Polymerase chain reaction using a pair of gene specific primers
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listed in Table 1 from genomic DNA of Mtb H37Rv DNA. For
directional cloning of the insert DNA, recognition sites for NheI
and HindIII restriction enzymes were designed into the 5’ end of
the forward and reverse primers, respectively (underlined in the
Table 1). In addition, to facilitate the target purification, His6-tag
was incorporated either in the forward primer for N-terminus tag
or in the reverse primer for C-terminus tag (highlighted in bold
letters in the Table 1). The PCR reactionmix comprised of 1x Taq
buffer, 10 ng/µl of genomic DNA, 20 pmoles of each forward and
reverse primers, 200µM dNTPs mix and 4:1 ratio of Taq (Geno
biosciences):Pfu polymerase (Fermentas). The standardized PCR
cycle for all the three constructs was: initial denaturation at 95◦C
for 5min, denaturation at 95◦C for 1min, annealing at 65◦C for
1min and extension at 72◦C for 1min. These conditions were
repeated for 30 cycles before a final extension at 72◦C for 10min.
The amplified insert and pET-21c expression vector (Novagen)
were digested with NheI and HindIII restriction enzymes at
37◦C for 1–2 h. The vector and insert were then ligated using
T4 DNA ligase followed by the transformation of E. coli DH5α
with the ligated product. The cells were plated on LB agar plate

containing 100µg/ml ampicillin. Random colonies were picked
from the plate and inoculated in 3ml LB broth supplemented
with ampicillin (100µg/ml). Plasmid was isolated from each of
the colonies by alkaline lysis method (Sambrook and Russell,
2006) followed by double digestion with NheI and HindIII
restriction enzymes. All the digested products were analyzed by
running on 1% agarose gel.

Expression and Cellular Localization of
Rv1915/ICL2a
For expression studies the E. coli BL21 (DE3) competent cells
were transformed with recombinant plasmid. The transformed
cells were plated onto LB agar plate containing 100µg/ml
ampicillin and incubated at 37◦C overnight. A single colony was
inoculated in 5ml of LB broth supplemented with 100µg/ml
ampicillin and incubated overnight at 37◦C with continuous
shaking at 200 rpm. 50 µl of this primary culture was then
transferred into 5ml of LB broth containing 100µg/ml ampicillin
and incubated with shaking at 37◦C till the OD of culture at
600 nm was 0.5–0.6. The expression of recombinant protein

FIGURE 1 | Mapping of full length (Mtb strain CDC 1551) and split (Mtb strain H37Rv) ICL2. The unique eukaryotic domain II (278–427) in ICL2 of Erdman and

CDC1551 strains is divided into two overlapping ORFs namely, Rv1915 (278–367) and Rv1916 (1–59 residues) in H37Rv strain (shown by bold arrows), a

consequence of translational coupling phenomenon. Presence of circled nucleotide “A” in the reading frame, results into translation of TGA into stop codon and

termination of upstream rv1915. The ribosome that has just finished is in a position to initiate translation with ATG start codon for the downstream rv1916. The ICL

signature motif (KKCGH) present in domain I of both are also shown in the figure.

TABLE 1 | List of primers used for preparing different constructs of Rv1915/ICL2a.

S. No. Name (details) of the construct Primer Primer sequence (5′ to 3′)

1 His6-Rv1915 (FL Rv1915 with His6 tag at N-terminal) FP 5’-gatttagctagccatcaccatcaccatcacgccatcgccgaaacggacaccg-3′

RP 5′-gatttaaagctttcaggcccgcgtcgtcctc-3′

2 Rv1915-His6 (FL Rvk with His6 tag at C-terminal) FP 5’-gatttagctagcgccatcgccgaaacggacaccg-3′

RP 5′-gatttaaagctttcaggcccgcgtcgtcctccgcgccgagaaggaacggctg-3′

3 Rv1915135CT- His6 (Rv1915 with 35 residues deleted from C-terminal) FP 5’-gatttagctagcgccatcgccgaaacggacaccg-3′

RP 5′-gatttaaagctttcaagccgaaaatgccttggcgctccgcgccgagaaggaacgg-3′

4 Rv1915190CT- His6 (Rv1915 with 90 residues deleted from C-terminal) FP 5’-gatttagctagccatcaccatcaccatcacgccatcgccgaaacggacaccg- 3′

RP 5′-gatttaaagctttcagtgatggtgatggtgatgcgcgccgagaaggaacggctg-3′

FL, Full length; FP, Forward Primer; RP, Reverse Primer.
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was induced with IPTG concentration, temperature and time
as indicated at relevant positions. The culture was harvested
by centrifugation at 5,000 rpm for 10min at 4◦C. For analysis
of protein induction, cell pellets were directly resuspended in
50 µl of 5X SDS loading dye containing 50mM Tris-HCl pH
8, 0.25% β-mercaptoethanol (βME), 1% SDS, 10% glycerol and
0.04% Bromophenol blue. On the other hand, for determining
localization of the expressed protein, cell pellet of 1ml culture
was lysed by mixing the pellet with 200 µl of 50mM Sodium
Phosphate buffer pH 8, comprising 300mM NaCl and 20
mg/ml lysozyme, followed by incubation on ice for 15min
and sonication (pulse: 5 s ON and 5 s OFF at 40% amplitude)
using ultrasonic water bath (Citizen). After lysis, centrifugation
at 12,000 rpm for 15min segregated the soluble (supernatant)
and insoluble fractions (pellet) of the total cell lysate. All
samples were boiled at 100◦C for 10min in 1X SDS loading dye
before subjecting to 10% SDS-PAGE for expression analysis. For
visualization of proteins, gels were stained in 0.25% Coomassie
Brilliant Blue R-250 and then destained in 30% (v/v) methanol in
water with 10% (v/v) acetic acid solution.

IBs Isolation and Solubilization of
Rv1915/ICL2a
The induced E. coli cell culture (1L) was harvested by
centrifugation at 5,000 rpm for 10min at 4◦C. The cell pellet was
resuspended in 40ml of 50mM Tris buffer pH 8.5 containing
5mM EDTA and 1mM PMSF. The cells were lysed by sonication
on ice for a total time of 20min (1-min burst and 1-min
OFF time) and centrifuged at 15,000 rpm for 30min at 4◦C.
The pellet thus obtained was washed with wash buffers A
(50mM Tris pH 8.5, 5mM EDTA, 1mM PMSF and 2.5%
Triton X-100) and B (50mM Tris pH 8.5) for three repeated
cycles of sonication and centrifugation in each buffer. Finally,
the pellet of IBs was dissolved in 2ml of Milli-Q water and
processed for solubilization. In order to obtain bioactive Rv1915,
six different solubilization buffers (Table 2) containing mild
solubilizing agents were used. For solubilization of IBs, the 2ml
of purified IBs were equally divided (330 µl) in microcentrifuge
tube and diluted to a final volume of 1ml by adding 670 µl
of solubilization buffers. The suspensions were vortexed and
incubated at room temperature on an end-to-end rotator for
an hour. The solubilized samples were separated from insoluble
fraction by centrifugation at 15,000 rpm for 30min at 4◦C and
the samples were analyzed on 10% SDS-PAGE.

Protein Quantification Using ImageJ
Software
ImageJ is a freely available software (https://imagej.nih.gov/ij/
download.html), used to determine the protein concentration
from SDS-PAGE gels. This software measures the relative density
of each protein band from a selected lane of the gel and plot
a graph according to their densities. In order to determine
the protein concentration, peak area of the band of interest
was calculated and compare protein band with the known
concentration. To estimate the protein concentration, known
amount of BSA (2–10 µg/µl) was run on 10% SDS-PAGE and

TABLE 2 | List of Solubilization Buffers.

Buffer

code

Buffer composition Concentration of

Rv1915 (mg/ml)

SB1 50mM Tris, 5mM EDTA, 1mM PMSF, 20mM

βME, 0.25M Urea, 0.5% Sarcosine pH 8

2.2

SB2 50mM Tris, 1mM PMSF, 20mM βME, 0.5%

Sarcosine pH 8

2

SB3 50mM Tris, 1mM EDTA, 1mM PMSF, 10mM

βME, 0.5M Urea, 0.25% Sarcosine pH 8

1.85

SB4 50mM Tris, 1mM EDTA, 1mM PMSF, 20mM

βME, 0.25M Urea, 0.5% Sarcosine pH 8

1.99

SB5 50mM Tris, 5mM EDTA, 1mM PMSF, 20mM

βME, 0.5M Urea, 0.5% Sarcosine pH 8

2.5

SB6 50mM Tris, 1mM EDTA, 1mM PMSF, 5mM

βME, 0.5M Urea, 0.5% Sarcosine pH 8

1.85

SB, Solubilization buffer; βME, β-mercaptoethanol.

the relative density of each band was calculated using ImageJ
software. BSA standard curve was then prepared using calculated
peak area from the software and plotted against the known
concentration of BSA. The standard curve thus prepared was
used for determining the concentration of solubilized protein
from each buffer.

Ni-NTA Purification of Rv1915/ICL2a
Standard protocol of Ni-NTA affinity chromatography was
used for recombinant protein purification. Induced cell pellet
of 100ml was dissolved in 20ml of lysis buffer containing
50mM Sodium Phosphate buffer pH 8, 10mM Imidazole,
300mM NaCl, 0.5% Sarcosine, 2mM βME, 1mM PMSF and 20
mg/ml lysozyme. The buffer optimized from IBs solubilization
experiments was further modified according to the standard
buffer composition for Ni-NTA affinity chromatography. For
lysis, the cell suspension was subjected to sonication for a total
time of 10min which consisted of 10 s ON and 10 s OFF cycles.
After sonication, the cell lysate was centrifuged at 12,000 rpm
for 30min to remove the cell debris and the clear lysate was
loaded on to 0.5ml of Ni-NTA column pre-equilibrated with
equilibration buffer (50mM Sodium Phosphate buffer pH 8,
300mMNaCl and 10mM Imidazole). After the binding period of
an hour, the column was washed with washing buffer A (50mM
Sodium Phosphate buffer pH 8, 300mMNaCl, 20mM Imidazole,
2mM βME and 1mM PMSF) and B (50mM Sodium Phosphate
buffer pH 8, 300mM NaCl, 40mM Imidazole, 2mM βME and
1mM PMSF). The bound protein was eluted from the resin with
250mM Imidazole buffer, quantified by Bradford protein assay,
dialyzed against the storage buffer (20mM Tris pH 8, 100mM
NaCl, 2mM βME, 1mM PMSF and 5% glycerol) and aliquots
stored at−80◦C.

ICL and MICL Activity Assays
ICL activity of Rv1915/ICL2a was determined by a coupled assay
that monitored the formation of glyoxylate-phenylhydrazone
complex at 324 nm, generated because the glyoxylate produced
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in the reaction was further made to react with phenylhydrazine-
HCl. In brief, 1ml of reaction mixture included 50mM MOPS
buffer (pH 7), 1mM DL-isocitrate trisodium salt, 6mM MgCl2,
and 4mM phenylhydrazine-HCl and 10µg protein either from
solubilized IBs or total cell lysate. Reaction mixture containing
solubilization buffers/lysis buffer without enzyme was used
as blank. As the protein sample was not pure, total cell
lysate of uninduced sample was also assayed for ICL activity
as a negative control. For accuracy in comparative analysis,
kinetic experiments were carried out under similar experimental
conditions as described for Rv1916/ICL2b (Antil et al., 2019).
Mtb ICLs, also reported to catalyze 2-methylisocitrate and
convert it into pyruvate and succinate (Gould et al., 2006).
Therefore, 10 and 15µg of purified enzyme was used for assaying
isocitrate and methylisocitrate activity, respectively.

Bioinformatics Analysis
Sequences of ICL2s from different strains of Mtb were aligned
using EMBL-EBI tool- Clustal Omega (https://www.ebi.ac.
uk/Tools/msa/clustalo/). All the sequences were retrieved
from KEGG Database (https://www.genome.jp/kegg/). Expasy
tools (https://www.expasy.org/proteomics/protein_structure)
were used to predict the secondary structures (alpha, beta
random coils and turns) of Rv1915/ICL2a. The disordered
regions of Rv1915/ICL2a were further verified by different online
servers namely- Prediction of Amyloid Structure Aggregation 2.0
(PASTA 2.0 -http://protein.bio.unipd.it/pasta2/) server, Predictor
of Natural Disordered Regions (PONDER - http://www.pondr.
com/) and Protein Disorder Prediction Server (PrDOS - http://
prdos.hgc.jp/cgi-bin/top.cgi). These servers are freely available
and predict the disordered regions of a given protein using
its amino acid sequence. PASTA 2.0 predicts the formation of
amyloids due to self-aggregation of the given protein using its
energy function (Walsh et al., 2014). PONDER uses composition,
complexity and hydropathy index of amino acid sequence of
a protein to find the disordered regions (Peng et al., 2005).
Similarly, PrDOS calculate probability of every amino acid in a
protein of being unstructured/disordered (Ishida and Kinoshita,
2007). The quaternary model structure of Rv1915/ICL2a was
generated by GalaxyWeb online server (http://galaxy.seoklab.
org/cgi-bin/submit.cgi?type=HOMOMER) (Ko et al., 2012)

RESULTS

Expression and Localization of
Rv1915/ICL2a as IBs
The successful cloning of His6-rv1915 in pET-21c was confirmed
by double digestion with restriction enzymes NheI and HindIII.
The fall out of 1.1 kb confirms the presence of insert rv1915/icl2a
in pET-21c vector (Figure 2A). The expression of recombinant
His6-Rv1915, induced with 1mM IPTG for 16–18 h at 18◦C
was analyzed on 10% SDS-PAGE. Figure 2B, confirms the
expression of Rv1915/ICL2a at their expected size i.e., ∼ 40.5
kDa. Unfortunately, accumulation of induced protein in
the insoluble pellet/IBs (Figure 2B, lane 4) leave negligible
or no Rv1915 protein in the soluble fraction of the lysate
(Figure 2B, lane 5). Despite extensive efforts involving variation

in the induction temperature and IPTG concentration, media
optimization, addition of osmolytes/chaotropes/additives
in the culture media during cell growth etc., soluble
expression of the induced protein could not be
achieved (Figures S1–S3).

Recovery of Bioactive Rv1915/ICL2a
From IBs
IBs of Rv1915/ICL2a were isolated as described in section
IBs Isolation and Solubilization of Rv1915/ICL2a and six
different solubilization buffers (SBs) varying in concentrations
of urea, EDTA, βME and sarcosine were designed for
solubilizing inclusion body protein Rv1915. Table 2 represents
the composition of SBs and concentration of solubilized
His6-Rv1915 in respective buffers. SDS-PAGE analysis of IBs
solubilization using different buffers is depicted in Figure 3A.
Almost all the buffers were able to solubilize the IBs of protein
of interest to some extent, with highest concentration (2.5
mg/ml) of His6-Rv1915 achieved in buffer SB5, composed of
50mM Tris pH 8, 5mM EDTA, 1mM PMSF, 20mM βME,
0.5M Urea and 0.5% Sarcosine (Table 2). In order to select
the appropriate buffer for the recovery of bioactive His6-
Rv1915, activity assay was performed with soluble fraction
of His6-Rv1915 from each buffer. As lowest activity of His6-
Rv1915 was observed in SB5 buffer, it was deemed unsuitable
(Figure 3B). The highest activity was achieved in buffer SB2
where the solubilizing additive was only 0.5% sarcosine without
urea or EDTA. EDTA appears to be more detrimental for the
activity of Rv1915 than urea, as reducing the concentration
of ETDA to 1mM in SB4 (but keeping urea same) increases
ICL activity almost comparable to the SB2. Furthermore,
SB3 and SB6 shows substantial reduction in amount and
activity of soluble protein due to the decrease in concentration
of sarcosine and βME, respectively (Figure 3A). From all
these observation it was concluded that sarcosine and βME
plays an important role in solubility and activity of His6-
Rv1915, so these standardized conditions were employed in
purification of His6-Rv1915. Unfortunately, even after the
solubilization of His6-Rv1915 with 0.5% sarcosine, Ni-NTA
affinity purification of the protein could not be achieved
due to inefficient binding of the protein to the Ni-NTA
beads (Figure 3C, lanes 2 & 3). The possible reasons could
be inaccessibility/masking of the His6-tag due to formation
of soluble aggregates of the protein or loss of His-tag
due to proteolysis. Alternatively, if proteins possess signal
peptide and transmembrane domain at their N-terminus
which when liberated will result in loss of tag and therefore
reduced binding to Ni2+ matrix. The presence of these
signal peptides at N-terminus was checked with the online
servers - SignalP.4 (http://www.cbs.dtu.dk/services/SignalP-4.0/)
(Petersen et al., 2011) and TMHMM (http://www.cbs.dtu.dk/
services/TMHMM/) (Sonnhammer et al., 1998; Krogh et al.,
2001) and negated the possibility. To overcome the problem
of the His6-tag being masked or degraded at the N-terminus,
recombinant Rv1915-His6 was prepared where the His tag was
placed at C-terminal of the protein (Figure S4), but the problem
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FIGURE 2 | Cloning, Expression and Localization of Rv1915/ICL2a with N-terminal His6 tag: (A) Confirmation of cloning of Rv1915/ICL2a in pET-21c by double

digestion with restriction enzymes NheI and HindIII: Lane 1- 1kb DNA ladder; Lane 2- positive clone of Rv1915 (B) Expression and localization of Rv1915: Lane 1-

Medium range protein marker; Lane 2- Total cell lysate of uninduced sample; Lane 3- Total cell lysate of induced sample; Lane 4- Soluble fraction; Lane 5- Insoluble

fraction.

still persisted (Figure 3C, lanes 8 & 9). Finally, bioinformatics
analysis was performed that provided some clue for resolving
the problem.

Sequence and Structure Analysis of
Rv1915/ICL2a
Multiple sequence alignment of Rv1915/ICL2a with ICL2s
from other Mtb strains reveal variability mostly in the C-
terminal residues (Figure 4A). This difference was somewhat
anticipated, as compared to larger ICL2s (∼766 amino acids),
H37Rv ICL2 is split in two ORFs where Rv1915 forms the
first part and Rv1916 the later. Secondary structure prediction
based on the primary sequence of Rv1915 estimated ∼41.96%
disorder (Figure S5), where out of 72 C-terminal residues 40
of them are random coil (highlighted in the black box). In the
united version of ICL2, the equivalent region is comprised of
helices, therefore, the splitting of this helical region is increasing
disorder at the C-terminal of Rv1915. Further analysis with
the PASTA 2.0 server corroborated that the 314–367 residues
of Rv1915/ICL2a are disordered and have the propensity for
self-aggregation and amyloids formation (Table 3). The software
also predicts two additional segments (248–251 and 304–307)
with tendency toward parallel aggregation. Two other servers
PrDOS and PONDER endorsed the presence of disordered
regions at the termini of Rv1915/ICL2a (Figure S6). Specifically,
∼35 residues from the C-terminus and ∼15 residues from
the N-terminus of the queried protein was predicted to be
unstructured by all the three servers. In silico deletion of
either of these in PASTA 2.0 server did not reduce the
number of amyloids, which could be achieved only after
truncation of ∼90 residues (278–367) from the C-terminal end
of Rv1915 (Table 3). This 90 residue long C-terminal region

encompasses the second aggregation segment (residues 304–
307), whose removal appears to reduce amyloid formation.
As discernible from multiple sequence alignment (Figure 4A),
this section has low similarity with the larger ICL2, reflected
in the structural differences as well. The comparison of
equivalent/similar structural region of Mtb ICL2 (Figure 4B)
and the model structure of Rv1915/ICL2a also illustrates the
disordered nature of C-terminal 90 residues (colored pink in
Figure 4C). Therefore, in order to minimize the probability of
the non-specific aggregation of the expressed target, two deletion
variants of rv1915/icl2a were designed with 35 and 90 residues
truncated from the C-terminus.

Effect of C-Terminal Truncation on the
Solubility and Activity of Rv1915/ICL2a
Two C-terminal truncated variants of rv1915, namely,
Rv1915135CT-His6 and Rv1915190CT-His6, were cloned
in pET-21c vector using methodology detailed in section Cloning
of rv1915. Recombinant clones were confirmed by double
digestion with the same restriction enzymes (Figure S7). The
deletion variants were expressed in E. coli BL21 (DE3), induced
with 1mM IPTG (Figures 5A,C) and purified with Ni-NTA
affinity chromatography (Figures 5B,D). Out of the two variants,
purification could be achieved only for Rv1915190CT-His6
due to inept binding of Rv1915135CT-His6 to Ni-NTA resin
(Figures 5A,B), similar to the problem encountered in the
case of full length Rv1915-His6 (Figure 3C). Figure 5D shows
the profile of Ni-NTA eluted fractions of Rv1915190CT on
10% SDS-PAGE. The total yield corresponded to ∼20 mg/l. In
order to compare the effect of C-terminal truncation on the
functionality of Rv1915/ICL2a, and since purified full length
Rv1915 could not be achieved, ICL activity was carried out
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FIGURE 3 | Standardization of solubilization buffer and purification of Rv1915/ICL2a (A) SDS-PAGE analysis for solubilization of His6-Rv1915 IBs in different SBs:

Lane M: Medium range protein marker; Lane IF: Insoluble fraction; Lane SF: Soluble fraction. Composition of all SBs are listed in Table 2; (B) Activity assay of

Rv1915/ICL2a solubilized from IBs: Increased absorbance at 324 nm with the addition of Rv1915 (extracted from different SBs) indicate formation of glyoxylate

phenylhydrazone complex and hence ICL activity; (C) Purification of full length His6-Rv1915 at N-terminal using SB2 buffer (Lane 1- Insoluble fraction; Lane 2- Soluble

fraction; Lane 3- Flow through; Lane 4 and 5- Eluted fractions; Lane 6- Medium range protein marker) and Rv1915-His6 at C-terminal (Lane 7- Insoluble fraction; Lane

8- Soluble fraction; Lane 9- Flow through; Lane 10 and 11- Eluted fractions).

with crude lysates (Figure S8). The observations show that the
C-terminal truncation improves the activity of Rv1915/ICL2a.
Kinetic parameters of Rv1915190CT were determined using
Lineweaver-Burk plot for both the substrates; isocitrate and
2-methylisocitrate (Figure 6). The kinetic parameters reveal
that Rv1915190CT has ∼50 fold higher affinity for isocitrate
(5.2µM) than 2-methylisocitrate (279µM). Calculation of
catalytic efficiency turns out to be 0.83 µM−1 min−1 for
isocitrate and 0.0137 µM−1 min−1 for 2-methylisocitrate,
reinforcing faster turnover of isocitrate into glyoxylate and
succinate (as compared to conversion of 2-methylisocitrate
to pyruvate and succinate). Similar trend was observed for
Rv1916/ICL2b (Table 4). However, Rv0467/ICL1 unequivocally
displays much higher activity for both the substrates in
comparison to Rv1915/ICL2a and Rv1916/ICL2b (Antil et al.,
2019).

DISCUSSION

This work was initiated with an aim to produce Rv1915/ICL2a,

an important drug target of Mtb H37Rv, in ample amounts
for structure function studies. Therefore, Rv1915/ICL2a was
cloned in pET-21c vector and expressed in E. coli BL21 (DE3)
strain but the recombinant protein localized in the insoluble

fraction of cell lysate. Protein misfolding/unfolding/formation
of insoluble IBs is often a problem during the overexpression
of recombinant proteins. Employing different strategies such

as reducing IPTG concentration, expression temperature,

choice of right expression vector and host strain, optimizing
composition of the culture media, co-expression with molecular
chaperones, purification from inclusion bodies, etc. may
help in overcoming the problem of insoluble expression in
E. coli. Therefore, different induction temperature, inducer
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FIGURE 4 | Sequence and structure analysis of Rv1915/ICL2a: (A) Multiple sequence alignment of Rv1915/ICL2a and ICL2 from different strains of Mtb represents

the variation at the C-terminal (residues 278–367) of spilt versions of ICL2s (H37Rv, RGTB327 and Beijing) vs. larger ICL2s (Erdman and CDC1551) (residues

278-368); (B) Crystal structure of larger ICL2 from Mtb CDC1551 (extracted for residues 1–368 from PDB code 6EDW) illustrates monomer (left) and tetramer (right)

highlighting the variable residues (278–368) that form part of domain II in green color; (C) Model structure of monomeric (left) and tetrameric (right) Rv1915/ICL2a

generated by GalaxyWeb online server shows the disordered nature and different orientation of equivalent C-terminal tail in magenta color. Complete sequence

identity between the ICL2s in the region before the variable residues is reinforced by undistinguishable gray color cartoon structures in both the homologs.

TABLE 3 | Prediction of IDPRs of Rv1915/ICL2a using PASTA 2.0 server.

S. no. Different variant Rv1915/ICL2a Length of Rv1915/ICL2a No. of amyloids Best energy

1. Full length Rv1915 367 2 −5.448

2. Rv1915 with of 15-residues truncated from N-terminus 352 2 −5.448

3. Rv1915 with of 35-residues truncated from C-terminus 332 2 −5.448

4. Rv1915 with of 90-residues truncated from C-terminus 277 1 −5.448

concentration, growth media were explored but none of
these increased the solubility of the recombinant protein
(Figures S1–S3). Attempt to isolate Rv1915/ICL2a IBs followed
by solubilization in mild buffers did yield active protein but
could not be purified further as it did not bind to Ni-
NTA (Figure 3C). The possible reasons could be masking or
degradation of the His6-tag. In any case all efforts to obtain
soluble Rv1915 in amounts enough for further studies reached
a dead end.

Multiple sequence alignment of Mtb ICL2a with 766 amino
acid long ICL2s show high variability in the region of domain
II where the later divided into two ORFs (Figure 4A). It
appears that gene duplication in domain II may be responsible
for structural divergence and evolution of this split version
of ICL2. Fortunately the crystal structure of ICL2 from Mtb
strain CDC 1551/Oshkosh (PDB code 6EDW), has recently
become available (Figure 4B) (Bhusal et al., 2019) and helped
in building homology model of Rv1915/ICL2a (Figure 4C). Both
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FIGURE 5 | Expression, localization and purification of Rv1915135CT (A,B) and Rv1915190CT (C,D): Lane M, Medium range protein marker; Lane I, Total cell lysate

of induced sample; Lane UI, Total cell lysate of uninduced sample; Lane IF, Insoluble fraction; Lane SF, Soluble Fraction; Lane FT, Flow through after binding to the

Ni-NTA resin; Lane W, Washes with different concentrations of imidazole; and Lane E, Elutions with 250mM imidazole.

FIGURE 6 | Determination of kinetic parameters of Rv1915190CT using Lineweaver Burk plot for both the substrate, isocitrate (A) and methylisocitrate (B).

secondary structure and 3D model predicted disordered C-
terminus Rv1915/ICL2a (residues 278–367) as opposed helical
region of long ICL2. For reducing non-specific aggregation
due to presence of floppy tails, recombinant DNA technology
was employed for generating two variants of Rv1915 where
35 (Rv1915135CT) and 90 (Rv1915190CT) residues from the
C-terminal were deleted. Only the later could be purified
successfully that exhibited dual ICL and MICL activities,
observed first time for Mtb H37Rv strain. Dual activity has been
reported for the complete Mtb strain CDC 1551/Oshkosh ICL2
(Bhusal et al., 2019), but no activity data exists for Rv1915/ICL2a
till date. Functional characterization of Rv1915/ICL2a follows
our previous study on Rv1916/ICL2b (Antil et al., 2019) and
although both Rv1915/ICL2a and Rv1916/ICL2b display dual
activities, ICL and MICL activities of both the proteins are
much lower than that exhibited by Rv0467/ICL1 (Table 4).
Nevertheless, all three Mtb ICLs show preference for isocitrate
over methylisocitrate.

It may be worth pondering on the biological significance
of presence of IDPR in otherwise structured Rv1915. The
propensity of these IDPRs to bind to multiple biological partners
and their role in cellular activities such as gene replication,
transcription, regulation and signal transduction is becoming
evident (Uversky, 2013). Under physiological conditions, IDPRs
do not have stable three dimensional structure, but they may
attain a stable conformation after binding to their biological
ligands or other cellular proteins (Dunker et al., 2001, 2002;
Uversky, 2019). Disordered structure provides larger surface
area for binding to its partner, perform various regulatory
roles and have the ability to respond quickly to environmental
cues. Specifically, IDPRs of bacterial pathogens can alter the
host immune responses either by mimicking host cell signaling
components or by forming complexes with proteins of the
host cells and thereby disturbing its protein-protein interactions
(Marín et al., 2013). It stands to reason that Mtb ICL2 (Rv1915
and Rv1916), known to be essential for chronic infection,
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TABLE 4 | Kinetic parameters of recombinant ICLs of Mtb H37Rv.

Enzyme Amount of enzyme (µg) Kinetic parameters References

Km (µM) Kcat (min−1) Kcat/Km (µM−1 min−1)

ICL Activity

1915190CT 10 5.22 4.33 0.83 This study

Rv1916 10 13 6.87 0.53 Antil et al., 2019

Rv0467 2 3.25 30.9 9.5

MICL Activity

1915190CT 15 279 3.84 0.0137 This study

Rv1916 25 300 1.2 0.004 Antil et al., 2019

Rv0467 5 240.9 8.05 0.033

may be playing similar regulatory role facilitated by IDPR.
Recently, 3-dimensional structure ofMtb ICL2 (CDC1551 strain)
along with Small-angle X-ray scattering analyses and Molecular
Dynamic simulations have led to molecular level understanding
of its allosteric activation at high lipid concentrations and of
its function (Bhusal et al., 2019). Future structural studies of
Rv1915 and Rv1916 will provide a better picture of their roles in
Mtb’s virulence.

CONCLUSION

This study reports the cloning and accumulation of recombinant
Rv1915/ICL2a as IBs. Although soluble protein could be
recovered from these aggregates using βME and sarcosine,
however, purification could not be achieved. Amino
acid sequence and structure analysis predicted IDPRs in
Rv1915/ICL2a, which were further confirmed by in silico deletion
of the disordered regions and correlation with reduced number
of amyloids in the query protein. C-terminal 90 residues deleted
recombinant Rv1915190CT could be purified to homogeneity,
implementing IDPRs to be responsible for aggregation of
Rv1915/ICL2a and deterrent in purification. Presence of IDPR
suggests regulatory role for Rv1915/ICL2a by interaction with
some cellular partners. Availability of this “difficult to purify”
has led to its biochemical characterization and opens venue for
structure function studies and inhibitor discovery.
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In the wake of recent advances in artificial intelligence research, precision psychiatry
using machine learning techniques represents a new paradigm. The D-amino acid
oxidase (DAO) protein and its interaction partner, the D-amino acid oxidase activator
(DAOA, also known as G72) protein, have been implicated as two key proteins
in the N-methyl-D-aspartate receptor (NMDAR) pathway for schizophrenia. Another
potential biomarker in regard to the etiology of schizophrenia is melatonin in the
tryptophan catabolic pathway. To develop an ensemble boosting framework with
random undersampling for determining disease status of schizophrenia, we established
a prediction approach resulting from the analysis of genomic and demographic variables
such as DAO levels, G72 levels, melatonin levels, age, and gender of 355 schizophrenia
patients and 86 unrelated healthy individuals in the Taiwanese population. We compared
our ensemble boosting framework with other state-of-the-art algorithms such as
support vector machine, multilayer feedforward neural networks, logistic regression,
random forests, naive Bayes, and C4.5 decision tree. The analysis revealed that
the ensemble boosting model with random undersampling [area under the receiver
operating characteristic curve (AUC) = 0.9242 ± 0.0652; sensitivity = 0.8580 ± 0.0770;
specificity = 0.8594 ± 0.0760] performed maximally among predictive models to infer
the complicated relationship between schizophrenia disease status and biomarkers.
In addition, we identified a causal link between DAO and G72 protein levels in
influencing schizophrenia disease status. The study indicates that the ensemble
boosting framework with random undersampling may provide a suitable method to
establish a tool for distinguishing schizophrenia patients from healthy controls using
molecules in the NMDAR and tryptophan catabolic pathways.

Keywords: ensemble boosting, multilayer feedforward neural networks, N-methyl-D-aspartate receptor,
precision psychiatry, schizophrenia
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INTRODUCTION

Precision psychiatry, an emerging interdisciplinary paradigm
of psychiatry and precision medicine, is progressing into the
cornerstone of public health practice (Katsanis et al., 2008;
Snyderman, 2012). In terms of diagnostic and therapeutic
decisions, precision psychiatry is tailored to the specific patient
with psychiatric disorders (Katsanis et al., 2008; Snyderman,
2012). More generally, multiple data types such as genomics
and protein data are integrated with state-of-the-art artificial
intelligence and machine learning algorithms. Thereby, these
integrated frameworks are able to correspondingly learn to
provide proper clinical decisions during nearly every stage
of patient care in an individual manner, such as diagnosis
and treatment of psychiatric disorders (Lin and Chen, 2008a;
Lane et al., 2012; Lin and Lane, 2015, 2017). For example,
a recent study utilized machine learning models to optimize
prediction of antidepressant treatment outcome in patients with
major depressive disorder by using genetic and clinical datasets
(Lin et al., 2018a).

The N-methyl-D-aspartate receptor (NMDAR) pathway has
been a focus of attention in schizophrenia research. The D-amino
acid oxidase (DAO) protein and its putative activator, the
D-amino acid oxidase activator (DAOA, also known as G72)
protein, are two proteins in the NMDAR pathway. In vitro
studies reported that the G72 protein activates and binds to
the DAO protein (Chumakov et al., 2002; Sacchi et al., 2008).
Next, the DAO protein in turn oxidizes D-amino acids such
as D-serine, an agonist of NMDAR (Chumakov et al., 2002;
Sacchi et al., 2008). It has been hypothesized that patients who
over-yield the G72 protein may reduce the NMDAR activities,
thereby inclining them to schizophrenia (Hashimoto et al.,
2003; Lin et al., 2014; Lin and Lane, 2019). Furthermore, it
has been suggested that plasma G72 protein levels are notably
higher in patients with schizophrenia than in healthy individuals
(Lin et al., 2014). Moreover, it has been indicated that the
agonist activities in the NMDAR pathway possess appropriate
importance in developing novel drug targets for treatment
of schizophrenia (Coyle et al., 2003; Goff, 2012; Javitt, 2012;
Moghaddam and Javitt, 2012; Ermilov et al., 2013; Lane et al.,
2013; Lin et al., 2017a, 2018; Chang et al., 2019). To distinguish
healthy individuals from patients with schizophrenia, a previous
study also utilized machine learning algorithms (such as logistic
regression, naive Bayes, and C4.5 decision tree) to construct
predictive models by using the G72 protein and genetic variants
(Lin et al., 2018b).

Melatonin, which has an impact on the tryptophan catabolic
pathway, is another probable factor with respect to the
developmental etiology of schizophrenia (Anderson and Maes,
2012). It is proposed that melatonin plays a role as a biomarker of
schizophrenia although the findings were controversial (Morera-
Fumero and Abreu-Gonzalez, 2013). It has been reported that
plasma melatonin levels were higher, lower, or similar in
patients with schizophrenia as compared to healthy controls
(Morera-Fumero and Abreu-Gonzalez, 2013). Schizophrenia is
also linked with both circadian and metabolic disorders, which
are modulated by melatonin (Wulff et al., 2012).

Here, in order to distinguish schizophrenia patients from
healthy controls in the Taiwanese population, we employed
an ensemble boosting algorithm to build predictive models
of schizophrenia disease status by using DAO and G72
protein levels in the NMDAR pathway as well as by using
melatonin levels in the tryptophan catabolic pathway. To
deal with imbalanced data, we also utilized the random
undersampling method at the data level (Galar et al., 2011).
To the best of our knowledge, no previous studies have been
performed to evaluate predictive models for schizophrenia
disease status by using ensemble boosting techniques with
random undersampling. We selected the ensemble boosting
algorithms because these algorithms are regularly applied to
solve complex problems in classification and predictive modeling
owing to their superiority in reduction of overfitting, consistency,
robust prediction, and better generalization (Yang et al., 2010;
Galar et al., 2011; Zhang et al., 2019). This study directly
compared the performance of the ensemble boosting models
to widely used machine learning algorithms, including support
vector machine (SVM), multi-layer feedforward neural networks
(MFNNs), logistic regression, random forests, naive Bayes,
and C4.5 decision tree. Our analysis demonstrated that our
ensemble boosting approach with random undersampling led to
better performance.

MATERIALS AND METHODS

Study Population
The study cohort consisted of 355 schizophrenia patients and
86 unrelated healthy controls, who were recruited from the
China Medical University Hospital in Taiwan. In this study,
both schizophrenia patients and healthy controls were aged
18–65 years, were healthy in the neurological and physical
conditions, and had obtained normal laboratory assessments
(such as blood routine and biochemical tests). Details of the
diagnosis of schizophrenia were published previously (Lin et al.,
2014). Briefly, the research psychiatrists evaluated both patients
and healthy volunteers by using the Structured Clinical Interview
for DSM-IV (SCID) for diagnosis (Lin et al., 2014).

After presenting a complete description of this study to the
subjects, we obtained written informed consents in line with the
institutional review board guidelines. This study was approved
by the institutional review board of the China Medical University
Hospital in Taiwan and was conducted in accordance with the
Declaration of Helsinki.

Laboratory Assessments
Plasma G72 protein expression levels were measured by western
blotting (Lin et al., 2014). Shortly after 10 mL of blood was
collected into EDTA-containing blood collection tubes by using
sterile techniques, we processed the blood specimens shortly by
using centrifugation at 500 g. After centrifugation, we directly
dissected plasma and rapidly stored it at −80◦C until western
blotting. For western blotting, we depleted 100 µL plasma by
using ProteoPrep R© Blue Albumin and IgG Depletion Kit. All
western blot experiments were repeated for two times.
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DAO levels in the serum were measured using commercially
available enzyme-linked immunosorbent assay (ELISA) kits
according to the manufacture’s recommended protocol (Cloud-
Clone Corp, Houston, TX, United States). The detailed method
has been described elsewhere (Lin et al., 2017b).

Melatonin protein concentrations were measured using
commercially available enzyme-linked immunosorbent assay
(ELISA) kits according to the manufacture’s recommended
protocol (MyBioSource, San Diego, CA, United States). Briefly,
100 µL plasma samples and the standard were added to each
well of a 96-well plate. The solutions were incubated for 2 h
at 37◦C. The liquid was then removed. 100 µL Biotin-antibody
(1×) was added to each well and incubated for 1 h at 37◦C.
Each well was washed with buffer for three times. 100 µL HRP-
avidin (1×) was added to each well and incubated for 1 h at
37◦C. Each well was washed with buffer for five times and then
incubated with 90 µL substrate solution for 15–30 min at 37◦C
with the protection from light. 50 µL stop solution was added to
each well, and mixed thoroughly. A Benchmark Plus Microplate
Reader (Bio-Rad) was used to read the optical density at 450 nm.
The concentrations of melatonin in the samples were determined
according to a standard curve.

Statistical Analysis
The Student’s t-test was conducted to measure the difference
in the means of two continuous variables (Lin et al., 2019).
We performed the chi-square test for categorical data. The
Kruskal-Wallis test was used to determine if there is statistically
significant difference between schizophrenia patients and healthy
controls on DAO, G72, and melatonin levels. Furthermore,
we utilized multivariable logistic regression analysis to assess
causal links between DAO, G72, and melatonin levels with
adjustment for age and gender. The criterion for significance
was set at P < 0.05 for all tests. Data are presented as the
mean± standard deviation.

Ensemble Boosting Predictive Models
We employed a key ensemble boosting technique called
LogitBoost (Friedman et al., 2000) and utilized the Waikato
Environment for Knowledge Analysis (WEKA) software (which
is available from https://www.cs.waikato.ac.nz/ml/weka/)
(Witten et al., 2005) to carry out the predictive ensemble
framework. All the experiments were conducted on a computer
with Intel (R) Core (TM) i5-4210U, 4 GB RAM, and Windows 7.

The LogitBoost algorithm is an ensemble boosting approach,
which combines the performance of many weak classifiers (also
referred to as base classifiers) to achieve a robust classifier with
higher accuracy. Figure 1 shows the illustrative diagram of the
ensemble boosting method. The LogitBoost algorithm utilizes a
binomial log-likelihood method that changes the classification
error linearly so that LogitBoost tends to be robust in handling
outliers and noisy data. The base classifier we employed is a
decision stump, which is a one-level decision tree (that is, a
decision tree with a root node and two leaf nodes). Here, we used
the default parameters of WEKA, such as 1.0 for the shrinkage
parameter, 100 for the batch size, 3.0 for the Z max threshold,
and 10 for the number of iterations.

Furthermore, we utilized a random undersampling technique
which eliminates instances in the majority class to balance
class distribution (Galar et al., 2011). We further combined the
LogitBoost algorithm with the random undersampling technique.

Machine Learning Algorithms for
Benchmarking
For the benchmarking task in the present study, we utilized
six state-of-the-art machine learning algorithms including SVM,
MFNNs, logistic regression, random forests, naive Bayes, and
C4.5 decision tree to compare with the ensemble boosting model.
We carried out the analyses for these six machine learning
algorithms using the WEKA software (Witten et al., 2005)
and a computer with Intel (R) Core (TM) i5-4210U, 4 GB
RAM, and Windows 7.

The SVM algorithm (Vapnik, 2013) is a popular technique
for pattern recognition and classification. Given a training set
of instance-label pairs, the SVM algorithm leverages a kernel
function to map the training vectors into a higher dimensional
space (Lin and Hwang, 2008b; Vapnik, 2013). In this higher
dimensional space, the SVM algorithm then finds a linear
separating hyperplane with the maximal margin. In this study,
we used the Pearson VII function-based universal kernel (Üstün
et al., 2006) with the omega value of 1.0 and the sigma value of 0.5.

An MFNN framework consists of one input layer, one or
multiple hidden layers, and one output layer, where connections
among neuron structures consist of no directed cycles (Bishop,
1995). In the learning period of the MFNN framework, the
back-propagation algorithm (Rumelhart et al., 1996) is leveraged
for the learning strategy. In the retrieving period, the MFNN
framework repeats via all the structures to perform the retrieval
process at the output panel in keeping with the inputs of test
patterns (Kung and Hwang, 1998).

We used the logistic regression model, the standard method
for classification problems in clinical applications (Witten et al.,
2005), as a basis for comparison. In addition, we employed the
naive Bayes model that assumes the presence or absence of a
particular feature is unrelated to the presence or absence of
any other feature (Witten et al., 2005). The naive Bayes model
calculates the probability that a given instance belongs to a certain
class (that is, “schizophrenia patient” or “healthy control” in this
study) by using the Bayes’ theorem.

The random forests model is an ensemble learning method
that composes a collection of decision trees during training
and yields the class that is the mode of the classes among
the individual trees (Breiman, 2001). Here, we used the default
parameters of WEKA for the random forests model; for example,
100 for the batch size and 100 for the number of iterations.

The C4.5 decision tree model builds decision trees top-down
and prunes them using the concept of information entropy
(Witten et al., 2005). First, the tree is constructed by finding the
root node (for example, protein level) that is most discriminative
one for differentiating “schizophrenia patient” from “healthy
control.” Then, the best single feature test is decided by the
information gain and by choosing a feature (for example, protein
level) to split the data into subsets. Here, we used the default
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FIGURE 1 | The schematic illustration of the ensemble boosting method. The idea of the ensemble boosting approach is to train weak/base classifiers sequentially in
a way that each classifier tries to correct its predecessor. A higher weight is assigned to samples that were incorrectly classified by earlier rounds. That is, week/base
classifiers are produced in sequence based on a weighted version of the data during the training phase. The final classification prediction is then produced by a
weighted majority vote.

parameters of WEKA, such as 0.25 for the confidence factor
and 2 for the minimum number of instances per leaf node
(Huang et al., 2009).

Evaluation of the Predictive Performance
In this study, we utilized the receiver operating characteristic
(ROC) methodology and determined the area under the ROC
curve (AUC) to assess the performance of predictive models
(Linden, 2006; Lin and Hwang, 2008b; Huang et al., 2009). The
better the prediction model, the higher the AUC (Linden, 2006;
Huang et al., 2009). In additional, we calculated sensitivity (that
is, the proportion of correctly predicted responders of all tested
responders) as:

Sensitivity = True Positive/(True Positive + False Negative)

and specificity (that is, the proportion of correctly predicted non-
responders of all the tested non-responders) as:

Specificity = True Negative/(True Negative + False Positive).

Moreover, we utilized the repeated 10-fold cross-validation
method and leave-one-out cross-validation method to examine
the generalization of predictive models (Huang et al., 2009; Lin
and Hsu, 2009).

RESULTS

The Study Cohort in the Taiwanese
Population
The participants included 355 schizophrenia patients and 86
unrelated healthy individuals in the Taiwanese population.

As shown in Table 1, there was no significant difference
in gender (P = 0.101) and age (P = 0.136) distributions
between the two groups. The mean age (39.6 ± 10.0 years) of
schizophrenia patients was older than that of healthy controls
(37.8± 12.2 years). The mean level of DAO protein in the plasma
of schizophrenia patients was considerably higher than that of
healthy controls (37.64 ± 14.18 ng/mL vs. 28.03 ± 9.84 ng/mL;
P = 5.55 × 10−9) (Table 1). In addition, the mean level of G72
protein in the plasma of schizophrenia patients was markedly
higher than that of healthy controls (3.24 ± 1.80 ng/µL vs.
1.68 ± 0.81 ng/µL; P = 4.71 × 10−14) (Table 1). Moreover, the
mean level of melatonin in the plasma of schizophrenia patients
was notably higher than that of healthy controls (89.89 ± 46.07
pg/mL vs. 60.04± 42.72 pg/mL; P = 9.75× 10−7) (Table 1).

The significant Kruskal-Wallis test was shown for DAO,
G72, and melatonin levels (P = 3.12 × 10−9, 2.2 × 10−16,
and 3.35 × 10−6, respectively) between schizophrenia patients
and healthy controls. Supplementary Figure S1 shows the

TABLE 1 | Demographic characteristics of schizophrenia patients and
healthy individuals.

Characteristic Schizophrenia
patients

Healthy
individuals

P-valuea

No. of subjects (n) 355 86

Gender (male)% 61.9% 52.3% 0.101

Age (year) 39.6 ± 10.0 37.8 ± 12.2 0.136

DAO level (ng/mL) 37.64 ± 14.18 28.03 ± 9.84 5.55 × 10−9

G72 level (ng/µL) 3.24 ± 1.80 1.68 ± 0.81 4.71 × 10−14

Melatonin level (pg/mL) 89.89 ± 46.07 60.04 ± 42.72 9.75 × 10−7

aChi-square test for the categorical data; Student’s t-test for continuous variables.
Data are presented as mean ± standard deviation. DAO, D-amino acid oxidase;
G72 (also known as DAOA), D-amino acid oxidase activator.
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TABLE 2 | The results of repeated 10-fold cross-validation experiments for differentiating schizophrenia patients from healthy individuals using ensemble boosting with
random undersampling, ensemble boosting, SVM, MFNNs, logistic regression, random forests, naive Bayes, and C4.5 decision tree with biomarkers such as DAO
protein levels, G72 protein levels, melatonin protein levels, age, and gender.

Algorithm AUC Sensitivity Specificity Number of biomarkers

Ensemble boosting with random undersampling 0.9242 ± 0.0652 0.8580 ± 0.0770 0.8594 ± 0.0760 5

Ensemble boosting 0.9010 ± 0.0464 0.8442 ± 0.0447 0.5803 ± 0.1446 5

SVM 0.6720 ± 0.0837 0.8461 ± 0.0393 0.4979 ± 0.1364 5

MFNN with 1 hidden layer 0.8920 ± 0.0463 0.8343 ± 0.0457 0.5816 ± 0.1340 5

MFNN with 2 hidden layers 0.8949 ± 0.0455 0.8391 ± 0.0515 0.6121 ± 0.1383 5

MFNN with 3 hidden layers 0.8884 ± 0.0507 0.8359 ± 0.0463 0.6312 ± 0.1454 5

Logistic Regression 0.8677 ± 0.0566 0.8497 ± 0.0566 0.5660 ± 0.1295 5

Random Forests 0.8543 ± 0.0627 0.8229 ± 0.0379 0.4197 ± 0.1213 5

naive Bayes 0.8546 ± 0.0628 0.8320 ± 0.0473 0.6611 ± 0.1411 5

C4.5 decision tree 0.7701 ± 0.0721 0.8306 ± 0.0469 0.4526 ± 0.1272 5

AUC, the area under the receiver operating characteristic curve; DAO, D-amino acid oxidase; G72 (also known as DAOA), D-amino acid oxidase activator; MFNNs,
multilayer feedforward neural networks; SVM, support vector machine. Data are presented as mean ± standard deviation.

distribution charts of three features (such as DAO, G72, and
melatonin levels) and other variables for schizophrenia patients
and healthy controls. The distribution charts are grouped
separately by two subsets, namely schizophrenia patients (shown
in the red color) and healthy controls (shown in the blue
color). As shown in Supplementary Figure S1, the number of
schizophrenia patients was much larger than the number of
healthy controls.

Predictive Models for Schizophrenia
Disease Status
In this study, we used five biomarkers including DAO levels,
G72 levels, melatonin levels, age, and gender to build the
predictive models for differentiating schizophrenia patients
from healthy individuals by employing the ensemble boosting
framework. Table 2 summarizes the results of repeated 10-
fold cross-validation experiments by ensemble boosting (with
random undersampling), SVM, MFNNs, logistic regression,
random forests, naive Bayes, and C4.5 decision tree using
five biomarkers. To measure the performance of prediction
models, we used the ROC methodology and calculated the AUC,
sensitivity, and specificity for these predictive models using
five biomarkers.

Supplementary Figures S2–S4 show plots of ROC, precision-
recall, and sensitivity-specificity curves for ensemble boosting
with random undersampling using five biomarkers, respectively.
Supplementary Figures S5–S10 show plots of ROC, precision-
recall, and sensitivity-specificity curves for ensemble boosting,
SVM, MFNNs, logistic regression, random forests, naive Bayes,
and C4.5 decision tree using five biomarkers.

As shown in Supplementary Figure S2, the lower left point
(0, 0) on the ROC curve represents a false positive rate of 0%
(that is, no false positive errors) and a true positive rate of 0%
(that is, no true positives), indicating never having a positive
classification. On the contrary, the upper right point (1, 1)
represents a false positive rate of 100% and a true positive rate
of 100%, indicating completely having positive classifications.
Furthermore, if we assume that the point (0.1406, 0.858) is on the

ROC curve, the point (0.1406, 0.858) shows a false positive rate of
14.06% (or specificity of 0.8594) and a true positive rate of 85.8%
(or sensitivity of 0.858).

As shown in Supplementary Figure S3, if we assume that
the point (0.858, 0.8546) is on the precision-recall curve, the
point (0.858, 0.8546) shows a true positive rate of 85.8% (or
recall/sensitivity of 0. 858) and a precision value of 85.46%.
Additionally, as shown in Supplementary Figure S4, if we
assume that the point (0.8594, 0.858) is on the sensitivity-
specificity curve, the point (0.8594, 0.858) shows a true negative
rate of 85.94% (or specificity of 0.8594) and a true positive rate of
85.8% (or sensitivity of 0.858).

In addition, Supplementary Tables S1–S3 summarize
the results of repeated 10-fold cross-validation experiments
by ensemble boosting (with random undersampling), SVM,
MFNNs, logistic regression, random forests, naive Bayes, and
C4.5 decision tree using individual features such as DAO
(Supplementary Table S1), G72 (Supplementary Table S2), and
melatonin (Supplementary Table S3) levels, respectively.

Ensemble Boosting Model for
Schizophrenia Disease Status
For the ensemble boosting model for forecasting schizophrenia
disease status, we performed a series of different datasets using
five biomarkers as well as individual features. As indicated
in Table 2, the average value of AUC for the ensemble
boosting prediction model with random undersampling was
0.9242 ± 0.0652 using five biomarkers including DAO levels,
G72 levels, melatonin levels, age, and gender. As indicated
in Supplementary Tables S1–S3, the average values of AUC
for the ensemble boosting prediction model with random
undersampling were 0.6471 ± 0.1062, 0.7314 ± 0.1121, and
0.8462 ± 0.0873 using individual features such as DAO levels,
G72 levels, and melatonin levels, respectively.

Benchmarking
To evaluate the performance of our approach for predictive
models for schizophrenia disease status, we compared the
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ensemble boosting model with other state-of-the-art methods,
including SVM, MFNNs, logistic regression, random forests,
naive Bayes, and C4.5 decision tree.

For MFNN models for forecasting schizophrenia disease
status, we performed a series of different architectures containing
1, 2, and 3 hidden layers. Supplementary Figures S11–S13 show
an example of architecture of the MFNN model with 3, 2, and
1 hidden layer(s), respectively. As indicated in Table 2, the
average values of AUC for the MFNN prediction models of 1,
2, and 3 hidden layers were 0.8920 ± 0.0463, 0.8949 ± 0.0455,
and 0.8884 ± 0.0507, respectively. Supplementary Figures
S14–S16 show cost/loss function measurement plots of the
MFNN model with 3, 2, and 1 hidden layer(s), respectively.
Of all the MFNN prediction models, the MFNN model with
2 hidden layers yielded better performance than the other
two models in terms of AUC. Thus, there was no significant
improvement in the sensitivity with the increase in hidden layers.
Moreover, the specificity was low, indicating that the model
provides more false positives. This may have been due to an
imbalance in the dataset.

Supplementary Table S4 shows WEKA’s hyper-parameters
for training the MFNN models with 1–3 hidden layers. For
example, we used the following WEKA’s parameters for training
the MFNN model with one hidden layer: the momentum = 0.01,
the learning rate = 0.05, the batch size = 100, and the number
of epochs = 500.

As shown in Table 2, the ensemble boosting model with
random undersampling performed maximally in all cases.
The best AUC was 0.9242 ± 0.0652, which was based on the
ensemble boosting model with random undersampling (Table 2).
Our analysis indicated that the ensemble boosting model with
random undersampling was well-suited for predictive models
for schizophrenia disease status. Furthermore, the ensemble
boosting model with random undersampling performed
best in both sensitivity (0.8580 ± 0.0770) and specificity
(0.8594± 0.0760) (Table 2).

Leave-One-Out Cross-Validation
Experiments
In this study, we also explored the generalization of predictive
models using the leave-one-out cross-validation method.
Supplementary Table S5 summarizes the results of leave-
one-out cross-validation experiments by ensemble boosting
(with random undersampling), SVM, MFNNs, logistic
regression, random forests, naive Bayes, and C4.5 decision
tree using five biomarkers such as DAO levels, G72 levels,
melatonin levels, age, and gender. In addition, Supplementary
Tables S6–S8 summarize the results of leave-one-out cross-
validation experiments by ensemble boosting (with random
undersampling), SVM, MFNNs, logistic regression, random
forests, naive Bayes, and C4.5 decision tree using individual
features such as DAO (Supplementary Table S6), G72
(Supplementary Table S7), and melatonin (Supplementary
Table S8) levels, respectively.

As indicated in Supplementary Table S5, the AUC value
for the ensemble boosting prediction model with random

undersampling was 0.937 using five biomarkers including
DAO levels, G72 levels, melatonin levels, age, and gender. As
indicated in Supplementary Tables S6–S8, the AUC values
for the ensemble boosting prediction model with random
undersampling were 0.603, 0.610, and 0.826 using individual
features such as DAO levels, G72 levels, and melatonin
levels, respectively.

As shown in Supplementary Table S5, the best AUC was
0.937, which was based on the ensemble boosting model with
random undersampling using five biomarkers such as DAO
levels, G72 levels, melatonin levels, age, and gender. Furthermore,
the ensemble boosting model with random undersampling
performed best in both sensitivity (0.855) and specificity (0.855)
(Supplementary Table S5).

Causal Links Between Protein Levels
Finally, we assessed causal links among DAO levels, G72
levels, and melatonin levels in predicting schizophrenia disease
status with age and sex as covariates. In our analysis, there
was a significant causal link involving DAO levels and
G72 levels (P = 0.0036) in influencing schizophrenia disease
status. However, there were no causal links either between
DAO levels and melatonin levels or between G72 levels and
melatonin levels.

DISCUSSION

To our knowledge, this is the first study to date to leverage
an ensemble boosting approach with random undersampling
for building predictive models of schizophrenia disease status
among Taiwanese individuals. Moreover, we performed the
first study to predict schizophrenia disease status by utilizing
protein data in both the NMDAR and tryptophan catabolic
pathways. The findings pinpointed that the ensemble boosting
model with random undersampling using five biomarkers
outperformed other state-of-the-art predictive models in terms
of AUC for distinguishing schizophrenia patients from healthy
controls. The five biomarkers encompassed DAO levels, G72
levels, melatonin levels, age, and gender. In addition, we found
that a significant causal link between DAO and G72 protein
levels possessed a strong potential to reflect schizophrenia
disease status. By leveraging the molecular data in the
NMDAR and tryptophan catabolic pathways, we establish the
predictive models of schizophrenia disease status by using the
ensemble boosting framework with random undersampling.
Our data also suggest that our ensemble boosting models
with random undersampling may provide a suitable approach
to create predictive models for forecasting schizophrenia
disease status with clinically meaningful accuracy. Therefore,
the ensemble boosting approach with random undersampling
in this study is a proof of concept of a machine learning
predictive tool for discriminating schizophrenia patients from
healthy individuals.

Remarkably, an intriguing finding was that we further
inferred the causal link between DAO and G72 protein levels
in influencing schizophrenia disease status. To our knowledge,
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scanty human studies have been conducted to evaluate causal
links between DAO and G72 protein levels. The biological
mechanisms of these causal links in schizophrenia disease
status remain to be elucidated. In line with our results,
an in vitro study identified a physical interaction between
DAO and G72 proteins using yeast two-hybrid experiments
(Chumakov et al., 2002). Moreover, a recent study found a
putative correlation between DAO and G72 protein expressions
in the brain regions such as the brainstem, cerebellum,
amygdala, and thalamus (except for the frontal cortex) by
using post-mortem brain samples in normal human subjects
(Jagannath et al., 2017).

In this study, the dataset is highly imbalanced because the
class of schizophrenia patients is significantly larger in terms
of instances than the class of healthy controls. To overcome
this limitation, we employed the random undersampling method
to balance class distribution. Without random undersampling,
the predictive models tend to have lower specificity values. In
line with previous findings (Chawla et al., 2004; Galar et al.,
2011), we found that the ensemble boosting model with random
undersampling is highly suitable for handling class imbalances. It
has also been suggested to use more accurate measures such as
AUC to evaluate predictive models in the case of class imbalances
(Chawla et al., 2004).

Furthermore, it is worthwhile to bring the discussion on
the random undersampling method for dealing with the
imbalanced data (that is, the bigger number of schizophrenia
patients vs. the smaller number of healthy controls) in our
study. Due to the imbalanced data, the models without the
random undersampling method showed predictions that were
clearly biased toward higher sensitivity and lower specificity.
For example, without random undersampling, sensitivity was
around 80% and specificity was around 50–60% for the
models using the combined biomarkers of DAO, G72, and
melatonin protein levels (Table 2). On the contrary, ensemble
boosting with random undersampling had sensitivity of 85.8%
and specificity of 85.94% for the combined biomarkers
(Table 2). The models with individual biomarkers were
also in the similar situation (Supplementary Tables S1–S3).
For instance, without random undersampling, sensitivity was
around 80% and specificity was around 40% for the models
using individual melatonin protein levels (Supplementary
Table S3). On the other hand, ensemble boosting with random
undersampling had sensitivity of 77.19% and specificity of
77.44% for melatonin protein levels (Supplementary Table S3).
Therefore, predictions were no longer biased toward higher
sensitivity and lower specificity by using ensemble boosting
with random undersampling. Our improved results demonstrate
that the ensemble boosting model with random undersampling
provides an effective way to solve the imbalanced data
problem in our study.

CONCLUSION

In conclusion, we created an ensemble boosting predictive
framework with random undersampling for estimating

schizophrenia disease status in Taiwanese subjects by using
DAO and G72 protein datasets in the NMDAR pathway as
well as by using melatonin dataset in the tryptophan catabolic
pathway. The analysis indicates that our ensemble boosting
framework with random undersampling could contribute
a conceivable way to construct predictive algorithms for
determining schizophrenia disease status in terms of clinically
purposeful performance. Consequently, we would foresee that
the findings of this study may be generalized for genomic
medicine studies in precision psychiatry to forecast disease
status and treatment response for psychiatric disorders.
Furthermore, the findings may be potentially adopted to
provide molecular diagnostic and prognostic tools in the
coming years. It is indispensable to unfold further discoveries
into the role of the machine learning predictive framework
explored in this study by using replication studies with
independent samples.
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