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Editorial on the Research Topic

Modeling for Prediction of Radiation-Induced Toxicity to Improve Therapeutic Ratio in the
Modern Radiation Therapy Era

INTRODUCTION

Radiation therapy (RT) represents a mainstay of treatment for many cancer types, either as a single
modality or within a multidisciplinary approach, including surgery and systemic therapy. From a
general perspective, when planning a curative radiotherapy course, its potential benefits should be
weighed against the risk of acute and late tissue/organ damage. In other words, the main goal of
radiotherapy is to improve the clinical outcome by increasing the therapeutic ratio, i.e., the ratio
between tumor control probability (TCP) and normal tissue complication probability (NTCP).
Although modern radiotherapy techniques, such as Intensity Modulated RT (IMRT), often coupled
with advanced in-room imaging (Image Guided RT, IGRT), Stereotactic Body RT (SBRT), particle
RT, including proton ion and carbon ion RT, allow a better sparing of normal tissues due to their
improved conformity and precision, radiation-induced toxicity is still a matter of concern. Indeed,
dose tolerance of many healthy tissues, called organs at risk, is a little less than or equal to the dose
needed to eradicate cancers.

It is acknowledged that the risk of some induced side effects during and after the course of
curative radiotherapy may be related to radiation doses delivered to multiple organs at risk rather
than to the dose received by a specific organ. Additionally, various patient-related factors, including
comorbidities and genetic, genomic and biological/microenvironment features, may act as modifiers
of the dose-response curve. Thus, predicting toxicity by analyzing the relationship among all
determinants of radiation response of healthy tissues could improve the therapeutic ratio and the
management of side effects.

The QUANTEC (Quantitative Analyses of Normal Tissue Effects in the Clinic) collaboration (1)
presented a synthesis of data and models available in 2010. It derived recommendations based on what
we knew at that moment. The document gave clear and exhaustive recommendations in the (few)
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situations where consistent results were available. In the case of
controversial results or still more of a lack of reliable information,
the document critically discussed the controversial points, often
suggesting urgent lines of research and giving clear warnings around
the uncertainty of the proposed recommendations.

During the “post-QUANTEC” years, the field’s progress has
been relevant, confirming its vitality, with many research groups
continuously contributing with ideas and new data. Besides, new
challenges entered into the arena, substantially modifying the
traditional aspects dealing with clinical dose-volume effects
studies (2).

Among them, probably the most important is the shift from
NTCP dose-based modelling to the broader field of more
“comprehensive” predictive models. In the hypothetical case
that two patients receive exactly the “same dose distribution”,
the risk of toxicity is always modulated by the single
individual profile.

The fact that “dose is not enough” was clear from the early
days of radiobiology. It is receiving constantly growing attention
in the current “omics” era (3): the availability of individual
information characterizing the patients and potentially
influencing their reaction to radiation is more and more
essential, especially in the era of image-guided IMRT in which
organs are efficiently spared in most patients.

This implies the need to have access to data including
individually assessed clinical, biological and genetic information
and to face the issue of modeling the response of normal tissue to
radiation in a more and more “phenomenological” approach (4),
requiring robust methods for the selection of the most predictive
variables (both dosimetric and non-dosimetric) and the adoption of
advanced data mining/machine learning methods to manage large
databases, including a large number of patients and lots of variables.

Treatment planning optimization is driven by the knowledge,
often not exhaustive, of quantitative dose-volume effect
relationships. NTCP models are also increasingly used in
protocols of model-based selection of patients for proton therapy
(5–7), impacting both the single patient treatment and National
Health Systems (efficiency and costs). Therefore, every progress in
this field has a vast and rapid impact on how patients are treated
everywhere. This is an active field of research and practice, involving
many radiation oncologists, medical physicists, biologists, and data
scientists in a multiprofessional scenario.
TOPICS COVERED IN THIS
RESEARCH TOPIC

This Research Topic includes Original Research Papers, Reviews,
Mini Reviews and Perspective and Opinion articles focusing on:

• The state-of-the-art of modeling approaches and their
contribution towards personalized cancer treatment;

• The improvements of knowledge on dose-volume
relationships for different organs;

• The integration of clinical/genetic/genomic/biological/
microenvironment/imaging features in prediction models;
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• Pre-clinical research on radiation induced damage to normal
tissues using animal models;

• Voxel-based approaches to analysis of radiation induced
toxicity.
PAPERS INCLUDED IN THIS
RESEARCH TOPIC

This Research Topic includes 30 original articles, 2 review,
1 mini-review and 1 perspective article.

The papers are from 160 authors and 18 countries on four
continents. In particular, there are 19 works involving several
centers and countries from one continent (10 from Europe, 6
from Asia, 2 from United States, and 1 from Australia) 9
international papers including countries both from Europe and
other continents, and 6 papers from Italian centers. Authors’
affiliations are equally distributed among academies and hospitals.
These summary statistics mirror the broad interest in modeling
radiation-induced toxicity, the highly multidisciplinary background
of people involved in the field, and the vital relationship between
academic and clinical research teams.

Four pre-clinical studies are presented: McKelvey et al.
consider the interaction between immunotherapy and
radiotherapy, Wang et al. studied the mitigation of side-effects
by removing senescent cells, Li et al. present results in mice on
aerosolized thyroid hormone in preventing lung fibrosis, and
Zuppone et al. propose a review of pre-clinical research on
bladder toxicity

Four manuscript focus on general/methodological issues:
Barry et al. evaluate the propagation of uncertainties in
biologically driven treatment planning systems, Thor et al.
reinforce the value of registering study analysis plans and
proposes some guidelines, Isaksoon et al. review machine
learning methods applied to modeling of radiotherapy
outcomes, while Desideri et al. propose a mini-review on
available models including radiomics features in models.

Most papers (26/34) report original research on modeling
toxicity outcomes in clinical cohorts. Cancer sites include brain
tumors, head-and-neck and thoracic diseases (mainly breast
cancer, lung and esophageal cancers), prostate cancer. Twenty-
one out 26 papers focus on photon external beam radiotherapy.
At the same time, one considers proton-therapy (Palma et al.),
one carbon ions (Dale et al.), one brachytherapy (Panettieri et al.)
and one radioligand therapy (Belli et al.). A last work considers
modeling secondary malignancy in the frame of comparison of
photons and protons radiotherapy (Konig et al.). This uneven
distribution is associated with a more mature experience in
toxicity modeling after external beam RT; simultaneously, it
highlights recent interest from the environment of more
modern therapies.

Thirteen out of 26 papers consider more established modeling
methods, including clinical and dosimetric risk factors (Jasper
et al.; Zhao et al.; Lee et al.; Dupic et al.; Scoccianti et al.; Palma
et al.; Panettieri et al.; Bresolin et al.; Onjukka et al.; Dale et al.;
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Belli et al.; Rattay et al.; Meng et al.). Some papers consider the
inclusion of radiomics (Avanzo et al.; Du et al.), genetic
information (Palumbo et al.; Massi et al.) and patient-specific
biomarkers (Luo et al.; von Reibnitz et al.; Dulong et al.).

Evaluation of models including advanced dosimetric features
beyond the dose-volume-histograms is presented in two papers:
Heemsbergen et al. considering rectum dose maps and Marcello
et al. conducting three-dimensional voxel-based analysis.

Interestingly four papers consider external validation of
previously published models and or clinical/dosimetric/genetic
features (Shi et al.; Panettieri et al.; Massi et al.; Rattay et al.),
investigating when models can be generalized to populations
other than the ones used for their training, how well this works
and which cautious should be considered.

Two papers put the use of models in the perspective of
modern radiotherapy: Bijman et al. consider automated
radiotherapy planning to explore at the single-patient level the
trade-off between tumor coverage and predicted toxicity; Lafond
et al. investigate the feasibility and the added value of planning
which considers specific organ sub-regions while preserving the
dose to the target for prostate radiotherapy.
CONCLUSIONS

The QUANTEC papers were published as a special issue of the
Red Journal in March 2010 and became hugely successful with
copies of QUANTEC dose constraints tables hanging in most
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dose-planning office spaces and hundreds to a thousand citations
each of the published papers. However, as we passed the tenth
anniversary of QUANTEC, there is a need for a renewed
coordinated effort to take the use of mathematical bioeffect
models for decision support and treatment plan comparison in
radiation oncology to the next level for a range of reasons,
including: (i) understanding that patient related risk factors
may substantially impact organ tolerance, (ii) documented
problems with external validation of dose-response models,
(iii) more complicated associations of dose distribution to
toxicity than a single dose-volume metric in a well-defined
tissue structure, (iv) normal tissue effect models are being
proposed for comparing competing high-cost treatment
options (e.g. hadrons vs. photons).

The 34 papers published in this Research Topic constitute a
vital contribution to the field. New interesting results are
included, new topics and challenges are approached. The
Research Topic witnesses the broad involvement of
multidisciplinary teams towards a better understanding of the
complex relationships between dose and biological response of
healthy tissues, with the final aim of reaching improved
optimization and personalization of radiotherapy treatments.
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Purpose: To evaluate the performance of the hippocampal normal tissue complication

model that relates dose to the bilateral hippocampus tomemory impairment at 18months

post-treatment in a population of low-grade glioma (LGG) patients.

Methods: LGG patients treated within the radiotherapy-only arm of the EORTC

22033-26033 trial were analyzed. Hippocampal dose parameters were calculated from

the original radiotherapy plans. Difference in Rey Verbal Auditory Learning test delayed

recall (AVLT-DR) performance pre-and 18 (±4) months post-treatment was compared to

reference data from the Maastricht Aging study. The NTCP model published by Gondi

et al. was applied to the dosimetric data and model predictions were compared to actual

neurocognitive outcome.

Results: A total of 29 patients met inclusion criteria. Mean dose in EQD2Gy to the

bilateral hippocampus was 39.8Gy (95% CI 34.3–44.4Gy), the median dose to 40% of

the bilateral hippocampus was 47.2 EQD2Gy. The model predicted a risk of memory

impairment exceeding 99% in 22 patients. However, only seven patients were found to

have a significant decline in AVLT-dr score.

Conclusions: In this dataset of only LGG patients treated with radiotherapy the

hippocampus NTCP model did not perform as expected to predict cognitive decline

based on dose to 40% of the bilateral hippocampus. Caution should be taken when

extrapolating this model outside of the range of dose-volume parameters in which it

was developed.

Keywords: NTCP (normal tissue complication probability) model, low grade glioma (LGG), model verification and

validation, neurocognition, memory, late effect of cancer treatment, radiotherapy—adverse effects
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INTRODUCTION

Low grade glioma (LGG) are a group of relatively slow
growing primary brain neoplasms, mainly occurring in those
between 30 and 50 years of age (1, 2). Modern treatment
for LGG patients comprises surgery followed by radiotherapy
and adjuvant chemotherapy (3). Overall survival was recently
reported to be 13.3 years (4), but can vary withmolecular subtype.

With many LGG patients living for many years or even
decades after treatment, the late adverse effects of treatment on
quality of life and neurocognitive functioning are of increasing
importance. Although both the tumor itself, as well as the
use of anticonvulsant therapy, have a deleterious effect on
neurocognitive function (5, 6), radiotherapy (RT) in particular
has been associated with a negative impact on neurocognitive
function. This late effect of radiotherapy was found in several
series with a longer follow-up (7, 8), however, it was not found in
several studies that limited observation to the first 5 years (9–12).

A dose response relationship with decreasing neurocognitive
performance (specifically memory) has been attributed to the
hippocampal area (13). A NTCP model for memory impairment
was proposed by Gondi et al. (14). In this study, 18 patients
undergoing fractionated stereotactic radiotherapy for benign
and low-grade tumors (9 vestibular schwannomas, 2 pituitary
adenomas, 3meningiomas, and 4 low grade gliomas) completed a
comprehensive baseline neurocognitive assessment and a repeat
assessment at 18 months. A control group of 6 non-irradiated
subjects was tested as well, allowing for the use of Z scores for
performance change. Dose in excess of 7.3 EQD2Gy to 40% of
bilateral hippocampus were found to be significantly correlated
to a decrease in Wechsler Memory Scale III–Word Lists delayed
recall score, a test that measures verbal memory performance.

Although this model is routinely used in the clinic, its
performance has not yet been quantified in the setting of partial
brain irradiation in a population of LGG patients. We analyzed
data from a recently completed and published randomized
phase III trial, where LGG patients in the control arm were
treated exclusively with focal radiotherapy up to 50.4Gy (15) and
compared the predicted risk of neuropsychological impairment
with the actual outcome.

MATERIALS AND METHODS

Patient Population
Data was acquired within the EORTC 22033-26033
(NCT00182819) trial, which is a prospective, randomized,
open-label, phase 3 Intergroup study (European Organisation
for Research and Treatment of Cancer [EORTC] Radiotherapy
and Brain Tumor Groups, National Cancer Institute of Canada
[NCIC] Clinical Trials Group, Trans Tasman Radiation
Oncology Group [TROG], Medical Research Council [MRC]
Clinical Trials Unit). The study was approved by the institutional
review boards and ethics committees of all participating centers.
All patients provided written informed consent at the time of
registration (15).

In the aforementioned trial, patients of 18 years of age or older
with histologically confirmed and centrally reviewed low-grade

(WHO 2) glioma (diffuse astrocytoma, oligoastrocytoma and
oligodendroglioma, WHO classification 2006) with at least one
high-risk feature (age >40 years, progressive disease, tumor
size >5 cm, tumor crossing midline, any focal neurological
deficit) were randomly assigned to treatment with either
radiotherapy (28 × 1.8Gy) or temozolomide chemotherapy.
Between September 2005 and March 2010 477 patients were
randomized. The study design, treatment details and the results
of the primary analysis have been described elsewhere (15).
A total of 103 patients from preselected medical centers also
underwent a detailed neurocognitive examination consisting
of the Rey Auditory Verbal Learning test (AVLT), Concept
Shifting test, Categoric Word Fluency test, and the Digit-
Symbol Substitution test. Neurocognitive tests were conducted
at randomization and then every 6 months until to tumor
progression or death.

The analysis presented herein contains patients with
retrievable radiotherapy planning data and neuropsychological
testing at both baseline and 18 (±4 months). The neurocognitive
analysis for the entire patient population of EORTC 22033-26033
is reported elsewhere (16). The present study was conducted
according to the principles of the Declaration of Helsinki
(59th WMA General Assembly, Seoul, October 2008) and in
accordance with the local medical research regulations. The
study protocol has been presented to the local Medical Ethics
Committee (MEC-2017-321). No ethical approval was deemed
necessary and the requirement for additional informed consent
was waived.

Neuropsychological Assessments
One of the tests in the neuropsychological assessment is the
AVLT, which calls for various aspects of learning and recall.
The delayed recall condition (AVLT-dr) requires patients to
memorize a list of 15 words for five consecutive tests, and to recall
these 15 words after 20min. The maximal score is 15 out of 15.
This test is conceptually identical to the delayed recall condition
in the Wechsler Memory Scale 3—word lists used by Gondi et al.
as the primary outcome measure.

In contrast to the original paper by Gondi et al.,
EORTC22033-26033 does not include a control group of
healthy volunteers. Normal data for AVLT-dr, with test-
retest changes, has been published by the Maastricht Aging
Study group (17). This study tested healthy volunteers using
several neuropsychological tests at 2.5 year intervals and gives
parameters for a regression-based change analysis of test-retest
performance. The following relationship between age and change
in AVLT-dr retest score was found.

E = 1.025− 0.035 ∗ (age− 62.5) (1)

Where E is the expected change between test and retest-score.
This can be converted to a Z score using the standardized residual
(which was found to be 2.362 in this test condition).

Z =
O− E

2.362
(2)

WhereO is the observed retest score, and E is the predicted retest
score. As reported in the paper by Gondi et al., a neurocognitive
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event was defined as a reduction in AVLT-dr score at 18 months
corresponding to a Z score lower than−1.5.

Radiotherapy Treatment
Patients were treated with photon radiotherapy using 3D
conformal radiotherapy (3DCT), fractionated stereotactic
radiotherapy (FSRT) or intensity modulated radiotherapy
(IMRT) techniques depending on the availability at the
institution. Gross tumor volume (GTV) was defined by the
region of high signal intensity on T2 weighted MRI of FLAIR
sequences, or, in case of prior surgery, the resection cavity
and the residual tumor. Clinical target volume (CTV) margin
was 10–15mm. Planning target volume (PTV) margin was
7mm for all patients. As required per protocol the contralateral
hemisphere was spared, but no specific attempt at sparing one or
both hippocampi was made.

Delineation and DVH Analysis
A rigid registration was applied between the planning CT and
MRI using MIMSoftware (Cleveland, OH, USA). Hippocampus
delineation followed the instructions of the publicly available
atlas from RTOG0933 (18). In case no registration was
possible, delineation was performed on CT using anatomical
landmarks visible on MRI. Dose volume histograms (DVH)
and subsequent DVH parameters were generated for left and
right hippocampus individually and for composite bilateral
hippocampi. As presented in the paper by Gondi et al., we
assumed an α/β value of 2 to convert physical dose to biologically
equivalent dose in 2Gy fractions (EQD2 Gy). The Dx% of
bilateral hippocampus was defined as the dose in EQD2 Gy
received by x % of bilateral hippocampal volume.

Statistical Approach
Descriptive statistics were generated for age, tumor laterality,
tumor lobe, anti-epileptic drug treatment (AED), education,
CTV volume, and hippocampal dosimetry (Table 1). The model
used by Gondi et al. is based on the Lyman model (19). Their
formulation was presented as follows:

PNTCP =
1

√
2π

∫ t

−∞
e
−u2

2 du (3)

Where t is a function of TD50, the dose to 40% of hippocampus
at which the probability of neurocognitive decline is 50%, andm,
is a slope parameter (see below).

t =
D− TD50

m TD50
(4)

In the paper published by Gondi et al., the obtained values
of TD50 and m were 14.88 and 0.54, respectively. We applied
this model to generate predicted NTCP values for the dose
distributions in our study population. Cases were grouped in
three bins of equal size, according to ascendingNTCP. In order to
compute the observed risk the incidence of a neuropsychological
event in each bin is computed. The predicted NTCP was plotted
against observed NTCP in a calibration plot. Next, a linear

TABLE 1 | Patient characteristics.

Age (years) 43.0 (95% CI 27.8–69.4)

Sex Male 18 62.1%

Female 11 37.9%

Handedness Right 24 82.8%

Left 5 17.2%

Years of education 13.8 (95% CI 12.0–14.4)

Hemisphere Right 10 34.5%

Left 16 55.2%

Both 3 10.3%

Lobe Frontal 10 34.5%

Temporal 6 20.7%

Parietal 2 6.9%

Multifocal 10 34.5%

Other 1 3.4%

CTV volume (cc) 337 (95% CI 278–403)

Number of AEDs 0 3 10.3%

1 2 6.9%

2 24 82.8%

Epilepsy No seizures 9 31.0%

Generalized tonic-clonic

seizures

4 13.8%

Partial seizures 12 41.4%

Other 4 13.8%

Technique 3DCT 23 79.3%

IMRT 3 10.3%

FSRT 3 10.3%

Resection status Biopsy 15 51.7%

Partial removal 12 41.4%

Total removal 2 6.9%

IDH mutation Present 27 98.1%

Absent 1 3.4%

Undetermined 1 3.4%

1p/19q codeletion Present 10 34.4%

Absent 14 48.3%

Undetermined 5 17.2%

For age, CTV volume, and years of education the mean is reported along with the 95%

confidence interval.

regression was performed. The regression coefficients can be used
to calibrate the model to the dataset, the constant can be used as
offset parameter and the slope indicates over- or underestimation
of the observed risk.

In order to quantify model performance, the Brier score (BS)
was calculated for the original formulation of the model. BS is a
measure of the accuracy of a prediction with a binary outcome:

BS =
1

n

∑n

a=1
(fa − oa)

2 (5)

Where n is the number of observations, fa is the probability
that was forecast, and oa is the outcome (1 if the event occurs
and 0 if it does not occur). A low Brier score is indicative of
good model performance, it reflects a strong correlation between
forecast and outcome.
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Other Predictive Parameters
In addition to evaluating the performance of the NTCP model,
we investigated if CTV volume, laterality, age, handedness,
and WHO performance score were associated with cognitive
deterioration. To this end, using Spearman’s correlation
coefficient, a correlation matrix was made to identify if bilateral
and contralateral hippocampal DVH parameters correlated with
cognitive deterioration.

Power Considerations
In the paper by Gondi et al., a lower rate of neurocognitive
impairment was found in the group of patients with a low dose
to bilateral hippocampi, defined as dose to 40% of bilateral
hippocampus volume in EQD2 Gy (D40%BH) ≤7.3Gy (11.1 vs.
66.7%). In order to detect this difference in our group with 80%
power and 2-sided significance level α = 0.05, using a Fischer
exact test, and assuming the low-dose and the high-dose group
are equally sized, 15 patients are required per group. The power
calculation was done in SAS software version 14.1, all other
statistics were done in IBM SPSS Version 24 except for the Brier
score, which was calculated in MATLAB v2017a.

RESULTS

Patient Data
Of 477 patients within EORTC 22033-26033, 103 patients
underwent full neurocognitive testing. Of these, 54 patients
were treated with radiotherapy-only. Of these, 33 patients had a
complete neurocognitive assessment at baseline and at a median
follow up of 18.5 months (95% CI 17.3–18.9). Complete original
dosimetry data was available for 31 patients. Two patients
were excluded due to clinically progressive disease at time of
neurocognitive outcome assessment (Figure 1).

Data of 29 patients from 1 Spanish and 4 Dutch institutes is
summarized in Table 1. Median age of patients at randomization
was 43 years (95% CI 39–47). Only three patients did not require
anti-epileptic medication. Sixteen tumors were left sided, 10
right sided, and three were bilateral. Final resection status was
biopsy only in 15 patients, gross total resection in two patients,
and partial resection in twelve patients. An IDH mutation was
present in 27 patients, absent in one patient and undetermined
in one patient. An 1p/19q codeletion was present in 10 patients,
absent in 14 patients, and undetermined in five patients. Twenty-
eight patients were treated to a dose of 50.4Gy in 28 fractions,
one patient was treated to a dose of 54Gy in 30 fractions.
Twenty-five patients were treated with 3DCT, three with IMRT
and two with fractionated stereotactic radiotherapy. Mean CTV
volume was 340 cc (95% CI 276–403). Mean dose in EQD2
Gy to bilateral hippocampi was 31.4Gy (95% CI 27.2–35.6).
The mean D40%BH was 40.9Gy (95% CI 35.8–46.0), and the
median D40%BH was 47.2Gy. Only one patient had a D40%BH
lower than 7.3Gy. Mean dose in EQD2 Gy to contralateral
hippocampus was 21.6Gy (95% CI 16.7–26.9). Overall, there
was no significant difference between pre- and post-radiotherapy
AVLT-dr score (95% CI 1.09–2.16; Figure 2). A cognitive event
was scored in seven patients (24.1%). At the time of analysis, the
median time to progression in 14 patients was 2.9 years (95% CI
2.2–3.6). Fifteen patients were free of progressive disease after

a median follow-up duration of 3.3 years. We compared the
subgroup of patients with available data (n = 31) with the rest
of the study population (n = 446). The groups were comparable
with respect to tumor laterality, tumor lobe, performance status,
progression free survival, and presence of an 1p/19q codeletion.
However, the number of IDH wildtype tumors was significantly
lower in the study population (3.2 vs. 14%, p = 0.025, see
Supplementary Data).

Model Performance
We were unable to compare the incidence of cognitive events
between the high and low dose group as described in the paper
by Gondi et al. (D40%BH < 7.3Gy) as there was only one case
in the low dose group. However, there was no difference in the
incidence of a cognitive event between the group that received
a D40%BH above vs. below the median (47.2 Gy) in this study
(14 vs. 25%, p = 0.68). NTCP values are presented in Table 2

with dosimetry and neurocognitive results. A calibration plot is
presented in Figure 3. Linear regression showed a constant of
0.03 (p = 0.60) and a slope of 0.24 (p < 0.01) at an r2 of 0.346.
The Brier score of the model was 0.63.

Dosimetric Parameters
A heat map of the correlation matrix is presented in Figure 4.
Increasing age (p = 0.04) and tumor localization in the left
hemisphere (p = 0.01) were related to poorer neurocognitive
outcome at 18 (±4) months. None of the bilateral hippocampal
dose volume parameters (D10%, D20%, D30% up to D90%,
D95% and mean dose) did exhibit a significant correlation
with outcome.

DISCUSSION

To the best of our knowledge, this is the first attempt to
quantify the performance of the hippocampal NTCP model
within a group of only LGG patients treated with partial
brain irradiation. This model was used in RTOG 0933—
hippocampal sparing whole brain radiotherapy vs. standard
whole brain therapy in brain metastases and in the recently
presented phase III trial exploring WBRT plus memantine,
with or without hippocampal avoidance (NRG-CC001) (18,
20). Brain metastases are almost never observed in the
hippocampus, and selective avoidance of this region is not
likely to result in a higher risk of intracranial recurrence (21).
This is less clear in LGG where tumor cells are known to be
present within the entire brain (22). Moreover, subventricular
zone involvement has been shown to be a biomarker for
poor prognosis (23), making the hippocampus a potential
treatment target.

In the calibration procedure, the positive slope in the linear
regression indicates an overestimation of NTCP values by the
model in this dataset. The high Brier score indicates poor model
performance. In comparing the two study groups, the incidence
of a neurocognitive event is similar (29.2 vs. 24.1% in this study)
but the range of hippocampal dose is quite different. The median
D40%BH in the paper by Gondi et al. was 7.3Gy, at above
which a NTCP of 66.7% was observed. By contrast, the median
D40%BH in this paper is 47.2Gy and all but one of the patients
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FIGURE 1 | Inclusion of patients.

in the present study received a D40%BH in excess of 7.3Gy. In
comparing the two groups, there are substantial differences in
the delivery technique and target volume. In the paper by Gondi
et al., most patients were treated without a CTV expansion and
with limited PTV margins (2mm) using highly conformal dose
distributions. In the present study, patients were treated with a
CTV margin of 10–15mm and a larger PTV (7mm) resulting
in substantially larger target volumes, and the delivery technique
was mainly 3DCRT. It is likely that this resulted in higher doses
to bilateral hippocampus in this study, to a degree that almost
none of the patients were in the low dose group. As such, we were
unable to compare the incidence of neurocognitive impairment
between the high dose and the low dose group. However, the

hippocampal doses in this study group are probably a good
representation of the hippocampal dose range found in LGG
patients undergoing radiotherapy. Therefore, this study should
not be read as a formal disapproval of the hippocampal NTCP
model, but rather as a caution toward extrapolating a NTCP
model beyond the dose range in which it was developed. A
similar issue was encountered byMoiseenko in comparing NTCP
models for radiation toxicity to the visual apparatus (24). Since
no significant correlation between dosimetric parameters and
outcome was observed, we were unable to generate an alternative
model from this dataset.

The choice of endpoint, neurocognitive failure at 18 months
after radiotherapy, is debatable in LGG patients. Trials that found
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FIGURE 2 | Histogram of differences in AVLT-dr score per patient (baseline

minus follow-up). Overall, there was no significant difference between pre- and

post-radiotherapy AVLT-dr score.

FIGURE 3 | Calibration plot of the original model in this dataset. The predicted

NTCP is calculated using the NTCP model. The observed NTCP is calculated

by sorting the cases in three bins of ascending risk (horizontal axis), and

computing the incidence of a neuropsychological event in each bin (vertical

axis). The intercept line represents agreement between predicted and

observed NTCP. Error bars are 95% confidence intervals.

TABLE 2 | Dosimetric parameters, expected values derived from the NTCP

model, and cognitive event (see text for definition).

Age Dose to 40% of bilateral

hippocampus (EQD2 Gy)

Predicted NTCP

(NTCP model)

Cognitive

event

48.7 3.21 0.07 No

48.0 7.30 0.17 No

36.3 10.04 0.27 No

69.4 18.45 0.67 Yes

49.2 19.31 0.71 No

45.5 27.24 0.94 No

42.3 28.89 0.96 No

40.3 40.62 >0.99 No

32.9 44.30 >0.99 No

50.8 45.51 >0.99 No

37.1 46.27 >0.99 Yes

35.6 46.52 >0.99 No

40.6 46.79 >0.99 No

41.6 47.08 >0.99 No

50.1 47.18 >0.99 Yes

34.7 47.31 >0.99 No

48.5 47.42 >0.99 No

60.2 47.50 >0.99 Yes

35.9 47.61 >0.99 No

36.3 47.87 >0.99 No

42.5 47.91 >0.99 No

29.5 47.91 >0.99 No

35.2 48.00 >0.99 No

66.5 48.13 >0.99 No

44.3 48.20 >0.99 Yes

34.0 48.43 >0.99 No

50.6 48.73 >0.99 Yes

32.0 48.95 >0.99 No

27.8 50.74 >0.99 No

a significant effect of radiotherapy on neurocognitive function
typically only did so after a follow-up >5 years (7, 8), whereas
several trials with a shorter follow-up found no significant,
or only transient, deleterious effects (9–12, 25). This begs the
question whether neurocognitive impairment at 18 months is
indeed indicative of a persistent neurocognitive deficit.

Although preclinical and radiological (26, 27) data
demonstrated appreciable changes within the hippocampus
after radiotherapy, a relationship between cognitive performance
and a D40% as low as 7.3 EQD2 Gy was not found in the
current study but also not in other studies. In the setting
of prophylactic WBRT in small cell lung cancer and partial
brain irradiation for glioblastoma multiforme, Ma et al. (28)
demonstrated D50% of 22.1Gy to be associated with a 20%
risk of a significant decline in Hopkins Verbal Learning Test
(HVLT)—delayed recall score. Peiffer et al. (29) identified
the volume of bilateral hippocampi receiving 60Gy as a
possible predictor for cognitive decline. The analysis by
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FIGURE 4 | Correlation matrix of clinical and dosimetric parameters. Outcome: neurocognitive event, binary (for definition, see “Methods”), WHO, World Health

Organization Performance score; D10%, 20%, etc., dose absorbed by 10, 20%, etc. of bilateral hippocampus volume. Color: Spearman correlation coefficient. There

are significant correlations between age and outcome, laterality and outcome, and between individual dosimetric parameters.

Okoukoni et al. (30) established a correlation between post-
treatment HVLT score (no baseline measurement was done)
and even higher doses to the bilateral hippocampi. Here,
hippocampal V55Gy of 0, 25, and 50% were associated
with post-radiation impairment rates of 14.9, 45.9, and
80.6%, respectively.

In this study, we used prospectively acquired baseline and
follow up data from the recently completed EORTC22033-26033
trial, ensuring a homogenous patient group with good adherence
to protocol. The subset of patients included in this analysis
is a relatively small proportion of the radiotherapy-only group
(15%). Themain reason for this is that neurocognitive testing was
not mandatory, and a number of centers did no neurocognitive
testing. However, we found no significant differences in clinical
variables (save for presence of IDH mutation) and time to
progressive disease between our subset of and rest of the study
population. In comparing our neurocognitive event-definition to
the one used in the paper by Gondi et al., we did not utilize a
control group but published test-retest data from the Maastricht
Aging study. This data is derived from a study group that is older
(49–56 years), than the average patient in our study (43 years),
and the test-retest interval is twice as long (3 years).

In this dataset of only LGG patients, the NTCP model did
not perform as expected in predicting cognitive decline based
on dose to bilateral hippocampus. Clearly, the understanding
of the relationship between dose to subsites in the CNS and
neurocognitive functioning is still limited, and there exists

a paucity of prospective neuropsychological and dosimetric
parameters with an adequate duration of follow-up.
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4Department of Molecular Medicine, University of Padua, Padua, Italy

Introduction: Adverse effects of radiotherapy (RT) significantly affect patient’s quality

of life (QOL). The possibility to identify patient-related factors that are associated with

individual radiosensitivity would optimize adjuvant RT treatment, limiting the severity of

normal tissue reactions, and improving patient’s QOL. In this study, we analyzed the

relationships between genetic features and toxicity grading manifested by RT patients

looking for possible biomarkers of individual radiosensitivity.

Methods: Early radiation toxicity was evaluated on 143 oncological patients according

to the Common Terminology Criteria for Adverse Events (CTCAE). An individual

radiosensitivity (IRS) index defining four classes of radiosensitivity (highly radiosensitive,

radiosensitive, normal, and radioresistant) was determined by a G2-chromosomal assay

on ex vivo irradiated, patient-derived blood samples. The expression level of 15

radioresponsive genes has been measured by quantitative real-time PCR at 24 h after

the first RT fraction, in blood samples of a subset of 57 patients, representing the four

IRS classes.

Results: By applying univariate and multivariate statistical analyses, we found that

fatigue was significantly associated with IRS index. Interestingly, associations were

detected between clinical radiation toxicity and gene expression (ATM, CDKN1A, FDXR,

SESN1, XPC, ZMAT3, andBCL2/BAX ratio) and between IRS index and gene expression

(BBC3, FDXR, GADD45A, and BCL2/BAX).

Conclusions: In this prospective cohort study we found that associations exist

between normal tissue reactions and genetic features in RT-treated patients. Overall,

our findings can contribute to the identification of biological markers to predict RT toxicity

in normal tissues.

Keywords: radiotherapy, adverse effects, chromosomal radiosensitivity, gene expression, association analysis
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INTRODUCTION

The development of radiation-induced complications following
radiotherapy (RT) has a significant impact on treatment
outcome and patient’s quality of life (QOL). In the last decades
the therapeutic ratio has improved due to advancements in
RT technologies and use of radioprotectors, mitigators, and
radiosensitizers (1). Nevertheless, radiation toxicity of normal
tissues surrounding the tumor is a serious problem for ∼5–10%
of patients, who are affected by high intrinsic radiosensitivity
(2–4). Evidence of radiosensitivity in vivo is given by burns
and radiodermitis in the irradiated body parts, together with
bystander effect in neighboring area (5). Several factors, including
cellular composition, differentiation, cell renewal capacity, as well
as cellular radiosensitivity, determine the severity of radiation
toxicity (6). Patient-related factors are deeply linked to the risk
of manifesting radiation toxicity, and reliable biological markers
are still not available to predict the onset of severe side-effects
after RT. Human response to ionizing radiation (IR) is individual
and variable, being influenced by age, smoking, diabetes, collagen
vascular disease and genotype (7). Moreover, multiple genetic
pathways such as DNA damage repair, oxidative stress, radiation
fibrogenesis and endothelial cell damage are implicated in
adverse tissue reactions following radiotherapy (8). However,
the molecular basis of individual radiosensitivity remains poorly
understood, and the relationship between different indicators of
radiation sensitivity is elusive.

RT causes cancer cell death mainly by IR-induced DNA
Double Strand Breaks (DSBs). Formation of DSBs, the most
severe damage for genome integrity, triggers a cascade of cellular
events, collectively termed DNA-damage response (DDR), which
involves sensing the damage, signal transduction to the effectors
of DNA repair, cell cycle arrest and apoptosis induction (9–
11). Radiation-induced DSBs are efficiently repaired to ensure
the maintenance of genome integrity but when DNA repair
is hampered, unrepaired DSBs can originate chromosome
aberrations (12). Following irradiation, unrepaired DSBs can
be quantified in metaphase spreads by the yield of chromatid
breaks formed at G2-phase, which is inversely related to the
efficiency of the G2-phase checkpoint (13). Thus, the individual
level of radiosensitivity can be assessed in ex vivo irradiated
human peripheral blood lymphocytes (PBLs) by applying a “G2-
chromosomal assay” (14–17).

Increasing evidence supports the existence of individual
response to IR-induced DNA damage, which can be related to
mutations in key genes of DDR pathway or to individual capacity
to modulate the expression of DDR genes after IR-exposure. In
this regard, the expression of genes involved in DDR pathway
may be variable between individuals and can impact on own
radiation response.

Abbreviations: CTCAE, Common Terminology Criteria for Adverse Events;

DDR, DNA-Damage Response; DSBs, Double-Strand Breaks; HNSCC, Head

and Neck Squamous Cell Carcinoma; HRS, Highly Radiosensitive; IR, Ionizing

Radiation; IRS, Individual Radiosensitivity; N, Normal; PBLs, Peripheral Blood

Lymphocytes; QOL, Quality of Life; qRT-PCR, quantitative Real-Time PCR; RR,

Radioresistant; RS, Radiosensitive; RT, Radiotherapy.

Several studies attempted to find biomarkers able to predict
the onset of radiation toxicity in normal tissues after RT.
Individual radiosensitivity evaluated by using in vitro irradiated
patient-derived blood lymphocytes has been found to correlate
with normal tissue reactions (13, 18, 19), and single nucleotide
polymorphisms (SNPs) have been associated with acute and
late radiation-induced normal tissue injury in RT patients (19–
22). Data concerning the association between gene expression
changes and normal tissue radiation toxicity refer to in vitro
irradiation studies (4, 23–25) or to single gene analysis in
oncological patients treated with RT (26). To date, a relationship
between radio-induced normal tissue adverse effects, in vitro
chromosomal radiosensitivity and in vivo expression of a set
of radioresponsive genes is not available in the same cohort of
RT patients. Since future clinical protocols aim at ameliorating
patient’s QOL it is demanding to identify patient-related factors
that are associated with individual radiosensitivity before patients
undergo RT (27, 28).

In this explorative study, the clinical features of early radiation
toxicity have been associated with an Individual Radiosensitivity
(IRS) index, defining four classes of radiosensitivity (highly
radiosensitive, radiosensitive, normal and radioresistant) based
on a G2-chromosomal assay on patient-derived PBLs irradiated
in vitro (15). The expression level of 15 selected radioresponsive
genes belonging to DDR pathway has been measured in blood
samples from a subgroup of patients, representing the different
IRS classes, 24 h after the first RT fraction, as an additional
variable of intrinsic radiosensitivity. Data of clinical and genetic
features have been statistically analyzed to find possible genetic
factors associated with individual radiation sensitivity.

MATERIALS AND METHODS

Outline of the Study
In this prospective study, breast cancer (BC) and head and neck
squamous cell carcinoma (HNSCC) patients were enrolled as
representative of patients experiencing normal tissue reactions
after RT. Data of toxicity grading in normal tissues, in vitro
chromosomal radiosensitivity and in vivo RT-induced gene
expression changes, have been integrated to identify possible
biomarkers of radiosensitivity in patients undergoing RT
(Figure 1). Overall, 143 oncological patients were enrolled: 124
(all females) affected by BC, and 19 (6 females and 13 males)
affected by HNSCC.

Patients
Patients with BC or HNSCC histological diagnosis undergoing
RT were enrolled from 2015 to 2017 at the Department of
Radiotherapy, Veneto Institute of Oncology IOV–IRCCS, Padua,
Italy (IOV) upon evaluation and approval of the IOV-IRCCS
Ethic Committee (CE IOV 2015/18; CE IOV 2016/04). Privacy
rights of human subjects were observed; all the procedures
were in accordance with relevant guidelines and regulations. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Patients were enrolled applying the following exclusion
criteria: patients suffering from congenital syndromes
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FIGURE 1 | Flow chart showing the experimental phases for the identification of biomarkers of individual radiosensitivity in patients undergoing radiotherapy (RT).

predisposing to radiosensitivity (such as Ataxia-Telangiectasia,
Bloom syndrome, Down’s syndrome, Gorlin syndrome,
Klinefelter syndrome, Retinoblastoma,Wilm’s tumor, Xeroderma
pigmentosum, Rothmund-Thomson syndrome, Li-Fraumeni
syndrome, Dyskeratosis congenita, Familial dysplastic nevus
syndrome, Common variable immune deficiency, Nijmegen
Breakage Syndrome, Fanconi Anemia, albinism), previous RT
and/or chemotherapy treatment or ongoing chemotherapy
treatment, previous anticancer drug employment, significant
comorbidities, diabetic patients affected by breast cancer,
age≤ 18 years.

BC patients received by 3DCRT (42.40–50 Gy/16–25
fractions) plus a boost dose of 10Gy in 5 fractions to the tumor
bed. HNSCC patients received up to 70Gy, daily fraction
1.8–2.12 Gy/day, for 5 days/week on primitive tumor by VMAT
or IMRT.

Adverse tissue reactions (dermatitis radiation, pain, pruritus,
fatigue) have been recorded at the completion of RT treatment
(t1) and 1 month later (t2), using the Common Terminology
Criteria for Adverse Events (CTCAE) (version 4.03, http://ctep.
cancer.gov/protocolDevelopment/adverse_effects.htm). Adverse
effects were classified as: grade 0 (G0, no adverse effects), grade
1 (G1, mild), grade 2 (G2, moderate), grade 3 (G3, severe). At
the Department of Radiotherapy of the IOV-IRCCSmanagement
of acute toxicity followed a standardized procedure. All patients
were clinically evaluated before starting RT and no significant
side-effects were complained by patients.

Chromosome-Based Radiosensitivity
Assay
The G2-chromosomal assay was performed following a
standardized protocol (15). Briefly, whole blood cultures were
incubated for 72 h at 37◦C, 5% CO2 before being irradiated with
1Gy of gamma rays in a Gamma Beam A15 60Co panoramic
source at the National Laboratories of Legnaro (I.N.F.N., Padua,
Italy; dose rate: 0.5 Gy/min).

Immediately after irradiation, each culture was split in two
and one was treated with 4mM caffeine. After 20min at 37◦C,
both cultures were incubated with Colcemid at concentration
of 0.1µg/mL for 60min, then chromosome spreads were

prepared according to standard cytogenetic procedures. With
few exceptions, chromatid aberration yields were obtained by
scoring for chromatid breaks and gaps 50 metaphases per
culture, under a Zeiss AxioImager Z2 microscope coupled
with MSearch-AutoCapt software (Metasystems, Altlussheim
Germany). Following calculation of the in vitro individual
radiosensitivity index (IRS = [1-(G2caf-G2)/G2caf] × 100%,
simplified as IRS = (G2/G2caf) × 100%) patients were classified
as: highly radiosensitive, HRS (IRS > 70), radiosensitive, RS (50
< IRS ≤ 70), normal, N (30 ≤ IRS ≤ 50), and radioresistant, RR
(IRS < 30) (15, 29).

Gene Expression Analysis
Fifty-seven over 143 patients were randomly selected within
the four IRS classes (HRS, RS, N, RR) in order to have
comparable numbers of patients in each group. This sample size
guarantees a high statistical power (power = 0.83) in identifying
as significant (alpha < 0.1) genes with an effect equal to 1.1
among groups using either an ANOVA test or a Wilcoxon test.
Two whole blood samples were collected from each patient: one
immediately before the first fractionated RT dose and the second
24 h later. Samples were collected into PAXgene R© Blood RNA
tubes (PreAnalytiX GmbH, Qiagen, Venlo, The Netherlands)
for immediate stabilization of intracellular RNA, and stored at
−80◦C. Total RNA was purified by using PAXgene R© Blood RNA
Kit 6 (PreAnalytiX GmbH, Qiagen, Venlo, The Netherlands) and
quantified using the ND-1000 spectrophotometer (Nanodrop,
Wilmington, DE, USA).

For mRNA detection, retrotranscription and quantitative real
time-PCR (qRT-PCR) reactions were performed according to
our established protocol (30, 31). The gene-specific primers
for ATM, BAX, BBC3, BCL2, CCNG1, cMYC, DDB2, FDXR,
GADD45A, MDM2, CDKN1A, PCNA, SESN1, XPC, and
ZMAT3 genes and for GADPH as reference, can be found in
Supplementary Table 1. Real-time PCR was performed using an
Applied Biosystems 7500 Fast Real-Time PCR System according
to the following amplification protocol: 95◦C for 10min, 95◦C
for 15 sec, 60◦C for 60 s (40 cycles). qRT-PCR reactions
were always performed in triplicates. The relative expression
levels of mRNAs between irradiated (2Gy) and non-irradiated
(0Gy) blood samples of the same patients were calculated
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FIGURE 2 | Clinical variables of radiation toxicity in RT patients. RT-induced toxicity grading in breast cancer, BC (A) and in head and neck squamous cell carcinoma

HNSSC (B) patients at completion of RT treatment (t1) and 1 month later (t2).

using the comparative delta CT (threshold cycle number)
method (2−11CT) implemented in the 7500 Real Time System
software (32).

Statistical Analysis
ANOVA and ANOVA post-hoc with Bonferroni correction
was used to assess the gene expression mean differences
among groups of patients defined using clinical and IRS
annotations. In case of group size lower than 10 patients
Kruskall-Wallis/Wilcoxon test was used. Multivariate regression
analyses were used to test the association of clinical annotations
(explanatory variables) with IRS value (dependent variable).
Unsupervised cluster analysis of gene expression data was
performed using hierarchical cluster analysis with Euclidean
distance and complete linkage. All the analyses were performed
using the R programming language (version 3.4), and the
Bioconductor software suite (version 3.6).

RESULTS

Radiation-Induced Toxicity in RT-Treated
Patients
All patients were evaluated for the onset of radiation toxicity
at the completion of RT treatment (t1) and 1 month later (t2).

The overall distribution of subjects suffering from dermatitis
radiation, pain, pruritus and fatigue is reported in Figure 2;
Supplementary Table 2. Moderate (G2) dermatitis radiation
was recorded at t1 in 13.7 and 21% of BC and HNSCC
patients, respectively, whereas severe (G3) dermatitis radiation
was observed in 5.6 and 10.5% of BC and HNSCC, respectively.
At t2, G2 dermatitis radiation was observed in 8% of BC patients
and in 33% of HNSCC patients; G3 dermatitis radiation was
manifested by 0.8% of BC patients. Pain of G2 grade was
present in 5.6% of BC and in 15.8% of HNSCC patients at t1;
1 month later (t2), 2.4% of BC and 18% of HNSCC patients
manifested G2 pain. At t1, G3 pain was rarely recorded in
BC patients but affected 21% of the HNSCC patients; at t2
none of the BC and HNSCC patients suffered from pain of
G3 grade. Pruritus of G2 and G3 grade was recorded at t1
in 9.7 and 3.2% of BC patients, respectively, while at t2, G2
pruritus was present in 8.9% of BC patients. Concerning HNSCC
patients, 5.2 and 5.5% of them manifested G3 pruritus at t1
and t2, respectively. In summary, HNSCC patients manifested
higher degrees of dermatitis radiation and pain at both t1 and
t2, whereas pruritus appeared to be more pronounced in BC
patients. Fatigue (G1 grade) was present in 50.8% (BC) and
57.8% (HNSCC) of patients, and at t2 in 33.0 and 44.5%,
respectively (Figure 2).
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FIGURE 3 | (A) Data distribution for IRS values. Vertical lines indicate the

observed thresholds for the 4 classes of individual radiosensitivity, calculated

as: RR, mean - SD (IRS < 27.48); N, mean ± SD (27.48 ≤ IRS ≤ 48.72); RS,

mean + SD (48.72 < IRS ≤ 69.96); HRS, mean + 3 SD (IRS > 69.96).

(B) Patient distribution according to the four IRS classes.

G2-Chromosomal Radiosensitivity in RT
Patients
IRS values were determined in the complete patient cohort (143
subjects). In blood cultures exposed in vitro to 1Gy [according to
the standardized protocol developed by Pantelias and coworkers
(15, 29)], the average yield of G2 chromatid breaks was 2.5 (with
standard deviation SD = 0.084 and coefficient of variation CV
= 3%); the average IRS was 38.1 (SD = 10.62; CV = 27.8%).
Based on the observed distribution of individual IRS values, the
four classes of individual radiosensitivity should be, respectively:
RR < 27.48 (mean – SD); 27.48 ≤ N ≤ 48.72 (mean ± SD);
48.72 < RS ≤ 69.96 (mean + SD); HRS > 69.96 (mean +
3×SD) (Figure 3A). As these values are in strict agreement with
those proposed earlier (15), for further statistical analyses we
used the published thresholds (see Materials and Methods). One
patient resulted highly radiosensitive (HRS, 1%), 16 patients were
classified as radiosensitive (RS, 11%), 95 patients as normal (N,
66%) and 31 as radioresistant (RR, 22%) (Figure 3B).

Gene Expression in Blood Samples of RT
Patients
Fifteen radioresponsive genes belonging to DDR pathway
(Table 1) were analyzed by qRT-PCR in blood samples from 57

TABLE 1 | Names and function of DDR genes evaluated by qRT-PCR in blood

samples from RT patients.

Gene

symbol

Gene name Function

ATM Ataxia Telangiectasia Mutated DNA damage signal transduction; cell

cycle checkpoint

BAX BCL2-associated X protein Apoptosis

BBC3 BCL2-binding component 3

(PUMA)

Apoptosis

BCL2 B-Cell CLL/Lymphoma 2 Apoptosis

CCNG1 Cyclin G1 Cell cycle progression/arrest

CDKN1A Cyclin-dependent kinase

inhibitor 1A (p21)

Cell cycle arrest

cMYC MYC proto-oncogene, bHLH

transcription factor

Cell cycle progression, apoptosis and

cellular transformation

DDB2 Damage-specific DNA binding

protein 2 (p48)

DNA repair

FDXR Ferrodoxin reductase DNA damage, apoptosis

GADD45A Growth arrest and

DNA-damage-inducible, alpha

Growth arrest; DNA repair; apoptosis

MDM2 Mdm2 p53 binding protein

homolog

Inactivation of tumor protein p53

PCNA Proliferating cell nuclear antigen DNA repair

SESN1 Sestrin 1 (Sestrins) Cell cycle arrest

XPC Xeroderma pigmentosum,

complementation group C

DNA repair

ZMAT3 Zinc finger, matrin type 3

(PAG608)

Cell growth; apoptosis

patients, randomly selected from the whole cohort, in order to
have comparable numbers of patients within the four IRS classes
(HRS, RS, N, and RR). A summary of the clinical data of this
group of patients is available in Supplementary Table 3.

Transcription ofmost genes was significantly induced after the
first RT fraction (Figure 4A).

The unsupervised cluster analysis of gene expression profiles
reported as a heatmap in Figure 4B did not reveal differences
between the two types of cancer, although the response of
DDR genes was variable across patients. Indeed, a group
of patients is characterized by high expression values of
MDM2, SESN1, BCL2, ATM, and ZMAT3, however this
group did not show significant enrichment for any of the
available clinical annotations. Finally, the heatmap did not
show any association between IRS index and gene expression
changes (Figure 4B).

Identification of Biomarkers of
Radiosensitivity
Univariate and multivariate statistical analyses were performed
looking for association between (i) clinical variables of radiation
toxicity and IRS index; (ii) clinical variables of radiation toxicity
and expression level of DDR genes; (iii) IRS index and expression
level of DDR genes.

Relationships between clinical variables of radiation toxicity
and IRS classes are shown in Figure 5. At the completion of
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FIGURE 4 | (A) Gene expression analysis by qRT-PCR in blood samples from RT patients. The relative mRNA quantification was performed by comparing irradiated

vs. non-irradiated blood samples derived from the same patient. Values are mean ± SE and expressed in fold-change. The value “1” of non-irradiated control (light

gray bars) is arbitrarily given when no change is observed (***p < 0.001; **p < 0.01; *p < 0.05). (B) Heatmap and unsupervised cluster analysis on the expression

profiles of DDR genes analyzed in 57 RT patients. The key color bar indicates standardized gene expression levels (low levels are in red, high levels are in yellow). The

annotation bars (upper part of the heatmap) indicate the four classes of IRS index and tumor types.

RT treatment (t1), patients experiencing adverse effects were
distributed within the four IRS classes (HRS, RS, N, and RR),
without any significant relationship and without differences
between tumor types. Instead, for fatigue the IRS mean values
significantly differed between patients with and without such
adverse effect. Specifically, the estimated IRS mean values
were, respectively, 40.44 and 36.17, with a decrease of 4.27
in patients with G1 fatigue at t1 (p = 0.015, t-test). The
significance was confirmed by multivariate linear regression
model (adjusted for age and disease type) (Table 2). Neither

the multivariate nor the univariate analyses showed significant
association between IRS index and clinical variables of radiation
toxicity at t2.

Significant and moderately significant associations
between gene expression and clinical radiation toxicity are
shown in Table 3. Dermatitis radiation at t1 was associated
with a 1.88-fold change of FDXR expression in patients
experiencing G3 toxicity vs. a 1.44-fold change in G2
patients. The presence of pain at t1 was associated with a
decrease of SESN1 expression (0.92- vs. 1.36-fold change
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FIGURE 5 | Association analysis between clinical variables of radiation toxicity and IRS index. Number of patients in the four IRS classes (HRS, RS, N, RR) per grades

of radiation-induced adverse effects (G0, G1, G2, G3), at the completion of RT treatment (t1) and 1 month later (t2). NA, data Not Available.

TABLE 2 | Multivariate linear regression model with IRS values and all clinical

variables as covariates in 143 patients.

Coefficients Estimate Std. error t-value Pr(>|t|)

(Intercept) 39.123 5.804 6.740 4.86e-10 ***

Tumor type—HNSCC vs. breast

cancer

−1.023 2.967 −0.345 0.730

Age in years 0.005 0.087 0.060 0.952

Dermatitis radiation—G1 vs. G0 3.761 2.216 1.697 0.092 �

Dermatitis radiation—G2 vs. G0 −0.072 3.328 −0.022 0.982

Dermatitis radiation—G3 vs. G0 −4.401 4.623 −0.952 0.342

Pain—G1 vs. G0 −0.317 2.177 −0.146 0.884

Pain—G2 vs. G0 −2.143 3.836 −0.559 0.577

Pain—G3 vs. G0 1.216 6.050 0.201 0.8410

Pruritus—G1 vs. G0 −1.764 2.324 −0.759 0.449

Pruritus—G2 vs. G0 2.994 3.558 0.841 0.401

Pruritus—G3 vs. G0 6.988 5.370 1.301 0.195

Fatigue–G1 vs. G0 −4.265 1.960 −2.176 0.03 *

IRS is considered as continuous value and clinical variables are those defined at the

completion of RT treatment (t1). p-value of the model is 0.2217.

***p-value < 0.001, *p-value < 0.05, �p-value < 0.1.

in the comparison presence-absence, and 0.97- vs. 1.36-
fold change when comparing more specifically G1 vs.
G0). Symptoms of pruritus resulted associated at t1 with
a 0.79-fold change of XPC and with a 1.01-fold change
of ZMAT3; at t2 pruritus was associated with a 0.87-fold
change of ATM, and a lower BCL2/BAX ratio (respectively,
0.76- vs. 1.15-fold change). G1 fatigue resulted associated
with a 1.19-fold change of CDKN1A (p21) at the second
clinical evaluation.

TABLE 3 | DDR genes associated with clinical variables of radiation toxicity.

Clinical variable Gene Gene

expression

valuea

Toxicity

grade

Adjusted

p-value

RT

timing

Dermatitis radiation FDXR 1.44 G2 0.096c t1

1.88 G3

Pain SESN1 1.36 G0 0.043b t1

0.97 G1

SESN1 1.36 Absent 0.020b t1

0.92 Present

Pruritus XPC 1.49 G1 0.102c t1

0.79 G2

ZMAT3 1.43 G0 0.046b t1

1.01 G1

ATM 1.29 Absent 0.021b t2

0.87 Present

BCL2/BAX 1.15 Absent 0.011b t2

0.76 Present

Fatigue CDKN1A 1.42 G0 0.049b t2

1.19 G1

aGene expression values are reported in irradiated relative to non-irradiated blood samples

from RT patients and expressed in fold-change. bt-test; cWilcoxon test. Bonferroni

adjusted p-value is significant when <0.05, moderately significant when <0.10.

By univariate analyses (Table 4) we found a moderate
significant association between the RS class and BBC3 and
FDXR expression (adjusted p = 0.069) and between RR
class and GADD45A expression (adjusted p = 0.096). The
BCL2/BAX ratio was also associated with the RS class
(adjusted p= 0.017).
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TABLE 4 | DDR genes associated with IRS classes in RT patients.

Gene Gene expression

valuea
IRS class Adjusted

p-value

BBC3 1.28 N 0.069b

1.90 RS

FDXR 1.53 N 0.069b

1.84 RS

GADD45A 1.19 N 0.096c

1.73 RR

BCL2/BAX 1.15 N 0.017b

0.73 RS

aGene expression values are reported in irradiated relative to non-irradiated blood samples

from RT patients and expressed in fold-change. bt-test; cWilcoxon test. Bonferroni

adjusted p-value is significant when <0.05, moderately significant when <0.10.

DISCUSSION

Despite the advancements in understanding and preventing RT
effects on normal tissue, injuries deriving from radiation therapy
cannot be avoided (33–35). Inter-individual differences in
radiosensitivity are due to different endogenous and exogenous
factors (e.g., DNA repair capacity, age, diet, and life-style)
as well as to the experimental endpoint (clinical radiation
toxicity, chromosome aberrations, etc.) (15, 27, 36, 37). Assessing
the intrinsic component of radiosensitivity before RT could
predict toxicity risk and improve the QOL (27, 28). To this
purpose, from a cohort of oncological patients we collected data
concerning radiation toxicity in normal tissues, in vitro G2-
chromosomal radiosensitivity and in vivo expression level of 15
selected radioresponsive genes of DDR pathway, to find possible
associations between genetic features and clinical radiosensitivity
(Figure 1). By univariate and multivariate statistical models we
have looked at significant associations between clinical and
molecular data, controlling for potential confounders and for
the multiplicity of the tests. Remarkably, no statistical differences
have found between tumor types, allowing us to discuss our data
as a whole.

To the best of our knowledge, this is the first study assessing
the relationship between the three experimental endpoints in a
cohort of RT-treated oncological patients. It is noteworthy that all
patients have been enrolled in the same Radiotherapy Unit (IOV-
IRCSS). Specifically, in this explorative study we considered
breast and head and neck cancer patients as representative of
patients experiencing radiation toxicity. Indeed, symptoms of
grade 2 acute skin toxicity are observed in 15–24% of breast
cancer patients at the completion of RT treatment (35, 38)
whereas dermatitis radiation continues to be one of the most
common side effects of RT in head and neck cancers (33,
39). In the present study, we considered dermatitis radiation,
pain, pruritus and fatigue that are adverse effects commonly
manifested in BC and HNSCC patients after RT, while tumor-
specific adverse effects were excluded. Overall, HNSCC patients
manifested higher degrees of dermatitis radiation and pain both
at t1 and t2, whereas pruritus was more pronounced in BC
patients at both t1 and t2 (Figure 2). For patients experiencing

the highest level of dermatitis radiation we verified ex post
the lack of relation with the phototype (Fitzpatrick scale).
Fatigue induced by RT is a common symptom experienced
by patients that deeply affects their QOL (40). In our cohort,
all patients manifesting fatigue were evaluated as G1 grade,
with overlapping proportions irrespective of cancer type: at t1
50.8% (BC) and 57.8% (HNSCC), and at t2 33.0 and 44.5%,
respectively (Figure 2).

Previous studies showed that clinical radiation toxicity is
related to G2-chromosomal radiosensitivity of in vitro irradiated
lymphocytes (13, 19, 41). Here, we followed the standardized
G2-assay developed by Pantelias and Terzoudi (15) in which
the G2-checkpoint efficiency is abrogated by caffeine (inhibitor
of ATM kinase) to maximize the radio-induced chromosomal
damage, i.e., simulating the condition of high radiosensitivity
of AT (Ataxia Telangiectasia) patients. This leads to accurate
estimations of the individual radiosensitivity (the IRS index)
by calculating the percentage ratio between the yields of
radio-induced chromatid breaks in presence or absence of the
functional G2-checkpoint (15, 29). IRS values obtained in the
present study were distributed in strict agreement with previously
published data (15, 29), confirming the reproducibility of the
standardized G2-assay for assessing individual radiosensitivity
in vitro. Based on multivariate analyses, fatigue emerged as
the only adverse effect strictly associated with IRS index.
Interestingly, in patients displaying G1 vs. G0 fatigue but having
same values of other predictors, the average IRS index differed for
a value of 4.27. No other clinical reactions were found associated
with IRS values in this statistical analysis (Table 2).

Clinical radiosensitivity can be associated with individual
factors, such as abnormal transcriptional responses to DNA
damage and with defects in DNA repair (42–44). In this regard,
previous studies of gene expression profiling, carried out in
patient-derived PBLs irradiated in vitro, succeeded to some
extent in discriminating groups of patients with and without
severe late radiotherapy toxicity (23). An association was also
observed between early skin reaction and the transcriptional
response of lymphoblastoid cells derived from patients with
acute radiation toxicity (4). The candidate genes here analyzed,
belonging to the DNA Damage Response (DDR) pathway, were
chosen on the basis of our previous data showing significant
changes in their expression level in human PBLs at 24 h after
irradiation with 2Gy of γ-rays (30, 31). Moreover, GADD45A,
CDKN1A, DDB2 and XPC, together with FDXR gene are well-
known radio-responsive genes (4, 26, 30, 31, 45, 46). Gene
expression analyses have been carried out in 57 patients randomly
selected within the cohort of 143 patients, as representative of
the four IRS classes (HRS, RS, N, and RR). This sample size is
adequate to identify significant differences of gene expression
among the four IRS classes (statistical power 0.83), either by
ANOVA or Wilcoxon test. The expression of DDR genes was on
the whole significantly induced at 24 h after the first fractionated
dose (Figure 4A), in accordance with their radioresponsiveness.
Notably, FDXR expression showed a 1.6-fold increase, that is
very similar to the ∼1.7-fold increase reported at the same time
point in four breast cancer and 8 HNSCC patients (26). In
humans, FDXR expression is upregulated in a dose-dependent
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manner after irradiation, both ex vivo and in vivo, indicating
that FDXR is a good biomarker for radiation exposure and for
estimating in vivo dose (46–48). Moreover, FDXR belongs to
a genetic signature for the early prediction of hematological
acute radiation syndrome (47, 49). Unlike those authors who
have found no association between FDXR expression and the
hematological acute radiation syndrome in subjects undergoing
RT, our work associates FDXR expression level with dermatitis
radiation at the completion of RT treatment (G2 vs. G3 grades,
adjusted p= 0.096) (Table 3).While the expression level of FDXR
gene increased in patients experiencing a high grade of dermatitis
radiation, those of SESN1, ATM, XPC, ZMAT3, CDKN1A genes
decreased when radiation toxicity was manifested (Table 3). Of
course, these findings may be explained by a more complex
radiation response than that determined by the DDR genes
here analyzed. Indeed, additional genes belonging to different
pathways are expected to participate in the whole cellular
response to radiation. Emerging evidence suggests that the
response to radiation is differently regulated in normal vs. cancer
cells/tissues, and even within organism, where maintaining the
overall homeostasis is a priority (50, 51). Interestingly, the
tight interplay between DDR and immune response seems a
key feature shared by systems that differ for higher levels of
complexity (51).

By integrating the data of chromosomal radiosensitivity and
gene expression we found that IRS classes were associated with
the expression level of three DDR genes. In particular, the
increased expression of BBC3 and FDXR genes, involved in
the apoptotic pathway, is associated with the RS class, whereas
the increased expression of GADD45A, regulating cell growth
and apoptosis, is associated with the RR class (Table 4). A role
of apoptotic pathway in normal tissue radiation toxicity has
been previously reported, indeed the T-lymphocyte apoptosis
assay significantly predicted differences in late radiation toxicity
(52). Also the balance between pro-apoptotic and anti-apoptotic
members of the BCL-2 family has a clinical significance on
chemotherapy sensitivity and survival (53, 54). In our cohort,
the BCL2/BAX ratio resulted associated both with the presence of
pruritus 1 month after the completion of RT treatment (Table 3),
and with the class of patients classified as radiosensitive by means
of IRS index (Table 4). This common function is reinforcing
the predictive value of these genes, although further analyses
are necessary to support that they are reliable biomarkers of
radiation toxicity.

Given the exploratory and pilot nature of our work, we
privileged a cohort of RT patients, enrolled, treated and clinically
evaluated in the same clinical Institute, irrespective of the
tumor site. However, despite our multivariate analysis shows no
statistical differences between BC and HNSCC patients (Table 2;
Figure 4) future studies would be desirable to validate our results
in a new cohort, taking into account additional clinical variables
such as breast size, body mass index, alcohol consumption,
hypertension, smoking habit, which might be associated to
acute skin toxicity (55–57). Moreover, dosimetric data, radiation
treatment volumes and doses to specific organs at risk would be
important information to be included in future studies. Clearly,
since HNSCC patients are less frequent than BC patients and

often must undergo chemotherapy either before or concomitant
to RT, multicentric studies would be recommended to reach a
large sample size for both diseases.

CONCLUSION

The possibility to identify patients that are sensitive to radiation
and at risk of suffering adverse effects would help clinicians in
tailoring the best RT protocol and improve patient’s QOL. In this
prospective cohort study, we found that symptoms of dermatitis
radiation, pain, pruritus and fatigue were associated with the
expression level of some genes of the DNA-damage response
pathway (FDXR, SESN1, XPC, ZMAT3, ATM, BCL2/BAX,
and CDKN1A). We also found that fatigue was significantly
associated with IRS values; moreover, IRS classes resulted
associated with the expression level of BBC3, FDXR, GADD45A,
and BCL2/BAX genes.

Of course, radiation-induced side effects comprehend a
complex cellular and tissue response that cannot be limited
to the expression level of the DDR genes considered in this
study, but it is rather regulated by a wide network of gene-
interactions. The development of a reproducible and powerful
assay to predict individual normal tissue radiosensitivity has
been referred to as the “holy grail” of radiotherapy. Although
several in vitro assays have been tested to identify reliable
biomarkers able to predict normal tissue radiosensitivity, results
obtained up to now are not informative enough. In this regard,
our multidisciplinary approach can contribute to delineate the
genetic features of patients manifesting different grades of
radiation-induced toxicity.
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Purpose: Radiation-induced lung disease (RILD), defined as dyspnea in this study,

is a risk for patients receiving high-dose thoracic irradiation. This study is a TRIPOD

(Transparent Reporting of A Multivariable Prediction Model for Individual Prognosis or

Diagnosis) Type 4 validation of previously-published dyspnea models via secondary

analysis of esophageal cancer SCOPE1 trial data.We quantify the predictive performance

of these two models for predicting the maximal dyspnea grade ≥ 2 within 6 months after

the end of high-dose chemo-radiotherapy for primary esophageal cancer.

Materials and methods: We tested the performance of two previously published

dyspnea risk models using baseline, treatment and follow-up data on 258 esophageal

cancer patients in the UK enrolled into the SCOPE1 multi-center trial. The tested models

were developed from lung cancer patients treated at MAASTRO Clinic (The Netherlands)

from the period 2002 to 2011. The adverse event of interest was dyspnea ≥ Grade

2 (CTCAE v3) within 6 months after the end of radiotherapy. As some variables were

missing randomly and cannot be imputed, 212 patients in the SCOPE1 were used

for validation of model 1 and 255 patients were used for validation of model 2. The

model parameter Forced Expiratory Volume in 1 s (FEV1), as a predictor to both validated

models, was imputed using the WHO performance status. External validation was

performed using an automated, decentralized approach, without exchange of individual

patient data.

Results: Out of 258 patients with esophageal cancer in SCOPE1 trial data,

38 patients (14.7%) developed radiation-induced dyspnea (≥ Grade 2) within

6 months after chemo-radiotherapy. The discrimination performance of the

models in esophageal cancer patients treated with high-dose external beam

radiotherapy was moderate, area under curve (AUC) of 0.68 (95% CI 0.55–0.76)

and 0.70 (95% CI 0.58–0.77), respectively. The curves and AUCs derived by

distributed learning were identical to the results from validation on a local host.

31

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01411
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01411&domain=pdf&date_stamp=2019-12-16
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhenwei.shi@maastro.nl
https://doi.org/10.3389/fonc.2019.01411
https://www.frontiersin.org/articles/10.3389/fonc.2019.01411/full
http://loop.frontiersin.org/people/793788/overview
http://loop.frontiersin.org/people/799422/overview
http://loop.frontiersin.org/people/836894/overview
http://loop.frontiersin.org/people/781447/overview


Shi et al. Dyspnea Model for EC Patients

Conclusion: We have externally validated previously published dyspnea models using

an esophageal cancer dataset. FEV1 that is not routinely measured for esophageal

cancer was imputed using WHO performance status. Prediction performance was not

statistically different from previous training and validation sets. Risk estimates were

dominated by WHO score in Model 1 and baseline dyspnea in Model 2. The distributed

learning approach gave the same answer as local processing, and could be performed

without accessing a validation site’s individual patients-level data.

Keywords: radiation-induced dyspnea, esophageal cancer, chemo-radiotherapy, prognostic model, distributed

learning

INTRODUCTION

In radiation therapy, radical radiation doses are expected to
provide better local control than lower palliative doses, however
the risk of radiation-induced adverse events is increased. Clinical
symptoms of radiation-induced lung disease (RILD) include
dyspnea, cough, and fever, which can have a serious effect on
the patient’s quality of life. Approximately 10–20% of patients
with lung cancer who receive (chemo)-radiotherapy developing
moderate to severe symptomatic RILD (1).

Radiation-induced dyspnea (RILD in this study) is a
side-effect for patients treated with high-dose thoracic
irradiation. Studies have reported the predictors for radiation-
induced dyspnea for lung cancer patients treated with
(chemo)radiotherapy (2, 3). The risk factors for RILD include
dosimetric factors, clinical factors, pathological factors and blood
biomarkers (2–16). In our knowledge, there is no published
study reporting the risk factors of radiation-induced dyspnea
for patients with primary esophageal cancer, which might be
explained by the fact that dyspnea is not routinely assessed
during follow-up of esophageal cancer treatment.

The current study conducted a TRIPOD (Transparent
Reporting of A Multivariable Prediction Model for Individual
Prognosis or Diagnosis) Type 4 validation (17) of previously-
published dyspnea models M1 (2) and M2 (3) via secondary
analysis of the SCOPE1 (18, 19) dataset. SCOPE1 was a
randomized controlled trial investigating the effects of chemo-
radiotherapy with and without additional cetuximab in patients
with esophageal cancer, including follow-up assessments of
dyspnea. We quantify the predictive performance of these two
models for predicting the maximal dyspnea grade ≥ 2 within
6 months after the end of high-dose chemo-radiotherapy for
primary esophageal cancer. The goal of this study is to verify
two hypotheses: (I) that a common thoracic RILD model may be
feasible for a different index tumor and (II) that it is feasible to
perform an external validation of a toxicity model between two
sites via a distributed learning approach without any exchange of
patient-specific records.

METHODS AND MATERIALS

Model Development Cohorts
Patient characteristics in the development and validation cohorts
are detailed in Table 1. The first radiation-induced dyspnea
model (M1) (2) was developed from 438 patients with either

non-small cell lung cancer (NSCLC) Stage I-IIIB or limited
disease small cell lung cancer, treated with curatively-intended
(chemo)radiotherapy between January 2002 till January 2007.
Patients in this cohort were predominantlymale (328/438, 74.8%)
with confirmed NSCLC histology (292/438, 66.7%) and a spread
of chemotherapy regimens (concurrent 70/438, 16%; sequential
203/438, 46%; no chemotherapy 159/438, 36%, unspecified 6/438,
1%). RILD, including dyspnea, was scored according to CTCAE
(v3.0) (20) during radiotherapy (RT) and up to a maximum of 6
months after RT. A range of radiotherapy prescribed doses from
46.9 to 79.2Gy were used, with fraction doses not exceeding 2 Gy.

A second radiation-induced dyspnea model was developed
from 259 lung cancer patients treated with curatively intended
chemo(radiotherapy) between 2008 and 2011, Stage I-IIIB
and fractional dose ≤ 3Gy were used to develop a second
radiation-induced dyspnea model (M2) (3). These patients were
treated in two hospitals, underwent PET/CT for radiotherapy
treatment planning and had lung volumes delineated in the
planning system. This cohort was drawn from an earlier
iso-toxicity dose escalation radiotherapy trial (clinicaltrials.gov
identifier NCT00572325 and NCT00573040) with maximum
tumor dose not exceeding 69Gy. This cohort was predominantly
male (163/259, 62.9%) with confirmed NSCLC histology
(198/259, 75.6%), received concurrent chemotherapy (148/259,
57.1%) and had no surgery prior to radiotherapy (236/259,
91.1%). Carboplatin and gemcitabine were given for sequential
chemotherapy, and cisplatin and etoposide for concurrent
chemotherapy. RILD, including dyspnea, was scored according
to CTCAE (v3.0), by either thoracic physicians or radiation
oncologists, at baseline and every 3 months following RT.

External Validation Cohort
Two hundred and 58 esophageal cancer patients were enrolled in
the SCOPE1 (18, 19) trial from 36 UK centers between February
7, 2008 and February 22, 2012. The inclusion criteria were: non-
metastatic, histologically confirmed carcinoma of the esophagus
(adenocarcinoma, squamous-cell, or undifferentiated carcinoma)
or gastro-esophageal junction (Siewert type 1 or 2 with <2 cm
extension into the stomach); selected for definitive chemo-
radiotherapy by a designated multidisciplinary team; aged 18
years or older; WHO performance status 0 or 1; stage I-III
disease (TNM stage 6); and esophageal tumor length < 10 cm as
measured by endoscopic ultrasound. The study protocol has been
published (19) and the trial was coordinated by theWales Cancer
Trials Unit (WCTU). Recruitment in SCOPE1 was halted due to
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TABLE 1 | Patient characteristics.

Variable D1

Maastro clinic

(N = 438)

D2

Maastro clinic

(N = 259)

V1

SCOPE1

(N = 212)

V2

SCOPE1

(N = 255)

GENDER

Male 328 (74.9%) 163 (62.9%) 120 (56.6%) 145 (56.2%)

Female 110 (25.1%) 96 (37.1%) 92 (43.4%) 113 (43.8%)

AGE (YEARS)

Mean 68 (SD 9) Mean 67.5 (SD

10.1)

Mean 72.8

(SD 8.95)

Mean 72.9

(SD 9.02)

SMOKING STATUS

Current

smoker

77 (29.7%) NA NA NA

WHO-PS

0 119 (27.9%) 63 (24.3%) 110 (51.9%) 130 (50.9%)

1 223 (52.3%) 153 (59.1%) 102 (48.1%) 125 (49.1%)

≥2 84 (19.7%) 43 (16.6%) 0 0

CCI

0 132 (30.9%) No: 184 (71.0%) NA NA

1 128 (30.0%) Yes: 75 (29%)

2 95 (22.2%)

≥3 72 (16.8%)

Missing 0

CARDIAC COMORBIDITY

No 132(30.9%) No: 184 (71.0%) 208 (98.1%) 252 (98.8%)

Yes 295 (69.0%) Yes: 75 (29.0%) 2 (1.0%) 3 (1.2%)

Missing 1 (0.1%) 2 (1.0%) None

BASELINE DYSPNEA SCORE

0 NA 78 (30.1%) 197 (92.9%) 238 (93.3%)

1 NA 140 (54.1%) 10 (4.7%) 14 (5.5%)

≥2 NA 38 (14.7%) 3 (1.4%) 3 (1.2%)

Missing NA 3 (1.1%) 2 (1.0%) None

DYSPNEA SCORE AFTER RT

0 NA NA 135 (63.7%) 164 (64.3%)

1 NA NA 46 (21.7%) 53 (20.8%)

≥2 NA NA 31 (14.3%) 38 (14.9%)

Missing NA NA

FEV1 (%)

Mean 70.0 (SD 23) Mean 76.0 (SD

21.86)

NA NA

CHEMOTHERAPY

No 159 (36.8%) 44 (17.0%) 0 0

Yes 273 (63.2%) 197 (76.1%) 212 (100%) 255 (100%)

Missing 0 18 (6.9%) 0 0

TUMOR LOCATION

Lower/middle

lobe

245 (56.3%) 76 (29.3%) NA NA

Upper lobe 190 (43.7%) 83 (32.1%) NA NA

MEAN LUNG DOSE (GRAY)

13.5 (SD 4.5) 15.7 (SD 4.44) 9.8 (SD 2.8) 9.83 (SD 2.8)

Min 0.01 0.01

Max 17.9 17.9

Median 10.0 9.9

Missing None 45 (9.80%)

V20 (%)

Mean 21.0 (SD

7.3)

Mean 25.5 (SD

9.9)

NA NA

WHO-PS, World Health Organization performance scale; CCI, Charlson comorbidity

index; FEV1, forced expiratory volume (1s); V20, volume of the lung receiving ≥ 20Gy,

SD, standard deviation. D1 and D2 are development cohorts for the validated model 1(2)

and model 2 (2). V1 and V2 are validation cohorts.

futility, but follow-up of at least 24 weeks on all recruited patients
was available for secondary analysis.

All patients received four cycles of cisplatin and capecitabine;
two cycles were given prior to commencement of RT,
and two cycles were given concurrently with RT. This
chemotherapy regimen was the most commonly used for
esophageal cancer treatment in the UK. Chemotherapy
dose was modulated for potential hematological toxicity
(based on neutrophil and platelet counts) and kidney
function (based on glomerular filtrate rate). Chemotherapy
cycles were also withheld for serious non-hematological
adverse events until resolution to grade 0 or 1. Half of
these patients were randomized to additional cetuximab for
their chemotherapy.

All 3D conformal RT plans were based on contrast CT 3mm
slices, for a prescribed dose of 50Gy in 25 once-daily fractions.
The esophageal clinical target volume (CTV) was manually
delineated as a 2 cm distal and 2 cm proximal expansion along
the esophagus from the gross primary tumor, and a 1 cm radial
expansion. The planning target volume was an additional 1 cm
proximal-distal expansion from the CTV and an extra 0.5 cm
radially. Lung volume receiving 20Gy or higher was constrained
to be <25% of the total lung volume.

None of the SCOPE1 patients in the validation cohort received
post-RT surgery. The majority of patients were male (145/258,
56%) with either mid- or lower-esophageal tumors (226/258,
87.6%) and mean endoscopy-defined tumor length of 5.6 cm.
Toxicity scoring according to CTCAE (v3.0) was carried out at
baseline, during each chemotherapy cycle, at 24 weeks and then
every 3 months thereafter.

Previously Published Dyspnea Model
Parameters
The model M1 (2) consisted of the following predictors: age,
WHO performance status (WHO-PS) before start of RT, nicotine
use (non-/ex-smoker vs. current smoker), FEV1 at baseline and
mean lung dose in Gy. The predictors used in model M2 (3) were
dyspnea score before start of RT, cardiac comorbidity, FEV1 at
baseline, tumor location (upper vs. middle/lower lobes of lung)
and sequential chemotherapy. Multivariate logistic regression
analysis was performed to build M1 and M2. The coefficients
used in the models are summarized in Table 2. Both models
defined adverse outcomes as dyspnea grade 2 or higher within
6 months of the end of (chemo)-radiotherapy.

Model Assumptions and Missing-Values
Imputation
The previous M1 and M2 had been developed on, and validated
in, primary lung cancer patients. However, Forced Expiratory
Volume (i.e., FEV1), smoking status and lung tumor location
(lobe) were uniformly absent from the esophageal SCOPE1
dataset. We assumed (based on the trial protocol) that all
SCOPE1 patients received chemotherapy and we simulated
different population scenarios for smoking status. For the model
M2, we further assumed that unintended radiation dose for
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TABLE 2 | Coefficients obtained from the multivariate logistic regression in the first

(M1) (2) and second (M2) (3) dyspnea models.

Variable Model coefficients

(M1)

Model coefficients

(M2)

Intercept −2.2767 −1.512

PERFORMANCE STATUS

WHO-PS = 1 0.28 –

WHO-PS ≥ 2 0.57 –

Current

smoker

−0.45 –

Age 0.02 –

Mean lung

dose

0.05 –

Baseline

dyspnea

– 0.990

Cardiac

comorbidity

– 0.826

Sequential

chemotherapy

– 0.610

Tumor in

middle/lower

lung lobe

– −0.290

Baseline FEV1 −0.02 −0.007

esophageal cancers were most analogous to RT for lung tumors
in lower and/or middle lung lobes.

Since FEV1 was a predictor in both M1 and M2, we imputed
the missing FEV1 measurements of the SCOPE1 patients from
available data in the model M1 development cohort while
blinded to the dyspnea outcome. The imputation was based on
categorical regression for WHO-PS = 0, WHO-PS = 1 and
WHO-PS≥2. A statistically significant fit for FEV1 (in % of total
expired volume) was found using the model:

FEV1 (in %) = 82.0 if WHO− PS = 0

FEV1 (in %) = 74.7 if WHO− PS = 1

FEV1 (in %) = 67.3 if WHO− PS ≥ 2

Distributed Learning
External validation was performed using the same distributed
methodology as published by Deist et al. (21), Jochems et al. (22)
and Shi et al. (23) using the Varian Learning Portal (VLP, Varian
Medical Systems, Palo Alto, CA) v1.0. A validation algorithm
containing model coefficients of M1 and M2 were remotely
distributed from the investigator site to the validation site via
a secured http channel. The SCOPE1 data was parsed using
a radiation oncology-specific semantic ontology into the Web
3.0-standard resource descriptor format (RDF). The distributed
validation algorithm executes as a purely site-specific local
computation by querying the local RDF repository. Only the
summary classification results of validation on the SCOPE1
cohort was returned to the investigator site. Security and privacy
settings within VLP blocked transfer and exposure of patient-
level records from the validation site to the investigator. Previous
studies (21–23) have proven that the algorithm converges to the

same result as if all of the patient data was locally processed on
site by an investigator. The workflow of the distributed learning
approach is shown in Figure 1.

Statistical Analysis
The validation algorithm was deployed in MATLAB, version
9.0 (MathWorks, Natick, MA). Discrimination of predictive
model was evaluated using the area under the receiver-
operator curve (AUC) metric (24). The AUC metric was
estimated by bootstrapping (1,000 resamples). Calibration of the
predictive model was assessed using calibration plots. The logistic
recalibration was performed through fitting a logistic regression
model by the linear predictor as the only covariate, which
leads to an updated model without changing discrimination
performance (25, 26).

RESULTS

Out of 258 available validation cases in the SCOPE1 dataset, 46
and 3 patients, respectively, were excluded from the validation
due to missing values of mean lung dose for validation of model
M1 and baseline scores of cardiac comorbidity and dyspnea for
validation of model M2. A total of 212 patients and 255 patients
were available to externally validate model M1 and M2. In the
validation cohort for M1 (V1), there were 31 patients (14.3%)
manifesting dyspnea grade 2 or higher within 6 months of RT. In
the validation cohort forM2 (V2), 38 patients (14.9%)manifested
dyspnea at the equivalent time point.

To investigate the effect of smoking status on the performance
of M1 in the external validation cohort, smoking status was
assigned to (i) all smokers, (ii) non-smokers, and (iii) randomly
and repeat 1,000 iterations. The test yielded the AUC of 0.68 ±
0.053, 0.68 ± 0.054, and 0.65 ± 0.04, respectively by bootstrap
sampling. Although the smoking status a missing predictor for
esophageal validation cohort, there was no statistically significant
difference in performance observed based on a bootstrapped
Wilcoxon test between the three scenarios (p = 0.34, p = 0.17,
p= 0.11). Therefore, we set it randomly in the validation cohort.

The receiver operator curves (ROCs) of the models on
external validation sets V1 and V2 are shown in Figure 2.
The AUC of both models measured in the previous studies
were 0.62 and 0.72 in internal validation and 0.61 and 0.67
in external validation. Compared to the previous studies, the
AUC of the two models on V1 and V2 were 0.68 (95%
CI: 0.55–0.76) and 0.70 (95% CI: 0.58–0.77), respectively. No
statistically significant difference in performance was observed
betweenM1 andM2 in the previous training cohorts and current
external validation cohorts (AUC of M1 0.62 vs. 0.68, p =
0.17; AUC of M2 0.72 vs. 0.70, p = 0.45, Wilcoxon test). The
detailed assessment of accuracy, sensitivity, specificity, positive
predictive value and negative predictive value are shown in
the Supplementary Table 1. Both prognostic models (M1 and
M2) showed poor calibration performance and tended toward
underestimation of dypsnea in the test population, which is
shown in the calibration plots (Figures 3i,iii). Recalibration was
performed to update the prognostic models (Figures 3ii,iv).
As expected, the recalibration resulted in higher predicted
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FIGURE 1 | Generalized workflow of the distributed learning approach used in this study. D1 and D2 indicate the development cohorts used to develop the original

RILD models M1 and M2. V1 and V2 indicate the validation cohorts for M1 and M2, respectively. CI indicates confidence interval.

risks without changing the AUCs. The calibration line of
the recalibrated M1 was shifted be closer to the ideal line,
whereas the calibration line of M2 was not improved overall by
the recalibration.

DISCUSSION

The current study has tested two previously-published RILD
models M1 and M2 (2, 3) on the independent validation
sets V1 and V2 of the SCOPE1 trial data (18, 19), which
comprises esophageal cancer patients treated with chemo-
radiotherapy. Moreover, external validation was successfully
implemented using an automated and decentralized approach
without exchange of individual patient data.

As is well known, high-dose of thoracic radiation can often
provide better local tumor control and survival for patient with
cancer. Previous studies have shown that additional radiation in
an appropriate range can improve locoregional tumor control
and increase survival of patients with lung cancer (27–29).
However, the irradiation dose in the radiotherapy treatment of
esophageal cancer can have an adverse effect on lung tissue
resulting in RILD, such that it leads to disutility of care and
have a serious negative impact on patients’ quality of life. RILD
usually manifests itself in the acute (<6 months) phase as
radiation pneumonitis (RP) and in the later (>6 months) phase
as chronic pulmonary fibrosis (30, 31). RP is the most common
dose-limiting complication of thoracic radiation with clinical
symptoms such as dyspnea, cough, and sometimes fever (32).
Therefore, it is a trade-off between better tumor control (i.e.,
better survival or lower death rate) and RILD.

The prognostic models are regarded as the basis of clinical
decision support systems (CDSS) (33) that can relieve clinicians
from the pressure of analyzing the large volume of publications

and data by applying discoveries from research into a data-
analytics architecture (34, 35). However, it is difficult to apply
the results of research in clinical practice to predict which
patients with esophageal cancer will likely suffer from RILD.
The first reason is that many studies have investigated the risk
predictors of RILD including dosimetric, clinical, pathological
factors or blood biomarkers (2–16), but results between studies
are highly variable or even contradictory (1, 32). In themeantime,
there is no standardized lung toxicity grading system and no
standard data models (so-called umbrella protocols) to guide
prospective collection on routine cases. On the other hand,
few publications report the risk predictors of RILD (e.g., severe
dyspnea), for patients with esophageal cancer. This difficulty
might be explained by the fact that dyspnea is not routinely
assessed during diagnosis and prognosis of esophageal cancer.

At present, it is widely acknowledged that a prognostic model
cannot be applied in clinical practice before its feasibility and
practicability have been certified via validation on different
levels (17, 36). External validation of a prognostic model should
be performed on an/some independent cohort(s), because
most models present optimistic results in the development
cohorts. Validation of prognostic models involves two
aspects (37). First, generalizability of a prognostic model
can be described by validation on similar (reproducibility) or
different (transferability) cohorts. The similarity or difference
between cohorts refer to temporal, geography, methodology or
investigator, which aims to distinguish from the development

cohort of the original model (17, 38, 39). One primary goal

of the current study to investigate the transferability of two

previously-published lung toxicity models M1 and M2 under
these “different” situations.

Second, accuracy performance of a prognostic model shows
the statistical validity (40). Discrimination and calibration, in
general, measure the accuracy performance. (i) Discrimination

Frontiers in Oncology | www.frontiersin.org 5 December 2019 | Volume 9 | Article 141135

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Shi et al. Dyspnea Model for EC Patients

FIGURE 2 | Receiver operating characteristic curves of the prognostic models (A): M1 and (B): M2 with 95% CI of area under the receiver-operator curve (AUC). CI,

confidence interval.

describes whether an individual with higher predictive
probability is indeed experience RILD more often. Area
under the receiver-operator curve (AUC) (24) was used to assess
the discrimination performance, which is shown in Figure 2. The
model M1 achieved a better discrimination performance (i.e.,
AUC) on V1 compared to the internal and external validation
performed in the original study. The M2 obtained a better
AUC on V2 than the AUC of the external validation but was
consistently degraded in AUC from the internal validation of the
original study. (ii) Calibration reflects the agreement between
observed event and predicted risk. The calibration performance
was assessed by calibration plots, which are shown in Figure 3. A
perfectly calibrated model means that the predicted probabilities
of RILD are identical to the observed frequencies of RILD for
all patient groups. The calibration-in-the-large (i.e., intercept)
of M1 and M2 were 3.79 (p = 0.08) and 0.42 (p = 0.46), and
calibration slope were 2.60 (p = 0.007) and 1.99 (p < 0.0001),
which indicates that predicted risks of M1 and M2 in SCOPE1
were systematically under-estimated and there was insufficient
variation of covariates in V1 and V2 sets. A possible explanation
may involve systematic under-reporting of clinical toxicity in
the retrospectively-collected training sets. By testing different
assumptions about smoking status in the test cohorts, there is no
evidence to support an effect of smoking in either aggravating
or protecting against dyspnea. It is also possible that the original
models in lung cancer were improperly calibrated, but there was
no additional information in the published articles to confirm
this. However, a systematic underestimation of the dyspnea
rate would be consistent with an offset error in the linear fit
of FEV1 using the WHO performance score. This potential
source of error could only be circumvented by measuring
the FEV1 for the SCOPE1 test cases, which was not done.
To correct poor calibration performance, recalibration can
be performed through fitting a logistic regression model by
the linear predictor as the only covariate, which leads to an
updated model without changing discrimination performance

(25, 26, 41). The calibration performance of M1 was moderate
after conducting recalibration. The M2 model still had poor
calibration performance even after recalibration, which means
care should be taken applied in real clinical practice.

Strengths of the Analysis
The SCOPE1 trial data, as an independent validation cohort,
satisfied the conditions of separation in terms of temporal
(different treatment time of patients in SCOPE1 and previous
training cohorts), geographic (different regions, Cardiff vs.
Netherlands) and investigator (different people from different
institutes) from the development cohort of lung cancer. It
means that the SCOPE1 was a sufficiently challenging dataset
to externally validate the transferability of a prediction model
between different index cancers (38, 40). Second, we have shown
the RILD models (e.g., M1) can be robustly transferred to other
diseased sites (e.g., esophagus) that only having the incidentally
irradiated normal tissues in common without losing accuracy
performance. Thirdly, this study was implemented using an
automated and distributed approach without exchanging any
patient data. Due to the confidentiality of patient data, local
laws and technical issues, it can be prohibitively difficult
to exchange patient data among hospitals. Compared to the
centralized learning approach, the distributed learning approach
can avoid privacy-related issues by sending research questions
among institutes. The distributed learning can be achieved
by transferring a machine learning algorithm to a target
site and returning the results back to the sender rather
than transferring real data. This process means knowledge
exchange occurs without important clinical data leaving hospitals
and there is no loss of validation integrity when performed
distributed learning.

Weakness of the Analysis
The current study has some limitations worthy of mention. First,
some outcome data and predictor variables were missing in
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FIGURE 3 | Calibration and recalibration plots of M1 and M2 on the V1 and V2 cohorts, respectively. Perfect calibration is represented by the solid line through the

origin with slope = 1. Ten quantile groups were used to compare the predicted probability and the corresponding observed frequencies with a triangle. Histogram of

outcomes (i.e., dyspnea or no dyspnea) is shown below each plot. a, calibration-in-the large; b, calibration slop; c, area under the receiver-operator curve (AUC).

the validation cohorts, and data was not missing completely at
random. If the missing data were compulsory predictors for the
prognostic models (M1 and M2) and cannot be imputed, the
corresponding patients had to be removed from the validation
cohort. In addition to this, there are non-random missing data,
which might be explained by the fact that the information
about lung cancer were not be registered for patients with
esophageal cancer in the SCOPE1 trial, such as tumor location,
smoking status, and FEV1. For tumor location, we assumed that
all of these esophageal cancer patients treated with radiation
were similar to lung patients with a tumor in the lower lung
lobe. For the missing FEV1, WHO-PS was used to impute as
mentioned above. Second, there are some differences between
the development (D1 and D2) and validation cohorts (V1 and
V2), of which the effect on the model performance are the
subject of future work. (i) SCOPE1 randomized half of the
patients between cetuximab or not, whereas patients in D1 and
D2 were not treated with cetuximab. (ii) All patients received
chemo-radiotherapy in V1 and V2, while only 273 (63.2%)
and 197 (76.1%) patients received chemotherapy in D1 and

D2. (iii) The numbers of patients in D2 with baseline score 0,
1, ≥2 are 78 (30.1%), 140 (54.1%), and 48 (14.7%), whereas
these numbers in V2 are 238 (93.33%), 14 (5.49%), and 3
(1.18%). It indicates that more patients had low-grade or no
dyspnea overall in V2 compared with patients in D2. The
effects of these uncertainties on the performance of prognostic
models M1 and M2 remain unclear and are the subject of
future studies.

Finally, another potential limitation is about the validated
models’ selection, that is the performance of M1 is moderate
in terms of AUC and M2 does not include lung dose volume
parameters. Although the discrimination performance of M1
is moderate, we found it achieved a similar and even better
discrimination performance in the external validation cohort,
which demonstrated that M1 has a good generalization. M2 was
developed using multivariable regression approach. The original
study (3) did evaluate mean lung dose and V20Gy as potential
risk factors, but then dropped it from the final regression model
because their contributions were small and/or could not be
shown to be statistically significant.
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Future Work
Future work would involve two aspects. First, the M1 could be
tested on a similar dataset to validate the reproducibility. Second,
we would like to re-train the lung toxicity model on D1 and
D2 via combining different types of features, such as image,
pathological or generic features.

CONCLUSION

In this study, we have externally validated previously published
dyspnea models using an esophageal cancer dataset. First, the
discrimination performance of the models in esophageal cancer
patients treated with high-dose external beam radiotherapy are
moderate, AUC of 0.68 (95% CI 0.55–0.76.) and 0.70 (95% CI
0.58–0.77), respectively. Second, risk estimates were strongly
determined by WHO score in Model 1 and baseline dyspnea
in Model 2. Third, the distributed learning approach gave
the same answer as local validation but is feasible without
accessing a validation site’s patient-level data. Finally, the
clinical contribution of the dyspnea prognostic model is that
it would help doctors to identify patients who will likely
suffer from severe dyspnea and who could therefore benefit
from dose de-escalation in (chemo)-radiotherapy. Although
we cannot conclude that a common thoracic RILD model is
feasible for a different primary tumor, it can be deemed as
a “benchmark” for further investigation of RILD prognostic
models of thoracic tumor.
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Brain, lung, and colon tissue experience deleterious immune-related adverse events

when immune-oncological agents or radiation are administered. However, there is a

paucity of information regarding whether the addition of radiation to immuno-oncological

regimens exacerbates the tissue inflammatory response. We used a murine model

to evaluate sub-acute tissue damage and the systemic immune response in C57Bl/6

mice when administered systemic anti-programmed cell death protein 1 (αPD-1)

immunotherapy alone or in combination with stereotactic fractionated 10 gray/5 X-ray

radiation to normal brain, lung or colon tissue. The model indicated that combinatorial

αPD-1 immunotherapy and radiation may alter normal colon cell proliferation and cerebral

blood vasculature, and induce systemic thrombocytopenia, lymphopenia, immune

suppression, and altered immune repertoire (including interleukin-1β). Therein our data

supports close monitoring of hematological and immune-related adverse events in

patients receiving combination therapy.

Keywords: cancer, radiation, immunotherapy, inflammation, toxicity

INTRODUCTION

While immunotherapies have the potential to revolutionize therapy there is limited understanding
of their interaction with radiation in healthy tissues. To date a number of factors have restricted the
assessment of treatment efficacy of check point inhibitors in combination with radiation in cancer
patients. These include treatment discontinuation in ∼10% of patients due to immune-related
adverse events and unacceptable level of injury to healthy tissue (1). These factors sometimes
stem from the complex immunostimulation arising from the combination of radiation and
chemotherapy in these patients. As such it is not clear if patients may derive greater long-term
benefit from combined use of radiotherapy (RT) and an immunotherapy checkpoint inhibitor.

Evidence demonstrating safety, i.e., minimal tissue damage and immune-related adverse events
in normal/healthy tissue is lacking as it is unethical to administer RT to healthy tissue in people.
Immunotherapy alone is reported to induce a range of side effects most commonly in skin,
gastrointestinal tract, lung, and endocrine glands. While the majority of immune-related adverse
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events are mild to moderate, serious and life threatening
events have been reported (2). These led to the introduction
of consensus recommendations from the Society for
Immunotherapy of Cancer Toxicity Management Working
Group (3), and the establishment of clinical practice guidelines
for the management of toxicities from immunotherapy by
the European and American Medical Societies (4, 5). A
systematic review and meta-analysis of 13 studies of patients
receiving the anti-programmed cell death protein 1 (αPD-
1)/PD-L1 immunotherapies nivolumab, pembrolizumab, or
atezolizumab—in combination with chemotherapy—identified
increased odds ratios for the incidence of immune associated
toxicities hypothyroidism, pneumonitis, colitis, hypophysitis
(6), and acute interstitial nephritis (7). The immune-related
adverse events associated with checkpoint inhibitors are thought
to be linked to immunostimulation and reprogramming of the
immune system, leading to a loss of immune tolerance (7). Such
adverse events may be exacerbated by RT, where there is a rising
paradigm of an immunostimulatory effect of RT in patients
undergoing treatment with immune checkpoint inhibitors.
Furthermore, the various checkpoint inhibitors differentially
modulate T-cell responses leading to distinct toxicity patterns,
kinetics, and dose–toxicity relationships. These need to be better
understood before widely utilizing combinations of RT and
immunotherapy in the clinical setting.

Radiation activates an interconnected network of
inflammatory and immune response pathways inducing a
host of changes to the tissue microenvironment (8). Lung and
colon tissues display two of the most common immune-related
adverse events in pneumonitis and colitis, while adverse events in
brain tissue, such as encephalitis and neuropathy, are relatively
rare (2–5). Due to the idiosyncratic nature of adverse events
affected the brain, lung and colon tissues, we sought to pre-
clinically model the subacute response to potentially predict
future immune-related adverse events.

To understand whether the addition of RT to immuno-
oncology agents exacerbates the immune response in normal
brain lung and colon tissues, compared to immune-oncology
agents alone, we used a murine model to characterize and
quantify the sub-acute (day 28) tissue damage and local and
systemic immune responses following combined fractionated
stereotactic RT and αPD-1 immunotherapy. We hypothesized
that this would identify systemic immune markers that could
identify immune-mediated adverse events in brain, lung and
colon tissues.

MATERIALS AND METHODS

Mice
The study was reviewed and approved by the Northern
Sydney Local Heath District Animal Ethics Committee, Royal
North Shore Hospital, St. Leonards, Australia (Approval
#RESP/17/205). Eight week old male C57Bl/6.Kearn’s mice were
kept on 12 h day/night light cycles with standard chow and water
provided ad libitum. Mice were randomly allocated into 6 mice
per treatment group and monitored for well-being by trained
animal house staff prior to being humanely killed by cardiac

puncture under anesthesia at the pre-determined endpoint of 28
days. C57Bl/6 mice were used as this is the background strain to
commonly used syngeneic cancer models.

Immunotherapy
Mice were treated with InVivoMab rat anti-mouse PD-1 (RMP1-
14; 200 µg/dose; BE0146; BioXCell) or rat IgG2a isotype control,
anti-trinitrophenol (2A3; 200 µg/dose; BE0089; BioXCell) in 100
mirolitres (µl) PBS by intraperitoneal injection every 3 days for
5 doses (day 8, 11, 14, 17, 20) alone or in combination with
fractionated stereotactic RT.

Fractionated Stereotactic Radiotherapy
Cone beam computed tomography (CBCT)-guided stereotactic
radiation was delivered to the brain (right hemisphere), lung
(right) or colon (sigmoid colon) region at 10 Gray (Gy)/5 X-
ray on days 1, 2, 3, 4, 5 using the Small Animal Radiation
Research Platform (SARRP; Xstrahl Inc.), 5 × 5 millimeter
(mm) collimator, 220 kV, 13mA, 0.15mm copper filter, 3.71
gray (Gy)/minute (min), 360◦ Arc (–180 to 180◦) alone or in
combination with immunotherapy. Dose output and half-value
layer were verified by 0.6 cm3 Waterproof Farmer R© Chamber
(PTW TN30013; −400V) under reference conditions; 35 cm
source to axis distance, 2 centimeter (cm) solid-state depth.

An additional 4 centigray (cGy) was delivered to each animal
during CBCT imaging dose− 60 kV, 0.8mA, 360 projections, fine
focus as determined by MOSFET dosimetry MOSkin developed
by the Center for Medical Radiation Physics of the University of
Wollongong, Australia (9, 10) positioned in the center of a 3D
printed modular CBCT cylindrical phantom (mass density ρ =
1.17 g/cm3) (11).

To estimate the radiation dose delivered to the targeted
tissue region and non-targeted organs at risk, the SARRP Dose
Volume Histogram (DVH) in the Treatment Planning Software
(MuriPlan R©; Xstrahl Inc.) was utilized. Tissues were contoured
using the acquired CBCT images and Digimouse murine
anatomy atlas (available at: https://neuroimage.usc.edu/neuro/
Digimouse) (12, 13) (Supplementary Figure 1). Following
application of the planned treatment beam, data indicated
the mean dose per fraction delivered to the targeted brain
region was 199.11 cGy at a volume of 0.02 cubic centimeters
(cc), colon 169.57 cGy at 0.06 cc, and lung 158.39 cGy at
0.01 cc. Doses to non-targeted organs at risk were highest in
tissues surrounding the brain—mean 84.88 cGy, anorectal
region−60.95 cGy, and tissues surrounding the right lung−26.57
cGy (Supplementary Table I).

Histopathology
Brains were harvested and fixed in 10% v/v neutral buffered
formalin for 24 h before embedding in paraffin wax. Four
micrometer (4µm) sections were rehydrated and microwave
antigen retrieval performed in citrate buffer, pH 6.0. Next,
sections were incubated with 2.5% v/v normal goat serum,
followed by primary antibody for 1 h at room temperature.
Primary antibodies were Ki67 (0.08µg/ml; 12202; Cell Signaling
Technologies), CD31 (0.013µg/ml; 77699; Cell Signaling
Technologies) and γ-H2AX (0.06µg/ml; ab11174; Abcam).
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Finally, sections were incubated with ImmPRESSTM HRP
goat anti-rabbit IgG polymer (MP-7451; Vector Labs) for
30min at room temperature and detected with NovaRed
(SK-48000; VectorLabs).

Slides were scanned using the Aperio AT2 Digital Pathology
Scanner and five digital images per section at 20x magnification
captured using Aperio ImageScope (v12.3.2.8013; Leica
Biosytems). Ki67 and γ-H2AX positive staining was quantified
by ImmunoRatio ImageJ plugin (v1.0c, 14.2.2011; http://
jvsmicroscope.uta.fi/immunoratio/). CD31 positive vessels were
enumerated and measured using the Microvessel-Segmentation
MATLAB plugin (14).

Hematology and Flow Cytometry
One milliliter (ml) of whole blood was collected via cardiac
puncture into K3EDTA tubes (Minicollect R©; Greiner Bio-One)
and assessed by a COULTER R© Ac-T diff hematology analyzer
with Vet App 1.06 (Beckman Coulter).

Using 100 µl whole blood, 1 × 106 splenocytes and 1 ×
106 bone marrow-derived cells and red blood cells were lysed
and leukocytes stained with a cocktail of antibodies—volume
denoted per test; CD25-BV421 (1µl; 564370), FV510-BV510
(1µl; 564406), CD80-BV605 (1µl; 563052), NK1.1-BV650 (1µl;
564143), CD4-BV711 (0.25µl; 563726), CD117-BV786 (1 µl;
564012), CD11b-BB515 (0.25µl; 564454), CD19-PerCP/Cy5.5
(1 µl; 551001), CD115-PE (0.25µl; 565249), Ly6G-PE/CF594
(0.06µl; 562700), CD3-PE/Cy7 (1µl; 552774), CD206-AF647
(1µl; 565250), CD8a-AF700 (0.25µl; 557959), Ly6C-APC/Cy7
(0.5µl; 560596; all BD Biosciences). Acquired using a BD
LSRFortessaTM and analyzed using BD FACSDivaTM Software
version 6 (BD Biosciences).

Immune cell populations were defined as CD3+ T
cell, CD3+CD4+ helper T cell (Th), CD3+CD4+CD25+

regulatory T cell (Treg), CD3+CD8 cytotoxic T cell (Tc),
CD3−NK1.1+ natural killer (NK) cells, CD3+NK1.1+ (NK/T),
CD115+CD11b+ monocytes (Mono), CD115+CD11b+CD80+

macrophage type 1 (M1), CD115+CD11b+CD206+ macrophage
type 2 (M2), CD115−CD11b+ dendritic cells (DC),
CD115−CD11b+Ly6ChighLy6G− monocytic-myeloid derived
suppressor cells (M-MDSC), CD115−CD11b+Ly6ClowLy6Ghigh

polymorphonuclear-myeloid derived suppressor cells (PMN-
MDSC), CD117+ hematopoietic stem cell (HSC), CD19+ B cells
and expressed as a percentage of the parent population.

Multiplex Immunoassays
Plasma was obtained by centrifugation of whole blood (500
× g, 5min at room temperature). Mouse cytokine 23-
plex immunoassay (Bio-Plex R©; Bio-Rad Laboratories) and
chromogenic sandwich enzyme-linked immunosorbent
assay (ELISA) for transforming growth factor (TGF)-
β1 (DY1679; R&D Systems) were performed as per the
manufacturer’s instructions.

Statistical Analyses
Animal weight between treatment groups was assessed by Two
Way Repeated Measures Analysis of Variance (ANOVA) with
Tukey’s Multiple Comparison Test. Normality of the data was

confirmed by the D’Agostino-Pearson omnibus test. Histological
data are expressed as the mean of 5 high power fields± standard
error of the mean (SEM). Hematology, flow cytometry and
chemokine/cytokine data are expressed as mean ± standard
deviation (SD). Two Way Analysis of Variance (ANOVA) with
Tukey’s Multiple Comparison Test were performed to compare
treatments groups for each cell phenotype or cytokine using
Prism 7 for Windows (GraphPad Software, Inc.).

RESULTS

No Change in Animal Weight
Animal weights were not significantly altered by αPD-1
immunotherapy or RT of the brain, colon or right lung
regions [F(8, 45) = 1.347; p = 0.25; Supplementary Figure 2].
No animals demonstrated signs of poor body condition
up to day 28; there was no skin irritation, hair loss,
diarrhea or labored breathing. As expected, animal
weight significantly increased with time [F(9, 405) = 292.5;
p < 0.0001].

Reduced Ki67+ Proliferation and Blood
Vasculature Following Combination
Therapy
Quantification of Ki67+ staining showed low levels
of proliferation in normal brain glial cells and lung
stromal cells, and high proliferation in the actively
regenerating colon progenitor cells at the base of the
intestinal crypts (Figure 1A). Combined RT and αPD-1
decreased Ki67+ 45% in brain (p = 0.09; Figure 1) and
25% in colon tissue (p = 0.0003; Figure 1) compared
to αPD-1 alone. Data indicate that normal brain and
colon tissue is susceptible to radiation-induced changes in
cellular proliferation.

To determine whether the combination therapy of
fractionated stereotactic radiation and αPD-1 immunotherapy
would impact blood vasculature, CD31+ blood vessels were
quantified at the targeted tissue region. In brain tissue, combined
RT + αPD-1 reduced blood vasculature 3-fold (p = 0.001;
Figure 2), while in lung tissue combined treatment increased
blood vasculature 126% (p = 0.06; Figure 2) compared to
RT + IgG2a. Other vasculature parameters assessed were
vessel thickness, perimeter, area, luminal area, and vessel
eccentricity—but did not differ significantly between the
treatment groups (data not shown). Data show that RT +
αPD-1 immunotherapy augments blood vasculature in normal
brain tissue.

To determine whether RT-induced damage was prolonged
at the sites of irradiation when αPD-1 immunotherapy
is combined, γ-H2AX staining was performed to identify
double stranded DNA breaks marked for repair (15).
As expected, baseline γ-H2AX+ staining was higher in
colon tissue than brain and lung due to more rapid cell
regeneration. Somewhat contradictory, γ-H2AX+ staining
was significantly reduced by 50% in irradiated colon tissue
irrespective of αPD-1 immunotherapy (Figure 3). Data
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FIGURE 1 | Ki67+ staining at the irradiation sites of murine brain, lung and colon tissue (A). Scale bar, 100µm. Quantitation of five high power fields for each murine

tissue (N = 6 per time point; B). Data are expressed as mean ± SEM per high power field. ap < 0.05 vs. Ctrl, bp < 0.05 vs. IgG2a by Tukey’s multiple comparison test.

show that there is exacerbation of persistent radiation-
induced DNA damage following combined radiation and
αPD-1 treatment.

Combination therapy alters immune cell populations in
systemic compartments. To assess the systemic immune response
to combined stereotactic radiation and αPD-1 immunotherapy,
hematological parameters and immune cell populations in the
spleen, bone marrow and peripheral blood were quantified
by flow cytometric analysis. Of the hematological parameters
assessed, αPD-1 suppressed platelet numbers when compared
to control (905.5 ± 86.8 vs. 1164.4 ± 26.6, p = 0.0006) but
normalized in animals that received irradiation of the lung tissue
(1087.3± 45.9 vs. 905.5± 86.8, p= 0.034; Figure 4).

Splenic CD4+ helper T (Th) cells increased 20%, while
M-MDSC and M1 decreased 40–80% following combined

treatment compared to αPD-1 alone (p < 0.05; Figure 5).
In addition, splenic NK/T and monocytes were suppressed
following irradiation irrespective of αPD-1 immunotherapy,
though these did not reach significance.

In bone marrow, the most striking finding was the reduction
in M1 macrophages with RT independent of immunotherapy
(p < 0.05; Figure 6). These reductions closely mirrored the
responses of splenic M1 macrophages (Figure 5). Furthermore,
in bone marrow Th, Tc and DCs were increased while Tregs
and B cells decreased following brain or lung RT + αPD-1
compared to monotherapies (p < 0.05; Figure 6). Data suggests
that the addition of RT to αPD-1 monotherapy may enhance an
immune response with increased Th, Tc and DCs. Additionally, a
reduction of bone marrow Tregs following combination therapy
in lung, may contribute to lymphopenia or immune suppression
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FIGURE 2 | CD31+ staining at the irradiation sites of murine brain, lung and colon tissue (A). Scale bar, 100µm. Quantitation of five high power fields for each murine

tissue (N = 6 per time point; B). Data are expressed as mean ± SEM per high power field. ap < 0.05 vs. IgGa, bp < 0.05 vs. IgG2a + RT by Tukey’s multiple

comparison test.

due to the role of Tregs in B cell differentiation for HSCs (16).
Notably, the proportion of HSCs was not altered by treatment
(Supplementary Figures 3–5).

In peripheral blood, colon RT + αPD-1 increased B-
cells 2.1-fold compared to αPD-1 alone (p < 0.0001;
Figure 7). RT + IgG2a decreased DCs in brain and
colon tissue compared to IgG2a alone (p < 0.05) and RT
reduced PMN-MDSCs irrespective of immunotherapy.
M2 were largely absent in peripheral blood but showed
increases following brain RT + αPD-1, though this
did not reach significance (Figure 7). Data show that
the addition of brain or colon irradiation to αPD-
1 immunotherapy may modulate in the peripheral
immune response.

Plasma Cytokines, Chemokines, and
Growth Factors Were Not Altered by
Combination Therapy
To assess the cytokine and chemokine release following 10Gy/5

fractionated stereotactic radiation and αPD-1 immunotherapy

plasma cytokine and chemokine levels were assessed bymultiplex

immunoassay. Irradiation of normal brain and lung tissue with

or without αPD-1 decreased interleukin (IL)-1β levels 7 to
13-fold when compared to IgG2a or αPD-1 alone (Figure 8).

Of note, TGF-β levels were below the level of detection
in 17/48 (35%) of plasma samples (Supplementary Figure 6).
Data suggest that at the sub-acute time point of 28 days
post treatment commencement radiation-induced reduction of
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FIGURE 3 | γ-H2AX+ staining at the irradiation sites of murine brain, lung and colon tissue (A). Scale bar, 100µm. Quantitation of five high power fields for each

murine tissue (N = 6 per time point; B). Data are expressed as mean ± SEM per high power field. ap < 0.05 vs. Ctrl by Tukey’s multiple comparison test.

IL-1β suppression is neither ameliorated nor exacerbated by
αPD-1 immunotherapy.

DISCUSSION

Radiation induces DNA damage, cellular stress, apoptosis,
cytokine release, and immune cell recruitment and activation
(8). The effect of radiation on the tumor microenvironment
is dependent on type, dose, field size, and fractionation (8).
While this is known in the context of tumors, less is known
regarding the systemic effect in response to local irradiation
of normal tissues particularly when combined with immune-
oncology agents. In this study the local tissue and systemic
immune response of combined fractionated stereotaxic RT and

αPD-1 immunotherapy was assessed in normal tissues that
commonly (lung and colon) and infrequently (brain) experience
immune-related toxicity. A schematic of the existing normal
tissue response to radiation and immunotherapy, and the data
summarized in this manuscript is provided in Figure 9.

The effect of combined radiation and αPD-1 immunotherapy
on proliferative rates of normal tissues was assessed by Ki67+

staining. Ki67 is expressed during all active phases of the
cell cycle (G1, S, G2, and M), but not resting cells (G0)
allowing an assessment of the growth fraction of the irradiated
cell populations. The mammalian intestinal epithelium rapidly
renews itself, with the entire epithelium being replaced in
3–5 days. Additionally, it is known that following radiation
injury, quiescent and/or radioresistant intestinal stem cells
become active stem cells to regenerate the epithelium (17).
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FIGURE 4 | Platelets in mice treated with αPD-1 and/or 10Gy/5 X-ray irradiation of brain, colon or right lung region. Blood was harvested at day 28 and quantitated

by multi-color flow cytometry. Data are expressed as mean ± SD absolute count of platelets (N = 6 mice per treatment group). One Way ANOVA ap < 0.05 vs. Ctrl;
bp < 0.05 vs. αPD-1 by Tukey’s Multiple Comparison Test.

FIGURE 5 | Splenic immune cell populations from mice treated with αPD-1 and/or 10 Gy/5 X-ray irradiation of brain, lung and colon tissue. Cells were harvested at

day 28 and quantitated by multi-color flow cytometry. Data are expressed as mean ± SD percentage of parent population (%; N = 6 mice per treatment group). Two

Way ANOVA ap < 0.05 vs. IgG2a; bp < 0.05 vs. αPD-1 by Tukey’s Multiple Comparison Test.

This process incorporates three phases; apoptotic phase (day
1–2), proliferative phase (days 3–7) and the normalization
phase (days 7–14) (17). In spite of this 2-week restorative

time line and fractionated 10Gy/5 radiation treatment regimen
utilized in our study, the normal colon tissue showed reduced
Ki67+ 28 days post-irradiation of the intestinal epithelial cells.
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FIGURE 6 | Bone marrow immune cell populations from mice treated with αPD-1 and/or 10 Gy/5 X-ray irradiation of brain, lung, and colon tissue. Cells were

harvested at day 28 and quantitated by multi-color flow cytometry. Data are expressed as mean ± SD percentage of parent population (%; N = 6 mice per treatment

group). Two Way ANOVA ap < 0.05 vs. IgG2a; bp < 0.05 vs. αPD-1; cp < 0.05 vs IgG2a + RT by Tukey’s Multiple Comparison Test.

While this was not further exacerbated by the addition of
αPD-1 immunotherapy, the data indicate that colon tissue is
susceptible to persistent radiation-induced changes to cellular
proliferation and attribute attributed to the development of
colitis following radiotherapy.

The tumor vasculature and endothelial cells are some of
the most studied components to assess radiobiological effects
in the tumor microenvironment following radiation treatment.
It is well-characterized that radiation induces endothelial
cell dysfunction, including increased permeability, detachment
from the underlying basement membrane, and endothelial cell
senescence and/or apoptosis (18, 19). In normal brain tissue
the αPD-1 immunotherapy alone increased blood vasculature
while in combination with RT blood vasculature reduced.
The latter was not significantly different to the number
of blood vessels quantitated in IgG2a + RT brain tissue,

indicating that this is consistent with the known effect
of radiation on endothelial cells. A preclinical study using
the same strain of mouse (C57Bl/6) to investigate cerebral
permeability following 40Gy/20 fractionated radiation showed
no significant difference in blood brain barrier permeability
at day 30 post-irradiation; blood brain barrier permeability
was not significantly increased until 90 days post-irradiation
(20). Differences in the observance of alterations to blood
vessel numbers and dynamics may be attributable to differences
in radiation delivery and assessment methodologies. Notably,
this study used whole brain irradiation and fluorescein-based
intravital microscopy to assess blood permeability (which has a
limitation of ∼1mm in tissue depth), while our study assessed
physical blood vasculature parameters by histopathology at the
isocentre of our 5 × 5mm stereotactic irradiation focused at
the caudoputamen.
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FIGURE 7 | Peripheral blood immune cell populations from mice treated with αPD-1 and/or 10 Gy/5 X-ray irradiation of brain, lung and colon tissue. Cells were

harvested at day 28 and quantitated by multi-color flow cytometry. Data are expressed as mean ± SD percentage of parent population (%; N = 6 mice per treatment

group). Two Way ANOVA ap < 0.05 vs. IgG2a; bp < 0.05 vs. αPD-1 by Tukey’s Multiple Comparison Test.

FIGURE 8 | IL-1β levels from mice treated with αPD-1 and RT. Plasma was harvested at day 28 and quantified by 23-plex immunoassay (additional cytokines are

presented in Supplementary Figure 6). Data are expressed as mean ± SD observed concentration in pg/ml. N = 6 mice per treatment group. Two Way ANOVA
ap < 0.01 vs. IgG2a by Tukey’s Multiple Comparison Test.

Under fractionated treatment regimens (with comparatively
low energy photons), radiation-induced DNA damage is
principally evoked via the generation of reactive oxygen species
and is mediated by H2AX (21). DNA damage to a variety of
cell types in the tumor and within the surrounding healthy
tissue can have a range of consequences, including microvascular
endothelial cell apoptosis, crypt damage, organ failure and
death (18). To investigate persistent radiation-induced DNA
damage we quantified γ-H2AX staining. At the sub-acute time

point γ-H2AX+ staining was significantly reduced by 50% in
irradiated colon tissue, but not when combined with αPD-1
immunotherapy. It is unclear why γ-H2AX staining was lower
in αPD-1 treated tissue when compared to control and irradiated
tissues. We speculate that repair of DNA damage may have
occurred, but the normal proliferative rate of cells had been
impacted out to the assessed 28-day post-treatment period. This
has precedence with endogenous γ-H2AX being associated with
cell cycle DNA replication mediated by the DNA-dependent
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FIGURE 9 | Schematic representation of the local tissue and systemic immune response to combination fractionated stereotactic radiotherapy and αPD-1

immunotherapy at day 28 post-treatment. Figure modified from McKelvey et al. (8), Creative Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/) and prepared using Sevier Medical Art (https://smart.servier.com/). Check (✓) and cross marks (✗) indicate where the data was consistent with

what has been described for monotherapeutic radiotherapy and immunotherapy monotherapy. Due to the paucity of data on the combination therapy it was unclear

whether immune cell populations were expected to increase, decrease or remain unchanged at this acute time point, denoted by dual arrows. CTL, cytotoxic

T-lymphocyte; HPC, haematopoietic progenitor cell; HSC, haematopoetic stem cell; Mø, monocyte; M8, macrophage; MDSC, myeloid-derived suppressor cell.

protein kinases/checkpoint kinase 2 pathway (22). However, γ-
H2AX staining was present throughout the intestinal epithelial
cells at not just the intestinal progenitor cells present at the base
of intestinal crypts (as noted with Ki67 staining).

Thrombocytopenia is a hematological adverse event
experienced by patients during immunotherapy treatment
(23). αPD-1 administered alone suppressed platelet numbers,
which normalized to control levels when radiation was added.
In a descriptive observational study comprising three French
pharmacovigilance databases, αPD-1 immunotherapy induced
thrombocytopenia in the 0.5% of cancer patients who developed
immune-related hematological adverse events (23). Surprisingly
we did not observe an exacerbation of reduced platelet counts due
to radiation in irradiated and animals despite bone marrow being
included within our 360

◦
Arc radiation treatment regimens.

Radiation-induced inflammasome activation and apoptosis
has been noted in T cells, NK/T and monocytes with sustained
caspase-1 cleavage until day 7 post-radiation (24) and is reflected
in the splenic compartment (25). In our study, splenic M1 and
M-MDSCs were suppressed in animals receiving combination
therapy, when compared to αPD-1 monotherapy. Combined
these data indicate that the addition of αPD-1 to RT significantly
alters the immune repertoire of the splenic compartments.
αPD-1 immunotherapy suppresses T cell function primarily
by inactivating CD28 signaling (26). In the present study

αPD-1 immunotherapy alone decreased Treg levels in bone
marrow. Tregs play a critical role in B cell differentiation
from HSCs (16) and coincided with decreased B-cells in the
bone marrow compartment. Increased Th, Tc and DC cells in
bone marrow were observed following combined therapy when
compared to IgG2a + RT potentially indicating sequestration
of pro-inflammatory immune cell types in the bone marrow.
Alternatively the decreased Tregs may drive increased DCs via
the PD-1-dependent bidirectional regulation of these two cell
types. PD-1 is a critical homeostatic regulator for Tregs by
modulating proliferation, survival and apoptosis mediated by IL-
2 (27). Furthermore, the reciprocal modulation of Tregs and
DC/MDSCs is dependent on chemokine CCL2 and TGF-β. PD-1
and TGF-β mediate the recruitment and bidirectional regulation
of Treg cells and MDSCs (28–31) and remain elevated for up
to 8 weeks post-radiation (32). While we observed an inverted
Treg/DC relationship, the levels of IL-2, TGF-β and CCL2/MCP-
1 were not altered in the present study.

Irradiation is known to evoke an inflammation response and
is associated with increases in cytokine production. For example,
irradiation of whole lung tissue with 12Gy elevates serum levels of
G-CSF, IL-6, CXCL1/KC, CCL2/MCP-1, CXCL10/IP-10, and IL-
1α (33) and the persistent elevation of inflammatory cytokines
contributes to tissue injury and immune-related adverse events
(32). In murine models of radiation-induced injury the serum
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cytokine levels positively correlated with irradiated tissue levels,
implicating blood as a surrogate marker for tissue cytokine
levels (33). The only cytokine/chemokine modulated in our
sub-acute study was plasma IL-1β which decreased in animals
receiving irradiation to brain and lung tissue. While IL-1β
is a pluripotent cytokine and plays a role in tumorigenesis
and tumor progression, the role of IL-1β in radiation-induced
normal tissue toxicity is unclear (32) but has been related to
skin-related adverse events (34, 35). We did not observe skin
irritation from the fractionated stereotactic radiation used in
our study.

Immune toxicities from radiotherapy and immunotherapy
alone have been extensively reported. These include the
recent establishment of European and American clinical
guidelines for the management of immune toxicities which
varies with grade from continuation of immunotherapy
with monitoring, withholding immunotherapy and
administering immunosuppressant (prednisolone), to
permanent discontinuation of the immunotherapy (4, 5). What
remains comparatively unknown is whether combining radiation
and immune check point immunotherapy will exacerbate these
immune-related toxicities and whether these can be predicted
at early time points during the treatment regimen. Overall our
acute snapshot of this dynamic response showed that blood
vasculature, cell proliferation, thrombocytopenia, lymphopenia,
immune suppression and altered immune repertoire (including
IL-1β) are observed when combination therapy of fractionated
stereotactic radiotherapy and αPD-1 immunotherapy was used
compared to either monotherapy. Consistent with low number
of clinical studies on concurrent or sequential radiotherapy
and immunotherapy there were no increases in serious acute
toxicity from the combination therapy in our preclinical model
when compared to monotherapy (36), but longer term studies
are required. Akin to the clinical data, our report supports
close monitoring of immune-related adverse events in patients
who are to receive combination therapy. IL-1β and peripheral
blood M2 could be further explored as potential biomarkers for
immune toxicity.
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Radiation-Induced Lymphopenia in
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With Stereotactic Body Radiation
Therapy
Qianqian Zhao, Tingting Li, Gang Chen, Zhaochong Zeng* and Jian He*

Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China

Background: To investigate the role of stereotactic body RT (SBRT) in decreased total

peripheral lymphocyte count (TLC) in patients with early-stage lung cancer and to explore

possible risk factors for RT-induced lymphopenia.

Materials andMethods: We analyzed the TLCs and lymphocyte subsets of 76 patients

in our prospective clinical database who received SBRT for early-stage lung cancer

treatment. Relationships between clinical factors or dosimetric parameters and TLC were

evaluated using Spearman’s correlation analysis and Chi-square tests for continuous

and categorical variables, respectively. Multivariate linear regression analysis was used

to control for confounding factors. Kaplan–Meier analysis with a log-rank test and a

multivariate Cox regression model were used for survival analysis.

Results: Most patients (64/76, 84.2%) experienced decreased absolute lymphocyte

counts following SBRT, as well as shifts in lymphocyte subset distributions. Spearman’s

correlation coefficients between post-SBRT TLC and the percentage of the lung and

heart receiving 5 to 50Gy (in 5Gy increments) shown that most lung DVH parameters

[V(10)-V(50)] were significantly negatively correlated with post-SBRT TLC, while only heart

V(5), V(20), V(25), V(30), and V(45) were significant. Univariate analyses revealed that

a lower Pre-SBRT TLC level, higher mean lung dose, longer treatment duration, and

longer TBT were significantly associated with a lower Post-SBRT TLC level (all P < 0.05).

Stepwise multivariate linear regression, which incorporated all of the significantly clinical

variables and SBRT-related parameters in univariate analysis, revealed that lower pre

-SBRT TLC (P< 0.001), higher heart V5 (P= 0.002), and longer total beam-on time (TBT)

(P = 0.001) were the independent risk factors for decrease in post-SBRT TLC. Patients

with lower post-SBRT TLC and longer TBT exhibited significantly inferior progression-free

survival (PFS) (P < 0.001 and P = 0.013) and overall survival (P = 0.006 and P = 0.043).

Conclusions: G2 and more severe lymphopenia after SBRT might be an independent

prognostic factor for poorer outcome in early-stage lung cancer. Lowering heart V5

and TBT when designing SBRT plans may spare circulating lymphocytes and have the

potential to further improve survival outcomes.

Keywords: radiation-induced lymphopenia, stereotactic body radiation therapy, early-stage lung cancer,

prognosis, risk factors
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INTRODUCTION

The immunological side effects of radiation therapy (RT) for
tumor treatment are complex and include both stimulatory
and inhibitory activity (1, 2). The enhancement of anti-tumor
immunity by RT is best exemplified by the observation that
RT could promote the death of tumor immunogenicity through
the generation of an analogous in situ cancer vaccine (1, 3).
Unfortunately, this positive impact is often counteracted by
RT-induced lymphopenia (RIL) (4). Circulating lymphocyte
populations are highly radiosensitive and can undergo apoptosis
or depletion due to radiation exposure. Ultimately, RIL
suppresses anti-tumor immunity and is associated with inferior
survival in patients with various tumors, including lung
cancer (5–10). Moreover, previous work has shown that
RIL would further compromise the therapeutic efficacy of
immune checkpoint inhibitors through the loss of effector cells,
which identify and destroy tumor cells (11, 12). This further
emphasized the importance of preserving and maintaining
circulating lymphocytes in the setting of the new therapeutic
strategy of combining radiotherapy (RT) and immunotherapy in
cancer patients.

The degree of RIL depends on the RT total dose, target
volume, and number of fractions given (13–16), although many
prior studies of RIL have focused on conventional fractionated
radiotherapy (CFRT) (5). Anti-tumor immunity alterations
caused by stereotactic body radiation therapy (SBRT) and CFRT
differ distinctly (17, 18). Until recently, however, comparatively
little attention has been paid to SBRT-induced lymphopenia.
In clinical practice, the significant effects of SBRT on the total
peripheral lymphocyte count (TLC) and corresponding risk
factors in patients with lung cancer have yet to be established.

Thus, we evaluated the role of SBRT in the reduction of
the TLC in patients with lung cancer and explored possible
risk factors of RIL. Based on our findings, we then offer
some strategies for sparing peripheral lymphocytes and further
improving prognoses of these patients.

MATERIALS AND METHODS

Patient Eligibility and Clinical
Characteristics
We analyzed our prospective clinical database of 171 patients
who received definitive SBRT for lung cancer treatment
between December 2014 and May 2018 at our institution.
All patients underwent a comprehensive assessment before
SBRT, including physical examination, laboratory analysis, chest
computed tomography (CT) scans, abdominal CT or abdominal
ultrasonography, brain magnetic resonance imaging, and bone
scintigraphy. All patients with intrapulmonary tumors without
pathological confirmation underwent 18F-fluorodeoxyglucose-
positron emission tomography/computed tomography (18F-FDG

Abbreviations: RIL, RT-induced lymphopenia; CFRT, conventional fractionated

radiotherapy; TLC, total peripheral lymphocyte count; TBT, total beam-on time;

MLD, mean lung dose; MHD, mean heart dose.

PET/CT) scans. Diagnosis and treatment of these lesions were
determined by a multidisciplinary lung cancer tumor team.

We applied the following study inclusion criteria for
participant selection: (1) clinical early-stage lung cancer (tumor
size < 5 cm) without regional lymph metastasis [N0] and distant
metastasis [M0]; (2)≥ 18 years of age; (3) Karnofsky performance
status (KPS)≥ 70; (4) fewer than three pulmonary lesions treated
with SBRT; (5) complete blood cell counts within 1 week before
SBRT and within 1 week after completion of SBRT available; (6)
peripheral total white blood cells (WBCs) above 2,000 cells/µl,
and did not receive prophylactic or remedial treatment for
decreased WBCs during SBRT treatment. Patients were excluded
if they were pathologically diagnosed with small-cell lung cancer,
were missing dosimetry data, had a history of other malignancy
within the last 5 years, had received prior thoracic irradiation,
or had acute or chronic inflammatory, hematologic, or systemic
immune disorders.

The detailed procedures of SBRT administration for lung
cancer at our institution have been described previously (19,
20). All patients were treated with SBRT using the Helical
TomoTherapy Hi-Art treatment system (Accuray; Madison, WI,
USA). The study protocol was approved by the ethics board
of Zhongshan Hospital, Fudan University (Approval Number:
B2014-128). All participants signed an informed consent form
prior to study inclusion.

Data Collection
The demographic and clinical information collected from
participants included sex, age, KPS, smoking history, presence
of respiratory system disease (chronic obstructive pulmonary
disease, chronic bronchitis, or emphysema), tumor diameter,
tumor location (central/peripheral), tumor histology, and total
radiation dose. All laboratory values weremeasured using routine
automated analyzers in the Clinical Laboratory of Zhongshan
Hospital, Fudan University.

Venous blood samples were drawn from each patient at least
twice: within 1 week before the start of SBRT (pre-SBRT) and
within 1 week after completion of SBRT (post-SBRT) to quantify
TLC and lymphocyte subset counts. Changes in the absolute
counts and percentages of lymphocyte and lymphocyte subsets
for each patient was calculated with the formula: 1value =
post-SBRT value – pre-SBRT value. According to the National
Cancer Institute Common Terminology Criteria for Adverse
Events version 4.0, post-SBRT TLCs < 1,000 cells/µL were
considered to indicate lymphopenia, and post-SBRT TLCs ≥
1,000 cells/µL (G0) were non-lymphopenia. Lymphopenia was
further categorized into grade 1 (G1, <1,000 cells/µL), grade
2 (G2, <800 cells/µL), grade 3 (G3, <500 cells/µL), and
grade 4 (G4, <200 cells/µL). For analysis of cell numbers
in blood, peripheral venous blood was collected in lavender
top K3EDTA (ethylenediaminetetraacetic acid) collection tubes
and stained directly with fluorochrome-conjugated monoclonal
antibodies for 30min at +4◦C within 4 h of collection. The
monoclonal antibodies used in this study were: FITC-labeled
CD3, clone SK7; PE-labeled CD16, clone B73.1, and CD56, clone
NCAM16.2; PerCP-CyTM5.5†-labeled CD45, clone 2D1 (HLe-1);
PE-CyTM7-labeled CD4, clone SK3; APC-labeled CD19, clone
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SJ25C1;25 and APC-Cy7‡-labeled CD8, clone SK1. Following
staining, red blood cells were lysed using FACS Lysing solution
(BD Biosciences) and analyzed on the BD FACSantoTM Flow
Cytometer (BDBiosciences) within 6 h of staining.

Dosimetric parameters were also extracted from the treatment
planning system, including treatment duration, total beam-on
time (TBT), gross tumor volume (GTV), planning target volume
(PTV), mean lung dose (MLD), mean heart dose (MHD), and
a wide range of dose-volume histogram (DVH) parameters for
total lung and heart volume: V5, V10, V15, V20, V25, V30, V35,
V40, V45, and V50. Vn (%) corresponds to the percentage of total
lung or heart volume receiving at least n dose of radiation. The
treatment duration (days) of SBRT was defined as the number
of days from SBRT start to SBRT completion. TBT (seconds) of
SBRT was defined as the length of time of circulating lymphocyte
exposure to radiation, which was calculated by beam-on time per
fraction multiplied by fraction number.

Patient Follow-Up and Outcomes
Follow-up duration and survival time were calculated from the
start date of SBRT; the last follow-up date was May 30, 2019.
Survival was censored if the patient was alive at the time of the
last follow-up. Patients were generally evaluated weekly during
SBRT, every 3 months following SBRT for the first 2 years,
and every 6 months thereafter. PET/CT was performed only
to distinguish recurrence from underlying SBRT-induced lung
fibrosis. Progression-free survival (PFS) was calculated from the
start date of SBRT to the date of any evidence of local or systemic
cancer recurrence, death from any cause, or of the last follow-up.
Overall survival (OS) was calculated from the start date of SBRT
to the date of death from any cause or of the last follow-up.

Statistical Analysis
Continuous variables were summarized as means ± standard
deviation or medians (ranges) and compared using theWilcoxon
rank-sum test. Categorical variables were summarized as
proportions and compared using Chi-square analysis or Fisher’s
exact test. Optimal cut-off values of continuous variables for

survival prediction were determined based on the receiver-
operating characteristic (ROC) curve (21). Relationships
between clinical factors or dosimetric parameters and peripheral
lymphocyte levels were evaluated using Spearman’s correlation
analysis for continuous variables and Chi-square tests for
categorical variables. Spearman correlation coefficients were
obtained for the association among different dosimetric
parameters, then stepwise backward elimination with a selection
criterion of p < 0.1 was applied to find the best subset of
variables. Linear regression with a backward-forward stepwise
method was used to analyze the relationships of the clinical
variables and dosimetric parameters with post-SBRT TLC.
The survival of patients with more than a 6-month follow-up
time was analyzed further. The Kaplan–Meier estimator with a
log-rank test was used to calculate and compare PFS and OS by
patient covariates. Multivariate Cox regression with a backward-
forward stepwise method was used to assess the potential
influence of clinical factors and dosimetric parameters on PFS
and OS. For multivariate linear and Cox regression analyses,
potential variables with P < 0.1 in the univariate analysis
were then included as covariates to identify their independent
effect. P-values of <0.05 were considered statistically significant
and reported as two-sided. All analyses were conducted using
IBM SPSS statistical software (version 23, SPSS Inc.; Chicago,
IL, USA).

RESULTS

Patient Characteristics
A total of 76 eligible patients with 81 small lung tumor lesions
were enrolled in our study (Figure 1). The detailed characteristics
of all of the patients are shown in Table 1.

Changes in TLC and Lymphocyte Subset
Counts Following SBRT
The gating strategy figures of one patient are shown in
Supplementary Figure 1. Alterations of mean cell counts
and percentages of total lymphocytes belonging to specific

FIGURE 1 | Identification of included and excluded patients with early-stage lung cancer receiving stereotactic body radiation therapy.
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lymphocyte subsets following SBRT. Fifty-five patients had
data on lymphocyte subsets available for analysis. As expected,
the majority of patients (64/76, 84.2%) experienced decreased
absolute lymphocyte counts following SBRT. Themean alteration
of the peripheral lymphocyte count after SBRT was −526.04
cells/µL. In total, 27 (35.53%) patients developed lymphopenia.

TABLE 1 | Baseline characteristics (n = 76).

Characteristic n (%) or median (range)

Sex

Female 29 (38.16)

Male 47 (61.84)

Age at diagnosis (years) 72 (40–89)

Karnofsky performance status score

≥80 55 (72.37)

<80 21 (27.63)

Smoking status

Positive 32 (42.11)

Negative 44 (57.89)

Underlying respiratory system disease

Yes 45 (59.21)

No 31 (40.79)

Tumor diameter (mm) 23.00 (9.00–48.00)

Gross tumor volume (cm3) 10.61 (0.64–85.37)

Tumor location

Central 20 (26.32)

Peripheral 56 (73.68)

SUVmax 5.10 (1.00–24.00)

Tumor histology

Adenocarcinoma 39 (51.32)

Squamous 19 (25.00)

Unknown 18 (23.68)

SBRT dose and fractionation

50Gy in 5 fractions 26 (34.21)

60Gy in 10 fractions 50 (65.79)

SUVmax , maximum standardized uptake value; SBRT, stereotactic body radiation therapy.

Of these, 13 (17.10%) developed G1 lymphopenia, 11 (14.47%)
developed G2, and 3 (3.95%) developed G3. No patient
experienced G4 lymphopenia. The percentages of all of the
lymphocyte subsets tested were affected post-SBRT (all P
< 0.05), including CD19+ B cells (fell by 53.88%), CD3+

T cells (by 30.56%), CD4+ T cells (by 34.64%), CD8+

T cells (by 25.96%), and CD56+ NK cells (by 13.28%).
We observed a significant decrease in the CD19+ B cell
percentage following SBRT from mean 10.85% to 7.23% (P
< 0.001) and the CD4+ T cell percentage following SBRT
from mean 37.95% to 36.27% (P = 0.031) and a significant
increase in CD56+16 T cells from mean 20.95% to 24.70%
(P < 0.001). No statistically significant differences were
noted in alterations of other lymphocyte subset percentages
(Table 2).

TABLE 2 | Mean ± standard deviation of peripheral lymphocyte count,

lymphocyte subset counts, percentages of peripheral lymphocyte subsets, and

CD4+/CD8+ before and after stereotactic body radiation therapy.

Parameters n Pre-SBRT Post-SBRT P

Total lymphocyte count

(cells/µl)

76 1760.81 ± 649.06 1234.78 ± 528.82 < 0.001

CD19+ B count (cells/µl) 55 206.42 ± 133.86 95.00 ± 59.18 < 0.001

CD3+ T count (cells/µl) 55 1177.82 ± 522.81 818.00 ± 426.04 < 0.001

CD4+ T count (cells/µl) 55 682.76 ± 327.47 446.24 ± 226.61 < 0.001

CD8+ T count (cells/µl) 55 436.13 ± 238.54 322.91 ± 223.06 < 0.001

CD56+ NK count (cells/µl) 55 361.20 ± 269.13 313.25 ± 290.30 0.030

CD19+(%) 55 10.85 ± 4.70 7.23 ± 3.49 < 0.001

CD3+(%) 55 66.62 ± 13.17 66.28 ± 14.78 0.681

CD4+(%) 55 37.95 ± 9.60 36.27 ± 11.09 0.031

CD8+(%) 55 25.42 ± 10.31 25.83 ± 10.37 0.392

CD56+16(%) 55 20.95 ± 11.70 24.70 ± 14.58 < 0.001

CD4+/CD8+ 55 1.81 ± 1.05 1.68 ± 0.96 0.017

SBRT, stereotactic body radiation therapy; CD19+ B cells, B lymphocytes; CD3+ T cells,

T lymphocytes; CD4+ T cells, T helper cells, CD8+ T cells, T cytotoxic cells; CD56+ NK

cells, natural killer cells.

FIGURE 2 | Effect of stereotactic body radiation therapy (SBRT) on peripheral lymphocyte counts (n = 76) and lymphocyte subsets (n = 55). All box-and-whisker

plots show median (middle horizontal line), 75th percentile (top horizontal line), 25th percentile (bottom horizontal line), 90th percentile (top whisker), and 10th

percentile (bottom whisker) for change in lymphocyte and lymphocyte subsets following SBRT. (A) Alteration in absolute counts of lymphocytes and lymphocyte

subsets. (B) Percentage change in lymphocyte subsets.
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TABLE 3 | Correlation between post-SBRT total peripheral lymphocyte count and

percentage of lung or heart dosed.

Characteristic n Spearman correlation coefficient (r) P-value

Lung V5 76 −0.204 0.076

Lung V10 76 −0.276 0.016

Lung V15 76 −0.261 0.023

Lung V20 76 −0.278 0.015

Lung V25 76 −0.287 0.012

Lung V30 76 −0.293 0.010

Lung V35 76 −0.282 0.014

Lung V40 76 −0.331 0.004

Lung V45 76 −0.284 0.013

Lung V50 76 −0.337 0.003

Heart V5 72 −0.235 0.047

Heart V10 72 −0.170 0.152

Heart V15 72 −0.217 0.067

Heart V20 72 −0.271 0.021

Heart V25 72 −0.362 0.002

Heart V30 72 −0.287 0.015

Heart V35 72 −0.221 0.062

Heart V40 72 −0.229 0.053

Heart V45 72 −0.307 0.009

Heart V50 72 −0.212 0.073

SBRT, stereotactic body radiation therapy; Vn (%), the percentage of total lung or heart

volume receiving at least n dose of radiation.

Correlations Between Post-SBRT TLC and
Dosimetric Parameters
Spearman’s correlation coefficients between post-SBRT TLC and
the percentage of lung and heart receiving 5–50Gy (in 5Gy
increments) are shown in Table 3. Most lung DVH parameters
[V(10)-V(50) significantly negatively correlated with post-SBRT
TLC, while only heart V(5), V(20), V(25), V(30), and V(45) were
significant. Correlation coefficients remained greatest for lung
V(50) (r = −0.337; P = 0.003) and heart V(25) (r = −0.362;
P = 0.002). The correlation matrix among the different DVH
parameters is presented in Supplementary Table 1.

Association of Post-SBRT TLC With
Clinical Factors
Univariate and multivariate linear regression analysis between
characteristics and post-SBRT TLC levels are shown in Table 4.
Univariate analyses revealed that higher Pre-SBRT TLC level,
higher mean lung dose, longer treatment duration, and longer
TBT were significantly associated with a lower Post-SBRT TLC
level. Stepwise multivariate linear regression, which incorporated
all significantly clinical variables and SBRT-related parameters
in univariate analysis, showed that lower pre-SBRT TLC (P <

0.001), longer TBT (P = 0.001), and higher heart V5 (P = 0.002)
were independent risk factors for decreased post-SBRT TLC.

To evaluate if these associations existed pre-SBRT and
were less likely to be SBRT-induced, we further assessed
the relationships between pre-SBRT TLC and relevant patient

TABLE 4 | Univariate and multivariate linear regression analysis between

characteristics and post-SBRT TLC.

Characteristic Regression

coefficient

95% CI P

Univariate analysis

Sex (female vs. male) −32.517 −282.896 to 217.861 0.797

Age (year) −3.266 −15.486 to 8.954 0.596

Karnofsky performance status

(10%)

−3.030 −20.028 to 13.968 0.723

Smoker (smoker vs. never

smoker)

−16.403 −231.169 to 263.976 0.895

Tumor diameter (mm) −1.551 −14.304 to 11.203 0.809

Underlying respiratory system

disease (yes vs. no)

97.891 −148.671 to 344.452 0.431

Pre-SBRT TLC (cells/µl) 0.528 0.385 to 0.672 <0.001

Dosimetric characteristics

Gross tumor volume (cm3 ) −1.125 −8.857 to 6.608 0.773

Planning target volume (cm3) −1.995 −6.734 to 2.745 0.404

Mean lung dose (Gy) −73.331 −139.641 to −7.021 0.031

Mean heart dose (Gy) −34.819 −73.494 to 3.855 0.077

Radiation therapy

Treatment duration (days) −38.694 −69.801 to −7.587 0.015

Total beam-on time (seconds) −0.129 −0.212 to −0.047 0.003

Fractionation (5 fractions vs.

10 fractions)

−215.285 −466.881 to 36.310 0.092

Multivariate analysis

Pre-SBRT TLC (cells/µl) 0.524 0.393 to 0.656 < 0.001

Total beam-on time (seconds) −0.103 −0.164 to −0.041 0.001

Heart V5 −5.452 −8.835 to −2.069 0.002

SBRT, stereotactic body radiation therapy; TLC, total peripheral lymphocyte count; CI,

confidence interval; Vn, percentage of organ volume receiving n Gy.

characteristics (Table 5). Unlike post-SBRT TLC, we saw no
significant differences in pre-SBRT TLC by sex, age, KPS,
smoking status, underlying respiratory system disease, tumor
diameter, tumor location, and SBRT-related parameters (all
P > 0.05).

Prognostic Value of Post-SBRT TLC
Survival analysis was performed to identify whether post-
SBRT TLC exerted an independent prognostic influence on our
patient population. Based on follow-up criteria, 63 patients were
available for survival analysis. The median follow-up time was
22 months (range 6–55 months) for these patients, and at the
end of the follow-up period, 53 (84.13%) patients were alive.
In subgroup analysis, PFS and OS were not different between
patients with G1 lymphopenia and those with G0 (P = 0.466 and
P = 0.449, respectively). However, PFS and OS for G2-3 patients
were significantly worse compared to G0-1 patients (P < 0.001
and P = 0.006, respectively). Considering this difference, we
decided to classify patients into a G0-1 group and a G2-3 group
to evaluate the prognostic value of post-SBRT TLC. In addition,
we classified patients into a short TBT group (≤3,500 s) or high
TBT group (>3,500 s) based on the ROC curve to evaluate the
prognostic value of the beam-on time.
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TABLE 5 | Relationships of Pre-SBRT TLC levels with baseline characteristics in

patients with early-stage lung cancer.

Characteristic Pre-SBRT

lymphocyte

count ≤ 1,600

(n = 39)

Pre-SBRT

lymphocyte

count > 1,600

(n = 37)

P value

Sex

Male 27 20

Female 12 17 0.173

Age (year) 74 (41–89) 70 (40–89) 0.189

Karnofsky performance status

score

≥80 29 26

<80 10 11 0.690

Smoking status

Positive 13 14

Negative 26 18 0.368

Underlying respiratory system

disease

Yes 24 18

No 15 19 0.259

Tumor diameter 23.00

(9.50–46.00)

23 (9.00–48) 0.686

Tumor location

Central 7 13

Peripheral 32 24 0.089

Dosimetric characteristics

Gross tumor volume (cm3) 12.95

(0.64–62.36)

10.40

(0.67–85.37)

0.776

Planning target volume (cm3 ) 31.61

(4.14–105.35)

22.94

(3.82–116.20)

0.834

Mean lung dose (Gy) 4.38 (1.73–9.66) 4.27 (2.25–8.87) 0.719

Radiation therapy

Treatment duration (days) 13 (5–16) 12 (5–20) 0.307

Irradiation time (seconds) 3599.00

(1921.50–

8671.00)

3654.00

(1208.50–

6384.00)

0.527

SBRT dose and fractionation

50Gy in 5 fractions 12 14

60Gy in 10 fractions 27 23 0.516

SBRT, stereotactic body radiation therapy; TLC, total peripheral lymphocyte count.

As shown in Figure 3, G0-1 and shorter TBT were
significantly associated with improved PFS (P < 0.001 and P
= 0.013) and OS (P = 0.006 and P = 0.043). Table 6 presents
univariate and multivariate analysis results for PFS and OS
including relevant variables. Multivariate analysis showed that
G0-1 was significantly associated with improved PFS (hazard
ratio [HR]: 0.183; 95% CI: 0.076 to 0.441; P < 0.001) and
OS (HR: 0.169; 95% CI: 0.043 to 0.665; P = 0.011) and
longer TBT was significantly associated with inferior PFS (HR:
3.066; 95% CI: 1.186 to 7.929; P = 0.021) after controlling for
confounding variables.

DISCUSSION

The key observations from the present study include the
following findings. First, the paired analysis complete blood
counts pre- and post-SBRT for lung cancer revealed that patients
experienced a substantially reduced circulating TLC (1760.81
± 649.06 vs. 1234.78 ± 528.82; P < 0.001), despite the small
radiation field. This finding is in accordance with other studies
(14, 22). Second, our multivariate linear regression showed
that lower pre-SBRT TLC, higher heart V5, and longer TBT
were independent risk factors of RIL. Third, multivariate Cox
proportional hazard regression models further identified that
post-SBRT TLC and TBT were independently correlated with
PFS and OS in our patient population.

Figure 2 illustrates changes in the lymphocyte subset
distribution following SBRT due to unequal decreases in various
subsets. Peripheral lymphocyte homeostasis was disturbed by
SBRT, as both the absolute number and percentage of CD4+

T cells were significantly decreased after SBRT. Unlike CD4+

T cells, the absolute number of CD8+ T cells dropped less,
and its relative percentage was nearly unchanged. Thus, the
ratio of CD4+/CD8+ T cells decreased following SBRT (P =
0.017), which was also observed by Yang and colleagues in
patients with head and neck cancer after receiving RT (23),
although the radiosensitivities of CD4+ T and CD8+ T cells
have been demonstrated to be similar (24). This result may be
partially explained by SBRT’s ability to promote priming and
strong mobilization of CD8+ T cells, therefore compensating
for the reduced absolute number of CD8+ T cells. This finding
also supports the possibility that SBRT increases CD8+ T cell
accumulation in tumor sites because the therapeutic efficacy of
local ablative radiation critically depends on the presence of
effector CD8+ T cells, but not CD4+ T cells (25–27).

An effective anti-tumor immune response requires functional
lymphocytes capable of detecting and destroying tumor cells.
Given that the majority of our patients developed severe
RIL following SBRT, which impedes anti-tumor immunity,
determining possible risk factors for RIL is important.
Accumulated data indicate that RIL depends on irradiation
volume and fraction number (14, 15), although these two aspects
of SBRT were not identified as independent risk factors for
RIL in the present study. Perhaps the irradiation volumes of
our patients were too small to achieve statistical significance,
unlike the larger target volume of patients with advanced lung
cancer. However, multivariate analyses of possible risk factors
in previous studies did not incorporate treatment duration and
TBT as variables. In contrast, we included clinical variables
and SBRT-related parameters (lung and heart DVH parameters,
treatment duration, and TBT) and only identified pre-SBRT TLC,
heart V5, and TBT as independent risk factors for RIL. Thus, we
inferred that higher heart V5 and longer TBT contribute to RIL
in lung cancer patients and should be considered when designing
SBRT regimens so as to maximize the number of circulating
lymphocytes sustained during irradiation treatment. In addition,
a positive correlation between tumor volume and beam-on time
was observed (r = 0.503, P < 0.001) in our study. We also
conducted univariate and multivariate Cox regression analyses
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FIGURE 3 | Kaplan–Meier analysis of progression-free survival (PFS) and overall survival (OS) stratified by post-SBRT lymphocyte counts (A,B) and total beam-on

time (C,D). High total peripheral lymphocyte count (TLC) following SBRT and short total beam-on time were significantly associated with improved PFS (P < 0.001

and P = 0.013) and OS (P = 0.006 and P = 0.043).

to assess the correlation between survival outcomes and tumor
volume as well as beam-on time. No significant correlation was
found between tumor diameter and survival outcomes (P-value
was 0.799 for PFS and 0.659 for OS), while the beam-on time
had a negative effect on survival outcomes, as shown in Table 6.
These results suggest that shortening the beam-on time may
spare peripheral lymphocytes and ultimately improve patient
prognosis. Of course, further large-scale validation studies are
needed to confirm the impact of beam-on time on lymphocyte
populations in patients with NSCLC who receive SBRT.

The mechanism of RIL is not completely understood,
although circulating lymphocytes in peripheral vessels are
directly killed as they pass through radiation treatment fields
(28). Because larger radiation fields and longer TBT expose
circulating lymphocytes to more radiation, the reduction
in TLC should be proportional to the target volume and
TBT (14, 16, 29), a supposition supported by our results.
Irradiation of bone marrow or lymphatic tissue may also cause
direct destruction of lymphocytes. Apart from direct toxicity,
irradiation may indirectly affect circulating lymphocyte levels
via cytokine modulation (15). For example, interleukin-7 (IL-
7), a key cytokine involved in T-cell proliferation, is essential
for maintaining circulating T-cell homeostasis. Although its
circulating level negatively correlates with CD4+ T cell counts
(30), no compensatory rise in IL-7 levels in patients with
severe RIL has been observed (31). Peiwen et al. reported an
alternative cellular mechanism driving RIL related to the direct

toxicity of radiation in SBRT-treated early-stage lung cancer.
They considered that SBRT was delivered in a few fractions, thus
limiting circulating lymphocyte exposure to ionizing irradiation
as they pass through small radiation fields (32). However,
SBRT was delivered with high ablative doses, as the biologically
effective dose is often higher than 100Gy. A negative correlation
between the total radiation dose and post-RT TLC has also
been demonstrated (29). Twelve patients in our study did not
experience a decrease in peripheral lymphocytes. In this subset
of our patient population, we speculate on whether the immune-
stimulating effects of SBRT are greater than immunosuppressive
effects or if their consistent TLC levels are driven by an
unknown mechanism. Multiple questions and issues related
to our observations remain unresolved: (1) the comprehensive
effects of the target volume, fraction regimen, and total dose on
RIL need to be explored; (2) the mechanism of lymphopenia
development and its regulation needs to be characterized; (3) the
optimal RT regimen to spare circulating lymphocytes need to be
established. Given the clinical importance of this condition but
the limited data regarding its nature and progression, additional
research in this area is warranted. Several limitations should
be considered in the interpretation of our findings. First, this
study analyzed a single-centered dataset with limited patient
numbers, so some useful predictors of RIL may have gone
undetected. Second, several patients did not have pathological
confirmation of pulmonary nodules because of the difficulty or
perceived risk of obtaining small lesion specimens. However, all
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TABLE 6 | Cox regression analysis for progression-free survival and

overall survival.

Characteristic Progression-free

survival

Overall survival

HR

(95% CI)

P HR

(95% CI)

P

Univariate associations

Sex

Female

Male 0.932

(0.413–2.103)

0.866 0.552

(0.142–2.140)

0.390

Age (years)

≤70

>70 1.159

(0.495–2.713)

0.734 2.557

(0.540–12.104)

0.237

KPS score

<80

≥80 0.816

(0.321–2.073)

0.669 0.300

(0.079–1.130)

0.075

Smoking status

Positive

Negative 0.530

(0.197–1.425)

0.208 1.313

(0.329–5.239)

0.700

Underlying respiratory

system disease

Yes

No 0.734

(0.328–1.641)

0.451 0.460

(0.129–1.641)

0.231

Tumor location

Central

Peripheral 1.830

(0.810–4.132)

0.146 2.421

(0.695–8.429)

0.165

Tumor diameter (mm)

≤30

>30 1.006

(0.961–1.053)

0.799 0.625

(0.078–5.036)

0.659

SBRT dose and

fractionation

50Gy in 5 fractions

60Gy in 10 fractions 0.735

(0.304–1.774)

0.494 1.175

(0.878–1.572)

0.277

Treatment duration (days)

≤7

>7 1.819

(0.678–4.880)

0.235 43.621 (0.189–

9616.973)

0.194

Beam-on time (seconds)

≤3,500

>3,500 3.034

(1.194–7.708)

0.020 4.402

(0.922–21.022)

0.063

Pre-SBRT lymphocytes

(cells/µl)

≤1,600

>1,600 1.223

(0.547–2.733)

0.623 1.587

(0.447–5.642)

0.475

(Continued)

TABLE 6 | Continued

Characteristic Progression-free

survival

Overall survival

HR

(95% CI)

P HR

(95% CI)

P

Post-SBRT lymphocytes

(cells/µl)

<800 (G2-3)

≥800 (G0-1) 0.187

(0.080–0.439)

< 0.001 0.178

(0.046–0.695)

0.013

Multivariate associations

KPS score

<80

≥80 NI 0.281

(0.074–1.068)

0.062

Beam-on time (seconds)

≤3,500

>3,500 3.066

(1.186–7.929)

0.021 NI

Post-SBRT lymphocytes

(cells/µl)

<800 (G2-3)

≥800 (G0-1) 0.183

(0.076–0.441)

<0.001 0.169

(0.043–0.665)

0.011

PFS, progression-free survival; OS, overall survival; HR, hazard ratio; CI, confidence

interval; KPS, Karnofsky performance status; NI, not included in the multivariate model;

SBRT, stereotactic body radiation therapy.

patients underwent 18F-FDG PET/CT scans, and the diagnosis
and treatment options for these lesions were determined by a
multidisciplinary tumor board. Third, complete blood counts
were measured at only two time points: before and after
SBRT; our database did not document consecutive circulating
lymphocyte count changes. We could not definitively determine
when levels of circulating lymphocytes began to recover following
SBRT, although we plan to further investigate this aspect of
TLC development. Finally, the population in our study is a little
heterogenous, in that patients with a central tumor or tumor
close to the rib received 60Gy in 10 fractions while patients with
peripheral tumors received 50Gy in 5 fractions. Therefore, these
results require further investigations in larger prospective trials
for validation.

Despite these limitations, we demonstrated that G2 and
more severe lymphopenia after SBRT might be an independent
prognostic factor for poorer outcome in early-stage lung
cancer. The data further suggested that lowering heart V5
and reducing TBT may spare circulating lymphocytes in this
patient population. Specifically, limiting the heart radiation
dose and TBT when designing SBRT regimens may be crucial
for reducing lymphocyte radiotoxicity and improving patient
survival, especially in patients with a relatively low pre-SBRT
TLC level.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request
from the corresponding author.

Frontiers in Oncology | www.frontiersin.org 8 January 2020 | Volume 9 | Article 148859

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Radiation-Induced Lymphopenia in Lung Cancer

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics board of Zhongshan Hospital, Fudan
University (B2014–128). The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

ZZ and JH designed the study. QZ, TL, and GC contributed
to the data collection. QZ analyzed the data and wrote the
manuscript. All authors approved the version of the manuscript
to be published.

FUNDING

This work was supported by the Clinical research projects of
Zhongshan Hospital, Fudan University (No. 2018ZSLC26) and
Medical Guidance Program of the Science and Technology
Commission of Shanghai Municipality (No. 18411967900).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.01488/full#supplementary-material

REFERENCES

1. Formenti SC, Demaria S. Combining radiotherapy and cancer

immunotherapy: a paradigm shift. J Natl Cancer Inst. (2013) 105:256–65.

doi: 10.1093/jnci/djs629

2. Dovedi SJ, Cheadle EJ, Popple A, Poon E, Morrow M, Stewart R,

et al. Fractionated radiation therapy stimulates anti-tumor immunity

mediated by both resident and infiltrating polyclonal T-cell populations

when combined with PD1 blockade. Clin Cancer Res. (2017) 23:5514–26.

doi: 10.1158/1078-0432.CCR-16-1673

3. Hatzi VI, Laskaratou DA, Mavragani IV, Nikitaki Z, Mangelis A, Panayiotidis

MI, et al. Non-targeted radiation effects in vivo: a critical glance of the future in

radiobiology. Cancer Lett. (2015) 356:34–42. doi: 10.1016/j.canlet.2013.11.018

4. Grossman SA, Ye X, Lesser G, Carraway H, Desideri S, Piantadosi S,

et al. Immunosuppression in patients with high-grade gliomas treated

with radiation and temozolomide. Clin Cancer Res. (2011) 17:5473–80

doi: 10.1158/1078-0432.CCR-11-0774

5. Grossman SA, Ellsworth S, Jian C, Campian J, Wild AT, Herman JM,

et al. Survival in patients with severe lymphopenia following treatment with

radiation and chemotherapy for newly diagnosed solid tumors. J Natl Compr

Canc Netw. (2015) 13:1225–31. doi: 10.6004/jnccn.2015.0151

6. Campian JL, Ye X, Gladstone DE, Ambady P, Nirschl TR, Borrello I, et al.

Pre-radiation lymphocyte harvesting and post-radiation reinfusion in patients

with newly diagnosed high grade gliomas. J Neurooncol. (2015) 124:307–16.

doi: 10.1007/s11060-015-1841-y

7. Balmanoukian A, Ye X, Herman J, Laheru D, Grossman SA. The association

between treatment-related lymphopenia and survival in newly diagnosed

patients with resected adenocarcinoma of the pancreas. Cancer Invest. (2012)

30:571–6. doi: 10.3109/07357907.2012.700987

8. Zhao Q, Xu X, Yue J, Zhu K, Feng R, Jiang S, et al. Minimum

absolute lymphocyte counts during radiation are associated with a worse

prognosis in patients with unresectable hepatocellular carcinoma. Therap Adv

Gastroenterol. (2017) 10:231–41. doi: 10.1177/1756283X16685557

9. Liu LT, Chen QY, Tang LQ, Guo SS, Guo L, MoHY, et al. The Prognostic Value

of Treatment-related lymphopenia in nasopharyngeal carcinoma patients.

Cancer Res Treat. (2017) 50:19–29. doi: 10.4143/crt.2016.595

10. Campian JL, Ye X, Brock M, Grossman SA. Treatment-related lymphopenia

in patients with stage III non-small-cell lung cancer. Cancer Invest. (2013)

31:183–8. doi: 10.3109/07357907.2013.767342

11. Pike LRG, Bang A, Mahal BA, Taylor A, Krishnan M, Spektor A et al. The

impact of radiation therapy on lymphocyte count and survival in metastatic

cancer patients receiving PD-1 immune checkpoint inhibitors. Int J Radiat

Oncol Biol Phys. (2019) 103:142–51. doi: 10.1016/j.ijrobp.2018.09.010

12. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating

immunity’s roles in cancer suppression and promotion. Science. (2011)

331:1565–70. doi: 10.1126/science.1203486

13. Wild AT, Herman JM, Dholakia AS, Moningi S, Lu Y, Rosati LM, et al.

Lymphocyte-Sparing Effect of stereotactic body radiation therapy in patients

with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. (2016)

94:571–9. doi: 10.1016/j.ijrobp.2015.11.026

14. Tang C, Liao Z, Gomez D, Levy L, Zhuang Y, Gebremichael RA, et al.

Lymphopenia association with gross tumor volume and lung V5 and its effects

on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys.

(2014) 89:1084–91. doi: 10.1016/j.ijrobp.2014.04.025

15. Yuan C, Wang Q. Comparative analysis of the effect of different radiotherapy

regimes on lymphocyte and its subpopulations in breast cancer patients. Clin

Transl Oncol. (2018) 1219–25. doi: 10.1007/s12094-018-1851-2

16. Saito T, Toya R, Matsuyama T, Semba A, Oya N. Dosimetric predictors of

treatment-related lymphopenia induced by palliative radiotherapy: predictive

ability of dose-volume parameters based on body surface contour. Radiol

Oncol. (2016) 51:228–34. doi: 10.1515/raon-2016-0050

17. Finkelstein SE, Timmerman R, Mcbride WH, Schaue D, Hoffe SE,

Mantz CA, et al. The confluence of stereotactic ablative radiotherapy

and tumor immunology. Clin Dev Immunol. (2011) 2011:439752.

doi: 10.1155/2011/439752

18. Shi F, Wang X, Teng F, Kong L, Yu J. Abscopal effect of metastatic

pancreatic cancer after local radiotherapy and granulocyte-macrophage

colony-stimulating factor therapy. Cancer Biol Ther. (2017) 18:137–41.

doi: 10.1080/15384047.2016.1276133

19. Ye L, Shi S, Zeng Z, Huang Y, Hu Y, He J. Nomograms for predicting

disease progression in patients of Stage I non-small cell lung cancer treated

with stereotactic body radiotherapy. Jpn J Clin Oncol. (2017) 48:160–6.

doi: 10.1093/jjco/hyx179

20. He J, Huang Y, Shi S, Hu Y, Zeng Z. Comparison of effects between central

and peripheral stage I lung cancer using image-guided stereotactic body

radiotherapy via helical tomotherapy. Technol Cancer Res Treat. (2015)

14:701–7. doi: 10.1177/1533034615583206

21. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S,

et al. Cutoff finder: a comprehensive and straightforward web application

enabling rapid biomarker cutoff optimization. PLoS ONE. (2012) 7:e51862.

doi: 10.1371/journal.pone.0051862

22. Maehata Y, Onishi H, Kuriyama K, Aoki S, Araya M, Saito R, et al.

Immune responses following stereotactic body radiotherapy for stage I

primary lung cancer. Biomed Res Int. (2013) 2013:731346. doi: 10.1155/2013/7

31346

23. Yang SJ, Rafla S, Youssef E, Selim H, Salloum N, Chuang JY. Changes

in T-cell subsets after radiation therapy. Radiology. (1988) 168:537–40.

doi: 10.1148/radiology.168.2.3260678

24. Nakamura N, Kusunoki Y and Akiyama M. Radiosensitivity of CD4 or CD8

positive human T-lymphocytes by an in vitro colony formation assay. Radiat

Res. (1990) 123:224–7 doi: 10.2307/3577549

25. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al.

Therapeutic effects of ablative radiation on local tumor require CD8+ T

cells: changing strategies for cancer treatment. Blood. (2009) 114:589–95.

doi: 10.1182/blood-2009-02-206870

26. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord

EM. Local radiation therapy of B16 melanoma tumors increases the

generation of tumor antigen-specific effector cells that traffic to the

tumor. J Immunol. (2005) 174:7516–23. doi: 10.4049/jimmunol.174.

12.7516

Frontiers in Oncology | www.frontiersin.org 9 January 2020 | Volume 9 | Article 148860

https://www.frontiersin.org/articles/10.3389/fonc.2019.01488/full#supplementary-material
https://doi.org/10.1093/jnci/djs629
https://doi.org/10.1158/1078-0432.CCR-16-1673
https://doi.org/10.1016/j.canlet.2013.11.018
https://doi.org/10.1158/1078-0432.CCR-11-0774
https://doi.org/10.6004/jnccn.2015.0151
https://doi.org/10.1007/s11060-015-1841-y
https://doi.org/10.3109/07357907.2012.700987
https://doi.org/10.1177/1756283X16685557
https://doi.org/10.4143/crt.2016.595
https://doi.org/10.3109/07357907.2013.767342
https://doi.org/10.1016/j.ijrobp.2018.09.010
https://doi.org/10.1126/science.1203486
https://doi.org/10.1016/j.ijrobp.2015.11.026
https://doi.org/10.1016/j.ijrobp.2014.04.025
https://doi.org/10.1007/s12094-018-1851-2
https://doi.org/10.1515/raon-2016-0050
https://doi.org/10.1155/2011/439752
https://doi.org/10.1080/15384047.2016.1276133
https://doi.org/10.1093/jjco/hyx179
https://doi.org/10.1177/1533034615583206
https://doi.org/10.1371/journal.pone.0051862
https://doi.org/10.1155/2013/731346
https://doi.org/10.1148/radiology.168.2.3260678
https://doi.org/10.2307/3577549
https://doi.org/10.1182/blood-2009-02-206870
https://doi.org/10.4049/jimmunol.174.12.7516
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Radiation-Induced Lymphopenia in Lung Cancer

27. Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, et al.

Radiotherapy promotes tumor-specific effector CD8+T cells via dendritic cell

activation. J Immunol. (2012) 189:558–66. doi: 10.4049/jimmunol.1200563

28. Sellins KS and Cohen JJ. Gene induction by gamma-irradiation leads to DNA

fragmentation in lymphocytes. J Immunol. (1987) 139:3199–206.

29. Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of

treatment-related lymphopenia in patients with malignant gliomas: modeling

radiation dose to circulating lymphocytes explains clinical observations and

suggests methods of modifying the impact of radiation on immune cells.

Cancer Invest. (2013) 31:140–4. doi: 10.3109/07357907.2012.762780

30. Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic

application. Nat Rev Immunol. (2011) 11:330–42. doi: 10.1038/nri2970

31. Susannah E, Ani B, Ferdynand K, Nirschl CJ, Nirschl TR, Grossman SA, et al.

Sustained CD4+T cell-driven lymphopenia without a compensatory IL-7/IL-

15 response among high-grade glioma patients treated with radiation and

temozolomide. Oncoimmunology. (2014) 3:e27357. doi: 10.4161/onci.27357

32. Kuo P, Bratman SV, Shultz DB, von Eyben R, Chan C, Wang Z.

Galectin-1 mediates radiation-related lymphopenia and attenuates

NSCLC radiation response. Clin Cancer Res. (2014) 20:5558–69.

doi: 10.1158/1078-0432.CCR-14-1138

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhao, Li, Chen, Zeng and He. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 10 January 2020 | Volume 9 | Article 148861

https://doi.org/10.4049/jimmunol.1200563
https://doi.org/10.3109/07357907.2012.762780
https://doi.org/10.1038/nri2970
https://doi.org/10.4161/onci.27357
https://doi.org/10.1158/1078-0432.CCR-14-1138
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 11 February 2020

doi: 10.3389/fonc.2020.00124

Frontiers in Oncology | www.frontiersin.org 1 February 2020 | Volume 10 | Article 124

Edited by:

Tiziana Rancati,

National Cancer Institute Foundation

(IRCCS), Italy

Reviewed by:

Gilles Defraene,

KU Leuven, Belgium

Livia Marrazzo,

Hospital Universitario Careggi, Italy

*Correspondence:

Yong Bae Kim

ybkim3@yuhs.ac

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 18 October 2019

Accepted: 23 January 2020

Published: 11 February 2020

Citation:

Lee BM, Chang JS, Kim SY,

Keum KC, Suh C-O and Kim YB

(2020) Hypofractionated Radiotherapy

Dose Scheme and Application of New

Techniques Are Associated to a Lower

Incidence of Radiation Pneumonitis in

Breast Cancer Patients.

Front. Oncol. 10:124.

doi: 10.3389/fonc.2020.00124

Hypofractionated Radiotherapy Dose
Scheme and Application of New
Techniques Are Associated to a
Lower Incidence of Radiation
Pneumonitis in Breast Cancer
Patients
Byung Min Lee 1, Jee Suk Chang 1, Se Young Kim 1, Ki Chang Keum 1, Chang-Ok Suh 2 and

Yong Bae Kim 1*

1Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea, 2Department of Radiation
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Purpose: Radiation pneumonitis (RP) is one of the most severe toxicities experienced

by patients with breast cancer after radiotherapy (RT). RT fractionation schemes and

techniques for breast cancer have undergone numerous changes over the past decades.

This study aimed to investigate the incidence of RP as a function of such changes in

patients with breast cancer undergoing RT and to identify dosimetric markers that predict

the risk of this adverse event.

Methods and Materials: We identified 1,847 women with breast cancer who received

adjuvant RT at our institution between 2015 and 2017. The RT technique was individually

tailored based on each patient’s clinicopathological features. Deep inspiration breath hold

technique or prone positioning were used for patients who underwent left whole-breast

irradiation for cardiac sparing, while those requiring regional lymph node irradiation

underwent volumetric-modulated arc therapy (VMAT).

Results: Of 1,847 patients who received RT, 21.2% received the conventional dose

scheme, while 78.8% received the hypofractionated dose scheme (mostly 40Gy in

15 fractions). The median follow-up period was 14.5 months, and the overall RP rate

was 2.1%. The irradiated organ at risk was corrected concerning biologically equivalent

dose. The ipsilateral lung V30 in equivalent dose in 2Gy (EQD2) was the most significant

dosimetric factor associated with RP development. Administering RT using VMAT, and

hypofractionated dose scheme significantly reduced ipsilateral lung V30.

Conclusions: Application of new RT techniques and hypofractionated scheme

significantly reduce the ipsilateral lung dose. Our data demonstrated that ipsilateral lung

V30 in EQD2 is the most relevant dosimetric predictor of RP in patients with breast cancer.
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INTRODUCTION

Radiation pneumonitis (RP) is one of the most severe toxicities
caused by radiotherapy (RT) in patients with breast cancer.
Although sometimes fatal, particularly in elderly patients or
those with medical comorbidities, most symptoms of RP can
be resolved with steroid-based medications. In the era of two-
dimensional conventional RT, the central lung distance, defined
as the distance between the midpoint of the posterior field and
the chest wall, was used as an indicator of RP (1, 2). After the
introduction of treatment planning based on three-dimensional
conformal RT (3D CRT), studies have aimed to identify the
dosimetric parameters of the lung that predict RP following RT
for breast cancer. However, such studies remain inadequate for
clinical utility (3, 4).

There has been an important paradigm shift in RT for
breast cancer over the past 20 years. First, hypofractionated
dose scheme emerged as a new standard treatment for this
disease. Several prospective randomized trials demonstrated
that the hypofractionation RT is non-inferior to conventional
fractionated RTwith respect to treatment outcomes and toxicities
after breast conserving surgery. Although hypofractionation
RT after mastectomy is not standard of care yet, recent
prospective trial has shown non-inferior results compared to
conventional RT (5). More radiation oncologists have adopted
such abbreviated RT methods because of their convenience and
cost-effectiveness (6–9). Along with hypofractionated RT, some
other techniques that have become available include volumetric-
modulated arc therapy (VMAT), deep inspiration breath-hold
(DIBH), and prone positioning.

In this study, we aimed to investigate the incidence of RP
and identify the dosimetric markers that predict the risk of this
adverse effect as a function of changes in hypofractionated dose
schemes and application of new RT techniques used to treat
breast cancer.

MATERIALS AND METHODS

Patients
We identified patients who underwent adjuvant RT following
surgery for breast cancer at our institution between January
2015 and December 2017 using a prospectively collected registry
(n = 2,130). We excluded patients who had distant metastases
at the time of their diagnosis (n = 42), those who did not visit
at regular follow-up (n = 114), and those who were followed at
other hospitals (n = 127). Finally, 1,847 patients who met the
eligibility criteria were included in our study cohort.We reviewed
the medical charts of all patients to determine the incidence of
RP. This study was approved by the institutional review board of
Severance hospital (4-2018-0663).

Treatment
We performed computed tomography (CT) simulation
(SOMATOM sensation; Siemens, Erlangen, Germany) with 3
mm-thick slices for all patients. For immobilization, patients
positioned their ipsilateral arms in abduction and used a
thermoplastic immobilization system (Type-S; Medtec, Alton,

IA, USA). Per our institutional protocol, the irradiation
technique was optimized for each individual to minimize the
dose to the heart while maximizing target dose homogeneity.
Patients with large, pendulous, or ptotic breasts were placed in
the prone position to avoid skin reactions at the inframammary
fold. For cancer of the left breast, the DIBH technique was
applied to displace the heart from the chest wall, as described
previously (10); patients were instructed to apply the Abches
breathing monitoring device (APEX Medical, Tokyo, Japan)
during DIBH. If the distance between the heart and chest wall
was sufficient to lower the heart dose using DIBH by inflating the
lung volume, we performed RT using the DIBH technique. Due
to the setup uncertainties in prone positioning, we underwent
daily cone beam CT during RT. However, if the heart was not
sufficiently spared by DIBH or if internal mammary node (IMN)
irradiation (IMNI) was required, we performed RT with VMAT
for cardiac sparing.

For 3D CRT, target volumes were delineated based on
palpating breast tissue and adding a margin; the border of the
intact breast and treatment planning for 3D CRT was specified
as described elsewhere (11). Regional lymph node irradiation
(RNI), including that of the internal mammary, axillary, and
supraclavicular lymph nodes, was recommended to patients with
metastatic nodes or those with high-risk N0 breast cancer (i.e.,
tumor sizes larger than 2 cm, high-grade tumors, and estrogen
receptor-negative tumors) based on two large scale randomized
trials (12, 13). The partial wide tangent field technique was used
to cover the entire breast as well as the IMNs. The supraclavicular
and axillary lymph nodes were irradiated using a separate beam
that did not overlap with that of the breast field. In patients
who had undergone mastectomy, the chest wall and regional
nodes were irradiated using the reverse hockey stick technique
as described elsewhere (14). Since June 2015, we performed
hypofractionation in patients who received mastectomy.

For VMAT, target volumes and organs at risk were contoured
based on European Society for Radiotherapy and Oncology
guidelines, which was validated using both single-center and
multi-center datasets in Korea (15). For patients with T4
stage or N2-N3 stage, we followed the Radiation Therapy
Oncology Group breast cancer target guidelines. For VMAT
planning, two partial arcs were used limiting the unnecessary arc
segments without compromising dose quality. Plan generation
and dose calculation were performed using the RayStation
treatment planning system (version 5.0, RaySearch, Stockholm,
Sweden). For treatment, 6MV photon beams emitted from a
linear accelerator (Versa HD, Elekta, Stockholm, Sweden) were
used. The 95% isodose encompassed the entire planning target
volume, and volumes in target areas receiving over 107% of
the prescribed dose were minimized. The planning requirements
for organ at risk were as follows: ipsilateral lung V5 <50%,
V10 <35%, V20 <20% (Vχ defined as the percentage of the
total volume exceeding χ Gy), mean heart dose <3Gy, mean
left coronary artery dose <6Gy (maximum point dose [Dmax]
<10Gy), mean contralateral breast dose<2Gy, esophagus Dmax
<12Gy, and mean thyroid dose <3Gy. We concerned the
esophagus and thyroid to reduce radiation induced esophagitis
and hypothyroidism. Cone-beam CT images were obtained daily
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TABLE 1 | Patient characteristics and treatment characteristics.

CF group HF group

No. of patients % No. of patients % No. of patients % p

Age (Year) 0.41

<51 908 49.2% 200 51.0% 708 48.7%

≥51 939 50.8% 192 49.0% 747 51.3%

Pathology

Ductal carcinoma in situ 254 14.1% 59 15.1% 195 13.4% 0.56

Invasive ductal carcinoma 1,327 71.7% 283 72.2% 1,044 71.8%

Invasive lobular carcinoma 85 4.6% 12 3.1% 71 4.9%

Mucinous carcinoma 36 1.9% 15 3.8% 21 1.4%

Tubular carcinoma 43 2.3% 10 2.6% 33 2.3%

Stage 0.08

0 261 14.5% 55 14.0% 206 14.2%

I 740 40.1% 171 43.6% 569 39.1%

II 592 31.8% 110 28.1% 482 33.1%

III 253 13.6% 56 14.3% 197 13.5%

Surgery 0.01

Breast conserving mastectomy 1,485 80.4% 297 75.8% 1,188 81.6%

Mastectomy 362 19.6% 95 24.2% 267 18.4%

Lung disease* 0.94

Yes 9 0.5% 2 0.5% 7 0.5%

No 1,838 99.5% 390 99.5% 1,488 99.5%

Smoking history 0.45

Yes 73 4.2% 13 3.5% 60 4.4%

No 1,728 95.8% 358 96.5% 1,370 95.6%

Regional LN irradiation 0.08

Yes (SCL+IMN+AXL) 712 38.5% 166 42.3% 546 37.5%

No 1135 61.5% 226 57.7% 909 62.5%

Chemotherapy 0.52

Yes

Neoadjuvant CTx 402 21.8% 89 22.7% 313 21.5%

Adjuvant CTx 557 30.2% 109 27.8% 448 30.8%

No 888 48.1% 194 49.5% 694 47.7%

Hormone therapy 0.73

Yes 1,297 70.2% 278 70.9% 1,019 70.0%

No 550 29.8% 114 29.1% 436 30.0%

RT technique <0.001

Free-breathing 1,258 68.1%

FIF 226 12.2% 11 2.8% 215 14.8%

Wedge 194 10.5% 178 45.4% 16 1.1%

RHT 13 0.7% 13 3.3% 0 0.0%

VMAT 825 44.7% 8 2.0% 817 56.2%

DIBH 488 26.4%

FIF 322 17.4% 22 5.6% 300 20.6%

Wedge 164 8.9% 153 39.0% 11 0.8%

RHT 2 0.1% 2 0.5% 0 0.0%

Prone 101 5.5%

FIF 97 5.3% 4 1.0% 93 6.4%

Wedge 4 0.2% 1 0.3% 3 0.2%

*COPD, ILD were included.

CF, Conventional fractionation; HF, Hypofractionation; SCL, Supraclavicular lymph node; IMN, Internal mammary lymph node; AXL, Axillary lymph node; CTx, Chemotherapy; FIF, Field

in field; RHT, Reverse hockey stick; VMAT, Volumetric-modulated arc therapy; BCS, Breast-conserving surgery.
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to verify appropriate patient set-up and minimize positioning
errors. During the study period, three different fractionation
schedules were used: either 40.05Gy in 15 fractions (n = 1,055,
57.1%), or 42.56Gy in 16 fractions (n = 400, 21.7%) for
hypofractionation and 50.4Gy in 28 fractions (n = 392, 21.2%)
schedule for conventional fractionation.

For tumor bed boost, 9 Gy in 5 fractions was applied
in conventional fractionation (n = 297, 20.8%). The tumor
bed boost in hypofractionated RT differed depending on
RT modalities. In case that patients received RT using 3D
CRT in hypofractionation, 10Gy in 5 fractions was applied
(n = 541, 37.9%). The electron beams were used for boost
with 3D CRT. For patients treated by VMAT, the tumor bed
boost was performed using simultaneous integrated boost. The
simultaneous integrated boost dose was determined based on
RTOG 1005 protocol. Total dose of 48Gy in 15 fractions was
applied to tumor bed while total dose of 40.05Gy in 15 fractions
was given to the whole breast or whole breast plus regional LN
(n= 373, 26.2%).

Analysis
The primary endpoint was the occurrence of symptomatic RP,
defined as respiratory symptoms (e.g., dyspnea, non-productive
cough) with correlated radiologic images (e.g., chest radiography
and CT). The RP was graded using common terminology criteria

for adverse events version 5.0. Radiation oncologists prescribed
oral prednisolone until symptoms were relieved. To evaluate the
factors affecting the occurrence of RP, univariate andmultivariate
analyses using Cox proportional hazardsmodels were performed.
In multivariate analysis, the factors significant (p < 0.05) in
univariate analysis were used. The factors related to RP in
other studies were also included for multivariate analsysis. The
receiver operating characteristic (ROC) and area under the curve
analyses were used to identify the optimal cutoff values that
best predict the occurrence of RP. The comparison between
hypofractionation group and conventional fractionation group
was performed using chi-squared test. The logistic regression
analysis was used to evaluate the factors associated with the lung
dose parameters.

For dosimetric analysis, the planning data of all the

patients were transferred into the MIM software (version
6.7.14; Cleveland, OH, USA) for multiple-plan comparison. To

analyze the ipsilateral lung dose parameter, we collected the

ipsilateral mean lung dose, V5, V10, V15, V20, V30, and V40. The

ipsilateral lung dose parameters were converted into equivalent
dose in 2Gy (EQD2) with α/β ratio of 3Gy to correct for
hypofractionation. All tests were conducted by using either the
SPSS software version 20.0 (IBM Corp., Armonk, New York,
USA) or R version 3.3.2 (R Foundation for Statistical Computing,
Vienna, Austria).

TABLE 2 | Comparison of lung dose parameter depending on internal mammary node irradiation and radiotherapy technique.

IMN (–) IMN (+)

Free-breathing

3D CRT

DIBH 3D CRT Prone 3D

CRT

Volumetric arc therapy Free-breathing 3D CRT DIBH 3D CRT Volumetric arc

therapy

No. of patients 307 304 101 423 130 184 398

Mean lung dose

Median 6.50 5.71 1.16 5.70 16.24 11.20 7.56

IQR 4.64–8.32 4.30–8.22 0.52–2.51 4.92–6.76 11.24–19.82 8.9–15.24 6.73–8.33

V5

Median 22.17 21.01 4.03 26.99 54.11 41.30 34.62

IQR 16.54–30.7 15.9–30.00 0.88–8.05 22.92–31.14 43.32–62.21 35.67–51.58 30.91–38.28

V10

Median 17.34 15.60 2.47 17.24 44.83 33.75 23.49

IQR 12.81–21.54 12.38–21.2 0.33–6.00 14.50–20.40 32.74–51.04 27.95–41.18 20.75–26.55

V15

Median 14.79 13.07 1.77 12.00 40.09 30.10 17.76

IQR 10.94–18.42 10.15–17.88 0.17–4.54 9.95–15.08 27.91–45.49 23.19–37.02 15.40–20.08

V20

Median 12.86 11.20 1.35 8.54 36.35 27.13 13.33

IQR 9.38–16.42 8.38–15.78 0.07–3.74 6.69–11.25 24.80–42.00 19.70–33.69 11.19–15.30

V30

Median 9.59 7.85 0.66 3.60 29.02 18.26 6.30

IQR 6.33–13.09 5.19–12.08 0.00–2.00 2.10–5.62 15.00–35.34 11.25–24.62 4.37–8.45

V40

Median 3.26 1.85 0.03 0.36 14.00 2.95 1.13

IQR 0.83–8.56 0.18–7.23 0.00–0.37 0.05–1.16 2.10–22.43 0.87–11.70 0.60–2.14

IMN, Internal mammary lymph node; 3D CRT, 3-Dimensional conformal radiation therapy; DIBH, Deep inspiration breath-hold; VMAT, Volumetric-modulated arc therapy; IQR,

Interquartile range.
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RESULTS

Patient Characteristics
The patient and tumor characteristics are summarized in Table 1.

Approximately 85% of the patients had early breast cancer

(stages 0–2). In total, 38.5% received RNI and 51.9% received

either neoadjuvant or adjuvant chemotherapy. Adjuvant RT was

performed either via the conventional dose scheme (21.2%) or

the hypofractionated dose scheme (78.8%); 44.7% of patients
underwent adjuvant RT using VMAT.

We also compared the patient and tumor characteristics
between the conventional fractionation group and
hypofractionation group (Table 1). Most of the variables

were well-balanced between two groups except for the method
of surgery and the techniques used for RT. More patients in
the hypofractionated group received breast conserving surgery.
Also, most of the patients treated with VMAT underwent
hypofractionated RT.

RP Incidence
RP occurred in 40 patients (2.1%) within a median follow-up
period of 14.5 months. The commonest symptom was a mild
dry cough; few patients also experienced other symptoms such
as shortness of breath. Patients experiencing RP symptoms were
prescribed steroids, following which these symptoms resolved.
None of the patients developed RP grade ≥3. Symptomatic RP

FIGURE 1 | Comparison of lung dose according to the radiotherapy modality without (A) and with (B) internal mammary lymph node irradiation. 3D CRT,

three-dimensional conformal radiotherapy; DIBH, deep inspiration breath hold; Vχ , percentage of the total volume exceeding χ Gy.

FIGURE 2 | Comparison of the lung dose-volume histogram between patients who developed radiation pneumonitis and those who did not.
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FIGURE 3 | Occurrence of radiation pneumonitis according to subgroups with V30 >10% and V30≤10%.

FIGURE 4 | Receiver operating characteristic curve analysis for the optimal

cutoff value to predict the occurrence of radiation pneumonitis. MLD, mean

lung dose; Vχ , percentage of the total volume exceeding χ Gy.

occurred no sooner than 3 months and no later than 12 months
after commencing RT.

Comparison of Lung Dosimetry
The lung dosing parameters when using different RT techniques
(i.e., free-breathing 3D-CRT, DIBH 3D-CRT, prone positioning
RT, and VMAT) were compared (Table 2). Patients who
underwent IMNI had higher doses to the lung than those who
did not. The DIBH technique produced lower lung doses than the
free-breathing technique especially when IMNI was performed.
Among the various techniques, the lung doses in patients who
used prone positioning techniques were significantly lower than

that in patients using other techniques. In patients who did
not undergo IMNI, the lung V30 and V40 were significantly
lower in patients undergoing VMAT than in those in patients
undergoing other techniques, while the lung V5 was higher in
patients undergoing VMAT (Figure 1A). For patients who did
undergo IMNI, the VMAT group showed the lowest mean lung
dose (Figure 1B).

Moreover, we found that patients with RP showed higher
dose-volume histogram parameter values in all areas than those
without RP. Among these individual parameters, ipsilateral lung
V30 showed the largest difference between these two patient
groups (Figure 2).

RPA
We performed RPA to determine the factors associated with
RP. Among various dosimetric parameters, the ipsilateral lung
V30 in EQD2 >10% was associated with significantly higher RP
rates than those of ipsilateral lung V30 in EQD2 ≤ 10%. The RP
occurred in 4.6% in patients with ipsilateral lung V30 more than
10% while only 1.4% of patients experienced RP when ipsilateral
lung V30 was <10% (Figure 3).

Dosimetric Analysis
The mean lung dose, ipsilateral lung V5, V10, V15, V20, V30,
and V40 were all significantly associated with RP. The largest
area under the ROC curve was that of the ipsilateral lung V30

(Figure 4). Univariate analysis showed that hormone treatment,
fractionation schedule, RT technique, and the ipsilateral lung V30

significantly affected RP. On multivariate analysis, patients with
ipsilateral lung V30 larger than 10% had a significantly higher rate
of RP than those with ipsilateral lung V30 <10% (Table 3).

Among the RT techniques, fractionation schemes, and IMN
irradiation, VMAT (odds ratio 0.12, 95% CI 0.08–0.17) was a
major determinant of lowering ipsilateral lung V30 followed by
hypofractionation (odds ratio 0.14, 95% CI 0.10–0.19). The IMN
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TABLE 3 | Univariate and multivariate analysis of factors associated with symptomatic radiation pneumonitis.

Univariate analysis Multivariate analysis

Radiation pneumonitis rate HR (95% CI) p HR (95% CI) p

Age (≥51 vs. <51) 1.8 vs. 2.5% 0.69 (0.37–1.29) 0.25

Lung disease (Yes vs. No) 11.1 vs. 2.1% 5.41 (0.74–39.45) 0.09 5.90 (0.79–43.55) 0.082

Smoking history (Yes vs. No) 0 vs. 2.1% 0.05 (0.00–86.13) 0.42

Chemotherapy (Yes vs. No) 1.9 vs. 2.5% 0.90 (0.63–1.29) 0.58

Chemotherapy regimen 0.09

Taxane based vs. Adriamycin based 1.1 vs. 2.4% 0.52 (0.15–1.88) 0.32

Herceptin based vs. Adriamycin based 6 vs. 2.4% 2.06 (0.83–5.13) 0.12

Hormone therapy (Yes vs. No) 1.7 vs. 3.3% 0.50 (0.27–0.94) 0.03 0.53 (0.28–1.01) 0.053

Regional LN irradiation (Yes vs. No) 2.4 vs. 2.0% 1.12 (0.59–2.09) 0.73

Fraction schedule (Hypofractionation vs. Conventional fractionation) 1.5 vs. 4.6% 0.43 (0.23–0.80) <0.01 0.63 (0.31–1.28) 0.203

Ipsilateral lung dose (V30 > 10% vs. V30 ≤ 10%) 4.6 vs. 1.4% 2.93 (1.53–5.62) <0.01 2.89 (1.51–5.54) 0.002

RT technique 0.007

DIBH 3D CRT vs. Free-breathing 3D CRT 2.5 vs. 5.0% 0.47 (0.23–0.95) 0.04

Prone 3D CRT vs. Free-breathing 3D CRT 0 vs. 5.0% NR

VMAT vs. Free-breathing 3D CRT 0.7 vs. 5.0% 0.22 (0.09–0.55) 0.001

CI, Confidence interval; HR, Hazard ratio; LN, Lymph node; 3D CRT, 3-dimensional conformal radiotherapy; DIBH, Deep inspiration breath hold; VMAT, Volumetric modulated arc therapy;

NR, Not reported.

TABLE 4 | Analysis the factor determining the lung V30.

Univariate analysis Multivariate analysis

OR (95% CI) p OR (95% CI) p

IMN irradiation (Yes vs. No) 2.63 (2.15–3.22) <.001 6.59 (4.88–8.92) <.001

Hypofractionation (Yes vs. No) 0.07 (0.06–0.10) <.001 0.14 (0.10–0.19) <.001

VMAT (Yes vs. No) 0.12 (0.10–0.16) <.001 0.12 (0.08–0.17) <.001

Prone (Yes vs. No) NR NR

DIBH (Yes vs. No) 0.30 (0.24–0.38) <.001 0.98 (0.73–1.33) 0.911

OR, Odds ratio; CI, Confidence interval; IMN, Internal mammary node; VMAT, Volumetric modulated arc therapy; DIBH, Deep inspiration breath hold; NR, Not reported.

irradiation was the only factor increasing the ipsilateral lung V30

(odds ratio 6.59, 95% CI 4.88–8.92) (Table 4).

DISCUSSION

This study investigated the incidence of RP in patients with breast
cancer who underwent conventional and hypofractionation RT
and identified dosimetric markers that predict the risk of RP. We
demonstrated that ipsilateral lung V30 is the dosimetric predictor
of RP that is the most relevant in patients with breast cancer. The
change in RT techniques using VMAT and hypofractionation
dose schemes reduce the ipsilateral lung V30.

Several studies have shown that the occurrence of RP is
affected by both patient-related and treatment-related factors.
Patient-related factors that affect the incidence of RP include
existing lung disease, poor pulmonary function, and smoking
history (16, 17). Meanwhile, treatment-related factors known
to affect RP development in patients with lung cancer include
radiation dose, irradiated lung volume, schedule of fractionation,
and usage of chemotherapy (18–21). However, as patients with

breast cancer tend not to have underlying lung diseases or
smoking histories with the same frequencies as those with
lung cancer, our study revealed no association between patient-
related factors and the occurrence of RP. However, treatment-
related factors, particularly those related to RT, did affect RP
development, as reported previously (11).

In this study, we showed that the hypofractionation dose
scheme lowered the ipsilateral lung dose V30. It was suggested
that the α/β ratio for breast tissue ranges from 3 to 4Gy,
which is similar to that of normal tissues (6), and this was later
confirmed in the START A, START B, and another Canadian
study (8, 22, 23). Hence, hypofractionation has become the
standard treatment for breast cancer. While hypofractionation
did not significantly affect RP development in our study, the V30

of the ipsilateral lung were found to be strong predictors of RP.
We also demonstrated that advances in RT techniques have

reduced the incidence rate of RP. Improvements that were

designed to reduce the dose to the heart while maintaining
RT safety and efficacy include intensity-modulated RT (IMRT),
DIBH, and prone positioning; these techniques also significantly
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decreased the dose to the lung by more than 50%. The DIBH can
lower the dose to the heart, but the coverage of the ipsilateral
whole breast planning target volume can be suboptimal. In case
that the tumor was located at medial location of the breast,
tangent fields are difficult to fully cover tumor bed and avoid
the heart simultaneously. Even though the prone positioning for
breast enables lowering the dose to the lung and heart, but setup
uncertainties exist for prone positioning (24). By contrast, IMRT
made it possible to protect the heart and ipsilateral lung without
compromising target coverage and set up uncertainties.

Because landmark studies such as the MA 20 and EORTC
22922 trials demonstrated that RNI can reduce the risk of
early breast cancer recurrence (12, 13), radiation oncologists
increasingly consider its application but remain hesitant owing
to the risk of toxicity to the heart and lung. While we perform
DIBH and prone positioning for patients at our hospital who
are not undergoing RNI, 3D CRT with partially wide tangent
fields has been performed in patients requiring RNI, including
IMNI. IMRT for breast cancer is widely used today after it became
reimbursable by the national insurance program in our country
in 2015. Our study showed that IMRT can sufficiently cover the
whole breast and regional lymph nodes, particularly IMNs, while
effectively reducing lung, and heart toxicity.

The chemotherapy regimen did not affect the incidence of
RP in our study. As some chemotherapeutic agents act as
sensitizers to radiation, the patients who received chemotherapy
could be at higher risk to RP. The article showing that
chemotherapy increased the risk of RP demonstrated that
sequential chemotherapy diminished the risk of RP as compared
to concurrent chemoradiotherapy (25). In our study, none of
the patients underwent concurrent chemotherapy during RT. As
sequential chemotherapy has minimal impact on development
of RP, neither the chemotherapy regimen nor the use of
chemotherapy increased the risk of RP in our study.

Sequential tumor bed boost was applied in patients treated
with 3D CRT while simultaneous integrated boost was used in
patients treated with VMAT. In this study, sequential tumor bed
boost dose was not accounted for analysis. However, as electron
beams were used for sequential tumor bed boost in case of
patients treated with 3D CRT, we believed that the effect of tumor
bed boost to the lung dose was negligible.

No significant parameters predicting the occurrence of RP in
patients with breast cancer have been identified to date. The 3D
CRT technique can reduce the areas receiving low irradiation
doses (e.g., the V5 and V10) on the dose-volume histograms
but not the areas receiving high doses. By contrast, the VMAT
technique can reduce the areas of high RT dose while widening

the areas of low irradiation (26). Previous studies in patients with
breast cancer showed that V20 lung constraints could markedly
reduce RP (27, 28). However, our results also demonstrated that
V30 constraints were significantly associated with reduced RP
rates in patients with breast cancer.

Our study was limited by its retrospective design and
single-institution analysis. Some unbalance existed in patient
characteristics between hypofractionated and conventional
fractionated RT group, as the surgical method and RT
techniques were significantly different between two groups.
Also, the number of patients with RNI and without RNI
differ largely. Although most of the factors were well-
balanced between two groups, careful interpretation of results
is needed. As such, external validation is necessary to confirm
our findings.

In conclusion, our study demonstrated that the
hypofractionation dose scheme and RT techniques such as
VMAT can reduce the radiation dose and potentially the
incidence of RP. Although external validation is still required,
we clearly showed that ipsilateral lung V30 in EQD2 is reliable
dosimetric predictors of RP in patients with breast cancer.
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Radiation ulcers are a prevalent toxic side effect in patients receiving radiation therapy.

At present, there is still no effective treatment for the complication. Senescent cells

accumulate after radiation exposure, which can induce cell and tissue dysfunction.

Here we demonstrate increased expression of p16 (a senescence biomarker) in human

radiation ulcers after radiotherapy and radiation-induced persistent cell senescence in

animal ulcer models. Furthermore, senescent cells secreted the senescence-associated

secretory phenotype (SASP) and induced cell senescence in adjacent cells, which

was alleviated by JAK inhibition. In addition, the clearance of senescent cells following

treatment with a senolytics cocktail, Dasatinib plus Quercetin (DQ), mitigated radiation

ulcers. Finally, DQ induced tumor cell apoptosis and enhanced radiosensitivity in

representative CAL-27 and MCF-7 cell lines. Our results demonstrate that cell

senescence is involved in the development of radiation ulcers and that elimination of

senescent cells might be a viable strategy for patients with this condition.

Keywords: radiation ulcer, oral mucositis, skin ulcer, senescence, apoptosis, SASP

INTRODUCTION

Radiation therapy is a common and efficacious treatment for patients with solid cancers. About 50%
of cancer patients receive radiation therapy, alone or in combination with other treatment methods
such as surgery (1). Among them, radiotherapy is themain treatmentmethod for patients with head
and neck tumors and has varying success (2), but oral mucositis is a crucial dose-limiting toxic
effect (3). Radiotherapy is an important adjuvant treatment after surgery for breast cancer and can
reduce the metastasis and mortality rates (4), but high-dose radiation exposure to superficial tissue
ultimately leads to intractable skin ulcers. Although advances in radiotherapy such as dynamic
intensity-modulated radiotherapy achieve precise delivery of radiation to cancer cells, side effects
to surrounding tissues are still inevitable and bring great pain and/or cost to patients (5).

Various precautionary methods and therapies such as anti-inflammatory agents, local
anesthetics, and growth factors have been used to treat painful ulcerations, but the clinical effects
are poor (2). Palifermin, a recombinant human form of keratinocyte growth factor (KGF), is the
only U.S. Food & Drug Administration–approved agent that is used to prevent oral mucositis in
patients with bone marrow transplantation, but fibroblast growth factor receptor 2b (FGFR2b) is
often overexpressed in cancer cells and increases the risk of tumor growth (6). Although hyperbaric
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oxygen therapy has been reported to reduce skin ulcers after
radiation (7), the treatment duration is long. Therefore, the
development of potential agents that mitigate radiation ulcers
without accelerating tumor growth is intensively needed for
oncological supportive care.

Cell senescence can be triggered by radiation-induced
DNA damage and leads to delayed repair and regeneration of
irradiated tissue (8). Persistent damage activates the cyclin-
dependent kinase inhibitor p16Ink4a and causes cell cycle arrest
(9). Cellular senescence is not just a state of proliferation
inhibition and genetic alteration (10); senescent cells can
secrete cytokines, called the senescence-associated secretory
phenotype (SASP) including inflammatory factors (11, 12),
tissue-reconstituted proteases, and growth factors, which
can induce persistent chronic inflammation in the tissue
microenvironment (13, 14) and promote cancer relapse (15).
It has been reported that cordycepin and mammalian target
of rapamycin inhibition can protect from radiation ulcers by
inhibiting cell senescence (16, 17). These observations led us to
explore if it is possible to mitigate radiation ulcers by eliminating
senescent cells.

In this study, we show that senescent cells persist in
radiation ulcers (clinical radiation ulcer samples and animal ulcer
models), and clearance of senescent cells by the senolytics drug
cocktail, dasatinib plus quercetin (DQ), can effectively mitigate
radiation ulcers. Moreover, DQ treatment can enhance cancer
cell radiosensitivity. Our findings suggest that cell senescence
is involved in radiation ulcer development, and clearance of
senescent cells can be a potential therapeutic method to mitigate
radiation ulcers.

MATERIALS AND METHODS

Human Skin Samples
Skin tissues were obtained from healthy volunteers and patients
with breast cancer receiving radiation therapy from 2016 to
2018 at Hunan Cancer Hospital (the Affiliated Hospital of
Xiangya School of Medicine of Central South University). Skin
ulcer samples were obtained from the chest wall at the time
of surgery and were processed for further analysis. The studies
involving human participants were approved by the ethics
committee of Hunan Cancer Hospital; the patients/participants
provided their written informed consent to participate in
our study.

Cell Culture
Human oral keratinocytes (HOK ATCC, PCS-200-014)
were cultured in an oral keratinocyte medium containing
antibiotics at 37◦C in 5% CO2. Human fibroblasts, CAL27
(CRL-2095), and MCF-7 cells (ATCC, HTB-22) were
cultured in Dulbecco’s minimum essential medium with
high sugar (Invitrogen) supplemented with 10% fetal
bovine serum (Gibco) and 1% streptomycin/penicillin.
The isolation protocol for human fibroblasts was described
previously (18).

Conditioned Medium (CM)
CM was made by exposing young cells to a fresh medium
for 24 h. SASP-CM was made by exposing senescent cells
(7 days after radiation) to a fresh medium for 24 h. To
collect (SASP+JAKi)-CM, senescent cells were treated with JAK
inhibitor 1 (JAKi) or dimethyl sulfoxide (DMSO) for 72 h and
cultured with a fresh medium containing JAKi or DMSO for
another 24 h.

Animal Models
Female C3H mice (6–8 weeks) and male Sprague–Dawley rats
(6–8 weeks) were purchased from Laboratory Animal Center of
Army Medical University. To evaluate the effect of senolytics
on radiation ulcers, animals were divided into non-radiation,
radiation, and D+Q treatment groups. For local fractionated
radiation, the head and neck area was exposed to irradiation at
a dose of 6 Gy/day (X-RAD 160-225 instrument Precision X-
Ray, 1.9Gy/min) and treated with senolytics dasatinib (5mg/kg)
plus quercetin (50mg/kg) (D+Q) (19, 20) by oral gavage every
day for 5 days. Mice were sacrificed at days 3, 6, 8, and 10. For
skin ulcer modeling, rats’ right posterior limbs were exposed
to a single dose of 40Gy (0.9Gy/min) radiation and treated
with dasatinib (5mg/kg) plus quercetin (50mg/kg) (D+Q) by
intraperitoneal injection every day for 5 days after irradiation.
Rats were sacrificed at days 5, 8, 11, and 15 after irradiation.

Immunoanalysis and Histopathology
Tissues were fixed, embedded in paraffin, cut into 3-µm
sections, and stained with hematoxylin and eosin (H&E). For
p16 immunohistochemistry, slides were boiled in a citrate
buffer for antigen retrieval after dehydration. Slides were then
soaked in 10% hydrogen peroxide for 10min to remove
endogenous peroxidase and were washed. Slides were blocked
in goat serum and incubated in primary antibody against p16
(Abcam, 1:100) at 4◦C overnight. Washed slides were then
incubated with secondary antibody for 40min (biotinylated
goat anti-rabbit IgG, BA-1000, Vector Labs), washed, and
incubated in 3’-diaminobenzidine solution. For γ-H2AX and
Ki67 immunofluorescence, antigen retrieval and blocking was
performed as above, and primary antibody (γ-H2AX, Cell
Signaling, 1:200; Ki67, Cell Signaling, 1:200) was applied and
incubated at 4◦C overnight. Slides were washed with phosphate-
buffered saline and incubated with secondary antibody for
40min (biotinylated goat antirabbit IgG, 594 nm) before
adding an antifluorescence buffer containing 4′,6-diamidino-2-
phenylindole for imaging.

Real-Time qPCR
Total RNA from tissues or cells was extracted using TRIzol
(Life Technologies) and reverse-transcribed to cDNA using the
Maxima First Strand cDNA Synthesis Kit (Thermo Scientific,
K1671). Real-time PCR was performed by applying the SYBR
Green (Takara) qPCR master mix following the manufacturer’s
protocol. 1Ct values were calculated as the following formula:
1Ct= Ct target – Ct actin. Values of sample reference to control
were calculated using the 11CT method; the difference of gene
expression was calculated using the 2−(11Ct) formula. qRT-PCR
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primer sequences are shown in Supplementary Table 1. Actin
was used as an internal control.

SA-β-Gal Activity
Cells were seeded into 6-well plates and then either received 8-
Gy (0.9Gy/min) radiation or not. Cells were passed and assessed
7 days after radiation. SA-β-gal staining was done using a SA-β-
gal staining kit (Cell Signaling) according to the manufacturer’s
instructions. First, 1ml 4% paraformaldehyde was added to every
plate to fix cells. Then, cells were incubated at 37◦C for 24 h in
a SA-β-gal staining solution (pH = 6.0, Cell Signaling). Blue-
stained cells were senescent cells.

Flow Cytometry
Cells were seeded into 6-well plates at a density of 2 × 105

cells/well. Cells either exposed to radiation (8Gy) or not were
treated with DMSO or DQ (1mM D+20mM Q) for 24 h,
digested with trypsin, and collected. Cells were then resuspended
in a 100-µl binding buffer with 1-µl fluorescein isothiocyanate
Annexin-V and 1-µl propidium iodine (PI; BD Biosciences,
556547). Finally, samples were analyzed by flow cytometry (C6,
BD Biosciences, San Jose, CA). For cell cycle analysis, cells
were fixed with Fixation/Permeabilization Diluent/Concentrate
(eBioscience) for 30min. Subsequently, intracellular Ki-
67 (eBioscience) and Hoechst33342 (Sigma) staining were
performed using PermWash solution (eBioscience). Cells were
washed once prior to flow cytometry analysis.

Western Blot
Cells were extracted in a cell lysis buffer (Cell Signaling) with
protease inhibitors (Sigma). Proteins were loaded into each lane
on a 5–12% gradient sodium dodecyl sulfate/polyacrylamide
gel and transferred to immunoblot polyvinylidene fluoride
membranes (Bio-Rad). Membranes were blocked with 5% skim
milk and probed with primary antibodies at 4◦C overnight.
Horseradish peroxidase-conjugated secondary antibodies
(Beyotime) were applied for 1 h at room temperature. The band
intensities were visualized and quantified using an enhanced
chemiluminescence detection system (Bio-Rad Laboratories).
Primary antibodies used were as follows: poly ADP-ribose
polymerase (PARP, 1:1,000, abcam), caspase 3 (1:1,000, abcam),
cleaved caspase 3 (1:1,000, abcam), p-JAK1(1:1,000, abcam),
p-JAK2 (1:1,000, abcam), and β-actin (1:1,000, Beyotime).

Enzyme-Linked Immunosorbent Assay
(ELISA)
The concentrations of human inflammatory cytokines from
HOK and fibroblasts cell supernatant were measured with ELISA
kits. IL-1α (KE00123), IL-6 (KE00139), IL-1β (KE00021), IL-8
(KE00006), and tumor necrosis factor (TNF)-α (KE00154) ELISA
kits from ProteinTech were used following the manufacturer’s
protocols. Generating a linear standard curve based on the OD
value of the standard, the expression of protein was calculated
using the formula generated above.

Statistical Analysis
Comparisons between two groups were analyzed using unpaired
Student’s t-tests, and values are presented as mean with SD.
Statistical significance was set as ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001. SPSS 13.0 statistical software was used to perform
all statistical analyses, and GraphPad Prism 7.0 was used to
generate graphs.

RESULTS

Senescence Biomarkers Accumulate in
Human Radiation Ulcer After Radiotherapy
Senescence can be induced by multiple mechanisms such
as DNA damage, reactive oxygen species (ROS) production,
and oxidative stress (21), and DNA damage is a critical
mediator of cellular alterations caused by radiation exposure
(22). To explore the hypothesis that cell senescence and SASP
are related to human radiation ulcers after radiotherapy, we
first analyzed established senescence genes in the GSE103412
dataset (23) corresponding to mucositis in patients with tonsil
squamous cell carcinoma (during and after radiation therapy)
and control human cohorts (healthy mucosa and patients before
radiotherapy). CDKN2A (p16) and TP53 were upregulated
within oral mucosa samples of individuals with mucositis
during and after radiation therapy (Figure 1A). In addition,
HIST1H3B, HIST1H2BM, HIST1H3C, HIST1H3H, HIST1H1A,
HIST1H4D, and HIST1H1B were downregulated (Figure 1A)
in mucositis samples, especially at day 7 after radiation. This
is notable since histone gene expression downregulation is a
response to DNA damage (24). Ki67 (a marker of proliferation)
was downregulated, indicating that radiation decreased the
proliferative capacity of mucosa. Based on the hypothesis that
senescent cells promote the development of radiation ulcers
through the secretome, we analyzed the expression of SASP
genes in human mucositis transcriptome datasets (GSE103412).
Expression of pregnancy-associated plasma protein A (23),
several matrix metalloproteinases (MMPs), and interleukin
(IL) family members were also increased after radiation
therapy (Figure 1A).

We also immunohistochemically detected p16 and γ-H2AX
in skin tissue samples from healthy volunteers and patients with
breast cancer receiving radiation therapy. As shown in Figure 1B,
a lack of epithelium in the tissue was observed in ulcer tissue
samples compared to normal skin. We also found a remarkable
increase in the senescence marker p16 (Figure 1C) and the
DNA damage marker γ-H2AX (Figure 1D). Collectively, our
results indicate that senescence biomarkers accumulate in human
radiation ulcers after radiotherapy, and senescence may play a
critical role in promoting human radiation ulcers.

Radiation Induces Persistent Cell
Senescence in Animal Ulcer Models
To further confirm the correlation between radiation ulcers
and cell senescence, a mouse oral ulcer and rat skin ulcer
model were established (Figure 2A). For radiation-induced oral
ulcers, the head and neck of mice were treated with fractionated
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FIGURE 1 | Senescence biomarkers accumulate in human radiation ulcer after radiotherapy. (A) Heat map showed the expression of senescence, DNA damage, and

SASP genes in mucositis in patients with tonsil squamous cell carcinoma (during and after radiation therapy) and control (healthy mucosa and patient before

radiotherapy) human cohorts (healthy n = 8, before radiation n = 8, day 7 n = 8, day 21 n = 7). (B) Histological analysis of skin tissues from healthy volunteers and

radiotherapy patients. (C) Immunohistochemistry staining of p16 of skin tissues from healthy volunteer and radiotherapy patients. (D) Immunofluorescence staining of

γ-H2AX of skin tissues from healthy volunteer and radiotherapy patients. (B–D) Healthy n = 1, radiotherapy patients n = 4, skin tissue from the chest wall; scale bar,

50µm.

radiation of a 6-Gy dose/day for 5 days (other body parts
were covered with a lead board). Mice were euthanized at
days 3, 6, 8, and 10, and the tongues were removed and

analyzed. For radiation-induced skin ulcer, each rat’s right
posterior limb was exposed to a single 40-Gy radiation under
anesthesia (25). As shown in Figures 2B,C, the irradiated tongues
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FIGURE 2 | Radiation induces persistent cell senescence in animal ulcer models. (A) Radiation and drug treatment scheme for mice (left) and rats (right).

(B) Histological analysis of mouse tongue tissues 0–10 days postradiation (n = 3). (C) Representative images of hind limb 0–15 days postradiation (top); histological

analysis of rat skin tissues 0–15 days postradiation (bottom) (n = 3). (D) Immunohistochemistry of p16 in mouse tongue and rat skin tissues (n = 3). As indicated by

the arrow, brown represents positive cells. (E,F) The expressions of p16, p21, PAI-1, and SASP genes (IL-1α, IL-10, IL-1β, TNF-α, IL-6, MMP3, IL-8, MMP12, and

MCP1) in different time points were quantified by qRT-PCR (mean with SD; n = 3, *P < 0.05, **P < 0.01, ***P < 0.001; Student’s t-test). (B,D) Scale bar, 100µm;

(C) scale bar, 50µm.
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and skin exhibited severe destruction of the epithelial layer
compared to normal epithelial morphology. Furthermore, both
models showed increased immunohistochemical staining for the
senescence marker p16 at different time points (Figure 2D).
qRT-PCR showed that senescence markers p16, p21, and
plasminogen activator inhibitor-1 (PAI-1) were increased in
irradiated mice/rats (Figures 2E,F). We found that the SASP
factors (26) [IL-1β, IL-6, IL-1α, IL-8, IL-10, TNF-α, MMP3,
MMP12, and monocyte chemoattractant protein-1 (MCP1)]
were all significantly upregulated in irradiated tongue and
skin tissues compared to non-irradiated controls (Figures 2E,F).
These results indicate that senescent cells and the SASP persist
in radiation ulcer. These results are consistent with previously
reported data for senescence-associated beta-galactosidase (SA-
β-gal), a known marker of senescent cells (16). Therefore,
eliminating senescent cells might be a viable strategy to alleviate
radiation ulcers.

Senescent Cells Induce Cell Senescence
and SASP in Adjacent Cells
Senescent cells acquire autocrine/paracrine abilities, and the
cytokines they produce promote dysfunction and growth arrest
in neighboring cells to maintain senescence by an autocrine
positive-feedback loop (27). Next, we tested whether senescent
HOK and human skin fibroblasts induce senescence and
inflammation in adjacent healthy cells. We first established
an in vitro HOK and skin fibroblast cell senescence model
induced by radiation (Figures 3A,B), which were confirmed
by SA-β-gal staining (28) and the expression of senescence
mediators (p21 and p16) and SASP factors (MCP1 and IL-6) (29).
Morphologically, senescent HOK are larger and rounder, with
more vacuoles and fewer antennae compared with young HOK.
Young fibroblasts are spindle-shaped or polygonal, whereas
senescent cells become larger, flat, and overstretched, with
elongated branches at the ends of extensions (Figure 3A).
Notably, IL-1α, IL-8, IL-6, IL-1β, and TNF-α protein expression
levels were increased in cell supernatant from irradiated cells
compared with non-irradiated cells (Figure 3C). Then, CM
from senescent cell supernatant (SASP-CM) and normal cell
supernatant (Con-CM) were collected; we found that exposure
of non-senescent HOK and skin fibroblasts to SASP-CM for
7 days induced SA-β-gal expression and senescent morphology
compared with Con-CM (Figure 3D). Cells were also collected
for qRT-PCR analysis, which showed that CM derived from
senescent cells caused upregulation of senescence genes (p16,
p21, PAI-1) and SASP genes (IL-1α, IL-10, IL-1β, TNF-α, IL-6,
MMP3, IL-8, MMP12, and MCP1) relative to CM from non-
senescent cells (Figure 3E). These results indicate that the SASP
can induce cell senescence and inflammation in adjacent cells.

The JAK pathway is important in cytokine production, and
JAK1 and 2 primarily regulate inflammatory signaling (30).
The GSE103412 dataset showed increased JAK1/2 in ulcer
patients after radiation therapy (Figure 1A). Similarly, we found
significantly increased JAK expression after irradiating HOK
and skin fibroblasts (Figure 3F). We then assessed the effect of
JAKi, which can suppress SASP in senescent cells by inhibiting

the JAK pathway. Senescent HOK and skin fibroblasts were
incubated with vehicle and JAKi (1µM) for 72 h; then CM from
senescent cells (SASP-CM) and senescent cells incubated with
JAKi [(SASP+JAKi)-CM] were collected. The results showed
that JAKi (1µM) downregulated the expression of crucial SASP
genes in senescent cells (Figure 3G). Furthermore, after young
HOK and skin fibroblasts were treated with SASP-CM and
(SASP+JAKi)-CM for 24 h, respectively, SASPmRNA levels were
lower in the (SASP+JAKi)-CM group relative to SASP-CM-
treated young cells (Figure 3H). Therefore, SASP in senescent
cells may promote SASP in adjacent cells. However, when young
HOK and skin fibroblasts were treated with SASP-CM, followed
by the addition of JAKi or vehicle for 24 h, we did not observe
decreased levels of SASP (Figure 3I). Therefore, we hypothesize
that JAKi mainly acts on senescent cells by suppressing the SASP
to reduce inflammation, but it has no effect on non-senescent
cells to prevent inflammation caused by SASP. These findings
demonstrate that senescent cells can induce cell senescence and
SASP in adjacent cells, and JAK inhibition alleviates SASP in
senescent cells.

DQ Treatment Eliminates Senescent Cells
by Inducing Apoptosis
The above observations suggest that senescent cells may be
a viable target in preventing radiation ulcers. Therefore, we
assessed the effect of DQ, which has been reported to selectively
clear senescent cells (11, 19, 20). We found that a single dose
of DQ (1mM dasatinib+20mM quercetin) eliminated 40–60%
of senescent HOK and 10–20% skin fibroblasts within 24 h;
nevertheless, DQ treatment had no observable effect on young
HOK or skin fibroblasts (Figure 4A). Similarly, calcein AM/PI
staining showed markedly higher cell death in senescent HOK
and fibroblasts compared to young cells (Figure 4B). Moreover,
DQ induced the expression of the apoptosis markers caspase
3, cleaved caspase 3, and PARP in senescent cells (Figure 4C).
These results suggest that DQ selectively removed senescent cells
through the intrinsic apoptotic pathway.

Senescent Cell Clearance Mitigates
Radiation Ulcers
Next, we determined whether DQ could help heal radiation
ulcers. DQ almost entirely prevented the appearance of
mucositis in irradiated mice (Figure 5A). Histological analysis
of the tongues showed complete and continuous epithelial layers
in irradiated DQ-treated mice (Figure 5B). DQ also significantly
decreased radiation-induced skin ulcers, desquamation, and
edema and promoted epithelium repair (Figures 5C,D).
In addition, we found reduced levels of the DNA damage
response marker γ-H2AX in irradiated DQ-treated mice/rats
(Figure 6A). Furthermore, DQ-treated mice/rats showed
significantly increased levels of the proliferation marker
Ki67 (31) (Figure 6B). As expected, DQ-treated mice/rats
showed downregulation of the senescence marker p16 and
SASP (Figures 6C,D). H&E staining showed that the heart,
spleen, muscle, lung, intestine, kidney, and liver were not
obviously affected by DQ treatment (Supplementary Figure 1),
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FIGURE 3 | Senescent cells induce cell senescence and SASP in adjacent cells. (A) SA-β-gal staining in HOK and skin fibroblasts at 7 days after radiation (n = 3).

(B)mRNA expression levels for p16, p21, MCP1, and IL-6 in HOK and skin fibroblasts at 7 days after radiation (n = 3). (C) Protein expression levels for IL-1α, IL-8, IL-6,

IL-1β, and TNF-α in HOK and skin fibroblast cell supernatant (n = 3). (D) HOK and skin fibroblasts were cultured in Con-CM and SASP-CM for 7 days and assessed

by SA-β-gal staining (n = 3). (E) mRNA expression levels of p16, p21, PAI-1, and SASP genes (IL-1α, IL-10, IL-1β, TNF-α, IL-6, MMP3, IL-8, MMP12, and MCP1) in

HOK and skin fibroblasts (cultured in Con-CM and SASP-CM for 7 days). (F) p-JAK1 and p-JAK2 expression levels in HOK and fibroblasts after radiation. Three

(Continued)
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FIGURE 3 | independent experiments started with cell plating. (G) Irradiation-induced senescent HOK and fibroblast were treated with JAK inhibitor and vehicle for

72 h. Then RNA was collected, and qRT-PCR was performed (n = 3). (H) Young HOK and skin fibroblasts were treated with SASP-CM and (SASP+JAKi)-CM for 24 h,

respectively; the mRNA levels of SASP were analyzed. (I) mRNA levels of SASP in young HOK and skin fibroblasts, which were treated with SASP-CM, followed by

addition of JAK inhibitor 1 or vehicle for 24 h. (E) IR+vehicle group compared with IR+JAKi group. (E,G–I) Mean with SD. n = 3, *P < 0.05, **P < 0.01, ***P < 0.001;

Student’s t-test. (A,D) Scale bar, 100µm.

FIGURE 4 | Senescent cells are eliminated by DQ treatment. (A) Young/senescent HOK and skin fibroblasts were treated with DMSO or DQ for 24 h, and collected for

apoptosis analysis using flow cytometry (n = 3), repeated three times independently (mean with SD. n = 3, ***P < 0.001; independent samples Student’s t-test; ns,

no significance). (B) HOK and skin fibroblasts were co-stained with calcein-AM (Invitrogen)/PI to visualize live cells (green fluorescence) and dead or late apoptotic

cells (red fluorescence) (n = 3; scale bar, 100µm). (C) Apoptosis markers PARP, caspase3, and cleaved caspase3 expression levels in young/senescent HOK and

skin fibroblasts after being incubated with DMSO or DQ for 24 h. Three independent experiments started with cell plating.
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FIGURE 5 | Senescent cell clearance mitigates radiation ulcer. (A) Toluidine blue staining pictures of mouse tongues at day 10 from non-radiation, radiation, and DQ

treatment mice. Lack of integrated epithelial barrier (ulcer) presents blue staining (n = 5). (B) Histological analysis of mouse tongues from non-radiation, radiation, and

DQ treatment mice (n = 5). (C) Images of posterior limbs from SD rats (non-radiation, radiation, and DQ treatment mice) on day 15 (n = 5). (D) Histological analysis of

skin tissues from non-radiation, radiation, and D+Q treatment rats at day 15 (n = 5). (B,D) Scale bar, 50µm.

and there was no statistical difference in body weight
between the DQ- and vehicle-treated groups after radiation
(Supplementary Figure 2). These findings suggest the
possibility that DQ treatment may alleviate DNA damage
and maintain the proliferative capacity of tissue cells by
eliminating senescent cells, thereby preventing the development
of radiation ulcers.

DQ Enhances Cancer Cell Radiosensitivity
Senescence induced by ionizing radiation can contribute to
tumor therapy via cell growth arrest (32) and autophagy (33). It
can antagonize apoptosis and consequently shelter a population
of dormant cells, and this anti-apoptotic effect ultimately leads to
cancer radiotherapy resistance (34) and tumor recurrence (35).
In our study, we assumed that senescent cells including senescent
tumor cells (irradiated tumor cells) might be viable targets of DQ.
CAL27 and MCF-7 cells are used as typical examples of head and
neck squamous cell carcinomas and breast cancer, respectively.
CAL27 and MCF-7 cells were exposed to 8-Gy irradiation and
then incubated with DQ for 24 h. Flow cytometry result showed
that a single dose of 1mM D+20mM Q induced apoptosis of
CAL27 and MCF-7 and promoted radiosensitivity (Figure 7A).
We next assessed cell-cycle percentages using flow cytometry and
found that cells in the G1 phase were significantly increased in

non-irradiated DQ-treated CAL27 and MCF-7 cells compared
with the control group treated with DMSO (Figure 7B). This
phenomenon was also evident in irradiated cells (Figure 7B),
indicating that DQ treatment induces cell-cycle arrest at G1 and
S/G2/M checkpoints in CAL27 and MCF-7 cells. Proliferation
wasmeasured by colony formation assays, which showed that DQ
reduced the colony formation ability of both CAL27 and MCF-
7 cells (Figure 7C). Our results suggest that DQ induced tumor
cell apoptosis and also enhanced radiosensitivity and reduced
proliferative capacity in CAL27 and MCF-7 cells.

DISCUSSION

Radiation therapy is an indispensable treatment for tumors
that is applied to approximately half of cancer patients with
different effects. It achieves good results in the treatment of
head and neck and breast cancers. The radiation dose is
determined by the sensitivity of the tumor and surrounding
tissues (36). Oral mucositis is a crucial dose-limiting toxic
effect in radiotherapy for head and neck cancers (37), and
skin ulcers are a common side effect in patients with breast
cancer (38, 39). Radiotherapy induces DNA strand breaks,
ROS production, and oxidative stress that eventually trigger
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FIGURE 6 | Senescent cell clearance mitigates radiation ulcer. (A,B) Immunofluorescence staining of γ-H2AX and Ki67 in mouse tongue and rat skin tissues from

non-radiation, radiation, and D+Q treatment groups (n = 5). (C) Immunohistochemistry staining of p16 in mouse tongue and rat skin tissue (n = 5). (D) Quantification

of mRNA expression for p16, p21, and SASP in mouse tongue tissues and rat skin tissues. (D) Mean with SD. n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, # means

no significance; Student’s t-test. (A–C) Scale bar, 25µm.

cell senescence and amplify acute damage (9, 40, 41). Our
results show that senescence biomarkers accumulate in human
radiation ulcers after radiotherapy. Moreover, the expression of

senescence-related genes and proteins was significantly increased
after radiation and accumulated over time in radiation-induced
ulcer models.
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FIGURE 7 | DQ enhances radiosensitivity of cancer cells. (A) Irradiated or non-irradiated CAL27 and MCF-7 were incubated with DMSO or DQ for 24 h, then cells

were collected for analysis of apoptosis using flow cytometry. (B) Irradiated or non-irradiated CAL27 and MCF-7 cells were incubated with DMSO or DQ for 24 h; cell

cycle was analyzed by flow cytometry. (C) Representative colonies of irradiated or non-irradiated CAL27 and MCF-7. (A–C) n = 3; repeated three times independently

(mean with SD. n = 3, *P < 0.05, **P < 0.01, ***P < 0.001; Student’s t-test).

Cellular senescence is a cell-intrinsic program, and there is
considerable evidence that senescent cells can affect neighboring
cells and surrounding environment via their SASP (42, 43).
In this study, senescent cells induced senescence and the
SASP in adjacent cells, and JAK inhibition alleviated the
SASP in senescent cells. Therefore, we reasoned that senescent
cells may be a viable target in alleviating radiation ulcer.

Furthermore, we found that DQ mitigated radiation ulcers
via the removal of senescent cells. We previously reported
that cordycepin prevented radiation ulcers by inhibiting cell
senescence, and in this study, we showed that removal of
senescent cells by DQ effectively ameliorated radiation ulcers.
Therefore, inhibiting cell senescence or clearing senescent cells
can be a therapeutic strategy in mitigating radiation-induced
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ulcers. Plausibly, JAK inhibition can also be used to treat
irradiation ulcers by alleviating the SASP; however, JAK
inhibition needs to be continuously administered daily to
maintain SASP inhibition. For this purpose, DQ would be
administered several times (e.g., once monthly) to minimize
senescent cells (19). Importantly, JAK inhibition causes severe
side effects after discontinuation, including cardiogenic shock,
tumor lysis syndrome, and even life-threatening events, but there
are no obvious side effects after DQ treatment discontinuation
(11, 44). Hence, DQ treatment is a better choice for mitigating
radiation ulcers than JAKi, and there is great potential to treat
radiation ulcers by developing safe and effective drugs that
inhibit SASP.

A major challenge in treating radiation ulcers is repairing
the ulcerated mucosa without promoting cancer, as KGF
was shown to promote growth of human epithelial
tumor cells (45). The development of potential agents
that mitigate radiation ulcers without accelerating tumor
growth is intensively needed in oncological supportive
care. A related report concluded that Smad7 prevents
radiotherapy-induced oral mucositis but does not prompt
tumor growth (46). Here, we showed that DQ treatment
alleviated radiation-induced ulcers by selectively eliminating
senescent cells. Moreover, DQ also enhanced radiosensitivity
and reduced proliferative capacity in representative CAL27 and
MCF-7 cells.

In summary, we demonstrated that senescent cells persist
in radiation ulcers, and clearance of senescent cells by DQ
can effectively mitigate this painful side effect. Moreover, DQ
treatment can enhance cancer cell radiosensitivity. Our results
indicate that elimination of senescent cells is a potential
therapeutic method to mitigate radiation ulcers.
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Radiation therapy (RT) of thoracic cancers may cause severe radiation dermatitis (RD),
which impacts on the quality of a patient’s life. Aim of this study was to analyze the
incidence of acute RD and develop normal tissue complication probability (NTCP) models
for severe RD in thoracic cancer patients treated with Intensity-Modulated RT (IMRT)
or Passive Scattering Proton Therapy (PSPT). We analyzed 166 Non-Small-Cell Lung
Cancer (NSCLC) patients prospectively treated at a single institution with IMRT (103
patients) or PSPT (63 patients). All patients were treated to a prescribed dose of 60
to 74Gy in conventional daily fractionation with concurrent chemotherapy. RD was
scored according to CTCAE v3 scoring system. For each patient, the epidermis structure
(skin) was automatically defined by an in house developed segmentation algorithm. The
absolute dose-surface histogram (DSH) of the skin were extracted and normalized using
the Body Surface Area (BSA) index as scaling factor. Patient and treatment-related
characteristics were analyzed. The Lyman-Kutcher-Burman (LKB) NTCP model recast
for DSH and the multivariable logistic model were adopted. Models were internally
validated by Leave-One-Out method. Model performance was evaluated by the area
under the receiver operator characteristic curve, and calibration plot parameters. Fifteen
of 166 (9%) patients developed severe dermatitis (grade 3). RT technique did not
impact RD incidence. Total gross tumor volume (GTV) size was the only non dosimetric
variable significantly correlated with severe RD (p= 0.027). Multivariable logistic modeling
resulted in a single variable model including S20Gy, the relative skin surface receiving
more than 20Gy (OR = 31.4). The cut off for S20Gy was 1.1% of the BSA. LKB model
parameters were TD50 = 9.5Gy, m = 0.24, n = 0.62. Both NTCP models showed
comparably high prediction and calibration performances. Despite skin toxicity has long
been considered a potential limiting factor in the clinical use of PSPT, no significant
differences in RD incidence was found between RT modalities. Once externally validated,
the availability of NTCP models for prediction of severe RD may advance treatment
planning optimization.

Keywords: radiation dermatitis, dose-surface histogram, proton therapy, intensity modulated radiation therapy,

NSCLC, NTCP
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INTRODUCTION

The development of acute and chronic radiation-induced skin
injuries is a common side effect of radiation therapy (RT).
Acute radiation dermatitis (RD), with reactions evident one to
four weeks after the beginning of RT, may limit the duration
of treatment and the dose delivered (1, 2). The severity of
adverse dermatologic events ranges frommild erythema to moist
desquamation and ulceration, impacting on the quality of a
patient’s life (3). Acute RD occurs most frequently after RT of
breast, pelvic (e.g., anal cancer, vulvar cancer) and head and
neck malignancies, while lower incidence is reported for deeper
tumors as lung cancers (4).

Thanks to the advent of high-energy photon RT, which
provide more skin sparing treatments compared to older ones
with lower energy treatment machines, a general reduction
in RD incidence and severity has been achieved in the past
decades. Still, RD remains one of the significant adverse
effect of RT.

The introduction of most modern treatment modalities, such

as intensity modulated RT (IMRT) or proton beam therapy, has

nowadays changed the dose distribution patterns in the normal
tissues surrounding the tumors (5, 6). Accordingly, advanced
RT techniques have generally reduced the burden of radiation
related risks, included skin toxicity (7, 8). The substantial
sparing of organs-at-risk from proton beams compared to IMRT
is expected to theoretically further reduce radiation-induced
morbidity (9). However, the risk of a potential increase of skin
toxicity has long been considered a peculiar drawback in the
clinical use of protons. The higher beam entry dose of the
spread-out Bragg peak represents a disadvantage for the skin;
thus causing concern over a possible increase in skin adverse
effects (10, 11).

The skin response to radiation has been studied since
the discovery of X-rays (2, 12). Multiple patient-specific and
dosimetric features have been identified as risk factors for acute
skin toxicity after RT for diverse tumor locations, in particular
breast (7, 13, 14), head and neck (15) or brain tumors (16).
Notwithstanding this, normal tissue complication probability
(NTCP) modeling of skin toxicity is still not fully explored.
In addition, the available NTCP models are mostly designed
for dose-volume histogram (DVH) from a target volume (e.g.,
breast) (17–20) or are based on DVH from a pseudo-skin
structure defined as a layer of 2-5mm inward from the body
contour (15, 21, 22). A different approach could directly consider
the surface phenomena connected to the actual organ at risk, i.e.,
the skin (23).

In the present study, we analyzed the incidence of acute
RD in thoracic cancer patients treated with Intensity-
Modulated RT (IMRT) or Passive Scattering Proton Therapy
(PSPT) on a completed prospective randomized trial (24),
and we developed NTCP models for severe acute RD.
The model procedure was based on the introduction
of a fully automated method for skin definition as a
critical organ. Both the Lyman-Kutcher-Burman (LKB)
and multivariable logistic regression modeling strategies
were adopted.

METHODS AND MATERIAL

The study involved 225 patients with locally advanced
Non-Small-Cell Lung Cancer (NSCLC) enrolled in the trial
NCT00915005. One hundred sixty-six patients were eligible for
the present analysis. The eligibility criteria included acute RD
follow-up data and availability of dose maps. All patients were
treated according to an IRB approved protocol (NCT00915005)
with image-guided IMRT (103 patients) or PSPT (63 patients) to
a prescribed dose of 66 or 74Gy (RBE) in 33 or 37 conventional
daily fractions delivered with concurrent chemotherapy (CHT).
The typical three-field arrangement was used for all PSPT plans
(24). Typically, a posterior and lateral beams plus an oblique
beam that avoids lung parenchyma in its exit dose (25). In the
IMRT plans, six to nine equidistant, coplanar, axial 6-MV beams
were usually used (26).

Details of the protocol, patient and treatment characteristics
are reported elsewhere (27, 28). All dosemaps were obtained with
a dose grid size of 2.0× 2.0× 2.5mm3.

For each patient, acute RD was assessed as the maximum
score recorded during the treatment and within 90 days after RT.
The RD was graded according to the National Cancer Institute’s
Common Toxicity Criteria for Adverse Events (CTCAE) version
3 into the following groups:

Grade 1: Faint erythema or dry desquamation
Grade 2: Moderate to brisk erythema; patchy moist

desquamation, mostly confined to skin folds and
creases; moderate edema

Grade 3: Moist desquamation in areas other than skin folds and
creases; bleeding induced by minor trauma or abrasion

Grade 4: Life-threatening consequences; skin necrosis or
ulceration of full thickness dermis; spontaneous
bleeding from involved site; skin graft indicated.

Dosimetric Analysis
For each patient, individual DICOM RT plans (computed
tomography (CT) scans, doses, and contoured organ structures)
were converted into Matlab-readable format (MathWorks,
Natick,MA,USA) using the CERR (Computational Environment
for Radiotherapy Research) software (29).

The epidermis (skin) was automatically defined by an in-
house segmentation algorithm developed on purpose. In detail,
the body contour was first corrected applying a Hounsfield
unit thresholding over a moving window to exclude possible
contribution from treatment bed. The resulting structure � was
then eroded by 3mm [i.e., approximately themean skin thickness
(30)]; the skin was then obtained subtracting from � its erosion
(Figure 1) according to the following equation

skinr = [�\ (� ⊖ B [r])]

skin = skin3 mm

where B[r] is a spherical structuring element of radius r, \
represents the set difference, and ⊖ stands for morphological
erosion (31).

The absolute dose-surface histograms (DSHs) of the skin thus
extracted were computed by an in-house developed library for
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FIGURE 1 | Pictorial representation of the skin segmentation and
dose-surface histogram extraction.

Matlab (23) according to

DSH (x) = lim
r→0

DVH(X)skinr
r

The relative DSH were obtained using the Body Surface Area
(BSA) index as scaling factor. The BSA index was calculated
according to

BSA = 7.184 . cm2
(
W/kg

)0.425
. (H/cm)

0.725

WhereW andH are patient’s weight and height respectively (32).
The following DSH metrics were extracted: the relative skin

surface receiving more than X Gy (Sx) in step of 1Gy, the
minimum dose given to the hottest x% skin surface in step of
5% (Dx), the skin near maximum dose (D2%) and the mean
dose (Dmean).

Statistical Analysis
Acute RD was analyzed according to its severity, i.e., grade 3 (G3)
RD vs. G0-G2 RD. All the extracted skin dose parameters along
with patient-specific and treatment-related factors were analyzed
by univariate statistical methods for the above defined grouping.
Categorical variables were tested by Pearson’s χ

2-test or Fisher’s
exact test when appropriate; continuous variables were tested by
Mann-Whitney U-test.

Average relative DSHs stratified by treatment modality and
toxicity endpoints were compared at each dose point by two-
tailed t-test. A significance α-level of 0.05 corrected according
to the Holm–Šidák method for multiple comparison was
applied (33).

Normal Tissue Complication Probability
Modeling
For the defined endpoint, two different NTCP modeling
approaches were applied: the LKB model, built on generalized
equivalent uniform dose (gEUD) (34, 35) and recast for DSHs
(23), and the multivariable logistic model. The LKB model
parameters (TD50, m and n) and their 95% confidence intervals
(CIs) were fitted as described in (36). TD50 is the value of the
uniform dose given to the entire organ surface corresponding to
the 50% probability to induce toxicity;m is inversely proportional
to the slope of the dose-response curve; and n accounts, in
this specific case, for the surface effect (n close to 0 meaning
weak surface effect, n close to 1 strong surface effect). Briefly,
the Maximum Likelihood method was used to find the best-
fit values of the LKB parameters by maximizing the logarithm
of the likelihood (LLH). The LLH function was numerically
maximized by the Nelder-Mead Simplex Method using an
in-house developed library for Matlab. Ninety-five percent
confidence intervals for parameters estimates were obtained
using the profile likelihood method.

In order to evaluate the possible impact of dosimetric
and non-dosimetric factors, the multivariable stepwise logistic
regression method for NTCP modeling was also applied (37, 38).
In the multivariable analysis were included only the variables
highly correlated with RD (p < 0.1 at the univariable analysis)
that were not collinear (correlation |Rs|<0.75) with variables
more correlated with RD.

The Leave-One-Out (LOO) method was applied to the whole
statistical pipelines to cross validate the models.

Model performance was evaluated by the area under the
receiver operating characteristic (ROC) curve (AUC) and by
balanced accuracy (39). Cut-off values on the ROC curve were
determined by Youden’s J statistic (40). Calibration plots were
also generated for graphical assessment of the agreement between
observed outcome and LOO prediction.

RESULTS

Of the 166 patients, 118 (71%) developed acute RD of any grade;
fifteen of 166 (9%) patients developed G3 RD. In particular, 71
(69%) of IMRT patients developed a RD of any grade compared
to 47 (75%) of PSPT patients; G3 RD occurred in 8 IMRT (8%)
and 7 (11%) PSPT patients, respectively. The distribution of RD
grades for each treatment modality is reported in Figure 2. There
were no cases of grade 4 toxicity.

No significant differences were found in the distribution of
clinical and disease factors between patients classified according
to the treatment modality (Table 1). In addition, the univariate
analysis did not show significant correlations between treatment
modality and the incidence of RD categorized for any grade
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FIGURE 2 | Distribution of radiation dermatitis (RD) grades for patients
categorized by treatment modality [Intensity Modulated Radiation Therapy
(IMRT) vs. Passive Scattering Proton Therapy (PSPT)].

threshold (grade ≥ 1: p = 0.48; grade ≥ 2: p = 0.19;
grade ≥ 3: p= 0.58).

The analysis of average skin DSH in patients stratified by
treatment modality (Figures 3A,C) showed that PSPT, compared
to IMRT, significantly reduced the skin surface receiving low
doses (<12Gy). An opposite behavior can be observed in the
range from 25 to 55Gy. Average skin DSHs of patients with
and without G3-RD showed instead a significant separation
between the two curves starting from the dose value of
5Gy (Figures 3B,D).

At univariate analysis for patients stratified according to
G3 RD (Table 2), all the Sx metrics for doses greater than
5Gy were significantly correlated with G3-RD; among the
clinical variables, total gross tumor volume (GTV) size was the
only non dosimetric factor significantly correlated with severe
RD (p= 0.027).

From NTCP model training, LKB model resulted in the
following parameters: TD50 = 9.5Gy (95% CI: [5.9, 18.4] Gy),
m = 0.24 (95% CI: [0.17, 0.35]), n = 0.62 (95% CI: [0.36, 0.92]).
Model performance metrics for both training and LOO cross
validation were reported in Table 3.

Regarding the logistic modeling, after the variable selection
procedure, multivariable modeling resulted in a single variable
model including S20Gy (OR = 31.4, 95% CI: [7.5, 131.7],
constant= −6.34± 1.03). The ROC analysis identified that the
optimal cut-off for S20Gy was 1.1% of the BSA.

Similarly, to the LKB model, the logistic model achieved
high prediction performances as shown by the AUC values
reported in Table 3. LOO cross validation confirmed
good prediction and calibration performances (Table 3 and
Figure 4). Notably, the balanced accuracy demonstrated a good
generalization score and a robust prediction capability despite
data imbalance.

TABLE 1 | Comparison of clinical and disease characteristics between patients
classified according to treatment modality.

IMRT

(103 patients)

PSPT

(63 patients)

P-value*

Continuous variables Median (range) Median (range)

Age at RT (yr.) 65 (30–85) 67 (39–80) 0.12

GTV Volume (cm3 ) 80.5 (5.8–686.6) 71.0 (1.9–651.8) 0.92

Weight (Kg) 78.2 (48.0–131.4) 81.5 (47.2–122.5) 0.23

Height (cm) 176 (163–180) 176 (164–178) 0.82

BSA (m2) 1.95 (1.50–2.43) 1.96 (1.48–5.43) 0.43

Categorical variables N (%) N (%)

Gender 0.87

Female 46 (45) 27 (43)

Male 57 (55) 36 (57)

Tumor localization 0.49

Left lung 32 (33) 24 (40)

Right lung 65 (67) 35 (60)

Lower lobe 23 (24) 20 (34) 0.34

Middle lobe 5 (5) 3 (5)

Upper lobe 69 (71) 35 (58)

Prescribed dose 0.19

66Gy 44 (43) 20 (32)

74Gy 59 (57) 43 (68)

Smoking 0.37

No 10 (10) 3 (5)

Yes 93 (90) 60 (95)

Radiation Dermatitis 0.6

Grade 0 32 (31) 16 (25)

Grade 1 37 (36) 27 (43)

Grade 2 26 (25) 13 (21)

Grade 3 8 (8) 7 (11)

RT, Radiation Therapy; GTV, Gross Tumor Volume; yr., year; BSA, Body Surface Area;

IMRT, Intensity Modulated Radiation therapy; PSPT, Passive Scattering Proton Therapy.

*Mann–Whitney U test for continuous variables and χ
2 test for categorical variables.

DISCUSSION

The treatment of choice for many thoracic cancers, such as
NSCLC, consists in RT given with either concurrent or sequential
CHT (10, 41). Radiation induced morbidity to main organs at
risk (heart, lungs, esophagus etc.) represents a major concern
for radiation treatment. Advanced technologies may potentially
reduce the risk of damaging normal tissue, and in particular the
favorable physical characteristics of energy deposition in Hadron
therapy make it a promising strategy for normal tissue dose
sparing and for reducing the side effects of RT.

The skin, however, raises unique issues that deserve a separate
discussion. Indeed, the initial dose build-up typical of photons is
advantageous for skin sparing, compared to the higher entrance
dose deriving from the pile-up of Bragg curves in the production
of spread-out Bragg peaks. This effect may lead to an increase in
incidence or severity of skin toxicity with a potential detrimental
impact on both the RT course and the patient’s quality of life. In
addition, different amounts of dose may be delivered to the skin
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FIGURE 3 | (A) Average skin Dose Surface Histograms (DSHs) ± SEM (Standard Error of the Mean) normalized to Body Surface Area (BSA) in patients treated with
Intensity Modulated Radiation Therapy (IMRT) and Passive Scattering Proton Therapy (PSPT); (B) Average skin DSHs ± SEM normalized to BSA in patients who
developed severe (G3) radiation dermatitis (G3-RD) and who did not. SEM are plotted as dashed lines. (C) Semi-logarithmic plot for the two-tailed t-test between DSH
values for PSPT and IMRT at each dose point; (D) Semi-logarithmic plot for the two-sample t-test between DSH values for G3-RD and unaffected patients. In (C,D)

blue line for two-tailed t-test p-value, and red line for α-level of 0.05 corrected for multiple comparison according to Holm–Šidák method.

depending on the particular technology adopted to give proton
therapy, which can rely on either passive scattering or active
scanning techniques (42).

The domain of radiation-related skin side effects following
proton beam therapy were recently investigated for brain tumor
patients (16, 43). Erythema of grade 1-2 was found to be
significantly correlated to skin (defined at 3mm depth) dose
volume parameters in the high dose region (V35Gy) from both
passive or active scanning proton beams. In a different study
on severe RD following PSPT for breast cancer, the authors
identified as prognostic factors the V52.5Gy or the D10cc of the
skin structure defined as a layer of 5mm inward from the body
contour (21).

Few studies have performed a direct comparison on RD
incidence following proton versus photon treatments. Acute side

effects were compared in a retrospective study on a small cohort
of patients after proton beam therapy (18 patients) and IMRT (23
patients) for head and neck cancer (44). Interestingly, in their
study, the authors found a greater rate of G2 RD in the proton
therapy group, but no difference in the rate of G3 RD between
proton and IMRT. Recently, De Cesaris et al. (11) reported
on RD after treatment of 86 breast cancer patients undergoing
adjuvant proton or photon RT. They observed an increase in
moderate (G2) toxicity associated to proton therapy; again, no
significant difference between treatmentmodalities was found for
severe RD.

In the present study, we analyzed the data from a randomized
trial on PSPT vs. IMRT treatment for inoperable NSCLC patients,
and we addressed different aspects related to radiation-induced
skin reactions. This study has the unique characteristic of directly
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TABLE 2 | Patient, treatment characteristics, dosimetric parameters and
univariate analysis against acute grade 3 radiation dermatitis (G3 RD) status.

No G3 RD G3 RD P-value*

Continuous variables Median (range) Median (range)

Age at RT (yr) 66 (33–85) 62 (37-74) 0.13

GTV (cm3 ) 71.9 (1.9–686.6) 139.3 (12.2–599.2) 0.03

Weight (Kg) 80 (47–129) 84 (59–131) 0.78

Height (cm) 176 (162–180) 176 (166–180) 0.38

BSA (m2) 1.94 (1.48–2.41) 2.02 (1.63–2.43) 0.36

S5Gy (%) 2.8 (0.7–6.0) 3.9 (1.7–6.6) 0.02

S10Gy (%) 1.9 (0.3–3.9) 2.5 (1.5–4.4) <0.001

S15Gy (%) 1.3 (0.1–2.9) 2.3 (0.1–3.1) <0.001

S20Gy (%) 0.8 (0.0–2.2) 1.5 (0.7–2.4) <0.001

S25Gy (%) 0.5 (0.0–2.0) 1.0 (0.3–1.9) <0.001

S30Gy (%) 0.3 (0.0–1.1) 0.8 (0.3–1.8) 0.001

S35Gy (%) 0.1 (0.0–0.1) 0.5 (0.0–1.7) <0.001

S40Gy (%) 0.02 (0.00–0.10) 0.3 (0.0–1.6) <0.001

S45Gy (%) 0.00 (0.00–0.01) 0.01 (0.00–1.50) <0.001

Categorical variables N (%) N (%)

Gender 0.43

Female 68 (45) 5 (33)

Male 83 (55) 10 (67)

Tumor localization 0.40

Left lung 48 (34) 7 (47)

Right lung 92 (66) 8 (53)

Lower lobe 39 (28) 4 (27) 0.32

Middle lobe 6 (4) 2 (13)

Upper lobe 95 (68) 9 (60)

RT modality 0.58

IMRT 95 (63) 8 (53)

PSPT 56 (37) 7 (47)

Smoking 1.00

No 12 (8) 1 (7)

Yes 139 (92) 14 (93)

RT, Radiation Therapy; GTV, Gross Tumor Volume; yr., year; BSA, Body Surface Area;

IMRT, Intensity Modulated Radiation therapy; PSPT, Passive Scattering Proton Therapy;

SX (%), percentage skin surface receiving more than X Gy. *Mann–Whitney U-test for

continuous variables and χ2 test for categorical variables.

comparing acute skin toxicity in a quite large cohort of patients
treated at the same institution with proton or photon RT.

First, we analyzed the differences of acute skin toxicity
between patients treated with IMRT and PSPT. Both the
depth of the lung tumor location within the body and the
passive proton technique—used in the trial patients—were
expected to increase the skin toxicity of the treatment. Despite
this, a key finding of our investigation was that the RT
technique did not impact neither incidence nor severity of
acute RD (Figure 2).

Then, we evaluated the dose to the skin taking advantage
of the DSHs expressly extracted for the epidermis. The DSHs
were obtained by a fully automated algorithm that guarantees
a high level of standardization. To account for the different
patients’ sizes, the absolute DSHs were normalized using the

TABLE 3 | Normal tissue complication probability (NTCP) model performances for
acute grade 3 radiation dermatitis (G3-RD); 95% confidence interval are in
brackets.

G3-RD NTCP Model

Performance LKB MV Logistic

AUC 0.82 [0.66, 0.90] 0.85 [0.72, 0.94]

Accuracy 0.67 0.93

Balanced accuracy 0.76 0.78

CV-AUC 0.78 [0.62, 0.88] 0.79 [0.60, 0.90]

CV-Accuracy 0.69 0.91

CV-Balanced accuracy 0.74 0.77

CV-calibration slope (±SE) 0.76 ± 0.19 1.03 ± 0.23

CV-calibration intercept (±SE) 0.008 ± 0.028 −0.003 ± 0.039

LKB, Lyman-Kutcher-Burman; M, Multivariable; SE, Standard Error; AUC, Area under the

ROC curve; CV, cross-validation.

BSA (32) as scaling factor. The DSH differences between RT
modalities showed that PSPT succeeded in lowering the skin
surface receiving low dose (namely, <12Gy), while the expected
increase in entrance dose was evident for intermediate to high
dose regime (i.e., higher than 25Gy). Noteworthy, the switch in
dose sparing effectiveness between PSPT and IMRT happens at
a dose level in the range from 20 to 30Gy. This range of doses
is known to be strongly related to the probability of radiation-
induced dermatological effects (12, 13, 16), as also confirmed
in the current study by the comparison of average skin DSHs
for patients grouped according to the development of severe
RD (Figure 3B).

Since the treatment modality did not correlate with the
considered outcome, the NTCP models for severe RD were
derived from the whole cohort of patients. We focused on
G3 toxicity due to its high clinical relevance. Two different
approaches were applied: the traditional purely dosimetric LKB
model and themultivariable logistic regressionmodeling scheme.
Both models indeed are important and can find their application
in clinical practice. The multivariate logistic model is more
flexible when non-dosimetric variables needs to be considered
and in order to build predictive tools for improving personalized
patient follow-up care. On the other hand, the LKB scheme is
more robust for treatment planning optimization (gEUD is a
superior evaluator than multiple DSH cut-off points), since it
controls the dose distribution over all dose range.

The LKB approach highlighted a relevant surface effect (n =
0.62) of the dose on RD development. While the LKB n and
m parameter estimates were comparable with those obtained
in previous published models on acute skin toxicity (1, 13), a
TD50 of 10Gy was a relatively low dose when compared to those
previous studies. However, a direct comparison was hampered
by the different modeling strategy (LKB recast on DSH) or the
different normalization procedure (the BSA as scaling factor)
adopted in the present analysis.

On the other hand, the multivariable logistic regression model
highlighted that the most and only significantly independent
toxicity predictor was the skin surface receiving more than 20Gy.
The robustness of those radiobiological hints is supported by
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FIGURE 4 | Cross-validated ROC curves of (A) Lyman-Kutcher-Burman (LKB) model and (B) multivariable logistic regression model (FPR: False Positive Rate, TPR:
True Positive Rate); cross-validated calibration plot of (C) LKB model and (D) logistic model; risk curves with the observed fraction of complications from the data
grouped in bins for (E) LKB model and (F) logistic model. In (C–F) the error bars for the reported values represent the 68% confidence intervals.

Frontiers in Oncology | www.frontiersin.org 7 March 2020 | Volume 10 | Article 34490

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Palma et al. NTCP for Radiation-Induced Dermatitis

the good performances of both predictive models, which showed
cross-validated ROC-AUCs close to 0.8.

The current interest in the investigation on the patterns of
dose-RD response is enhanced by the increasing attention to
the quality of life of patients undergoing RT, in turn triggered
by the substantially improved therapeutic ratio of the modern
treatment techniques. Precise knowledge of the radiobiology of
acute skin radiation effects constitutes the essential basis for the
development of biology-based treatment strategies. In addition,
severe acute skin reactions may be prodromal of consequential
skin late effects (45), thus making their prediction and, possibly,
prevention even more important.

The newest proton facilities have moved toward pencil beam
scanning technology. A phantom dosimetric study investigating
skin dose differences between spot scanning and passively
scattered proton therapy beams indicated that, on average,
a lower skin dose of about 12% was delivered when active
spot scanning proton beams were used (42). Thanks to the
higher flexibility with an enhanced modulation capability, the
combined use of active scanning beams and the inclusion of
skin specific model parameters in the planning strategies may
result in further skin dose sparing to minimize the occurrence
of cutaneous toxicity. In this respect, we focused on two classes
of NTCP models that could be easily ported on the most
common treatment planning systems used in the clinical practice.
Indeed, the DSH formalism can be implemented following
the procedure suggested in (23), thus directly allowing for
the application of the dose constraints (e.g., S20Gy) derived
by the logistic approach. On the other side, the estimation
of the n parameter of the LKB strategy can be exploited
for treatment plan optimization by constraining the gEUD,
which is a widespread empirical model available in several
commercial systems.

In order to improve our understanding of the mechanisms
underlying radiation-induced skin damage, future direction of
the research is the inclusion of spatial information of dose
distributions within the analysis of skin toxicity, as already
performed for different toxicity endpoints after RT (46–50). The
extraction of organ Dose-Surface Maps (51, 52) may allow for an
enhanced prediction of RT toxicity based on the knowledge of the
most radiosensitive skin areas.

Additional issues to be considered when modeling RD
should be the impact of CHT treatments and of different
RT dose fractionation schemes. Radiation-related skin side
effects have been associated to different patient-related factors
such as the use of radiosensitizing CHT and/or biologics
(1). In particular, both incidence and severity of RD may be
increased by concomitant CHT, although conflicting results are
reported in the available literature. For example, a randomized
comparison of patients treated for anal cancer by RT alone or
combined with CHT found overall RD in 76% for radiation
alone versus 93% for combined modality therapy (53). In
contrast, a three-arm randomized trial in advanced larynx
cancer found similar Grade 3–4 acute skin toxicities for patients
receiving RT alone (9%), concurrent RT-CHT (10%), and
sequential CHT-RT (7%) (54). Rates of acute and late skin

toxicity were not significantly different also in a retrospective
analysis of breast cancer patients undergoing lumpectomy
with or without adjuvant CHT followed by hypofractionated
RT (55). Recently, a multivariable NTCP analysis did not
highlighted any effect of CHT on severe RD in breast cancer
patients (13).

As regards to dose fractionation, greater dose per fraction are
generally of concern to normal tissue toxicities. However, data on
adverse skin reactions on patients who underwent Stereotactic
Body Radiation Therapy (SBRT) is still limited (1). Suggested
skin SBRT dose constraints (for toxicity grade≥ 3) were D10cc <

23Gy, for one single fraction of 34Gy, and D10cc <30-33Gy for
a total dose of 40-60Gy in 4-5 fractions (56). Interestingly, these
dose constraints are in the range of doses strongly related to the
probability of RD (Figure 3B).

In the cohort analyzed in the current study, all patients
received concurrent CHT and standard fractionation regimens.
Future studies on large cohorts of patients undergoing
RT with and without the use of CHT treatments and
with different fractionation size are warranted in order to
shed light on the possible CHT enhancement factor and
fractionation effects.

A potential limitation of the study is related to the dose
calculation uncertainties in the first few millimeters from
body surface, which may be relatively large. However, in
order to quantify their impact on the modeling results, Mori
et al. (15) performed a sensitivity analysis showing that
dose uncertainty has negligible impact on logistic regressions
coefficients. Furthermore, the percentage differences between the
measured dose to the skin and the estimate of the treatment
planning system with passively scattered proton beams was
evaluated in (42). The average measured doses resulted to be only
2% lower than the average calculated doses.

In conclusion, despite skin toxicity has long been considered
a potential limiting factor in the clinical use of proton
beam therapy, no significant differences in RD incidence
was found between IMRT and PSPT in the analyzed trial.
The developed NTCP models for the prediction of severe
RD, once externally validated, may advance treatment
planning optimization for the implementation of skin
sparing techniques.
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Purpose: Late gastrointestinal (GI) toxicity after radiotherapy for prostate cancer may

have significant impact on the cancer survivor’s quality of life. To date, little is known

about local dose-effects after modern radiotherapy including hypofractionation. In the

current study we related the local spatial distribution of radiation dose in the rectum to

late patient-reported gastrointestinal (GI) toxicities for conventionally fractionated (CF) and

hypofractionated (HF) modern radiotherapy in the randomized HYPRO trial.

Material and Methods: Patients treated to 78Gy in 2Gy fractions (n= 298) or 64.6Gy

in 3.4Gy fractions (n = 295) with available late toxicity questionnaires (n ≥ 2 within 1–5

years post-treatment) and available 3D planning data were eligible for this study. The

majority received intensity modulated radiotherapy (IMRT). We calculated two types of

dose surface maps: (1) the total delineated rectum with its central axis scaled to unity,

and (2) the delineated rectum with a length of 7 cm along its central axis aligned on

the prostate’s half-height point (prostate-half). For each patient-reported GI symptom,

dose difference maps were constructed by subtracting average co-registered EQD2

(equivalent dose in 2Gy) dose maps of patients with and without the symptom of interest,

separately for HF and CF. P-values were derived from permutation tests. We evaluated

patient-reported moderate to severe GI symptoms.

Results: Observed incidences of rectal bleeding and increased stool frequency were

significantly higher in the HF group. For rectal bleeding (p = 0.016), mucus discharge

(p = 0.015), and fecal incontinence (p = 0.001), significant local dose-effects were

observed in HF patients but not in CF patients. For rectal pain, similar local dose-effects

(p< 0.05) were observed in both groups. No significant local dose-effects were observed

for increased stool frequency. Total rectum mapping vs. prostate-half mapping showed

similar results.

Conclusion: We demonstrated significant local dose-effect relationships for

patient-reported late GI toxicity in patients treated with modern RT. HF patients were
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at higher risk for increased stool frequency and rectal bleeding, and showed the most

pronounced local dose-effects in intermediate-high dose regions. These findings suggest

that improvement of current treatment optimization protocols could lead to clinical

benefit, in particular for HF treatment.

Keywords: prostate cancer, hypofractionation, gastrointestinal toxicity, dose-surface maps, radiotherapy, NTCP

INTRODUCTION

Irradiation of tumors in the pelvic area through external beam
radiotherapy comes inevitably with dose delivery to nearby
organs at risk, such as the rectum. The potential permanent
impact of late gastrointestinal (GI) toxicity after radiotherapy
may have significant impact on the cancer survivor’s quality of life
(1). Preventing chronic late GI toxicity is therefore critical. For
this purpose understanding how we should distribute radiation
dose to surrounding normal tissues while keeping toxicity risks
as low as possible is critical.

The QUANTEC project (quantitative analysis of normal tissue
effects in the clinic) previously summarized the available clinical
data and models on acute and late radiation-induced toxicities
with the goal to improve patient care by providing useful
tools (2). These models were mainly derived from traditionally
fractionated 3D conformal radiotherapy (3DCRT). Shortcomings
and open issues of the available models have broadly been
recognized, including the uncertainty of fractionation effects,
a lack of reliable models for modern radiotherapy with
IMRT dose distributions and image-guidance, and a lack
of knowledge concerning spatial effects (3). This causes a
number of deficits in current strategies of treatment planning
optimization in the current era of IMRT, image-guidance, and
hypofractionated treatment.

With respect to the inhomogeneous dose distributions
in the rectum, achieved with either radiation technique or
fractionation schedule, we can theoretically translate physical
dose distributions into (radio)biological dose parameters using
mathematical models derived from radiobiology (4, 5). Altered
fractionation schedules in recent hypofractionation trials in
prostate cancer are based on such models (6–9). However, to
achieve reliable biological NTCP models for late GI toxicity after
modern RT, we first have to gain insight into local dose-effects
and (hypo)fractionation effects in real patient populations rather
than depending solely on theoretical models.

Historically, dose-response for normal tissues were evaluated
taking dose-volume distributions to a whole single organ into
consideration. It is nowadays recognized that function and
radiosensitivity may vary within an organ, and that dose-shapes
might be relevant. Therefore, local spatial dose evaluations
beyond the boundaries of delineations and dose-volume may
enhance our understanding of mechanisms causing radiation-
induced damage (10). In particular voxel-based dose mapping
procedures have been introduced to take into account the
spatial dose distribution by co-registering dose distributions to
a region of interest, often using a template patient. For hollow
organs such as the rectum, a spatial 2D dose distribution of

the rectal wall (i.e., virtual unfolding of the rectum to a 2D
structure) is considered reasonably sufficient for this purpose
(11–18). Evaluation of local rectal and anal dose distributions
in relation to acute and late gastrointestinal toxicity endpoints
by means of dose mapping have been previously performed by
several research groups. This concerned mainly patients treated
with conventional fractionation schedules, identifying local dose
effects for various endpoints including rectal bleeding, fecal
leakage, and increased stool frequency (11–18).

In the current study we explored local rectal dose
distributions and their relation to GI toxicity endpoints,
for both hypofractionated (HF) and conventionally fractionated
(CF) treatment, using toxicity data and planning data from
the HYPRO trial. In this trial patients were randomized
between conventional and hypofractionated treatment,
delivered with modern radiotherapy techniques including
IMRT, image-guidance, and online prostate position verification.

MATERIALS AND METHODS

Patient Selection
The dataset of a recent Dutch randomized clinical trial (HYPRO)
was analyzed in which patients were randomized to 78Gy in
conventional 2Gy fractions (CF) or 64.4Gy in hypofractionated
3.4Gy fractions (HF) (19). Selected patients were eligible for the
current study in case both late toxicity data (n≥ 2 questionnaires
within the period 1–5 year post-treatment (N = 633,Table 2) and
3D planning data were available (which were not available for
40 patients), leaving 593 patients for the current study. Because
planning of patient visits may vary from the study schedule, we
accepted questionnaires up to 5.5 year post-treatment.

Treatment
Based on an estimated α/β for prostate cancer of 1.5Gy, the
EQD2 was 90.4Gy for HF vs. 78.0Gy for CF. For normal rectal
tissue with an estimated α/β of 3Gy, the EQD2 was 82.7Gy
for HF vs. 78.0 for CF. The clinical target volume was the
prostate with or without the seminal vesicles (SV): based on the
estimated risk of SV involvement according Partin tables (20),
a SV dose of 0Gy, 72.2Gy, or 78Gy was planned (19). The
outer contours of the rectum were delineated on the planning CT
scan from the anal verge to the bottom of the sacro-iliac joints.
The HYPRO protocol prescribed that the rectal volume receiving
83% of the prescribed dose should be below 50% for the total
rectal volume or below 60% for the rectal wall. Further treatment
optimization was performed in accordance with local protocols
at each participating center. The applied treatment technique for
99% of the patients was image-guided IMRT with daily online
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positioning of the prostate. For this purpose, cone beam CT was
used in 23% and portal imaging devices was used in 77% of the
cases. A small proportion was treated with 3DCRT (1%). One
center applied a rectal balloon, which pushes the posterior rectal
wall out of the intermediate dose region (21). Further details of
treatment planning have been previously reported (6, 19). CF
patients received 5 fractions per week, andHF patients 3 fractions
per week with 1 day intervals (Monday, Wednesday, Friday).

Toxicity Endpoints
The patient-reported GI symptoms were extracted from a
patient-reported symptom list (questionnaire) distributed in the
HYPRO trial at the late time points of 6 months, and yearly
between 1 and 5 year (22). Evaluated GI symptoms were: rectal
bleeding, fecal incontinence, pain/cramps with stools, mucus
discharge (all had to be reported as moderate or severe to be
scored), and increased stool frequency≥ 4 per day. We identified
from all available questionnaires the maximum score for each
toxicity endpoint of interest.

Dose-Surface Maps
For the rectal wall the dose surface mapping was based on
a central axis which was first computed as the maximum of
a Euclidean distance transform. The average length of the
delineated rectum along the central axis was 14.9 cm for both
HF and CF. The intersections of equidistant slices perpendicular
to this axis with the delineated rectum surfaces provided the
corresponding locations between patients. We calculated two
types of dose surface maps: (1) “total rectum mapping”: the
delineated rectum with its central axis scaled to unity, and
(2) “prostate half mapping”: the delineated rectum next to the
prostate with a length of 7 cm along the central axis (plus 4 cm in
cranial direction and minus 3 cm in caudal direction, measured
from the half-height position of the prostate). These cutoffs were
chosen to cover the dose range in the rectum of about 50–100%
of the prescribed dose.

To correct a patient averaged dose-surface map for
fractionation effects using the linear-quadratic model (i.e.,
equivalent dose in 2 Gy: EQD2), we applied a chosen α/β ratio
of 3Gy to the dose distribution of each patient. The resolution
of the dose maps was chosen to effectively slightly exceed a
2mm dose grid resolution. In the circumferential direction 90
pixels were taken, i.e., every 4 degrees. In the axis direction of
rectum maps 100 pixels were taken, which would effectively
cover a 15 cm long rectum at 1.5mm resolution. As a final step,
resulting dose-surface maps of individual patients (physical
and biological) could be averaged and subtracted for each
identified toxicity endpoint (yes vs. no). Further details have
been previously reported (14).

Statistical Analysis
Distributions of baseline characteristics within the HF and CF
group were calculated and tested for differences applying a
Chisquare test for the ordinal and binary variables, and a T-
test for age. Associations between clinical covariates and toxicity
endpoints were tested univariate using binary logistic regression.
For each evaluated GI symptom, dose difference maps were

constructed by subtracting average EQD2 dose maps of patients
with and without the toxicity of interest, separately for HF and
CF. For the calculation of a p-value for each dose difference
map, we used a permutation approach, randomly re-shuffling
the patients among the subgroups (23). For the determination
of significant differences within a dose-difference map, we
calculated and evaluated the false discovery rates “q” as a realistic
estimate of the local p-values, which is a practical and powerful
approach to tackle the multiple testing issue (24, 25).

RESULTS

Baseline Characteristics
The baseline characteristics of the selected study patients are
summarized in Table 1 which shows that distribution of the
characteristics are similar for HF and CF except for a history
of TURp which was more common in the CF group (11
vs. 7%, p= 0.07, Table 1). A history of TURp was however
not associated with any of the evaluated moderate to severe
GI symptoms.

Reported GI Toxicities
In Table 2, the observed incidences of the late GI toxicities
of interest are summarized per treatment group, both for all
patients in the HYPRO trial who filled out≥2 late questionnaires
(N = 633) and for the selected group with available CT scans
and dose distributions (N = 593). These are the result of
accumulation over all available questionnaires between Year 1
and Year 5, taking maximum scores. The table shows that the
selected population with available dose information, was a non-
biased and representative selection of the patient group that filled
out late questionnaires.

TABLE 1 | Patient and treatment characteristics (N = 593).

Variable CF (n = 298) HF (n = 295) p-value#

Age (mean, sd) in years 70.1 (6.0) 69.5 (6.6) 0.2

TURp 11% 7% 0.07

Abdominal surgery 26% 25% 0.7

Diabetes mellitus 13% 14% 0.5

Adjuvant hormonal therapy 65% 63% 0.6

Fiducial markers 95% 95% 0.9

IMRT 98% 99% 0.3

T category

T1-2 46% 48% 0.7

T3-4 54% 52%

PTV margins prostate

5-7mm 89% 89% 0.9

8-10mm 11% 11%

Dose seminal vesicles

0Gy 23% 20% 0.4

72-78Gy 77% 80%

#p-values calculated with Chisquare test, except for age (t-test).
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About 35% of CF and HF patients experienced one or more
moderate to severe late symptoms after modern RT, accumulated
over the evaluated late period (Table 2). Compared to CF,
significantly higher incidences after HF treatment were observed
for the late endpoints of rectal bleeding and increased stool
frequency. More HF patients experienced multiple moderate to
severe GI symptoms.

Among the late GI endpoints of study, all endpoints showed
significant correlations with the other ones (i.e., if a patient
reported 1 symptom it was likely that he also reports one or more
of the other symptoms). Highest correlations were observed
between fecal incontinence-increased stool frequency, and rectal
bleeding-mucus discharge (p < 0.001).

Associations Between Clinical Covariates
and Toxicity Endpoints
The results of assessing the associations between baseline
covariates and the toxicity endpoints of interest are summarized
in Table 3. Rectal incontinence was significantly associated with
diabetes and age. Rectal bleeding and mucus discharge were
significantly associated with T stage.

Dose-Surface Maps
Figure 1 shows the average EQD2 dose-surface maps and local
standard deviations for both types of mapping and for both
groups (CF and HF). Comparing the EQD2 dose distributions of
CF and HF, we observed that the high-dose area is darker red for
HF which can be explained by the somewhat higher prescription
dose in EQD2 for HF (82.7Gy vs. 78Gy). Furthermore, the rectal
surface receiving dose levels in the range of ≥ 1–≥ 65Gy EQD2
look very similar for HF and CF, whereas the rectal surface
receiving dose levels in the range of > 65–≥ 80Gy EQD2 were
on average different with larger surfaces for HF. From previous
calculations of “traditional” whole organ dose-surface histograms
(DSH), it is known that indeed the average DSH of HF vs. CF
only show a slightly unfavorable dose level in the range of > 65–
≥ 80Gy EQD2 (supporting DSH figure in Supplementary File).

Furthermore, local standard deviations were larger for HF. The
rectum adjacent to the prostate, as shown on the prostate-half
maps, received dose levels in the range of 20–80Gy, with the
largest standard deviations (i.e., variation between patients) at
the cranial and caudal side. The total rectum maps show dose
levels in the range of 0–80Gy, with 0–10Gy in the most caudal
15% (the anal canal region) and the most cranial part close to the
rectosigmoid region.

Dose-Difference Maps
For each toxicity endpoint, four dose difference maps were
constructed: total rectum mapping and prostate-half mapping,
and for each type of mapping the HF and CF version
(Figures 2, 3). In general, one or more significant dose difference
maps were obtained for all GI endpoints except for increased
stool frequency (lowest observed p = 0.086). All dose-difference
maps were also generated with physical dose instead of EQD2
dose, to check whether this might change results. Since they were
very similar to the EQD2 versions, we report here only results
based on EQD2 dose maps.

For rectal bleeding, large local dose differences (p = 0.016)
up to ≥10Gy were observed between patients with and
without this complaint (Figures 2, 3), but only for HF patients.
Remarkably, the prostate-half mapping (Figure 3) indicates
significant differences in the region next to the prostate, whereas
the total rectum mapping (Figure 3) indicates local dose-effects
at a more cranial part of the rectum. Both locations are regions
were on average ≈60Gy (EQD2) is received by the rectal tissue
(Figure 1).

For the late endpoint fecal incontinence, highly significant
local dose-effects were found for the region receiving
intermediate to high dose, i.e., in the neighborhood of the
prostate (Figures 2, 3), but again only for HF patients. For
mucus discharge, we also observed local dose-effects for HF
patients only, which were identified by the total rectum mapping
(Figure 2). Pain/cramps with stools was associated with local

TABLE 2 | Incidence of late gastrointestinal toxicity endpoint (evaluated by the patient as “moderate—severe”) on questionnaires in the period 1–5 year post-treatment.

≥2 questionnaires (N = 633) With available dose maps (N = 593)

CF HF p CF HF p

n = 310 n = 323 n = 298 n = 295

Late GI endpoint

Stool frequency ≥4/day 12.3% 19.5% 0.013 12.1% 19.7% 0.011

Rectal bleeding 11.0% 16.7% 0.037 10.7% 17.6% 0.016

Mucus discharge 5.2% 6.2% 0.6 5.0% 6.4% 0.5

Pain/cramps with stools 7.4% 9.9% 0.3 7.7% 10.2% 0.3

Fecal incontinence 10.6% 11.1% 0.8 10.7% 11.5% 0.8

≥1 symptom 30.3% 35.6% 0.16 30.2% 36.3% 0.12

≥2 symptoms 12.6% 18.0% 0.061 12.4% 19.3% 0.020

≥3 symptoms 3.2% 6.8% 0.040 3.4% 7.1% 0.040

P <0.05 are indicated in bold. GI, gastrointestinal; HF, hypofractionation; CF, conventional fractionation.
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TABLE 3 | Association between clinical baseline covariates and toxicity endpoints.

Stools ≥ 4/day Rectal bleeding Mucus discharge Pain/cramps Fecal incontinence

HR p HR p HR p HR p HR p

Age > 70 vs. ≤ 70 0.87 0.5 0.89 0.6 0.61 0.2 0.63 0.1 2.67 <0.01

TURp yes vs. no 1.19 0.6 0.90 0.8 1.34 0.6 0.37 0.2 1.96 0.07

Previous abdominal surgery yes vs. no 0.76 0.3 1.23 0.4 0.47 0.1 1.14 0.7 1.26 0.4

Diabetes yes vs. no 1.21 0.05 0.84 0.6 no result 0.97 0.9 2.05 0.024

AHT yes vs. no 1.02 0.9 1.11 0.7 1.98 0.09 0.63 0.1 1.16 0.6

T3-4 vs. T1-2 1.00 1.0 1.60 0.046 2.13 0.04 1.00 1.0 0.87 0.6

P <0.05 are indicated in bold. Results from univariate logistic regression (N = 633). OR, Odds ratio; TURp, transurectal resection of prostate; AHT, adjuvant hormonal therapy; SV,

seminal vesicles.

FIGURE 1 | Total rectum (upper panes) and prostate-half (lower panes) mean dose-surface maps with distance along central axis (vertical) against location along

circumference axis (horizontal). Left panes represent mean dose-surface maps of conventionally fractionated patients, right panes for hypofractionated patients. EQD2

= equivalent dose for 2Gy fractions with α/β =3Gy. Abbreviations: P, posterior; R, right; L, left; A, anterior; SD, standard deviation.

dose distributions in CF patients; for HF patients no such effect
was observed (Figure 2).

DISCUSSION

We explored local dose-effect relationships for GI toxicity in a
study population treated with both conventionally fractionated
and hypofractionated modern radiotherapy. Since both patient
groups were treated within the same randomized trial, this is
a unique dataset to study hypofractionation effects on rectal
toxicity with a perfect internal reference group of CF patients.
We observed significant local dose-effect relations for all studied

GI endpoints, except for increased stool frequency. For the
endpoints rectal bleeding, pain/cramps, and mucus discharge, we
observed differences between HF and CF in the patterns and
level of significance of local dose-effects, whereas for pain or
cramps with stools, observed patterns and levels of significance
were similar.

We evaluated two types of dose mapping. The “total rectum”
mapping is more accurate in matching specific anatomical sub-
locations within the rectum between different patients an also
covers the most cranial and caudal part of the rectum, whereas
the “prostate-half ” mapping is more accurate in matching the
intermediate-high dose areas behind the prostate from one
patient to another. The identified local dose-effects for both types
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FIGURE 2 | Dose difference maps (1EQD2) based on total rectum dose mapping, for the toxicity endpoints (moderate to severe), for the hypofractionated and

conventional group separately. EQD2 = equivalent dose for 2Gy fractions with α/β = 3Gy, q = false discovery rate. Abbreviations: P, posterior; R, right; L, left; A,

anterior.

ofmapping were similar with comparable p-values. Theoretically,
we expected that the prostate-half mapping would be more
accurate in identifying risks associated with high-dose regions
close to the prostate and is therefore of added value to the total
rectum mapping which covers the whole anorectal tract, which
was demonstrated in a previous study (14). However, we could
not confirm this in the current study.

In the current study we used patient-reported toxicity
from a prospective setting, accumulating the incidence over

available questionnaires between year 1 and 5. As a result,
30% (CF) and 36% (HF) reported ≥1 moderate to severe
complaint within this period. Previously, we reported that at
36 months of follow-up, 36% (CF), and 38% (HF) had a
clinically relevant deterioration on the gastrointestinal subscale
of the Prostate Cancer 25 Quality of Life module (26), which
is in fair agreement with the current findings based on the
symptom questionnaire. As discussed in this previous paper
(26), reported toxicity incidences and differences between CF
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FIGURE 3 | Dose difference maps (1EQD2) based on prostate-half height dose mapping, for the toxicity endpoints (moderate to severe), for the hypofractionated and

conventional group separately. EQD2 = equivalent dose for 2Gy fractions with α/β = 3Gy, q = false discovery rate. Abbreviations: P, posterior; R, right; L, left; A,

anterior.

and HF in the HYPRO trial are unfavorable compared to the
CHHIP trial (7), which may have been caused by differences
in target definition (for most HYPRO patients inclusion of
the seminal vesicles), different patient population (HYPRO
patients were mainly high-risk patients), and especially by a
greater difference in EQD2 dose levels (with an α/β of 3 for
normal tissue): 78Gy (CF) vs. 82.7Gy (HF) for the HYPRO
trial, and 74Gy (CF) vs. 72Gy (HF – 20 × 3) for the
CHHIP trial.

As reported by several previous studies, prospective
registration translates in general into relatively high incidences
of toxicity when compared to studies where only physician-
reported toxicities are used, as we also previously demonstrated
for the HYPRO trial (19). When we compare our patient-
reported rates of rectal bleeding and fecal incontinence with the
recent study of Onjukka et al. who also used patient-reported
late toxicity in a modern IMRT setting with mainly conventional
fractionation and partly mild hypofractionation, the reported
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rates are very similar for both endpoints: about 10% in both
studies (18).

We found that patient-reported GI toxicity incidences were
higher for HF compared to CF with respect to the endpoints
≥3 symptoms, stool frequency, and rectal bleeding. Furthermore,
we demonstrated that after converting both the HF and CF
dose maps with the linear-quadratic model (with α/β of 3Gy)
to EQD2, we obtained very different dose-difference maps
(Figures 2, 3) where we would expect similar local dose-effects.
This suggests that just by calculating EQD2 for a HF schedule,
this might not completely capture the biological effect of a HF
treatment. There are several differences between the HF and CF
group which might have contributed to the observations of both
higher incidences and different dose-difference maps: (a) applied
dose constraints were based on earlier studies with CF; (b) the
rectum dose for HF was on average somewhat higher because of
the higher EQD2 prescription dose of 82.7Gy with α/β = 3; (c)
local dose variations (standard deviations) were larger for the HF
group; and (d) HF was delivered three times a week with 3.4Gy
fractions instead of 5 times a week 2 Gy fractions.

The symptom rectal bleeding was highly correlated with
mucus discharge, which can be expected since both symptoms are
the result of a radiation proctitis. In the literature, the endpoint
of rectal bleeding has been extensively studied and modeled since
it is regarded as a dose-limiting late toxicity (3). We observed
a significantly higher incidence of patient-reported moderate to
severe late rectal bleeding for HF compared to CF (17.6% vs.
10.7%). We previously reported the EORTC/RTOG grade ≥2
incidence of rectal bleeding (requiring clotting time), which was
also higher for HF patients (5 vs. 2%, p = 0.11). (22). For rectal
bleeding pronounced local dose-effects were observed in the
dose-difference maps in the moderate to high-dose rectal regions
close to the prostate, but only for HF patients. The location is in
general in concordance with the literature based on conventional
treatment, were high-dose regions above ≈60–70Gy are found
to be relevant for rectal bleeding. Applied dose constraints in the
clinic are based on these published models (3). In the HYPRO
trial, rectal volumes receiving ≥83% of the prescribed dose (i.e.,
≥65Gy for CF and≥54Gy for HF) had to be limited at treatment
optimization to ≤50%. Our results suggest that for HF this
planning criterion was suboptimal, resulting in increased risks of
rectal bleeding. However, this observation might also be in part
related to the higher EQD2 prescription dose of 82.7 Gy.

We observed similar fecal incontinence rates between CF and
HF, but higher rates of increased stool frequency forHF (Table 2).
At the same time, these complaints were highly correlated. In a
recent study of Cicchetti et al. (27), comparing CF with mild HF
(2.25–2.75Gy per fraction), higher levels of fecal incontinence
were observed for mild HF compared to CF. For the endpoints
increased stool frequency and fecal incontinence, dose to other
neighboring structures, such as pelvic floor muscles and nerves,
might be relevant as well, as reported in several studies (28, 29).
However, in other studies, similar rates of fecal incontinence
were observed between 3DCRT and IMRT groups whereas the
latter was associated with largely reduced dose levels to the anal
canal region (27, 30) which is in the same region as the pelvic
floor muscles.

As previously published, the results of the HYPRO trial were
negative with respect to its hypothesis, i.e., non-inferiority with
respect to Grade ≥2 toxicity and superiority with respect to
freedom from failure could both not be demonstrated for the
HF arm (6). Therefore, is this hypofractionation schedule of
19 times 3.4Gy not recommendable or acceptable for clinical
practice. However, for studying hypofractionation effects and
dose-effect relationships these data are very useful. In current
clinical practice, the hypofractionation schedule of the CCHIP
trial (7) and the Widmark trial (9) have been adopted by centers
worldwide, in which hypofractionated treatment is distributed
over several weeks of treatment with intervals >24 h between
fractions, similar to the HYPRO trial. To understand more about
fractionation effects and effects of intervals between fractions on
late (permanent) damage to normal tissues, additional modeling
of the dose and outcome data from hypofractionation trials is
essential. Recently, Wilkins et al. reported on dose-effect analyses
from the CCHIP trial, derived from both conventional whole
organ evaluation and from spatial dose mapping, aiming at
formulating novel dose constraints for mild hypofractionation
regimens in 3Gy fractions (31). They report that different rectal
dose constraints were obtained for different GI symptoms. In
their study, spatial dose metrics did not improve prediction
compared to dose-volume information.

Data from the hypofractionated trial arm of the HYPRO trial
have been used for toxicity modeling using dose-volume data
and additional features derived from texture analysis (32). They
reported models for the GI symptoms of fecal incontinence and
rectal modeling including clinical factors, dose-volume factors,
and derived texture features. From other phase III randomized
hypofractionation trials (6–9, 33), there are to our knowledge no
publications yet on additional dose-effect modeling.

It is nowadays broadly recognized that incorporating
spatial local dose information from voxel-based organ-at-risk
calculations, in contrast to whole organ evaluations, has the
potential to improve NTCP models and therefore improve the
quality of derived planning constraints (10). Several studies
have demonstrated that spatial local dose metrics are suitable
for NTCP modeling of rectal toxicity compared to traditional
dose-surface (DSH) and dose-volume histograms (DVH) (12–
18). Recently, Casares et al. (34) reported on the superiority
of spatial metric by comparing NTCP models; they concluded
that predictability of patient-reported GI toxicity increased using
spatial metrics compared to DSH/DVH metrics. The HYPRO
data set is a very suitable dataset for bioeffect modeling of
toxicity with the goal to obtain meaningful NTCP models and
related dose constraints for optimized treatment planning with
modern techniques including hypofractionation. An essential
question to answer prior to the modeling is: how to summarize
the inhomogeneous dose distributions into meaningful dose
parameters for subsequent modeling. The dose maps resulting
from this study clearly show that especially intermediate-
high dose areas in the rectum are associated with a number
of GI symptoms, especially for HF treatment. As previously
described by Bentzen et al. (4), true equieffective dose levels
(with the same bioeffect) result in identical toxicity risks.
Further modeling of the HYPRO data, by constructing NTCP

Frontiers in Oncology | www.frontiersin.org 8 April 2020 | Volume 10 | Article 469101

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Heemsbergen et al. Dose-Surface Maps Gastrointestinal Toxicity

models based on calculated EQD2 dose for each group, may
demonstrate whether the calculated EQD2 levels are equieffective
or whether other biological factors have to be taken into
account to calculate the true biological equieffective dose.
Furthermore, relevant clinical covariates have to be incorporated
into such models as well to improve the predictive power
of such models. As shown in Table 3, for the endpoint
fecal leakage (age and diabetes) and for the endpoints rectal
bleeding and mucus (T stage) predictive clinical covariates
were identified. Our ultimate goal is to use the current
findings to develop a biological NTCP model that correctly
incorporates fractionation effects, modeling the GI toxicity as
a function of biological dose. This could then theoretically be
applied to all types of dose distributions including different
fractionation schedules.

In conclusion, we demonstrated significant local dose-effect
relationships for patient-reported late GI toxicity in patients
treated with modern RT. HF patients were at higher risk for
increased stool frequency and rectal bleeding, and showed the
most pronounced local dose-effects in intermediate-high dose
regions. These findings suggest that improvement of current
treatment optimization protocols could lead to clinical benefit,
in particular for HF treatment.
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Purpose: To determine dose constraints that correlate with alopecia in patients treated

with photon-based Volumetric Modulated Arc Therapy (VMAT) for primary brain tumors.

Methods: During the treatment planning process, the scalp was drawn as a region of

interest. Dose received by 0.1 cc (D0.1cc), mean dose (Dmean), absolute volumes receiving

different doses (V16Gy, V20Gy, V25Gy, V30Gy, V35Gy, V40Gy, and V43Gy) were registered for

the scalp. Alopecia was assessed according to Common Terminology Criteria for Adverse

Events (CTCAE) v4.0. Receiver operating characteristics (ROC) curve analysis was used

to identify parameters associated with hair-loss.

Results: One-hundred and one patients were included in this observational study. At

the end of radiotherapy (RT), 5 patients did not develop alopecia (Dmean scalp 3.1Gy).

The scalp of the patients with G1 (n = 11) and G2 (n = 85) alopecia received Dmean

of 10.6Gy and 11.8Gy, respectively. At ROC analysis, V16Gy20Gy ≥ 5.2 cc were the

strongest predictors of acute alopecia risk. Chronic hair-loss assessment was available

for 74 patients: median time to recovery from G2 alopecia was 5, 9 months. The actuarial

rate of hair regrowth was 98.1% at 18 months after the end of RT. At ROC analysis,

V40Gy43Gy ≥2.2 cc were the strongest predictors of chronic G2-alopecia risk. V20Gy,
V40Gy, and D0,1cc were shown to be independent variables according to correlation

coefficient r.

Conclusions: V20Gy and V40Gy were the strongest predictors for acute and chronic

G2 hair-loss, respectively. The low-dose bath typical of VMAT corresponds to large

areas of acute but transient alopecia. However, the steep dose gradient of VMAT allows

to reduce the areas of the scalp that receive higher doses, minimizing the risk of

permanent alopecia.
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The application of our dosimetric findings for the scalp may help in reducing the alopecia

risk and also in estimating the probability of hair-loss during patient counseling before

starting radiotherapy.

Keywords: alopecia, radiation-induced hair loss, scalp, constraints, predictors, VMAT, brain tumors, radiotherapy

INTRODUCTION

Due to the high radiosensitivity of hair follicles, radiotherapy
(RT) may induce hair-loss with a huge psychological impact and,
thus, negative effects on patient’s quality of life, also in case of
limited life expectancy (1–5).

In the treatment of brain tumors, the technology of IMRT and,
most recently, rotating gantry IMRT techniques such as VMAT,
can produce dose distributions that conform to the target volume
and deliver a reduced dose to the critical organs (6).

Recently, due to the increased conformality of IMRT
techniques, there has been considerable interest in sparing critical
structures not classically included into the list of intracranial
organs at risk, such as hippocampus (7) or dorsal vagal complex
(8). Likewise, the inclusion of the scalp among the organs at risk
may potentially reduce the incidence or the severity of hair loss.

In the present study we included a total of 101 patients
whose scalp was drawn as a region of interest to spare during
the treatment planning process. The present work reports a
dosimetric analysis of the scalp describing the risk of acute
and permanent hair-loss following cranial irradiation on limited
volume, performed with a VMAT approach.

The primary objective is to define dosimetric predictors for
hair-loss with the aim of using them as dose constraints during
the inverse planning process. Secondary aims were to analyze the
recovery time and to evaluate clinical factors possibly associated
with permanent alopecia.

METHODS AND MATERIALS

Consecutive patients treated for a primary brain tumor in our
Institute with a conventionally fractionated VMATwere included
in this observational study. Eligibility criteria included the use

FIGURE 1 | Example of a mask in prone position (A) with a wire (B,C) to exclude the hairless skin from the ROI of the scalp.

of partial brain radiotherapy, conventional fractionation, total
dose >50Gy, life expectancy > 4 months. Exclusion criteria
included previous radiation treatment on the brain; previous
chemotherapy; the need for whole brain radiotherapy; any
previously existing alopecia according to Basic and specific
(BASP) classification (9). All patients signed a consent form
before enrollment in this institutional review board-approved
study. Factors that may have an impact on alopecia such as
age, smoking history, use of antiepileptic drugs (AEDs) and
chemotherapy were registered.

Scalp as a Region of Interest During the
Treatment Planning Process
CT (Computed Tomography) image sets for radiation treatment
planning were acquired using a Brilliance Big Bore CT (Philips
Medical Systems). The slice thickness was 2 mm.

During the contouring process, a region of interest (ROI) was
defined for the scalp.

At the moment of simulation CT, beyond the custom
thermoplastic mask with the patient in the supine position (used
as immobilization device during the treatment, as usual), for each
patient a mask in prone position was molded (Figure 1A). With
the aim of tracing the extension of the follicle-bearing scalp, the
line between the hairy scalp and the hairless skin of the face and
of the neck was defined with a wire (Figures 1B,C). CT scan of
the mask in prone position without the patient was acquired for
each case. These images were co-registered to the simulation CT
of the corresponding patient, in order to avoid the hairless skin
beyond the wire.

The scalp volume was defined as a ROI including
the hair-bearing tissue between the skin and the outer
table of the skull, up to a maximum thickness of 5mm
(4, 10–12) (Figure 2).
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FIGURE 2 | Scalp ROI (white line) on the simulation CT of a patient (A–C).

3D-view showing the scalp ROI (D).

The definition of the clinical target volume (CTV) varied
according to the primary tumor. The planning target volume
(PTV) was generated by adding a 3mm isotropic margin to CTV.

VMAT plans were generated with Monaco (CMS-Elekta
Ltd, UK) using a Monte-Carlo algorithm. Most of the cases
were treated with a coplanar-partial arc technique. During the
treatment planning, the scalp dose was kept as minimal as
possible. Constraints to the other intracranial organs at risk
[brainstem, optic chiasm and nerves, cochleas, pituitary (13)] had
a higher priority than those of the scalp. The irradiation was
delivered, using 6-MV photons with an Elekta Synergy machine
equipped with a BeamModulator multi-leaf collimator.

Hair Loss Assessment
Alopecia was assessed according to CTCAE version 4.0: G1
alopecia was defined as hair-loss of <50% of normal for that
individual that is not obvious from a distance but only on close
inspection; a different hairstyle may be required to cover the hair
loss but it does not require a wig or hairpiece to camouflage;
G2 alopecia was defined as hair-loss of ≥50% normal for that
individual that is readily apparent to others; a wig or hairpiece
was necessary if the patient desires to completely camouflage the
hair loss; associated with psychosocial impact.

At the end of radiotherapy, in order to define the exact
extension of the areas of acute alopecia, patients were required to
wear the pronemask that had beenmolded during the simulation
CT. Areas of alopecia were defined on the mask with a wire

FIGURE 3 | Posterior view of a patient with a wide area of G2 alopecia (A) at

the end of radiotherapy; prone mask with the wire defining the area of alopecia

(B); original CT simulation of the patient with coregistration of the wired prone

mask (C,D); scalp ROI is black colored, area of alopecia G2 is white colored,

white arrows indicate the wire on the mask. 3D-view of the same patient at the

treatment planning (E).

(Figures 3A,B); a new CT of the mask without the patient was
acquired and, then, co-registered with the original simulation CT
of the corresponding patient. Afterwards, areas of alopecia were
contoured in order to obtain a treatment planning system-based
dosimetric evaluation of the acute hair loss areas (Figures 3C,E).

For all the patients dose-volume histograms of the following
ROIs were created: whole scalp, areas where G1 alopecia
had developed during the treatment (G1-alopeciaendofRT), areas
where G2 alopecia had developed during the treatment (G2-
alopeciaendof RT).

Data regarding volumes in cc were collected both for the
whole scalp and for the areas of acute alopecia. The following
dosimetric parameters were collected: dose received by 0.1 cc
of the ROI (D0.1cc), mean dose (Dmean), absolute volumes that
received 16, 20, 25, 30, 35, 40, and 43Gy (V16Gy, V20Gy, V25Gy,
V30Gy, V35Gy, V40Gy, and V43Gy).
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Patients were evaluated for hair loss at the end of radiotherapy
and, then, every 3 months for the first 3 years of follow up.

G2 hair loss persisting for >9 months after the end of RT was
defined as chronic alopecia.

Statistical Methods
A comparison between the dosimetric data was performed with
the Mann–Whitney test.

The probability of developing acute G2 alopecia as a function
of the D0,1cc was calculated using the maximal likelihood method
according to the formula P(D) = [1 + (D50/D)

4γ50]−1, where
the D50 was D0,1cc at which 50% of the patients developed acute
alopecia and γ50 was the slope of the curve.

Receiver operating characteristics ROC analysis (14, 15),
already adopted by other authors to identify dosimetric
parameters associated with RT damage (16, 17), was used
to identify the dosimetric parameters related to the risk of
G2 alopecia. The maximum value of the Youden index (J)
(18) was used for selecting the optimal cut-off point for each
dosimetric variable.

Intercorrelation between dosimetric factors was analyzed:
dosimetric variables with coefficient r < 0.75 were considered
independent predictors.

Impact of clinical factors on incidence of acute alopecia was
analyzed with chi-squared (χ2) test.

Kaplan–Meier survival analysis was carried out concerning
alopecia recovery. The observation time was measured from
the end of radiotherapy to complete recovery from alopecia
or to the last follow-up for cases with the persistence of hair-
loss. Differences between groups were evaluated by the log-rank
test. Cox proportional regression analysis was used to determine
the role of selected parameters on the risk of event occurrence
by univariate models. Multivariate Cox proportional- hazards
regression analysis was performed including only the variables
that were shown to be not intercorrelated (coefficient r < 0.75).

All the statistical tests were performed using the IBM-
SPSS Statistics software (Statistical Package for Social Science,
version 22).

RESULTS

A total of 101 patients were included in the study. Characteristics
of the patients are in Table 1.

Prescription doses ranged between 50.4 and 60Gy in
conventional fractionation. Mean scalp volume was 234.8 cc
(SD 46.9).

Dosimetry of the whole scalp was available for all the patients.
Of note, among the dosimetric parameters whose values were
collected, V20Gy, V40Gy, and D0,1cc were shown to be independent
variables according to correlation coefficient r.

Acute Alopecia
Clinical and dosimetric evaluation at the end of RT was available
for all the patients.

TABLE 1 | Patients characteristics.

n Proportion (%)

Patients All 101 100

Gender Female 48 47.5

Male 53 52.5

Age Mean 51.7

Age <14 4 4.0

Age ≥ 14 97 96.0

Age < 50 38 37.6

Age ≥ 50 63 62.4

Smoking history no 68 67.3

yes 33 32.7

Histology High grade gliomas 68 67.3

Low grade gliomas 12 11.9

Meningioma 10 9.9

Others 11 10.9

Antiepilectic drugs

during

radiotherapy

no 24 23.8

yes 77 76.2

Concomitant

chemotherapy

no 41 40.6

Temozolomide 60 59.4

Chemotherapy

after radiotherapy

no 34 33.7

Temozolomide 59 58.4

Procarbazine,

vincristine, lomustine

8 7.9

Acute Alopecia: Dosimetry of the Whole
Scalp
Five patients who were treated for deep tumors (pituitary
adenomas n = 4; parasellar meningioma n = 1) did not develop
any area of alopecia. The remaining 96 patients developed acute
alopecia: 11 developed G1 alopecia only whereas 85 patients
developed G2 alopecia (G2 only n = 52; G1+G2 n = 33).
Significant differences in the dosimetric parameters were found
between the scalp of the patients who did not develop alopecia
and the scalp of patients who developed acute G1 alopecia and
G2 alopecia (Table 2).

D0,1cc varied widely (Figure 4). D50, i.e., D0,1cc at which 50%
of the patients developed acute alopecia was found to be 33,0 ±
0,2Gy. The slope of the curve (γ50) was 1,58± 0,05 (Figure 5).

Acute Alopecia: Dosimetry of the Areas of
Alopecia
Volumetric data regarding the areas of alopecia were collected in
order to define the amount of hair loss in terms of percentage of
the scalp volume at the end of radiotherapy (Figure 6). The mean
volume of G1-alopeciaend−of−RT and G2-alopeciaend−of−RT was
26.6 and 66.1 cc, respectively. On average, G1-alopeciaend−of−RT

and G2-alopeciaend−of−RT corresponded to 11.9% (SD 10.4) and
41.7% (SD 20.0) of the whole scalp volume, respectively. The
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TABLE 2 | Dosimetric comparison between the scalp of the patients who did not develop alopecia and the scalp of the patients who developed G1 or G2 alopecia at the

end of radiotherapy: mean values and standard deviations (in brackets) of dosimetric variables.

n Mean D0.1cc

(Gy)

Mean Dmean

(Gy)

Mean V16Gy

(cc)

Mean V20Gy

(cc)

Mean V25Gy

(cc)

Mean V30Gy

(cc)

Mean V35Gy

(cc)

Mean V40Gy

(cc)

Mean V43Gy

(cc)

Scalppatients no alopecia 5 19.7 (± 12.6) 3.1 (± 1.5) 2.7 (± 3.7) 1.4 (± 1.9) 0.6 (± 1.1) 0.2 (± 0.5) 0.04 (± 0.09) 0 0

Scalppatients with G1 alopecia

at the end of RT

11 40.2 (± 15.2) 10.6 (± 5.0) 45.2 (± 40.4) 31.0 (± 33.9) 22.2 (± 26.9) 15.6 (± 20.5) 10.8 (± 15.6) 7.4 (± 12.1) 5.8 (± 10.0)

p-value from Mann–Whitney Test 0.02 0.001 0.002 0.02 0.03 0.04 0.90 0.90 0.09

Scalppatients with G2 alopecia

at the end of RT

85 47.3 (± 9.2) 11.8 (± 4.4) 68.8 (± 37.7) 50.6 (± 33.4) 34.8 (± 27.5) 23.1 (± 22.0) 14.3 (± 16.9) 8.4 (± 12.0) 5.9 (± 9.3)

p-value from Mann-Whitney Test 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.004 0.005

D0.1cc, dose received by 0.1 cc; Dmean, mean dose; VxGy , percentage of the scalp volume receiving ≥ x Gy.

Bold text indicates statistical significance.

FIGURE 4 | Distribution of Maximum dose (D0,1cc) in the series and grade of

acute alopecia.

mean volume of alopecia of any grade was 70.7 cc (corresponding
to 30.2% of the scalp, SD 20.7)

Significant differences in the dosimetric parameters were
found when G1-alopeciaend−of−RT were compared with alopecia
G2end−of−RT (Table 3).

Acute Alopecia: ROC Analysis
At ROC analysis, all the dosimetric variables were found to be
reliable parameters to distinguish patients at low-risk from those
at high-risk of acute G2 alopecia (Table 4).

V16Gy and V20Gy were found to be the strongest predictors
for acute alopecia (AUC 0.776 and 0.792, respectively). Cut-
off values for high risk of development of alopecia at the end
of radiation treatment were 16.7 cc and 5.2 cc for V16Gy and
V20Gy, respectively.

Factors Impacting on Acute Alopecia
Gender (χ2 test: p = 0.19), age (χ2 test: p = 0.37), smoking
history (χ2 test: p = 0.65), use of AEDs (χ2 test: p = 0.09),
concomitant chemotherapy (χ2 test: p = 0.17) did not have any
significant impact on acute hairloss incidence.

FIGURE 5 | Maximum dose (D0,1cc) and acute G2 alopecia probability at the

end of radiotherapy: dose-response relationship.

Chronic Alopecia
All the cases of persistent alopecia were an evolution of acute
alopecia (i.e., all the patients who had chronic alopecia, had had
previous acute alopecia in the same areas that did not recover; on
the contrary, all the patients who had had no acute alopecia (n=
5) did not develop chronic alopecia).

Hair-loss assessment for G2-alopecia was available for 74
patients. The mean follow-up was 9.7 months. At the moment
of analysis, 65/74 (87.8%) patients had a complete G2 recovery.

Late recovery from G2 hairloss was possible: 3 patients
recovered between 12 and 18 months. Median time to recovery
was 5.9 months (SD 2.8 months). Actuarial rate of G2 recovery
was 49.2, 87.0, 92.2, and 98.1% at 6, 9, 12, and 18 months after the
end of RT (Figure 7).

Chronic Alopecia: Dosimetry of the Whole
Scalp
Dosimetric analysis of the whole scalp excluded patients with a
follow-up shorter than 3 months (n= 5). Dosimetric parameters
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FIGURE 6 | Percentage of the volume of the scalp with G1 and G2 alopecia at the end of radiotherapy.

TABLE 3 | Dosimetric comparison between the areas of G1 alopecia and the areas of G2 alopecia at the end of radiotherapy: mean values and standard deviations (in

brackets) of dosimetric variables.

n Mean D0.1cc

(Gy)

Mean Dmean

(Gy)

Mean V16Gy

(cc)

Mean V20Gy

(cc)

Mean V25Gy

(cc)

Mean V30Gy

(cc)

Mean V35Gy

(cc)

Mean V40Gy

(cc)

Mean V43Gy

(cc)

G1-Alopeciaend of RT 44 33.4 (± 14.3) 16.5 (± 8.3) 11.9 (± 14.6) 7.6 (± 9.6) 6.5 (± 11.8) 3.8 (± 7.9) 2.4 (± 6.4) 1.6 (± 5.4) 1.3 (± 4.8)

G2-Alopeciaend of RT 85 44.6 (± 11.2) 20.3 (± 6.4) 40.2 (± 35.4) 31.5 (± 30.5) 21.8 (± 24.3) 14.8 (± 18.9) 9.2 (± 14.3) 5.4 (± 10.2) 3.6 (± 7.7)

p-value from Mann-Whitney Test 0.0001 0.002 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.001

D0.1cc, dose received by 0.1 cc; Dmean, mean dose; VxGy , percentage of the scalp volume receiving ≥ x Gy.

Bold text indicates statistical significance.

of the whole scalp of 8 patients who had a persistent alopecia (>9
months) were compared with the dosimetric data of 66 patients
who had an intact scalp within 9 months after the end of RT
(Table 5). Of note, patients who had not developed alopecia at
the end of radiotherapy (n = 5) were included among these
66 patients. V40Gy and V43Gy were statistically different between
these two groups (Mann–Whitney test p= 0.028 and p= 0.036).

Chronic Alopecia: ROC Analysis
At ROC analysis, several dosimetric variables were significantly
related to the risk of permanent alopecia (Table 6). Among these,
V40Gy and V43Gy were the strongest predictors for chronic G2-
alopecia (AUC = 0.738 and 0.725, respectively): patients whose
scalp ROI had V40Gy43Gy.

Kaplan–Meier Analysis and Cox
Regression for Recovery From Alopecia
All the dosimetric parameters that were found to be significant
predictors of chronic G2-alopecia at the ROC analysis (D0.1cc,
Dmean, V30Gy, V35Gy, V40Gy, and V43Gy) and all the clinical
variables were included in the Kaplan–Meier analysis (Table 7).

Patients were stratified according to the cut-off values
defined at the ROC analysis for each dosimetric variable
with the aim to have dichotomous variables. All the
tested dosimetric parameters significantly impacted on
recover probability.

Age had a significant impact on recover probability (age
> 14 = 97.9 vs. age ≤ 14 = 100%; log-rank test p =
0,01). No other clinical factors (gender, smoking history, use
of AEDs, chemotherapy) significantly influenced the recover
probability. Impact on recover probability due to different
chemotherapy schedules was not tested because, among the
cases with trichological follow-up, nearly all patients who had
sequential chemotherapy received temozolomide (52 out of
the 53).

Age and all the above mentioned dichotomous dosimetric
variables were found to be significant at univariate Cox
regression (Table 8). D0,1cc maintained significance also
when tested as a continuous variable (p = 0,001) at the
univariate analysis.

Among the dosimetric factors, only V40Gy and D0,1cc were
included in the multivariate Cox regression, because they were
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TABLE 4 | Receiver operating characteristics (ROC) analysis for G2 alopecia at the end of radiotherapy.

Dosimetric variable AUC p-value for AUC Cut-off value Sensitivity, % Specificity, % Incidence of acute G2 alopecia Fisher exact test p-value

Low risk, % High risk, %

D0.1cc 0.740 0.008 36.2 Gy 87.1 68.7 50.0% 93.7% 0.0000

Mean dose 0.714 0.02 6.9 Gy 87.1 56.2 55.0% 91.3% 0.0006

V16Gy 0.776 0.001 16.7 cc 92.9 62.5 37.5% 92.9% 0.0000

V20Gy 0.792 0.0003 5.2 cc 100.0 56.2 0% 91.4% 0.0000

V25Gy 0.768 0.002 5.5 cc 85.9 68.7 52.2% 93.5% 0.0000

V30Gy 0.756 0.003 2.3 cc 85.9 68.7 52.2% 93.6% 0.0000

V35Gy 0.736 0.005 0.7 cc 82.4 68.7 57.7% 93.3% 0.0005

V40Gy 0.685 0.02 0.6 cc 72.9 75.0 65.7% 93.9% 0.0004

V43Gy 0.670 0.04 0.1 cc 70.6 68.7 69.4% 92.3% 0.004

D0.1cc, Dose to 0.1 cc of the scalp volume; VxGy , percentage of the scalp volume receiving ≥ x Gy; AUC, area under curve at ROC analysis.

Bold text indicates statistical significance.

FIGURE 7 | Time to recovery from G2 alopecia.

shown to be independent predictors of chronic G2-alopecia
according to correlation coefficient r. Multivariate analysis
confirmed the predictive value of age (p = 0.0002) and V40Gy

(p= 0.02).

DISCUSSION

Hair loss, either temporary or permanent, is one of the most
stressful side effects for patients undergoing oncologic treatment
(1–5). Radiation-induced alopecia may permanently alter the
self-perception of the neurooncological patients and have a
significant impact on their quality of life (2, 5).

To our knowledge, this is the first study reporting a dose-
volume analysis of the scalp describing the risk of hair-loss
following a photon-based, conventionally fractionated VMAT
treatment on a limited brain volume. Herein we reported a
dosimetric analysis based on a TPS-based calculation to find

a dose-response relationship for acute and chronic alopecia.
Besides, although some authors reported about the possibility of
hair regrowth within some months after irradiation (19, 20), to
our knowledge, this is the first observational study focusing on
the analysis of recovery time of the scalp damage.

Dose-Response Relationship for Acute
Alopecia
On review of the available literature regarding photon-based
radiotherapy, the doses that have been reported to cause hair-
loss varied widely. Doses as low as 2 and 3Gy in a single
fraction might cause temporary alopecia according to some
authors (4, 10, 21, 22). In a study regarding the use of VMAT for
whole-brain irradiation (WBRT) in patients with multiple brain
metastases (19), the authors hypothesized that the threshold dose
for temporary alopecia is around 10Gy in 5 fractions. By contrast,
Archambeau et al. (23) described that acute epilation may be
produced by a total dose of 20Gy in conventional fractionation.

The risk of acute alopecia during IMRT has been explored
also for patients with head and ncek cancer: Rosenthal et al.
(24) provided recursive partitioning analysis in order to estimate
dose thresholds associated with observed toxicities in a series
of patients with oropharyngeal cancer treated with IMRT: they
found that alopecia in the occipital region occurred more
frequently when scalp maximum dose was>30Gy (48% of cases)
vs. <30Gy (19% of cases).

Our experience confirmed that acute alopecia may be caused
by very low doses: acute G2 alopecia developed also in areas
where Dmean may be as low as 1.9 Gy.

However, the fact that we found significant differences
regarding the dose received by the whole scalp between patients
that did not develop alopecia and patients who presented acute
hair-loss, demonstrated that a dose relationship with acute
alopecia exists. That was also confirmed by the dosimetric
analysis regarding the areas of alopecia: G2-alopeciaend−of−RT

received significantly higher doses than G1-alopeciaend−of−RT

(Table 3). Lastly, the relationship between dose and acute
alopecia was also evidenced by the ROC analysis that showed that
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TABLE 5 | Dosimetric comparison of the scalp of the patients who had persistent alopecia at 9 months compared with the scalp of the patients who had complete

recover within 9 months: mean values and standard deviations (in brackets) of dosimetric variables.

ROI n Mean D0.1cc

(Gy)

Mean Dmean

(Gy)

Mean V16 Gy

(cc)

Mean V20 Gy

(cc)

Mean V25 Gy

(cc)

Mean V30 Gy

(cc)

Mean V35 Gy

(cc)

Mean V40 Gy

(cc)

Mean V43 Gy

(cc)

Scalp

patients with alopecia at 9 month−follow up

8 53.2 (± 4.1) 14.1 (± 4.4) 78.7 (± 31.3) 57.8 (± 25.0) 40.1 (± 17.4) 28.4 (± 12.7) 19.6 (± 9.7) 12.6 (± 8.4) 8.7 (± 7.6)

Scalp patients with complete recovery from

alopecia within 9 months after RT

66 46.7 (± 10.6) 11.6 (± 4.7) 66.8 (± 39.3) 49.5 (± 35.4) 34.7 (± 29.9) 23.4 (± 24.3) 14.8 (± 18.7) 8.9 (± 13.3) 6.4 (± 10.4)

p-value from Mann-Whitney Test 0.12 0.09 0.29 0.34 0.24 0.14 0.053 0.028 0.036

D0.1cc, dose received by 0.1 cc; Dmean, mean dose; VxGy , percentage of the scalp volume receiving ≥ x Gy.

Bold text indicates statistical significance.

TABLE 6 | Receiver operating characteristics (ROC) analysis for G2 alopecia at 9 months after the end of radiotherapy.

Dosimetric variable AUC p-value for AUC Cut-off Sensitivity, % Specificity, % Incidence of G2 alopecia at 9 months Fisher exact test

p-value

Low risk, % High risk, %

D0.1cc 0.684 0.008 47.6 Gy 100.00 51.5 0.0% 17.4% 0.007

Mean dose 0.669 0.04 10.1 Gy 100.00 43.9 0.0% 14.0% 0.02

V30Gy 0.662 0.04 11.4 cc 100.00 39.4 0.0% 13.1% 0.04

V35Gy 0.710 0.001 9.3 cc 100.00 54.5 0.0% 17.4% 0.005

V40Gy 0.738 <0.0001 5.4 cc 100.00 63.64 0.0% 21.0% 0.0000

V43Gy 0.725 0.0002 2.2 cc 100.00 59.1 0.0% 19.5% 0.001

D0.1cc, Dose to 0.1 cc of the scalp volume;VxGy , percentage of the scalp volume receiving ≥ x Gy; AUC, area under curve at ROC analysis.

Bold text indicates statistical significance.

the most important predictors of acute alopecia were V16Gy and
V20Gy (Table 4).

Consequently, during the treatment planning process, the
doses to the scalp should be kept as low as possible. However,
by maintaining V16Gy < 16.7 cc and V20Gy < 5.2 cc, the risk
of acute alopecia may be limited. Since these two variables were
found to be interdependent, considering the better AUC and
statistical significance at the ROC analysis, we would suggest to
try to meet preferably the specified constraints for V20, with the
aim of reducing the risk of acute alopecia.

Moreover, we also found that 50% of the patients who
received D0.1cc of 33Gy developed acute alopecia at the end of
radiotherapy. All these data may be precious to predict the risk of
acute hairloss when we talk with the patients about the toxicity of
the radiation treatment.

Dose-Response Relationship for Chronic
Alopecia
Our data showed that a dose-effect relationship exists for chronic
alopecia as well: the scalp of patients who completely recovered
from G2 alopecia received lower doses than the scalp of patients
who had persistent alopecia at 9 months. Of note, the difference
between these two groups of patients was significant only in terms
of high doses (V40Gy, V43Gy) (Table 6). Noteworthy, at ROC
analysis lower doses (<30Gy) were not associated with chronic
G2-alopecia, while the most important predictors of persistent
alopecia were V40Gy and V43Gy (Table 7).

All these data taken together indicate that, although low doses
(i.e., 16–20Gy), are critical for acute alopecia (that is likely to
recover within some months), higher doses (i.e., 40–43Gy) are
crucial for persistent alopecia.

To our knowledge, the only existing dosimetric study finding
a dose-response relationship that described the probability of
alopecia after photon-based radiotherapy has been reported

in 2004 by Lawenda et al. (25). The authors retrospectively

reviewed 26 patients and they concluded that follicle doses of
43Gy are associated with a 50% risk of permanent alopecia.

Their results are notably different from our findings due to two
main reasons. First, the authors provided a very rough estimate

of the follicle dose, based on the sum of the entrance and

exit doses for each contributing radiation field, according to a
formula that took into account the absolute dose delivered to

the isocenter for the radiation field of interest; by contrast, the

present study provided an accurate calculation of the dose to the
scalp using a dose-volume histogram analysis calculated by the

treatment planning system. Secondly and evenmore importantly,
the patients included in the study from Lawenda et al. were
treated with simple conventional photon techniques (typical field
arrangements included parallel-opposed fields and right-angle
field pairs). On the other hand, all the patients in our series
were treated with VMAT-technique. The numerous beam angles
and resultant highly conformal dose distributions of intensity-
modulated treatments (IMRT and VMAT)make these modalities
particularly suited to scalp dose reduction. The use of arcs, typical
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TABLE 7 | Kaplan Meier analysis for factors impacting on the recovery probability

from G2 alopecia.

Variable pts Events %recovery p-value log rank test

Sex

F 33 28 – 0.99

M 41 37

Age

≤14 4 4 100.0 0.01

>14 70 61 97.9 0.70

≤50 30 28 –

>50 44 37

Smoking history

No 51 46 – 0.54

Yes 23 19

Antiepilectic drugs

No 17 16 – 0.14

Yes 57 49

Concomitant chemotherapy

No 25 23 – 0.14

Yes 49 42

Sequential chemotherapy

No 21 19 – 0.17

Yes 53 46

D0.1 cc

<47.6Gy 34 30 99.9 0.001

≥47.6Gy 40 35 96.6

Dmean

<10.1Gy 29 27 99.9 0.002

≥10.1Gy 45 38 96.7

V30 Gy

<11.4 cc 26 24 99.9 0.0001

≥11.4 cc 48 41 97.0

V35 Gy

<9.3 cc 36 32 99.9 0.0001

≥9.3 cc 38 33 96.4

V40 Gy

<5.4 cc 42 38 99.9 0.0001

≥5.4 cc 32 27 95.6

V43 Gy

<2.2 cc 34 34 99.9 0.0001

≥2.2 cc 40 31 96.9

Total 74 65

Bold text indicates statistical significance.

of the VMAT technique, may further minimize the high doses to
the scalp because the surface dose is distributed over the length of
the arc (19). The investigation of Penoncello et al. (26) confirmed
that VMATmay be superior in minimizing dose to the scalp than
static-field IMRT.

The possibility to reduce the dose to the scalp with IMRT
techniques has been extensively explored in patients treated
WBRT for brain metastases (10–12, 19, 27). These studies differ
from the present study for several reasons: firstly, the number
of patients included was significantly lower (range 6(12)−17(27)
patients) compared to our experience; secondly, the prescription

TABLE 8 | Univariate Cox regression for variables impacting the recovery

probability from G2 alopecia.

Variable p-value HR 95% CI

Age > 14 y 0.017 0.27 0.09–0.80

D0.1cc > 47.6Gy 0.001 0.40 0.23–0.69

Dmean > 10.1Gy 0.003 0.43 0.24–0.75

V30Gy > 11.4 cc 0.0001 0.39 0.22–0.67

V35Gy > 9.3 cc 0.0001 0.33 0.19–0.57

V40Gy > 5.4 cc 0.0001 0.35 0.20–0.63

V43Gy > 2.2 cc 0.0001 0.36 0.21–0.64

D0.1cc, Dose to 0.1 cc of the scalp volume;VxGy , percentage of the scalp volume

receiving ≥ x Gy; HR, Hazard Ratio; CI, Confidence interval. Bold text indicates

statistical significance.

dose for WBRT (EQD2 28–36Gy) is significantly different than
the one used for primary tumors (EQD2 50, 4–60Gy). Thirdly,
most of them did not include clinical data on alopecia: plans
of patients who had been previously treated with conventional
opposed lateral fields were simply replanned with IMRT to
confirm the potential advantage of IMRT techniques in reducing
scalp dose (10, 11, 28–30). Lastly, although some series including
clinical evaluation of alopecia exist (12, 27, 28), their authors
did not generate hypotheses about dose/permanent hair loss
relationship and they did not provide clear dose constraints to
minimize the risk of chronic alopecia.

Due to the very superficial location of the scalp, the existing
uncertainty in the superficial dose calculation deserves some
considerations. The accuracy of dose modeling in the build-up
region mainly depends on the dose calculation algorithm used in
a specific treatment planning system (TPS) (31). MC simulations
have been used as a reference tool for superficial dosimetry
evaluation of dose calculation algorithms in the commercially
available TPS (32, 33) because they were shown to be consistent
with measurements obtained by extrapolation chambers (34, 35).
To our knowledge, there are no published studies specifically
evaluating the accuracy of dose calculation in the build-up region
forMonaco TPS. However, sinceMonaco TPS uses aMonteCarlo
algorithm, we can assume that superficial dose is estimated by this
TPS with reasonable accuracy.

In this clinical experience, the majority of patients (95%)
presented acute alopecia in a wide area of the scalp (by average
30.2%). This phenomenon is due to the fact the highly conformal
dose distribution achieved with VMAT comes with the cost of a
larger volume of normal tissue receiving low radiation doses that
are sufficient to cause an acute injury to the hair bulbs.

On the other hand, VMAT led to satisfying results in terms
of hair regrowth (actuarial recovery rate = 98.1% at 18 months
after the end of radiotherapy) because of the high conformality
and rapid dose fall-off. We believe that the application of our
dosimetric findings may further decrease the risk of radiation-
induced hair-loss: maintaining V40Gy < 5.4 and V43Gy <

2.2 cc may help in reducing the risk of radiation-induced
chronic alopecia. Since these two variables were found to be
interdependent, considering the AUC and statistical significance
at the ROC analysis, we would suggest to try to meet preferably
the specified constraints for V40 in order to minimize the risk
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of chronic alopecia. Noteworthy, the importance of V40 was
confirmed also by the multivariate analysis.

Time to recovery was related to the dose, as shown by Kaplan–
Meier analysis and Cox regression analysis that confirmed the
significant impact of the dichotomous dosimetric variables on
recovery probability during the follow-up. Furthermore, D0,1cc

maintained significance also when tested as a continuous variable
(p= 0,001) at the univariate Cox regression analysis.

Age ≤ 14 was the only clinical factor to be significantly
associated with a greater probability of recovery. Younger age was
identified as a positive factor also in the series of Rogers et al. (36).

In our experience, chemotherapy was not related to a higher
risk of alopecia. Of note, the majority of chemotherapy-treated
patients in the present series received temozolomide, whereas, in
other experiences where this relationship was found, other drugs
with a stronger alopecia-inducing power were used (10, 25).
Notably, increased risk due to smoking history was not evidenced
in our series.

Another point to mention is that the definition of dosimetric
thresholds for chronic alopecia may also help in estimating
the risk of this relevant side effect when discussing the
toxicity of treatment with our patients. So far, indeed, the
scarcity of available data about radiation-induced hair loss
has led to great difficulties in providing risk estimates for
given doses when radiation treatment is discussed with
patients (37).

Keypoints and Pitfalls of the Study
Strengths of this study are the following: first, given the little
literature on possible predictors of radiation induced alopecia in
patients treated with photons, this study adds new information,
especially considering the fact that it concerns VMAT technique.
Secondly, to our knowledge, this is the first existing observational
study with detailed measurements of the endpoint on patients
treated with photons. On the other hand, our study has several
limitations: the lack of a validation cohort to confirm our
dosimetric results is probably the most important shortcoming.
Secondly, a quality-of-life assessment or a patient-reported
outcome data to describe how the patients psychologically
experienced the hair loss would have added value to our research.
Thirdly, an important drawback of our work is the lack of
a more advanced modeling to robustly predict the risk of
radiation induced alopecia. In this regard, a very recent study
(38) provided normal tissue complication probability (NTCP)
model for alopecia in patients treated with scanning beam
protontherapy. Although it is necessary to take into account the
different dose distribution in the superficial tissues for protons
(which makes their results not applicable to photon-based
radiotherapy), it is of interest to know that relative scalp surface

receiving 21Gy (S21Gy) and age were selected as predictive factors
for acute G2 alopecia whereas D2% (near maximum scalp dose)
was found to be related to permanent G2 alopecia.

CONCLUSIONS

We recommend contouring the scalp and including it into the
organs at risk list.

According to our results, the steep gradient typical of VMAT
gives the possibility to limit the volume of the scalp that receives
higher doses that are associated with a greater risk of chronic G2-
alopecia. At the same time, by using VMAT, a great proportion of
the scalp volume will receive low doses that are sufficient to cause
acute but transient alopecia in the majority of patients.

Our study provided new constraints for the scalp to use
during the inverse planning process that may help in reducing
the probability of hair-loss. Once a treatment is planned, these
dose thresholds may help also in estimating the risk of alopecia
for each single case. Future developments of our research may
provide a validation cohort to confirm further improvement in
terms of alopecia-free survival.
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Background: This present study aimed to explore the prognostic value of pretreatment

neutrophil and lactate dehydrogenase (LDH) and to develop a prognostic risk scoring

model to predict prognosis in esophageal squamous cell cancer (ESCC) patients treated

with definitive radiotherapy.

Methods: Retrospectively collected data of patients who received definitive radiotherapy

for ESCC at Shantou Central Hospital between January 2009 and December 2015

were included for the analysis. The association between the level of LDH and neutrophil

and clinicopathological characteristics were analyzed. We performed univariate and

multivariate analyses to identify the prognostic predictors for patients with ESCC. Based

on the results, we also developed a prognostic risk scoring model and assessed its

predictive ability in the subgroups.

Results: A total of 567 patients who received definitive radiotherapy for ESCC were

included in the present study. The optimal cutoff values were 4.5 × 109/L, 3.25, and

220 U/L for neutrophil, neutrophil-to-lymphocyte ratio (NLR), and LDH, respectively. A

high level of LDH was significantly associated with advanced N stage (p = 0.031),

and neutrophil count was significantly associated with gender (p = 0.001), T stage

(p < 0.001), N stage (p = 0.019), clinical stage (p < 0.001), and NLR (p < 0.001).

Multivariate survival analysis identified gender (p = 0.006), T stage (p < 0.001), N stage

(p = 0.008), treatment modality (p < 0.001), LDH level (p = 0.012), and neutrophil count

(p = 0.038) as independent prognostic factors for overall survival. Furthermore, a new

prognostic risk scoring (PRS) model based on six prognostic factors was developed, in

which the patients were divided into three groups with distinct prognosis (χ2 = 67.94, p

< 0.0001).

Conclusions: Elevated baseline LDH level and neutrophil count predicted poor

prognosis for ESCC patients treated with definitive radiotherapy. A PRSmodel comprised

of LDH, neutrophil count, and other prognostic factors would help identify the patients

who would benefit the most from definitive radiotherapy.
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INTRODUCTION

Esophageal cancer (EC) is one of the most common digestive
malignant tumors, with high recurrence rate and poor overall
survival (OS) (1). For patients with early EC, surgery is the
mainstay of treatment (2). The majority of patients with locally
advanced EC lost the opportunity for surgery at the time
of diagnosis. Definitive concurrent chemoradiotherapy (dCRT)
has been recommended as a standard treatment and plays
important roles in these patients (1). However, the effectiveness
of radiotherapy varies greatly among different patients, even
patients at the same TNM stage and who received similar
radiotherapy regimens, suggesting that there were some other
factors affecting the effectiveness of radiotherapy, including
patients’ characteristics, tumor subsite, and hematological
parameters (3–5). To our knowledge, no widely used prediction
model about prognosis has been established in patients with
esophageal squamous cell carcinoma (ESCC) treated with
radiotherapy. Thus, it is critical to identify more accurate
prognostic indicators and to develop a reliable prediction model
for estimating the prognosis of patients with ESCC treated
with radiotherapy.

The inflammation process has been proposed to be an
important feature in patients with malignant tumors (6),
which is involved in the progression of tumorigenesis, disease
development, and patient prognosis (7, 8). Furthermore, some
routinely tested blood parameters, such as neutrophil count,
lymphocyte count, and lactate dehydrogenase (LDH) level,
have been demonstrated as potential inflammatory biomarkers
and have prognostic value in patients with cancers (9–11).
Neutrophils are acknowledged as the first line of defense against
inflammations and infections, as well as play an important
role in the tumor microenvironment (TME) (12, 13). Previous
studies have shown that tumor-associated neutrophil (TAN) was
capable to suppress the immune system in the TME, which
results in treatment resistance and promotes cancer development
(14, 15). Patients with low neutrophil count were also found
to exhibit better radiosensitivity (16). However, the predictive
value of neutrophil count in the prognosis of ESCC patients
treated with radiotherapy is still unclear. Recently, the prognostic
value of LDH has been widely investigated in various cancers,
such as metastatic renal cell carcinoma (17), breast cancer (18),
nasopharyngeal carcinoma (19), prostate cancer (20), lymphoma
(21), non–small cell lung cancer (22), and ESCC (23, 24).
Although LDH and neutrophil count are reliable prognostic
predictors, it is still not clear whether they can be combined
together in a prognostic risk score model to predict the prognosis
of ESCC patients treated with radiotherapy.

In this study, we aimed to explore the role of neutrophil count
and LDH level in the prognosis of patients with ESCC treated

Abbreviations: LDH, lactate dehydrogenase; ESCC, esophageal squamous cell

cancer; dCRT, definitive chemoradiotherapy; PRS, prognostic risk scoring; EC,

esophageal cancer; OS, overall survival; EAC, esophageal adenocarcinoma; GTV,

gross tumor volume; GTVnd, nodal gross tumor volume; CTV, clinical target

volume; CTVt, tumor clinical target volume; CTVnd, nodal clinical target volume;

PTV, planning target volume; NLR, neutrophil-to-lymphocyte ratio; ROC, receiver

operating characteristics; RFS, recurrence-free survival; CR, complete response.

with radiotherapy. We performed univariate and multivariate
analyses to identify the prognostic factors for the ESCC patients.
According to the results of the multivariate analysis, we devised
a prognostic risk scoring model for estimating the prognosis of
ESCC patients treated with radiotherapy.

PATIENTS AND METHODS

Study Design
We retrospectively reviewed the patients receiving definitive
radiotherapy for EC at the Department of Radiation Oncology,
Shantou Central Hospital during the period from January 2009 to
December 2015. Only patients pathologically diagnosed as ESCC
were included in this study. Patients with non-ESCC tumors
were excluded from this study. The remaining patients were
excluded if they met the following exclusion criteria: (1) patients
with distant metastatic disease; (2) patients who received low-
dose palliative radiotherapy (<50.4Gy for patients treated with
radiotherapy without chemotherapy and <60Gy for patients
treated with chemoradiotherapy); (3) patients who received
preoperative or postoperative adjuvant radiotherapy; (4) patients
who had recurrent disease and received radiotherapy for salvage
purposes; (5) patients who failed to complete therapy; and (6)
patients who had other primary tumor. This study was approved
by the Institutional Committee of the Shantou Central Hospital
on Human Rights. Disease of the patients was staged according
to the sixth edition of AJCC TNM classification for EC.

Radiotherapy Protocols
Radiotherapy was delivered by three-dimensional conformal
radiation therapy or intensity-modulated radiation therapy
technique in this study. A Varian IX or Varian 23EX linear
accelerator was used to deliver the radiotherapy treatment plan.
The treatment planning approach has been reported in our
previous study (25). Briefly, the gross tumor volume (GTV)
includes the EC (GTVp) and the positive regional lymph
nodes (GTVnd). The delineation of GTV was determined by
CT, barium esophagogram, endoscopic examination, or PET
imaging. The GTVp plus a 0.5–1cm radial margin and a 2.5–3 cm
proximal and distal margin and the GTVnd plus a 0.5–0.8 cm
margin were defined as CTV. The planning target volume (PTV)
encompassed the CTV plus a 0.5–1 cm margin. All patients
received simultaneous integrated boost (SIB) radiotherapy,
which had been reported in a recent phase 1/2 trial conducted
by Chen et al. (26). The prescribed dose was 60–66Gy to GTV
in 28–30 fractions, five fractions per week, and at least 50.4Gy
to CTV in 28 fractions, five fractions per week. Two cycles of
platinum-based chemotherapy combined with 5-fluorouracil or a
taxane (docetaxel or paclitaxel) were administered on the patients
concurrently with radiotherapy.

Data of Hematological Index Collection
The pretreatment data of neutrophil count, lymphocyte count,
and LDH level were collected from the test reports. The cutoff
value for the LDH level was the upper limit of normal (ULN)
values set (220 U/L) of the biochemical detector used in our
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hospital. The neutrophil count divided by the lymphocyte count
was defined as the neutrophil-to-lymphocyte ratio (NLR).

Follow-Up
All patients were assessed weekly during radiotherapy to monitor
the treatment toxicities. Physical examination, blood routine, and
biochemical test were done at a weekly visit. The first follow-
up was 1 month after finishing radiotherapy, then continuing
every 3 months for 2 years and every 6–12 months until disease
progression or death. The last follow-up date was May 31,
2019. Physical examination, blood routine and biochemical test,
barium esophagogram, and contrast-enhanced CT scan of the
neck, chest, and abdomen were done at each follow-up visit.
Information on patients’ clinicopathological characteristics was
retrospectively collected from their medical records.

Statistical Analysis
Recurrence-free survival (RFS) was defined as the interval
from the date of definitive radiotherapy to either the first
evidence of any recurrence (local or distant metastases) or death.
OS was calculated from the date of treatment beginning to
either the date of death from any cause or last follow-up. A
chi-square test was performed to compare the differences of
patients’ clinicopathological characteristics. RFS and OS rates
were estimated using the Kaplan–Meier method, and survival
curve comparisons were performed using the log-rank test.
Multivariate analysis was performed using a Cox regression
model to identify prognostic factors associated with OS. The
optimal cutoff value for NLR and neutrophil count to distinguish
the difference of complete response (CR) rate was determined
using the receiver operating characteristics (ROC) curve analysis.
A two-sided P < 0.05 was considered statistically significant.
All statistical analysis and data management were done with the
statistical software IBM SPSS v22.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

Patient Characteristics
A total of 567 ESCC patients who received definitive radiotherapy
for ESCC in our hospital were included in this study, with
413 (72.8%) men and 154 (27.2%) women. The patient
characteristics including age, gender, tumor location, T stage,
N stage, TNM stage, and treatment modality are summarized
in Table 1. All the patients received definitive radiotherapy,
with a radiation dose ranging from 50 to 78Gy. Two hundred
and forty-seven (43.6%) patients received definitive radiotherapy
alone, and 320 (56.4%) patients received definitive concurrent
chemoradiotherapy. There were 209 (36.9%) patients who
achieved CR after radiotherapy.

Baseline Serum LDH Level, Neutrophil
Count, and Clinicopathological
Characteristics
At baseline, the pretreatment blood routine and blood
biochemical examination were performed in all 567 patients. The
median LDH was 208.0 U/L, ranging from 83.0 to 617.0 U/L.
The default normal range of LDH was 80–220 U/L according to

TABLE 1 | Baseline patient characteristics.

Characteristics Number (n = 567)

Age (years), median 64 (40–95)

≦65y 298

>65y 269

Gender

Female 154

Male 413

Location

Cervical 37

Upper thoracic 125

Middle thoracic 336

Lower thoracic 69

T stage

T1 9

T2 152

T3 146

T4 260

N stage

N0 119

N1 448

TNM stage

I+II 238

III+IV 329

Treatment

RT 247

CCRT 320

RT dose (Gy), median 64 (50–78)

≦64Gy 313

>64Gy 254

Complete response

Yes 209

No 358

NLR, median 2.64 (0.60–31.67)

LDH (U/L), median 208 (83.0–617.0)

Neutrophils (109/L), median 4.8 (1.1–15.8)

the biochemical detector used in our hospital. The neutrophil
count ranged from 1.1 to 15.8 × 109/L, with a median of 4.8
× 109/L. The pretreatment NLR was calculated by the formula
of the neutrophil count divided by the lymphocyte count. The
median pretreatment NLR was 2.64, ranging from 0.60 to 31.67.
The ROC curve was used to determine the NLR and neutrophil
count thresholds to predict CR. The optimal cutoff values to
predict CR were 4.5 × 109/L and 3.25 for neutrophil count and
NLR, respectively. The LDH threshold was determined to be 220
U/L according to the upper limit of normal. Using these cutoff
values, we stratified the patients into different groups (LDH ≦

220 U/L vs. LDH>220 U/L and neutrophil ≦ 4.5 × 109/L vs.
neutrophil >4.5 × 109/L, respectively; as shown in Table 2). As
a result, 347 patients had a low level of LDH (≦ 220 U/L), and
220 patients had a high level of LDH (>220 U/L). Two hundred
and fifty-one patients had a low count of neutrophil (≦ 4.5 ×
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TABLE 2 | The association between levels of LDH and neutrophil and clinicopathological characteristics in patients with ESCC.

Characteristics LDH (U/L) Neutrophil (109/L)

≦220 >220 χ2 /t p ≦4.5 >4.5 χ2 /t p

Age (years) 0.637 0.425 2.2812 0.131

≦65y 187 (53.9) 111 (50.5) 123 (49) 175 (55.4)

>65y 160 (46.1) 109 (49.5) 128 (51) 141 (44.6)

Gender 0.190 0.663 10.231 0.001

Female 92 (26.5) 62 (28.2) 85 (33.9) 69 (21.8)

Male 255 (73.5) 158 (71.8) 166 (66.1) 247 (78.2)

Location 1.919 0.589 2.172 0.538

Cervical 19 (5.5) 18 (8.2) 13 (5.2) 24 (7.6)

Upper thoracic 79 (22.8) 46 (20.9) 60 (23.9) 65 (20.6)

Middle thoracic 205 (59.1) 131 (59.5) 146 (58.2) 190 (59.3)

Lower thoracic 44 (12.7) 25 (11.4) 32 (12.7) 37 (12.2)

T stage 2.166 0.539 35.330 <0.001

T1 6 (1.7) 3 (1.4) 5 (2.0) 4 (1.3)

T2 95 (27.4) 57 (25.9) 90 (35.9) 62 (19.6)

T3 82 (23.6) 64 (29.1) 75 (29.9) 71 (22.5)

T4 164 (47.3) 96 (43.6) 81 (32.3) 179 (56.6)

N stage 4.635 0.031 5.525 0.019

N0 83 (23.9) 36 (16.4) 64 (25.8) 55 (28.7)

N1 264 (76.1) 184 (83.6) 187 (74.2) 261 (71.3)

TNM stage 0.004 0.952 17.822 <0.001

I+II 146 (42.1) 92 (19.4) 130 (51.8) 108 (34.2)

III+IV 201 (57.9) 128 (45.2) 121 (48.2) 208 (65.8)

NLR 0.920 0.337 59.839 <0.001

≦3.25 239 (68.9) 143 (65.0) 212 (84.5) 170 (53.8)

>3.25 108 (31.1) 77 (35.0) 39 (15.5) 146 (46.2)

109/L), and 316 patients had a high count of neutrophil (>4.5
× 109/L). A high level of LDH was significantly associated with
the advanced N stage (p = 0.031), and neutrophil count was
significantly associated with gender (p= 0.001), T stage (p <

0.001), N stage (p = 0.019), clinical stage (p < 0.001), and NLR
(p < 0.001).

The Association Between LDH Level,
Neutrophil Count, and Treatment Outcome
Median follow-up was 67.4 months (95% CI, 56.6–73.4 months)
in this study cohort. The median OS was 16.4 months (95% CI,
15.3–18.5 months). We performed univariate and multivariate
analyses to identify the prognostic factors. Univariate analysis
showed that gender (p = 0.001), tumor location (p = 0.001), T
stage (p < 0.001), N stage (p < 0.001), treatment modality (p
= 0.002), LDH level (p = 0.010), neutrophil count (p < 0.001),
and NLR (p = 0.001) were associated with RFS. In the following
multivariate analysis, gender (p = 0.004), T stage (p < 0.001),
N stage (p = 0.005), treatment modality (p < 0.001), LDH level
(p = 0.007), and neutrophil count (p = 0.037) were found to
be independently associated with RFS (Table 3). Furthermore,
in the univariate analysis, gender (p= 0.001), tumor location (p
< 0.001), T stage (p < 0.001), N stage (p < 0.001), treatment

modality (p = 0.004), LDH level (p = 0.016), neutrophil count
(p < 0.001), and NLR (p < 0.001) were associated with overall
survival. In the multivariate analysis, gender (p = 0.006), T stage
(p < 0.001), N stage (p= 0.008), treatment modality (p < 0.001),
LDH level (p = 0.012), and neutrophil count (p = 0.038) were
still independently associated with overall survival (Table 4). The
prognostic impacts on overall survival of gender (p = 0.001),
treatment modality (p = 0.0037), T stage (p < 0.0001), N stage
(p = 0.0001), LDH level (p = 0.0158), and neutrophil count
(p < 0.0001) are shown in Figures 1A–F, respectively.

A New Prognostic Risk Scoring Model
Based on LDH Level and Neutrophil Count
We devised a new prognostic risk scoring (PRS) model based
on gender, treatment modality, T stage, N stage, LDH level,
and neutrophil count, which were identified as independent
prognostic factors in multivariate analysis for OS. In the PRS
model, patients with none or one to two of these poor prognostic
factors were scored as one (Group one), patients with three or
four of these poor prognostic factors were scored as two (Group
two), and patients with five or six of these poor prognostic factors
were scored as three (Group three). According to this PRSmodel,
patients were stratified into three groups with distinct prognosis,
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TABLE 3 | Univariate and multivariate analysis of clinical factors associated with Recurrence-Free Survival among patients with ESCC.

Variates Univariate analysis Multivariate analysis

HR (95%CI) χ2 p HR (95%CI) χ2 p

Gender 0.694(0.559–0.862) 10.870 0.001 0.717 (0.573–0.898) 8.444 0.004

Age 1.032 (0.857–1.243) 0.112 0.738

Location 1.258 (1.104–1.433) 11.925 0.001 3.536 0.316

Cervical Reference

Upper thoracic 1.171 (0.750–1.830) 0.482 0.488

Middle thoracic 1.331 (0.880–2.013) 1.832 0.176

Lower thoracic 1.474 (0.919–2.364) 2.597 0.107

T stage 1.479 (1.320–1.657) 45.647 0.000 27.225 0.000

T4 Reference

T1 0.386 (0.166–0.897) 4.890 0.027

T2 0.595 (0.462–0.765) 16.269 0.000

T3 0.563 (0.437–0.724) 20.028 0.000

N stage 1.799 (1.408–2.299) 22.011 0.000 1.449 (1.116–1.881) 7.755 0.005

RT dose 1.063 (0.883–1.280) 0.414 0.520

Treatment 0.749 (0.622–0.901) 9.346 0.002 0.628 (0.518–0.762) 22.314 0.000

LDH 1.280 (1.060–1.546) 6.589 0.010 1.304 (1.076–1.580) 7.317 0.007

Neutrophils 1.427 (1.182–1.723) 13.668 0.000 1.242 (1.013–1.522) 4.352 0.037

NLR 1.389 (1.142–1.688) 10.873 0.001 1.021 (0.825–1.264) 0.037 0.848

TABLE 4 | Univariate and multivariate analysis of clinical factors associated with Overall Survival among patients with ESCC.

Variates Univariate analysis Multivariate analysis

HR (95%CI) χ2 p HR (95%CI) χ2 p

Gender 0.695 (0.558–0.866) 10.536 0.001 0.727 (0.580–0.911) 7.648 0.006

Age 1.048 (0.868–1.265) 0.239 0.625

LocationCervical 1.274 (1.116–1.454) 12.887 0.000 Reference 3.534 0.316

Upper thoracic 1.154 (0.733–1.819) 0.383 0.536

Middle thoracic 1.319 (0.865–2.011) 1.650 0.199

Lower thoracic 1.471 (0.910–2.379) 2.481 0.115

T stage 1.525 (1.358–1.713) 50.716 0.000 32.151 0.000

T4 Reference

T1 0.367 (0.158–0.852) 5.443 0.020

T2 0.568 (0.439–0.735) 18.490 0.000

T3 0.527 (0.408–0.680) 24.268 0.000

N stage 1.799 (1.389–2.280) 20.741 0.000 1.430 (1.099–1.861) 7.077 0.008

RT dose 1.052 (0.871–1.270) 0.274 0.601

Treatment 0.758 (0.628–0.914) 8.360 0.004 0.638 (0.524–0.776) 20.177 0.000

LDH 1.265 (1.044–1.531) 5.772 0.016 1.283 (1.076–1.580) 6.278 0.012

Neutrophils 1.462 (1.208–1.771) 15.158 0.000 1.245 (1.012–1.532) 4.308 0.038

NLR 1.426 (1.171–1.738) 12.439 0.000 1.014 (0.8175–1.259) 0.016 0.899

with 42 (7.4%) patients in Group one, 415 (73.2%) patients in
Group two, and 110 (19.4%) patients in Group three. Themedian
OS time was 101.2 months in Group one, which was significantly
longer than 18 months in Group two and 10.05 months in Group
three (shown in Figure 2, χ2 = 67.94, p< 0.0001). Moreover, the
CR rate in Group one was significantly higher than that in Group
two and Group three (χ2 = 24.031, p < 0.0001). Twenty-three
(54.8%) patients achieved CR in Group one, 166 (40%) patients

achieved CR in Group two, and 20 (18.2%) patients achieved CR
in Group three.

DISCUSSION

For patients with ESCC treated with surgery, TNM stage
classification acts as the most important prognostic factor
for many years. However, TNM stage classification seemed
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FIGURE 1 | Kaplan-Maier survival curves of overall survival of ESCC patients treated with radiotherapy stratified according to different prognostic factors. (A) Patients

were stratified by gender. (B) Patients were stratified by treatment modality (RT vs. CCRT). (C) Patients were stratified by T stage (T4 stage vs. T1-3 stage). (D)

Patients were stratified by N stage (N1 vs. N0 stage). (E) Patients were stratified by LDH level (LDH > 220 U/L vs. LDH _220 U/L). (F) Patients were stratified by

neutrophil count (neutrophil >4.5G/L vs neutrophil ≤4.5G/L).

not sufficient to present enough prognostic information
for patients treated with definitive radiotherapy (27). There
could be some other factors impacted on the prognosis
of patients who received definitive radiotherapy. Thus,
identification of other new prognostic factors could
allow a better prediction for treatment outcome. To
further explore prognostic factors to identify patients with
different prognosis, more easily available prognostic factors
are warranted.

Neutrophil count and LDH both routinely detected the
hematological index and were easily available in our clinical
practice. Previous studies have investigated the prognostic
value of LDH level, neutrophil count, and NLR in many solid
tumors (10, 21, 24). However, there was no investigation
about the role of the LDH level combined with neutrophil
count or NLR in the prognosis of ESCC patients treated with

radiotherapy. This study aimed to investigate the prognostic
value of the LDH level, neutrophil count, and NLR in ESCC
patients treated with radiotherapy. What is more, for the
first time, we established a new risk prognostic scoring
model based on the baseline LDH level and neutrophil
count, which stratified patients into three groups with
different prognosis.

According to previous studies, systemic inflammation was an
enabling characteristic for cancer development and promoted
tumor progression by affecting the response to systemic
therapies (6, 28). NLR, determined by the neutrophil count
and lymphocyte count, was suggested to reflect the systemic
inflammatory responses (29). Previous study has reported
that NLR could serve as a prognostic indicator for survival
in EC (30). An investigation that enrolled a relatively large
population of ESCC patients from Chen et al. (31) revealed
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FIGURE 2 | Kaplan-Maier survival curves of overall survival of ESCC patients

treated with radiotherapy stratified according to a new prognostic risk scoring

(PRS) model.

that pretreatment elevated NLR was significantly associated
with an advanced clinical stage and reduced OS. Moreover,
elevated NLR was an independent prognostic indicator for OS
in patients receiving chemoradiotherapy but not those receiving
surgery. Interestingly, in this present study, multivariate
analysis showed that NLR was not an independent prognostic
indicator for RFS and OS in ESCC patients treated with
radiotherapy. However, increased neutrophil was significantly
associated with advanced T stage, N stage, clinical stage,
and poor OS in ESCC patients treated with radiotherapy.
One possible explanation is that tumor microenvironment is
influenced by neutrophils themselves, but NLR is affected
by lymphocyte count and couldn’t reflect changes in the
tumor microenvironment. Another possibility is that NLR and
neutrophil count interact with each other in the modeling
stats. When combined with other prognostic factors in
multivariate analysis, neutrophil count had stronger predictive
ability compared with NLR. Based on the results, pretreatment
neutrophil count might be more appropriate to be used as
a prognostic factor than NLR and could be a useful baseline
indicator to predict the outcome for ESCC patients treated
with radiotherapy.

Growing evidence has showed that neutrophilia can occur in
cancer patients. Moreover, neutrophils are thought to promote
angiogenesis and tumor growth, degrade the extracellular matrix,
provide favorable conditions for metastasis, and potentiate
genome instability and tumor evolution (29). Neutrophils can
also be localized to the tumor to establish tumor-associated
neutrophil (TAN), resulting in treatment resistance and cancer
development (15). In this study, we explored the optimal cutoff
value of neutrophil count using the ROC curve analysis to predict
CR in ESCC patients treated with radiotherapy and found that
patients with high neutrophil count had poor RFS and OS,
indicating that increased neutrophil count may be a predictor for
poor radiosensitivity.

According to previous studies, an elevated level of LDH
isoforms is more common inmalignant tumors than normal cells
(32). The increased LDH level could promote tumor progression
by regulating the tumor metabolism and microenvironment and
acts as a poor prognostic indicator for cancer patients (32, 33).
A meta-analysis investigating the prognostic value of the LDH
level in solid tumors showed that a high LDH level is associated
with poor survival in melanoma, gastric, lung cancer, prostate,
and renal cell carcinomas (34). Recently, a high LDH level has
been demonstrated to effectively predict the response to cancer
treatment, such as chemotherapy (11), anti-angiogenetic agents
(35), and checkpoint immunotherapy (22, 24) in various cancers.
The prognostic role of the LDH level was also investigated
in ESCC patients who underwent curative treatment in the
study from Wei et al. (23). However, the study included
patients treated with surgery or chemoradiotherapy, which led
to treatment bias. In this present study, we only included the
ESCC patients treated with radiotherapy and demonstrated that
an elevated LDH level was an indicator for poor prognosis in
the setting.

Several limitations were inevitable in our study. First,
the retrospective nature of this study led to selection bias
and potential confounding biases. Second, there were some
other prognostic factors influencing the level of LDH and
neutrophil count such as infectious diseases, which could
not be stratified in our retrospective study, and thus the
implication of the LDH level and neutrophil count on the
prognosis of ESCC patients treated with radiotherapy should be
further investigated in a carefully designed study. Third, some

patients who cannot tolerate concurrent chemoradiotherapy
were treated with radiotherapy only, leading to treatment

selection bias. Thus, we performed multivariate analysis to

identify independent prognostic factors. Finally, the conclusions
were based on only a small number of 567 patients treated with
radiotherapy. It is inappropriate to extrapolate to the patients in
a trimodality setting.

In conclusion, we provided an investigation about the
prognostic significance of the LDH level and neutrophil count in
ESCC patients treated with radiotherapy and the optimal cutoff
value to predict the response to radiotherapy. Furthermore, we
demonstrated that a high level of LDH and neutrophil count
were associated with poor prognosis in ESCC patients, and
proposed a prognostic risk scoring model based on the LDH level
and neutrophil count to help estimate the prognosis for ESCC
patients for the first time.
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Purpose: to predict the occurrence of late subcutaneous radiation induced fibrosis (RIF)

after partial breast irradiation (PBI) for breast carcinoma by using machine learning (ML)

models and radiomic features from 3D Biologically Effective Dose (3D-BED) and Relative

Electron Density (3D-RED).

Methods: 165 patients underwent external PBI following a hypo-fractionation protocol

consisting of 40 Gy/10 fractions, 35 Gy/7 fractions, and 28 Gy/4 fractions, for 73, 60, and

32 patients, respectively. Physicians evaluated toxicity at regular intervals by the Common

Terminology Adverse Events (CTAE) version 4.0. RIF was assessed every 3 months after

the completion of radiation course and scored prospectively. RIF was experienced by 41

(24.8%) patients after average 5 years of follow up.

The Hounsfield Units (HU) of the CT-images were converted into relative electron density

(3D-RED) and Dose maps into Biologically Effective Dose (3D-BED), respectively. Shape,

first-order and textural features of 3D-RED and 3D-BED were calculated in the planning

target volume (PTV) and breast. Clinical and demographic variables were also considered

(954 features in total). Imbalance of the dataset was addressed by data augmentation

using ADASYN technique. A subset of non-redundant features that best predict the

data was identified by sequential feature selection. Support Vector Machines (SVM),

ensemble machine learning (EML) using various aggregation algorithms and Naive Bayes

(NB) classifiers were trained on patient dataset to predict RIF occurrence. Models were

assessed using sensitivity and specificity of the ML classifiers and the area under the

receiver operator characteristic curve (AUC) of the score functions in repeated 5-fold

cross validation on the augmented dataset.

Results: The SVM model with seven features was preferred for RIF prediction and

scored sensitivity 0.83 (95% CI 0.80–0.86), specificity 0.75 (95% CI 0.71–0.77) and

124
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AUC of the score function 0.86 (0.85–0.88) on cross-validation. The selected features

included cluster shade and Run Length Non-uniformity of breast 3D-BED, kurtosis and

cluster shade from PTV 3D-RED, and 10th percentile of PTV 3D-BED.

Conclusion: Textures extracted from 3D-BED and 3D-RED in the breast and PTV can

predict late RIF and may help better select patient candidates to exclusive PBI.

Keywords: radiomics, radiotherapy, machine learning, breast cancer, fibrosis

INTRODUCTION

Subcutaneous radiation induced fibrosis (RIF) is characterized
by a progressive induration and thickening of the subcutaneous
tissues and is one of the late adverse effects of breast radiotherapy
(RT) mostly affecting cosmesis. It is a dose dependent and
slowly progressive side effect originating from a proliferative
response of surviving fibrocytes to growth factors (e.g., the
transforming growth factor β (TGF-β), released in response to
tissue injury) (1).

The available tools to predict late subcutaneous fibrosis in
patients treated with RT are of limited quality. Models to predict
Normal Tissue Complication Probability (NTCP) for RIF after
breast RT have been first fitted to published data of rates of
incidence from whole breast irradiation (WBI) (2). Later, models
for NTCP of RIF have been refined by including dose volume data
from simulated dose distributions of WBI (3) and partial breast
irradiations (PBI) (4).

Quantitative analysis of medical images could provide
information about intensity, shape, size or volume, and texture
of tumor or organs at risk that is distinct or complementary
to that provided by other data sources (5). Recently, the
combination of quantitative analysis of radiological images with
Machine Learning (ML) methods, also known as “radiomics,”
has been applied also to predict side effects of RT such as
lung-injury following Stereotactic Body RT (SBRT) for lung
cancer (6), gastrointestinal and genitourinary toxicities (7) and
xerostomia (8).

Other 3D information, as dose distribution delivered in RT
calculated on pre-treatment Computer Tomography (CT), can be
integrated in the radiomics analysis. The textural analysis of dose
distribution could provide more detailed spatial information on
the 3D dose distribution: it attempts to extract spatial features
from dose distribution to predict RT response instead of dose-
volume histogram (DVH) typically used in NTCP models.
Dosiomics, or integration of dose features from the irradiated
lung, has shown to be predictive of radiation pneumonitis with
higher accuracy than DVH-based NTCP models (9).

The purpose of the present work is to develop a model
to improve the accuracy of prediction of RIF by integrating
data from pre-treatment CT, 3D dose distribution and clinical
variables. For this purpose, we developed a ML classifier, that
is, a predictive model assigning an unseen patient to one of
two possible classes: patient with or without RIF during follow-
up. Our study is the first, to the best of our knowledge, to
derive a classifier for RIF which includes radiomic variables and
individual dose data using ML algorithms.

METHODS

Patient Data
One hundred sixty-five patients treated with breast

conservative surgery for an early stage ductal carcinoma
who underwent external PBI were retrospectively analyzed.
Patient characteristics, with results of univariate statistical tests

to investigate correlation with RIF, are shown in Table 1. All
patients underwent a complete free breathing pre-treatment

planning CT to include all the organs at risk (OAR), according

to the RTOG 0413 protocol (10). CTs were acquired with a
GE Lightspeed RT (GE Medical Systems, Waukesha, WI) or

a Toshiba Aquilion LB (Toshiba Medical Systems Europe,

Zoetermeer, the Netherlands) using 120 kVp, 215–300mAs
5mm slice thickness, and voxel size ranging from 0.977 to
1.074 mm.

The clinical target volume (CTV) consisted of the
lumpectomy cavity, identified by the post-surgery seroma
or by the surgical clips, uniformly expanded by 15mm, limited
to 5mm from the skin surface and 5mm from the lung-chest
wall interface. The planning target volume (PTV) was calculated
from the CTV using uniform 3D expansion of 1 cm, then it
was limited to exclude the part outside the ipsilateral breast, the
first 5mm of tissue under the skin and the expansion beyond
the posterior extent of breast tissue. Breast tissue visible on the
pre-treatment planning CT was outlined, according to the RTOG
“Breast Cancer Atlas for Radiation therapy planning: consensus
definition” (11).

Patients were treated following a hypo-fractionation protocol
(12) designed using iso-effective doses for subcutaneous RIF
based on NTCP models (4). The hypofractionation schemes
consisted of 40Gy in 10 fractions (73 patients), 35Gy in 7
fractions (60) and 28Gy in 4 fractions fractions. The RT
technique consisted of “field-in-field” planning (forward-planned
intensity modulated RT) (14) using multiple planar and non-
coplanar 6-MV photon beams, and delivered by a Trilogy linear
accelerator equipped with a kV on-board imager system and
a 120-leaves Millennium multi-leaf collimator (Varian Medical
Systems, Palo Alto, CA, US).

All treatments were developed using the Eclipse treatment
planning system (Varian Medical), and dose calculations were
carried out using the anisotropic analytical algorithm (AAA)with
a grid resolution of 2.5mm, taking into account heterogeneity
correction. The CT scan, dose matrix and Region Of Interest
(ROI) contours were exported in a DICOM format.

Physicians evaluated toxicity at regular intervals by the
Common Terminology Criteria for Adverse Events (CTCAE)
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TABLE 1 | Patients characteristics with statistical tests to investigate correlation

with RIF.

Categorical variable Patients (%) p-value (Chi-square test)

Number of patients 165 (100)

No RIF 124 (75.2)

RIF Grade 1 26 (15.7)

RIF Grade 2 12 (7.3)

RIF Grade 3 3 (1.8)

RIF any grade 41 (24.8)

Tumor histology

Ductal 155 (93.9) 0.540

Lobular 10 (6.1)

Laterality

Left 73 (44.2) 0.3651

Right 92 (55.8)

Quadrant (cm)

Upper, outer 80 (48.5.3) 0.056

Upper, inner 32 (19.4)

Lower, outer 15 (9.1)

Lower, inter 23 (13.9)

Central 15 (9.1)

Comorbidity

No 112 (67.9) 0.658

Yes 53 (32.1)

Fractionation regimen

40 Gy/10 fx 73 (44.2) 0.5396

35 Gy/7 fx 60 (36.4)

28 Gy/4 fx 32 (19.4)

Chemotherapy

No 152 (92.1) 0.064

Yes 13 (7.9)

Hormone therapy

No 51 (30.9) 0.793

Yes 114 (69.1)

Continuous variable Average (95% CI) p-value (Wilcoxon test)

Age (years) 69.8 (61.0–82.9) 0.611

Pathological tumor size (mm) 12.1 (4–25) 0.552

Follow-up (months) 60.2 (17.2–82.9) 0.384

(version 4.0). Clinical and demographic variables, age, presence
of comorbidities (diabetes and rheumatological disorders),
tumor histology, laterality and quadrant, administration of
chemotherapy and hormone therapy, were considered (954
features in total). The presence of RIF of any grade (grade 1
or more) was assessed every 3 months after the completion of
radiation course and scored in a prospective database. Forty-
one (24.8%) patients experienced RIF after average 5 years of
follow up. Fibrosis of grade 1, 2, and 3 occurred in 26, 12, and
3 patients, respectively. The maximum toxicity score (Grade 4)
was not recorded during follow up.

Radiomic Analysis of BED and RED
Prior to the calculation of radiomic features, resampling to
isotropic voxel size was applied to have standardized voxel
spacing across the cohort (15). For example, all CT images were
resampled to 3× 3× 3mm3 (16). Voxel intensities were grouped

into 64 equally spaced bins to reduce image noise and normalize
intensities across all different patients.

In order to remove dependency on the Hounsfield scale
used by the two scanners (17), the images were converted from
Hounsfield Units to electron density relative to water (3D-
RED) using the Hounsfield Units—RED conversion scales of the
CTs (Figure 1) as measured on phantom on each CT scanner.
Since patients were treated with different fractionation schemes,
the 3D dose distributions were converted into 3D Biologically
Effective Dose (3D-BED) using the number of fractions of the
treatment, and an assumed value of α/β of 3Gy, typical of late-
responding tissues as subcutaneous tissue, which has also been
used to model RIF (2, 18). A total of 21 shapes, 57 radiomic
and 57 dosimetric textural features were calculated from the PTV
and breast volume in the 3D-RED and 3D-BED. The radiomic
features were calculated following definitions and nomenclature
from the Image Biomarker Standardization Initiative (IBSI) (19)
using an in-house Matlab code. The in-house code had been
previously validated by comparing its results with the Ibex open
source software (20). The same features were also calculated
after application of one between Gaussian, Laplacian of Gaussian
(LoG), or Median filtering to 3D-RED and 3D-BED. The clinical
variables follow up, age, tumor location, pathological tumor size,
chemo and hormone therapy, were also collected and included in
the analysis, so that the variables were 954 in total. A common
problem in application of ML classifiers is that some classes have
a significantly higher number of examples, a problem which is
referred to as class imbalance. The effect of imbalanced datasets
on ML performance is detrimental (21, 22), and there are two
methods for overcoming this issue, namely under-sampling and
over-sampling, of which the latter has been proven to be more
effective in ML (21).

We then applied the Adaptive Synthetic Sampling Method
for Imbalanced Data (ADASYN) over-sampling technique (23),
an improved variant of the Synthetic Minority Over-sampling
Technique (SMOTE), which generates synthetic data points by
interpolating new feature values between the minority instance
and its neighbors, according to the Euclidean distance, in the
feature space. In ADASYN, the new minority samples are
generated using a density distribution based on the number of
out-of-class neighbors so that a minority instance surrounded
by more out-of-class instances is considered hard-to-train, and
is thus given a higher probability to be augmented (24).

ADASYN was applied to the level that the imbalance was
completely eliminated, resulting in an augmented dataset of
252 patients, of which 50% had late RIF. All the analysis was
performed using Matlab (Mathworks, Natick, MA).

ML Models
The occurrence of RIF in patients was converted into a binary
outcome, positive for patients who experienced any grade (one
or more) of RIF, and negative for patients who did not experience
RIF during follow up.

The ML process includes two phases (5). First, to prevent
overfitting, prior to applying ML classification, Stepwise forward
feature selection was used to select a subset of variables best suited
to predict late fibrosis. In Stepwise feature selection, terms from a
generalized linear model are removed or added in order to find
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FIGURE 1 | Axial views of 3D-BED and 3D-RED in a patient who did not experience late RIF (A) and one who developed late RIF during follow up (B).

the subset of variables in the data set resulting in the smallest
model with lowest prediction error (25).

Forward stepwise selection is a wrapper method of feature
selection, that is, a method which uses a learning technique,
in our case a generalized linear model (GLM), to evaluate the
importance of the features. Forward selection starts with an
empty model. Then at each iteration, the single feature that best
improves the fit of the GLM according to a specified criterion
is determined (26). As a criterion we used the deviance of the
values predicted by the GLM from the test data in a 5-fold
cross validation. This is repeated until a best subset predictors
(features) are selected.

In order to choose a proper number of variables, the
process was initially performed with 4 variables allowed in
the feature selection, then repeated with increasing number
of variables.

After feature selection, the following binary ML classifiers
were applied to the dataset to predict RIF:

1) SVM, which, by means of a kernel function, projects the
data into a higher-dimensional feature space and determine
a hyperplane in this feature space which separates data points
into two categories (27). During the optimization, the proper
box constraint level and kernel scale are chosen.

2) Ensemble machine learning (EML) which aggregates multiple
learners into a single learner. Decision Trees were used as
weak learners (5). During training, the best ensemble EML
algorithm is selected between Random forests, Adaptive
Logistic Regression and various boosting algorithms:
Adaptive, Gentle, and Random Undersampling boosting (28)
as well as the optimal number of learning cycles, learning
rate, and minimum leaf size.

3) Naïve-Bayesian (NB) classifier which calculates the
probability of each class assuming the conditional
independence of the attributes using the Naive Bayes
formula. A new instance is classified into the class with
maximum calculated probability (29, 30). The optimizer also

TABLE 2 | Features selected to predict late fibrosis.

Image

(3D-RED/

3D-BED)

Filter ROI Variables Wilcoxon-Mann–

Whitney test

p

3D-BED LoG Breast Cluster shade 0.1389

3D-BED LoG Breast RLN 0.0084

3D-RED None PTV Kurtosis 0.0238

3D-RED Gaussian PTV Range 0.1021

3D-RED Gaussian PTV Cluster shade 0.6687

3D-BED Gaussian PTV 10th Percentile 0.0054

3D-BED LoG PTV Variance 0.1624

LoG, Laplacian of Gaussian filter; RLN, run length non-uniformity.

searches the best type of probability distribution (Gaussian or
Kernel) and width of the kernel function.

Themodel to predict the occurrence of RIF was chosen according
to the following criteria. First, the performance of the models
was evaluated by calculating the average and 95% confidence
intervals of sensitivity and specificity of the classifier and the
AUC of the score function used by the classifiers in a 5-fold
cross validation repeated 500 times in the augmented dataset.
Finally, the sensitivity, specificity, and AUC were recalculated on
the original, non-augmented dataset.

The models were required to have at least sensitivity and
specificity of 0.75, and AUC of the model score of 0.85. Second,
models were required to provide a realistic description of
occurrence of RIF vs. BED variables. For this purpose, the
score used by the best performing models to predict RIF was
calculated vs. variables from 3D-BED variables. For biological
consistency, models were required to have a continuously
monotonic response to increasing dose. Models with non-
monotonically increasing dose response were discarded, as this
would imply that two different doses can lead to the same risk of
side effects and that increasing dose could reduce the risk (31).
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TABLE 3 | Performances of different models as a function of increasing number of variables allowed.

Model Number of

variables

Cross-validation in the augmented dataset, with

95% CI

Original (non-augmented) dataset

Sensitivity Specificity AUC Sensitivity Specificity AUC

SVM 4 0.77 (0.74–0.80) 0.69 (0.66–0.71) 0.80 (0.79–0.81) 0.68 0.70 0.78

5 0.82 (0.79–0.84) 0.68 (0.65–0.71) 0.83 (0.82–0.84) 0.73 0.66 0.81

6 0.85 (0.83–0.87) 0.71 (0.68–0.73) 0.85 (0.84–0.86) 0.81 0.73 0.84

7 0.83 (0.80–0.86) 0.75 (0.71–0.77) 0.86 (0.85–0.88) 0.81 0.77 0.86

8 0.84 (0.81- 0.87) 0.76 (0.73–0.78) 0.88 (0.87–0.88) 0.83 0.81 0.89

EML 4 0.78 (0.73–0.84 0.73 (0.68–0.78) 0.83 (0.80–0.85) 1.00 1.00 1.00

5 0.84 (0.79–0.88) 0.73 (0.69–0.78) 0.87 (0.84–0.90) 1.00 1.00 1.00

6 0.86 (0.81–0.89) 0.77 (0.73–0.82) 0.87 (0.85–0.90) 1.00 1.00 1.00

7 0.87 (0.82–0.91) 0.78 (0.73–0.84) 0.91 (0.88–0.93) 1.00 1.00 1.00

8 0.89 (0.84–0.94) 0.78 (0.73–0.81) 0.92 (0.90–0.94) 1.00 1.00 1.00

NB 4 0.88 (0.84–0.91) 0.44 (0.41–0.47) 0.65 (0.63–0.68) 0.90 0.46 0.71

5 0.92 (0.90–0.93) 0.44 (0.42–0.47) 0.82 (0.81–0.83) 0.90 0.45 0.71

6 0.91 (0.88–0.92) 0.47 (0.45–0.49) 0.82 (0.81–0.83) 0.90 0.46 0.71

7 0.89 (0.86–0.91) 0.40 (0.35–0.43) 0.78 (0.76–0.81) 0.90 0.45 0.71

8 0.95 (0.94–0.95) 0.36 (0.34–0.38) 0.80 (0.78–0.82) 0.90 0.45 0.71

For each model and number of variables, the specificity and sensitivity of the classifier and the AUC with 95% CI calculated in repeated cross-validation are reported, as well as the

specificity, sensitivity and AUC in the original (non-augmented) dataset.

RESULTS

The variables selected for ML are shown in Table 2. Two were
textural variables of 3D-BED from the breast, cluster shade and
Run Length Non-uniformity (RLN) after application of LoG
filter, two were histogram (kurtosis and range) and one textural
(Gray Level Co-occurrence Matrix Cluster shade) features (19)
from the 3D-RED in the PTV and two histogram (10th percentile
and inverse variance) variables of 3D-BED in the PTV. Among
these, three variables (RLN of 3D-BED in breast, kurtosis of
3D-RED in PTV, 10th percentile of 3D-RED in PTV) were
significantly correlated with occurrence of RIF according to
the Wilcoxon-Mann-Whitney test for independent samples. No
clinical variable was selected in the model.

EML with Adaptive Boosting was the best performing model
for any number of variables, and it scored anAUCof the radiomic
signature of 0.87 (0.85–0.90) with only 6 variables. SVM was
the second best performing classifier as it achieved acceptable
scores with 7 variables, while Native Bayes gave generally poor
performance in terms of specificity (Table 3).

To interpret the features, their values were investigated in the
two subsets of patients having extreme values of the function
score. These patients were chosen as the 5% with the lowest score
function among those without RIF, and the 5% with the highest
score function of those who had RIF. Their features are shown in
Table 4.

The score functions of the SVM and EML classifiers, were
plotted against the 10th percentile of 3D-BED in the PTV for
two values of kurtosis, that is, the average values of the patients
at low and high risk of RIF, with the other features fixed at their
average values among all the patients (Figure 2). The EMLmodel
was then discarded, as it showed a non-monotonically increasing
dose-score function. The 7 variables SVM, scoring sensitivity

0.83 (95% CI 0.80–0.86), specificity 0.75 (95% CI 0.71–0.77) and
AUC of the score function 0.86 (0.85–0.88) on cross-validation,
was chosen as the preferred model. The model had sensitivity,
specificity and AUC of 0.81, 0.77, and 0.86 respectively in the
original dataset.

DISCUSSION

SupervisedMLmethods have been increasingly used inmedicine,
especially in the field of radiomics (32) to identify patients as
responders or not responders but also to predict side effects
in OARs (13, 13, 27). They are prone to overfitting, an event
in which the model will better reflect noise in the image than
the data themselves (33). Hence, careful feature selection and
validation must be performed to tackle this limitation. In our
results, EML is an example of ML models which overfitted the
data, as it provided the best performance on repeated cross-
validation for any number of variables, but produced unrealistic
dose-response (Figure 2A) which was notmonotonic. It was then
discarded in favor of the SVM, whose score was monotonically
increasing as a function of dose (Figure 2B). SVM models are
more robust to overfitting than other ML methods such as
decision trees (34), because they tolerate some points on the
wrong side of the hyperplane, thus improving model robustness
and generalization (5). Because the AUC of the SVM model of
0.86 on the non-augmented dataset is considered excellent (35)
and, as the sum of sensitivity and specificity is 1.58, larger than
1.5, the model fulfills the rule of thumb for being useful of a
clinical test (36), it can be used to stratify patients according to
the risk of subcutaneous RIF.

To the best of our knowledge, this is the first study
using radiomic features extracted from dose distribution after
conversion to 3D-BED, which was necessary since our patients
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TABLE 4 | Values of radiomic variables of the patients with low (A) and high (B) risk of RIF.

Image: 3D-BED 3D-BED 3D-RED 3D-RED 3D-BED 3D-BED 3D-BED

Filter: Log LoG None Gaussian Gaussian Gaussian LoG

ROI: Breast Breast PTV PTV PTV PTV PTV

Feature: Cluster shade RLN Kurtosis Range Cluster shade Percentile area 10 Variance

(A)

Patient:

1 −22517 0.58 441.8 3.6 15.2 91.0 0.31

2 −8696.7 0.55 50.7 0.47 −2250.1 74.8 0.43

3 −4993.3 0.62 320.5 1.64 410.6 87.3 0.42

4 −32445.8 0.59 64.2 0.66 −714.9 80.4 0.38

5 −17231.7 0.60 176.7 1.83 400.1 88.4 0.43

6 −10022.4 0.47 15.7 0.90 −2546.9 65.6 0.41

7 35401.4 0.63 92.4 0.64 131.1 90.4 0.39

8 −5332.1 0.54 19.8 0.52 −9583.5 52.41 0.41

Average: −8229.7 0.57 147.7 1.28 −1767.3 78.8 0.40

(B)

Patient:

1 −18557.7 0.62 19.9 0.75 −3129.0 82.2 0.44

2 −3426.54 0.60 23.4 0.71 −2300.7 84.7 0.48

3 −53664.9 0.70 13.5 0.65 −3202.5 82.3 0.43

4 −80106.7 0.51 1.9 0.19 539.1 94.0 0.47

5 −29002.7 0.57 15.9 0.56 −6021.6 84.8 0.44

6 −29432.7 0.58 18.1 0.70 −1762.5 81.0 0.46

7 −10230.9 0.63 17.1 0.71 −2367.8 88.7 0.47

Average −32060.3 0.60 15.7 0.61 −2606.4 85.4 0.46

These were defined as the 5% patients without RIF and with the lowest function score and the 5% patients with RIF with the highest function score, respectively.

FIGURE 2 | Score function of EML (A) and SVM (B) used to classify patients vs. 10th percentile of 3D-BED in the PTV. The curves are calculated for values of kurtosis

typical of patients at low and high risk of RIF, chosen as average of kurtosis in the 10 patients without RIF with lowest score (blue lines) and in 10 patients with RIF with

highest score (red lines).

had different fractionation schemes. As the BED variables
were the most correlated with RIF, our analysis confirms that
radiation-induced RIF is governed by BED calculated with α/β
= 3Gy to the whole breast and to the high dose region, the

PTV. This result is in agreement with previous clinical findings
showing that fibrosis is related to dose and dose per fraction (18).
On the other hand, a correlation between RIF and maximum
dose has been observed in clinical data for both WBI (37) and
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PBI (38). RIF after PBI has been related to minimum PTV
dose (39).

The features that were most correlated with RIF were BED
features10th percentile and variance in the PTV and RLN of the
breast, cluster shade to both PTV and breast.

Among the BED features, the 10th percentile in PTV is a
descriptor of the minimum BED to the PTV, and describes the
dependency of fibrosis on the lowest fractionation-corrected dose
covering at least 90% of PTV. Cluster shade of BED in the PTV
describes asymmetry of the GLCM. A larger module of cluster
shade implies large GLCM asymmetry (19), which means that
there are regions in the PTV with large differences in BED from
their neighbors and may be related to the presence of hot spots in
the PTV. Of note, if a PTV is close to the patient’s surface, like in
Figure 1B, there is a sudden change of dose in the build-up region
which may increase cluster shade of BED. These associations are
confirmed by larger variance of BED to the PTV in patients with
RIF (Table 4).

RLN of BED in the breast describes the similarity among run
lengths, defined as the lengths of consecutive voxels having the
same dose value in a specified direction, in number of voxels (19)
throughout the breast. RLN is related to homogeneity of dose,
and lower values indicate more homogeneity among run lengths
in the image. In our results patients without RIF had lower RLN
of BED (more inhomogeneity). This may be due to larger “out-
of-field” areas of the breast in patients less at risk of fibrosis
(Figure 1A) that, being irradiated with low, uniform doses from
scattered radiation, tend to have larger runs of voxels with the
same values of dose from scattered radiation. An example of
this situation can be observed in Figure 1A, and suggests that
a steep dose gradient outside of the PTV may be beneficial to
prevent fibrosis.

These findings indicate that the radiomic BED variables show
that higher BED and presence of hot spots of BED in the PTV,
as well as higher volumes receiving intermediate doses out of the
PTV, as in Figure 1B, are related to occurrence of fibrosis.

The hypothesis underlying the application of radiomics to
predict side effects in OARs is that a patient who is more at
risk of side effect has a particular appearance of the organ at
risk in pretreatment CT from the patient at lower risk. Often,
these models are still perceived as “black boxes,” meaning that
it is difficult to determine how they arrive at their predictions,
which impairs their use by clinicians as part of their clinical
practice (40, 41). To address this issue, we provide interpretation
of the radiomic features that are selected by the models. In
our results, it was found that 3D-RED kurtosis in the PTV
was correlated with a higher risk for RIF. Because kurtosis
describes inhomogeneity of the electron density of the breast, the
patients with more inhomogeneous breast (small kurtosis) are

more sensitive, that is, have higher function score for all dose
values (Figure 2). Fat, which is radiolucent, appears dark on a
CT, while epithelial and stromal tissue appear radiodense and
may represent connective tissues (42, 43). Senescence may in the
human mammary epithelium be at the origin of RIF (44) and
RT may have a more pronounced effect on stroma (42). Thus, an
already dense breast could be more prone to developing fibrosis.
As younger patients have more inhomogeneous breast, this result
seems in agreement with studies reporting worse cosmetic results
in young patients [e.g., (45)], who typically have a denser breast.
In our results, however, fibrosis was not correlated with age,
neither kurtosis (Pearson correlation p = 0.28). This lack of
correlations with age could be due to the limited range of age
of our patients (95%CI 61.0–82.9 years), that do not include
younger (<50) patients. The relationship of fibrosis and radiomic
features from CT of the breast with age therefore could be the
subject of future investigation.

CONCLUSION

The models implemented show that radiomic and dose textural
variables extracted from the breast and PTV volumes after
correction for fractionation and CT density scale can predict RIF
and may help better select patients candidate to exclusive PBI.
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8. Gabryś HS, Buettner F, Sterzing F, Hauswald H, Bangert M. Design

and selection of machine learning methods using radiomics and

dosiomics for normal tissue complication probability modeling

of xerostomia. Front Oncol. (2018) 8:35. doi: 10.3389/fonc.2018.

00035

9. Liang B, Yan H, Tian Y, Chen X, Yan L, Zhang T, et al. Dosiomics:

extracting 3D spatial features from dose distribution to predict incidence

of radiation pneumonitis. Front Oncol. (2019) 9:269. doi: 10.3389/fonc.2019.

00269

10. Trovo M, Avanzo M, Vinante L, Furlan C, Fiorica F, Perin T, et al. Seven

fractions to deliver partial breast irradiation: the toxicity is low. Radiat Oncol.

(2017) 12:86. doi: 10.1186/s13014-017-0825-9

11. The Radiation Therapy Oncology Group (RTOG) Contouring Atlases. Available

online at: https://www.rtog.org/CoreLab/ContouringAtlases.aspx

12. Avanzo M, Trovo M, Stancanello J, Jena R, Roncadin M, Toffoli G, et al.

Hypofractionation of partial breast irradiation using radiobiological

models. Phys Med. (2015) 31:1022–8. doi: 10.1016/j.ejmp.2015.

08.016

13. Ospina JD, Zhu J, Chira C, Bossi A, Delobel JB, Beckendorf V,

et al. Random forests to predict rectal toxicity following prostate

cancer radiation therapy. Int J Radiat Oncol Biol Phys. (2014) 89:1024–

31. doi: 10.1016/j.ijrobp.2014.04.027

14. Haciislamoglu E, Colak F, Canyilmaz E, Dirican B, Gurdalli S,

Yilmaz AH, et al. Dosimetric comparison of left-sided whole-breast

irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT,

helical tomotherapy, and volumetric arc therapy. Phys Med. (2015)

31:360–7. doi: 10.1016/j.ejmp.2015.02.005

15. Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics

model from joint FDG-PET and MRI texture features for the

prediction of lung metastases in soft-tissue sarcomas of the extremities.

Phys Med Biol. (2015) 60:5471–96. doi: 10.1088/0031-9155/60/

14/5471

16. Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee

SW, et al. Radiomic phenotype features predict pathological

response in non-small cell lung cancer. Radiother Oncol. (2016)

119:480–6. doi: 10.1016/j.radonc.2016.04.004

17. Lamba R, McGahan JP, Corwin MT, Li C, Tran T, Seibert JA, et al.

CT hounsfield numbers of soft tissues on unenhanced abdominal CT

scans: variability between two different manufacturersâ€TM MDCT

scanners. Am J Roentgenol. (2014) 203:1013–20. doi: 10.2214/AJR.12.

10037

18. Johansson S, Svensson H, Denekamp J. Dose response and

latency for radiation-induced fibrosis, edema, and neuropathy

in breast cancer patients. Int J Radiat Oncol Biol Phys. (2002)

52:1207–19. doi: 10.1016/S0360-3016(01)02743-2

19. Zwanenburg A, Leger S, Vallières M, Lock S. The Image Biomarker

Standardisation Initiative for. Image biomarker standardisation initiative.

arXiv e-prints. arXiv:1612.07003v11 (2016).

20. Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX:

an open infrastructure software platform to facilitate collaborative

work in radiomics. Med Phys. (2015) 42:1341–53. doi: 10.1118/1.

4908210

21. Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance

problem in convolutional neural networks. arXiv e-prints. arXiv:1710.05381

(2017). doi: 10.1016/j.neunet.2018.07.011

22. Lemaitre G, Nogueira F, Aridas CK. Imbalanced-learn: a python toolbox to

tackle the curse of imbalanced datasets in machine learning. arXiv e-prints.

arXiv:1609.06570 (2016) .

23. Haibo He, Yang Bai, E. A. Garcia, Shutao Li. ADASYN: Adaptive synthetic

sampling approach for imbalanced learning. In: 2008 IEEE International Joint

Conference on Neural Networks (IEEE World Congress on Computational

Intelligence) Hong Kong (2008). doi: 10.1109/IJCNN.2008.4633969

24. Yung M, Brown ET, Rasin A, Furst JD, Raicu DS. Synthetic sampling for

multi-class malignancy prediction. arXiv e-prints. arXiv:1807.02608 (2018).

25. Franke GR. Stepwise Regression. In: Sheth J, Malhotra N, editors. Wiley

International Encyclopedia of Marketing. Hoboken, NJ: American Cancer

Society (2010). doi: 10.1002/9781444316568.wiem02071

26. Thu N. Faster feature selection with a dropping forward-backward algorithm.

arXiv e-prints. arXiv:1910.08007 (2019).

27. Chen S, Zhou S, Yin FF, Marks LB, Das SK. Investigation of the support vector

machine algorithm to predict lung radiation-induced pneumonitis.Med Phys.

(2007) 34:3808–14. doi: 10.1118/1.2776669

28. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review

on ensembles for the class imbalance problem: bagging-, boosting-, and

hybrid-based approaches. IEEE Trans Syst Man Cybernet. (2012) 42:463–

84. doi: 10.1109/TSMCC.2011.2161285

29. Ben-Bassat M, Klove KL, Weil MH. Sensitivity analysis in bayesian

classification models: multiplicative deviations. IEEE Trans Pattern Analysis

Mach Intellig. (1980) 2:261–6. doi: 10.1109/TPAMI.1980.4767015

30. Kukar M, Kononenko I, Silvester T. Machine learning in prognosis of

the femoral neck fracture recovery. Artif Intellig Med. (1996) 8:431–

51. doi: 10.1016/S0933-3657(96)00351-X

31. Massari E, Rancati T, Giandini T, Cicchetti A, Vavassori V, Fellin G,

et al. PO-0851: Artificial neural networks for toxicity prediction in RT: a

method to validate their “intelligence”. Radiother Oncol. (2017) 123:S461–

2. doi: 10.1016/S0167-8140(17)31288-4

32. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine

learning methods for quantitative radiomic biomarkers. Sci Rep. (2015)

5:13087. doi: 10.3389/fonc.2015.00272

33. Parekh V, Jacobs MA. Radiomics: a new application from

established techniques. Expert Rev Precis Med Drug Dev. (2016)

1:207–26. doi: 10.1080/23808993.2016.1164013

34. Castiglioni I, Gallivanone F, Soda P, Avanzo M, Stancanello J, Aiello

M, et al. AI-based applications in hybrid imaging: how to build

smart and truly multi-parametric decision models for radiomics. Eur

J Nucl Med Mol Imaging. (2019) 46:2673–99. doi: 10.1007/s00259-019-

04414-4

35. Mandrekar JN. Receiver operating characteristic curve in

diagnostic test assessment. J Thorac Oncol. (2010) 5:1315–

6. doi: 10.1097/JTO.0b013e3181ec173d

36. Power M, Fell G, Wright M. Principles for high-quality, high-value testing.

Evid Based Med. (2013) 18:5–10. doi: 10.1136/eb-2012-100645

37. Collette S, Collette L, Budiharto T, Horiot JC, Poortmans PM, Struikmans

H, et al. Predictors of the risk of fibrosis at 10 years after breast

conserving therapy for early breast cancer: a study based on the EORTC

Trial 22881–10882 ’boost versus no boost’. Eur J Cancer. (2008) 44:2587–

99. doi: 10.1016/j.ejca.2008.07.032

38. Hepel JT, Tokita M, MacAusland SG, Evans SB, Hiatt JR, Price LL,

et al. Toxicity of three-dimensional conformal radiotherapy for accelerated

partial breast irradiation. Int J Radiat Oncol Biol Phys. (2009) 75:1290–

6. doi: 10.1016/j.ijrobp.2009.01.009

39. Lozza L, Fariselli L, Sandri M, Rampa M, Pinzi V, De Santis MC,

et al. Partial breast irradiation with CyberKnife after breast conserving

surgery: a pilot study in early breast cancer. Radiat Oncol. (2018)

13:49. doi: 10.1186/s13014-018-0991-4

40. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding neural

networks through deep visualization. arXiv e-prints. arXiv:1506.06579

(2015).

41. Sankar V, Kumar D, Clausi DA, Taylor GW, Wong A. SISC: End-to-

end interpretable discovery radiomics-driven lung cancer prediction via

Frontiers in Oncology | www.frontiersin.org 8 April 2020 | Volume 10 | Article 490131

https://doi.org/10.1016/j.radonc.2013.07.006
https://doi.org/10.1016/j.ejmp.2011.11.002
https://doi.org/10.1016/j.ejmp.2017.05.071
https://doi.org/10.1016/j.cllc.2017.05.014
https://doi.org/10.1016/j.radonc.2018.07.027
https://doi.org/10.3389/fonc.2018.00035
https://doi.org/10.3389/fonc.2019.00269
https://doi.org/10.1186/s13014-017-0825-9
https://www.rtog.org/CoreLab/ContouringAtlases.aspx
https://doi.org/10.1016/j.ejmp.2015.08.016
https://doi.org/10.1016/j.ijrobp.2014.04.027
https://doi.org/10.1016/j.ejmp.2015.02.005
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1016/j.radonc.2016.04.004
https://doi.org/10.2214/AJR.12.10037
https://doi.org/10.1016/S0360-3016(01)02743-2
https://doi.org/10.1118/1.4908210
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1002/9781444316568.wiem02071
https://doi.org/10.1118/1.2776669
https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.1109/TPAMI.1980.4767015
https://doi.org/10.1016/S0933-3657(96)00351-X
https://doi.org/10.1016/S0167-8140(17)31288-4
https://doi.org/10.3389/fonc.2015.00272
https://doi.org/10.1080/23808993.2016.1164013
https://doi.org/10.1007/s00259-019-04414-4
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1136/eb-2012-100645
https://doi.org/10.1016/j.ejca.2008.07.032
https://doi.org/10.1016/j.ijrobp.2009.01.009
https://doi.org/10.1186/s13014-018-0991-4
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Avanzo et al. Radiomics- and BED-Based Machine Learning of Fibrosis

stacked interpretable sequencing cells. arXiv e-prints. arXiv:1901.04641

(2019).

42. Maskarinec G, Woolcott CG, Kolonel LN. Mammographic density as

a predictor of breast cancer outcome. Future Oncol. (2010) 6:351–

4. doi: 10.2217/fon.10.3

43. Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH.

Mammographic density is related to stroma and stromal proteoglycan

expression. Breast Cancer Res. (2003) 5:R129–35. doi: 10.1186/

bcr622

44. Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le

Gouvello S, et al. Ionizing radiation-induced cellular senescence

promotes tissue fibrosis after radiotherapy. A review. Crit Rev

Oncol Hematol. (2018) 129:13–26. doi: 10.1016/j.critrevonc.2018.

06.012

45. Vargas L, Sole S, Sole CV. Cosmesis after early stage breast cancer

treatment with surgery and radiation therapy: experience of patients

treated in a Chilean radiotherapy centre. Ecancermedicalscience. (2018)

12:819. doi: 10.3332/ecancer.2018.819

Conflict of Interest: JS is employed by the company Guerbet SA, Villepinte,

France.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

The handling editor declared a past collaboration with two of the authors

MA and IN.

Copyright © 2020 Avanzo, Pirrone, Vinante, Caroli, Stancanello, Drigo, Massarut,

Mileto, Urbani, Trovo, el Naqa, De Paoli and Sartor. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 9 April 2020 | Volume 10 | Article 490132

https://doi.org/10.2217/fon.10.3
https://doi.org/10.1186/bcr622
https://doi.org/10.1016/j.critrevonc.2018.06.012
https://doi.org/10.3332/ecancer.2018.819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


REVIEW
published: 05 June 2020

doi: 10.3389/fonc.2020.00790

Frontiers in Oncology | www.frontiersin.org 1 June 2020 | Volume 10 | Article 790

Edited by:

Claudio Fiorino,

San Raffaele Hospital (IRCCS), Italy

Reviewed by:

Jung Hun Oh,

Cornell University, United States

Alexander F. I. Osman,

Al-Neelain University, Sudan

*Correspondence:

Giulia Marvaso

giulia.marvaso@ieo.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 30 January 2020

Accepted: 22 April 2020

Published: 05 June 2020

Citation:

Isaksson LJ, Pepa M, Zaffaroni M,

Marvaso G, Alterio D, Volpe S,

Corrao G, Augugliaro M, Starzyńska A,
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In order to limit radiotherapy (RT)-related side effects, effective toxicity prediction and
assessment schemes are essential. In recent years, the growing interest toward artificial
intelligence and machine learning (ML) within the science community has led to the
implementation of innovative tools in RT. Several researchers have demonstrated the
high performance of ML-based models in predicting toxicity, but the application of these
approaches in clinics is still lagging, partly due to their low interpretability. Therefore, an
overview of contemporary research is needed in order to familiarize practitioners with
common methods and strategies. Here, we present a review of ML-based models for
predicting and classifying RT-induced complications from both a methodological and a
clinical standpoint, focusing on the type of features considered, the ML methods used,
and the main results achieved. Our work overviews published research in multiple cancer
sites, including brain, breast, esophagus, gynecological, head and neck, liver, lung, and
prostate cancers. The aim is to define the current state of the art and main achievements
within the field for both researchers and clinicians.

Keywords: radiotherapy, toxicity, predictive models, machine-learning, radiomics

INTRODUCTION

It is estimated that as many as half of the cancer patients in the world are eligible for radiotherapy
(RT), either with curative or palliative intent (1). Ultimate generation linear accelerators and
modern techniques, such as intensity-modulated RT (IMRT), stereotactic body RT (SBRT), and
proton therapy (PT), offer high conformity and submillimetric levels of precision. However, normal
tissues close to the target region, defined as organs at risk (OARs), can also be affected, leading to
RT-induced toxicity. Short-term or acute toxicity occurs during treatment or within 3 months after
its completion, and generally, full recovery occurs within weeks to months. Conversely, late effects,
such as fibrosis or RT-induced oncogenesis, are generally considered as irreversible and progressive
over time. It follows that, when planning any RT treatment, its potential benefits have to be weighed
against the possibilities of damage to healthy organs and tissues, with the final aim of maximizing
curative response while minimizing the probability of normal tissue complications. On the other
hand, when RT is delivered with curative intent, target coverage should not be jeopardized in favor
of sparing OARs (2). However, different RT-induced side effects vary in their clinical significance,
so an accurate estimate of risks is mandatory, especially when alternatives such as surgery or
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chemotherapy are available. The physiopathology of toxicity is
not only related to the radiation dose but also depends on genetic
factors and tumor microenvironment. Therefore, identifying the
main factors that predispose for a specific type of toxicity can
help to improve treatment planning and inform patients and
clinicians about expected treatment tolerance.

Radiosensitivity is generally studied with the so-called normal
tissue complication probability (NTCP) models, which can
be classified into mechanistic (or analytical) and data-driven
[or (semi)empirical] (3). The former category is based on a
simplified characterization of the interaction between radiation
and biological tissues and seeks to explain the underlying
mechanisms with explicit algorithms. The most common
analytical models are the Lyman–Kutcher–Burman models,
which are often included into treatment planning systems to
allow for a biological optimization of the delivered dose among
competing treatment strategies (4). These algorithms are based
on handcrafted rules with intricate exceptions that often fail to
predict the actual complications induced by RT. On the other
hand, data-driven approaches are based on the assumption that
the interaction between radiation and normal tissue is complex
and cannot be properly represented deterministically. Therefore,
such approaches aim to identify the model that best fits the input
data (also termed features or independent variables) and output
data (also termed response or dependent variables). Predictors of
toxicity can be roughly classified into “dosimetric,” which directly
concerns the delivery of radiation (e.g., dose-volume histogram
(DVH) points), “clinical,” which includes patient- and disease-
related variables (e.g., gender and tumor histology), and “image-
based” or “radiomic,” which can be extracted from various
medical images (e.g., the mean, variance, and skewness of image
intensity histograms). In general, these approaches can be further
distinguished into well-known traditional statistical techniques,
such as regression-based techniques, and approaches based on
artificial intelligence (AI) and machine learning (ML) (5).

Abbreviations: 3D-CRT, 3D conformal RT; ADC, apparent diffusion coefficient;

AI, artificial intelligence; ANN, artificial neural network; AUC, area under the

curve; BMI, body mass index; BRT, brachytherapy; CNN, convolutional neural

networks; CP-DMA, canonical polyadic decomposition–deterministic multi-way

analysis; CT, computed tomography; CTCAE, common terminology criteria for

adverse events; Dmax, dose max; DV, dose-volume; DVH, dose-volume histogram;

EBRT, external beamRT; ED, erectile disfunction; EORTC, EuropeanOrganization

for Research and Treatment of Cancer; FDG PET, [18F]-fluorodeoxyglucose

PET; GEC-ESTRO, Groupe Européen de Curiethérapie-European SocieTy for

Radiotherapy & Oncology; GI, gastrointestinal; GLCM, gray level co-occurrence

matrix; GU, genitourinary; H&N, head and neck; IBM, image biomarker;

IBDM, image-based data mining; ICA, independent component analysis; IMRT,

intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute

Selection and Shrinkage Operator; LR, logistic regression; MARS, multivariate

adaptive regression splines; ML, machine learning; MRI, magnetic resonance

imaging; NSCLC, non-small-cell lung cancer; NTCP, normal tissue complication

probability; NTR, non-treatment related; OAR, organ at risk; PCa, prostate cancer;

PCA, principal component analysis; PET, positron emission tomography; PLR,

penalized logistic regression; PRFR, pre-conditioned random forest regression;

PSA, prostate-specific antigen; PT, proton therapy; PTV, planning target volume;

RB, rectal bleeding; RF, random forest; RSDM, rectum surface dose maps; RT,

radiotherapy; RUS, random under-sampling; SBRT, stereotactic body RT; SNP,

single nucleotide polymorphism; SVM, support vector machine; TPS, treatment

planning system. TRIPOD, Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis; V20, volume receiving 20% of dose.

ML-Based Models of Toxicity
The theoretical framework for artificially intelligent ML models
was laid down already in the 1950s (6), but it was not until
recently that advances in technology have allowed for the
integration of these tools into the experimental and clinical
practice of health sciences. AI, in its broadest sense, denotes an
artificial system able to perform a certain task to some success.
ML, typically considered a subset of AI, generally refers to some
set of algorithms that can “learn” to perform a specific task
without explicit implementation of the solution (although the
terms AI and ML are often used interchangeably). For instance,
ML algorithms are able to produce predictions on new and
unseen data after being trained on a finite learning data set
and are especially useful for tasks that involve a large amount
of data or variables (Figure 1). With the plethora of possible
variables that can lead to toxicity, ML approaches are particularly
well suited to model the relationship between treatment-induced
side effects and related covariates. An ML model that is able
to predict an outcome from a set of inputs, after tuning the
best set of parameters on a number of training cases, is referred
to as a classifier. Some common classifiers are naïve Bayes,
logistic regression (LR), k-nearest neighbors (kNN), random
forests (RF), support vector machine (SVM), and artificial neural
networks (ANN).

Since the ML model will learn the parameters from the
available data, it follows that the characteristics of the data set
are absolutely crucial. If the training data set is sparse, the model
typically fails to learn a representative set of parameters that
can be generalized to instances outside of the data set. This
problem, which generally arises when a model has been trained
to encompass a particular set of data too closely, is known as
overfitting or overtraining. Overfitting can occur for a variety of
reasons and should always be a major concern when constructing
an ML model.

Since the performance of any ML model depends on the
particular problem and data set it is applied to, it is intractable
to generally rank different methods. Nevertheless, an acceptable
approximation of a model’s performance is given by the so-called
AUC (which is defined as the area under the receiver operating
characteristic curve) applied to an independent validation set.
The AUC value of a model ranges between 1, corresponding to
perfect classification of the validation set, and 0.5, corresponding
to a purely random classification. It is important to note, however,
that the AUC can be severely misleading in case of flaws in the
model design, such as heavily imbalanced data sets or misused
validation procedures.

Successful ML models have the potential to aid clinical
facilities and practitioners in minimizing side effects and
increasing the likelihood of positive outcomes. Despite a good
amount of research in ML methods for toxicity assessment, to
the best of our knowledge, this is the first effort to summarize
the current state of the field. Previous publications have focused
either on specific anatomical districts (5) or exclusively on
methodologies and theory (7, 8). Therefore, the aim of this review
is to present an overview of current achievements in the field as
well as main areas of debate and possible future directions, both
from a methodological and a clinical perspective.
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FIGURE 1 | Typical workflow of artificial intelligence-based models for clinical toxicity prediction. Machine learning algorithms work by tuning their characteristic
parameters by modeling the relationship between input and output data in an automatic manner.

SEARCH STRATEGY AND SELECTION
CRITERIA

A comprehensive literature review was performed through the
use of a search string (see Supplementary Materials S1) built
by an experienced medical librarian with input from the study
investigators. Different combinations of database-specific terms
were used, supplemented by keywords in order to cover all
the areas related to RT toxicity, ML, and toxicity prediction.
The literature review was conducted using the PubMed/Medline
databases in order to identify publications to be synthetized
into an exhaustive overview of the state of the art of ML
application for the prediction of RT-induced toxicity. The search
resulted in 864 hits. Reference lists of selected articles were hand
searched for further potential relevant papers and also using
the Snowballing technique (9). Studies with no focus on cancer,
radiation therapy, toxicity, or any kind of ML (in its broadest
sense) were excluded, together with articles dealing with pediatric
patients. All publications in languages other than English were
also excluded. In the end, 53 studies were included in this
narrative review. The search was conducted in March 2020 (see
Supplementary Materials S2).

OVERVIEW OF CONTEMPORARY
RESEARCH

Many studies were found that employ ML-based models
to predict RT-related side effects. Most of them concern
head and neck (H&N) (13 studies), lung (15 studies), and
prostate (16 studies) cancers, while a minor portion focused
on brain (1 study), breast (3 studies), esophagus (1 study),
gynecology (3 studies), and liver (1 study) cancers (Table 1). The

presented literature is divided into different sections according
to the anatomical district. Focus was put into presenting both
methodological and clinical aspects of the papers.

Brain
A single study on ML-based toxicity modeling was found related
to brain cancer (4). In the study, the authors conducted a
comprehensive comparison of the performance of different ML
classifiers on multiple data sets including patients with brain,
lung, and H&N primaries. Their models included decision
trees, RF, neural network, SVM, elastic net LR, and Logit-
Boost classifiers and were tested on 12 distinct data sets for
a total of 3496 patients. Both dosimetric and blood marker
data from meningioma as well as (non)-small-cell lung cancer
(NSCLC) and H&N cancer patients were considered. No single
classifier was found to be ideal across all data sets, but RF and
net LR performed comparably (best in six and four data sets,
respectively). Based on these results, the authors also investigated
methods of preselecting a classifier, concluding that empirical
selection of the classifier is advantageous, leading to an average
AUC increase of 0.02.

Breast
Current available literature includes only one abstract (11) and
two full papers (10, 12). In the study by Saednia et al., they
proposed an innovative approach based on the detection of body-
surface temperature increase induced by radiation dermatitis.
Thermal images of the irradiated breast were taken from a pool
of 90 patients at four consecutive time points: pre-RT and after
5, 10, and 15 fractions, respectively (with a total dose of 42.50Gy
in 16 fractions). Skin toxicity was assessed at the end of RT with
the Common Terminology Criteria for Adverse Events (CTCAE)
guidelines. On the independent testing data set, the RF classifier
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TABLE 1 | Summary of reviewed literature.

Cancer type References No. of pts Type of RT Type of predicted

toxicity

Features

type

Classifier Results*

Breast (10) 90 RT Dermatitis R RF Acc = 0.87 (test)

(11) 2277 Moist desquamation,
dermatitis, chest pain,
fatigue

D, C LR, RF, gradient
boosting

0.56–0.85

(12) 827 RT Telangiectasia D, C LASSO

Esophagus (13) 101 IMRT or 3D-CRT Pneumonitis D, C LR Acc = 0.63

Gyneco (14) 42 EBRT+BRT Rectal toxicity D SVM 0.82–0.91

(15) 42 EBRT+BRT Rectal toxicity D CNN (transfer
learning)

1.29

(16) 35 BRT Fistula formation D, C SVM 1.30

H&N (17) 437 RT (397) PT (40) Toxicity (grade ≥3) C LR, RF, XGBoost 0.63–0.65

(18) 2121 RT Unplanned
hospitalizations,
Feeding tube placement,
Weight loss

D, C LR, gradient
boosting, RF

0.64–0.76

(19) 153 RT Xerostomia D, R, C 6ML algotithms Best SVM and
extra-trees 0.74–0.89

(20) 86 RT Trismus D IBDM Identification of a
cluster of voxel related
with toxicity

(21) 427 RT Xerostomia D, C LR, LASSO, RF Best LR (0.70)

(22) 173 RT Acute dysphagia D, C SVM, RF 0.82

(23) 297 IMRT Xerostomia (grade ≥2) D, C LR Model updating
is beneficial

(24) 134 IMRT and PT Esophagitis R, D LASSO 0.75

(25) 47 3D-CRT Sensorineural hearing loss R, C Decision stump,
Hoeffding

76.08% accurarcy
75.9% precision

(26) 37 IMRT Parotid shrinkge
Xerostomia

D, C Fuzzy logic
Naïve Bayes

Acc = 0.79–0.86

(27) 249 IMRT Xerostomia, sticky saliva R, D Multivariate LR 0.77

(28) 351 IMRT Mucositis D, C LR, SVM, RF 0.71 (RF)

(29) 1 (H&N)
1 (Prostate)

IMRT Xerostomia (H&N),
Rectal bleeding (prostate)

D Decision tree, SVM 0.42% MAE (H&N)
97% acc (prostate)

Liver (30) 125 SBRT Hepatobiliary toxicity D, C CNN (transfer
learning)

1.25

Lung (31) 110 SBRT LC, DFS, OS, and fibrosis R Cox regression

(32) 203 IMRT or PT Pneumonitis C RF 1.06

(33) 192 IMRT and 3D-CRT Radiation pneumonitis R, D, C LASSO 0.68

(34) 197 SBRT Chest wall syndrome D, C Descision tree
RF

n/a

(4) 3496
(lung+brain
+H&N)

RT Classifiers comparison D, C Decision tree, RF,
ANN, SVM, elastic
net, logit-boost

Best: elastic net LR
and RF

(35) 14 SBRT Lung injuries R, D LR 0.64–0.78

(36) 201 SBRT Pneumonitis D, C Decision trees, RF,
RUSBoost

(37) 115 RT Esophagitis D, C LASSO 0.78

(38) 54 3D-CRT Pneumonitis D, C Bayesian network
LR
Single variable

0.66–0.83

(39) 748 RT Esophagitis D, C LR 0.83

(40) 219 3D-CRT Pneumonitis D, C SVM 1.16

(Continued)

Frontiers in Oncology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 790136

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Isaksson et al. Machine-Learning for Radiotherapy Toxicity Prediction

TABLE 1 | Continued

Cancer type References No. of pts Type of RT Type of predicted

toxicity

Features

type

Classifier Results*

(41) 55 (H&N)
219+166
(Lung)

3D-CRT Xerostomia,
Pneumonitis (166)
Esophagitis (216)

D, C LR, SVM, ANN Best: modified SVM

(42) 219 RT Radiation pneumonitis D, C Decision tree,
ANN, SVM,
self-organizing
maps

0.79

(43) 234 RT Radiation pneumonitis D, C Decision tree 0.72

(44) 166 EBRT Esophagitis
xerostomia

D LR

(45) 142 3D-CRT Pneumonitis D ANN 0.61–0.85

Prostate (46) 64 IMRT (52 pts),
3D-CRT (12 pts)

Urinary toxicity
Gastro-intestinal toxicity

R, D, C LR 0.65–0.77

(47) 33 IMRT Cystitis R LR 0.62–0.75

(48) 33 IMRT Rectal wall changes R LR 0.46–0.81

(49) 351 RT Rectal bleeding
Fecal incontinence
Urinary incontinence
Nocturia

R, D, C LR 0.58–0.73

(50) 598 RT Late fecal incontinence D, C ANN 0.78

(51) 593 RT Rectal bleeding D, C ICA 0.83, 0.80, 0.78

(52) 324 BRT+-EBRT GU toxicity symptoms D, C, G RF 0.7

(53) 118 EBRT, BRT GI toxicities D LR Identification of spatial
constraint for toxicity
reduction

(54) 368 RT Rectal bleeding,
Erectile dysfunction

C, G RF, LR 0.71 (rectal bleeding)
0.68 (erectile
dysfunction)

(55) 79 IMRT Rectal toxicity (grade ≥2) D, C LR 1.28

(56) 754 EBRT Dysuria, hematuria,
incontinence, frequency

D, C LR, Elastic-net,
SVM, RF, ANN,
MARS

Best: LR, MARS
AUC = 0.65

(57) 99 EBRT Rectal bleeding D LDA, SVM,
k-means, kNN,
PCA, CP-DMA

Best: CP-DMA

(58) 261 3D-CRT Rectal toxicity, rectal
bleeding

D, C RF NTCP, NTCP 0.76, 0.66

(59) 718 RT Rectal bleeding LR, ANN 0.655, 0.704

(60) 321 RT Acute bladder and rectal
toxicity

D, C ANN, SVM 0.7

(61) 119 RT Rectal bleeding
Nocturia

D ANN Sensitivity and
specificity >55%

3D-CRT, 3D conformal RT; Acc, accuracy; ANN, artificial neural network; AUC, area under the curve; BRT, brachytherapy; CNN, convolutional neural network; CP-DMA, canonical

polyadic decomposition–deterministic multi-way analysis; DFS, disease free-survival; EBRT, external beam RT; GI, gastrointestinal; GU, genitourinary; H&N, head and neck; IBDM,

image-based data mining; ICA, indipendent component analysis; IMRT, intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute Selection and Shrinkage Operator;

LC, local control; LDA, linear discriminant analysis; LR, logistic regression; MAE, mean absolute error; MARS, multivariate adaptive regression splines; ML, machine learning; NTCP,

normal tissue complication probability; n/a, not applicable; OS, overall survival; PCA, principal component analysis; pt, patient; PT, proton therapy; RF, random forest; RT, radiotherapy;

RUSBoost, random under-sampling Boost; SBRT, stereotactic body RT; SVM, support vector machine. Features were classified as clinical (C), dosimetric (D), genomic (G), or radiomic

(R). *If not specified, AUC values are reported.

showed a good accuracy (87%) at the fifth fraction in predicting
the skin toxicity at the end of RT.

The authors in the study by Reddy et al. trained three
different classifiers, namely, RF, gradient boosted decision tree,
and LR, on a large population of 2277 patients to predict
the occurrence of common radiation toxicities, such as moist
desquamation, radiation dermatitis, breast/chest wall pain, and
fatigue. Validation performances reached AUC values of 0.85,

0.82, 0.77, and 0.56 for the respective endpoints. According to the
authors, it was the first demonstration of the ability to accurately
predict acute RT toxicities in a prospective validation data set.

Finally, Mbah et al. set out to highlight the main failure
causes for models predicting RT-induced toxicity. Data from two
different German cohorts were used for a total of 827 breast
cancer patients who received RT. The Least Absolute Selection
and Shrinkage Operator (LASSO) LR model was used to predict
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telangiectasia within each individual data set separately. Each
model was also externally tested on the other data set. To their
surprise, they found that one predictive variable (hypertension)
had a positive coefficient on one data set, and a negative
coefficient on the other. Some variables were also exclusive to a
specific model, thus suggesting that overcoming overfitting does
not completely solve the problem of generalization.

Esophagus
An ML-based model for toxicity prediction in esophagus cancer
patients was published by Hart et al. (13). In their work, the
authors investigated the relationship between clinical symptoms
of radiation pneumonitis and the pulmonary metabolic activity
on post-treatment [18F]-fluorodeoxyglucose positron emission
tomography (FDG PET). Their study included a cohort of
101 patients who underwent restaging FDG PET/computed
tomography (CT) imaging between 3 and 12 weeks after
completing thoracic RT for esophageal cancer. Several LR
models were built with different combinations of treatment
and dosimetric variables, obtaining a peak accuracy of 0.63
with p ≤ 0.032 when combining pulmonary metabolic radiation
response with the mean lung dose, thus indicating a significant
relationship between pulmonary metabolic radiation response
and radiation pneumonitis.

Gynecological Cancers
The three studies in this section analyze toxicity outcomes
prediction following brachytherapy alone or in combination
with external beam RT (EBRT) in gynecological cancers. All the
models were trained with limited data sets, ranging between 35
and 42 patients, and with SVM or convolutional neural network
(CNN) classifiers.

Tian et al. (16) developed a model for fistula formation
prediction with an SVM classifier. Thirty-one different features
were used as predictor variables from a relatively small sample of
35 patients treated with interstitial brachytherapy. Their model
reached a high accuracy of 0.901, but the authors rightfully point
out the strong limitation deriving from the usage of the small
data set.

One study by Chen et al. (14) investigated the relationship
between rectal toxicity (CTCAE grade ≥2) and dosimetric
features. In detail, the feature calculation was performed
on both the 3D rectum surface and the 2D deformed
accumulated rectal surface dose map. The models, for
which they used SVM classifiers, achieved AUC values of
0.82 and 0.91 for different feature selection procedures (and
42 patients). The authors also demonstrated that the ML
model outperformed classification based on the conventional
Groupe Européen de Curiethérapie-European SocieTy
for Radiotherapy & Oncology (GEC-ESTRO) dosimetric
parameters Dose to 0.1, 1 and 2 cm3, which achieved an AUC
of 0.71.

Zhen et al. (15) tested the feasibility of a CNN for rectum
toxicity prediction through a transfer learning approach. The
network itself, originally developed by the visual geometry
group at the University of Oxford, had been pretrained on the
ImageNet data set. The fine-tuning step was then performed

on unfolded rectum surface dose maps (RSDM). By using the
gradient-weighted class activation maps, the authors were also
able to identify the existence of discriminative regions on the
RSDM. Their results demonstrate than the CNN can outperform
conventional dosimetric parameters with top AUC values of 0.89
as compared to a meager 0.58 for the one-dimensional dose-
volume (DV) parameters (or 0.7 for 2D RSDM features). The
authors also presented comparisons between the transfer learned
network and a network trained from scratch.

Head and Neck
The size of the training data sets in published works on H&N
cancers ranges from 37 to 2121 patients. Predicted toxicity
outcomes included late xerostomia, acute mucositis, parotid
shrinkage, unplanned hospitalization, and weight loss. Applied
classifiers included LR, RF, gradient boosting, and one based on
fuzzy logic. In addition, one study (4) made a comparison of the
performance of different classifiers on different data sets (please
refer to the Brain section for further details).

The two most recent articles (17, 18) both applied three
different classifiers (RF, gradient boosting, and LR models)
to predict unplanned hospitalizations, feeding tube placement,
and significant weight loss (Reddy) and grade ≥3 toxicity
(Wojcieszynski). Reddy et al. considered a large data set of
2,121 patients, comparing over 700 treatment-related and clinical
variables, and achieved AUC values of up to 0.640, 0.755,
and 0.751 for RF, gradient boosting, and LR, respectively.
Wojcieszynski et al. achieved a moderate success in predicting
grade≥3 toxicity for 437 patients after 90 and 180 days (c-statistic
0.65 and 0.63, respectively) using 47 different patient covariates.
Among them, planning target volume (PTV) integral dose, body
mass index (BMI), integral dose to regions outside the PTV, and
age were most statistically impactful ones.

By retrospectively comparing updating strategies,
Nakatsugawa et al. (23) demonstrated the importance of
continuous model revising. On their data set, they concluded
that the best strategy was to update the model yearly, keeping
only the two most recent years of data. The method they used
was LR classifying grade ≥2 late xerostomia with clinical and
dosimetric variables from 297 patients.

The aim of the study by Beasley et al. (20) was to identify
specific CT image regions with a dose–toxicity association to
identify radiation-induced trismus in H&N patients treated
with RT. To achieve this objective, an image-based data
mining (IBDM) framework was applied to a cohort of 86
patients. The IBDM approach allowed for the identification of
a cluster of voxels associated with trismus; this cluster was
internally validated using a DVH-based approach and externally
on a cohort of 35 patients. As stated by the authors, this
study represents the first clinical application of IBDM with a
continuous outcome variable.

Jiang et al. (21) utilized a data set of 427 H&N cancer patients
treated with RT to predict xerostomia. Ridge LR, LASSO LR,
and RF classifiers were trained with planned radiation dose
data and non-dosimetric features to investigate the influence
of dose patterns on xerostomia. Among the three different ML
methods explored, ridge LR showed the best predictive power
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with an AUC of 0.70, although the difference in performance
was not statistically significant. The study highlighted how
radio-morphology combined with ML methods can indicate
the patterns of dose which are most influential on xerostomia,
potentially improving radiation treatment planning.

Dean et al. (22) developed a model to predict severe acute
dysphagia in H&N cancer patients treated with RT. Penalized
LR (PLR), SVM, and RF models were trained using dosimetric
and clinical data and then internally and externally validated on
173 and 90 patients, respectively. Results showed that PLR model
performances were comparable with the more complex models
with an AUC of 0.82 and that dose to the pharyngeal mucosa was
an important predictor of dysphagia.

In another study, Gabryś et al. (19) investigated whether
xerostomia risk assessment can be amended by ML with
dosimetric, radiomic, and demographic features, rather than
only using a NTCP model. The authors compared predictive
performance of seven classification algorithms, six feature
selection methods, and 10 data cleaning/class balancing
techniques using the Friedman test and the Nemenyi post-hoc
analysis. A cohort of 153 H&N cancer patients was used to
predict xerostomia at different time stages. Their multivariate
models achieved AUC values ranging from 0.74 to 0.88, with
SVM and “extra-trees” having the top performances. The
authors also pointed out that LR was preferred for univariate
feature selection, and that data cleaning/class balancing had no
advantage. Their NTCP models, on the other hand, failed to
predict xerostomia (AUC < 0.6).

The study of Abdollahi et al. (48) aimed to predict
sensorineural hearing loss in radiochemotherapy-treated H&N
cancer patients. From a cohort of 47 patients, 490 image features
of 94 cochlea were derived from CT images. To perform
feature selection, classification, and prediction, 10 different ML
approaches were tested. The predictive power (AUC, accuracy,
and precision) of theML algorithms was over 0.70 in all cases; the
best was obtained by Decision Stump and Hoeffding modeling
with 76.08% and 75.9% accuracy and precision, respectively. In
conclusion, CT radiomic analysis, both with and without clinical
and dosimetric variables, could help with chemoradiation-
induced hearing loss.

On a small data set of 37 patients treated with IMRT, Pota et al.
(26) applied a fuzzy logic-based classifier in order to predict the
occurrence of parotid shrinkage and 12-month xerostomia. To
do this, they used clinical features, dosimetric parameters, CT-
based radiomic features, and combinations thereof as predictor
variables. They achieved high respective accuracies of up to
0.86 (parotid shrinkage) and 0.79 (xerostomia). Their developed
model is easily interpretable and have comparable performance
to a naïve Bayes classifier.

The goal of the study by Van Dijk et al. (27) was to
build a predictive model for xerostomia and sticky saliva in
H&N cancer patients using CT image biomarkers (IBMs).
The planning CT scans of 249 H&N cancer patients were
collected to extract IBMs in order to create multivariable LR
models, which were then internally validated by bootstrapping.
In total, 26 features correlated with xerostomia and 24 correlated
with sticky saliva were selected. The results showed how the

addition of IBMs of the parotid and submandibular glands to
dosimetric data improved the mean AUC from 0.74 to 0.77.
The authors found that the IBM “short run emphasis” was the
most important for xerostomia prediction, and “maximum CT
intensity” was the most important for sticky saliva prediction.
These features represented heterogeneity and density within the
salivary glands, respectively.

Dean et al. (28) compared LR, SVM, and RF classifiers in
a framework to predict severe acute mucositis on a cohort
of 351 patients. Their variables included dose-volume (DV)
parameters, spatial dose metrics, and clinical data. Although
model performances were comparable, the best performance
was obtained with the RF classifier, with an AUC value of
0.71. The authors also confirmed that reducing the volumes
of oral cavity receiving intermediate/high doses may reduce
mucositis incidence.

Zhang et al. (29) developed decision tree and SVMmodels for
a single H&N patient. The model was supposed to predict saliva
flow rate with DV constraints and tailored plan properties as
input variables. The mean absolute error of predicting saliva flow
rate was 0.42%. Their results suggest that “ML tools can be used
to guide planners to select DV constraint settings corresponding
to all involved OARs in a knowledge-driven manner.”

El Naqa et al. (41) investigated several types of linear
and non-linear kernels1 to generate interaction terms and
approximate the treatment-response function in order to capture
the potential complexity of heterogeneous variable interactions
more accurately. This study investigated xerostomia on a data set
with 55H&N cancer patients as well as two data sets with prostate
cancer (PCa) patients. By first analyzing patient distributions
with principal component analysis (PCA), they concluded that
SVM outperformed both LR and an ANN.

Liver
Ibragimov et al. (30) employed a pre-trained CNN model on 3D
dose maps in order to predict liver toxicity after SBRT. They also
included non-dosimetric patient variables as additional inputs to
the network. By using the saliencymaps of the network, they were
able to identify anatomical regions that are critical to spare during
SBRT. On their data set of 125 patients, their model managed to
predict hepatobiliary toxicity with an AUC of 0.85. In addition,
their deep learning model also predicted almost two times fewer
false-positive toxicity cases compared to DVH-based predictions.
The authors also observed that irradiation of the proximal portal
vein was associated with two times higher toxicity risks than
irradiation of the left portal vein.

Lung
For lung cancers, the size of the data sets ranged between
54 and 235 patients. The majority of the studies dealt with
radiation-induced pneumonitis, whereas some studies dealt with
esophagitis, xerostomia, sticky saliva, and chest pain. Lung cancer
RT may cause chest pain due to rib fracture, radiation-induced

1In this context, kernels are mathematical transformation functions that allow an

implicit embedding of data in another feature space. For the purpose of this article,

different kernels can be thought of as different types of SVMs.
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neuropathy of the intercostal nerves or nerve branches, chest wall
edema, or chest wall fibrosis. However, the only study we found
that specifically investigated chest pain is the one by (34). The
authors utilized decision tree and RF methods to identify robust
features predictive of chest wall pain in a cohort of 197 patients.
Both univariate and multivariate analyses confirmed the role of
rib dose to 1 cc, chest wall dose to 30 cc, and rib dose max (Dmax)
as relevant variables. Based on these findings, efforts should be
directed at lowering the rib dose to 1 cc <4000 cGy, chest wall
dose to 30 cc <900 cGy, and rib Dmax < 5100 cGy in order to
mitigate chest wall syndrome.

Das et al. performed two studies (42, 43) for pneumonitis
prediction in a data set of 219 lung cancer patients treated with
RT. In both studies, the final model derived from a fusion of two
or more single models. In the study dated 2007, starting from a
data set of 234 lung cancer patients treated with RT, they trained
a model for lung radiation-induced grade 2+ pneumonitis.
The model consisted of a parametric dose-based Lyman NTCP
model in conjunction with weighted non-parametric decision
trees. The combined models’ predictive power resulted in an
AUC of 0.72—an improvement compared to the 0.62 AUC of
the Lyman NTCP alone. In particular, the information about
non-dose variables provided by the decision trees could add
interpretability and aid in dissemination. In the study dated
2008, the authors constructed a consensus model by fusing
four different non-linear multivariate models: decision trees,
neural networks, SVMs, and self-organizing maps. Consensus
was achieved by simply averaging the predictions for each patient
from all four individual models (in an ensemble-wise manner,
i.e., with several predictions for each individual model). This
achieved an average AUC value of 0.79 with lower variance than
the individual component models.

Esophagitis is another common side effect in lung cancer RT,
but only two studies researched this topic (41, 44). In the former,
the authors explored model building and variable selection
methods for multivariate dose-response assessment, considering
a data set of 166 NSCLC patients. Using a LR classifier, the
authors concluded that performance can be improved by mixing
clinical and DV factors as input parameters. In the second paper,
they investigated several types of linear and non-linear kernels
to approximate the treatment-response function and capture the
potential complexity of heterogeneous variable interactions. This
was done with a data set of 219 lung cancer patients. In the same
article, the authors also investigated pneumonitis on a data set of
166 patients and xerostomia on a data set of 55 patients. After
applying PCA to analyze variable distributions, they concluded
that SVM outperformed both LR and an ANN.

Niedzielski et al. (24) explored a novel method for using CT
imaging biomarkers to quantify patients’ radiosensitivity and
subsequently predict esophagitis risk. Patients with high response
to radiation, despite lower radiation dose, were labeled as
radiosensitive. This information was extracted through K-means
clustering (an automatic clustering algorithm) with three nodes.
The authors concluded that inclusion of the radiosensitive
variable improved LASSO LR model performance (mean AUC,
0.75) compared to models without this information (mean AUC,
0.69). Their predictive model was built with a cohort of 134

NSCLC patients treated with IMRT (85 pts) or passive-scatter PT
(49 pts).

Valdes et al. (36) developed a patient-specific “big data” clinical
decision tool in order to predict radiation-induced pneumonitis
in stage I NSCLC patients who received SBRT. In the study, the
performance of three different algorithms [Decision Trees, RF,
random under-sampling (RUS) Boost] was evaluated on a cohort
of 201 lung cancer patients. The feature selection highlighted that
the most important features for pneumonitis prediction were the
diffusion capacity of the lung for carbon monoxide and the dose
to the heart, trachea, and bronchus. The authors also stated that
at least 800 patients are needed to keep the error below 10% for
pneumonitis prediction.

Huang et al. performed two studies for prediction of
esophagitis. In the first one (39), a model for the assessment
of severe acute esophagitis for NSCLC patients treated with
RT was constructed. Correlation analysis and LR models with
clinical and dosimetric variables were tested on three different
Washington University data sets including a total of 748 patients.
Their most successful bivariate model (using the variables mean
esophagus dose and concurrent chemotherapy) achieved an AUC
of 0.83. In the second one (37), they tested the previously
published model to predict the risk of severe acute esophagitis
on a new independent data set of 115 NSCLC patients. The
model used a logistic function with the same two predictor
variables: mean esophageal dose and concurrent chemotherapy.
When comparing the model with a new model built solely on
the independent data set, the authors concluded that the former
was almost as predictive as the latter (although the same variables
were selected), being AUC= 0.78.

Most of the published studies concern radiation-induced
pneumonitis as the target variable, as it represents one of the
principal dose-limiting toxicities associated with thoracic RT
(40). Of these studies, Lee et al. (38) developed a Bayesian
network approach in a cohort of 54 NSCLC patients treated
with 3D conformal RT (3D-CRT). For inference, they included
DV, clinical, and blood biomarker data. They also compared the
Bayesian network ensemble approach, which managed to achieve
an AUC of 0.83, with a LR classifier (AUC= 0.77), and univariate
predictors (AUC ≤ 0.69). Valdes et al. (36) considered a larger
data set of 201 stage I NSCLC patients to construct different
models with decision trees, RF, and RUSBoost, concluding that
RUSBoost had the best performance. They found that the three
most important predictive features were the dose to 15 cc of the
heart, dose to 4 cc of the trachea or bronchus, and race. However,
rather than developing amodel for clinical use, the article focused
on the power of using learning curves and comparisons of testing
and training error to guide the discovery process.

Su et al. (45) investigated an approach to build an ANN,
comparing three different validation methods. The ANN was
built as a fully connected three-layered feed forward network,
and achieved peak AUC values of 0.85. As input to the network,
they used DV data from a data set of 142 patients treated with
3D-CRT. Chen et al. (40) tested an SVM model in a data set
of 219 patients and compared two models: one including only
dose variables (AUC = 0.71), while the other used dose as well
as non-dose variables (AUC = 0.76). They concluded that it is
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indeed beneficial to include non-dose factors in prediction. The
two most predictive variables in their model were generalized
equivalent uniform doses close to the mean lung dose, and
chemotherapy prior to RT. Luna et al. (32) used a RF approach in
a cohort of 203 patients treated with stage II–III locally advanced
NSCLC. They evaluated 32 clinical features at both univariate
and multivariate analysis and confirmed the importance of lung
volume receiving 20% of dose (V20), lung mean, and pack-
year as predictors of radiation pneumonitis. They also identified
esophagus max as a new possible indicator.

Beside dosimetric- and clinical-based predictors, image-based
variable models have also been employed to predict RT-related
toxicity outcomes in lung cancer patients. Bousabarah et al. (31)
used CT-based radiomic features to predict radiation-induced
lung injuries. The study analyzed 110 patients with primary stage
I/IIa NSCLC treated with stereotactic body RT for predicting
various outcomes, including local lung injury up to fibrosis.
Interestingly, for this classification task, only first-order features
from gray-level histogram were found to be predictive. Overall,
the work suggested that radiomic analysis of planning CT images
may help to predict local lung injury up to fibrosis, together
with disease-free survival and overall survival in lung cancer
patients treated with SBRT. The derived features can be regarded
as imaging biomarkers that could support the clinical decision
process to the benefit of the patients and oncologist.

Moran et al. (35) investigated the potential of CT-based
radiomic features to characterize post-SBRT lung injury. They
also investigated the relationship between changes of radiomic
feature values and accumulated dose by constructing dose–
response curves. The ability to assess lung injury was tested by
using a logistic regression classifier, which achieved AUC values
in the 0.64–0.75 range using only gray level co-occurrence matrix
(GLCM) features. Their results showed that eight out of nine
features demonstrated a significant dose–response relationship,
suggesting a potential objective measurement of post-SBRT
lung injury.

Krafft et al. (33) developed a predictive model for radiation
pneumonitis using CT-extracted radiomic features in
combination with clinical and dosimetric parameters from
a cohort of 192 NSCLC patients. Of the 192 patients, 80% (152)
were treated with IMRT while the remainder with 3D-CRT.
A LASSO logistic regression classifier was built, resulting in
an average AUC of 0.68, showing an increased performance
compared to models not including image features (AUC= 0.51).

Prostate
The most common toxicity outcomes in PCa RT are erectile
dysfunction (ED), gastrointestinal (GI) disorders, rectal toxicity,
and genitourinary (GU) side effects. To predict these unwanted
outcomes, the reviewed studies trained several different ML
classifiers including SVM, ANN, RF, and multivariate adaptive
regression splines (MARS) with data sets of sizes between 79
and 754. Lee et al. (52) also took a gene ontology analysis into
account to identify biological processes related to radiation-
induced toxicity and predicted late GU toxicity symptoms in a
cohort of 324 PCa patients. In this study, the only clinically valid
model, which achieved an AUC of 0.7, was for predicting weak

streamwith RFs. The genetic analysis they conducted highlighted
neurogenesis and ion transport as key biological processes related
to urinary tract functions.

The study by Carrara et al. (50) was designed to predict
late fecal incontinence in PCa patients treated with RT, using
ANN classification methods. A population of 598 PCa patients
was tested, recording information about comorbidities, previous
abdominal surgeries, drug treatments, and dose distribution.
In order to identify the best-performing ANNs, the authors
varied the number of inputs and neurons and simulated a great
amount of ANN configurations. Finally, the best ANNmodel was
selected, showing an 80.8% sensitivity and 63.7% specificity in
late fecal incontinence prediction, with an AUC of 0.78.

Fargeas et al. (51) applied an independent component analysis
(ICA) model to predict RB in a cohort of 593 PCa patients
treated with RT. Two subspaces from the rectal DVHs (with
and without RB) were identified and integrated with dosimetric
and clinical parameters in a Cox proportional hazards model
for RB prediction. The model was tested for 3, 5, and 8 years
RB prediction, with AUCs of 0.68, 0.66, and 0.64, respectively.
Interestingly, when ICA parameters were included the model,
performances increased with new AUCs of 0.83, 0.80, and 0.78.

In their paper, Oh et al. (54) developed a novel classification
algorithm that they call pre-conditioned random forest
regression (PRFR). The algorithm was tailored for genome-wide
association studies based on single-nucleotide polymorphisms
(SNPs). On their cohort of 368 PCa patients treated with RT,
the aim was to construct a predictive model of two post-RT
clinical endpoints: rectal bleeding and ED. After generating
a SNP importance score, they included the top 50% most
relevant SNPs in their model. This procedure achieved AUC
values of 0.71 and 0.68 for rectal bleeding and ED, respectively,
outperforming traditional classification algorithms such as RF
and logistic regression. The authors also concluded that the
model performance could be further improved by incorporating
clinical variables.

Moulton et al. (53) investigated the relationship between
spatial dose distribution and GI toxicities including rectal
bleeding, stool frequency, diarrhea, and tenesmus. Their study
contained data from 118 patients treated with a combined
EBRT/high-dose-rate brachytherapy treatment. By building
models with logistic regression and the Wilcoxon signed rank
test, they were able to investigate the association between
dose surface map-related features and toxicities. Their findings
indicated that spatial constraints on doses to certain sections
of the rectum may be important for reducing toxicities and
optimizing the dose.

Both Liu and Li (55) and Pella et al. (60) modeled acute
grade rectal toxicity for PCa patients using dosimetry and
patient clinical characteristics after treatments with IMRT and
3D-CRT, respectively. Themodel by Liu achieved a significatively
better AUC (0.88) when clinical and dosimetric variables were
combined, as compared to a model considering only dosimetric
features (0.67). In particular, the use of statin drugs and
prostate-specific antigen (PSA) level prior to IMRT was found
to be strongly related to the toxicity outcome. Pella et al.
instead compared an ANN model with an SVM model trained
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with dosimetric and clinical data from 321 patients treated
with conformal RT. The results obtained showed comparable
performances of up to 0.7 AUC for the two compared models.

Yahya et al. (56) conducted a classifier comparison for
different urinary symptoms on a cohort of 754 PCa patients.
With dose-surface data, comorbidities, and medication intake as
input parameters, they analyzed the clinical endpoints dysuria,
hematuria, incontinence, and frequency. The following classifiers
were compared: LR, elastic-net, SVM, RF, neural network, and
MARS. They pointed out that the predictive power is endpoint-
dependent and modest at best (AUC = 0.65). Best performance
was found for LR and MARS, although elastic-net and RF gave
comparable results.

Fargeas et al. (57) developed a novel approach that they call
CP-DMA to predict patients presenting rectal bleeding. The
name CP-DMA comes from canonical polyadic decomposition,
an alternative name for tensor rank decomposition, and
deterministic multi-way analysis. The model uses tensor rank
decomposition of the fourth-order tensors created by 3D
dose distributions concatenated for different patients (in the
fourth dimension) in order to find two separate vector
subspaces (one subspace for each outcome, with or without
rectal bleeding). Patients are then classified according to their
distance to the respective subspaces. Results were compared
to linear discriminant analysis, SVM, K-means, kNN, a PCA-
based unsupervised algorithm, unsupervised multidimensional
classification, and an NTCP model. Their model achieved an
AUC of 0.85, outperforming the alternative methods.

Ospina et al. (58) compared the performances of a classical
NTCP model with a RF NTCP model for late rectal toxicity
prediction on a cohort of 261 patients with PCa treated
with 3D-CRT. Both clinical and dosimetric features were
collected to train three RF models in order to predict three
different 5-year rectal toxicity endpoints: grade 2 overall rectal
toxicity and grade 1 and 2 rectal bleeding. Performance of
the model ranged between 0.66 and 0.76 depending on the
toxicity endpoint. Authors highlighted that the most suitable
parameters to be considered in rectal toxicity prediction include
dose to the rectum, age, and anticoagulant treatment of
the patients.

Zhang et al. (29) developed decision tree and SVM
models for one PCa patient (as well as a H&N cancer
case), predicting rectal bleeding (RB) with DV constraints
and tailored plan properties as input variables. The RB
prediction had an average accuracy of 97.04%, indicating that
the selection of DV constraint setting can be guided with
ML methods.

The study by Tomatis et al. (59) aimed to compare the
performances in predicting late RB in a cohort of 718 PCa
patients of an LR model and an ANN one using clinical and
DVH-based parameters. Overall, the ANN model outperformed
the other, with AUCs of 0.704 vs. 0.655, respectively. Authors
suggested how the integration of gene expression profiles and
surface dose mapping could help to improve the predictive
performances of the model.

Gulliford et al. (61) were early adopters of ANN for predicting
biological outcomes following PCa RT. They used the treatment

plan prescription and dose distribution data in order to predict
rectal bleeding and nocturia on a data set with 119 patients.
Analysis was made on different discretization levels of the
outcomes, and an attempt was made to “look inside” the ANN
at a basic level. Their results showed sensitivities and specificities
of roughly 0.55.

Several studies aiming to correlate radiomic features with
toxicity outcomes are present in the literature. In the study
by Mostafaei et al. (46), the potential role of CT radiomics to
predict prostate RT toxicities, including acute bladder and rectal
injuries, was investigated. Sixty-four PCa patients were studied.
The findings highlighted the feasibility and good performance
of pre-treatment CT image features as new markers to predict
radiation toxicities. The results also showed that, for cystitis, the
combination of radiomic features with clinical and dosimetric
features could enhance the predictive performance: from AUC
values of 0.71 and 0.67 for radiomic and clinical models alone,
to AUC = 0.77 when the features were combined. However, for
proctitis modeling, the performance was lower in the combined
setup compared to the radiomics-only model (AUCs for clinical,
radiomic, and clinical–radiomic models were 0.66, 0.71, and
0.65, respectively). These results suggest that integration of
radiomics with clinical and dosimetric features may improve the
performance of predictive models.

Abdollahi et al. (47) analyzed magnetic resonance imaging
(MRI) images from a pool of 33 patients in order to predict
urinary toxicity in PCa patients. Different radiomics features
(S5.0SumVarnc, S2.2SumVarnc, S1.0AngScMom, S0.4SumAverg,
and S5.5InvDfMom) were tested, resulting in AUC values
between 0.62 and 0.75 and showing a major dependence of
radiomic features on radiation dose. Overall, feature changes
resulted to have a good correlation with radiation dose and
radiation-induced urinary toxicity. These radiomic features can
be identified as being potentially important imaging biomarkers
which can also allow to assess mechanisms of radiation-induced
bladder injuries.

Abdollahi et al. (25) applied radiomic feature analysis on
pre/post IMRT MRI images to find imaging biomarkers for
rectal toxicity prediction. Feature extraction was made on both
T2-weighted and apparent diffusion coefficient (ADC) images
(two different MRI scanning protocols). Pre-IMRT T2-weighted
radiomic image features could predict rectal toxicity with a fairly
good performance (AUCmean: 0.68), showing a better predicting
power in relation to ADC image features (AUC mean: 0.58). The
AUC reached 0.81 when all features were combined, suggesting
that pre-treatment MRI features may be a feasible approach to
predict radiation-induced early rectal toxicity.

Finally, Rossi L. et al. (49) applied DVH parameters, texture
features of patients’ 3D dose distributions, and non-treatment-
related (NTR) predictors to develop predictive models for GI
and GU toxicities. Multivariate LR models were trained using
the NTR features alone as well as in combination with the
other variables. RB, fecal incontinence, nocturia, and urinary
incontinence were considered. For RB, fecal incontinence,
and urinary incontinence, AUC values increased when adding
DVH and texture features to NTR features (from 0.58, 0.63,
and 0.68 to 0.73, 0.73, and 0.73, respectively). In the case
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of nocturia, inclusion of DVH parameters resulted in a
marginal improvement (0.64 vs. 0.66). Overall, the inclusion
of more features improved prediction performance for GI and
GU toxicity.

DISCUSSION

In recent years, the growing interest toward AI in all fields of
science has led to the development of innovative tools in RT (62),
including several toxicity prediction models. Some of them have
demonstrated high performance on very large and diverse data
sets, making them potential candidates for clinical integration.
Other ones have highlighted cases where ML prediction seems
to fail, such as in predicting unplanned hospitalizations or
fatigue. Interestingly, almost half of the 53 reviewed papers were
published in the last 3 years, with the earliest publication dating
back to 2004, making it a rather young area of interest with much
potential for future research.

Our overview indicates that the amount of research on ML-
based models for prediction of toxicity is not balanced across
districts, as some of them, such as lung, prostate, and H&N have
been receiving more attention than others such as brain, skin,
blood, and breast. Regarding brain cancer, the lack of ML models
is potentially ascribable to the scarcity of literature in general
concerning radio-induced toxicity within the brain. This may be
explained by the fact that acute and late complications of brain
tumor patients prevalently manifest themselves as neurological
disorders that are difficult to assess. On the other hand, H&N
studies are commonmainly because these kinds of cancers, albeit
not as common as PCa or lung cancer, are very often associated
with clinically relevant toxicity, with a well-documented impact
on patients’ quality of life. Additionally, accurate prediction of
RT toxicity in H&N cancer may help physicians to identify
the best treatment option whenever equally effective approaches
(i.e., surgery) are available. Furthermore, integration of genetic
information in the modeling approaches, despite being desirable,
appears almost completely absent, being treated only in two
studies (52, 54).

The large variety of variables, features, and models, as well
as the lack of standardization in the development of predictive
tools, accounts for the scarce comparability of the existing works.
As previously pointed out, performance measures such as the
AUC are not the be-all and end-all of model assessment and
should be taken with a grain of salt. The AUC measure has even
been criticized as an indicator of performance altogether (63)
and can sometimes be misleading. For instance, out of all the
selected papers, the best results (AUC > 0.85) were achieved in
small- or medium-sized data sets (<150 patients). This implies
that further validation of the current best-performing models on
larger and/or more diverse data sets is mandatory.

Since the principal aim of ML models for toxicity prediction
is clinical integration, critical efforts are required to make the
relevant research understandable, transparent, and accessible
to an audience with little or no specific computational
background. As a matter of fact, considering the specific
case of this review, the studies did not always accurately
report clinical information concerning pathology, RT treatment
(technique, dose, fractionation scheme), the kind of developed

toxicity (late or acute), as well as methodological details
(feature selection procedures and employed models). Therefore,
a rigorous method for communicating characteristics and
results of prediction models, which would foster the synthesis
and critical appraisal of the relevant information, is of
paramount importance. One of them was proposed by the
Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) initiative
(64), which consists of a checklist that encompasses a
minimum set of details that authors should fulfill to provide
essential and clear information about their work. In particular,
the key points should include a summary of objectives,
study design, setting, participants, sample size, predictors,
outcomes, statistical analysis, results, and conclusions. This
would ensure that proper assessment of usefulness, potential
biases, and possible drawbacks of published research can
be made.

Other open issues are the importance of data sharing among
centers, the need for continuous model updates, and the need
for prospective studies to support the clinical applicability of the
developed models. More research and effort in these areas will
alleviate the issue of clinical integration, which represents both
the primary driver and the ultimate goal of these efforts.

CONCLUSION

Despite the loose ends about the clinical applicability of RT-
induced toxicitymodels, our overall findings show thatML-based
solutions for toxicity prediction in RT could represent a valid
tool in research settings. In order to maximize the therapeutic
index of RT and to guide the clinical selection of patients, an
effective toxicity prediction scheme is essential. Application of
such models can be a valuable asset in many different aspects for
both patients and clinicians.
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Purpose: For prostate cancer treatment, comparable or superior biochemical

control was reported when using External-Beam-Radiotherapy (EBRT) with

High-Dose-Rate-Brachytherapy (HDRB)-boost, compared to dose-escalation with

EBRT alone. The conformal doses produced by HDRB could allow further beneficial

prostate dose-escalation, but increase in dose is limited by normal tissue toxicity.

Previous works showed correlation between urethral dose and incidence of urinary

toxicity, but there is a lack of established guidelines on the dose constraints to this

organ. This work aimed at fitting a Normal-Tissue-Complication-Probability model to

urethral stricture data collected at one institution and validating it with an external cohort,

looking at neo-adjuvant androgen deprivation as dose-modifying factor.

Materials andMethods: Clinical and dosimetric data of 258 patients, with a toxicity rate

of 12.8%, treated at a single institution with a variety of prescription doses, were collected

to fit the Lyman–Kutcher–Burman (LKB) model using the maximum likelihood method.

Due to the different fractionations, doses were converted into 2 Gy-equivalent doses

(α/β = 5Gy), and urethral stricture was used as an end-point. For validation, an external

cohort of 187 patients treated as part of the TROG (Trans Tasman Radiation Oncology

Group) 03.04 RADAR trial with a toxicity rate of 8.7%, was used. The goodness of fit

was assessed using calibration plots. The effect of neo-adjuvant androgen deprivation

(AD) was analyzed separating patients who had received it prior to treatment from those

who did not receive it.

Results: The obtained LKB parameters were TD50 = 116.7Gy and m = 0.23; n

was fixed to 0.3, based on numerical optimization of the likelihood. The calibration plot

showed a good agreement between the observed toxicity and the probability predicted

by the model, confirmed by bootstrapping. For the external validation, the calibration
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plot showed that the observed toxicity obtained with the RADAR patients was well-

represented by the fitted LKB model parameters. When patients were stratified by the

use of AD TD50 decreased when AD was not present.

Conclusions: Lyman–Kutcher–Burman model parameters were fitted to the risk of

urethral stricture and externally validatedwith an independent cohort, to provide guidance

on urethral tolerance doses for patients treated with a HDRB boost. For patients that did

not receive AD, model fitting provided a lower TD50 suggesting a protective effect on

urethra toxicity.

Keywords: NTCP, HDR brachytherapy, urethra, predictive modeling, prostate cancer

INTRODUCTION

In the treatment of unfavorable prostate cancer, several studies
have shown that the use of High-Dose-Rate Brachytherapy
(HDRB) as a boost in combination with External Beam
Radiotherapy (EBRT) provides biochemical control and prostate-
cancer specific survival comparable or superior to dose-
escalation with EBRT alone (1–6). These results are in line
with findings suggesting that prostate cancer tends to respond
similarly to late reacting tissues to dose fractionation schedules,
consistent with lower α/β ratio (7, 8). The conformal doses
provided by HDRB could potentially allow further beneficial
dose-escalation due to their excellent organs-at-risk (OARs)
sparing. However, concerns have been raised regarding the
potential risk of acute and late urethral toxicity, in particular
urethral stricture, which has been reported by several authors
in rates up to 30% (9–11). Causes for urethral strictures have
been investigated and contradictory findings are reported in the
literature with reports showing correlation between urethral dose
and incidence of urinary toxicity (10, 12), and others instead
reporting no significant correlations (2, 13, 14).

Due to the variety of fractionation regimens used for HDRB
boost treatments in different centers, ranging from multiple
fractions to monotherapy (9), it is still hard to compare practices
and related toxicity results. Additionally, follow-up time tends
to vary ranging between 2 and over 5 years (2, 10, 13). For
this reason, there is no consensus on the dose constraints for
urethral doses (15–17), and often limits are decided in each
institution based on experience of the practitioners. In-depth
analyses of the dose-effect relationships have been performed for
the bladder and urethral toxicity mainly in the context of EBRT to
gain understanding of the potential effect of increasing dose per
fraction on the main OARs, following the increase in the use of
hypofractionation in prostate radiotherapy treatments (18–20).
A small number of studies have also looked at Normal Tissue
Complication Probability (NTCP) for the urethra, but in all cases,
they have highlighted that parameters for the most used NTCP
models, such as the relative seriality or the Lyman–Kutcher–
Burman model, were not available, and have assumed that the
urethra had a similar response as organs such the esophagus
(21, 22).

Using the long term data and experience accumulated
in our department in treating prostate cancer patients with

HDRB boost the purpose of this work has been to establish
NTCP model parameters specific for the urethra by fitting
a normal tissue toxicity curve on urethral stricture data
recorded in our institution. This curve has then been validated
with an independent external cohort, in order to provide
general applicability and a tool to guide treatment design and
fractionation selection criteria.

MATERIALS AND METHODS

Model Fitting
Patients and Clinical Data

Clinical and three dimensional (3D) treatment planning data
of 258 patients treated at Alfred Health Radiation Oncology
(AHRO) from 2001 to 2013 were retrospectively collected for
this analysis. These 258 patients were selected as a subset of a
larger group of more than 500 patients treated at our institution,
receiving a curative regimen that included a boost of HDRB, in
combination with EBRT, since they had complete retrievable 3D
planning and associated toxicity information with at least 4 years
of follow-up. Most patients were classified in the intermediate
and high risk group, and details of the CT-planning based
treatment technique are presented in previous publications (10,

23). In summary, for patients treated before 2006 metal needles,

replaced by plastic needles for patients treated after 2006, were
inserted transperineally using ultrasound guidance. Before 2005,
patients were not replanned in subsequent days, then until 2008
only if a second CT-simulator scan showed a superior-inferior

displacement of the needles of more than 1 cm. As of 2008 for
all patients, a new CT scan and plan is performed on the second

day. All patients received an EBRT dose of 46–50Gy in 2Gy
per fraction. For the HDRB boost, a variety of fractionations
regimens were used to treat the patients over the years (Table 1),
but all patients were treated in 2 consecutive days, with the
patients treated with three fractions having two fractions on the
2nd day.

For all patients, clinical, demographic, and toxicity data
were extracted from our institutional prospective brachytherapy
database BrachyNET. All patients had a review after 6, 12, 24
months and every year until 10 years after the HDRB implant,
and no patient was lost to follow-up. At each review, patients
completed the Expanded Prostate Cancer Index Composite
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TABLE 1 | AHRO HDRB boost patients’ characteristics including number of patients (no. of patients), HDRB physical, and biological prescription dose (respectively,

Brachytherapy Prescription dose-physical and equivalent), toxicity rate, mean, and median time to stricture (%), patient who had received Neo-Adjuvant Androgen

Deprivation and age.

Group 1 Group 2 Group 3 Group 4 Total

No of patients 131 117 8 2 258

Brachytherapy Prescription dose

(physical dose, Gy)

18Gy in 3 fractions 19Gy in 2 fractions 17Gy in 2 fractions 10 and 6Gy in 2 fractions

External Beam Prescription dose

(physical dose, Gy)

46Gy in 23 fractions 46Gy in 23 fractions 46Gy in 23 fractions 46Gy in 23 fractions

Brachytherapy Prescription dose

(2Gy equivalent dose, α/β = 5Gy)

28.3Gy 39.4Gy 32.8Gy 30.8Gy

Total dose EBRT + HDRB (2Gy

equivalent dose, α/β = 5Gy)

74.3Gy 85.4Gy 78.8Gy 76.8Gy

Toxicity rate at 4 years (%) 6.9% 20.5% 0% 0% 12.8%

Mean time to stricture (years) 3.6 2.1 Not applicable Not applicable

Median time to stricture (years) 3.0 1.4 Not applicable Not applicable

Adjuvant androgen deprivation (no of

patients)

118 113 8 2 241

Mean age (years) 65.4 66.3 66.1 65 65.7

For EBRT the 46 in 2Gy per fraction prescription is shown as only 1 patient in the whole cohort had 50 in 2Gy per fraction.

(EPIC-26) form (24), and rectal and urethral toxicity information
was collected. In terms of urethral toxicity, a stricture was
recorded if the patient underwent a surgical procedure for a
stricture (dilatation or urethrotomy). In this work, the end-point
was chosen to be the time of the first urethrotomy, with a follow-
up cut off time of 4 years, and the average stricture rate was 12.8%.
Among the clinical parameters, age, and the use of neo-adjuvant
androgen deprivation (AD) were also collected (Table 1). In
the HDRB plan, the urethra was contoured by the Radiation
Oncologist (RO) around the external diameter of a 22-Fr gauge
three-way indwelling urinary catheter as a solid structure from
typically 1 cm below the apex to the bladder base (Figure 1a)
considering the specific anatomy of each patient to include
the mucosal wall. OAR doses were limited using departmental
guidelines based mainly on the GEC-ESTRO recommendations
(15). For the Planning Target Volume (PTV): D90% > 100% (at
least 100% of prescribed dose covering 90% of PTV), V100% >

95% (i.e., 95% of PTV receiving at least 100% of the prescription
dose),V150% = 15–32% (i.e., 150% of the prescription dose to 15–
32% of the PTV), V200% = 5–9% (i.e., 200% of the prescription
dose to 5–9% of the PTV). For the OARs: urethra D10% <

110% (i.e., 10% of urethra receiving no more than 110% of the
prescription dose), and rectal wall D2cc < 66% (i.e., 2 cc of rectal
wall receiving no more than 66% of the prescription dose).

Dosimetric Data

Due to the long time period for patient treatment included in this
study the AHRO HDRB patient treatment plans were originally
calculated either in the Plato (Nucletron) or in Oncentra
treatment planning system (Elekta). In order to limit differences
due to different Dose Volume Histogram (DVH) estimates,
all plans were de-identified and re-imported in Oncentra, and
DVHs were recalculated and exported. Since the patients were
treated with four different fractionation regimens, and due to

the inhomogeneous dose in the urethra, each fraction’s physical
doses were converted into equivalent doses in 2Gy per fraction
(EQD2) considering an α/β ratio of 5Gy, as previously used
by Gloi and Buchanan (22) (of note equivalent doses for late
effects to normal tissues are of interest in the frame of this work).
Due to the conformal nature of the EBRT plan, it was assumed
that for all patients the urethra had received the full EBRT
prescription dose of 46–50Gy in 2Gy per fraction. Converted
prescription doses for the brachytherapy boost are shown
in Table 1.

Determination of the Model Parameters

The Lyman–Kutcher–Burman model (LKB) was used in this
analysis (25, 26), and the dose-response curve plotted as
a function of the equivalent uniform dose (EUD). The
determination of the best estimate of the model parameters
was done by fitting clinical and dosimetric data using the
maximum likelihood method as previously described (27, 28),
using MatlabR2018 (Mathworks). Due to the small urethral
volumes involved, initially a numerical optimization of the
likelihood function was performed to establish a volume effect
parameter (n) value descriptive of the relationship between
urethral “architecture” and the considered toxicity endpoint in
the available dataset. Then this value was fixed, and TD50 (Gy)
(EUD that causes 50% probability of toxicity) andm (slope of the
response curve at TD50) were fitted. As the most recent patients
were rescanned and replanned on the 2nd day of treatment, EUD
from day 1 and 2 were considered in the model.

Internal validation was performed by bootstrapping the
original dataset 1,000 times as previously described (29), and
recalculating the model parameters. Results from the bootstrap
procedure were also used to define confidence intervals for best-
fit parameters: a 68% confidence interval was calculated as the
range 16th−84th percentiles of the distribution of the parameter
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FIGURE 1 | Urethra contouring characteristics for AHRO (a) and RADAR (b) patient.

values obtained through bootstrap, while a 95% confidence
interval was calculated as the range 2.5th−97.5th percentiles of
the same distribution.

Goodness of fit was determined by using a model calibration
plot to establish the relationship between the observed and
predicted probability. Due to the binary nature of the stricture
data (yes/no) the observed probabilities were obtained by
dividing the 258 patients studied into four dose-bin groups and
determining the corresponding rate of toxicity of each group.
These observed rates were then plotted against those predicted by
the model and a trend line derived. This line was then compared
against the identity line which represents a perfect prediction
(30). Calibration plot was established for themodel fitted with the
original AHRO data (apparent calibration line). Bootstrapping
was employed to determine optimism and optimism-corrected
performance (calibration line after correction for optimism) was
then calculated as described by Steyerberg (31).

The discriminative ability of the model, that is, the ability to
distinguish patients with different outcomes, was also evaluated
with the area under the receiver operating characteristic
curve (AUC).

External Model Validation
Data from a second cohort of 187 patients from a different
institution treated as part of the TROG (Trans Tasman Radiation
Oncology Group) 03.04 RADAR trial (32) were collected. For
this group of patients, the HDRB prescription dose was 19.5Gy
in three fractions [corresponding to EQD2 (α/β = 5Gy)], the
stricture rate at 8.6% was comparable to AHRO patients, and all
patients had∼5 months of AD prior to radiotherapy, as part of a
randomized total of 6 or 18 months of AD. The urethral toxicity
end-point was considered to be equivalent to the one chosen
for the AHRO patients, as the time of the first urethrotomy.
The RADAR cohort was also treated with EBRT doses of 46 in
2Gy fractions. For this group urethral structures were initially
contoured by the RO as the visible lumen of the urinary catheter
(Figure 1b, blue contour) and, then, these original contours were
expanded on average 2mm in the anterior-posterior and left-
right direction and modified in the superior-inferior direction to

be similar to the AHRO contours (Figure 1b, yellow contour).
An expansion was chosen in order to preserve the variability in
contours due to the RO outlines and provided urethral volumes
on average equivalent to those obtained in the AHRO patients
(respectively, expanded RADAR 1.5 cm3 and AHRO 1.4 cm3).

Both structures’ DVHs (RADAR original and expanded) and
associated clinical data were used to externally validate the LKB
parameters obtained with the AHRO cohort. Model calibration,
as described above, was used to establish agreement between
the AHRO model estimated probabilities and RADAR observed
stricture rates.

Effect of Clinical Covariates As
Dose-Modifying Factors
For the AHRO patients, the effect of using AD on the model
parameters was also investigated. The n and m value of the LKB
model parameters were fixed and the fit was re-done separating
the patients with (241/258) and without AD (17/258) to obtain
two different TD50s as proposed by Peeters et al. (33).

RESULTS

LKB Model Parameters
For the AHRO patients, the urethral stricture prediction for the
complete treatment (HDRB + EBRT) was modeled by means
of a sigmoid function of EUD (Figure 2A). The numerical
optimization of the likelihood showed a maximum for n =
0.3. The remaining best fitted parameters were found to be
TD50 = 116.7Gy (68% confidence interval, 108.3–134.1Gy),
m = 0.23 (68% confidence interval, 0.17–0.31; Table 2). The
AUC of the development population was 0.64. Figure 3 reports
the distribution of TD50 (Gy) and m parameters obtained
with bootstrapping.

The LKB NTCP curve was obtained and compared with
the AHRO observed data (Figure 2A). The calibration plot
confirmed the agreement between the observed probability of the
outcome and the probability predicted by the model, as the trend
line between the data was close to the identity line (Figure 2B),
with calibration in the large = 0.007 and slope = 0.92, R2 = 0.71
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FIGURE 2 | (A) Dose-volume response curve obtained with the best estimated parameters for the LKB model for urethral stricture. Solid black circles represent the

AHRO observed toxicity rates with corresponding error. The blues triangles represent the RADAR patients. (B) Calibration (predicted vs. observed) curves obtained by

using the AHRO LKB model and data (red dotted line, apparent calibration line; black continuous line, calibration line after correction for optimism).

TABLE 2 | LKB model parameters obtained fitting the original AHRO data (all

cohort), with bootstrapping, corresponding Confidence Intervals (CI) and when the

cohort was separated by the use or not of Androgen Deprivation (AD).

TD50 (Gy) m n

AHRO best fit 116.7 0.23 0.3

AHRO Bootstrapping median 116.5 0.23 0.3

AHRO Bootstrapping 68% CI 108.2–134 0.17–0.31

AHRO Bootstrapping 95% CI 104.2–218.7 0.14–0.51

AHRO with AD 118.2 0.23 0.3

AHRO without AD 104.9 0.23 0.3

for apparent calibration and calibration in the large = 0.01 and
slope= 0.91 after correction for optimism.

External Validation of the Model
The external validation performed using the urethra data
exported from the RADAR cohort gave the best agreement with
the AHRO prediction model when the urethra contours were
expanded to be similar to AHRO’s contours (calibration in the
large = −0.04 and calibration slope = 1.3, R2 = 0.94). As
shown in Figure 4B, poorer calibrationwas foundwhen using the
original contours (calibration in the large=−1.5 and calibration
slope= 18.5, R2 = 0.93; Figure 4A).

Looking at the dose-response curve (Figure 2A), consistency
was found between the RADAR observed toxicity rates and the
AHRO LKB model, confirming that the RADAR toxicity was
well-represented by the estimated LKB model parameters.

Effect of Using Neo-Adjuvant Androgen
Deprivation
When separating AHRO patients that received AD from those
that did not receive it, results showed a decrease of around 13Gy

in the TD50 (Gy) for patients who did not receive AD, suggesting
a protective effect of AD (Table 2, Figure 5).

DISCUSSION

Interest in understanding the nature of long term side effects
in OARs produced by prostate radiotherapy has grown due to
the increase in utilization of hypofractionated regimens in EBRT
(34–36). Of particular concern is the risk of urethral stricture
which generally requires surgical intervention to be resolved.
Guidelines for urethral dose constraints are still sparse due to the
fact that urethra contouring has only recently being considered
for such techniques and correlation with dose, and clinical
data follow-up and collection is lacking (17, 18, 30). HDRB
boost techniques, which have been used for decades due to the
introduction of afterloaders (9) instead provide the potential for
analysis of toxicity and dosimetric data specific for the urethral
side effects due to the routine inclusion of the urethral contour in
the planning process.

This work has focused on fitting the LKB model parameters
of urethral stricture data collected on a large cohort of patients
treated with HDRB boost at one single institution for a time-
period of 12 years. This NTCP model was created by considering
urethrotomy recorded in the first 4 years after the treatment
as an end-point. All toxicity data were prospectively recorded
in a database and the follow-up was meticulously done by
reviewing the patients at well set time intervals. Additionally, any
correspondence with the treating doctors after brachytherapywas
analyzed in order to look for additional urethrotomy recorded.

The predictive model fitted in this work showed a clear dose-
effect relationship between the incidence of urethral stricture
and the dose delivered to the urethra (Figure 2A), and it was
obtained by using the DVH as opposed to a single representative
dose parameter (for example, D10%). As shown in Table 1 by
increasing the dose from 18Gy in three fractions to 19Gy in two
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FIGURE 3 | Distribution of TD50 (Gy) (A) and m (B) parameters obtained with bootstrapping.

FIGURE 4 | Calibration (predicted vs. observed) curve obtained by using the AHRO LKB model for the RADAR data with original contours (A) and the expanded

contours (B).

fractions in a 2-day treatment schedule the incidence of strictures
was increased by almost three times from an average rate of 6.9–
20.5% for an identical cut-off time of 4 years of follow-up. This
finding was previously documented by Hindson et al. (10) for
a similar cohort of patients treated in the same institution, and
it is here confirmed by means of a sigmoidal relationship. The
fitted dose-response relationship showed that to ensure a toxicity
rate to below 10% the urethral EUD should be limited to 85Gy
(with α/β = 5Gy). Similar dose correlation was documented by
other groups, with toxicity rates equivalent to the AHRO cohort
for similar fractionation regimens (37, 38), and comparable
follow-up time (5–6 years on average), however, comparisons
were mainly performed by considering the prescription doses
and not the planned dose to the urethra. In contrast, several
publications reported no significant correlation in doses between
the group that had toxicity and the group that did not have

it (39, 40). For example, in the case of HDRB monotherapy,
more recently in an analysis of 178 patients with a median
follow-up time of 28.2 months, Tsang et al. (41) only reported
3% rate of urethral stricture and could not identify significant
correlation with the toxicity and the urethral dose, identifying
instead potential radiomics features that could predict the risk of
developing toxicity on the pre-treatment MRI. This conclusion
is similar to the work by Diez et al. (2) which instead considered
a median follow-up time of 55 months for all groups. However,
by fixing the follow-up time at 4 years the same authors reported
an increase from 3 to 7% of the Kaplan–Meier estimates from
the patients that were treated with 34Gy in four fractions to
the patients that were treated with 31.5Gy in three fractions
(14). Patients’ follow-up time seems to represent an important
variable in all of these studies, with large variations between
groups and most works not considering a fixed time at which to
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FIGURE 5 | Dose-volume response curve obtained with the best estimated

parameters for the LKB model for urethral stricture for patients that had

neo-adjuvant androgen deprivation (AD-blue) as opposed to patient that did

not have AD (NO AD-red).

compare different dose groups. For example, in a large cohort,
Bece et al. (13) reported a decrease in toxicity rate from 12.8
to 3% by moving from 18 to 19Gy in two fractions, however,
the first group was followed for 4 years as opposed to 2 years
for the second group limiting the information collected and the
analysis. As shown in Table 1, in our group for a follow-up of
4 years the time to toxicity on-set decreased with increasing
overall dose (from an average time of 3.6–2.1 years). So, a short
follow-up time could potentially underestimate the recorded
stricture rates.

The fitted model parameters (Table 2) well-represented
the AHRO observed data, as shown by the calibration
plot (Figure 2B), and internal calibration bootstrapped results
(Figure 3). The AUC was of the order of 0.64, which is of the
order of values obtained for most models based on dose features
alone (42). An outlier was observed in the 80Gy EUDdose group,
believed to be associated with the little variability of urethral
doses for patients in this dose group (Figures 2A,B). Notably, the
volume parameter n was larger than expected (0.3), suggesting
that the architecture of the urethra could be more parallel than
generally believed, due to its shape and similarity to structures
such as the spinal cord or the esophagus. However, this result
could be related to the small volumes involved (ranging from 0.02
to 3.6 cm3 for the AHRO cohort), and the limitation in fitting the
parameter with the data available. Additional studies have been
undertaken in order to analyze surface or voxelized dose maps
(18) of this organ, as opposed to the 2D representation provided
by the DVH, to identify spatial and volumetric correlations with
toxicity. In this work an α/β = 5Gy was used in order to convert
the physical doses into EQD2, and EUD. This value was chosen in
accordance to work by Gloi and Buchanan (22) as representative
of the urethral late effects, however, more dedicated studies are

in progress in order to confirm the validity of this assumption,
making it a limitation of this work.

The LKB model parameters were also tested by using data
from a completely independent cohort treated with comparable
HDRB boost doses to establish the generality of its predictive
value. The external cohort was part of a large group of patients
treated as part of the RADAR clinical trial (32) so all patients
were planned by following a well-defined protocol for dose
constraints and contouring guidelines. An interesting finding
was the importance of urethra contouring in the assessment of
NTCP dose-volume relationship. The RADAR patients’ whole
urethras were all initially contoured by the clinician as the
lumen of the urinary catheter (here defined as original-Figure 1b,
blue contour). The DVH extracted from this contour did not
correlate with the initial model as shown in the calibration plot
(Figure 4A). When re-outlined to match the AHRO contours
(Figure 1a, yellow contour) the goodness of fit was confirmed.
This result highlights that in order to understand the relationship
between dose and toxicity, and compare the data of different
groups, consensus for the outlining of the urethral volume is
advisable, and contour practices should be clearly documented. It
also suggests that in order to establish a dose-volume correlation
the urethra should be contoured in order to include the urethral
mucosal wall, and at least 10–20mm of urethra distally to the
prostate apex in order to include the bulbomembranous portion
as previously highlighted (43). In this work for both AHRO and
RADARpatients, the urethral dose provided by the external beam
portion of the treatment was considered uniform and equivalent
to the EBRT prescription dose. This method was followed due
to the fact that for both cohorts the urethral structures were not
contoured and considered at the time of treatment planning,
and the plan was performed to achieve uniform PTV coverage
(between 95 and 107% of the prescription dose). Due to the
introduction of external beam hypofractionated treatments, and
of routine urethral contouring this assumption might need to be
modified in order to account for the available calculated urethral
DVH information (35, 36).

In this work, the whole urethra was considered, as opposed
to other studies (2, 41) in which the volume was divided in
membranous and prostatic urethra.

Among the patients’ clinical parameters, the effect of the
use of neo-adjuvant androgen deprivation was investigated in
the model fitting. Despite the modeling limitation that a small
number of AHRO patients did not receive AD (Table 1), when
LKB was fitted with and without AD, the TD50 (Gy) showed
an absolute TD50 reduction of 13.3Gy without AD, suggesting
that AD could act as dose-modifier and a protective effect on
urethral toxicity. A similar result was previously documented
by Palorini et al. (30) for a large multicenter group of patients
treated with EBRT, and it could be due to the known effect of
tumor shrinkage and reduction of the irradiation volume, and
potentially a cytoreductive effect (30, 44).

All DVHs used in this study were extracted from the treatment
planning system and so they are representative of the planned
dose. This is a known limitation as experience and previous
works (10, 13) have shown the potential for prostate swelling
and needle movement with respect to the anatomy, which could
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potentially under or overestimate the dose-toxicity correlation
found. As of 2017, our group has started performing on-line
verification between CT and treatment and re-scanning and
planning the patients when the movement exceeds our clinical
tolerances (45), and data will be analyzed when mature.

CONCLUSION

Urethral toxicity is a limiting factor in providing additional dose
escalation in radiotherapy of the prostate. For HDRB of prostate
cancer clear urethral dose guidelines are still not available due
to the variety of dose prescription used and the variety of
contouring protocols. In this work, an LKB model was fitted to
the risk of urethral stricture for a large single center cohort. The
model was then externally validated with independent patients’
clinical and dosimetric data, showing a clear and reproducible
relationship between dose delivered to the whole organ and
urethral toxicity. When clinical factors were included findings
showed that for patients that did not receive neo-adjuvant
androgen deprivation, model fitting provided a lower TD50 (Gy)
suggesting a protective effect on urethral toxicity, as previously
highlighted for EBRT studies.
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Public preregistration of study analysis plans (SAPs) is widely recognized for clinical trials,

but adopted to a much lesser extent in observational studies. Registration of SAPs

prior to analysis is encouraged to not only increase transparency and exactness but

also to avoid positive finding bias and better standardize outcome modeling. Efforts to

generally standardize outcome modeling, which can be based on clinical trial and/or

observational data, have recently spurred. We suggest a three-step SAP concept in

which investigators are encouraged to (1) Design the SAP and circulate it among the

co-investigators, (2) Log the SAP with a public repository, which recognizes the SAP

with a digital object identifier (DOI), and (3) Cite (using the DOI), briefly summarize and

motivate any deviations from the SAP in the associated manuscript. More specifically,

the SAP should include the scope (brief data and study description, co-investigators,

hypotheses, primary outcome measure, study title), in addition to step-by-step details of

the analysis (handling of missing data, resampling, defined significance level, statistical

function, validation, and variables and parameterization).

Keywords: cancer, clinical trial, observational study, outcome modeling, preregistration, public repository,

radiotherapy, study plan

INTRODUCTION

Starting from 1997, the Food and Drug Administration Modernization Act (FDAMA) mandated
the National Institute of Health (NIH) to design a platform in which information about
FDA regulated clinical trials would become publicly available1. As a result, NIH launched
ClinicalTrials.gov shortly thereafter (1). Public pre-registration of clinical trials has since become
a general publication requirement (2), and fast forwarded to two decades after FDAMA was
introduced, ClinicalTrials.gov hosts 341 988 (as of June 11, 2020) registered studies conducted
worldwide2.

1Food and Drug Administration Modernization Act of 1997: https://www.govinfo.gov/content/pkg/PLAW-105publ115/pdf/

PLAW-105publ115.pdf#page=16
2https://clinicaltrials.gov/ct2/resources/trends
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FIGURE 1 | The number of preregistered SAPs during the last two decades under ClinicalTrials.gov2 and under OSF3 (data from ClinicalTrials.gov is taken from2; data

from OSF is taken from https://cos.io/our-products/osf-registries/).

This site primarily focuses on interventional studies/clinical
trials while study analysis plans (SAPs) and associated results
from observational studies are scarce (1)2 as also illustrated
in Figure 1 where the number of preregistrations from
ClinicalTrials.gov and from the Open Science Foundation
(OSF)3, which mainly holds SAPs from observational studies,
is given over time. Consequently, for observational exploratory
research it is often unclear as to the number of analyses
undertaken, which further feeds into what is referred to
as “p-hacking,” i.e., a positive finding publication bias since
the vast majority of published studies that report p-values
disclose positive/significant findings (3, 4). Further, SAP pre-
registration is likely to facilitate researchers to better distinguish
between confirmatory research (hypothesis-testing in which
p-values retain diagnostic value) and exploratory research

(hypothesis-generating in which p-values loose diagnostic value)
in order to avoid overconfidence in post-hoc explanations

in a finding that has not been proven, which could limit

reproducibility (5).
The Transparent Reporting of a multivariate predictionmodel

for Individual Prognosis Or Diagnosis (TRIPOD) statement
has encouraged to better standardize outcome modeling (6).
Outcome modeling can be based on data generated from
clinical trials or observational studies. Here we propose to
pre-register SAPs under public repositories for any outcome
modeling study to further promote standardization, transparency
and exactness and to mitigate the false positive inflation of
published results.

3https://osf.io/

METHODS AND MATERIALS

Public pre-registration of SAPs could be thought of as
committing to an analytical path but without advancing
knowledge of the research outcome (4). To date, the two most
commonly used public SAP repositories, which both provide
SAP unique digital object identifiers (DOIs), are located under
ClinicalTrials.gov (1) and under the OSF3. As previously pointed
out, ClinicalTrials.gov has primarily been used to register clinical
trials, while under OSF a larger extent of SAPs from observational
studies can be found.

THE SAP CONCEPT

The suggested SAP concept consists of three steps: (1) Designing
the SAP and circulating it among the co-investigators; (2)
Logging the SAP with a public repository, which recognizes
the SAP with a DOI, and (3) Citing (using the DOI), briefly
summarizing and motivating any deviations from the SAP in the
associated manuscript (Note: any new major post-SAP analysis
should only be considered hypothesis-generating/exploratory). The
three-step SAP concept is summarized in Figure 2.

The outcome modeling pipeline in the SAP should adhere to
themodeling procedures defined in the TRIPOD landmark paper
on how to model outcomes (6). This refers to description of data,
outcomes and input variables and parameterization in addition
to detailed step-by-step lay-out of the analysis. Below we list
more specifically what the SAP should include (at a minimum)
inspired by OSF’s preregistration template, which is available
as a GoogleDoc here: https://docs.google.com/document/d/
1DaNmJEtBy04bq1l5OxS4JAscdZEkUGATURWwnBKLYxk/
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FIGURE 2 | A flow chart of the suggested three-step SAP concept: (1) Design SAP and distribute to co-investigators (left); (2) Log SAP (middle), and (3) Cite (using the

DOI), summarize and motivate any deviations from the SAP in the associated manuscript (right).

edit?pli=1, but more directed toward outcome modeling
assuming an observational study design. An associated example
SAP template for the purpose of outcome modeling is provided
in the Supplementary Material.

Scope (Description of Data and Study)
The study scope should include title, co-investigators,
and a brief study description, and the underlying study
hypothesis/hypotheses. The brief study description should
be accompanied by a description of data/patient population
(inclusion criteria, number of patients, primary tumor site,
treatment era, etc.) and primary outcome measure with
range and minimum follow-up time and censoring defined if
applicable. The study type should also be clearly stated (e.g.,
validation, exploration, and/or prediction).

Analysis (Description of the Analysis)
All variables considered for analysis should be described in
detail along with their parameterization (binary, categorical
and continuous; specify increments if applicable). Handling of
missing data (if excluding data then describe how this will
be accounted for) should be disclosed, and if applicable data
transformation (or normalization) as well as definition of variable
interaction terms should be given. The exact definition of the
studied outcome, e.g., timing and scoring of radiation-induced
toxicity and how pre-treatment status was taken into account,
should be given. Although this SAP concept work focuses on
outcome modeling in general, the expected minimum level
of detail on reported variables is exemplified for RT dose,
which is central for outcome modeling following RT: Specify if
dose was parameterized as 2D dose-volume histograms (denote
metrics, interval investigated and sampling), and/or summary
measures such as the mean dose or the generalized equivalent
uniform dose, and/or if being represented spatially (denote
metrics and describe method) and if dose originated from the
planned dose distribution, if being accumulated (plus type of
dose accumulation), and/or if during treatment dose was used
(applies possibly only for acute toxicity). Denote if and how
fractionation effects were handled, and give the exact anatomical

definition of the investigated organ(s) along with the associated
segmentation approach. Please refer to the Results section for a
practical example of the level of detail in describing dose.

The statistical functions/methods of analysis (e.g., regression
(and type), time to event, competing risk, etc.) should be
explained in detail along with a description of risk groups
and defined errors/confidence intervals (if valid), any
considered resampling (e.g., iterated cross-validation hold-
out or bootstrapping; number of iterations, etc.), validation
(external/internal), and if and how univariate and/or
multivariate analysis will be performed. Any considered
level of significance/model quality should be specified and the
associated performance metric described. If investigating more
than one variable authors should denote how multiple testing
will be corrected for.

Lastly, the SAP should include the statistical software tools
(and version) that are being considered.

LITERATURE RESOURCES FOR
OUTCOME MODELING IN RADIOTHERAPY

Aside from advocating the use of TRIPOD (6) as a guideline
for outcome modeling in general, we below provide a short
introduction to relevant literature for outcome modeling in
radiotherapy (RT) with a particular emphasis on standardization.

To obtain reliable information about toxicities that influence
patient’s quality of life, normal tissue toxicities are likely
best represented by patient-reported outcomes (PROs) (7).
Using clinical decision-support tools (8, 9) and keeping the
number of items/questions as few as possible (10) are necessary
for actionability to patient-reported complaints. Dose-volume
histogram (DVH) metrics of interest depend on a large
variety of factors as pointed out within the 21 papers by the
QUANTEC effort (11). Gathering published DVH metrics to
better understand the reliability and generalizability of such
metrics was first initiated by QUANTEC and is, as illustrated in
their offspring efforts [pediatric RT (12) and hypo fractionated
RT (13)] and work by other groups (14), a continuous process.
These and related efforts (ideally multi-institutional) in which
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models have been validated (6, 15, 16) probably hold the
most reliable DVH findings. Also, incorporation of additional
sources of data is likely to shed much further light on the
complex mechanisms of both tumor response and normal
tissue toxicity following RT. Examples are shown in studies
focusing on genome-wide assays (17) and immune status (18)
as well as medical imaging within associated standardization
efforts (19).

RESULTS

A SAP Pre-registration Example
The authors recent experience in depositing an outcome
modeling SAP with a public repository (15) will be used as an
example of the SAP pipeline and content for outcome modeling.

After circulating the SAP among co-investigators, the SAPwas
logged with the OSF on July 23rd 2018 (15), and the analysis
was, thereafter, initiated [the associated full-length manuscript
was recently accepted for publication (16)].

As stated under the study scope (15), data were generated
from a clinical trial (20) but the trial was not part of the
outcome modeling itself. The primary outcome measure was
overall survival defined from the start date of randomization
and right-censoring was applied if alive at the last follow-
up. For Input data related to disease, patient and treatment
characteristics (the latter included 2D DVH parameterizations
of the atria, lung, pericardium, and ventricles [please see (16)
for exact anatomical definitions and parameterization of the
remaining input data] structures: the minimum dose to the
hottest 5–95% volume in steps of 5%, mean dose, minimum
dose, max dose and the mean of the hottest 5–100% volume
in steps of 5%, all metrics were corrected for fractionation
effects assuming α/β = 3Gy), significance was denoted at a
5% Bonferroni-corrected level. Validation was considered using
a holdout subset on which performance would be assessed
after settling the final model. The validation procedures were
directly adopted from a previously published study (21).

The main statistical function was Cox Proportional Hazard
regression. Both univariate and multivariate analyses, with a
clear advancement criterion (p < 0.05 of the log-likelihood
statistics), were undertaken, and re-sampling was considered
using Bootstrapping with 1,000 iterations. Lastly, arriving at
the final model, two alternative approaches were explored—
the ≥10% most frequently selected multivariate models or the
ensemble thereof.

CONCLUSION

We have suggested a SAP pre-registration pipeline to be used
for outcome modeling studies, which typically use observational
data. An example of an already submitted SAP and cited for
outcome modeling is given along with an outcome modeling
directed SAP template. The ambition of the authors is that pre-
registration of SAPs, using the suggested layout and pipeline,
is becoming standard, like it has for clinical trials, also in
outcome modeling.
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Background: Currently, radiation-oncologists generally evaluate a single treatment plan

for each patient that is possibly adapted by the planner prior to final approval. There is

no systematic exploration of patient-specific trade-offs between planning aims, using a

set of treatment plans with a-priori defined (slightly) different balances. To this purpose,

we developed an automated workflow and explored its use for prostate cancer.

Materials and Methods: For each of the 50 study patients, seven plans were

generated, including the so-called clinical plan, with currently clinically desired ≥99%

dose coverage for the low-dose planning target volume (PTVLow). The six other plans

were generated with different, reduced levels of PTVLow coverage, aiming at reductions

in rectum dose and consequently in predicted grade≥2 late gastro-intestinal (GI) normal

tissue complication probabilities (NTCPs), while keeping other dosimetric differences

small. The applied NTCPmodel included diabetes as a non-dosimetric predictor. All plans

were generated with a clinically applied, in-house developed algorithm for automated

multi-criterial plan generation.

Results: With diabetes, the average NTCP reduced from 24.9 ± 4.5% for ≥99%

PTVLow coverage to 17.3± 2.6% for 90%, approaching the NTCP (15.4± 3.0%) without

diabetes and full PTVLow coverage. Apart from intended differences in PTVLow coverage

and rectum dose, other differences between the clinical plan and the six alternatives were

indeed minor. Obtained NTCP reductions were highly patient-specific (ranging from 14.4

to 0.1%), depending on patient anatomy. Even for patients with equal NTCPs in the

clinical plan, large differences were found in NTCP reductions.

Conclusions: A clinically feasible workflow has been proposed for systematic

exploration of patient-specific trade-offs between various treatment aims. For each

patient, automated planning is used to generate a limited set of treatment plans with
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well-defined variations in the balances between the aims. For prostate cancer, trade-offs

between PTVLow coverage and predicted GI NTCP were explored. With relatively small

coverage reductions, significant NTCP reductions could be obtained, strongly depending

on patient anatomy. Coverage reductions could also make up for enhanced NTCPs

related to diabetes as co-morbidity, again dependent on the patient. The proposed

system can play an important role in further personalization of patient care.

Keywords: personalized radiotherapy, automated multi-criterial treatment planning, normal tissue complication

probability (NTCP), prostate cancer, gastro-intestinal

INTRODUCTION

The aim of radiotherapy treatment planning is to define a
treatment that provides adequate tumor volume irradiation
with the highest expected therapeutic ratio. To this purpose,
doses in organs at risk (OARs) are minimized based on known
risks for radiation-induced toxicity (1). Technical developments
in external beam radiotherapy (EBRT), e.g., replacement of
3D-conformal radiotherapy (3DCRT) by intensity modulated
radiation therapy (IMRT) and volumetric modulated arc therapy
(VMAT) (2–4), and improvements in image guidance (5–7),
have significantly improved treatment outcome and/or reduced
radiation induced side effects in a variety of treatment sites.
Recently, developments in automation of treatment planning
have further enhanced opportunities for generation of high
quality treatment plans (8–10).

Ideally, toxicity risks to be used in planning are modeled
with normal tissue complication probabilities (NTCPs). There
is an active field of research developing these predictive
models (1, 11–15). More and more, published NTCP models
include non-dosimetric parameters that modulate the radiation-
induced toxicity risk (16). For example, Cozzarini et al.
(14) used multivariate logistic regression to include both
dosimetric parameters, extracted from the clinical plans, and

patient characteristics (e.g., smoking status, age, application and
duration of hormonal therapy) in the toxicity prediction models.

Pre-selection of a relevant predictor subset was performed
using univariate logistic regression. A similar approach was

performed in previous work by Sharfo et al. (17) who developed

a multivariate logistic regression model predicting radiation
induced gastro intestinal (GI) toxicity.

Current practice in radiation therapy treatment planning is

based on treatment site specific clinical protocols, containing
hard constraints, and planning aims. Evidence based medicine

recommends the definition of clinical protocols, based on
findings in prospective clinical trials and dose escalation studies

(18). Generally, the planning protocol is used by a planner to
generate for each patient a single treatment plan that may or
may not be adjusted after discussion with the treating physician
prior to final approval. There is no systematic exploration of
patient-specific trade-offs between the various planning aims by
generation of a set of treatment plans for each patient with
(slightly) different trade-offs.

We hypothesized that generation of a limited set of well-
designed treatment plans per patient, instead of a single plan, can

help to better identify plans with optimal patient-specific trade-
offs. For example, for some patients with specific anatomies, a
slight decrease in coveragemight result in a relatively large NTCP
gain. For patients with non-dosimetric conditions that result in a
significantly enhanced predicted NTCP, a lower PTV coverage or
a somewhat enhanced NTCP for a different side-effect might be
accepted to counter-act the enhancement. We also hypothesized
that automated planning can be used to effectively generate the
required treatment plans.

In this paper we have investigated these hypotheses for
treatment of prostate cancer. An automated planning algorithm
was used to generate for each patient a set of plans to explore
the trade-off between the dose coverage of the large planning
target volume to be irradiated with reduced dose (PTVLow) and
the predicted NTCP for grade ≥2 GI toxicity for otherwise
similar dose distributions. In particular, measures were taken
to maintain clinical target volume (CTV) coverage at 100%
and to keep the coverage of the (smaller) PTVHigh at the
requested ≥99% level. Deterioration of bladder dose was also
to be avoided. We also investigated to what extent reduction in
PTVLow coverage could compensate for significantly enhanced
toxicity risks caused by diabetes.

MATERIALS AND METHODS

Patients and Clinical Protocol
Fifty arbitrarily selected prostate cancer patients, previously
treated in our center in the context of the randomized HYPRO
trial (19) with a simultaneously integrated boost technique,
were included in the study. PTVHigh consisted of the prostate
(CTVHigh) expanded with a 5–6mm isotropic margin, but
avoiding overlap with the rectum. PTVLow was defined by
applying a 8–10mm isotropic margin around the prostate +
seminal vesicles (CTVLow). All patients were treated in the
hypofractionation arm with prescribed total doses for PTVHigh

and PTVLow of 64.6Gy and 57.76Gy, delivered in 19 fractions.
For both PTVs, the planning aim was to have ≥99% of the
volume covered by 95% of the prescription dose, with full
coverage of the CTVs. Contoured organs at risks (OARs) were
rectum, bladder, anus, and hips. Reduction of rectum dose was
the highest OAR priority.

System for Automated Plan Generation
In this study, all treatment plans were generated with the in-
house developed Erasmus-iCycle system for fully-automated
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multi-criterial plan generation, which has been extensively
described in the literature (8, 20–22). Generated plans are Pareto-
optimal and often superior to manually generated plans (10, 23,
24). Here a short description of the system provided. Plans are
generated using a so-called wish-list (described in more detail in
section Wish-Lists) that defines the protocol for automated plan
generation, based on a set of cost functions that are either defined
as hard constraints or planning objectives with assigned priorities
and goal values. In plan generation, planning constraints are
never violated. On the other hand, goal values of objective
functions are met as well as possible or possibly superseded,
taking into account the constraints and ascribed priorities.
Planning objectives are sequentially optimized according to their
priorities while always adhering to all imposed constraints.
After each objective function optimization, a new constraint is
added to the optimization problem to ensure that the previously
obtained function value is maintained while minimizing lower
priority objectives. Wish-lists are treatment site specific and are
constructed in an iterative tuning process, together with the
treating physician. Although clinically delivered manual plans
serve as an initial reference for wish-list generation, the final goal
is always to supersede the manual plan quality.

Exploration of Patient-Specific Trade-Offs
Between Target Coverage and
Radiation-Induced Toxicity
In a recent study, Sharfo et al. (17) used automated treatment
planning to investigate the quality of dose distributions delivered
in the HYPRO trial (19). To that purpose, logistic regression
analyses was used to develop an NTCP model (Equation 1) for
grade ≥ 2 GI toxicity, based on scored toxicities, delivered doses
and non-dosimetric predictive parameters.

NTCP =
1

1+ e−6.362+B·2.083+D·0.608+T·0.406+E·0.084 (1)

B = Baseline GI toxicity (yes/no), D = Diabetes (yes/no),
T = High risk treatment group (yes/no) (19), and E =
rectum gEUDEQD2Gy(7.7).

Here we used this model to systematically investigate patient-
specific trade-offs between predicted GI toxicity and PTVLow

coverage. Seven plans were generated for each patient to quantify
risk reductions associated with reductions in coverage from the
clinical ≥99% to as low as 90% for otherwise highly similar
dose distributions.

A sub-group of the patients in the study cohort had diabetes
as a co-morbidity. However, to systematically explore diabetes as
a co-morbidity, analyses were performed both assuming that all
patients had diabetes or none of them had.

Generated Treatment Plans
Erasmus-iCycle was used to automatically generate VMAT
plans with 10MV photon beams. Starting point for the plan
generations was a slightly modified version of the wish-list
developed by Sharfo et al. (17) for automated generation of plans
with ≥99% coverage for both PTVs, in line with the HYPRO
protocol. In this study, this wish-list was used to generate for

each patient the so-called ‘clinical plan’ which is a high-quality
Pareto-optimal plan with the currently required ≥99% coverage
for both PTVs. (Note: these are not the clinically delivered plans,
which were manually generated and of lower quality (17). The
six alternative plans with various PTVLow coverages in the range
99%−90%were generated withmodified versions of this wish-list
(as specified in section Wish-Lists) aiming for increased rectum
sparing while guaranteeing high similarity with the clinical plan
for other dose parameters.

Wish-Lists
The applied wish-lists are described in Table 1 with some
explanations in the following text. In Erasmus-iCycle, target
coverage is generally optimized by minimizing a logarithmic
tumor control probability (LTCP) cost function (Equation
2) (25),

LTCP =
1

m

∑m

j=1
e(−α(dj−PD) (2)

where m is the number of voxels in the target, PD the prescribed
dose, dj the dose in voxel j, and α the cell sensitivity parameter
(26). A ≥99% coverage for PTVHigh was for all generated plans
achieved using a goal value of 0.8. Minimum dose constraints for
CTVHigh and CTVLow guaranteed that CTV coverage was always
maintained when reducing PTVLow coverage.

For generation of the clinical plan, the priority 2 cost function
was disabled and a goal value of X = 0.4 was used in priority
3 to always acquire >99% coverage for PTVLow (the LTCP
cost function was applied to the entire PTVLow, including the
overlapping area with the rectum). Rectum sparing was obtained
by optimizing a gEUD(k) with k equal to 7.7, in line with the
NTCP model (Equation 1). Conformality of the dose outside
the PTVs was controlled by a set of maximum dose objectives
(priorities 5 and 8), assigned to concentric shells around PTVLow.

For generation of the six plans with reduced PTVLow coverage,
modifications in the wish-list were made at the level of the
bold/italic lines in Table 1. The aim was always to have PTVLow

underdosages in the most promising regions for GI NTCP
reduction, i.e., where rectum was overlapping with the PTVLow

and its surroundings, without compromising the CTV doses and
while keeping the remainder of the dose distribution as similar
as possible to the clinical one. To this purpose, the priority 2
objective was introduced for dose optimization in the PTVLow-
RectumPRV structure in which the overlapping rectum expanded
by a margin was subtracted from the PTVLow. The applied
PRV margins were 25, 20, 15, or 10mm for patient-specific
PTVLow and rectum overlapping areas of <4, <6, <7, or >7%,
respectively. An LTCP cost function with a goal value of 0.4 was
used to always cover >99% of PTVLow-RectumPRV.

To obtain plans with various PTVLow coverages <99%, the
LTCP in priority 3 was now used for partial recoveries of the
PTVLow coverage in a controlled way. This was performed by
using well-selected (patient-independent) X-values in priority
3 that were different for each of the six plans generated
with reduced PTVLow coverage. For generation of the plans
with reduced PTVLow coverage, the bladder DMean objective in
priority 9 was removed, while a bladder DMean constraint was
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TABLE 1 | Wish-lists used for automated plan generations in this study.

CONSTRAINTS

Structure Constraint function Limit

PTVHigh Maximum dose <105% of PDHigh

PTVHigh Mean dose <100.5% of PDHigh

PTVLow-(PTVHigh exp

by 2.5mm)

Maximum dose <95% of PDHigh

PTV Shell 50 Maximum dose <50% of PDHigh

Rectum Maximum dose <102% of PDHigh

Anus Maximum dose <102% of PDHigh

Patient Maximum dose <105% of PDHigh

CTVHigh Minimum dose >95% of PDHigh

CTVLow Minimum dose >95% of PDLow

OBJECTIVES

Priority Structure Aim & objective

function

Goal value

(Sufficient)

1 PTVHigh ↓ LTCP(99.5% of

PDHigh,α =0.8)

0.8 (0.8)

2 PTVLow-

RectumPRV

↓ LTCP(PDLow ,α=1.4) 0.4 (0.4)

3 PTVLow ↓ LTCP(PDLow ,α=1.4) X (X)

4 Rectum ↓ gEUD(7.7) 0

5 Entrance Dose ↓ Maximum dose <20% PDLow

5 PTV Shell 5 ↓ Maximum dose <80% PDLow

6 Rectum ↓ Mean dose 5

7 Anus ↓ Mean dose 5

8 PTV Shell 15 ↓ Maximum dose <50% PDLow

8 PTV Shell 25 ↓ Maximum dose <30% PDLow

9 Bladder ↓ Mean dose 5

10 Hip left ↓ Maximum dose 40

10 Hip right ↓ Maximum dose 40

Bold/italic lines are different for the clinical plans and alternative plans (see text).

Minimum values to CTVs were set 2Gy higher to account for voxel sampling in the

optimizations. PDHigh, prescribed dose for PTVHigh (64.6Gy); PDLow, prescribed dose for

PTVLow (57.76Gy); gEUD(k), generalized equivalent uniform dose; k, volume parameter;

LTCP(PD,α), logarithmic tumor control probability (25); with α, cell sensitivity; OAR, organ

at risk; ↓, minimization; ↑, maximization.

added with a limit value equal to the patient-specific bladder
DMean obtained in the clinical plan. This was done in order
to avoid dose being pushed away from the rectum toward
the bladder.

Creation of the appropriate wish-lists was performed
in a tuning process involving CT-scans of a set of
10 patients.

RESULTS

Figures 1, 2 show NTCP reductions for the 50 study patients
as a function of the loss in PTVLow dose coverage. Figure 1
is valid in case of diabetes, while for Figure 2 we assumed
that there was no diabetes. As explained in the M&M section,
reductions in PTVLow coverage in the six alternative plans for
each patient were obtained with (convex) LTCP cost functions.

Convexity avoids getting trapped in local minima, but with
the LTCP cost function, obtained PTVLow coverage values
vary somewhat between patients. For generation of Figures 1,
2, NTCPs for the defined coverage reductions were for each
patient obtained by piecewise linear interpolations between
the generated plans. The different colors show the impact of
incremental underdosage steps of 1% in PTVLow on obtained
NTCP. For some patients (e.g., patient 13), reducing the coverage
to as low as 90% was not possible, possibly due to not sufficiently
large PRV margins or conflicting constraints on the PTVHigh

and the CTVs dose requirements. For patient 50, accepting
lower PTVLow coverage did not result in any NTCP reduction
because of lack in overlap between PTVLow and rectum (see also
Figure 6).

Following Equation 1, NTCP values were indeed higher in
case patients had diabetes (compare upper panels of Figures 1, 2).
On the other hand, NTCP reductions were also larger in
case of diabetes. For a PTVLow coverage of 95%, average
NTCP reductions of 4.3% (0.3–8.0%) and 2.9% (0.2–5.5%)
were obtained with or without diabetes, respectively. For 90%
coverage, the obtained NTCP reductions increased to 8.3%
(0.3–14.4%) and 5.6% (2.0–10.1%), respectively. Both with and
without diabetes, there was an overall trend toward enhanced
NTCP reductions for patients with the highest clinical NTCPs
(lower panels Figures 1, 2). On the other hand, large inter-patient
variations were observed. For example, patients 1 and 3 had
similar clinical NTCPs, but a large difference in achievable NTCP
reductions. Moreover, similar NTCP reductions were observed
for different costs in PTVLow coverage. For example, patients 12
and 14 have similar NTCP reductions of ∼10% accepting 94%
or 91% PTVLow coverage instead of 99% (Figure 1). Observed
maximum NTCP reductions ranged from > 14% (patient 1) to
<1% for patient 50, depending on differences in anatomy (see
Figure 6).

Figures 3, 4 show the differences between clinical and
alternative plans on a per patient base and in population
DVHs, respectively. They demonstrate that the enforced PTVLow

coverage reductions mainly had an impact on rectum sparing
while having a clinically insignificant dosimetric impact on
PTVHigh, CTVHigh, CTVLow, bladder, anus and hips, as intended
(section Generated Treatment Plans). Figure 5 shows for an
example patient highly similar dose distributions, except for the
region of overlap between rectum and PTVLow.

In Figure 6 we investigated the extent of feasible NTCP
reduction as a function of overlap between rectum and
PTVLow. Although, there is an overall trend toward more
reduction with larger overlap, there are inter-patient variations
with R2 equal to 0.6 and 0.7, for 95 and 90% PTVLow

coverage, respectively.
For the 50 patients in this study, presence of diabetes resulted

in an average increase in clinical NTCP from 15.4 ± 3.0%
(1SD) to 24.9 ± 4.5% (1SD) (compare also the upper panels
of Figures 1, 2). Figure 7 explores opportunities for mitigation
of enhanced toxicity risk due to diabetes by reducing required
PTVLow coverage. Clearly, depending on the allowed coverage
reduction and the patient anatomy, NTCP enhancements due to
diabetes could be largely compensated. For some patients, (e.g.,
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FIGURE 1 | (Top) NTCP values for the clinical plans (PTVLow coverage ≥99%) in case of diabetes as a co-morbidity. (Bottom) Cumulative NTCP reductions for

decreasing levels of PTVLow coverage. Patients were sorted according to their clinical NTCP as visualized in the top panel.

FIGURE 2 | (Top) NTCP values for the clinical plans (PTVLow coverage ≥99%). (Bottom) Cumulative NTCP reductions for decreasing levels of PTVLow coverage.

Patients were supposed not to have diabetes. Patient sorting along the x-axis was the same as for Figure 1.

1, 6, and 8) the impact of diabetes could be completely canceled
when using a coverage of 90–91%. Other patients (e.g., 3 and 20)
demonstrate quite large residual differences in NTCP with and
without diabetes, for reduced PTVLow coverages.

DISCUSSION

In this study, we have used prostate cancer radiotherapy as

a model for development of a clinically feasible workflow for
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FIGURE 3 | Dose parameter differences between the clinical plan and the alternative plans with reduced PTVLow coverages. (Top) Targets. (Bottom) OARs. All

differences were small and within clinically acceptable limits.

FIGURE 4 | Population average DVHs for each of the seven plans generated per patient. The left panel shows a clear (intended) trade-off between rectum dose and

coverage of PTVLow. The right panel shows very small differences for other structures.

application of automated planning for assessment of patient-
specific trade-offs between treatment goals. All plans were
generated fully automatically, i.e., without any manual fine-
tuning. With carefully designed, patient-independent variations

in the autoplanning configuration (i.e., wish-list), the PTVLow

coverage could be varied in a controlled way in the range 99–
90% to reduce the predicted NTCP, without significant further
changes in the dose distributions. In particular, CTV coverage
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FIGURE 5 | Dose distributions of patient 13 for 99% (left) and 94% PTVLow dose coverage. For both patients, top: sagittal view through isoc., bottom: axial views at

two levels. Structures: red = PTVHigh, blue = PTVLow, white = rectum, and yellow = bladder. Apart from the dose in the posterior part of PTVLow, dose distributions

are highly similar.

FIGURE 6 | NTCP reductions by going from ≥99% coverage for PTVLow to 95% (Left) and 95% (Right), as a function of the percentage of rectum overlapping with

PTVLow. Each dot represents one of the fifty study patients. In the left panel, patients 1 and 50 are marked for discussions in the text.

remained 100%, PTVHigh coverage was kept at ≥99%, and
bladder dose did also not significantly change. For each patient,
the obtained bladder DMean in the clinical plan (PTVLow coverage

≥99%) was used as constraint in the generation of the six
other plans with reduced PTVLow coverage. It was demonstrated
that large, but highly patient-specific NTCP reductions could
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FIGURE 7 | Compensation for diabetes induced-enhancement of predicted NTCPs (compare black solid and dashed lines) by reducing PTVLow coverage levels. With

gradual decreases in coverage, NTCPs with diabetes gradually approach the dashed curve for NTCPs without diabetes. Patient sorting along the x-axis was the same

as for Figure 1.

be obtained. For a PTVLow coverage of 90%, observed NTCP
reductions ranged from 14.4 to 0.1%, compared to 99% coverage,
depending on the patient anatomy. Reductions in required
PTVLow coverage could to a large extent make up for diabetes
as a co-morbidity, again depending on patient anatomy. To the
best of our knowledge, this is the first study that proposes the
use of automated planning for patient-specific exploration of
opportunities for dosimetric compensation of non-dosimetric
toxicity risk factors.

Automated treatment plan generation required about 1–2 h
per treatment plan. No manual interaction was required at any
step of the procedure. Therefore, multiple plans could be run,
sequentially or in parallel, over the night. Generation of a wish-
list generally takes several weeks. This is a one-time effort and
should be seen as an upfront time-investment, which saves a
lot of manual planning time at a later stage. Specifically for
this project, the wish-list was already developed in a previous
study (17).

Observed NTCP reductions correlated to some extent with
the volume of rectum overlapping with PTVLow (Figure 6,
R2 = 0.6–07). Once a correlation model is built based on the
plans generated with the proposed method, the regression lines
might be of use as a tool for selection of the PTVLow coverage
region of interest, or for selection of patients. That is, the
proposed method could be applied only to patients and/or
to PTVLow levels that show to be more promising in NTCP
reduction. However, even in the relatively easy treatment site of
prostate cancer, a not too strong correlation was found. Different
parameters may be investigated, but for more challenging
treatment sites finding predictors for NTCP reduction may be

even more complex. The presented method, on the other hand,
only requires computation time once the procedure is defined.

In the wish-lists applied in this study, concentric shells at
distances of 5, 15, 25, and 50mm from the PTV edge were
used to control plan conformality (Table 1). The limit and goal
values were the same for all patients and all plans. Initially, we
did however try to get further NTCP reductions by loosening
conformality goal values. This was not successful; conformality
worsened but NTCPs remained practically unchanged.

Equation 1 was used for NTCP prediction in this study, as
our patients were treated in the context of the HYPRO trial, and
Equation 1 was derived for these patients. Important to note is
that various alternative predictive models exist (11, 15), which
could possibly have resulted in different conclusions, or could
have resulted in different approaches for lowering NTCPs. Direct
use of Equation 1 in this study was limited to plan evaluations,
i.e., Equation 1 was not used in the wish-list for plan generations
(see Table 1). For planning, we generally prefer to use convex
cost functions to avoid getting trapped in local minima, and the
NTCP expression in Equation 1 is not convex. Alternatively, the
(convex) rectum gEUD (7.7), as used in Equation 1, was directly
applied as an objective function (priority 4 in Table 1).

The proposed method to explore trade-offs in planning goals
has some similarities with the well-known Pareto navigation,
using a graphical user interface with sliders to find a clinically
favorable plan (8, 26–31). Also in that method, multiple plans
are automatically generated for manual plan selection. There are,
however, important differences. The most important difference
is that for each patient, we first generate a high-quality, Pareto
optimal plan (“wish-point”) with clinically most desired PTVLow

Frontiers in Oncology | www.frontiersin.org 8 June 2020 | Volume 10 | Article 943169

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bijman et al. Automated Planning for Trade-Off Exploration

coverage (≥99%). For each patient, this plan is then used
as anchor point for patient-specific generation of the plans
with slightly reduced PTVLow coverage, using the bladder dose
obtained in the wish-point plan as constraint. In the proposed
workflow, only plans are generated that are useful for the
desired analyses. In conventional generation of plans for Pareto
navigation, there is no knowledge of the “wish-point,” and
generation of plans is less focused. Due to our highly focused
plan generation, only few plans are needed for the analyses. In
this study we used seven plans per patient. This number was not
optimized in terms of finding the minimum number of required
plans. The aim was to include for all patients, the full range of
PTVLow coverages from 99 to 90%. If a clinical protocol has more
precise directions for reductions in PTVLow coverage, for sure
even fewer plans need to be generated.

PTV margins are generally used to minimize risk in CTV
miss. In this paper, we kept all margins unchanged, but allowed
doses in the overlap area of PTVLow with rectum to get
lower than in the clinical plan. Coverages in PTVHigh and
CTV were always maintained. With this approach, the risk
of CTV miss was minimized, but still (at least potentially)
enhanced compared to regular clinical planning. Therefore,
clinical introduction of this type of workflow is not trivial.
Extensive computer simulations could be performed to assess
the true risks, taking into account the clinically applied image-
guided approach. Clinical introduction could well be performed
in a formal study. Anyway, it seems that patient selection could be
important, with patients with a high clinical NTCP (e.g., related
to an unfavorable anatomy or diabetes) and a large potential
for NTCP reductions, as best candidates. It is important to
realize that we used in this study our clinically required PTV
coverage level of 99%. In many studies, coverages of 95% were
reported (32).

We have investigated trade-offs between PTV coverage and
GI NTCP for prostate cancer but believe that the proposed
methodology could also be applied for other tumor sites. The
system could also be used to explore patient-specific trade-offs
between various toxicities for fixed PTV coverage. Focusing
on balances between toxicities instead of toxicity vs. PTV
coverage could ease clinical implementation. The developed
workflow could potentially also be used in shared decision
making studies.

CONCLUSION

A novel, clinically feasible workflow has been proposed for the
use of automated planning to systematically explore patient-
specific trade-offs between various treatment aims. For prostate
cancer, the patient-specific balance between PTV coverage
and predicted GI toxicity risk was explored. Opportunities
for compensating significantly enhanced predicted toxicity
risk related to diabetes by reducing the PTV coverage were
investigated as well. Large variations in potential benefit were
observed in the fifty study patients. The proposed system could
play an important role in further high-precision personalization
of patient care.
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Purpose: Proton radiotherapy (PRT) is potentially associated with a lower risk for
secondary malignancies due to a decreased integral dose to the surrounding organs at
risk (OARs). Prospective trials confirming this are lacking due to the need for long-term
follow-up and the ethical complexities of randomizing patients between modalities. The
objective of the current study is to calculate the risk for secondary malignancies following
PRT and photon-based intensity-modulated radiotherapy (IMRT).

Materials and Methods: Twenty-three patients (16 female and seven male), previously
treated with active scanning PRT for malignant mediastinal lymphoma at Heidelberg Ion
Beam Therapy Center, were retrospectively re-planned using helical photon IMRT. The
risk for radiation-induced secondary malignancies was estimated and evaluated using
two distinct prediction models (1–4).

Results: According to the Dasu model, the median absolute total risk for tumor
induction following IMRT was 4.4% (range, 3.3–5.8%), 9.9% (range, 2.0–27.6%), and
1.0% (range, 0.5–1.5%) for lung, breast, and esophageal cancer, respectively. For PRT,
it was significantly lower for the aforementioned organs at 1.6% (range, 0.7–2.1%),
4.5% (range, 0.0–15.5), and 0.8% (range, 0.0–1.6%), respectively (p ≤ 0.01). The
mortality risk from secondary malignancies was also significantly reduced for PRT
relative to IMRT at 1.1 vs. 3.1% (p ≤ 0.001), 0.9 vs. 1.9% (p ≤ 0.001), and 0.7
vs. 1.0% (p ≤0.001) for lung, breast, and esophageal tumors, respectively. Using the
Schneider model, a significant risk reduction of 54.4% (range, 32.2–84.0%), 56.4%
(range, 16.0–99.4%), and 24.4% (range, 0.0–99.0%) was seen for secondary lung,
breast, and esophageal malignancies, favoring PRT vs. X-ray-based IMRT (p ≤ 0.01).
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Conclusion: Based on the two prediction models, PRT for malignant mediastinal
lymphoma is expected to reduce the risk for radiation-induced secondary malignancies
compared with the X-ray-based IMRT. The young age and the long natural history
of patients diagnosed with mediastinal lymphoma predisposes them to a high
risk of secondary malignancies following curative radiotherapy treatment and, as a
consequence, potentially reducing this risk by utilizing advanced radiation therapy
techniques such as PRT should be considered.

Keywords: mediastinal lymphoma, proton radiotherapy, intensity modulated radiotherapy, photon radiotherapy,

secondary malignancies, risk

INTRODUCTION

Over the last few decades, significant improvements in combined
modality therapy consisting of multi-agent chemotherapy and
consolidation radiotherapy (RT) have resulted in high cure rates
in patients diagnosed with lymphoma. Furthermore, due to their
young age and excellent survival rates, themediastinal lymphoma
patients are at a significant risk for late toxicity from their
oncologic therapy. Notable improvements in oncologic outcomes
have prompted a new focus on the reduction of treatment-
related morbidity via de-escalation in both the chemotherapy
and the radiation realms. A reduction in RT treatment doses
and field sizes, as well as the utilization of modern highly
conformal RT techniques [e.g., intensity-modulated RT (IMRT),
in contrast to conventional 3D-conformal radiotherapy], has
led to a further reduction in radiation doses to organs at risk
(OARs) (5–8). Thoracic radiotherapy to the mediastinum poses
notable challenges due to the close proximity of target volumes
to OARs including the heart, breast, and esophagus, making
dose reductions to these organs difficult despite using the most
advanced X-ray-based radiotherapy techniques such as IMRT.
Multiple comparative dosimetric studies have demonstrated
radiation dose reductions to healthy surrounding tissues due
to the superior physics of proton therapy vis-à-vis the Bragg
Peak (9–12). Radiobiologically, these dose reductions can not
only result in reduced deterministic side effects leading to lower
acute toxicity rates but also in reduced stochastic side effects
and, consequently, reduced risk for secondary malignancies
(SM). Due to the stochastic nature of the risks, even small
doses delivered to OARs may induce a long-term SM induction
after RT. However, prospective trials confirming this are lacking
due to the need for an extremely long-term follow-up and the
ethical complexities of randomizing patients between these two
modalities. Although the risk for development of SM is small, it
is statistically significant, particularly for long-term survivors of
treatment, e.g., lymphoma patients (7, 8). One study conducted
with extended follow-up, published by Sethi et al., reported
statistically significant reductions in secondary malignancy risk
in pediatric patients treated for retinoblastoma (0 vs. 14%, p =
0.015) (13). The frequency of radiation-induced cancers after
total body exposures with very low doses of ionizing radiation
has been determined in different epidemiological studies (14, 15).
However, these epidemiologic data involve doses (<100 mSv)
which are dramatically lower than those used for RT. Hence,

different dose–response models, valid for all dose levels, have
been proposed using mechanistic models for predicting cancer
induction after fractionated radiotherapy, which are based upon
the linear–quadratic model:

(1) The Dasu model (1) explores several methods for estimating
the risk of cancer following RT in order to investigate the
influences of fractionation and non-uniformity of dose to
the irradiated volume. This model takes into consideration
the competition between cell killing and the induction of
carcinogenic mutations for a more realistic risk estimate.

(2) The Schneider model introduced the concept of organ
equivalent dose (OED) to estimate organ-specific radiation-
induced cancer incidence rates (4). The OED concept
assumes that any two dose distributions in an organ are
equivalent if they cause the same radiation-induced cancer
incidence. The two operational parameters of the OED
concept are the organ-specific cancer incidence rate at low
doses, which was taken from the data of atomic bomb
survivors, and cell sterilization at higher doses. For the
OED concept, the effect of cell sterilization in various
organs was estimated by analyzing the historical secondary
cancer incidence data of patients treated with RT due to
Hodgkin’s disease. Using these two model parameters, the
OED concept can be applied to any three-dimensional dose
distribution for estimating radiation-induced secondary
malignancy incidence.

The aim of the present study was to use these two radiobiological
models to investigate the potential improvement of PT vs.
X-ray irradiation relative to the risk of radiation-related
secondarymalignancies using actual proton dosimetric data from
patients who were previously treated with mediastinal RT for
malignant lymphoma.

MATERIALS AND METHODS

Patient Selection and Treatment Planning
Twenty-three (16 female and seven male) patients with
histologically proven lymphoma with mediastinal involvement
and treated with consolidative proton radiotherapy were
included in the present study. The patients received PT due to
their young age (<30 years), in female patients with an expected
high dose to breast tissue (Dmean > 4.5Gy) and/or in patients
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TABLE 1 | Patient, treatment, and disease-specific characteristics of 23 patients
with mediastinal lymphoma.

Number of patients 23

Median age (range) 30 years (18-54 years)

Sex (m/f) 7/16

HL/NHL 13/10

Ann Arbor staging

I 3 (13%)

II 13 (57%)

III 0 (0%)

IV 7 (30%)

Median total dose (range) 36 Gy(RBE) [20-39.6 Gy(RBE)]

Median no. of fractions (range) 18 (10-22)

Median dose per fraction (range) 2 Gy(RBE) [1.8-2 Gy(RBE)]

Median PTV 494ml (120-886ml)

Mediastinal involvement

Only superior 10 (43%)

Superior and inferior 13 (57%)

Laterality

Left 8 (35%)

Right 9 (39%)

Middle 6 (26%)

Additional cervical involvement 8 (35%)

Gy(RBE), Gray (Relative Biological Effectiveness); PTV, Planning target volume.

with particularly high expected radiation dose to the heart
(Dmean > 5Gy) if treated with conventional photon irradiation.
In summary, 10 patients with bulky disease (>7.5 cm) non-
Hodgkin lymphoma (NHL) received consolidation RT following
induction chemotherapy consisting of R-CHOP+/−MTX (16–
18). Thirteen Hodgkin lymphoma (HL) patients were treated
according to the German Hodgkin Study Group criteria,
depending on the stage and the risk factors (2, 19, 20). Treatment
technique and clinical outcomes have recently been described
in detail (12). The patient, treatment, and disease-specific
characteristics are presented in Table 1.

For treatment planning, the patients were immobilized with
the help of either individually shaped thermoplastic masks with
shoulder fixation or the WingSTEP system (IT V, Innsbruck).
A planning computed tomography (CT) scan with 3-mm slice
thickness as well as a 4D CT scan under free breathing were
acquired using Siemens’ either Somtom or Confidence (Siemens
Healthnears, Erlangen Germany). The aim of the 4D CT was
to qualitatively analyze the impact of respiratory motion on
tumormovement. Particle therapy planning was performed using
Siemens Syngo PT Software (Siemens, Erlangen, Germany) that
applies pencil beam algorithm for dose calculation (21–23). The
prescribed dose was optimized with proton beams of spot size
of 8–25mm full width at half maximum, and with 2–3mm of
overlap in lateral (dx, dy) and longitudinal (dz) directions. Both
single-beam optimization and multi-beam optimization (IMPT)
were applied, depending on the different tumor locations. If
IMPT was applied, generation of high-dose gradients per field
was avoided. Due to the location of the clinical tumor volumes

(CTV)s in close proximity to the lungs, a maximum of two
anterior beams with gantry angles between ± 20◦ was selected.
CTV coverage with D95% to 95% of the prescribed dose was
aimed while respecting known OAR dose constraints (24). The
final proton dose was scaled with a constant radiobiological
effectiveness (RBE) factor of 1.1. An active beam application
with raster-scanning technique (25) under daily image guidance
was used.

Comparative photon plans were calculated for all patients
using the TomoTherapy R© Treatment Planning System
(Tomotherapy, Accuray R© Incorporated, Sunnyvale, USA).
Whenever possible, directional or complete blocks for breast
tissue were used for optimization, resulting in a “butterfly”
IMRT beam arrangement approach [weighted anteriorly and
posteriorly oblique beam entry angles (26)]. The planning goals
were the same for the proton and the IMRT plans, with the aim
to keep the dose to the surrounding OAR as low as reasonably
achievable and not only according to QUANTEC and Emami
constraints, which can be easily achieved in moderate-dose
prescriptions like lymphoma treatments. Since this young
patient cohort was treated on a solely curative basis, main
priority was always given to optimal target coverage. Further
prioritization depended on the anatomical localization (upper
vs. lower mediastinal region with precardial involvement)
and the gender of the patient, but with a generally higher
priority to breast and heart tissue compared to the lung and
the esophagus.

Risk Estimation for Radiation-Induced
Secondary Cancers
Two distinct radiobiological models proposed by Dasu et al. (1)
and Schneider et al. (4) were applied for the risk estimation
of radiation-induced secondary cancers as previously described
by Mondlane et al. (27). Data extracted from the dose–
volume histograms from both the proton and the X-ray
plans were used for the risk calculation of radiation-induced
secondary malignancies.

Dasu Model
The Dasu model is a linear–quadratic (LQ)-based model
(Equation 1):

Totalriskorgan =
1∑
i vi

∑
i

vi

×
{(

α1Di +
β1D

2
i

n

)
× exp

[
−

(
α2Di +

β2D
2
i

n

)]}

where vi is the volume of tissue receiving dose Di given in n
fractions. The first term in the parenthesis describes the induction
of DNA mutations, while the second term models cell survival
in the irradiated organs. Calculations of the parameter α1 were
performed with the risk coefficients for fatal and total risk of
cancer induction derived according to the recommendations
of ICRP Publication 103 as previously described (1, 27, 28)
(see Table 2). The term “total risk” defines the mere risk for
development of cancer, while the term “fatal risk” describes the
risk of induced secondary cancer leading to death. An α/β ratio
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TABLE 2 | Risk coefficients (α1, second and third column) and the linear quadratic
model parameter (last column) used for risk assessment for the different organs
at risk.

Organ α1 (Gy −1) fatal risk α1 (Gy −1) total risk α2 (Gy −1)

Lung 0.0101 0.0144 0.129

Breast 0.0028 0.0144 0.008

Esophagus 0.0014 0.0015 0.274

The risk coefficients were taken from ICRP 103, the linear LQ-model parameters were

adapted from Schneider et al. (4).

of 3 was taken for the lungs, esophagus, and breasts. Nominal
risk coefficients are derived by averaging sex and age at exposure
lifetime risk estimates in representative populations.

Schneider-Model
The risks for inducing secondary malignancies were also
estimated using the Schneider model, which is based on
determination of the OED (Equation 2):

OED =
1∑
i vi

∑
i

vi × RED(Di)

where vi and Di are defined as in the Dasu model and RED (Di)
is the selected dose–response relationship.

As described by Mondlane et al. (27), three distinct dose–
response relationship scenarios (linear, linear–exponential, and
plateau) were applied for estimating the risk of SM. The linear
model assumes a direct increase in risk with increasing doses.
The linear–exponential dose relationship completely neglects
the repopulation/repair effect, while the plateau model expects
complete repopulation/repair to take place. The aforementioned
three equations modeling the dose–response relationship for
linear, linear–exponential, and plateau models are depicted in
Equation (3).

RED (Di) =




Di

Die
−α

′Di

1−e−α
′Di

α
′

According to Mondlane et al. (27), α′ is defined by applying the
LQ model and is proportional to the number of cells which are
reduced by cell killing:

α
′ = α + β

Di

n

in which n is the number of fractions used. The values of α

in Equation (4) are shown in the last column of Table 2 as α2.
Analogously to the Dasu model, an α/β ratio of 3 was taken for
the lungs, esophagus, and breasts. The relative risks for SMs were
calculated as the ratio of the OEDs obtained for specific OARs
(the PT dose relative to the photon dose). Therefore, a value <1
stands a lower risk for SM induction following PT.

Follow-Up
Following the completion of thoracic proton radiotherapy,
the patients received regular follow-up visits including clinical
examinations and CT orMR imaging. Response to treatment was
assessed using the revised response criteria for lymphoma (29).

Statistical Analysis
Statistical comparisons were performed using the non-
parametric Wilcoxon signed-rank test. Significance was noted
for two-tailed p-values of ≤0.05. Survival analyses for overall
(OS) as well as progression-free survival (PFS) following
radiotherapy were performed using the Kaplan–Meier method.
A p-value ≤0.05 was considered as statistically significant. All
statistical analyses were performed using the software SPSS 24.0
(IBM Corporation, Armonk, NY, USA).

Ethical Approval
Ethical approval was obtained from the local Ethics Committee
of Heidelberg University Hospital (S-201/2017).

RESULTS

Patient and Treatment Characteristics
Twenty-three patients with a median age of 30 years (range, 18–
54 years) and diagnosed withmediastinal lymphomawere treated
with consolidation radiotherapy using PT. Fifty-seven percent
(n = 13) of the patients suffered from HL, whereas 43% (n =
10) of the patients had aggressive NHL. Most patients presented
in Ann Arbor stages I–II (70%) with involvement of the superior
and the inferior mediastinal regions (57%). Additional cervical
involvement was present in one third of the patients. Median
treatment volume (planning target volume) was 494ml (range,
120–886ml). Complete patient-, treatment-, and disease specific
characteristics are shown in Table 1.

Planning and Dosimetric Characteristics
The Dasu model was applied to estimate both the total risk as
well as the fatal risk. Figure 1 depicts the calculated risks for
total and fatal SM induction for relevant thoracic organs for each
patient. For X-ray irradiation, the median total risk for tumor
induction was calculated to be 2.2% (range, 1.6–3.1%), 2.1%
(range, 1.7–2.9%), and 1.0% (range, 0.5–1.5%) for the right lung,
the left lung, and the esophagus, while for proton irradiation the
risk was significantly reduced to 0.8% (range, 0.1–1.2%), 0.8%
(range, 0.3–1.4%), and 0.8% (range, 0.0–1.6%), respectively (p ≤
0.001). The fatal risk for secondarymalignancies also significantly
decreased to 0.5% (range, 0.1–0.9%), 0.6% (range, 0.2–1.0%), and
0.7% (range, 0.0–1.5%) in the right lung, the left lung, and the
esophagus when applying PT, compared to 1.5% (range, 0.7–
2.2%), 1.5% (range, 0.6–2.0%), and 1.0% (range, 0.5–1.4%) with
photon irradiation (p ≤ 0.001). For female patients treated with
PT, the risk of total and fatal cancer induction was 1.5% (range,
0–10.1%) and 0.3% (range, 0–2.0%) for the right breast as well as
2.4% (range, 0–9.7%) and 0.5% (range, 0–1.9%) for the left breast,
respectively. A significant increase in both total cancer and fatal
cancer induction was calculated in the corresponding photon
plans with 3.5% (range, 0.8–10.4%) and 0.7% (range, 0.2–2.0%)
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FIGURE 1 | Total (A) and fatal (B) secondary malignancy risks according to the Dasu model for relevant thoracic organs (right and left lung, esophagus, right and left
breast) for each patient. Total and fatal secondary malignancy risks for photons are depicted in red, for protons in blue.

for the right breast and 6.6% (range, 0.9–22.7%) and 1.4% (range,
0.2–4.4%) for the left breast, respectively (p ≤ 0.001). However,
one patient showed a slightly increased risk for both total and
fatal esophagus cancer induction when PT was applied compared
to photon irradiation (patient 10, Figure 1).

Utilizing the Schneider model to estimate the risk for
carcinoma induction, the ratios of the OED values derived from
the PT and the X-ray therapy plans were calculated and the
relative risk reduction using the linear, the linear–exponential,
and the plateaumodel was derived. According to all threemodels,
PT statistically significantly reduced the risk of radiation-induced
lung, esophagus, and breast carcinoma for female patients (at
least p ≤ 0.008) when compared to X-ray irradiation (Table 3).
For each patient, the calculated relative risks for tumor induction
in bilateral lungs, esophagus, and bilateral breasts for female
patients are presented in Figure 2 for the three distinct dose–
response relationship models. However, two patients (patients
10 and 18) were calculated to have an increased relative risk
for esophageal cancer and two female patients showed a higher
relative risk for right-sided breast cancer (patients 2 and 20) for
PT compared to X-ray radiotherapy.

Clinical and oncologic outcomes have been reported in detail
elsewhere (12). At the time of this analysis, median follow-up
was 49.5 months (range, 34.7–68.8 months), and 5-year OS and
5-year PFS were 100 and 91.3%, respectively. No SM have been
documented during follow-up.

DISCUSSION

As oncologic outcomes for mediastinal lymphoma have
improved over time, there has been a renewed focus on
treatment-related side effects. This is all the more important in
a patient population who are typically diagnosed at a younger
median age and have a more extended cancer natural history.
Multiple dosimetric studies have provided evidence that PT
offers a superior dose distribution in patients with mediastinal
lymphoma relative to X-ray irradiation (12, 30, 31), which may
lead to reduced acute and long-term toxicity. Of undisputed
importance is the induction of SM, particularly lung and breast
cancer. Majority of the applications are retrospective in nature

and prospective trials are pending and oftentimes not feasible
due to ethical complexities. Furthermore, for patients that

have already been treated with PT, long-term data are still
lacking, given the very long-term follow-up periods acquired
to identify chronic toxicity including cardiovascular diseases or
SM induction.

The bulk of clinical data comes from the X-ray era and

partially from the 2D RT era and are therefore of limited

applicability to modern RT techniques such as IMRT. One
Dutch retrospective cohort study enrolled 3,905 HL patients
treated with RT (primarily large-field irradiation techniques)
and who had survived HL. In this cohort, 1,055 SM were
diagnosed, resulting in a standardized incidence ratio of 4.6
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TABLE 3 | Median values (range) of the relative risks for observing carcinomas at OAR (lung, breast, esophagus) assessed using the Schneider-model.

Proton/Photon relative risk of cancer

Linear p-value Exponential p-value Plateau p-value

Lung right 0.38 (0.08-0.60) <0.001 0.34 (0.04-0.60) <0.001 0.35 (0.05-0.50) <0.001

Lung left 0.46 (0.16-0.68) <0.001 0.39 (0.13-0.63) <0.001 0.41 (0.13-0.58) <0.001

Breast right 0.33 (0.00-2.68) 0.008 0.33 (0.00-2.14) 0.008 0.33 (0.00-2.4) 0.008

Breast left 0.44 (0.01-0.84) <0.001 0.42 (0.01-0.81) <0.001 0.43 (0.01-0.83) <0.001

Esophagus 0.72 (0.01-2.77) 0.002 0.70 (0.01-1.63) <0.001 0.76 (0.01-2.24) 0.001

FIGURE 2 | Relative risk reduction for the three distinct dose-response relationship models (linear in blue, the linear-exponential in red and the plateau model in green)
according to the Schneider model. Calculated relative risks for tumor induction are shown for relevant thoracic organs (right and left lung, esophagus, right, and left
breast) for each patient.

compared to the general population, with the cumulative
incidence of SM being 48.5% at 40 years after treatment vs.
19% in the general population. In this series, breast and lung
cancer contributed the bulk of overall absolute excess risk
increase (each 20%) (32). Furthermore, Moskowitz reported
that the cumulative incidence of breast cancer by the age of
50 is comparable with the risk of BRCA1 mutation carriers
for childhood HL survivors (33). Although data have to
be interpreted with caution when extrapolating older studies
using less advanced radiation techniques with current RT
technology, these clinical data emphasize the importance of dose
reduction, especially in young patients where the risk is even
higher (34).

Regarding PT, clinical data are even more limited; however,
in a retrospective matched-pair analysis of 558 patients, SM
occurred in 7.5% after X-ray irradiation vs. 5.2 % after PT
(35). Although the median follow-up is short (6.7 years), the
extrapolated incidence rate of SM after X-ray irradiation was
10.3 cancers per 1,000 person-years compared to 6.9 cancers per
1,000 person-years following PT. Moreover, the interpretation of
these results is also complicated by the heterogeneity of tumor
and histologies, variations in combined modality approach,

heterogeneity of radiation dose, and fractionation schemes used
which may bias the results.

In an effort to evaluate the risk for SM induction following RT
with modern techniques, we performed a pairwise comparison
of the estimated individual risks for radiation-induced SMs
after PT vs. X-ray irradiation for relevant organs in patients
with mediastinal lymphoma using two different, well-established
mechanistic calculation models. We showed that the calculated
risks were significantly lower after PT compared to X-ray
irradiation for all OARs investigated in this study (i.e.,
lungs, esophagus, and breast). Of note is that the risks
in the aforementioned publications (32–34) may be higher,
owing to the older radiation techniques, younger patient age,
and consideration of the cumulative risk for all secondary
malignancies, compared to an organ-, sex-, and age-specific
risk estimation like our analysis. Several publications already
confirmed a strong dependency of developing cancer at the age of
exposure, including Hancock et al. who reported over three times
of elevated risk for breast cancer when a patient below the age of
20 years was compared to older patients aged 20–29 years (36).

A retrospective comparative analysis of HL patients
demonstrated that PT decreased the avoidable cancer incidence
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compared to X-rays by a factor of about 2 (3), using the IRCP-60
method. Similarly, our results show comparable values for
risk reduction when using protons of 2.75–3.0 for lung cancer,
2.75–2.33 for breast cancer, and 1.25 for esophageal cancer
(total risk according to Dasu), confirming previously reported
results with a larger patient cohort. Another valuable metric,
investigated by Rechner et al. (37), is the calculation of life
years lost (LYL) attributable to the late effects after RT. This
publication evaluated the risk for 22 patients and found that the
use of PT significantly reduced LYL compared to IMRT. The
primary drivers for LYL were heart failure, myocardial infarction,
valvular heart disease, and breast and lung cancer, which again
emphasize the importance of dose reduction to these OARs.

In two patients (nos. 2 and 20), the risk ratio (RR) according
to the Schneider model for breast cancer on the right side was>1
and therefore higher with PT. Of note is that both patients were
diagnosed with more right-lateralized mediastinal involvement
and beam application was weightedmore from this side, resulting
in a lower dose to the left side (see Figure 2) and especially
a lower dose to the heart. In both patients, for example, this
was considered more important since these patients had already
suffered from grade 2 chronic heart failure after chemotherapy.
In general, this demonstrates that relative risks are associated
not only with treatment planning and technique factors but also
with patient-specific geometry and tumor location. Nevertheless,
these two patients were treated with PT due to the significant
improvement in other thoracic OARs. Finally, the two patients
(nos. 10 and 18) with a higher RR for esophageal cancer
induction were both patients with cervical and upper mediastinal
involvement, where the dose to the esophagus was higher with
PT, owing to the beam arrangements. Nevertheless, PT was
chosen in these patients due to better sparing of other OARs
(breast and heart), where risk for SM or long-term toxicity is
more relevant.

Overall, most organs at risk demonstrated significant
dosimetric improvements across the cohort analyzed. However,
tumor location and patient geometry, on rare occasions, led
to improvements in dose to certain organs. As a result,
clinician judgment must be used on a case-by-case basis when
deciding between radiation modalities that may have variable
improvements between OAR doses, that is, if a given proton
plan yields reduction in heart and lung dose but higher breast
dose relative to a comparative IMRT plan, clinical factors will
need to be weighed by the radiation oncologist to choose the
plan most likely to optimize patient clinical outcome. Notably,
there are several limitations for modeling radiation-induced
carcinogenesis: Firstly, both models applied in this analysis use
data derived from epidemiological studies which per se have
uncertainties: factors like whole-body exposure in atomic bomb
survivors vs. local dose exposure in radiotherapy might reduce
comparability (38). Moreover, RBE may vary in PT, and this
effect is currently not considered in these models but is also
not taken into consideration in standard clinical PT (use of
constant RBE of 1.1).

Nevertheless, the strength of the two models is the inclusion
of factors for cell killing as well as repair and repopulation,
which reflect the non-linear dose–response relationship that is
well known for SM induction (39).

Apart from all these factors, real patient data (that need
decades to be collected) will also suffer from variables
that influence certainty, e.g., variation of target size and
tumor location between patients, as well as the use of
different planning/optimization techniques and constraints. In
this context, using risk ratios in a pairwise comparison of
different modalities may be very useful when ranking RT
modalities like proton and photon irradiation in a given
patient cohort.

As proposed by a current guideline of the ILROG (40), PT
is an attractive treatment option which should be discussed
for lymphoma patients, especially if mediastinal involvement
is present. Nevertheless, the potential benefit is variable and
dependent on many factors including age, gender, tumor
location, and patient-specific comorbidities. This specific
radiation modality should be discussed on a “case-by-case”
basis and, if found to be warranted, patients should be treated
at PT facilities with sufficient expertise (41). At our facility, all
lymphoma patients treated with PT are placed on a prospective
registry study with long follow-up to investigate long-term
toxicities like cardiac events or SM.

Furthermore, the American Cancer Society, the American
College of Radiology, and the Society of Breast Imaging
recommend annual screening by breast magnetic resonance
imaging as an intensified screening for breast cancer, especially
for patients treated at an age <30 years, similar to the already
established screening for high-risk patients with a BRCA1
mutation (42, 43).

CONCLUSION

Proton therapy for patients diagnosed with mediastinal
lymphoma offers a dramatic dose reduction to surrounding
thoracic OARs. Based on the multiple radiobiological models
utilized in the present study, PT is estimated to reduce SM
risk for lung and breast tissue. Future research will include a
long-term follow-up of patients treated at experienced facilities
to identify the “real” risk of secondary malignancies in this
patient population.
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Biologically based treatment planning is a broad term used to cover any instance in

radiotherapy treatment planning where some form of biological input has been used. This

is wide ranging, and the simpler forms (e.g., fractionation modification/optimization) have

been in use for many years. However, there is a reluctance to use more sophisticated

methods that incorporate biological models either for plan evaluation purposes or for

driving plan optimizations. This is due to limited data available regarding the uncertainties

in these model parameters and what impact these have clinically. This work aims to

address some of these issues and to explore the role that uncertainties in individual

model parameters have on the overall tumor control probability (TCP)/normal tissue

complication probability (NTCP) calculated, those parameters that have the largest

influence and situations where extra care must be taken. In order to achieve this, a

software tool was developed, which can import individual clinical DVH’s for analysis

using a range of different TCP/NTCP models. On inputting individual model parameters,

an uncertainty can be applied. Using a normally distributed random number generator,

distributions of parameters can be generated, from which TCP/NTCP values can be

calculated for each parameter set for the DVH in question. These represent the spread

in TCP/NTCP parameters that would be observed for a simulated population of patients

all being treated with that particular dose distribution. A selection of clinical DVHs was

assessed using published parameters and their associated uncertainties. A range of

studies was carried out to determine the impact of individual parameter uncertainties

including reduction of uncertainties and assessment of what impact fractionation and

dose have on these probabilities.

Keywords: normal tissue complication probability (NTCP), tumor control probability (TCP), uncertainty, biologically

based treatment planning, biological optimization

INTRODUCTION

Radiobiology has played a critical role in clinical radiotherapy for many years, and it is common
practice to use radiobiological methods, for example, to account for different fractionation
regimes and modalities in combined treatment (such as combined external beam radiotherapy
and brachytherapy in gynecological treatments) (1) and to account for interruptions in treatment
(2). Following the significant technological development of the last decade, which has resulted
in a variety of methods for the delivery of precise radiation doses, there is now a drive
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to implement radiobiological methods in either the evaluation
of treatment plans (for plan comparison for an individual
patient) or for triaging patients who would benefit from more
advanced radiotherapy techniques, e.g., protons (3) or the actual
optimization of plans. Moreover, the use of radiobiological
models for treatment plan optimization is an important first
step for the development of truly personalized radiotherapy.
This would allow full exploitation of the therapeutic power of
radiation and the advances in genomic testing while safeguarding
the more radiosensitive individuals.

The Task Group document from the AAPM, report 166 (4,
5) provides an outline describing biologically based treatment
planning including descriptions of commonly used models and
how different treatment planning systems (TPS) implement
these. They also provide guidelines for implementation and
quality assurance (QA) of such systems and vision for the
future. A coherent explanation of the different levels of biological
optimization was described by Nahum et al. (6). They outlined
the different levels, which ranged from very simple methods
(level 1) included in trials, such as IDEAL-CRT and I-Start,
which individualize/escalate prescription levels based on organ
at risk dose, to level 5, where they envisage such techniques being
employed that would take into account a patient’s individual (not
based on population data) biology. The different levels coined
by Nahum et al. are paraphrased from the original publication
(6) below. The reader is directed to their publication for further
details on this subject.

Level 0: no biological optimization.
Level I: individualization of prescription dose for specified

level of toxicity [i.e., dose escalated in plans where
possible using fixed normal tissue complication
probability (NTCP) level for the organ at risk (OAR)].

Level II: the same as above, but the number of fractions is
adjusted as well as the prescription dose based on an
isotoxic basis.

Level III: biological cost functions used in the actual
optimization of the dose distribution. Equivalent
uniform dose (EUD), TCP, and NTCP parameters are
used alongside conventional DVH parameters used in
the optimization (e.g., Dmax, D99, V50%, mean).

Level IV: individual patient-specific data is used in the
optimization of the patient’s plan (e.g., use of
functional imaging to highlight areas of hypoxia and
other areas of increased radio-resistance).

Level V: using individual patient biology to optimize dose
prescriptions in conjunction with any of the
other levels.

We are currently at, or are approaching, level III where TPS
are now incorporating biological models for either evaluation
or optimization purposes. One of the benefits in using TCP
or NTCP models is that a single value can be used in place
of an array of dosimetric parameters describing points along
a DVH curve. However, it is critical to assess the uncertainty
affecting such values and what the key elements underpinning
such uncertainty are. Different companies and TPS systems
employ different formalisms and algorithms despite adopting

the same radiobiological models, resulting in fundamental
differences for the final calculations of the TCP/NTCP values
and related uncertainties. An accurate understanding of how
the uncertainties associated with the input parameters impact
the final NTCP or TCP values is paramount and will support
the increasing use of such approaches in planning radiotherapy
treatments. Moreover, understanding how uncertainties are
propagated in the TCP and NTCP calculations will identify the
input parameters, which will need to be better defined along
with their acceptable level of uncertainty to guide pre-clinical
research efforts.

The aim of this study was to assess the impact of uncertainties
in individual parameters used in TCP/NTCP calculations. This
was achieved using in-house software developed in MATLABTM

vR2017a (The MathWorks Inc., MA, USA) that generates a
simulated population of parameters within the constraints of
the input parameters and their uncertainties, from which TCP
or NTCP values and their uncertainties can be calculated. Dose
is supplied using the 1D dose distribution as described by the
planning DVH for the structures in question. The simulated
data is generated using MatLabTM’s normally distributed random
number generator. A set of values are generated that are normally
distributed with a mean, standard deviation, and size as specified
by the user. The impact from single-parameter and multiple-
parameter uncertainties was assessed for a range of clinically
acceptable prostate plans, focusing on both survival probability
and the probability of rectal complications. A similar approach
was taken by Zhang et al. (7) for epithelial pleural mesothelioma
where they applied an uncertainty to either the alpha term for the
TCP model used (8) or the D50 parameter of the NTCP model
used, the Lyman Kutcher Burman (LKB) model (9–12). This
was to simulate heterogeneity in radiosensitivity of a population
over a set dose range and focusing on therapeutic ratio for the
prescription dose set. Our approach used uncertainties in all
model input parameters and was focused not on a prescription
dose but the planned organ doses (physical and biological)
from clinical plans. No uncertainty was applied to the dose;
however, there was a natural variation in doses as a result of the
uncertainties applied to those parameters used in the biological
dose calculation. The resulting dose (for the rectum especially)
was very specific to the individual anatomy and the resulting
plan generated. Plans were selected to represent the full range of
possible doses that might be encountered.

The data reported show how the proposed approach can
quickly generate uncertainty levels for TCP and NTCP models
(for individual dose distributions as calculated by a treatment
planning system for clinically acceptable plans) taking into
consideration the uncertainties in the input parameters. The
approach was tested for the specific case of prostate treatment
and using the Lind (13) and LKB (9–12) models for TCP
and NTCP, respectively, and highlighted the key role that the
D50 parameter plays in the overall uncertainties. The study
also indicates a strong synergy between the input parameters
with small uncertainties on a single parameter having an
overall large effect on the variation in the TCP/NTCP values
generated when combined with uncertainties from the other
parameters. The approach can be considered a first step in the
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robustness validation of radiotherapy treatment planning based
on biological optimization.

METHODS

Software
Software was developed in MATLAB, which allowed the import
of dose volume histograms from clinical plans from different
TPS. Different input formats available were for DVHs from

BioSuite© (13), EclipseTM, PinnacleTM, and RaystationTM. Dose
and volume data were processed to allow the visualization of
both cumulative and probability density histograms of the data.
Using the linear quadratic formula, dose was converted into
the equivalent dose if the treatment was given in 2Gy fractions
(LQED2) (14, 15) using the alpha/beta ratio (α/β) and the
number of fractions as supplied by the user (see Equation 1).
The α/β ratio is from the linear-quadratic relationship between
cell survival and irradiated dose, Di is the total dose per DVH
dose-bin, and n is the number of fractions.

LQED2i = Di ·
1+

Di/n

α/β

1+
2

α/β

(1)

It is possible, in the software, to incorporate an uncertainty
on the α/β value entered. This is used to generate a normally
distributed virtual distribution of alpha and beta parameters.
This is done using the normally distributed random number
generator in MatLabTM, which generates a distribution of values
of size n. The values are generated such that they have a mean
and standard deviation that matches that supplied by the user.
Using these parameters, simulated variations in the LQED2 are
calculated. After calculation of the LQED2 variations for a DVH,
the required radiobiological models can be selected for the TCP
and NTCP analysis.

The TCP model used for this study was Lind’s model (16).
Equation (2) shows the model formula as displayed in AAPM
report 166 (4) for use with doses converted into LQED2 using
Equation (1). The γ parameter is the slope parameter, D50 is
the dose at which there is a 50% probability of tumor control
occurring, and Di and vi are dose-bin values and corresponding
fractional volume obtained from the DVH, respectively.

P (Di) = exp

(
−exp

(
eγ −

Di

D50

(
eγ − ln

(
ln2
))))

TCP =
M∏

i = 1

P (Di)
vi (2)

The NTCP model used in this study was the LKB model (9–12)
(see Equations 3–5), where effective dose (Deff) is the uniform
dose, which gives the equivalent biological effect to the structure
in question as the planned inhomogeneous dose distribution
from the DVH. The volume parameter n describes how serial
or parallel an organ is. Di and vi are dose-bin values and
corresponding fractional volume obtained from the DVH. The m

parameter describes the slope of the NTCP vs. dose relationship,
and D50 is the dose at which 50% chance of complications
occur. Similar to what was described for the α/β uncertainty,
uncertainties in all the above user input parameters (i.e., D50, m,
n) can be provided and are propagated to the final NTCP value
calculated. TCP/NTCP values are collected for each simulation
and the standard deviation calculated as a measure of the
propagated uncertainty.

NTCP =
1

√
2π

∫ t

−∞
e
x2

2 dx (3)

t =
Deff − D50

mD50
(4)

Deff =

(∑
i

viD
1/n
i

)n

(5)

Input Parameters
DVHs from a selection of clinically acceptable prostate plans
were used for this study. The conventional vs. hypofractionated
high-dose intensity-modulated radiotherapy for prostate cancer
(CHHIP) trial (17) planning constraints were used, and the
prescription was either 74 or 78Gy to allow a range of doses
(and, therefore, positions on the TCP curve) to be evaluated.
The input parameters investigated were taken from the literature.
Initial study parameters for rectal toxicity were from Lyman et al.
(10): D50 = 7,500 cGy, m = 0.1, n = 0.1, and α/β = 300 cGy. A
study from Marzi et al. (18) was used for the later analysis as this
study provided uncertainty values with its published parameters.
Parameters used were for the prediction of greater than, or equal
to, G2 late toxicity of the rectum; D50 = 7,600 ± 190 cGy, α/β
= 230±60 cGy, n = 0.12, and m = 0.15 (no uncertainties were
provided for the n and m parameters). The TCP values used for
the prostate PTV analysis were from Okunieff et al. (19) for T2
multi-institute macroscopic disease; the slope parameter γ was
used for the slope parameter γ in the Lind formulism, γ = 1.16
and D50 = 4,518 cGy. Data from the CHHIP trial (17) was used
for the prostate α/β parameter: α/β = 180 cGy.

Analysis 1
For the first analysis, the uncertainty in each parameter was
progressively increased to determine its specific impact on
the final probability calculated. The analysis was performed
by varying the uncertainty on one parameter at a time while
assuming no error on the other parameters. This was carried
out for both NTCP and TCP models investigating the rectum
and for the prostate PTV. Analysis was performed using Lyman
and Okunieff parameters for the NTCP and TCP calculation,
respectively. For each model, in turn, and for each associated
parameter, in turn, the MatLab code allowed simulated sets
of parameters to be generated. These sets of input parameters
were simulated such that the mean and standard deviation
were as specified by the user. Using each value, in turn,
from the simulated parameter set, an NTCP or TCP value
was then calculated. Finally, a mean and standard deviation
was calculated over the probabilities (either NTCP or TCP)
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FIGURE 1 | Data collected for Analysis 1, normal tissue complication probability (NTCP) calculations using the Lyman Kutcher Burman (LKB) model for the rectum.

(A–C) The impact on the overall NTCP uncertainties as a result of increasing uncertainty in the individual parameters. Values used for α/β, n, D50, and m were 300

cGy, 0.1, 7,500 cGy, and 0.1, respectively, and the uncertainties applied are expressed as a fraction of each parameter. (D) shows the relationship between Deff (as a

fraction of the D50) and the uncertainty in the final NTCP calculated for different levels of uncertainty in the D50 parameter; lines are for guiding the eye only.

calculated for an individual user-defined set of parameters and
associated uncertainties.

Analysis 2
The second analysis involved using the Marzi parameters and
uncertainties for calculating the NTCP for late rectal toxicity with
the aim of determining the impact of such clinically acceptable
values in the final probability calculated. For this analysis, all the
reported uncertainties were simultaneously considered.

RESULTS

Figures 1A–C report how the uncertainties in the calculated
NTCP values varies as a function of the uncertainties of the input
parameters for three clinically approved treatment cases with
different Deff doses. Figure 1D shows how theDeff as a percentage
of theD50 parameter varies with uncertainty inNTCP for the four

patient cases investigated. The different curves represent different
levels of uncertainty applied to the D50-simulated parameter
sets. For all cases, the uncertainty in the NTCP calculation is
dominated by the uncertainty in the D50 parameter, and it follows
a similar trend with its value initially increasing exponentially
to then reaching a plateau (NTCP uncertainty ∼42%) for D50

uncertainties >40%. There is an almost immediate increase in
NTCP uncertainty for the patients with the higher Deff, while a
slight lag is observed for the lowest Deff patient. A similar trend
is observed for the NTCP uncertainty as a function of the m
parameter, although the impact is much smaller than for the D50

parameter. Interestingly, the other parameters (including the α/β
ratio) play a much smaller role contributing at most 15% of the
NTCP uncertainty for 100% uncertainty in the input parameter.
The uncertainty in the α/β ratio had the least impact on the
overall uncertainty in NTCP. Only the patient with the very
highest Deff showed a significant increase in NTCP uncertainty
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FIGURE 2 | The relationship between the uncertainty in n (A) and m (B) with the overall uncertainty in the NTCP calculated for a selection of patients with ranging

values of rectum Deff. Values used for α/β, n, D50, and m were 230 ± 60 cGy, 0.12, 7,600 ± 190 cGy, and 0.15, respectively (18). The uncertainties applied are

expressed as a fraction in question and uncertainties are applied to either n or m individually with an uncertainty of zero used for the parameter not being assessed.

but that was small and not observed until the uncertainty in α/β
reached 40%.

Considering the critical effect of Deff, the uncertainties in
the NTCP have been reported as a function of the Deff/D50

ratio for different D50 uncertainties in Figure 1D. The data
highlight how, for low Deff plans, the uncertainty in NTCP
are quite small irrelevant of the uncertainty in all the input
parameters. However, as Deff approaches 80% of the D50 value,
the inaccuracy in determining the D50 has a major impact on
the NTCP uncertainty. From Figure 1, it also emerges that an
uncertainty of D50 < 6.7% would be required to maintain the
NTCP uncertainty <5% irrespective of the Deff values. The only
exception is patient A (uncertainty in NTCP of 6.9%); however,
this patient is at the upper limit of what would be accepted
clinically for rectal doses.

In order to appreciate the level of uncertainties, which
commonly affect clinically relevant NTCP estimations, the data
set from Marzi et al. was used on the four patient cases
highlighted above. This data set was selected as it investigated
NTCP for a relevant biological endpoint and was one of the
fewer studies quoting uncertainties on input parameters, 2.5 and
26% for D50 and α/β, respectively. Without further uncertainty
considerations for the other parameters, the overall NTCP
uncertainties calculated through the simulation approach are
of the order of 2% for all cases investigated (Figure 2). This
is significantly lower than the uncertainty that would result
from a simple relative error propagation (i.e., square root of
the sum of the individual relative errors squared), which would
be dominated by the error in the α/β resulting in the overall
uncertainty for the NTCP values of ∼26%. Moreover, the
impact of uncertainties in the n or m parameters (the former
in particular) become quickly significant pushing the NTCP
uncertainty up to ∼10% for an input parameter error of 40%

[Figures 2A (n), B (m)]. The effect was again more pronounced
for patients with high Deff. For small uncertainties in m or n, the
uncertainty in NTCP derives mainly from the D50 uncertainty,
and the differences in the uncertainties between the patients are
a consequence of the different Deff values.

As expected, the uncertainties in the input parameters
combine for the overall NTCP calculations. For the patient with
the highest Deff, a D50 uncertainty alone of 2.5% (as for the Marzi
data set) would result in an NTCP uncertainty of 1.9%, which
remains the same when combined with the uncertainty in α/β
(up to ∼26%). With a 26% uncertainty in the α/β alone, the
uncertainty in the final NTCP parameter is 0.3% confirming that
D50 is the dominant source of uncertainty where the fractionation
regime is at, or close to, 2 Gy/fraction. This clearly shows that
impact of the individual parameters is not linear with regard to
uncertainty propagation.

In order to better appreciate the interlink between the input
parameter uncertainties, variation in the NTCP values have
been simulated for the four different clinical cases assuming
uncertainties on all the parameters simultaneously. The Marzi
data set was again used as starting point, and errors of ∼7
or ∼20% were added to both the n and m parameters. Data
in Figure 3A (no uncertainty on m or n) clearly show the
impact of uncertainty in the D50 and α/β on the NTCP values
with minimum effect on the Deff. It is also interesting to
notice how the NTCP values are not symmetrically distributed
around the NTCP curve but stretched toward the high NTCP
values. This would have strong consequences for the setting
of NTCP acceptance levels for a population case. The addition
of uncertainties in the n and m parameters (see Figures 3B,C)
increases the Deff values moving the calculations toward the
steeper part of the NTCP curve resulting, therefore, in higher
NTCP values. While an individual ∼20% uncertainty in the n or
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FIGURE 3 | (A) The NTCP vs. Deff curve for grade 2 late toxicity of the rectum (18). Values used for α/β, n, D50, and m were 230 cGy, 0.12, 7,600 cGy, and 0.15,

respectively. Simulated rectum NTCP values for a selection of patients with uncertainties of 60 and 190 cGy applied to α/β and D50 parameters, respectively, have

been plotted onto the curve for a selection of patients with different Deff. Each point represents one simulation. (B,C) The simulated results when an additional

uncertainty is applied to both m and n of 0.1 (B) and 0.3 (C).

m parameters had only a small effect on the NTCP uncertainty
when D50 ∼2.5% (Figures 3A,B), their combined effect pushes
the NTCP values from <15% up to 40% despite a still low
D50 uncertainty (Figure 3C). Therefore, when considering the
combined uncertainties, it is important to keep the uncertainty
in the m and n parameters below 0.3 for both parameters.

For a greater understanding of the overall picture, the range in
the NTCP values calculated was also evaluated. The NTCP range
without uncertainties applied to them and n parameter was 0.03–
0.21. This range increases to 0.01–0.21 for an uncertainty of 0.1
in m and n and then to 0–0.37 for an uncertainty of 0.3. This
demonstrates a clear benefit in keeping the uncertainty for such
parameters in the lower range (around the 0.1 mark) where the
influence of these parameters is low.

Interestingly, a conventional error propagation approach
would result in an average NTCP uncertainty of ∼28% for the
input parameter set: D50 = 7,600 ± 190, α/β = 230 ± 60, n
= 0.12 ± 0.01 and m = 0.15 ± 0.01, while the simulation
approach estimates an uncertainty of ∼40% for the selected
patients. The average NTCP values also change when accounting
for uncertainties using the simulation approach due to the low-
level boundary of NTCP = 0 and the data spread, which pushes
the NTCP values up. Table 1 shows the difference in the NTCP
values and their related uncertainties comparing a conventional
error propagation method to the simulation approach.

A similar approach has been also used to investigate the
impact of the input parameter uncertainties on the TCP
calculations (see Figures 4A–D). Each input parameter was
individually considered for the four cases used so far and
the relationship between uncertainty in TCP plotted against
the uncertainties applied to the individual input parameters.
The PTV was used as opposed to the prostate volume due
the availability of data. For the one patient data set where
both PTV and prostate volume were present, an analysis was
performed with both structures, and data were very similar
(see Figures 4A,B). D50 again appeared to be the most critical
parameter, however, following a more linear response than
for the NTCP investigations. The relationship between TCP

TABLE 1 | Table showing the differences in both mean and uncertainty (standard

deviation expressed as a percentage of the mean) for different methods of error

propagation calculation, the conventional numerical method, and the simulated

method discussed in this manuscript.

Conventional error propagation Simulation approach

NTCP Error [%] NTCP Error [%]

Patient A 0.0733 28 0.0761 32

Patient B 0.0535 28 0.0557 36

Patient C 0.0367 28 0.0391 41

Patient D 0.0040 28 0.0046 63

and uncertainty in parameter appeared to be almost linear for
all parameters and almost identical for all Deff analyzed. The
relationship Deff/D50 vs. TCP uncertainty showed a slight benefit
for the higher dose structures (see Figure 4D). From the limited
range of cases investigated, uncertainty levels <10% for D50

would be required to achieve TCP uncertainties <5%. This could
also be of importance when considering co-factors, e.g., clinical
factors such as age, concurrent chemo, prior surgery, etc. A study
on the impact of co-factors (20) dealt with differences in response
through the D50 parameter. Using an uncertainty analysis such as
described could be used clinically to define a level (uncertainty in
D50) at which it is appropriate to separate sub-groups out of a
main group.

Uncertainties in the α/β parameter appear to have a negligible
impact on the TCP uncertainty for the Lind model. This is due to
the fractionation regime used and the fact that the influence of the
α/β ratio is in converting from physical dose into LQED2. Owing
to the fact that most of the voxels in the PTV will be receiving
a fractionation of very close to 2Gy per fraction, physical dose
is almost identical to LQED2, which means that the parameter
has very little impact on the structure dose being evaluated with
this model. The only response observed were for patients B and C
(Figure 4C), where there was a small impact on TCP uncertainty
after an uncertainty in the parameter of greater than 0.5. These
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FIGURE 4 | Data collected for Analysis 1, tumor control probability (TCP) calculations using the Lind model for the prostate and prostate PTV. PTV and prostate data

displayed in Panel (A, B) respectively for Pt A. Patient B PTV data displayed in Panel (C). Panels show the impact on the overall TCP value as a result of increasing

individual parameters. Values used for α/β, D50 and γ were 180 cGy, 4518 cGy and 1.16 respectively and the uncertainties applied are expressed as a fraction of each

parameter. Panel (D) shows the relationship between Deff (as a fraction of the D50) and the uncertainty in the final TCP calculated for different levels of uncertainty in

the D50 parameter.

patients had the highest Deff and, therefore, the highest dose per
fraction (∼2.2 Gy/fraction), which is the farthest dose/fraction
from 2Gy, which is the fractionation that LQED2 is referenced
to. While the behavior observed with these test cases would hold
true for a large majority of treatments, it would not be the case for
all. With the move toward more biologically driven treatments
[e.g., use of biological treatment volume (BTV) and also dose
escalation to parts of the tumor] (21), far less homogenous
treatments are used with large variations in dose across the PTV;
these could exceed 130%. In such cases, not all voxels within the
PTV will have doses at, or around, 2 Gy/#, and this will influence
the impact of alpha-beta ratio uncertainty.

Figures 5A–C show the shape of the TCP curve using prostate
tumor parameters from Okunieff et al. (19). Similar to the NTCP

analysis, uncertainties of 2.5 and 26% were applied to D50 and
α/β, respectively, and the simulated data were plotted on the
graph. Uncertainties of 0, 0.1, and 0.3 were applied to the γ

parameter and are shown in Figures 5A–C, respectively. A value
of −10 was selected for the “a” parameter to convert the DVH
dose into an equivalent uniform dose (EUD), which is identical to
Deff, with n= 1/a. This value is widely used for tumor structures,
and due to the fact that the variation in the dose distribution
(from the DVH) for the structure is low (1% variation), it was
thought to be an appropriate choice (22). Of course, in cases
where there is dose escalation in the PTV, an appropriate value
for the parameter “a” would have to be consideredmore carefully.
There is little spread in the x-direction axis due to the fact that the
only parameter with influence on dose is the α/β. As mentioned
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FIGURE 5 | The solid line shows the TCP vs. Deff curve for the prostate PTV using values of 180 cGy, 4,518 cGy, and 1.16 for α/β, D50, and γ respectively (18).

Simulated prostate TCP values for a selection of patients with uncertainties of 47 cGy (26%) and 113 cGy (2.5%) applied to α/β and D50 parameters, respectively, have

been plotted onto the curve for a selection of patients with different Deff. (A) Shows no uncertainty applied to m for the simulated patients and (B,C) show uncertainties

in γ of 0.1 and 0.3 respectively. Deff for each simulation was calculated using the generalized equivalent uniform dose (EUD) formula, with parameter a set to –10.

earlier, where the fractionation regime is close to a standard one
delivering 2 Gy/fraction, the α/β has little impact on the resulting
LQED2Gy calculated. Patients B and C have the largest spread
because their dose/fraction is farthest away from the standard 2
Gy/fraction. However, while their x-axis uncertainty is larger, the
overall uncertainty in the TCP is lower (e.g. 3.5% for Patient C
(less standard dose/fraction) compared with 4.4% for Patient D
(standard dose/fraction) for an uncertainty in γ of 30%), which is
in keeping with the relationship shown in Figure 4D, where the
higher-dose PTVs benefit from slightly improved uncertainties
in TCP for different levels of uncertainty in the D50 parameter.
As for the NTCP data, the combined effect of uncertainties in the
input parameters quickly results in a significant increase in the
TCP range. The TCP value range using an uncertainty in γ of
30% is high (∼48 to 99%) compared to a range of 88 to 96% for 0
uncertainty in γ, which increases to 85 to 97% for uncertainty in γ

of 10%. While the actual TCP uncertainty (calculated as standard
deviation of the probability data collected) is under 5% for all
patients, the spreading of the range data shows a clear benefit
(similar to the LKB for the NTCP data) of keeping uncertainties
in the γ below 10%.

There was a dose effect with structures having Deff or EUD
at the periphery of the slope, having smaller uncertainty than
those nearer the center of the curve. This is due to the fact that
positions on the curve that are at the start or end of the curve are
on a shallower gradient and, therefore, less impacted by changes
in the slope. This software can be used as a tool to highlight
where models maybe susceptible to steep increases in uncertainty
size, e.g., for LKB, there are certain boundaries around which you
may need to be especially careful; however, for the Lind model,
there seems to be an almost linear increase in uncertainty in TCP
for increasing uncertainty of the input parameters. The analysis
also indicates the desired level of uncertainty for the input
biological parameters in order to obtain TCP/NTCP values with
reasonable confidence intervals. Such information can be used to
focus future research efforts and improve estimation of biological
parameters, which play a key role in TCP/NTCP models.

CONCLUSION

We have developed software, which allows an estimation of
the uncertainty associated with TCP/NTCP predictions. The
approach can provide insight on the uncertainty associated with
TCP and NTCP calculations as a function of the uncertainty
for the biological input parameters, the patient specific anatomy
and the treatment dose. The software has been used to identify
the dominant parameters (D50 for both models tested) with
respect to uncertainty propagation. A conventional basic error
propagation approach was also carried out, and it appeared to
underestimate the error in the final NTCP/TCP values suggesting
that different approaches should be considered. Owing to the
fractionation regime of the treatment plans used for the study,
there was little impact from the α/β parameter. For future work,
there is a need to evaluate the impact for cases where the
fractionation regime is significantly different, e.g., CHHIP trial
and also in cases where inhomogeneous dose distributions are
delivered to the PTV. This could soon be the norm especially now
that imaging modalities are in place to identify such areas within
the PTV with, e.g., increased radiosensitivity, increased clonogen
density, and areas of increased hypoxia that would benefit from
escalated doses. As we are moving into an era of highly conformal
treatment planning, dose escalation, and novel approaches, such
as dose painting, including radiobiological guidance as part of
the optimization process, has been proposed to help inform
the evaluation of the trade-off between tumor control and
normal tissue toxicity (21, 23–25). Including uncertainty will
allow evaluation and optimization of the robustness of plans
to biological variations. Similarly, the algorithm can be used
as a useful tool to compare radiobiological models both in
terms of sensitivity and, through application to clinical studies,
accuracy and guide further developments. The present approach
estimates the errors on the NTCP/TCP values by simulating a
random population of input parameters uncorrelated but each
with constrains of their individual uncertainties. Future work
will look at the inter-dependency of input parameter errors
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using Bayesian approaches. An additional useful feature to
include in this software would be to incorporate an uncertainty
in the dose itself. Currently, the software only looks at the
probability in input parameters; however, there is an uncertainty
on dose from many contributing factors. It would be useful
to be able to characterize the uncertainty in the DVH and
incorporate dose uncertainties in the TCP/NTCP uncertainties.
Finally, the study will also be extended to allow analysis of
data from other TCP and NTCP calculations that incorporate
the α/β directly into the models to a greater extent and not
just through converting physical dose to LQED2, e.g., the
Webb model (22).
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Purpose: Dose information from organ sub-regions has been shown to be more

predictive of genitourinary toxicity than whole organ dose volume histogram information.

This study aimed to identify anatomically-localized regions where 3D dose is associated

with genitourinary toxicities in healthy tissues throughout the pelvic anatomy.

Methods and Materials: Dose distributions for up to 656 patients of the Trans-Tasman

Radiation Oncology Group 03.04 RADAR trial were deformably registered onto a single

exemplar CT dataset. Voxel- based multiple comparison permutation dose difference

testing, Cox regression modeling and LASSO feature selection were used to identify

regions where 3D dose-increase was associated with late grade ≥ 2 genitourinary

dysuria, incontinence and frequency, and late grade ≥ 1 haematuria. This was externally

validated by registering dose distributions from the RT01 (up to n = 388) and CHHiP (up

to n = 247) trials onto the same exemplar and repeating the voxel-based tests on each

of these data sets. All three datasets were then combined, and the tests repeated.

Results: Voxel-based Cox regression and multiple comparison permutation dose

difference testing revealed regions where increased dose was correlated with

genitourinary toxicity. Increased dose in the vicinity of the membranous and spongy
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urethra was associated with dysuria for all datasets. Haematuria was similarly correlated

with increased dose at the membranous and spongy urethra, for the RADAR, CHHiP, and

combined datasets. Some evidence was found for the association between incontinence

and increased dose at the internal and external urethral sphincter for RADAR and

the internal sphincter alone for the combined dataset. Incontinence was also strongly

correlated with dose from posterior oblique beams. Patients with fields extending

inferiorly and posteriorly to the CTV, adjacent to the membranous and spongy urethra,

were found to experience increased frequency.

Conclusions: Anatomically-localized dose-toxicity relationships were determined for

late genitourinary symptoms in the urethra and urinary sphincters. Low-intermediate

doses to the extraprostatic urethra were associated with risk of late dysuria and

haematuria, while dose to the urinary sphincters was associated with incontinence.

Keywords: external beam radiotherapy, prostate cancer, urinary toxicity, voxel-based analysis, dose-toxicity

relationships

INTRODUCTION

External beam radiotherapy (EBRT) is a prominent treatment
option for prostate cancer patients (1), resulting in genitourinary
(GU) toxicity with an even higher incidence than rectal
toxicity (2). Relationships between treatment and patient specific
risk factors, and GU toxicity have been established (3–5).
More evidence of GU dose-toxicity relationships is required
as more conformal techniques (6, 7) have introduced dose-
escalated treatments.

Risk estimation used in establishing dose constraints for
healthy organs at risk (OARs) associated with GU toxicity, such
as the bladder and urethra, is typically based on considering
the planned dose to the whole organ according to dose volume
histogram (DVH) or dose surface histogram (DSH) information.
This is problematic, however, as it ignores potential spatially
varied intra-organ radio-sensitivity. Intuitively, planned dose
to symptom related sub-regions (SRSs) of the urethra and
bladder has been shown to be more predictive of GU symptoms
than information derived from whole-organ DVHs (8). Further
understanding of the relationship between dose and urinary
toxicity at the voxel level could assist in identifying new SRSs,
confirm established SRSs, and help provide these SRS with
optimal dose constraints. This would restrict dose to healthy
tissues with more spatial specificity, and thus help reduce GU
toxicity in patients while maintaining tumor control.

Evidence is accumulating for the establishment of
relationships between acute and late GU toxicity and spatial dose
variance, particularly within the prostatic urethra (8), at various
regions on the surface of the bladder (9, 10), the bladder trigone
(11–13), the bladder neck (14) and at subregions within the
bladder volume (8). No study to date, however, has performed
a voxel-based analysis searching for correlation between dose
variation and GU toxicity throughout the entire pelvic anatomy
without the assumption that dose-toxicity relationships are
limited to within OAR volumes or surfaces. This would enable
the identification of dose-toxicity relationships in a broader
range of the urinary tract, beyond the prostatic urethra to the

membranous and spongy urethra. This extended naïve analysis
may also improve understanding of how broader dose patterns,
such as those representative of treatment technique (e.g., beam
arrangement), relate to toxicity.

In this study, multiple voxel-based statistical methods were
employed to investigate the association between 3D planned dose
and measures of late GU toxicity in the entire pelvic anatomy.
Many shortcomings have typically hindered previous voxel-based
analyses (15, 16), including misregistration of planned 3D dose
distributions, false positive rates due to the large number of
voxels being statistically compared, not using time-to-event data,
or not controlling for patient baseline characteristics. This study
performed a combination of statistical tests to compensate for
these shortcomings. High quality planned dose data from three
prospective multi-center prostate radiotherapy clinical trials was
utilized in order to assess the consistency of derived associations
across cohorts, participating centers, employed radiotherapy
techniques and overall treatment approach. “Validation” was
defined as applying the same voxel-based tests to datasets from
two other trials, with one trial providing a cohort similar
to that of the primary dataset and the other substantially
different (primarily in terms of treatment technique). This
validation determined whether the emergent dose-toxicity
patterns within the primary dataset were generalizable to these
(similar and different) external datasets. This validation also had
an exploratory element, in that it enabled the identification of
new emergent patterns in the external datasets regardless of
whether they matched the patterns in the primary datasets.

METHODS AND MATERIALS

RADAR Trial
Coordinated by the Trans-Tasman Radiation Oncology
Group (TROG), the Randomized Androgen Deprivation and
Radiotherapy (RADAR) phase 3 factorial trial (TROG 03.04)
compared 6 months of androgen deprivation therapy (ADT)
plus radiotherapy with 18 months of ADT with the same
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radiotherapy, with and without bisphosphonates (17, 18).
Accruing a total of 1071 men between October 2003 and August
2007, trial patients had T2 – T4 prostate cancer, undergoing
dose-escalated 3D conformal EBRT with prescribed doses of 66,
70 or 74Gy, or 46Gy EBRT combined with a brachytherapy
boost. Plans could be generated with any preferred combination
of 3 or more conformal beams. 3D planned dose distributions
with corresponding CT images including delineated CTV,
rectum and bladder were collected and utilized as the primary
dataset for this study. RADAR was the first TROG trial to
incorporate full electronic review of the treatment planning
data of accrued patients, facilitated by use of the SWAN system
(19). See Table 1 for information on each trial summarized for
direct comparison.

RT01 Trial
The RT01 phase 3, international, superiority, randomized
controlled trial compared dose-escalated conformal radiotherapy
with standard-dose conformal radiotherapy (20, 21). Accruing
a total of 843 men between January 1998 and December 2001,
patients had confirmed T1b – T3a prostate cancer. The patients
underwent 3D conformal EBRT with either a conventional
prescribed dose of 64Gy using prescribed arrangements of either
3 or 4 beams, or the same with an additional 4 or 6 beam boost to
74Gy. ADTwas recommended for 6months. Similar 3D planned
dose distributions, CT and delineation data were collected and
utilized as the first external validation dataset of this study. The
trial was managed by the Medical Research Council Clinical
Trials Unit at University College, London.

CHHiP Trial
The CHHiP randomized phase 3 non-inferiority trial compared
conventional and hypofractionated prostate Intensity Modulated
Radiotherapy (IMRT) (22, 23). 3,216 men with T1b–T3a
localized prostate cancer were accrued to the trial between
October 2002 and June 2011. These underwent IMRT with
a conventional prescribed dose of 74Gy in 2Gy fractions or
hypofractionated courses of 60Gy or 57Gy in 3Gy fractions,
all with optional IGRT. ADT was recommended for 6 months,
but was optional for patients with low risk disease. Similar 3D
planned data was utilized as the second external validation data
set for this study. Data was limited to an early cohort of CHHiP
patients with processed DICOM information available at the time
of acquisition. This trial was managed by the Clinical Trials and
Statistics Unit at The Institute of Cancer Research, UK.

3D Data Preparation
Three CT image templates were chosen from an independent
cohort of 39 prostate EBRT patients (26). Pairwise registrations
of CT images within this cohort along with registrations between
this cohort and the RADAR CT dataset were used to generate a
normalized cross correlation similarity matrix. This matrix was
used to perform clustering by affinity propagation to select the
single most representative patient CT as an exemplar from the
initial cohort. This exemplar was the first registration template
(T1). Next, an anti-exemplar, most-different from T1, was chosen
as a template on which the impact of registration and reference

geometry could be tested (T2). Finally, a similar process was
used to select a cropped exemplar, enabling analysis to be
restricted to a small region including the prostate and immediate
surrounding organs (T3). Dose distributions were then deformed
onto these templates through application of deformation vector
fields obtained from the image-based registrations above. All
registration and dose deformation were performed in 3D. See
Appendix Section 2 for images of templates and registration
pipelines. The 3D dose distributions from all phases of
radiotherapy were summed together according to biologically
isoeffective 2Gy per fraction dose (EQD2) (27), using a spatially
invariant alpha/beta ratio of 3, resulting in a single distribution
for each patient registered onto each template. The number of
voxels and dimensions of the CT image of each registration
template and corresponding dose distributions are as follows:

T1: 332× 249× 64 voxels
voxel size: 1.17× 1.17× 2 mm

T2: 327× 178× 76 voxels
voxel size: 1.17× 1.17× 2.5 mm

T3: 132× 130× 129 voxels
voxel size: 1.24× 1.24× 1 mm

Dose distributions used in this analysis were uniformly sampled 1
in 2 voxels for T1 and T2 (due to the large number of total voxels).
For T3, every voxel was used.

Genitourinary Toxicity Endpoints
Four time-to-event GU toxicity endpoints were included
for analysis: urinary dysuria, haematuria, incontinence and
frequency. For each endpoint, an event consisted of the first
peak grade ≥ 2 occurrence during follow-up. For haematuria,
however, grade ≥ 1 events were considered instead, due to the
rarity of grade ≥ 2 events in the RADAR cohort. All toxicity
events were late (> 3 months). All patients who experienced
baseline toxicity of grade ≥ 1 were removed from analysis,
apart from potential baseline dysuria and haematuria patients
from the RT01 dataset, as this information was not available.
Physician assisted toxicity grading was performed according
to the Late Effects on Normal Tissue, Subjective, Objective,
Management, Analytic (LENT/SOMA) questionnaire (28). For
RADAR, patients were routinely followed up, post-treatment,
approximately every 3 months for 18 months, every 6 months
to 5 years, and annually thereafter. RT01 patients were assessed
for toxicities at 6, 12, 18, and 24 months after commencing
radiotherapy, and annually thereafter. CHHiP patients were
assessed for late side-effects beginning 26 weeks after the start
of radiotherapy and every 6 months for 2 years, and then
annually thereafter.

Note that all voxel-based tests were repeated for all four
endpoints, on all three trial datasets (RADAR, RT01 and CHHiP),
as well as on a dataset combining patients from all trials
(“Combined”). All three registration templates were used for
RADAR for exploration of dose-toxicity associations, but only T1
for RT01, CHHiP and Combined for validation. The permutation
and uni-voxel tests were performed using MATLAB R2016b
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TABLE 1 | Clinical trials information.

RADAR RT01 CHHiP

Full name Randomized Androgen Deprivation and

Radiotherapy (TROG 03.04) Trial (17, 18)

A Randomized Trial of High Dose Therapy

in Localized Cancer of the Prostate using

Conformal Radiotherapy Techniques

(20, 21)

Conventional or Hypofractionated High Dose

Intensity Modulated Radiotherapy for Prostate

Cancer Trial (22, 23)

Descriptors • Randomized

• Phase 3

• Factorial

• Randomized

• Phase 3

• Superiority

• Randomized

• Phase 3

• Non-inferiority

Goal Comparison of 6 months of androgen

deprivation therapy (ADT) plus radiotherapy

with 18 months of ADT with the same

radiotherapy

Comparison of 64Gy standard-dose and

74Gy dose-escalated conformal

radiotherapy

Comparison of conventional and

hypofractionated IMRT

Countries Australia and New Zealand United Kingdom, New Zealand, Australia United Kingdom, New Zealand, Rep. of Ireland,

Switzerland

Accrual years Oct 2003 – Aug 2007 Jan 1998 – Dec 2001 Oct 2002 – Jun 2011

Total accrued patients 1071 843 3216

Date data was frozen June 2015 Aug 2013 Oct 2017

Patients Intermediate-risk (T2a) or high-risk (T2b+)

prostate cancer

T1b – T3a prostate cancer T1b – T3a prostate cancer

Radiotherapy type Dose escalated 3D conformal EBRT Standard or dose escalated 3D conformal

EBRT

Dose escalated IMRT

Prescribed dose groups

(dose per fraction)

66Gy (2Gy), 70Gy (2Gy), 74Gy (2Gy) 64Gy (2Gy), 74Gy (2Gy) 57Gy (3Gy), 60Gy (3Gy), 74Gy (2Gy)

Beam arrangements Any preferred combination of 3 or more

conformal beams

3 or 4 beams (anterior/lateral/posterior) for

first 64Gy, with additional 4 or 6 beam

boost to 74Gy

3 or 4 beams (anterior/lateral/posterior) or 5

beams or more if inverse planning utilized

Electronic review of

treatment planning data

Full retrospectve review for all patients (19) No electronic individual plan review (24) Full prospective case reviews for the first 2 or 3

patients at each center (25)

Manager TROG Cancer Research, NSW, Australia Medical Research Clinical Trials Unit,

London, UK

Clinical Trials and Statistics Unit, the Institute of

Cancer Research, London, UK

Trial registration number ISRCTN90298520 ISRCTN47772397 ISRCTN97182923

Ethics approval number Approved by Hunter New England Human

Research Ethics Committee Trial ID

03/06/11/3.02

North Thames Multi-center Research

Ethics Committee number MREC/97/2/16

Approved by the London Multi-center Research

Ethics Committee number 04/MRE02/10

and later versions (MathWorks, Natick MA), while the multi-
voxel LASSO test was performed on R 3.6.1 (The R Foundation,
Vienna). All 3D results were displayed using ITK-SNAP version
3.8.0 (29).

Voxel-Based Dose Difference
Permutation Test
It is recommended that Figure 1 is closely followed while reading
through the following descriptions of the voxel-based tests.
This test was performed according to the method outlined
by Chen et al. (16). Following (Figure 1A), for each given
toxicity endpoint, patients were divided according to whether
they experienced a toxicity event at any time during follow-
up. The mean dose distributions of each group were then
compared to each other, voxel-by-voxel, to reveal regions of
statistically significant dose difference. This method utilizes
a non-parametric permutation-based test in which the group
labels (for the with and without toxicity groups) are randomly
swapped (permuted) and the dose-comparison repeated for each
permutation. 1,000 permutations were performed generating a
distribution of test statistics. Each test statistic was calculated as

the maximum value across all voxels of the locally normalized
dose difference in each voxel for both the true labeling sample
and all random permuted samples. The null hypothesis was that
the mean of the distribution of dose values in a given voxel for the
with toxicity group is not different to the without toxicity group.
To find voxels of significant dose-difference between the with and
without toxicity groups at any given p-value α, a test statistic
T was calculated as the (1 – α) percentile of the test statistics
distribution from the random permuted samples. Voxels where
the locally normalized dose difference values for the true labeling
sample were greater than T are voxels where the dose difference
between the with and without toxicity groups is statistically
significant at the p = α level. In this study, thresholds of p <

0.05, p < 0.1, p < 0.2, and p < 0.3 were applied. Multiple p-value
thresholds were applied in an attempt to thoroughly explore the
dose difference, accounting for the conservative nature of the
permutation test (see section discussion for further explanation).
This test accounts for the multiple statistical testing problem
arising from comparing a vast number of voxels (seeAppendix A
of Chen et al. for more detail). As shown in Figure 1, the mean
dose difference map was imposed on the registration template,
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FIGURE 1 | Visual representation of the (A) Voxel-Based Dose Difference Permutation Test, (B) Uni-Voxel Cox Regression test and (C) Multi-Voxel Cox Regression

Test with LASSO Feature Selection.
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including the delineated CTV, bladder and rectum. If the dose
difference reached statistical significance at one of the given p-
value thresholds, then the voxels corresponding to this difference
(the thresholded p-value map) were highlighted in green and
imposed onto the dose difference map.

Uni-Voxel Cox Regression Test
This test generates a separate Cox proportional hazards model
for each voxel (hence, “uni”-voxel), testing for association
between dose in that voxel and incidence of the toxicity
endpoint. Taking a given voxel, patients were divided into
two groups about the median of the combined distribution
of dose values, as in Figure 1B). The hazard ratio (HR) of
the incidence of the endpoint between the high dose value
group and low dose value group was then calculated, including
a corresponding p-value determining whether the HR was
significantly greater than or <1 at the p < 0.05 level. This
HR therefore compares the incidence of toxicity between each
dose group, indicating the dose-toxicity relationship at the given
voxel. Age, prescribed dose, disease risk, cancer stage, baseline
PSA concentration and number of treatment beams were patient
baseline characteristics investigated as potential control variables
in each model, attempting to eliminate their confounding
influence at each voxel (30, 31). These were chosen through
an automated selection procedure (see Appendix Section 1 for
details). Repeating this entire process for every voxel produced
a 3D HR map and corresponding p-value map revealing the
relationship between dose and the given toxicity endpoint across
the pelvic anatomy. The continuous HR map was first imposed
on the anatomical template. Following this, the thresholded
p-value map was imposed onto the HR map, showing (in
green) voxels where HR < 1 or HR > 1 at the p <

0.05 level.

Multi-Voxel Cox Regression Test With
LASSO Feature Selection
This test is represented in Figure 1C). In contrast to the uni-
voxel Cox regression test, this test combined all voxel-dose
variables across the pelvic anatomy into a single multivariate
Cox regression model (hence, “multi”-voxel). The LASSO [Least
Absolute Shrinkage Selection Operator (32)] was then applied to
select voxels (voxel-dose variables) that did not correlate with
each other in the model, while still correlating strongly with the
toxicity endpoint. The LASSO requires a pre-specified variable,
λ, that determines the threshold by which features or variables
(voxels) in the Cox model are selected. As λ increases, more
features are excluded, until none are selected. 100 values of λ

were pre-specified, equally spaced from that which selected all
voxels to that which selected none. For each value of λ, one-in-
ten cross validation was used to test the predictive ability of the
resulting Coxmodel – the model comprised of the voxels selected
by the LASSO. The final value of λ was that which maximized
the given model’s ability to predict the toxicity endpoint hazard
rate by minimizing the partial likelihood deviance. The selected
voxels were then imposed on the anatomical template, indicating
whether HR > 1 or HR < 1 in each case. As with the
univoxel Cox regression test, HRs in this test compared the

incidence of the endpoint (e.g., dysuria) between the high dose
group and low dose group at a given voxel, with the cut-point
for dose determined in the same way. The LASSO enabled
selection of voxels strongly correlated with the endpoint while
accounting for inter-voxel dose correlation and the multiple
testing problem.

RESULTS

Trial Datasets
Tables 2, 3 show the number of patients from each trial included
for each endpoint’s respective analysis, with corresponding
patient variable and endpoint follow-up information, after
patients were excluded due to loss of follow-up, missing data, and
considering only patients receiving EBRT alone.

Voxel-Based Tests Results
The tests identified voxel clusters (VCs) and individual
voxels within the pelvic anatomy where increased dose was
associated with the four genitourinary toxicity endpoints. Several
anatomical landmarks (different urethral regions, sphincters etc.)
are mentioned in the following descriptions. These structures
are not directly visible on the registration template CT images.
Their locations are assumed based on their anatomical proximity
to (or within) the prostate and the penile shaft, both visible
on the registration template CT images. I.e., it is assumed
the spongy urethra runs along the central axis of the visible
penile shaft (extending approximately 10.2 cm anteriorly from
the base of the penile shaft toward the surface of the patient on
the T1 template), the membranous urethra is located between
the apex of the prostate and the base of the penile shaft
(extending approximately 3.4 cm inferiorly from the prostatic
apex to the base of the penile shaft on the T1 template),
the bladder neck is located where the bladder and prostate
delineations meet (near the superior prostate boundary), and
the external and internal sphincters are located immediately
inferior to the prostatic apex and immediately superior to the
central superior boundary of the prostate. Figure 2 shows the
visibility of the penile shaft on the T1 registration template
CT image. It must be noted that these structures have not
been delineated and therefore references to their location
are approximate.

The following dose-toxicity patterns from all RADAR datasets
on T1 were generally reproduced on the other registration
templates (T2 and T3). The patterns were distorted according to
the anatomical difference between the templates, but otherwise
were similar, suggesting the revealed dose-toxicity association
patterns are largely independent of choice of registration
template (see Appendix Section 3 for these results).

Dysuria
The pelvic dose associations for dysuria are shown in Figure 3.
The consistent pattern is an association between a higher
incidence of dysuria and increased dose in the membranous
urethra and spongy urethra. This is particularly evident in the
uni-voxel HR maps, revealing VCs with HR > 1 (p < 0.05) in the
spongy urethra for RADAR, RT01 and Combined, and VCs with
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TABLE 2 | The number of patients in each trial dataset, broken down by endpoint and baseline variables, including follow-up information, for dysuria and haematuria.

RADAR RT01 CHHiP COMBINED

Dysuria

(grade ≥ 2)

Haematuria

(grade ≥ 1)

Dysuria

(grade ≥ 2)

Haematuria

(grade ≥ 1)

Dysuria

(grade ≥ 2)

Haematuria

(grade ≥ 1)

Dysuria

(grade ≥ 2)

Haematuria

(grade ≥ 1)

Total number of

patients

595 619 Total number of

patients

388 388 Total number of

patients

242 247 Total number of

patients

1225 1254

Events 79 (13.3%) 86 (13.9%) Events 36 (9.3%) 52 (13.4%) Events 11 (4.5%) 21 (8.5%) Events 126 (10.3%) 159 (12.7%)

Follow-up in months

(min, max, med, IQR)

(12, 84, 54,

30)

(5, 95, 53, 30) Follow-up in

months (min, max,

med, IQR)

(6, 158, 105,

57)

(6, 158, 102,

55)

Follow-up in

months (min, max,

med, IQR)

(6, 68, 60, 2) (6, 68, 60, 2) Follow-up in

months (min, max,

med, IQR)

(6, 158, 60,

30)

(5, 158, 61,

30)

Variables Definitions Definitions Definitions Definitions

Age1 Median 69.4 yrs 69.4 yrs Median 67.9 yrs 67.9 yrs Median 67.4 yrs 67.4 yrs Median 68.4 yrs 68.4 yrs

Prescribed

dose

[66Gy]

[70Gy]

[74Gy]

78

328

189

81

343

195

[64Gy]

[74Gy]

204

184

204

184

[57Gy]

[60Gy]

[74Gy]

82

82

78

87

83

77

[66Gy (RADAR),

64Gy (RT01),

57Gy and 60Gy

(CHHiP)]

[70Gy and 74Gy

(RADAR), 74Gy

(RT01),

74Gy (CHHiP)]

467

857

455

799

Disease risk [GS ≤ 7]

[GS > 7]

418

177

436

183

[T1b/c or T2a with

(PSA + (GS -

6)*10) < 15]

[T1b/c or T2a with

(PSA + (GS -

6)*10) ≥ 15

or T2b/T3a]

110

278

110

278

[T1b/c or T2a with

PSA ≤ 10 and GS

≤ 6]

[Any of the

following: Stage ≥
T2b, 10 < PSA ≤
20, GS > 6]

57

185

59

188

[Lower risk group

patients from each

respective dataset]

[Higher risk group

patients from each

respective dataset]

648

676

605

649

Cancer stage [T2]

[T3/T4]

427

168

448

171

[≤ T2a (T1b, T1c,

T2a)]

[> T2a (T2b, T3a)]

235

153

235

153

[≤ T2a (T1a, T1b,

T1c, T2a)]

[> T2a (T2b,

T2c, T3a)]

177

65

179

68

[Lower cancer

stage group

patients from each

respective dataset]

[Higher cancer

stage group

patients from each

respective dataset]

839

386

862

392

Baseline

PSAa

Median 14.04 ng/ml 14.00 ng/ml Median 13.80 ng/ml 13.80 ng/ml Median 11.70 ng/ml 11.70 ng/ml Median 13.60 ng/ml 13.50 ng/ml

Number of

beams

[3 beams]

[4 beams]

[5 beams]

[6 beams]

[≥ 7 beams]

65

311

79

84

56

65

331

81

87

55

[3 beams for

phase 1 of

treament]

[4 beams for

phase 1

of treament]

228

160

228

160

[≤ 4 beams]

[> 4 beams]

212

30

217

35

[≤ 4 beams

(RADAR), 3 beams

(RT01),

≤ 4 beams

(CHHiP)]

[> 4 beams

(RADAR), 4 beams

(RT01), > 4

beams (CHHiP)]

816

409

841

413

aThis variable was divided into two approximately equal subgroups split about the median value.
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TABLE 3 | The number of patients in each trial dataset, broken down by endpoint and baseline variables, including follow-up information, for incontinence and frequency.

RADAR RT01 CHHiP COMBINED

Incontinence

(grade ≥ 2)

Frequency

(grade ≥ 2)

Incontinence

(grade ≥ 2)

Frequency

(grade ≥ 2)

Incontinence

(grade ≥ 2)

Frequency

(grade ≥ 2)

Incontinence

(grade ≥ 2)

Frequency

(grade ≥ 2)

Total number of

patients

647 416 Total number of

patients

354 264 Total number of

patients

242 206 Total number of

patients

1243 886

Events 24 (3.7%) 125 (30.0%) Events 26 (7.3%) 131 (49.6%) Events 6 (2.5%) 33 (16.0%) Events 56 (4.5%) 289 (32.6%)

Follow-up in months

(min, max, med, IQR)

(12, 84, 54,

36)

(12, 84, 18,

36)

Follow-up in

months (min, max,

med, IQR)

(6, 152, 103,

48)

(12, 158, 60,

90)

Follow-up in

months (min, max,

med, IQR)

(6, 68, 60, 2) (6, 67, 60, 3) Follow-up in

months (min, max,

med, IQR)

(6, 158, 60,

30)

(6, 158, 48,

46)

Variables Definitions Definitions Definitions Definitions

Agea Median 69.5 yrs 69.1 yrs Median 67.6 yrs 68.6 yrs Median 67.3 yrs 67.3 yrs Median 68.4 yrs 68.4 yrs

Prescribed

dose

[66Gy]

[70Gy]

[74Gy]

82

358

207

43

230

143

[64Gy]

[74Gy]

186

168

141

123

[57Gy]

[60Gy]

[74Gy]

84

81

77

72

70

64

[66Gy (RADAR),

64Gy (RT01),

57Gy and 60Gy

(CHHiP)]

[70Gy and 74Gy

(RADAR), 74Gy

(RT01),

74Gy (CHHiP)]

433

810

326

560

Disease risk [GS ≤ 7]

[GS > 7]

457

190

288

128

[T1b/c or T2a with

(PSA + (GS -

6)*10) < 15]

[T1b/c or T2a with

(PSA + (GS -

6)*10) ≥ 15

or T2b/T3a]

101

253

74

190

[T1b/c or T2a with

PSA ≤ 10 and GS

≤ 6]

[Any of the

following: Stage ≥
T2b, 10 < PSA ≤
20, GS > 6]

58

184

51

155

[Lower risk group

patients from each

respective dataset]

[Higher risk group

patients from each

respective dataset]

616

627

413

473

Cancer stage [T2]

[T3/T4]

465

182

305

111

[≤ T2a (T1b, T1c,

T2a)]

[> T2a (T2b, T3a)]

216

138

156

108

[≤ T2a (T1a, T1b,

T1c, T2a)]

[> T2a (T2b,

T2c, T3a)]

176

66

152

53

[Lower cancer

stage group

patients from each

respective dataset]

[Higher cancer

stage group

patients from each

respective dataset]

857

386

613

273

Baseline

PSAa

Median 14.04 ng/ml 14.25 ng/ml Median 13.40 ng/ml 14.00 ng/ml Median 11.70 ng/ml 11.85 ng/ml Median 13.45 ng/ml 13.60 ng/ml

Number of

beams

[3 beams]

[4 beams]

[5 beams]

[6 beams]

[≥ 7 beams]

69

345

85

89

59

44

223

58

52

39

[3 beams for

phase 1 of

treament]

[4 beams for

phase 1

of treament]

212

142

159

105

[≤ 4 beams]

[> 4 beams]

212

30

181

25

[≤ 4 beams

(RADAR), 3 beams

(RT01),

≤ 4 beams

(CHHiP)]

[> 4 beams

(RADAR), 4 beams

(RT01), > 4

beams (CHHiP)]

838

405

607

279

aThis variable was divided into two approximately equal subgroups split about the median value.
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Marcello et al. Voxel-Based Dose-Toxicity Modeling

FIGURE 2 | (A) slices of the T1 registration template CT image with the penile shaft (containing the spongy urethra) visible despite not being delineated, outlined in

yellow dots. Mean dose difference maps between patients with and without (B) grade ≥ 2 dysuria and (C) grade ≥ 1 haematuria, on approximately the same urethral

slice as the image in (A) for comparison. It is evident that maximum dose difference is most likely occurring at the urethra.

HR> 1 (p> 0.05) here for CHHiP. These are most evident in the
axial and sagittal planes. For Combined, VCs with HR > 1 (p <

0.05) are also present in the vicinity of the membranous urethra.
For RT01, HR> 1 (p< 0.05) VCs are also found surrounding the
extraprostatic urethra, particularly laterally and in the posterior
beam region adjacent to the extraprostatic urethra (seen in the
axial plane). Although the permutation test found no significant
mean dose difference up to the p < 0.3 level, the corresponding
mean dose difference maps are generally consistent with these
associations. Patients who experienced dysuria had up to 7Gy
more planned dose on average in the corresponding associated
regions for RADAR, RT01 and Combined, and 4Gy for CHHiP.
Figure 7 shows that patients with and without dysuria in the
combined dataset had total doses of 48.2 and 42.2Gy, respectively
at a point near the membranous urethra, and 19.7 and 16.2Gy
at a point near the spongy urethra. It is also noteworthy that
patients experiencing dysuria had up to 7Gy more dose near
the bladder neck region for RADAR and RT01, with patients
in each cohort having mean total doses here of approximately
44 and 51Gy, respectively (see Appendix Section 4 for mean
dose distributions). For Combined, the dominant spongy and
membranous urethral dose-association is confirmed by the
corresponding multi-voxel results, as the LASSO selected voxels
with HR > 1 in the same regions as the HR > 1 (p <

0.05) VCs found in the uni-voxel map. The RADAR uni-voxel
maps on the T3 template (see Appendix Section 3) confirm the
membranous and spongy urethra correlation and reveal some
correlated voxels in the prostatic urethra also. In conclusion,
patients with increased dose in the vicinity of the membranous
and spongy urethra experienced a higher incidence of late grade
≥ 2 dysuria.

Haematuria
Figure 4 shows the results for haematuria. Similar to dysuria, the
major association is between increased dose in the membranous
and spongy urethra and increased haematuria. The uni-voxel HR
maps show VCs with HR > 1 (p < 0.05) in these regions for
RADAR (including for T3), CHHiP and Combined. RT01 results
are not consistent with these findings, revealing VCs with HR
> 1 (p < 0.05) in the posterior oblique beam regions. Reduced
dose in the lateral beam regions is also correlated with increased
haematuria, evident in the HR > 1 (p < 0.05) VCs found in
these regions for RADAR and Combined, particularly visible
on the coronal planes. Although the permutation test found no
regions of significant dose difference, the corresponding mean
dose difference maps confirm these dominant associations for all
datasets. For example, these reveal that patients who experienced
haematuria had up to 8, 5, and 6Gy more dose on average in
the vicinity of the membranous and spongy urethra for RADAR,
CHHiP and Combined respectively. Figure 7 shows that patients
with and without haematuria in the combined dataset had total
doses of 47.4 and 42.3Gy, respectively at a point near the
membranous urethra, and 18.6 and 16.5Gy at a point near the
spongy urethra. The dose difference maps also show that patients
with haematuria had up to 5, 8 and 4Gy more dose on average
near the bladder neck/trigone region for RT01, CHHiP and
Combined, respectively. The LASSO selected a voxel with HR
> 1 directly posterior to the spongy/membranous urethra region
for Combined. It also selected HR < 1 voxels in the lateral beam
region. In conclusion, patients with increased dose in the vicinity
of the spongy and membranous urethra experienced a higher
incidence of late grade ≥ 1 haematuria. Figure 2 shows how the
maximum dose difference for both dysuria and haematuria was
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FIGURE 3 | Results for dysuria. Corresponding axial, coronal and sagittal slices (top to bottom) of (A) mean dose difference maps, (B) uni-voxel Cox regression HR

and p-value maps and (C) multi-voxel Cox regression LASSO HR maps (with uni-voxel p-values for comparison), for respective data sets. “No Voxels Selected”

implies the LASSO selected no voxels of significant correlation with the endpoint within the patient region. The slices chosen for display are those which coincide with

the most dominant emergent dose-endpoint patterns, indicated in corresponding planes with dashed lines. Tones of red correspond to regions where increased dose

is associated with incidence of dysuria (HR > 1), while tones of blues correspond to regions where reduced dose is associated with incidence of dysuria (HR < 1). The

CTV is delineated in orange while the bladder and rectum are delineated in yellow. Anatomical directions left (L), right (R), superior (S), inferior (I), anterior (A), and

posterior (P) are also indicated.
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FIGURE 4 | Results for haematuria. Corresponding axial, coronal and sagittal slices (top to bottom) of (A) mean dose difference maps, (B) uni-voxel Cox regression

HR and p-value maps and (C) multi-voxel Cox regression LASSO HR maps (with uni-voxel p-values for comparison), for respective data sets. “No Voxels Selected”

implies the LASSO selected no voxels of significant correlation with the endpoint within the patient region. The slices chosen for display are those which coincide with

the most dominant emergent dose-endpoint patterns, indicated in corresponding planes with dashed lines. Tones of red correspond to regions where increased dose

is associated with incidence of haematuria (HR > 1), while tones of blues correspond to regions where reduced dose is associated with incidence of haematuria (HR

< 1). The CTV is delineated in orange while the bladder and rectum are delineated in yellow. Anatomical directions left (L), right (R), superior (S), inferior (I), anterior (A),

and posterior (P) are also indicated.
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located in the extraprostatic urethra (using the visibility of the
penile shaft).

Incontinence
Figure 5 shows the results for incontinence. There is some
evidence of an association between incontinence and increased
dose at the urethral sphincters, while the dominant association is
between incontinence and patients treated with posterior oblique
beams and posteriorly extended lateral beams. The uni-voxel
HR maps show VCs with HR > 1 (p < 0.05) in the vicinity
of the internal and external urethral sphincters for RADAR,
while a smaller HR > 1 (p < 0.05) VC is present near the
internal sphincter for Combined, most clearly visible in the
coronal plane. Larger VCs with HR > 1 (p < 0.05) are present
in the vicinity of the internal and external sphincters for RADAR
on the T3 template, with the LASSO confirming this internal
sphincter association by selecting HR> 1 voxels near the internal
sphincter. The permutation test found no VCs of dose difference
up to p < 0.3, but the corresponding dose difference maps did
show that patients with incontinence had up to 10Gy more
dose on average than patients without incontinence near both
sphincters for RADAR (more clearly seen on the T3 template),
and up to 5Gy more for Combined. RADAR patients had a mean
total dose of ∼69Gy near the internal sphincter and 65Gy at
the external sphincter, reading off the mean dose distribution
on the T3 template in Appendix Section 4. Larger VCs with
HR > 1 (p < 0.05) were present in the posterior oblique beam
regions for RADAR, RT01 and Combined, and in the posterior
extension of the lateral beams for Combined and RT01. The
dose difference maps show patients with incontinence had up to
10Gy more dose in the lateral beam posterior extension region
than patients without incontinence for RT01 and CHHiP, and
9Gy more for Combined. The LASSO selected HR > 1 voxels
in the posterior oblique beam lateral beam posterior lateral beam
extension regions for Combined. Only 6 grade ≥ 2 incontinence
events were present for CHHiP, thus all voxel HRs were at p >

0.05. In summary, patients with increased dose in the vicinity
of urethral sphincters and in posterior oblique beam and lateral
beam posterior extension regions had a higher incidence of late
grade ≥ 2 incontinence.

Frequency
Figure 6 shows the results for frequency. The uni-voxel HR
maps in this figure reveal the presence of VCs with HR > 1 (p
< 0.05) in anterior and posterior beam regions inferior to the
prostate for RADAR, the left lateral beam for RT01, and (like
RADAR) the posterior beam region extending inferiority to the
prostate for CHHiP and Combined. Combined showed VCs in
the posterior beam region extending inferiorly to the prostate.
The permutation test revealed VCs of significant dose difference
(p < 0.05) in this same region for Combined, where patients
with frequency experienced up to 6Gy more planned dose
on average than patients without frequency. RADAR patients
with frequency experienced up to 10Gy more average dose in
the same posterior beam region. The LASSO generally selected
voxels with HR > 1 in the same regions as the significant
HR > 1 VCs found in the uni-voxel maps, for RT01 and

Combined, further confirming these associations. In summary,
the dominant association revealed was the relationship between
patients experiencing more dose in regions extending inferiorly
and posteriorly to the prostate and a higher incidence of late
grade ≥ 2 frequency.

DISCUSSION

In this study, quality-assured and reviewed planning data
collected in multi-center clinical trials with extensive follow-up
was used to derive independent datasets for analysis. Deformable
registration of planned dose distributions onto common
templates enabled identification of associations between voxel-
dose andmeasures of GU toxicity across the pelvic anatomy. This
is the first study to generate dose-GU toxicity relationships of this
nature without the assumption that these necessarily occur on or
within OARs.

Although no individual voxel-based test in this study
addressed every typical shortcoming of voxel- based analyses,
each test did address specific problems such that a consistent
result across all techniques could be considered independent
of these issues. Late genitourinary toxicity differs from late
gastrointestinal (GI) toxicity in that the occurrence of late
GI toxicity generally reaches a plateau after 3 years post-
RT, while late GU toxicity more frequently extends past 3
years (33). This suggests extended follow-up is necessary for
the accurate estimation of late GU toxicity. The uni-voxel
and multi-voxel Cox regression tests utilized post-treatment
time-to-event endpoints with follow-up times extending
from approximately 6 to 13 years, enabling an accurate
accounting of late GU symptoms. The uni-voxel test controlled
for patient baseline characteristics, attempting to remove
their confounding influence upon discovered dose-toxicity
correlations. The LASSO regression ensured selected voxels,
which strongly correlated with GU endpoints, were independent
of correlation with other voxels. Incorporating all voxels in
the model together accounted for the multiple comparisons
problem. The permutation dose difference test similarly
accounted for the multiple comparisons problem, while also
being the only method of the three that excluded noisy
extraneous voxels.

Late grade ≥ 2 dysuria was consistently associated with
increased dose to the spongy and membranous urethra regions
in this study. Mylona et al. discovered a subregion in the
posterior bladder, partially in the trigone, where increased dose
was correlated with late grade ≥ 1 dysuria (8). Their study
was limited to the bladder and prostatic urethra. Utilizing
bladder dose-surface maps, Yahya et al. discovered a similar
correlation between late grade ≥ 2 dysuria and increased dose
at the posterosuperior bladder surface, near the bladder trigone,
however concluded that dysuria was not associated with dose
received directly by the trigone (10). The authors predicted,
rather, that dose in this region “might also correlate with dose
to other organs in the genitourinary system outside the bladder,”
alluding to further studies “anticipated to properly investigate
this possibility, including the dose to the posterior prostatic
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FIGURE 5 | Results for incontinence. Corresponding axial, coronal and sagittal slices (top to bottom) of (A) mean dose difference maps, (B) uni-voxel Cox regression

HR and p-value maps and (C) multi-voxel Cox regression LASSO HR maps (with uni-voxel p-values for comparison), for respective data sets. “No Voxels Selected”

implies the LASSO selected no voxels of significant correlation with the endpoint within the patient region. The slices chosen for display are those which coincide with

the most dominant emergent dose-endpoint patterns, indicated in corresponding planes with dashed lines. Tones of red correspond to regions where increased dose

is associated with incidence of incontinence (HR > 1), while tones of blues correspond to regions where reduced dose is associated with incidence of incontinence

(HR < 1). The CTV is delineated in orange while the bladder and rectum are delineated in yellow. Anatomical directions left (L), right (R), superior (S), inferior (I), anterior

(A), and posterior (P) are also indicated.
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FIGURE 6 | Results for frequency. Corresponding axial, coronal and sagittal slices (top to bottom) of (A) mean dose difference maps and regions of significant dose

difference determined by permutation test, (B) uni-voxel Cox regression HR and p-value maps and (C) multi-voxel Cox regression LASSO HR maps (with uni-voxel or

permutation test p-values for comparison), for respective data sets. The slices chosen for display are those which coincide with the most dominant emergent

dose-endpoint patterns, indicated in corresponding planes with dashed lines. Tones of red correspond to regions where increased dose is associated with incidence

of frequency (HR > 1), while tones of blues correspond to regions where reduced dose is associated with incidence of frequency (HR < 1). The CTV is delineated in

orange while the bladder and rectum are delineated in yellow. Anatomical directions left (L), right (R), superior (S), inferior (I), anterior (A), and posterior (P) are also

indicated.
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urethra and anterior urethra, which includes the membranous
and bulbous urethra.” This study has investigated the dose-
dysuria relationship in these regions and has indeed found
correlation primarily in the membranous and spongy/bulbous
urethra and not primarily in the prostatic urethra. The RADAR
T3 result did, however, expose some correlation in the prostatic
urethra. Thirteen patients in the RADAR cohort included in
the dysuria analysis in this study had reported strictures. It is
noteworthy that one stricture was found in the prostatic urethra
with the rest found in the membranous/spongy urethra. While
only 5 of the 13 patients with strictures presented with grade ≥2
dysuria, 8 of the 13 presented with grade ≥ 1 dysuria. Perhaps
the membranous/spongy urethra is particularly susceptible to the
radiation damage capable of inducing dysuria, such as stricture
formation. Dose escalation has been shown to increase urethral
strictures in the RADAR cohort (18).

However, upon examination of the standard deviation dose
distributions (see Appendix Section 4 or Figure 7 for just the
combined cohort), the maximum dose variation occurs in the
membranous/spongy urethra region with minimum variation
in the prostatic urethra region, for all trial datasets. This
is particularly evident in the T3 standard deviation dose
distribution. Therefore, this anterior urethral correlation may
have been exposed through sufficient intra-cohort dose-variance
in this region, while a potential prostatic urethral correlation
may be hidden due to lack of dose variation in the CTV.
Figure 7 contains mean dose distributions for the combined
cohort displaying dose values in the vicinity of the spongy and
membranous urethra, for patients with and without grade ≥ 2
dysuria. Patients with dysuria have a mean dose of 19.7 and
48.2Gy near the spongy and membranous urethra, respectively.
Therefore, this dose-toxicity relationship is occurring in the low
dose range at the spongy urethra and intermediate dose range at
the membranous urethra. It should be noted that doses <20Gy
are associated with this effect at the spongy urethra. One further
hypothesis is that the low dose bath at the distal spongy urethra
may reduce the capacity of stem cells to migrate back to the more
heavily irradiated prostatic (or even membranous) urethra where
they would facilitate urethral healing (34, 35). In conclusion,
there is strong evidence that radiation dose to the urethra is
associated with resulting dysuria. The membranous and spongy
urethra may be particularly susceptible, however dose to the
prostatic urethra is likely to be related to dysuria as well. Limiting
dose to the spongy urethra may be more realistic as the prostatic
urethra resides in the high dose region. Future studies delineating
the prostatic/membranous/spongy urethra and investigating the
dose-volume-dysuria relationship in these regions may further
characterize urethral dose sensitivity.

Late grade ≥ 1 haematuria was similarly associated with
increased dose to the spongy and membranous urethra regions.
Urinary bleeding has typically related to the high dose region
of the bladder (14, 36–38) where the bladder neck and trigone
reside, and has been observed in the bladder neck and trigone
at cystoscopy (8). Yahya et al. (10), however, in agreement
with the superior bladder subregion found by Mylona et al.
(8), determined that late haematuria was associated with dose
to the anterosuperior regions of the bladder, and concluded

that haematuria was not a result of dose to the trigone or
bladder neck, but rather to tissue damage in the bladder wall.
Although Inokuchi et al. investigated and found no dose-volume
association with haematuria at the prostatic urethra (14), no
study to date has investigated dose-haematuria association at
the membranous or spongy urethra. To the best of the author’s
knowledge this is the first study to have included these regions
of the urethra in localized dose-toxicity analysis. As a result,
an association with haematuria has been found in the extra-
prostatic urethra, contrary to the general pattern. This is not
beyond the scope of current evidence, however, as haematuria
can be caused by urinary tract infection and strictures (39).
As previously discussed, urethral strictures were present in
the cohort and can result from urethral radiation damage.
Considering patients in the subset of the RADAR cohort included
in the haematuria analysis, 9 out of the 12 patients with reported
spongy/membranous urethral strictures also had grade ≥ 1
haematuria. It is also plausible that radiation damage to the
anterior urethra can cause inflammation leading to urinary tract
infection. As demonstrated for dysuria, Figure 7 shows that this
haematuria effect is associated with doses lower than 20Gy
at the spongy urethra. Therefore, reduced stem cell migration
in response to the low dose bath at the spongy urethra may
also be contributing to this effect. Due to these considerations
and the similar association found with dysuria, limiting dose
to the anterior urethra may substantially reduce the incidence
of these two prominent urinary toxicities. Spongy urethral dose
could be reduced by taping down the penis to the thigh. Or
perhaps by using two anterior oblique beams instead of a single
anterior beam.

It should also be acknowledged that the above dysuria and
haematuria dose relationships were found in 3D-CRT patients
(from the RADAR and RT01 trials). In the current era, almost all
patients are treated with IMRT or VMAT which result in more
conformal dose distributions in comparison to 3D-CRT. It is
therefore very likely that the majority of contemporary patients
would receive less spongy urethral dose, perhaps eliminating the
need for the application of dose constraints or any dose reduction
scheme. This is even evident in the current study, with CHHiP
patients (treated with IMRT) experiencing less urethral dose
correlation and less events corresponding to both dysuria and
haematuria. It is also noteworthy that applying dose constraints
to the membranous urethra, which begins proximally at the
prostatic apex, may not be feasible due to its proximity to the
high dose PTV region. The reader is reminded that the primary
purpose of this study was not to discover dose constraints but
to explore the underlying causal relationships between localized
dose and toxicity without the assumption that these relationships
necessarily occurred at OAR sites (from which future analyses
may derive dose constraints if appropriate—see the third final
paragraph of this discussion).

Increased dose in the external and internal urethral sphincter
and in the posterior oblique beams was shown to correlate
with late grade ≥ 2 incontinence. It is established that urinary
incontinence can (40), andmost commonly does (41), result from
urethral sphincter malfunctioning. Although both the internal
and external sphincters are involved in maintaining continence,
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FIGURE 7 | (A) Mean dose distributions for patients with the given toxicity in the combined cohort, (B) mean dose distributions for patients without the given toxicity

in the combined cohort, and (C) standard deviation dose distributions maps for patients in the combined cohort dataset for the given toxicity. Each map displays the

dose value at a point in the vicinity of the distal spongy urethra (above) and membranous urethra (below). The top row represents the grade ≥2 dysuria dataset and

the bottom row the grade ≥1 haematuria dataset.

the internal sphincter is of primary importance (42). Mylona
et al. found a predictive subregion in the prostatic urethra for
incontinence, concluding this was related to damage to the
urethral sphincter (8). Yahya et al. found an association between
incontinence and dose to the posteroinferior bladder at the
trigone, suggesting this was likely related to dose received by the
internal sphincter (10). The sphincter muscles may be scarred
by irradiation, or dose to the nearby bladder neck may increase
ischemia and fibrosis and thus incontinence due to internal
sphincter damage (10). The association with the posterior oblique
beams may be a surrogate for dose directly to the sphincters,
although no direct evidence for this has been discovered. It is
recommended that clinicians be aware of the potential radiation
damage to the sphincters, while recognizing they do coincide
with the high dose region, and that a large scale clinical trial
did not reveal increasing incidence of incontinence with dose
escalation (43).

Late grade ≥ 2 frequency was associated with dose extending
inferiorly and posteriorly to the prostate and rectum. This may
indicate that patients treated with a posterior beam extending
inferiorly beyond the rectum had a higher incidence of frequency.
This result is largely unintuitive and difficult to rationalize. It is
noteworthy thatMylona et al. could not demonstrate a dosimetric
association with urinary frequency (8).

The relationships presented here are correlations that may
or may not represent anatomically-localized physiological dose-
toxicity associations. The low number of toxicity events, namely
<10% of the cohort for 7 of the 16 datasets, should reinforce
this suspicion. Only the uni-voxel Cox regression accounted for
intrinsic patient factors, and these represent only a sample of
possible patient cofactors that could confound the associations.
To ensure dose-toxicity relationships are independent of a
given patient factor, separating the cohort into this factor’s
subgroups prior to analysis is necessary. This, however, would
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reduce power, requiring a larger cohort to establish statically
meaningful associations. Furthermore, these relationships must
be interpreted in light of the differences in dosemaps from
the three trials. For example, the mean dose distributions
from respective trials (see Appendix Section 4) indicate that the
average CHHiP distribution is more conformal than that of
RADAR or RT01. This is consistent with the fact that CHHiP
patients received IMRT instead of 3D-CRT for RADAR and
RT01, and may explain why the number of toxicity events were
lower and correlation patterns were much weaker in CHHiP
datasets. It must also be noted that the follow-up times were not
identical between the datasets derived from the three trials. For
example, datasets from the RADAR trial included follow-up data
at 9 and 15 months post-treatment while the datasets from the
RT01 and CHHiP trails did. Defining the endpoints differently
in this way may bias the comparison and therefore it is that
data from the same timepoints are used in generating endpoints
when comparing applying analysis to different trials with the goal
of comparing results. Finally, it is recognized that the results
from the combined cohort (for all toxicity endpoints) are biased
toward the RADAR dataset as RADAR patients comprise a higher
proportion of this dataset than patients from the other two
trials. The goal of the combined analysis was to maximize the
statistical power available for each toxicity endpoint and observe
the resulting dose-toxicity patterns. The aforementioned bias was
therefore accepted as necessary to achieve this goal. Although, in
future analyses, if an adequate number of patients are available,
it is recommended that, in addition to combining all patients
together, an equal number of patients from each trial be included
in the combined dataset (or a form of normalization employed)
to remove bias from any individual trial dataset. Comparing
results from a combined cohort with those from a balanced
(or normalized cohort) would be useful in discerning the bias
introduced from the dominant dataset.

The permutation test is quite conservative. In the dose
difference comparison between patients with and without an
event pertaining to a given endpoint, it applies a global threshold
that cannot identify local maxima of dose difference. Also, due
to the large number of voxels compared, in order to adequately
account for the multiple statistical testing problem this threshold
can be quite high, and therefore may exclude not only local
regions of significant dose difference but also global regions.
Hence only large and statistically strong global dose differences
can be identified (and therefore p-value thresholds up to p <

0.3 were used). This could explain why, across all datasets and
endpoints, only in one dataset (Combined for frequency) was
a region of statistically significant dose difference discovered
by this test. A test more sensitive in identifying local maxima,
such as a threshold-free cluster enhancement test (44), may
be appropriate for further voxel-based analyses. Palorini et al.
(12) outline further reasons for being wary of a straightforward
application of the permutation test in the context of bladder
dose surface maps. These include (1) the distribution of t-scores
obtained in each pixel being significantly different from the null
distribution (invalidating the test’s assumption of a universal null
hypothesis), and (2) macro regions of heterogenous voxel dose
skewness reducing the probability of regions with less skewness of
registering a significant dose difference. Point (1) implies that the

test be overly restrictive, while (2) indicates the need for possibly
dividing the dose distribution into regions of relatively uniform
skewness and repeating the test on each region separately. This
may be an appropriate future directive for using this test in the
context of voxel-based analysis.

The assumption that planned dose is equivalent to delivered
dose, which differ in reality (45), is a major limitation of this
study. It has been shown that delivered dose can be a better
predictor of rectal toxicity than planned dose (46). As the
agreement between planned and delivered dose improves, or
delivered dose becomes more easily measurable, voxel-based
dose analyses will be more effective in identifying anatomically
localized dose-toxicity relationships. Cone beam CT daily
imaging, for example, could be used to measure cumulative
delivered dose across the course of treatment (47). Furthermore,
all voxel-based tests in this analysis were applied throughout the
entire pelvic region, including a broad range of late-responding
normal tissues. An alpha/beta value of 3 was chosen as it has
been regarded as generally representative of all late responding
normal tissues (48). It is acknowledged, however, that different
normal tissues respond differently with respect to different
toxicities, thus resulting in different alpha/beta values. Therefore,
an appropriate future direction would be to test the sensitivity of
results to different alpha/beta values, particularly with respect to
the different urinary toxicities. Another limitation could be the
registration accuracy and the suitability of the choice of exemplar
and anti-exemplar. The anatomical localization of the emergent
dose-toxicity patterns is directly dependent on registration
accuracy. A perfect registration would ensure the identified
patterns are in fact occurring at the presumed anatomical sites.
Diversity in the distribution of dose across each cohort is also
limiting, as the mean dose distributions are approximately 3 or 4
field treatments in all datasets (see Appendix Section 4 for mean
and standard deviation dose distributions). Greater diversity
in technique will enable more generalizable feature selection.
Differences in diversity between trials may also account for lack
of consistency in results across trials. For example, RADAR
treatments were allowed any combination of 3 or more beams,
while RT01 treatments were restricted to 3 or 4 beams in the
anterior/lateral/posterior directions. This has led to differences
in the spatial distribution of dose variation between trial cohorts,
resulting in different potential sites with sufficient variation for
exposing dose-toxicity associations.

Incorporating the voxel-based evidence into normal tissue
complication probability (NTCP) models may facilitate
translation of these results into clinical practice. Palma et al. have
derived a new NTCP philosophy to include voxel-based evidence
of OAR radio-sensitivity (49). Incorporating the evidence of
OAR sensitivity from this study into a model like this could
result in reduced toxicity for patients when applied to treatment
planning. It is also acknowledged that the majority of evidence
discovered in this study was from 3D-CRT patients. Therefore,
the methods here may need to be applied to a larger cohort of
patients treated with contemporary techniques before translation
is made to the clinic.

This study focused on urinary specific and not toxicities
related to sexual function. An exploration of the relationship
between erectile dysfunction (ED) and dose in a voxel-based
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manner is recommend for future analyses. Additionally, the
relationship between ED and dose to the penile bulb was studied
elsewhere for the RT01 and CHHiP patients (50, 51). Finally, the
study of the relationship between ED and dose is problematic in
cohorts that use additional ADT due to the impact of ADT on
various measures of sexual function including ED (52–54). The
RADAR trial, from which our primary dataset was derived, is
one such cohort. Additionally, it has previously been shown that
ADT did not increase urinary dysfunction (including dysuria,
haematuria, frequency and incontinence) in the RADAR cohort
(55). Similar studies have not been performed for the RT01 and
CHHiP cohorts, however, as trial arms did not vary in terms of
ADT duration. The impact of ADT may therefore be a confound
in the datasets derived from RT01 and CHHiP.

This was the first study performing a full voxel-based
analysis of dose-urinary toxicity relationships in the entire
pelvic anatomy, without the assumption that these occurred
exclusively at OAR sites. Associations between late dysuria and
haematuria and dose to the spongy and membranous urethra
have been newly identified, while dose to the urinary sphincters
and resulting incontinence has confirmed the idea that radiation
damage at the sphincter can cause incontinence.
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Objective: To investigate predictors of patient-reported urinary incontinence (PRUI) in

the first 2 years after post-prostatectomy radiotherapy (PORT) with particular emphasis

on possible dose-effect relationships.

Patients and Methods: Two-hundred-thirteen patients, whose clinical and dosimetric

data were prospectively collected within a registered multi-institutional cohort study,

underwent PORT with adjuvant (n= 106) or salvage (n= 107) intent with conventional (n

= 123, prescribed dose to the prostatic bed: 66.6–79.8Gy in 1.8–2.0Gy/fr) or moderately

hypo- (n = 90, 65.8–76.8Gy in 2.1–2.7Gy/fr) fractionation during the period 2011–2017.

PRUI was evaluated through the ICIQ-SF questionnaire filled in at baseline and every 6

months thereafter. The analysis focused on three ICIQ-based clinically relevant endpoints:

(a) very frequent leakage (FREQUENCY, ICIQ3 score >3), (b) moderate to severe

amount of urine loss (AMOUNT, ICIQ4>2) (c) objective severe symptoms (OBJECTIVE,

ICIQ3+4>5). Predictors of the incidence within 2 years for the three endpoints were

investigated focusing only on patients without endpoint symptoms at baseline. A

uni-variable logistic regression analysis was performed in order to determine the best

dose metrics describing PRUI risk in terms of 2-Gy equivalent dose (EQD2) calculated

with different α/β values reported in the literature (0.8, 3, 5Gy), and to identify the

most significant clinical variables. Variables showing p < 0.20 at uni-variable analysis
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were entered into a backward stepwise multi-variable logistic regression analysis. Lastly,

the goodness of fit and model calibration were evaluated and internally validated.

Results: Patients without symptoms at baseline experienced (a), (b), and/or (c) within

2 years in 41/130 (32%), 40/192 (21%), and 41/129 (32%) of the cases, respectively.

EQD2 for α/β = 0.8Gy was the best dose metric associated with PRUI. Multi-variable

analysis identified baseline incontinence levels as the strongest predictor for all endpoints

(p < 0.006). Both FREQUENCY and OBJECTIVE were significantly influenced also by

EQD2(α/β = 0.8Gy). The goodness of fit was excellent, as was the calibration; internal

calibration confirmed apparent performance.

Conclusion: Baseline mild urinary incontinence symptoms strongly modulate the

2-year risk of PRUI. In addition, FREQUENCY is characterized by a marked dose-effect

relationship also influencing the trend of OBJECTIVE, with results more reliable than

AMOUNT as an objective index. A strong impact of fractionation on severe PRUI after

post-prostatectomy radiotherapy also emerged.

Keywords: urinary incontinence, predictive models, prostatectomy, radiotherapy, prostate cancer

INTRODUCTION

Urinary toxicity is a common side effect of radiotherapy for
prostate cancer (PCa), despite the modern intensity-modulated
(IMRT) delivery techniques and image-guidance technologies
currently available (1, 2). Amongst the wide variety of symptoms
included in the term “urinary toxicity,” urinary incontinence (UI)
plays an important role in the deterioration of patient quality
of life.

The reported incidence of severe late incontinence after
radical radiotherapy for PCa at 3–5 years ranges between 1
and 5%, but increases up to more than 20% in the post-
operative setting (3–5). In general, since prostatectomy may
negatively impact the urinary outcome per se (6), the actual
detrimental impact on urinary function deriving from post-
operative radiotherapy (PORT) is difficult to quantify.

The difficulty in sparing the bladder, owing to its proximity
to the target, but especially the substantial lack of adequate
knowledge concerning predictive factors of radiation-induced
urinary incontinence represent the most significant limitations
to further reducing both the rate and the severity of urinary
complications. High-quality individually and prospectively
collected data relative to a large number of patients followed for
a sufficient long time are therefore eagerly awaited in order to
develop reliable models in this field.

In addition, the optimal dose in the adjuvant (ART) and
salvage (SRT) settings remains controversial. The radiation dose
delivered after radical prostatectomy is typically 20–25% lower
than that recommended in the case of radical radiotherapy
(∼60–64 vs. 76–80Gy). More recently, the community of
radiation oncologists has demonstrated a growing interest,
supported both by elegant radiobiological models (7, 8) and
retrospective analyses (7, 9, 10), in dose escalation in the
setting of post-prostatectomy radiotherapy. The evidence of a
relationship between radiation dose and clinical outcome has in
fact been highlighted by several studies (8–12), supporting the

hypothesis of a dose-response effect for PORT not significantly
different from that observed for radical irradiation. The
possible benefit deriving from escalating the radiation dose
from 64 to 70Gy in the salvage setting is currently under
investigation by the randomized, multi-centric, Phase III trial
SAKK 09/10 (13), whose preliminary results indicate that dose
intensification of SRT had no impact on early urinary continence
recovery or prevalence of de novo incontinence. Nevertheless,
to date no robust data on a possible independent relationship
between dose-escalation and effects of fractionation in the
post-prostatectomy setting and an increased risk of mid-term
risk of persistence/worsening of post-prostatectomy urinary
incontinence are available, especially in the setting of patient-
reported toxicity.

The main objectives of the current research were therefore:

1) the quantification of the dose-effect relationship of 2-year
patient-reported urinary incontinence (PRUI) in the setting
of post-prostatectomy irradiation;

2) the identification of clinically significant predictors of 2-year
PRUI incidence after ART and SRT.

Urinary incontinence was assessed using patient-reported data
prospectively collected within a prospective and registered multi-
Institute observational study.

PATIENTS AND METHODS

The IHU-WPRT TOX Study
The IHU-WPRT TOX (Intestinal Hematologic Urinary
Toxicity from Whole-Pelvis Radiotherapy) is a registered
multi-Institutional cohort study (ClinicalTrials.gov identifier
#NCT02803086) aimed at developing predictive models of
toxicity after WPRT for PCa (14–16). Before the activation of
the IHU-WPRT TOX trial in February 2014, a Review Board
approved pilot study had been performed at the Coordinating
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Institute (San Raffaele Scientific Institute, Milan, Italy) (14, 15).
The IHU-WPRT TOX was approved by the Institutional Review
Board of each of the participating Institutes and is still enrolling
patients (16).

Prophylactic WPRT, always at the discretion of the referring
radiation oncologist, is usually advised for patients with seminal
vesicle invasion, Gleason score≥ 7, pre-surgical PSA >10 ng/mL
and/or histologically positive lymph-nodes at prostatectomy, or
in the case of PSA ≥ 0.50 ng/mL in the salvage setting.

According to the protocol requirements (14–16), the validated
Italian versions of the IBDQ (Inflammatory Bowel Disease
Questionnaire) (17), ICIQ-SF (International Consultation
on Incontinence Questionnaire-Short Form) (18) and IPSS
(International Prostatic Symptom Score) (19) are to be
prospectively collected for the patient-reported evaluation
of WPRT-induced intestinal and urinary toxicity. All the
questionnaires are to be filled in by the enrolled patients at
baseline, at radiation treatment mid-point and end, at 3 and
6 months after radiotherapy conclusion, and thereafter every
6 months, up to 5 years. At identical time intervals a blood
sample is to be collected for the evaluation of WPRT-induced
hematologic toxicity (14, 15). In addition to clinical and
dosimetric data (see below section Dose-Effect Quantification,
Uni- and Multivariable Models and Tables 3, 4 for the list of the
variables analyzed), patient personality and its possible impact
on self-reported radiation-induced toxicities was considered by
means of the abbreviated 24-item version of the revised Eysenck
Personality Questionnaire (EPQ-R) (20) filled in by patients at
baseline. Four personality traits are measured using four scales,
each scored from 0 (no presence of the trait) to 6 (maximal
presence of the trait): Extraversion (sociability, impulsiveness,
but also some tendency to aggressiveness), Neuroticism
(emotional instability, nervousness, and general anxiety),
Psychoticism (tough-mindedness, but also a measurement of
hostility) and Lie (a control scale introduced into personality
measures in order to detect the “faking good” of scores on
other scales; the Lie scale is reconstructed from items listing
behaviors that are either socially desirable but infrequently
practiced or frequently practiced but socially undesirable).
When only one answer for each personality trait was missing
(n = 12), imputation of EPQ-R scores was accomplished
using the most frequent value reported by those patients who
answered similarly.

The ICIQ-SF Questionnaire
The ICIQ-SF consists of six items, three of which do not generate
a score as they concern personal patient data (questions 1 and
2) or descriptive features (question 6). The quantitative items
are represented by questions 3 (hereafter ICIQ3, score 0–5) and
4 (ICIQ4, score 0–6) pertaining to the frequency and amount
of urine loss, respectively, and question 5 (ICIQ5, score 0–
10) quantifying the subjective patient-perceived impairment of
quality of life attributable to PRUI. The sum of these scores is
used to quantify both the “objective” component (ICIQ3+ 4) and
the “total” detriment (ICIQ3 + 4 + 5) of PRUI. Higher scores
indicate worse symptoms.

Patient Population
At the time of analysis, 2-year data were available for 213 patients.
The population selected for the current work is composed of
71 patients from the pilot study (14, 15) and 142 from the
observational protocol (16), with the requirements for the two
studies being identical, according to the following criteria:

(i) patient underwent post-prostatectomy radiotherapy with
either adjuvant or salvage intent.

(ii) ICIQ-SF was completed both at baseline and at 24 months.
(iii) at least two questionnaires were available between 6 and 24

months after radiotherapy end.

ICIQ-Based Endpoints
The analysis focused on three clinically significant endpoints
based on the quantitative and objective questions of the ICIQ-
SF. In particular, endpoints were selected a priori, subsequent
to a thorough discussion within the Institutes involved in the
protocol, as those deemed to be “clinically significant” for
patients, as follows:

(a) very frequent leakage (FREQUENCY), defined as an ICIQ3
score > 3 at least once between 6 and 24 months after
PORT end;

(b) moderate to severe amount of urine loss (AMOUNT),
defined as an ICIQ4 score >2 at least once between 6 and
24 months after PORT conclusion (the choice of this end-
point, somewhat “weaker” as compared to that selected for
FREQUENCY, was deemed necessary owing to the markedly
lower number of events, see below);

(c) objective severe symptoms (OBJECTIVE), defined as the
sum of ICIQ3 + 4 scores >5 at least once between 6 and
24 months following PORT end.

Incidentally, all of the three scores corresponded to the highest
tertile in the considered population. For each endpoint only
patients who did not exhibit an already impaired situation at
baseline were considered, and therefore patients with ICQ3 > 3
or ICQ4 > 2 or ICQ3 + 4 > 5 at baseline were excluded when
defining the corresponding endpoint.

A longitudinal analysis of the symptom trend across the
24 months post-radiotherapy was performed in order to
characterize and compare the final sample group of patients
and the part of population that was excluded from the
statistical analyses.

Dose-Effect Quantification, Uni-, and
Multivariable Models
Firstly, a univariable logistic regression analysis was performed
in order to select the best dose metrics associated to an increased
risk of the ICIQ-based endpoints in terms of EQD2 doses
calculated according to the different α/β values most commonly
reported by the available literature for the bladder (i.e., 0.8, 3,
and 5Gy). The prescribed EQD2 to PBPTV was considered here
as a surrogate for the high dose received by the normal bladder
adjacent to the PBPTV. The dose metric corresponding to the
model with the maximum log-likelihood was selected to be used
for further analysis.
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TABLE 1 | Summary of patient characteristics.

Variables Overall

(n = 213)

Adjuvant

(n = 106)

Salvage

(n = 107)

PATIENT DATA

Age (yr) 67 (62–71) 67.5 (63–72) 67 (62–71)

BMI (kg/m2) 25.9

(15.9–27.7)

26.4

(24.4–28.1)

25.5

(24.1–27.3)

Hypertension (yes) 99 (47%) 49 (47%) 50 (47%)

Smoke (yes) 36 (17%) 21 (21%) 15 (14%)

Diabetes (yes) 15 (7%) 8 (8%) 7 (7%)

SURGERY DATA

Type of Surgery

Open 131 (63%) 74 (70%) 57 (55%)

Robotic 56 (27%) 23 (22%) 33 (32%)

Laparoscopic 22 (10%) 8 (8%) 14 (13%)

PSA (ng/ml)

Pre-RP 8.01

(5.63–12.93)

8.68

(6.00–15.45)

7.60

(5.40–10.08)

Post-RP 0.04

(0.01–0.12)

0.07

(0.02–0.27)

0.03

(0.01–0.05)

No of removed lymph nodes 12 (6–20) 15 (8–22) 10 (3–18)

RADIOTHERAPY DATA

PSA pre-RT (ng/ml) 0.24

(0.05–0.48)

0.06

(0.02–0.32)

0.33

(0.21–0.54)

Time to RT (mo) 8.3 (4–26.7) 4.0 (3.2–5.5) 26.7

(16.1–56.1)

Fractionation

CONV (1.8–2.0 Gy/fr) 123 (58%) 55 (52%) 68 (64%)

HYPO (2.1–2.7 Gy/fr) 90 (42%) 51 (48%) 39 (36%)

Dose to PBPTV (Gy)

Prescribed dose 71 (69–74) 70 (67–72) 73 (70–74)

EQD2(α/β = 0.8Gy) 74 (70–76) 74 (70–74) 74 (70–76)

Irradiation technique

SF-IMRT 20 (9%) 6 (6%) 14 (13%)

VMAT 106 (50%) 52 (49%) 54 (50%)

Tomotherapy 87 (41%) 48 (45%) 39 (37%)

Gleason score

ISUP Groups 1–3 58 (27%) 17 (16%) 41 (39%)

ISUP Groups 4–5 154 (73%) 89 (84%) 65 (61%)

Stage T

pT2 67 (32%) 11 (11%) 56 (52%)

pT3a 72 (34%) 36 (34%) 36 (34%)

pT3b & pT4 73 (34%) 58 (55%) 15 (14%)

ANDROGEN DEPRIVATION THERAPY DATA

No ADT 116 (57%) 45 (45%) 71 (68%)

Bicalutamide monotherapy 25 (12%) 14 (14%) 11 (11%)

LH-RH 51 (25%) 35 (35%) 16 (16%)

CAB 12 (6%) 7 (7%) 5 (5%)

PATIENT-REPORTED DATA

EPQ-R

Extraversion 4 (3–5) 4 (3–5) 4 (3–5)

Neuroticism 1 (0–3) 1 (1–3) 1 (0–2)

Psychoticism 1 (0–1) 1 (0–1) 1 (0–2)

(Continued)

TABLE 1 | Continued

Variables Overall

(n = 213)

Adjuvant

(n = 106)

Salvage

(n = 107)

Lie 5 (4–6) 6 (5–6) 5 (4–6)

ICIQ-SF at baseline pre-RT

ICIQ3

Median 2 3 1

Quartiles (25–75%) (0–4) (1–4) (0–3)

Tertiles (33–66%) (1–3) (2–4) (0–2)

ICIQ4

Median 2 2 2

Quartiles (25–75%) (0–2) (2–2) (0–2)

Tertiles (33–66%) (2–2) (2–2) (0–2)

ICIQ34

Median 4 5 3

Quartiles (25–75%) (0–6) (3–6) (0–5)

Tertiles (33–66%) (3–5) (4–6) (0–4)

Data are presented as counts (percentages in brackets) for categorical variables and

as median values (inter-quartile ranges in bracket) for continuous variables. CONV,

conventionally fractionated; HYPO, hypofractionated; BMI, body mass index; RP, radical

prostatectomy; RT, radiotherapy; PBPTV, prostatic bed planning target volume; EQD2,

2-Gy equivalent dose; ADT, androgen deprivation therapy; CAB, combined androgen

blockade; EPQ-R, eysenck personality questionnaire revised; ICIQ-SF, International

Consultation On Incontinence Modular Questionnaire Short Form.

Univariable analyses were also performed in order to identify,
for each endpoint, the most significant clinical variables,
including age, bodymass index (BMI, kg/m2), comorbidities such
as diabetes and hypertension, smoking (yes vs. no/stopped at least
5 years before radiotherapy start), type of surgery, preoperative
PSA, pathologic stage and Gleason score at prostatectomy,
type and length of androgen deprivation therapy delivered
concomitantly and after radiotherapy, months elapsed from
prostatectomy to irradiation (time to radiotherapy), as well as
ICIQ-SF scores at baseline.

Variables with a p < 0.2 at univariable analysis and
without cross-correlations (Pearson or Spearman coefficient ∈
[−0.25, 0.25]) were entered into a backward stepwise multi-
variable logistic regression. Lastly, each model was reprocessed
using only the variables retained by the backward multi-variable
analysis with a p-value threshold ≤ 0.05.

Goodness of fit was assessed by means of the Hosmer
and Lemeshow test and the calibration plot (slope and R2).
Brier scores were used to measure accuracy. Internal validation
was performed by 1,000 bootstrap resamplings, and optimism
determined. Analyses were performed with MedCalc R© version
12.1.4.0 (MedCalc Software, Mariakerke Brussels, Belgium) and

the R software version 3.2.4 (©The R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS

The patients were treated from 2011–2017 in 11 Italian Institutes
with either conventionally-fractionated radiotherapy (n = 123,
prescribed dose to PBPTV: 66.6–79.8Gy in 1.8–2.0 Gy/fr.) or
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FIGURE 1 | Fraction of patients who experienced endpoint symptoms (green

curve) across the 24 months following post-prostatectomy radiotherapy. The

(Continued)

FIGURE 1 | total sample was dichotomized in patients who experienced (red

curve) and did not experience (blue curve) the endpoint symptoms at baseline

(BL): a not negligible fraction of patients with good baseline scores became

incontinent (15–20%, according to the end-point definitions): inversely, the

fraction of incontinent patients after radiotherapy slightly reduced in the group

of patients incontinent at baseline. The endpoints are related to the frequency

(A) and amount (B) of urine leakage and to the objective component (C) of

urinary incontinence, as reported in the ICIQ-SF questionnaire.

moderately hypo-fractionated regimens (n= 90, prescribed dose
to PBPTV: 65.8–76.8Gy in 2.1–2.7 Gy/fr.) with either adjuvant
(n = 106) or salvage (n = 107) intent. Patient and treatment
characteristics of the two subpopulations are detailed in Table 1.

The prescribed doses to PBPTV (D) were converted into 2-
Gy equivalent doses (EQD2) according to the linear-quadratic
model (21):

EQD2 (α/β)=D

(
α/β + d

)
(α/β + 2)

where d is the daily dose and α/β was set at 0.8, 3 and 5Gy (hence
EQD2(0.8), EQD2(3), EQD2(5), respectively), as reported in the
literature (21, 22).

An impaired situation at baseline, according to the definition
of the ICIQ-based endpoints (see ICIQ-Based Endpoints) was
present in 31, 12, and 31% of patients for FREQUENCY,
AMOUNT, and OBJECTIVE, respectively. As a consequence,
the size of the final sample groups was: 148 patients for
FREQUENCY, 188 for AMOUNT, and 148 for OBJECTIVE. It
is noteworthy to underline that 31% of the entire population
(67/213) was found to be “completely dry” (ICIQ3 + 4 = 0)
before radiotherapy start.

The evolution of the fraction of patients experiencing (or
not) the endpoint symptoms at baseline is shown in Figure 1,
while the longitudinal trend of their mean ICIQ score is plotted
in Figure 2. The Mann-Whitney-Wilcoxon test clearly indicated
that the median values of the ICIQ score distributions in Figure 2
were always significantly different between the two sample
groups (p < 0.001).

When looking to the differences from baseline scores, patients
with good baseline scores (< ICIQ-based endpoints) showed
a significant worsening 12 months after radiotherapy end
and thereafter; patients with higher (= worse) baseline scores
improved with the best recovery achieved 6 months after
radiotherapy conclusion, then usually returned to the baseline
incontinence level at 24 months (Table S1 of the Supplementary
Material reports the p-values of the corresponding Mann-
Whitney-Wilcoxon tests). In addition, the distribution of the
changes between baseline and the 2-year scores confirmed
an unbalanced distribution toward positive delta, i.e., worse
symptoms in the group with good baseline score, as shown in
Figure S1 of the Supplementary Material.

The results of univariable analyses are summarized in
Tables 2, 3: an association with the dose was found for both
the FREQUENCY and OBJECTIVE endpoints, while AMOUNT
showed no dose-dependent trend (Table 2). The log likelihood
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FIGURE 2 | Longitudinal trend of the mean ICIQ score associated with the

sample group of patients who experienced (red) and did not experience (blue)

the endpoint symptoms at baseline (BL). The endpoints are related to

frequency (A), amount (B), and objective component (C) of urinary

incontinence, as reported in ICIQ-SF questionnaire. Error bars represent the

standard deviation associated with the score distribution at each time.

TABLE 2 | Results of the univariable logistic regression analysis: association

between the 2Gy equivalent dose at different α

β
values (0.8, 3, and 5Gy) and the

endpoints related to frequency, amount, and objective component of urinary

incontinence, as reported in ICIQ-SF.

Variables EQD2 (α/β)

α/β = 0.8 Gy α/β = 3 Gy α/β = 5 Gy

FREQUENCY endpoint (ICIQ3>3)

p-value 0.08 0.1 0.18

OR 1.06 1.09 1.09

CI (95%) 1.00–1.12 0.98–1.21 0.96–1.23

Log Likelihood −94.32 −94.59 −95.02

AMOUNTT endpoint (ICIQ4>2)

p-value 0.98 0.62 0.44

OR 1.00 1.03 1.05

CI (95%) 0.94–1.06 0.92–1.14 0.93–1.19

Log Likelihood −97.31 −97.19 −97.02

OBJECTIVE endpoint (ICIQ3+4>5)

p-value 0.08 0.1 0.18

OR 1.06 1.09 1.09

CI (95%) 1.00–1.12 0.98–1.21 0.96–1.23

Log Likelihood −94.32 −94.59 −95.02

ICIQ-SF, International Consultation On Incontinence Modular Questionnaire Short Form.

of EQD2 (0.8) was higher with respect to those of EQD2 (3)
and EQD2 (5); thus, EQD2 (0.8) was chosen as the dosimetric
variable to be entered in the multi-variable analysis. For both
FREQUENCY and OBJECTIVE endpoints, the p-values relative
to EQD2 (0.8), age, smoking, and Gleason score were always
p < 0.2, and the corresponding baseline ICIQ score emerged
as the most significant variable (p < 0.001). The univariable
analysis pertaining to the “amount of urine loss” endpoint
(ICIQ4) confirmed baseline ICIQ as the most significant variable
indicating, in addition, some role for age, robot surgery, and
Extraversion (Table 3).

Table 4 outlines the resulting multi-variable models. Patients
reporting none to mild symptoms at baseline experienced
the pre-specified FREQUENCY, AMOUNT, and OBJECTIVE
endpoints within 2 years from post-operative irradiation in
52/148 (35%), 40/188 (21%), and 52/148 (35%) of the cases,
respectively. The corresponding baseline score was the most
significant predictor for all endpoints (p < 0.006). Both
FREQUENCY and OBJECTIVE were largely modulated by
EQD2 (0.8), as illustrated in Figure 3.

The goodness of fit was always satisfactory (Hosmer and
Lemeshow test > 0.78), as was the calibration (see Figure 4),
with slopes and R2 ranging between 1.0–1.1 and 0.82–1.00,
respectively. Internal validation resulted in optimism of 0.005–
0.01 on the Brier score, confirming the robustness of the results.

DISCUSSION

This is the first analysis focused on the identification of
the main predictors of mid-term patient-reported UI and on
the dose-effect quantification in a cohort of patients treated
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TABLE 3 | Results of the univariable logistic regression analysis (p-value and Odds-Ratio).

Frequency (ICIQ3>3) Amount (ICIQ4>2) Objective (ICIQ3+4>5)

Variables p-value OR p-value OR p-value OR

PATIENT VARIABLES

Age (yr) 0.186 1.04 0.036 1.06 0.186 1.04

BMI (kg/m2) 0.806 1.01 0.694 1.02 0.806 1.01

Hypertension

No Ref. Ref. Ref.

Yes 0.550 1.23 0.712 1.14 0.550 1.23

Smoke

No Ref. Ref. Ref.

Yes 0.139 1.95 0.855 0.91 0.139 1.95

Diabetes

No Ref. Ref. Ref.

Yes 0.752 1.24 0.878 1.11 0.752 1.24

SURGERY VARIABLES

Type of Surgery

Open Ref. Ref. Ref.

Robotic 0.963 1.02 0.186 0.56 0.963 1.02

Laparoscopic 0.859 0.89 0.510 0.64 0.859 0.89

PSA (ng/ml)

pre-RP 0.463 1.01 1.000 1.00 0.463 1.01

post-RP 0.846 0.97 0.928 1.02 0.846 0.97

No of removed lymph nodes 0.317 0.98 0.371 0.98 0.317 0.98

RADIOTHERAPY VARIABLES

PSA pre-RT (ng/ml) 0.879 1.01 0.698 1.02 0.879 1.01

Time to RT (mo)

≤ 8 months Ref. Ref. Ref.

> 8 months 0.319 0.71 0.243 0.66 0.319 0.71

EQD2(α/β = 0.8Gy) 0.076 1.06 0.975 1.00 0.076 1.06

Gleason score

ISUP Groups 1–3 Ref. Ref. Ref.

ISUP Groups 4–5 0.159 0.59 0.568 0.80 0.159 0.59

Stage T

pT2 Ref. Ref. Ref.

pT3a 0.673 1.20 0.572 0.79 0.673 1.20

pT3b & pT4 0.294 1.55 0.221 0.57 0.294 1.55

ANDROGEN DEPRIVATION THERAPY VARIABLES

ADT

No Ref. Ref. Ref.

Yes 0.714 0.88 0.440 1.32 0.714 0.88

PATIENT-REPORTED VARIABLES

EPQ-R

Extraversion 0.944 1.01 0.089 0.83 0.944 1.01

Neuroticism 0.762 1.03 0.205 1.15 0.762 1.03

Psychoticism 0.344 0.84 0.436 0.86 0.344 0.84

Lie 0.433 0.89 0.145 1.30 0.433 0.89

ICIQ-SF at baseline <0.001 1.81 0.006 1.91 <0.001 1.39

The endpoints are related to frequency, amount and objective component of urinary incontinence, as reported in ICIQ-SF. Significant values accepted for inclusion in subsequent

multivariable analyses (p < 0.2) are in bold. BMI, body mass index; RP, radical prostatectomy; RT, radiotherapy; ADT, androgen deprivation therapy; CAB, combined androgen blockade;

EPQ-R, eysenck personality questionnaire revised; ICIQ-SF, International Consultation On Incontinence Modular Questionnaire Short Form.
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TABLE 4 | Results of the multi-variable logistic regression analysis.

Predictors Coeff ± dev.std. p-value OR CI (95%)

FREQUENCY—Frequency of urine loss

Endpoint: ICIQ3 >3, N = 52/148 (35%), excluded: ICIQ3 >3 at baseline

Baseline score 0.655 ± 0.174 <0.001 1.93 1.38–2.74

EQD2(0.8) [Gy] 0.075 ± 0.033 0.024 1.08 1.01–1.15

Intercept −6.964

H&L = 0.78 Slope = 1.06 R2 = 0.82 Brier score = 0.198

(optimism = 0.01)

AMOUNT—Amount of Urine Loss

Endpoint: ICIQ4 >2, N = 40/188 (21%), excluded: ICIQ4 >2 at baseline

Baseline score 0.648 ± 0.237 0.006 1. 91 1.24–3.19

Intercept −2.269

H&L = 1.00 Slope = 1.00 R2 = 1.00 Brier score = 0.160

(optimism = 0.005)

OBJECTIVE—Objective

Endpoint: ICIQ3+4 >5, N = 52/148 (35%), excluded: ICIQ3+4 >5 at baseline

Baseline score 0.371 ± 0.099 <0.001 1.45 1.20–1.77

EQD2(0.8) [Gy] 0.077 ± 0.033 0.022 1.08 1.01–1.16

Intercept −7.220

H&L = 0.97 Slope = 1.11 R2 = 0.92 Brier score = 0.199

(optimism = 0.009)

The endpoints are related to frequency, amount and objective component of urinary

incontinence, as reported in ICIQ-SF.

H&L, Hosmer and Lemeshow test; ICIQ-SF, International Consultation on Incontinence

Modular Questionnaire Short Form.

with post-prostatectomy irradiation. Owing to previous surgical
injury, the urinary outcome of these patients could occasionally
be somewhat worse than those undergoing radiotherapy with
radical intent (23, 24); moreover, the growing evidence of a
beneficial dose-effect relative to the risk of biochemical relapse
(12) is gradually translating into the delivery of higher doses
than in the past. The interplay between urinary recovery after
surgery and the role of the timing of delivery of post-operative
radiotherapy on baseline PRUI also contributes to further
jeopardize the picture. Hence the necessity of a thorough analysis
based upon both accurate endpoint definition and sufficiently
large cohorts of patients treated at different dose levels in
order to separately analyze the possible independent detrimental
role of both previous surgery and dose-escalation in the post-
prostatectomy setting.

The fine tuning of ICIQ-based endpoints allowed a focus
on patients with none or only relatively mild symptoms
after prostatectomy, corresponding to the most clinically
significant subgroup, who exhibited a modulation and a
worsening of patient-reported urinary incontinence across the
24 months following post-prostatectomy radiotherapy, as shown
in Figures 1, 2. On the contrary, the mean ICIQ score of the
remaining patients who began with severe symptoms did not
increase (worsen) following post-surgical irradiation (Figure 2):
interestingly, a significant improvement was observed at 6
months after radiotherapy (p < 0.002), probably as the result

of a predominant recovery from surgical damage independent
from radiotherapy. Furthermore, the difference between the
ICIQ score distributions related to the groups with and without
symptoms according to the different endpoint definition at
baseline was always significant (p < 0.001), supporting the
hypothesis that pre-radiotherapy baseline urinary incontinence is
the strongest predictor of long-term post-prostatectomy patient-
reported UI recovery, regardless of the subsequent delivery of
adjuvant or salvage irradiation.

As baseline UI is expected to impact post-radiotherapy UI
recovery, our results are also consistent with those of van Stam
et al. (25), who observed that patients starting SRT seven months
or more after RP were more likely to recover urinary function
after irradiation (25). Both studies lend support to the growing
trend to spare as many men as possible immediate adjuvant
radiotherapy in order to permit full recovery of their post-
prostatectomy UI, also taking into account the possibility of
treating them safely with early salvage irradiation at the first sign
of a PSA rise. The first results of the multicenter, randomized
Phase III trials RADICALS, to be confirmed in a longer follow-
up, indicate no difference in terms of 5-year biochemical relapse-
free survival and freedom from salvage hormonal therapy
between patients managed with immediate ART or early SRT.
On the contrary, the incidence of 1-year patient-reported UI
worsening with respect to baseline was slightly but significantly
higher (5.3 vs. 2.7%, p = 0.008) in the cohort treated with
immediate ART (26).

The high quality data of the IHU WPRT TOX database
and the heterogeneous range of prescribed doses delivered with
both conventional and moderately hypo-fractionated regimens
allowed a thorough quantification of the dose effect. An
independent correlation between the analyzed endpoints and
EQD2 was found for FREQUENCY and OBJECTIVE, and the
best fit was achieved using α/β = 0.8Gy. These findings are
strongly suggestive of an independent detrimental effect of both
fractionation and higher doses on the risk of severe urinary
incontinence following both adjuvant or salvage radiotherapy,
consistent with the previously reported results of a large
retrospective study (22).

Interestingly, the “amount” of urine leakage showed no
relationship with the radiation doses, whereas it was found to
be slightly correlated to one personality trait, Extraversion (p =
0.089) though at univariable analysis only. The apparent lack
of dose-effect relationship for this endpoint could depend on
the weak level of “objectivity” of the answers to the ICIQ4 item
(the patient’s perception of the “amount” of urine leakage is
undoubtedly more “subjective” than that of “frequency”), as well
as, at least in part, on the relatively “mild” end-point selected
(ICIQ4 score >2 out of 6), a choice deemed necessary by the
low frequency (21%) of more severe events. Consequently, the
trend for frequency of urine loss (ICIQ3) also dominated the
objective component of PRUI (ICIQ3 + 4) at both uni- and
multivariable analyses.

The current analysis clearly highlighted that the probability
of severe mid-term (2 years) PRUI was dramatically higher
in patients with higher urinary incontinence baseline levels
even when including only patients with none/mild symptoms
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FIGURE 3 | Two-variable model of the 2-year risk of urinary incontinence according to (A) the frequency of urine loss and (B) objective endpoints: the relationship

between the dose and the ICIQ-SF score. Vertical bars represent the standard error, while horizontal bars represent the size of each tertile.

at baseline, as in the current study. As shown in Figure 3,
the 2-year risk of severe PRUI for patients with even
only mild symptoms at baseline is much higher than that
of the “completely dry” patients: when considering the
range of doses typically delivered in the post-prostatectomy
setting (65–75Gy), this risk is in the range of 25–40% and
10–20%, respectively.

As recently reported, the 3-year risk for the same/slightly
milder endpoints was around 5–10% for EQD2 (0.8) >80–85Gy
in the radical setting (3). This rate is dramatically lower than that

found in this cohort of patients treated with post-prostatectomy
radiotherapy, typically delivered at doses ≤ 75Gy, even in the
“completely dry” subset (as shown by the blue slope in Figure 3).
These results suggest that, from the point of view of urinary
incontinence, even in the case of an optimal baseline recovery
at adjuvant or salvage radiotherapy start (i.e., “completely
dry” patients) the clinical scenario is largely influenced by the
“memory” of surgical injury, which is likely to negatively affect
the repair capacity of the radiation-induced effects to the bladder
and urethra.
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FIGURE 4 | Calibration plot of the two-variable model of the 2-year risk of

urinary incontinence according to (A) the frequency of urine loss and (B) the

objective endpoints.

CONCLUSIONS

The most predictive factor of the 2-year risk of severe patient-
reported urinary incontinence for patients treated with post-
prostatectomy radiotherapy showing none to mild baseline

symptoms was found to be the baseline level of urinary
incontinence, showing that even mild incontinence symptoms
are associated to an increased risk of 2-year severe incontinence.
In addition, the frequency of urine loss was characterized by a
marked dose-effect relationship that predominantly influenced
the trend of the “objective” component (frequency + amount)
of urinary incontinence; on this issue, the patient’s perception
of the “frequency” of urine loss seemed to be more reliable
as an objective index than that of the “amount.” The
identification of α/β = 0.8Gy as the best fitting value confirmed
previously reported findings from retrospective studies (22)
and clearly highlighted the marked impact of fractionation
on the risk of late severe urinary incontinence after post-
prostatectomy radiotherapy.
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Hai Pham 2, Maria Thor 2, Abraham J. Wu 1, Martin Fleisher 3, Emily Gelb 1,

Joseph O. Deasy 2 and Andreas Rimner 1

1Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States, 2Department of

Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States, 3Department of Laboratory

Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Background: To investigate the impact of alpha-2-macroglobulin (A2M), a suspected
intrinsic radioprotectant, on radiation pneumonitis and esophagitis using multifactorial
predictive models.

Materials and Methods: Baseline A2M levels were obtained for 258 patients
prior to thoracic radiotherapy (RT). Dose-volume characteristics were extracted from
treatment plans. Spearman’s correlation (Rs) test was used to correlate clinical and
dosimetric variables with toxicities. Toxicity prediction models were built using least
absolute shrinkage and selection operator (LASSO) logistic regression on 1,000
bootstrapped datasets.

Results: Grade ≥2 esophagitis and pneumonitis developed in 61 (23.6%) and 36
(14.0%) patients, respectively. The median A2M level was 191 mg/dL (range: 94–511).
Never/former/current smoker status was 47 (18.2%)/179 (69.4%)/32 (12.4%). We found
a significant negative univariate correlation between baseline A2M levels and esophagitis
(Rs = −0.18/p = 0.003) and between A2M and smoking status (Rs = 0.13/p = 0.04).
Further significant parameters for grade ≥2 esophagitis included age (Rs = −0.32/p <

0.0001), chemotherapy use (Rs = 0.56/p < 0.0001), dose per fraction (Rs = −0.57/p
< 0.0001), total dose (Rs = 0.35/p < 0.0001), and several other dosimetric variables
with Rs > 0.5 (p < 0.0001). The only significant non-dosimetric parameter for grade
≥2 pneumonitis was sex (Rs = −0.32/p = 0.037) with higher risk for women. For
pneumonitis D15 (lung) (Rs= 0.19/p= 0.006) and D45 (heart) (Rs= 0.16/p= 0.016) had
the highest correlation. LASSO models applied on the validation data were statistically
significant and resulted in areas under the receiver operating characteristic curve of 0.84
(esophagitis) and 0.78 (pneumonitis). Multivariate predictive models did not require A2M
to reach maximum predictive power.

Conclusion: This is the first study showing a likely association of higher baseline A2M
values with lower risk of radiation esophagitis and with smoking status. However, the
baseline A2M level was not a significant risk factor for radiation pneumonitis.

Keywords: alpha-2-macroglobulin (A2M), thoracic radiation, toxicity, radioprotection, predictive modeling
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INTRODUCTION

Advances in radiation technology like intensity modulated
radiation therapy (IMRT) and image guided RT (IGRT) have
facilitated improved sparing of healthy surrounding tissues
and organs. Nonetheless, radiation pneumonitis and esophagitis
remain the most common dose-limiting toxicities in thoracic RT
(1–6). Concurrent chemoradiation significantly increases the risk
of developing pneumonitis or esophagitis compared to radiation
alone (7, 8).

The reported incidence of pneumonitis after definitive
thoracic RT ranges from 10 to 20%, although figures can
vary greatly (3, 9–13). This is partly because pneumonitis
remains a clinical diagnosis; there are no biomarkers or
radiological findings that unequivocally confirm its presence.
Medical intervention is required for patients with grade two
or higher radiation pneumonitis, and severe cases can lead
to fatal outcomes [Common Terminology Criteria for Adverse
Events (CTCAE) v4.03, Supplementary Material 1]. Significant
esophageal toxicity (grade 3–5) occurs in around 4% of patients
with sequential chemotherapy and RT and in 18–22% of
patients with concurrent chemoradiation (5, 14). Most patients
experience mild symptoms like dysphagia and odynophagia
while still undergoing radiation. Commonly opioids are used to
control symptoms, but in severe cases, tube feeding or surgical
intervention can be necessary (Supplementary Material 1).

To reduce dose-limiting toxicity in thoracic radiation, efforts
have been made to adhere to normal tissue constraints derived
from dose volume correlations with clinical toxicities (15).
However, dose volume histograms do not fully predict clinical
toxicities, as great interindividual variation remains. Intrinsic
predictors of normal tissue radiation response may explain the
variation and should be further analyzed.

Radioprotective agents, both natural and synthetic, can
present an alternative method to prevent radiation-induced
toxicity. Although this has been an active field of research for
decades, only two compounds, amifostine and palifermine, are
FDA-approved for the use in radiation therapy and neither
is commonly used in routine thoracic RT (16–19). Another
compound under investigation is alpha-2-Macroglobulin
(A2M), a postulated intrinsic radioprotector. Human A2M
is a glycoprotein and the largest non-immunoglobulin serum
protein. In animal studies, A2M has exhibited radioprotective
effects in healthy irradiated tissue. In studies with rats that
underwent full body irradiation to 6.7Gy, rats with endo-
or exogenously increased levels of A2M had a higher rate of
survival, regained their baseline body weight and lymphocyte
count faster, and displayed normal proliferative ability of the liver
tissue compared to the control groups with normal A2M levels
(20–22). Suggested key mechanisms supporting the potential
of A2M as a radioprotector include promoting expression
of antioxidant enzymes, inhibiting fibroblast activation thus
preventing fibrosis, deactivating pro-inflammatory cytokines,
and enhancing DNA and cell repair mechanisms (23). Our
previous study in a small cohort showed a correlation of A2M
with radiation pneumonitis (9). Smoking can potentially increase
A2M levels. However, literature specifically on A2M in smokers

remains rare. Some studies confirmed higher A2M levels in
smokers compared to non-smokers (24–26).

We investigated whether pre-treatment serum A2M levels are
an independent predictive variable for the development of post-
radiation toxicity in the lung and esophagus in a large cohort of
patients receiving thoracic RT.

MATERIALS AND METHODS

Patients
Clinical, laboratory, treatment and toxicity data were
systematically collected in a series of thoracic RT patients
between 2012 and 2016 during standard treatment and follow-up
procedures. Patients were treated with either conventionally
fractionated RT using 3D conformal RT (3DCRT) or intensity-
modulated RT (IMRT), or with stereotactic body RT (SBRT).
Patients with any prior thoracic RT were excluded. Serum
samples for A2M analysis were collected at baseline prior to
fraction #1 of RT. We obtained a retrospective institutional
review board waiver to analyze the data. Toxicity data consist of
radiation pneumonitis and esophagitis rates graded per CTCAE
v4.03. Data were obtained at baseline and at routine follow-up
visits every 3 months for the first 2 years.

Alpha-2-Macroglobulin
Serum samples were taken ≤30 days prior to RT start, typically
at the time of simulation. The mean and standard deviation
between A2M measurement date and RT start date were 14 and
6 days, respectively. CLIA (Clinical Laboratory Improvement
Amendments) approved A2M testing was performed at Quest
Diagnostics Nichols Institute (San Juan Capistrano, CA). A2M
levels were given in mg/dL; the normal range was defined as
100–280 mg/dL.

Treatment Plans
For patients treated before 2014, treatment plans were retrieved
from our in-house planning system (27). From 2014 onwards,
treatments were planned in the Eclipse treatment planning
system (Varian Medical Systems, Palo Alto, CA). To analyze
dosimetric data, treatment plans were imported to the research
platform CERR (Computational Environment for Radiological
Research) for computing dosimetric variables (28). Dosimetric
variables were extracted from target structures: complete
esophagus for esophagitis and “lung minus gross tumor volume
(GTV)” and heart for pneumonitis. Before that, plan doses were
converted to equivalent dose in 2Gy fractions (EQD2) with
α/β ratio of 10 for esophagus and 3 for lung minus GTV and
heart (29). As radiation esophagitis tends to develop acutely
during radiotherapy, one more set of dosimetric variables for
esophagus was extracted in addition to the planned doses. For
these fractional variables (denoted by the prefix “f,” e.g., fmax
dose) we divided the dose volume histogram (DVH) bins by the
number of treatment days between the start of RT and the end of
RT including weekends.
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Statistical Methods
Univariate and multivariate analyses were performed to
investigate associations between toxicity (esophagitis and
pneumonitis) and A2M levels, clinical, and dosimetric
variables. Patients were categorized into two groups for
each endpoint: non-toxicity (grade <2) and clinically significant
toxicity (grade ≥2).

A Wilcoxon rank-sum test was used to find a difference in
A2M expression between the two groups. Spearman’s correlation
(Rs) test was used to assess associations between endpoints, Dx
values (minimum dose to the volume with the x% hottest dose
in the organ of interest), computed from x = 5% to x = 100%
in intervals of 5%, mean dose, max dose, clinical variables, and
A2M. For this test CTCAE grades 0–5 were used instead of
dichotomized values (grade <2 and grade ≥2).

Multivariate analysis using the least absolute shrinkage and
selection operator (LASSO) logistic regression was performed
using features with p < 0.1 that resulted from the univariate
Spearman’s correlation test. To avoid variable instability due
to high collinearity, Pearson’s correlation test was conducted
among all dosimetric variables before the multivariate analysis.
A cutoff of Pearson’s correlation coefficient >0.75 was used
to determine a relatively small group of variables for further
LASSO modeling, by selecting a single variable that has the best
correlation with the endpoint among a set of correlated variables
after hierarchical clustering.

To rigorously verify model validity, the data were split
into two groups (training data with 2/3 and validation data
with 1/3 of samples). The training and validation data were
balanced with cancer subtypes and outcomes. This split was
performed separately for pneumonitis and esophagitis. The
model building process was carried out using only the training
data. Furthermore, to examine the stability of LASSO variable
selection, the model building process was conducted using a
bootstrapped dataset generated from the training data. Finally,
the validation data were tested on the resulting model, quantified
by the area under the receiver operating characteristic curve
(AUC) as a function of true positive rate (sensitivity) and false
positive rate (1-specificity). The final reported results represent
the average performance on the validation data for predictive
models built using 1,000 bootstrapped datasets.

For statistical analyses, R language (version 3.2.4), MATLAB
(version 8.6.0; MathWorks. Natick, MA) and SPSS (version 24;
IBM. Armonk, NY) were used.

RESULTS

Patient Characteristics
In total, 258 patients were eligible for analysis. Most patients
were former (n = 179, 69.4%) or current smokers (n = 32,
12.4%). One hundred and thirty-four patients (51.9%) underwent
chemotherapy in addition to RT and the median total RT dose
was 54Gy (range: 27–74Gy) for conventional fractionation and
50Gy (range: 30–70Gy) for SBRT. The median A2M level was
191mg/dL (range: 94–511mg/dL). Themedian follow-up was 8.9
months (range: 0.2–40.2; calculated from the start of RT). More
details are available in Table 1.

TABLE 1 | Patient characteristics.

Factor N %

Age [median, range] 69 (25–93) years

Sex

Male 122 47.3

Female 136 52.7

KPS [median, range] 90 (50–100) %

Subgroups

NSCLC 202 78.3

SCLC 17 6.6

Thymoma 8 3.1

Mesothelioma 25 9.7

Lung metastases (other primary) 6 2.3

Smoking history

Never 47 18.2

Former 179 69.4

Current 32 12.4

Pack-years (former/current smokers)
[median, range]

37 (1–204) years

Alpha-2-macroglobulin [median, range] 191 (94–511) mg/dL

Chemotherapy timing

Concurrent 60 23.2

Sequential 74 28.7

No chemotherapy 124 48.1

RT total dose [median, range]

Conventional RT 54 (27–74) Gy

SBRT 50 (30–70) Gy

Follow-up time (from start of RT) [median,
range]

8.9 (0.2–40.2) months

Time to toxicity [median] 1.0 months (esophagitis), 3.6 months
(pneumonitis)

Toxicities
Fifty-third patients (20.5%) experienced grade two and eight
(3.1%) grade three radiation esophagitis. No grade four or
five esophagitis was observed. Median time to development of
esophagitis was 0.85 months after the start of RT (range: 0.2–
6.47 months). Grade two radiation pneumonitis developed in 26
patients (10.1%), grade three in nine (3.5%) and grade four in one
patient (0.4%). No grade five pneumonitis was observed. Median
time to development of pneumonitis was 4.7 months after the
start of RT (range: 1.3–8.1 months).

Of the patients who developed grade≥2 esophagitis, 8 (13.1%)
were never, 43 (70.5%) former and 10 (16.4%) current smokers
whereas in pneumonitis 9 (25%) were never, 24 (66.7%) former
and 3 (8.3%) current smokers.

Univariate Analysis
Alpha-2-Macroglobulin
A significant correlation between baseline A2M values and
esophagitis was found (Rs=−0.18/p= 0.003). Using aWilcoxon
rank-sum test, we found that patients with grade <2 had
significantly higher baseline serum A2M levels than patients
with grade ≥2 esophagitis (p = 0.015) as shown in Table 2.
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No statistically significant difference was found between baseline
A2M levels and grade ≥2 pneumonitis (p= 0.84).

A trend between smoking status andA2M levels was observed.
Current smokers had higher levels (217.3 mg/dl) compared to
former (207.3 mg/dl) and never smokers (185.4 mg/dl), and
former smokers had higher levels compared to never smokers.
The A2M level had a significant correlation with a status of
former/current smoker when compared to never smokers (Rs =
0.13/p= 0.04).

Clinical Factors
Among standard clinical variables, the following variables
showed significant correlations with grade ≥2 esophagitis: age
(Rs = −0.32/p < 0.0001), fraction number (Rs = 0.64/p <

0.0001), treatment days (Rs = 0.60/p < 0.0001), chemotherapy
use (Rs = 0.56/p < 0.0001), dose per fraction (Rs = −0.57/p <

0.0001), and total dose (Rs= 0.35/p < 0.0001), whereas for grade
≥2 pneumonitis, the only significant clinical variable was sex (Rs
=−0.32/p= 0.037) with a higher risk for women.

Dosimetric Factors
Spearman’s correlation test between dosimetric variables in
esophagus and esophagitis showed that all variables had Rs >

0.60 (p < 0.0001) as shown in Figure 1A. For the fractional dose,
fD40 was the highest correlated variable (Rs = 0.58/p < 0.0001)
as shown in Figure 1B.

D15 (Rs = 0.19/p = 0.006) in lung and D45 (Rs = 0.16/p =
0.016) in heart were assessed as the highest correlated variables

TABLE 2 | Comparison of mean A2M serum levels [mg/dL] between grade <2
and ≥2 esophagitis and pneumonitis.

Toxicity Grade 0 or 1 Grade 2+ p-value

Esophagitis N 197 61 0.015

Mean A2M 208.9 190.4

Pneumonitis N 222 36 0.837

Mean A2M 204.1 207.0

P-value was calculated using Wilcoxon rank-sum test.

with pneumonitis for each organ (Figure 1C). Maximum dose in
heart was also significantly correlated with Rs= 0.14 (p= 0.043).

Multivariate Analysis and Validation Testing
Hierarchical clustering coupled with Pearson’s correlation test
using training data was performed on dosimetric variables of
each organ to measure variable similarity. Many dosimetric
variables were highly correlated (Supplementary Material 2).
Using a threshold of 0.75 in Pearson’s correlation the variable
with the highest Rs value for the endpoint among the variables
in each cluster was selected. Clinical variables with p < 0.1 in
the univariate analysis and dosimetric variables left after the
clustering test were used in the LASSO logistic regression: D25,
D40, D50, D65, D85, fD10, fD25, fD35 in esophagus, age, total
dose, and A2M for esophagitis; D10, D15, D65, D95 in lung,
D20, D45, max dose in heart and sex for pneumonitis. For both
endpoints, treatment days, SBRT (yes/no) and chemotherapy
(yes/no) were used. Two variables including dose per fraction and
number of fractions were excluded due to their high correlation
with the number of treatment days.

LASSO logistic regression models were trained using
bootstrapped datasets generated from training data and were
tested on the validation data, resulting in an average AUC
of 0.84 (standard deviation [SD] = 0.03) and 0.78 (SD =
0.06) for esophagitis and pneumonitis, respectively. Additional
modeling was performed for esophagitis without A2M resulting
in the same average AUC (0.84). This appears to be due to
more significant dosimetric and clinical variables used in the
modeling. To assess the importance of features, the frequency of
occurrence of each feature during themodel building process was
counted (Figure 2). For the esophagitis model, chemotherapy
and treatment days were most frequently selected with 770 and
758 times from 1,000 different models, respectively. It is worth
noting that A2M was selected 610 times, implying its likely
association with esophagitis. For the pneumonitis model, D65 in
lung and max dose in heart were most frequently selected with
865 and 798 times, respectively. Patients were sorted based on
predicted outcomes on the validation data and grouped into six
equal bins with one being the lowest risk group and six being
the highest risk group. When comparing observed and predicted

FIGURE 1 | Spearman’s correlation coefficients. Spearman’s correlation coefficients between radiation-induced injuries (≥ grade 2) and Dx in esophagus for (A)
esophagitis, fDx in esophagus for (B) esophagitis, and Dx in lung and heart for (C) pneumonitis.

Frontiers in Oncology | www.frontiersin.org 4 August 2020 | Volume 10 | Article 1395225

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


von Reibnitz et al. A2M as a Predictor of Thoracic Radiotherapy Toxicity

FIGURE 2 | Features in predictive models. Frequency of occurrence of each feature used in 1,000 predictive models for (A) esophagitis and (B) pneumonitis.

FIGURE 3 | Observed and predicted incidence. Comparison of observed and predicted incidence on validation data (1/3 of samples) for (A) esophagitis and (B)

pneumonitis. Numerator, number of events in each bin; Denominator, number of samples in each bin.

incidence, we found a high conformity of both endpoints,
meaning that the predictive models are highly robust (Figure 3).
Final predictive models built using all training data are shown in
Table 3. Interestingly, a variable of treatment days (between the
start of RT and the end of RT including weekends) was selected
in both models.

In addition, the frequency of occurrence of each pair of
features used in the LASSO logistic regression model was
investigated (Figure 4), which provides the information of
interaction effects of features in the predictive model.

DISCUSSION

Taking into account the multifactorial etiology of radiation
toxicity (30), it is essential to look at different predictive

factors in the development of lung and esophageal injury
after RT. Dosimetric parameters are most commonly included
in predictive models but biological and genetic determinants
are also under investigation (9, 11, 30–37). In our analysis,
we focused on dose-volume metrics, age, chemotherapy,
and other clinical variables in addition to the intrinsic
radioprotectant A2M.

As we identified in our correlative analysis, baseline serum
A2M levels appear to be influenced by patients’ smoking status.
Former and current smokers displayed higher A2M values than
patients that had never smoked. Active and former smoking
has been associated with lower rates of grade ≥3 radiation
pneumonitis compared to never smokers in patients with NSCLC
after 3DCRT or IMRT (38). The effect of smoking on the
immune system has been studied extensively. Paradoxically,

Frontiers in Oncology | www.frontiersin.org 5 August 2020 | Volume 10 | Article 1395226

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


von Reibnitz et al. A2M as a Predictor of Thoracic Radiotherapy Toxicity

smoking results in immunosuppression as well as aggravated
autoimmunity. Altered levels of inflammatory cytokines like
TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IL-10, and others have been
reported in healthy smokers (39–42). A possible explanation
for the connection between active smoking and a lower risk
for esophagitis or pneumonitis is that long-term cigarette
smoking leads to an increased immune response in the lung
and surrounding tissues due to the damage it inflicts on the
lung parenchyma. Although the mechanisms resulting in normal
tissue injury after RT are still under investigation, the release
of reactive oxygen species (ROS) as well as proinflammatory
and profibrotic cytokines is thought to have a central role
in the process (30). Higher baseline levels of acute-phase
proteins like A2M may have a protective effect on the irradiated
tissue by binding proinflammatory and profibrotic cytokines,

TABLE 3 | Final predictive models for esophagitis and pneumonitis.

Variable Coefficient STD Odds ratio 95% CI

Esophagitis model

D25 0.012 0.026 1.012 0.962 1.064

D40 0.036 0.022 1.037 0.993 1.083

Treatment days 0.048 0.026 1.049 0.997 1.105

Constant −3.880 0.725 0.021 0.005 0.086

Pneumonitis model

D65 in lung 0.252 0.146 1.286 0.967 1.711

Max dose in heart 0.015 0.008 1.015 0.999 1.032

Treatment days 0.024 0.020 1.024 0.986 1.064

Constant −3.824 0.793 0.022 0.005 0.103

CI, confidence interval; STD, standard deviation.

thus reducing the acute cytokine toxicity, and inducing an
upregulation of antioxidant enzymes like manganese superoxide
dismutase (MnSOD) (23, 30).

Our study suggests that there may be an association
between natural pre-treatment baseline levels of the intrinsic
radioprotectant serum A2M in patients with thoracic
malignancies and an increased risk of developing radiation
esophagitis. This association reached univariate statistical
significance for esophagitis, but not for the pneumonitis
endpoint. This finding indicates that higher levels of A2M may
have a protective effect in patients undergoing thoracic RT. The
high selection frequency of A2M in the model building process
confirms our primary univariate analyses implying a likely
correlation of A2M levels with esophagitis rates. Factors that
have repeatedly shown significant correlation with esophagitis
include V40–V60 (6, 43–46) (Vx: percentage volume receiving at
least x Gy), mean esophageal dose (47–49), as well as sequential
and especially concurrent chemoradiation in comparison to RT
alone (5, 6, 50–53).

For pneumonitis, we validated the correlation with radiation
dose received by the heart. Different lung dose volumes (V5–
V40 and mean dose in lung) have been found to predict the
development of pneumonitis (7, 10, 54). In addition, the dose
received by the heart during thoracic radiation seems to be an
accurate predictor (55, 56). The best fitting predictive model
reported by Huang et al. included D10 (heart), D35 (lung) and
max dose (lung), and had an AUC of 0.72 (55). Although the
ideal dosimetric variable(s) for predicting pneumonitis across
all patient subgroups may not yet be known, it is evident that
heart doses are an essential part of any model built for this
cause. Though we could not confirm the impact of A2M on
pneumonitis with our data, a correlation between them has been
previously described (9, 56). We may have been limited by the

FIGURE 4 | Pairs of features in predictive models. Frequency of occurrence of a pair of features (divided by 1,000) used in 1,000 predictive models for (A) esophagitis
and (B) pneumonitis.
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lower incidence of grade ≥2 pneumonitis (14.0%) and the low
rate of current smokers in our patient cohort. In the previously
published study on A2M and pneumonitis, pneumonitis rates
were between 19 and 35%. The variable of sex was found to
be correlated with pneumonitis in univariate analysis and had
the third-highest frequency in 1,000 model runs (Figure 2B),
consistent with another study (57). However, its role as a risk
factor for pneumonitis is controversial (58).

While all patients had A2M collected within 30 days prior to
the start of RT and toxicity data were systematically prospectively
graded per our clinical standard, caution is warranted regarding
the interpretation of these results. In particular, including a factor
like chemotherapy in predictive models should be considered
carefully as different regimens, doses and timings, depending on
the patient population, make it a very heterogeneous variable.
Similarly, the patient cohort we studied was diverse regarding
diagnosis and treatment. Although requirements for eligibility
included no prior RT, patients underwent different modes of
RT (3DCRT/SBRT/IMRT) which may have an impact on the
toxicity profile. Furthermore, smoking status as a variable was not
evenly distributed. Given its proposed link to serum A2M levels,
this could be a cause for certain discrepancies in our results.
A2M levels in humans reported in previous studies range on
average between 100 and 450 mg/dL with a mean of around 215
mg/dL. Age and gender are known to influence this value with
females generally showing around 20% higher levels than same-
aged males (59, 60). Given the lack of data thus far concerning
other factors that may influence intrinsic A2M levels, further
analyses with serum levels recorded immediately prior to and
while receiving RT are necessary.

In summary, the analysis of our institutional dataset
has produced predictive models for both esophagitis and
pneumonitis. Although the addition of A2M did not increase
the predictive power of multivariate predictive models,
this is the first report on the possible association of higher

levels of A2M with a lower risk of radiation esophagitis
and with smoking, warranting further investigation and
independent validation.
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Background: After stereotactic body radiation therapy (SBRT) for medically inoperable
stage I non-small-cell lung cancer (NSCLC), more patients die of comorbidities,
particularly severe pulmonary insufficiency, than of tumor progression. The aim of this
study was to evaluate correlation between lung biologically effective dose (BED) with an
α/β ratio of 3 Gy (BED3) and overall survival (OS) for these patients.

Methods: From 2012 to 2017, we have developed a prospectively updated institutional
database for all first 100 consecutively treated patients with inoperable Stage 1
(T1T2N0M0) NSCLC. All SBRT were conducted on a Novalis Tx R© LINAC with two
coplanar dynamic conformal arcs (84%) or with coplanar volumetric modulated arc
therapy (VMAT) (16%). Mean GTV and PTV were 8.6 cc and 50.8 cc, respectively. The
marginal dose prescribed to the PTV was the 80% isodose line (IDL), i.e., 54 Gy in 3
fractions for 76 patients (BED10 = 126 Gy) and 50 Gy in 5 fractions for 24 patients
(BED10 = 83.3 Gy). Pulmonary heterogeneity has been taken into account by using
Monte Carlo or AAA algorithms. Median follow-up was 25 months.

Results: At 1, 2, 3 and 5 years, local control (LC) was respectively 100, 98.2, 98.2,
and 77.7%, and OS was respectively 83, 71.2, 58.1, and 33.2% (median OS was
49 months). Significant OS prognostic factors in univariate and multivariate analysis
were mean lung BED3 (HR = 1.14, p = 0.01) and PTV volume (HR = 1.01, p = 0.004).
A mean lung BED3 ≤ 5 Gy was significantly associated with a doubling of median OS
from 29 months to more than 60 months (not achieved, p = 0.0068). For patients with
a forced expiratory volume in 1 second (FEV1) ≤ 40%, a mean lung BED3 ≤ 4 Gy was
significantly associated with a doubling of median OS from 23 to 46 months (p = 0.019).

Conclusion: Mean lung BED3 is strongly and significantly associated with OS in SBRT
for inoperable Stage I NSCLC. For all treated patients, a mean lung BED3 ≤ 5 Gy lead
to a doubling of median OS. This threshold value should be reduced to 4 Gy for patients
with FEV1 ≤ 40%.

Keywords: lung, stereotactic radiotherapy, prognostic factor, mean lung dose, toxicity
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HIGHLIGHTS

- Grade 5 radiation pneumonitis after lung SBRT is probably
under-evaluated because of poor baseline pulmonary function
of treated patients.

- Mean lung BED3 is a strong and significant prognostic factor
of overall survival after lung SBRT.

- Mean lung BED3 ≤ 5 Gy (i.e., 3.6 Gy in 3 fractions or
4.3 Gy in 5 fractions) is significantly associated with higher
overall survival after lung SBRT with a doubling in median
overall survival.

- For patients with poor baseline pulmonary function (FEV1 or
DLCO ≤ 40%), this threshold should be reduced to 4 Gy (i.e.,
3 Gy in 3 fractions or 3.5 Gy in 5 fractions).

INTRODUCTION

Stereotactic body radiation therapy (SBRT) is the standard
treatment for medically inoperable stage I non-small-cell lung
cancer (NSCLC) (1). Generally, overall survival (OS) for these
patients in prospective studies is around 81–100, 65–70, 39–68,
and 30–65%, respectively at 1, 2, 3 and 5 years. Local control (LC)
is high, around 86–100 and 79–85%, respectively at 3 and 5 years
(1–3). It is widely agreed that more NSCLC patients treated with
SBRT die of comorbidities than of tumor progression. Significant
prognostic factors are age (4), gender (5), performance status
(4, 6), histologic type (4), tumor volume (5–7), pretreatment
maximum standardized uptake value (SUVmax) (6, 8, 9), platelet-
to-lymphocyte ratio (8, 10), pretreatment immune parameters
(neutrophil-to-lymphocyte ratio, neutrophil and lymphocyte
counts) (10) and prescribed dose (11). The role of lung dosimetric
parameters as prognostic factors remains unknown. After lung
SBRT, many patients died from severe pulmonary insufficiency
attributed to their previous medical history [OS at 5 years is
30–65% after SBRT vs. 60–80% after surgery (12)], which makes
severe radiation-induced pneumonitis (RP) difficult to interpret
(2, 13).

RP is the most frequent complication after lung SBRT (14).
Clinically symptomatic RP seems to develop mostly in 10–20%
of patients (range: 0–49% among published studies) with most
patients having asymptomatic Grade 1 pneumonitis (2, 15–17).

Abbreviations: 18F-FDG PET, 18-F FluoroDeoxyGlucose Positron Emission
Tomography; BED, biologically effective dose; CBCT, cone beam CT; CI,
conformality index, ratio of 80% prescription isodose volume to the PTV; CT,
computed tomography; CTV, clinical target volume; D2cm, maximum dose 2 cm
from the PTV in any direction; DCA, dynamic conformal arcs; DLCO, diffusing
lung capacity for carbon monoxide; FEV1, forced expiratory volume in 1 second;
GTV, gross tumor volume; Gy, Gray; ITV, internal target volume; LC, local control;
LINAC, LINear ACcelator; MLD, mean lung dose; MRI, magnetic resonance
imaging; NCI-CTCAE, National Cancer Institute’s Common Toxicity Criteria for
Adverse Events; NSCLC, non-small-cell lung cancer; NYHA, New York Heart
Association; OS, overall survival; PFS, progression-free survival; PS, performance
status; PTV, planning target volume; R50, ratio of 50% prescription isodose volume
to the PTV; RECIST, Response Evaluation Criteria in Solid Tumors; ROC, receiver
operating characteristics; RP, radiation-induced pneumonitis; RTOG, Radiation
Therapy Oncology Group; SBRT, stereotactic body radiation therapy; SUVmax,
maximum standardized uptake value; TPS, treatment planning systems; VMAT,
volumetric modulated arc therapy.

Pre-treatment pulmonary function tests have not been shown
to be predictive for RP. Therefore, patients with NSCLC
with a poor baseline pulmonary function are not excluded
from treatment with SBRT (18). Mean lung dose (MLD)
seems to be a strong and reproducible dosimetric parameter
of RP, with a significant cut-off at 4–4.7 Gy in three
fractions, and is often correlated to the volume of PTV
(15, 17, 19–21). Many factors may have confounded the
reported MLD because of inadequate heterogeneity correction
algorithms, various dose prescriptions and fractionations and
probably a lack of lung volume definitions (whole or ipsilateral
lung volume minus GTV or PTV) (17, 22, 23). In this
way, the biologically effective dose (BED) determined with
adequate heterogeneity correction algorithms may be used
for estimating toxicity probabilities. For high fraction doses,
the linear-quadratic model with an α/β ratio of 3 Gy is
the best method for converting the physical lung dose to
predict RP (24).

Our study aimed to evaluate the correlation between lung
BED3 and OS in a prospectively updated institutional cohort
of 100 consecutively treated patients with stage I NSCLC.
The secondary objective was to study the impact of lung
dosimetric parameters in a population with a poor baseline
pulmonary function.

PATIENTS AND METHODS

Patients’ Selection and Characteristics
From October 2012 to August 2017, we have developed a
prospectively updated institutional database for all patients
consecutively treated with SBRT for inoperable Stage 1
(T1T2N0M0) NSCLC in our institution. This database has
been approved by our local ethics committee and a regional
ethics committee (CECIC Rhône-Alpes-Auvergne, Grenoble,
IRB 5921), and developed according to the French law
regulating clinical research (Loi Huriet). Thus, our study is
an observational cohort study from all first 100 patients
recorded in this prospectively updated institutional database.
All treated patients fulfilled inclusion criteria of those first
described by Timmerman et al. in the analysis of RTOG
0236 (25): performance status (PS) ≤ 2, age ≥ 18 years,
stages T1T2N0M0, peripherally located NSCLC at least 2 cm
from the proximal bronchial tree, and medical inoperability
(baseline forced expiratory volume in one second (FEV1) ≤ 40%,
predictive postoperative FEV1 ≤ 30%, diffusing capacity for
carbon monoxide (DLCO) ≤ 40%, severe cerebral, pulmonary or
cardiovascular disease or patient refusal).

All patients were required to have a complete imaging
screening performed less than 1 month prior to lung SBRT: a
high-resolution contrast-enhanced lung computed tomography
(CT), a 18F-fluorodeoxyglucose positron emission tomography
(18F-FDG PET) and a cerebral magnetic resonance imaging
(MRI) to exclude regional or distant metastases. A flexible
bronchoscopy was needed to exclude an endobronchial
location or infectious disease such as lung tuberculosis.
A cytologically or histologically proven NSCLC was strongly
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recommended but not mandatory in case of contraindications.
If this proof was not obtained, a tumor growth observed
with an interval at least 3 months between two CT or a
maximum standardized uptake value (SUVmax) in 18F-
FDG PET above 2.5–3 was necessary to include patients.
Exclusion criteria were small-cell lung cancer, mediastinal
location and no meeting of normal tissue dose constraints.
Pre-treatment pulmonary function tests were performed
for all patients.

All pre-treatment characteristics of the 100 included patients
are reported in Table 1. Most patients were elderly [median
age = 70 years (range: 47–90)] and male (79%) with a
good general status (93% PS ≤ 1) and no history of
lung surgery (78%) or radiotherapy (93%), but with poor
baseline pulmonary function [57% NYHA (New York Heart
Association) class ≥ 2 dyspnea, median FEV1 was 62%
(20–100%) and median DLCO was 48% (8–100%)]. Fifty-
six percent of patients had no histologically or cytologically
proven NSCLC. Mean GTV was 8.6 cc (0.2–61.5 cc), i.e., about
2 cm in diameter.

SBRT Specifications
The gross tumor volume (GTV) was contoured on 2.5-mm-
thick lung CT windows. Intrafraction tumor motion due to
breathing was limited by an abdominal compression and
taken into account by creating an internal target volume
(ITV) obtained with a four-dimensional (4D) CT scan
at the time of CT simulation. An additional margin of
8 mm for adenocarcinoma and 6 mm for other histologic
types was added for microscopic tumor extension to create
the clinical target volume (CTV) (26, 27). Finally, the
planning target volume (PTV) was obtained with a uniform
3 mm CTV expansion, according to our defined geometric
stereotactic conditions.

All SBRT treatment characteristics are reported in Table 1.
The isocenter prescription dose was 67.5 Gy in 3 fractions
and reduced to 62.5 Gy in 5 fractions for central lung tumors
to meet normal tissue dose contraints. The marginal isodose
line prescribed to the edge of PTV was the 80% isodose:
respectively, 54 Gy in 3 fractions and 50 Gy in 5 fractions
(BED10 = 126 Gy and 83.3 Gy). Each fraction was separated by
at least 40 h (25).

All treatments used 6-MV photons. Dose distributions were
performed with two coplanar dynamic conformal arcs (DCA)
in 84% of cases and with volumetric modulated arc therapy
(VMAT) in 16%. Treatment planning systems (TPS) were
Iplan R© v4.1 (Brainlab, Feldkirchen, Germany) for DCA plans
and Eclipse R© v13.5 (Varian Medical Systems, Palo Alto, CA,
United States) for VMAT plans. Pulmonary heterogeneity has
been taken into account by using the Monte Carlo algorithm
for DCA plans and the AAA algorithm for VMAT plans.
Target coverage was adequate when at least 95% of the PTV
was covered by 80% of the prescribed isodose. Treatment
quality was verified by calculating the conformality index
(CI) (a ratio of 80% prescription isodose volume to the
PTV), a ratio of 50% prescription isodose volume to the
PTV (R50) and the maximum dose 2 cm from the PTV

TABLE 1 | Patients and SBRT characteristics.

Characteristics Number

Patients’ characteristics

Total 100 (100%)

Gender

Female 21 (21%)

Male 79 (79%)

Age (years)

Mean 71 (47.1−90.4)

Performance status

0 54 (54%)

1 39 (39%)

2 7 (7%)

≥3 0 (0%)

Medical history

Surgery

Pneumonectomy 4 (4%)

Lobectomy 18 (18%)

None 78 (78%)

Lung radiotherapy

Yes 7 (7%)

No 93 (93%)

Pre-treatment dyspnea (NYHA)

0 18 (18%)

1 25 (25%)

2 18 (18%)

3 30 (30%)

4 9 (9%)

Pre-treatment pulmonary function

FEV1(%)

Mean 64.1 (20−100)

DLCO (%)

Mean 49.2 (8.0−100)

Characteristics of pulmonary nodules

Histological/cytological proof

None 56 (56%)

Adenocarcinoma 32 (32%)

Squamous cell carcinoma 9 (9%)

Undifferentiated carcinoma 1 (1%)

Neuroendocrine carcinoma 2 (2%)

RTOG localization

Central 7 (7%)

Peripheral 93 (93%)

Pulmonary localization

Right upper lobe 36 (36%)

Right middle lobe 5 (5%)

Right lower lobe 14 (14%)

Left upper lobe 31 (31%)

Left lower lobe 14 (14%)

Pre-treatment SUVmax

Mean 7.5 (1.2−19.5)

Tumor volume

Longest diameter (mm)

Mean 23.4 (7.8−53.9)

(Continued)
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TABLE 1 | Continued

Characteristics Number

GTV (cc)

Mean 8.6 (0.2−61.5)

PTV (cc)

Mean 50.8 (3.8−223.1)

SBRT characteristics

Technique

DCA 84 (84%)

VMAT 16 (16%)

Fractionation

3 76 (76%)

5 24 (24%)

Overall treatment time (days)

Mean 8 (4−35)

Isocenter prescribed BED10 (Gy)

Mean 196 (100−219)

Received PTV BED10 (Gy)

Dmax 198 (87−252)

D2 % 194 (87−246)

D98 % 137 (111−165)

Dmin 110 (27−166)

80% prescription isodose volume (%) 79 (39.8−100)

Treatment quality

Conformality index (CI) 1.19 (1.0−1.64)

R50 1.8 (0.46−5.72)

D2cm (Gy) 36.6 (22.7−57.5)

Follow-up (months)

Mean 27 (0.6−64)

Median 25 (0.6−64)

NHYA: New York Heart Association, SUVmax: maximum Standardized Uptake
Value, FEV1: Forced Expiratory Volume in 1 second, DLCO: Diffusing Lung capacity
for Carbon Monoxide, DCA: Dynamic Conformal Arcs, VMAT: volumetric modulated
arc therapy, BED10 = biologically effective dose with an α/β ratio of 10 Gy,
Conformality Index (CI): ratio of 80% prescription isodose volume to the PTV, R50:
ratio of 50% prescription isodose volume to the PTV, D2cm: maximum dose 2 cm
from the PTV in any direction.

in any direction (D2cm), as seen in Table 1 (28). Lung
SBRT was performed using a Novalis Tx R© (Varian Medical
Systems, Palo Alto, CA, United States) linear accelator (LINAC)
with an integrated Exactrac X-ray 6D system R© (Brainlab
AG, Feldkirchen, Germany). This system enabled a pre-
treatment positioning which was then adjusted daily with a
Cone Beam CT (CBCT).

Follow-Up
Follow-up included prospective clinical examination and CT
scans every 3 months during the first two years post-SBRT
and every 6 months afterward. Follow-up PET scans were
required only in cases of progressive soft tissue abnormalities
observed on CT. Efficacy was assessed with the Response
Evaluation Criteria in Solid Tumors (RECIST) (29). A complete
response was defined as the disappearance of the target
lesion, a partial response as a decrease of at least 30% of
the tumor’s longest diameter and a progressive disease as an
increase of at least 20% of the longest diameter. LC was

defined as the absence of local failure. Local failure was
characterized as the combination of a RECIST progressive
disease and evidence of tumor viability as shown by biopsy or
SUVmax in 18F-FDG PET above the pre-treatment SUVmax or
above a value of 5 (30). Progression-free survival (PFS) was
defined as the period of time from the end of SBRT to the
date of local-regional failure, disseminated (visceral or lymph-
node) recurrence or the patient’s death. OS was defined as
the time between the end of SBRT and the patient’s death.
Toxicity was evaluated with the National Cancer Institute’s
Common Toxicity Criteria for Adverse Events version 4.0 (NCI-
CTCAE).

Mean and median follow-up were respectively 27 and
25 months (range: 0.6–64). Only one patient was lost to follow-up
after 10 months (Table 1).

Statistical Analysis
No patient included in the prospectively updated institutional
database of all first 100 patients consecutively treated with
SBRT in our institution was excluded from the study or
from the statistical analysis (Figure 1). LC, PFS, and OS
were calculated using the Kaplan–Meier method. The Cox
proportional hazards model was performed to identify predictive
factors of LC and prognostic factors of PFS and OS. A two-
sided p-value < 0.05 was considered significant. The following
factors were included in the univariate analysis for LC:
histological type, pre-treatment SUVmax, conformality index,
R50, GTV, PTV, an 80% prescription isodose volume (%),
and maximum and minimum PTV BED10 (Dmax, D98 %,
D2 %, Dmin). Concerning PFS and OS, the following factors
were included in the univariate analysis in addition to
the previously studied LC predictive factors: gender, age,
performance status, history of lung surgery, pre-treatment
FEV1, pre-treatment DLCO, baseline pulmonary function, and
mean lung BED3 (whole lungs, ipsilateral lung, whole lungs
minus PTV, ipsilateral lung minus PTV), The Benjamini–
Hochberg method was used to adjust p-values to limit
false positives, considering the large number of tests. The
Spearman correlation enabled the identification of strongly
correlated factors between them that were not included in the
multivariate analysis (Spearman’s rank correlation coefficient
of 0.75). Factors associated with a p-value < 0.25 in the
univariate analysis were included in the multivariate analysis
if they were also selected by the LASSO method. The
Wald test and the Likelihood ratio test were performed
to calculate and verify the p-value for each coefficient in
multivariate analyses.

Linear correlation between OS and significant prognostic
factors was then verified with a Pearson or Spearman correlation
coefficient, depending on the cases, especially for patients
with a poor pre-treatment pulmonary function (i.e., FEV1 or
DLCO ≤ 40%). For each significant linear correlation observed, a
ROC (Receiver Operating Characteristics) curve was performed
to identify the best threshold. Finally, comparisons of OS
curves with obtained thresholds were conducted using the log-
rank test.
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FIGURE 1 | Flowchart of the patient enrollment process of study cohort.

RESULTS

Local Control and Progression-Free
Survival
Local control at 1, 2, 3, and 5 years was respectively 100, 98.2,
98.2, and 77.7% (Figure 2). Three local failures were observed.
No statistically significant predictive factor of LC was found
(Table 2). PFS at 1, 2, 3, and 5 years was respectively 80, 55.1,
43.7, and 19.7% (Figure 2). Median PFS was 28 months (CI95%:
22–51 months). PFS after lung SBRT was significantly correlated
to tumor volume (GTV) in univariate analysis (HR = 1.065,
95%CI = 1.040–1.091, p < 0.001) and in multivariate analysis
(HR = 1.060, 95%CI = 1.033–1.087, p < 0.001), as shown in
Table 2. There was a strong trend for significance when we

studied mean ipsilateral lung BED3 (p-value of 0.063; HR = 2.035,
95%CI = 1.000–1.072).

Overall Survival
Overall survival at 1, 2, 3, and 5 years was respectively 83,
71.2, 58.1, and 33.2% (Figure 2). Median OS was 49 months. In
univariate analysis, significant prognostic factors of OS were GTV
(HR = 1.074, 95%CI = 1.047–1.102, p< 0.001), PTV (HR = 1.016,
95%CI = 1.010–1.022,p < 0.001), mean lung BED3 (HR = 1.125,
95%CI = 1.033–1.225, p = 0.04), mean ipsilateral lung BED3
(HR = 1.060, 95%CI = 1.020–1.103, p = 0.04) and mean ipsilateral
lung minus PTV BED3 (HR = 1.087, 95%CI = 1.023–1.156,
p = 0.04). Prognostic factors of OS that remained significant
in multivariate analysis were mean lung BED3 (HR = 1.14,
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FIGURE 2 | Probability of local control (A), probability of progression-free survival (B) and probability of overall survival (C) for the 100 patients receiving lung SBRT
for Stage I NSCLC.
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TABLE 2 | Results of univariate and multivariate analyses for local control, progression-free survival, overall survival and radiation pneumonitis incidence.

Univariate analysis (LR p BH) Multivariate analysis (W p)

LC PFS OS RP LC PFS OS RP

Histological type 0.92 0.21 0.18 – – – 0.38 –

Pre-treatment SUVmax 0.92 0.96 0.79 – – – – –

Conformality index 0.92 0.21 0.32 – – – – –

R50 0.92 0.95 0.85 – – – – –

GTV 0.92 <0.001 <0.001 0.91 – – – –

PTV 0.92 0.003 <0.001 0.89 – <0.001 0.004 –

80% prescription isodose volume 0.92 0.21 0.14 – – – – –

PTV BED10

Dmax 0.92 0.51 0.66 – – – – –

D2% 0.92 0.56 0.66 – – – – –

D98% 0.92 0.80 0.79 – – – – –

Dmin 0.92 0.80 0.79 – – – – –

Gender – 0.86 0.84 – – – – –

Age – 0.96 0.46 0.10 – – – 0.45

Performans status – 0.56 0.38 – – – – –

Past medical history of

Lung surgery – 0.95 0.79 – – – – –

Lung radiotherapy – 0.80 0.66 – – – – –

Pre-treatment

FEV1 – 0.80 0.58 <0.001 – – – 0.003

DLCO – 0.49 0.18 <0.001 – – 0.07 0.015

Level of dyspnea (NYHA) – 0.80 0.65 – – – – –

Mean lung BED3

Whole lungs – 0.32 0.04 0.09 – – 0.01 –

Ipsilateral lung – 0.23 0.04 0.04 – – – –

Whole lungs minus PTV – 0.32 0.14 0.02 – – – 0.29

Ipsilateral lung minus PTV – 0.31 0.04 0.03 – – – –

LR p BH: p-value with Likelihood ratio adjusted by Benjamini–Hochberg method, W p: p-value with Wald test, SUVmax: maximum standardized uptake value, R50: ratio
of 50% prescription isodose volume to the PTV, BEDx = biologically effective dose with an α/β ratio of × Gy, FEV1: forced expiratory volume in 1 second, DLCO: diffusing
lung capacity for carbon monoxide, NHYA: New York Heart Association. Bold values are those that are statistically significant.

CI95% = 1.03–1.25, p = 0.01) and PTV (HR = 1.01, CI95% = 1.0–
1.02, p = 0.004), as shown in Table 2. Subgroup analysis has
been done to study the prognostic role of mean lung BED3
in OS. Concerning subgroup analysis of FEV1, mean lung
BED3 remained significantly correlated to OS in multivariate
analysis whether for patients with FEV1 ≤ 40% (HR = 1.55,
95%CI = 1.12–2.14, p = 0.008) or with FEV1 > 40% (HR = 1.14,
95%CI = 1.02–1.28, p = 0.021). Concerning subgroup analysis of
GTV, mean lung BED3 remained significantly correlated to OS in
multivariate analysis for patients with GTV < mean GTV, i.e.,
8.6 cc (HR = 1.34, 95%CI = 1.06–1.69, p = 0.015) but not for
patients with GTV ≥ mean GTV (HR = 1.02, 95%CI = 0.88–1.18,
p = 0.78).

Concerning subgroup analysis for frailty patients with poor
baseline pulmonary function, significant negative correlations
were observed between OS and mean lung BED3 in cases of
FEV1 ≤ 40% (r = −0.6, p = 0.005) and DLCO ≤ 40% (r = −0.36,
p = 0.033) (Figure 3). The best prognostic mean lung BED3
threshold identified on the ROC curve in terms of sensitivity and
specificity for OS was 5 Gy for the entire population (i.e., 3.6 Gy
in 3 fractions or 4.3 Gy in 5 fractions) and reduced to 4 Gy for

patients with FEV1 ≤ 40% (i.e., 3 Gy in 3 fractions or 3.5 Gy
in 5 fractions). Concerning all the 100 treated patients, a mean
lung BED3 ≤ 5 Gy was significantly associated with a higher OS
(p = 0.0068) with a doubling of median OS from 29 months to
more than 60 months (not achieved). OS at 1, 2, 3, 4, and 5 years
was respectively 89.1, 78.8, 71.8, 65.2, and 58% for a mean lung
BED3 ≤ 5 Gy rather than 75.6, 61.8, 42, 36, and 19.2% for a
mean lung BED3 > 5 Gy (Figure 4). Similarly, in patients with
poor baseline pulmonary function (i.e., FEV1 ≤ 40%), a mean
lung BED3 ≤ 4 Gy was significantly associated with a higher OS
(p = 0.019) with a doubling of median OS from 23 months to
46 months. OS at 1, 2 and 3 years was respectively 90, 90, and
67.5% for a mean lung BED3 ≤ 4 Gy rather than 70, 46.7, and
23.3% for a mean lung BED3 > 4 Gy (Figure 3).

Clinical Follow-Up and Toxicities
At the end of follow up, lung SBRT led to 31% Grade ≤ 2
clinically symptomatic radiation pneumonitis (RP), 14% G1 chest
wall pain, 7% transient G ≤ 2 radiation dermatitis (4 G1 and 3
G2), 4% rib fractures after a mean period of 28 months (range:
12–45), and 14% G1 chest wall pain. At least 22 patients (22%)
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FIGURE 3 | Correlation between OS and mean lung BED3 for patients with
FEV1 < 40% (r = –0.6, p = 0.005) (A) and with DLCO < 40% (r = –0.36,
p = 0.033) (B). The solid line shows correlation independently of the censored
or dead patients.

died from severe pulmonary insufficiency. Significant predictive
factors of clinically symptomatic G ≥ 1 RP were in univariate
analysis FEV1 (OR = 0.630, 95%CI = 0.550–0.780, p < 0.001),
DLCO (OR = 0.750, 95%CI = 0.660–0.859, p < 0.001) and
mean ipsilateral lung BED3 (OR = 0.956, 95%CI = 0.923–
0.999, p = 0.043). There was a trend towards mean lung BED3
(OR = 0.986, 95%CI = 0.998–0.967, p = 0.086). In multivariate
analysis, FEV1 (OR = 0.929, 95%CI = 0.878–0.971, p = 0.003) and
DLCO (OR = 0.939, 95%CI = 0.886–0.984, p = 0.015) remained
significant (Table 2). No significant predictive factor of radiation
dermatitis, rib fractures or chest wall pain was found. No other
toxicity was observed.

DISCUSSION

To date, the present study is the first to demonstrate a significant
correlation between OS and MLD after Stage I NSCLC SBRT.
Moreover, this finding leads us to propose reducing published

lung constraints with thresholds of 5 and 4 Gy in mean lung BED3
respectively for patients with FEV1> 40% and FEV1 ≤ 40%.

Our lung SBRT characteristics are in agreement with
international guidelines about Stage I NSCLC, especially with
Timmerman et al. in the analysis of RTOG 0236 (25). Marginal
prescribed dose to the edge of PTV was 54 Gy in three
fractions if it met dose constraints. Concerning target volume
delineation, we no longer create a CTV since it is not
recommended (31). When we started to treat patients in 2012,
guidelines were less clear and CTV creation was debated
(26). In our study, LC and OS were respectively over 95%
and about 60% at the three-year point, which is consistent
with previously published studies (1–3, 25). No significant
predictive factor of LC was found, probably because only
three local failures were observed and adequate BED10 was
prescribed to the tumor.

Likewise, this study found toxicity in the same proportions as
previous reports: 31% clinically symptomatic RP [about 10–20%
of patients in literature (range: 0–49% among published studies)]
with most patients having asymptomatic Grade 1 pneumonitis
(2, 15–17), 14% G1 chest wall pain [10–40% in literature (32)],
7% transient G ≤ 2 radiation dermatitis [12–38% in literature
(33)], and 4% rib fractures [0–23% in literature (34)] without
other toxicity. No significant predictive factor of chest wall pain,
radiation dermatitis or rib fractures was found, probably due to
meeting dose constraints (35). Significant predictive factors of RP
reported in our study are in agreement with published studies
concerning MLD, which is frequently mentioned (15, 17, 19–
21). In contrast, baseline pulmonary function (FEV1 and DLCO)
was strongly and significantly correlated to RP in univariate
and multivariate analyses (18). Thus, the results reported in the
present study are demonstrated to be reproducible and may be
applied to other studies. As compared to normo-fractionated
radiotherapy, MLD corresponds to the most used parameter in
predictive risk models pulmonary toxicity due to its simplicity
and effectiveness (36, 37). Dose constraint for MLD is often ≤ 15–
20, i.e., mean lung BED3 ≤ 16–21 Gy (38, 39). Estimated risk of
symptomatic RP is 5, 10, 20, 30, and 40% for thresholds of 7, 13,
20, 24, and 27 Gy in MLD, i.e., thresholds of 7, 13, 21, 27, and
30 Gy in mean lung BED3 (39).

Radiation pneumonitis is a known important dose-limiting
factor in lung cancer radiation therapy. RP is categorized into
two interdependent stages: acute RP and late RP (a chronic
injury stage known as pulmonary fibrosis) which can theoretically
be fatal, especially if pulmonary function is already impaired.
The summarized sequence of classic RP is as follows: cellular
injury leads to cytokine release, cytokine recruitment of the
inflammatory infiltrate causes acute pneumonitis, and the body’s
attempt to repair the injury results in pulmonary fibrosis (13).
It is accepted that recognition of sporadic RP can be particularly
difficult for clinicians because it is rare (≈ 10%) and patients often
present with severe dyspnea and/or “out-of-field” radiographic
findings that may raise the possibility of other disease process
(13). So we can think that RP are probably underestimated in
published studies, and especially their exact relationship with the
death of patients. This might be one of the explanations of why
MLD was a significant prognostic factor of OS in our study.
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FIGURE 4 | Comparison of overall survival curves of all 100 Stage I NSCLC treated patients between those receiving a mean lung BED3 ≤ 5 Gy and those > 5 Gy
(A), comparison of overall survival curves of all Stage I NSCLC treated patients with FEV1 ≤ 40% between those receiving a mean lung BED3 ≤ 4 Gy and
those > 4 Gy (B).

Limitations of the study were in link with the difficulty
to recognize RP particularly in patients with a poor baseline
pulmonary function and frequent flares of acute pulmonary
insufficiency. It was very difficult to know from what patients
were dying and the cause of their pulmonary insufficiency:
natural and classic outcome of their comorbidities or especially
related to RP? Other limitations were that study was mono
institutional and not multicentric, only 100 patients were
included which could have led to a lack of power for statistical
analyses and data were retrospectively analyzed even if they were
prospectively updated. Statistical analysis was robust and there

was only one patient lost to follow-up after a period of 10 months
after SBRT. Pulmonary heterogeneity, which may be a reason for
false interpretation, has been taken into account by using the
Monte Carlo algorithm for DCA plans and the AAA algorithm
for VMAT plans. Various dose prescriptions and fractionations
have been studied with the linear-quadratic model with an α/β
ratio of 3 Gy which was the best method for converting the
physical lung dose to predict RP (24).

Concerning PFS, PFS after lung SBRT was significantly
correlated to tumor volume (GTV) in univariate and in
multivariate analysis. We did not find mean lung BED3 as a
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significant prognostic factor of PFS in univariate analysis. One of
the explanations might be a lack of power of our study because the
lower threshold value of the 95%CI was very close to 1 (0.988).
Interestingly, there was therefore a strong trend for significance
when we studied mean ipsilateral lung BED3 (p-value of 0.063;
HR = 2.035, 95%CI = 1.000–1.072).

Concerning OS, it is widely agreed that more patients die of
comorbidities than of tumor progression since LC is excellent,
over 95% at three years. Therefore, significant published
prognostic factors to date mostly relate to comorbidities [age
(4), gender (5), performance status (4, 6), platelet-to-lymphocyte
ratio (8, 10), and pretreatment immune parameters (10)] if the
prescribed dose is sufficiently high (11). However, no relationship
between toxicity and OS is demonstrated to date. Many patients
treated with lung SBRT die from severe pulmonary insufficiency,
but it is not easy to distinguish whether the main cause is the
natural course of pulmonary or cardiovascular disease or if SBRT
lung toxicity might have worsened the situation. Severe RP is
probably under-evaluated in literature. It is the main toxicity
factor after lung SBRT; furthermore, MLD seems to be the
strongest and most reproducible dosimetric parameter of RP
(15, 17, 19–21). In addition, tumor volume is a reproducible
and frequently reported significant prognostic factor of OS (5–
7). We can also surmise that tumor volume is linked to MLD
and that patients could die from a higher received MLD than
GTV because LC is high. For this reason, we have made the
choice to study the correlation between OS and MLD, which
we have demonstrated to be significant in multivariate analysis
for all patients (HR = 1.14, CI95% = 1.03–1.25, p = 0.01) and
in subgroup multivariate analysis, whether for patients with
FEV1 ≤ 40% (HR = 1.55, 95%CI = 1.12–2.14, p = 0.008) or
with FEV1 > 40% (HR = 1.14, 95%CI = 1.02–1.28, p = 0.021) or
with GTV < mean GTV, i.e., 8.6 cc (HR = 1.34, 95%CI = 1.06–
1.69, p = 0.015). GTV and FEV1 cannot be modified while the
prescribed dose can be adjusted.

Moreover, we showed in our study a significant correlation
between OS and MLD with a significant threshold value of
5 Gy for BED3, i.e., 3.6 Gy in three fractions. A significant
cut-off at 4–4.7 Gy in three fractions is reported in literature
concerning the probability of RP after lung SBRT (17, 19). So
our threshold value of 3.6 Gy in three fractions is not very
different from that published for symptomatic RP, which enables
us to assume that the threshold value of 5 Gy for OS may be
related to RP. Thresholds values may have to be reduced to
5 Gy (i.e., 3.6 Gy in 3 fractions or 4.3 Gy in 5 fractions) and
4 Gy (i.e., 3 Gy in 3 fractions or 3.5 Gy in 5 fractions) in

mean lung BED3 respectively for patients with FEV1 > 40% and
FEV1 ≤ 40%, as our study suggests, to have an impact on OS.
These two thresholds values are totally in agreement because we
may have to be more careful to treat frailty patients and probably
we may have to reduce prescribed dose for these patients. We
therefore recommend using effective algorithms that take into
account pulmonary heterogeneity and limiting PTV irradiated
volume to a minimum by reducing margins (not creating a
CTV or using gating or tracking techniques). This is particularly
crucial for frailty patients with poor baseline pulmonary function
(FEV1 ≤ 40%).

CONCLUSION

In summary, our study demonstrates a significant and strong
correlation between OS and mean lung BED3, confirmed in
univariate and multivariate analysis in all patients, in subgroup
analysis and in survival curves analysis. Higher mean lung BED3
is always strongly and significantly associated with a poorer OS.
Moreover, significant mean lung BED3 threshold values have here
been shown to correlate with OS: 5 Gy for the entire population
(i.e., 3.6 Gy in 3 fractions or 4.3 Gy in 5 fractions) and 4 Gy for
patients with FEV1 ≤ 40% (i.e., 3 Gy in 3 fractions or 3.5. Gy in 5
fractions). Stay below these threshold values significantly enabled
a doubling of median OS.
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Aim: Data from a local quality registry are used to model the risk of late xerostomia
after radiotherapy for head and neck cancer (HNC), based on dosimetric- and clinical
variables. Strengths and weaknesses of using quality registry data are explored.

Methods: HNC patients treated with radiotherapy at the Karolinska University hospital
are entered into a quality registry at routine follow up, recording morbidity according
to a modified RTOG/LENT-SOMA scale. Other recorded parameters are performance
status, age, gender, tumor location, tumor stage, smoking status, chemotherapy and
radiotherapy data, including prescribed dose and organ-at-risk (OAR) dose. Most
patients are entered at several time points, but at variable times after treatment.
Xerostomia was modeled based on follow-up data from January 2014 to October 2018,
resulting in 753 patients. Two endpoints were considered: maximum grade ≥2 (XERG≥2)
or grade ≥3 (XERG≥3) late xerostomia. Univariate Cox regression was used to select
variables for two multivariate models for each endpoint, one based on the mean dose
to the total parotid volume (Dtot) and one based on the mean dose to the contralateral
parotid (Dcontra). Cox regression allows the estimation of the risk of xerostomia at
different time points; models were presented visually as nomograms estimating the risk
at 9, 12, and 24 months respectively.

Results: The toxicity rates were 366/753 (49%) for XERG≥2 and 40/753 (5.3%)
for XERG≥3. The multivariate models included several variables for XERG≥2, and
dose, concomitant chemotherapy and age were included for XERG≥3. Induction
chemotherapy and an increased number of fractions per week were associated with
a lower risk of XERG≥2. However, since the causality of these relationships have limited
support from previous studies, alternative models without these variables were also
presented. The models based on the mean dose to the total parotid volume and the
contralateral parotid alone were very similar.
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Conclusion: Late xerostomia after radiotherapy can be modeled with reasonable
predictive power based on registry data; models are presented for different endpoints
highly relevant in clinical practice. However, the risk of modeling indirect relationships,
given the unavoidably heterogeneous registry data, needs to be carefully considered in
the interpretation of the results.

Keywords: xerostomia, head and neck cancer, cox regression, nomogram, registry analysis

INTRODUCTION

Radiotherapy contributes to favorable control of disease in
the great majority of patients with head and neck cancer
(HNC) and will certainly remain one of the prominent integral
components in the multidisciplinary management of this disease.
Approximately 80% of the patients receive radiotherapy at least
once during the course of their disease (1). Even with great
advances in radiotherapy planning facilitating a tailored delivery
of radiation dose, some damage will be inflicted on normal cells in
tissues adjacent to the tumor. The treatment of HNC is associated
with clinically significant radiation-induced toxicity, especially in
combination with concurrent systemic agents, chemotherapy or
biomodulators (2, 3).

One of the most frequently reported side effects is
hyposalivation, and subsequent xerostomia, due to co-irradiation
of the salivary glands. Chronic xerostomia is a multifactorial
process which can affect quality of life profoundly. The process
includes reduced salivary output, decreased salivary pH and
increased viscosity of the saliva (4, 5). This may result in the
unpleasant sensation of dry mouth, altered taste, dysfunction
of mastication, swallowing dysfunction and difficulties with
speech (6–8). Xerostomia is also associated with changes in
the normal flora of the mouth, which increases the risk of oral
infections including dental caries (9). The reported prevalence
of xerostomia in the normal population ranges from 5.5 to 46%
(10). It increases with age, partly due to the frequent use of
multiple medications by the elderly (11, 12). In a retrospective
study including over 12,000 dental patients, predictors for
patient-reported xerostomia were intake of more medications,
recreational drug use, rheumatic diseases, psychiatric diseases,
eating disorders and radiotherapy (10). Thus, the risk of
xerostomia in patients undergoing radiotherapy for HNC is
dependent on clinical factors as well as the radiation dose.

The incidence of HNC is currently on the rise as more
patients suffer from an HPV-related tumor, predominantly in
the oropharynx. These patients have a good prognosis with
respect to tumor control and will have to live a long life
with potential treatment-related side effects. It is therefore
of utmost importance to clarify further the dose/volume-
response relationship, also for lower grades of radiation-
induced xerostomia. The introduction of new, more conformal,
techniques such as intensity-modulated radiotherapy (IMRT) has
reduced the rate of xerostomia both with respect to measurement
of saliva flow and quality of life. There is a consensus that
xerostomia is sufficiently limited by keeping the mean dose to
the total parotid volume below 26 Gy as a planning criterion
(13). However, as this criterion is frequently violated in order to

achieve adequate tumor coverage, the rate of xerostomia in HNC
patients is still a concern (14). Also, the relative importance of
each parotid gland for preserved salivary function is unclear (15).

Evidence-based radiotherapy requires models which can be
used for treatment planning, based on representative datasets. It
has been recognized that such models need to be continuously
validated and updated (16, 17) as treatment protocols and patient
populations evolve (16). For this purpose, registries of outcome
data need to be implemented, maintained and analyzed; the
limited size of datasets historically used for model fitting, and
the homogeneous nature of the data provided by controlled
clinical trials, put into question the applicability of these models
as decision-support tools in clinical practice. Also, one or a few
fixed follow-up times are considered, not considering the risk of
toxicity as a function of time. In the current study, Cox regression,
where the endpoint is time to event, is used and thus the risk of
xerostomia at any time point after treatment can be estimated.
To the best of our knowledge, this is the first model of this type
developed for xerostomia.

In this registry study, a multivariate model of xerostomia is
fitted using clinical-, patient-, and treatment-related parameters
in an effort to better predict both more severe but also moderate
grades of xerostomia in the individual patient. The real-world
nature of the collected data, and the size of the dataset, are
favorable for the application of the model as a decision-support
tool when treating HNC patients. The risk of modeling indirect
relationships, given the unavoidably heterogeneous registry data,
is carefully considered in the choice of model, variable selection
method and interpretation of the results.

MATERIALS AND METHODS

Quality Registry
Head and neck cancer patients who are treated with radiotherapy
at the Karolinska University Hospital, either radically or
postoperatively with or without chemotherapy, are followed
up after their therapy according to local protocols every
third to fourth month during the first 2 years and thereafter
every 6 months for an additional 3 years. Since 2013, clinical
follow-up data, as well as patient- and treatment-related
parameters are entered into a quality-registry database for
all patients. A modified Radiation Therapy Oncology Group
(RTOG)/LENT-SOMA scale is used for skin-, mucosa-, larynx-
and mandible toxicity as well as xerostomia, dysphagia and
trismus. Morbidity appearing within 3 months of completed
radiotherapy is categorized as acute while morbidity appearing
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later is categorized as late. Performance status evaluated
according to WHO/ECOG/ZUBROD is also registered at every
follow-up visit. Patient-related parameters collected are: gender,
age, tumor location, tumor stage, HPV association (for patients
with cancer in the oropharynx) and smoking status at the time
of treatment. The treatment parameters collected are: data on
induction chemotherapy, concomitant drug therapy as well as
prescribed dose and organ-at-risk (OAR) dose.

Informed consent regarding participation in the quality
registry, including in the publication of analyzed data, is obtained
from each patient. The study was approved by the regional ethics
committee (2016/268-31/1).

Patients
The patients included in this study had histologically confirmed
HNC originating in and categorized as cancer of the oral cavity,
oropharynx or other (epipharynx, hypopharynx, nasal cavity,
paranasal sinuses or metastases in the neck with an unknown
primary). Patients with a tumor location associated with very
low parotid dose were excluded (larynx, lip and basalioma) and
tumors in the parotid were excluded since these patients can only
be considered to have one single parotid as OAR.

None of the included patients had previous head and neck
radiotherapy or previous malignancy except non-melanoma
skin cancer. Radiotherapy was prescribed curatively, alone or
with induction chemotherapy and/or concomitant cisplatin or
cetuximab. Cisplatin was prescribed according to the estimated
surface area of the patient as follows: 40 mg/m2 (maximum
70 mg) once weekly, or 80 mg/m2 (maximum 160 mg) every third
week, for the duration of the radiotherapy course. Cetuximab was
prescribed with the first dose (400 mg/m2, maximum 800 mg)
one week before the start of radiotherapy and thereafter a weekly
dose of 250 mg/m2 (maximum 500 mg) for the duration of the
radiotherapy course, i.e., typically six additional doses. Follow-
up data in this study are from January 2014 to October 2018,
relating to radiotherapy mainly from 2010 to May 2018, though
a few records in the registry relate to even earlier treatments. The
compliance in the registration of follow-up data for patients in
this study was about 70%, resulting in 753 patients.

Xerostomia was assessed by oncologists specialized in treating
HNC. The assessment was based both on visual inspection of the
oral cavity and on the description of symptoms described by the
patient. The endpoints of this study were late xerostomia of grade
2–4 (moderately dry, completely dry and fibrosis) and grade 3
to 4 late xerostomia (completely dry and fibrosis), respectively;
the maximum grade registered for each patient was considered.
The two endpoints will hereafter be referred to as XERG≥2 and
XERG≥3.

Baseline (before radiotherapy) xerostomia scores were not
available in this study. Thus, all endpoints reflect the overall
xerostomia status after treatment, not exclusively relating
to the treatment.

Treatment
External-beam radiotherapy was delivered with a linear
accelerator using 6 MV photons. Twenty-five percent of the
patients were treated with a combination of external-beam

and brachy radiotherapy. The majority of the external-beam
treatments were delivered with IMRT but 7% received 3D-
conformal radiotherapy. During treatment planning the parotid
glands and larynx were considered the primary OAR followed by
swallowing structures; target coverage had the highest priority.
Target volumes for primary tumor and regional nodal groups
at risk of harboring occult metastatic disease, as well as OAR,
were delineated according to departmental guidelines, which
also include dose constraints. Specifically, the parotids were
delineated as the entire gland as visible in the CT images,
including both the deep lobe and the superficial lobe.

Prescribed dose to the primary target volume was; >73 Gy in
12%, 68 Gy in 69%, 66 Gy in 8%, and 50 Gy in 9%. The dose per
fraction was 2.2 Gy for the highest dose group and 2.0 Gy for the
other groups. Fifty-one percent of the patients were treated with
six fractions per week and 45% received five fractions per week.
The dose per fraction to elective volumes was 2.0 Gy or 1.52 Gy
when treating with a sequential- and simultaneous-integrated
boost, respectively.

In this study, the mean dose to ipsilateral- and contralateral
parotid glands separately, as well as the mean dose for the
two glands together was considered, from the external-beam
radiotherapy only. A separate investigation, made on a limited
number of patients, showed that the contribution to the parotid
mean dose from brachytherapy was negligible for modeling
purposes (95%-percentile: 1.5 Gy).

Modeling
Since the time to the registered score varied from patient to
patient, multivariate Cox regression models were developed. For
each endpoint, the time to event was defined as the interval
between the end of radiotherapy and the first score exceeding
the respective threshold. Hazard ratios and nomograms were
produced for each model. A bootstrap validation with 1000
samples was performed and the mean C-statistic over the
bootstrap samples was used as a measure of model performance.
Calibration was performed using bootstrap cross validation with
100 bootstrap samples, as described in (18), using Harrell’s R
packages. All analyses were performed in R.

The candidate explanatory variables were: mean dose to the
total parotid volume (Dtot), mean dose to the contralateral
parotid (Dcontra), mean dose to the ipsilateral parotid (Dipsi),
number of treatment fractions per week, tumor location, T stage,
N stage, smoking status, induction chemotherapy, concomitant
chemotherapy, gender and age. Two alternative models, based
on Dtot and Dcontra, respectively, were considered. This dose
variable was forced into the model, irrespective of the univariate
significance for the endpoint, and Dipsi was only a candidate
variable for the Dcontra model, to avoid direct dependence
between variables. For each model, the candidate variables
with p ≤ 0.2 in a univariate analysis were considered in the
multivariate analysis, while an alpha value of 0.05 was used in
the multivariate analysis. Categorical variables were considered
significant if at least half of the groups passed the alpha value.

Given the lack of register-data analyses available for
comparison, and that only internal validation was possible,
an alternative selection of variables was made following the
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univariate analysis, excluding any variables with no/limited
support in the literature with regard to their contribution to the
risk of xerostomia. These variables were induction chemotherapy
and the number of treatment fractions per week.

RESULTS

Patients
Out of the 753 patients included in the analysis, there were 366
(49%) with grade ≥ 2 late xerostomia and 40 (5.3%) with grade
≥3 late xerostomia. The median follow-up was 363 days and

TABLE 1 | Patient- and treatment characteristics.

Patients %

Mean parotid dose

Dtot (Gy); mean (SD) 26.2 (8.2)

Dcontra (Gy); mean (SD) 17.7 (7.2)

Dipsi (Gy); mean (SD) 34.8 (13)

Fractions per week

5 294 39

6 437 58

10 22 2.9

Age (years); mean (SD) 61.4 (11.4)

Gender

Female 249 33

Male 504 67

Tumor location

Oral cavity 172 23

Oropharynx 443 59

Other 138 18

T stage

0 40 5.3

1 174 23

2 289 38

3 108 14

4 142 19

N stage

0 252 34

1 85 11

2a/b 348 46

2c 61 8.1

3 7 0.9

Smoking

No/never 299 40

Smoker 152 20

Previous 302 40

Concomitant chemotherapy

Cisplatin 254 34

ERBIT 206 27

No 293 39

Induction chemotherapy

Yes 203 27

No 550 73

292 days for XERG≥2 and XERG≥3 respectively. Table 1 lists the
descriptive statistics.

Univariate Analysis
The results from the univariate analysis (hazard ratios and
p-values) are listed in Supplementary Table A1 in the
Supplementary Material, where the variables considered in the
multivariate analysis are highlighted in bold. The main dose
variable (Dtot or Dcontra) did not consistently obtain low p-values
but according to the chosen model selection strategy, this variable
was still included in the multivariate model. More variables were
significant for grade ≥2 xerostomia than for ≥3 xerostomia.
This might be due to the fewer events of high-grade xerostomia
in the population.

Radiotherapy technique (3D-conformal vs. IMRT) was not
considered as an explanatory variable since any effect would
be indirect, through cross-correlation with the volume of
exposed parotid. However, it’s association with xerostomia was
nonetheless tested in the univariate analysis. Surprisingly, as
seen in Supplementary Table A1, the risk of xerostomia was
significantly reduced in the small group of patients with 3D-
conformal radiotherapy; these patients were typically treated for
unilateral targets and received a lower target dose, as well as a
lower Dtot.

Multivariate Analysis
Two multivariate models were fitted to each endpoint, one based
on Dtot and one on Dcontra; in a second step the models were
refitted to only the variables associated with p< 0.05 in the initial
multivariate model – see Table 2. The models are well calibrated –
see calibration plots in Figure 1.

XERG≥3 showed a positive dependence on dose, as opposed
to XERG≥2, and the performance of this model was better. The
dose variable was not statistically significant in all models but
many non-dosimetric variables were significant, especially in
the models for XERG≥2. The models based on Dtot and Dcontra
were very similar.

Given the explorative nature of the above analysis, an
alternative variable selection method was also applied for the
multivariate analysis by excluding any non-consensus variables.
While in Table 2 the models revealed a lower risk of XERG≥2 for
patients with an accelerated treatment schedule and induction
chemotherapy, the causality in these relationships might be
controversial. Thus, the XERG≥2 models were refitted, excluding
the number of fractions per week and induction chemotherapy –
see Table 3. As two variables were excluded the performance of
the models reduced somewhat. The calibration plots are shown
in Figure 2.

Since the models for XERG≥2 had an inverse dose-response
these are not suitable as decision support tools. Instead,
Figure 3 shows a nomogram where dose was not forced into
the model (for model specifics and the calibration plot, see
Supplementary Table A2 and Supplementary Figure A1 in the
Supplementary Material). Figure 4 shows the nomogram for
XERG≥3 corresponding to the model listed in Table 2. Please
refer to the Supplementary Material for an example of how to
read the nomograms.
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TABLE 2 | Hazard ratios and corresponding p-values (in brackets) for the Cox
regression multivariate analysis.

Endpoint Included
variables

Hazard ratio (p-value)

Model: Dtot Model: Dcontra

XERG≥2 Mean parotid dose
(Dtot or Dcontra)

0.98 (0.033) 1.004 (0.65)

Dipsi – 0.99 (<0.01)

Fractions per week;
reference = 5

6 1.02 (0.86) 0.997 (0.99)

10 0.33 (<0.01) 0.32 (<0.01)

Tumor location;
reference = oral
cavity

Oropharynx 1.12 (0.50) 1.14 (0.44)

Other 0.60 (<0.01) 0.62 (0.016)

N stage;
reference = 2c

0 0.45 (<0.01) 0.50 (<0.01)

1 0.43 (<0.01) 0.49 (<0.01)

2a/b 0.59 (<0.01) 0.65 (0.017)

3 0.24 (0.018) 0.27 (0.031)

Concomitant
chemotherapy;
reference = no

Cisplatin 1.73 (<0.01) 1.66 (<0.01)

Erbitux 1.37 (0.50) 1.32 (0.088)

Induction
chemotherapy;
reference = no

Yes 0.62 (<0.01) 0.62 (<0.01)

Age 1.01 (0.023) 1.011 (0.023)

C-statistic (SE) 0.64 (0.057) 0.64 (0.057)

XERG≥3 Mean parotid dose
(Dtot or Dcontra)

1.01 (0.054) 1.02 (0.26)

Concomitant
chemotherapy;
reference = no

Cisplatin 2.57 (0.012) 2.46 (0.017)

Erbitux 0.96 (0.94) 0.92 (0.87)

Age 1.06 (<0.01) 1.06 (<0.01)

C-statistic (SE) 0.67 (0.017) 0.68 (0.017)

The xerostomia endpoints were grade ≥ 2 (XERG≥2) and grade ≥ 3 (XERG≥3). The
bootstrap-validation C-statistic is listed below the included variables.

DISCUSSION

While the rate of xerostomia is reduced by sparing the parotid
glands, a probable contributor to persistent xerostomia could
be radiation-induced damage to other salivary glands such as
the submandibular glands, sublingual glands and minor salivary
glands in the oral cavity. Studies have shown a correlation
between the dose to submandibular glands and sticky saliva (19).
Some studies have also demonstrated that in selected patients
it is safe to try to spare the submandibular glands with IMRT;
however, this approach should be used with caution in patients

with a significant risk of recurrence, relating to tumor location
(20). The impact on xerostomia from minor salivary glands in
the oral cavity and oropharynx is difficult to study because of
their anatomical dispersion and their poor anatomical definition
in the planning image. Data are conflicting regarding the benefit
of reducing the dose to these glands (19, 21) but delineation
of the oral cavity as an OAR with respect to xerostomia has
been recommended in some institutions. In the present analysis,
the only OAR considered was the parotid gland since other
salivary glands had not been consistently delineated and the
corresponding dose is not recorded in the registry. Also, the series
of studies by Beetz et al. (19, 22, 23) suggest that the parotid is
the main OAR for xerostomia (although using a slightly different
definition compared to the present study), by showing that only
the dose to the parotids, among the different salivary glands, was
a significant predictor of patient-rated xerostomia.

The dose to the contralateral parotid has been studied as a
predictor for patient-rated xerostomia (19) and salivary function
is largely preserved if at least one parotid receives less than
25 Gy of mean dose (24). Still, there seems to be a benefit of
limiting the dose to both parotids (25). Given the uncertainty
of the definition of the OAR, both the total parotid volume and
the contralateral parotid volume were considered, in different
models. These models were very similar but applying the model
for the contralateral parotid only, to optimize treatment plans,
could be expected to lead to an increase in ipsilateral parotid dose.
Such a strategy is not supported by the current study; all patient
plans were optimized to spare both parotids as much as the target
coverage allowed.

Baseline xerostomia is not uncommon in HNC patients and
is predictive of xerostomia after radiotherapy (19, 26). Therefore,
patients with baseline xerostomia are often excluded from studies
of purely radiation-induced xerostomia. In contrast, the aim
of the current study was to develop a model based on real-
world data, predicting the risk of xerostomia for the greater
population of HNC patients receiving radiotherapy. Therefore, it
was not considered appropriate to exclude patients with baseline
xerostomia. Baseline scores were also not available for all patients
as this assessment has only recently been included in the registry.
In future analyses, baseline xerostomia will be considered as a
variable in the model. Notably, older age was highly significant
in all models, likely as a surrogate for baseline xerostomia, as
this is related to age in general and increased medication in
particular (8).

Xerostomia is typically assessed by direct measurement of
salivary-flow rate, by self-reported questionnaires or by scoring
methods, as in the present study. Salivary-flow rates provide
important information about salivary gland function and can be
performed from each major gland or from a mixed sample of
the oral fluids, often termed whole saliva. However, xerostomia
is experienced differently by individuals (14) and is not identical
to hyposalivation since it also depends on changes in the quality
of saliva even with unchanged salivary-flow rate. Therefore
patients may complain of dry mouth despite adequate salivation
(27). In the current study, the oncologists perceived grade-2
xerostomia (moderately dry) to be less specific than grade 3
and 4 (completely dry and fibrosis, respectively). This may have
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FIGURE 1 | Calibration plots for the models in Table 2 at 1 year: (A) the Dtot model for XERG≥2, (B) the Dcontra model for XERG≥2, (C) the Dtot model for XERG≥3, (D)
the Dcontra model for XERG≥3. The histogram on the upper × axis represents the frequency distribution of 1 minus the predicted probabilities (c.f. a survival analysis).

contributed to the lower predictive power of the low-grade
models; predictions made using the high-grade models are more
reliable. However, since grade ≥2 xerostomia is problematic for
the patients and relatively prevalent it is important to avoid also
grade 2, if possible.

Another factor possibly contributing to the modest predictive
power of the models is the variability in the time between
radiotherapy and registered follow-up in the cohort. While
focusing on a fixed time after treatment was not possible for our
data set, this might have improved the performance of the model
since there is a time dependence of incidence of xerostomia after
treatment (15). As future work we plan to fit a model to a subset of
the patients with follow-up data in a limited time interval. As well
as revealing the importance of the follow-up time, this will also
facilitate comparisons with studies using a fixed follow-up time.
Future work will also explore the significance of HPV status for
the risk of xerostomia after radiotherapy. Further, the predictive
power may have been limited by the omission of HPV status, the
patient-specific chemotherapy dose and alcohol consumption as
explanatory variables; the two latter variables were not recorded
in the registry and were not available for analysis.

IMRT has been shown to be associated with a lower incidence
of severe xerostomia compared to 3D-conformal radiotherapy
(14). Still, treatment with IMRT was not selected as an inclusion

criterion in the current study since any relationship is expected
to be indirect, through its impact on the mean parotid dose.
Moreover, it was found that it would have made a very small
difference to the model if non-IMRT patients had been excluded.
Only age was not included in the XERG≥2 models; for all
other variables, hazard ratios and p-values remained similar to
those in the presented models. The value of the C statistic
reflected a lower model performance when limiting the size of
the cohort accordingly.

The physical mean parotid dose was used in this study,
i.e., without correcting for fraction size per voxel or different
fractionation schedules, since dose-volume histograms were not
available for conversion to BED. The sensitivity of the results
to this limitation was explored by converting the mean dose
values to BED; this differs from the actual mean BED by
around 1–15% (according to a comparison for a limited number
of patients) since each dose bin was not converted before
calculating the mean. It was seen, however, that while the
predictive power of the models did not consistently improve they
were somewhat sensitive to the representation of dose. Future
work is planned to collect dose-volume histograms and refit
the model with the dose variables in BED. Other sources of
uncertainty in the dose variables are, as mentioned previously,
that the small contribution from brachytherapy for 25% of the
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TABLE 3 | Hazard ratios and corresponding p-values (in brackets) for the Cox
regression multivariate analysis excluding non-consensus variables for the
XERG≥2 models.

Endpoint Included variables Hazard ratio (p-value)

Model: Dtot Model: Dcontra

XERG≥2 Mean parotid dose (Dtot or
Dcontra)

0.98 (<0.01) 0.997 (0.68)

Dipsi – 0.99 (<0.01)

Tumor location; reference = oral
cavity

Oropharynx 1.07 (0.67) 1.07 (0.67)

Other 0.57 (<0.01) 0.58 (<0.01)

N stage; reference = 2c

0 0.58 (<0.01) 0.62 (0.020)

1 0.57 (0.014) 0.61 (0.042)

2a/b 0.69 (0.027) 0.73 (0.080)

3 0.31 (0.052) 0.33 (0.067)

Concomitant chemotherapy;
reference = no

Cisplatin 2.02 (<0.01) 1.98 (<0.01)

Erbitux 1.46 (0.011) 1.42 (0.019)

Age 1.02 (<0.01) 1.02 (<0.01)

C-statistic (SE) 0.60 (0.057) 0.60 (0.057)

The bootstrap-validation C-statistic is listed below the included variables.

patients was ignored, but also the difference between planned
and delivered dose. It has been shown that the actual mean
dose to the parotids can increase by 10% or more compared
to the planned dose, due to a gradual migration of the gland
toward the high-dose volume over the course of treatment (28,
29). Furthermore, the identification of the parotid tissue in the
CT images can be difficult, resulting in an uncertainty even in
the planned dose.

The registry includes follow-up data for about 70% of the
HNC patients treated with radiotherapy. However, since the
missing data is mainly explained by a logistical failing in
the data collection, patients were likely excluded without bias

and thus the lack of full compliance should have a negligible
impact on the results.

The fact that the current study included a large number of
patients treated consecutively in our institution made it possible
to develop a model more representative for the population it will
be applied to, compared to models from controlled clinical trials.
The diversity naturally occurring in the population is present
in the sample and many relevant variables were candidates
for inclusion in the models. By using Cox regression the time
factor in the follow-up data was naturally accounted for and
the risk of xerostomia can be predicted for different times after
treatment. However, as a result of the inherent diversity in the
dataset, it was found that the fitted model was very sensitive
to small adjustments to the patients included in the analysis,
despite the great size of the dataset. It was of particular interest
to study the risk of xerostomia as a function of OAR dose,
but these relationships were relatively weak, and in the case
of grade ≥2 xerostomia an inverse dose-response relationship
was found. The latter was unexpected but probably a result of
indirect correlations or bias, which are more likely to appear
in a dataset from a registry compared to a clinical trial. In line
with our results, there are some indications that when patients
have been treated with IMRT, resulting in lower parotid dose and
steeper dose gradients compared to 3D-conformal radiotherapy,
the strong association between xerostomia and mean parotid
dose observed historically (22, 30) can be expected to be weaker
or completely absent (31, 32). In the current analysis, the inverse
dose-response found when forcing the dose variable into the
multivariate models for XERG≥2 made the model unsuitable as a
decision support tool and a nomogram was instead produced for
a model which did not contain dose. Thus, unlike the nomogram
for XERG≥3, this cannot be used to guide radiotherapy treatment
planning but is nonetheless useful for managing the risk of
moderate xerostomia.

Models developed based on real-world data are a valuable
complement to controlled clinical trials and are particularly
suitable as decision-support tools in a learning healthcare system
(16). The analysis of registry data needs to be performed carefully,
taking advantage of the heterogeneity of the population while

FIGURE 2 | Calibration plots for the models in Table 3 at 1 year: (A) the Dtot model for XERG≥2, (B) the Dcontra model for XERG≥2, The histogram on the
upper × axis represents the frequency distribution of 1 minus the predicted probabilities (c.f. a survival analysis).
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FIGURE 3 | The predicted risk of grade ≥2 xerostomia at 9, 12, and 24 months after radiotherapy, not including dose, due to the inverse dose-response
relationship. Model specifics are listed in Supplementary Table A2 in the Supplementary Material. *Note that the model does not imply significant differences
between all categories with respect to the endpoint – the p-value only refers to the difference from the reference category (see Supplementary Table A2 for
p-values). “No” was reference for concomitant chemotherapy and Erbitux was not significantly different from the reference. “N2c” was reference for N stage and N3
was not statistically different. Note that the model does not establish whether there is a difference between N0 and N1. “Oral cavity” was reference for tumor location
and oropharynx was not statistically different.

FIGURE 4 | The predicted risk of grade ≥3 xerostomia at 9, 12, and 24 months after radiotherapy, using the Dtot dose variable. ∗Note that not all categories are
significantly different from each other with respect to the endpoint – the p-value only refers to the difference from the reference category (see Table 2 for p-values).
“No” was reference for concomitant chemotherapy and Erbitux was not significantly different.
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selecting endpoints, variables and variable parameterization to
obtain a useful model. For example, 2c was selected as reference
for N stage since it was discovered that this disease stage was
associated with a higher risk of xerostomia, even compared to
stage 3 (although the prediction for stage 3 could be uncertain,
given the few cases included in the dataset and that N3 was
not statistically different from N2c as shown by the p-value
in Supplementary Table A2). It was speculated that this is
related to the bilateral location of involved lymph nodes with
N2c. It is also important to not overinterpret the nomogram
and assume that all aspects are statistically significant. For
example, the model behind the nomogram in Figure 3 does
not establish the relationship between N0 and N1, only each
category’s difference from the reference category, N2c. There is
no reason to suppose that N0 implies a higher risk compared to
N1, and the small difference seen in the nomogram is unlikely to
result in misleading predictions.

If the model is developed to improve future treatment
plans it is important to consider possible mechanisms behind
observed relationships, i.e., causality. In the current analysis it
was felt that external validation would be required to confirm
the lower risk associated with hyperfractionated/accelerated
treatment schedules and induction chemotherapy, to rule out
false correlations. The only support in the literature for the
former is weak given the few patients studied and limited dose-
volume information (33). It is hoped that future studies can
confirm or dement the causality of these relationships.

CONCLUSION

Late xerostomia after radiotherapy can be modeled with
reasonable predictive power based on registry data, providing
valuable alternatives to models developed on cohorts with
stricter inclusion criteria. Similarities with similar models were
observed but as the first Cox regression model for xerostomia,
some important lessons were learned. The variables included
and the performance of the model depend strongly on the
grade of the endpoint, the patient selection and the candidate
variables considered. The role of the parotid dose may be
of lower importance compared to some clinical variables in
a heterogeneous population. The results also suggest that an
accelerated treatment schedule or induction chemotherapy may
be associated with a lower risk of xerostomia, but until this
has been confirmed a model excluding these variables can be
used. The risk of modeling indirect relationships, given the
unavoidably heterogeneous registry data, needs to be carefully
considered in the interpretation of the results.
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Background: A rectal sub-region (SRR) has been previously identified by voxel-wise
analysis in the inferior-anterior part of the rectum as highly predictive of rectal bleeding
(RB) in prostate cancer radiotherapy. Translating the SRR to patient-specific radiotherapy
planning is challenging as new constraints have to be defined. A recent geometry-based
model proposed to optimize the planning by determining the achievable mean doses
(AMDs) to the organs at risk (OARs), taking into account the overlap between the planning
target volume (PTV) and OAR. The aim of this study was to quantify the SRR dose sparing
by using the AMD model in the planning, while preserving the dose to the prostate.

Material and Methods: Three-dimensional volumetric modulated arc therapy (VMAT)
planning dose distributions for 60 patients were computed following four different
strategies, delivering 78Gy to the prostate, while meeting the genitourinary group dose
constraints to the OAR: (i) a standard plan corresponding to the standard practice for
rectum sparing (STDpl), (ii) a plan adding constraints to SRR (SRRpl), (iii) a plan using
the AMD model applied to the rectum only (AMD_RECTpl), and (iv) a final plan using the
AMD model applied to both the rectum and the SRR (AMD_RECT_SRRpl). After PTV
dose normalization, plans were compared with regard to dose distributions, quality, and
estimated risk of RB using a normal tissue complication probability model.

Results: AMD_RECT_SRRpl showed the largest SRR dose sparing, with significant
mean dose reductions of 7.7, 3, and 2.3Gy, with respect to the STDpl, SRRpl, and
AMD_RECTpl, respectively. AMD_RECT_SRRpl also decreased the mean rectal dose by
3.6Gy relative to STDpl and by 3.3Gy relative to SRRpl. The absolute risk of grade ≥1
RB decreased from 22.8% using STDpl planning to 17.6% using AMD_RECT_SRRpl

considering SRR volume. AMD_RECT_SRRpl plans, however, showed slightly less dose
homogeneity and significant increase of the number of monitor units, compared to the
three other strategies.

Conclusion: Compared to a standard prostate planning, applying dose constraints to
a patient-specific SRR by using the achievable mean dose model decreased the mean
dose by 7.7Gy to the SRR and may decrease the relative risk of RB by 22%.

Keywords: prostate cancer radiotherapy, rectal bleeding, toxicity, plan optimization, organ-at-risk sparing,

voxel-wise analysis
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INTRODUCTION

Rectal toxicity is one of themain side effects arising when treating
prostate cancer with radiotherapy. Five-year grade ≥1 and ≥2
rectal bleeding (RB) rates have been reported to be around
30 and 10%, respectively, when combining intensity-modulated
radiation therapy (IMRT) with image-guided radiotherapy
(IGRT) (1, 2). Several strategies may be implemented in order to
spare the rectum and therefore decrease toxicity. For instance,
by increasing mechanically the anterior perirectal space, using
hydrogel spacer, has been shown to significantly reduce rectal
irradiation (3–5). Such an approach is, however, invasive and
expensive. A more appealing approach, in the context of dose
escalation, would be to intervene at the planning step by adding
dosimetric constraints to particular portions of the rectum
which may be highly radiosensitive. This requires, however,
a robust technique for identifying patient-specific rectal sub-
regions (SRR) that should be spared in the treatment planning.

In response to this question, voxel-based methods have

already been applied for unveiling spatially variable dose–
effect patterns, thereby allowing the identification of sub-

regions at risk in several anatomical locations such as the
lungs (6), the heart (7), head and neck (H&N) (8), and the

bladder (9). Overall, the principles of voxel-based methods
rely on the analysis of the local dose–toxicity relationship
at fine spatial scales, through (i) non-rigid registration (8),
(ii) dose resampling to a common space, and (iii) voxel-wise
comparisons between patients with and without toxicity (10,
11). The methodology and pitfalls of voxel-wise analysis are
discussed in detail in (12). With respect to rectal toxicity
in case of prostate IMRT, a sub-region in the inferoanterior
hemianorectum, which will be considered in this study as SRR,
was identified by voxel-based analysis as highly predictive of
RB (10).

Once a sub-region is identified as predictive for toxicity,
the addition of dosimetric constraints to be applied during
the planning is, however, challenging. There are no specific
recommendations on dose optimization for these original sub-
regions as they can be considered as independent structures at
risk. A possible strategy to solve this issue is the application of
the model proposed by Moore et al. (13) aimed to determine, at
the inverse planning step, an achievable mean dose (AMD) in
the organs at risk (OARs). Indeed, they showed that, compared
to standard dose volume constraints, the mean dose in various
OARs could be decreased by using a geometry-based population
model relying on volume overlap between the planning target
volume (PTV) and OAR. The concept of AMD can be extended
to a specific sub-region to be spared (instead of considering the
whole OAR) while preserving target coverage.

In the case of prostate cancer IMRT/IGRT, the objectives
of this study were to compare four inverse planning strategies:
(i) a standard planning (STDpl); (ii) a planning with specific
SRR constraints without using the AMD model (SRRpl); (iii)
a strategy using the AMD model applied only to the rectum
(AMD_RECTpl); (iv) a combined strategy using the AMDmodel
applied to both the rectum and the SRR (AMD_RECT_SRRpl).
The comparisons were performed via dosimetric, planning
quality parameters, and a normal tissue complication probability

(NTCP) model. The workflow of the study is depicted in
Figure 1.

METHODS AND MATERIALS

A total of 60 patients were included in this study. All of them
were treated for localized prostate cancer between 2012 and 2015
in the same institution with a volumetric modulated arc therapy
(VMAT) technique (1 full-clockwise arc of 18MV) combined
with daily IGRT, using a Synergy/Elekta linac with Agility MLC.
A sequential treatment was proposed, delivering first a dose of
50Gy in 5 weeks to the prostate and seminal vesicles, followed
by a boost of 28Gy in 2.8 weeks to the prostate only. The total
number of fractions was therefore 39 fractions, and the dose per
fraction was 2 Gy.

Volumes of Interest on the Planning
Computed Tomography
Planning computed tomography (CT) images were acquired
on a BigBore (Philips, the Netherlands) scanner, with 2-mm
slice thickness. The clinical target volume (CTV) included the
prostate and seminal vesicles. The CTV and the OARs (bladder,
rectum, and femoral heads) were manually delineated on CT
slices according to the French Genitourinary Group (GETUG)
recommendations (14, 15). Rectal length was defined as to 2 cm
above and below the CTV. The rectal wall was generated with a
thickness of 0.5 cm from the external manually delineated rectal
contour. The bladder wall was generated with a thickness of
0.7 cm from the external manually delineated bladder contour.
PTVs were generated from the CTVs by adding a 0.5-cm margin
in all directions.

The definition of the SRR was based on the voxel-wise
population study presented in Dréan et al. (10). In summary,
repeated voxel-wise analyses (16) were performed on 118
different patients in a leave-one-out scheme. Each patient
served iteratively as template of reference to non-rigidly register
(17) the remaining 117 patients and propagate the three-
dimensional (3D) dose distributions allowing for spatially
meaningful dosimetric comparisons. Thus, for each template,
voxel-wise analysis (with Wilcoxon test and false discovery rate
correction for multiple comparisons) produced a single region
where significant dose differences between patients with and
without RB appear. These sub-regions were then propagated to
a single rectum template, which was divided in 64 subsections,
eight sections in both the anteroposterior and axial directions
(Figure A1). The generic SRR was finally defined by generating
a probability map of presence of the 118 sub-regions within this
anatomy. Each one of the 64 subsections with a probability of
presence of ≥50% was selected as belonging to the SRR. The
rectal sub-region was located close to the prostate (1 cm) and
represented 15% of the absolute rectal volume. By construction,
the SRR can be easily transferred to a patient-specific anatomy by
splitting the rectum in the same 64 subsections, without requiring
any registration method. This last step was implemented in an
in-house toolbox (RedTox R©), which, automatically and in a few
seconds, produces a DICOM RTstructure file to be imported in a
treatment planning system (TPS) (Figure 1).
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FIGURE 1 | Workflow of our study for 60 individuals. (0) The rectal subregion (SRR) was obtained after averaging results of voxel-wise analysis, using the dose volume
maps (DVMs) on 118 different templates in Dréan et al. (10); (1) delineation of OARs and SRR; (2) planning according to four different strategies; (3) endpoint
comparisons. In order for the SRR to be generic, the rectum was split in 64 subsections as depicted in Figure A1. The subsections were labeled as belonging to the
SRR as a function of the probability (threshold at 50%) of the voxel-wise sub-regions to overlap with the squared subsections. The transfer of the SRR to the TPS was
straightforward, following a chess squared mapping of 64 subsections to the 3D volume implemented in RedTox®. Once the organs and sub-regions were
segmented, the four planning strategies were implemented, and the dosimetric endpoints were compared.

Additionally, a volume of the rectum excluding the SRR
(“rectum without SRR”) was generated. In the dosimetric study,
we considered only the wall for the rectum and the bladder. Thus,
we used herein the term rectum to refer to the rectal wall; likewise,
the term bladder to refer to the bladder wall.

Dose Planning Strategies
Dose planning was performed with Pinnacle v.9.10 (Philips) TPS.
The collapsed cone convolution algorithm and a dose grid size of
3 × 3 × 3 mm3 were used for dose calculation. Four different
VMAT dose planning strategies were applied for each of the 60
patients: STDpl, SRRpl, AMD_RECTpl, and AMD_RECT_SRRpl.
These four strategies are described below for each planning
strategy. The minimum PTV coverage by the 95% prescribed
isodose was 95%.

Standard Planning (STDpl)
Treatment plans were generated for each CT according to the
GETUG recommendations. GETUG dose–volume constraints
were observed throughout: V70Gy ≤50% and Dmax ≤80Gy
for the bladder wall, and V50Gy ≤50%, V72Gy ≤25%, and
Dmax ≤76Gy for the rectum wall. The main dose constraints
used during inverse optimization derived from clinical dose
limits and are displayed in Additional Table 1 for the four
planning strategies.

Planning With SRR Constraints (SRRpl)
Four SRR dose constraints were applied in addition to STDpl dose
constraints: Dmax = 0.8 ∗ Dprescription (weight = 10), D15% =
0.75 ∗ Dprescription (weight = 1), D25% = 0.60 ∗ Dprescription
(weight= 1), and D40% = 0.40 ∗ Dprescription (weight= 1).
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Moore’s Model and Optimization of
Achievable Mean Dose Model
Moore et al. (13) defined a mathematical model allowing for
prediction of a radiation plan to achieve the lowest possible mean
dose to an OAR overlapping with PTV. This model considers the
prescribed dose to the PTV and the overlap volume between the
PTV and the considered OAR (13). The general equation of the
model was the following:

Dachievable_mean = Dprescribed

(
A+ B(C− e−DxVoverlap/VOAR )

)

where Voverlap is the intersection between the PTV and OAR.
This model was created from 17 H&N patients (overlap

between parotid glands and PTV) and 8 prostate patients
(overlap between rectum and prostate) static IMRT plans, with A
= 0.2, B = 0.8, C = 1, D = 3. For our study, an adapted Moore’s
model was fitted based on 15 prostate standard treatment plans
from our institution, following the same method as we already
published for the H&N case (18). The ratio of the OAR Dmean

to the prescription dose to PTV (Dprescribed) was plotted against
the ratio of the overlap volume between PTV and OAR (Voverlap)
to the OAR volume (VOAR), for each patient. Moore’s equation
coefficients (A, B,C, andD) were modified by dichotomy, thereby
fitting the curve of the model with the lower bound of our local
data, which represents the optimal average OAR dose achievable
in our selected cohort of patients (N = 15).

Planning With Achievable Mean Dose
Model Applied to the Rectum
(AMD_RECTpl)
The dose constraints used for the standard strategy were applied,
as well as additional use of the AMD for the rectum. Our
adaptation of the Moore’s model provided the following equation
for the rectum AMD (AMDrectum):

AMDrectum = Prescribed dose
(
0.22+ 0.8(1− e−2Voverlap/VR )

)

with Voverlap = overlap between PTV and rectum, and VR =
rectum volume.

Planning With Achievable Mean Dose
Models Applied to the Rectum and the
SRR (AMD_RECT_SRRpl)
The dose constraints used for the AMD_RECTpl strategy were
applied, as well as additional use of the AMD for the SRR. Our
adaptation of the Moore’s model provided the following equation
for the SRR AMD (AMDSRR):

AMDSRR = Prescribed dose
(
0.34+ 0.8(1− e−2Voverlap/VSRR )

)

with Voverlap = overlap between PTV and SRR, and VSRR =
SRR volume.

ENDPOINTS AND STATISTICAL ANALYSES

The four planning strategies were evaluated with respect to
dosimetric parameters and predicted toxicity endpoints, as well
as planning quality indexes.

The dosimetric parameters were as follows: the mean dose
for the rectum and for the SRR, and the dose volume histogram
(DVH) for the PTV and the OARs. In particular, the following
reference RTOG/GETUG points have been reported: volume
receiving at least 50Gy (V50Gy) and volume receiving at least
70Gy (V70Gy) for the SRR and the rectum, V50Gy and V70Gy

for the bladder, and V95% for the PTV. The ratio between
the Dmean and the prescribed dose to the PTV (78Gy) (Dmean

/Dprescription_PTV) was also indicated.
The benefit of each strategy to spare the SRR was

quantitatively assessed as the difference in the SRR mean dose
achieved with respect to the STDpl. The risk of toxicity was
calculated using the Lyman–Kutcher–Burman NTCP model
considering the SRR DVHs. The three parameters (TD50, n, and
m) have been previously identified specifically for the SRR with
the maximum likelihood method (19). Thus, our NCTP model
predicted the risk of 3-year grade>1 RB with n= 0.21,m= 0.28,
and TD50 = 72 (10).

The planning quality parameters were as follows: number
of monitor units, irregularity index, and modulation index
(20, 21). The irregularity index quantified the non-circularity
of the aperture (equal to 1 in case of circular aperture). The
modulation index takes into account aperture area and MU
number associated to each segment (equal to 0 with a treatment
plan without modulation). Conformal and homogeneity indexes
were also calculated. The conformal index was defined as the ratio
of the volume of PTV receiving 95% of prescribed dose to the
volume of PTV. The homogeneity index was defined as the ratio
D2%-D98% to the D50% of the PTV.

Paired Wilcoxon tests were used to compare the endpoints
between the standard planning and each of the three other
planning strategies. Correlation tests were used to identify
parameters related with the dosimetric benefit of the
AMD_RECT_SRRpl strategy. The correlation between the
mean dose or the mean dose decrease to the SRR and VSRR

or Voverlap(PTV
⋂

SRR) was tested for each planning strategy.
Spearman coefficients (rS) were computed.

Ethics Statement
The research has been approved by the institutional review board
of the Eugene Marquis Cancer Center, and the patients have been
informed of the research.

RESULTS

Dosimetric Comparison Between the Four
Planning Strategies
Table 1 displays the dosimetric values in the SRR, rectum, the
whole rectum without SRR, bladder, and PTV for the four
planning strategies. Compared to STDpl, AMD_RECT_SRRpl

decreased significantly the dosimetric parameters for the rectum
(Dmean, V50Gy, V70Gy) and for the SRR (Dmean, V50Gy, V70Gy),
while preserving the PTV coverage. Although the PTV coverage
(V95%) was statistically different between STDpl and SRRpl, or
AMD_RECTpl, the 95% dose coverage constraint was achievable.
Compared to STDpl, AMD_RECTpl significantly decreased the
rectum mean dose from 37.3–33.2Gy. Compared to STDpl,
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TABLE 1 | Volumes, dosimetric endpoints, and NTCP parameters in the subrectal region (SRR), rectum, rectum without SRR, bladder, and PTV by the four
planning strategies.

Planning strategies

STDpl SRRpl AMD_RE

CTpl

AMD_RECT_SRRpl

SRR
(whole volume)

Dmean (Gy) 50.6 ± 5.9 45.9 ± 7.1* 45.2 ± 5.8* 42.9 ± 6.1*

V50Gy (%) 50.4 ± 17.0 40.4 ± 16.7* 37.6 ± 14.3* 34.6 ± 13.3*

V70Gy (%) 12.8 ± 8.8 10.5 ± 7.1* 9.7 ± 7.1* 9.7 ± 6.3*

NTCP# (%) 22.8 ± 6.8 19.4 ±6.6** 18.4 ± 6.2** 17.6 ± 5.7**

Volume
(cm3)
[range]

9.9 ± 4.3 [4.0; 21.3]

Rectum
(wall)

Dmean (Gy) 37.3 ± 3.0 37.0 ± 3.4 33.2 ± 3.3* 33.7 ± 3.6*

V50Gy (%) 29.0 ± 5.3 28.7 ± 6.1 24.3 ± 5.1* 25.0 ± 5.6*

V70Gy (%) 12.4 ± 3.3 11.9 ± 3.6* 10.4 ± 3.1* 10.8 ± 3.4*

Volume
(cm3)
[range]

32.4 ± 7.8 [48.7; 18.4]

Rectum volume
without SRR
(whole volume)

Dmean (Gy) 34.6 ± 3.7 34.6 ± 4.0 30.0 ± 3.8* 30.5 ± 4.2*

V50Gy (%) 23.0 ± 6.8 23.5 ± 7.5 17.5 ± 6.0* 18.5 ± 6.4*

V70Gy (%) 7.2 ± 2.5 6.5 ± 2.5* 5.7 ± 2.2* 5.5 ± 2.2*

Volume (cm3) [range] 59.8 ± 24.5 [23.9; 113.9]

Bladder
(wall)

V50Gy (%) 30.4 ± 12.4 29.8 ± 12.0* 29.7 ± 12.0* 29.4 ± 12.5*

V70Gy (%) 14.2 ± 6.1 14.0 ± 6.0 14.2 ± 6.0 14.2 ± 6.2

Volume
(cm3)
[range]

67.8 ± 26.8 [124.3; 24.4]

PTV D95% (%) 96.2 ± 0.6 95.8 ± 0.5* 96.5 ± 0.5* 96.1 ± 0.7

Homogen
eity index

0.08 ± 0.01 0.10 ± 0.01* 0.08 ± 0.01* 0.10 ± 0.02*

Conforma l index 0.98 ± 0.01 0.97 ± 0.01* 0.98 ± 0.01 0.97 ± 0.02*

Volume
(cm3)
[range]

109.7 ± 36.1 [41.4; 260.3]

Overlap between
SRR and PTV

Volume (cm3) [range] 0.9 ± 0.5 [0.1; 2.4]

Overlap between
rectum and PTV

Volume
(cm3)
[range]

3.2 ± 1.3 [0.9; 6.9]

AMD, achievable mean dose; STDpl , standard planning; SRRpl , planning with specific SRR constraints without using AMD model; AMD_RECTpl , planning using the AMD model applied

to the rectum only; AMD_RECT_SRRpl , combined strategy using the AMD model applied to both the rectum and the SRR.

Values are mean ± standard deviation.

The NTCP# values have been calculated by using the following parameters: n = 0.21, m = 0.28, and TD50 = 72. The NTCP evaluates the risk of 3-year grade ≥1 rectal bleeding (10).
*p < 0.05 (assuming significance level) of the Wilcoxon test comparing the standard strategy (STDpl ) to each of the tested strategy.

**p < 0.001.

the AMD_RECT_SRRpl strategy significantly decreased the
rectum mean dose from 37.3Gy to 33.7Gy and the SRR
mean dose from 50.6 to 42.9Gy. Figure 2 shows the impact
of adding constraints on SRR (SRRpl) compared to a STDpl

(Figure 2A), using the AMD model to decrease the mean
dose to the SRR (AMD_RECT_SRRpl) compared to the SRRpl

(Figure 2B) and using the AMD model to decrease the mean

dose to the rectum (AMD_RECTpl) compared to a STDpl

(Figure 2C).
Figure 3 shows the average DVH of the PTV, rectum, and SRR

for the four strategies. Compared to STDpl, AMD_RECT_SRRpl

reduced significantly the volume of the rectum and the SRR
receiving a dose between 4 and 75Gy and between 10 and
74Gy, respectively.
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FIGURE 2 | Impact of adding constraints to SRR (SRRpl) compared to a STDpl (A), using the AMD model to decrease the mean dose to the SRR (AMD_RECT_SRRpl)
compared to the SRRpl (B) and using the AMD model to decrease the mean dose to the rectum (AMD_RECTpl) compared to a STDpl. (C) AMD, achievable mean
dose; STDpl, standard planning; SRRpl, planning with specific SRR constraints without using AMD model; AMD_RECTpl, planning using the AMD model applied to the
rectum only; AMD_RECT_SRRpl, combined strategy using the AMD model applied to both the rectum and the SRR. The mean doses (Dmean) to the SRR (A,B) or
rectum (C) or “normalized” to the PTV prescribed dose (Dmean_rectum or SRR/Dprescription_PTV ). This ratio is plotted against the percentage of overlap between the SRR
(A,B) or the rectum (C) and the PTV (Voverlap(PTV∩rectum or SRR)/VSRR). The curves display the AMD generated from the equation presented in the figure. The prescription
dose to the PTV (Dprescription_PTV ) was 78Gy.
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FIGURE 3 | Mean DVH corresponding to each of the four planning strategies. AMD, achievable mean dose; STDpl, standard planning; SRRpl, planning with specific
SRR constraints without using AMD model; AMD_RECTpl, planning using the AMD model applied to the rectum only; AMD_RECT_SRRpl, combined strategy using
the AMD model applied to both the rectum and the SRR. The prescription dose was 78Gy. Wilcoxon tests were used to compare the DVHs from the standard
strategy (STDpl) to those of each planning strategy. Significant differences (p < 0.05) are displayed at the top of the graphic.

Figure 4 depicts the mean dose to the SRR for each
planning strategy (Figures 4A,B) to the SRR between
STDpl and each tested planning (SRRpl, AMD_RECTpl, and
AMD_RECT_SRRpl). Compared to STDpl, AMD_RECT_SRRpl

decreased the mean dose to the SRR up to 16.2Gy. The median
SRR mean dose reduction, compared to STDpl, was 4.6Gy when
using SRRpl, 5.1 Gy when using AMD_RECTpl, and 7.9Gy
when using AMD_RECT_SRRpl. Figure 5 illustrates the dose
distribution corresponding to each of the four planning strategies
for a given patient.

No correlation (|rS|< 0.21) was found between the mean
dose or the mean dose decrease to the SRR and VSRR or the
Voverlap(PTV n SRR).

NTCP Comparison Between the Four
Strategies
Table 1 displays the NCTP values computed from the SRR
when considering the four planning strategies. Compared to
STDpl, the AMD_RECT_SRRpl strategy significantly decreased
the estimated risk of RB. The NTCP values decreased from 22.8
to 17.6% when considering the SRR DVH.

Quality Comparison of the Planning
Between the Four Strategies
Table 1 displays the homogeneity and conformal indexes in
the PTV by the four planning strategies. The homogeneity
index significantly increased for AMD_RECT_SRRpl with
respect to STDpl. The conformal index significantly decreased
for the AMD_RECT_SRRpl with respect to STDpl. Table 2

displays the planning quality parameters for each strategy. The
MU significantly increased from 372 for STDpl to 454 MU
for AMD_RECT_SRRpl. The irregularity and the modulation
indexes significantly increased for the AMD_RECT_SRRpl with
respect to STDpl.

DISCUSSION

This paper proposed a methodology for decreasing rectal
toxicity by adding a patient-specific sub-region in the
prostate inverse radiotherapy planning and by using
a specific achievable mean dose model. We compared
four different inverse planning strategies in terms of

Frontiers in Oncology | www.frontiersin.org 7 September 2020 | Volume 10 | Article 1597259

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lafond et al. Planning With Decreased Toxicity Probability

FIGURE 4 | (A) Dmean to the SRR for the 60 patients; (B) Distribution of Dmean to the SRR according to the planning strategies. Mean dose (Dmean) to the subrectal
region (SRR) for the four planning strategies (STDpl, SRRpl, AMD_RECTpl, and AMD_RECT_SRRpl). AMD, achievable mean dose; STDpl, standard planning; SRRpl,
planning with specific SRR constraints without using the AMD model; AMD_RECTpl, planning using the AMD model applied to the rectum only; AMD_RECT_SRRpl,
combined strategy using the AMD model applied to both the rectum and the SRR.

FIGURE 5 | Illustration of the dose distributions corresponding to each of the four planning strategies for a given patient. AMD, achievable mean dose; STDpl,
standard planning; SRRpl, planning with specific SRR constraints without using the AMD model; AMD_RECTpl, planning using the AMD model applied to the rectum
only; AMD_RECT_SRRpl, combined strategy using the AMD model applied to both the rectum and the SRR. The prescribed dose is 78Gy.

dosimetric benefit, planning quality parameters, and
NTCP prediction.

A considerable dose reduction can be achieved to both
the rectum and the SRR with the combined approach
(AMD_RECT_SRRpl) compared to the standard planning
(Table 1). This planning strategy appears particularly appealing
because it is not invasive, can be easily customized, does
not increase the treatment workload, and offers improved
OAR sparing while preserving PTV coverage. Furthermore, the
application of the NTCP model ratifies a reduction in rectal
toxicity. It must be pointed out that decreasing the dose in

the SRR via the SRRpl, did not have any impact on dose
increase elsewhere in the rectum (Table 1, rectum without
SRR). On the contrary, a diminution on SRR mean dose was
accompanied by a global diminution of dose in the rectum (Dmean

and V70Gy).
For the dose planning step, the rectal and bladder walls were

used in order to meet the French GETUG recommendations.
However, both the whole 3D organ and the wall can be
considered either for planning dose constraints or for toxicity
prediction. As shown in the literature and confirmed in the
clinical routine, the recta DVH and rectal wall DVHs are highly
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TABLE 2 | Planning quality parameters for each planning strategy.

Planning

optimization

STDpl SRRpl AMD_RECTpl AMD_RECT_

SRRpl

Monitor units (MU) 372 ± 25 396 ± 29* 441 ± 35* 454 ± 42*

Irregularity index
(ideal value → 1)

4.35 ± 1.25 5.24 ± 1.08* 5.92 ± 1.62* 6.86 ± 1.8*

Modulation index
(ideal value → 0)

0.63 ± 0.04 0.65 ± 0.04* 0.69 ± 0.03* 0.69 ± 0.04*

AMD, achievable mean dose; STDpl , standard planning; SRRpl , planning with specific

SRR constraints without using AMDmodel; AMD_RECTpl , planning using the AMDmodel

applied to the rectum only; AMD_RECT_SRRpl , combined strategy using the AMD model

applied to both the rectum and the SRR.

Values are mean ± standard deviation.

*p < 0.05 (assuming significance level) of the Wilcoxon test comparing the standard

strategy to each of the tested strategy.

correlated (22). Moreover, rectal wall DVH provides a moderate
improvement when fitting NTCP models (23).

Concerning the dose constraints in the TPS, we implemented
a version of the AMD model proposed by Moore et al. (13) to
decrease the dose in the rectum and the SRR. This model was
first introduced in a dosimetric quality control context with the
aim of improving the planner’s experience in the case of inverse
planning. They proposed a simple tool using a generic model to
predict OAR mean dose taking into account the PTV and OAR
volume overlap. Their results showed a significant reduction to
the mean dose for both rectum and parotid glands, compared
to a standard planning approach. However, the application of
the AMD model requires a customization to each clinical center
and to each tumor location, as shown by Powis et al. (24) and
Delaby et al. (18). Powis et al. (24) improved plan quality for
prostate cancer. With their customized AMD model, the rectum
mean dose was significantly decreased from 41.6 to 36Gy, for a
prescribed dose of 74Gy to the prostate. Delaby et al. (18) showed
a dose reduction of 6.1Gy to the parotid glands using their own
adaptation of AMDmodel for H&N. In our study, the dosimetric
benefit on rectal mean dose was 4.1Gy (Table 1, STDpl minus
AMD_RECTpl) for a prescribed dose of 78Gy to the prostate.

Voxel-wise analysis by non-rigid registration has become
a well-established methodology able to unveil the likely
heterogeneous radiosensitivity across the organs, which may be
helpful in the identification of sub-regions to be spared at the
planning step. One of the major advantages of the voxel-wise
analysis is its ability to explore the full 3D anatomy without prior
assumptions regarding the location of regions correlating with
toxicity (25). As compared with dose surface maps, which have
also been used for this purpose, the voxel-based methods present
the advantage of generating 3D volumes that can be transferred
to the clinical practice in a straightforward way.

The rectal SRR, considered in this study, was previously
identified through voxel-based analysis as predictive of RB in a
series of 118 prostate cancer patients treated with IMRT/IGRT
and validated on a testing data set of 53 patients (10). This
SRR represented the 15% of the absolute rectal volume and was
located in the inferior–anterior rectal region. If the benefit of
using the SRR was shown in the previous study for toxicity

prediction (10), the present work additionally explores the
potential advantage of sparing this SRR during the planning.
The same workflow can be applied in other locations such
as lung, bladder, or H&N, where sub-regions have been
previously identified.

Our study presents several limitations. The main issue is
the lack of clinical data to demonstrate the real improvement
of combining the SRR with the AMD strategies in toxicity
reduction. Furthermore, we were not able to correlate geometric
characteristics (overlap volume between the PTV and SRR) with
the dose reduction within the SRR. As mentioned before, one
of the issues that may arise in voxel-wise analysis, stemming
from the interindividual variability, is the reproducibility of
the SRRs in different templates and the reliability of non-rigid
registration (26). The SRR used in this study was, however,
previously generated through repeated voxel-wise analyses on
118 different templates in a leave-one-out strategy (10) using
a validated non-rigid registration method (17), confirming the
robustness to the computed SRR. Because of the deformable
nature of organs and soft tissues, another potential issue is
that the planning dose may not be representative of the
true delivered dose. Indeed, considering the mean dose to
the rectum, the dose difference between the planned dose
and the estimated cumulated dose by elastic registration has
been quantified to be around 2Gy (27). Because organs
are moving and deforming between fractions, new models
should include this information either by quantifying daily
deformations with MVCT (28) or by estimating cumulative
dose with statistical methods as in Rios et al. (29). Other
image modalities such as cone-beam CT or magnetic resonance
imaging can also provide daily images helping to quantify
anatomical changes.

Although very useful for indicating achievable doses, the
use of the AMD model presents geometric and dosimetric
limitations. For instance, it only considers the global overlap
(OAR

⋂
PTV) volume, without taking into account the OAR

shape, orientation, or geometric irregularities. Wu et al. (30)
pointed out this issue by showing similar OAR

⋂
PTV overlap

configurations but with different OAR shapes. Hence, two
different configurations would yield equivalent AMD. They
also introduced the concept of overlap volume histogram
(OVH) to describe the fractional volume of the structure
of an OAR but with respect to a specified distance to the
target volume. The OVH is a shape relationship descriptor,
measuring the proximity of the OAR to the target, which
also provides a way to infer the likely DVH of an OAR.
A relation between DVH and OVH could be computed
near the target volume in order to refine the achievable
DVH. Wall et al. (31) investigated DVH-OVH (rectum and
bladder volumes) correlations in a series of 124 prostate
patients. By replanning 31 randomly selected patients, the
rectum mean dose decreased by 9.4Gy, compared to the
initial planning. Another limitation of the AMD model is the
use of the mean dose as a constraint. The mean dose is
rarely considered for dose–toxicity prediction in the rectum
as are rather the higher doses, which are correlated to rectal
toxicity (27).
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A practical limitation also exists regarding the generalization
of the proposed workflow in a clinical setup. This stems
from the fact that transferring the SRR to a specific patient
anatomy requires the use of nonintegrated tools in the
TPS for the time being. Nevertheless, the algorithm for
the SRR generation (10) has been implemented in an
in-house toolbox (RedTox R©), which produces a DICOM-
RT structure of the SRR in a few seconds, which can
be imported within any TPS. This workflow provides
therefore a way forward on the implementation of
personalized treatments.

CONCLUSION

In case of prostate cancer radiotherapy, a sub-region highly
predictive of RB, determined by voxel-wise analyses, was
transferred to patient-specific anatomies for dose planning.
The integration of this SRR into the TPS allows tailoring
a personalized planning with dose constraints based on an
AMD model. Compared to the standard planning approach,
the proposed AMD strategy decreases the rectal and the SRR
mean doses by 3.6 and 7.7Gy, respectively, while preserving
PTV coverage. This dosimetric benefit may be translated into
a relative reduction in probability of RB by 22%. Following
this workflow, a reduced-toxicity personalized treatment can

be achieved. Nevertheless, such clinical benefit on IMRT/IGRT
needs to be confirmed in prospective clinical trials.
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Prevents Radiation Induced Lung
Fibrosis
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Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China

Radiation induced lung fibrosis (RILF) is a common late complication after radiotherapy
without effective treatment. Thyroid hormone (TH) is known to reverse bleomycin-
induced pulmonary fibrosis in recent study. We therefore sought to examine TH effect
in RILF. Aerosolized TH delivery prevented pulmonary fibrosis according to either micro-
computed tomography scans or histological evaluations, without significant changes
in serum THs in a murine model of RILF by attenuating TGF-β1 and phosphorylated
Smad2/3 expressions and reducing the accumulation of M2-like macrophages.
Furthermore, hypothyroidism was significantly correlated with RILF in a retrospectively
analyzed data from nasopharyngeal carcinoma patients treated by intensity-modulated
radiation therapy with a median follow-up time of 25.5 months. Together, aerosolized
TH may prevent RILF by inhibiting the TGF-β1/SMADs signaling pathway.

Keywords: radiation induced lung fibrosis, aerosolized, thyroid hormone, TGF-β1, macrophage, hypothyroidism

INTRODUCTION

Radiotherapy is widely used in tumor treatment. More than 50 percent of malignant cancer
patients require radiation therapy for both curative and palliative purposes (1). However, the
application of radiotherapy is limited by the radiation-induced lung injury (RILI), which is a
common complication after radiotherapy of thoracic malignant tumors. RILI often causes early
radiation pneumonitis and late-onset radiation induced lung fibrosis (RILF) usually occurs in
1 year after radiotherapy (2). The incidence of symptomatic RILF in patients receiving thoracic
radiotherapy is about 5–24%, and higher in patients with subclinical damage (3). Because effective
treatments are lacking, RILF has an adverse impact on the quality of life of suffering patients,
causing cough, shortness of breath, fever, progressive respiratory dysfunction, or even death
(4–6). Currently, corticosteroids are commonly used in the clinic for radiation induced lung
injury. Several prevention strategies have shown certain promising effects in murine models of
RILF, including treatments with amifostine, ACE inhibitors, angiotensin II receptor inhibitors,
pentoxifylline as well as with inhibitors of PDGF, VEGF, FGF, TGF-β1, and Cox-2, but firm clinical
evidence is lacking (7–9).

Thyroid hormone is one of the most important hormones that regulate energy metabolism. The
levels of active triiodothyronine and its precursor thyroxine (T4) are mainly regulated by DIO2
in cells and tissues (10). There is growing evidence of the correlation between thyroid function
and fibrosis disease in patients. Grazinao (11) found that patients with idiopathic retroperitoneal
fibrosis (IRF) had a higher risk of hypothyroidism than controls (OR = 3.56, 95%CI 1.48–8.59,
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and P = 0.004). Nearly a quarter of IRF patients received
L-thyroxine at the end of the follow-up (median, 45 month),
but only 3% of controls needed treatment in the same period.
The incidence of hypothyroidism in idiopathic pulmonary
fibrosis (IPF) was 16.8%, compared with 7.1% in control
group; multivariate analysis showed that hypothyroidism was
an independent predictor of death risk in IPF patients (12).
Clinical data from a large sample showed that hypothyroidism
significantly correlated with non-alcoholic fatty liver
fibrosis (OR = 2.23, 95%CI 1.18–4.23, and P = 0.014) (13).
Hypothyroidism also plays an important role in myocardial
fibrosis (14) and diabetic nephropathy (15).

Furthermore, recent studies have shown that TH may have
a therapeutic effect in acute lung injury (16, 17). Yu et al.
(18) demonstrated that TH significantly attenuated adverse
signs in a mouse model of bleomycin-induced pulmonary
fibrosis by restoring epithelial mitochondrial function. TH
efficacy was higher than that of pirfenidone and nintedanib,
which are currently approved for IPF by the US Food and
Drug Administration. That study suggested that in contrast to
the expensive drugs mentioned above, TH may have broad
application prospects in IPF. However, the role of TH in RILF
has not been investigated so far.

It is generally accepted that TGF-β1 (19, 20) and the
polarization of M2 phenotype macrophages (21, 22) play critical
roles in multiple organ fibrosis as well as in RILF. Therefore,
inhibition of the TGF-β1 signaling pathway may be a plausible
strategy to alleviate RILF. It has been reported that TH
significantly reduced liver fibrosis and skin fibrosis in mice by
inhibiting transcriptional activation evoked by TGF-β/SMAD
(23). Based on this evidence, we explored potential protective
effects of TH in RILF in the present study.

MATERIALS AND METHODS

Animals and Radiation
Prednisone (PDN, HY-B0214) and 3,3′,5-triiodo-L-thyronine
(T3, HY-A0070A) were purchased from MedChemExpress
(Monmouth Junction, NJ, United States) and formulated in
dimethyl sulfoxide solution. RILF was modeled in female
C57BL/6 mice because they were likely to develop lung fibrosis
(24). A total of 60 female C57BL/6J mice (Experimental Animal
Center of Hubei province, China) aged 6–8 weeks were randomly
assigned to five groups: control group (n = 12), aerosolized T3
group (n = 12), radiation treatment (RT) group (n = 12), RT + T3
group (n = 12), and RT + PDN (n = 12). Drug delivery of T3
or PDN was started on the first day of RT and continued daily
for 1 month after RT. Each time, six mice were simultaneously
exposed to a nebulizer chamber where T3 suspension was
aerosolized at a dose of 40 µg/kg in 6 mL of phosphate
buffered saline by an ordinary aerosol nebulizer (Omron) until
atomization stopped (18). PDN was given intraperitoneally at
5 mg/kg. Mice developed pulmonary fibrosis after RT at a single
dose of 16 Gy, as previously described (25). Mice were maintained
in the specific pathogen-free animal facility of the Huazhong
University of Science and Technology.

Micro-CT Scan
At weeks 6, 16, and 25 after radiation, three mice per group were
randomly selected and sacrificed for thorax CT with a micro-CT
scanner (Skyscan 1176, Bruker Inc, Billerica, MA, United States).
The obtained CT images were imported into RadiAnt DICOM
Viewer 3.4.11. Lung slice image analysis was performed in the
most typical slice that exhibited pulmonary fibrosis features. Four
regions per slice were selected as measurement points: anterior
and posterior in right and left lungs. Quantitative lung density of
one mouse was represented as the mean Hounsfield unit (HU)
value± standard error of the mean (SEM).

Lung Histology and Fibrosis Score
Lung histological analysis was conducted as previously described
(25). Briefly, three mice per group were euthanized for histology
on the days of micro-CT chest scans. 25 weeks post RT, all
remaining mice were killed by cervical dislocation. The left
lungs were fixed in 4% paraformaldehyde for 24 h, embedded
in paraffin, then cut into 5 µm thick slices and stained
with hematoxylin-eosin stain and Masson’s trichrome stain for
collagen deposition.

The degree of pulmonary fibrosis was assessed by the modified
Ashcroft score (26) on a range from 0 to 8 by examining five
random microscopic fields at 200 × magnification. The final
fibrosis degree was determined by an average score of all fields.

Expression of proteins was examined by
immunohistochemistry (IHC) using staining with antibodies
against αSMA (1:100, 14395-1-AP, Proteintech, Wuhan, China),
F4/80 (1:400, ab111101, Abcam, United Kingdom), CD163
(1:200, ab182422, Abcam), iNOS (1:400, ab15323, Abcam),
CD206 (1:200, ab64693, Abcam), and DIO2 (1:200, 26513-1-
AP, Proteintech) according to previously described standard
procedures (25). IHC results were semi-quantitatively analyzed.
In brief, each sample was scored by combining immunoreactive
signal intensity (negative = 0, weak = 1, moderate = 2, and
strong = 3) and the percentage of positively stained cells
(<10% positive cells = 0, 10%–30% positive cells = 1, 30%–50%
positive cells = 2, and >50% positive cells = 3). All slides
were individually analyzed by two pathologists, using a light
microscope. All histological samples were randomly numbered
in a blinded fashion to avoid observer bias.

Human Tissue Samples
Human lung samples were collected from the Department of
Pathology of the Tongji Hospital, guided by Ethics Board at the
hospital without the need for specific consent. Lung samples were
obtained from pulmonary malignancy patients who underwent
surgery more than 6 months after radiotherapy. Surgical lung
specimens from patients that did not receive radiotherapy at the
same period were included as control. All patients were operated
at the Department of Thoracic Surgery in our hospital.

Patient Population and Follow-Up
In order to explore the role of hypothyroidism in RILF, we
retrospectively analyzed data from nasopharyngeal carcinoma

1http://www.radiantviewer.com/
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patients (NPC) treated by intensity-modulated radiation therapy
(IMRT) at the Tongji Hospital of the Huazhong University of
Science and Technology between January 2010 and December
2018, for thyroid dysfunction is prevalent after radiotherapy in
NPC. The bilateral upper lungs were delineated on computed
tomography (CT) scans, and lung doses were calculated. Eligible
cases had to meet the following inclusion criteria: confirmed
NPC without lung metastasis was present before radiotherapy;
IMRT was conducted in our hospital, thus complete information
was available; thyroid function was examined before and after
IMRT; patients with hypothyroidism before IMRT were also
included in the analysis; patients had a series of chest CT
scans in the follow-up every 2–3 months within 2 years after
treatment, and every 3–6 months later, finally annually after
5 years. We excluded subjects who had no irradiation dose in
lungs, were diagnosed with connective tissue diseases, or were
followed for less than 3 months. We restaged all patients using the
7th American Joint Committee on Cancer staging system. RILI
was confirmed according to Common Terminology Criteria for
Adverse Events (version 4.0).

Serum TH Assay
Total serum TH in NPC patients, including thyroid-stimulating
hormone (TSH), free triiodothyronine (fT3), and free thyroxine
(fT4) were measured in the Laboratory Department of our
hospital by using the electrochemiluminescence immunoassay.
The normal values for TSH, fT3, and fT4 were considered to
be 0.35–4.94 µIU/mL, 1.71–3.71 pg/mL, and 0.7–1.48 ng/dL,
respectively. The presence of abnormally elevated TSH in
the serum was defined as hypothyroidism, with or without
decreases in fT4.

Serum samples were prepared from mouse blood collected
from eyelids using BD vacutainers on the days of micro-CT chest
scans. In the remaining mice, serum was obtained at week 25
after RT using the same method. Total serum T3, T4, and TSH
levels were measured using a T3 (ELK1339, ELK Biotechnology,
Wuhan, China), T4 (ELK1204, ELK Biotechnology), and TSH
(ELK2284, ELK Biotechnology) ELISA kits, following the
manufacturers’ protocols.

Hydroxyproline Assay
Right lung hydroxyproline level was analyzed with a
hydroxyproline colorimetric assay kit (A030-2, Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) to assess
collagen content as previously described (25).

Western Blot Analysis
Total protein was extracted from mouse left lung tissue,
and its concentration was determined using the bicinchoninic
acid assay. Then the constituent proteins were separated by
electrophoresis in a 10% sodium dodecyl sulfate polyacrylamide
gel, transferred to polyvinylidene fluoride membranes (Millipore,
Billerica, MA, United States), covered with 5% milk at room
temperature for 1 h, and incubated overnight with appropriate
primary antibodies diluted in 0.1% Tween 20 (TBST) at 4◦C.
Primary antibodies against the following proteins were used:
SMAD2/3 (8685T, Cell Signaling Technology, Beverly, MA,

United States), p-SMAD2/3 (8828S, Cell Signaling Technology),
TGF-β1 (3711S, Cell Signaling Technology); GAPDH (AC002,
Abclonal, Wuhan, China); αSMA (14395-1-AP, Proteintech),
collagen I (14695-1-AP, Proteintech), and PAI-1 (TA504056S,
Origene, Maryland). After washing with TBST, the membranes
were incubated with anti-rabbit or anti-mouse IgG horseradish
peroxidase conjugated antibody (Cell Signaling Technology) for
1 h at room temperature. The protein bands were visualized
using SuperSignale West Pico plus Chemiluminescent Substrate
(Thermo Fisher Scientifice, Waltham, MA, United States).

Statistics
For the analysis of patient data, univariate analysis was performed
by the chi-square test, Fisher’s exact test, or Student’s t-test to
find possible risk factors associated with RILF. One-way analysis
of variance (ANOVA) was used to reveal whether the grouping
factor (treatment) differentially affected the results in more
than three groups. Significant variables in univariate analysis
were included into multivariate analysis with binary logistic
regression model. Comparisons between the experimental groups
for lung density, hydroxyproline content, fibrosis score, and
protein expression levels were performed by ANOVA or
Student’s t-test using Prism 6.01 (GraphPad Software, San Diego,
CA, United States) or SPSS 19.0 (IBM Corp, Armonk, NY,
United States). All statistical analyses were conducted with a
significance level of α = 0.05 (P < 0.05).

RESULTS

Pulmonary Fibrosis Development in RT
Treated Murine Model
Micro-CT scans performed at three time points after RT revealed
increased number of diffuse and patchy shadows in the RT
group. A trend of increase in lung density was observed after
RT, which turned to be significantly consolidated at week
16 and gradually stabilized over 6 months, suggesting the
development of RILF (Figures 1A,B). The irradiated field of
mouse hair slowly turned gray during the post-irradiation period
(Figure 1C). This indicated that our irradiated area coincided
with the lungs of the mice. The western blot assay indicated
that α-SMA, a myofibroblast activation marker that indicates
fibrosis severity, and PAI-1 expressions increased significantly
in lung tissue at week 16 after RT (Figures 1D,E). All these
results suggested obvious fibrotic changes in lung tissues by
week 16 post RT.

Attenuation of RILF Development in
Mouse Lungs by TH
To test the potential radioprotective effect of TH in RILF, micro-
CT and histological analyses of lung samples were performed
under the light microscope at 6 months post RT in each
experimental group. Manifestations such as the presence of
alveolar wall thickening, fibrotic nodules, and destruction of
alveolar structures after irradiation were less pronounced in the
RT + T3 group but not in the RT + PDN group, as compared
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FIGURE 1 | Establishment and confirmation of radiation-induced lung fibrosis in a murine model. (A) Representative images of micro-CT scan for lung density at
weeks (W) 6, 16, and 25 after irradiation in control or RT group. (B) Lung density evaluated by Hounsfield units (HU) presented as the mean ± SEM in
radiation-treated and control C57BL/6J mice over time (n = 3); *P < 0.05. (C) Photograph of a representative mouse at week 16 after radiation treatment. (D,E) The
expression levels of α-SMA and PAI-1 in treated or control groups at week 16 was determined by western blotting. **P < 0.01.

to the parameters in RT group according to hematoxylin and
eosin staining (Figure 2A) and modified Ashcroft scale (P< 0.01,
Figure 2E). No specific reduction of blue collagen deposition was
observed by using Masson’s trichrome stain (Figure 2B) at the
end point of the experiment in RT + PDN group compared to
the level of blue collagen in RT group. In contrast, we found
that lung hydroxyproline content was dramatically decreased
in RT + T3 group (Figure 2B; P < 0.05, Figure 2H) and α-
SMA expression was markedly reduced (Figure 2D; P < 0.01,
Figure 2G) compared to the values in RT group. Additionally,
we observed appearance of abnormal morphological changes of
patchy shadows, ground-glass opacity, and consolidation of large
areas of lung tissues (Figure 2C) in RT and RT + PDN groups.
However, the treatment of PDN could not inhibit the formation
of pulmonary fibrosis caused by RT. We further quantitatively
evaluated pulmonary fibrosis by estimating lung density using
HU values. A reduction of approximately 324 HU (Figure 2F)
was observed in RT + T3 group compared to the value in RT
group at 25 weeks post RT.

Lack of Change in Serum TH Levels After
Pulmonary Aerosolized T3 Delivery
In order to improve drug absorption in the lungs, aerosolized
T3 (40 µg/kg) was administered to treated mice. We sought
to verify whether this method of administration affected serum
thyroid function levels and/or had possible side effects. Serum
thyroid function tests were performed at 6, 16, and 25 weeks
after radiation scheduled on micro-CT chest scans. There were
no significant differences in serum T3, T4, and TSH levels among
these groups at those three experimental points (Figures 3A–C).
These results suggested that there was no obvious correlation

between the improvement of RILF by aerosolized T3 and possible
changes in serum TH levels.

Increased Risk of RILF in Patients With
Hypothyroidism
Next, we conducted a single-center retrospective clinical case
study. NPC patients that were regularly examined for serum TH
and had chest CT scans before and after IMRT were included in
this investigation. Dosimetric parameters of patients’ lungs were
calculated by a physicist. A total of 82 patients from January
2010 to August 2018 met the inclusion criteria. Two patients
had already suffered from decreased thyroid function at the
beginning of radiotherapy. Hypothyroidism is mainly caused by
significantly elevated TSH. Of the 82 subjects, 61 males and
21 females, 38.75% of the patients developed hypothyroidism
(Figure 4A) and 22.0% (18 patients) had mild RILF (Figure 4B)
during the median follow-up time of 25.5 months (2–79 months).

In the univariate analysis, V50 Gy was 16.11 ± 13.59 cm3

in the RILI group and 4.29 ± 5.77 cm3 in the non-RILI group
(P = 0.002). At the same time, hypothyroidism [odds ratio (OR)
4.095, 95% confidence interval (CI) 1.349–12.429, P = 0.01] and
N stage (P = 0.018) were also significantly correlated with RILI,
respectively, (Table 1). For the N stage, chi-square test showed
that N3 stage was significantly associated with RILI (N3/N1: OR
6.60, 95%CI 1.515–28.747, P = 0.014; N3/N2: OR 5.20, 95%CI
1.181–22.891, P = 0.047), while N2 had no statistical significance
compared with N1 (OR 1.269, 95%CI 0.366–4.398, P = 0.707).
Finally, multivariate logistic regression analysis model found
that V50 Gy (OR 1.173, 95% CI 1.077–1.278, P < 0.001) and
hypothyroidism (OR 6.137, 95%CI 1.448–26.002, P = 0.014) were
significantly associated with RILI (Table 2).
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FIGURE 2 | Aerosolized T3 prevents pulmonary fibrosis post radiation treatment in mice. (A,B) Representative images of hematoxylin/eosin (200×; scale
bar = 100 µm) and Masson’s trichrome staining (100×; scale bar = 250 µm) from each group at 25 weeks after radiation treatment. (C) Images of representative
micro-CT scans obtained at week 25 post radiation treatment in each group. (D) Representative immunohistochemistry staining images with α-SMA protein
expression (200×; scale bar = 100 µm) in lung tissues in each group at the end of the experiment. (E) Grading of pulmonary fibrosis evaluated blindly by the
modified previously described Ashcroft Scale at week 25 post radiation treatment. (F) Lung density values evaluated quantitatively by Hounsfield units derived from
micro-CT scans at week 25 post irradiation (n = 3 for each individual group). (G) Immunohistochemistry scores for lung histopathological changes calculated using a
semi-quantitative scoring system. (H) Collagen deposition in mouse right lung tissue assessed by measuring hydroxyproline content in each group at the end of the
experiment. Data are expressed as the mean ± SEM, *P < 0.05, **P < 0.01. There were six mice in each group, except where indicated otherwise.
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FIGURE 3 | Serum levels of thyroid hormones in mice at different time points. (A–C) Serum T3 (pmol/mL), T4 (pmol/mL), and TSH (pg/mL) levels in each
experimental group at weeks 6, 16, and 25 after radiation treatment. No significant effect of time on concentrations was observed. Data are presented as the
mean ± SEM. Weeks 6 and 16: n = 3; week 25: n = 6.

Higher Expression of DIO2 in Human
RILF Tissues and Inhibition of TGF-β1
Signaling in the Lung by TH
Irradiated lung tissue was acquired from the surgical samples of
five patients treated between 2011 and 2018 in our hospital. They
were four squamous lung cancers and one lung metastases from
colon carcinoma, who had relapsed in situ after radiation therapy.
They all had received preoperative radiation treatment with a
total dose ranging from 50 to 66 Gy between year 2008 and 2017.
Untreated control lung samples were obtained from another
five patients that did not receive any radiotherapy. In contrast
to control samples, samples from patients with RILF displayed
thickening of the alveolar septum or loss of alveolar structure
and deposition of collagen fibers (Figure 5A). Considering the
established role of iodothyronine deiodinase in T4 to active T3
conversion in tissues, we investigated the expression of DIO2
gene in order to verify the relationship between TH and RILF.
Interestingly, DIO2 was highly expressed in epithelial cells within
fibrotic regions of irradiated human lung tissue compared to its
low-level control group (Figures 5B,C), suggesting that locally
increased T3 concentration may improve energy metabolism of
alveolar epithelial cells in the stressed fibrotic lung. Given the very

limited number of human RILF tissue samples, this result implies
a potentially protective role of TH on RILF.

In order to investigate the mechanisms whereby T3 exerts
a protective effect on RILF, we evaluated the expression of
pro-fibrotic growth factors in the lung tissues of mice using
western blotting. Collagen I and TGF-β1 were found to be highly
expressed in the lungs of RT and RT + PDN groups. In contrast,
the expression of the principal pro-fibrotic factor TGF-β1 was
decreased in sham RT and RT + T3 groups. In addition, western
blotting also demonstrated that phosphorylated Smad2/3 levels
were reduced in RT + T3 group (Figures 5D,E). These results
suggested that T3 likely mitigated RILF by inhibiting expression
of TGF-β1 and its downstream signaling molecules.

M2 but Not M1-Like Macrophages
Accumulate in RILF
We explored the role of macrophages in clinical and preclinical
animal levels. Compared with the control group, scattered
macrophages could be found in the pulmonary fibrosis area of
mice at 25 weeks after irradiation, which had the morphological
characteristics of nuclear deviation and relatively large cell
volume (Figure 6A). F4/80 (macrophage marker) positive
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FIGURE 4 | Changes of serum thyroid function and bilateral pulmonary apex
in patients with nasopharyngeal carcinoma after radiotherapy. (A) The
cumulative incidence curve of radiation-induced hypothyroidism (two patients
had already suffered from hypothyroidism before radiotherapy). The
cumulative incidence was 49.58% at 3 years after radiotherapy. (B) CT
images of patients before and after radiotherapy. Increased density of apex or
superior lobe of lungs is seen on the follow-up CT examination after
radiotherapy. Such changes without serious clinical symptoms could be
classified as grade 1 radiation-induced lung injury.

cells were observed in pulmonary fibrosis tissues induced by
irradiation than that of sham irradiation controls (P < 0.01,
Figures 6B,E). Notably, in the lung tissues of RT + T3 group, but
not RT + PDN group, the decrease of F4/80 positive macrophage
proportion was detected along with the remission of pulmonary
fibrosis (P < 0.05, Figures 6B,E). An obvious increase of M2-like
macrophages (CD206 positive cells) were predominantly located
in lung fibrosis tissues. Moreover, M2-like macrophages were
significantly reduced in RT + T3 group (P < 0.05, Figure 6E). In
contrast, there was no significant change in the proportion of M1-
like macrophages (iNOS positive cells) in each group (Figure 6E).
We then also assessed the accumulation of M2-like macrophages
in irradiated human lung tissues. Compared to non-irradiated
control lung tissues, M2-like macrophages (CD163 positive cells)
were significantly increased in human pulmonary fibrotic area
(P < 0.05, Figures 6C,D). These results suggest that M2 rather
than M1-like macrophages are associated with RILF, and that
aerosolized T3 attenuates RILF in mice accompanied by a
decrease in M2-like macrophages in the fibrosis tissue.

DISCUSSION

Radiation induced lung fibrosis is a common complication in
the management of radiotherapy and it seriously affects patients’

TABLE 1 | Univariate analysis of radiation-induced lung injury risk factors.

Variable RILI non-RILI P value

Gender 0.709

Male 14 47

Female 4 17

Year 48.6 ± 8.10 46.1 ± 9.60 0.333

T stage 0.481

T1-2 6 16

T3-4 12 48

N stage 0.018

N1 6 33

N2 6 26

N3 6 5

M stage 0.22

M0 17 64

M1 1 0

V50 Gy, cm3 16.11 ± 13.59 4.29 ± 5.77 0.002

Induction chemotherapy 0.108

NO 0 10

YES 18 54

Concurrent chemotherapy 0.678

NO 1 7

YES 17 57

Hypothyroidism 0.01

NO 6 43

YES 12 21

Values are expressed as number or mean ± SD. Variables that were significantly
altered (P < 0.05) are highlighted. RILI, radiation induced lung injury; V50 Gy,
normal lung volume that received radiation dose > 50 Gy.

TABLE 2 | Multivariate analysis of radiation-induced lung injury risk factors.

Variable OR 95%CI P value

Hypothyroidism 6.137 1.448–26.002 0.014

V50 1.173 1.077–1.278 <0.001

OR, odds ratio and CI, confidence interval.

quality of life. To date, however, there is still no viable therapeutic
strategy for RILF, and its mechanism remains unclear. With the
growing incidence and mortality rate of lung cancer worldwide
(27), therapies that prevent RILF represent an unmet clinical
need. In the current study, we have demonstrated a therapeutic
effect of aerosolized T3 treatment in a rodent experiment
model during the post RT phase. Secondly, we showed that the
antifibrotic effect of T3 does not require increased serum levels
of T3, T4, or TSH, suggesting that aerosolized delivery may be
effective without side effects of iatrogenically elevated thyroid
hormones. Thirdly, we found that hypothyroidism increases the
risk of RILF in NPC patients; moreover, M2-like macrophages
were associated with RILF. Considering these results, we suggest
the delivery of aerosolized T3 as a new potential treatment
strategy for RILF attenuation.

Thyroid hormone regulates diverse biological processes, from
growth to metabolism, and is critically important for nearly all
tissues (28–30). Both T4 and T3 can be deiodinated either into
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FIGURE 5 | Increased DIO2 expression in lung tissue after radiation treatment and inhibition of the TGF-β1 signaling pathway by thyroid hormone. (A) Representative
images of hematoxylin/eosin and Masson’s trichrome staining (100×; scale bar = 250 µm) from treated (n = 5) and control (n = 5) patients. Absence of alveolar
structures and apparent collagen deposition can be seen in the irradiated lung tissue. Representative immunohistochemistry staining (B) and immunohistochemistry
scores (C) for DIO2 (200×; scale bar = 100 µm) in human lung tissue samples (n = 5) showing DIO2 expression in the lung affected by radiation-induced lung
fibrosis (left) and in control lung (right). (D,E) Western blots of profibrotic growth proteins (collagen I, TGF-β1) and p-Smad2/3, a downstream protein in the TGF-β1
signaling pathway, in mouse lung tissues of each group at 25 weeks post radiation treatment are shown. *P < 0.05; **P < 0.01.

the active form by DIO1 and DIO2 or into the inactive form — by
DIO3 (31). DIO2 plays a major role in the synthesis of biologically
active TH. Increased expression of DIO2 in tissues may reflect
either a lack of TH or the need for increased metabolism. Previous
studies have shown that hypothyroidism is associated with poor
prognosis in many critical diseases, including heart failure (32),
non-alcoholic fatty liver disease (33), chronic kidney disease (34),
and lung disease (28). Hypothyroid mice suffered more severe
lung injury than those with normal serum TH levels in a mouse
model of ventilator-induced lung injury, and administration of
T3 reduced chemokine and cytokine levels in Dio2 knockout
mice (16).

Our results showed that the relationship between both the
expression of DIO2 protein as well as TH levels and RILF
was consistent with the above results, indicating that there is
a correlation between RILF and TH. It is common to find
pulmonary shadows in follow-up CT image examinations in
some NPC patients due to upper lungs being exposed to the
radiation field, which could also be classified as RILI. According
to two population-based studies, the incidence of radiation-
induced hypothyroidism varied from 27 to 70% in patients
that received a dose of 7.5–40 Gy (35, 36). The incidence of
hypothyroidism induced by radiation was 38.75% during the
follow-up in our study. All patients observed in this cohort had
subclinical hypothyroidism. The reasons for this finding likely
include insufficient follow-up duration in a small sample and
wide use of IMRT in our hospital (37, 38). Bhandare’s study
(39) reported that the median latency of clinical hypothyroidism

was 4.8 years. RILF occurred in 18 (22.0%) of 82 patients
from our cohort during a median follow-up of 25.5 months
(range 2–79 months). The proportion of RILF in subjects with
hypothyroidism was obviously higher than that in subjects with
normal thyroid function, and hypothyroidism was significantly
associated with RILF in multivariate logistic regression analysis
model. This finding may help understanding the mechanisms of
RILF occurrence.

The pathological mechanism of hypothyroidism leading to
RILF remains unclear. One possible link may lie in thyroid
transcription factor-1 (TTF-1). It plays an important role in the
differentiation and formation of both thyroid and lung. Increased
expression of TTF-1 was found in some thyroiditis patients
(40). In the lung, TTF-1 regulates the differentiation of alveolar
epithelial cells and the expression of alveolar surfactant protein,
which is very important to maintain alveolar ventilation function
and repair lung injury (41). Another possible link maybe related
to the biological functions of thyroid hormone, which is not
only an important in regulating human endocrine metabolism,
but also affects mitochondrial function and transformation.
Mitochondrial damage contributes to the development of RILF.

Treatment with TH, an old but probably underused
drug, may be utilized in cases with pathologies other than
thyroid dysfunction. Some synthetic TH mimetics have shown
encouraging results in the experimental treatment of obesity,
dyslipidemia, and liver cancer (42). T3 also could alleviate the
pulmonary fibrosis in TGF transgenic mice, but the mechanism
is not fully explained (18). Recent studies showed that TH
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FIGURE 6 | Macrophage accumulation in the lungs of mice and humans after thoracic radiotherapy. (A) Representative images of macrophage in mice lung
25 weeks post irradiation compared to controls in HE staining. arrows indicated macrophages (200×; scale bar = 100 µm). (B) Representative images of total, M1
and M2 macrophages in lung tissues of each group identified by F4/80, iNOS, and CD206, respectively, using immunohistochemistry (400×; scale bar = 50 µm).
(C) Representative immunohistochemistry images of CD163 positive macrophage in lung tissues (200×; scale bar = 100 µm). (D) Imimmunohistochemistry
assessment for macrophage quantification in lungs of control and irradiation patients (n = 3 per group). (E) The numbers of F4/80, iNOS, and CD206 positive
macrophages were counted at high magnification field and take the average of three times (n = 3 per group), data are expressed as the mean ± SEM, *P < 0.05.

attenuated skin and pulmonary fibrosis induced by bleomycin
and liver fibrosis caused by carbon tetrachloride in mouse
models. These actions may be explained by TH effects on
mitochondrial biogenesis and inhibition of TGF-β1-dependent
transcription (18, 23). TGF-β1 plays a critical role in profibrotic
signals: about 80% of the proteins encoded by genes dysregulated
in pulmonary tissues from IPF patients have been reported
to be associated with TGF-β1 signaling pathway (43). RILF
is similar to other forms of lung fibrosis, especially IPF.
Aerosolized TH treatment significantly reduced expression of
profibrotic growth proteins, including collagen I, PAI-1 and
TGF-β1, whereas no such down-regulation was observed in
the RT + PDN group in our study. We concluded that PDN
did not inhibit the elevation of TGF-β1 and thus had no
anti-fibrotic effect previously suggested by Arata et al. (44).
Furthermore, we also consistently found that expression level
of phosphorylated Smad2/3, an important transcription factor
downstream of the TGF-β1 pathway, was significantly decreased
in TH treatment group.

A recent study showed that M2-like tissue-infiltrating
macrophages played an important role in RILF (21), but the
relationship between local or recruited alveolar macrophages
and RILF is still worthy of further study (45). Alveolar
macrophages are highly heterogeneous. M1 like macrophages

mediate resistance to pathogens, while M2 like macrophages have
anti-inflammatory and repair functions (46). T3 can promote the
polarization of mouse bone marrow-derived monocytes to M1
macrophages phenotype and inhibit activated M2 macrophage
phenotype (47). Tumor infiltrating myeloid-derived cells secrete
high levels of TGFβ, and up-regulate CD206 expression (48).
In the pulmonary fibrosis model induced by TGF-β1, reduced
pulmonary M2 macrophages had a significant anti-fibrosis effect
(49). A study suggested that the development of RILF may
depend on TGFβ to promote the transformation of macrophages
into M2 phenotype (50). However, glucocorticoids can reduce
the number of M1 phenotype differentiation of macrophages
(51) and have the ability to promote the activation of M2
phenotype macrophages (52). In our study, we also found
that the M2 macrophages in lung tissues did not decrease,
and even showed a trend of increasing in RT + PDN
group. This may partly explain the role of thyroid hormone
in alleviating RILF, which may be associated with TGFβ1
and macrophages.

Our study had some limitations. First, our clinical data
were obtained from a retrospective analysis of a small size
cohort that did not have very long follow-up. Secondly, we
included into the analysis the patients that did not receive
thoracic radiotherapy and had no advanced RILF. Thirdly, several
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questions related to the mechanism of TH involvement were not
studied. For example, we mainly focused on the DIO2, whereas
other deiodinases were not detected, and the mechanism of the
role of DIO2 in the development of fibrosis after irradiation need
to be further explored. Furthermore, the mechanism underlying
inhibitory effects of TH on TGF-β1/SMAD signaling pathway
and M2-like macrophage has to be elucidated.

In conclusion, despite recent advances in radiation treatment
planning and image-guide radiation therapy, RILF still remains
a limiting factor for local tumor control by radiotherapy. To the
best of our knowledge, our study for the first time demonstrated
that hypothyroidism maybe associated with an increased risk of
RILF in patients and provided the first evidence that T3 may be a
safe therapeutic option to prevent RILF.
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Normal tissue complication probability (NTCP) models that were formulated in the
Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) are one of the
pillars in support of everyday’s clinical radiation oncology. Because of steady therapeutic
refinements and the availability of cutting-edge technical solutions, the ceiling of organs-
at-risk-sparing has been reached for photon-based intensity modulated radiotherapy
(IMRT). The possibility to capture heterogeneity of patients and tissues in the prediction
of toxicity is still an unmet need in modern radiation therapy. Potentially, a major step
towards a wider therapeutic index could be obtained from refined assessment of
radiation-induced morbidity at an individual level. The rising integration of quantitative
imaging and machine learning applications into radiation oncology workflow offers an
unprecedented opportunity to further explore the biologic interplay underlying the normal
tissue response to radiation. Based on these premises, in this review we focused on the
current-state-of-the-art on the use of radiomics for the prediction of toxicity in the field
of head and neck, lung, breast and prostate radiotherapy.

Keywords: Radiomics, Intensity modulated radiotherapy, xerostomia, radiation induced lung injury, cardiac
toxicity, lower gastro-intestinal toxicity

INTRODUCTION

The seminal QUANTEC collection (1) provided a comprehensive set of recommendations for the
estimation of normal tissue complication probability (NTCP) that were largely based on empirical
data, whereas the earlier influential paper by Emami (2) was mainly based on a consensus of experts.
Leveraging the available published evidence into definitions of dose-volume relationships for most
organs at risk epitomized the paradigm shift of QUANTEC.

However, its analyses relied on data from a time when predominantly 3D-conformal
radiotherapy (3DCRT) was used with relatively uniform dose distributions. The advent of intensity
modulated radiotherapy (IMRT) led to an unprecedented improvement in radiation ballistics (3),
allowing for exquisite precision in dose distribution. Over the years, through constant optimization
of IMRT techniques (4), the ceiling of organ-at-risk sparing has been reached: in the frame of
photon therapy delivery, incremental advances in the reduction of radiation-induced toxicity are
unlikely to occur, mainly due to limits dictated by physics. Ideally, further improvement must
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come from better shaping the dose distribution, which can
only be personally optimized if precise knowledge (5) of dose-
effect relationships is used. The current state-of-the-art of
relying exclusively on NTCP models from QUANTEC has
its own caveats (6): above all, the lack of integration of
biologic heterogeneity and patients’ individual factors such as
age, comorbidities, pre-existing organ dysfunction, and use of
systemic agents represent the most limiting factors. In addition,
an overarching issue is represented by the paucity of external
validation studies (7, 8) for most NTCP models.

Overall, the absence of predictive biomarkers for radiation-
related morbidity is a major unmet need in modern radiation
therapy. Within the last 10 years (9, 10), the advent of radiomics
has reshaped the approach to medical images, based on the
hypothesis that they are inherently able to convey information
on the underlying physiopathology. Standardization in image
acquisition, high-throughput generation of objective descriptors
and extensive data-mining characterized the transition from
purely qualitative to quantitative imaging (11). As outlined in the
pivotal CRUK-EORTC consensus review (12), distinct features
can be envisaged in the re-thinking of imaging as a biomarker:
non-invasiveness, serial assessment, comprehensive tumor
mapping, repeatability, and cost-effectiveness. In the perspective
of personalized oncology (13) as currently implemented in the
clinic, the use of quantitative imaging may allow us to overcome
the known limits associated with molecular profiling. Several
applications of radiomics in the field of precision radiation
oncology have been identified, providing insights in terms of
stage discrimination (14, 15), molecular stratification (16–18),
prognostic impact (19, 20), and prediction of response to
treatment (21–23). With imaging, the possibility to capture
intrinsic tumor and organ-specific heterogeneity could be
leveraged to evaluate the individual predisposition to radiation-
induced toxicity (24). Thus, radiomics-based analyses have the
potential to enrich standard NTCP models for the definition of
individualized risk profiling, ultimately aiming for a personalized
patient management and optimized therapeutic ratio. At present,
such efforts must still be considered investigational and not
ready for prime time (25). The aim of our mini-review was
to provide an overview on the evidence pertaining to the role
of radiomics in the prediction of radiation-induced toxicity
for parotid glands, lungs, heart, and rectum. Based on the
aforementioned premises, in each of the following sections an
introduction on the traditional QUANTEC-based NTCP models
is followed by the description of the most relevant data thus far
available on radiomics-analyses and their potential in improving
the predictive ability of side effects.

HEAD AND NECK RADIOTHERAPY:
PAROTID GLANDS

Xerostomia represents a well known side-effect in head and
neck cancer (HNC) radiotherapy (RT), accounting for significant
impairment in patients’ quality of life due to its impact on
taste, swallowing, and speech (26). The major determinant of
xerostomia is radiation-induced damage of the parotid and

submandibular glands, which globally release over 80% of
saliva (27). The QUANTEC consortium (6, 28) identified a
mean parotid gland dose of 26 Gy as a critical threshold
for the preservation of salivary function. However, in IMRT
clinical practice, it is often challenging to comply with this
recommendation, since a detrimental impact on target coverage
can’t be completely minimized (29). Furthermore, it has been
demonstrated that a late recovery of salivary function is feasible,
even in cases of overt xerostomia shortly after RT (30). These
considerations led to the assumption that the dose-response
relationship of parotid glands is more complex than initially
hypothesized in QUANTEC, and that within this context, the
use of quantitative imaging could lead to a better understanding
of this issue. In an effort to better elucidate radiation-induced
xerostomia pathogenesis, van Lujk et al. (31) postulated the
existence of stem cell regions in the context of parotid glands
involved in the regeneration of salivary function. As the
distribution of stem cells within the parotid gland was shown
to be inhomogeneous, with the highest concentration located
near the dorsal edge of the mandible (where the first branching
of the Stensen duct is located), it has been theorized that
intentionally sparing these sub-regions would yield better results
rather than attempting to spare the whole gland. The validity
of this approach was further confirmed by a post hoc analysis
of the PARSPORT trial performed by Buettner et al. (32). In
fact, by taking into account the spatial information of dose
distribution within parotid glands, the authors demonstrated that
a significantly better prediction of patient-reported xerostomia
could be obtained in respect to a model solely based on standard
mean dose. Further efforts in unraveling the complex relationship
between dose distribution within the parotid and NTCP led
to the concept that different thresholds for xerostomia injury
and recovery exist. Recently, Guo et al. (33) assessed the spatial
radiation dose-based importance pattern in the major salivary
glands in relation to late and acute xerostomia in a retrospective
population of 146 HNC patients. The authors identified the
superior portion of the two parotid glands (low dose region) as
the most influential on xerostomia recovery, and demonstrated
a different voxel hierarchy pattern for injury and recovery. In
a retrospective analysis on 258 patients, Han and colleagues
(34) showed an inverse correlation between the pattern of
dose-volume histograms and clinical outcomes: a relatively high
dose to small portions of a glandular sub-volume (between 10
and 40%) may be more harmful than a low-dose bath effect.
Hence, in terms of function preservation, limiting the dose
to specific sub-volumes such as the superior-posterior region
of the ipsilateral parotid gland may be more useful (nested
cross-validation area under the curve (AUC) – values of 0.78
and 0.70 for prediction of injury and recovery, respectively).
In this perspective, the identification of quantitative imaging
parameters correlated with both acute and late xerostomia is
of paramount importance. Changes over time of radiomics
features (delta-radiomics) have been extensively evaluated both
in terms of acute and late xerostomia prediction (35–38). In
an effort to better elucidate the relationship between parotid
gland shrinkage after RT and late xerostomia, van Dijk et al.
(37) recently demonstrated a correlation between delta radiomics
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surface changes in contralateral parotid gland and late xerostomia
in 68 patients (AUC 0.93 in test cohort). This association was
significant during the whole course of RT, but performed best
for mid-treatment (week 3). This finding may have profound
clinical implications, allowing an early identification of patients
at risk for developing late side effects and prompting adaptive
re-planning or even switching to other forms of radiation (e.g.,
proton therapy). A similar approach was performed by Rosen
and colleagues (38), who retrospectively analyzed serial cone-
beam CTs (CBCT) of 119 HNC cancer patients undergoing RT.
The authors concluded that the rate of CBCT-measured parotid
gland image feature changes improved NTCP modeling over dose
alone for late xerostomia prediction (AUC 0.77). In the context
of late xerostomia prediction, baseline evaluation of changes in
magnetic resonance (MR) and 18F-fluorodeoxyglucose (FDG)
positron emission tomography/computed tomography (PET-
CT)-based parotid gland features was also shown to be a
promising field of application (39–43). In particular, parotid
glands with low metabolic activity and a low fat-to-functional
parenchymal ratio were matched by more heterogeneous
intensity and texture imaging features: overall, these hypothesis-
generating studies showed that pre-treatment radiomics-based
prediction outperformed conventional NTCP models. Finally,
a machine-learning approach integrating dosiomics, radiomics,
and morphological data in predicting both acute and late injury
to salivary glands has recently shown promising results (44,
45). Interestingly, by applying a novel artificial intelligence
methodology (“likelihood-fuzzy analysis”), Pota et al. (46)
identified quantitative predictors of 12-month toxicity through
a longitudinal assessment of parotid glands in a dual institution
experience. Taking all data together, radiomics-based analyses
proved to be reliable tools to assess the risk for xerostomia
in HNC patients, warranting further validation in larger
prospective cohorts.

THORACIC RADIOTHERAPY: LUNG

Radiation-induced lung injury (RILI) is at the same time
a complex radiobiological entity with a multi-faceted
physiopathology and a serious challenge for the clinician,
representing an important source of morbidity in 15–40%
(47, 48) of patients receiving radiation or chemoradiation as
definitive treatment for non-small cell lung cancer (NSCLC).
In the IMRT era, a stringent trade-off between dose delivery to
locoregional disease and adequate sparing of healthy lung tissue
is advocated. This assumption was corroborated by a secondary
analysis of the controversial RTOG 0617 trial, suggesting that
the lack of benefit of dose escalation may have resulted from
an increase in cardio-pulmonary mortality in patients receiving
more aggressive dose regimens (49, 50). It is well known that
RILI is a dose-limiting toxicity in the management of esophageal
cancer (51, 52) and lymphoma (53, 54) patients, as well. In view
of the usually lower total dose delivered for these malignancies
in current practice, the most compelling evidence on radiation-
induced lung toxicity can be extrapolated from NSCLC. Hence,
it is of primary importance to unravel the intricate network of

technical, clinical, and treatment-related factors implicated in
the onset of RILI in order to develop models that allow us to
accurately predict the risk of serious adverse events. The use
of dose estimates to the lung as a predictor of RILI risk is well
established (55), while the role of other factors, in particular dose
to the heart, is controversial (56–58). Currently, dose-volume
parameters, namely the mean lung dose (MLD) and the volume
of lungs receiving at least 20 Gy (V20Gy), have been integrated
in the QUANTEC (59) as partially reliable surrogates for the
risk of radiation pneumonitis. Taking into account the known
low dose bath-effect of IMRT, lower dose-volume thresholds
have also been suggested, such as V13Gy (60, 61) and V5Gy (54,
62) In comparison with the historical standard Lyman model,
the development of the “generalized Lyman-model” (GLM)
(63) led to the introduction of a new radiobiological parameter
(the effective dose, or Deff, corresponding to the equivalent
uniform dose, EUD), allowing for exposed volumes of the
organ at risk to be weighted differently. However, dose-volume
parameters do not ultimately allow us to take into account
the functional heterogeneity within different lung regions and
among individuals. On the other hand, data extraction from
pre-treatment imaging may provide information for a tailored
strategy. Thus far, a few reports are available on the potential
added value of radiomics in the context of RILI prediction. In
a single-center, retrospective experience on 96 patients who
received curative RT for esophageal cancer, Anthony et al.
(64) evaluated the correlation between the development of
symptomatic radiation pneumonitis and pre-treatment analysis
of FDG PET/CT and diagnostic CT scans. In a logistic regression
model, the addition of the standard uptake value (SUV) standard
deviation to 18 lung CT texture feature changes in the low-dose
area (0–10 Gy) improved by 0.08 the mean AUC value in
discriminating the diagnosis of RILI. In a larger experience on
192 patients treated for NSCLC in the same institution, Krafft
et al. (65) extracted 6851 features from planning CT scans, as
candidate predictors for RILI. Compared with standard clinical
and dosimetric factors, at least absolute shrinkage and selection
operator (LASSO) logistic regression, a final 449-feature set of
the total lung volume yielded a higher average cross-validated
AUC, demonstrating improved discrimination (0.51 and 0.68,
respectively). The existence of a strict relationship between the
dose distribution, a change of CT texture features before and after
RT, and the risk of RILI development was firstly demonstrated
by Cunliffe et al. (66). Recently, this dosiomic approach was
replicated through a convolutional deep-neural network analysis
(67, 68) in a cohort of 70 NSCLC patients treated with volumetric
modulated arc therapy (VMAT), providing a high discriminative
power (AUC of 0.84) over standard logistic regression models for
the prediction of radiation pneumonitis. Taking into account the
much less clinically relevant impact of radiation pneumonitis in
the context of stereotactic body RT, limited data are available (69,
70) in this context in comparison to conventionally-fractionated
regimens. Overall, in parallel to robust prognostic value in the
context of stereotactic body RT (71) and chemoradiation (72),
the reported data promisingly support the relevance of radiomics
in the prediction of lung toxicity. However, to take into account
the complexity of RILI, optimal models should integrate, in
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addition to dosimetric variables, other individual risk factors
such as age (73), genetic polymorphysms (74), pre-existing
functional impairment of the lung (48), chemotherapy regimens
(75), and, curiously, a paradoxical protective effect of smoking
as a possible result of functional exhaustion of the inflammatory
microenvironment in current smokers (73). In summary, RILI is
a multi-faceted phenomenon resulting from complex processes
that depend on biologic, dosimetric, and treatment-related
variables that need to be integrated in a comprehensive model
(76, 77), beyond a mechanicistic dose-response relationship.

BREAST RADIOTHERAPY: HEART

Radiotherapy plays a crucial role in the curative management
of non-metastatic breast cancer, with well-established benefits
in terms of loco-regional control and survival for node-positive
patients (78, 79). In 2005, the Early Breast Cancer Trialists’
Collaborative Group (EBCTCG) meta-analysis on individual
patient data epitomized the known potential correlation of
radiation and cardiac damage, showing a significant excess of
non-breast cancer mortality from heart disease (rate ratio 1.27,
SE 0.07, 2p = 0.0001) (80). Notably, the high cure rate of
radiation for Hodgkin lymphoma (HL) has been historically
offset by late heart dysfunction in long survivors (81). In the
QUANTEC publication (82) it was recommended that the heart
volume receiving up to 25 Gy (V25) should be below 10%. In
current practice, the “ALARA” (“as low as reasonably achievable”)
principle is usually applied to left-sided breast cancer patients,
aiming for a mean heart dose (MHD) below 2 Gy whenever
possible. However, the NTCP model does not take into account
other dosimetric factors, such as the possible interaction between
cardiac and lung dose-volume parameters (83), as suggested by
Cella et al. in an institutional analysis on 90 HL patients (84).
Abnormalities in myocardial perfusion and echocardiography
have been reported (85) when larger than average heart volumes
were inadvertently irradiated. In particular, a mean dose to the
left ventricle of 9 + 4 Gy was significantly correlated with a
reduced anterior wall strain (-16.8% at 14 months after RT), an
early surrogate marker of myocardial function detectable with
doppler echocardiographic imaging. Conversely, in patients with
relatively low MHD (< 4 Gy), Bian et al. found no association
between cardiac dosimetry and left ventricular ejection fraction
(LVEF) (86). Multiple heart dose parameters have been associated
with clinically relevant cardiotoxicity in breast cancer (87). At a
median follow-up of 12 years, Correa et al. found an increased
incidence of coronary artery disease and chronic heart failure
(CHF) rates for increasing heart dose (85). Likewise, Saiki et al.
found a significant association between MHD and the risk of
heart failure with preserved ejection fraction (OR: 16.9, 95%
CI: 3.9–73.7) (88). In a pivotal study, Darby et al. were able
to demonstrate the existence of a linear relationship between
the occurrence of major coronary events and MHD, with a
7.4% increase in the risk per Gy (95% CI: 2.9–14.5; p < 0.001).
Nonetheless, a distinct dose threshold could not be identified
(89). In a large cohort of 910 patients, Van den Bogaard et al.
confirmed these findings, reporting a 16.5% increase per Gy in

the cumulative incidence of acute coronary events (90), although
they were not able to detect a correlation between RT dose
and LVEF (91). Overall, the inter-individual heterogeneity in
cardiac exposure to radiation has been an unresolved issue
in cardiotoxicity studies. The inter-observer reproducibility in
delineation of heart substructures and their dosimetric evaluation
(82) are critical factors for a prospective, personalized risk
assessment. Indeed, contouring standardization may have a
significant role in minimizing differences in dose reporting (92–
95). Patients enrolled in the prospective BACCARAT study
(96) underwent a coronary computed tomography angiography
(CCTA) before irradiation. By analyzing the dose distribution
to the whole heart and its substructures in 89 left-sided
subjects, the authors highlighted that MHD is a poor dosimetric
surrogate parameter for the left ventricle and coronary arteries
(in particular the left anterior descending artery). A machine
learning approach based on CCTA-derived radiomics may have
potential for a better prediction of atherosclerotic plaques
over visual assessment (AUC of 0.73 vs 0.65, p = 0.04) (97).
Taking all clinical observations together, no NTCP modeling
provides conclusive evidence on late heart toxicity based on
MHD analysis. To the best of our knowledge, no radiomics
applications have been reported for the prediction of radiation-
induced heart damage. Interestingly, Currie et al. (98) performed
an explorative study based on automated feature extraction
from single-photon emission computed tomography (SPECT)
imaging in 22 non-cancer patients with cardiomyopathy to
evaluate the most potent prognostic index for future cardiac
events. With an artificial neural network approach, the authors
showed that a 23iodine meta-iodobenzylguanidine (123I-mIBG)
planar global washout higher than 30% was the best indicator
for risk of cardiac events when accompanied by a decline in
LVEF of more than 10%. In summary, in spite of technical
capability of modern IMRT techniques to tightly refine the dose
distribution within the thorax, the definition of dose-volume
relationships and specific NTCP modeling for myocardial sub-
volumes lags behind. Taking into account that the risk of future
cardiac events after RT is strongly related to persistent smoking,
age, prior cardiac events, and pre-existing cardiovascular risk
factors, big data applications (99) may lend support to clinical
decision making.

PROSTATE RADIOTHERAPY: RECTUM

Definitive RT represents one of the main treatment options
for localized prostate cancer (100). Thanks to the availability
of long-term data on clinical outcome and adverse events,
radiation-induced lower gastro-intestinal toxicity remains one of
the most relevant factors known to have a detrimental impact
on patients’ quality of life (101). The relationship between
increased late rectal toxicity and high radiation dose is well
known for 3DCRT (102) and conventional fractionation up to
78 Gy, with increasing rates of bleeding with rectal volumes
receiving 50, 60, 65, 70, and 75 Gy greater than 50, 35, 25,
20, and 15%, respectively (V50Gy > 50%, V60Gy > 35%,
V65Gy > 25%, V70Gy > 20%, and V75Gy > 15%) (103,
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104). When externally validated in patients treated with 3DCRT,
the QUANTEC-based EUD model had relatively low predictive
power (AUC 0.61) for late rectal bleeding (105). Further, the
NTCP cross-applicability to IMRT for chronic gastrointestinal
toxicity was assessed in a large single-institution cohort study
(106). Indeed, debilitating symptoms such as fecal incontinence
or rectal urgency were mostly reported when large volumes of
the rectum were exposed to intermediate doses, as confirmed
by the Medical Research Council RT01 randomized phase 3
trial (107) and the long-term follow-up of the AIROPROS 0102
study (108). In recent years, the implementation of moderate
hypo-fractionated regimens in clinical practice prompted the
development of dose-volume constraints adapted to different
treatment schedules (109). Unlike what happens for moderate
hypo-fractionated IMRT, high rather than low-dose regions in
the rectum predict toxicity after an ultra hypo-fractionated
regimen. Of note, V35Gy was shown to be a strong predictor
of rectal bleeding (110) and a recent pooled analysis of
patients treated within four different trials demonstrated that
late toxicity and quality of life were significantly related to
V38Gy after the delivery of 35-40 Gy in five fractions (111).
Overall, prospectively defined dosimetric predictors of lower
gastro-intestinal toxicity can be adapted according to different
techniques and fractionations used in the context of definitive
treatment for localized prostate cancer.

In view of the available spectrum of NTCP models and
of the clinical variability of late rectal side effects, extracting
mineable data from imaging would facilitate a personalized
treatment prescription. Few radiomics analyses allow us to refine
the toxicity prediction in the current scenario. In a single-
center prospective study on 33 patients treated with moderately
accelerated IMRT (70.2 Gy in 26 fractions), Abdollahi et al.
(112) performed a machine learning approach on pre- and post-
treatment T2-weighted MR scans of the rectal wall. Out of a
total of 1096 features, a 37-set of descriptors extracted from
baseline T2-weighted images was more accurate (mean AUC
of 0.68) than post-treatment T2-weighted apparent diffusion
coefficient (ADC) and delta values. Of note, a broad clinical
endpoint was chosen by the authors (G1 rectal toxicity, occurring
in 54% of the cohort). Similar pilot analyses from the same
group focused on the bladder wall (113) and femoral head
changes (114). In a secondary analysis of the multi-institutional
randomized HYPRO trial, Rossi et al. (115) evaluated the
correlation of late gastrointestinal and genitourinary toxicity with
non-treatment related characteristics (age, baseline PSA, Gleason
score, comorbidities), DVH parameters, and radiomics features.
Of the 820 patients with intermediate and high risk prostate
cancer enrolled in the trial, 351 had dose distributions to rectum
and bladder available for 3D texture analysis. For both rectal
bleeding and fecal incontinence, logistic NTCP models showed
that the addition of texture features led to a statistically significant
improvement in the predictive ability (AUC of 0.73 for both;
p < 0.04), higher than what was obtained with clinical and
DVH parameters. In a smaller prospective study on 64 patients,
Mostafaei et al. came to similar results by analyzing baseline CT
markers with a stacking regression algorithm (116). Interestingly,
an explorative approach focused on four patients irradiated

on a 1.5 Tesla MR-Linear Accelerator within a prospective
observational trial. Delta-radiomics assessed with a longitudinal
T2-weighted intensity histogram of prostate and surrounding
organs at risk showed early significant variations of the rectal
wall, with change in mean, median, and standard deviation
metrics values at the second week of treatment. A longitudinal
radiomic data acquisition process was deemed feasible on the
hybrid machine (117). To summarize, in the modern context of
prostate RT, the prediction of gastrointestinal toxicity based only
on NTCP models may be misleading, given the current trend for
dose-escalated IMRT and the establishment of hypo-fractionated
and ultra hypo-fractionated regimens as standards of care. Early
prospective data on the integration of radiomics analyses are
available. Potentially, these features may represent a valuable
tool for clinical decision in the future. Further refinement
could be provided by applying machine learning methods and
bioinformatics tools to genome-wide data to identify patients
with a greater congenital risk of toxicity before treatment (118).

ASSESSING THE QUALITY OF
RADIOMICS INVESTIGATIONS: A WORD
OF CAUTION

In the previous sections, the potential of radiomics for the
prediction of radiation-induced toxicity for parotid glands, lung,
heart, and rectum was highlighted. Promisingly, quantitative
imaging represents an area of active research under the light
of precision oncology (25). Nonetheless, when evaluating the
investigations thus far published on radiomics, some caveats
need to be taken into account. In view of the complexity of
the radiomic workflow, Lambin and colleagues (11) introduced
a radiomics quality score (RQS) tool. Based on a set of
16 well-defined criteria addressing several aspects such as
image protocol quality, segmentation method, feature reduction,
presence of biologic correlates, and extent of validation, the
authors proposed to define an objective ranking of quality for
radiomics studies. In particular, a score of 36 corresponds to
the highest value achievable, whereby the prospective validation
of a radiomics signature in a registered trial confers the largest
contribution (7 points). Through a systematic review of the
literature focusing on the link between radiomic biomarkers
and tumor biology, Sanduleanu et al. (119) applied the RQS
in 41 studies. Unsurprisingly, most studies (30/41) were of
poor quality, with an average score of 30% or less, mainly
because of a lack of robust segmentation, external validation,
and discrimination based on cut-off values. In addition,
interobserver variability among authors in terms of scoring
was significant, suggesting that the proposed scale requires
further refinement. When applying the RQS to evaluate the
methodological quality of the most relevant radiomics analyses
thus far published for the prediction of xerostomia, RILI,
and late rectal toxicity, the overall outlook (Tables 1, 2) is
unsatisfactory. Although all studies performed well in terms
of describing feature reduction methods (all used measures to
decrease the risk of overfitting), multivariable analyses with non-
radiomic factors, and reporting cut-off analyses, the weaknesses
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TABLE 1 | Most consolidated data in radiomics-based approaches in predicting radiotherapy-induced xerostomia.

Reference Patient
population

Study design Imaging
biomarker

Main outcome Main finding Prediction
measure

RQS

Van Dijk (37) 68 Retrospective
(training and
test cohort)

CT Late Xerostomia Contralateral
PG surface
change @ 3
wks

AUCtrain = 0.92;
AUCtest = 0.93

50%

Rosen (38) 119 Retrospective
(single cohort)

CBCT Late Xerostomia Contralateral
PG shrinkage

AUC = 0.77 38.8%

Guo (33) 146 Retrospective
(Single cohort)

CT Late xerostomia Low dose
region to
superior portion
of the 2 PGs

AUC = 0.68 36.1%

Han (34) 589 (258
assessable for
late xerostomia)

Prospective
(multicentric)

CT Late Xerostomia Low dose bath
to whole gland

AUC = 0.70 50%

Van Dijk (41) 68 (25 patients
for external
cohort)

Retrospective
(+ validation
cohort)

MR Late Xerostomia High intensity
MR P90 values

AUC = 0.83 50%

Wilkie (42) 47 Prospective
(single cohort)

PET Late Xerostomia Pre-treatment
PET P90 values

AUC = 0.78 44.4%

CT, computed tomography; PG, parotid gland, AUC: area under the curve; CBCT, cone-beam CT; MR, magnetic resonance; P90, 90th percentile; PET, positron-emission
tomography; RQS, radiomics quality score.

TABLE 2 | Most promising data in radiomics-based approaches in predicting radiotherapy-induced toxicity in the treatment of solid tumors.

Reference Patient population Study design Imaging biomarker Main outcome Main finding Prediction
measure

RQS

Krafft (65) 192 (NSCLC) Retrospective
(single cohort)

CT RILI 449-feature set of
the total lung
volume

AUC = 0.68 44.4%

Liang (67) 70 (NSCLC) Retrospective
(single cohort)

CT RILI GLCM of
ipsilateral lung

AUC = 0.78 41.6%

Rossi (115) 351 (PCA) Prospective CT Late Rectal toxicity 42 Texture
features (LRHGE
most selected

AUC = 0.73 80.5%

Abdollahi (112) 33 (PCA) Prospective MR Late Rectal toxicity Pre-treatment T2
MRI features

AUC = 0.68 25%

NSCLC, non-small cell lung cancer; CT, computed tomography; RILI, radiation-induced lung injury; AUC, area under the curve; GLCM, gray level co-occurrence matrix;
PCA, prostate cancer; LRHGE, long run high Gaey level emphasis; MR, magnetic resonance; RQS, radiomics quality score.

are represented by the limited validation (typically, on a dataset
from the same institution), the retrospective study design, the
infrequent discussion of biological correlates, and the lack of
cost-effectiveness. A notable exception is represented by the
work of Rossi et al. (112) with a RQS of 80.5% (29/36):
the high score can be justified due to the fact that the
radiomics signature in this study was prospectively validated
in a large, multi-institutional randomized trial with a resulting
potential direct clinical utility. In view of the suboptimal
methodological quality frequently observed in the radiomics
studies we evaluated, caution is advised in the interpretation of
the reported findings. Another relevant limit to bear in mind
is the lack of standardization in regards to imaging features
definition and interpretation. In this perspective, the recently
published Image Biomarker Standardization Initiative (IBSI)
position paper (120) should be viewed as a relevant step ahead,
fostering homogeneity in radiomics analyses across different
research platforms.

CONCLUSION

In comparison to efficacy outcomes, the current state-of-the-
art on radiomics prediction of radiation-induced toxicity is
still relatively limited, with the notable exception of xerostomia
prognostication (Tables 1, 2). Taking all data together, the vast
majority of reviewed studies suggested that indeed radiomics
applications may increase the predictive ability of organ-specific
side effects over standard clinical and dosimetric factors. For
further progress, four major areas of improvement can be
envisaged. Firstly, the need for standardization is a critical,
well-recognized major step for further development (120, 121).
Secondly, in view of the frequent single-center retrospective
design and the generally low number of enrolled patients and
of clinical endpoints (i.e., side effects), the robustness of data is
questionable for most studies (122). In this perspective, the lack
of or very limited external validation in independent datasets
is a point of weakness for both conventional NTCP models
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(123) and radiomics applications (119). Thirdly, progress in the
field of radio-genomics is eagerly awaited (124), in order to
improve the understanding of underlying biological processes,
such as intrinsic radio-sensitivity. Lastly, controlled randomized
clinical trials testing radiomics-based interventions in adequately
powered studies are still yet to be published. At present, no single
radiomics finding is readily applicable to patient management in
clinical practice. Nonetheless, the available body of evidence is
encouraging and warrants further investigation, given the size
of benefit demonstrated in terms of high predictive ability of

common toxicities. In conclusion, building on established NTCP
models, the so far available hypothesis-generating data underline
the potential of radiomics for improved clinical decision making
in precision radiation oncology.
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Intermediate Dose-Volume
Parameters, Not Low-Dose Bath, Is
Superior to Predict Radiation
Pneumonitis for Lung Cancer Treated
With Intensity-Modulated
Radiotherapy
Yinnan Meng1,2, Wei Luo3, Wei Wang1,2, Chao Zhou1,2, Suna Zhou1,2, Xingni Tang1,2,
Liqiao Hou1,2, Feng-Ming Spring Kong1,4,5 and Haihua Yang1,2*

1 Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy,
Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China, 2 Department of Radiation Oncology, Affiliated
Taizhou Hospital of Wenzhou Medical University, Taizhou, China, 3Department of Radiation Medicine, University of Kentucky,
Lexington, KY, United States, 4 Department of Clinical Oncology, Hong Kong University Shenzhen Hospital and Queen Mary
Hospital, Hong Kong University Li Ka Shing Medical School, Hong Kong, China, 5 Department of Radiation Oncology,
University Hospitals/Seidman Cancer Center and Case Comprehensive Cancer Center, Case Western Reserve University,
Cleveland, OH, United States

Purpose: Although intensity-modulated radiotherapy (IMRT) is now a preferred option for
conventionally fractionated RT in lung cancer, the commonly used cutoff values of the
dosimetric constraints are still mainly derived from the data using three-dimensional
conformal radiotherapy (3D-CRT). We aimed to compare the prediction performance
among different dosimetric parameters for acute radiation pneumonitis (RP) in patients
with lung cancer received IMRT.

Methods: A total of 236 patients treated with IMRT were retrospectively reviewed in two
independent groups of lung cancer from January 2014 to August 2018. The primary
endpoint was grade 2 or higher acute RP (RP2). Dose metrics were generated from the
bilateral lung volume outside GTV (VdoseG) and PTV (VdoseP). The associations of RP2
with clinical variables, dose-volume parameters and mean lung dose (MLD) were analyzed
by univariate and multivariate logistic regression. The power of discrimination among each
predictor was assessed by employing the bootstrapped area under the receiver operating
characteristic curve (AUC), net reclassification improvement (NRI), and the integrated
discrimination improvement (IDI).

Results: Thirty-four (14.4%) out of 236 patients developed acute RP2 after the end of
IMRT. The clinical parameters were identified as less important predictors for RP2 based
on univariate and multivariate analysis. In both studied groups, the significance of
association was more convincing in V20P, V30P, and MLDP (smaller Ps) than V5G and
V5P. The largest bootstrapped AUCwas identified for the V30P. We found a trend of better
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discriminating performance for the V20P and V30P, and MLDP than the V5G and V5P
according to the higher values in AUC, IDI, and NRI analysis. To limit RP2 incidence less
than 20%, the V30P cutoff was 14.5%.

Conclusions: This study identified the intermediate dose-volume parameters V20P
and V30P with better prediction performance for acute RP2 than low-dose metrics V5G
and V5P. Among all studied predictors, the V30P had the best discriminating power, and
should be considered as a supplement to the traditional dose constraints in lung cancer
treated with IMRT.
Keywords: lung cancer, intensity modulated radiotherapy (IMRT), radiation pneumonitis (RP), dosimetric
parameters, prediction model
INTRODUCTION

Acute radiation pneumonitis (RP), a challenging dose-limiting
toxicity, commonly occurs within 1 to 6 months (most often
within 12 weeks) after the completion of thoracic radiotherapy
(RT) (1, 2). It is also the main reason to preclude the initiation of
consolidative immunotherapy for local-advanced unresectable
non-small cell lung cancer (3).

The quantitative analyses of normal tissue effects in the clinic
(QUANTEC) lung project reviewed over 70 articles published
before 2010 and provided the most reliable dose-RP relationship
models to overcome the inconsistency (4). Accordingly the
guidelines recommend the cutoff values of lung dose
constraints to be the bilateral lung volume exceeding 20 Gy
(V20) ≤35% and mean lung dose (MLD) ≤20 Gy (5, 6). However,
the majority of evidence in the QUANTEC was based on three-
dimensional conformal radiation therapy (3D-CRT), which may
not well represent the dose distributions delivered by the more
advanced techniques, such as intensity-modulated radiotherapy
(IMRT). Ten years have passed since the QUANTEC, and there
is a need to investigate more accurate dose predictors based on
new data emerging from IMRT.

In a secondary analysis of the Radiation Therapy Oncology
Group (RTOG) 0617, the IMRT group had a significantly larger
V5 (61.6% vs. 58.4%), similar V20 and MLD compared to the
3D-CRT group. However, on the contrary, the severe RP was
found to be significantly lower in the IMRT group (3.5% vs.
7.9%) (7). The commonly used dose constraints, especially V5,
could not provide a sufficient explanation of why the severe RP
was much lower in the IMRT group.

We hypothesized that the dose distribution differences between
3D-CRT and IMRT might impact the plan optimization strategy.
This study aimed to analyze the prediction performance for
symptomatic RP using various dosimetric parameters in two
independent groups of lung cancer treated with IMRT.
MATERIALS AND METHODS

Study Population
In this study, we retrospectively reviewed a total of 236 patients
treated with IMRT between January 2014 and August 2018. The
2286
primary IMRT group included 183 consecutive patients with
lung cancer treated before September 2017. The key inclusion
criteria were pathologically confirmed lung cancer, available
dosimetric data, follow-up records of at least three months,
conventional daily fraction, first time receiving thoracic RT,
and only thoracic IMRT. Patients receiving a prescription dose
of less than 50 Gy were excluded from this study.

Starting from November 2017, we prescribed a higher dose
for definitive radiotherapy to patients with unresectable stage III
NSCLC. In addition, we routinely acquired a mid-treatment
computed tomography (CT) and planned a new adaptive
radiotherapy (ART). An independent group of 53 consecutive
patients treated with IMRT-ART were selected using the same
inclusion criteria as for the primary IMRT group.

The bilateral lung volumes were delineated according to the
RTOG 1106 atlas of organs at risk under the revision and
supervision of a senior physician (8). An additional lung
definition was created for each patient by excluding the PTV
from the bilateral lung volume. For all included patients, the
collected clinical variables included age, gender, smoking status,
tumor histology and stage, chemotherapy, and surgery. Dose
metrics generated from dose-volume histograms (DVHs) in this
study were including V5G, V10G, V20G, V30G, V40G, V50G, and
MLDG from the bilateral lung volume minus GTV, and V5P,
V10P, V20P, V30P, V40P, V50P, and MLDP from the lung minus
PTV. The absolute lung volumes spared from certain dose levels
were collected, including 5, 10, 20, 30, 40, and 50 Gy (AV5-
50Spared). The total dose metrics for adaptative plans were
summed up by using rigid registration and slightly manual
adjustment with initial plans.

The institutional review board in our medical center waived
the requirement of written informed consent because of the
retrospective design in this study.

Radiotherapy
Conventional or four-dimensional (4D) computed tomography
(CT) was performed for the radiotherapy simulations. The
patients were immobilized in the supine position with their
arms above their head. The CT scans were performed with
5 mm or less slice thickness and included the entire neck and
lung. Pre-treatment positron emission tomography (PET)/CT
was not routinely used in staging and tumor volume delineation.
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All of the patients were treated with conventionally
fractionated simultaneous integrated boost IMRT. The gross
tumor volume (GTV) was defined as the visible primary tumor
and positive mediastinal lymph node on the treatment planning
CT or pre-treatment PET scan. The clinical target volume (CTV)
was defined as GTV with a 0.5 cm to 1 cm margin and the region
at high risk for lymph node involvement. Another 5 mm uniform
expansion was delineated from the GTV and CTV to create the
planning gross tumor volume (PGTV) and planning target
volume (PTV). Image guidance was performed with an
orthogonal megavoltage electronic portal imaging device
(EPID) or a kilovoltage cone beam computed tomography
(CBCT) for inter-fractional geometric assurance.

The prescriptions of conventionally fractionated IMRT were
54 to 66 Gy to the PGTV and 45 to 54 Gy to the PTV in 25 to 30
fractions for curative intent. The prescription dose was 50 Gy to
the PTV for the patients receiving postoperative RT with
negative margins or local palliative purposes. All treatment
plans were designed with the goal of delivering the prescribed
dose to at least 95% of the PGTV and PTV.

Endpoints and Follow-Ups
The primary endpoint was grade 2 or above acute radiation
pneumonitis (RP2) within three months after radiotherapy. We
graded RP according to the system described by Kong et al.,
which combines the considerations of SWOG, RTOG criteria,
and CTCAE to provide an accurate assessment. The toxicities
were prospectively evaluated during RT, and at 1 and 3 months
of follow-up after the completion of IMRT. The diagnosis of
acute RP was required to be distinguished from other causes,
such as fibrosis, infection, or tumor recurrence.

Statistical Analysis
For a description of the population, we used the median and range
for continuous variables and the percentage for categorical variables.
Univariate and multivariate logistic regression were performed to
analyze the correlation between predictors and RP2. The age and
location factors will be included in the multivariate analysis since
they were found associated with a higher risk of pneumonitis from
several previous reports (9, 10). All factors with a P value less than
0.20 in the univariate analysis will be included in a multivariate
analysis. Because themulticollinearity among dose metrics, only one
parameter at a time will be put in each multivariate model with set
clinical factors. The patients who died before a diagnosis of RP2
were not censored, since only the acute phase of RP after
radiotherapy was considered. The Akaike information criterion
(AIC) and Bayesian information criterion (BIC) were applied to
assess the relative goodness of fit for each dose prediction model.
We employed the area under the receiver operating characteristic
curve (AUC) of the receiver operating characteristic curve (ROC) to
assess the RP2 discrimination performance, with the 1000-sample
bootstrap method to internal validate the stability of the predictors.
The RP2 risk predictors were further compared by the integrated
discrimination improvement (IDI) and net reclassification
improvement (NRI) analysis. A positive value of NRI or IDI
indicates a preferred model over the reference in discriminating
of the events and non-events (11, 12). Differences were considered
Frontiers in Oncology | www.frontiersin.org 3287
significant at P<0.05 (2-sided). GraphPad Prism, version 8.02
(GraphPad Software, San Diego, California) and R (R Foundation
for Statistical Computing, Vienna, Austria) were used in this study.
RESULTS

Baseline Characteristics and RP2
Association Analysis
A total of 236 patients were retrospectively reviewed in this
study. The clinical characteristics and their association with RP2
are shown in Table 1. RP2 was found in 34 patients (14.4%); 26
out of 183 (14.2%) in the IMRT group, and 8 out of 53 (15.1%) in
the IMRT-ART group. In the univariate logistic regression, none
of the clinical factors was significantly associated with RP2,
although the female gender (P=0.101) and the use of
chemotherapy (P=0.107) had a trend of higher RP2 risk.

In the primary IMRT group, a significant association with
RP2 was found for V5, V10, V20, V30, and MLD from two lung
definitions. The significance was more convincing in V20P (P=
0.005, OR=1.204), V30P (P=0.003, OR=1.302) and MLDP (0.004,
OR=1.421) than in the other parameters (Figure 1A). In the
IMRT-ART group, only the parameters of V20, V30, and MLD
from both lung volumes were confirmed to be significantly
associated with RP2 (Figure 1B).

In the multivariate analysis, age, tumor location, and
chemotherapy did not reach significance (All Ps> 0.05). All of
the dosimetric factors remained as independent predictors of
RP2 in each of their multivariate models. Female gender was
found significantly associated with RP2 in the models including
V20G and V20P, but not had a significant association in those
including other dosimetric parameters (Table S1). Given a very
limited number of female patients were included in this study
(9.7%), the gender factor will not be considered in the direct
comparison of the prediction performance for RP2 using
different dosimetric factors. Discrimination performance for RP2

We employed the bootstrapped area under the ROC (AUC)
to evaluate the discrimination performance for RP2 using each
dosimetric parameter in 236 patients. The V30P had the best
prediction performance among all dose metrics (AUC=0.683).
We found that the V5, V20, V30 and MLD from the bilateral
lung volume minus PTV with larger AUCs than the ones from
the lung minus GTV. The V20, V30 and MLD from both lung
volumes showed a trend of better discriminating values than V5,
even their confidence intervals of AUCs overlapped. The
absolute volume of spared lung parameters showed lower
prediction values for RP2 (All AUCs smaller than 0.55)
compared with the dose-volume predictors (Table 2).

The V20P, V30P, and MLDP displayed a trend towards larger
values of NRI and IDI than the most commonly used parameter,
MLDG, in both the primary IMRT and IMRT-ART groups. The
V5 and V10 from two lung volumes compared with the MLDG

had less reliable prediction performance in IMRT-ART group,
while V40 and V50 were significantly inferior in discrimination
based on the primary IMRT data. Details of NRI and IDI analysis
for each dose metrics are shown in Figure 2.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Meng et al. Superior Predictor in IMRT Era
Evaluation of the Goodness of Fit for
Prediction Models
The Akaike information criterion (AIC) and Bayesian information
criterion (BIC) were used to evaluate the relative values of the
goodness of fit for RP2 prediction models in two independent
groups. Among all candidate models, better data fitness with the
smallest values of AIC and BIC were found in the model with V30P
in both IMRT and IMRT-ART groups. The models with V20P,
V30P, and MLDP had relatively smaller values of AIC and BIC than
V5G and V5P in both groups of patients (Figure 3).
Frontiers in Oncology | www.frontiersin.org 4288
Prediction Model With V30P
The probability of RP2 from 236 included patients can be
estimated from V30P by a fitted logistic formula: Logit(P) =
−4.84+0.238X; P (% of RP2) =1/[1+exp (−0.238*V30P + 4.84)].
The prediction curve was plotted in Figure 4. The Hosmer-
Lemeshow test showed no significant departure from a well-
fitted model (P=0.968). To limit the probability of RP2 less than
20%, the V30P should be controlled to under 14.5%. According
to current data, when the V30P <14.5%, the RP2 incidence was
11.2%; and when the V30P >14.5%, the RP2 incidence was 26.5%.
A B

FIGURE 1 | The associations of dosimetric parameters with grade ≥2 radiation pneumonitis in the univariate logistic regression analysis. (A) The associations in the
primary IMRT group; (B) The associations in the IMRT-ART group.
TABLE 1 | Correlation of clinical characteristics with grade ≥2 acute radiation pneumonitis.

Characteristics No. of Patients(N=236) (%) No. of Grade ≥2 RP(N=34) (%) Odds Ratio 95% CI P Value*

Age
≤64 (Median) 125 (53) 17 (50.0) 1.00
>64 (Median) 111 (47) 17 (50.0) 1.15 0.56–2.38 0.708

Gender
Male 213 (90.3) 28 (82.0) 1.00
Female 23 (9.7) 6 (18.0) 2.33 0.85–6.42 0.101

Smoking
Non-smoker 47 (19.9) 7 (21.0) 1.00
Smoker 189 (80.1) 27 (79.0) 0.95 0.39–2.34 0.915

Pathology
Squamous 158 (66.9) 25 (74.0) 1.00
Adenocarcinoma 36 (15.3) 5 (15.0) 0.86 0.30–2.42 0.772
Small Cell 36 (15.3) 3 (9.0) 0.48 0.14–1.70 0.257
Others 6 (2.5) 1 (3.0) 1.06 0.12–9.50 0.956

Stage
I/II 14 (5.9) 0 (0) 0 0.999
III 168 (71.2) 28 (82) 1.60 0.63–4.10 0.327
IV 54 (22.9) 6 (18) 1.00

Tumor location
Upper 109 (46.2) 14 (41.2) 1.00
Middle or lower 127 (53.8) 20 (58.8) 1.27 0.61–2.65 0.527

Chemo
No 29 (12.3) 1 (3.0) 1.00
Yes 207 (87.7) 33 (97.0) 5.31 0.70–40.40 0.107

Surgery
No 181 (76.7) 28 (82.4) 1.00
Yes 55 (23.3) 6 (17.6) 0.67 0.26–1.71 0.401
October 202
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DISCUSSION

This study demonstrated that the V30P had the best RP2
prediction performance among all dosimetric parameters in
two independent groups. None of the clinical factors showed a
significant correlation with RP2 in univariate and multivariate
analysis. The best prediction performance for RP2 was found
with V30P, based on better goodness of fit in AIC and BIC, the
largest bootstrapped AUC, and an upward trend towards higher
NRI and IDI compared to other dosimetric predictors.
Frontiers in Oncology | www.frontiersin.org 5289
To the best of our knowledge, when using IMRT, this is one of
the first studies to compare the prediction performance for RP2
among dosimetric factors from two lung definitions. The results
showed that putting a higher priority on the V30P over V5 in
planning optimization may better shape the DVHs, which may
lead to a lower RP2 probability.

The normal lung volume definition currently recommended
by both the RTOG and EORTC guidelines is total bilateral lung
volume minus GTV (5, 8). QUANTEC also recommended using
the definition of excluding GTV for the consideration of
inconsistent delineation of the PTV from one institution to
another (4). Therefore, most studies using IMRT from the past
several years only report dose data from the lung volume minus
GTV (13–15). However, our previous studies demonstrated that
the dosimetric parameters from the lung minus PTV are not
inferior to those in the lung minus GTV for RP2 prediction (16).
In this study, we further demonstrated that V30P might be the
best predictor among all parameters. Reducing the lung dose
inside the PTV may not be reasonable during the optimization
process. The conflict between getting 95% of the PTV covered
with prescription and simultaneously reducing the dose to the
lung in the PTV may complicate the optimization process.

Various dosimetric parameters are highly correlated with
each other (17–19). The relative priority of reducing one dose
parameter at the expense of increasing another is still unknown.
However, with IMRT and VMAT, we have more freedom to
optimize the shape of the DVH by reducing the volume of the
intermediate dose region by irradiating a more substantial
volume with a low dose bath. A few studies discussed the
question of whether to deliver a low dose to a larger volume
(“a little to a lot”) or a high dose to a smaller volume (“a lot to a
little”) to further reduce the symptomatic RP probability. Willner
et al. concluded that a small dose to a large volume was preferable
to a large dose to a small lung volume (20). Multiple studies, on
the other hand, highlighted the importance of the V5 or other
low dose predictors. Metha et al. argued that “a little to a lot”
A B

FIGURE 2 | Integrated discrimination improvement (IDI) and net reclassification improvement (NRI) analysis for each dosimetric predictor compared with the MLDG.
(A) IDI and NRI values in the primary IMRT group; (B) IDI and NRI values in the IMRT-ART group.
TABLE 2 | Bootstrapped AUC and 95% CI for dosimetric parameters.

Parameters AUC Lower CI Upper CI

V5G 0.603 0.538 0.666
V10G 0.634 0.550 0.678
V20G 0.650 0.585 0.711
V30G 0.623 0.558 0.685
V40G 0.596 0.530 0.659
V50G 0.579 0.513 0.643
MLDG 0.638 0.573 0.699
V5P 0.615 0.550 0.678
V10P 0.643 0.578 0.704
V20P 0.650 0.585 0.710
V30P 0.683 0.620 0.742
V40P 0.619 0.553 0.681
V50P 0.579 0.513 0.643
MLDP 0.677 0.613 0.736
AV5Spared 0.513 0.447 0.578
AV10Spared 0.506 0.440 0.571
AV20Spared 0.522 0.456 0.587
AV30Spared 0.535 0.469 0.600
AV40Spared 0.539 0.474 0.604
AV50Spared 0.550 0.484 0.614
AUC, the area under the receiver operating curves; RT, radiotherapy; VdoseG, MLDG,
dosimetric parameters from lung volume excluding gross tumor volume; VdoseP, MLDP,
dosimetric parameters from lung volume excluding planning treatment volume;
AVdosespared, Absolute volume of lung spared above certain threshold of dose; V5–50,
volume of lung receiving a dose≥5–50Gy; MLD, mean lung dose; CI, confidential interval.
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could be worse than “a lot to a little” because the loss of carbon
monoxide diffusing capacity occurs at 13 Gy (21). Wang et al.
analyzed 223 patients treated with 3D-CRT and found a cutoff
point of 42% in the V5 to have the best discrimination power for
Frontiers in Oncology | www.frontiersin.org 6290
severe RP (18). Yorke et al. concluded that the low dose from V5
to V13 in the total and ipsilateral lung volume were more
strongly correlated with severe RP than the V20 and higher
dose parameters (19). In the IMRT era, however, the lung V5 did
FIGURE 4 | The prediction model with V30P was plotted in a solid curve with a 95% confidential interval for the probability of grade≥2 acute radiation pneumonitis
(RP2). The V30P cutoff was 14.5% for limiting 20% RP2. The plotted dots and columns represented the number of observed data at each dose level.
A B

DC

FIGURE 3 | The relative evaluation of goodness of fit test for a model selection using Akaike information criterion (AIC) and Bayesian information criterion (BIC).
(A) The relative values of the AIC in the IMRT group; (B) The relative values of the AIC in the IMRT-ART group; (C) The relative values of the BIC in the IMRT group;
(D) The relative values of the BIC in the IMRT-ART group.
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not show a higher priority than other dose metrics for lung
toxicity prevention based on most studies (7, 22). Tucker et al.
analyzed the differences in RP risk for patients receiving the same
MLD but with different shapes of the DVHs. They suggested that
the high dose region plays a more important role than the mean
lung dose in the risk of severe RP; “a lot to a little” is associated
with a higher risk of severe RP than “a little to a lot.” (23) These
findings were also confirmed in their later validation study (24).
Our results found an inferior predictive value for the V5, which
was consistent with the IMRT studies above. We further
demonstrated a better RP2 prediction performance with the
V30 in the lung region outside the PTV. Adding V30P along
with the traditional V20G and MLDG constraints in treatment
planning optimization may better shape the DVH to further
reduce the RP2 probability.

We recognized that this study is limited in several aspects.
First, the patients in the IMRT- ART group had a mid-treatment
CT scan and a treatment replanning. The difference in dose
calculation methods between non-adaptive and adaptive RT
could have resulted in variation in the overall lung dose
estimation. However, the prediction performance for each dose
parameter was always directly compared in a single patient.
Different approaches could have impacted the exact cutoff value,
but they would not have changed the relative predictive power
regarding which predictor is better. Second, this was a single-
institution retrospective study; 236 patients were still a small
sample size considering that only 34 patients developed acute
RP2. Third, immunotherapy after definitive concurrent
chemoradiotherapy is considered a standard routine practice
for unresectable locally advanced NSCLC (25). However, during
the time of this study, our patients did not have access to PD-1 or
PD-L1 inhibitors. The influence of immunotherapy on RP
toxicity was not considered in this study.

Ideally, the individual sensitivity to RP2 should be identified
before determining the RT prescription. Some investigators have
focused on the impact of clinical factors on RP (9, 26, 27). In the
current study, only the gender and chemotherapy showed a trend
of association with RP2. The older age and lower lobe location
were not identified as high-risk factors, and they may not
significantly impact the comparison results of dosimetric
predictors. Correlations between biological markers and an
increased risk of RP have also been found in several studies (28–
30). However, none of these risk predictors has been applied and
proved in a prospective clinical trial yet. The conventionally
fractionated definitive RT for lung cancer is generally prescribed
at 60 to 70 Gy with no further escalation in routine practice
(31, 32). The most important tool to prevent symptomatic RP is
not only to keep it under “safety” criteria, but also to optimize the
Frontiers in Oncology | www.frontiersin.org 7291
lung dose as low as reasonably. Our results suggested that the V30P
should be weighted as a higher priority dose constraint in the
treatment planning optimization in order to lower the RP2 risk
further. A large external dataset from other institutions is needed
in the future to further validate the superior RP2 predictive value
of the V30 from the lung volume outside the PTV.
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Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy

toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an

international prospective cohort study. The purpose of this project was to analyse a
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patient-specific features associated with the development of toxicity, and test the

approach by attempting to validate previously published genetic risk factors.

Methods: The study involved REQUITE prostate cancer patients treated with external

beam radiotherapy who had complete 2-year follow-up. We used five separate late

toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1

haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single

nucleotide polymorphisms (SNPs) already reported in the literature to be associated with

the toxicity endpoints were included in the analysis. No SNP had been studied before

in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize

features (SNPs) identifying patients with no toxicity and tested on a different independent

mixed population including patients without and with toxicity.

Results: One thousand, four hundred and one patients were included, and toxicity rates

were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%,

decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with

the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the

24 SNPs were associated with the same toxicity endpoint as reported in the literature:

9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were

associated with a different endpoint.

Conclusion: Deep learning algorithms can validate SNPs associated with toxicity

after radiotherapy for prostate cancer. The method should be studied further to identify

polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be

included in integrated normal tissue complication probability models and tested for their

ability to personalize radiotherapy treatment planning.

Keywords: prostate cancer, late toxicity, snps, deep learning, autoencoder, validation

INTRODUCTION

Radiotherapy represents themost effective non-surgical modality
for the potentially curative treatment of prostate cancer. Around
a half of survivors underwent radiotherapy as part of their
curative care (1), either as single curative treatment or as
adjuvant/salvage treatment after radical prostatectomy.

Despite the fact that prognosis is very good in terms of
patients’ survival rates, it is widely acknowledged that long-
term side-effects after radiotherapy can affect a patient’s quality-
of-life (2–4). A tool able to identify patients likely to develop
toxicity could be a crucial step toward personalized radiotherapy
with modification of the dose, fractionation, techniques and
supportive care. The ultimate goal is to reduce morbidity and
improve quality-of-life.

Radiation toxicity is a multifactorial problem, related not
only to the cumulative delivered dose, but also to an intrinsic
process within tissues responding to cellular injury. Individual
genetic background and biological expression pattern, premorbid

conditions, concomitant oncological therapies, as well as the

cellular microenvironment, could be important factors in the

development of side-effects, although their exact contributions
are unknown.

With increased interest in this field and relevant data
collection on this topic, predictive models have been developed
to identify patients likely to develop side effects during
radiotherapy (3).

The identification of genetic factors associated with
susceptibility to radiation toxicity represents an emerging
research area in oncology. A number of different
approaches have been explored (5–13), however, the
developed models and biomarkers have failed to progress
to routine clinical use due to the lack of thorough
independent validation.

REQUITE (validating pREdictive models and biomarkers
of radiotherapy toxicity to reduce side effects and improve
QUalITy of lifE in cancer survivors) was established with the
aim of validating models and biomarkers for the prediction
of adverse effects following radiotherapy (14–16). In order
to address previous limitations in pooling data, in using
common toxicity scoring systems and in collecting standardized
data, REQUITE carried out an international, multi-center,
prospective observational study. A centralized biobank was
also established to store blood samples and genome-wide
genotyping of single nucleotide polymorphisms (SNPs) was
carried out.
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The specific purpose of the present study was to attempt to
validate genetic risk factors for late toxicity (rectal bleeding and
late urinary symptoms) after prostate cancer radiotherapy in
the REQUITE population using a deep learning algorithm. This
technique aims to identify patient-specific features that define
patients with toxicity (“unhealthy”) as outliers with respect to the
population of irradiated patients without toxicity (“healthy”).

Deep learning has the potential to overcome the difficulties
in replication of results faced by the widespread single-SNP
association methods used by genome wide association studies
(GWAS). The statistical power of GWAS is limited by a
combination of the large number of hypotheses being tested
simultaneously and the inherently small effect size of the single
SNP (17).

Deep learning approaches, with their intrinsic hierarchical
structure (where each layer performs a combination of the
outcomes of the previous layers), seem particularly adapt at
mimicking complex dependencies within data. The method
addresses effectively the following issues: (i) unstable selections
of correlated variables and inconsistent selections of linearly
dependent genetic variables (18); (ii) strong imbalance between
positive and negative outcomes which is usually encountered in
studies of radiation toxicity.

MATERIALS AND METHODS

Population
REQUITE prostate cancer patients treated with external beam
radiotherapy (with/without hormonal therapy, with/without a
previous prostatectomy, no brachytherapy) and complete 2-year
follow-upwere included. Details on the REQUITE population are
given in Seibold et al. (14).

Prostate cancer patients were recruited prior to radiotherapy
between April 2014 and October 2016. Recruitment was at ten
main sites in eight countries (Belgium, France, Germany, Italy,
the Netherlands, Spain, UK, US). Conventionally fractionated
or hypo-fractionated radiotherapy was prescribed according to
local standard-of-care regimens. The patients were followed
prospectively for at least 24 months, with longer follow-
up encouraged where possible. All patients gave written
informed consent. The study was approved by local Ethical
Committees and is registered at www.controlled-trials.com
(ID ISRCTN98496463).

Demographic, co-morbidity, treatment, physics, longitudinal
toxicity (CTCAE v4.0 healthcare professional and patient
reported), quality-of-life, and treatment outcome data were
collected prospectively using standardized case report forms.
CTCAE v4.0 based questionnaires developed to collect patient
reported outcomes were adapted from those published elsewhere
for themale pelvis (19) and updated to fit with CTCAE v4.0 items.

All patients donated at least two blood samples prior to the
start of radiotherapy: an EDTA sample for SNP genotyping
plus a PAXgene sample. Genotyping data were generated using
the Illumina Infinium OncoArray-500K beadchip. Following
standard quality control procedures (20), genotype data were
imputed using the 1,000 Genomes Project (version 3) as a
reference panel.

Selection of Genetic Risk Factors
We undertook a comprehensive search of Medline and
PubMed databases using the keywords “prostate,” “prostatic,”
“radiotherapy,” “radiation,” “irradiation,” “toxicity,” “adverse
effects,” “side-effects,” “morbidity,” “injury,” “genetic variation,”
“SNP,” “GWAS,” and “polymorphism.” This search identified 60
SNPs published (up to May 31st, 2019) in GWAS patient studies
with p < 1.0·10−5 and where findings were adjusted for multiple
comparisons OR in studies including a controlled number of
SNPs (∼102) and using multivariable regularization methods
coupled to internal validation to control overfitting.

Forty-three of 60 SNPs were available for the REQUITE
population (either directly determined or after imputation) and
were included in the analysis. These SNPs were identified in five
papers (5, 11, 21–23) and the full list is reported in Table 1.

Outcome Endpoints
Toxicity endpoints were defined using CTCAE v4.0 scoring
reported by health professionals or Patient Reported Outcomes,
as detailed for each single endpoint. As the frame of the DSAE
is to identify SNPs who would tag a patient as exceptionally
“sensitive” to radiation (an “outlier”), patients with other possible
known intrinsic higher risk of exhibiting radiation toxicity
were always excluded, in particularly patients who had systemic
lupus erythematosus, rheumatoid arthritis and other collagen
vascular diseases.

The following endpoints were considered:

1. Late rectal bleeding grade≥1 (CTCAE v4.0 scoring):
patients exhibiting at least mild bleeding (even requiring no
intervention) at 12 or at 24 months. Patients with grade≥1 at
baseline and grade≤1 during follow-up were considered as
not bleeders; patients with hemorrhoids before radiotherapy
treatment were excluded.

2. Late urinary frequency grade≥2 (CTCAE v4.0 scoring):
patients with urinary frequency limiting instrumental
activities of daily living or if urinary frequency requiting
medical management at 12 or at 24 months. Patients with
urinary frequency grade≥2 at baseline and grade≤2 during
follow-up were considered as not exhibiting this endpoint.

3. Late haematuria grade ≥1 (CTCAE scoring): patients with
asymptomatic haematuria (clinical or diagnostic observations
only, no intervention indicated) at 12 or 24 months. Patients
with haematuria grade≥1 at baseline and grade≤1 during
follow-up were considered as not exhibiting the endpoint.

4. Late nocturia grade ≥2 (Patient Reported Outcome): patients
declaring need to urinate at least two-three times per night
at 12 or 24 months. Patients with nocturia grade≥2 at
baseline and grade≤2 during follow-up were considered as not
exhibiting the endpoint.

5. Late grade≥1 (Patient Reported Outcome): patients scored
with hesitant or dripping stream at 12 or 24 months. Patients
with decreased urinary stream grade≥1 at baseline and
grade≤1 during follow-up were considered as not exhibiting
the endpoint.

Patients who underwent transurethral resection of the bladder
and patients on anti-muscarinic drugs (factors which could
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TABLE 1 | Full list of SNPs selected from the literature for validation and

associated toxicity endpoint following prostate radiotherapy.

SNP OR p-value References

Rectal bleeding

rs10519410 3.7 1.3 × 10−6 (21)

rs17055178 1.95# 6.2 × 10−10 (23)

Urinary frequency

rs17599026 3.12 4.16 × 10−8 (5)

rs342442 0.51 3.86 × 10−7 (5)

rs8098701 2.41 2.11 × 10−6 (5)

rs7366282 3.2 2.03 × 10−6 (5)

rs10209697 2.66 2.27 × 10−6 (5)

rs4997823 0.49 2.35 × 10−6 (5)

rs7356945 1.74 3.71 × 10−6 (5)

rs6003982 0.51 4.28 × 10−6 (5)

rs10101158 1.8 4.39 × 10−6 (5)

Decreased urinary stream

rs7720298 2.71 3.21 × 10−8 (5)

rs17362923 2.7 6.79 × 10−7 (5)

rs76273496 3.68 2.71 × 10−6 (5)

rs144596911 3.6 2.94 × 10−6 (5)

rs62091368 4.36 3.95 × 10−6 (5)

rs141342719 3.5 3.97 × 10−6 (5)

rs673783 2.49 4.33 × 10−6 (5)

rs10969913 3.92# 2.9 × 10−10 (23)

Haematuria

rs11122573 1.92# 1.8 × 10−8 (23)

rs708498 0.24 n.a.§ (22)

rs845552 0.95 n.a.§ (22)

Nocturia

rs1799983 0.19 n.a.§ (22)

rs1045485 0.27 n.a.§ (22)

Overall toxicity (STAT# score)

rs10497203* 1.48 8.84 × 10−11 (11)

rs7582141* 1.45 4.64 × 10−11 (11)

rs6432512* 1.42 1.97 × 10−10 (11)

rs264651* 1.49 1.48 × 10−7 (11)

rs264588* 1.45 3.08 × 10−10 (11)

rs264631* 1.43 6.4 × 10−10 (11)

rs147596965 1.95 6.19 × 10−8 (5)

rs77530448 1.43 7.36 × 10−8 (5)

rs4906759 1.73 1.55 × 10−7 (5)

rs71610881 1.82 5.41 × 10−7 (5)

rs141799618 1.55 1.22 × 10−6 (5)

rs2842169 1.32 1.45 × 10−6 (5)

rs11219068 1.32 1.74 × 10−6 (5)

rs8075565 1.32 2.20 × 10−6 (5)

rs6535028 1.34 2.70 × 10−6 (5)

rs4775602 1.26 3.20 × 10−6 (5)

rs7829759 1.39 3.84 × 10−6 (5)

rs79604958 1.60 4.33 × 10−6 (5)

rs12591436 1.20 5.66 × 10−6 (5)

#overall toxicity as defined by calculating the Standardized Total Average Toxicity (STAT)

score (24).

*All these variants are highly correlated in European populations and represent the same

association signal. See also correlation matrix as determined in the REQUITE population

in the Supplementary Figure 1.
#Hazard Ratio.

§SNPs were selected using Least Absolute Shrinkage and Selection Operator (LASSO)

multivariable regression out of a panel of 384 previous identified SNPs, p-value

not available.

constitute a confounding factor in the scoring of urinary toxicity)
were excluded when considering all urinary endpoints.

Deep Sparse AutoEncoder for SNPs
Validation
The methodology described in Massi et al. (25) was considered.
This method proposes a novel feature selection algorithm for
the minority class in an imbalanced dataset, i.e., in cases like
this dataset, where there is a strong imbalance between the
number of patients that are scored as healthy (without side
effects) vs. unhealthy (with side effects). The approach uses a
representation learning technique, specifically a Deep Sparse
AutoEncoder, to obtain the best representation of the majority
class (healthy patients in this dataset) and to consequently
identify which features (SNPs) distinguish the minority class
(unhealthy patients) with respect to the majority class.

An AutoEncoder (AE) is a neural network with an output
that reconstructs the input (26). In its simplest version an AE
is composed of the input, the output and only a single hidden
layer. The input layer in our case is composed of J nodes, one
per feature (one per SNP), and we consider a data matrix X, in
which each row xi is the vector of SNPs recorded for the patient
i, i ∈ {1 ,.., N}. The input layer is connected to the hidden layer,
hi, through the encoder function, f, such that hi = f (Wxi +b);
here W ∈ R H×J denotes the weight matrix and b ∈ RH×1 the
bias vector. Then, the output is the result of the application of a
decoder function, g, to the hidden layer hi, such that x̂i = g (W’hi
+b’), where W’ ∈ R J×H is the weight matrix and b ∈ R J×1 is
the bias vector. Having fixed the functions f and g, the training
of the network consists in estimating the corresponding optimal
parameters (W, b, W’, b’), by minimizing the loss function L(xi,
x̂i), which is a function that gives a measure of the similarity
between the input and the reconstructed output. In this work, we
considered the Euclidean distance as loss function L.

A more sophisticated version of AE (named Deep AE) has
multiple hidden layers in which the output of a layer is the
input of the next one. Figure 1 depicts a simplified scheme of a
Deep AutoEncoder.

In order to get an effective reconstruction of the input, that
allows selection of features that best characterize the input
data, we included a penalization term in the loss function. AE
algorithms of this type are known as Deep Sparse AEs. Given this
framework and with the final goal of validating the SNPs effect
on the long-term radiation toxicity, we applied the previously
described Deep Sparse AE as follows:

(i) sampling: we sampled S healthy patients (those without
toxicity) where S equals the total number of unhealthy patients
(those with toxicity). All the unhealthy patients and the S
sampled healthy patients form the test set. All the remaining
healthy patients constitute the training set.

(ii) training: we trained the network only on the previously
specified training set. The idea here was to learn how to best
represent healthy patients. The result of this step is the estimate
of the neural network characteristics (weight and bias vectors,
encoder and decoder functions).
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FIGURE 1 | Simplified scheme of a Deep AutoEncoder.

FIGURE 2 | Schematic representation of the workflow used to identify which features to select to characterize the minority class (i.e., patients with toxicity) with

respect to the majority class (patients without toxicity).

(iii) testing: we tested the estimated network on the previously
specified test set. The result of this step is a matrix of
Reconstruction Errors, R ∈ R(2S)×J. Considering the previous
step and the fact that unhealthy patients are the minority
class, the rows of R which are related to unhealthy patients
should contain higher values with respect to those rows of R
associated to healthy patients.

(iv) SNP identification: we identified which SNPs are associated
with the highest Reconstruction Error. Further details on this
step are given at the end of this section.

The steps (i)-(iii) are repeated 50 times in order to reduce a
possible selection bias induced by the sampling step (i), thus
obtaining 50 Rmatrices.

In order to identify which features should be selected
for characterizing the minority class with respect to the

majority class, in step (iv) the average Reconstruction Error
per feature per class is computed according to that proposed

in Massi et al. (25), which means computing two vectors

(one for the unhealthy patients and one for the healthy

patients), both made by J elements. Then, we investigated

the distribution of the difference, 1, between the average

Reconstruction Errors related to unhealthy patients and the

average Reconstruction Errors related to healthy patients.

See Figure 2 for a schematic representation of the above
described workflow.

Finally, to define which SNPs are associated with late toxicity

endpoints, we set possible thresholds equal to the 70-th, 80-
th, the 90-th and the 95-th percentiles of the distribution of
the Reconstruction Error differences, 1. This means that we
investigated the SNPs associated with the top 30%, the top
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20%, the top 10% and the top 5% differences. These thresholds
identity the effect size of identified SNPs, a large effect size (Odds
Ratio>2) for SNPs in the 90-th/95-th percentiles, a moderate
(Odds Ratio∼2) and small (Odds Ratio<2) effect size for SNPs
in the 80-th and 70-th percentiles, respectively.

Architectural and Implementation Details
For the interested reader, in this section we provide some
more specific details regarding the development and specific
implementation of the DSAE for the applications described in
this paper. For more details on the methodology, its strenghts

FIGURE 3 | Results for late rectal bleeding grade≥1 from the Deep Sparse AutoEncoder. The 43 considered SNPs are reported in the x-axis and the averaged

Reconstruction Errors (RE) are reported in the y-axis (top panel), red columns refer to patients with toxicity, while blue columns refer to patients without toxicity. In the

lower panel the difference between averaged Reconstruction Errors between the two classes are represented for each SNP (i.e., differences between red and blue

columns). For most SNPs, the difference is close to zero (red line in the bottom panel of the figure). The chosen thresholds in this difference (i.e., highest 30, 20, 10,

and 5% differences) are selecting SNPs associated to the toxicity outcome. Green circles refer to SNPs that were previously identified as associated with late rectal

bleeding, while blue circles refer to SNPs that were previously associated with overall toxicity as defined by calculation of the Standardized Total Average Toxicity

(STAT) score (24). Red stars indicate SNPs (either specific for this endpoint or related to overall toxicity) defining patients with toxicity as outliers with respect to the

characteristics of patients without toxicity. Labels show SNPs that not directly associated with late rectal bleeding/overall toxicity, but contributing to their identification.

The label states for which toxicity endpoint the SNPs were originally associated with in the literature: FREQ=urinary frequency, HEMA=haematuria, NOCT=nocturia,

STREAM=decreased urinary stream.

TABLE 2 | Deep Sparse AutoEncoder testing of SNPs associated with Late Rectal Bleeding*.

SNP References 70-th percentile

small

effect size

80-th percentile

moderate

effect size

90-th percentile

large

effect size

95-th percentile

large

effect size

SNPs previously associated with late rectal bleeding

rs10519410 (21) Not validated Not validated Not validated Not validated

rs17055178 (23) Not validated Not validated Not validated Not validated

SNPs previously associated with overall toxicity (STAT score)

rs264631 (11) Identified Identified Not validated Not validated

rs141799618 (5) Identified Identified Not validated Not validated

*grade≥1 (all considered SNPs reported in the table) and to overall toxicity as defined by calculation of the Standardized Total Average Toxicity (STAT) score (24) (in this case only

“Identified” SNPs were reported in the table). The SNPs that were correctly identified by the algorithm are flagged as “Identified”.
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and all model’s hyperparameters mentioned below, refer to the
description in Massi et al. (25).

The experiments were implemented and carried out using
Python Keras framework for Deep Learning with Tensorflow
as backend.

For better comparability of results in the experiments we
structured the DSAEs included in the sampling-training-testing
procedure with the same architecture and hyperparameters for
all five endpoints. In particular, all the encoders of the DSAEs
were composed of an input layer with J = 43 nodes (one
per SNP), followed by a sequence of hidden layers of 40, 30
(with hyperbolic tangent activation function) and 20 nodes,
respectively. To the 20 nodes of the innermost hidden layer we
applied a sigmoidal activation function to foster the sparsity
induced by the penalization term (weighted with λ =10e-5). The
decoder architecture of all DSAEs was specular to the encoder,
with a sequence of layers with 30 and 40 nodes, followed by an
output layer of J = 43 nodes. The training of the DSAE for each
of the B= 50 iterations was performed for 400 epochs, exploiting
the Adam optimization algorithm with its default parameters
(learning rate equal to 0.001).

RESULTS

Cohort
REQUITE enrolled 1,681 prostate cancer patients who were
treated with external beam radiotherapy without brachytherapy.
One thousand four hundred and fifty patients with complete 2-
year follow-up were available for analysis. Forty-nine patients
were excluded because of an intrinsic higher risk of exhibiting
radiation toxicity, due to their co-morbidities (patients with a
diagnosis of systemic lupus erythematosus, rheumatoid arthritis
and other collagen vascular diseases). Details on the clinical
characteristics of the cohorts selected for each toxicity endpoint
are given in Supplementary Tables 1,2.

Validation of SNPs Associated With Late
Toxicity Endpoints Through a Deep Sparse
AutoEncoder
Late Rectal Bleeding grade≥1
One hundred and sixty of 1,366 available patients (11.7%) had
late rectal bleeding grade≥1. Figure 3 shows the differences
between averaged Reconstruction Errors between the two classes

FIGURE 4 | Results for late urinary frequency grade≥2 from the Deep Sparse AutoEncoder. The 43 considered SNPs are reported in the x-axis and the averaged

Reconstruction Errors (RE) are reported in the y-axis (top panel), red columns refer to patients with toxicity, while blue columns refer to patients without toxicity. In the

lower panel the difference between averaged Reconstruction Errors between the two classes are represented for each SNP (i.e., differences between red and blue

columns). For most SNPs, the difference is close to zero (red line in the bottom panel of the figure). The chosen thresholds in this difference (i.e., highest 30, 20, 10,

and 5% differences) are selecting SNPs associated to the toxicity outcome. Green circles refer to SNPs that were previously identified as associated with late urinary

frequency, while blue circles refer to SNPs that were previously associated with overall toxicity as defined by calculation of the Standardized Total Average Toxicity

(STAT) score (24). Red stars indicate SNPs (either specific for this endpoint or related to overall toxicity) defining patients with toxicity as outliers with respect to the

characteristics of patients without toxicity. Labels show SNPs that not directly associated with late urinary frequency/overall toxicity, but contributing to their

identification. The label states for which toxicity endpoint the SNPs were originally associated with in the literature: BLEE=rectal bleeding, HEMA=haematuria,

NOCT=nocturia, STREAM=decreased urinary stream.
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(i.e., differences between red and blue columns). The largest part
of the differences is close to zero (red line in the bottom panel of
Figure 3). The chosen thresholds in this difference (i.e., highest
30, 20, 10, and 5% differences) select SNPs associated with the
toxicity outcome with different effect size. Table 2 lists results
for the SNPs previously reported to be associated with late rectal
bleeding and overall toxicity in comparison with SNPs selected by
the DSAE in the REQUITE cohort. For late rectal bleeding eight
SNPs were identified, two SNPs previously associated with overall
toxicity (red stars in Figure 3) and six SNPs previously found to
be associated with urinary toxicity.

Late Urinary Frequency Grade≥2
Fifty-six of 1,334 available patients (4.2%) experienced late
urinary frequency grade≥2. Patients were excluded from the
analysis if they had urinary frequency grade≥2 at baseline
(n= 26), they underwent transurethral resection of the bladder
(n= 31) or were using anti-muscarinic drugs (n= 10). Figure 4
and Table 3 show that the DSAE analysis identified 14 SNPs:
four already reported as associated with urinary frequency
(rs17599026, rs8098701, rs7366282, rs10209697), four associated
with overall toxicity, one previously associated with bleeding and
five with other urinary symptoms.

Late Haematuria Grade≥1
Seventy-four of 1,343 available patients (5.5%) experienced late
haematuria grade≥1. Seventeen patients were excluded from the
analysis because they had haematuria at baseline grade≥1, while
41 were excluded because underwent transurethral resection
of the bladder or were using anti-muscarinic drugs. Figure 5
and Table 4 report DSAE results for this endpoint: 10 SNPs
were identified. Two SNPs already associated with haematuria
(rs708498 and rs845552), five SNPs associated with overall
toxicity, and three SNPs with other urinary symptoms.

Late Nocturia Grade≥2
Two hundred and twenty-three patients out of 1,250 available
patients (17.8%) experienced late nocturia grade≥2. One
hundred and ten patients were excluded from analysis because
they had nocturia grade≥2 at baseline, while 41 were excluded
because underwent transurethral resection of the bladder
or were using anti-muscarinic drugs. Figure 6 and Table 5

report results for the validation through DSAE in the
REQUITE population. Eleven SNPs were identified: one SNP
already found to be associated with nocturia, four with
overall toxicity, one with bleeding and five with other
urinary symptoms.

Late Decreased Urinary Stream Grade≥1
Two hundred and eleven out of 1,234 available patients (17.1%)
experienced late decreased stream grade≥1. One hundred and
twenty-six patients were excluded from analysis because they
had decreased stream grade≥1 at baseline, while 41 were
excluded because underwent transurethral resection of the
bladder or were using anti-muscarinic drugs. Eleven SNPs were
selected: two SNPs previously identified for decreased urinary
stream (rs76273496 and rs673783), two for overall toxicity, six
for other urinary symptoms and one for bleeding (Figure 7
and Table 6).

Classical Validation Approach Using
Univariate Analysis
A simple validation approach, using univariate logistic analysis,
identified eight SNPs with p < 0.05 (range 0.01–0.05), none of
them is validated when considering the Bonferroni correction for
multiple testing, which would require p < 0.0011 in this case.
Detailed results are presented in Supplementary Table 4.

TABLE 3 | Results from Deep Sparse AutoEncoder testing of SNPs associated with Urinary Frequency*.

SNP References 70-th percentile

small

effect size

80-th percentile

moderate

effect size

90-th percentile

large

effect size

95-th percentile

large

effect size

SNPs previously associated with late urinary frequency

rs17599026 (5) Identified Identified Identified Not validated

rs342442 (5) Not validated Not validated Not validated Not validated

rs8098701 (5) Identified Identified Identified Identified

rs7366282 (5) Identified Identified Identified Identified

rs10209697 (5) Identified Identified Not validated Not validated

rs4997823 (5) Not validated Not validated Not validated Not validated

rs7356945 (5) Not validated Not validated Not validated Not validated

rs6003982 (5) Not validated Not validated Not validated Not validated

rs10101158 (5) Not validated Not validated Not validated Not validated

SNPs previously associated with overall toxicity (STAT score)

rs147596965 (5) Identified Not validated Not validated Not validated

rs77530448 (5) Identified Identified Identified Identified

rs8075565 (5) Identified Not validated Not validated Not validated

rs12591436 (5) Identified Not validated Not validated Not validated

*Late Urinary Frequency grade≥2 (all considered SNPs reported in the table) and to overall toxicity as defined by calculation of the Standardized Total Average Toxicity (STAT) score (24)
(in this case only “Identified” SNPs were reported in the table). The SNPs that were correctly identified by the algorithm are flagged as “Identified.”
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FIGURE 5 | Results for late haematuria grade≥1 from the Deep Sparse AutoEncoder. The 43 considered SNPs are reported in the x-axis and the averaged

Reconstruction Errors (RE) are reported in the y-axis (top panel), red columns refer to patients with toxicity, while blue columns refer to patients without toxicity. In the

lower panel the difference between averaged Reconstruction Errors between the two classes are represented for each SNP (i.e., differences between red and blue

columns). For most SNPs, the difference is close to zero (red line in the bottom panel of the figure). The chosen thresholds in this difference (i.e., highest 30, 20, 10,

and 5% differences) are selecting SNPs associated to the toxicity outcome. Green circles refer to SNPs that were previously identified as associated with late

haematuria, while blue circles refer to SNPs that were previously associated with overall toxicity as defined by calculation of the Standardized Total Average Toxicity

(STAT) score (24). Red stars indicate SNPs (either specific for this endpoint or related to overall toxicity) defining patients with toxicity as outliers with respect to the

characteristics of patients without toxicity. Labels show SNPs that not directly associated with late haematuria/overall toxicity, but contributing to their identification.

The label states for which toxicity endpoint the SNPs were originally associated with in the literature: BLEE=rectal bleeding, FREQ=urinary frequency,

NOCT=nocturia, STREAM=decreased urinary stream.

TABLE 4 | Results from Deep Sparse AutoEncoder testing of SNPs associated with Late Haematuria*.

SNP References 70-th percentile

small

effect size

80-th percentile

moderate

effect size

90-th percentile

large

effect size

95-th percentile

large

effect size

SNPs previously identified as associated to late haematuria

rs11122573 (23) Not validated Not validated Not validated Not validated

rs708498 (22) Identified Identified Identified Not validated

rs845552 (22) Identified Identified Not validated Not validated

SNPs previously identified as associated to overall toxicity (STAT score)

rs147596965 (5) Identified Identified Identified Not validated

rs77530448 (5) Identified Identified Not validated Not validated

rs7829759 (5) Identified Identified Not validated Not validated

rs79604958 (5) Identified Identified Not validated Not validated

rs12591436 (5) Identified Identified Not validated Not validated

*Late Haematuria grade≥1 (all considered SNPs reported in the table) and to overall toxicity as defined by calculation of the Standardized Total Average Toxicity (STAT) score (24) (in

this case only “Identified” SNPs were reported in the table). The SNPs that were correctly identified by the algorithm are flagged as “Identified”.
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FIGURE 6 | Results for late nocturia grade≥2 from the Deep Sparse AutoEncoder. The 43 considered SNPs are reported in the x-axis and the averaged

Reconstruction Errors (RE) are reported in the y-axis (top panel), red columns refer to patients with toxicity, while blue columns refer to patients without toxicity. In the

lower panel the difference between averaged Reconstruction Errors between the two classes are represented for each SNP (i.e., differences between red and blue

columns). For most SNPs, the difference is close to zero (red line in the bottom panel of the figure). The chosen thresholds in this difference (i.e., highest 30, 20, 10,

and 5% differences) are selecting SNPs associated to the toxicity outcome. Green circles refer to SNPs that were previously identified as associated with late nocturia,

while blue circles refer to SNPs that were previously associated with overall toxicity as defined by calculation of the Standardized Total Average Toxicity (STAT) score

(24). Red stars indicate SNPs (either specific for this endpoint or related to overall toxicity) defining patients with toxicity as outliers with respect to the characteristics of

patients without toxicity. Labels show SNPs that not directly associated with late nocturia/overall toxicity, but contributing to their identification. The label states for

which toxicity endpoint the SNPs were originally associated with in the literature: BLEE=rectal bleeding, FREQ=urinary frequency, HEMA=haematuria,

STREAM=decreased urinary stream.

TABLE 5 | Results from Deep Sparse AutoEncoder testing of SNPs associated with Late Nocturia*.

SNP References 70-th percentile

small

effect size

80-th percentile

moderate

effect size

90-th percentile

large

effect size

95-th percentile

large

effect size

SNPs previously identified as associated to late nocturia

rs1799983 (22) Identified Not validated Not validated Not validated

rs1045485 (22) Not validated Not validated Not validated Not validated

SNPs previously identified as associated to overall toxicity (STAT score)

rs10497203 (11) Identified Identified Not validated Not validated

rs264651 (11) Identified Identified Not validated Not validated

rs77530448 (5) Identified Identified Not validated Not validated

rs11219068 (5) Identified Identified Not validated Not validated

*Late Nocturia grade≥2 (all considered SNPs reported in the table) and to overall toxicity as defined by calculation of the Standardized Total Average Toxicity (STAT) score (24) (in this

case only “Identified” SNPs were reported in the table). The SNPs that were correctly identified by the algorithm are flagged as “Identified”.

DISCUSSION

In recent years Normal Tissue Complication Probability (NTCP)

models have been developed to attempt to predict before the

start of treatment patients at risk of long-term radiation toxicity.

These recent developments were also characterized by the shift
from NTCP dose-based modeling to the wider field of more
“comprehensive” predictive models. In the speculative case that
two patients receive exactly the “same dose distribution,” the risk
of toxicity is always modulated by the single individual profile.
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FIGURE 7 | Results for late decreased urinary stream grade≥1 from the Deep Sparse AutoEncoder. The 43 considered SNPs are reported in the x-axis and the

averaged Reconstruction Errors (RE) are reported in the y-axis (top panel), red columns refer to patients with toxicity, while blue columns refer to patients without

toxicity. In the lower panel the difference between averaged Reconstruction Errors between the two classes are represented for each SNP (i.e., differences between

red and blue columns). For most SNPs, the difference is close to zero (red line in the bottom panel of the figure). The chosen thresholds in this difference (i.e., highest

30, 20, 10, and 5% differences) are selecting SNPs associated to the toxicity outcome. Green circles refer to SNPs that were previously identified as associated with

late decreased urinary stream, while blue circles refer to SNPs that were previously associated with overall toxicity as defined by calculation of the Standardized Total

Average Toxicity (STAT) score (24). Red stars indicate SNPs (either specific for this endpoint or related to overall toxicity) defining patients with toxicity as outliers with

respect to the characteristics of patients without toxicity. Labels show SNPs that not directly associated with late decreased urinary stream /overall toxicity, but

contributing to their identification. The label states for which toxicity endpoint the SNPs were originally associated with in the literature: BLEE=rectal bleeding

FREQ=urinary frequency, HEMA=haematuria, NOCT=nocturia.

The fact that “dose is not enough” was clear from the early
days of radiobiology but is receiving constantly growing attention
in the current “omics” epoch (Bentzen, 2006): the availability
of individual information characterizing patients and potentially
influencing their reactions to radiation is increasingly important,
especially in the era of image-guided radiotherapy that can spare
the organs at risk in most patients.

The purpose of any predictive model in oncology is to
provide valid outcome predictions for new patients. Essentially,
the main interest of a dataset used to develop a model
is to learn for the future. Systematic validation in multi-
center collaborative settings hence is a crucial aspect in the
process of predictive modeling. REQUITE is the largest multi-
center observational study in this field to date, collecting
standardized data longitudinally. The study was specifically
designed to enable validation of models and biomarkers that
predict a patient’s risk of developing long-term side-effects
following radiotherapy.

The present work focused on the validation of findings from
previous GWAS of radiation toxicity after radiotherapy for

prostate cancer. To the best of our knowledge, few validation
studies in this frame have been conducted so far. Barnett et al.
(13) performed an independent validation study of 92 SNPs in
46 genes in a large cohort of breast (976 patients) and prostate
(637 patients) cancer patients who received radiotherapy. They
focused on five rectal (bleeding, proctitis, sphincter control, stool
frequency, tenesmus) and four urinary endpoints (frequency,
nocturia, incontinence, and decreased stream) reported by
patients 2 years after radiotherapy. An additional endpoint
of overall toxicity as measured by the STAT score was also
considered. None of the investigated associations was confirmed
after adjustment for multiple comparisons.

Genome-wide radiogenomic studies are identifying and
validating SNPs. However, to date these studies have relied on the
classical single marker association test (both in the discovery and
validation setting), which is hampered by the need for multiple-
testing corrections. For typical study sizes, this method can detect
only relatively large effect size and has limited power to identify
reliably modest effects from the many SNPs that are likely to
contribute to a polygenic risk profile associated with radiation
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TABLE 6 | Results from Deep Sparse AutoEncoder testing of SNPs associated with Late Decreased Urinary Stream*.

SNP References 70-th percentile

small

effect size

80-th percentile

moderate

effect size

90-th percentile

large

effect size

95-th percentile

large

effect size

SNPs previously identified as associated to late decreased urinary stream

rs7720298 (5) Not validated Not validated Not validated Not validated

rs17362923 (5) Not validated Not validated Not validated Not validated

rs76273496 (5) Identified Identified Identified Not validated

rs144596911 (5) Not validated Not validated Not validated Not validated

rs62091368 (5) Not validated Not validated Not validated Not validated

rs141342719 (5) Not validated Not validated Not validated Not validated

rs673783 (5) Identified Not validated Not validated Not validated

rs10969913 (23) Not validated Not validated Not validated Not validated

SNPs previously identified as associated to overall toxicity (STAT score)

rs77530448 (5) Identified Not validated Not validated Not validated

rs6535028 (5) Identified Not validated Not validated Not validated

*Late Decreased Urinary Stream grade≥1 (all considered SNPs reported in the table) and to overall toxicity as defined by calculation of the Standardized Total Average Toxicity (STAT)

score (24) (in this case only “Identified” SNPs were reported in the table). The SNPs that were correctly identified by the algorithm are flagged as “Identified”.

toxicity. Genome-wide studies miss SNPs that make small but
real contributions to risk.

Machine learning has already been proposed as a promising
alternative approach to estimate overall genetic risk (27). The
approach can identify multiple SNPs with small effects that
together but not individually reach genome-wide significance.
Two studies have already proposed machine learning methods to
identify SNP-based signatures associated with late toxicity after
radiotherapy for prostate cancer (27, 28).

Here, we extended the use of machine learning methods
by using a method that addresses an important limitation of
studies on radiation toxicity: the imbalance of classes, with
a lower frequency of patients with vs. without late toxicity.
This imbalance is important because it can lead to sub-optimal
solutions (29), even when datasets are used for validation.
As a first step in testing our approach, we attempted to and
were successful in validating previously reported associations
identified in studies based on classical single marker association
tests. The next step will be a de novo analysis to identify SNPs with
smaller individual effects.

Dealing with imbalance requires non-classical statistical
solutions. Here, we explore novel methods for feature selection
that come from the Deep Learning research field (25). Indeed,
deep learning approaches, with their intrinsic hierarchical
structure (where each layer realizing a combination of the
previous layer), seem particularly adept at mimicking complex
dependencies within data. Deep learning has already been
applied and shown to have potential in similar bioinformatics
research areas, such as for modeling the competition between
splice sites (30) and in predicting RNA- and DNA-binding
specificity (31).

We used DSAE to obtain the best possible representation
of the majority class (without toxicity) and so to identify
which features (SNPs) distinguish the minority class (with

toxicity). The encoder and decoder functions are usually non-
linear (i.e., sigmoid, hyperbolic tangent, rectified linear unit
etc.), which enables a better reconstruction of the input by
the capture of complex non-linear relationships among SNPs.
Training on healthy patients allows the overall SNP pattern
of normal radio-sensitivity to be established. Testing measures
the “distance” between each new patient and the pattern of
normal radio-sensitivity to identify SNPs associated with the
highest reconstruction errors (i.e., highest distances) between
the pattern of normality and the SNP profile of patients scored
with toxicity (i.e., radio-sensitive patients). The distribution of
the reconstructed errors allows identification and classification
of SNPs with very large/large effect (SNPs associated with the
top 95th percentile and 90th percentile of the distribution of
reconstructed errors) and with moderate/small effects (SNPs
associated with the top 80th percentile and 70th percentile of the
distribution of reconstructed errors).

The DSAE successfully validated multiple SNPs contributing
to an increased risk of toxicity. Some SNPs were already
associated with the specific considered endpoint, others were
previously associated with overall toxicity, and some were
previously associated with other toxicities.

As common in GWAS, many significant SNPs lie in
non-coding regions, and it is premature to speculate on
their functional significance. We refer readers to the original
publications which discuss possible gene functions (5, 11, 23),
but give an example to illustrate likely clinical relevance. DSAE
validated two SNPs previously associated with haematuria,
rs708498 and rs845552, which are located in the PTGER2
and EGFR genes, respectively. PTGER2 (widely distributed
in humans) encodes Prostaglandin E2 receptor 2. Irradiation
causes hypermethylation of this antifibrotic gene (32). EGFR
has been shown to play a critical role in TGF-β1 dependent
fibroblast to myofibroblast differentiation (33). These two SNPs
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were also identified for urinary stream (rs845552) and urinary
frequency (rs708498).

The main strength of our study is use of a large international
prospective multi-center cohort of patients treated with modern
radiotherapy techniques and fractionation schemes. The patients
were specifically enrolled to validate models and biomarkers
for predicting radiation toxicity, and the study design involved
a standardized data collection scheme for collecting healthcare
professional and patient-reported outcomes. The extensive role
of data management also allowed for quality assurance of data
collected, and we used “real world” data coming from “data-
farming” (34).

A possible limitation of our study was use of 2-year follow-up
toxicity data. The REQUITE study is still maturing, normal tissue
reactions in the intestinal and urinary tract develop gradually
from 6 months after radiotherapy till to around 3 years for the
intestinal syndrome and to 5 years for the urinary syndrome.
Recent additional funding is allowing extension of the REQUITE
study with the aim of reaching standardized collection of follow-
up data till year 5.

The use of grade 1 and grade 2 events is another possible
limitation of this study. As the application of deep learning
techniques requires a suitable number of events, the choice
of mild or moderate (when possible) toxicity was forced by
the number of morbidity events registered in the REQUITE
population. The low number of severe toxicity is for sure a
reflection of modern radiotherapy techniques which allow a
substantial sparing of normal tissues, at least for the case of
prostate cancer irradiation. Yet, some grade 1 and grade 2
toxicity can assume a chronic behavior, with substantial impact
on the quality of life of long term survivors, for example,
this could happen, for grade 2 urinary frequency and nocturia
which are impairing daily activities and the quality of sleep
for many years (35). A further point, more associated to
research rather to clinical activity, is related to the possibility
that the same genes/variants predispose to severe toxicity that
predispose to low-grade toxicity. A realistic hypothesis is that
some genes/variants will be common and others will be unique
to severe toxicities. For example, ATM seems to be important
for both mild and severe toxicity, though the particular variants
differ with common SNPs associated with any toxicity, but rare
mutations associated with severe toxicity. We think we can make
a good case that genes identified via GWAS of mild toxicity
represent good candidates for subsequent sequencing studies
to identify rare mutations that may be associated with severe
toxicities. Probably there are at least some biologic mechanisms
common to both mild and severe toxicity, though the optimal
genomic signature for each may differ. Our work still adds
value by pointing to the candidate genes or loci that are likely
important for both.

We have shown our approach is worth studying further and
the next step would be to use it to identify patterns of SNPs to
define polygenic risk scores that can be included into integrated
normal tissue complication probability models, together with
validated dosimetric and clinical risk factors.

The DSAE methodology underlines that, within the current
RT, experiencing no toxicity could be considered as the

“normal” situation, with patients with mild/moderate toxicity
being outliers. The possible knowledge of the single patient
intrinsic radiosensitivity and the identification of these outlier
subjects could help in tailoring decision making. This should
not entail changing the probability of tumor control to
avoid mild/moderate side-effects, yet it should be focused on
maximizing uncomplicated tumor control, even considering
the patient inclination toward the different side-effects. The
availability of such models would be relevant for the clinic,
allowing the single patient optimization, thus constituting
an important step toward the implementation of predictive
modeling in the clinic. This approach would allow tailoring of
therapeutic approach (i.e., active surveillance vs. prostatectomy
vs. brachytherapy vs. external beam radiotherapy) and of doses
(both to tumor and organs at risk) to the specific patient
anatomy, clinical situation and individual biology. Combining
biological stratification with toxicity reducing techniques (such
as imaging fusion, image guidance, fractionation and reduced
margins for Planning Target Volume) could further decrease
treatment related toxicity rates and allow for dose escalation to
enhance tumor control. Integrated predictive models will also be
an essential tool in the design of interventional trials to modify
the radiotherapy strategies. A detailed discussion of the potential
ways in which biomarker/SNP assays might be implemented in
routine clinical practice can be found in Azria et al. (7).

Other future work could study the possibility of “scaling” the
use of DSEAs to the discovery of new genetic signatures using the
whole GWAS information available in the REQUITE population,
thus achieving the possibility of considering millions of features
to detect outliers.

CONCLUSION

A deep learning approach can validate SNPs associated with
toxicity after radiotherapy. The method can identify complex
SNP signatures for multiple toxicity endpoints and should be
studied further to extract polygenic risk scores to include in
integrated normal tissue complication probability models that
could be used to personalize radiotherapy planning.
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Despite the dramatic advancements in pelvic radiotherapy, urinary toxicity remains
a significant side-effect. The assessment of clinico-dosimetric predictors of radiation
cystitis (RC) based on clinical data has improved substantially over the last decade;
however, a thorough understanding of the physiopathogenetic mechanisms underlying
the onset of RC, with its variegated acute and late urinary symptoms, is still largely
lacking, and data from pre-clinical research is still limited. The aim of this review is
to provide an overview of the main open issues and, ideally, to help investigators in
orienting future research. First, anatomy and physiology of bladder, as well as the
current knowledge of dose and dose-volume effects in humans, are briefly summarized.
Subsequently, pre-clinical radiobiology aspects of RC are discussed. The findings
suggest that pre-clinical research on RC in animal models is a lively field of research
with growing interest in the development of new radioprotective agents. The availability
of new high precision micro-irradiators and the rapid advances in small animal imaging
might lead to big improvement into this field. In particular, studies focusing on the
definition of dose and fractionation are warranted, especially considering the growing
interest in hypo-fractionation and ablative therapies for prostate cancer treatment.
Moreover, improvement in radiotherapy plans optimization by selectively reducing
radiation dose to more radiosensitive substructures close to the bladder would be of
paramount importance. Finally, thanks to new pre-clinical imaging platforms, reliable and
reproducible methods to assess the severity of RC in animal models are expected to
be developed.
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INTRODUCTION

Despite dramatic advance in pelvic radiotherapy, mainly due
to the implementation of image-guided intensity-modulated
(IMRT) techniques, acute and late urinary toxicity (radiation
cystitis [RC] or actinic cystitis) remains a significant side-
effect, especially in the case of high-dose schedules such as
those used for prostate and gynecological cancer treatment
(1, 2). The assessment of clinical, molecular and/or genetic
predictors of urinary toxicity has improved substantially over
the last decade, also by use of data from large cohorts of
prospectively monitored patients treated with external beams
or brachytherapy (3–7). Nevertheless, a thorough understanding
of the pathophysiology at the base of acute and late radiation-
induced urinary symptoms, such as urgency, nocturia, urethral
stenosis, incontinence, hematuria, etc., is still largely lacking, as
well as robust pre-clinical data based on animal models. The
advent of micro-irradiators, capable of delivering radiotherapy
even to small animals with micrometric resolution, and the
simultaneous rapid advancement of imaging methods, might
lead to big advancements into this field. Animal models of
radiation-induced bladder toxicity might improve the current
understanding of physio-pathogenetic mechanisms at the base
of radiation induced cystitis and expedite the detection and
testing of possible radioprotective agents aimed at reducing
such damage.

The aim of the current paper is therefore to review this
suboptimally explored field of research, with the aim of
providing both basic researchers and radiation oncologists an
overview of the main open issues and, ideally, to assist them
in orienting future research. First, normal bladder anatomy
and physiology, radiation dose and dose-volume effects are
briefly summarized. Then, the potential of modern radiobiology
“tools” and the realization of robust and reproducible animal
models of radiation-induced cystitis, are described. The most
promising approaches aimed at preventing/minimizing RC are
then discussed, by systemically reviewing both historical and
recent findings on animal experiments. Finally, suggestions for
future research will be explored.

Anatomical Features
The urinary bladder collects urine from the ureters and,
when sufficiently filled, empties through the urethra. Two
different parts can be distinguished: the bladder body,
located above the inter-ureteric crest, and the base, composed
of the trigone, the bladder neck and the urethro-vesical
junction (8).

The urinary bladder is a hollow smooth muscle organ made
up of 4-folds. The most external one is the adventitia, a serous
layer. Below, the detrusor muscle, a thick muscular layer made
up of smooth muscle cells and extracellular matrix, rich in
collagen and elastin, allows bladder emptying. Three layers of
muscular cells, differently distributed between bladder body
and neck, exists: outer longitudinal, circular medial and inner
longitudinal (8, 9). The submucosa is the smooth connective
tissue laying between the detrusor muscle and the inner mucosal
layer. It is rich in elastin and collagen, mostly types 1 and 3,

mixed with a proteoglycan matrix which attracts water, giving
the tissue high elasticity (8). Finally, the most internal layer,
the mucosa is structured in three parts from the outer to the
inner: muscolaris mucosae, a thin muscular layer dividing the
submucosa from the mucosa; lamina propria, a connective layer,
rich in blood vessels and nerve endings, which structurally
and functionally supports the urothelium; and urothelium,
a pseudostratified epithelium where basal, intermediate and
umbrella cells can be identified (8). Each umbrella cell covers
many intermediate cells, and their shape resembles an umbrella;
they are in direct contact with urine and flatten when the
bladder fills (10). Most of their membrane apical surface (almost
80%) is covered with protein plaque whose precise composition
is unclear, but a main component seems to be protein called
Uroplakin (9). Together with the glycosaminoglycan (GAG)
layer over the urothelium and the tight junctions between
umbrella cells, the protein plaque creates the urine-plasma
barrier and probably hampers bacterial adherence (9, 11).
Another function of urothelial cells seems the detection of
bladder volumes and strain, through a direct signaling on
afferent nerves or indirect communication with interstitial
cells (9).

Physiology and Mechanical Features
Storage of urine and voiding represent the two most important
functions of the urinary bladder, involving extremely complex
interactions between its structural components and the
nervous system.

Urine storage occurs at low pressure, and the bladder behaves
passively (8, 9). During filling, the smooth muscle cells have to
relax, elongate and rearrange. Laplace’s law, assuming spherical
shape, incompressible wall and an isotropic homogeneous
stretch, accurately describes the bladder mechanics during filling:
wall tension, intravesical pressure and bladder size are directly
related (8, 9). During bladder filling, intravesical pressure is
relatively constant, avoiding urine outflow to the upper urinary
tract, and bladder is slowly stretched while volume increases
(8, 9, 11, 12). A small increase in bladder pressure during
filling is caused by a small increase in bladder wall tension,
due to the viscoelastic response of the extracellular matrix
when collagen fibers, initially folded, begin to stretch (12,
13). The viscoelastic property of the bladder wall is directly
reflected in bladder compliance (C), defined as the change in
volume (V) relative to the corresponding change in intravesical
pressure (P). High compliance indicates that bladder volume
could increase during filling without a significant pressure
surge (9).

During the active micturition phase, smooth cells contract
rapidly and synchronously throughout the bladder (8, 9).
Immediately prior to voiding, after parasympathetic nerve system
activation, the sphincters relax, the detrusor contracts and
internal pressure increases (9, 12, 14). Contraction of muscle cells
occurs with the interaction of α-myosin and actin molecules,
triggered by intracellular calcium concentration increase and
calmodulin activation. Thanks activation of muscarinic M3
receptor by acetylcholine, intracellular calcium is released by
the opening of membrane nifedipine-sensitive L-type Ca2+
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channels, by the increase in inositol 1,4,5-trisphosphate (IP3)
production with consequent release of calcium from the
sarcoplasmic reticulum, and by the activation of ryanodine
receptors (9).

In addition, cellular framework and membrane attachments
are provided by other cytoskeletal proteins, such as non-muscle
β- and γ -actins, filamin, calponin and intermediate filaments
(8, 9, 11).

All of these mechanisms can be significantly altered and
impaired by irradiation (See below 2.5.2 Radiation damage and
bladder dysfunction).

Clinical Doses and Thresholds in Humans
Although both state-of-the-art imaging guidance and intensity
modulated techniques have been developed to allow better
radiation dose distribution and improve treatment safety, when
radiation is delivered to pelvic organs, the involvement of healthy
portions of the bladder is inevitable. Therefore, a significant
fraction of irradiated patients experience bladder radiation-
induced side effects. The onset of RC significantly affects
patients’ quality of life, as there are no recommended standard
management treatments (15). Radiation dose, fraction, and field
size, as well as age at radiation treatment, genetic variations,
concurrent therapies and comorbidities such as diabetes and
immunodeficiency are considered risk factors for developing
RC (16).

In particular, several recent reviews (17–20) have outlined
how radiation dose correlates to the risk of urinary toxicity.
Evidence of a quite rapid increase of the risk of Grade 3
urinary toxicity according to the Common Toxicity Criteria
for Adverse Events (CTCAE, e.g., urethral stenosis and/or
bladder neck stricture requiring surgical intervention, gross
hematuria requiring blood transfusion and/or hyperbaric oxygen
therapy, urinary incontinence requiring treatments such as
invasive treatment) (21) for 2-Gy equivalent doses (EQD2) to
the whole bladder above 50–55Gy have been demonstrated
(22). Segments of the urinary tract can receive much higher
doses of radiation during bladder, prostate and gynecologic
cancer radiotherapy, and dose-volume effects for several urinary
symptoms have been demonstrated (23). The bladder shows
the behavior of a prevalently serial organ, being extremely
sensitive to even small volumes receiving high doses, such
that any procedure leading to a reduction of bladder volumes
receiving EQD2 doses ≥75–78Gy or ≥8–12 Gy/week may
significantly decrease the risk of toxicity (18). Here, image-
guided radiotherapy (IMRT) reduced bladder areas overlaying
the planning target volume (PTV) and hence lowered urinary
toxicity risk. A spatial effect was also highlighted in the trigone,
the most radiosensitive bladder substructure, for which the
mean dose delivered was proven to be strongly associated
to a higher risk of severe acute and late urinary damage
(19). More recently, growing evidence of bladder sensitivity
to fractionation suggested an α

β
value (a parameter of the

sensitivity of both tumor and healthy tissues to fractionation)
significantly lower than previously hypothesized, in the range of
1Gy. The prevalent dose-effect in hypofractionated protocols is
consistently associated with the risk of severe late toxicities such

as gross hematuria, urethral stenosis and severe incontinence
(21), a risk which rises considerably for prescribed EQD2
radiation doses to the PTV above 80–85Gy (calculated for an α

β

ratio of 1 Gy).

Image-Guided Small Animal Irradiation
Systems
The use of image-guided small animal irradiation systems is
rapidly increasing in preclinical and translational radiotherapy
research (24, 25). Recent technological developments allow the
possibility of mimicking in vivo the main steps of clinical image-
guided radiotherapy, from CT images to treatments, and the
evaluation of the effects of radiation on tumor and healthy
tissues. The main difference with respect to the clinical setting
is that the entire procedure, comprising CT imaging, dose
planning and delivery, is performed within about 20min, while
the animal is under anesthesia. This strict time limitation is
necessary to reduce the effect of hypothermia, as well as to
increase the number of animals that can be treated in a single
experimental session.

Considering the size of the animals and the small volumes
to be treated, lower photon energy beams generated using a
conventional x-ray tube working at a tension up to about 200–
250 kVp (instead of MV energies needed for treating humans)
are used. The same x-ray tube is normally employed to acquire
CT images of the animal, with a tension range between 40 and
80 kVp.

Two small animal image guided irradiators are currently
commercially available: SARRP (Xstrahl, Atlanta, GA, USA) and
XRAD225Cx SmART (PXI North Branford, CT, USA). The two
systems are similar in terms of x-ray energy and differ mainly in
terms of the geometry of CT acquisition. There are also home-
made solutions and prototypes developed by several research
groups (26–29). An exhaustive description of these prototypes is
beyond the scope of this review.

Given the size of mice and rats, the downscaling of the
imaging, planning and dose delivery procedures on such small
animals is not a trivial issue. As mentioned in a recent ESTRO
ACROP guideline (30), challenges include how to perform
accurate and precise small field dosimetry and how to verify dose
distributions on such small fields.

With regard to the two available commercial systems, the
dose is calculated using dedicated treatment planning systems
(TPS) based on Superposition–Convolution (31) and Monte
Carlo simulation (25). An example of a planned treatment to the
entire rat bladder is shown in Figure 1. Here, the TPS allows the
calculation of dose volume histogram (DVH), visualization of the
beams, dose distributions etc., as in clinical TPS.

In order to obtain a better delineation of the target volume
it is also possible to merge the planning CT image with
images acquired with different modalities, such as Magnetic
Resonance (MR) (32), Positron emission tomography (PET)
(33), single photon emission tomography (SPECT) (34) and
bioluminescence imaging (35, 36). Importantly, the use of
multimodal imaging can significantly increase planning time,
while reducing system throughput.
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FIGURE 1 | The image shows an example of a planned treatment to the entire rat bladder. The TPS allows the calculation of dose volume histogram (DVH), the
visualization of the beams, the dose distributions, etc., similar to a clinical TPS.

TABLE 1 | Search and exclusion strategy used in the bibliographic research on scopus for the current review.

Search and exclusion strategy Input in the research platform Scopus

Search step 1

Multiple search in titles, abstracts and keywords of the following subjects: TITLE-ABS-KEY(

3. Pre-clinical small animal research “preclinical” OR “rat” OR “mice”

4. External radiotherapy (X-rays therapeutic beam) “radiotherapy” OR “radiation injuries” OR “radiation dose” OR
“radiation-protective agents” OR “ionizing radiation”

5. Urinary tract “bladder” OR “urethra”

6. Models of radio-induced toxicity “model” OR “tolerance” OR “toxicity” OR “controlled study” OR
“dose response”)

Exclusion step 1

Restriction to the only medical subject area SUBJAREA (medi)

Exclusion step 2

Limitation to works published in english LIMIT-TO (LANGUAGE, “English”)

Exclusion step 3

Reinforcement of the exclusion criteria for subjects outside the scope of the current
review:

AND NOT(

7. Bladder cancer “bladder cancer” OR “bladder carcinoma”

8. Clinical studies OR “clinical trials” OR “case report”

9. In vitro experiments OR “in vitro”

10. Internal radiotherapy OR “radionuclide” OR “radioactivity” OR “PET” OR “intraoperative”

11. Pharmaceutical studies OR “radiopharmaceutical” OR “pharmacodynamics”

12. Non-ionizing radiation OR “electromagnetic”)

At the end of the first examination through the evaluation of 78 abstracts, 30 papers were excluded based on the established criteria, resulting in 48 full papers (4 of which are reviews)

published in the period 1985–2019.

LITERATURE REVIEW

Methods of Bibliographic Research
In October 2019, the peer-reviewed scientific literature was
scrutinized by S.Z. and A.B. for pre-clinical research on in-
vivo small animal (mouse and rat) models of radiation cystitis.
The research platform Scopus (Elsevier tool) was used: the
search strategy and the multiple keywords combinations used are
detailed in Table 1. Eligibility was limited to documents in the
medical area published in English. Specific exclusion criteria were
used to avoid non-pertinent subjects, such as studies relative to
bladder cancer, radioactive nuclides or non-ionizing radiation,

in vitro experiments, pharmaceutical or clinical trials. Of the
initial 78 abstracts reviewed, 30 were excluded on the base of

the above mentioned criteria, resulting in 48 full papers (4

of which are reviews) published between 1985 and 2019. The

articles, despite reporting very different end-points and methods,

are grouped into three main topics (i.e., Radiation damage

and bladder dysfunction; Pathology and preclinical models;

Radioprotective agents) and are summarized in Tables 2–4,

respectively. Table 5 includes five studies on abscopal/bystander
effects retained for completeness, although they are not discussed
in the current review.
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TABLE 2 | Chronological summary of the pre-clinical cystometric studies about radio-induced toxicity on the normal bladder.

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Knowles et al.
(37)

Female rat
(Wistar)

20-40Gy in 1 fr. to
ureter/trigone delivered
by 300 kV X-rays
machine through a
ventral beam

Hydronephrosis
(intravenous
urography)

Death: <40 days
Hydronephrosis: >42 days

Rate at 23.4Gy to ureter =
14/16
Rate at 25Gy to trigone = 9/11
Many rats died with 37.4Gy to
ureter; No death associated with
40Gy to trigone

Lundbeck
et al.
(38)

Female Mouse
(C3D2F1/Bom)

20Gy in 1 fr. delivered
by 250 kV X-rays
machine

Reservoir function
(transurethral
cystometry)

No change in the control group
within 200 days.
Biphasic change in the irradiated
group

Evidence of biphasic change in
the bladder reservoir function:
acute and late damage

Lundbeck
et al.
(39)

Female mouse
(C3D2F1/Bom)

5–30Gy in 1 fr.
delivered by 250 kV
X-ray machine through
a ventral beam

Reservoir function
(transurethral
cystometry)

Acute response: 10–14 days
(Functions restored after another
month)
Late response: dependent on
the dose

RD50 = 17.2Gy for the acute
response.
Late toxicity time was
dose-dependent: 10–15Gy,
20Gy, 25–30Gy groups were
significant different

Stewart et al.
(40)

Female mouse
(C3H/Hen
Af-nu+)

8–16Gy repeated after
1 day or 3 or 9 months
and delivered by 250
kV X-ray machine
through a ventral beam

Functional damage
(transurethral
cystometry)

Early damage: 2 weeks
(reirradiation at 9 months after
16Gy)
Late damage: undirect
relationship with the dose
administered in the first
treatment and no dependency
upon time between treatments

Prolonging the overall treatment
time does not result in the
prevention of late radiation injury
in the bladder

Stewart et al.
(41)

Female mouse
(C3H/Hen
Af-nu+)

10–30Gy in 1 fr.
delivered by 250 kV
X-ray machine through
a ventral beam

Functional damage
(transurethral
cystometry)

Acute response: 5–21 days
(duration: <1 week)
Late response: 16–40 weeks

Acute response rate (20–30Gy):
20–40%
Late response rate (10–15Gy):
<20%

Bentzen et al.
(42)

Female mouse
(C3D2F1/Bom)

1 to 10 fractions for an
overall time of 4–4.5
days and a total dose
of 5-60Gy delivered by
250 kV X-ray machine

Reservoir function
(transurethral
cystometry)

Late response: >30 days
Latent period: 35–401 days

α/β = 5.8 Gy
Late radiation injury in the mouse
urinary bladder was not highly
sensitive to change in dose per
fraction

Dörr et al.
(43)

Female Mouse
(C3H/Neu)

Single-dose or
fractionated irradiation
delivered by Seifert
Isovolt 320/20 X-ray
machine

Reservoir function
(transurethral
cystometry)

Early response 7–25 days after
≥10Gy in 1 fr.
Duration of the response: 3–9
days

α/β = = 11.1-12.4 Gy (acute
responding tissue)

Vale et al.
(44)

Female rat
(Wistar)

10, 15, 20, 25Gy in 1fr.
delivered by Pantak
320- kV X-ray
generator

Reservoir function
(transurethral
cystometry)

First reduction: 4 weeks
Second reduction: 3–4 months
and persistent at 6 months

Biphasic reduction for 15–25 Gy

Dörr et al.
(45)

Female Mouse
(C3H/Neu)

Four equal-sized dose
fractions were applied
with intervals of 0–8 h
and delivered by Seifert
Isovolt 320/20 X-ray
machine

Reservoir function
(transurethral
cystometry)

Acute response: <30 days
Half-time of repair = 1.2 h

ED50 = 18.2Gy for single dose
ED50 = 28.1Gy for 8h protocol
α

β
= 10.4 Gy

Dörr et al.
(46)

Female mouse
(C3H/Neu)

19Gy in 1 fr. delivered
by Seifert Isovolt
320/20 X-ray machine

Reservoir function
(transurethral
cystometry)

Complete recovery <30 days,
followed by a symptom-free
latent time of about 15 weeks

No changes in the diurnal
pattern were observed.
In the late phase, the absolute
capacity and the amplitude of
fluctuations decreased

Dörr et al.
(47)

Female mouse
(C3H/Neu)

Graded single dose
delivered by Seifert
Isovolt 320/20 X-ray
machine

Reservoir function
(transurethral
cystometry)

Acute response:
- 1–15 days (I wave) with mean
latent time = 7.1 days
- 16–30 days (II wave) with mean
latent time = 23.3 days

ED50 = 21.7Gy (I acute wave)
ED50 = 19.3Gy (II acute wave)
ED50 = 18.7Gy (late response)
Response during the second but
not the first acute wave
correlated with the late response
(p = 0.0008)

(Continued)
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TABLE 2 | Continued

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Dörr et al.
(48)

Female Mouse
(C3H/Neu)

(i) 1 to 10 fr. applied
within 5 days.
(ii) 4 equal-sized dose
fractions applied with
intervals of 0–8 h and
delivered by Seifert
Isovolt 320/20 X-ray
machine

Reservoir function
(transurethral
cystometry)

Half time of repair: 0.39 h
Latent time to chronic functional
changes: 12–40 weeks inversely
dependent on the BED

(i) repair capacity: α

β
= 4.4Gy

(ii) repair kinetics: α

β
= 3.7 Gy

Dose fractionation sparing effect
was in the lower range of tissues
with a chronic response

Jaal et al.
(49, 50)

Female Mouse
(C3H/Neu)

20Gy in 1fr. delivered
by Seifert Isovolt
320/20 X-ray machine
through a ventral beam

Reservoir function
(transurethral
cystometry)

Rate = 40% for days 0–15
Rate = 64% for days 16–30
Rate = 71% after 180 days

Irradiation induced significant
acute and chronic reduction in
bladder capacity by >50%

Rajaganapathy
et al. (51)

Female rat
(Sprague-
Dawley)

20, 30, 40Gy in 1fr.
delivered by SARRP
unit through three
ventral beams

Micturition frequency
(metabolic cage)

Early response: 6 weeks 40Gy caused reductions in the
mean inter-micturition interval by
∼20 min

Zwaans et al.
(52)

Female Mouse
(C3H/HeN)

20Gy in 1fr. delivered
by SARRP unit through
two ventral beams

Micturition frequency
(metabolic cage)

Late response: starting at 17
weeks

Micturition frequency in irradiated
mice was significantly increased
compared to controls. The
radiation exposure attenuated
the urothelial integrity long-term

Giglio et al.
(53)

Female rat
(Sprague–
Dawley)

20Gy in 1fr. delivered
by 6 MeV linac through
two side- field

Functional damage
(metabolic cage)

14 days Irradiation led to urodynamic
changes.
Water intake and micturition
frequency were found not to be
correlated

In these studies the endpoint is the functional damage in terms of reservoir function (reduction in the bladder capacity by >50% at a fixed intravesical pressure) and/or micturition

frequency.

RT, radiotherapy; RD50, response dose 50%; ED50, radiation dose producing damage in the 50% of cases; dose BED, biologically effective dose; H&E, Hematoxylin & Eosin; SARRP,

small animal radiation research platform.

Contribution of Animal Models to the
Understanding of the Physio-Pathogenesis
of Radiation Cystitis
High energy ionizing radiation affects various bladder cell types,
among which urothelial, neuronal, detrusor, and vascular smooth
muscle cells; pre-clinical research in the last decades has tried
to clarify these processes. At a molecular level, RT-induced
injury can be triggered either via direct damage to DNA or
other cellular macromolecules (i.e., protein, lipids etc.) causing
early cell death and/or functional deficiency, or via an indirect
activity, breaking down water atoms into free oxygen radicals
and producing oxidative stress (82). The release of free oxygen
radicals can cause cell membrane lipid peroxidation or react
with DNA, leading in both cases to DNA damage, replication
failure and cell death (3). Subsequently, a number of downstream
abnormalities of the bladder wall might occur at multiple levels,
which can be classified into three consequential phases: (a) an
early or acute phase of inflammation, which occurs during or just
after the completion of a conventional therapy protocol such as
2Gy per 5 days/week to a total dose of 60–70Gy in 6–7 weeks;
(b) a symptom-free phase; (c) a late non-reversible, fibrotic phase
that develops gradually and can be detected from 6 months
to years after RT (48, 83). The former response is transient
and often resolves in a few weeks or months. Its symptoms

are caused by the activation of the pro-inflammatory cascade.
In particular, one of the early stage events is the increase of
the inflammatory, proliferative and pro-apoptotic nuclear factor-
kappa B (NF-κB), which stimulates endothelial cyclooxygenase
(COX2) expression and arachidonic acid conversion into
prostaglandins in endothelial cells, determining vasodilatation
and increased muscle tone (edema and hyperemia) (60). NF-κB
activation might bring to the increase in membrane urothelial
intercellular adhesion molecule 1 (ICAM-1) levels in the vascular
endothelial cells, prompting and supporting leucocyte infiltration
in the lesion (49, 50). These events result in a functional

impairment of the organ, and patients therefore experience

symptoms such as increased frequency, urgency and dysuria (47).

After a symptom-free period, the duration of which is highly

variable, a late chronic response might develop. In this phase,

at molecular level, uroplakin 3 downregulation on the luminal

surface of the bladder urothelium, together with loss of superficial
urothelial cells (umbrella cells), produces the disruption of
urine-plasma barrier and thus an increased permeability (59,
84, 85) leading to a chemical irritation of the bladder wall
caused by urine components. Furthermore, transforming growth
factor beta-1 (TGF-β1) expression increase, and the subsequent
accumulation of extracellular matrix and collagen deposition
eventually supports the development of fibrosis (86, 87).
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TABLE 3 | Chronological summary of the pre-clinical immunohistochemical studies about radio-induced toxicity on the normal bladder.

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Stewart et al.
(41)

Female mouse
(C3H/Hen
Af-nu+)

10-30Gy in 1 fr.
delivered by a 250
kV X-rays machine
through a ventral
beam

Morphological
changes
(hematoxylin eosin
staining)

2 weeks: no changes
7–12 months: epithelial
denudation, hyperplasia,
necrosis, fibrosis

The late damage was
characterized by epithelial
denudation and focal
hyperplasia; fibrosis and
ulceration were also detectable
at higher doses (20–30Gy)

Vale et al.
(44)

Female rat
(Wistar)

10, 15, 20, 25Gy in
1fr. delivered by
Pantak 320- kV
X-ray generator

Morphological
changes (H&E,
toluidine blue
staining)

6 months Evidence of increase mast cell
density. Fibrosis in 9/18 rats

Crowe et al.
(54)

Female rat
(Wistar)

15 and 25Gy in 1 fr.
delivered by Pantak
HF 320 X-ray
generator

Changes in
neuropeptides

6 months Increase in the density of NPY,
SP- and TH-immunoreactive
nerves in the urinary bladder

Kraft et al.
(55)

Mouse (sex
n.a.) (C3H/Hen
Af-nu+ and
C3H/Neu)

25 or 19Gy (ED80
40 weeks after RT)

Morphological
changes (TGF-β
expression and
collagen content)

Increase in TGF-β:
90–360 days
Increase in collagen I and
III: >180 days

TGF-beta expression and
connective tissue metabolism
were important factors
determining reduced bladder
function after irradiation

Kruse et al.
(56)

Female mouse
(C3H/Hen
Af-nu+)

20Gy to rectum
16Gy to kidney
delivered in 1 fr. by
250-kV X-ray

Telangiectasia
(microarray analysis
of RNA isolated from
pre-irradiated
kidney/ rectum)

10–20 weeks Identification of genes expressed
in tissues with manifest vascular
damage

Kanai et al.
(57)

Rat (Sprague-
Dawley)
Mouse
(nNOS−/−,
iNOS−/−,
eNOS−/−,
C57BL10)

0–50Gy in 1 or more
fr. (1–3 days interval)
delivered by 6 MeV
linac

Umbrella cells
ulceration

n.a. mtNOS was in the
cardiomyocytes and urothelial
cells, and can be either
protective or detrimental

Jaal et al.
(49, 50)

Female mouse
(C3H/Neu)

20Gy in 1fr.
delivered by Seifert
Isovolt 320/20 X-ray
machine

Morphological
changes (ICAM-1
expression)

Increasing signal at day
2–4 and 16–28
Permanent signal
between 90–360 days

Irradiation induces significant
early and late deregulation in
ICAM-1 expression levels,
preceding bladder functional
response

Jaal et al.
(58)

Female Mouse
(C3H/Neu)

20Gy in 1fr.
delivered by Seifert
Isovolt 320/20 X-ray
machine

Vasodilatation
(COX-2 in blood
vessels)

Early: 4–16 days
Late: 90–360 days

COX-2 dependent inflammatory
response in the bladder wall
during the early phase after
radiation

Jaal et al.
(59)

Female mouse
(C3H/Neu)

20Gy in 1fr.
delivered by Seifert
Isovolt 320/20 X-ray
machine

Decrease in n◦ of
umbrella cells (UP-III)

Early phase: 0–31 days
Initial late phase: 90, 120
days

Irradiation resulted in
morphological impairment of the
urothelial barrier

Jaal et al.
(60)

Female Mouse
(C3H/Neu)

20Gy in 1fr.
delivered by Seifert
Isovolt 320/20 X-ray
machine

Amount of collagen
(Masson’s
Trichrome)

In the entire late phase,
but most pronounced at
day 120 and 180

Suggested neovascularization in
the late phase of
radiation-induced bladder
damage

Soler et al.
(61)

Female rat
(Lewis)

20Gy in 1fr.
delivered by Cesium
isotope-based
irradiator collimated
by shield on bladder

Amount of collagen
(Masson’s
Trichrome) and
vascularization
(VonWillebrand
factor)

1.5 and 3 months Anti-Angiogenesis therapy is
proposed to prevent and/or treat
the pathology of radiation cystitis

Xu et al.
(62)

Male mouse
(NCRNU)

5Gy in 5 fr. delivered
by 250 kV X-ray
machine

Ultrastructural and
mitochondrial
damage

60 days Parthenolide enhanced
radiosensitivity of prostate
tumors but protects healthy
tissues (bladder) from radiation

(Continued)
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TABLE 3 | Continued

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Ozbilgin et al.
(63)

Male mouse
(Swiss Albino)

10Gy in 1 fr.
delivered by Co60

RT

Morphological
changes (H&E),
POMC
immunoreactivity

24 h, 48 h, and 7 days No morphological alterations.
Expression of POMC on the
urothelium seems to spare
bladder from radiation injuries

Ozbilgin et al.
(64)

Male mouse
(Swiss Albino)

10Gy in 1 fr.
delivered by Co60

RT

Reaction of versican
and HB-EGF

7 days Increase of versican and HB-EGF
concentrations may play a role in
the side effects of RT

Ozbilgin et al.
(65)

Male mouse
(Swiss Albino)

10Gy in 1 fr.
delivered by Co60

RT

COX-1 and COX-2
immunoreactivity

24 h, 48 h, and 7 days The expression of COX-1 and
COX-2 seems to prevent bladder
damage from radiation

Giglio et al.
(53)

Female rat
(Sprague–
Dawley)

20Gy in 1fr.
delivered by 6 MeV
linac through two
side- field

Extensive immuno-
histochemical
characterization

16 h−14 days Irradiation may suppress
important immunoregulatory
pathways

Rajaganapathy
et al.
(51)

Female rat
(Sprague-
Dawley)

20, 30, 40Gy in 1fr.
delivered by SARRP
unit through three
ventral beams

Morphological
changes (H&E)

Early response: 6 weeks Evidence of degenerative type
epithelial changes, urothelial
swelling and hyperplasia

Zwaans et al.
(52)

Female Mouse
(C3H/HeN)

20Gy in 1fr.
delivered by SARRP
unit through two
ventral beams

Morphological
changes (H&E)
Fibrosis (Masson
Trichrome)
Mast cells (toluidine
blue staining)

Starting at 17 weeks after
treatment

Pathological changes included
fibrosis, inflammation, urothelial
thinning, and necrosis. The
radiation exposure attenuated
the long-term urothelial integrity

RT, radiotherapy; ICAM-1, intercellular adhesion molecule 1; mtNOS, mitochondrial nitric oxide synthase; COX, cyclooxygenase; UP-III, uroplakin-III; POMC, Proopiomelanocortin;

HB-EGF, heparin-binding EGF-like growth factor; ICAM-1, irradiation on intercellular adhesion molecule 1; H&E, Hematoxylin & Eosin; SARRP, small animal radiation research platform.

Histologically, several phenomena can be detected, such
as a combination of urothelial cell denudation and tumor-
like epithelial hyperproliferation, vascular damage and
hemorrhaging, submucosal telangiectasia, fibrin deposition,
formation of ulcers, loss of smooth muscle cells, influx of
fibroblasts, collagen accumulation and, eventually, fibrosis
(17, 47). All these anomalies lead eventually to hematuria and
a permanent reduction of the bladder compliance, which could
ultimately result in an impaired ureteric emptying and, thus,
renal dysfunction. Moreover, voiding failure can also derive
from the progressive underactivity of detrusor muscle, which
subsequently becomes acontractile.

Due to the complexity of this condition, current non-invasive
treatment options have limited effectiveness and, in certain
extreme scenarios, radical cystectomy is required (52).

The establishment of reliable preclinical models mimicking
urothelial toxicity (UT) and aimed at understanding all
the molecular processes involved in disease progression is
fundamental for testing “tailored” therapies. To date, mice and
rats have been commonly used for RC modeling, and a positive
correlation has been seen between radiation dose (usually in
the range of 5–40Gy) and urothelial changes at early or late
post-irradiation time points. However, different experimental
methods, endpoints, irradiation doses, dose distribution and
sources along with different animal species have been used.
Therefore, the full comprehension of RT-induced UT and the
availability of comprehensive models that faithfully recapitulate
all the pathological paths still represent an unmet need.

Interestingly, dose and fractionation effects were mostly
investigated in older studies (Table 2) using single fraction
or minimally fractionated protocols. No studies on dose
and fractionation using modern micro-irradiators have been
published to date. Similarly, there are no specific studies dealing
with the quantification of bladder volume effects and/or the
existence of more sensitive sub-structures.

Each research group developed its own animal model using
different strains of rats or mice, as listed in Tables 2–4.
Despite this variability, the general practice was to use a single
radiation dose of 20Gy, roughly corresponding to a fractionated
radiotherapy treatment delivering 60Gy in 30 fractions over 6
weeks (4, 44). Several cystometric studies showed that 20Gy is
a dose sufficient to observe in at least 50% of animals (47, 49, 88),
a biphasic response in the acute phase (88) at about 7 and 23
days after RT, respectively (47), and a late phase starting at 4–6
months (44, 49, 83). Interestingly, Dörr et al. highlighted a strong
correlation between damage in the second (but not in the first)
acute wave and late damage (47).

Some works also studied radiation doses over 20Gy delivered
in 1 fraction (41, 44, 47, 51, 89). This dose escalation was
associated with a higher toxicity rate (41) and more severe
symptoms in terms of bladder dysfunction (51), degenerative
type of epithelial changes (41) and increase of mast cell density
(44). Regarding the late response, the latent time was found to be
inversely dependent on the dose (48, 89).

The effects of fractionated radiotherapy were investigated
in several works (42, 48, 90). Dörr et al. demonstrated that
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TABLE 4 | Chronological summary of the pre-clinical studies about radioprotective effects on the normal bladder.

Reference Animal model

(strain)

Set-up Endpoint (method) Toxicity timing after

RT

Findings

Edrees et al.
(66)

Female mouse
(C3H)

13–25Gy in 1 fr. delivered by
250 kV X-ray machine + Cy

Micturition frequency
(cystometry), incidence
of haematuria

5 months (rad)
1 week (Cy)
Early and 9–12 month
(rad+Cy)

Cy administered up to 9 months
before or after irradiation induced
more severe bladder damage than
X-rays alone

Malkinson
et al.
(67)

Male mouse
(B6D2F1)

2–4.5 Gy/fr. x 10–15 fr. after
PGs administration

Murine hair loss Immediately after the
fractionated RT

PGs may provide protection of tissue
as bladder mucosa

Horsman et al.
(68)

Female mouse
(CDFl and
C3H)

Nicotinamide injected after
local irradiation delivered by
250 kV X-ray irradiator

i) Moist desquamation
ii) Reservoir function
(transurethral
cystometry)

i) 11–30 days
ii) 9 months

Best radiosensitization with minimal
effect on normal tissues (bladder) at
time of nicotinamide peak plasma
drug concentrations

Kanai et al.
(69)

Female rat
(Sprague-
Dawley)

35Gy in 1 fr. delivered by 6
MeV linac + MnSOD
transgene injection 24 h
before RT

Transepithelial
resistance and
permeability damage
on detrusor function

1, 48, and 96 h
7 and 24 days
6 months

MnSOD transgene allows
transepithelial resistance and
permeability to recover within 4
weeks and shows baseline pressures
and more stable voiding patterns after
6 months

Jaal et al.
(70)

Female mouse
(C3H/Neu)

Graded radiation doses
delivered by Seifert Isovolt
320/20 X-ray machine +
rHuKGF

Reservoir function
(transurethral
cystometry)

Early phase response:
1–30 days
Late phase response:
60–360 days

Early: ED50 from 20 to 27Gy
Late: ED50 from 16 to 22Gy
rHuKGF administration before
irradiation modified early and late
radiation effects

Dinçbaş et al.
(71)

Male rat
(Wistar)

25Gy in 5 fr. delivered by Co60

teletherapy unit + AF + GEM
Bladder fibrosis (H&E) 4 months AF may have a beneficial effect in

limiting the radio-sensitizing effect of
GEM

Rocha et al.
(72)

Rat (sex n.a.)
(Wistar)

11.64Gy in 1 fr. delivered by 6
MeV linac + L-glutamine

Amount of collagen
(Masson’s trichrome,
Picro Sirius Red)
Immuno-histochemistry

15 days L-glutamine seems to prevent
bladder wall damage

Costa et al.
(73)

Male rat
(Wistar)

10Gy in 1 fr. delivered by 10
MeV linac + L-arginine

Morphologic change of
blood vessels in the
wall (H&E, expression
of VEGF and FGF)

16 days L-arginine was radioprotective

Rajaganapathy
et al. (51)

Female rat
(Sprague-
Dawley)

40Gy in 1fr. delivered by
SARRP unit + liposomal
tacrolimus

Micturition
frequency(cystometry)
Morphological changes
(H&E)

2 and 6 weeks Lipo-tacrolimus treated rats show an
increased post- irradiation IMI and
minimal edematous changes

Horsman et al.
(74)

Male and
Female Mice
(CDF1)

Graded radiation doses +
VDA(CA4P)

Reservoir function
(transurethral
cystometry)

9 months ED50 = 14Gy for bladder
VDA has no effect on the early (skin)
or late (bladder and lung) tissues
responding to radiation

Oscarsson
et al. (75)

Female rat
(Sprague-
Dawley)

20Gy in 1 fr. delivered by 6
MeV linac + with and without
20 sessions of HBOT

Oxidative stress and
pro-fibrotic factors

28 days HBOT may prevent radiation-induced
changes

Sarsarshahi
et al. (76)

Female mouse
(C3H/Neu)

14-24Gy in 1 fr. delivered by
YXLON Maxishot device +
bortezomib

Reservoir function
(transurethral
cystometry)

Acute response: 6–9
days
Late response: 21–24
days

Daily bortezomib injections between
days 0–15 resulted in a significant
decrease in responders

Several agents were tested in combination with radiation and the effect was measured using various techniques.

RT, radiotherapy; Cy, Cyclophosphamide; PGs, prostaglandins; MnSOD, Manganese superoxide dismutase gene therapy; VEGF, vascular endothelial growth factor; FGF, Wbroblast

growth factors; AF, amifostine; GEM, gemcitabine; H&E, hematoxylin & eosin; rHuKGF, palifermin; HBOT, hyperbaric oxygen therapy; CA4P, combretastatin A-4 phosphate; VDA, vascular

disrupting agents; SARRP, small animal radiation research platform; IMI, inter- micturition intervals IMI.

when radiation is delivered in equal-sized dose fractions, the
radiation dose producing the damage in 50% of animals (ED50)
is higher than in single dose irradiation. Furthermore, ED50
was shown to be sensitive to the interval between fractions
(90). Other studies highlighted that the sparing effect obtained

by dose fractionation results in a lower risk of chronic
response (42, 48).

Stewart et al. evaluated the recovery of bladder at late
time points and the consequent re-irradiation tolerance in
mice and highlighted a possible indirect correlation between
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TABLE 5 | Chronological summary of the pre-clinical studies about bystander and abscopal effects: the clonogenic the survival of brain cells after pencil beam and/or
microbeam in-vivo irradiation (usually using a synchrotron) is compared with that of the corresponding not-targeted bladder cells.

Reference Animal model

(strain)

Set-up Endpoint (method) Euthanasia timing

after RT

Findings

Singh et al.
(77)

Female
mouse
(C57BL6 and
Balb/c)

Whole body
irradiation (Co60
source) at single and
serial low dose
(20mGy-2Gy)

RIBE
(clonogenic survival)

24 h Genotype determined the type of
bystander signal/response

Fernandez-
Palomo et al.
(78)

Rat (sex n.a.)
(Wistar)

17.5, 35, 70, 350Gy
delivered by
synchrotron on one
brain hemisphere

RIBE
(clonogenic survival)

4, 8, 12 h Both MRT and HSR yielded a
demonstrable abscopal effect
after high doses of irradiation

Mothersill et al.
(79)

Male rat
(Wistar)

Whole body MRT
and HSR on one
brain hemisphere
(35 and 350Gy
skin-entry doses)

RIBE
(proteomics,
clonogenic survival)

48 h
(hours in cage with
uneradicated rats)

Evidence of strong RIBE signal in
the contra-lateral brain
hemisphere and weaker effects
in the distant bladder of the
irradiated rats. Proximity to an
irradiated animal induced
signaling changes in an
un-irradiated partner

Fernandez-
Palomo et al.
(80)

Male rat
(Fisher)

MRT (20 or 200Gy
skin-entry doses) on
one brain
hemisphere with
inoculated F98 cells

RIBE/abscopal
effects
(calcium flux, role of
5HT, clonogenic
survival and
proteomic profil)

48 h
(hours in cage with
unirradiated rats)

Membrane related functions
were critical for true RIBE
expression. Bystander effects (in
partner animals) were not the
same as abscopal effects (in the
irradiated animal)

Fernandez-
Palomo et al.
(81)

Male/female
mouse
(NU-Foxn1nu)

PB (200 or 1,000Gy
skin-entry doses)
and MRT (22Gy or
110Gy) on one brain
hemisphere with and
without glioma
injected 7d earlier

RIBE/abscopal
effects
(calcium flux,
clonogenic survival)

2, 12, 48 h Calcium data did not support a
calcium channel mediated
mechanism. The presence of a
tumor reduced or reversed the
effect. The immune response
played a role.

Thus, in this field of research the normal bladder does not deal with any direct radiation effect.

RT, radiotherapy; RIBE, radiation-induced bystander effects; PB, Pencil Beam; MRT, microbeam irradiation; HSR, homogenous synchrotron radiation.

long-term injury and radiation dose administered in the first
treatment; furthermore the prolongation of the interval time
between treatment did not prevent late radiation damage in the
bladder (40).

In vivo Functional Evaluation
As in clinical setting, also small animals functional assessment of
radiation cystitis can be undertaken. Cystometric evaluation, in
both mice and rats (Table 2) represents the state of the art for
quantifying in vivo functional bladder impairment.

Historically, one of the first attempts at assessing urinary
frequency was reported in 1978 by Stewart et al. by placing an
irradiated mice in a metabolic cage and counting the number
and size of urine patches on a paper moving under it (91).
Subsequently more precise technologies have been developed
(38). Various cystometric models exist, but catheterizing the
animals and placing them in metabolic cages is generally
necessary. The bladder catheter is connected to a pressure
transducer and a microinjection pump. Micturition volumes
are recorded with a fluid collector under the metabolic cage.
A room-temperature saline solution can be instilled into the
bladder constantly at different rates depending on the aims of

the investigator. Thus, bladder basal pressure, threshold pressure,
flow pressure, maximum micturition pressure, micturition
volume and micturition interval can be directly recorded. When
malemice or rats (which display slight differences among species)
are used, due to the anatomic structure of the urethra in
the rodents, surgical implantation of the catheter is generally
necessary if bladder catheterization is required; the catheter
is positioned at the dome of the bladder and then tunneled
subcutaneously to an interscapular region incision (or, less
frequently, to the abdomen).

Many examples of the application of this technology in
radiation cystitis setting may be found in the literature (Table 2).
Lundbeck et al. reported one of the first attempts in female
mice (doses delivered from 5 to 40Gy), showing a reduction
of reservoir function starting from 20Gy in both acute (peak
at 14 days) and late phase (300 days follow up) (89). Stewart
et al. ascertained an increased urinary frequency and a reduced
bladder capacity in a mouse model (female mice of strain
C3H) after irradiation from 10 to 30Gy in both early and late
time settings (6 to 53 weeks after treatment, each animal was
examined every 4/6 weeks) (41). Vale et al. after irradiating
four equal groups of nine female Wistar rats at 10, 15, 20 and
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25Gy, performed a weekly cystometric evaluation until 2 months
after irradiation and subsequently once every 3 weeks up to 6
months. A biphasic reduction of at least 30% in the bladder
compliance index (calculated as volume injected to induce an
increase in intravesical pressure of 5 cmH20) was obtained at
4/6 weeks and at 6 months after irradiation in all groups of
animals receiving at least 15Gy (44). Dörr et al. evaluated bladder
reservoir function in female mice through cystometry in the dose
fractionation setting: four equal-sized doses per fraction with
increasing intervals of 0–8 h were applied to female mouse (strain
CH3) bladders, and bladder capacity was measured 3 times 2
weeks before irradiation and at 3–4 day intervals during the
initial 30 days after irradiation, obtaining a clear dose-response
relationship (44, 48, 90).

In conclusion, all the authors seemed to agree that acute
damage is confined to only a few days after irradiation,
irrespective of the dose delivered, while late toxicity could
emerge at different time lapses and with intensity depending on
radiation dose and fractionation; in addition, cystometry has to
be considered as a feasible, easy to interpret and reliable way to
assess RC functional impairment.

Histopathological Model of RC
Several animal models, employing both mouse and rat, have
been developed with the aim of investigating the pathological
modifications that occur in the bladder after irradiation but
a “standard” universally recognized RC model is still lacking.
To standardize the evaluation of histologic patterns, which are
meant to be surrogates of the functional status of the bladder,
morphological scores have been used.

To date, hematoxylin and eosin (H&E), indisputably remains
themost informative staining employed, allowing the recognition
of macroscopic signs of both early acute and late histological
changes. Rajaganapathy et al. described the alterations of the rats’
bladder wall 6 weeks after radiation (early inflammatory phase)
through an analysis of the organ sections stained with H&E. In
their study it was possible to discriminate several pathological
features at three different radiation doses (20, 30, and 40Gy). No
sign of inflammation could be detected at the lowest dose (20Gy),
while edematous changes, immune cell infiltration, ectasic blood
vessels in the lamina propria and hyperplasic urothelium were
evident following 30Gy irradiation. In addition, the staining
highlighted degenerative-type epithelial changes, urothelial cell
swelling and small nests of urothelial cells in the lamina propria
surrounding blood vessels after 40Gy radiation (51). Zwaans
et al. in their mouse model of chronic radiation-induced cystitis
used a scoring method to show the presence of urothelial
thinning, ischemic necrosis and inflammation on H&E-stained
slide, while Masson trichrome staining, which allows for a better
visualization of both collagen deposition and smooth muscle
fibers, was employed to score fibrosis (52). Both an intensity-
based score (52) or a percentage of bladder wall area score (92),
have been used to assess fibrosis.

In order to support such histopathological evidences,
immunohistochemical staining can be employed to better
visualize features such as urothelium loss and loss of smooth
muscle (e.g., with markers COX-1/2 and UP-III) (52, 65).

Morphological scores have been implemented, for example, by
Zwaans et al. using a simple “positive vs. negative” staining
assessment (52), and by Jiang et al. using integrated optical
density (92).

Many of the single histological features present in the animal
models of RC, such as inflammatory infiltrate, submucosal
fibrosis, surface ulceration and nests of urothelial cells within the
lamina propria referred to as “pseudocarcinomatous urothelial
hyperplasia,” have also been described in humans by several
research groups (93, 94). Moreover, histopathological changes
in the human irradiated bladder have also been divided into
“early” (predominant <12 months after irradiation) and “late”
(predominant >12 months after irradiation) changes, consistent
with the proposed model of RC progression in the animal
model (52, 93). However, there are some subtle differences: for
example, fibrosis has seldom been reported in humans as an
early change that persists into the chronic phase, while in small
animal models it occurs in the late phase only (95). This implies
that even given the extensive experimentation on animal models,
there are some limitations in the application of this knowledge
to humans to be considered when planning clinical trials and
experimental treatments.

Radioprotective Agents
Great effort has been spent in finding new radioprotective agents
(RA) to improve the range of clinical options for themanagement
of radiotherapy-induced toxicity. An RA is natural compound
or an artificially synthetized substance able to prevent radiation
induced acute and late effects. In other words, RA should
protect patients’ healthy tissues during treatment and prevent
the development of detrimental effects (96). According to the
timing of their administration, it is possible to distinguish three
classes of RAs. The first class includes agents intended for the
prophylaxis of RT injuries, and is therefore administered before
exposure to the radiation dose (97). This category comprises
compounds with sulfhydryl groups, antioxidant properties or
free radical scavengers (98). The second class of RA is represented
by mitigators, administered during or shortly after RT, before
symptoms appear, and are aimed at minimizing toxicity by
preventing or reducing radiation damage on cells or tissues
(99). These mitigators are, in fact, directed at hindering a series
of cellular insults that stimulate proliferation and immune-
inflammatory responses, including DNA repair, apoptosis and
regulation of signal transduction cascades (100). The third
heterogeneous group comprises symptomatic treatments given
after RT.

Currently, the clinical management of RC includes both
systemic and local treatments mostly focused on pain and
symptomatic relief, which, however, neither prevent the
development of RC nor reverse it in case of assumption
after RT administration. The approved therapies may vary
depending on the degree and the phase of radiation induced
bladder damage. Anticholinergic agents and β3-adrenergic
receptor agonists, for instance, are used to attenuate acute
phase symptoms such as frequency and urgency. On the other
hand, a wide range of drugs are systemically administered
to cope with RT induced chronic response. Examples of
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this class of pharmaceuticals are represented by WF10, also
known as Tetrachlorodecaoxygen (TCDO), a formulation given
intravenously able to stimulate natural immunity in order to
reduce inflammation; sodium pentosan polysulphate (SPP),
a synthetic sulphated polysaccharide that decrease urothelial
permeability by replacing defective glycosaminoglycans;
tranexamic acid, used to inhibit fibrinolysis and prevent clot
urinary retention in patients with hemorragic cystitis (95).

Nevertheless, although systemic treatments are non-invasive
and avoid inpatient hospital admission, these therapies had
low efficacy often accompanied by dose-dependent toxicity.
For this reason, local treatments and bladder irrigation are
considered the first line of intervention in all grades of the disease
(101), aiming at protect the urothelium, arrest focal bleeding
points and remove blood clots. Several agents are employed
as intravesical therapies and directed at improving bladder
compliance (102) including formalin, aluminum salts, hyaluronic
acid, prostaglandins, botulinum toxin, polydeoxyribonucleotides
and early placental extract (83, 95).

In recent years, hyperbaric oxygen and laser ablation have also
emerged as non-invasive management options able to produce
symptom relief and stop the progression of the pathologic
process. They are, however, cumbersome for patients, requiring
lengthy treatments and, in case of ablation a performance status
that typically patients with radiation-induced cystitis do not
have (83, 95, 103).

To date, many compounds have promised improvements
in preclinical radioprotection research, most belonging to the
third treatment category of RAs. For instance, Bortezomib, a
potent proteasome inhibitor currently used in clinics for multiple
myeloma treatment, is implicated also in the blockade of NF-
κB (104–108) and therefore it was recently investigated in a
radiation induced urinary bladder dysfunction mouse model
(76). The study employs a daily subcutaneous dose of 0.02 mg/ml
of Bortezomib given between days 0–15 or 15–30, at the two acute
radiation-induced bladder inflammatory waves, after a single
graded radiation dose. The aim was to identify the window
of time in which the drug was more effective. At cystometry
evaluation the most favorable outcome was obtained in case of
drug administration at the first acute inflammatory wave (days
0–15), with no significant variation when given in the second,
meaning that distinct mechanisms are involved in the acute
phases. In 2018, Ikeda et al. investigated the effect of the hormone
relaxin in reversing radiation induced bladder fibrosis in adult
female C57Bl/6 mice (109). Relaxin is a 6 kDa hormone involved
in the relaxation of uterine smooth muscle and in the softening
of the pubic symphysis during pregnancy. Although a relaxing
effect of the hormone on the bladder has not been demonstrated
yet, its receptors were found to be expressed on detrusor cells
as well as in the lamina propria and, to a lesser extent, the
urothelium. In this study, relaxin 2 was administered to 7-week
post-irradiated animals (10Gy radiation dose) at a concentration
of 400µg/kg/day for 2 weeks. As a result, the treatment increased
bladder compliance and bladder wall force generation. The
hypothesized mechanism of action involved the activation of
specific pathways associated to the activation of relaxin receptors;
the stimulation of neoangiogenesis through the phosphorylation
of AKT, the expression of platelet derived growth factor

(PDGF) and vascular endothelial growth factor (VEGF), the
enhancement of contractile function mediated by increased
Cav1.2 (i.e., L-type Ca2+ channel) and the arrest of profibrotic
TGF-β signaling (110) induced by ERK1/2 phosphorylation and
upregulation of neuronal Nitric Oxide Syntase (nNOS) and
cyclic guanosine monophosphate (cGMP) levels. Tacrolimus, a
calcineurin inhibitor that prevents the growth and differentiation
of T cells by indirectly blocking IL-2 expression was tested in a
RC rat model in which animals received a high radiation dose
(40Gy). In this study, due to its hydrophobic nature, in order
to improve drug solubility and delivery and reduce systemic
toxicity, Tacrolimus was encapsulated into liposome (51). A
significant improvement on the inter-micturition interval was
achieved (111). L-arginine, due to its anti-oxidant and anti-
inflammatory properties (6, 112, 113), as well as due to its
proposed protective effect on endothelium by the stimulation of
endothelium-derived relaxing factors (114), was tested in several
preclinical studies on pelvic radiation-induced bladder toxicity.
In these studies, the amino acid administration triggered nitric
oxide formation in animals with impaired endothelial function at
basal levels (115), reduced radiation-induced diarrhea in around
40% of rats (116), and prevented bladder modification, restoring
the morphology of blood vessels by recovering VEGF and FGF
expression in the bladder wall (73).

CONCLUSION AND FUTURE
PERSPECTIVES

A brief summary of the revised literature is reported in
Table 6, along with summarized conclusions. The current review
has underlined renewed interest in pre-clinical research on
radiation induced urinary toxicity and the bladder response
to radiotherapy. In particular, a considerable interest in the
development and testing of RA has been increased in recent
years, especially for high risk conditions such the use of
high doses, as for prostate cancer, and the existence of
baseline risk factors, i.e., genetic predisposition or clinical
factors (e.g., impaired baseline urinary function, adjuvant
or salvage irradiation after prostatectomy). Importantly, a
greater effort should be spent in the translation of pre-
clinical results into clinical trials. Nonetheless, further pre-
clinical studies are needed to clarify the applicability and
therapeutic advantages of radioprotective agents in the treatment
of radiation cystitis. Future goals will be the identification of
novel molecules and strategies to pursue in order to guarantee
a broader efficacy at a cellular, tissue, organ and whole
organism level.

Despite the availability of micro-irradiators, animal studies on
bladder radiation focusing on dose, fractionation and volume
effects, are largely lacking. Such investigations deserves greater
attention for several reasons, e.g., given the growing interest
in hypo-fractionation and ablative therapies, investigations
mimicking these situations might help in better understanding
the mechanisms of bladder radiation response in these extreme
condition; or given some evidences (20) of high sensitivity
to moderate hypofractionation (2.3–3.0 Gy/fr), experiments on
animal models on this subject might shed light on the issue.
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TABLE 6 | Brief summary of the revised literature with some conclusions; unmet needs; future perspectives.

Findings from literature Conclusions Future perspectives

Bladder mechanism

Radiation effect at the molecular level (direct and
indirect damage to DNA) is followed by downstream
abnormalities of bladder wall in three phases:
1) Early/acute phase: reversible
→Increase of NF-κB

→COX2 and prostaglandin expression
→Vasodilatation, increased muscle tone
→hyperemia, edema

→increase of ICAM-1
→leucocyte infiltration
→inflammatory symptoms (frequency, urgency,

dysuria)
2) Symptom-free phase

Late phase: persistent, fibrotic

→UP-III downregulation and loss of umbrella cells
→increase of permeability
→chemical irritation from urine components

→Increase of TGF-β1 expression
→accumulation of extracellular matrix and

collagen deposition
→development of fibrosis
→hematuria, permanent reduction of bladder

compliance, voiding failure

The full comprehension of RT-induced

urothelial toxicity and the availability of models
that faithfully recapitulate all the pathological paths,
both early and late phases, still represent an
unmet need.
The establishment of reliable preclinical models

mimicking urothelial toxicity is fundamental for
testing more “tailored” novel therapies.

Given the current interest in hypo-fractionation

and ablative therapies, investigations mimicking
extreme hypo-fractionation (e.g., radical doses
delivered in 1–5 fractions) should help in better
understanding the partially unknown mechanisms
of bladder radiation response in these extreme
situations.
Experiments set to identify the mechanisms
underlying “spatial effects” would be of
paramount importance in possibly guiding plan
optimization to selectively reduce the dose to these
sub-structures.

Animal models and dose set up:

• Each research group developed their own animal
model using different strains of rats or mice.

• Radiation dose was tested in the range 5–40 Gy.
• The general practice was to use a single

radiation dose of 20–25 Gy, approximately
equal to ED50 and estimated to mimic the
delivered clinical doses to pelvic tumors.

• Doses over 20 Gy proved to be associated with
a higher toxicity rate and more severe symptoms.

• ED50 increases with the number of fractions

and the interval between fractions.
• Late radiation injury seemed to be inversely

related to the dose given in the first treatment

and independent of the interval

between treatments.

Very different experimental settings have been used:
a “standard” universally recognized RC model is
still missing.
Even though a single dose of 40Gy is well above
the dose delivered in a clinical setting, the use of
high dose can be useful for a better understanding
of the underlying biological mechanisms.

Despite the availability of micro-irradiators with
theoretically significant potentials for high-precision
experiments, animal studies focused on gaining a
better understanding of dose, fractionation and

volume effects are largely lacking.
Reliable and reproducible methods to quantify
the severity of RC in animal models should be
realized.

In vivo functional evaluation

• Acute damage is confined to only a few weeks
after irradiation, irrespective of the dose delivered,
with a biphasic response at about 7 and 23 days
after RT, respectively.

• late toxicity could emerge at different time
lapses (within 6 month to 1 year) with intensity
depending on radiation dose and fractionation.

No changes in the diurnal urinary pattern were
observed during cystometry. If male mice/rats are
used, a surgical implantation of the catheter is
deemed necessary.

Cystometry is the “state-of-the- art” objective tool in
evaluating the in vivo response to radiation
damage, in terms of reservoir function and/or
micturition frequency.

High-quality pre-clinical imaging platforms are
expected to extend the potential of non-invasive
assessment of RC severity.

Histopathological model of RC

• H&E (the most informative): recognition of both
early acute and late histological changes.

• Masson trichrome: to assess the level of
bladder wall fibrosis as an intensity-based score
or as a percentage of bladder wall area score.

• urothelial and inflammation markers to better
visualize the urothelium (e.g., COX-1/2 and UP-III).

• Simple “positive vs. negative” staining using
integrated optical density: to better visualize
urothelium loss and loss of smooth muscle.

IHC is the gold standard for the tracking of disease
progression in preclinical models.
There are limitations in the application of this

knowledge to humans that must be considered
when planning clinical trials and
experimental therapies.

The interaction between radiation induced
reactions, damage repair and the immune system in
the case of combined immune-radiotherapy is
an extremely promising field of investigation,
possibly involving several pelvic tumors.

(Continued)
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TABLE 6 | Continued

Findings from literature Conclusions Future perspectives

Radioprotective agents

Clinical management of RC:
• Systemic treatments (e.g., anticholinergic

agents and β3-adrenergic receptor agonists,
TCDO, SPP, tranexamic acid): non-invasive and
circumvent inpatient hospital admission; these
therapies suffer from a very low efficacy, often
accompanied by dose-dependent toxicity.

• Local treatments and bladder irrigation:
considered the first line of intervention in all
grades of the disease, aiming at sterilization,
arrest of focal bleeding points and removal of
blood clots (e.g., intravesical therapies).

• hyperbaric oxygen and laser ablation:
emerged as non-invasive management; they are,
however, cumbersome for patients requiring
lengthy treatments, and a level of fitness that
many patients with radiation cystitis do
not possess.

Classes of RAs:
• agents for the prophylaxis of RT injuries,

administered before exposure.
• mitigators given during or shortly after RT, aimed

at minimizing or preventing the effects of radiation
on cells/tissues.

• treatments or therapeutic preparations

applied after RT, to ameliorate
radio-induced symptoms.

Compounds in radioprotection preclinical research:
• Bortezomib: implicated in the NF-κB blockade.
• Hormone relaxin: reversing fibrosis.
• Tacrolimus and L-arginine: to hinder the

production and release of
pro-inflammatory cytokines.

RAs improve the range of clinical options for the
management of the RT-induced toxicity in
combined therapies.

We must expect the translation of pre-clinical

results into clinical trials testing the protective
effects of RAs, especially in situations where high
doses need to be delivered (e.g., prostate cancer)
and for patients at higher risk of toxicity due
to genetic predisposition or clinical factors (e.g.,
the impaired baseline urinary function of patients
irradiated after prostatectomy).
Future goals will be the identification of novel
molecules and strategies to pursue either alone
or in combination in order to guarantee a broader
efficacy at a cellular, tissue, organ and whole
organism level.

NF-κB, nuclear factor-kappa B; COX2, cyclooxygenase; ICAM-1, intercellular adhesion molecule 1; UP-III, uroplakin 3; TGF-β1, transforming growth factor beta-1; ED50, radiation dose

producing the damage in 50% of animals; RC, radiation cystitis; reservoir function, reduction in the bladder capacity by >50% at a fixed intravesical pressure; H&E, hematoxylin and

eosin; IHC, immunohistochemistry; RA, radioprotective agent; TCDO, Tetrachlorodecaoxygen; SPP, sodium pentosan polysulphate.

Another significant issue concerns evidence of “spatial” effects
suggesting that specific sub-structures (i.e., the trigone) may be
more sensitive to radiation (18–20): experiments set to identify
the mechanisms underlying these effects would be of paramount
importance in guiding plan optimization to selectively reduce the
dose to these sub-structures.

A related development that could be useful for further
advances in the field is the increasing use of combined therapies,
including chemotherapeutic agents and immunotherapy. Testing
dose and volume effects in these scenarios is an issue of
paramount importance to understand the interaction between
drugs and radiation induced reactions, damage repair and
immune system.

Another largely unexplored field of investigation is pre-
clinical imaging: high quality small animal images before and
after radiation delivery may potentially become a powerful,
non-invasive, quantitative surrogate for the measurement of
radiobiological effects. For the bladder echography as well as
targeted optical imaging seem especially promising.

Finally, an attempt should be made to set up reliable and
reproducible methods to quantify the severity of RC in animal

models. This implies the fulfillment of an easy-to-realize, ideally
quick and economical, but at the same time sufficiently robust,
quantitative analysis of RC severity both in vivo, e.g., by means
of ultrasounds and/or MRI, and after the animal’s sacrifice, e.g.,
through the development of a histological quantitative scoring
of the radiation-induced lymphocyte infiltrate, collagen matrix
deposition and neoangiogenesis.
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Background: Acute skin toxicity is a common and usually transient side-effect of breast

radiotherapy although, if sufficiently severe, it can affect breast cosmesis, aftercare costs

and the patient’s quality-of-life. The aim of this study was to develop predictive models

for acute skin toxicity using published risk factors and externally validate the models

in patients recruited into the prospective multi-center REQUITE (validating pREdictive

models and biomarkers of radiotherapy toxicity to reduce side-effects and improve

QUalITy of lifE in cancer survivors) study.

Methods: Patient and treatment-related risk factors significantly associated with acute

breast radiation toxicity on multivariate analysis were identified in the literature. These
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predictors were used to develop risk models for acute erythema and acute desquamation

(skin loss) in three Radiogenomics Consortium cohorts of patients treated by breast-

conserving surgery and whole breast external beam radiotherapy (n = 2,031). The

models were externally validated in the REQUITE breast cancer cohort (n = 2,057).

Results: The final risk model for acute erythema included BMI, breast size,

hypo-fractionation, boost, tamoxifen use and smoking status. This model was validated

in REQUITE with moderate discrimination (AUC 0.65), calibration and agreement

between predicted and observed toxicity (Brier score 0.17). The risk model for

acute desquamation, excluding the predictor tamoxifen use, failed to validate in the

REQUITE cohort.

Conclusions: While most published prediction research in the field has focused on

model development, this study reports successful external validation of a predictive

model using clinical risk factors for acute erythema following radiotherapy after

breast-conserving surgery. This model retained discriminatory power but will benefit from

further re-calibration. A similar model to predict acute desquamation failed to validate in

the REQUITE cohort. Future improvements and more accurate predictions are expected

through the addition of genetic markers and application of other modeling and machine

learning techniques.

Keywords: validation, prediction model, early toxicity, radiotherapy, breast cancer

INTRODUCTION

Survivorship issues and quality-of-life (QoL) are becoming
an increasingly important research focus in cancer care (1).
Breast cancer survival has improved markedly, with current
predicted 10-year survival rates in excess of 80% (2). Over
70% of breast cancer patients undergo radiotherapy, usually in
the adjuvant setting following surgery. Radiotherapy reduces
the risk of local recurrence and contributes to a reduction in
overall mortality (3). Nevertheless, breast radiotherapy can be
associated with several side-effects (toxicity). Acute (or early)
toxicity includes breast erythema (reddening) and desquamation
(skin loss) and occurs within 90 days of treatment (4). While late
side-effects of radiotherapy are concerning due to their potential
irreversibility, acute toxicity may cause considerable patient
morbidity and can have adverse effects on the cosmetic outcome
from oncoplastic breast surgery and reconstruction (5, 6). There
is some evidence that if sufficiently severe, early toxicity can be
associated with clinically significant late toxicity (7). Invariably,
surgeons’ treatment recommendations are influenced by their
perception of potential adjuvant treatment complications such
as from radiotherapy (8, 9). Nevertheless, there is considerable
variation between individual patients’ normal tissue reaction to
radiotherapy. Being able to stratify individual patients according
to their risk of radiation toxicity would enable breast surgeons to
take this information into account when advising patients about
the risks and benefits of different surgical treatment options, or
even suggest a change to the sequence of surgery and adjuvant
treatment including radiotherapy (10).

In the field ofmedical physics, many radiobiological predictive
models have been proposed with the aim of preserving

normal tissue, mostly focused on late toxicity. Normal tissue
complication probability (NTCP) models, such as the Lyman-
Kutcher-Burman (LKB) model, incorporate the linear quadratic
(LQ) model of cell killing (11, 12). Many of these dosimetric
models have already been integrated into radiotherapy treatment
planning systems. They generally take the form of simplified
empirical models consisting of dose distribution parameters, and
the risk of toxicity is assumed to depend on the mean dose to the
respective target organ or the amount of damaged tissue (13).

In prostate radiotherapy, it has been shown that dosimetric
models for late rectal toxicity can be improved by including
clinical and other treatment risk factors, such as prior abdominal
surgery, colorectal disease and diabetes (14, 15). In breast
radiotherapy, several studies have investigated the association
of clinical and treatment risk factors with acute skin toxicity,
although none have reported a clinical prediction model as
such (16–25). Integrated clinical prediction models capable
of identifying patients at risk of clinically significant side-
effects have now been developed in different disease sites, the
majority predicting late toxicity with moderate performance
(AUC ranging from 0.60 to 0.75) (26–28). There are also an
increasing number of published models predicting acute toxicity,
although none for breast radiotherapy (29–31).

For surgeons and other clinicians, models that include
common clinical and treatment predictors are of particular
interest because this obviates the need for detailed patient
dosimetry and dose-volume histograms from radiotherapy
planning scans. It would allow clinicians to estimate toxicity risk
at the time of breast cancer diagnosis and before any treatment
is planned. In breast reconstruction surgery, a small number of
clinical risk models for various 30-day complications have been
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published (32, 33), of which some have been validated for select
endpoints (34, 35). However, these models are chiefly designed
to predict surgical side-effects, such as implant loss, surgical
site infection and seroma, and include radiotherapy as a binary
predictor variable only.

In the absence of an available prediction model in the
literature, the aim of this study was to develop and externally
validate predictive models for acute breast radiation toxicity in
the REQUITE study breast cohort using published clinical and
treatment predictors of acute skin toxicity in the REQUITE study
breast cohort.

METHODS

This study was designed using data from patients who underwent
breast-conserving surgery (BCS) and adjuvant external
beam radiotherapy (EBRT) enrolled in three Radiogenomics
Consortium (RGC) studies and the REQUITE cohort study.
Candidate variables associated with acute breast radiation
toxicity were identified from the existing literature. In the
absence of predictive models in the literature, predictive models
for acute radiation toxicity endpoints were first developed in
combined RGC patient cohorts, then validated in the REQUITE
patient cohort. This was a TRIPOD type 3 study, representing
model development and validation using a separate dataset (36).

Model Development Cohorts
The German ISE cohort (16) included 478 breast cancer patients
treated with conventional 3D conformal whole breast EBRT plus
either photon or electron tumor bed boost (except for 19 patients)
recruited into a prospective patient cohort at four centers in
Southwest Germany between 1998 and 2001, with documented
acute radiotherapy toxicity at baseline, at cumulative doses of 36–
42Gy and 44–50Gy, at the end of radiotherapy, and 6 weeks
following radiotherapy. None of the patients in ISE received
chemotherapy. All patients from the ISE cohort were included in
this study. The ISE study was approved by the Ethical Committee
at the University of Heidelberg, Germany (reference No. 37/98).

The LeND cohort (37) consists of 633 breast cancer patients
treated with conventional 3D conformal whole breast EBRT
using tangential fields and documented normal tissue toxicity
recruited at varying time points (up to several years) after
breast radiotherapy± boost in Leicester, Nottingham and Derby
(UK) between 2008 and 2010. Acute toxicity was collected from
medical records. After excluding the first 154 patients without
data on acute toxicity, and 119 patients who had chest wall
radiotherapy following mastectomy, 390 patients treated with
EBRT following BCS from the LeND cohort were included in
this study. The LeND study was approved by the Research Ethics
Committee (reference no. 08/H0405/57).

The Cambridge cohort (19) comprised 1,144 women who
received adjuvant whole breast EBRT following BCS as part of
the Cambridge IMRT trial (UK) following the standard hypo-
fractionated regimen (40Gy in 15 fractions), 411 of whom were
randomized to manual forward-planned intensity-modulated
radiotherapy (IMRT) to improve dose homogeneity (reduce the
volumes receiving >107 and <95% of the prescribed dose) in

the irradiated breast. The remainder of patients were treated
with 3D-conformal radiotherapy using wedged tangential fields.
Toxicity was documented weekly during treatment according to
the RTOG scale. All patients from the Cambridge cohort were
included. The study was approved by the Cambridge Research
Ethics Committee and written consent was obtained from all
patients to use their data for research purposes.

Validation Cohort
The multicenter REQUITE breast cancer patient cohort was
recruited prospectively in seven European countries and the USA
between 2014 and 2016. The REQUITE study was conceived
as an international multicenter validation cohort for predictive
models of radiation toxicity with standardized prospective data
collection (38). Patient baseline characteristics and methodology
have been described in detail elsewhere (39). All 2,057 enrolled
patients were treated with BCS followed by EBRT according to
local protocol, approximately half of whom were treated with
IMRT, with a lower proportion in France and no IMRT at
Italian or US centers. The majority patients received a tumor-
bed boost (64%), ranging from <20% at the French, Italian and
Spanish centers to over 80% at the Belgian center, given either
simultaneously (n = 257) or sequentially (n = 1,138). Patients
with invasive breast cancer in Belgium and the UK were treated
using the START-B hypofractionated regimen. Although late
toxicity was the main endpoint in REQUITE, data collected at the
end of radiation treatment was used to document acute toxicity.
All patients gave written informed consent. The study was
approved by local ethics committees in participating countries
(UKNRES Approval 14/NW/0035) and registered at http://www.
controlled-trials.com (ISRCTN98496463). Characteristics of all
cohorts included in this study are summarized in Table 1.

Endpoint Definition
Radiation toxicity in REQUITE was scored using CTCAE
(Common Terminology Criteria for Adverse Events; Table 2)
v4.0 (40). CTCAE v4.0 has separate scales for radiation dermatitis
(erythema) and skin ulceration (desquamation), both of which
are relevant to the acute response to radiotherapy in the breast.
For both LeND and Cambridge cohorts, acute skin toxicity was
scored according to the RTOG (Radiation Therapy Oncology
Group; Table 2) scale, which is mostly based on target organ
or body region (e.g., larynx, upper GI, skin) (41). The German
ISE study used a modified version of the Common Toxicity
Criteria (CTCAE v2.0) scale for erythema, where grade 2 was
subdivided into three sub-grades, with 2c being defined as ≥1
moist desquamation or interruption of treatment due to side-
effects and grade 2a and 2b comprising moderate and brisk
erythema, respectively.

This raised the issue of how to deal with the use of different
toxicity scales and assessment time points in the previously
assembled cohorts and the REQUITE validation cohort. Where
multiple measurements were available, maximum recorded
toxicity was used. To ensure comparability with previous studies,
the following endpoints were considered where they occurred
within 90 days of the start of treatment (acute toxicity) according
to the different grading systems:
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TABLE 1 | Summary study characteristics of eligible patients from the three RGC derivation cohorts and the REQUITE validation cohort (RT, radiotherapy).

LeND ISE Cambridge REQUITE

Total patients in cohort (n) 663 478 1144 4438

Eligible patients (BCS+EBRT) 409 478 1,144 2,057

Location Leicester, Nottingham,

Derby (UK)

SW Germany Cambridge (UK) Western Europe, United States

Study design Retrospective Prospective Prospective Prospective

Recruitment year (range) 2008–2010 1998–2001 2003–2007 2014–2016

Treatment year (range) 1998–2008 1998–2001 2003–2007 2014–2016

Toxicity assessment scale RTOG Modified CTCAE v2 RTOG CTCAE v4

Toxicity assessment time points (From records)

end-of-RT

Start-of-RT

cumulative 36–42Gy

cumulative 44–50Gy

end-of-RT

6 weeks after RT

Weekly during RT

end-of RT

Start-of-RT

end-of-RT

Age (median, range) 59 (33–87) 61 (27–87) 59 (26–84) 58 (23–90)

Whole breast dose (Gy, median, range) 50 (40–50) 50 (44–56) 40 50 (28.5–56)

Whole breast fractions (median, range) 25 (11–25) 25 (22–29) 15 25 (5–31)

Boost (proportion of patients) 10% 90% 65% 64%

Toxicity scale used RTOG CTCAE v2.0 RTOG CTCAE v4.0

BMI ≥25 (proportion) 66% 48% 63% 54%

Smoker (current or previous) 13% 30% 15% 43%

Chemotherapy 28% None 20% 30%

Diabetes 8% 6% 5% 6%

Hypertension 35% 32% Not available 28%

Cardiovascular disease 6% 16% 10% 7%

Tamoxifen use 75% 80% 66% 76%

TABLE 2 | RTOG and CTCAE v4.0 toxicity scales for acute skin reaction and ulceration.

Toxicity Grade 1 2a 2b 3 4

RTOG Skin Follicular, faint or dull

erythema/epilation/dry

desquamation/decreased

sweating

Tender or bright

erythema ± dry

desquamation

Patchy moist

desquamation;

moderate oedema

Confluent, moist

desquamation other than

skin folds, pitting edema

Ulceration, hemorrhage,

necrosis

CTCAE v4.0

Radiation dermatitis

Faint erythema or dry

desquamation

Moderate to brisk erythema or patchy moist

desquamation (2c*), mostly confined to skin folds

and creases; moderate edema (tenderness is

graded separately in the Pain category)

Confluent moist

desquamation ≥1.5 cm

diameter and not confined

to skin folds; pitting edema

Skin necrosis or ulceration

of full thickness dermis; may

include bleeding not

induced by minor trauma or

abrasion

CTCAE v4.0

Skin ulceration

Combined area of ulcers

<1 cm; non-blanchable

erythema of intact skin with

associated warmth or

oedema

Combined area of ulcers 1–2 cm; partial thickness

skin loss involving skin or subcutaneous fat

Combined area of ulcers

>2 cm; full-thickness skin

loss involving damage to or

necrosis of subcutaneous

tissue that may extend

down to fascia

Any size ulcer with extensive

destruction, tissue necrosis,

or damage to muscle, bone,

or supporting structures

with or without full thickness

skin loss

*Sub-scales of CTCAE v2.0 used in the ISE study.

a) Acute erythema: RTOG or CTCAE grade≥2 (at least moderate

to brisk erythema);

b) Acute desquamation: RTOG grade≥2b (patchy moist

desquamation) or CTCAE grade ≥2c erythema (moist
desquamation) or CTCAE grade≥1 skin ulceration, implying
that skin integrity has been broken, either over the breast or
in the infra-mammary fold.

Selection and Definition of Candidate
Predictors
The literature was searched through Medline using the MeSH
keywords “radiation injury,” “breast neoplasm,” “radiotherapy,”
“radiation tolerance,” and “risk factors,” and through PubMed
using keywords “radiation injury,” “normal radiation toxicity,”
“acute,” “radiotherapy,” “breast cancer,” “radiosensitivity” and
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“risk factor” or “predictor” or “radiogenomics.” Reference lists
from identified papers or review articles were also searched.
Candidate predictor variables in the literature were considered
for validation where their association with acute breast radiation
toxicity endpoints on multivariate analysis was reported in at
least one publication.

To ensure comparability of measures of breast size, such as
breast diameter or bra size, these were converted to a single
continuous variable for the purpose of this study by adding bra
cup and band sizes, to represent “sister” sizes equal to the same
breast volume (according to http://www.sizechart.com/brasize/
sistersize/index.html). For instance, a UK size 34B bra holds
an approximate breast volume equal to 32C, ∼390 cc. In the
Cambridge trial cohort, breast size was graded as a categorical
variable and converted accordingly.

For each patient in the REQUITE and the other three RGC
cohorts, information comprising candidate predictor variables
and relevant study endpoints were extracted from the data.
Hypertension was not recorded in the Cambridge trial cohort,
and post-operative infection was not available in the LeND and
ISE cohorts. Observations on body mass index (BMI) and breast
size were missing from 22 and 17% of patients, respectively,
in the three combined RGC cohorts, while information on the
remaining candidate predictor variables was missing in between
0.5 and 3% of patients across all cohorts.

Statistical Methods
Both endpoints were considered as dichotomized (binary)
outcome measures. Where a patient had multiple measures of
acute toxicity within the specified time period, the maximum
grade of toxicity recorded was used. Cases with high baseline
toxicity defined as grade≥2 were excluded from the analysis.
Statistical analyses were carried out in StataTM version 15.1.
Continuous variables are presented asmedians (with ranges), and
categorical/binary variables as counts and percentages.

In order to minimize bias from analyzing only complete cases,
multiple imputation (MI) was used to replace missing values by
means of a chained equation approach based on all candidate
predictors excluding hypertension (42). Ten imputed datasets
were created for missing variables and then combined across
all datasets using Rubin’s rule to obtain final estimates (43).
The number of imputations (m = 10) was determined by the
percentage of incomplete observations per variable to reduce
the error associated with estimating the regression coefficients,
standard errors and the resulting p-values (44). On the basis
of an estimated 900 cases of acute erythema and 175 cases
of acute desquamation in the three combined RGC cohorts,
the consideration of nine candidate predictor variables in this
analysis satisfied the methodological constraint of at least 10
events per variable (EPV) required to reduce issues with over-
fitting in predictive modeling (45).

To develop clinical prediction models, a generalized linear
mixed model (GLMM, xtlogit) was fitted in the original
dataset combining three RGC derivation cohorts to model the
probability of each toxicity endpoint. GLMMs are an extension
of mixed models and generalized linear models (GLMs) to
allow for inclusion of both fixed and random effects across

different study cohorts or cohorts enrolling at multiple centers.
Like GLMs, a link function is applied, such as the logit link.
Initially, a full model comprising all included predictor variables
was fitted, followed by stepwise backwards elimination to select
the candidate variables to include in the final prediction model
(with p < 0.1 taken conservatively to warrant inclusion). After
elimination, each excluded predictor was re-inserted into the
final model to further check whether they became statistically
significant at this stage.

The equation for the log odds for each acute breast endpoint
was formed using the estimated β coefficients multiplied
by the predictors included in the model together with the
intercept across cohorts. The predicted risk of toxicity can thus
be calculated:

predicted risk =
elog odds

1+ elog odds

Discrimination of the fitted models was assessed by calculating
the c-statistic (AUC from the logistic model, plotting sensitivity
over 1-specificity) and examining the calibration plot across
tenths of predicted risk. A c-statistic of 1 indicates perfect
discrimination, whereas 0.5 indicates no discrimination. A
calibration slope of 1 indicates perfect calibration and would
be expected across the original datasets as the model is being
developed in the same data (apparent performance).

To control for optimism (over-fitting), the model
development process was repeated in 100 bootstrap samples.
Each model was applied to the same bootstrap sample to
quantify apparent performance, and then to the original dataset
to evaluate test performance (c-statistic and calibration slope)
and optimism (difference in test performance and apparent
performance). To estimate overall optimism, the average
calibration slope across all bootstrap samples was calculated
and multiplied as a shrinkage coefficient by each variable’s β

coefficient and the intercept of the model derived in the original
dataset to produce a final model for each toxicity endpoint.

The final models were applied to patients in the REQUITE
validation cohort to predict the log odds of acute erythema or
acute desquamation based on the presence or absence of one
or more of the predictor variables. In this external validation
step, the intercept of each final model was re-calibrated by
subtracting the estimated intercept of the model in the REQUITE
validation cohort. Performance of the model in the validation
cohort was again assessed by calculating the c-statistic (AUC)
and examining the calibration plot across tenths of predicted
risk. Overall accuracy was measured by calculating a Brier score,
which is the sum of mean square errors between predicted
risk and observed outcome for each patient, with a zero score
indicating total accuracy.

RESULTS

The literature search identified 10 studies of between 200 and
1,124 patients examining the association of acute breast radiation
toxicity with predictor variables. Most studies reported acute skin
toxicity scored according to RTOG, while only two studies used
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the CTCAE erythema scale (16, 25). Depending on the published
study, the variables associated significantly with toxicity on
multivariate analysis were: age (50 and over, dichotomized),
body mass index (BMI), breast size or volume, fractionation
schedule (hypo- vs. conventional fractionation, dichotomized),
use of boost, smoking (ever smoked), and tamoxifen use
(see Table 3). Chemotherapy showed significant effects but in
opposite directions in two studies (19, 46) and was excluded.
Interestingly, breast dose was not assessed as a continuous
variable in any publication. Hypertension and diabetes were not
significant on multivariate analysis in any study. One study used
ordinal regression and did not report odds ratios, as endpoints
were not dichotomized (20).

Predictive Clinical Model Development and
External Validation
The distribution of patients across the three RGC development
cohorts and the REQUITE validation cohort according to
endpoint is shown in Table 4. Across the RGC cohorts (n =
2.031), there were 914 events of acute erythema (grade≥2, 45.0%)
and 175 events of acute desquamation (8.7%). It was noted that
the incidence of desquamation was lower in the Cambridge
IMRT cohort. In the REQUITE validation cohort, there were
1,969 and 2,057 patient datasets available for the endpoints acute
erythema and acute desquamation, respectively. There were 450
patients with acute erythema (grade ≥2 erythema, 22.9%), and
192 patients with acute desquamation (grade 1≥ ulceration or
grade ≥3 erythema, 9.3%).

Further detail regarding the distribution of clinical predictors
in each cohort is available in Table 1. Median patient age in
the REQUITE breast cohort was 58 years (range 23–80 years),
similar to the RGC cohorts. REQUITE patients were treated with
a median dose to the breast of 50Gy (28.5–56Gy) in 25 fractions
(5–31), which is similar to the LeND and ISE cohorts. Patients
in the Cambridge IMRT trial were exclusively treated with 40Gy
in 15 fractions. There was variation in use of boost between
the different development cohorts and within the REQUITE
multi-center cohort (see Methods). Although most other co-
morbidities and co-medications were similarly distributed, the
proportion of smokers was higher in the non-UK cohorts,
whereas the proportion of overweight patients (BMI ≥25) was
higher in the UK cohorts.

Final logistic regression models for both toxicity endpoints
following backwards elimination are shown in Table 5. At this
stage, variables that satisfied the p < 0.1 stepwise inclusion
threshold in the development cohorts for both endpoints were
BMI, breast size, hypo-fractionation, use of boost, and smoking
status. Tamoxifen use was associated with acute erythema only
(OR 1.25, CI 1.05–1.26; Table 5). Age 50 and over was eliminated
from both models, acute erythema (OR 1.17, 0.89–1.53, p =
0.253) and acute desquamation (OR 1.45, 0.83–2.53, p= 0.194).

Table 6 shows apparent, optimism-corrected (after
bootstrapping) and validation performance of both risk
prediction models. After correcting for optimism, the final
model for acute erythema discriminated patients with and
without grade ≥2 erythema undergoing EBRT following BCS

with an AUC of 0.645 (CI 0.619–0.667). Agreement between
observed and predicted proportions was seen with a calibration
slope of 1.0319. The final log odds of acute erythema could
be calculated as −2.265 + 0.049∗BMI + 0.1∗breast_size –
1.565∗hypo-fractionation + 0.302∗boost + 0.308∗smoking +
0.234∗tamoxifen. After re-calibrating the intercept, applying the
final model to the REQUITE cohort gave a c-statistic (AUC) of
0.651 (CI 0.622–0.680), indicating the model performed equally
well on validation, albeit with moderate calibration (slope =
0.665, 0.509–0.821) and a Brier score of 0.172 (Table 6). The
calibration plot demonstrates that the model slightly over-
predicts the probability of acute erythema in the REQUITE
validation cohort (Figure 1), with a mean predicted probability
of 25.7% against an observed incidence of 22.8%.

The final model for acute desquamation developed in the joint
RGC cohorts was able to discriminate patients with an optimism-
corrected AUC of 0.847 (CI 0.817–0.873) and a calibration slope
of 1.043. The log odds of acute desquamation could be calculated
as −7.226 + 0.111∗BMI + 0.240∗breast_size – 2.592∗hypo-
fractionation+ 0.606∗boost+ 0.435∗smoking. Applying the final
model to the REQUITE validation cohort with re-calibrated
intercept, gave a c-statistic (AUC) of 0.697 (CI 0.658–0.737).
This drop in AUC indicates relatively poorer discrimination
performance, with equally poorer calibration (slope = 0.376,
0.260–0.492) (Table 6). The model significantly under-predicts
the probability of acute desquamation in the REQUITE cohort,
with a mean predicted probability of 3.0% against and observed
incidence of 9.3% (Figure 2). The Brier score was 0.085.

DISCUSSION

The aim of this study was to develop and validate predictive
models for acute skin erythema and acute desquamation
following whole-breast external beam radiotherapy and breast-
conserving surgery for breast cancer, which could be used
without the need for detailed radiation dosimetry, in order to
allow clinicians to estimate toxicity risk at the time of breast
cancer diagnosis and before any treatment is planned. Previous
work in prostate cancer showed that dosimetric models for
radiation toxicity can be improved by adding clinical and co-
treatment risk factors (14, 15).

The initial literature search of published predictors
significantly associated with acute breast radiation toxicity
in multivariate analysis confirmed a number of variables
including BMI, breast size or volume, hypo-fractionation
(protective), boost and tamoxifen use, and smoking status.
Variables relating to BMI and breast size or volume have been
most frequently reported in previous smaller cohorts (Table 3) as
well as published randomized clinical trials (19, 47). Moreover,
both aforementioned trials highlighted breast volume as a
stand-alone predictor of acute radiation toxicity independent
of dose inhomogeneity. Interestingly, none of the previous
publications assessed breast dose as predictor in itself, only
fractionation schedule. However, findings from the UK breast
hypo-fractionation trials and radiobiology have shown that
acute toxicity is related to total breast dose (48), not dose per
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TABLE 3 | Odds ratios (confidence intervals) of clinical predictor variables for acute breast toxicity reported from multivariate regression in previously published studies with significant associations in bold (BMI, body

mass index; fractionation, fractionation treatment schedule).

References Twardella

et al. (16)

Back (17) Deantonio

et al. (18)

Barnett

et al. (19)

Terrazzino

et al. (21)

Sharp

et al. (22)

Tortorelli

et al. (23)

Ciammella

et al. (24)

De Langhe

et al. (25)

N 478 234 155 1124 286 390 200 212 377

Proportion acute breast

toxicity*

17.6% 31.4% 34.8% 36.5% 31.1% 21.3% 31.9% 15.0% 58.0%

Age (per year)

Age ≥50

0.98 (0.96–1.01) Not significant** 2.20 (1.00–4.80) 0.97 (0.94–1.01) Not significant

BMI (per kg/m2 )

BMI ≥25

BMI ≥30

1.09 (1.05–1.13) 2.10 (1.00–4.60) 1.00 (0.92–1.09) 1.10 (0.60–2.10)

4.20 (2.10–8.30)

1.09 (not given)

Breast volume (per liter)

Breast volume > median

Breast size > median

Breast diameter

Breast cup size ≥D

3.60 (1.60–8.10) 2.09 (1.60–2.72) 1.14 (1.00–1.29) 1.00 (1.00–1.01) 2.47 (1.98–6.22) 2.83 (not given)

Fractionation

Hypo- vs. conventional 0.45 (0.23–0.93)
0.08 (not given)

Conventional vs. hypo- 1.90 (1.00–3.50) 2.05 (1.00–4.20)

Boost use Not significant 4.90 (1.46–16.48) 0.99 (0.98–1.00)

Hypertension Not significant

Diabetes Not significant Not significant

Smoking 0.86 (0.44–1.70) Not significant 2.50 (1.10–5.70) 2.71 (not given)

Postop infection Not significant 1.49 (1.08–2.06) 3.46 (1.49–8.02)

Chemotherapy Not significant Not significant 0.58 (0.41–0.82) Not significant 1.80 (1.01–3.33) 1.14 (0.53–2.43) Not significant 0.95 (not given)

Tamoxifen use 1.54 (0.73–3.09) 1.23 (1.07–1.41) Not significant 1.20 (0.70–2.10) 1.23 (0.55–2.77)

*The proportion of patients with acute breast toxicity is shown according to each study’s endpoint definition. **These studies only published p-values but no odds ratios for non-significant associations.
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TABLE 4 | Number of patients by acute skin toxicity in the three RGC derivation cohorts and the REQUITE validation cohort; number and proportion of cases at the end

of radiotherapy.

LeND ISE Cambridge REQUITE

Eligible patients 409 478 1144 2057

Acute erythema with RTOG or CTCAE grade ≥2 111

(27.1%)

358

(74.9%)

445

(38.9%)

450

(22.9%)

Acute desquamation with RTOG grade ≥2b or CTCAE grade ≥2c

radiation dermatitis or grade ≥1 ulceration

62

(15.2%)

86

(18.0%)

27

(2.4%)

192

(9.3%)

TABLE 5 | Final logistic regression models (GLMM) following backwards elimination (p < 0.1) for acute breast toxicity endpoints in the RGC development cohorts.

Acute erythema Acute desquamation

Predictor OR CI lower CI upper p-value OR CI lower CI upper p-value

BMI (per kg/m2 ) 1.05 1.02 1.08 <0.001 1.11 1.05 1.18 <0.001

Breast size (per sister size) 1.10 1.04 1.17 0.001 1.26 1.12 1.41 <0.001

Hypo-fractionation 0.22 0.05 0.89 0.033 0.08 0.05 0.13 <0.001

Boost use 1.34 1.06 1.69 0.013 1.79 1.24 2.57 0.002

Smoking (ever) 1.35 1.06 1.72 0.016 1.52 1.04 2.22 0.032

Tamoxifen use 1.25 1.01 1.56 0.044

TABLE 6 | Performance statistics for both predictive models in the RGC development cohorts and external validation performance in REQUITE.

Acute erythema Acute desquamation

Performance Apparent Average

optimism

Optimism-corrected External

validation

(REQUITE)

Apparent Average

optimism

Optimism-corrected External

validation

(REQUITE)

c-statistic (AUC) 0.644 −0.001 0.645 0.651 0.845 −0.002 0.849 0.697

Calibration slope 1.082 −0.050 1.032 0.665 1.067 −0.024 1.043 0.376

Brier score 0.172 0.085

fraction as for late toxicity (7). The protective association with
hypo-fractionation reported in the literature is therefore likely
due to the reduction in total dose for safe hypo-fractionation.
Results of the literature search did not confirm an association
with acute breast radiation toxicity for the predictors diabetes,
cardiovascular disease and hypertension, whereas in the past
radiation sensitivity has at least in part been attributed to the
presence of cardiovascular disease or diabetes mellitus, which
affects the microvasculature (49). However, it is likely that many
patients enrolled in the reported cohorts were also on some form
of anti-diabetic agent or a statin. Radioprotective effects of both
metformin and gliclazide on human cells have been reported
at least in vitro (50, 51), and there is evidence that statins
may accelerate DNA repair (52) and reduce the expression of
pro-inflammatory cytokines (53).

Although several studies have investigated the association of
acute breast toxicity with clinical and treatment factors, to date,
none have produced a clinical prediction model. Population-
based measures of toxicity risk may not accurately reflect risk for
an individual patient, but accurate prediction models can inform
patients and clinicians about the future course of their condition
or illness, thereby helping guide decisions about treatment. For

a prediction model to be valuable, it should not only have
predictive ability in the development cohort but must also
perform well in a validation cohort. In the present study, the
model to predict the risk of acute erythema following breast
radiotherapy across RGC cohorts performed moderately well in
the RGC cohorts and equally in the external REQUITE validation
cohort with an AUC of 0.65, while calibration showed moderate
agreement between predicted and observed toxicity outcomes
in the validation cohort. On the other hand, performance of
the model to predict the risk of acute desquamation following
breast radiotherapy decreased relatively more in the external
validation cohort (AUC = 0.70) than expected from internal
validation (optimism-corrected AUC = 0.85), with relatively
poor calibration.

Reasons why a predictive model may perform substantially
differently between development and validation cohorts include
over-fitting, missing important predictor variables, measurement
errors of predictors, or differences in the patient cohort
case mix. Measurement errors can arise from inter-observer
variability across different cohorts and centers as well as use
of different scales and time points to assess acute toxicity
endpoints. Acute toxicity in both the Cambridge IMRT trial
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FIGURE 1 | Calibration plot for acute erythema in the REQUITE validation cohort. Circles indicate the observed proportion of acute erythema per tenth of predicted

probability. The red line indicates ideal calibration with a slope of 1.

FIGURE 2 | Calibration plot for acute desquamation in the REQUITE validation cohort. Circles indicate the observed proportion of acute desquamation per tenth of

predicted probability. The red line indicates ideal calibration with a slope of 1.

and the REQUITE study was assessed in the final week of
radiotherapy. The acute reaction may not peak until 1–2 weeks
after the end of treatment and hence could have been missed

in some patients, although this would not have been the
case in the ISE cohort study in which patients were assessed
at the end and 6 weeks after the end of treatment. In the
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LeND study, acute toxicity was coded retrospectively from the
medical notes, which may have led to bias if the original
documentation was unclear. In both LeND and the Cambridge
IMRT cohorts, toxicity was assessed using the RTOG scale,
which does not separate out patients with oedema and might
in part explain the lower proportion of cases with grade ≥2
erythema in these cohorts compared to the ISE cohort, although
the proportion of cases in the REQUITE validation cohort is
more similar to that of the LeND and Cambridge cohorts. The
ability to detect and grade skin changes is also dependent on
skin tone, which is not readily captured in the RTOG and
CTCAE scales.

The model developed across the three RGC cohorts in this
study included clinically relevant predictors which satisfied the
relatively loose criteria for inclusion in the model (p < 0.1).
The purpose of multivariate prediction modeling is estimation
rather than testing for association with risk factors, and it may
therefore be reasonable to include clinical predictors despite non-
significant association or collinearity, to ensure that important
predictors are not missed (54). In order to address over-
fitting and to correct for optimism, bootstrapping was used as
internal validation technique, but other studies with reasonably
large datasets have used split-sample training-validation or
cross-validation (55). It is possible but not very likely that
a different internal validation method may have produced
different results to the bootstrapping method used in the
present study.

The value of the c-statistic (AUC) depends not only
on the model of interest but also the even distribution
of predictor and endpoint variables within a given patient
population. Many radiotherapy patients present with a similar
constellation of demographics and co-morbidities. They are also
treated with similar plans, making discrimination a difficult
task. In this study, acute desquamation was a relatively rare
event in both the development and validation cohorts (8.7
and 9.3%), while the distribution of acute erythema within
each dataset was somewhat more balanced toward cases
(45.0 and 22.9%).

The distribution of clinical predictors between cohorts was
broadly similar between the three development and validation
cohorts, apart from smoking status and BMI, and none of
the patients in the ISE cohort received chemotherapy. Overall,
the distribution of clinical predictors was also similar to other
previously published cohorts (21, 24, 25). Nevertheless, there was
considerable heterogeneity between the centers within REQUITE
with regards to treatment variables, such as dose fractionation,
use of boost, and inclusion of patients who received prior
adjuvant chemotherapy, as well as observed toxicity frequencies
(39). Differences in radiotherapy techniques over time may have
also affected generalizability of the prediction models to the
validation cohort, as the patients in the three RGC development
cohorts were on average treated more than 10 years before those
enrolled in REQUITE. Certainly, there has been widespread
update of intensity-modulated radiotherapy (IMRT) over that
time, with almost 50% of patients enrolled in REQUITE treated
in this way, whereas only some patients in the Cambridge trial
cohort were randomized to IMRT and none of the patients in

LeND and ISE received IMRT. Because of this and lack of data
from previous literature, radiotherapy technique, such as IMRT,
was not included in the model development phase.

A mixed modeling (GLMM) approach was chosen in this
study to try and address issues of cohort heterogeneity and to
relax the assumptions of independence of predictor variables.
Using an alternative statistical method such as Lasso techniques,
or data mining such as machine learning algorithms, may have
identified other predictor variables or potential interactions in
patients with several marginal risk factors (56). Machine learning
algorithms are used with increasing frequency, in particular in
the context of multi-dimensional “big data” such as electronic
health records and radiotherapy imaging (57). However, the
data available for this study, in particular from the slightly
older RGC cohorts, were somewhat more limited and did not
reach the multi-dimensionality usually associated with machine
learning projects.

Despite these limitations, it is important to note that
validation of the predictive model for acute erythema was
achieved in the absence of detailed radiation dosimetry and
notwithstanding the differences in radiotherapy techniques
between treatment centers and countries particularly in the
REQUITE cohort. The performance of thismodel across different
cohorts in this study suggests that these findings are reproducible
and generalizable beyond that of the original development
dataset, whilst acknowledging the tendency for themodel to over-
predict in the external REQUITE cohort. The calibration plot
demonstrates that the model can successfully identify high-risk
patients and observed vs. expected rates were still correlated.
This suggests that the model for acute erythema will simply
benefit from further re-calibration of certain variable coefficients
without redesigning the model from scratch. In the case of acute
desquamation, further improvements using shrinkage and re-
calibration would not affect the model’s reduced discriminatory
power in the validation cohort. To improve discrimination, the
model would need to be revised, for example, by additional
adjustment to regression coefficients of predictors with different
strength or direction of effect in the RGC development compared
to the REQUITE cohorts, stepwise selection of additional
predictors, such as those relating to radiotherapy technique (e.g.,
IMRT), or re-estimation of all regression coefficients in the
validation population. These approaches to update the model
need to be balanced against the fact that the information in the
original model would be neglected and would require further
validation elsewhere.

To increase clinical relevance, novel performance measures
such as net re-classification improvement (NRI) and net
benefit (NB) could also be considered (58). Risk models
without recommending clinical decisions are less likely to
change treatment decision-making behavior than those that
translate risk into a treatment decision recommendation (59).
Nevertheless, the clinical risk model presented here without
detailed radiation dosimetry can be used in practice relatively
simply to predict a patient’s probability of acute skin radiation
toxicity at the time of breast cancer diagnosis, which can then
be taken into account when discussion various treatment options
with patients.
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CONCLUSIONS

While most published prediction research in the field of
local breast cancer treatment toxicity continues to focus solely
on model development, this study reports development and
external validation of a predictive model for acute erythema
following radiotherapy after breast-conserving surgery, which
retained its moderate discriminatory power but will benefit
from further re-calibration. A similar model to predict acute
desquamation using clinical risk factors failed to validate in the
REQUITE cohort. While other statistical or machine learning
techniques may improve the performance of clinical risk models
in the future, more accurate predictions are expected through
the addition of genetic markers. This information could be
considered when discussing breast cancer treatment options at
the outset in particular with patients predicted at high risk of
radiation toxicity.
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Radioligand therapy is a type of internal radiotherapy combining a short-range

radioisotope labeled to a carrier with a high affinity for a specific receptor expressed on

tumor cells. Targeted alpha therapy (TAT) combines a high-linear energy transfer (LET)

emitter (225Ac) with a prostate-specific membrane antigen (PSMA) carrier, specifically

binding tumor cells in patients with metastatic castration-resistant prostate cancer.

Although the antitumor activity of 225Ac-PSMA is well-documented, this treatment is

nowadays only used as salvage therapy because the high incidence of xerostomia

limits the therapeutic window. Thus, methods to reduce salivary toxicity and models

able to describe xerostomia incidence are needed. We recently studied the efficacy of

salivary gland protectors administered in combination with 177Lu-PSMA therapy. Starting

from these data, we performed a predictive dosimetric evaluation of 225Ac-PSMA to

assess the impact of salivary gland protectors in TAT. 225Ac-PSMA predictive dosimetry

was performed in 13 patients treated with 177Lu-PSMA. Sequential whole-body planar

images were acquired 0.5–1, 16–24, 36–48, and 120 h post-injection. 177Lu time-activity

curves were corrected for 225Ac physical decay and assumed in equilibrium for all

daughters. The OLINDA/EXM spherical model was used for dose estimation of the

parotid and submandibular glands. The dose for each daughter was calculated and

summed for the total dose estimation. The biologically effective dose formalism was

extended to high-LET emitters. For the total biologically effective dose formalism

extended to high-LET emitters, including the contribution of all daughter isotopes, the

brachytherapy formalism for a mixture of radionuclides was implemented. Equivalent

doses in 2 Gy/fraction (EQD2) were then calculated and compared with the normal tissue

complication probability model derived from external beam radiotherapy for grade ≥2

xerostomia induction. Median predictive doses were 0.86 BdRBE5/MBq for parotid glands

and 1.05 BdRBE5/MBq for submandibular glands, with a 53% reduction compared with
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previously published data. The results show that the radiobiological model implemented

is conservative, as it overestimates the complication rate with respect to the clinical

data. Our data shows the possibility of reducing salivary gland uptake in TAT with the

coadministration of organ protectors, but these results should be confirmed for TAT

with 225Ac-PSMA by carrying out prospective trials with defined toxicity endpoints and

dosimetry procedures.

Keywords: target alpha therapy (TAT), prostate-specific membrane antigen (PSMA), xerostomia, theragnostic,

protectors, dosimetry

INTRODUCTION

The combination of a short-range radioisotope labeled to
a carrier/ligand highly specific for receptors expressed on
tumor cells enables “internal” radioligand therapy (RLT) to be
delivered to tumors. The increased tumor cells turnover and
receptor overexpression induces a high isotope concentration
within the tumor (1). Internal radiotherapy is also known
as radiometabolic treatment (RMT) when iodine-131 is used
in thyroid cancer or peptide receptor radionuclide therapy
when radiolabeled peptides such as somatostatin analog are
used in neuroendocrine tumors (2). Similarly, prostate-specific
membrane antigen (PSMA) is an attractive target for diagnosis
and therapy of metastasized prostate cancer (3). The PSMA
expression is directly correlated with androgen independence,
metastasis, and progression. PSMA, also known as glutamate
carboxypeptidase II, is a membrane protease anchored in the
cell membrane of prostate cancer cells but not in normal
prostate cells. A radiolabeled version of a PSMA ligand (Dota-
PSMA-617) has been synthesized and has shown promising
properties when labeled with 177Lutetium, a short-range beta-
gamma emitter (4, 5).

PSMA-based RLT is thus becoming an attractive therapeutic
option for the clinical management of metastatic castration-
resistant prostate cancer patients (3, 4, 6, 7). However, as
many as 40% of treated patients do not respond to this β-
particle therapy (8). The use of high-linear energy transfer
(LET) α-emitters to increase local damage to tumor cells and
thus enhance treatment efficacy has aroused widespread interest
in this setting. In particular, targeted alpha therapy (TAT)
combining 225Ac α-emitter with PSMA carrier has proven
a promising therapeutic option in terms of disease control
for tumors refractory to beta-radiation therapy. Although the
antitumor activity of 225Ac-PSMA is well-documented (9),
this therapy is now only used as salvage therapy because
the high rate of irreversible xerostomia limits the therapeutic
window. Kratochwil et al. (8, 9) reported their experience in
40 patients treated with 225Ac-PSMA administrated with an

activity ranging from 50 to 200 kBq/kg. Xerostomia was regularly

reported with 100 kBq/kg or more per cycle and was considered

intolerable with more than 150 kBq/kg (8). The first symptoms

of xerostomia appeared 2–5 days post-TAT, lasting for about 2

months. Partial recovery was observed if no additional cycles
were added, but some patients had a chronic loss of secretion
function (8).

In a prospective study carried out at Istituto Scientifico
Romagnolo per lo Studio e la Cura dei Tumori (IRST) (10), 177Lu-
PSMA was administered in combination with polyglutamate
tablets and ice packs application used as protectors for salivary
glands. The gamma emission of 177Lu (208 keV, 11% relative
abundance) enabled us to perform dosimetry, acquiring serial
post-injection whole-body scans. Polyglutamate tablets were
orally administered as a substrate for PSMA receptors, and
external ice packs were applied to the neck region (3). The
dosimetry evaluation performed on 13 patients showed a lower
absorbed dose in both parotid and submandibular glands
compared with previously published data (11, 12). The efficacy
results of the protectors proposed in our study, especially for
salivary glands, were encouraging in the context of TAT, as
they could potentially improve treatment management, enabling
wider use of this therapeutic approach. As the metabolic uptake
of a radioisotope is mainly guided by the carrier (i.e., Dota-
PSMA-617), it is reasonable to assume that the organ protectors
used for 177Lu-PSMA could also result in a similar reduction in a
predicted dose for 225Ac-PSMA treatment. Given that dosimetric
imaging is not feasible with 225Ac, where lower gamma emission
largely impairs post-injection image acquisition, predictive
dosimetry was performed assuming an uptake and retention
similar to 177Lu-PSMA dosimetry. In this way, absorbed dose
results for 177Lu were converted to 225Ac, including the
contribution of the decay chain. A radiobiological evaluation
was then performed by comparing biologically effective dose
(BED) of TAT [relative biological effectiveness (RBE)-weighted]
with external beam radiotherapy (EBRT) schedules. The BED
formalism was extended to α-emitters (BEDH) for therapies with
a continuous and exponentially decreasing dose rate. To include
in the total BEDH the contribution of all daughter isotopes in the
225Ac chain, the formalism adopted in brachytherapy to estimate
the BED for a mixture of radionuclides was implemented. The
normal tissue complication probability (NTCP) model derived
from EBRT data was then applied to TAT data to estimate the
impact of salivary gland protectors on the incidence of acute
xerostomia as a function of injected activity.

MATERIALS AND METHODS

Main Treatment and Patient’s Population
Characteristics
From April 2017 to February 2019, we enrolled 43 patients in
the first European phase II RLT prospective trial [EudraCt/RSO
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number: 2016-002732-32, NCT03454750 (10)] ongoing at our
institute (IRST). Patients were stratified on the basis of risk
factors. Patients <75 years old unfit to undergo treatment with
docetaxel received 5.5 GBq of 177Lu-PSMA-617, whereas those
who had already been treated with docetaxel, were older than
75 years, or those who had other risk factors received lower
activities ranging from 3.7 to 4.4 GBq of 177Lu-PSMA-617.
Patients received four treatment cycles, with a time interval of
8–12 weeks between 2 consecutive cycles. An additional two
cycles were performed for patients with no registered adverse
effects, no evidence of progressive disease, and who, in the
opinion of the investigator, could obtain a clinical benefit.
All patients underwent a pretreatment 68Ga-PSMA-HBED-11
whole-body positron emission tomography PET/CT scan. 177Lu-
Dota-PSMA-617 radiopharmaceutical infusion was performed
slowly intravenously in 15–30min in a dedicated room using
a dedicated pump system (patent US 7,842,023 B2). Additional
information are provided in Appendix.

Organ-specific drug protectors were administered to reduce
organ-at-risk uptake (10–12). For the salivary glands, 30min
before, during, and 4 h after 177Lu-PSMA infusion, ice packs
were applied to the neck region (3, 13), and patients were given
polyglutamate folate tablets of plant origin (Morgan Pharma
Monteviale, Italy). To preserve kidney functionality, a 10%
mannitol solution in 500ml was infused before and after 177Lu-
PSMA injection, 250ml 30min before therapy and 250ml 1 h
after therapy (14). Additional organ protectors consisted of eye
drops (Naaxia Eye Drop Solution 19.6 mg/0.4ml, Laboratoires
Thea, Clermont-Ferrand, France) to limit lacrimal gland uptake,
given 30min before injection, and laxatives (Movicol, Norgine,
Norgine Italia., Milano, Italy) to reduce delayed intestinal uptake,
given 24 h post-injection.

Dosimetry
177Lu-PSMA (Prostate-Specific Membrane Antigen)

Dosimetry
Serial scintigraphic planar images were acquired 0.5–1, 16–
24, 36–48, and 120 h post-infusion. Anterior and posterior
images were acquired with a single positron emission computed
tomography (SPECT) scanner (Discovery NM/CT 670, General

Electric Medical System, Haifa, Israel) equipped with a 3/8
′′
-

thick NaI (Tl) crystal with a scan speed of 7 cm/min. The
emission energy window was centered on 208 keV (20% width),
and additional low and scatter energy windows were centered
on 175 and 238 keV (10% width), respectively, and used for
scatter correction image. Given that Kratochwil et al. (8) did
not perform any attenuation correction to their patents’ data, no
attenuation correction was applied in this study. Details on the
dosimetry protocol were published in previous works (11, 12).
Structures of interest for dosimetry evaluation were kidneys, liver,
parotid glands (PGs), submandibular glands (SGs), red marrow
(RM), and whole body (WB). All structures were delineated on
subsequent post-injection planar images, whereas RM dosimetry
was based on blood samples. The conjugate projection method
(15) was used to evaluate the relative uptake of each considered
structure at different time points. For each organ, the time–
activity curve was derived for residency time evaluation, and the

dose calculation was performed according to the medical internal
radiation dose (MIRD) formalism (15, 16) using OLINDA/EXM
software (v1.1, Nashville, TN, USA) (17). The OLINDA/EXM
adult male phantom was used for WB, kidney, liver, and RM
dose estimation. For PGs and SGs, the sphere model of unite
density was used. The mass of every single structure was derived
on the basis of the pretreatment WB CT scan (68Ga-PSMA
PET/CT). For paired organs, a mean value between the left and
right structures was calculated. The salivary gland dose value was
calculated as the mean between PG and SG dose values for each
patient. More details are reported in Sarnelli et al. (11). Although
the focus of the present study is salivary glands, for the sake of
completeness, we reported the predicted dose also for the other
considered organs.

225Ac-PSMA (Prostate-Specific Membrane Antigen)

Predictive Dosimetry
The dosimetric data obtained for 177Lu-PSMA evaluation were
converted into 225Ac-PSMA predictive dosimetry, assuming a
similar uptake governed by the PSMA carrier. We used the
same method previously published by Kratochwil et al. (8,
18). The 177Lu-PSMA time–activity curves were corrected for
177Lu physical half-life, and the biological time–activity curves
were then used for predictive dosimetry of 225Ac. Assuming
equilibrium in the decay chain and no translocation during the
decay between succeeding disintegrations, the same residence
time estimated for 225Ac was used for all the daughters in the
225Ac chain. S-values specific for each daughter were considered
to account for different dose contribution. According to the
literature data, an RBE factor equal to 5 was used to weight the
α-particle dose contribution concerning the γ and β emission
(19). The contributions of α, β, and γ radiations were then
summed up for each radioisotope, taking into account the
branching ratio of 2% for 209Tl and 98% for 213Po. As suggested
by the MIRD committee, when a deterministic endpoint is
considered (19, 20), we expressed data in Barendsen units
(Bd) or Bd/MBq. A suffix indicating the RBE value assumed
for α-particle weight was added (e.g., BdRBE5 indicates the
use of RBE= 5).

The median values of our data were then compared with
previously published findings (8, 9). Unfortunately, there is no
consensus regarding the choice of unit expression of the RBE-
weighted dose. Consequently, it may thus happen that data
reported by different studies are derived with the same approach
but are expressed with different units (8, 20). For the sake of
simplicity, when comparing our data with those from other
studies, we used the unit of SvRBE5/MBq according to (8).

Radiobiological Model
BED (Biological Effective Dose) Calculation
When comparing the effect of delivered dose with high- or low-
LET radiation, the different ability to create biological damage
per unit of delivered dose should be taken into account. The
radiosensitivity parameters used in the linear-quadratic (LQ)
model for high-LET radiation are therefore different from those
used for low-LET. The concept of maximum RBE (RBEM) is used
to incorporate this effect for the linear component of the LQ
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model in the BED calculation, maximizing the RBE value on cell
survival curves (21). We derived RBEM from the Equation (8) in
(22) as follows:

RBEM = RBEexp +
d

α/β

(
RBE2exp − 1

RBEexp

)
(1)

where RBEexp is the experimental value of high-LET radiation
assumed from literature (19), d is the fractional dose of the
reference low-LET radiation, α/β is the ratio of the dose-rate-
independent and the dose-rate-dependent term in the LQ model
estimated for low-LET radiation (23).

Aiming to compare the effect of TAT delivered dose with
the low-LET EBRT schedules, the BED (24, 25) for high-LET
(BEDH), continuous and exponentially decreasing dose rate,
was calculated using the equation proposed by Dale and Jones
(21). The formalism derived for brachytherapy implants with
a mixture of radionuclide was used (26–29) to account for all
daughter isotopes in the 225Ac decay chain:

BEDH =
1

λ

∑
n

(R0)n

{
RBEM +

∑
n

∑
p (R0)n (R0)p

(λ + µ) (α/β)
[∑

n (R0)n
]
}

(2)
were n and p denote the different daughter in the decay chain,
λ the effective half-life (a combination of 225Ac physical and
biological half-lives, assumed equal for all the daughter isotopes),
and µ the repair time. (R0)n is the initial dose rate expressed
as follows:

(R0)n

[
mGy

h

]
= Dn

[
mGy

MBq

]
Ai

[
MBq

]
λ

[
1

h

]
(3)

where Dn is the non-RBE-weighted predicted absorbed dose and
Ai the injected activity.

For bi-exponential curve fitting, the λ value corresponding
to the slow washout phase (lower value) was used for
BEDH calculation. By introducing RBEM, the calculated
BEDH remains compatible with the LQ model and is
expressed in the same biological units as for low-LET
calculation (Gy), allowing a direct comparison with EBRT
schedules (22). For the BEDH calculation, we considered
only the α emissions, whereas the β and γ emissions
were neglected.

We compared our data with those derived from EBRT
schedules for both late [at 1-year post-EBRT, QUANTEC data
(30, 31)] and early [at 3-month post-EBRT, Strigari et al. (32)]
xerostomia post-treatment. For this purpose, we calculated the
BED for low-LET radiation (BEDL) of EBRT as (33):

BEDL = DL

(
1+

DL/N

α/β

)
(4)

where DL is the total dose for low-LET EBRT schedules, and N is
the number of fractions.

As QUANTEC (30, 31) reports as dose constraint for
xerostomia induction a value calculated on PGs alone, we did
not include in this comparison the SG dose values. Whereas,

when comparing our data to the model of Strigari et al. (32) that
includes both PGs and SGs, the mean value between them was
considered for salivary glands dose.

NTCP (Normal-Tissue Complication Probability)

Modeling
To compare the data with the NTCP model, the equivalent dose
in 2 Gy/fr (EQD2) is calculated as (34):

EQD2 =
BEDH(
1+ 2 Gy

α/β

) (5)

The Lyman–Kutcher–Burman formalism (35, 36) was used for
the NTCP model as:

NTCP =
1

√
2π

∫ t

0
e−x2/2dx (6)

t =
EQD2− TD50

m∗TD50
(7)

where TD50 is the tolerance dose for a homogenous dose
distribution to the organ in which 50% of the patients are likely
to experience severe xerostomia, and m is the slope of the dose–
response curve.

Data Analysis
In accordance with the clinical protocol active in our institute,
all enrolled patients received salivary gland protectors in
combination with 177Lu-PSMA. For this reason, no data without
drug protectors were available in our patient cohort. To compare
the results of predictive dosimetry for 225Ac-PSMA obtained in
our patient cohort with those obtained without salivary gland
protectors (8), the predictive dose calculated for our patients was
rescaled according to the ratio between the mean predicted dose
value for salivary glands reported in the study by Kratochwil
et al. (8) and the same value estimated in our patient cohort.
The BED

′

H was then calculated for rescaled predictive doses
as previously described. The EBRT-derived NTCP model was
then used to estimate the probability of xerostomia for 225Ac-
PSMA with and without the administration of the salivary gland
protector. Moreover, based on BEDH dependence on injection
activity, the impact of different activity concentration levels was
evaluated, scaling from 50 to 200 kBq/kg.

RESULTS

Predictive dosimetry evaluation was performed on 13 patients
enrolled in the 177Lu-PSMA protocol (nine at the first cycle and
four at the second cycle).

Predictive Dose for 225Ac-PSMA
Median (range) mass values of considered structures were 371 g
(223–628) for kidneys, 1,830 g (1,132–2,366) for liver, 53 g (33–
89) for PGs, 17 g (13–34) for SGs, and 80 kg (72–105) for WB.
For paired organs, the sum of the left and right organ is reported.
Median (range) effective half-lives were 17.6 h−1 (0.07–46.2) for
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TABLE 1 | Results of 225Ac-PSMA predictive dosimetric study in terms of BdRBE5/MBq (11).

Kidneys

(BdRBE5/MBq)

Liver

(BdRBE5/MBq)

Parotid glands

(BdRBE5/MBq)

Submandibular glands

(BdRBE5/MBq)

Red marrow

(BdRBE5/MBq)

Whole body

(BdRBE5/MBq)

Patient 1 0.67 0.23 1.28 1.52 – 0.11

Patient 2 0.54 0.17 2.43 1.98 0.08 0.05

Patient 3 1.81 0.08 0.64 0.79 0.08 0.04

Patient 4 0.15 0.02 0.70 1.05 0.03 0.02

Patient 5 0.86 0.23 1.16 0.87 0.08 0.04

Patient 6 0.42 0.06 0.86 1.09 0.14 0.09

Patient 7 0.57 0.12 0.57 1.15 0.07 0.02

Patient 8 0.70 0.14 0.52 0.96 0.03 0.03

Patient 9 0.45 0.09 0.49 1.30 0.05 0.04

Patient 10 0.54 0.08 1.11 0.83 0.05 0.04

Patient 11 0.67 0.09 1.39 0.68 – 0.03

Patient 12 1.06 0.24 1.83 1.89 – 0.09

Patient 13 0.73 0.11 0.50 0.42 – 0.02

Median

(range)

0.67

(0.15–1.81)

0.11

(0.02–0.24)

0.86

(0.49–2.43)

1.05

(0.42–1.98)

0.07

(0.03–0.14)

0.04

(0.02–0.11)

Mean (SD) 0.71 (0.40) 0.13 (0.07) 1.04 (0.59) 1.12 (0.46) 0.07 (0.03) 0.05 (0.03)

Data were extrapolated from 177Lu-PSMA dosimetry evaluations. OLINDA/EXM adult male phantom was used for the whole-body, kidney, liver, and red marrow dose estimation, whereas

spherical model was used for parotid and submandibular glands. Blood sample data were not available for patients 1, 11, 12, and 13. SD, standard deviation.

FIGURE 1 | Graphical comparison of our data (13 patients) with data published by Kratochwil et al. (8) (4 patients). Mean values of the predicted dose calculated for

each patient group. Data were extracted from whole-body planar images and blood sample acquisition and analyzed in the same way. Our data are reported in

BdRBE5/MBq, as suggested by the MIRD committee for deterministic effects (20), whereas data of Kratochwil et al.’s study (8) are reported in SvRBE5/MBq in

accordance with their published paper.
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kidneys, 12.1 h−1 (4.2–33.8) for liver, 25.5 h−1 (1.7–46.2) for PGs,
10.0 h−1 (2.8–32.7) for SGs, 2.1 h−1 (0.5–15.2) for RM, and 5.7
h−1 (1.4–17.0) for WB. The mean contribution (range) values
to the total predictive dose of each single particle emission were
99.47% (98.20–99.79), 0.49% (0.22–1.76), and 0.05% (0.02–0.15)
for α, β, and γ, respectively. Median (range) predictive doses
were 0.67 BdRBE5/MBq (0.15–1.81) for kidneys, 0.11 BdRBE5/MBq
(0.02–0.24) for liver, 0.86 BdRBE5/MBq (0.49–2.43) for PGs, 1.05
BdRBE5/MBq (0.42–1.98) for SGs, 0.07 BdRBE5/MBq (0.03–0.14)
for RM, and 0.04 BdRBE5/MBq (0.02–0.11) for WB (Table 1).

Figure 1 compares our data with those of Kratochwil et al.’s
study (8). The reduced absorbed dose observed with 177Lu-PSMA
dosimetry (11, 12) was also confirmed for 225Ac-PSMApredictive
dosimetry, with a 53% decreased of predicted dose in salivary
glands in our patient group [1.08 vs. 2.33 SvRBE5/MBq (8), mean
values].

Comparison With EBRT Biological Model
Table 2 reports the values of parameters used for BED
calculation. Considering xerostomia as a toxicity endpoint, a
value of α/β equal to 3Gy was used (37, 38), whereas a value of
0.46 h−1 was used for the µ (39, 40). For high-LET radiation,
assuming RBEexp = 5 (19), the RBEM was 8.2. Fractional dose
d of the reference low-LET radiation was assumed to be 2Gy.
As predictive dosimetry, an injection activity of 100 kBq/kg was
assumed on the basis of single patient weight (8).

Considering this RBEM value and an injection activity of 100
kBq/kg, the BEDH was calculated for the predictive dose values
reported in Predictive Dose for 225Ac-PSMA With a Prostate-
Specific Membrane Antigen. Median (range) BEDH values were
36.5Gy (12.4–237.0) for PGs, 55.0Gy (12.1–203.9) for SGs,
and 51.9Gy (15.9–220.4) for both salivary glands (Table 3). A
QUANTEC dose constraint of DL = 26Gy on PGs delivered
in N = 30 fractions was considered for EBRT (30, 31) for late
xerostomia induction at 1-year post-EBRT. This dose constraint
corresponds to a BEDL of 33.5Gy. For 100 kBq/kg injection
activity, 7 of our 13 patients, the PG BEDH was >33.5Gy.
Rescaling data to Kratochwil et al.’s (8) mean predicted dose value
(i.e., corresponding to a patient population without salivary gland

protectors), the BED
′
H for all 13 patients was >33.5Gy (data

not shown).
We used Strigari et al.’s data for NTCP modeling (32). In

this model, the dose to the salivary glands is the mean dose
of both PGs and SGs and converted into EQD2. Considering
a salivary flow reduction of <45% of the initial value at 3-
month post-EBRT (grade ≥ 2, G2+) as an endpoint, the

TABLE 2 | Value of parameters used for BED evaluation.

Parameter Value Note (reference)

α/β 3Gy Xerostomia (37, 38)

µ 0.46 h−1 Repair time (39, 40)

225Ac-PSMA injected activity 100 kBq/kg (8)

RBEexp high-LET radiation 5 (19)

fitting parameters were TD50 = 14 GyEQD2 and m = 0.88
[personal communication (32)]. Figure 2 shows the comparison
between the considered NTCP model and the data rescaled to
Kratochwil et al.’s (8) mean predicted dose value (Figure 2A)
and our data (Figure 2B). The different activity concentration
levels are also indicated. Without the administration of salivary
gland protectors, the predicted probability values of acute G2+
xerostomia based on the NTCP model were 97% (95% CI: 79–
100%) for Ai equal to 50 kBq/kg and 100% (95% CI: 99–100%)
for Ai equal to 100 g, 150, and 200 kBq/kg (Figure 2A). The
predicted incidence values of xerostomia for TAT combined
with salivary gland protectors were 40% (95% CI: 10–48%)
for Ai equal to 50 kBq/kg, 94% (95% CI: 72–100%) for Ai

equal to 100 kBq/kg, 100% (95% CI: 99–100%) for Ai equal
to 150 kBq/kg, and 100% (95% CI: 100–100%) for Ai equal to
200 kBq/kg (Figure 2B).

DISCUSSION

The predictive dosimetry of 225Ac-PSMA confirms the reduction
of absorbed dose previously reported in our protocol with
177Lu-PSMA in combination with folic glutamate tablets and
ice pack application as salivary gland protectors (11, 12). The
conversion from a β/γ emission to an α/β/γ emission could
not be calculated with a global scaling factor between 177Lu
and 225Ac emissions. In fact, the conversion of 177Lu emission
into the decay chain of 225Ac includes daughters emitting α, β,
and γ radiations with different branching ratios and different
RBE values. Therefore, the scaling factor takes into account the
emission of each daughter and is a linear combination of the

TABLE 3 | BEDH calculated for parotid and submandibular glands.

Parotid

glands

(Gy)

Submandibular

glands

(Gy)

Salivary

glands

(Gy)

Patient 1 56.6 57.8 57.2

Patient 2 237.0 203.9 220.4

Patient 3 15.4 22.0 18.7

Patient 4 42.1 140.5 91.3

Patient 5 36.5 15.7 26.1

Patient 6 22.9 33.8 28.3

Patient 7 27.6 104.7 66.2

Patient 8 22.2 55.0 38.6

Patient 9 12.4 91.3 51.9

Patient 10 49.0 23.4 36.2

Patient 11 125.9 34.0 80.0

Patient 12 142.2 138.2 140.2

Patient 13 19.7 12.1 15.9

Median

(range)

36.5

(12.4–237.0)

55.0

(12.1–203.9)

51.9

(15.9–220.4)

Mean (SD) 62.3 (66.5) 71.7 (59.8) 67.0 (57.6)

Salivary gland BEDH is calculated as mean of parotid and submandibular gland BEDH

values. Used parameters are reported in Table 2. SD, standard deviation.
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FIGURE 2 | NTCP curve (red line) of acute xerostomia incidence as a function

of mean EQD2 values (bottom x-axis) and injected activity (top x-axis). Yellow

dotted lines are 95% CI. NTCP model parameters: TD%50 = 14 GyEQD2, m =
0.88. Considered endpoint: grade ≥ 2 xerostomia 3-month post-EBRT.

Considered structures: salivary glands (parotid and submandibular glands

together). Both EBRT and TAT doses were converted into EQD2. For EQD2

calculation: (A) predictive dose value estimated for our patient cohort and

rescaled to Kratochwil et al.’s (8) mean predicted dose value is used; (B)

predictive dose estimated for our patient cohort is used. Vertical dashed lines

correspond to 50 kBq/kg (green line), 100 kBq/kg (cyan line), 150 kBq/kg

(purple line), and 200 kBq/kg (blue line). Diamonds indicate the estimated

incidence of acute xerostomia based on EBRT NTCP modeling for the injected

activities of interest.

different branching ratios of the radiations emitted weighted
by the corresponding RBE factor [see Supplementary Table 4
of Supplementary Material in reference (18)]. We obtained a
reduction of 53% in predicted dose compared with previously
published data, i.e., 1.08 vs. 2.33 SvRBE5/MBq (8). Kratochwil
et al. (8, 9) did not report any use of salivary gland protectors in
their study. Therefore, our results differ from those of Kratochwil
et al.’s study (8) for the potential sparing effect of both ice
pack application and polyglutamate folate administration. The
data from both studies are derived with the same dosimetry
protocol and procedure and are therefore comparable. Acute
xerostomia was identified by Kratochwil et al. (8, 9) as major
toxicity impairing treatment, and the authors experimentally
identified 100 kBq/kg as an activity concentration threshold
capable of avoiding acute toxicity. Kratochwil et al. (8) reported
the xerostomia incidence stratified with injection activity only
in a subgroup of 16 patients. In particular, four patients
were injected with 50 kBq/kg, and none experienced severe
xerostomia; four patients were injected with 100 kBq/kg, and
none experienced severe xerostomia; two patients were injected
with 150 kBq/kg, and one experienced severe xerostomia;
and four patients were injected with 200 kBq/kg, and three
experienced severe xerostomia.

Comparing our data with the acute tolerance threshold
of 17 SvRBE5 reported in Kratochwil et al. (8, 18), we did
not expect to find a high-grade xerostomia incidence in our
treatment for 100 kBq/kg 225Ac-PSMA injected activity. At
the same time, when the EBRT model of acute xerostomia
was applied to our data rescaled to Kratochwil’s (8) mean
predicted dose value, the expected incidence rate was higher
than that observed by Kratochwil’s group (8). The large
discrepancy observed between the clinical data of Kratochwil’s
study (8) and our model derived from the combination
of EBRT and brachytherapy formalisms may arise from
different factors.

First of all, we should consider the limited cohort of patients
administered 225Ac-PSMA for whom toxicity data were evaluated
and stratified with injected activity (16 patients), resulting in
a fairly large error in the observed toxicity incidence (8).
In addition, we scaled our data with a factor equal to the
ratio between the mean value of our population and the
one reported in Kratochwil et al.’s (8) study, calculated on
dosimetric data for four patients. However, the reduced number
of patients included in the dosimetry study of Kratochwil’s
group (8) (4 patients) may strongly impact the calculated scaling
factor between the two patients’ populations. Therefore, NTCP
values calculated on the rescaled patient population should be
considered with caution. In addition, the attenuation correction,
which was not considered in the dosimetric analysis, may play
a relevant role to account for the discrepancy between the
predicted and observed toxicity.

Despite the above issues, other radiobiological considerations
may affect the biological evaluation of toxicity induction based
on predictive dosimetry estimations for TAT therapy from
177Lu-PSMA data. We assumed that there would be a similar
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local uptake and temporal distribution between 177Lu-PSMA
and all daughters of the decay chain of 225Ac-PSMA, mainly
governed by the PSMA carrier. Although this assumption may be
considered sufficiently robust if 177Lu-PSMA and 225Ac-PSMA
are considered alone, it is no longer valid for all daughters in
the decay chain. In fact, if the link between 225Ac daughters and
the PSMA carrier is no longer stable, a significant redistribution
of daughter nuclides may occur throughout the body, and,
consequently, their uptake may substantially differ from 177Lu-
PSMA distribution (41).

Moreover, although a uniform dose distribution was assumed
inside each salivary gland, the pre-therapy 68Ga-PSMA-HBED-
11 PET/CT (Supplementary Figure S1) clearly showed that
this was not the case. The standard uptake value distribution
of 68Ga-PSMA radiotracer could be considered a surrogate
of 225AC-PSMA uptake. Taking into account that the dose
delivered in TAT could be considered extremely localized, the
non-uniform 68Ga-PSMA standard uptake value distribution
could, therefore, also be considered a surrogate of TAT
dose distribution. Supplementary Figure S3 depicts the dose
distribution and Supplementary Figure S4 the dose–volume
histogram (DVH) of PGs and SGs in a head-and-neck cancer
patient who underwent EBRT. Thanks to the new technology
of intensity-modulated radiotherapy (IMRT), EBRT allows
sparing a portion of salivary glands and results in a non-
uniform dose distribution inside PGs. Beyond the non-uniform
distribution, one noticeable aspect is that the portions of salivary
glands receiving the high doses in the case of 68Ga-PSMA
(Supplementary Figures S1, S2) are different from the high-
dose region in EBRT (Supplementary Figures S3, S4). For this
reason, the considerations achieved on toxicity impact based on
tissue damage assumed from EBRT dose distribution should be
carefully managed when applied to RLT. A three-dimensional
(3D) approach would be favorable to take into account these
differences. However, the dosimetry approach based on 2D
planar images does not permit differences in regional uptake
to be seen, and the dose evaluation is therefore limited to the
mean predicted dose evaluation. It is also well-known from
EBRT experiences that both the mean dose to PGs and the
DVH constraints should be taken into account to reduce the
impact of xerostomia caused by the volume effect for parallel
organs (42–44). None of these parameters can be evaluated
without 3D information on activity uptake. A 3D SPECT imaging
with 177Lu-PSMA centered on the neck region is needed to be
able to calculate dose distribution and generate a DVH. The
uptake information for each voxel derived from 3D SPECT
177Lu imaging can then be converted into 225Ac emission with
the same formalism mentioned earlier. However, the limited
field-of-view of traditional SPECT scanners does not allow for
3D imaging acquisition of the WB, and SPECT acquisition is
generally only centered in the abdominal region to evaluate the
dose to the kidneys, other important dose-limiting organs in
RLT (45). Fortunately, new SPECT scanners are beginning to
emerge that are capable of providing full 3D SPECT imaging
along the WB by combining a 3D acquisition with a dynamic
longitudinal motion of the patient couch. Another solution
could be to perform a hybrid dosimetry evaluation where

time–activity curves are evaluated on serial planar images, and
the 3D dose distribution is evaluated in a single 3D SPECT
acquired at a single time-point post-injection (45). Despite
this, even with the conversion of 177Lu 3D dose distribution
into 225Ac, another factor to take into consideration is that
the local damage performed by low-LET β-particle and γ-
emitters is different from the one of α-particle, characterized
by clusters of spots with high-energy deposition (8, 46). The
presence of hot spots may dramatically change the pattern of
tissue damage when changing from a low-LET β/γ-emitter to
a high-LET α-emitter, and this difference should also be taken
into account.

With regard to the salivary gland composition, it is known
that they are mainly composed of adipose tissue, ductal, and
acinar cells, able to produce saliva. Histopathological studies
of patients treated with EBRT to the neck region have shown
that irradiation of salivary glands results in a loss of the
acinar cell component (47), which correlates with both volume
reduction of the glands and decreased saliva flow. Moreover, van
Luijk et al. (48) found that the recovery of radiation-induced
xerostomia can be repaired by a pool of stem cells, mainly
located in the central region of PGs. The authors showed that
the protection of this central zone during EBRT in head-and-
neck patients enables organ function to be preserved. All of these
factors may play an important role in the functional damage
induced by tissue irradiation and warrant further investigation.
We considered salivary glands uniform in their composition
and radiosensitivity. To better understand the underlying
radiobiological process of damage, the interaction between short-
range high-LET α-particle and different salivary gland tissue
components should be investigated with microdosimetry and
autoradiography (19).

Assumptions were also made about the parameters used
in BED and NTCP calculation. In a first approximation,
we considered a mono-exponential curve fitting capable of
describing the long-term organ washout. However, time–activity
curves are generally best fitted with bi-exponential curves. An
improved model would consider both λ parameters of bi-
exponential curve fitting. Furthermore, in the BEDH formalism
for the mixture of radionuclide, we assumed the 225Ac λ-
value valid for all the daughters in the decay chain. In fact,
in our case, the mixture is produced as a consequence of the
225Ac decay, which has life-time significantly longer than one
of all the daughter isotopes. Therefore, we assume that the
decay rates of all daughter isotopes are dominated by the one
of 225Ac.

Moreover, it is important to point out that in our model, the
RBEexp was assumed equal to 5, in accordance with previously
published studies and MIRD recommendations (19). However,
this value, which was extracted from in vitro experiments, has
never been clinically validated in human subjects (49). For this
reason, some authors (49, 50) prefer not to apply an RBE
factor to the calculated dose. In our radiobiological model, we
adopted the formalism proposed by Dale for BED for high-
LET particle, including the RBEM (22). Carabe-Fernandez et al.
(51) published a model that was also the minimum value of
RBE (RBEmin) and is included in the BED formalism. They
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found that the dependence of BED from RBEmin has a larger
impact on acute toxicity incidence than for the late one. In fact,
the RBEmin could assume values less than unity, reducing the
contribution of the quadratic term in the BED formula. The
dependence of BED for a high-LET particle on both RBEM
and RBEmin may explain the observed discrepancy between
model and clinical data in our study. Further improvements
of the present model should consider both terms, RBEM
and RBEmin.

Furthermore, the RBE experimental values provided in the
literature for α-particles are measured with a single emitter.
To our knowledge, no RBE experimental data are reported
in the literature for a mixture of different radionuclides
with different half-life and the emission of α-particles of
different energies.

Lastly, it is possible that the high-dose rate involved with 225Ac
TAT could potentially shift the radiobiology effect in a region
of RBE plot of overkilling (52). Prospective clinical studies are
therefore required to be able to provide clinical data of toxicity
impact in combination with dosimetric data.

Palm et al. (19, 53) found that the polonium can diffuse
away from the decay site, reducing, therefore, the local damage.
Inside the 225Ac decay chain, the 213Po contributes to 30%
of the absorbed dose in the sphere model. By removing the
213Po contribution from the radiobiological calculation of the
rescaled patient population to the Kratochwil et al. (8) data,
the EQD2 of salivary glands for 100-kBq/kg injected activity
is reduced of 66%. The corresponding NTCP values then
shifted to 71% (95% CI: 50–99%) for Ai equal to 50 kBq/kg,
100% (95% CI: 99–100%) for Ai equal to 100 kBq/kg, and
100% (95% CI: 100–100%) for Ai equal to 150 and 200
kBq/kg (data not shown). Even with the correction proposed
by Palm et al. (53), the model remains conservative, as it
overestimates the clinical data of Kratochwil et al.’s study (8).
A model able to describe the source–target interaction at the
microscopic level is therefore required to improve the agreement
between the clinical data and the theoretical model (19, 54).
As suggested by Kvinnsland et al. (54), a microdosimetry
evaluation that takes into account both the energy spectrum
and intracellular differences can describe the underplaying
biological process in detail, whereas a mean value may not be
sufficiently representative.

Finally, the NTCP model based on EBRT also has different
issues that should be carefully taken into account. First, there
is no consensus regarding TD50 and m fitting parameters in
different studies, with values spanning over a wide range (TD50
= 28.4 to 52Gy, m = 0.10–0.40 for late xerostomia induction)
(55). This is due to substantial variability in study design such
as differences in treatment modality and dose distribution,
dose reporting of the single spared PG or a mean value over
both, inclusion or not of SGs and/or oral cavity, salivary
measurement methods, considered endpoint, segmentation,
inter-gland sensitivity, and/or patient geographical location
(55). Given that both PGs and SGs are irradiated in TAT,
we compared our data with those obtained using the model
developed by Strigari et al. (32), which has the advantage of
including both PG and SG mean dose and considering acute

grade ≥ 2 xerostomia at 3-month post-EBRT as an endpoint
(personal communication).

Methods for salivary glands protection have
previously been implemented for both PSMA-based
therapy [177Lu-PSMA RLT (3, 56)] and imaging [68Ga-
PSMA PET/CT (57)]. However, the efficacy of these
methodologies in TAT has never been investigated
before, and no toxicity modeling was tested with
these settings.

The results we obtained on themean predictive dose reduction
when using protectors specific for salivary glands in combination
with 177Lu-PSMA therapy would also appear promising for
TAT. However, our results should be confirmed with 225Ac-
PSMA therapy data and post-injection evaluation of toxicity
and treatment outcome. BED calculation and NTCP modeling
overestimate the incidence of high-grade xerostomia reported
in some studies, suggesting that further elements should be
included in the biological model of tissue damage induced
by TAT. Further investigation and appropriate modeling are
warranted to describe better the underlying radiobiological
process of damage from high-LET therapy. This can be done by
carrying out prospective trials with defined toxicity endpoints
and dosimetry procedures. At the same time, appropriate NTCP
biological models specific for TAT should be developed based on
clinical data.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethics Committee of Area Vasta Romagna
and by the competent Italian regulatory authorities (Ethical
approval no. 1704 of 15.02.2017, Protocol IRST 185.03). The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

MLB: dosimetry, data analysis, and writing. AS: study conception
and critical revision of the manuscript for intellectual content.
FC: data analysis. EM: dosimetry. GP, FM, and PC: image analysis
and diagnosis. VDI: radiopharmaceutical preparation. LS: EBRT
modeling. GP, SS, SN, MC, and AR: patient management.
All authors: contributed to the article and approved the
submitted version.

FUNDING

This work was partially supported by the Fondazione AIRC per
la Ricerca sul Cancro, Associazione Italiana per la Ricerca sul
Cancro (project code IG20476) and the ItalianMinistry of Health
(Ricerca Finalizzata, code RF-2016-02364230).

Frontiers in Oncology | www.frontiersin.org 9 November 2020 | Volume 10 | Article 531660347

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Belli et al. TAT in mCRPC: Dosimetry and Toxicity of 225Ac-PSMA

ACKNOWLEDGMENTS

We thank Prof. Kratochwil and Prof. Schmidt for the help in
providing a 225Ac dose estimation methodology. The authors
thank Gràinne Tierney for editorial assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.531660/full#supplementary-material

Supplementary Figure 1 | Pre-treatment 68Ga-PSMA-HBED-11 PET/CT image.

The non-uniform uptake distribution inside parotid glands is clearly visible.

Supplementary Figure 2 | Cumulative histogram of standard uptake value (SUV)

of parotid and submandibular glands.

Supplementary Figure 3 | Dose distribution of a head-and-neck cancer patient

treated with helical TomoTherapy (66, 60, and 45Gy in 30 fractions). Red contour

for 60Gy target, dark-red and cyan contours for right and left PGs respectively.

Mean absorbed dose: 25.3, 25.9, 50.6, and 50.1Gy for right and left PGs, right

and left SGs respectively.

Supplementary Figure 4 | Dose-volume histogram (DVH) of parotid and

submandibular glands.
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APPENDIX

The study, conducted in accordance with the Declaration of
Helsinki and good clinical practice (guidelines, was approved

by the Ethics Committee of Area Vasta Romagna and by the
competent Italian regulatory authorities (Ethical approval no.

1704 of 15.02.2017, Protocol IRST 185.03). All patients gave
written informed consent. Admission criteria were radiological

progression (in soft tissue or bone) or biochemical progression
(sequence of three prostate-specific antigen rising values
from a screening prostate-specific antigen value ≥ 2 ng/ml)
according to Prostate Cancer Working Group 3 in the pre-

study period, refractory or unfit to conventional standard
treatments (hormonal or chemotherapeutic treatment such as
abiraterone, enzalutamide, and docetaxel). Other eligible criteria
were age ≥18 years; histological or cytological confirmation of
advanced castration-resistant prostate cancer [Prostate Cancer
Working Group 3 criteria (58)]; measurable disease (RECIST
1.1 criteria); Eastern Cooperative Oncology Group performance
status <2 (59); adequate hematological, liver, and renal functions:

hemoglobin ≥9 g/dl, absolute neutrophil count ≥1.5 × 109/L,
platelets ≥100 × 109/L, bilirubin ≤1.5 × upper normal limit
(UNL), alanine aminotransferase and aspartate aminotransferase
<2.5 × UNL (<5 × UNL in the presence of liver metastases,
creatinine <2 mg/dl). Patients treated with chemotherapy and
223Ra radiotherapy within 4 weeks, treated within 2 weeks with
palliative radiotherapy, or with the persistence of acute toxicities
from any prior therapy (grade >1, Common Terminology
Criteria for Adverse Events version 4.03) were excluded.

National good preparation standards [NBP MN (60)] for
pharmaceutical products were followed for 177Lu-PSMA-617
production, as required by current Italian legislation. Dota-
PSMA-617 was kindly provided by Endocyte Inc. (West
Lafayette, IN 47906, USA), and 177Lu was purchased from
AAA Severijns (LuMark R©, Baarle-Nassau, The Netherlands) or
ITG (Endolucinbeta R©, Isotope Technologies Garching GmbH,
Garching, Germany). The labeling procedure and quality control
of the 177Lu-DOTA-PSMA-617 compoundwere performed in the
Radiopharmacy Laboratory of our Institute (11) (IRST Istituto di
Ricovero e Cura a Carattere Scientifico, Meldola, Italy).
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Brainstem NTCP and Dose
Constraints for Carbon Ion
RT—Application and Translation
From Japanese to European
RBE-Weighted Dose
Jon Espen Dale1,2, Silvia Molinelli 3, Barbara Vischioni3*, Viviana Vitolo3, Maria Bonora3,
Giuseppe Magro3, Andrea Mairani3,4, Azusa Hasegawa3,5, Tatsuya Ohno6, Olav Dahl1,
Francesca Valvo3 and Piero Fossati3,7

1 Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway, 2 Department of Oncology and
Medical Physics, Haukeland University Hospital, Bergen, Norway, 3 National Center of Oncological Hadrontherapy, Pavia,
Italy, 4 Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany, 5 Osaka Heavy Ion Therapy Center, Osaka, Japan,
6 Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan, 7 MedAustron Ion
Therapy Center, Wiener Neustadt, Austria

Background and Purpose: The Italian National Center of Oncological Hadrontherapy
(CNAO) has applied dose constraints for carbon ion RT (CIRT) as defined by Japan’s
National Institute of Radiological Sciences (NIRS). However, these institutions use different
models to predict the relative biological effectiveness (RBE). CNAO applies the Local Effect
Model I (LEM I), which in most clinical situations predicts higher RBE than NIRS’s
Microdosimetric Kinetic Model (MKM). Equal constraints therefore become more
restrictive at CNAO. Tolerance doses for the brainstem have not been validated for
LEM I-weighted dose (DLEM I). However, brainstem constraints and a Normal Tissue
Complication Probability (NTCP) model were recently reported for MKM-weighted dose
(DMKM), showing that a constraint relaxation toDMKM|0.7 cm3 <30 Gy (RBE) andDMKM|0.1 cm3

<40 Gy (RBE) was feasible. The aim of this work was to evaluate the brainstem NTCP
associated with CNAO’s current clinical practice and to propose new brainstem
constraints for LEM I-optimized CIRT at CNAO.

Material and Methods: We reproduced the absorbed dose of 30 representative patient
treatment plans from CNAO. Subsequently, we calculated both DLEM I and DMKM, and the
relationship between DMKM and DLEM I for various brainstem dose metrics was analyzed.
Furthermore, the NTCP model developed for DMKM was applied to estimate the NTCPs of
the delivered plans.

Results: The translation of CNAO treatment plans to DMKM confirmed that the former
CNAO constraints were conservative compared with DMKM constraints. Estimated NTCPs
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were 0% for all but one case, in which the NTCP was 2%. The relationship DMKM/DLEM I

could be described by a quadratic regression model which revealed that the validated
DMKM constraints corresponded to DLEM I|0.7 cm3 <41 Gy (RBE) (95% CI, 38–44 Gy (RBE))
and DLEM I|0.1 cm3 <49 Gy (RBE) (95% CI, 46–52 Gy (RBE)).

Conclusion: Our study demonstrates that RBE-weighted dose translation is of crucial
importance in order to exchange experience and thus harmonize CIRT treatments
globally. To mitigate uncertainties involved, we propose to use the lower bound of the
95% CI of the translation estimates, i.e., DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3

<46 Gy (RBE) as brainstem dose constraints for 16 fraction CIRT treatments optimized
with LEM I.
Keywords: carbon ion radiotherapy, normal tissue complication probability, dose constraints, local effect model,
microdosimetric kinetic model, relative biological effectiveness (RBE), brainstem tolerance
INTRODUCTION

There is an increasing interest in using carbon ion radiotherapy
(CIRT) for the treatment of advanced, radioresistant tumors. The
physical properties of CIRT allow for delivering a high dose to
the tumor, while the finite distal depth dose and sharp lateral
penumbra can be utilized to spare nearby organs at risk (OARs)
from excessive dose. Furthermore, carbon ions exhibit high
linear energy transfer (LET) properties, which lead to more
efficient cell killing (higher relative biological effectiveness
(RBE)), compared with photon and proton RT. However, there
are substantial uncertainties regarding the clinical RBE of carbon
ions. Therefore, prescription doses, tolerance doses to OARs, and
normal tissue complication probability (NTCP) models based on
experience with photon or proton RT may not be applicable to
CIRT and should preferably be derived from CIRT data.

Two major approaches have been used for the clinical
implementation of CIRT. Spearheaded by the National Institute
of Radiological Sciences (NIRS), Chiba, Japan, the Japanese centers
are using hypofractionated treatment schedules (16 fractions of 3.6–
4.6 Gy (RBE)) in which prescription doses andOAR tolerance doses
initially were defined through carefully conducted dose-escalation
trials. Originally, the mixed beam model (1) was developed to
predict the RBE of the passively scattered carbon ion beams with
tumor response as the relevant endpoint. Later, with the
implementation of scanned beam delivery, the modified
microdosimetric kinetic model (MKM) (2–5) was introduced.
Since these two models have been validated for consistency, they
are hereby collectively abbreviated as MKM.

In contrast, CIRT at the Gesellschaft für Schwerionenforschung
(GSI), Darmstadt, Germany, was initiated with moderately
hypofractionated schedules (20–22 fractions of 3.0–3.5 Gy (RBE))
in which the Local Effect Model Version I (LEM I) (6, 7) was used to
predict the RBE of CIRT for late responding normal tissues (i.e.,
central nervous system tissue). Trusting the LEM I to be sufficiently
accurate, dose constraints derived from photon RT could be applied
for CIRT treatments. An additional assumption for this approach
was that the linear quadratic (LQ) formalism was applicable also
for CIRT.
2352
When the National Center of Oncological Hadrontherapy
(CNAO, Italy) (8) started treating patients with LEM I-
optimized CIRT in 2012, the successful treatment approach
developed at NIRS was adopted. However, comparative studies
show that the LEM I predicts a 5–15% higher RBE in the spread
out Bragg peak (SOBP) of a carbon ion beam, relative to
the MKM (9, 10). In the entrance region, the RBE predicted by
LEM I can be 60% higher (11). Consequently, dependent on the
clinical indication, prescription doses at CNAO (reported in
LEM I-weighted dose, DLEM I) were increased 5–15% relative to
the prescription doses at NIRS (reported in MKM-weighted dose
(DMKM)) (9, 10). In contrast, dose constraints to OARs were not
adjusted. This was a cautious approach mitigating various
uncertainties related to the adaptation of NIRS prescription
doses (i.e., differences in RBE model, beam delivery method,
dose optimization process, etc.).

For the brainstem, the dose constraint at CNAOwas therefore
set to be <30 Gy (RBE) to no more than 1% of the organ’s volume
(DLEM I│1%), following the tradition of NIRS (12). Since this
constraint becomes more restrictive in LEM I-optimized CIRT,
CNAO has so far treated more than 1,000 patients with advanced
tumors in the head and neck region (for example, skull base,
nasopharynx, and sinonasal sites) without experiencing any
grade of radiation-induced brainstem injury. Thus, the
constraint needs to be updated to provide optimal treatments
in cases where the target volume is located close to the brainstem.
However, it is challenging to propose new and reasonable
constraints since no toxic events have been reported from any
institution applying LEM I-weighted doses for CIRT.

Recently, a dose-response analysis of brainstem toxicity
following DMKM-optimized CIRT at Gunma University Heavy
Ion Medical Center (GHMC) (13) was published by Shirai et al.
(14). None of the 85 patients included in this analysis
experienced symptomatic brainstem toxicity. However, four
cases of focal brainstem contrast enhancement were detected
on routine magnetic resonance imaging (MRI) during follow-up.
This was defined as central nervous system (CNS) necrosis grade
1 events according to the Common Terminology Criteria for
Adverse Events version 4.0 (CTCAE). Even these asymptomatic
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dale et al. Brainstem dose constraints for CIRT
events did not occur before the maximum dose (DMKM|max)
exceeded 48 Gy (RBE), showing that current constraint may be
conservative even when applied for DMKM. The brainstem
volume receiving more than 30 Gy (RBE) (V30 Gy (RBE)) and
40 Gy (RBE) (V40 Gy (RBE)) were independent risk factors for this
endpoint. Brainstem toxicity of any grade did not occur before
V30 Gy (RBE) exceeded 0.7 cm3 and V40 Gy (RBE) exceeded 0.1 cm3.
Since these values relate to radiologically detectable, but
asymptomatic alterations in the brainstem, they may serve as
constraints to avoid symptomatic injury. Shirai et al. also fitted
their data to the Lyman-Kutcher-Burman (LKB) NTCP model
(15–17), resulting in the following model parameters: volume-
effect parameter (n) = 0.08, biodiversity parameter (m) = 0.08,
and the equivalent uniform dose (EUD) corresponding to 50%
probability of toxicity (TD50) = 32.4 Gy (RBE).

The goal of this work is therefore to:

1. evaluate the brainstem NTCP associated with CNAOs
current clinical practice by applying the NTCP model
published by Shirai et al.

2. convert the DMKM validated constraints into DLEM I,
providing guidance for the proposal of new dose
constraints to be used at CNAO and other centers applying
LEM I.
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MATERIAL AND METHODS

Treatment Plan Selection and CIRT
at CNAO
The dose distributions of 30 CIRT treatments with target
volumes close to the brainstem were included in this study.
Details on disease site, histology, and prescription dose are
presented in Table 1. The treatments were given at CNAO in
the period 2013–2014 as part of prospective protocols (CNAO
S9/2012/C, CNAO S12/2012/C, and CNAO S15/2012/C)
approved by the Regional Ethics Committee. Signed consent
was required for participation. The plans were optimized for a
prescribed DLEM I of 68.8–76.8 Gy (RBE) in 16 fractions (4
fractions/week) using the syngo® RT Planning (Siemens
Healthcare, Erlangen, Germany) treatment planning system
(TPS). Dose constraint for the brainstem was DLEM I│1%

≤30 Gy (RBE). Additionally, a constraint of DLEM I│1% ≤35 Gy
(RBE) was applied to a 3-mm planning OAR volume (PRV) for
plan optimization purposes.

In general, the strategy to obtain a robust treatment plan is
similar at CNAO and GHMC: Multiple beam angles (3 to 4),
dominantly originating from the horizontally fixed beam line, are
achieved by couch rotation and/or by multiple immobilization
positions where the patient’s head is positioned either straight or
TABLE 1 | Disease and treatment characteristics.

Case nr. Histology Site Total DLEM I (Gy (RBE)) Fraction DLEM I (Gy (RBE))

1 Chordoma Skull base 70.4 4.4
2 Mesenchymal tumor Frontal sinus 76.8 4.8
3 Chordoma Skull base 70.4 4.4
4 Chordoma Skull base 70.4 4.4
5 MPNST Clivus 76.8 4.8
6 Chordoma Skull base 70.4 4.4
7 ACC Meckel’s cave 68.8 4.3
8 Chondrosarcoma Nasal cavity 70.4 4.4
9 Chordoma Clivus 70.4 4.4
10 Chordoma Clivus 70.4 4.4
11 Chordoma Clivus 70.4 4.4
12 ACC Maxillary sinus 68.8 4.3
13 Chordoma Clivus 70.4 4.4
14 Chordoma Clivus 70.4 4.4
15 Chondrosarcoma Clivus 70.4 4.4
16 Chordoma Skull base 70.4 4.4
17 ACC Maxillary sinus 68.8 4.3
18 ACC Nasopharynx 68,8 4,3
19 Chordoma Clivus 70.4 4.4
20 Chondrosarcoma Skull base 70.4 4.4
21 Cordoma Clivus 70.4 4.4
22 ACC Maxillary sinus 68.8 4.3
23 ACC Skull base 68.8 4.3
24 Chordoma Clivus 70.4 4.4
25 Pleomorphic sarcoma Clivus 76.8 4.8
26 ACC Paranasal sinuses 68.8 4.3
27 Chordoma Clivus 70.4 4.4
28 Acinar cell carcinoma Ethmoid/nasal cavity 68.8 4.3
29 ACC Maxillary sinus 68.8 4.3
30 Chordoma Clivus 70.4 4.4
November 2020 |
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rotated. Due to particle range uncertainty, beam angles are
chosen so that most of the dose to the brainstem originates
from the beam’s sharp lateral penumbra, rather than the distal
dose fall-off. Beams traversing through the brainstem are
never used.

Recalculation of RBE-Weighted Dose
Distributions
The patients’ computed tomography (CT) image files, structure
set files, dose files, and plan files were exported from the syngo®

TPS and imported to the matRad open source multimodality
radiation TPS (https://e0404.github.io/matRad/) (18) in which
the absorbed dose (DAbs) and DLEM I were reproduced. The input
parameters used clinically for LEM I were applied, i.e.,
ag = 0.1 Gy−1, bg = 0.05 Gy−2, Dt = 30 Gy, smax = 3.1 Gy−1,
Rn = 5 mm (7). The DVHs of targets and OARs were compared
with the corresponding DVHs of the dose distribution from the
syngo® TPS to ensure correct reproduction of both DAbs and
DLEM I (results not reported). Secondly, MKM was implemented
in the matRad TPS code using the input parameters used
clinically (Rd = 0.32 µm, Rn = 3.9 µm, a0 = 0.172 Gy−1,
b = 0.0615 Gy−2, ar = 0.764 Gy−1, FClin = 2.39) (2, 11) and
DMKM was derived from the exact same absorbed dose and
LET spectra. This enabled a direct comparison of each patient’s
DLEM I and DMKM based exclusively on the differences in the
RBE modeling.

Estimation of Brainstem NTCP
Using the DMKM distributions, the brainstem NTCP for each
treatment plan was calculated by the LKB method, using the
model parameters suggested by Shirai et al. (14): n = 0.08,
m = 0.08, and TD50 = 32.4 Gy (RBE).

RBE-Weighted Dose Translation
For each brainstem, the DMKM|0.7 cm3 and DMKM|0.1 cm3 were
plotted as a function of DLEM I|0.7 cm3 and DLEM I|0.1 cm3,
respectively. A curve fitting procedure was performed with the
software IBM SPSS Statistics for Windows, version 24.0 (IBM
Corp., Armonk, NY, U.S.A.) in order to produce a dose
translation model.

Verification of Dose Translation Model
As a last step, we wanted to verify that the dose translation model
correctly predicted the DLEM I/DMKM relationship also for higher
brainstem doses than our original data. Therefore, five treatment
plans, in which the original DLEM I constraint caused suboptimal
dose coverage to the clinical target volume (CTV D95% <95% of
prescription dose), were reoptimized applying a new set of DLEM I

constraints as proposed by this work (see “RESULTS”).
Subsequently, these new plans were recalculated to DMKM. These
procedures, which were conducted exclusively to confirm the
relationship of the RBE models, were performed with the
RayStation® 6.99 TPS (RaySearch Laboratories AB, Stockholm,
Sweden), where both the LEM I and MKM were implemented
with the respective model input parameters as mentioned earlier.
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RESULTS

Brainstem DVHs in relative and absolute volumes are presented
in both DLEM I and DMKM in Figure 1, showing the substantial
decrease in RBE-weighted doses when the MKM is applied as
RBE model.

The median brainstem DLEM I|1% was 23.7 Gy (range, 11.2–31.3
(RBE)), which corresponded to only 12.4 Gy (range, 5.5–21.8
(RBE)) in DMKM, highlighting the restraining effect of the original
CNAO constraint in achieving optimal CIRT treatments.

Only four of the brainstems received DMKM >30 Gy (RBE),
each of them to a volume smaller than 0.05 cm3. As seen in
Figures 1B, D, the highest DLEM I to the brainstem volumes 0.7
and 0.1 cm3 were 29 Gy (RBE) and 35 Gy (RBE), respectively,
corresponding to 17 Gy (RBE) and 25 Gy (RBE) in DMKM. These
modest doses resulted in a very low probability of asymptomatic
(grade 1) brainstem injury according to the NTCP model
published by Shirai et al. (14): One patient had an NTCP of
2%, while the NTCPs of the remaining 29 patients were close to
0%, see Figure 2.

For each patient, the brainstem dose metrics DLEM I|0.7 cm3 and
DLEM I|0.1 cm3 were plotted against the corresponding dose metric in
DMKM (Figure 3). With the assumption that the intercept should be
at origin (DLEM = 0 Gy (RBE) whenDMKM = 0 Gy (RBE)), we found
that the quadratic regression model

DMKM = (b1� DLEM I) + (b2� ½DLEM I �2)
adequately fit both sets of data (coefficients of determination,

R2 ≥ 0.918). Extrapolation of the models to the relevant dose levels
revealed that a DMKM|0.7 cm3 of 30 Gy (RBE) and a DMKM|0.1 cm3

of 40 Gy (RBE) translates into a DLEM I|0.7 cm3 of 41 Gy (RBE)
(95% CI, 38–44 Gy (RBE)) and a DLEM I|0.1 cm3 of 49 Gy (RBE)
(95% CI, 46–52 Gy (RBE)), respectively.

Subsequently, we reoptimized five of the treatment plans in
which the old brainstem constraint (DLEM I|1% <30 Gy (RBE))
caused suboptimal CTV dose coverage. For the reoptimization, new
brainstem constraints within the lower half of the 95% CI of the
dose translation estimates were applied, i.e., DLEM I|0.7 cm3 <38–
41 Gy (RBE) and DLEM I| cm3 <46–49 Gy (RBE). The relationship of
DLEM I to DMKM for the dose metrics D0.7 cm3 and D0.1 cm3 from the
reoptimized plans are plotted as open circles in the scatterplots of
Figure 3. As can be seen, the values of these data pairs agree with the
prediction of the dose translation model. To demonstrate the
potential clinical impact of relaxing the constraints, a comparison
of the original and reoptimized plans, displayed in both DLEM I and
DMKM, is presented in Figure 4. For this patient, the proportion of
the CTV receiving >95% of the prescription dose increased from 74
to 95%.
DISCUSSION

For the implementation of CIRT at CNAO, the goal has been to
replicate the successful results achieved at Japanese CIRT
centers, by translating NIRS prescription doses into
November 2020 | Volume 10 | Article 531344
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equiefficient doses within the LEM I dose prescription system (9,
10). However, initially the OAR dose constraints were not
adjusted correspondingly. This study clearly shows that the
original brainstem dose constraint applied at CNAO is too
conservative compared with the clinical practice in Japanese
centers. In a recent publication on skull base chordomas treated
at CNAO, Iannalfi et al. found that 92% of the local recurrences
Frontiers in Oncology | www.frontiersin.org 5355
were attributable to suboptimal target dose in regions close to the
brainstem or optic pathways (19). The estimated 5-year local
control (LC) rate was 71%. This is inferior to the results reported
by Japanese centers, where 5-year LC rates within the range 76–
92% have been reported (20, 21).

Consequently, updated constraints for LEM I-optimized CIRT
are urgently needed. In our opinion, due to the lack of publications
FIGURE 2 | Brainstem NTCP for the 30 patients treated at CNAO as function of EUDMKM according to the NTCP model published by Shirai et al. (14).
A B

DC

FIGURE 1 | Brainstem DVHs in relative (A, C) and absolute volume (≤2 cm3) (B, D) of 30 patients treated at CNAO, presented in DLEM I (A, B) and DMKM (C, D).
Crosses represent the former CNAO and NIRS dose constraint of D1% ≤30 Gy (RBE). Triangles represent the new DMKM constraints V40 Gy (RBE) <0.1 cm3 and
V30 Gy (RBE) <0.7 cm3 as defined by Shirai et al. (14). Squares in (B) represent the possible new DLEM I constraints (error bars, 95% CI) resulting from the dose
translation model presented in this work, see Figure 3.
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addressing brainstem NTCP for LEM I-optimized CIRT, this aim
was only achievable by making use of DMKM-validated dose
constraints. Relating the CNAO DVHs to the new DMKM

constraints defined by Shirai et al. (Figure 1D) suggests that
doses to the brainstem volumes 0.7 and 0.1 cm3 potentially could
be increased by 13 Gy (RBE) and 15 Gy (RBE) in DMKM,
respectively, compared with the former practice at CNAO.
According to our dose constraint translation, the corresponding
increase in DLEM I would be approximately 12 Gy (RBE) (95% CI,
9–15 Gy (RBE)) and 14 Gy (RBE) (95% CI, 11–17 Gy (RBE)). This
Frontiers in Oncology | www.frontiersin.org 6356
unveils an opportunity for improved target dose coverage, and thus
improved treatment outcome, as demonstrated in Figure 4.

Recently, the European Particle Therapy Network (EPTN)
released a consensus paper for dose constraints to various OARs
(22), suggesting a general constraint of D0.03 cm3 ≤54 Gy (RBE) to
the brainstem, with an option to allow for D0.03 cm3 ≤60 Gy (RBE)
to the brainstem surface. Both constraints were expressed in
equivalent dose in 2 Gy fractions (EQD2), with an assumed a/b
ratio of 2 Gy. These guidelines are based on photon and proton
RT toxicity data and are not necessarily applicable for CIRT due
A

B

FIGURE 3 | Black squares represent the relationship of DLEM I to DMKM for the dose metrics D0.7 cm3 (A) and D0.1 cm3 (B) for each individual brainstem. The solid line
represents the quadratic function providing the best fit to the data points (black squares), assuming that the intercept should be in the origin. The dashed lines
represent the 95% CI. The open circles represent the data collected from the reoptimized plans; these data points were not used for the curve fitting procedure.
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to the larger uncertainties involved in the prediction of the RBE.
However, similar constraints are used for CIRT at the Heidelberg
Ion Beam Therapy Center (HIT) in Germany (23), building on
previous clinical experience of the GSI. Various publications
from this institution explicitly report an absence of brainstem
toxicity (24, 25). Consequently, these constraints are considered
safe for CIRT under HIT’s current treatment paradigm, which
consists of 20–22 fractions of 3.0–3.5 Gy (RBE) and 5–7 fractions
per week. Although HIT also applies LEM I, these constraints
may not be safely transferred to the 16 fraction/4 fractions per
week treatment schedule of CNAO, as EQD2 conversion may
not be sufficiently precise when fraction doses increase, due to
uncertainties in the prediction of RBE.

That being said, it is interesting to observe that our translated
constraints, when converted into EQD2, relate closely to the
EQD2 constraints used in clinical practice at HIT (23), see
Figure 5.

In 2010, as part of the Quantitative Analysis of Normal Tissue
Effects in the Clinic (QUANTEC) effort, brainstem constraints
Frontiers in Oncology | www.frontiersin.org 7357
and tolerance doses following photon and proton RT were
summarized in Figure 1 in the organ-specific paper by Mayo
et al. (26). Making use of the LQ model, tolerance doses from
either normofractionated treatments or single fractionation
stereotactic treatments were extrapolated to provide an
approximation for the tolerance dose for hypofractionated
treatments. The figure is reused in Figure 6 of this paper, in
which the DLEM I|0.1 cm3 constraint we derived from this work has
been superimposed as a red circle. Clearly, our constraint
complies with the projections of the LQ model, supporting the
capacity of the LEM I to predict the RBE of CIRT for this
endpoint with sufficient accuracy.

An advantage of our dose translation approach is that the
fractionation regimen at GHMC is similar to that of CNAO, and
therefore the uncertainty related to EQD2 conversion can be
avoided. Furthermore, both GHMC and CNAO have adopted the
traditions of NIRS, in regard to the choice of beam number, angles,
and strategies to achieve a robust treatment plan. Lastly,
both centers are restricted to the use of fixed beam lines,
FIGURE 4 | Transversal sections of DLEM I-optimized treatment plans applying brainstem (green contour) constraints of DLEM I|1% <30 Gy (RBE) in plan (A) or DLEM I|0.7 cm3

<38 Gy (RBE) and DLEM|0.1 cm3 <46 Gy (RBE) in plan B). The dose constraint levels are illustrated by dark blue, light blue, and light green isodose, respectively. Plans were
subsequently recalculated to DMKM (A′, B′). Red isodose in plan (A, B) represents 95% of the target dose (70.4 Gy (RBE) in DLEM I). Note the improved dose coverage to
the CTV (red contour) and to the part of the CTV in which the tumor recurred (yellow contour) in plan B compared with plan A. Dose to the brainstem remains compliant
with the constraints defined by Shirai et al. when evaluated in DMKM (B′).
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whichinevitably restricts the freedom of beam angles and
consequently favors harmonization of the treatments at the two
centers additionally.

However, our method is affected by unavoidable uncertainties.
Firstly, transferring dose constraints from a center with passive
scattering beam delivery (PS) to a center with pencil beam scanning
(PBS) may be controversial. The beam delivery techniques will
inevitably cause differences in the radiation quality (mixture of
primary and secondary particles and their corresponding LET
values) of the beams, and the distribution and weighting of Bragg
peaks may be very dissimilar. However, two studies have confirmed
Frontiers in Oncology | www.frontiersin.org 8358
that the biological effect of the carbon ion beams of NIRS, HIT, and
CNAO are identical (27, 28).

Secondly, the DAbs underlying the RBE-weighted dose is
calculated by different beam models at the two institutions. It
has been shown that theDAbs of a given RBE-weighted dose could
on average vary about 2.5% in the target region of head and neck
treatments, depending on the beammodel (9). Differences related
to beam modeling in the out-of-target areas have not been
investigated, but one would expect to find more profound
deviations in DAbs especially within the lateral penumbra dose
fall-off. This region is certainly sensitive to how the lateral spread
FIGURE 6 | Figure 1 from Mayo et al. (23) reprinted with permission, comparing selected data on brainstem tolerance and dose constraints from stereotactic RT or
normofractionated photon or proton RT, compared with the linear quadratic (LQ) model extrapolations. Data points are marked with the corresponding author and
dose parameter considered in parenthesis. The DLEM I|0.1 cm3 <46 Gy (RBE) constraint for a 16-fraction LEM I-optimized CIRT, estimated by dose translation of the
corresponding DMKM constraint is superimposed as a red circle on the original figure.
FIGURE 5 | Absolute volume DVH showing old CNAO DLEM I|1% <30 Gy (RBE) constraint (cross) and the translated Shirai constraints DLEM I|0.7 cm3 <41 Gy (RBE)
and DLEM I|0.1 cm3 <49 Gy (RBE) (squares, error bars = 95% CI), converted into EQD2 (assuming a/b ratio = 2 Gy) in comparison with the EQD2 constraints applied
at HIT as reported by Nikoghosyan et al. (21): DLEM I|1% <54 Gy (RBE) and DLEM I|max <60 Gy (RBE) (circles). As an approximation to the absolute volume relating to
the D1% constraints, the median brainstem volume in our data set (26 cm3) was used. The translated constraints are more closely related to the constraints used at
HIT than the old CNAO constraint.
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of the beam is modeled. This is of importance, since the sharp
lateral penumbra of the carbon ion beam typically is utilized to
avoid high doses to the brainstem when it is located close to
the tumor.

To conclude, these latter issues infer that the DMKM that we
reproduce in this work, based on the DAbs of CNAO DLEM I-
optimized treatment plans, are not an exact replica of GHMC
treatment plans. Nevertheless, our dose translation approach
definitely provides guidance as to how much the DLEM I

constraints at CNAO may be relaxed in order to match the
Japanese constraints. As a measure of caution, we propose the
lower bound of the 95% CI of the dose translation estimates, i.e.,
DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3 <46 Gy (RBE), as
possible brainstem constraints for LEM I-optimized CIRT in a 16-
fraction schedule. These proposed constraint values implyDLEM I/
DMKM conversion factors of 1.27 and 1.15 forDMKM fraction doses
of 1.88 Gy (RBE) and 2.5 Gy (RBE) respectively, which is quite
modest comparedwith the target dose conversion factors found by
Steinsträter et al. (29), where conversion factors for the respective
fraction doses were found to be >1.44 and >1.21.

Finally, as our conclusions rely on the results of Shirai et al.,
the limitations described in their study also apply to our work
(small number of events, single institution study, etc.). Another
essential assumption for the application of these constraints is
that asymptomatic MRI contrast enhancement does not
necessarily evolve into necrosis and therefore constraints that
safeguard against this event most certainly will prevent the more
meaningful clinical endpoint. Mere contrast enhancement is
regarded as evidence of increased permeability of the blood-
brain barrier (BBB), which results from radiation-induced
alterations in endothelial and glial cell function (30). However,
increased permeability does not necessarily lead to parenchymal
damage as demonstrated for the spinal cord in a rat model (31).
This phenomenon has also been documented for radiation-
induced injury of the brain following CIRT, and it is
hypothesized that since smaller volumes of CNS tissue is
irradiated by particle therapy in comparison with photon RT,
the probability of recovery will be higher (32). The observation
that the lesions reported by Shirai et al. were reversible or stable
in the absence of therapeutic intervention further supports the
argument that no real necrosis had occurred.

In this setting, applying the CTCAE term CNS necrosis grade
1 when only contrast enhancement is evident, as done by Shirai
et al., may be confusing and potentially discourage physicians
from referring patients to CIRT. However, the CTCAE lacks a
proper predefined term to discriminate increased permeability in
the BBB from a necrotic process. Moreover, neither the SOMA-
LENT scale (subterm MRI in the Analytic scale) (33) nor the
RTOG/EORTC Late Morbidity Scoring Schema (subterm Brain)
(34) exhibit sufficient granularity to encompass this distinction.
We therefore suggest to apply the CTCAE term Nervous system
disorders—Other, and specifying it as Brainstem reaction as an
analogy to the Temporal lobe reaction term coined by Gilman
et al. (35), in which contrast enhancement would be a grade 1
“reaction,” thus avoiding the use of the misleading and more
distressing term “necrosis.”
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CONCLUSIONS

Based on this work, these new constraints, DLEM I|0.7 cm3 <38 Gy
(RBE) and DLEM I|0.1 cm3 <46 Gy (RBE), have been implemented
in the prospective treatment protocols of CNAO since October
2018. They can serve as constraints also for other centers
applying LEM I within CIRT schedules of 16 fractions. Indeed,
these constraints have also been selected as the most optimal
constraints available and have therefore recently been
implemented in clinical practice at the MedAustron Ion
Therapy Center (Wiener-Neustadt, Austria) for 16 fractions of
CIRT treatment of skull base tumors optimized with LEM I.

This paper highlights a challenge that is unique for CIRT
compared with other external beam RT modalities: the
exchange of experience between Japanese and European CIRT
facilities is severely hampered by the use of disparate RBE
models. Fortunately, we anticipate that the recalculation of
treatment plans to the alternative RBE model will become
substantially less time consuming due to the introduction of
such functionality in commercial TPSs. We therefore hope to
see future CIRT publications reporting OAR toxicity, NTCP,
and related dose metrics in both DMKM and DLEM I, as our
group recently has done for the optic nerve (36). This would
accelerate the much needed validation of OAR constraints for
both RBE models.
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NFATC2 Modulates Radiation
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Fabien P. Chevalier1, Tatiana Vinasco-Sandoval2, Michèle T. Martin2

and Jérôme Lamartine1*
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Although it is well established that 5 to 15% of radiotherapy patients exhibit severe side-
effects in non-cancerous tissues, the molecular mechanisms involved are still poorly
known, and the links between cellular and tissue radiosensitivity are still debated. We here
studied fibroblasts from non-irradiated skin of patients with severe sequelae of
radiotherapy, to determine whether specific basal cell activities might be involved in
susceptibility to side-effects in normal tissues. Compared to control cells, patient
fibroblasts exhibited higher radiosensitivity together with defects in DNA repair.
Transcriptome profiling of dermal fibroblasts from 16 radiotherapy patients with severe
side-effects and 8 healthy individuals identified 540 genes specifically deregulated in the
patients. Nuclear factor of activated T cells 2 (NFATC2) was the most differentially
expressed gene, poorly expressed at both transcript and protein level, whereas the
NFATC2 gene region was hypermethylated. Furthermore, NFATC2 expression correlated
with cell survival after irradiation. Finally, silencing NFATC2 in normal cells by RNA
interference led to increased cellular radiosensitivity and defects in DNA repair. This
study demonstrates that patients with clinical hypersensitivity also exhibit intrinsic cellular
radiosensitivity in their normal skin cells. It further reveals a new role for NFATC2 as a
potential regulator of cellular sensitivity to ionizing radiation.

Keywords: radiotherapy, radiosensitivity, human skin fibroblasts, transcriptome, NFATC2, normal tissue
side effects
INTRODUCTION

Radiosensitivity is the relative sensitivity of cells, tissues, organs, and organisms to the injurious
effects of ionizing radiations. This notion includes very different outcomes according to the scale at
which it is analyzed. At cellular level, sensitivity to ionizing radiation is notably evaluated by the rate
of immediate or delayed death in irradiated cell cultures and by cell capacity to repair DNA damage.
At organism level, radiosensitive individuals are those that develop severe effects in irradiated tissue
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whereas the majority of the population exposed to the same dose
show no or only mild effects. This is particularly obvious in the
context of radiotherapy (RT), the main source of human
exposure to high-dose ionizing radiation, where 5–15% of
patients exhibit severe side-effects in irradiated normal tissues
(1, 2), including fibrosis (3), necrosis, and sometimes radio-
induced secondary cancers (4, 5). A central question regarding
the multi-scale nature of radiosensitivity is whether intrinsic
cellular radiosensitivity is a mirror of organism sensitivity. If that
is the case, cellular testing would be a means of identifying
radiosensitive patients and predicting deleterious outcome of
radiation exposure. Moreover, using cultured cells as models
of radiation sensitivity would shed light on the intrinsic
mechanisms, which are far from clear. However, to date, data
on the correlation between cellular and organism radiosensitivity
are contradictory, especially regarding skin fibroblasts, a cell type
which has been directly involved in the development of
radiotherapy side-effects (6). Previous studies reported higher
radiation toxicity in dermal fibroblasts from radiosensitive
patients (7–11) and a correlation between clinical grades
and cellular radiosensitivity (12, 13). However, other authors
reported no difference in dermal fibroblast radiosensitivity
between radiosensitive and radio-tolerant individuals (14, 15).

To further investigate this question, we used cutaneous
fibroblasts from a collection of RT patients exhibiting severe
side-effects of radiotherapy, that were classified according
to side-effect severity (16). The first goal of this study was
to investigate the link between cellular and individual
radiosensitivity. The second goal was to shed light on the
complex molecular mechanisms of the cellular response to
ionizing radiation.

Here, we investigated the radiation toxicity and the DNA
repair ability of skin fibroblasts from patients with RT severe side
effect and we observed that patient fibroblasts exhibited higher
cell death and profound DNA repair defects compared to normal
control cell samples. By a transcriptomic analysis, we identified
the transcription factor NFATC2 as being strongly repressed in
patient fibroblasts, with hypermethylation on the coding
sequence. Finally, we demonstrate that the repression of
NFATC2 is able to increase the radiation sensitivity of normal
fibroblasts, suggesting that this protein is involved in the
establishment of the radiosensitive phenotype.
MATERIALS AND METHODS

Cell Culture
Fibroblasts from patients were obtained from the INSERM
UMR1052 COPERNIC cell collection (16). This collection was
approved by the regional Ethical Committee (CPP Sud-Est, Lyon,
France) and cell lines were declared under the numbers DC2008-
585 and DC2011-1437 to the Ministry of Research. The database
derived from the COPERNIC collection is protected under the
reference IDDN.FR.001.510017.000.D.P.2014.000.10300.

All the anonymous patients were informed and signed
consent according to the ethics recommendations. This
Frontiers in Oncology | www.frontiersin.org 2363
collection is composed of cancer patients presenting with
overreactions in normal tissues after radiotherapy. Severity of
side-effects was graded for each patient according to the
Common Terminology Criteria for Adverse Events scale,
version 4.03 (17). Sampling was performed in non-irradiated,
non-photo-exposed anatomical region after local anesthesia.
Standardized dermatological punch and untransformed
fibroblast cell strains were prepared from skin biopsies. In the
present study, 16 breast cancer patient cells were studied,
comprising eight cell strains from grade 2 patients, here
referenced as P1 to P8, and eight cell strains from grade 3
patients (P9 to P16). Cells were studied between passage 7 to
10 in culture (mean population doublings: 35 to 50), before any
senescence occurrence.

As control, primary dermal fibroblasts were obtained from
eight non-irradiated female healthy donors (C1 to C8). Surgical
samples were obtained from the Hospitals Board of Lyon, France
(Hospices Civils de Lyon), with the subjects’ informed consent.
Cells were subcultured up to seven passages and studied between
passage 7 to 10, to have similar age in culture as patient cells
(mean population doublings: 35 to 50). As fibroblasts are
quiescent cells in the dermis, most studies were performed on
confluent cells, in the G0/G1 cell cycle phase, both for patient
and control cells.

Cultures were maintained in Dulbecco’s Modified Eagle
Medium–Glutamax medium (ThermoFisher Scientific, Illkirch,
France) supplemented with 10% fetal bovine serum
(ThermoFisher) and 1% penicillin/streptomycin (Sigma-
Aldrich, Saint-Quentin-Fallavier, France).

Cell Irradiation
Primary dermal fibroblasts were irradiated after reaching
confluency with 2 Gy using an XRAD320 X-ray generator
(Precision X-Ray, North Brandford, CT, USA) at a dose rate of
0.8 Gy.min−1 and then further cultured for indicated times
depending on the assay.

Colony Survival Assay
Dermal fibroblasts were irradiated with 2 Gy X-rays after
reaching confluency and seeded at low density (5 to 40 cells/
cm²) 24 h after irradiation. Two weeks later, cell cultures were
fixed with EtOH 100% for 15 min and stained with hematoxylin/
eosin. Only colonies formed by more than 50 fibroblasts were
considered for calculating survival fraction at 2 Gy (SF2),
expressed as the ratio between colonies formed with and
without irradiation.

gH2AX and 53BP1 Foci Assays
Irradiated fibroblasts were further cultured for the indicated
times (0, 15 min, 2, 6, and 24 h) and fixed with 4%
paraformaldehyde for 15 min. Then, cells were permeabilized
(0.1% Triton X-100 and 0.1 M Glycine) and incubated in
blocking buffer (5% goat serum, 2% BSA, 0.1% Triton X-100,
and 0.05% Tween-20) for 15 min prior to immunostaining with
anti-gH2AX antibody (05-636, Millipore) or anti-53BP1
antibody (PA1-46147, ThermoFisher). For immunodetection,
goat anti-rabbit IgG or goat anti-mouse IgG Alexa Fluor-488
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or -546 conjugated secondary antibody (ThermoFisher) was
incubated for 1 h and nuclei were counterstained with 4′-6-
diamidino-2-phenylindole dihydrochloride (DAPI). The
resulting foci were counted in at least 50 nuclei per condition
using an Eclipse Ti-E inverted microscope (Nikon).

DNA Repair Chip Assay
Fibroblast DNA repair was measured on ExSy-SPOT assay
(LXRepair). Protein extracts from lysed cells were applied
directly on the biochip containing plasmids with well-
characterized DNA lesions (8-Oxoguanine, Ethenobase, Abasic
site, Glycols, Photoproducts and Cisplatin adducts) and
incubated with fluorescent nucleotides to allow DNA repair.
Effective DNA repair was quantified for each type of lesion by CT
measurement of the resulting fluorescence signal. Thus,
fluorescence level was proportional to cell ability to repair the
specific DNA damage within the prescribed time.

Transcriptome Analysis
Total RNA was isolated from fibroblasts at confluency with the
NucleoSpin RNA plus kit (Macherey–Nagel, Hoerdt, France) or
RNeasy Plus Minikit (Qiagen, Courtaboeuf, France) according to
the manufacturer’s instructions.

For next-generation RNA sequencing at CNRGH (CEA, Evry,
France), RNA sequences were captured using a TruSeq RNA
Library Prep Kit v2 (Illumina, Evry, France) with input of 1 μg.
Paired-end RNA sequencing was performed on HiSeq4000 with
100 bp paired-end reads. Sequencing data quality control was
performed using FastQC 0.11.7 before and after adapter
trimming by Cutadapt 1.13 (parameters: -q 15 -a 5’-AGA TCG
GAA GAG CAC ACG TCT GAA CTC CAG TCA C-3’ – 5-AAG
ATC GGA AGA GCG TCG TGT AGG GAA AGA GTG TAG
ATC TCG GTG GTC GCC GTA TCA TT-3’). The reads were
mapped to the human genome (GRCh37/hg19) using HISAT2
2.0.5. For a single gene, sequences were aligned versus all known
exons of all gene isoforms. The resulting BAM files were sorted
by read pairs (using SAMtools 1.3.1) and counted using the
HtSeq-count tool of HtSeq 0.6.1.

For transcriptome analysis, filtering was applied to genes with
low expression (mean number of reads in the training set <10).
Principal component analysis and hierarchical clustering were
performed using the R DEseq2 and stats packages. VennDiagram
and plots were made using the VennDiagram and ggplot2
packages. Functional annotation of the gene list was performed
using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt)
and the KEGG database 2019. Gene Ontology (GO) was
performed using the clusterProfiler package in R software (18).
GO and KEGG enrichment analyses were based on a false
discovery rate (FDR) threshold of <0.05. The Enrichedplot
package was used for graphical visualization of the result from
enriched analysis. Transcriptome data have been deposited into
the GEO database and are available under the accession
number GSE154559.

Real-Time Quantitative PCR
An equal amount of total RNA (500 ng) was used as template for
reverse transcription with PrimeScriptTM RT reagent kit
Frontiers in Oncology | www.frontiersin.org 3364
(Takara, Shiga, Japan) and analyzed by Real-Time QPCR using
SYBR® Premix ExTaqII (Takara) on an AriaMx Realtime PCR
system (Agilent Genomics, Santa Clara, CA, USA). All primers
listed below were provided by Eurogentec. NFATC2 expression
level was normalized to TBP and RPS17 housekeeping gene
expression level.

NFATC2f: 5’-TTGGAAGAAAGAACACGCGG-3’,

NFATC2r: 5’-GAGCACTCGATGGGGTTAGA-3’,

TBPf: 5’-TCAAACCCAGAATTGTTCTCCTTAT-3’,

TBPr: 5’-CCTGAATCCCTTTAGAATAGGGTAGA-3’,

RPS17f: 5’-CTCTTTTACCAAGGACCCGCC-3’,

RPS17r: 5’-AGGTTGGACAGACTGCCGAAG-3’
Protein Extraction and Immunoblotting
Total proteins were extracted using RIPA buffer (50 mM Tris-
HCl pH = 8, 150 mM NaCl, 1.5 mM KCl, 1% NP-40, 0.1% SDS,
0.5% sodium deoxycholate, 0.1% Triton X-100, 1 mM EDTA)
containing protease inhibitor cocktail (cOmplete mini, Roche
Diagnostics) and phosphatase inhibitor cocktail (5 mM NaF, 50
mM b-glycerophosphate, 5 mM orthovanadate). Proteins were
quantified using the Pierce BCA Protein Assay Kit
(ThermoFisher), loaded on an 8% SDS-polyacrylamide gel and
transferred to a nitrocellulose membrane (Bio-rad). The
membrane was blocked for 1 h at room temperature in TBS-
Tween20 0.1–5% BSA and immunoblotted overnight at 4°C for
primary antibodies specific to NFATC2 (#4389, Cell Signaling
Technology) or VINCULIN (V9131, Sigma-Aldrich). After
washing, goat anti-mouse IgG or goat anti-rabbit IgG HRP-
conjugated secondary antibodies (Bio-rad) were incubated for
1 h at room temperature. Proteins were revealed using
SuperSignal West Pico PLUS Chemiluminescent Substrate
(ThermoFisher) and the signal was detected by the Fusion Fx
system (Vilber Smart Imaging). Immunoblot quantifications
were performed using GelAnalyzer software.

DNA Extraction and Bisulfite Conversion
and HRM PCR
DNA was extracted from fibroblasts using the QIAamp DNA
Mini Kit (Qiagen) according to the manufacturer’s instructions.
To assess methylation of a specific DNA region, DNA was
converted with bisulfite treatment, using the EpiTect Bisulfite
Kit (Qiagen) according to the manufacturer’s instructions. Then,
HRM PCR was performed using the EpiTect HRM PCR kit
(Qiagen) to amplify the specific DNA region and to measure the
melting temperature of the amplicon on an AriaMx Realtime
PCR system (Agilent Genomics). One hundred percent
methylated DNA, 100% unmethylated DNA, and bisulfite
unconverted DNA from the EpiTect Control DNA Set kit
(Qiagen) were used as controls. Figures with methylation peaks
were produced with Agilent Aria 1.5 Software (Agilent
Genomics). Primers were designed with Methyl Primer
Express Software v1.0 (ThermoFisher Scientific) and were
provided by Eurogentec. The following primers were used for
methylation study:
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NFATC2mF: 5’-TTTAGATGAATAGTGTTTTGGG-3’,

NFATC2mR: 5’-ATTATCATTTCCTTCCTCTACTTC-3’.
RNA Interference
Control fibroblasts were transduced with lentiviral vectors from
NFATC2 Human shRNA Plasmid Kit (OriGene). Lentiviral
vector particles were produced by the vector facility at SFR
BioSciences Gerland-Lyon Sud (Lyon, France) as previously
described (19). Control cells were infected at 40% confluency
with lentiviral particles (MOI at 10) containing a vector with a
shRNA targeting NFATC2 (sh-NFATC2) or a plasmid with a
non-effective shRNA sequence (sh-SCR) for 12 h. At confluency,
cells were trypsinized and seeded in another plate. Then,
transduced cells were maintained under puromycin selection
for 1 week and then selected cells were amplified for 1 week
before analysis.

Statistics
Statistical significance was calculated by Student’s t-test, one-way
analysis of variance (ANOVA), two-way analysis of variance
(ANOVA2), or Pearson correlation using Prism software
(version 8.0, GraphPad Software). Mean differences were
considered statistically significant when P < 0.05. * P < 0.05,
** P < 0.01, *** P < 0.001, **** P < 0.0001.
RESULTS

Fibroblasts From Patients With Severe
Radiotherapy Side Effects Exhibit
Decreased Tolerance to Radiation Toxicity
We analyzed ionizing radiation toxicity in cultured dermal
fibroblasts from sixteen breast cancers patients with severe
radiotherapy (RT) side-effects (eight grade 2, eight grade 3)
and eight control individuals. To estimate radiation-induced
toxicity, we used the reference method of colony survival
fraction measurement after a standard dose of 2 Gy X-
irradiation (SF2). The colony survival assay showed that
dermal fibroblasts from the eight control biopsies presented a
mean 48% survival fraction, whereas cells from patients with RT
over-reaction exhibited significantly lower SF2, with 28 and 27%
survival fraction for cells of grade 2 and grade 3 patients
respectively (Figure 1). Since no significant difference in
cellular radiosensitivity was observed between cells from grade
2 and grade 3 patients, the 16 cell strains were pooled for the
following experiments.

Fibroblasts From Patients With Severe
Radiotherapy Side Effects Exhibit DNA
Repair Defects
To study patient cell DNA repair ability, we first performed
immunofluorescence against gH2AX and 53BP1, two early
markers of DNA double-strand breaks (DSB), in four control
and four radiosensitive cell strains after 2 Gy irradiation. The
number of gH2AX and 53BP1 foci 15 min after 2 Gy irradiation
Frontiers in Oncology | www.frontiersin.org 4365
was identical in control and patient fibroblasts, with a mean 40
foci per nucleus in both (Figures 2A, B). However, more gH2AX
foci were detected in patient than control cells 2, 6, and 24 h after
irradiation: 2.7, 4.13, and 2.03 additional foci per cell respectively
(Figure 2A). More 53BP1 foci were also detected 6 and 24 h after
2 Gy irradiation in patient than control fibroblasts: respectively
+2.65 and +5.55 foci per cell (Figure 2B).

We also assessed patient cell ability to repair various DNA
lesions, using the ExSy-SPOT chip, a microsystem developed to
measure excision-synthesis activity in immobilized plasmid
DNA (20). Repair activity was reflected by the incorporation of
fluorescent nucleotides at the lesion site. Fluorescence in
plasmids containing 8-oxoGuanine and abasic sites was higher
in control than patient samples (Figure 2C), and in plasmids
containing glycol-damaged bases, although the difference did not
quite reach significance (P = 0.062) (Figure 2C). Thus, ability to
repair 8-oxoGuanine, abasic site and glycol-damaged bases, three
types of DNA damage induced by oxidative stress and known to
be repaired by the BER pathway, seemed to be impaired in
dermal fibroblasts from patients with severe radiotherapy
side-effects.

Identification of a Specific Transcriptome
Profile in Patients’ Fibroblasts
To investigate the mechanisms underlying individual
radiosensitivity at cellular level, we used next-generation RNA
sequencing to profile the whole genome transcriptome of the 16
patient and 8 control fibroblast cultures. Principal component
analysis (PCA) of whole gene expression data clearly separated
controls from over-reacting patients (Figure 3A). However, one
patient’s cell strain was classified as being in the control group by
hierarchical cluster analysis (Figure 3B). Within the patient
FIGURE 1 | Dermal fibroblasts from patients with severe side-effects of
radiotherapy exhibit higher radiosensitivity. Colony survival assays showed
that survival fraction at 2 Gy was higher in control cells (n = 8) than in cells
from overreacting patients, with no difference according to clinical grade
(n = 8 grade 2 and n = 8 grade 3). Results are mean +/− SD. The p-value
was calculated by one-way ANOVA. Significant at ****P < 0.0001.
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group, there was no clear separation between grades 2 and 3,
whether on PCA or hierarchical cluster analysis (Figures 3A, B).

We identified 1,338 genes differentially expressed (adjusted p-
value <0.05) between fibroblasts from grade 2 patients and
controls (Figure 3C), and 804 genes differentially expressed
Frontiers in Oncology | www.frontiersin.org 5366
between fibroblasts from grade 3 patients and controls (Figure
3C). Five hundred forty of these differentially expressed genes
were in common between grade 2 patients vs controls and grade
3 patients vs controls (Figure 3C and Supplementary Table S1).
Interestingly, no genes were differentially expressed between
A

B

C

FIGURE 2 | Impaired DNA repair in dermal fibroblasts from overreacting patients. Immunofluorescence detection of gH2AX (A) and 53BP1 (B) foci, investigated 0 h,
15 min, 2, 6, and 24 h after 2 Gy irradiation in cells from patients with severe radiotherapy side-effects. The number of foci was assessed in at least 100 cells in four
normal (C1, C2, C4, and C8) and four patient cell strains (P1, P6, P10, and P15). Results are mean +/− SD. The p-value was calculated by one-way ANOVA.
Significant at *P < 0.05, **P < 0.01, and ****P < 0.0001. (C) DNA damage repair ability was measured using the ExSy-SPOT chip. Fluorescence was proportional to
cell ability to repair indicated DNA lesions. 8oxoG, 8-oxoGuanine; AbaS, Abasic site; CisP, Cisplatin adducts; CPD-64, Cyclobutane pyrimidine dimer - pyrimidine-
(6,4)-pyrimidone photoproducts; Etheno, Etheno adducts. Results are mean +/− SD from four control fibroblast strains (C1, C2, C4, and C6) and four radiosensitive
fibroblast strains (P2, P7, P8, and P10). The p-value was calculated by Student’s t-test. Significant at **P < 0.01 and ****P < 0.0001.
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grade 2 and grade 3 patients, in agreement with the PCA and
hierarchical cluster classification of the transcriptome data.

Four hundred forty-five of the 540 differentially expressed
genes were protein-coding and were used for functional
enrichment analysis. Gene ontology analysis highlighted 93
significantly enriched GO biological processes with FDR <0.05
(Figure S1 Supplementary data). Functions with the smallest
FDRs comprised regulation of GTPase activity regulation, of
organ development and of cell adhesion and junction (Figure S1
Supplementary data). All these functions might be involved in
cellular radiation toxicity, but correspond to multiple
intracellular pathways. We then searched for enriched
pathways involving the 445 differentially expressed protein-
coding genes using the WebGestalt and the KEGG database
2019. We found only one significantly enriched pathway
(Supplementary Table S2): Arrhythmogenic right ventricular
cardiomyopathy (adjusted p-value 0.0065733—10 genes out 72
modulated), a pathology of cardiac muscles with progressive
loss of myocytes replaced by adipocytes. Systematic analysis of
our gene list revealed that none of these genes was directly
involved in any known genetic syndrome leading to
increased radiosensitivity.

NFATC2 Is Downregulated in Patient Cells
and Correlated With Radiosensitivity
Among the most differentially expressed genes between control
and patient fibroblasts identified by our RNA sequencing
approach, we focused on NFATC2 , which encodes a
transcription factor initially described in T-cell activation and
involved in numerous cellular functions such as apoptosis and
the cell cycle (21). We therefore carefully analyzed NFATC2 gene
and protein expression in patient cells extracted from non-
irradiated skin. Dermal fibroblasts from patients with severe
radiotherapy side-effects exhibited much lower NFATC2 gene
expression than control cells (Figure 4A). Similarly, NFATC2
protein expression was lower in patient’s cells (Figures 4B, C).
NFATC2 gene and protein expressions were assessed after
irradiation to determine whether NFATC2 could be a
radiation-responding gene, potentially involved in cellular
radiation response. NFATC2 gene overexpression was detected
in response to 2 Gy irradiation, with a 4-fold peak at 3 h in
control fibroblasts and a 15-fold peak in patient fibroblasts, with
return to baseline after 24 h (Figure 4D). NFATC2 protein was
detected in greater quantities (×1.8) after 2 Gy irradiation with a
peak between 3 and 6 h in normal fibroblasts, but the difference
was not statistically significant due to interindividual variability
(P = 0.1192 and P = 0.1553, respectively) (Figures 4E, F).
Furthermore, NFATC2 protein was barely detected in cells
from radiosensitive patients (Figures 4E, F). Interestingly,
there was a significant correlation between NFATC2
transcriptional expression and irradiated cell survival (Pearson
correlation coefficient, R² = 0.4949, P = 0.0001254) (Figure 4G),
suggesting a possible role for NFATC2 in cel lular
radiosensitivity. Taken together, these results suggest that
NAFTC2 is a radiation-responding gene potentially involved in
cellular response to ionizing radiation.
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NFATC2 Is Hypermethylated in Patient
Fibroblasts
To elucidate the regulatory mechanisms underlying NFATC2
differential expression in non-irradiated fibroblasts from controls
and patients, we compared gene methylation level between
patients and controls. The methylation pattern of the NFATC2
gene region was extracted from genome-wide methylation
profiling using methylation bead chips performed on patient
and control fibroblasts (data not shown), identifying 34
differentially methylated sites (CpGs) (33 hyper- and 1 hypo-
methylated) (Figure 5). This hypermethylation of the NFATC2
gene in patients’ fibroblasts was consistent with its lower
gene expression. Interestingly, the upstream region of the
transcription starting site (TSS) exhibited the same
methylation profile in patient and control cells (Figure 5).
However, among the hypermethylated CpGs, cg00418183,
cg00401091, cg11086066, cg10226546, cg11074047,
cg18302534, cg16419175, cg21610125, cg15497991,
cg26408896, cg22243637, cg09740920, cg00498368,
cg08637147, cg09465142, cg03986956, and cg00689890 belong
to gene regions identified as promoter-associated regions
according to the ENCODE consortium. This hypermethylation
of these regulatory regions could, at least in part, explain the
weak expression of NFATC2 in patient fibroblasts.

To confirm these results by an independent method, we
performed HRM PCR to evaluate the methylation state of the
CpG00498368 in four patient and two control cell strains. HRM
PCR is a PCR measuring the melting temperature of a specific
amplicon. After bisulfite conversion, an amplicon comprising a
methylated CpG would exhibit a higher melting temperature
than an amplicon with an unmethylated CpG. We detected a
higher melting temperature peak, corresponding to a methylated
state of this CpG in patient fibroblasts and to an unmethylated
state in control fibroblasts (Figure S2B Supplementary data), in
agreement with the global methylome data (Figure S2A
Supplementary data).

These results suggest that NFATC2 down-regulation could, at
least in part, be due to hypermethylation of the gene in
fibroblasts from patients with severe radiotherapy side-effects.

NFATC2 Silencing in Normal Dermal
Fibroblasts Leads to Increased Cellular
Radiosensitivity and DNA DSB Defects
To evaluate the functional impact of NFATC2 in cellular
radiosensitivity, NFATC2 expression was silenced in cells from
healthy individuals by stable RNA interference mediated by a
lentiviral vector. We tested four lentiviral vectors, each
containing a different short hairpin RNA (shRNA) targeting
NFATC2, and chose the most efficient in terms of silencing for
the further experiments (Figure S3 Supplementary data).
NFATC2 expression was reduced by 48% on average at gene
level (Figure 6A) and by 70% on average at protein level in
transduced fibroblasts expressing the shRNA targeting the
NFATC2 transcript (Figures 6B, C). Colony survival assays
revealed that cells with lower NFATC2 expression (HNF sh-
NFATC2) exhibited a significantly lower SF2 compared to their
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control (HNF sh-SCR) (20% decrease in cell survival in response
to irradiation) (Figure 6D). To better understand the molecular
mechanisms of this cell death elevation in sh-NFTAC2
expressing cells, we investigated their DNA DSB repair ability,
and detected more residual gH2AX and 53BP1 foci 24 h after 2
Gy irradiation in HNF sh-NFATC2 cells than in control cells
(HNF sh-SCR) (respectively, +1.49 gH2AX and +1.46 53BP1 foci
per nucleus on average) (Figures 6E, F), corresponding to an
excess of residual unrepaired DNA double-strand breaks. These
Frontiers in Oncology | www.frontiersin.org 7368
results suggest that the NFACT2 down-regulation observed in
patient cells is involved in their cellular radiation sensitivity.
DISCUSSION

The mechanisms responsible for individual sensitivity to ionizing
radiations are not yet fully elucidated. The present study
investigated the radiation sensitivity of dermal fibroblasts from
A

B

C

FIGURE 3 | Patients with severe radiotherapy side-effects show a specific transcriptome profile. Principal component analysis (A) and hierarchical clustering (B) of
patients and controls based on RNA sequencing data. (C) Venn diagram showing the 540 differentially expressed genes in common between grade 2 vs control and
grade 3 vs control RNAseq data.
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patients showing severe side-effects of radiotherapy (RT). A key
result was that patient dermal fibroblasts were intrinsically more
radiosensitive than cells from healthy individuals. We also
detected more gH2AX and 53BP1 foci from 6 to 24 h after
irradiation in patient dermal fibroblasts, suggesting slower DNA
DSB repair ability.

DNA DSB repair abilities in cells from radiosensitive patients
have been widely studied. Some authors identified a link between
Frontiers in Oncology | www.frontiersin.org 8369
residual unrepaired DNA DSB and risk of severe RT side-
effects (16, 22, 23), whereas others found no DNA DSB
repair defect in cells from radiosensitive patients (24–26). Once
again, these differences could be due to differences in the
methods used to assess DSB repair ability, highlighting the
necessity of more standardized protocols, especially regarding
cell culture conditions, type of irradiation and DSB detection
kinetics (27).
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FIGURE 4 | NFATC2 downregulation in fibroblasts from overreacting patients. (A) NFATC2 mRNA levels were measured by RTqPCR in control cells (n = 8) and in
fibroblasts from patients with severe radiotherapy side-effects (n = 16). Results are mean +/− SD. The p-value was calculated by Student’s t-test. Significant at ***P <
0.001. (B) NFATC2 protein expression was evaluated by immunoblotting in control (n = 3) and patient fibroblasts (n = 4) and quantified (C), with VINCULIN as
loading control. Results are mean +/− SD. The p-value was calculated by Student’s t-test. Significant at **P < 0.01. (D) NFATC2 gene expression was assessed at
various time points after 2 Gy irradiation in three control cell strains (C1, C5, and C8) and three cell strains from overreacting patients (P7, P8, and P10). Results are
mean +/− SD. The p-value was calculated by two-way ANOVA. Significant at *P < 0.05. (E) Representative image of immunoblotting analysis of NFATC2 protein
expression at various time points after 2 Gy irradiation on one control cell strain (C4) and one patient cell strain (P8) and quantification (F). Results are mean +/− SD
from three independent immunoblotting analyses of three control (C4, C5, and C8) and three patient fibroblast strains (P6, P8, and P10). The p-value was calculated
by two-way ANOVA. (G) Pearson correlation between NFATC2 gene expression and SF2.
December 2020 | Volume 10 | Article 589168

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dulong et al. NFATC2 Modulates Fibroblast Radiation Sensitivity
FIGURE 5 | NFATC2 is hypermethylated in patient fibroblasts. NFATC2 methylation in cells from patients with severe radiotherapy side-effects (n = 16) and controls
(n = 8) were investigated on genome-wide methylation analysis. CpG sites in bold are differentially methylated between control and patient cells. CpG sites in red are
part of promoter-associated regions defined by the ENCODE consortium.
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Moreover, using the ExSy-SPOT assay, we showed that cells
from patients with severe RT side-effects also exhibited repair
defects for 8-oxoGuanine, abasic sites, and glycol-damaged
bases. All these types of DNA damage, induced by ionizing
radiation and the resulting oxidative stress, are usually repaired
by base excision repair mechanisms (28). Batar et al. showed that
a decrease in XRCC1 expression, an actor in base excision repair,
was associated with acute side-effects in breast cancer patients
(29). However, no XRCC1 differential expression was detected
between control and patient fibroblasts and further
investigations will be needed to elucidate at which level dermal
Frontiers in Oncology | www.frontiersin.org 10371
fibroblasts from radiosensitive patients fail in their base excision
repair mechanism.

Patient cells exhibited a specific transcriptome profile
compared to controls, with no segregation at transcriptional
level between clinical grades 2 and 3. Side-effect severity is
probably highly multifactorial and modulated by complex
interaction between intrinsic and extrinsic factors during
radiotherapy treatment. This could explain why we were not
able to distinguish clinical grades on transcriptome analysis of
patients’ cells obtained several months after end of treatment.
Nevertheless, we were able to identify 540 genes differentially
A

B

D

E F

C

FIGURE 6 | NFATC2 downregulation leads to cellular radiosensitivity. (A) NFATC2 mRNA levels were measured by RT-qPCR in three control fibroblast strains (HNF)
infected with a lentiviral vector carrying either a shRNA scramble (sh-SCR) sequence or a shRNA targeting NFATC2 (sh-NFATC2). Results are mean +/− SD. The
p-value was calculated using a Student’s t-test. Significant at *P < 0.05. (B) Representative image of immunoblotting analysis of NFATC2 protein expression in one
control cell strain (HNF A) infected with lentiviral vectors sh-SCR or sh-NFATC2, and quantification (C). Results are mean +/− SD from immunoblotting analysis of
three different cell strains infected with lentiviral vectors sh-SCR or sh-NFATC2. The p-value was calculated using a Student’s t-test. Significant at ***P < 0.001.
(D) Lower SF2 was measured by colony survival assays in cells infected with lentiviral vector sh-NFATC2 compared to cells infected with lentiviral vector sh-SCR.
Results are mean +/− SD from three cell strains. The p-value was calculated using a Student’s t-test. Significant at *P < 0.05. More numerous gH2AX (E) and 53BP1
(F) residual foci, investigated by immunofluorescence, 24 h after 2 Gy irradiation in fibroblasts infected with lentiviral vector sh-NFATC2. Assessed in at least 100 cells
in three cell strains infected with lentiviral vectors sh-SCR or sh-NFATC2. Results are mean +/− SD. The p-value was calculated using a two-way ANOVA. Significant
at ****P < 0.0001.
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expressed between dermal fibroblasts from grade 2 and 3 patients
versus controls. This list of genes is a potentially valuable
resource for identifying new modulators of radiation toxicity in
tissues and cells. Surprisingly, only one biological process,
arrhythmogenic right ventricular cardiomyopathy (ARVC),
was significantly over-represented in this gene list. ARVC is a
non-genetic disease without any evidence of associated
radiosensitivity. The link between ARVC and individual
radiation response seems to be incidental, but it has been
shown that inhibition of the Wnt pathway is a causal
mechanism in ARVC (30), and it is clearly established that the
Wnt pathway plays an important role in cell survival after
irradiation, as previously shown in several cell types (31–33).

The main limitation of this transcriptome study is the
relatively small number of patients analyzed, with 16 patients
who suffered severe RT side-effects and 8 control samples.
Nevertheless, this study allowed us to identify 540 genes
differentially expressed between controls and patients,
including NFATC2. We recently analyzed the expression of
NFATC2 in dermal fibroblasts from 22 additional patients and
8 controls and confirmed the strong repression of this gene in the
patient’s cells (fold change 4.07, p-value 3.21 E-1).

Transcriptome analysis identified NFATC2 as one of the
genes most differentially expressed between cells from over-
reacting patients and controls. We confirmed that NFATC2
expression at gene and protein levels at basal state was lower
in fibroblasts from patients with severe RT side-effects, and
that NFATC2 gene expression was modulated in response
to irradiation. Furthermore, we highlighted the global
hypermethylated state of NFATC2 in patient fibroblasts,
suggesting a role of methylation in the regulation of NFATC2
expression. Particularly, 17 CpG sites located in the promoter-
associated regions defined by the ENCODE consortium (34)
were identified as hypermethylated in patient fibroblasts. These
promoter-associated regions were identified by ChIP-seq
analysis against transcription factors in 91 different cell lines.
Several transcription factors were identified by the ENCODE
consortium as able to recognize the DNA region where the 17
CpG sites are located, including CTCF, E2F6, ZBTB7A, ZNF143,
JUND, MEF2A, EGR1, RUNX3, and EBF1. ChIP analysis against
these transcription factors in irradiated fibroblasts and at basal
state would be of interest to elucidate the regulatory mechanisms
of NFATC2 expression modulated by epigenetic mechanisms.

Moreover, the present study showed that NFATC2
silencing using RNA interference leads to increased cellular
radiosensitivity and to a defect in DNA DSB repair. To our
knowledge, this was the first study linking NFATC2 and cellular
sensitivity to ionizing radiation. NFAT family members have
been shown to be able to induce GJA1 and GADD45A gene
expressions in response to ionizing radiation (35, 36) and
NFATC2 has been shown to induce IL-5 expression in
response to ionizing radiation (37). However, NFAT response
to UV irradiation has been more thoroughly studied. It has been
shown that NFAT positively regulates apoptosis in response to
UV-radiation in keratinocytes (38) but, in contrast, inhibiting
NFAT signaling promoted apoptosis in response to UV
Frontiers in Oncology | www.frontiersin.org 11372
irradiation in a human embryonic fibroblast cell line (39).
Moreover, inhibiting NFAT signaling has been shown to
reduce keratinocyte ability to repair UV-induced DNA
damages (40, 41). However, these studies used chemical
inhibitors of NFAT signaling, while the specific roles of each
NFAT family member in response to radiation remain unknown.

NFATC2 has been shown to regulate apoptosis and cell cycle
progression, two major mechanisms involved in cellular
radiosensitivity. NFATC2 controls the expression of FASLG, a
pro-apoptotic regulator (42, 43), and of CFLAR, BCL2A1, and
MDM2, known for their anti-apoptotic abilities (44–46).
Moreover, NFATC2 can also regulate TNFA and NR4A1
expression, both known for their dual pro- and anti-apoptotic
roles (47, 48). Furthermore, NFATC2 has been shown to regulate
cell cycle progression positively by inducing expression of CDK6
(49) or inhibiting expression of CDK4 (50), or negatively by
inducing expression of CDKN1A (51) or repressing expression of
CCNA2 (52) and p15INK4b (53). NFATC2 has also been reported
in positive or negative regulation ofMYC expression, promoting
or blocking cell cycle progression (54). These dual roles of
NFATC2 in apoptosis and cell cycle control highlight the
importance of its different isoforms and partners. One limit of
our functional study of NFATC2 is the use of a shRNA targeting
a region common to all the known isoforms of this protein.
Further experiments using isoform-specific shRNAs will be
necessary to decipher the relative role of the different variants
of NFATC2 in fibroblast sensitivity to ionizing radiations.

In a 2016 study, Gabriel et al. investigated NFATC2 isoform C
partners in a Jurkat human T-cell line (55). In addition to
transcription factors, the authors pointed out new potential
NFATC2 partners, including several actors of DNA damage
response: notably those involved in DNA DSB repair, such as
XRCC5/Ku80 and PRKDC, and in base or nucleotide excision
repair, such as RFC, LIG3, and XRCC1. They also found an
interaction between NFATC2 and PARP1, which is involved in
recognition of DNA damage, and RPA, which binds to single-
strand DNA during DNA repair. Interestingly, the authors
detected these associations between actors of DNA damage
response and NFATC2, but not with NFATC1, which suggests
a specific role for NFATC2 in the DNA damage response
(55). We performed preliminary experiments to clarify
the interactions between NFATC2 and a few DNA repair
proteins such as XRCC1 and XRCC5 in irradiated and non-
irradiated fibroblasts, but did not observe any consistent
co-immunoprecipitation (data not shown). Further specific
investigations will be necessary to clarify these putative
interactions, using tagged versions of the NFATC2 protein.

The present study found increased cellular radiosensitivity
and a defect in DNA repair in dermal fibroblasts from patients
with severe side-effects of RT, and highlighted a specific
transcriptome profile in patient fibroblasts. These data pave the
way for cellular and molecular strategies to identify
radiosensitive patients. The study also showed the involvement
of NFATC2 in cellular sensitivity to ionizing radiation and in
DNA repair. However, the mechanisms by which NFATC2
contributes to the cellular response to ionizing radiation
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remain to be clarified, notably concerning its interactions with
actors of the DNA damage response, and its target genes as
transcription factor. For the latter, investigating molecular
pathways known to be involved in the development of RT
complication in normal tissues, such as TGF-b and WNT,
would be particularly relevant.
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Purpose: We quantitatively analyzed the characteristics of cone-beam computed
tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then
built a novel nomogram model integrating clinical features and dosimetric parameters for
predicting radiation pneumonitis (RP) in patients with esophageal squamous cell
carcinoma (ESCC).

Methods: At our institute, a retrospective study was conducted on 96 ESCC patients for
whom we had complete clinical feature and dosimetric parameter data. CBCT images of
each patient in three different periods of RT were obtained, the images were segmented
using both lungs as the region of interest (ROI), and 851 image features were extracted.
The least absolute shrinkage selection operator (LASSO) was applied to identify candidate
radiomics features, and logistic regression analyses were applied to construct the rad-
score. The optimal period for the rad-score, clinical features, and dosimetric parameters
were selected to construct the nomogram model and then the receiver operating
characteristic (ROC) curve was used to evaluate the prediction capacity of the model.
Calibration curves and decision curves were used to demonstrate the discriminatory and
clinical benefit ratios, respectively.

Results: The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD),
and tumor stage were independent predictors of RP and were finally incorporated into the
nomogram. When the three time periods were modeled, the first period was better than
the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95%
confidence interval (CI) 0.568–0.832), and in the independent validation cohort, the AUC
was 0.765 (95% CI 0.588–0.941). In the nomogram model that integrates clinical features
and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700–
0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799–1.000). The
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nomogram model exhibits excellent performance. Calibration curves indicate a favorable
consistency between the nomogram prediction and the actual outcomes. The decision
curve exhibits satisfactory clinical utility.

Conclusion: The radiomics model based on early lung CBCT is a potentially valuable tool
for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The
developed nomogrammodel has a better prediction ability than any of the other predictors
and can be used as a quantitative model to predict RP.
Keywords: esophageal cancer, cone beam computed tomography, radiation pneumonitis, prediction
model, radiomics
INTRODUCTION

Among malignant tumors, the incidence rate of esophageal
cancer (EC) is the seventh highest, and the mortality rate is
sixth worldwide (1). Radiotherapy (RT) is still one of the main
treatments for locally advanced EC (2, 3). However, radiation
pneumonitis (RP) is one of the major toxicities of thoracic
radiation therapy. If RP occurs, it seriously affects the patient’s
quality of life and survival prognosis (4). Therefore, it is
imperative for EC patients undergoing RT to identify this
toxicity at the earliest possible time. More importantly, the
accurate prediction of RP is essential to facilitate individualized
radiation dosing that leads to maximized therapeutic gain. At
present, the risk assessment of RP is mainly predicted by using
lung dosimetric parameters (5, 6), such as the relative volume of
total lung irradiated above a specified threshold dose (VX) or
mean lung dose (MLD): Although several metrics have appeared
promising, the results vary across institutions, so these metrics
do not seem to be perfect at predicting RP (7, 8). In addition to
dosimetric parameters, some clinical features (tumor stage,
smoking history, preexisting lung diseases, concurrent
chemotherapy, and radiation dose) are also considered to be
related to RP occurrence. However, the consensus on the
comparative importance of these related predictors remains
unavailable at present. Consequently, in order to individually
and precisely discern RP, an accurate predictive model
incorporating multiple types of factors with superior clinical
utility is urgently needed.

Computed tomography (CT) images play an essential role in
the diagnosis and treatment of RP. As early as the end of the 20th
century, RP could be identified by CT. However, RP cannot be
predicted by superficial CT manifestations. Therefore, the focus
of later research is on the accurate prediction of RP (9). In recent
years, with the rapid development of radiomics analysis
technology, increasing attention has been paid to the research
of RT effect and side effect predictions based on radiomics
features (10–13). Among them, one study found that there is a
dose-dependent relationship between the changes in some
radiomics features and RP ≥2 grade determined by extracting
local lung CT images after RT (12). Another study successfully
established a differential model of high- and low-risk RP by
analyzing the region of interest (ROI) of the whole lung tissue
before RT (13). In short, radiomics features can capture the
2377
capability of lung texture features, which help describe the
potential RP risk (14, 15).

At present, cone-beam computed tomography (CBCT) has
become a routine online method of image-guided radiotherapy
(IGRT) for EC. If we can perform quantitative analysis on CBCT
radiomics features in a certain period of RT and then combine
these radiomics features with clinical features and dosimetric
parameters to predict RP in EC, it will help guide clinical
treatment strategies in a timely manner.

Therefore, the initial aim of this study was to investigate
whether the early changes in CBCT radiomics features could be
used as potential markers for predicting RP. In the present study,
a comprehensive nomogram, which is a conveniently applicable
predictive model integrating CBCT radiomics features, clinical
features, and dosimetric parameters, was built for the
individualized risk assessment and precise prediction of RP.
MATERIALS AND METHODS

Patients
The entire cohort of this retrospective study was obtained from the
records of our institutional picture archiving and communication
system (PACS) from January 2017 to June 2019, which was used
to identify esophageal squamous cell carcinoma (ESCC) patients
receiving RT treatment. The inclusion criteria were as follows: (1)
Karnofsky performance score (KPS) ≥70, (2) no previous history
of thoracic RT, (3) intensity-modulated radiotherapy (IMRT) and
received ≥50 Gy RT, and (4) CBCT scan performed at least once a
week during RT with the scanning range of the CBCT imaging
including at least two thirds of the lungs. The exclusion criteria
were as follows: (1) low image quality, (2) general pulmonary
infection unrelated to RT, and (3) treatment break of more than 7
days during RT. A total of 96 consecutive patients with thoracic
middle segment ESCC were identified and divided into two
cohorts at a 7:3 proportion using computer-generated random
numbers. Sixty-seven patients were allocated to the primary
cohort, and 29 patients were allocated to the verification cohort.
Our institutional research ethics board approved this retrospective
study (SDTHEC201703014). It waived the need to obtain
informed consent from the patients due to the retrospective
nature of the investigation (retrospective single-institution
cohort study).
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Clinical Data and RT Parameters
The clinical data were all acquired from the institute’s medical
records. Specifically, clinicopathological parameters included
age, sex, KPS, smoking status, diabetes history, chronic
obstructive lung disease (COPD), pathological diagnosis, tumor
location, TNM stage, radiation dose, and concurrent
chemoradiotherapy lack thereof. In addition, the lung
dosimetric parameters involved in this study included V5–V40
(relative volume of total lung treated with ≥5–40 Gy) and MLD.
In short, the parameters mentioned above were used to establish
a comprehensive nomogram after univariate analysis or least
absolute shrinkage selection operator (LASSO) feature selection.

The Eclipse Treatment Planning System (Varian Medical
Systems, Palo Alto, CA, Version 13.5.35) was adopted for RT
planning design. IMRT adopts a fixed-field, static intensity
modulation technique, and 5–7 fields of coplanar irradiation
are uniformly divided according to the specific situation in each
case. The required target parameters are then set, and the dose
distribution is obtained by inverse calculation of the treatment
planning system. The dose distribution is then graded
(stratified), and each field is decomposed into a series of
subfields. IMRT does not include sIMRT or volumetric
intensity-modulated arc therapy (VMAT). The target area
includes tumor volume (GTV), including CT imaging of visible
esophageal tumors and positive lymph nodes. The clinical target
volume (CTV) refers to the upper and lower expansion of the
esophageal tumor by 3 cm and 6 mm around the tumor and
related lymphatic drainage area. The planned target volume
(PTV) is formed by CTV extending 8 mm outward. IMRT was
administered by a Varian Linac Accelerator with a 6-MVX ray
and 95% PTV, and radiation doses of 50–66 Gy (median dose of
60 Gy) and 1.8–2.0 Gy/fraction 5 times/week were prescribed.

Normal tissue constraints were prioritized in the following
order for treatment planning purposes: maximum spinal cord
dose of 45 Gy, relative volume of total lung treated with ≥5 Gy
(V5) ≤60%, relative volume of total lung treated with ≥20 Gy
(V20) ≤28%, MLD ≤20 Gy, relative volume of the heart treated
with ≥30 Gy (V30) ≤40%, and relative volume of the heart
treated with ≥40 Gy (V40) ≤30%.

Follow-up and Evaluation of RP
Follow-up items included chest CT, physical examination, and
clinical symptoms. Patients were evaluated weekly during RT,
followed up at 1 month after completion of the initial treatment,
and then followed up every 2–3 months until at least 6 months
after the end of RT. The grading of RP was confirmed by two
senior oncologists and one radiologist. The National Cancer
Institute Common Terminology Criteria for Adverse Events 4.03
(CTCAE 4.03) was used to evaluate the degree of RP. In the
present study, grade ≥2 was used as the cutoff for diagnosing RP.

CBCT Scanning Method and Image
Acquisition
Using the on-board imager (OBI) system mounted on the Varian
Trilogymedical linear accelerator, the hardware portion included a
diagnostic (kV) level X-ray source (KVS) and an amorphous silicon
flat-panel kV detector (KVD). The CBCT image was obtained by
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rotating the frame at an angle. This is a slow CBCT acquisition
setting. The acquisition time is 67 s, and the patient keeps breathing
evenly during this process. Standard body scan conditions were
voltage (125 kVp), current (80 mA), exposure time (13 ms),
exposure (680 mAs), rotation angle (178°–182°), pixel matrix size
(384×384),field of view (FOV, 45×18 cm), slice thickness (2.5mm),
and fan-beam type (half-fan). Among fan-beam types, the half-fan
mode was used for the image acquisition of lung tissue structures
larger than 24 cm. In this study, lung CBCT image acquisition was
carried out in three different periods, and then the images were
imported into 3D Slicer (version 4.10.2; http://www.slicer.org) in a
DICOM format to extract and analyze the radiomics features. It
should be noted that these three different periods were artificially
divided according to the experimental design and corresponded to
the early stages: the third, fourth, and fifth weeks of RT (PTV
prescription dose range of EC: 18–22Gy, 27–32Gy, and 36–44Gy).

Image Segmentation and Feature
Extraction
Images from both lungs were segmented by a semiautomatic
segmentation method (16, 17) based on a threshold-based
algorithm. The specific steps are as follows: First, the background
was removed to obtain the internal region of the chest. Second, the
appropriate threshold was found to segment the lung and the
tissues outside the lung contour to the greatest extent. Finally,
the manual segmentation method (18) was used to erase the extra
parts outside the large trachea and lung parenchyma to obtain both
lungs as the ROI. Image segmentation was performed by an
experienced radiologist and then verified by a senior radiologist.
All features were extracted by using the radiomics plug-in in
3D Slicer. A total of 851 radiomics features were extracted,
including 13 morphological features, 18 histogram features,
74 original texture features, and 746 high-order features (wavelet
transform features).

Radiomics Feature Selection and
Radiomics Signature Construction
First, the extracted radiomics features were preprocessed. Based on
the Spearman rank correlation test, the features with correlations
greater than 0.9 and multicollinearity were deleted, and
independent features were preliminarily screened. Meanwhile,
based on the Mann–Whitney U test, the characteristics with
significant differences between the RP (≥2 grade) and non-RP
(<2 grade) groups were screened out. Finally, the LASSO method
(19) was used to select the final features, and the RP prediction
model of rad-score was constructed based on logistic regression
analysis. The LASSO method minimizes the sum of squared
residuals by using the case in which the sum of the absolute
values of the coefficients is less than the tuning parameter (l).
To prevent overfitting of the model, (20–22) during model
building, features are selected by constantly adjusting l. With
the increasing penalty, more regression coefficients are reduced
to zero, (23, 24) and then the remaining nonzero coefficient
is selected. The nonzero coefficient of the selected features is
the rad-score. Each patient’s rad-score is calculated as a linear
combination of selected features that have their own
coefficient weighting.
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In this study, 50 iterations of 10-fold nested cross-validation
were utilized, similarly to Xu et al. (25). Random sampling
was conducted in an attempt to balance the class distributions
within the cross-validation partitions. The cross-validation
loop provides a profile of model performance. It serves to
estimate how well the LASSO applied to a given set of candidate
predictors may generalize to other data sets. Model performance
was assessed by computing the area under the curve (AUC) for
each constructed model on a test partition. The inner cross-
validation loop was applied to determine the optimal value for l
such that the resulting model was guarded against overfitting. The
value of l for each cross-validation partition was selected by
determining the value that produced the most regularized model
such that the AUCwas within one standard error of the maximum
(26). The use of 50 resampled iterations with 10-fold nested cross-
validation constructs 500 models used to generate a distribution of
AUC values to estimate how well model construction with LASSO
generalizes to other data sets.
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Construction and Validation of the
Nomogram
First, the prediction efficiency of the three different periods was
compared, and then the best period was selected. Second, 96
patients were divided into the RP (39 cases) and non-RP (57
cases) groups, and 16 clinical features and dosimetric
parameters were collected. The best clinical features and
dosimetric parameters were determined by LASSO feature
selection. Final ly , a comprehensive nomogram was
established. The receiver operating characteristic (ROC) curve
was used to evaluate the prediction capacity of the model. The
calibration curve was used to determine whether the predicted
and observed probabilities for RP were in concordance. The
decision curve was performed to evaluate the clinical benefit
ratio of the nomogram.

This research process can be divided into four parts: image
acquisition, ROI segmentation, feature extraction, and radiomics
model construction as shown in Figure 1.
FIGURE 1 | Flow chart of radiomics.
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Statistical Analysis
All statistical analyseswere basedonSPSS20.0 (IBM,Armonk,NY,
USA) or R software (R Foundation for Statistical Computing,
Vienna, Austria, https://www.R-project.org/). The c2 test or Fisher
exact probability test was used to classify data between the two
groups. Two independent-sample t tests were used for counting
data (continuous data). The Mann–Whitney U test was used to
compare the differences in clinical features between the primary
and validation cohorts. The model was evaluated with respect to
sensitivity, specificity, ROC curve, and 95% confidence interval
(CI). P values ≤ 0.05 were considered statistically significant.
RESULTS

Analysis of Clinical Features and
Dosimetric Parameters Associated With
RP
The 96 patients were divided into RP (39 cases) and non-RP (57
cases) groups, and 9 clinical features and 7 dosimetric parameters
that might be related to the occurrence of RP were included.
Univariate analysis showed that tumor stage was correlated with
≥2 grade RP (c2 = 2.650, P = 0.008), and other factors, including
age, sex, concurrent chemoradiotherapy or lack thereof, COPD
status, smoking status, and RT dose, showed no significant
differences between the two groups (all Ps > 0.05). V5, V10,
V15, V20, V30, and MLD of both lungs were associated with the
occurrence of grade ≥2 RP (all Ps < 0.05). The characteristics of
the enrolled population are listed in Tables 1 and 2.

There were no significant differences in age, sex, tumor stage,
V5, and MLD between the primary group and the validation
group, which indicates that the groupings were reasonable (all Ps
> 0.05) as shown in Table 3. Seven factors (tumor stage, V5, V10,
V15, V20, V30, and MLD) remained after univariate analysis.
The LASSO feature selection method was used to screen these
seven factors, and three potential factors (V5, MLD, and tumor
stage) remained as shown in Figures 2A, B. The AUC values of
prediction efficiency for V5, MLD, and tumor stage were 0.698,
0.685, and 0.662, respectively. To observe the overall predictive
performance of V5, MLD, and tumor stage, we established a full
clinical–dosimetric feature combined model. The AUC value of
the combined model was 0.764 as shown in Figure 2C.

Radiomics Feature Extraction/Selection at
Different Periods and Radiomics Signature
Building
In the first period (PTV dose: 18–22 Gy), a total of 851 radiomics
featureswere extracted from thepatients. First, correlations greater
than 0.9 features were deleted, resulting in a total of 220 features
remaining. Second, linear features were removed, and 96 features
remained. Then, 21 features remained after using the rank-sum
test. Finally, the remaining two features after LASSOselectionwere
used to build the radiomics model as shown in Figures 3A, B. The
two features are originalfirst-order skewness andoriginalGLSZM-
small area emphasis. The model was built as follows: Rad-score =
-0.924 e+00×Skewness - 7.047 e+00×Small Area Emphasis +
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TABLE 1 | Univariate analysis of baseline clinical features of patients and RP.

Factor N RP c2 value P value

<2 grade ≥2 grade

Sex 96 57 39 2.767 0.096
Male 81 51 30
Female 15 6 9

Age (years) 96 1.619 0.203
<60 21 15 6
≥60 75 42 33

Stage 2.650 0.008
II 19 15 4
III 48 30 18
IV 29 12 17

Smoking history 96 0.198 0.656
No 54 31 23
Yes 42 26 16

COPD 96 1.436 0.231
No 81 46 35
Yes 15 11 4

Diabetes 96 0.318 0.573
No 88 53 35
Yes 8 4 4

Hypertension 96 0.606 0.436
No 83 48 35
Yes 13 9 4

Concurrent
Chemotherapy

96

No 71 41 30 0.300 0.584
Yes 25 16 9

Delivered
Dose (Gy)

96 1.867 0.172

<60 45 30 15
≥60 51 27 24
December 2020 | Volum
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COPD, chronic obstructive lung disease.
TABLE 2 | Single factor analysis of DVH and RP.

Lung DVH RP P value c2 value

<2 grade ≥2 grade

V5 48.95 ± 10.56 59.39 ± 10.00 0.00 -4.91
V10 33.64 ± 7.70 40.92 ± 7.95 0.00 -4.46
V15 25.34 ± 6.52 30.77 ± 6.96 0.00 -3.85
V20 18.81 ± 5.47 22.47 ± 4.82 0.00 -3.47
V30 9.61 ± 4.40 12.16 ± 5.00 0.01 -2.58
V40 3.80 ± 2.49 4.58 ± 3.24 0.21 -1.25
MLD (cGy) 1016.47 ± 218.82 1260.87 ± 267.38 0.00 -4.72
MLD, mean lung dose; V5, V10, V15, V20, V30, V40 = relative volume of total lung treated
with ≥5, 10, 15, 20, 30, and 40 Gy.
ABLE 3 | Comparison of sex, age, tumor stage, V5, and MLD between the
rimary and the verification cohort.

actor Primary cohort Verification cohort c2 value P value

ge (years) 65.33 ± 9.37 68.62 ± 8.89 -1.64 0.11
ex (N) 67 29 0.11 0.75
Male 56 25
Female 11 4
tage 3.54 0.17
II 13 6
III 30 18
IV 24 5
5 52.35 ± 11.27 55.14 ± 12.01 -1.07 0.29
LD (Gy) 11.06 ± 2.61 11.38 ± 2.85 -0.52 0.61
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4.5329. Rad-scores for each patient in the primary cohort and
validation cohort are shown in Figures 4A, B.

In the second period (PTV dose: 27–32 Gy), a total of 851
radiomics features were extracted from the patients. First,
correlations greater than 0.9 features were deleted, resulting
in a total of 222 features remaining. Second, linear features were
removed, and 96 features remained. Then, 10 features remained
after using the rank-sum test. Finally, the remaining five
features (voxel volume, smallest axis length, small
dependence low gray-level emphasis, large area low gray-level
emphasis, and busyness) after LASSO selection were used to
build the radiomics model. The model was built as follows:
Rad-score = -1.996 e-07×voxel volume - 4.036 e-03×smallest
axis length + 5.376 e+01×small dependence low gray-level
emphasis + 1.718 e-07×large area low gray-level emphasis -
2.473 e-04×busyness + 1.041 e+00.

In the third period (PTV dose: 36–44 Gy), a total of 851
radiomics features were extracted from the patients. First,
correlations greater than 0.9 features were deleted, resulting in
a total of 220 features remaining. Second, linear features were
removed, and 96 features remained. Then, 43 features remained
Frontiers in Oncology | www.frontiersin.org 6381
after using the rank-sum test. Finally, the remaining six features
(gray-level nonuniformity, small dependence low gray-level
emphasis, cluster shape, uniformity, entropy, and size zone
nonuniformity) after LASSO selection were used to build the
radiomics model. The model was built as follows: Rad-score =
+4.680 e-07×gray-level nonuniformity + 1.087 e+01×small
dependence low gray-level emphasis - 7.913 e-04×cluster shape
+ 1.401 e+00×uniformity + 1.406 e+00×entropy - 2.207 e-05×size
zone nonuniformity - 4.776 e+00.

Validation of Radiomics Signature at
Different Periods
In the first period, the predictive efficacy of the model was as
follows: In the primary cohort, the AUC was 0.700 (95% CI
0.568–0.832), the sensitivity was 61.5%, and the specificity was
75.0%. In the validation cohort, the AUC was 0.765 (95% CI
0.588–0.941), the sensitivity was 84.6%, and the specificity was
64.7% as shown in Table 4 and Figures 5A, B.

In the second period, the predictive efficacy of the model was
as follows: In the primary cohort, the AUC was 0.663 (95% CI
0.530–0.797), the sensitivity was 90.6%, and the specificity was
A B C

FIGURE 2 | LASSO characteristic selection of clinical features and dosimetric parameters (A, B). ROC curve of V5, MLD, tumor stage, and combined model (C).
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FIGURE 3 | Feature screening of radiomics in the first period. By adjusting the different penalty parameter (l) to obtain a high-performance model, the radiomics
characteristics with the highest predictive performance were obtained. Radiomics feature convergence diagram (A). Each curve represents the trajectory of the
coefficient of each independent variable (B).
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A B

FIGURE 4 | Rad-score for each patient in the primary and validation cohorts. Green bars show scores for patients without RP, and orange bars show scores for
those with RP (A, B).
TABLE 4 | ROC curve parameters of the radiomics model and nomogram.

Classification Primary cohort Validation cohort

AUC 95% CI Sensitivity Specificity AUC 95% CI Sensitivity Specificity

First period 0.700 0.568-0.832 61.5% 75.0% 0.765 0.588-0.941 84.6% 64.7%
Second period 0.663 0.530-0.797 90.6% 42.9% 0.604 0.356-0.851 85.7% 50.0%
Third period 0.699 0.573-0.826 66.7% 70.3% 0.756 0.561-0.950 66.7% 80.0%
Nomogram 0.836 0.700-0.918 96.0% 54.8% 0.905 0.799-1.000 92.9% 73.3%
Frontiers in Oncology |
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FIGURE 5 | ROC curve of radiomics features in the first period of RT (A, B).
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42.9%. In the validation cohort, the AUC was 0.604 (95% CI
0 .356–0 .851) , the sens i t i v i ty was 85 .7%, and the
specificity 50.0%.

In the third period, the predictive efficacy of the model was as
follows: In the primary cohort, the AUC was 0.699 (95%
CI 0.573–0.826), the sensitivity was 66.7%, and the specificity
was 70.3%. In the validation cohort, the AUC was 0.756 (95% CI
0.561–0.950), the sensitivity was 66.7%, and the specificity was
80.0% as shown in Table 4.

By comparing the prediction efficiency of the AUC in three
periods, it is obvious that the prediction efficiency in the first
period is better than those in the second and third periods in
both the primary and validation cohorts. To reflect the
importance of the early prediction of RP in clinical practice,
the first-period rad-score and three essential features (V5, MLD,
and tumor stage) were used to establish a comprehensive
nomogram model.

The Incremental Value of the Radiomics
Signature When Added to the
Comprehensive Nomogram
The AUC values of dosimetric parameters (V5, MLD) and
clinical features (tumor stage) were 0.698, 0.685, and 0.662,
respectively. The AUC values of the full clinical–dosimetric
feature combined model was 0.764. In addition, the AUC
values of the radiomics signature at three different periods
were 0.700, 0.663, and 0.699, respectively (primary cohort). It
can be seen that the single clinical features, dosimetric
parameters, or full clinical–dosimetric combined model are not
ideal in predicting the risk of RP. To this end, we created a
comprehensive nomogram that integrates dosimetric parameters
and clinical features with the radiomics signature from the first
period. The results show that, in the primary cohort, the AUC of
our nomogram was 0.836 (95% CI: 0.700–0.918), and in the
validation cohort, the AUC was 0.905 (95% CI: 0.799–1.000) as
shown in Table 4 and Figures 6B, C. There is no doubt that the
comprehensive nomogram, incorporating radiomics features,
significantly improves the ability of conventional dosimetric
parameters and clinical features to predict the risk of RP. The
graphical form of the nomogram is shown in Figure 6A. More
importantly, the calibration curve is produced as shown in
Figure 6D. The diagonal dotted line represents an ideal
evaluation, and the other two lines next to it represent the
performance of the nomogram. A closer fit to the diagonal
dotted line indicates a better evaluation. In summary, this
calibration curve shows favorable consistency between the
predicted RP and the actual observation.

How to Make Clinical Decisions
The clinical decision curve analysis of the nomogram is shown in
Figure 6E, which shows the patient’s benefits when the physician
makes the judgment. It shows that, if the probability of the
domain value is 10%, the benefit of using the nomogram to
predict the efficacy of RP is higher than that of radiomics features
or other parameters alone. In short, this decision curve exhibits
satisfactory positive net benefits of the nomogram at the
threshold probabilities.
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DISCUSSION

A single index based on lung dosimetric parameters is not the
“gold standard” to judge the occurrence of PR risk; however,
radiomics can extract image data to characterize the standard
tissue structure, including typical lung structures. They may
produce clinically relevant improvements in predicting
treatment-related toxicities (13). This makes up for the
deficiency of dose-volume parameter prediction to a great
extent. Some previous studies, (12, 13) respectively, report the
relationship between the changes in some second- or higher-
order eigenvalues of lung cancer after and before RT and the
occurrence of RP. Unfortunately, due to the limitations of
detection techniques or other factors, it is not possible to
establish predictive models for clinical practice. In this study,
we used an automated computer extraction algorithm and digital
quantitative analysis technology to obtain high-quality
information to comprehensively evaluate various characteristics
of tumor and normal tissue responses (14, 27). More
importantly, we constructed a comprehensive nomogram
model based on CBCT radiomics features in combination with
clinical features and dosimetric parameters to accurately predict
RP in EC patients treated with RT. To the best of our knowledge,
this is the first study of the early prediction of RP by using IGRT
to obtain CBCT imaging information in different periods of RT.
Importantly, this comprehensive nomogrammodel is superior to
single clinical features and lung dosimetric parameters in
RP prediction.

We selected CBCT images from three different periods and
extracted the radiomics features. The primary purpose was to
find the first radiomics features that can independently predict
RP; however, after selecting the radiomics features in different
periods, it is found that each period has its own independent set
of feature parameters related to RP. We believe that, in addition
to the influence of radiation dose factors, whether these
characteristics vary with changes in the RT process is still
uncertain. It is gratifying that we found the best prediction of
RP to be in the first period of radiomics characteristics. Two
important features can be found in the early stage of low-dose RT
of lung tissue: Although this may differ from our initial
expectation of the experimental results, the results are
fascinating. This result is similar to the findings of Cunliffe
et al. (12) and Jenkins et al (28). They found that AUC values
in low- and medium-dose areas of the lung were different
between RP and non-RP patients even though these AUC
values appeared in areas with lower visible changes. These first
radiomics features may be able to be used to explain or screen out
those susceptible to RP due to intrinsic genetic mutations.

In regard to the susceptible population of RP, we must devote
attention to the sensitivity of lung tissue to RT. At present, the
radiosensitivity of lung tissue has been reported (29, 30), and it is
considered to be a potential influencing factor for RP occurrence.
This difference in the sensitivity of lung tissue to radiation
constitutes our different understanding of the probability of
RP. In two groups of patients with different radiosensitivity of
lung tissue, we cannot judge the probability of RP by standard
clinical features and lung dosimetric parameters. However,
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Decision curve
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FIGURE 6 | (A) The comprehensive nomogram incorporates V5, MLD, tumor stage, and rad-score (the first period) to predict the risk of RP in EC patients. V5:
relative volume of total lung treated with ≥5 Gy; MLD: mean lung dose. (B, C) ROC curves of the comprehensive nomogram in the primary and validation cohorts.
(D) Calibration curves of the comprehensive nomogram with the addition of V5, MLD, tumor stage, and radiomics features. The diagonal dotted line represents an
ideal evaluation, and the other two lines next to it represent the performance of the nomogram. A closer fit to the diagonal dotted line indicates a better evaluation.
(E) Decision curves of the radiomics features model and the combination model (comprehensive nomogram) predicting RP. The y-axis represents the net benefit.
The red curve represents the comprehensive nomogram, and the green line represents the radiomics features model. The horizontal black line indicates that the
assumption is valid. The oblique gray line indicates that the assumption is invalid.
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radiomics can analyze the data by extracting features from CT
images of the lung, thus providing a powerful method for the
noninvasive description of lung tissue radiosensitivity. This may
be why the radiomics features are superior to the clinical features
and dosimetric parameters in current studies. In this study, this
advantage in AUC value, sensitivity, and specificity performance
is not particularly good, but through our research analysis,
radiomics features of RP risk prediction cannot be ignored.

The successful establishment of the prediction model is based
on the standardization of data collection and the rationalization
of data processing. First, we should consider that the feature
extraction data are affected by CT parameters (31) because the
CT features may be different under different image-acquisition
conditions. In this study, based on the CBCT of the Varian
accelerators in our center, these devices have the same tube
voltage, tube current, exposure time, exposure amount, and pixel
matrix size, which can help control for the differences between
the scanners and acquisition parameters. Second, to develop the
radiomics signature, a total of 851 candidate features were
reduced to a set of only a few potential descriptors by using
the LASSO logistic regression model to realize feature selection
by constantly adjusting the regularization parameter l to make
the weight coefficient of the feature approach zero. The LASSO
(20) logistic regression model is suitable for analyzing large sets
of radiomics features with a relatively small sample size, and it is
designed to avoid overfitting high-dimensional data (21, 32). At
the same time, the LASSO logistic regression model allows the
radiomics signature to be constructed by combining the selected
features, so it allows the model to more easily identify the most
closely related features in patients with RP. Finally, the nested
cross-validation method (25) was used for internal validation to
improve the accuracy of the model.

It should be noted that the difference in the irradiation mode
(3-D conformal radiation therapy and IMRT) affects the
potential dose distribution of the lung, which may affect the
selection of clinical features and dosimetric parameters as risk
characteristics of RP. This can be quickly confirmed by
comparing Tucker et al. (33) and Shane et al. (13) where, in
the former, 75% received 3-D conformal radiation therapy, and
the latter 83% received IMRT. Therefore, it seems complicated to
establish a general model with good discriminant performance
under different technical conditions.

The clinical factors (age, tumor stage, KPS score, chronic
lung disease, diabetes, chemotherapy lack thereof) and lung
dosimetric parameters (V5, V10, V20, MLD) related to RP are
reported in previous studies. To provide better help for the
oncologist, we designed a clinical nomogram to combine the
above available RP risk factors with radiomics features.
Therefore, we aim to establish a combined model, maximizing
clinical utility and accuracy of prediction ability, and so the
initial experimental design was not expected to rely solely on the
radiomics model as the final prediction model. Of course,
judging from the AUC value, sensitivity, and specificity of the
radiomics model in each period of RT, these characteristics
alone are not perfect in predicting RP. Dose-volume histogram
(DVH) metrics have been extensively observed and reported to
be correlated with RP despite the current data and research
Frontiers in Oncology | www.frontiersin.org 10385
reports not being sufficient to provide specific and safe standard
doses (34). Chargari et al. (35) find that V5 is a risk factor for
acute or chronic lung toxicity. Cho et al. (6) find that MLD is the
most related factor that predicts RP rather than V5, V10, or V20.
Some clinical features have emerged as important risk factors
contributing to RP progression. Some studies show that
smoking is related to the severity of RP (36, 37). Takeda et al.
(38) and Kimura et al. (39) report that COPD is a significant risk
factor for RP in patients with EC after RT. In this study, we find
that smoking status, COPD, and concurrent chemoradiotherapy
are not correlated with the incidence of RP, and so these factors
are not included in our combined model, but this does not mean
that they are not important. After LASSO logistic regression
analysis, several significant variables, including V5, MLD, and
tumor stage, were integrated into the nomogram to predict PR.
The results were as follows: clinical-dose characteristic model
(AUC values: V5 = 0.698, MLD = 0.685, tumor stage = 0.662),
radiomics model (primary cohort AUC 0.700, validation cohort
AUC 0.765), and nomogram (primary cohort AUC 0.836,
validation cohort AUC 0.905). The nomogram demonstrates a
better ability to predict RP than the other models.

How to use this information in the treatment plan or
alternative program to help clinicians is our greatest concern.
Fortunately, the goal of radiomics is to develop a decision-
making tool that meets the needs of clinicians. This is because
such a tool could combine radiomics features with other patient
characteristics to improve the capability of the decision support
model (15, 40). We show that radiomics features complement
clinical features and lung dosimetric parameters, helping to
provide better predictive ability for RP. The clinical decision
curve of this nomogram shows that the effectiveness of the
nomogram in predicting RP is higher than that of using
radiomic characteristics or other parameters alone. In short,
under the threshold probability, the decision curve exhibits a
satisfactory positive net benefit of the nomogram.

Our results demonstrate the potential value of radiomics
techniques in the risk prediction of RP patients. If more
clinical variables are included in the nomogram, there will be
more room for future development of this model, and the
resulting prediction effect will be better. A recent study (41) by
another of our teams found that subjective global assessment
score (SGA), pulmonary fibrosis score (PFS), planning target
volume/total lung volume (PTV/LV), MLD, and ratio of change
regarding systemic immune inflammation index at 4 weeks (4w
SII) were potential valuable markers in predicting severe acute
radiation pneumonitis (SARP). Subsequently, the team
developed a nomogram and corresponding risk classification
system with superior prediction ability for SARP. In the next
step, we will consider combining the research results of this team
with radiomics to establish a new RP prediction model for better
clinical application.

Although our study has many strengths, several limitations
should be addressed here. First, the sample size is small, which
can lead to the inability to apply nonlinear classifiers, such as
neural networks (42, 43). Because a nonlinear classifier uses a
more extensive data set, it is beneficial to improve the accuracy of
the RP model. Second, our analysis does not account for two-way
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or higher-order interactions between features. If interactions
between features had been identified, the interaction terms that
were most strongly associated with the outcome interactions
would have been selected when we constructed the radiomics
signature, and this could have improved performance. However,
uncovering the interactions of multiple attributes is a challenging
problem. Third, we used a validation cohort that was drawn from
the same institution as the primary cohort, which prevented us
from investigating the generalizability of the results to other
institutions and settings. In addition, there is a lack of sufficient
external data validation. Fourth, selection bias occurred when
strict criteria were used, and this may affect the model training.
For instance, all patients are middle thoracic EC patients, which
limits the application of this method to patients with cervical,
upper, and lower thoracic segment EC radiotherapy. Also, all
patients experienced uniform CBCT imaging scanners and
parameters, which does not guarantee the reproducibility and
stability of radiomics features under other conditions. In the
future, we should conduct a prospective, multicenter, large-
cohort study to further develop and validate nomograms in
terms of predicting RP.

As a future study, we will add different types of patients,
including those with different EC locations (cervical, upper
thoracic, lower thoracic segments) and different RT techniques
(3DCRT, TOMO, VMAT). We will also include more laboratory
indicators that may reflect RP, such as inflammatory indexes and
immune inflammatory indexes. In terms of basic research, we
should also improve the model of radiomics, especially the
combination of radiomics and genomics. The former focuses
on medical imaging of the normal tissues or tumors and
performs diagnosis and prognosis based on quantitative
imaging features, and the latter discovers and notes the gene
sequences to study the function and structure of genomes of the
diseases. Besides this, if we can combine available radiation
metabolomics (44) with functional CT (45, 46) radiomics
features, it may help us understand the differences in radiation
sensitivity and tissue cell metabolism in order to establish a more
robust prediction model. Therefore, it can be predicted that the
combination of multiple omics will be the best plan for the future
Frontiers in Oncology | www.frontiersin.org 11386
diagnosis and treatment of diseases and the prediction
of complications.
CONCLUSIONS

CT radiomics has powerful data-processing and analysis abilities.
In this context, we explored a method to predict RP based on the
lung CBCT radiomics features for EC patients. More
importantly, we used this method to successfully build and
validate a novel nomogram with good predictive value, which
can help clinicians identify high-risk RP patients early and guide
personalized treatment and clinical decisions.
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