
EDITED BY : Chiara Bartolozzi, Emre O. Neftci and Elisabetta Chicca

PUBLISHED IN : Frontiers in Neuroscience

NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

https://www.frontiersin.org/research-topics/10423/neuromorphic-engineering-systems-and-applications
https://www.frontiersin.org/research-topics/10423/neuromorphic-engineering-systems-and-applications
https://www.frontiersin.org/research-topics/10423/neuromorphic-engineering-systems-and-applications
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 1 November 2021 | Neuromorphic Engineering Systems and Applications

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88971-723-1

DOI 10.3389/978-2-88971-723-1

https://www.frontiersin.org/research-topics/10423/neuromorphic-engineering-systems-and-applications
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/about/contact
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

Frontiers in Neuroscience 2 November 2021 | Neuromorphic Engineering Systems and Applications

NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

Topic Editors:
Chiara Bartolozzi, Italian Institute of Technology (IIT), Italy
Emre O. Neftci, University of California, Irvine, United States
Elisabetta Chicca, University of Groningen, Netherlands

Citation: Bartolozzi, C., Neftci, E. O., Chicca, E., eds. (2021). Neuromorphic
Engineering Systems and Applications. Lausanne: Frontiers Media SA.
doi: 10.3389/978-2-88971-723-1

https://www.frontiersin.org/research-topics/10423/neuromorphic-engineering-systems-and-applications
https://www.frontiersin.org/journals/neuroscience
http://doi.org/10.3389/978-2-88971-723-1

Frontiers in Neuroscience 3 November 2021 | Neuromorphic Engineering Systems and Applications

04 Sepia, Tarsier, and Chameleon: A Modular C++ Framework for
Event-Based Computer Vision

Alexandre Marcireau, Sio-Hoi Ieng and Ryad Benosman

22 Low-Power Dynamic Object Detection and Classification With Freely
Moving Event Cameras

Bharath Ramesh, Andrés Ussa, Luca Della Vedova, Hong Yang and
Garrick Orchard

37 Synaptic Delays for Insect-Inspired Temporal Feature Detection in
Dynamic Neuromorphic Processors

Fredrik Sandin and Mattias Nilsson

52 Event-Based Gesture Recognition With Dynamic Background Suppression
Using Smartphone Computational Capabilities

Jean-Matthieu Maro, Sio-Hoi Ieng and Ryad Benosman

68 Event-Based Eccentric Motion Detection Exploiting Time Difference
Encoding

Giulia D’Angelo, Ella Janotte, Thorben Schoepe, James O’Keeffe,
Moritz B. Milde, Elisabetta Chicca and Chiara Bartolozzi

82 Biologically Relevant Dynamical Behaviors Realized in an Ultra-Compact
Neuron Model

Pablo Stoliar, Olivier Schneegans and Marcelo J. Rozenberg

92 Event-Based Computation for Touch Localization Based on Precise Spike
Timing

Germain Haessig, Moritz B. Milde, Pau Vilimelis Aceituno, Omar Oubari,
James C. Knight, André van Schaik, Ryad B. Benosman and
Giacomo Indiveri

111 An On-chip Spiking Neural Network for Estimation of the Head Pose of
the iCub Robot

Raphaela Kreiser, Alpha Renner, Vanessa R. C. Leite, Baris Serhan,
Chiara Bartolozzi, Arren Glover and Yulia Sandamirskaya

127 Optimizing the Energy Consumption of Spiking Neural Networks for
Neuromorphic Applications

Martino Sorbaro, Qian Liu, Massimo Bortone and Sadique Sheik

138 Event-Based Face Detection and Tracking Using the Dynamics of Eye Blinks

Gregor Lenz, Sio-Hoi Ieng and Ryad Benosman

149 Hand-Gesture Recognition Based on EMG and Event-Based Camera
Sensor Fusion: A Benchmark in Neuromorphic Computing

Enea Ceolini, Charlotte Frenkel, Sumit Bam Shrestha, Gemma Taverni,
Lyes Khacef, Melika Payvand and Elisa Donati

164 Biologically Plausible Class Discrimination Based Recurrent Neural
Network Training for Motor Pattern Generation

Parami Wijesinghe, Chamika Liyanagedera and Kaushik Roy

179 HFNet: A CNN Architecture Co-designed for Neuromorphic Hardware
With a Crossbar Array of Synapses

Roshan Gopalakrishnan, Yansong Chua, Pengfei Sun,
Ashish Jith Sreejith Kumar and Arindam Basu

Table of Contents

https://www.frontiersin.org/research-topics/10423/neuromorphic-engineering-systems-and-applications
https://www.frontiersin.org/journals/neuroscience

TECHNOLOGY AND CODE
published: 08 January 2020

doi: 10.3389/fnins.2019.01338

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 1338

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Arren Glover,

Italian Institute of Technology (IIT), Italy

Alpha Renner,

ETH Zurich, Switzerland

*Correspondence:

Sio-Hoi Ieng

siohoi.ieng@gmail.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 03 July 2019

Accepted: 27 November 2019

Published: 08 January 2020

Citation:

Marcireau A, Ieng S-H and

Benosman R (2020) Sepia, Tarsier,

and Chameleon: A Modular C++

Framework for Event-Based

Computer Vision.

Front. Neurosci. 13:1338.

doi: 10.3389/fnins.2019.01338

Sepia, Tarsier, and Chameleon: A
Modular C++ Framework for
Event-Based Computer Vision
Alexandre Marcireau 1, Sio-Hoi Ieng 1* and Ryad Benosman 1,2,3

1 INSERM UMRI S 968, Sorbonne Universites, UPMC Univ Paris 06, UMR S 968, CNRS, UMR 7210, Institut de la Vision,

Paris, France, 2University of Pittsburgh Medical Center, Pittsburgh, PA, United States, 3 Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, United States

This paper introduces an new open-source, header-only and modular C++ framework

to facilitate the implementation of event-driven algorithms. The framework relies on three

independent components: sepia (file IO), tarsier (algorithms), and chameleon (display).

Our benchmarks show that algorithms implemented with tarsier are faster and have

a lower latency than identical implementations in other state-of-the-art frameworks,

thanks to static polymorphism (compile-time pipeline assembly). The observer pattern

used throughout the framework encourages implementations that better reflect the

event-driven nature of the algorithms and the way they process events, easing future

translation to neuromorphic hardware. The framework integrates drivers to communicate

with the DVS, the DAVIS, the Opal Kelly ATIS, and the CCam ATIS.

Keywords: silicon retinas, event-based sensing, development framework, event-based processing, asynchronous

computation

1. INTRODUCTION

Event-based cameras are fundamentally different from conventional cameras (Posch et al.,
2014). Conventional, frame-based cameras integrate light at fixed time intervals, and produce
spatially dense frames. By contrast, the pixels of event-based sensors are asynchronous and
independent. Each pixel outputs data only when the visual information in its field of view changes,
mimicking biological sensing (Liu and Delbruck, 2010). Event-based cameras output their events
in the order they are produced, resulting in a spatially sparse sequence with sub-millisecond
precision. This fundamental difference in data nature calls for different computational strategies
(Delbruck et al., 2010).

This work introduces an end-to-end framework for designing and running event-based
algorithms for computer vision. The code components are written in C++, and are open-
source. The presented method and implementation outperform state-of-the-art frameworks while
encouraging better semantics for event-based algorithms. Special care is given to modularity and
code dependencies management, in order to facilitate portability and sharing.

1.1. Event-Based Cameras
Bio-inspired cameras aim at mimicking biological retinas, as the latter greatly outperform
conventional, frame-based systems (Liu and Delbruck, 2010). Many architectures have been
implemented over the years, including pulse-modulation imaging (Chen et al., 2011), smart
vision chips (Dudek and Hicks, 2005; Carmona-Galán et al., 2013), and event-based sensors. The
framework presented in this paper primarily targets event-based sensors.

4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01338
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01338&domain=pdf&date_stamp=2020-01-08
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:siohoi.ieng@gmail.com
https://doi.org/10.3389/fnins.2019.01338
https://www.frontiersin.org/articles/10.3389/fnins.2019.01338/full
http://loop.frontiersin.org/people/506091/overview
http://loop.frontiersin.org/people/32893/overview
http://loop.frontiersin.org/people/94237/overview

Marcireau et al. Event-Based C++ Framework

The pixels of event-based sensors contain analog circuits
implementing signal processing calculations. Upon meeting a
specific condition, the analog circuit emits an output transmitted
to the computer. The most widespread type of calculation is
brightness change detection. The pixel’s photodiode output is
continuously monitored to detect significant variations. When
the logarithmic luminance changes beyond a fixed threshold,
the pixel sends an event to the computer. This event bundles
spatial and temporal information, as well as a boolean polarity
encoding whether the significant change corresponds to an
increase or decrease in brightness. Several sensors contain
pixels implementing this behavior, including the DVS (Dynamic
Vision Sensor) (Lichtsteiner et al., 2008), the cDVS (Berner
and Delbruck, 2011), the ATIS (Asynchronous Time-based
Image Sensor) (Posch et al., 2010), and the DAVIS (Dynamic
and Active-pixel Vision Sensor) (Brandli et al., 2014). They
are still under active development, with improved versions
featuring lower latency (Lenero-Bardallo et al., 2011), higher
sensitivity (Delbruck and Berner, 2010; Serrano-Gotarredona
and Linares-Barranco, 2013; Yang et al., 2015), or more
pixels (Son et al., 2017). Figure 1 highlights the difference
between a sequence of frames and a stream of polarity events
recorded from the same scene.

The cDVS and ATIS differ from the DVS by their extended
pixel circuits generating a second type of polarity events,
besides change detection. The polarity bit of the second event
type encodes another visual information. The cDVS triggers
such events on wavelength changes, whereas the ATIS encodes
absolute exposure measurements in the time difference between
them. The DAVIS is a hybrid sensor: it features both a DVS-
like circuit and a light integration circuit. The latter produces
frames similar to those generated by a conventional sensor.
Huang et al. (2017) present another event-based sensor, the
CeleX, with a behavior similar to that of a DVS: events are
triggered by brightness changes. However, output events include
an absolute exposure measurement encoded on 9 bits instead of
a binary spolarity.

1.2. Event-Based Computer Vision
There are three approaches to information extraction from
the output of event-based cameras. The first one consists in
generating spatially dense frames from the sensor output in a way
that preserves temporal resolution. The frames can then be fed
to conventional computer vision algorithms (Amir et al., 2017;
Maqueda et al., 2018). The second approach advocates short
calculations triggered by each event, and requires a rethink of
computer vision from the ground up (Benosman et al., 2012;
Lagorce et al., 2015; Reverter Valeiras et al., 2016; Mueggler et al.,
2017). Bymatching the sensor data format, this approach benefits
from the sensor advantages, notably resemblance to biological
signals, low latency, and data compression. Spiking neural
networks fit the constraints of the second approach, and several
event-based computer vision algorithms were implemented on
neural simulators (Galluppi et al., 2012; Orchard et al., 2015;
Haessig et al., 2018; Hopkins et al., 2018). The third approach
mixes frames and events, and is well-suited to hybrid sensors,
such as the DAVIS (Barranco et al., 2014; Moeys et al., 2016;

FIGURE 1 | Conventional cameras (top) capture dense frames at fixed time

intervals. Event-based cameras (bottom) have independent pixels which

asynchronously output information when the luminance in their individual field

of view changes. This sparse representation yields a better temporal resolution

and a smaller bandwidth. Some computer vision tasks, such as moving

objects segmentation, become easier. The point cloud representation is a still

frame of a standalone HTML widget generated by our framework.

Tedaldi et al., 2016). The framework presented in this paper is
designed to encourage the second approach, though it applies to
the third as well.

Given the issues arising from the Von Neumman architecture
of modern computers (Indiveri and Liu, 2015), dedicated
hardware seems required for event-based vision systems
to match the performance of their biological counterparts.
Nevertheless, microprocessors remain the de facto standard
to perform general-purpose computations. They benefit from
years of research and development, making them cost-effective,
computationally-efficient, and user-friendly. As such, they are
great tools for algorithms prototyping and early applications
of event-based sensors. Furber (2017) envisions heterogeneity

Frontiers in Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 13385

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

in future processors: general-purpose cores will work together
with dedicated hardware accelerators. Under this assumption,
a framework targeting CPUs is not a mere temporary solution
waiting to be replaced by neural networks, but a decision support
tool. It provides a baseline for algorithms power consumption
and computational cost, against which implementations running
on dedicated hardware can be compared. Thus, the accelerators
can be chosen based on the gain they yield for tasks deemed
important. A framework designed for CPUs must provide fast
implementations in order to be an effective baseline. Moreover,
its syntax should reflect the constrains of hardware dedicated
to event-based calculations, to ease comparisons and facilitate
algorithms ports from one platform to the other.

1.3. Frameworks
A software framework provides a collection of operators and
a way to assemble them to build complex algorithms. We
consider three types of frameworks related to event-based
computer vision. First, we present frameworks for conventional
computer vision and their limits when working with event-based
data. Then, we examine event-based programming, showing
how its concepts apply to event-based computer vision, even
though existing frameworks were designed under constraints
so different from event-based sensors that they cannot be used
directly. Finally, we review frameworks dedicated to event-based
computer vision.

The applications of linear algebra to a wide variety of
science and engineering fields triggered, early in computer
science history, the development of efficient libraries to compute
matrix operations (Lawson et al., 1979). Conventional computer
vision libraries use matrices to represent frames, allowing
algorithms to be expressed as a sequence of operations on dense
data (Thompson and Shure, 1995; Bradski, 2000; Jones et al.,
2001). Dynamic, high-level languages can often be used to specify
the operators order. The overhead incurred by the dynamic
language is negligible when compared to the matrix operations.
The latter are optimized by the underlying linear algebra
library, yielding a development tool both efficient and user-
friendly. Event-based computer vision is a different story. Small
computations are carried out with each incoming event, and the
cost of the glue between operators stops being negligible. Hence,
the very structure of the libraries designed for conventional
computer vision is incompatible with events, besides dealing with
dense frames instead of sparse events.

Unlike event-based computer vision, event-driven
programming languages and frameworks are not new: Visual
Basic dates back to the 1990s. Among the concepts developed
for event-driven programming, the event handler pattern
and the observer pattern (Ferg, 2006) are natural choices to
represent event-based algorithms and event-based cameras.
Reactive programming (Bainomugisha et al., 2013), devised has
a refinement over event-driven programming, introduced new
abstractions to avoid state-full event-handlers and explicit time
management. However, the neurons we aim at mimicking are
state-full (the reaction to an input spike—for example, an output
spike—depends on the current membrane potential), and fine

control over time management is a needed feature for real-time
systems. Hence, we choose to design our framework using
event-driven rather than reactive concepts. Modern event-driven
frameworks have notable applications in graphical user interfaces
and web servers (Tilkov and Vinoski, 2010), where events
represent user interactions and HTTP requests, respectively. The
number of events per second reached in these applications is
very small when compared to event-based cameras. On the one
hand, a user clicking or typing does not generate much more
than tens to hundreds of events per second (Cookie Clicker,
2013), and a large website, such as Twitter handles about six
thousand requests per second on average1. On the other hand,
an ATIS moving in a natural environment generates about one
million events per second, with peaks reaching next to ten
million events per second. The relatively small number of events
the existing frameworks were designed to handle makes their
design incompatible with event-based computer vision. For
example, Javascript event handlers can be attached or detached
at run-time, greatly improving flexibility at the cost of a small
computational overhead whenever an event is dispatched.

All the frameworks dedicated to event-based computer vision
circumvent the aforementioned problem using event buffers
transmitted from operator to operator. The buffers typically
contain a few thousand events spread over a few thousand
microseconds. A typical operator loops over the buffer and
applies some function on each event. The operator output
consists in one or several new event buffers, looped over by
subsequent operators. The sequence is dynamically defined at
run-time, incurring a computational overhead. However, this
cost is paid with every buffer instead of every event, becoming
negligible as is the case with conventional computer vision
frameworks. The first event-based computer vision framework,
Jae (2007), was designed for the DVS and is written in Java.
Subsequent cameras and their increased event throughput
triggered the development of C and C++ frameworks: Cae
(2007), recently re-factored and renamed DV (2019) (both
from iniVation), kAER2 (from Prophesee), and event-driven
YARP (Glover et al., 2018a,b) (developed for the iCub). Table 1
highlights the design differences between these frameworks. The
table also includes tarsier, the computation component of the
framework presented in this work. Unlike the other frameworks,
it assembles operators at compile-time, suppressing the need for
buffers between components, even though event buffers are still
used to communicate with cameras or the file system.

1.4. Paper Structure
This paper presents the frameworks components in the order
they intervene in an actual pipeline, starting with an overall
view (section 2). We introduce event-driven programming
concepts and shows how they apply to event-based computer

1CBS News Uses Twitter as Part of Its News Investigating and Reporting (2015).

Available online at: https://developer.twitter.com/en/case-studies/cbs-news
2kAER 0.6, used in this work, is the latest version developed by our laboratory

and licensed to Prophesee. Newer versions are now developed and maintained by

Prophesee and the source codes are for internal use only, hence their performances

are not assessed in this work.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 13386

https://developer.twitter.com/en/case-studies/cbs-news
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

TABLE 1 | Various C/C++ frameworks provide tools to build event-based algorithms.

Name Open

source

Operators

connection

Dependencies Communication and

execution

Event types

tarsier (this work) Yes Compile-time, C++

templates

– Event-wise function calls,

single thread

Template event types, contiguous

memory

cAER Yes Run-time, XML Boost, libpng,

libusb, libuv

Event buffers, single thread Hard-coded event types,

contiguous memory

kAER No Run-time,

C++/Python

Boost, OpenCV,

Python, Qt

Event buffers, constant time

intervals, single thread

Hard-coded event types,

contiguous memory

Event-driven YARP Yes Run-time, C++/XML Libace IP packets, multiple programs Hard-coded event types,

contiguous memory or polymorphic

event types, non-contiguous

memory

Dynamic vision

system

Yes Run-time, XML Boost, libusb,

OpenCV, OpenSSL

Event buffers, multiple threads Hard-coded event types,

contiguous memory

Despite an identical goal and programming language, they are build upon very different design decisions. Differences impact users’ interaction with the framework and the performance

of algorithms implementations. YARP uses IP packets, which makes it possible to run an algorithm in parallel on several machines, but adds overhead when running on a single computer.

vision (section 3), followed by a brief description of sepia, the
component implementing functions to read and write event
files. Section 4 presents the design and implementation of
tarsier, a collection of event-based algorithms. Benchmarks
are used to compare its performance with existing event-
based computer vision frameworks (section 5). Section 6
describes chameleon, a collection of Qt components to display
events on a conventional screen. The implementation of
drivers to communicate with event-based cameras, non-feed-
forward architectures and considerations on parallelism are
exposed (section 7), before discussing future work and our
conclusions (section 8).

2. FRAMEWORK OVERVIEW

The framework presented in this work supports Linux, macOS,
and Windows. It is organized in independent components,
named after animals with unusual eyes. They work together
by following the same conventions, even though they have
no explicit link. This structure, illustrated in Figure 2, reduces
to a minimum the external dependencies of each component,
and promotes modularity. In particular, several components
solely require a C++ compiler, facilitating code sharing between
various machines and operating systems, and usage with other
libraries. The framework’s three major components are sepia (file
I/O), tarsier (algorithms), and chameleon (display). Since these
components are independent, one may use any of them without
the others. For example, sepia can be used to read and write event
files on an operating system lacking Qt support.

The framework’s libraries are header-only: they require
neither pre-compilation nor system-wide installation, and several
versions of the library can co-exist on the same machine
without interfering. Bundling dependencies with algorithms
makes projects more likely to keep working over long periods of
time without active support, which we believe is a critical factor
for research. Moreover, an algorithm and all its dependencies
can be shipped in a single zip file, making code easy to share
as the supplementary material of a publication (as illustrated by

this paper’s Supplementary Material). Header-only libraries also
simplify MSVC support for Windows (Barrett, 2014), removing
the need for GCC ports, such as MinGW.

All the code is open-source, and hosted on our GitHub
page (section 8). Each framework component is hosted on a
distinct repository, and documented in the associated Wiki page.
More importantly, the tutorials repository provides step-by-
step tutorials and commented examples to build event-driven
applications with the framework.

3. EVENT-DRIVEN PROGRAMMING

3.1. A Generic Event-Based Algorithm
The object-oriented observer pattern consist in two constructs:
an observable and an event handler. The former dispatches
events at arbitrary times, whereas the latter responds to each
event with an action. This pattern provides a natural model for
an event-based camera (observable) and an algorithm (event
handler). It extends to neuron models (for example, integrate-
and-fire), though implementing complex networks with feedback
and delays—which can change the events order in time—is
not straightforward (section 7 provides considerations on this
topic). Algorithm 1 gives a generic expression of an event-based
algorithm under this paradigm.

A framework reflecting this theoretical expression facilitates
algorithms implementation. A function (in the programming
sense) which takes an event as sole parameter and returns
nothing has a syntax close to Algorithm 1. Such a function has
to mutate a state to do something useful, thus it is not a function
in the mathematical sense (it is non-pure).

Algorithm 1: A generic event-based algorithm, or event
handler.

initialize the state
on event do

instructions mutating the state
end

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 13387

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

FIGURE 2 | The framework presented in this paper is a collection of three independent components: sepia (file IO), tarsier (event-based algorithms), and chameleon

(displays). Each component is hosted on its own repository, and serves a specific goal. This graph shows the three components, their external dependencies, and

other repositories dependent on the framework. The event_stream component (purple) is not a library but a file format specification, detailed in the Appendix. The

components shown in green have no external dependencies but the C++ Standard Template Library.

3.2. C++ Implementation
The typical C++ implementation of the observer pattern relies
on dynamic polymorphism: the event handler inherits a generic
class, and the observable holds a pointer to an instance of this
class. This approach creates overhead for two reasons. On the one
hand, every call to an event handler requires a vtable lookup and
an extra dereferencing. On the other, the compiler is given less
information to optimize the program.

Existing frameworks (cAER, kAER, event-driven YARP, and
Dynamic Vision System) solve this issue using buffers: events are
handled thousands at a time, reducing overhead proportionally.
In return, user-written handlers (called modules in cAER,
Dynamic Vision System and event-driven YARP, and filters in
kAER) have to loop over buffers of events. Manipulating buffers,
though good for performance, may foster practices that deepen

the gap with neuromorphic hardware: using events ahead in the
buffer to improve performance, as they are “already there,” and
viewing the events as pieces of data rather than function calls. The
former makes the conversion to neuromorphic hardware harder
(the algorithm uses future events, increasing memory usage and
latency waiting for them), while the latter strips away the event
meaning (a model of a hardware spike).

The presented framework relies on static polymorphism,
using templates (Veldhuizen, 2000): the event handler is bound
to the observable during compilation. This approach does not
incur an overhead with every event, therefore buffers are not
needed. The algorithm is specified by a loop-free function,
illustrated in Figure 3. We want to emphasize that the code
presented in this figure is a complete program, which can
be compiled without prior libraries installation. The function

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 13388

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

handle_event modifies the state of the std::cout object,
captured implicitly as a global variable. Events are read from the
file “input.es”, which uses the Event Stream encoding (see
the Appendix).

The sepia header used in this example implements file IO
in the framework, and can be extended to communicate with
cameras (section 7). Even though it relies on buffers, similarly
to the other C++ frameworks, the event loop is hidden from
the user. This is meant to reconcile two somewhat paradoxical
objectives: provide a fast implementation on CPUs, which work
best with bulk data, and encourage an algorithm design likely
to translate to highly distributed neuromorphic systems with
fine-grained calculations.

Static polymorphism is implemented in sepia using the
same approach as the C++ Standard Template Library (see,
for example, the compare function of the std::sort algorithm).
Besides being efficient, it allows compile-type, type-safe
“duck typing”: the code will compile as long as the syntax
handle_event(event) is valid. Notably, handle_event
can be a function, a lambda function or an object with an

FIGURE 3 | This code snippet is the “hello world” program of the sepia library.

The function handle_event prints a plus sign in the terminal on luminance

increase events, and a minus sign on luminance decrease events. The main

program creates an observable from a file, with the handle_event function

as event handler. This program, provided in Supplementary Material, only

needs the sepia library in its directory to be compiled on any machine.

overloaded call operator. Lambda functions are great to
quickly prototype an event-driven algorithm, as shown in
Figure 4. This second example is a standalone, dependency-
free program as well. The state variables previous_t and
activity are captured by reference in the lambda function.
The latter implements a sensor-wide “leaky integrate” neuron
to estimate the activity, printed after processing all the input
file’s events.

The sepia::join_observable function blocks until all
the events are processed, preventing other routines (notably
Graphical User Interfaces) from running. Under the hood,
it uses the GUI-compatible sepia::make_observable
function, which dispatches events on another thread. In turn,
this function constructs a sepia::observable object. The
latter’s constructor cannot be called directly, because C++ does
not allow class template deduction from a constructor (until C++
17). Thanks to the make function, the event handler type does
not have to be explicitly specified. However, the event handler
must be statically specified—not unlike connections in a neural
network. Changing the event handler at run-time requires an
explicit if-else block within the handler.

Both the sepia::join_observable and
sepia::make_observable functions require a template
parameter: the expected event type. The event handlers signature
is check at compile-time, whereas the file events type is checked
at run-time (each Event Stream file contains a single type
of events).

The event handlers presented thus far have several
shortcomings: they use global variables, can be used only
with specific event types, and cannot be easily used from other
algorithms. The tarsier library tackles these issues.

4. BUILDING BLOCKS

Basic blocks that can be assembled into complex algorithms are
the central feature of a framework for computer vision. They
reduce development time and foster code reuse: components
debugged and optimized by an individual benefit the community.

FIGURE 4 | Unlike Figure 3, this program uses a lambda function to implement an event handler. Lambda functions can be declared inside the main function,

keeping the global scope clean. This event handler implements a leaky neuron to compute the activity. The latter is printed once all the event from the source file

“input.es” have been processed.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 13389

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

4.1. Partial Event Handlers
In order to represent a building block for event-based algorithms,
we introduce the concept of partial event handler, illustrated
by the Algorithm 2. A partial event handler is triggered by
each event, similarly to the complete event handler defined in
subsection 3.1. However, instead of consuming the event, the
partial event handler performs a calculation, then conditionally
triggers a second handler.

Algorithm 2: A partial event handler.

initialize the state
on event do

instructions mutating the state
if condition then

trigger another event handler with a new event
end

end

Using functions to represent handlers, we denote f∗ a partial
event handler. Since f∗ generates events, it is an observable for
a complete event handler g. Binding g to f∗ yields the complete
event handler fg . When called, it performs the calculations
associated with f∗, then calls g. Any number of partial event
handlers can be chained to build an algorithm, as long as the
last handler is complete. For example, with g∗ now a partial
event handler, and h a complete event handler, one can build
the pipeline fgh . For each child, its direct parent is an observable
generating events. For each parent, its child is a complete event
handler (gh is a complete event handler and a child for f∗).
The syntax can be extended to partial event handlers generating
multiple event types: f∗,∗ is a partial event handler with two
observable types.

A more common approach to defining algorithms consists in
specifying inputs and outputs for each block. However, since a
partial event handler conditionally generates (possibly) multiple
event types, a generic output is a list of pairs {event, boolean}
representing optional objects3. Each boolean indicates whether
the event was generated. The program assembling the pipeline
would contain a complex sequence of function calls and nested
if-else statements to propagate only events that were actually
generated. Nested observables yield a syntax both easier to
read and more closely related to the event-driven nature of
the algorithm.

fgh is written f → g → h in figures to avoid nested
indices. Complex pipelines, including merging and feedback, are
discussed in section 7.

4.2. tarsier Implementation
The framework’s tarsier library is a collection of partial event
handlers implemented in C++. Each handler is declared and

3Using C++ STL primitives, the output’s type would be

std::tuple<std::pair<event_type_0, bool>,
std::pair<event_type_1, bool>, ...>. With the C++ 17 standard,

std::optional<event_type> can be used instead of pairs.

defined in a single header file: only the included ones are
compiled with the program. This organization makes the code
resilient to compatibility errors in unused handlers.

The partial handlers are implemented as classes with an
overloaded call operator. The children handlers types are
templated. In order to allow type deduction, each class is
associated with a make function: the partial event handler f∗
is associated with make_f . For any complete event handler
g, make_f (g) : = fg . Pipelines are built by nesting make
functions: make_f (make_g(h)) = fgh . Unlike event handlers, the
high-order make functions are pure. Most of them take extra
parameters to customize partial event handlers. For example,
tarsier::make_mask_isolated , which builds a partial
event handler propagating only events with spatio-temporal
neighbors, takes a sensor width and height and a time window
as parameters. Figure 5 shows a simple tarsier pipeline, bound to
a sepia observable.

The tarsier and sepia libraries are compatible even though they
are not explicitly related. Every partial event handler provided
by tarsier uses template event types, besides template event
handlers parameters. The event type has to be specified explicitly
(sepia::dvs_event in Figure 5), and must have a minimal
set of public members which depends on the event handler (often
x, y and t). A C++ struct with at least these three fields meets the
requirements of most tarsier handlers. Users can define custom
types to best represent the events output by their algorithms
(flow events, activity events, line events, time surfaces. . .), or to
customize the events payload (with a camera index for stereo-
vision, sparse-coding labels. . .).

This implementation has several benefits. Since the pipeline is
assembled statically, type checks are performed by the compiler.
Missing event fields and incompatible observable/event handler
bindings are detected during compilation, and meaningful errors
are returned (in contrast with run-time segfaults). Moreover,
an event loaded from disk or sent by a camera, with a specific
type, can be used directly without an extra copy to a buffer
holding events with another type. Since the compiler manipulates
a completely specified pipeline, it can perform more powerful
code optimizations. Finally, since static event handler calls have
no run-time overhead, events buffers can be traversed depth-
first instead of breadth-first (Figure 6). This operation ordering
reduces the pipeline latency, as observed in section 5.

5. COMPARATIVE BENCHMARKS

Event-based computer vision shows promise for real-time
sensing on robots (Blum et al., 2017). If a CPU is used
to run computer vision algorithms on a robot, the code
efficiency can make the difference between a real time
and non-real time system. Performance is also essential to
make realistic comparisons of conventional hardware and
neuromorphic hardware, or to compare two event-based CPU
algorithms. Even though the average number of operations
per event gives an estimation of an algorithm complexity,
it does not account for compiler optimizations, memory
IO or processor optimizations (branch predicting, cache. . .).

Frontiers in Neuroscience | www.frontiersin.org 7 January 2020 | Volume 13 | Article 133810

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

FIGURE 5 | This program uses both sepia and tarsier. It can be compiled on any computer without installing external libraries. The pipeline is implemented as a

sequence of nested partial event handlers. tarsier::mask_isolated removes noisy events, tarsier::mirror_x inverts the x coordinate and

tarsier::shift_y shifts the y coordinate by a fixed offset. Events outside the original window after shifting are not propagated.

FIGURE 6 | The 3× n operations associated with a sequence of three event handlers f , g, and h and a buffer of n events ei , i ∈ [0 . . . n− 1] can be performed in two

orders: breadth first and depth first. An implementation relying on dynamic polymorphic incurs an overhead for every distinct function call, and must therefore use the

breadth first approach (left). Depth first yields lower latencies, but requires static polymorphism: the pipeline must be assembled during compilation (right).

Hence, accurate speed comparisons require a comparison of
implementations, whose result depends on the quality of
the implementations.

The efficiency of an implementation depends on many
parameters, including the algorithm itself, the choice of

programming language, the use of suitable programming
primitives, and the properties of the framework. We aim to
compare the contribution of the latter among frameworks
designed for event-based computer vision. We restrict
this comparison to frameworks written in C/C++, to avoid

Frontiers in Neuroscience | www.frontiersin.org 8 January 2020 | Volume 13 | Article 133811

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

comparing languages rather than frameworks. The compared
algorithms are given the same implementation in each
framework, thus observed differences can only be attributed to
frameworks properties.

The present benchmarks focus on event processing: the tarsier
library is compared to its counterparts in cAER, kAER, and
event-driven YARP. The other frameworks components (file
IO, camera drivers and display) are not considered. Moreover,
we were not able to include Dynamic Vision Systems in the
benchmarks: its current implementation uses multiple threads
and circular FIFOs between modules. Modules running faster
than their children overflow the FIFO, resulting in silent event
loss. Though not critical for real-time applications, this loss biases
benchmark results and prevents graceful program termination,

which depends on exact event counting. Nevertheless, since the
structural design choices of Dynamic Vision Systems are similar
to those of cAER, we expect comparable results. Event-driven
YARP offers two implementations for event buffers: vectors and
vQueues. Vectors leverage contiguousmemory, whereas vQueues,
which are double-ended queues of pointers to polymorphic
events, support arbitrary types. We evaluate the performance of
both options. The results associated with the vector (respectively
vQueue) implementation are labeled YARP (respectively YARP
vQueue). The code used to run the benchmarks is available online
(section 8). This resource also illustrates the implementation of
the same algorithms in various frameworks.

Before each benchmark, we load a specific stream of events
in memory. The events are organized in packets of up to 5, 000

FIGURE 7 | We implement the same partial event handlers in each framework in order to compare them. We consider five pipelines and three event streams. The total

time it takes to handle every event from the input stream is measured 100 times for each condition. We attribute the better performance of tarsier to static

polymorphism, which yields a program with fewer memory operations.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 133812

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

events and up to 10ms (a new packet is created as soon as
either condition is met), as to mimic the typical output of a
camera. We consider two performance indicators. The duration
experiment measures the total time it takes to read the packets
from memory, run an algorithm and write the result back to
memory. It indicates how complex a real-time algorithm can be.
The latency experiment measures the time elapsed between the
moment a packet is available and the moment results are written
to memory. A packet is made available when the wall clock time
goes past the timestamp of its last event. A busy-wait loop is
used to wait for the wall clock time if the framework is ready
to handle a packet before the latter is available. This mechanism

simulates the output of an actual event-based camera while
avoiding putting processes to sleep, which is a source of non-
deterministic variations in the measured latency. The packets
contain sepia::dvs_event objects, chosen as a neutral type
for all the frameworks. Event type conversions, if needed, are
taken into account in the performance measurement. This choice
is not an unfair advantage to tarsier, since its handlers are
compatible with any event type (including the types provided by
sepia). The events dispatched from one partial event handler to
the next are framework-dependent. However, to avoid uneven
memory writes, the output events are converted to a common
type before being pushed to a pre-allocated vector. To make sure

FIGURE 8 | Low-latency is an important feature of event-based cameras, and therefore event-based frameworks. We measure the time elapsed between the

moment a buffer is available and the moment associated output events are produced by the pipeline. Events that are not propagated by the pipeline (for example,

removed noise) are not taken into account. For each condition, latency is measured for each output event over 10 runs of the whole stream. We attribute the better

performance of tarsier to depth-first traversal. kAER under-performs in this benchmark since it constrains buffers duration, unlike the camera model assumed in the

benchmarks: the resulting buffer reorganization increases delays. This benchmark’s relative variations are larger than the duration benchmark’s variations. The same

time measurement functions are used, however durations are order of magnitude larger than latencies.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2020 | Volume 13 | Article 133813

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

TABLE 2 | We use three event streams recorded by an ATIS to perform

benchmarks.

Stream

name

Description Duration

(s)

Event rate

(s−1)

Squares Artificial scene, moving

geometric shapes, fixed sensor

9.50 2.83e5

Street Natural scene, moving

pedestrians and cars, fixed

sensor

50.6 3.17e5

Car Natural scene, sensor inside a

moving car

69.6 9.56e5

The streams were chosen for their different conditions (artificial and natural scenes, fixed

and moving sensor) and average event rates.

that the output is not skipped by the compiler as an optimization,
we calculate the MurmurHash3 (Appleby, 2014) of each output
field once the algorithm completed. The resulting values are
controlled for each benchmark run, and guarantee that each
implementation calculates the same thing.

The benchmarks use five distinct algorithms (p1 to p5)
described (Figures 7, 8). Each pipeline is assembled from one or
several of the following partial event handlers:

• select_rectangle only propagates events within a
centered 100× 100 pixels window.

• split only propagates events representing a luminance
increase.

• mask_isolated only propagates event with
spatio-temporal neighbors.

• compute_flow calculates the optical flow.
• compute_activity calculate the pixel-wise activity. The

activity decays exponentially over time, and increases with
each event.

We use three event streams, listed in Table 2 and available
in the benchmarks’ repository. These streams contain polarity
events recorded by an ATIS, in both controlled and natural
environments. The duration experiment is run one hundred
times for each combination {stream, pipeline, framework}, and
the delay experiment ten times. Each delay task generates many
samples, whereas each duration task yields a single value. All
6,600 tasks are shuffled, to avoid possible biases, and run
sequentially on a computer running Ubuntu 16.04 LTS with
an Intel Core i7-6700 CPU @ 3.40GHz CPU and a 16 GB
Hynix/Hyundai DDR4 RAM @ 2.4 GHz. The code is compiled
with GCC 5.5, C++11 and the -O3 optimization level.

5.1. Duration
The duration benchmark results are illustrated in Figure 7. The
approach presented in this paper yields the smallest duration on
all the pipelines and event streams considered. This improvement
over state-of-the-art frameworks can notably be attributed to
a reduced number of memory reads and writes, thanks to the
template event types.

Event-driven YARP yields longer durations than the other
frameworks. The difference is most likely related to the use

of IP packets to communicate between filters. The alternative
implementation event-driven YARP vQueue is substantially worse
with respect to the considered benchmarks. We attribute the
performance loss to the non-contiguous memory allocation of
events in vQueues. The other frameworks use either multiple
hard-coded event types (cAER, kAER, event-driven YARP), or
template event types (tarsier) to leverage contiguous memory.

The pipeline p3 contains more operations than p2. Yet,
the p3 tarsier implementations has a smaller duration than
p2 (the effect is most visible with the street stream). The
compute_activity event handler does not utilize the visual
speed calculated by compute_flow, only the flow events’
timestamp and position. Therefore, the flow computation can
be skipped without changing the algorithm outcome. In the
case of frameworks with modules assembled at run-time, the
compiler cannot make this simplifying assumption. We believe
this behavior can improve the performance of complex pipelines,
where finding redundant or unused calculations manually can
prove difficult.

5.2. Latency
The latency benchmark results are illustrated (Figure 8). Wall
clock time ismeasured withmicrosecond precision for each input
packet and each output event. Latency samples are calculated by
subtracting the wall clock time of output events and that of their
input packet. In some cases, the latency is zero, meaning that the
actual elapsed wall clock time is smaller than the measurements’
precision. To allow representation on a log-scale, we round up
null latency samples to 0.5 µs.

The relative standard deviation is much higher for the
latency benchmark than the duration one. As a matter of fact,
measured values are much smaller: durations are in the order
of seconds, whereas latencies are on the order of microseconds.
Thus, every small non-time-deterministic operation (memory
operations, CPU prediction, kernel preemption. . .) has,
relatively, more impact.

The kAER framework yields substantially larger latencies than
the other frameworks. Since it enforces buffers with a constant
duration, latency increases when the buffers provided by the
camera use a different, possibly variable, duration.

The framework presented in this paper outperforms the
others in this benchmark as well. Low-latency can be a major
benefit for robots or closed-loop systems. The performance
gain is a consequence of buffer depth-first traversal and
the reduced number of memory operations, since inter-
handler communication is not implemented with buffers. The
latency reduction improves with the duration of the algorithm
when comparing tarsier and cAER, as illustrated in Figure 9

(top graph).
However, the latency variance is larger for tarsier than cAER,

and increases with the pipeline duration as well. This is another
consequence of depth-first traversal: the first event in the input
buffer is handled as soon as the packet is available, and therefore
has a small latency. In contrast, the last event in the buffer
waits for all the other events to be handled, resulting in a
much larger latency. This phenomenon does not exist with cAER
since the whole packet is processed by each module sequentially:

Frontiers in Neuroscience | www.frontiersin.org 11 January 2020 | Volume 13 | Article 133814

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

FIGURE 9 | The graphs presented in this figure take a closer look at the

latency created by tarsier and cAER for the car stream. In the top graph,

latency is plotted as a function of pipeline duration when run with tarsier

(arbitrarily chosen as a complexity indicator). tarsier has a smaller median

density, but a larger variance. The density probability for the most complex

pipeline is plotted in the middle and bottom graphs (blue and green). It

accounts only for framework latency (as does the first graph). Adding the

latency caused by packetization in the camera (before the USB transfer) yields

the total latency. The depth-first traversal leveraged by tarsier better

counterbalances packetization, resulting in both a lower total latency and a

smaller variance.

events with the same input packet exit the pipeline at the
same time.

The latency used so far takes only the framework into account.
The first event of each buffer is also the one that waited the

most in the camera while the input buffer was being filled. If we
neglect the USB transfer duration, we can define the total latency
associated with an event as the sum of the framework latency
and the timestamp difference between the last event in the packet
and the considered event. The total latency as well as its variance
are both smaller for tarsier when compared with cAER, since
the packetization effect is counterbalanced by the depth-first
traversal. Both the framework latency and total latency densities
are illustrated in Figure 9 (bottom graphs).

6. EVENT DISPLAYS

Conventional screens display frames at fixed time intervals4. In
order to display events, one has to perform a conversion. Most
frameworks rely on fixed time windows: a frame pixel is colored
in white if it was the source of a luminance increase event during
the associated time interval, in black if the luminance decreased,
and in gray if nothing happened. This approach does not account
for the high temporal resolution of the signal. Another method
relies on time decays (Cohen, 2016; Lagorce et al., 2017): the
frame pixel i is given the color ci =

1
2

(

1+ δi · exp
(

−
t−ti
τ

))

. t
is the current timestamp. ti is the timestamp of the most recent
event generated by the pixel i. δi = 1 if the last event generated
by i corresponds to a luminance increase, and −1 otherwise. τ is
a fixed decay. Figure 10 illustrates the difference between the two
methods, highlighting the benefits of exponential decays.

The full-frame decay rule requires an exponential calculation
on every event for every pixel (for an ATIS, 72,960 pixels amillion
times per second), which is both unrealistic and unnecessary,
since the typical display features a 50Hz refresh rate. Instead,
one can calculate the decays only when a frame is about to be
rendered, and use the GPU available on most machines to do
so. GPUs are designed to run massively parallel calculations with
every frame, thus are well-suited to this task.

The chameleon library provides Qt (1995) components
to build event displays. The components are independent
and header-only. Unlike sepia and tarsier, chameleon cannot
be used without Qt 5. In return, the event displays can
easily be integrated into complex user interfaces. The
chameleon::dvs_display implements the full-frame
decay method mentioned previously. This component assumes
two threads: an event loop (for example, a sepia observable
followed by a tarsier pipeline) and a render loop. The loops
communicate using a shared memory with one cell per
pixel, where the last timestamp and polarity of each event is
stored. When a new frame is about to be rendered, the shared
memory is sent to an OpenGL program to compute each
pixel’s time decay. The shared memory is accessed millions of
times per second by the event loop. Usual mutexes can cause
non-negligible overhead, since they rely on system calls. The
chameleon implementation uses spin-lock mutexes instead
(essentially busy-wait loops with atomic variables), at the cost
of increased CPU usage. To minimize the strain on the event

4Recent screens compatible with Nvidia’s G-Sync technology can display frames at

varying time intervals, narrowing the gap between frames and events. Exponential

decays can be used to convert events to frames compatible with such screens.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 133815

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

FIGURE 10 | This figures compares two strategies to convert events to frames

for display. The time window approach (left) degrades temporal information:

the still frames do not hold enough information to determine the geometric

shapes motions (top row) or the relative speed of the car and the pedestrian

(bottom row). The exponential decay approach (right) represents temporal

information with gray levels. It is computationally more expensive than the time

window approach, but can be easily implemented on a GPU to relieve the

CPU.

loop, the render loop first creates a local copy of the shared
memory, then releases the mutex, and finally communicates
with the GPU. This mechanism is illustrated in Figure 11.
Figure 12 gives an overview of an application build with the
three major components of the framework, with a focus on
thread management. This application’s code is available in the
tutorials repository.

The proposed approach does not rely on pre-defined frame
boundaries: the frame-rate matches the display rate regardless the
event loop speed. Consequently, the visual animation remains
smooth even if the event pipeline is slower than real time. A
smooth slow-motion display can be created by artificially slowing
down the event loop.

The colors used by the DVS display can be customized:
the ci value is then used as a weight parameter for mixing
the colors. Transparent colors can be used, enabling display
overlays for cameras generating multiple stream types (such as
the ATIS or the DAVIS). Other notable components provided
by chameleon include a vector field display (well-suited to flow
events), a blob display, a time delta display (to represent the
absolute exposure measurements of an ATIS), and a screen-
shot component to easily create frame-based videos. These
components use template event types, similarly to tarsier event
handlers, and the type requirements follow the same conventions.

FIGURE 11 | In order to convert events to frames, one has to reconcile the

very different rates of the event loop (about 1MHz) and the display loop (often

50Hz). We use a shared memory the size of the sensor, protected by

thread-safe locks. On each event, the first thread (blue) overwrites former

events with the same spatial coordinates. Every time a frame is about to be

rendered, the display loop (green) copies the shared memory to RAM and

releases the lock, then communicates with the GPU. The memory-to-memory

copy minimizes lock ownership, to avoid blocking the event loop. The lock,

acquired with every event, is implemented as a spin-lock mutex.

The displays coordinates system follows the usual mathematical
convention, with the origin located at the screen’s lower-left
pixel. The usual computer vision convention (origin at the
upper-left pixel) is not used as it is a result of the matrix
representation of frames, which event-based algorithms aim
to avoid.

7. FRAMEWORK EXTENSIONS

7.1. Camera Drivers
Since most event-based cameras feature a USB interface,
their drivers can be devised as user-space programs atop a
third-party library overseeing the USB communication. To
keep the codebase modular and minimize dependencies, each
camera interface is held in a distinct repository extending the
sepia library.

As of now, the following cameras are supported:

• DVS 128. We re-implemented the libcaer interface to provide
out-of-the-box MSVC support.

• ATIS (Opal Kelly board). This extension depends on the non-
free Opal Kelly Front Panel library.

• ATIS (CCam 3). This camera has the same pixels and arbiter as
the Opal Kelly ATIS, however it features a custom FPGA and
a USB 3 interface. It was designed by Prophesee.

• DAVIS 240C. We re-implemented the libcaer interface for this
sensor as well.

Event-based cameras have internal buffers to store events while
waiting for a USB transfer. A camera generating events at a

Frontiers in Neuroscience | www.frontiersin.org 13 January 2020 | Volume 13 | Article 133816

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

FIGURE 12 | This figure provides an overall view of the threads in an ATIS event stream viewer application using sepia, tarsier, and chameleon. The application reads

an Event Stream file and displays it as frames. The observable constructor (respectively destructor) creates (respectively joins) the event loop thread, in accordance

with the RAII (Resource acquisition is initialization) philosophy of C++. The push inter-thread messages rely on the mechanism illustrated in Figure 11, whereas the

stop signal is implemented as an atomic boolean. The code for this application can be found in the tutorials repository.

faster rate than what the computer program can handle ends
up filling its internal buffers to capacity. At this points, cameras
either drop new events or shuts down. To circumvent this
issue, each sepia extension uses an extra thread to communicate
with the camera, independently of the event loop executing
the algorithm. The two threads communicate with a thread-
safe circular FIFO. An overall view of the threads of an
application using a sepia extension, tarsier and chameleon is given

in Figure 13. The circular FIFO implementation is provided
by sepia.

Multiple parameters can be specified to configure an event-
based camera, such as the operating mode or the current
biases. JSON files are used by sepia extensions to specify the
configuration. The sepia header implements a JSON parser and
validator to load configuration files and warn users in case of
syntax errors or unknown parameters.

Frontiers in Neuroscience | www.frontiersin.org 14 January 2020 | Volume 13 | Article 133817

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

FIGURE 13 | This figure provides an overall view of the threads in an ATIS camera viewer application using opal_kelly_atis_sepia, tarsier, and chameleon. The

application listens to a camera and displays the generated events as frames. It encompasses the application illustrated in Figure 12. The extra thread is used to

communicate with the camera as fast as possible even when the event loop is busy. The two threads communicate through a thread-safe FIFO buffer implemented in

sepia. The Opal Kelly Front Panel library does not provide a poll function, hence the explicit sleep step in the graph. However, this function is used by sepia extensions

based on libusb, resulting in reduced CPU usage.

7.2. Complex Pipelines
The present framework is designed to implement feed-forward
pipelines, with optional splits. Most partial event handlers can
be represented with populations of neurons, as they perform
small calculations with each input. Thus, event-based pipelines
can be translated to neuromorphic hardware, though a method
to actually perform the conversion has yet to be devised.

However, not all neural networks can be represented with
event handlers. Notably, neurons with second order dynamics
and synapses with delays dispatch events that are not an

immediate response to an input spike. The present framework,
and more generally, purely event-based algorithms—cannot
implement such models. To use complex neurons to process the
output of a camera, one needs to leverage frameworks designed to
implement neural networks. The present framework can, in this
case, be used to communicate with sensors, perform low-level
processing and send events to the neural network.

Nevertheless, two types of architectures more complex than
feed-forward pipelines can be implemented in our framework:
streams merging and feedback loops. Even though they still

Frontiers in Neuroscience | www.frontiersin.org 15 January 2020 | Volume 13 | Article 133818

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

impose more constraints than generic spiking neural networks,
they allow for the efficient implementation of algorithms on a
CPU without the need for another framework.

Streams merging has the following generic structure:

A, B are partial event handlers, and C is a complete event
handler. This structure appears when merging the results of
several calculations with a common origin. For example, onemay
split a stream of polarity events to compute two optical flows
(one per polarity) and merge them to calculate an overall flow.
A and B run sequentially in this scenario, therefore events are
dispatched to C in the order of their timestamps. This scenario
can be implemented by constructing C before the pipeline. The
partial event handlers A and B are both given a reference to C

as complete event handler. The std::reference_wrapper
class can be used to prevent template deduction to a non-
reference type, which would trigger a copy.

The merge operation can also arise from the use of multiple
sensors, for example for stereo-vision or audio-video fusion. In
this case A and B run in parallel, on different threads. Given
the non-deterministic scheduling of most operating systems, C
must re-order the events dispatched by its observables before
handling them. This operation is implemented by the partial
event handler tarsier::merge, compatible with an arbitrary
number of observables.

A simple feedback loop can be modeled as:

A and B are both partial event handlers. This structure can be
useful for flow control or learning. The feedback operation can
be executed at various moments in the lifecycle of an algorithm:
after processing a batch of data, immediately after each event
and after each event with a delay. The implementation of the
second and third approaches is not straightforward with existing
packet-based frameworks. The whole packet has already been
processed by A when the first event is processed by B, preventing
the associated feedback from affecting the next events. The
second approach can be implemented in tarsier using variables
shared between A and B. Before handling an event, A reads
from the variables and processes the event accordingly. After
handling an event, B writes to the variables. Since an event is
completely handled before the next is considered, modifications
of the shared variables caused by the event n will be available to
event n+1. The third approach—adding delays to the feedback—
can be implemented by combining the second approach and a
merge structure.

7.3. Parallelism
The application illustrated in Figure 13 relies on
multiple threads, and can take advantage of CPUs

with a few cores. However, the sequential strategy
presented so far does not harness the full potential of
many-cores architectures.

The creation of parallel tasks and inter-task communication
have a cost. An application using multiple tasks must reach a
compromise on grain size (Acar et al., 2018). A large grain size
yields less overhead, whereas a small grain size fully utilizes the
CPU capabilities. The atomic tasks of an event-based pipeline
are its partial event handlers. Larger grain sizes can be obtained
by combining several partial handlers into a single task. The
tasks represented in Figure 6 can be combined either vertically
(one thread per event) or horizontally. The former requires
inter-thread communication with every partial handler to ensure
sequentiality, canceling the benefits of parallelism, whereas
the latter corresponds to the buffer-based approach of event-
driven YARP and Dynamic Vision System. Consequently, latency
increases with the grain size.

Parallelism can be beneficial when high latency is not critical
and a high throughput is required. However, implementing
parallelism efficiently is not straightforward: to avoid FIFO
overflows between modules, possibly complex flow control
algorithms must be implemented. High-quality libraries
provide high-level tools to build parallel algorithms, such
as Intel Threading Building Block’s flow graph (Tovinkere
and Voss, 2014). The partial event handlers provided by
tarsier can be integrated with such tools. Thus, one can
implement an algorithm once and use it with either a low-
latency tarsier pipeline or a high-throughput flow graph.
An example integration of a partial event handler in a class
manipulating buffers is given in the tutorials repository.
This approach can also help integrating tarsier with other
event-based frameworks, in order to use existing drivers
and viewers.

8. CONCLUSION AND DISCUSSION

We have presented a modular framework for event-based
computer vision with three major components: sepia, tarsier, and
chameleon. The components, though designed to work together,
have no explicit relationship, thus minimizing the external
dependencies of each component. Moreover, each component
can easily be replaced with other libraries.

The presented framework hides buffers from the user,
serving our goal: encouraging functional, event-based semantics
likely to translate to neuromorphic hardware while providing
an efficient implementation on CPUs. Benchmarks show an
increased throughput and a reduced latency compared to state-
of-the-art frameworks for event-based computer vision. Using
contiguous memory to store events is crucial to performance.
Moreover, assembling pipelines before compilation reduces
latency and improves throughput, thanks to better compiler
optimizations and fewer memory operations. The common
practice of hard-coding simple operations (mirroring the stream,
removing noise. . .) in file readers to reduce latency is no longer
required with static polymorphism, yielding a cleaner, more
generic codebase.

Frontiers in Neuroscience | www.frontiersin.org 16 January 2020 | Volume 13 | Article 133819

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

The benchmarks compare performance with pipelines of
varying complexity. However, all the considered experiments
use simple pipelines (without merges or loops), focus solely on
the algorithm performance (the performance of IO and display
operations is not evaluated), and run in real-time on the test
machine. In a future work, we plan to devise new benchmarks
to cover more use-cases. Moreover, adding more measurements,
such as power consumption, will enable comparisons with
neuromorphic hardware.

Assembling a pipeline before compiling requires meta-
programming, i.e., another programming language to generate
the actual code. The framework presented in this work uses C++
template meta-programming, since this language is supported
by every standard-compliant compiler. Nevertheless, it can be
unsettling to new users, and makes the creation of wrappers
in high-level languages, such as Python, difficult. A high-
level language or graphical user interface must bundle a
C++ compiler to generate tarsier pipelines. Nevertheless, the
framework modular structure and its independence from third-
party libraries make it a good candidate for a common low-
level library to multiple high-level interfaces. It can notably be
integrated with native Android applications, or used to speed up
Python modules.

The observer pattern used by the framework naturally models
event-based cameras and algorithms. However, this pattern can
lead to the problem known as callback hell: deeply nested
statements make the code hard to read. Languages, such
as Javascript have solved this problem with the async/await
construct. This construct is available in C++, but is not
compatible with the template deduction mechanism leveraged by
the framework.

The current implementation of partial event handlers relies on
make functions. These functions wrap the handlers constructors
to enable template deduction. The C++17 standard allows
template deduction from the constructor of a class, making
the make functions unnecessary. The upcoming Debian 10
and macOS 10.15 operating systems will provide full support
for this standard with their default libraries, allowing a major
framework update.

DATA AVAILABILITY STATEMENT

The code repositories mentioned in this study:

• framework tutorials https://github.com/neuromorphic-paris/
tutorials

• frameworks benchmarks https://github.com/neuromorphic-
paris/frameworks_benchmarks

• sepia repository https://github.com/neuromorphic-paris/
sepia

• tarsier repository https://github.com/neuromorphic-paris/
tarsier

• chameleon repository https://github.com/neuromorphic-
paris/chameleon

• Event Stream specification https://github.com/neuromorphic-
paris/event_stream.

AUTHOR CONTRIBUTIONS

AM, S-HI, and RB contributed the conception and design of the
study. AM devised the theoretical model, implemented it, carried
out the experiments, analyzed the results, and wrote the first draft
of the manuscript. All authors contributed to the manuscript
revision, read, and approved the submitted version.

FUNDING

This work received the support from the French Medical
Research Foundation via the program of Bioinformatics Analysis
in Biology Research [DBI20141231328]. This work also received
the support from LABEX LIFESENSES [ANR-10-LABX-65],
managed by the French state funds (ANR) within the
Investissements d’Avenir program [ANR-11-IDEX-0004-02].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.01338/full#supplementary-material

REFERENCES

Acar, U. A., Aksenov, V., Charguéraud, A., and Rainey, M. (2018). “Performance

challenges in modular parallel programs,” in Proceedings of the 23rd ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming—

PPoPP ’18 (Vienna).

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Nolfo, C. D., et al. (2017).

“A low power, fully event-based gesture recognition system,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu,

HI).

Appleby, A. (2014). Smhasher. Available online at: https://github.com/aappleby/

smhasher

Bainomugisha, E., Carreton, A. L., Cutsem, T. V., Mostinckx, S., andMeuter,W. D.

(2013). A survey on reactive programming. ACM Comput. Surveys 45, 1–34.

doi: 10.1145/2501654.2501666

Barranco, F., Fermuller, C., and Aloimonos, Y. (2014). Contour motion

estimation for asynchronous event-driven cameras. Proc. IEEE 102, 1537–1556.

doi: 10.1109/jproc.2014.2347207

Barrett, S. (2014). STB Github Page. Available online at: https://github.com/

nothings/stb

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–37.

doi: 10.1016/j.neunet.2011.11.001

Berner, R., and Delbruck, T. (2011). Event-based pixel sensitive to changes of

color and brightness. IEEE Trans. Circuits Syst. I Reg. Papers 58, 1581–1590.

doi: 10.1109/tcsi.2011.2157770

Blum, H., Dietmüller, A., Milde, M., Conradt, J., Indiveri, G., and Sandamirskaya,

Y. (2017). A neuromorphic controller for a robotic vehicle equipped with a

dynamic vision sensor. Robot. Sci. Syst. XIII. doi: 10.15607/RSS.2017.XIII.035

Bradski, G. (2000). The OpenCV Library. Dobbs J. Softw. Tools 120, 122–125.

Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck, T. (2014).

A 240 × 180 130 db 3µs latency global shutter spatiotemporal vision

sensor. IEEE J. Solid State Circuits 49, 2333–2341. doi: 10.1109/jssc.2014.23

42715

Caer. (2007). Available online at: https://gitlab.com/inivation/dv-runtime/tags/

caer-1.1.2

Carmona-Galán, R., Zarándy, A., Rekeczky, C., Földesy, P., Rodríguez-Pérez,

A., Domínguez-Matas, C., et al. (2013). A hierarchical vision processing

architecture oriented to 3d integration of smart camera chips. J. Syst. Archit.

59, 908–919. doi: 10.1016/j.sysarc.2013.03.002

Frontiers in Neuroscience | www.frontiersin.org 17 January 2020 | Volume 13 | Article 133820

https://github.com/neuromorphic-paris/tutorials
https://github.com/neuromorphic-paris/tutorials
https://github.com/neuromorphic-paris/frameworks_benchmarks
https://github.com/neuromorphic-paris/frameworks_benchmarks
https://github.com/neuromorphic-paris/sepia
https://github.com/neuromorphic-paris/sepia
https://github.com/neuromorphic-paris/tarsier
https://github.com/neuromorphic-paris/tarsier
https://github.com/neuromorphic-paris/chameleon
https://github.com/neuromorphic-paris/chameleon
https://github.com/neuromorphic-paris/event_stream
https://github.com/neuromorphic-paris/event_stream
https://www.frontiersin.org/articles/10.3389/fnins.2019.01338/full#supplementary-material
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1109/jproc.2014.2347207
https://github.com/nothings/stb
https://github.com/nothings/stb
https://doi.org/10.1016/j.neunet.2011.11.001
https://doi.org/10.1109/tcsi.2011.2157770
https://doi.org/10.15607/RSS.2017.XIII.035
https://doi.org/10.1109/jssc.2014.2342715
https://gitlab.com/inivation/dv-runtime/tags/caer-1.1.2
https://gitlab.com/inivation/dv-runtime/tags/caer-1.1.2
https://doi.org/10.1016/j.sysarc.2013.03.002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Marcireau et al. Event-Based C++ Framework

Chen, D. G., Matolin, D., Bermak, A., and Posch, C. (2011). Pulse-modulation

imaging—review and performance analysis. IEEE Trans. Biomed. Circuits Syst.

5, 64–82. doi: 10.1109/TBCAS.2010.2075929

Cohen, G. K. (2016). Event-based feature detection, recognition and classification

(Ph.D. thesis), Université Pierre et Marie Curie-Paris VI, Western Sydney

University.

Cookie Clicker. (2013). Available online at: http://orteil.dashnet.org/cookieclicker

Delbruck, T., and Berner, R. (2010). “Temporal contrast aer pixel with 0.3%-

contrast event threshold,” in Proceedings of 2010 IEEE International Symposium

on Circuits and Systems (Paris).

Delbruck, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010). “Activity-

driven, event-based vision sensors,” in Proceedings of 2010 IEEE International

Symposium on Circuits and Systems (Paris).

Dudek, P., and Hicks, P. (2005). A general-purpose processor-per-pixel analog

simd vision chip. IEEE Trans. Circuits Syst. I Reg. Papers 52, 13–20.

doi: 10.1109/tcsi.2004.840093

DV (2019). Dynamic Vision System. Available online at: https://gitlab.com/

inivation/dv-runtime

Ferg, S. (2006). Event-Driven Programming: Introduction, Tutorial, History.

Available online at: http://eventdrivenpgm.sourceforge.net

Furber, S. (2017). Microprocessors: the engines of the digital age. Proc. R. Soc. A

Math. Phys. Eng. Sci. 473:20160893. doi: 10.1098/rspa.2016.0893

Galluppi, F., Brohan, K., Davidson, S., Serrano-Gotarredona, T., Carrasco, J.-A. P.,

Linares-Barranco, B., et al. (2012). “A real-time, event-driven neuromorphic

system for goal-directed attentional selection,” in Lecture Notes in Computer

Science (Doha), 226–233.

Glover, A., Vasco, V., and Bartolozzi, C. (2018a). “A controlled-delay event camera

framework for on-line robotics,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA) (Brisbane, QLD).

Glover, A., Vasco, V., Iacono, M., and Bartolozzi, C. (2018b). The event-driven

software library for yarp—with algorithms and icub applications. Front. Robot.

AI 4:73. doi: 10.3389/frobt.2017.00073

Haessig, G., Cassidy, A., Alvarez, R., Benosman, R., and Orchard, G.

(2018). Spiking optical flow for event-based sensors using IBM’s truenorth

neurosynaptic system. IEEE Trans. Biomed. Circuits Syst. 12, 860–870.

doi: 10.1109/TBCAS.2018.2834558

Hopkins, M., Pineda-García, G., Bogdan, P. A., and Furber, S. B. (2018).

Spiking neural networks for computer vision. Interface Focus 8:20180007.

doi: 10.1098/rsfs.2018.0007

Huang, J., Guo, M., and Chen, S. (2017). “A dynamic vision sensor with

direct logarithmic output and full-frame picture-on-demand,” in 2017 IEEE

International Symposium on Circuits and Systems (ISCAS) (Baltimore, MD).

Indiveri, G., and Liu, S.-C. (2015). Memory and information

processing in neuromorphic systems. Proc. IEEE 103, 1379–1397.

doi: 10.1109/jproc.2015.2444094

Jaer. (2007). Available online at: http://jaerproject.org

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open Source Scientific Tools

for Python. Available online at: http://www.scipy.org/

Lagorce, X., Meyer, C., Ieng, S.-H., Filliat, D., and Benosman, R. (2015).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720.

doi: 10.1109/TNNLS.2014.2352401

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R. B. (2017).

Hots: a hierarchy of event-based time-surfaces for pattern recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.

2574707

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic linear

algebra subprograms for fortran usage. ACM Trans. Math. Softw. 5, 308–323.

doi: 10.1145/355841.355847

Lenero-Bardallo, J. A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2011).

A 3.6 µs latency asynchronous frame-free event-driven dynamic-vision-

sensor. IEEE J. Solid State Circuits 46, 1443–1455. doi: 10.1109/jssc.2011.

2118490

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128×128 120 db 15 µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/jssc.2007.914337

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.

Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Maqueda, A. I., Loquercio, A., Gallego, G., Garcia, N., and Scaramuzza, D.

(2018). “Event-based vision meets deep learning on steering prediction for self-

driving cars,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (Salt Lake City, UT).

Moeys, D. P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil, D., et al. (2016).

“Steering a predator robot using a mixed frame/event-driven convolutional

neural network,” in 2016 Second International Conference on Event-Based

Control, Communication, and Signal Processing (EBCCSP) (Krakow).

Mueggler, E., Bartolozzi, C., and Scaramuzza, D. (2017). “Fast event-based

corner detection,” in Procedings of the British Machine Vision Conference 2017

(London).

Orchard, G., Lagorce, X., Posch, C., Furber, S. B., Benosman, R., and Galluppi, F.

(2015). “Real-time event-driven spiking neural network object recognition on

the spinnaker platform,” in 2015 IEEE International Symposium on Circuits and

Systems (ISCAS) (Lisbon).

Posch, C., Matolin, D., and Wohlgenannt, R. (2010). “A QVGA 143db dynamic

range asynchronous address-event PWM dynamic image sensor with lossless

pixel-level video compression,” in 2010 IEEE International Solid-State Circuits

Conference-(ISSCC) (San Francisco, CA).

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014).

Retinomorphic event-based vision sensors: bioinspired cameras with spiking

output. Proc. IEEE 102, 1470–1484. doi: 10.1109/jproc.2014.2346153

Qt. (1995). Available online at: https://www.qt.io

Reverter Valeiras, D., Kime, S., Ieng, S.-H., and Benosman, R. B. (2016). An event-

based solution to the perspective-n-point problem. Front. Neurosci. 10:208.

doi: 10.3389/fnins.2016.00208

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128×128 1.5%

contrast sensitivity 0.9% fpn 3 µs latency 4 mw asynchronous frame-free

dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid State

Circuits 48, 827–838. doi: 10.1109/jssc.2012.2230553

Son, B., Suh, Y., Kim, S., Jung, H., Kim, J.-S., Shin, C., et al. (2017). “4.1 a

640× 480 dynamic vision sensor with a 9µm pixel and 300 meps address-event

representation,” in 2017 IEEE International Solid-State Circuits Conference

(ISSCC) (San Francisco, CA).

Tedaldi, D., Gallego, G., Mueggler, E., and Scaramuzza, D. (2016). “Feature

detection and tracking with the dynamic and active-pixel vision sensor

(DAVIS),” in 2016 Second International Conference on Event-Based Control,

Communication, and Signal Processing (EBCCSP) (Krakow).

Thompson, C. M., and Shure, L. (1995). Image Processing Toolbox [For Use With

Matlab]. Avialable online at: http://infoscience.epfl.ch/record/24814

Tilkov, S., and Vinoski, S. (2010). Node.js: using javascript to build high-

performance network programs. IEEE Intern. Comput. 14, 80–83.

doi: 10.1109/mic.2010.145

Tovinkere, V., and Voss, M. (2014). “Flow graph designer: a tool for designing

and analyzing intel threading building blocks flow graphs,” in 2014 43rd

International Conference on Parallel Processing Workshops (Minneapolis, MN).

Veldhuizen, T. (2000). Techniques for scientific c++. Comput. Sci. Tech. Rep.

542:60.

Yang, M., Liu, S.-C., and Delbruck, T. (2015). A dynamic vision sensor

with 1% temporal contrast sensitivity and in-pixel asynchronous delta

modulator for event encoding. IEEE J. Solid State Circuits 50, 2149–2160.

doi: 10.1109/jssc.2015.2425886

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Marcireau, Ieng and Benosman. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 18 January 2020 | Volume 13 | Article 133821

https://doi.org/10.1109/TBCAS.2010.2075929
http://orteil.dashnet.org/cookieclicker
https://doi.org/10.1109/tcsi.2004.840093
https://gitlab.com/inivation/dv-runtime
https://gitlab.com/inivation/dv-runtime
http://eventdrivenpgm.sourceforge.net
https://doi.org/10.1098/rspa.2016.0893
https://doi.org/10.3389/frobt.2017.00073
https://doi.org/10.1109/TBCAS.2018.2834558
https://doi.org/10.1098/rsfs.2018.0007
https://doi.org/10.1109/jproc.2015.2444094
http://jaerproject.org
http://www.scipy.org/
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1145/355841.355847
https://doi.org/10.1109/jssc.2011.2118490
https://doi.org/10.1109/jssc.2007.914337
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1109/jproc.2014.2346153
https://www.qt.io
https://doi.org/10.3389/fnins.2016.00208
https://doi.org/10.1109/jssc.2012.2230553
http://infoscience.epfl.ch/record/24814
https://doi.org/10.1109/mic.2010.145
https://doi.org/10.1109/jssc.2015.2425886
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 20 February 2020

doi: 10.3389/fnins.2020.00135

Frontiers in Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 135

Edited by:

Chiara Bartolozzi,

Italian Institute of Technology, Italy

Reviewed by:

Federico Corradi,

Imec, Netherlands

Arren Glover,

Italian Institute of Technology, Italy

*Correspondence:

Bharath Ramesh

bharath.ramesh03@u.nus.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 16 October 2019

Accepted: 03 February 2020

Published: 20 February 2020

Citation:

Ramesh B, Ussa A, Della Vedova L,

Yang H and Orchard G (2020)

Low-Power Dynamic Object Detection

and Classification With Freely Moving

Event Cameras.

Front. Neurosci. 14:135.

doi: 10.3389/fnins.2020.00135

Low-Power Dynamic Object
Detection and Classification With
Freely Moving Event Cameras

Bharath Ramesh 1,2*, Andrés Ussa 1,2, Luca Della Vedova 2, Hong Yang 2 and

Garrick Orchard 1,2

1 Life Science Institute, The N.1 Institute for Health, National University of Singapore, Singapore, Singapore, 2 Temasek

Laboratories, National University of Singapore, Singapore, Singapore

We present the first purely event-based, energy-efficient approach for dynamic object

detection and categorization with a freely moving event camera. Compared to

traditional cameras, event-based object recognition systems are considerably behind

in terms of accuracy and algorithmic maturity. To this end, this paper presents

an event-based feature extraction method devised by accumulating local activity

across the image frame and then applying principal component analysis (PCA) to the

normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree

mechanism for efficient feature matching by taking advantage of the low-dimensionality

of the feature representation. Additionally, the proposed k-d tree mechanism allows for

feature selection to obtain a lower-dimensional object representation when hardware

resources are limited to implement PCA. Consequently, the proposed system can be

realized on a field-programmable gate array (FPGA) device leading to high performance

over resource ratio. The proposed system is tested on real-world event-based datasets

for object categorization, showing superior classification performance compared to

state-of-the-art algorithms. Additionally, we verified the real-time FPGA performance of

the proposed object detection method, trained with limited data as opposed to deep

learning methods, under a closed-loop aerial vehicle flight mode. We also compare the

proposed object categorization framework to pre-trained convolutional neural networks

using transfer learning and highlight the drawbacks of using frame-based sensors under

dynamic camera motion. Finally, we provide critical insights about the feature extraction

method and the classification parameters on the system performance, which aids in

understanding the framework to suit various low-power (less than a fewwatts) application

scenarios.

Keywords: object recognition, neuromorphic vision, low-power FPGA, closed-loop control, object detection,

event-based descriptor, rectangular grid, FIFO processing

1. INTRODUCTION

Through these fruitful decades of computer vision research, we have taken huge strides in
solving specific object recognition tasks, such as classification systems for automated assembly
line inspection, hand-written character recognition in mail sorting machines, bill inspection in
automated teller machines, to name a few. Despite these successful applications, generalizing object

22

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00135
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00135&domain=pdf&date_stamp=2020-02-20
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bharath.ramesh03@u.nus.edu
https://doi.org/10.3389/fnins.2020.00135
https://www.frontiersin.org/articles/10.3389/fnins.2020.00135/full
http://loop.frontiersin.org/people/451776/overview
http://loop.frontiersin.org/people/861794/overview
http://loop.frontiersin.org/people/908867/overview
http://loop.frontiersin.org/people/908657/overview
http://loop.frontiersin.org/people/94312/overview

Ramesh et al. PCA-RECT: Event-Based Object Detection

appearance, even under moderately controlled sensing
environments, for robust and practical solutions for industrial
challenges like robot navigation and sense-making is a major
challenge. This paper focuses on the industrially relevant
problem of real-time, low-power object detection using an
asynchronous event-based camera (Brandli et al., 2014) with
limited training data under unconstrained lighting conditions.
Compared to traditional frame-based cameras, event cameras do
not have a global shutter or a clock that determines its output.
Instead, each pixel responds independently to temporal changes
with a latency ranging from a low of tens of microseconds to a
high of few milliseconds. This local sensing paradigm naturally
results in a wider dynamic range (120 dB), as opposed to the
usual 60 dB for frame-based cameras.

Most significantly, event cameras do not output pixel
intensities, but only a spike output with a precise timestamp,
also termed an event, that signifies a sufficient change in log-
intensity of the pixel. As a result, event cameras require lower
transmission bandwidth and consume only a few hundred mW
vs. a fewWby standard cameras (Posch et al., 2014). In summary,
event-based cameras offer a fundamentally different perspective
to visual imaging while having a strong emphasis on low-latency
and low-power algorithms (Conradt et al., 2009; Ni et al., 2012;
Delbruck and Lang, 2013; Kueng et al., 2016).

Despite the notable advantages of event cameras, there
still remains a significant performance gap between event
camera algorithms and frame-based counterparts for various
vision problems. This is partly due to a requirement of
totally new event-by-event processing paradigms. However, the
burgeoning interest in event-based classification/detection is
focused on closing the gap using deep spiking neural networks
(O’Connor et al., 2013; Lee et al., 2016), something that again
entails dependence on powerful hardware like its frame-based
counterpart. On the other hand, a succession of frames captured
at a constant rate (say 30 Hz), regardless of the scene dynamics
and ego-motion, works well with controlled scene condition
and camera motion. Frame-based computer vision algorithms
have benefited immensely from sophisticated methodologies that
reduce the computational burden by selecting and processing
only informative regions/keypoints within an image (Lowe,
2004; Galleguillos et al., 2008; Vikram et al., 2012; Ramesh
et al., 2017a). In addition, frame-based sensing has led to
high hardware complexity, such as powerful GPU requirements
for efficiently re-training and deploying state-of-the-art object
detection frameworks using deep neural networks (Ren et al.,
2017; Redmon and Farhadi, 2018).

Since event-based vision is relatively new, only a limited
amount of work addresses object detection using these devices
(Liu et al., 2016; Iacono et al., 2018; Lenz et al., 2018). Liu et al.
(2016) focuses on combining a frame-based CNN detector to
facilitate the event-based module. We argue that using intensity
images, either reconstructed from the event stream (Scheerlinck
et al., 2018) or captured simultaneously (Liu et al., 2016; Iacono
et al., 2018), with deep neural networks for event-based object
detection may achieve good performance with lots of training
data and computing power, but they go against the idea of low-
latency, low-power event-based vision. In contrast, Lenz et al.

(2018) presents a practical event-based approach to face detection
by looking for pairs of blinking eyes. While Lenz et al. (2018) is
applicable to human faces in the presence of activity, we develop
a general purpose event-based, object detection method using a
simple feature representation based on local event aggregation.
Thus, this paper is similar in spirit to the recently spawned
ideas of generating event-based descriptors, such as histogram of
averaged time surfaces (Sironi et al., 2018) and log-polar grids
(Ramesh et al., 2017b, 2019b), or low-level corner detectors as
features (Manderscheid et al., 2019). Moreover, the proposed
object detection and categorization method was accommodated
on FPGA to demonstrate energy-efficient low-power vision.

In contrast to the above works, this paper introduces a
simple, energy-efficient approach for object detection and
categorization. Figure 1 illustrates the local event-based
feature extraction pipeline that is used for classification using
a codebook-based method. Accordingly, efficient feature
matching with the codebook is required, which is handled
by a backtracking-free branch-and-bound k-d tree. This
proposed system was ported to a field programmable gate
array (FPGA) with certain critical design decisions, one of
which demanded a virtual dimensionality reduction method
based on the k-d tree, to accommodate very low-power
computational needs.

This paper is an extended version of the work initially
published in ACCV Workshops 2018 (Ramesh et al., 2019a).
Novel contributions over (Ramesh et al., 2019a) include closed-
loop aerial flight, tested for the first time using event-based
sensors to the best of our knowledge, and robustness analysis
using hand-held experiments (section 3.3) with critical insights
into the system performance for various hyper-parameters
(section 3.1.1). Additionally, this work includes a comprehensive
comparison to deep learning methods (section 3.4) and further
provides full implementation details in section 2, including a
free-running mode implementation capable of a classification
output at any point in time, as opposed to a classifier periodically
operating on a set of events like (Ramesh et al., 2019a).

2. MATERIALS AND METHODS

We follow the event-based classification framework proposed
in Ramesh et al. (2017b), with the following crucial changes:
a new descriptor (PCA-RECT), a virtual dimensionality
reduction technique using k-d trees (vPCA) and a simplified
feature matching mechanism to account for hardware
limitations. The framework consists of four main stages:
feature extraction, feature matching with a codebook, creating
an object representation, which is lastly fed to a linear classifier.
Additionally, we incorporate an object detector in the framework
as explained in the following subsections.

2.1. PCA-RECT
Each incoming event, ei = (xi, yi, ti, pi)

T with pixel location xi
and yi, timestamp ti, polarity pi, is encoded as a feature vector
xi. To deal with hardware-level noise from the event camera,
two main steps are used: (1) nearest neighbor filtering and

Frontiers in Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 13523

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

FIGURE 1 | PCA-RECT representation (best viewed on monitor). Useful events are sub-sampled and filtered after applying nearest-neighbor temporal filtering and

refractory filtering, termed as rectangular event context transform (RECT). The sparser RECT event representation is updated dynamically using a first in, first out

(FIFO) buffer. Subsequent feature extraction is carried out by applying principal component analysis (PCA) to project RECT onto a lower-dimensional subspace to

obtain the final PCA-RECT feature representation.

(2) refractory filtering. We define a spatial Euclidean distance
between events as,

Di,j =

∣

∣

∣

∣

∣

∣

∣

∣

(

xi
yi

)

−

(

xj
yj

)∣

∣

∣

∣

∣

∣

∣

∣

. (1)

Using the above distance measure, for any event we can define a
set of previous events within a spatial neighborhood, N (ei, γ) =

{ei | j < i, Di,j < γ } , where γ =
√
2 for an eight-connected

pixel neighborhood. When the time difference between the
current event and the most recent neighboring event is less than
a threshold, 2noise, the filter can be written as

Fnoise (e) = {ei| N(ei,
√

2)\N(ei, 0) ∋ ej | ti − tj < 2noise} .
(2)

When the neighborhood is only the current pixel, γ = 0, the set
of events getting through the refractory filter Fref are those such
that,

Fref (e) = {ej| ti − tj > 2ref ∀ j | ej ∈ N
(

ej, 0
)

} . (3)

Cascading the filters, we can write the filtered incoming events as,

{

ê
}

= Fnoise
(

Fref (e)
)

. (4)

As shown in Figure 1, the incoming events êi are first pushed into
a FIFO buffer. The FIFO queue is then used to update an event-
count matrix C ∈ R

m×n, where m and n denote the number of
rows and columns of the event camera output.

C(xi, yi) = C(xi, yi)+ 1 . (5)

Before pushing the latest event, the FIFO buffer of size S

is popped to make space and simultaneously update the
count matrix C,

C(xi−s, yi−s) = C(xi−s, yi−s)− 1 . (6)

The event-count C is pooled to build local representations, which
are further aggregated to obtain the RECT representation of each
event. In particular, let A be a p×q rectangular grid filter, the 2-D
convolution is defined as,

R(j, k) =
∑

p

∑

q

A(p, q)C(j− p+ 1, k− q+ 1) , (7)

where p run over all values that lead to legal subscripts of A(p, q)
and C(j − p + 1, k − q + 1). In this work, we consider a filter
containing equal weights (commonly known as an averaging
filter) for simplicity, while it is worth exploring Gaussian-
type filters that can suppress noisy events. The resultant 2-D
representation is termed as filtered matrix R ∈ R

(m/p)×(n/p),
where the filter dimensions are chosen to be give integer values
for m/p and n/q or conversely C is zero-padded sufficiently.
Subsequently, the RECT representation for êi is obtained as a
patch ui (see Figure 1) of dimension d centered at R(y/p, x/q).
Subsequently, the filtered event-count patch is projected on-to a
lower-dimensional subspace using principal component analysis
(PCA) for eliminating noisy dimensions and improving classifier
accuracy. For the sake of completion, the details of extracting the
principal components (PCs) are given below.

For a set of n mean-centered feature vectors ui ∈ R
d with Ni

samples in the subset Di belonging to class ωi, (i = 1, · · · ,C),

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 13524

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

principal component analysis (PCA) seeks a projection W that
minimizes the error function:

JPCA(W) =

N
∑

k=1

||uk − vk||
2 . (8)

where vk is obtained after projection of uk byW as vk =WWTuk.
The minimization is equivalent to finding the eigenvectors of the
total scatter matrix defined as:

ST =

N
∑

k=1

(uk − µ)(uk − µ)T . (9)

where µ is the mean of all training samples:

µ =
1

N

N
∑

k=1

uk . (10)

The columns of W associated with non-trivial eigenvalues are
the PCs and those with negligible eigenvalues are regarded as
arising from noise. After projecting the RECT representation
using the PCs, each filtered event is thus encoded as a feature

vector xi ∈ R
d′ where d′ < d.

2.2. Feature Selection and Matching Using
K-d Trees
The PCA-RECT feature representation for each event is matched
to a codebook for creating the object representation. However,
exhaustive search is too costly for nearest neighbor matching
with a codebook, and approximate algorithms can be orders
of magnitude faster than exact search, while almost achieving
par accuracy.

In the vision community, k-d tree nearest-neighbor search
is popular (Silpa-Anan and Hartley, 2008; Muja and Lowe,
2009), as a means of searching for feature vectors in a large

training database. Given n feature vectors xi ∈ R
d′ , the

k-d tree construction algorithm recursively partitions the d′-
dimensional Euclidean space into hyper-rectangles along the
dimension of maximum variance. However, for high dimensional
data, backtracking through the tree to find the optimal solution
still takes a lot of time.

Research in the vision community has therefore aimed at
increasing the probability of success while keeping backtracking
within reasonable limits. Two similar and successfully applied
approximated search methods are the best-bin-first search (Beis
and Lowe, 1997) and priority search (Arya and Mount, 1993).
Backtracking is accomplished in such methods by maintaining
an estimate of the distance from the query point to any
of the nodes down all of the branches. In the best-bin-
first search, a parameter specifies the number of data points
that can be checked before terminating and returning the
closest point traversed up to that point. This process however
still requires the computationally expensive Euclidean distance
calculation to a subset of the data points in the codebook or
training database.

This paper proposes a simple, backtracking-free branch-
and-bound search for matching (Algorithm 1), taking
advantage of the low-dimensionality of the PCA-RECT
representation. The hypothesis is that, in general, the point
recovered from the leaf node is a good approximation to the
nearest neighbor in low-dimensional spaces, and performance
degrades rapidly with increase in dimensionality, as inferred
from the intermediate results in Beis and Lowe (1997). In
other words, with (log2 n) − 1 scalar comparisons, nearest
neighbor matching is accomplished without an explicit distance
calculation. While the PCA-RECT representation is useful for
software implementations, an extra PCA projection step can be
computationally demanding on FPGA devices. To this end, we
propose a virtual PCA-RECT representation based on the k-d
tree, termed as vPCA-RECT.

2.2.1. vPCA-RECT
A key insight is that only a fraction of the data dimensions are
used to partition the k-d tree, especially when the codebook
size is only a few times more than the feature dimension.
Therefore, instead of using the PCA-RECT representation, an
alternative dimensionality reduction scheme can be implemented
by discarding the unused dimensions in the k-d tree structure.
In other words, the RECT representation is first used to build
a k-d tree that selects the important dimensions (projection
π), which are then utilized for codebook learning and
classification. It is worth noting that exactly the same k-d
tree will be obtained if the RECT data is first projected by
π onto a subspace that is aligned with the coordinate axes.
Since no actual projection takes place, we refer to this as a
virtual projection—the irrelevant dimensions chosen by the
k-d tree are discarded to obtain a lower-dimensional feature
representation.

2.3. Event-Based Object Categorization
and Detection
The learning stage: Using the PCA-RECT event representation,
the learning process corresponds to creating a set of K features
denoted asM = {1, 2, · · · ,K} to form the codebook (also termed

Algorithm 1:KDSEARCHFAST(node, y): Fast k-d tree search for
PCA-RECT
Input: The root of the kdtree structure, and a query point y
Output: kdtree leaf node data-point j

1: if node.type 6= leaf then
2: if y(node.splitDimension) ≤ node.splitThreshold then

3: node← node.left
4: KDSEARCHFAST(node, y)
5: else

6: node← node.right
7: KDSEARCHFAST(node, y)
8: end if

9: else

10: return node.dataIndex
11: end if

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 13525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

as dictionary). The clustering is done by randomly selecting
a sufficiently large pool of event representations of various
categories from the training samples. It is worth noting that
the dictionary features are learned from the training set using
unsupervised clustering for all the objects jointly.

In contrast to the above single-shot learning for PCA, the
vPCA-RECT representation requires two codebook learning
steps. First, using the RECT representation, an initial codebook
of size Kv, where Kv << K, is built to spot the
unused feature dimensions in the k-d tree. The unused
dimensions simply correspond to those which were not used
by the k-d tree construction algorithm to recursively partition
the d’-dimensional Euclidean space into hyper-rectangles.
Subsequently, the projection π is used to obtain a lower-
dimensional representation for the training data and then the
final codebook of size K is generated. The initial, smaller
codebook helps to partition the RECT feature space with much
higher entropy, and thus is an essential step for the virtual
PCA-RECT representation.

The learning stage for detection builds on top of the
categorization module, in such a way that the learning process
corresponds to selecting a subset of features from the codebook
for each object. In contrast to the learning phase of the
categorizationmodule, the detector features are selected from the
whole training set in a supervised one-vs-all manner.

We propose to evaluate the balanced matches Yk
+

to each

codeword fk from the target events against the matches Yk
−
for

all the other events to the respective feature. Mathematically,
the ratio

D(k) =
βk
+
Yk
+

βk
−
Yk
−

, where βk
+
=
|Yk
+
|

K
∑

k=1

|Yk
+
|

, and βk
−
=
|Yk
−
|

K
∑

k=1

|Yk
−
|

,

(11)

is to be maximized. The balancing component βk
+
denotes the

percentage of target events matched to the codeword fk. Similarly,
βk
−

denotes the percentage of non-target events matched to
the codeword fk. Thus, choosing the detector features with the
D–largest ratios completes the learning phase.

The classification/detection stage: At runtime, the event
representations are propagated through the k-d tree. On the
one hand, the distribution of the codewords are then extracted
and further passed to a simple linear classifier (we experimented
with both linear SVM and Kernel Methods). On the other hand,
the event representations propagated through the k-d tree are
matched with the detector features. Those matched events are
used to update a location map for the target object and the
region with the highest activation is considered to be the final
detection result.

2.4. FPGA Implementation
An overview of the whole system is shown in Figure 2. Learning
is performed in software first and the relevant data is transferred
to the FPGA, which corresponds to the SVM weights and the
information regarding the nodes of the k-d tree. This process
does not require fine tuning of the FPGA code, except for the
case of a different codebook size, in which only the new size has
to be updated in the FPGA side. The memory initialization for
the block memories is automated from the files generated during
training in software.

2.4.1. Categorization Pipeline
In order to showcase energy-efficient event-based object
recognition, the FPGA implementation of the algorithm is
designed as a series of four independent hardware units: event
sub-sampling, vPCA-RECT generation, a recursive k-d tree and a
SVM classifier output on an event-by-event basis, each of which
has an independent block design. Generally, these hardware
counterparts are not a direct application of the algorithm

FIGURE 2 | Pipeline of the proposed system.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 13526

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

presented in the earlier section, i.e., certain design decisions were
taken for this task, among them, to desist the use of an extra PCA
projection along the pipeline.

The sub-sampling block receives the filtered event locations as
input values x and y, each 8-bit in size, which are used to update
the zero-padded count matrix C ∈ R

m×n (Equation 5, 6). The
sub-sampling behavior can be achieved in hardware through a
combinatorial module that performs the division by shifting the
inputs by one bit, and subsequently adding p and q to that value to
obtain the sub-sampled representation (Equation 7). This results
in two 7-bit values which are then concatenated to output a single
memory address (Figure 3A).

The next block uses the cell-count matrix R ∈ R
(m/p)×(n/q),

created by a block of distributed RAM of depth ((m/p) × (n/q))
and log(s)-bits width, corresponding to the FIFO buffer size s,
initialized to zero for generating the vPCA-RECT representation.
To generate a descriptor with respect to the last event received

would add a considerable overhead, since each element of the
descriptor would have to be read sequentially from the block
RAMwhile being stored by the next module. Instead, the address
corresponding to the center of the descriptor is provided, i.e., the
input address of the count matrix is passed over to the k-d tree
module. This allows to trigger the k-d tree in one clock cycle
once the count matrix is updated and later read the descriptor
values based on this single coordinate. However, a new issue
arises, the count matrix then can not be modified while the k-d
tree exploration is being performed. Hence a buffering element is
added between the sub-sampling and count matrix modules that
will only provide the next address once there is a valid output
from the tree.

The k-d tree nodes are represented in a 49-bit number stored
in a previously initialized single port ROM of depth equal to the
number of nodes. This number is conformed by the elements of
a node: type, left node, right node, index output, split value and

FIGURE 3 | FPGA implementation details: (A) Sub-sampling module, (B) A k-d tree node in hardware, and (C) Recursive logic-driven k-d tree implemented in

hardware.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 13527

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

split dimension; these are concatenated and their width is shown
in Figure 3B.

The k-d tree module follows a three steps cycle (Figure 3C).
The split dimension of a k-d tree node provides the address
that needs to be read from the cell-count matrix block RAM
to get the relevant descriptor value. Next, the descriptor value
is compared to the previously stored split value from the
node, taking a path down the tree, left or right, depending
on the boolean condition. The corresponding node to get is
then retrieved from the respective left or right address element
acquired in the retrieval step. This cycle repeats until the node
type belongs to a leaf, then the leaf node output is made available
for the classifier module. It is worth mentioning that in the
software implementation of this algorithm, once the descriptor
is formed, it is then normalized before being passed to the
k-d tree. A normalization step in hardware would add a big
overhead to the pipeline, disturbing its throughput, and it was
removed from the FPGA implementation after verifying that the
overall performance was not affected harshly. The “distribution
of the codewords” normalization that is input to the SVM is
an important step (Equation 12). It is implicitly performed by
limiting the number of events quantized to that of the FIFO buffer
size. This is more important than normalizing the descriptors.
Using the N-SOD, we noticed only a small drop in test accuracy
(from 98 to 93%) without normalization, which is acceptable for
real-time applications.

At runtime in a software implementation, the classification
is performed by a linear combination of the weights and a
feature vector created by the k-d tree after a buffer time
of S events. To achieve this in a hardware implementation,
the depth of the feature vector would have to be transversed
while performing several multiplications which would require a
considerable amount of multiplier elements from the FPGA, and
would affect the speed of themodule. Thus, it was desired to avoid
this solution and the following was proposed.

The elements of the linear combination mentioned would be
acquired as readily available and would be added to an overall
sum vector of length equal to the number of classes to classify,
hence performing the dot product operation as one addition
per event. Then, after Sc events, a resulting vector is formed,
which is equal to the result of the same linear combination
first mentioned in the software implementation. Thus, the final
module to perform the classification receives the output index
from the k-d tree and adds its corresponding classifier parameter
to a sum vector of length equal to the number of classes. In
parallel, this index value is stored in another FIFO element.When
the queue is full, the oldest value would be passed to the module
to be subtracted from the sum. This allows to have a classification
output at any point in time, corresponding to the last Sc events.

Let ki be the output of the k-d tree, which also corresponds
to the codeword index of the dictionary, and kold be the k-d
tree index corresponding to the oldest event being removed from
the FIFO buffer. Let the SVM weights and bias be WSVM ∈

R
K×C and BSVM ∈ R

1×C, respectively for C object categories
with K features. Thus, the former element ki contributes to the
SVM representation whereas kold must be removed from the
SVM representation. A classification output for an event i is

computed as Soi = WSVM · Hi + BSVM , considering a dictionary
representation denoted by Hi ∈ R

K×1. The equivalent free-
running SVM update can be represented using Equation (12).

Soi = Soi−1 +WSVM

(

ki, 1 :C
)

−WSVM

(

kold, 1 :C
)

(12)

Note that the number of input events used to form the feature
representation Hi is always constant, and corresponds to the
last S events that creates the PCA-RECT representation using a
FIFO (Equation 6). Hence, it is not a single event that is being
classified. As the queue is updated on an event-by-event basis, the
classification output corresponds to the entire block, although the
classification output is triggered by every event.

2.4.2. Detection Pipeline
Parallel to the modules performing the classification pipeline,
the aim of the detection process is to find the coordinates
corresponding to “landmarks” with the highest activation after
Sd events, and then find the most probable location for the
object. Again, the algorithm was divided into multiple coherent
hardware modules that would produce the same results as the
original software version. The designed blocks are: landmarks
detector, detection heat map and mean calculation.

First, the codewords corresponding to the landmarks that
were calculated offline are loaded into a binary memory block.
This module receives as input the codeword index provided by
the k-d tree for the current event. If the feature is found as
one of the landmarks, the respective event coordinates x and y
are passed as a concatenated address to the next module in the
pipeline. Next, a stage corresponding to the heat map is utilized.
This module holds a matrix represented as a block RAM of depth
m× n, since the coordinates are not sub-sampled and have the
ranges 1 ≤ x ≤ m and 1 ≤ y ≤ n. For each new input address,
its value in memory is incremented.

Since the aim of the detection algorithm is to calculate the
average of the coordinates with the highest activation, it would
be inefficient to find these event addresses after Sd events.
Therefore, the coordinates with the highest count are stored
in a FIFO element while the counting is performed. At the
end, this will contain all the x and y coordinates needed for
the average calculation. Once the classification flag is triggered,
all the coordinates stored in the previous step (which belong
to the highest activation) are acquired for calculating the total
activation (the divisor). Subsequently, it will calculate the sum
of the respective x and y values, and pass these as dividends
to hardware dividers that will provide the final coordinates of
the detected object. Algorithm 2 summarizes the above object
detection hardware pipeline clearly.

2.5. Experiment Setup
We validated our approach on two benchmark datasets (Orchard
et al., 2015a), namely the N-MNIST and N-Caltech101, that have
become de-facto standards for testing event-based categorization
algorithms. Figure 4 shows some representative samples from
N-MNIST and N-Caltech101.

The above datasets are good for only evaluating the
categorization module. In addition, as the benchmark datasets

Frontiers in Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 13528

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

Algorithm 2: Event-based FPGA Object Detection

Input: Filtered event stream
{

ê
}

, detector landmarks l, number
of events S
Output: Mean object location (xobj, yobj)

1: Initialize detector count D(y, x) = 0m,n, detector cut-off
threshold = 0

2: for t = 1 : S do
3: For each incoming event êt = (xt , yt , tt , pt , x

T
t)

T

4: For xt get leaf node index lt using k-d tree
5: if lt ∈ l then
6: D(yt , xt) = D(yt , xt)+ 1
7: if D(yt , xt) > threshold then
8: threshold = threshold + 1
9: Reset detector mean calculation FIFO
10: end if

11: if D(yt , xt) = threshold then
12: Push xt , yt into the mean calculation FIFO
13: end if

14: end if

15: end for

16: Output the mean of the coordinates in the FIFO as (xobj, yobj)

were generated by displaying images on a monitor with limited
and predefined motion of the camera, they do not generalize
well to real-world situations. To overcome these limitations,
we created a new dataset by directly recording objects in lab
environment with a freely moving event-based sensor. The in-
house dataset, called as Neuromorphic Single Object Dataset
(N-SOD), contains three objects with samples of varying length
in time (up to 20 s). The three objects to be recognized are
a thumper 6-wheel ground robot, an unmanned aerial vehicle,
a landing platform along with a background class (Figure 5A).
The proposed object categorization and detection framework
based on PCA-RECT is compared to state-of-the-art event-based

works and thus software implementation is used with double
numeric precision.

For real-time experiments, we use the commercial event
camera, the Dynamic and Active-pixel Vision Sensor (DAVIS)
(Brandli et al., 2014). It has 240× 180 resolution, 130 dB dynamic
range and 3 microsecond latency. The DAVIS can concurrently
output a stream of events and frame-based intensity read-outs
using the same pixel array. An event consists of a pixel location
(x, y), a binary polarity value (p) for positive or negative change
in log intensity and a timestamp in microseconds (t). In this
work, polarity of the events are not considered, and only the event
stream of the DAVIS is used.

2.5.1. Parameter Settings
The time thresholds for the nearest neighbor filter and the
refractory filter are nominally set to be 2noise = 5 ms and
2ref = 1 ms, respectively, as suggested in Padala et al. (2018).
We used a FIFO buffer size of 5000 events for dynamically
updating the count matrix as and when events are received.
Subsequently, the RECT representation with a 2 by 2 averaging
filter without zero padding at the boundaries is used to obtain a
9× 9 feature vector for all event locations. We also experimented
with other feature vector dimensions using a 3 × 3, 5 ×
5, 7 × 7 sampling region and found that increasing the
context improved the performance slightly. For obtaining the
PCA-RECT representation, the number of PCs can be chosen
automatically by retaining the PCs that hold 95% eigenenergy
of the training data. For testing on the benchmark datasets,
a codebook size of 3000 along with spatial pyramid matching
(SPM) (Lazebnik et al., 2006) was universally used with a k-d tree
with backtracking to find precise feature matches.

3. RESULTS

3.1. N-MNIST and N-Caltech101
The object categorization results on the N-MNIST and N-
Caltech101 datasets are given in Table 1. As it is common

FIGURE 4 | Samples from the Event-based Benchmark Datasets: (A) N-MNIST Samples, (B) N-Caltech101 Samples.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 13529

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

FIGURE 5 | Samples from the in-house datasets containing a Landing platform, UAV and Thumper (Empty Floor as background class): (A) N-SOD dataset, (B)

Frame-based dataset similar to N-SOD, (C) Frame-based dataset with blur similar to N-SOD.

TABLE 1 | Comparison of classification accuracy on event-based datasets (%).

N-MNIST N-Caltech101

H-First 71.20 5.40

HOTS 80.80 21.0

Gabor-SNN 83.70 19.60

HATS 99.10 64.20

vPCA-RECT (this work) 98.72 70.25

PCA-RECT (this work) 98.95 72.30

Phased LSTM 97.30 –

Deep SNN 98.70 –

The bold values correspond to the best results for the N-MNIST and N-

Caltech101 datasets.

practice, we report the results in terms of classification
accuracy. The baselines methods considered were HATS (Sironi
et al., 2018), HOTS (Lagorce et al., 2016), HFirst (Orchard
et al., 2015b), and Spiking Neural Network (SNN) frameworks
reported in Lee et al. (2016) andNeil et al. (2016) andGabor-SNN
as reported in Sironi et al. (2018).

On the widely reported N-MNIST dataset, our method is as
good as the best performing HATS method (Table 1). Moreover,
other SNNmethods are also in the same ballpark, which is due to
the simple texture-less digit event streams giving distinct features

for most methods. Therefore, it is a good benchmark as long
as a proposed method performs in the high 90’s. A test on the
challenging NCaltech-101 dataset will pave way for testing the
effectiveness close to a real-world scenario. Our method has
the highest classification rate ever reported for an event-based
classification method on the challenging N-Caltech101 dataset.
The unpublished HATS work is the only comparable method in
terms of accuracy, while the other learning mechanisms fail to
reach good performance.

3.1.1. Vary Hyper-Parameters
There are two important considerations while using the RECT
representation: the feature dimension d obtained from the
filtered matrix Equation (7) and the size of the filter itself (p× q).
Another way of interpreting the feature dimension is the “square
grid length” that determines the number of filtered cells (these are
the opaque rectangular grids containing more than one event in
Figure 1) aggregated from the filtered event count matrix. This
is easier to visualize and also vary in steps of 3 × 3, 5 × 5,
7 × 7, etc. In a similar vein, the pooling of the event count
matrix (C) using the rectangular filter A(p, q) results in a “sub-
sampled” representation R ∈ R

(m/p)×(n/p), and consequently,
choosing a RECT patch of dimension d centered at R(y/p, x/p) is
equivalent to choosing a “larger radius” in the event count matrix
C ∈ R

(m)×(n) and then performing filtering and aggregation.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 13530

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

Again, it is easy to vary and visualize this RECT radius, say in
steps of 5, instead of choosing various combinations of filter sizes
(p, q). In the following, we vary the RECT grid and the radius
to investigate the effects on classification performance using the
N-Caltech101 dataset.

Figure 6A illustrates the classification performance trend
observed for increasing radius of the event descriptor while
keeping the resolution of the grid fixed. Similar to the trend
observed in Ramesh et al. (2019a), a radius of more than 10
pixels results in sub-optimal performance. On the other hand,
Figure 6B shows the effect of varying grid resolution on the
accuracy. It is interesting to see that as the contextual information
is captured finely using denser grids, while fixing the RECT radius
to 10, there is a general increase in accuracy at the expense of
increase in feature dimension. For instance, a 11×11 grid already
results in a high feature dimension of 121 and thus increasing
the complexity of the subsequent feature matching step using

FIGURE 6 | Vary RECT parameters: (A) RECT radius vs. accuracy, (B) RECT

square grid length vs. accuracy.

the k-d tree. In our application using N-SOD, presented in
the next subsection, a 9 × 9 grid with a radius of 10 was
used. Next, the performance of the feature selection methods
are investigated.

Figure 7A shows the performance of the feature selection
methods (PCA and vPCA). As expected for PCA, increase
in the number of PCs results in better performance until
about the 95% eigenenergy cut-off, which is typically about
60 in our case. It is also worth noticing that just retaining
five dimensions can give better performance compared to
existing works. For vPCA feature selection, the number
of selected features depends on the size of the smaller
evaluation codebook. The smaller the evaluation codebook,
the lesser the entropy, and thus lesser the number of
features selected. Similar to PCA, when noisy features
are discarded from the RECT representation, the classifier
performance increases.

FIGURE 7 | Vary feature dimension and codebook size: (A) Feature selection

methods (PCA, vPCA) vs. Classification Accuracy, (B) Codebook size vs.

Classification accuracy.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 13531

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

Besides feature selection, larger dictionaries or codebooks
tend to provide higher classification accuracy (Nowak
et al., 2006), however, the high-dimensionality of the object
representation when combined with spatial pyramid matching
(14 times the codebook size for a 1 × 1, 2 × 2, and 3 × 3
SPM representation) can degrade the performance for larger
codebooks, as shown in Figure 7B, where two distinct clusters
can be spotted. Codebook sizes less than 5000 with SPM perform
better than larger codebooks. This trend has been observed in
previous works as well (Lazebnik et al., 2006).

3.2. N-SOD
For testing on the N-SOD dataset, we divide the dataset into
training and testing, with 80% temporal sequence samples per
class for training and the remaining for testing. Using the training
features, a dictionary is generated. Since the temporal sequences
are of different length, for a fixed number of events, say every 105

events, an object representation is extracted using the codebook
and a linear SVM classifier is trained. Similarly for testing, for
every 105 events, the object representation is classified using
the SVM.

Based on the above setup, an accuracy of 97.14% was obtained
(Table 2) with a dictionary size of 950, which resulted in a
k-d tree with 10 layers. We also experimented with lower
dictionary sizes such as 150, 300, 450, etc., and the performance
drop was insignificant (>96%). On the other hand, using
a k-d tree with backtracking, descriptor normalization, etc.,
achieved close to 100% accuracy on offline high-performance
PCs, which of course does not meet low-power and real-
time requirements. In summary, the proposed vPCA-RECT
method with a backtracking-free k-d tree implementation mildly
compromises on accuracy to handle object detection and
categorization using an event camera in real-time.

We report the precision and recall of the detection results by
ascertaining if the mean position of the detected result is within
the ground truth bounding box. We obtained: (a) Precision -
(498/727) = 0.685: The percentage of the detections belonging
to the object that overlap with the groundtruth (b) Recall -
(498/729) = 0.683: The percentage of correct detections that
are retrieved by the system. The number of “landmarks" were
set to 20 in the above experiments while similar results were
obtained for values such as five and ten. It is worth pointing
out that the codebook size used for 4-class N-SOD detection and
recognition, thereby for the FPGA implementation, need not be
in the thousands as with the complex N-Caltech101 dataset for
giving high accuracy.

TABLE 2 | Confusion Matrix (%) for the best result on the in-house

N-SOD dataset.

Background LP Thumper UAV

Background 95.4128 0.3058 3.3639 0.9174

LandingPlatform 0 99.2268 0.5155 0.2577

Thumper 0 1.9257 96.9739 1.1004

UAV 0 0 3.1884 96.8116

3.3. FPGA Performance
The hardware implementation and performance of the Xilinx
Zynq-7020 FPGA running at 100 MHz was evaluated by direct
comparison with the results of the algorithm’s software version
in MATLAB. The Zynq was interfaced to a down-looking DAVIS
camera, on-board an unmanned aerial vehicle flying under
unconstrained lighting scenarios. We recommend viewing our
submitted video1 that clearly shows the classification/detection
process better than still images. Vivado design suite was used for
synthesis and analysis of the design. The in-built logic simulator
ISIM was used for testing; first, to verify that the behavior was
met, and later for verification of timing performance and latency
requirements post-synthesis and post-implementation.

3.3.1. Timing
The time taken for a single event to be classified for the worst
possible k-d tree path was 560 nanoseconds, where roughly
80% of the time is employed traversing the tree. The rest is
employed for buffering (5%), count matrix updating (5%), and
SVM inference (10%). On the other hand, the detection task
includes a comparison of codewords and consequent updating
of the detection count matrix, which happens for each event
and takes 50 nanoseconds. Later, the mean calculation between
the respective coordinates consists of a summation and division.
The former is proportional to the number of values in the
operation and takes one clock cycle per element (in operation this
approximates to 5 values), and the latter requires 80 nanoseconds
of processing. This amounts to 130 nanoseconds which is
negligible since it only happens once for every set of valid
classified events (Sd).

Due to the asynchronous nature of the sensor, it is not
uncommon to receive a consecutive batch of events in a very
short period (say 10 µs). These events cannot be handled in
parallel, since each of them modifies the classification count
matrix, and the SVM feature representation. Then, the events
that arrive while the tree is been traversed are buffered and later
processed. This may add a delay in the output of about 2 event
cycles (about 1 µs) depending on the amount of events triggered
at the same instant, however, the refractory filter avoids this case
for multiple events triggered at the same pixel. In any case, the
DAVIS camera output has a minimum event throughput at 1µs
(mean inter-event interval about 10 µs), and thus is a rare case
inhibiting real-time processing.

The classification and detection tasks are performed in parallel
and follow different periods of operation. Classification is applied
on a FIFO storing the last Sc events, and it is consequently
updated for each incoming event. Hence, a classification
output is provided for each new input data. Separately, the
detection pipeline works on a periodic basis and only for a
specific classification result, providing a valid output once every
Sd events.

The latency of the system is on par with similar works on
neuromorphic vision tracking on FPGA (Moeys et al., 2016;
Linares-Barranco et al., 2019), taking into consideration that
these works are implemented for low-level object tracking.

1Demo: https://youtu.be/yWfCmHnV5f0

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 13532

https://youtu.be/yWfCmHnV5f0
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

Additionally, our system outperforms similar applications using
frame-based cameras using FPGA or microprocessors, which by
definition normally operate in the scale of milliseconds. Table 4
presents a summary of these measurements.

3.3.2. Resource Utilization
A summary of utilization of hardware elements can be seen
in Table 3. The modules corresponding to the k-d tree and
SVM require memory initialization to store tree nodes properties
and SVM coefficients. Hence, Read-Only Memory (ROM) was
utilized for this purpose. This accounts to 128 KB for the k-d
tree module and 180 KB for the SVM module. These resources
are synthesized into RAM blocks in the FPGA, but these are
only used for reading as would be the case with a regular ROM
element. Digital signal processing (DSP) slices were utilized to
perform integer division. There are two division operations in
the detection pipeline, and each of these dividers require twoDSP
slices; one multiply block and one multiply adder block.

3.3.3. Power Consumption
Table 4 also lists the power consumption of the vPCA-RECT
system in comparison to state-of-the-art methods. For our
system, the DAVIS event camera operates at a few milliwatts (10
mW) while the Zynq operates at about 3 W including the base
power for running Ubuntu. The algorithmic implementation
itself increases the dynamic on-chip power by only 0.37 W.
As a comparison, event-based blob tracking implementation
on FPGA (Moeys et al., 2016) reported 0.775 W running at
50 MHz. In general, FPGA-based recognition systems for RGB
cameras (Schlessman et al., 2006; Hikawa and Kaida, 2015;
Mousouliotis et al., 2018), which present solutions running at

TABLE 3 | Hardware utilization report for the FPGA running the proposed

modules.

Utilization Available Utilization %

LUT 18238 53200 34.28

LUTRAM 12124 17400 69.68

FF 2065 106400 1.94

BRAM 48 140 34.29

DSP 4 220 1.82

IO 102 200 51.00

TABLE 4 | Comparison of power consumption and latency of existing object

detection systems with the proposed method.

Frequency (MHz) Power (Watts) Latency (ns)

vPCA-RECT (ours) 100 0.37 560

Moeys et al. (2016) 50 0.78 440

Zhai et al. (2013) 58 0.90 11000 k

Ali et al. (2009) 50 0.66 91000 k

De Smedt et al.

(2015)

2600 22.0 ∼

The bold value correspond to our system’s power consumption.

equal or lower clock frequencies, consume more power than our
implementation. Similarly, Zhai et al. (2013) and Ali et al. (2009)
present works that take advantage of the mixed computation
capabilities of the Xilinx Zynq chip, but get hindered by the high
latency characteristic of a frame-based system.

To provide a broader context to the power consumption of
frame-based systems, let us consider (De Smedt et al., 2015)
(Brix embedded system, Intel-I7 processor with 8G RAM) used
for real-time object tracking. It consumes about 22 W, which is
7x more than our full hardware implementation. Note that the
Zynq module is a powerful and flexible development tool, but
far exceeds the utilities compared to SmartFusion FPGAs that
allow sleep modes, non-volatile configuration memory, and have
much lower power consumption overall. In other words, there is
significant room for very low-power implementation (less than
1 W) of our framework with appropriate hardware choices and
development efforts.

3.4. Comparison to CNN
In order to compare to state-of-the-art deep neural networks, we
recorded a similar dataset to N-SOD using a frame-based camera
(Figure 5B) and transfer learning via AlexNet classified the object
images. The total number of images recorded were in the order
of 6000. With an equivalent train/test split compared to N-SOD,
perfect performance can be achieved on the clearly captured
test images. In fact, as Figure 8 shows, perfect performance can
be achieved on the test images with as little as 5% of the data
used for training. It is indeed surprising to see that with 0.5%
training data (8 samples per object category), the accuracy can be
near perfect.

However, when we tested the Alexnet model (trained on
normal images) on a dataset under motion blur conditions
(Figure 5C), an accuracy of only 79.20% was obtained. It was
clear that the black UAV frame when blurred looks like the black-
stripped background and creates much confusion as seen from

FIGURE 8 | Alexnet test accuracy vs. Percentage of training samples.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 13533

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

TABLE 5 | Confusion Matrix (%) for CNN classifier on the “blur” frame-based

dataset (%).

Background LP Thumper UAV

Background 100.00 0 0 0

Landing platform 0.64 99.36 0 0

Thumper 9.63 0 90.37 0

UAV 72.02 0 9.3 27.05

Table 5. This confirms the disadvantage of using frame-based
cameras to handle unconstrained camera motion. Note that fast
camera motion leads to only an increase in data-rate for event-
based cameras and has no effect on the output. In fact, recordings
of N-SOD have significant amount of such fast motions.

Additionally, we recorded images to test the performance
of CNN on data captured under low-lighting conditions and
slow motion conditions. A near-perfect performance on these
set of images was impressive, as the features extracted by CNN
were robust enough to be invariant under extreme lighting
conditions. Similarly, one could argue that “blurred” images
when included in the training will boost the accuracy of
the deep learning model. We confirmed that by training on
30% normal (1976 images) plus 3% blur (72 images), and
testing on the rest of the data captured under normal, blur,
and low-lighting conditions. This mixed testing allowed the
CNN to correctly classify the UAV blurred images (99.4%
accuracy). Nonetheless, this is a rather unnatural training
setting, one that is not expected to be deployed in the
real-world. Moreover, other works have also concluded that
existing networks are indeed susceptible to many image quality
issues, particularly to blur and noise (Dodge and Karam,
2016).

4. DISCUSSION

We have demonstrated object detection and categorization in
an energy-efficient manner using event cameras, where the
only information that is important for these tasks is how
edges move, and the event camera naturally outputs it. The
proposed PCA-RECT feature takes advantage of this sparsity to
generate a low-dimensional representation. The low-dimensional
representation is further exploited for feature matching using a
k-d tree approach, capable of obtaining the best performance on
the challenging Neuromorphic Caltech-101 dataset compared to
state-of-the-art works.

Although k-d trees enable fast and large scale nearest neighbor
queries among high dimensional data points, such as those
produced by RECT or PCA-RECT2, their application is restricted
to efficiently computing distance measures. Thus, as long as
there are descriptors, global or local, k-d trees are a good fit
to both event data and RGB frames. Nonetheless, it remains
to be seen whether global event-based descriptors, say HATS

2PCA-RECT feature can be high-dimensional when the number of chosen

dimensions are close to that of the corresponding RECT representation.

(Sironi et al., 2018), will benefit from k-d trees. On the other
hand, the sparsity of events leads to less data compared to
intensity frames recorded at 30 Hz or 10 MB/s (the DAVIS
outputs typically at 150KB/s). This tends to lend well to the
use of k-d trees, given there will be lesser information to
build and decode. Overall, k-d trees could be better utilized
for real-time and embedded applications for event camera data
compared to RGB frames, and its performance remains to be
fully explored.

It is important to note that we demonstrated very competitive
performance compared to Deep SNN on the N-MNIST dataset
using the proposed dictionary-based framework. However, it
is indeed expected that deep features learned using neural
networks shall outperform hand-crafted features, such as PCA-
RECT, in the future. Even so, it is non-trivial as to how a
deep learning approach can be effectively and efficiently suited
to a purely spike-based or event-based data. In this work,
real-time FPGA implementation was achieved with several
careful design considerations, such as a backtracking-free k-
d tree for matching to the codewords, a virtual PCA-RECT
representation obtained by analyzing the k-d tree partitioning
of the feature space, etc. To the best of our knowledge, this
is the first work implementing a generic object recognition
framework for event cameras on an FPGA device, verified in a
lab demo setting under unconstrained motion and lighting setup,
thereby demonstrating a high performance over resource ratio.
Additionally, it is well-known that dictionary-based methods
easily scale to the number of samples, since performance depends
only on the codebook size. For instance, searching a large image
dataset with 10 million images takes only about 50 ms (Jégou
et al., 2010) using compact representations of descriptors. This
type of large-scale recognition using event cameras shall be a
future research direction for us and the larger neuromorphic
vision community.

In terms of comparison to a frame-based setup, we found
the average elapsed time for feature extraction of a single
image under CPU execution environment (0.6726 s) hindered
real-time performance. However, this latency can be drastically
reduced using GPUs while power consumption increases
significantly. This is an important case where frame-based
paradigm is unfavorable compared to the low-power event-
based implementation presented in this paper. Additionally,
under fast moving conditions of the sensor, frame-based CNN
was shown to perform unreliably. Thus, when event-based
processing can accomplish higher accuracy and reliability under
low-power settings, as demonstrated in this work under closed-
loop conditions, there is great potential for silicon retinas
as an alternative or complimentary visual sensor for myriad
other applications.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material. The N-SOD data set is available
at https://tinyurl.com/s84nlm4 and the source code (MATLAB
and VHDL) is available at https://github.com/nusneuromorphic.

Frontiers in Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 13534

https://tinyurl.com/s84nlm4
https://github.com/nusneuromorphic
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

AUTHOR CONTRIBUTIONS

BR: thesis director and main contributor. Formalized the theory,
implemented the algo in MATLAB and evaluated the results. AU:
ported the algo to FPGA hardware and evaluated the results. HY:
assist BR in software experiments and verify hardware feasibility
using CPP implementation. LD: hardware system integration and
filtering implementation. GO: co-supervisor and instigator of
the work.

FUNDING

This work was supported in part by the Temasek Research
Fellowship awarded to GO.

ACKNOWLEDGMENTS

The authors would like to thank Chen Yu and other lab members
who assisted in data collection.

REFERENCES

Ali, U., Malik, M. B., and Munawar, K. (2009). “FPGA/soft-processor based real-

time object tracking system,” in Proceedings - 2009 5th Southern Conference on

Programmable Logic, SPL 2009, 33–37.

Arya, S., and Mount, D. M. (1993). “Algorithms for fast vector quantization,” in

Data Compression Conference (Sao Carlos), 381–390.

Beis, J. S., and Lowe, D. G. (1997). “Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces,” in Proceedings of the Conference

on Computer Vision and Pattern Recognition (CVPR) (San Juan: IEEEComputer

Society), 1000–1006.

Brandli, C., Berner, R., Yang, M., Liu, S. C., and Delbruck, T. (2014). A 240 x 180

130 db 3 µs latency global shutter spatiotemporal vision sensor. IEEE J. Solid

State Circuits 49, 2333–2341. doi: 10.1109/JSSC.2014.2342715

Conradt, J., Berner, R., Cook, M., and Delbruck, T. (2009). “An embedded AER

dynamic vision sensor for low-latency pole balancing,” in IEEE International

Conference on Computer Vision Workshop (Kyoto), 780–785.

De Smedt, F., Hulens, D., andGoedeme, T. (2015). “On-board real-time tracking of

pedestrians on a uav,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops (Boston, MA), 1–8.

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4%

CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223.

doi: 10.3389/fnins.2013.00223

Dodge, S., and Karam, L. (2016). “Understanding how image quality affects

deep neural networks,” in 2016 Eighth International Conference on Quality of

Multimedia Experience (QoMEX) (Lisbon), 1–6.

Galleguillos, C., Rabinovich, A., and Belongie, S. (2008). “Object categorization

using co-occurrence, location and appearance,” in IEEE Conference on

Computer Vision and Pattern Recognition (Anchorage, AK: IEEE Computer

Society), 1–8.

Hikawa, H., and Kaida, K. (2015). Novel fpga implementation of hand sign

recognition system with som-hebb classifier. IEEE Trans. Circuits Syst. Video

Technol. 25, 153–166. doi: 10.1109/TCSVT.2014.2335831

Iacono, M., Weber, S., Glover, A., and Bartolozzi, C. (2018). “Towards event-

driven object detection with off-the-shelf deep learning,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Madrid),

1–9.

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). “Aggregating

local descriptors into a compact image representation,” in 2010 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(San Francisco, CA), 3304–3311.

Kueng, B., Mueggler, E., Gallego, G., and Scaramuzza, D. (2016). “Low-

latency visual odometry using event-based feature tracks,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Daejeon),

16–23.

Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016). Hots:

A hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

Lazebnik, S., Schmid, C., and Ponce, J. (2006). “Beyond bags of features: spatial

pyramid matching for recognizing natural scene categories,” in Computer

Vision and Pattern Recognition, Vol. 2 (New York, NY), 2169–2178.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lenz, G., Ieng, S., and Benosman, R. (2018). Event-based dynamic face detection

and tracking based on activity. arXiv[Preprint].arXiv:1803.10106.

Linares-Barranco, A., Perez-Pena, F., Moeys, D. P., Gomez-Rodriguez, F., Jimenez-

Moreno, G., Liu, S.-C., et al. (2019). Low latency event-based filtering and

feature extraction for dynamic vision sensors in real-time FPGA applications.

IEEE Access 7, 134926–134942. doi: 10.1109/ACCESS.2019.2941282

Liu, H., Moeys, D. P., Das, G., Neil, D., Liu, S. C., and Delbruck, T.

(2016). “Combined frame- and event-based detection and tracking,” in IEEE

International Symposium on Circuits and Systems (ISCAS) (Montreal, QC),

2511–2514.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision 60, 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

Manderscheid, J., Sironi, A., Bourdis, N., Migliore, D., and Lepetit, V. (2019).

“Speed invariant time surface for learning to detect corner points with event-

based cameras,” in IEEE International Conference on Computer Vision and

Pattern Recognition (CVPR) (Long Beach, CA), 1–10.

Moeys, D. P., Delbruck, T., Rios-Navarro, A., and Linares-Barranco, A. (2016).

“Retinal ganglion cell software and FPGA model implementation for object

detection and tracking,” in Proceedings - IEEE International Symposium on

Circuits and Systems (Montreal, QC: Institute of Electrical and Electronics

Engineers Inc.), 1434–1437.

Mousouliotis, P. G., Panayiotou, K. L., Tsardoulias, E. G., Petrou, L. P., and

Symeonidis, A. L. (2018). “Expanding a robot’s life: low power object

recognition via fpga-based dcnn deployment,” in 7th International Conference

on Modern Circuits and Systems Technologies (MOCAST) (Thessaloniki), 1–4.

Muja, M., and Lowe, D. G. (2009). “Fast approximate nearest neighbors with

automatic algorithm configuration,” in VISAPP International Conference on

Computer Vision Theory and Applications (Lisbon), 331–340.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Phased LSTM: accelerating recurrent

network training for long or event-based sequences,” in Neural Information

Processing Systems, NIPS’16 (Barcelona: Curran Associates Inc.), 3889–3897.

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Regnier, S. (2012). Asynchronous

event-based visual shape tracking for stable haptic feedback in microrobotics.

IEEE Trans. Robot. 28, 1081–1089. doi: 10.1109/TRO.2012.2198930

Nowak, E., Jurie, F., and Triggs, B. (2006). “Sampling strategies for bag-of-features

image classification,” in European Conference on Computer Vision, Vol. 3954

(Graz), 490–503.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015a). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015b). HFirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Padala, V., Basu, A., and Orchard, G. (2018). A noise filtering algorithm

for event-based asynchronous change detection image sensors on

truenorth and its implementation on truenorth. Front. Neurosci. 12:118.

doi: 10.3389/fnins.2018.00118

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014).

Retinomorphic event-based vision sensors: bioinspired cameras with spiking

output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.2346153

Frontiers in Neuroscience | www.frontiersin.org 14 February 2020 | Volume 14 | Article 13535

https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.3389/fnins.2013.00223
https://doi.org/10.1109/TCSVT.2014.2335831
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/TRO.2012.2198930
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.3389/fnins.2018.00118
https://doi.org/10.1109/JPROC.2014.2346153
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ramesh et al. PCA-RECT: Event-Based Object Detection

Ramesh, B., Jian, N. L. Z., Chen, L., Xiang, C., and Gao, Z. (2017a). Scalable

scene understanding via saliency consensus. Soft Comput. 23, 2429–2443.

doi: 10.1007/s00500-017-2939-2

Ramesh, B., Thi, L., Orchard, G., and Xiang, C. (2017b). “Spike context: a

neuromorphic descriptor for pattern recognition,” in IEEE Biomedical Circuits

and Systems Conference (BioCAS) (Turin), 1–4.

Ramesh, B., Ussa, A., Vedova, L. D., Yang, H., and Orchard, G. (2019a). “PCA-

RECT: an energy-efficient object detection approach for event cameras,” in

ACCV 2018 Workshops (Perth, WA: Springer International Publishing), 434–

449.

Ramesh, B., Yang, H., Orchard, G. M., Le Thi, N. A., Zhang, S., and Xiang, C.

(2019b). Dart: distribution aware retinal transform for event-based cameras.

IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2919301.

[Epub ahead of print].

Redmon, J., and Farhadi, A. (2018). Yolov3: an incremental improvement. CoRR,

abs/1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-cnn: towards real-time

object detection with region proposal networks. IEEE Trans. Pattern Anal.

Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Scheerlinck, C., Barnes, N., and Mahony, R. (2018). “Continuous-time intensity

estimation using event cameras,” in Asian Conference on Computer Vision

(Perth, WA: Springer International Publishing), 308–324.

Schlessman, J., Cheng-Yao Chen, Wolf, W., Ozer, B., Fujino, K., and Itoh, K.

(2006). “Hardware/software co-design of an FPGA-based embedded tracking

system,” in 2006 Conference on Computer Vision and Pattern Recognition

Workshop (CVPRW’06) (New York, NY), 123–123.

Silpa-Anan, C., and Hartley, R. (2008). “Optimised kd-trees for fast image

descriptor matching,” in IEEE Conference on Computer Vision and Pattern

Recognition (Anchorage, AK), 1–8.

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman,

R. (2018). HATS: histograms of averaged time surfaces for

robust event-based object classification. arXiv[Preprint].arXiv:1803.

07913.

Vikram, T. N., Tscherepanow, M., and Wrede, B. (2012). A saliency

map based on sampling an image into random rectangular regions

of interest. Pattern Recogn. 45, 3114–3124. doi: 10.1016/j.patcog.2012.

02.009

Zhai, X., Bensaali, F., and McDonald-Maier, K. (2013). “Automatic number plate

recognition on fpga,” in International Conference on Electronics, Circuits, and

Systems (ICECS) (Abu Dhabi: IEEE), 325–328.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ramesh, Ussa, Della Vedova, Yang and Orchard. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 13536

https://doi.org/10.1007/s00500-017-2939-2
https://doi.org/10.1109/TPAMI.2019.2919301
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.patcog.2012.02.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 28 February 2020

doi: 10.3389/fnins.2020.00150

Frontiers in Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 150

Edited by:

Elisabetta Chicca,

Bielefeld University, Germany

Reviewed by:

Federico Corradi,

Imec, Netherlands

Tara Julia Hamilton,

University of Technology Sydney,

Australia

*Correspondence:

Fredrik Sandin

fredrik.sandin@ltu.se

Mattias Nilsson

mattias.1.nilsson@ltu.se

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 09 October 2019

Accepted: 07 February 2020

Published: 28 February 2020

Citation:

Sandin F and Nilsson M (2020)

Synaptic Delays for Insect-Inspired

Temporal Feature Detection in

Dynamic Neuromorphic Processors.

Front. Neurosci. 14:150.

doi: 10.3389/fnins.2020.00150

Synaptic Delays for Insect-Inspired
Temporal Feature Detection in
Dynamic Neuromorphic Processors
Fredrik Sandin* and Mattias Nilsson*

Embedded Intelligent Systems Lab (EISLAB), Luleå University of Technology, Luleå, Sweden

Spiking neural networks are well-suited for spatiotemporal feature detection and learning,

and naturally involve dynamic delay mechanisms in the synapses, dendrites, and

axons. Dedicated delay neurons and axonal delay circuits have been considered when

implementing such pattern recognition networks in dynamic neuromorphic processors.

Inspired by an auditory feature detection circuit in crickets, featuring a delayed

excitation by post-inhibitory rebound, we investigate disynaptic delay elements formed

by inhibitory–excitatory pairs of dynamic synapses. We configured such disynaptic delay

elements in the DYNAP-SE neuromorphic processor and characterized the distribution

of delayed excitations resulting from device mismatch. Interestingly, we found that the

disynaptic delay elements can be configured such that the timing and magnitude of

the delayed excitation depend mainly on the efficacy of the inhibitory and excitatory

synapses, respectively, and that a neuron with multiple delay elements can be tuned

to respond selectively to a specific pattern. Furthermore, we present a network with one

disynaptic delay element that mimics the auditory feature detection circuit of crickets, and

we demonstrate how varying synaptic weights, input noise and processor temperature

affect the circuit. Dynamic delay elements of this kind open up for synapse level temporal

feature tuning with configurable delays of up to 100 ms.

Keywords: pattern recognition, spiking neural network (SNN), neuromorphic, delay line, embedded intelligence,

DYNAP, insect-inspired computing

1. INTRODUCTION

Processing of temporal patterns in signals is a central task in perception, learning, and control
of behavior in both biological and technological systems (Indiveri and Sandamirskaya, 2019).
Unlike digital circuits, which are designed to perform precise logic and arithmetic operations,
neurons are unreliable, stochastic and slow information processing entities which form networks
that function reliably through distributed information processing and adaptation. Neural circuits
are therefore interesting models for development of mixed signal analog–digital processing and
perception systems implemented in resource efficient nano-electronic substrates that are subject
to device mismatch and failure (Strukov et al., 2019). In particular, energy-efficient neuromorphic
processors and sensor systems have been developed by matching the device dynamics to neural
dynamics, for example in the form of CMOS analog circuits operating in the subthreshold regime
where semiconductor electron diffusion mimics ion diffusion in biological ion channels (Mead,
1990; Indiveri et al., 2011; Schuman et al., 2017). The dynamic nature and spatial structure of
biological neurons (synapses, dendrites, axons, etc.) implies that neurons are inherently capable of
temporal pattern recognition (Mauk and Buonomano, 2004) and pattern generation, also without

37

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00150
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00150&domain=pdf&date_stamp=2020-02-28
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fredrik.sandin@ltu.se
mailto:mattias.1.nilsson@ltu.se
https://doi.org/10.3389/fnins.2020.00150
https://www.frontiersin.org/articles/10.3389/fnins.2020.00150/full
http://loop.frontiersin.org/people/72814/overview
http://loop.frontiersin.org/people/763652/overview

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

recurrent connections. Furthermore, the event-driven neurons
in Spiking Neural Networks (SNNs) are typically sparsely
activated and offer an efficient way of doing inference (Rueckauer
et al., 2017). SNNs with biologically plausible dynamics thus
offer an interesting alternative model for temporal and spatial
(spatiotemporal) pattern recognition (Pfeiffer and Pfeil, 2018),
which can be further developed with guidance from biology.
However, it is an open problem how such neuromorphic pattern
recognition solutions can be engineered in practical applications
such that the dynamic nature of the hardware is efficiently
exploited.

Delays are essential for neuromorphic processing of temporal
patterns in spike trains (Sheik et al., 2013) and have been
studied since the early 90s, see for example the work by Van
der Spiegel et al. (1994). Temporal delays have for example
been implemented in neuromorphic processors in the form
of multicompartment models (Hussain et al., 2015; Schemmel
et al., 2017) and dedicated, specifically tuned delay neurons in
the network architecture (Sheik et al., 2012a,b; Coath et al.,
2014). In the latter case the resulting SNN is similar to a
model of the auditory thalamocortical system described by
Coath et al. (2011). Nielsen et al. (2017) present a low-power
pulse delay and extension circuit for neuromorphic processors,
which implements programmable axonal delays ranging from
fractions of microseconds up to tens of milliseconds. In
polychronous (Izhikevich, 2006) architectures, asynchronously
firing neurons project to a common target along delay lines
so that spikes arrive at the target neuron simultaneously, thus
causing it to fire. A polychronous SNN with delay adaptation
for spatiotemporal pattern recognition has been implemented
in a Field-Programmable Gate Array (FPGA) and in a custom
mixed-signal neuromorphic processor (Wang et al., 2013, 2014).

The typical signal propagation delays in axons (Swadlow,
1985) and dendrites (Agmon-Snir and Segev, 1993) of cortical
neurons range up to tens of milliseconds. Furthermore, the
dynamics of synapses also play an important role for the
processing of temporal and spatiotemporal patterns (Mauk and
Buonomano, 2004) and offer efficient dynamic mechanisms for
sequence detection and learning (Buonomano, 2000). Synaptic
dynamics enable pattern recognition architectures with high
fan-in, which is beneficial in neuromorphic systems where
multicompartmentmodeling, axon/neuron reservation and spike
transmission is costly. Rost et al. (2013) present an SNN
architecture with spike frequency adaptation and synaptic short-
term plasticity that models auditory pattern recognition in
cricket phonotaxis. There, synaptic short-term depression and
potentiation is implemented to make neurons act as high-
pass and low-pass filters, respectively. The resulting signals
are combined in a neuron that acts as a band-pass filter and
thereby responds to a frequency band that is matched to the
particular sound pulse period of the crickets. Insects offer
interesting opportunities to develop neuromorphic systems by
modeling and finding guidance from their neural circuits, where
the relatively low complexity allows neuromorphic engineers to
transfer the principles of neural computation to applications
(Dalgaty et al., 2018).

Our present investigation is inspired by a more recent
description of the cricket auditory system (Schöneich et al.,

2015) and preliminary work (Nilsson, 2018) indicating that
dynamic synapses in a neuromorphic processor can be used to
imitate the post-inhibitory rebound of the non-spiking delay
neuron in the auditory circuit of the cricket. We configured
disynaptic delay elements composed of inhibitory and excitatory
dynamic synapses in the low-power Dynamic Neuromorphic
Asynchronous Processor (DYNAP) model SE from aiCTX
(Moradi et al., 2018). DYNAP-SE features reconfigurable
mixed-mode analog/digital neuron and synapse circuits with
biologically faithful dynamics. We investigated the properties
and parameter dependence of the disynaptic delay elements
in a population of neuromorphic neurons and found that
delayed excitations of up to 100 ms can be achieved, and
that the parameters can be selected so that the delay and
delayed excitation amplitude depends mainly on the synaptic
efficacies. Furthermore, we imitated the post-inhibitory rebound
of the non-spiking neuron in the auditory circuit of the cricket
(Schöneich et al., 2015) with one disynaptic element and
investigated a circuit with three spiking neurons that reliably
detects the species-specific sound-pulse interval of 20 ms. Since
delays of tens of milliseconds are useful for implementing
different kinds of neural circuits, cortical circuits in particular,
the easily configurable properties of the disynaptic delay elements
described and characterized in the following open up for
further implementations and studies of SNN architectures in
neuromorphic processors.

2. MATERIALS AND METHODS

2.1. The DYNAP-SE Neuromorphic
Processor
The DYNAP-SE neuromorphic processor uses a combination
of low-power, inhomogeneous sub-threshold analog circuits
and fast, programmable digital circuits for the emulation of
SNN architectures with bio-physically realistic neuronal and
synaptic behaviors (Moradi et al., 2018), making it a platform
for spike-based neural processing with co-localized memory
and computation (Indiveri and Liu, 2015). Specifically, the
DYNAP-SE comprises four-core neuromorphic chips, each
with 1k analog silicon neuron circuits. Each neuron has
a Content-Addressable Memory (CAM) block containing 64
addresses representing the presynaptic neurons that the neuron
is connected to. Information about spike-activity is transmitted
between neurons in an Address-Event Representation (AER)
digital routing scheme. Four different types of synaptic behavior
are available for each connection: Fast excitatory, slow excitatory,
subtractive inhibitory, and shunting inhibitory. The dynamic
behaviors of the neuronal and synaptic circuits of the DYNAP-
SE are governed by analog circuit parameters which are
set by programmable on-chip temperature compensated bias-
generators (Delbruck et al., 2010).

The inhomogeneity of the analog low-power circuits that
constitute the neurons and synapses of the DYNAP-SE
neuromorphic processor is due to devicemismatch, and gives rise
to variations in the dynamic behaviors of the silicon neurons and
synapses that the analog circuits constitute. These variations are
analogous to differences in values of the parameters governing

Frontiers in Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 15038

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

the differential equations that model the neuronal and synaptic
dynamics implemented in the chips. Consequently, one set
value of a neuronal or synaptic bias parameter, in one core of
the DYNAP-SE, results in a distribution of the corresponding
parameter values in the population of neurons and synapses of
that core.

2.1.1. Spiking Neuron Model
In the DYNAP-SE, neurons are implemented according to the
Adaptive Exponential Integrate-and-Fire (AdEx) spiking neuron
model (Brette and Gerstner, 2005). The model describes the
neuron membrane potential, V , and the adaptation variable, w,
with two coupled non-linear differential equations,

C
dV

dt
= −gL(V − EL)+ gL1Te

(V−VT)/1T − w+ I, (1a)

τw
dw

dt
= a (V − EL) − w, (1b)

where C is the membrane capacitance, gL the leak conductance,
EL the leak reversal potential, VT the spike threshold, 1T the
slope factor, I the (postsynaptic) input current, τw the adaptation
time constant, and a the subthreshold adaptation. Themembrane
potential increases rapidly for V > VT due to the non-linear
exponential term, which leads to rapid depolarization and spike
generation at time t = tspike, where the membrane potential and
adaptation variable are updated according to

V → Vr , (2a)

w → w+ b, (2b)

where Vr is the reset potential and b is the spike-
triggered adaptation.

2.1.2. Dynamic Synapse Model
In the DYNAP-SE, synapses are implemented with sub-threshold
Differential Pair Integrator (DPI) log-domain filters proposed by
Bartolozzi and Indiveri (2007) and further described by Chicca
et al. (2014). The response of the DPI for an input current Iin can
be approximated with a first-order linear differential equation,

τ
d

dt
Iout + Iout =

Ith

Iτ
Iin, (3)

where Iout is the (postsynaptic) output current, τ and Iτ are
time constant parameters, and Ith is an additional control
parameter that can be used to change the gain of the filter. This
approximation is valid in the domain where Iin≫Iτ and Iout≫IIth .
The AdEx neuron model and the synapse equation are used in
the following to describe the disynaptic delay elements that we
configure in the DYNAP-SE in order to approximate the cricket
auditory feature detection circuit.

2.2. Cricket Auditory Feature Detection
Circuit
We consider the auditory feature detection circuit for sound
pattern recognition in the brain of female field crickets, described
by Schöneich et al. (2015), which is used for the recognition of

the sound pulse pattern of the male calling song. The circuit,
consisting of five neurons, responds selectively to a species-
specific sound-pulse interval of roughly 20 ms, by using a
detection mechanism that relies on the coincidence of a direct
neural response and a delayed response to the received sound
pulses. In this circuit, a coincidence detecting neuron, LN3,
receives excitatory projections along two separate pathways; one
directly from the ascending neuron AN1, and the other via the
inhibitory neuron LN2 followed by a non-spiking delay neuron
LN5, which we approximate here with a delay element formed by
an inhibitory–excitatory synapse pair, see Figure 1 (adapted from
Nilsson 2018).

The non-spiking inhibitory neuron, LN5, in the cricket
projects to LN3 and provides a delayed excitation of LN3 due to
Postinhibitory Rebound (PIR). The duration of the delaymatches
that of the species-specific sound Interpulse Interval (IPI) of
roughly 20 ms that the circuit is specialized for detecting, so
that the delayed excitation arrives at the coincidence detecting
neuron, LN3, simultaneously with the excitation caused by the
subsequent sound pulse. The coincident excitations of LN3
enables it to fire and excite the feature detecting neuron, LN4,
which, in turn, signals the feature detection by firing.

2.3. Disynaptic Delay Elements
The PIR of the non-spiking neuron LN5 in the cricket auditory
feature detection circuit provides the delayed excitation of LN3
required for feature detection. For a general discussion of such
delays, see Buonomano (2000) and Mauk and Buonomano
(2004). Spike-based dynamic neuromorphic processors, such as
the DYNAP-SE, cannot directly implement non-spiking neurons,
such as the LN5 neuron in the cricket circuit, and flexible routing
of such analog signals is problematic. Therefore, we approximate
LN5 and PIR with an inhibitory–excitatory pair of dynamic
synapses with different time constants, so that the sum of the
two postsynaptic currents initially is inhibitory and subsequently
becomes excitatory some time after presynaptic stimulation. For
the inhibitory effect, a synapse of the subtractive type is used in
the DYNAP-SE. As its name implies, the subtractive inhibitory
synapse type allows for combining excitation and inhibition
dynamics by summing inhibitory and excitatory postsynaptic
currents, as opposed to the shunting synapse type which inhibits
the neuron using a different mechanism. This summation of
postsynaptic currents is the central mechanism of the proposed
disynaptic delay element. For the excitatory part, the slow
synapse type is used, leaving the fast synapse type available for
bias configuration and use for stimulation of the postsynaptic
neuron; in this case, for the projection from AN1 to LN3.

The proposed disynaptic delay element can be modeled
with Equation (3), and the membrane potential resulting
from presynaptic stimulation can be illustrated by solving
Equation (1). Figure 2 shows a numerical simulation of
the disynaptic delay element model for a 20 ms constant
input current that represents the presynaptic stimulation, as
in Figure 1.

Since the simulated neuron is in the subthreshold regime
(V ≪ VT), Equation (1) is simplified by setting the exponential
term to zero and omitting the adaption variable. The neuron and
synapse parameters are selected so that the membrane potential

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 15039

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

FIGURE 1 | Neuromorphic feature detection circuit inspired by an auditory feature detection circuit in field crickets. (A) SNN architecture comprising four spiking

neurons, on which open circles and solid disks denote, respectively, excitatory and inhibitory synapses. The disynaptic delay element imitates the dynamics of the

non-spiking delay neuron, LN5, in the feature detection circuit of the cricket (Schöneich et al., 2015). (B) Measured neuron membrane potentials in the DYNAP-SE,

following a 20-ms pulse stimulus. (C) Similarly, membrane potentials resulting from a pair of 20-ms stimulus pulses with a 20-ms interval, which causes the feature

detecting neuron, LN4, to fire. By overcoming its inhibition and spiking, LN4 signals the feature detection.

FIGURE 2 | Simulation of the disynaptic delay element model. (A) Sum of inhibitory and excitatory postsynaptic currents from the delay element. (B) Resulting

postsynaptic neuron membrane potential.

is comparable to the potential measured in the hardware, and
should thus not be directly compared with biological potentials
and threshold values.

Dynamic disynaptic elements of this type are expected to
provide a delayed excitation that qualitatively matches the effect

of PIR in the output of non-spiking delay neurons like the
LN5. Furthermore, we expect that the time delay and relative
amplitude of inhibition and excitation can be configured, for
example by modifying the synapse time constants and efficacies.
The experimental results presented below demonstrate that this

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 15040

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

is indeed feasible, and that for some bias settings it is possible to
control the time delay and delayed excitation amplitude with the
synaptic efficacies only.

2.3.1. Neuromorphic Implementation
The disynaptic delay elements were configured in the DYNAP-
SE in two different ways. First, we aimed to mimic the post-
inhibitory rebound in the cricket auditory circuit with a delay
of about 20 ms. The delay elements were stimulated with four
spikes equally spaced over the ∼ 20-ms stimulus-response of
LN2 for a 20-ms sound pulse, which represents the projection
from LN2 to LN5 in the cricket circuit. The time constant of
the inhibitory synapse of the delay element was set so that
the resulting inhibition of LN3 corresponded to the inhibition
caused by LN5 in the cricket; that is, a couple of ms longer
than the 20-ms sound-pulse duration. The excitatory synapse
was tuned so that the LN3 excitation lasts somewhat longer than
that of the initial inhibition, approximately to the end of the
corresponding PIR excitation of LN5 in the cricket. The weight of
the inhibitory synapse was set higher than that of the excitatory
synapse, such that the sum of inhibition and excitation turned
out negative, thus inhibiting the neuron for the duration of the
delay. For the excitatory synapse, the weight was set to yield
a substantial excitation of the postsynaptic neuron following
the inhibition, while not generating spikes without additional
synaptic stimulation. In this manner, the effect of the non-spiking
LN5 on LN3 is imitated with the summation of an inhibitory
postsynaptic current and an excitatory postsynaptic current
produced by two synapses on LN3. The resulting DYNAP-SE bias
values are found in Table 1.

TABLE 1 | Bias parameter values used for the characterization of individual

disynaptic delay elements in the DYNAP-SE.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Neuronal IF_AHTAU_N 7 35 L

IF_AHTHR_N 7 1 H

IF_AHW_P 7 1 H

IF_BUF_P 3 80 H

IF_CASC_N 7 1 H

IF_DC_P 0 40 H

IF_NMDA_N 1 213 H

IF_RFR_N 4 40 H

IF_TAU1_N 5 39 L

IF_TAU2_N 0 15 H

IF_THR_N 6 4 H

Synaptic NPDPIE_TAU_S_P 6 120 H

NPDPIE_THR_S_P 1 30 H

NPDPII_TAU_F_P 5 100 H

NPDPII_THR_F_P 3 60 H

PS_WEIGHT_EXC_S_N 1 110 H

PS_WEIGHT_INH_F_N 1 130 H

PULSE_PWLK_P 5 40 H

R2R_P 4 85 H

Given the large parameter space of a dynamic neuromorphic
processor like the DYNAP-SE, we then explored different ways
to simplify the configuration of the disynaptic delay elements
for delays up to about 100 ms. One identified possibility is to
lower the constant injection current of the neurons receiving
the delayed signal, to such an extent that the inhibition by the
delay elements make the neuron reach its minimum membrane
potential. This results in delay elements for which the duration
of inhibition, τinh, can be controlled with the inhibitory weight of
the delay element, winh. Furthermore, the amplitude of the post-
inhibitory excitation, Vmax, is then controlled by the excitatory
weight of the delay element, wexc, as well as by varying the
number of presynaptic spikes stimulating the delay element.
The DYNAP-SE bias values for this configuration of the delay
elements are found in Table 2.

2.3.2. Characterization
For the purpose of characterization, the proposed disynaptic
delay elements were implemented, in parallel, in one core of
a DYNAP-SE neuromorphic processor; one delay element on
each of the 256 neurons in the core. All of these neurons
were then stimulated as described in section 2.3.1, and their
membrane potentials were measured with an oscilloscope.
To avoid oscilloscope and DYNAP-SE time synchronization
issues, we analyzed the membrane potential measurements
without reference to the precise timing of the presynaptic
stimulation. The full duration at half minimum of the inhibition
and the full duration at half maximum of the subsequent
excitation, see Figure 2, can be determined from membrane
potential measurements without reference to the timing of
presynaptic spikes. Thus, we define the timescales of inhibition
and delayed excitation in terms of the Full Duration at
Half Maximum/Minimum (FDHM). We characterized the
disynaptic delay elements with the distributions of the following
five quantities: the minimum membrane potential, Vmin, the
maximum membrane potential, Vmax, the FDHM of inhibition,
τinh, the FDHM of excitation, τexc, and the time duration from
the FDHM onset of the inhibition to the FDHM onset of the
excitation, τdelay. These quantities are illustrated in Figure 3, and
allowed us to investigate the effect of different bias parameter
settings on the disynaptic delay elements in a population of
neurons in the DYNAP-SE. This way the bias parameter values
of the delay elements could for example be tuned to imitate the
behavior of the delay neuron LN5 in the cricket. Further details
on the experimental settings are described in section 2.5.

2.4. Neuromorphic Feature Detection
Circuits
2.4.1. Cricket Circuit
For the implementation of the cricket auditory feature
detection circuit, as described in section 2.2, in the DYNAP-SE
neuromorphic processor, stimuli representing the projections
from AN1 upon auditory stimulation were generated in the form
of 11 spikes evenly distributed over the pulse duration of 20 ms
(in the noise-free case), yielding 10 Interspike Intervals (ISIs)
of 2 ms each. Each of the remaining three neurons of the
circuit, see Figure 1, were modeled on separate cores in one
chip of the DYNAP-SE. The DYNAP-SE bias parameter values

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 15041

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

FIGURE 3 | Characteristics of disynaptic delay elements configured in the DYNAP-SE neuromorphic processor. (A) Postsynaptic membrane potential vs. time,

illustrating the delayed excitation resulting from a presynaptic pulse. (B) Distribution of the maximum measured membrane potential, Vmax , resulting from a presynaptic

pulse. (C) Similarly, the distribution of the minimum measured membrane potential, Vmin. (D) Distribution of the inhibitory timescale, τinh, defined as the full width at half

minimum. (E) Distribution of the excitatory timescale, τexc, defined as the full width at half maximum. (F) Distribution of the delay time, τdelay , defined as the duration

from the onset of τinh to the offset of τexc. The distributions in panels (B–F) were obtained via characterization of one DYNAP-SE core, comprising, in parallel, one

disynaptic delay element on each of the 256 neurons, with biases configured according to Table 1.

TABLE 2 | Bias parameter values used for configuration of the disynaptic delay

elements in the DYNAP-SE.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Neuronal IF_DC_P 1 30 H

Synaptic NPDPIE_TAU_S_P 7 210 H

NPDPIE_THR_S_P 1 30 H

NPDPII_TAU_F_P 6 80 H

NPDPII_THR_F_P 3 60 H

PS_WEIGHT_EXC_S_N 0 8–80 H

PS_WEIGHT_INH_F_N 0 1–150 H

PULSE_PWLK_P 5 40 H

R2R_P 4 85 H

Neuronal parameters not defined in this table were set according to Table 1.

for the neurons LN2, LN3, and LN4 are found in Tables 3–5,
respectively, and the neuromorphic implementations of these
neurons are described in the following.

For the implementation of the inhibitory neuron, LN2, a
single neuron on a reserved core was used. This neuron was

TABLE 3 | Bias parameter values used for the inhibitory neuron, LN2, in the

DYNAP-SE implementation of the cricket feature detection network.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Neuronal IF_AHTAU_N 7 35 L

IF_AHTHR_N 7 1 H

IF_AHW_P 7 1 H

IF_BUF_P 3 80 H

IF_CASC_N 7 1 H

IF_DC_P 7 2 H

IF_NMDA_N 7 1 H

IF_RFR_N 4 208 H

IF_TAU1_N 6 21 L

IF_TAU2_N 5 15 H

IF_THR_N 3 20 H

Synaptic NPDPIE_TAU_F_P 5 165 H

NPDPIE_THR_F_P 1 100 H

PS_WEIGHT_EXC_F_N 0 190 H

PULSE_PWLK_P 0 43 H

R2R_P 4 85 H

Frontiers in Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 15042

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

TABLE 4 | Bias parameter values used for the coincidence detecting neuron,

LN3, in the DYNAP-SE implementation of the cricket feature detection network.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Synaptic NPDPIE_TAU_F_P 5 200 H

NPDPIE_TAU_S_P 6 120 H

NPDPIE_THR_F_P 1 30 H

NPDPIE_THR_S_P 1 30 H

NPDPII_TAU_F_P 5 100 H

NPDPII_THR_F_P 3 60 H

PS_WEIGHT_EXC_F_N 1 144–161 H

PS_WEIGHT_EXC_S_N 1 110 H

PS_WEIGHT_INH_F_N 1 130 H

PULSE_PWLK_P 5 40 H

R2R_P 4 85 H

Neuronal parameters set according to Table 1.

TABLE 5 | Bias parameter values used for the feature detecting neuron, LN4, in

the DYNAP-SE implementation of the cricket feature detection network.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Synaptic NPDPIE_TAU_F_P 5 80 H

NPDPIE_THR_F_P 1 140 H

NPDPII_TAU_F_P 6 180 H

NPDPII_THR_F_P 3 140 H

PS_WEIGHT_EXC_F_N 0 71–82 H

PS_WEIGHT_INH_F_N 0 60 H

PULSE_PWLK_P 0 43 H

R2R_P 4 85 H

Neuronal parameters set according to Table 3.

set to receive the generated stimulation representing AN1 by
assigning a synaptic connection of the fast excitatory type. The
bias parameter values from section 5.7.3 in the DYNAP-SE user
guide 1 were used as reference. The parameter values of the fast
excitatory synapse were then adjusted in order to model the
behavior of LN2 as observed in the cricket. The synaptic time
constant, NPDPIE_TAU_F_P, was adjusted to match that of
the cricket, and the synaptic weight, PS_WEIGHT_EXC_F_N,
and threshold parameter, NPDPIE_THR_F_P, were adjusted for
LN2 to respond with the right amount of four to five spikes for
each input pulse.

For the coincidence detecting neuron, LN3, the proposed
delay elements were implemented according to the earlier
description. An excitatory connection of the fast type was added
for LN3 to receive the projection from AN1.

For the excitatory connection from LN3 to the feature
detecting neuron LN4, a synapse of the fast type was used,
and, for the inhibitory connection from LN2 to LN4, a synapse
of the subtractive type was used. Bias parameter values from

1https://aictx.ai/technology/

section 5.7.3 in the DYNAP-SE user guide were used for neuronal
parameters, and as reference values for the fast excitatory
synapses. For the fast inhibitory synapse, bias values from
section 5.7.5 in the user guide were used as reference. The
bias parameters, time constant, threshold and weight, for both
synapse types, were then hand-tuned in order to approximate the
behavior of LN4 in one DYNAP-SE neuron, so as to make LN4
spike, thus signaling feature detection, for stimuli with IPIs of 20
ms, but not for IPIs of 0, 10, 30, 40, and 50 ms.

2.4.2. Single-Neuron Feature Detector
We further investigated the possibility that a single neuron in the
DYNAP-SE with multiple disynaptic delay elements can respond
selectively to spatiotemporal spike patterns, which match the
difference in the delay times resulting from device mismatch.
Specifically, we configured a neuron with two inputs via two
different disynaptic delay elements. The input patterns consist
of spike pairs, one spike for each delay element, with a variable
spike-time interval. Patterns with spike-time intervals that match
the delay-time difference between the two delay elements should
generate postsynaptic currents with coincident maxima, thus
resulting in maximum excitation of the neuron.

The neuron and delay elements were configured as described
in section 2.3.1 with bias parameter values according to Table 2,
with a few modifications: The threshold, IF_THR_N = (6, 135),
and excitatory synaptic efficacy was modified so that the
neuron generates output spikes for two input spikes, and the
inhibitory weight of the delay elements wasmodified accordingly.
Furthermore, the time-constant of the excitatory synapse was
lowered to compensate for the strong excitation required,
NPDPIE_TAU_S_P = (5, 70) and NPDPIE_THR_S_P =

(0, 210). The numbers in parentheses denote coarse and fine
parameter values of the DYNAP-SE, respectively.

The synapses were selected with an off-line Hebbian-like
learning rule such that, for the spike patterns considered,
the neuron responded selectively to spike patterns with
intermediately long intervals, but not to spike patterns with
shorter or longer intervals. Spike patterns were generated as
described in the next section, and the neuron was stimulated one
hundred times with each pattern. Based on these experiments the
average probability of the neuron to spike for each type of pattern
was determined.

2.5. Experiments
In all of the experiments conducted in this work, the DYNAP-
SE neuromorphic processor was controlled using the cAER
event-based processing framework for neuromorphic devices.
More specifically, a custom module making use of the tools for
configuration andmonitoring provided by cAERwas created and
added to the framework. All stimuli were synthetically generated
using the built-in spike generator in the FPGA of the DYNAP-
SE, which generates spike-events according to assigned ISIs and
virtual source-neuron addresses.

The DYNAP-SE features analog ports for monitoring of
neuron membrane potentials. For measurements of these
potentials, the 8-bit USB oscilloscope SmartScope by LabNation
was used. Since these measurements only capture the neuron

Frontiers in Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 15043

https://aictx.ai/technology/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

FIGURE 4 | Examples of four different membrane potentials measured in the characterization of the delay elements summarized in Figure 3. These variations were

observed in one core with 256 neurons, with biases configured according to Table 1.

FIGURE 5 | Response of LN4 for double-pulse stimuli with IPIs of 0, 10, 20, 30, 40, and 50 ms, respectively. (A) Noiseless case. (B) Example for 20% noise, with a

false positive for the 10-ms IPI.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 15044

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

membrane potential, there is no information about the precise
relative timing of spike-events in the resulting data. Because
of this, the durations of inhibition and excitation of the
delay elements were defined in terms of the FDHM as
described above.

For the extraction of the delay parameters defined in section
2.3.1, the stimulus was repeatedly broadcast to all neurons
in the core, and for each stimulation cycle one neuron was
monitored with the oscilloscope using the programmable analog
outputs of the DYNAP-SE. The stimulation cycle was given
a duration of 0.5 s, in order for the neurons to relax to
a resting state before and after stimulation. At the initial
state of rest, the resting potential was automatically estimated
for each neuron. The resting potential was subsequently
subtracted from the measurement data, such that the resulting
resting potentials are zero. This was done to make the
parameter values of the different neurons comparable with
each other.

3. RESULTS

3.1. Characteristics of Delay Elements
Results from the characterization of the disynaptic delay
elements, implemented in parallel on each of the 256 neurons

in one core of the DYNAP-SE neuromorphic processor, are
presented in Figure 3.

The figure shows the pulse-response of one typical delay
element from the resulting population, along with histograms
of the distributions of parameters that characterize each delay
element. The resulting values of Vmax range from 3 to 143 mV
and center around 105 mV. Vmin has a thicker tail of the
distribution and range from −310 to −20 mV, with most values
between −100 and −50 mV. The time constant distributions
have relatively thin tails. τinh has values between 6 and 47ms with
probability peaking between 26 and 28 ms. τexc ranges from 0 to
38 ms with probability peaking between 18 and 20 ms, and τdelay
spans between 22 and 51 ms with probability peaking between 28
and 29 ms.

The pulse-responses of four different delay elements are
presented in Figure 4, which illustrates the variety of delay
dynamics obtained thanks to devicemismatch. Here, the variance
of the minimum voltage, Vmin, is especially evident, but variation
in other parameters can also be observed, such as Vmax, in the
case of the virtually non-existing excitation in Figure 4B.

3.2. Cricket Feature Detection
The function of the neuromorphic implementation of the feature
detection SNN was investigated by stimulating it with double

FIGURE 6 | Boundary of correct stimulus classification in synaptic parameter space. Outside the enclosed region, false positives and/or false negatives occur with

varying probability. The horizontal and vertical axes indicate the fine integer bias-values of the excitatory synaptic weight for the neurons LN3 and LN4, respectively.

Multiple line types indicate experiments performed under different environmental conditions. (A) Movement of the classification boundary observed after several hours

of continuous operation from cold startup. The temperature change is likely caused by the FPGA that is enclosed in the system. (B) Shrinkage of the classification

boundary in presence of 10% spike-timing noise in the stimulus (bold line). Boundary points are temperature dependent.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 15045

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

pulses of 20 ms duration each, while increasing the IPI from 0,
10, 20, 30, 40, to 50 ms. Furthermore, in order to investigate the
effect of noise in the stimuli, as is likely to be present in real-
world environments, different levels of spike-timing noise was
introduced in the generated stimuli by randomly perturbing the
value of the ISIs with values drawn from a continuous uniform
distribution. Figure 5 shows the membrane potential of LN4
during correct classification of noiseless double pulses of all of
the IPIs mentioned above, as well as the result in the presence of
20% spike-timing noise, where some false positives are observed
for the 10 ms IPI.

By varying the weights of the excitatory projection from
AN1 to LN3 and the excitatory synaptic weight of LN4,
respectively, a boundary of correct classification of stimuli could
be identified in the space spanned by these two parameters.
Outside the boundary, false positives and/or false negatives occur
with varying probability. The boundary was observed to move
substantially in the parameter space as time progressed after
cold startup of the DYNAP-SE and this is likely due to heating
by the FPGA that is enclosed in the DYNAP-SE system. This
change was observed over multiple runs of the experiment and
appears to be qualitatively consistent. Furthermore, the shift
of the boundary in the presence of spike-timing noise in the
stimuli was investigated. Figure 6 shows the boundary of correct
classification, as measured at three separate points in time after

device initialization, spanning from minutes to several hours of
run-time. The figure also shows the shrinkage of the classification
boundary in the presence of 10% spike-timing noise in the
stimuli, in relation to the steady-state of the boundary after
several hours of system run-time.

A quantitative investigation of the IPI dependence of the
feature detection circuit was made by repeatedly stimulating the
network with double pulses of different IPIs as described earlier,
while observing the response in LN3 and LN4 by recording and
counting the spikes of both neurons. For each IPI, the network
was presented with the corresponding double-pulse stimulus 50
times. Figure 7 shows, in the case of noiseless stimuli, the average
number of spikes from LN3 and LN4, respectively, centrally
within the synaptic boundary of correct classification, as well
as at the boundary. Centrally within the boundary of correct
classification, LN4 responded exclusively to the 20 ms pulse
interval, with no false positives or negatives. On the boundary
of the parameter space, LN4 began to exhibit false positives for
the 10 ms IPI, with 0.32± 0.47 spikes per double-pulse stimulus.

Similarly, Figure 8 shows the results for the best synaptic
configuration used in the previous experiment, centrally located
within the boundary of correct classification, but for different
levels of spike-timing noise. As expected the network performed
correct classification in the noiseless case. The introduction of
noise caused LN4 to exhibit false positives, in particular for the

FIGURE 7 | Average number of spikes from LN3 and LN4 per double-pulse stimulus for varying IPIs and two different bias configurations: one central to, and one on

the boundary of, the region illustrated in Figure 6. For each IPI, the data-points are graphically separated by 4/3 ms to improve clarity of the visualization. Error bars

denote ±1 standard deviation. (A) Feature detecting neuron, LN4. (B) Coincidence detecting neuron, LN3.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 15046

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

FIGURE 8 | Average number of spikes from LN3 and LN4 per double-pulse stimulus for varying IPIs and different levels of spike-timing noise in the stimuli. For each

IPI, the data-points are graphically separated by 4/3 ms to improve the clarity of the visualization. Error bars denote ±1 standard deviation. (A) Feature detecting

neuron, LN4. (B) Coincidence detecting neuron, LN3.

10 ms IPI. At higher levels of noise also false negatives were
observed. In the case of 50% noise the response of LN4 was 0.18
± 0.48 spikes per double-pulse for the 10 ms IPI, and 0.48± 0.54
spikes for the 20 ms IPI.

3.3. Reconfigurability of Delay Elements
Given the large parameter space of a dynamic neuromorphic
processor, such as the DYNAP-SE, we explored different ways to
simplify the configuration of the disynaptic delay elements for
delays up to about 100 ms. Figure 9A shows four configurations
of one delay element, with the maximum membrane potential of
the post-inhibitory excitation ranging between 20 and 110 mV,
and the durations of inhibition ranging between 50 and 90 ms,
according to the FDHM definition.

A table with delay element weight values and resulting values
of τinh and Vmax, from a total of 12 such variations, is presented
in Figure 9B; the data-points corresponding to the membrane
potentials in Figure 9A are marked with filled disks.

3.4. Feature Detection With Multiple Delay
Elements
Disynaptic delay elements produce variable delayed excitations
when stimulated with presynaptic spikes, as demonstrated in
Figure 9. Furthermore, the delayed excitations are subject to

device mismatch variability, as demonstrated in Figure 3. Thus,
as described in section 2.4.2 we investigated the possibility that
a single neuron with multiple disynaptic delay elements can
respond selectively to spatiotemporal patterns that match the
different delay times. We find that this is possible, and one
example is illustrated in Figure 10, which shows the results for
one neuron in DYNAP-SE with two delay elements (DE1 and
DE2) stimulated with eleven different spatiotemporal patterns.

The experiment with each pattern is repeated one hundred
times. The neuron fires selectively when the time interval
between presynaptic spikes, tDE2 − tDE1, is 3 to 4 ms, while the
probability of firing is low for shorter and longer presynaptic
spike intervals. The neuron does not fire when tDE2 − tDE1 < 0.

4. DISCUSSION

SNN architectures for temporal pattern recognition require
delays, and the dynamics of synapses, dendrites and axons of
cortical neurons correspond to a spectrum of signal propagation
delays ranging up to about 100 ms. In this work, we investigate
delays produced by inhibitory–excitatory pairs of conventional
conductance-based dynamic synapses implemented in the
DYNAP-SE neuromorphic processor. Ourmain results presented
in Figures 3, 9, 10 demonstrates that configurable delayed

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 15047

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

FIGURE 9 | Configuration of disynaptic delay elements. (A) Postsynaptic

membrane potential vs. time, resulting from a presynaptic pulse. The delay is

controlled mainly by the inhibitory synaptic efficacy, winh. The amplitude of the

delayed excitation is controlled mainly by the excitatory synaptic efficacy, wexc,

and by the number of presynaptic spikes. Note that the membrane potential

reaches its minimum possible value during inhibition, and that the difference

between this value and the resting potential is controlled with the constant

injection current of the neuron, controlled by the bias parameter IF_DC_P. (B)

Maximum membrane potential, Vmax , vs. duration of inhibition, τinh, for different

values of (winh,wexc). Each point is denoted with the corresponding fine integer

bias values of the inhibitory and excitatory synaptic weights, respectively.

excitations of up to about 100 ms can be implemented in
this way, and that a single neuron with multiple disynaptic
delay elements can respond selectively to spatiotemporal input
patterns. Figure 3 illustrates that for one particular configuration
of the disynaptic elements, which is selected to mimic the
PIR of a particular non-spiking delay neuron in crickets, a
distribution of delays are realized in one neuromorphic core
thanks to device mismatch. Furthermore, Figure 9B illustrates
a subset of the possible disynaptic configurations resulting in
different delays (τinh = 30, 50, 70, 90 ms) and delayed excitation
amplitudes. Thus, by configuring the two synaptic parameters of

the disynaptic elements, variable excitation strengths and delays
of up to about τdelay ≃ 100 ms are achieved, which is similar
to the range of dendritic and axonal signal propagation delays in
cortical circuits (Dayan and Abbott, 2005).

At the quantitative level, we observe some differences between
the feature detection results presented in section 3.2 and the
behavior of the cricket circuit described by Schöneich et al.
(2015). In the crickets, the response of the coincidence detector
neuron LN3 for different IPIs varies so that the distribution of
the number of spikes of LN3 increases as the interval gets closer
to the species-specific IPI of 20 ms. This is not the case in the
results presented here, and further optimization of the neuron
and synapse parameters are required if this behavior is to be
imitated. As illustrated in Figure 7B, our LN3 reliably produces
the same number (but different timings) of spikes for all of the
different IPIs, with the exception of the 0ms IPI. Amore plausible
trend is observed in the case of 50% input noise, but in that
case the classification results are weaker. Hence, the classification
mechanism relies on the timing of spikes and the balance of
inhibition and excitation.

Temporal feature detection and pattern recognition are
central tasks in advanced sensor and perception systems. Thus,
low-power SNN processors enabling learning and recognition of
complex spatiotemporal patterns (Indiveri and Sandamirskaya,
2019; Strukov et al., 2019) have many potential applications,
for example for always-on machine monitoring (Martin del
Campo et al., 2013; Martin del Campo and Sandin, 2017), where
the system needs to operate autonomously and wirelessly with
limited resources over the expected lifetime of the monitored
machine component (Martin del Campo, 2017; Häggström,
2018). Although we sidestep Dale’s principle, the dynamic
disynaptic delay elements investigated here have the desirable
property that each neuron can be configured with multiple
disynaptic elements, as illustrated in Figure 10. By combining
multiple disynaptic delay elements, for example in line with
the idea of polychronous networks (Izhikevich, 2006), more
complex spatiotemporal patterns can be detected in principle.
Since the disynaptic delay elements are realized with ordinary
dynamic synapses, the approach is not limited to this particular
neuromorphic processor, although the distribution of delays
obtained is processor and device-mismatch dependent.

Further work is required to investigate how the repertoire of
synaptic delays can be exploited and configured/learned to solve
practical pattern recognition tasks, and to further develop the
understanding of how device mismatch, noise and temperature
variations affect different network architectures. With dynamic
synapses featuring short- and long-term plasticity, additional
mechanisms for sequence detection and learning can also be
realized (Buonomano, 2000) and investigated. Furthermore,
SNNs can faithfully reproduce dynamics of brain networks,
which appear to self-organize near a critical point where no
privileged spatial or temporal scale exist, which has interesting
consequences for information processes (Cocchi et al., 2017).
Thus, Neuromorphic Engineering (Indiveri and Horiuchi, 2011;
Strukov et al., 2019) and dynamic neuromorphic processors
opens the way to new interesting architectures for pattern
recognition and generation in machine perception and control.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 15048

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

FIGURE 10 | Feature detection by a single neuron in the DYNAP-SE. (A) Neuron with one output (Out) and two inputs with disynaptic delay elements (DE1 and DE2).

(B) Probability that the neuron spikes vs. the presynaptic spike interval, which denotes the time between two presynaptic spikes at DE1 and DE2, respectively. This

neuron spikes with maximum probability when a spike arrives to DE2 about 3 ms later than to DE1. The neuron does not spike for presynaptic spike intervals below

about 2 ms and above about 6 ms. (C) Examples of spike times for presynaptic spike intervals of 3 ms (bold lines) and 0 ms (thin lines). In the latter case no

postsynaptic spike is generated. (D) Examples of membrane potentials measured for 3 ms (bold line) and 0 ms (thin line) presynaptic spike intervals. No spike is

generated when the two presynaptic spikes arrive simultaneously. With a presynaptic spike interval of 3 ms the neuron spikes reliably.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

FS conceived the possibility to imitate non-spiking PIR
delay in the DYNAP-SE with synaptic dynamics, supervised
the experiments to be carried out, and wrote part of the

manuscript. MN implemented the code that controls the
DYNAP-SE, performed the experiments, and wrote part of
the manuscript.

FUNDING

This work was supported by The Kempe Foundations under
contract JCK-1809 and SMK-1429, and was enabled by a
collaboration with the Institute of Neuroinformatics in Zurich
supported by STINT under contract IG2011-2025.

Frontiers in Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 15049

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

ACKNOWLEDGMENTS

We thank the reviewers for constructive criticism that helped
us improve the manuscript. Ideas leading to the work presented

here have been discussed at the CapoCaccia Neuromorphic

EngineeringWorkshop, in particular with Giacomo Indiveri, and

the bias parameters of the delay elements presented in Table 1 are
based on bias parameter values kindly shared by Nicoletta Risi.
We thank Federico Corradi and Carsten Nielsen for technical
support with the DYNAP-SE neuromorphic system. We thank
Jerker Delsing for supporting the work in this area at EISLAB
and Jonas Ekman for support at the departmental level.

REFERENCES

Agmon-Snir, H., and Segev, I. (1993). Signal delay and input synchronization

in passive dendritic structures. J. Neurophysiol. 70, 2066–2085.

doi: 10.1152/jn.1993.70.5.2066

Bartolozzi, C., and Indiveri, G. (2007). Synaptic dynamics in analog vlsi. Neural

Comput. 19, 2581–2603. doi: 10.1162/neco.2007.19.10.2581

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Buonomano, D. V. (2000). Decoding temporal information: a model

based on short-term synaptic plasticity. J. Neurosci. 20, 1129–1141.

doi: 10.1523/JNEUROSCI.20-03-01129.2000

Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. (2014). Neuromorphic

electronic circuits for building autonomous cognitive systems. Proc. IEEE 102,

1367–1388. doi: 10.1109/JPROC.2014.2313954

Coath, M., Mill, R., Denham, S. L., and Wennekers, T. (2011). “Emergent feature

sensitivity in a model of the auditory thalamocortical system,” in From Brains to

Systems, eds C. Hernández, R. Sanz, J. Gómez-Ramirez, L. S. Smith, A. Hussain,

A. Chella, and I. Aleksander (New York, NY: Springer), 7–17.

Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S., and Wennekers,

T. (2014). A robust sound perception model suitable for neuromorphic

implementation. Front. Neurosci. 7:278. doi: 10.3389/fnins.2013.00278

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the

brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158,

132–152. doi: 10.1016/j.pneurobio.2017.07.002

Dalgaty, T., Vianello, E., De Salvo, B., and Casas, J. (2018). Insect-

inspired neuromorphic computing. Curr. Opin. Insect Sci. 30, 59–66.

doi: 10.1016/j.cois.2018.09.006

Dayan, P., and Abbott, L. F. (2005). Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Cambridge, MA: The MIT Press.

Delbruck, T., Berner, R., Lichtsteiner, P., and Dualibe, C. (2010). “32-bit

configurable bias current generator with sub-off-current capability,” in

Proceedings of 2010 IEEE International Symposium on Circuits and Systems

(Paris), 1647–1650.

Häggström, F. (2018). Robust energy management for IoT machine elements (Ph.D.

Thesis). Luleå University of Technology, Embedded Intelligent Systems Lab,

Luleå, Sweden.

Hussain, S., Liu, S.-C., and Basu, A. (2015). Hardware-amenable structural learning

for spike-based pattern classification using a simple model of active dendrites.

Neural Comput. 27, 845–897. doi: 10.1162/NECO_a_00713

Indiveri, G., and Horiuchi, T. (2011). Frontiers in neuromorphic engineering.

Front. Neurosci. 5:118. doi: 10.3389/fnins.2011.00118

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., and Liu, S. (2015). Memory and information

processing in neuromorphic systems. Proc. IEEE 103, 1379–1397.

doi: 10.1109/JPROC.2015.2444094

Indiveri, G., and Sandamirskaya, Y. (2019). The importance of space and time for

signal processing in neuromorphic agents: the challenge of developing low-

power, autonomous agents that interact with the environment. IEEE Signal

Process. Magaz. 36, 16–28. doi: 10.1109/MSP.2019.2928376

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural

Comput. 18, 245–282. doi: 10.1162/089976606775093882

Martin del Campo, S. (2017). Unsupervised feature learning applied to condition

monitoring (Ph.D. Thesis). Luleå University of Technology, Embedded

Intelligent Systems Lab, Luleå, Sweden.

Martin del Campo, S., Albertsson, K., Nilsson, J., Eliasson, J., and Sandin, F.

(2013). “FPGA prototype of machine learning analog-to-feature converter for

event-based succinct representation of signals,” in Machine Learning for Signal

Processing (MLSP), 2013 IEEE International Workshop on (Southampton), 1–6.

Martin del Campo, S., and Sandin, F. (2017). Online feature learning for condition

monitoring of rotating machinery. Eng. Appl. Artif. Intell. 64, 187–196.

doi: 10.1016/j.engappai.2017.06.012

Mauk, M. D., and Buonomano, D. V. (2004). The neural basis

of temporal processing. Annu. Rev. Neurosci. 27, 307–340.

doi: 10.1146/annurev.neuro.27.070203.144247

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (dynaps). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Nielsen, C., Qiao, N., and Indiveri, G. (2017). “A compact ultra low-power

pulse delay and extension circuit for neuromorphic processors,” in 2017 IEEE

Biomedical Circuits and Systems Conference (BioCAS) (Turin), 1–4.

Nilsson, M. (2018). Monte carlo optimization of neuromorphic cricket auditory

feature detection circuits in the dynap-se processor (Master’s Thesis). Luleå

University of Technology, Luleå, Sweden.

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Rost, T., Ramachandran, H., Nawrot, M. P., and Chicca, E. (2013). “A

neuromorphic approach to auditory pattern recognition in cricket phonotaxis,”

inCircuit Theory andDesign (ECCTD), 2013 European Conference on (Dresden:

IEEE), 1–4.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schemmel, J., Kriener, L., Müller, P., and Meier, K. (2017). “An accelerated analog

neuromorphic hardware system emulating nmda- and calcium-based non-

linear dendrites,” in 2017 International Joint Conference on Neural Networks

(IJCNN) (Anchorage, AK), 2217–2226.

Schöneich, S., Kostarakos, K., and Hedwig, B. (2015). An auditory feature

detection circuit for sound pattern recognition. Sci. Adv. 1:e1500325.

doi: 10.1126/sciadv.1500325

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose,

G. S., et al. (2017). A survey of neuromorphic computing and neural networks

in hardware. CoRR, abs/1705.06963.

Sheik, S., Chicca, E., and Indiveri, G. (2012a). “Exploiting device mismatch

in neuromorphic vlsi systems to implement axonal delays,” in Neural

Networks (IJCNN), The 2012 International Joint Conference on (Brisbane, QLD:

IEEE), 1–6.

Sheik, S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T., and

Chicca, E. (2012b). Emergent auditory feature tuning in a real-time

neuromorphic vlsi system. Front. Neurosci. 6:17. doi: 10.3389/fnins.2012.

00017

Sheik, S., Pfeiffer, M., Stefanini, F., and Indiveri, G. (2013). “Spatio-temporal spike

pattern classification in neuromorphic systems,” in Conference on Biomimetic

and Biohybrid Systems (London: Springer), 262–273.

Strukov, D., Indiveri, G., Grollier, J., and Fusi, S. (2019). Building brain-

inspired computing. Nat. Commun. 10:4838. doi: 10.1038/s41467-019-

12521-x

Swadlow, H. A. (1985). Physiological properties of individual cerebral axons

studied in vivo for as long as one year. J. Neurophysiol. 54, 1346–1362.

doi: 10.1152/jn.1985.54.5.1346

Frontiers in Neuroscience | www.frontiersin.org 14 February 2020 | Volume 14 | Article 15050

https://doi.org/10.1152/jn.1993.70.5.2066
https://doi.org/10.1162/neco.2007.19.10.2581
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1523/JNEUROSCI.20-03-01129.2000
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.3389/fnins.2013.00278
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.1016/j.cois.2018.09.006
https://doi.org/10.1162/NECO_a_00713
https://doi.org/10.3389/fnins.2011.00118
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1109/MSP.2019.2928376
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1016/j.engappai.2017.06.012
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1126/sciadv.1500325
https://doi.org/10.3389/fnins.2012.00017
https://doi.org/10.1038/s41467-019-12521-x
https://doi.org/10.1152/jn.1985.54.5.1346
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sandin and Nilsson Synaptic Delays for Neuromorphic Processors

Van der Spiegel, J., Donham, C., Etienne-Cummings, R., Fernando, S., Mueller,

P., and Blackman, D. (1994). “Large scale analog neural computer with

programmable architecture and programmable time constants for temporal

pattern analysis,” in Proceedings of 1994 IEEE International Conference on

Neural Networks (ICNN’94) Vol. 3 (Orlando, FL), 1830–1835.

Wang, R. M., Cohen, G., Stiefel, K. M., Hamilton, T. J., Tapson, J. C.,

and van Schaik, A. (2013). An FPGA implementation of a polychronous

spiking neural network with delay adaptation. Front. Neurosci. 7:14.

doi: 10.3389/fnins.2013.00014

Wang, R. M., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014). A

mixed-signal implementation of a polychronous spiking neural network

with delay adaptation. Front. Neurosci. 8:51. doi: 10.3389/fnins.2014.

00051

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The reviewer FC declared providing technical help to the authors with the

material they used in their research, with no collaboration, before the review.

Copyright © 2020 Sandin and Nilsson. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 15051

https://doi.org/10.3389/fnins.2013.00014
https://doi.org/10.3389/fnins.2014.00051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 09 April 2020

doi: 10.3389/fnins.2020.00275

Frontiers in Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 275

Edited by:

Elisabetta Chicca,

Bielefeld University, Germany

Reviewed by:

Francisco Barranco,

University of Granada, Spain

Cristina Conde,

Rey Juan Carlos University, Spain

*Correspondence:

Jean-Matthieu Maro

corr@jmatthi.eu

Ryad Benosman

ryad.benosman@upmc.fr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 30 October 2019

Accepted: 10 March 2020

Published: 09 April 2020

Citation:

Maro J-M, Ieng S-H and Benosman R

(2020) Event-Based Gesture

Recognition With Dynamic

Background Suppression Using

Smartphone Computational

Capabilities. Front. Neurosci. 14:275.

doi: 10.3389/fnins.2020.00275

Event-Based Gesture Recognition
With Dynamic Background
Suppression Using Smartphone
Computational Capabilities
Jean-Matthieu Maro 1*, Sio-Hoi Ieng 1,2 and Ryad Benosman 1,2,3,4*

1 Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France, 2CHNO des Quinze-Vingts, INSERM-DGOS CIC

1423, Paris, France, 3Departments of Ophthalmology/ECE/BioE, University of Pittsburgh, Pittsburgh, PA, United States,
4Department of Computer Science, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States

In this paper, we introduce a framework for dynamic gesture recognition with background

suppression operating on the output of a moving event-based camera. The system

is developed to operate in real-time using only the computational capabilities of a

mobile phone. It introduces a new development around the concept of time-surfaces. It

also presents a novel event-based methodology to dynamically remove backgrounds

that uses the high temporal resolution properties of event-based cameras. To our

knowledge, this is the first Android event-based framework for vision-based recognition

of dynamic gestures running on a smartphone without off-board processing. We assess

the performances by considering several scenarios in both indoors and outdoors, for

static and dynamic conditions, in uncontrolled lighting conditions. We also introduce a

new event-based dataset for gesture recognition with static and dynamic backgrounds

(made publicly available). The set of gestures has been selected following a clinical trial

to allow human-machine interaction for the visually impaired and older adults. We finally

report comparisons with prior work that addressed event-based gesture recognition

reporting comparable results, without the use of advanced classification techniques nor

power greedy hardware.

Keywords: gesture recognition, event-based, neuromorphic, background suppression, smartphone, dynamic

vision sensor (DVS), dynamic gesture recognition, mobile device

1. INTRODUCTION

This article focuses on the problem of gesture recognition and dynamic background suppression
using the output of a neuromorphic asynchronous event-based camera (Figure 1) connected to a
mobile phone (Maro et al., 2019). The system does not rely on off-board resources. Event-based
cameras (Lichtsteiner et al., 2008; Delbruck et al., 2010; Posch et al., 2011) offer a novel path to
computer vision by allowing to operate at high temporal precision at equivalent frame rates at the
order of several kilohertz. Contrary to standard frame-based cameras, which have a pre-defined
acquisition rate, individual pixels of neuromorphic cameras are independent and react to relative
changes of illuminance in their own field-of-view. Event-based cameras are scene dependent and
therefore burn very little power depending on the amount of recorded data (1–10 mW). They
hold the promise of low computational costs while operating at high temporal scales. However,
there has been no development of a proof of concept using these properties in the context of

52

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00275
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00275&domain=pdf&date_stamp=2020-04-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:corr@jmatthi.eu
mailto:ryad.benosman@upmc.fr
https://doi.org/10.3389/fnins.2020.00275
https://www.frontiersin.org/articles/10.3389/fnins.2020.00275/full
http://loop.frontiersin.org/people/819111/overview
http://loop.frontiersin.org/people/32893/overview
http://loop.frontiersin.org/people/94237/overview

Maro et al. Gesture Recognition Background Suppression Smartphone

FIGURE 1 | A neuromorphic camera (an ATIS) (B) is plugged into a smart-phone (A) using an USB link (C), allowing mid-air gesture navigation on the smart-phone.

edge computation. In this paper, we introduce a working
prototype of a mobile phone event-based application. We chose
the popular task of vision-based gesture recognition and dynamic
background suppression. These are good targets to make use of
the dynamic properties of event-based sensors. We chose to use a
scalable machine learning architecture relying on the concept of
time-surfaces introduced in Lagorce et al. (2016) and extended
it to operate on the limited available computational resources.
The system has been designed to operate on each incoming event
rather than creating frames from the output of the sensor to then
send them to a GPU.

Compared to previous event-based approaches that tackled
the problem of gesture recognition, we emphasize the importance
of using the information carried out by the timing of past
events to obtain a robust low-level feature representation to avoid
binning events into frames. We also address the difficult problem
of dynamic background suppression by introducing a novel low
power event-based technique operating in the temporal domain.
This technique goes beyond existing background suppression
methodologies. It uses the properties of data-driven acquisition
and its high temporal resolution to segment a scene by setting

a relation between depth and relative activity, thus allowing the
foreground and background to be differentiated.

We also introduce a new dataset of gestures (NavGesture)
recorded using an event-based camera and available for public
download. The neuromorphic field still lacks datasets that take
full advantage of the precise timing of event-based cameras.
Available datasets such as N-MNIST and N-Caltech101 (Orchard
et al., 2015a) are recording scenes where dynamics are artificially
introduced. Even true neuromorphic datasets such as Poker-
DVS (Serrano-Gotarredona and Linares-Barranco, 2015) or N-
Cars (Sironi et al., 2018) contain limited intrinsic dynamic
properties that could be used for classification. We intend to
observe objects that can be classified using only their dynamic
properties (or motion) and not from their spatial distribution.
As an example, if one considers the N-Cars (Sironi et al.,
2018) database, most objects appear as "flashes" that provide
a snapshot of the object to be recognized. The DvsGesture
dataset (Amir et al., 2017) fulfills the requirement of having
dynamic properties, however the camera is set static with the
same centring for all samples with no activity in the background.
The American Sign Language dataset, ASL-DVS (Bi et al., 2019)

Frontiers in Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 27553

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

offers various centring and scales but aims to recognizing hand
postures and also lacks dynamic properties. The proposed dataset
(NavGesture) is a new step toward bridging the gap between
laboratory-recorded datasets and everyday real situations. It
features a challenging set of dynamic gestures to classify, with
heterogeneous centring and scaling using a moving camera both
in indoor and outdoor environments.

1.1. Gesture Recognition on Mobile
Devices
Gesture recognition on mobile devices is a quickly expanding
field of research that uses a variety of sensors and methods
(Pisharady and Saerbeck, 2015; Asadi-Aghbolaghi et al., 2017;
Aditya et al., 2018). While resource-constrained devices such as
smartphones disallow the use of certain technologies requiring
high energy consumption such as vision-based depth (RGB-D)
sensors, current mobile phones have a wide variety of built-in
sensors. Several techniques use: phone speakers (Wang Z. et al.,
2019), inertial sensors (Deselaers et al., 2015; Gupta et al., 2016;
Li et al., 2018) or proximity sensors (Kim and Kang, 2010; Cheng
et al., 2011). It is worth noticing that (Won et al., 2015) propose to
use a neuromorphic camera as a proximity sensor instead of the
conventional infra-red sensitive photo-diode. Other techniques
use external components such as: e-gloves (Kau et al., 2015),
radio-frequency chips (Kellogg et al., 2014) and even in some
cases an external IMU for teeth gesture recognition (Gálvez et al.,
2019).

Smartphones also use standard RGB cameras, allowing vision-
based recognition. As pointed in Chakraborty et al. (2018),
dynamic gestures must be captured at high frame rates in order
to avoid motion blur and in some cases even missing a gesture.
However, processing high frame rates video data in real time on
a smartphone is computationally challenging if not impossible.
This might explain why most if not all of the vision-based
gesture recognition methods running on smartphones without
off-board processing are only applied to static gestures (hand
poses) (Ghanem et al., 2017; Lahiani et al., 2017). The only vision-
based dynamic gesture recognition method for smartphone
we found is proposed by Rao and Kishore (2016). However,
no proof of concept operating on a mobile phone has been
developed as the system has only been simulated on a resource-
capped standard computer. Furthermore vision-based methods
require to segment the hand from the background. This is often
solved either by background pre-sampling (Dadiz et al., 2017)
or by using skin color calibration (Jin et al., 2016; Lahiani
et al., 2016). We will shortly show that this can be performed
differently if one considers the high temporal resolution of event-
based cameras.

1.2. Gesture Recognition Using
Event-Based Cameras
Neuromorphic cameras coupled with event-based processing
open new perspectives for resource management as both
computation and memory can be allocated only to active parts
of a visual scene. In the past few years a large number of work
tackled computer vision problems using event-based cameras

while keeping in mind the necessity of avoiding at all costs the
temptation to generate frames from the sensor’s output, to cite
a few: optical flow estimation (Benosman et al., 2014), high-
speed tracking (Serrano-Gotarredona et al., 2009; Ni et al., 2012;
Valeiras et al., 2015), object classification (Sheik et al., 2013;
Lagorce et al., 2015; Orchard et al., 2015b), 3D reconstruction
(Ieng et al., 2018), or pose estimation (Reverter Valeiras et al.,
2016).

Generating images from the output of event-based cameras
to take advantage of decades of standard computer vision
research is becoming a popular stream of research (Kogler
et al., 2009; Mueggler et al., 2015; Pradhan et al., 2019; Rebecq
et al., 2019). This has lead to the development of pipelines that
convert conventional frame-based datasets into events either
using hardware (Orchard et al., 2015a; Hu et al., 2016; Wang Y.
et al., 2019) or software (Chadha et al., 2019). These data are then
often converted back into frames in order to use frame-based
techniques such as CNN. There is currently a need to carry out
research on event-by-event processing to take full advantage of
all the properties of neuromorphic vision sensors (Cadena et al.,
2016; Chen et al., 2019). These sensors cannot only be used to
generate high frame rates or high dynamic range images as one
loses all advantages of the sparseness and low computation power
associated to event-based acquisition.

To our knowledge, the first gesture recognition system using a
Dynamic Vision Sensors (DVS) is the Rock-Scissor-Paper game
from Ahn et al. (2011), which detected the final static hand
pose using event activity. Samsung has developed several gesture
recognition systems. In early experiments, they proposed to use
Leaky Integrate-and-Fire (LIF) neurons to correlate space-time
events in order to extract the trajectory of gestures, using a
stereo-pair of DVS in Lee J. et al. (2012); Lee et al. (2014). This
method is also adapted to track a finger tip using a single DVS
(Lee J. H. et al., 2012), and event activity rate is also used to
discriminate finger tip movements from hand swipes. Samsung
also proposed to use the Adaptive Resonance Theory (ART) for
continuous gesture recognition, first with HMM (Park et al.,
2012), then with CNN (Park et al., 2015). In parallel to the
trajectory extraction approaches, global motion-based features
were proposed. Kohn et al. (2012) proposed a motion-based
analysis of body movements using the relative event activity
accumulated into 40 ms frames, while Lee K. et al. (2012) used
pseudo optical-flow. To cope with varying speeds, Clady et al.
(2016) proposed a motion-based feature that decays depending
on the speed of the optical flow. Two end-to-end neuromorphic
systems for gesture recognition have been proposed in recent
years. The first one used the SpiNNaker neuromorphic board
(Liu and Furber, 2015) and the second was implemented by IBM
Research on the TrueNorth neuromorphic chip (Amir et al.,
2017). However, both systems bin events into frames at some
point in order to use a CNN for classification. Along with their
implementation IBM has also released the DvsGesture dataset,
which has become widely used in the neuromorphic community.
It has been used in multiple papers: spatio-temporal filters that
feed a CNN (Ghosh et al., 2019), SNN (Kaiser et al., 2018;
Shrestha and Orchard, 2018), and a PointNet adaptation (Wang
Q. et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 27554

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

Sign Language recognition has also been investigated but with
a focus on static hand postures using events-to-frame techniques
(Rivera-Acosta et al., 2017) or a graph-based CNN (Bi et al.,
2019). Chen et al. (2019) proposed a new representation called
Fixed Length Gist Representation (FLGR), mapping events to a
higher dimensional feature. All presented methods used data
from a static neuromorphic camera, with no background clutter.
Furthermore, centring and scaling is in general the same except
for (Bi et al., 2019). The only work to our knowledge with a focus
on cluttered background and featuring one to several subjects per
se quence, is the hand detection method proposed by Li et al.
(2017). Unfortunately, they did not release their dataset. Also, it
is worth mentioning that almost all presented works use at some
point an events-to-frame conversion such as temporal or index
binning, pixel spike rate or global memory surfaces. The only
methods that process events in an event-basedmanner are scarce:
(Lee J. H. et al., 2012; Lee K. et al., 2012), Clady et al. (Clady et al.,
2016), SLAYER (Shrestha and Orchard, 2018) and FLGR (Chen
et al., 2019).

In this work, we will consider more general scenarios
offered by a moving camera that induces numerous new
issues to solve such as: a higher number of emitted events,
heterogeneous centering and scaling, unwanted shaking and
important background clutter. Eliminating the background is an
important step for event by event processing. Kyung et al. (2014)
proposed a background suppression method for neuromorphic
cameras, but converted events to frames. Our approach is
purely event-based and drastically contrasts from any existing
background removal algorithm as it uses only the timing of
events and it does not rely on conventional approaches such
as: code-books (Elgammal et al., 2000), probabilistic approaches
(Stauffer and Grimson, 1999), sample-based methods (Barnich
and Droogenbroeck, 2011), subspace-based techniques (Oliver
et al., 2000), or even deep learning (Babaee et al., 2018).

2. EVENT-BASED CAMERAS AND THE
EVENT-BASED PARADIGM

The Address Event Representation (AER) neuromorphic camera
used in this work is the Asynchronous Time-based Image Sensor
(ATIS) (see Figure 1B) (Posch et al., 2011). Each pixel is fully
autonomous, independent, and asynchronous, it is triggered by
a change in contrast within its field of view. A pixel emits a visual
event when the luminance change exceeds a certain threshold,
typically around 15% in contrast. The nature of this change is
encoded in the polarity p of the visual event, which can be either
ON (p = 1) or OFF (p = 0), depending on the sign of the
luminance change (see Figure 2). Wemust emphasize that p does
not carry meaningful information per se: indeed, a given object
can induce both polarities depending on if the background is
lighter or darker than the observed object. Hence, the polarity
is context-dependant and can not be taken into account except
in the case of a controlled environment and stimulus. The ATIS
has a high temporal precision, in the order of hundreds of
microseconds, which allows the capture of highly dynamical
scenes while avoiding motion blur (Mueggler et al., 2014). The

k-th visual event ek of the output stream of the camera can be
mathematically written as the following triplet:

ek = (xk, tk, pk) (1)

where xk is the spatial location of the visual event on the focal
plane, tk its time-stamp, and pk its polarity.

3. METHODS

3.1. Dynamic Background Suppression
The Dynamic Background Suppression (DBS) uses the simple
idea that the closer an object is to the camera, the more events it
will generate as its apparentmotionwill bemore important than a
farther object. From this property it is possible to link the relative
local activity within the focal plane to depth. A low event relative
activity can be associated to the background and hence dismissed,
whereas relative high activity regions could correspond to the
foreground. Although the technique could be applied to each
pixel, we will estimate the relative activity considering portions
of the focal plane that will be divided into a grid of cells, as shown
in Figure 3.

Let each cell c be composed of a set of pixels where activity
is expressed by Ac. For each incoming event ek = (xk, tk, pk)
emitted by a pixel belonging to a cell c, we can apply the following
update of its activity Ac as:

Ac ← Ac · exp(−
tk − tc

τb
)+ 1 (2)

where tk is the time-stamp of the current event ek, tc the last time
c has been updated, and τb is a decaying time-constant.

We can then compute the average activity A of a all cells. An
incoming event ek = (xk, tk, pk) belonging to c is sent to the
machine learning module only if:

Ac ≥ max(αA,AT) (3)

where α is a scalar to set the aggressiveness of the filter, and AT

is a threshold for minimum foreground activity. The activity of a
cell and the threshold A are computed for each incoming event,
which enables or disables a given cell at the temporal resolution
of incoming events. Cells with a low activity are considered as
background and are prevented from emitting events. In principle
each time a cell is updated the general mean activity has to be
updated. Events are timed at the µs and are orders of magnitude
faster than any conventional urban real scene dynamics. The
mean activity can then be updated at much lower temporal
scales set experimentally according to the computation power
available and perhaps the situation (one can infer acceleration
from the built-in IMU). The proof of principle of the technique is
shown in Figure 4 and an example of a denoised clip is provided
in Video S1.

3.2. Time-Surfaces as Spatio-Temporal
Descriptors
A time-surface (Lagorce et al., 2016) is a descriptor of the
spatio-temporal neighborhood around an incoming event ek. We

Frontiers in Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 27555

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

FIGURE 2 | Principle of operation of the neuromorphic camera used in this work. (A) When the change in illuminance of a given pixel’s field of view exceeds a certain

threshold, (B) it emits a visual event, which is either "ON" or "OFF" depending on the sign of the change. (C) A given pixel responds asynchronously to the visual

stimuli in its own field of view.

define the time-context Tk(u, p) of the event ek as a map of
time differences between the time-stamp of the current event
and the time-stamps of the most recent events in its spatial
neighborhood. This (2R+ 1)× (2R+ 1) map is centered on ek, of
spatial coordinates xk. The time-context can be expressed as:

Tk(u, p) = {tk − t | t = max
j≤k
{tj | xj = (xk + u), pj = p}} (4)

where u = [ux, uy]
T is such that ux ∈ J−R,RK and uy ∈ J−R,RK.

Finally, we obtain the time-surface Sk(u, p) associated with the
event ek, by applying a linear decay kernel of time-constant τ to
the time-context Tk:

Sk(u, p) =

{

1−
Tk(u,p)

τ
, if Tk(u, p) < τ

0, otherwise
(5)

Sk is a low-level representation of the local spatio-temporal
neighborhood of the event ek. Figure 5 illustrates how time-
surfaces are computed from the stream of events.

Discarding time-surfaces. A time-surface can be computed
for each new incoming event, but would generate overlapping
time-surfaces and introduce redundancy. As the event-based
camera performs native contour extraction, we must ensure that
a sufficient number of events to form a full contour are taken
into account. Therefore, time-surfaces must be discarded if they
contain too little information, using the following heuristic:

card({(u, p), Tk(u, p) < τ }) ≥ 2R (6)

3.3. Event-Based Hierarchical Pattern
Matching
Following the principle of using deep multiple temporal and
spatial scales introduced in HOTS (Lagorce et al., 2016),
incoming visual events are fed to a network composed of several
layers. As events flow into the network, only their polarities are
updated on successive "feature planes." Polarities in the network
correspond to learned patterns or elementary features at that
temporal and spatial scale. However, as time-surfaces can be
discarded, the network output stream contains less events than
the input stream, which is an important property that builds on
the native low output of the event-based camera to lower the
computational cost.

3.3.1. Creating a Layer and Learning Prototypes
An iterative online clustering method is used to learn the base
patterns (hereinafter called prototypes), as it allows to process
events as they are received, in an event-based manner. A layer
is composed of a set of N prototypes, which all share the same
radius R (which corresponds to the neuron’s receptive field), and
the same time-constant τ . The triplet (N,R, τ) defines a layer.
First, a set of N time-surface prototypes Ci, with i ∈ J0,N − 1K,
is created. The Ci are initialized by using random time-surfaces
obtained from the stream of events. For each incoming event ek
we compute its associated time-surface Sk of radius R and time-
constant τ . Using the L2 Euclidean distance, we compute the
closest matching prototype Ci in the layer, which we update with

Frontiers in Neuroscience | www.frontiersin.org 5 April 2020 | Volume 14 | Article 27556

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

FIGURE 3 | Operating principle of the Dynamic Background Suppression (DBS). (A) A gesture is performed in front of the camera, which pixel array is divided into

cells. (B) Each cell has its own activity counter that decays over time. (C) Only cells with their activity greater than the mean activity (black dashes) of all cells can spike.

Sk using the following rule, improved from Lagorce et al. (2016):

Ci ← Ci + αi
Sk · Ci

‖Sk‖ ‖Ci‖
(Sk − Ci) (7)

with αi the current learning rate of Ci defined as:

αi =
1

1+ Ai

where Ai is the number of time-surfaces which have already been
assigned to Ci. If a prototype Ci is poorly triggered, it is re-
initialized and forced to learn a new pattern. This prevents badly
initialized prototypes to stay unused, and helps them converge to
meaningful representations.

3.3.2. Building the Hierarchy
One can then stack layers in a hierarchical manner, in order
to form a network (see Figure 6). First, the visual stimulus is

presented to the event-based camera (Figure 6A), which outputs
a stream of visual events. A given event em of the stream must go
through all the layers before the next event em+1 is processed.
At each layer (N,R, τ), if the time-context Tm of the event
em satisfies Equation (6), the corresponding time-surface Sm is
computed (see Figure 6B). Then, the best matching prototype
Cc is updated using Equation (7) (see Figure 6B). At this point,
the polarity pm of em is modified so that pm = c, c being
the ID of the best matching prototype. Event em is then sent
to the next layer to be processed in a similar manner. We
must emphasize that the first layer, which receives visual events
from the camera does not take the polarity (that corresponds
to the increase or decrease in contrast) into account for the
reason exposed in section 2. All visual events have their polarity
p set to zero. In the subsequent layers, however, the polarity
now encodes a pattern, and we refer to them as pattern events
instead of visual events for which the polarity corresponds to

Frontiers in Neuroscience | www.frontiersin.org 6 April 2020 | Volume 14 | Article 27557

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

FIGURE 4 | Denoising example of a gesture clip from the NavGesture-walk data-set. The presented gesture is a "swipe down". Top row is the raw stream of visual

events, and the bottom row is the denoised stream, at the output of the 3rd stage of the cascade presented in this paper. Each snapshot from the top row is made of

10,000 events, and bottom row contains only the kept events of those 10,000. "ON" events are orange, "OFF" events are black. The filtering lead to the removal of

83.8% of all events. Even after removing this many events each gesture is still easily recognizable by the human eye.

FIGURE 5 | (A) A moving vertical bar is presented to the event-based camera, which output a stream of visual events. The edges of the bar are ON (white) and OFF

(black) events. A ROI is defined around the current event (blue square). (B) The time-stamps of visual events contained the ROI are decayed using a linear kernel. (C)

The resulting extracted time-surface, that encodes both the contour orientation and the dynamic of the motion.

a luminance change. Pattern events are then fed to the next
layer, and processed in a similar manner. As we go higher in
the hierarchy of layers, subsequent layers combine patterns from
previous layers, thus their prototypes (and so the corresponding
polarities) encode more and more sophisticated patterns. As
an illustration, the first layer can only encode the shape and
the direction of the motion. The second layer however, because
it is working with the first layer output can encode changes
of direction in the motion. Once the full hierarchy has been
trained,meaning that its time-surface prototypes have converged,
the learning is disabled: prototypes are no longer updated
using Equation (7).

The network can now serve as a feature extractor: the
polarities of events output by the network will be used as features
for classification. Because this algorithm is truly event-based
and data-driven the computation time directly depends on the
number of events transmitted by the camera.

4. A NEW NEUROMORPHIC DATASET:
NAVGESTURE

As mentioned in the previous section, existing gesture and action
recognition datasets are recorded using a non-moving camera

Frontiers in Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 27558

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

FIGURE 6 | (A) A stimulus is presented in front of a neuromorphic camera, which encodes it as a stream of event. (B) A time-surface can be extracted from this

stream. (C) This time-surface is matched against known pattern, which are also time-surfaces, and that can be used as features for classification.

set in front of a static background (Amir et al., 2017; Bi et al.,
2019; Chen et al., 2019; Ghosh et al., 2019; Wang Y. et al.,
2019). In some other popular neuromorphic datasets such as
N-MNIST and N-Caltech101 (Orchard et al., 2015a), the event-
based camera is set up on a pan-tilt in front of a computer screen,
hence the dynamics of recorded objects correspond to the pan-tilt
movement. The same issue arises in N-Cars (Sironi et al., 2018)
because of the very short duration of each clip. Furthermore cars
are cropped, removing most of the background.

The proposed dataset offers a challenging gesture recognition
task because of its dynamic and changing backgrounds. All
gestures were recorded in selfie mode, with the users holding
the camera with one hand and performing the gesture with their
free hand. The fact that users where holding the phone leads to
a wide variety of centring and gesture distance to the camera.
The dataset features both right-handed and left-handed users.
The users were either sitting or walking, indoors and outdoors,
in uncontrolled lighting conditions. The neuromorphic camera
used is an ATIS (Posch et al., 2011) with a lens VM-6.5-IR-CCD
from Universe Optics. This choice was made in order to facilitate
the "auto"-centring by the end-users, by allowing a larger field
of view.

The NavGesture dataset has originally been designed to
facilitate the use of a smartphone by the elderly and the visually
impaired. The gesture dictionary has 6 gestures in order to
be easily memorized. They have been selected to be the most
compact set able to operate a mobile phone. Four of them are
"sweeping" gestures: Right, Left, Up, Down. These are designed
to navigate through the items in a menu. The Home gesture, a
"hello"-waving hand, can be used to go back to the main menu,
or to obtain help. Lastly, the select gesture, executed only using

fingers, closing them as a claw in front of the device, and then
reopening them, is used to select an item.

The NavGesture dataset is split into two subsets, depending
on whether users were sitting or walking: NavGesture-sit
and NavGesture-walk. The NavGesture-sit dataset features 28
subjects, 12 being visually impaired subjects, with a condition
ranging from 1 to 4/5 on the WHO blindness scale and 16 being
people from the laboratory. The gestures were recorded in real
use condition, with the subject sitting and holding the phone in
one hand while performing the gesture with their other hand.
Some of the subjects were shown video-clips of the gestures
to perform, while others had only an audio description of the
gesture. This inferred some very noticeable differences in the
way each subject performed the proposed gestures, in terms of
hand shape, trajectory, motion and angle but also in terms of
the camera pose. Each subject performed 10 repetitions of the 6
gestures. In a second stage, all the acquired clips were manually
labeled and segmented. We removed problematic clips, such
as wrongly executed gestures or gestures executed too close to
the camera. The manually curated dataset contains a total of
1, 342 clips.

In the NavGesture-walk the users walked through an urban
environment, both indoors in the laboratory, and outdoors in
the nearby crowded streets in the center of Paris. Users recorded
the gestures while walking, holding the phone with one hand
and performing the gestures with the other. This uncontrolled
setting leads to much more variation in pose, unwanted camera
movements, dynamic backgrounds and lighting conditions. This
dataset features 10 people from the laboratory that performed
5 times each of the 6 gestures. The dataset contains a total of
339 clips. An overview is presented in Table 1. An example of

Frontiers in Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 27559

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

TABLE 1 | Characteristics of the three Gesture Datasets used in this work.

Dataset #users #classes #clips Camera Background Framing

DvsGesture 29 10 + 1 1,342 + 122 Static No Upper body

NavGesture-sit 28 6 1,342 Handheld Yes, moderate Selfie, user sitting

NavGesture-walk 10 6 339 Handheld Yes, important Selfie, user walking

the "Swipe Up" gesture is shown in Figure 4. The NavGesture
dataset is publicly available at https://www.neuromorphic-vision.
com/public/downloads/navgesture/.

5. EXPERIMENTS AND RESULTS

The first experiment on the Faces dataset focuses on extracting
static properties. We show that a single layer is sufficient to
provide good results. The following experiments required more
layers. As the neuromorphic camera detects change in contrast,
these can either be ON or OFF events depending on the contrast
between the foreground and the background. Indeed, the same
moving object could generate ON events in front of a dark
background, and OFF events in front of a light background, as
explained earlier. This is the reason why in all the following
experiments we did not take the polarity of visual events into
account, as the polarity is context-dependent. An example of
this phenomena is a moving hand in front of a black and white
stripped background. This is why we considered that only the
illuminance change carries information for these classification
tasks, and not the fact that the illuminance increased (ON event)
or decreased (OFF event).

For all classification tasks, the output of end-layers (larger
time scale) is integrated over time to generate a histogram of
activity per feature as in Lagorce et al. (2016). This histogram is
then used as a dynamic signature of the observed stimulus. This
signature is fed to a classifier, in this case a nearest neighbor.More
sophisticated classifiers could be used, but this demonstrates that
extracted features are sufficient for classification.

5.1. Static Properties: Experiments on the
Faces Dataset
This dataset contains clips of the faces of 7 subjects. Each subject
was recorded 24 times, resulting in 168 clips. The subjects had to
move their head in a square-shaped trajectory, by following a dot
on a computer screen. The dynamic is therefore the same for all
subjects, and does not carry any meaningful information for the
classification task. Experiments were performed on a standard
desktop computer. We performed 10-fold cross-validation with
5 examples in the train subset, and 19 in the test subset. We
used a single-layer with N = 32 prototypes, receptive fields of
radius R = 6 and τ = 5 ms, we obtained 96.6% recognition
score on this dataset. By increasing the number of prototypes
to N = 64, we achieved 98.5% in average recognition rate. We
noticed that increasing τ higher than 5 ms was not beneficial and
even decreased our classification accuracy. This is because time-
surfaces encode both static properties such as shape and dynamic
properties such as optical flow. A small τ will mainly encode static

properties whereas a larger τ will also encode dynamic properties
such as pseudo optical-flow. When we added a second layer, the
recognition rate dropped. A single layer is therefore sufficient
to encode static properties such as shape. The classification was
made using a 1-nearest neighbor, and does not rely on advanced
classification techniques.

In comparison, the HOTS model in Lagorce et al. (2016)
performed at 79% using a three-layer architecture, with its end-
layer having N = 32 of prototypes. It must be noted that
this improvement in recognition rate also comes with a faster
computation because of the reduction in the size of used time-
surfaces, from size 4,624 in HOTS to size 169 in our work.

Classification scores depend on the number of prototypes: the
more prototypes, the higher the recognition rate.

5.2. Dynamic Properties: Experiments on
the NavGesture Datasets
In both NavGesture-sit and NavGesture-walk datasets, subjects
hold the phone in their hand, which results in cameramovements
and unwanted jitters that generate background activity. In the
case of the NavGesture-walk the visual background is even
more present as subjects are walking while performing the
gestures. The experiments were performed on a standard desktop
computer, and we used k-fold cross-validation, with k the number
of subjects.

In order to remove events generated by the background we
used the Dynamic Background Suppression method introduced
in section 3.1. The DBS uses the following parameters,
set experimentally:

• τb = 300µs
• α = 2
• AT = 5
• grid size : 3× 3

Figure 4 illustrates the effect of the DBS. Table 2 reports
the mean percentage of remaining events for each gesture after
removing the background. The DBS allows to remove around
40% of events before the feature extraction. This has a direct
impact on processing time as we compute event by event.

In our experiments we used networks composed of 1 to 3
layers. We observed that two-layers networks perform better.
Some gestures such as "Select" or "Home" have changes in
direction, which can be encoded by networks with two or more
layers. However, we suspect that three-layers networks encode
features that are too complex for the stimulus, resulting in less
discriminative features and a lower recognition rate.

Because events are decayed over time, the value of τ must
correspond to the dynamic of the stimulus (Clady et al., 2016). If

Frontiers in Neuroscience | www.frontiersin.org 9 April 2020 | Volume 14 | Article 27560

https://www.neuromorphic-vision.com/public/downloads/navgesture/
https://www.neuromorphic-vision.com/public/downloads/navgesture/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

τ is too small, the extracted time-surface will encode only spatial
information. If τ is too large, the trail of older events will blur the
shape, encoding only direction of movement. In more extreme
cases with τ going to larger and larger values, the resulting time-
surface will carry less and less information, as all past events will
have the same weight. Of course this has also a close relation with
the radius of the time-surface as larger radii can encode longer
trails of events.

This observation leads to the fact that τ should be set in regard
to the radius R of the time-surface and the velocity v of the
apparent motion in pixel per second:

τ ≈
R

v
(8)

We observed that a first layer with a τ value in the order of
10 ms allowed to encode both shape and direction of motion
(only direction, not changes in direction). The second and end-
layer has a τ value of 100 ms, in order to encode changes in the
direction of motion.

A direct difficulty comes from the almost fish-eye field of view
of the camera: if the phone is not held vertically or if the gesture
is a bit off-axis, it becomes very difficult at the edges of the field
of view to determine if the motion is vertical or horizontal.

Ablation study. In order to assess the benefits of the DBS in
obtaining better recognition rates, we compared the performance
achieved with and without the DBS. Results show that DBS
does improve recognition rates, increasing the score from 81.3
to 92.6% when using the NavGesture-walk dataset, as shown
in Table 3.

TABLE 2 | Mean percentage of events left after each the Dynamic Background

Suppression for each gesture class.

Gesture
Mean

number of event

Mean percentage

left after the DBS

Down 988,901 41%

Home 2,398,850 48%

Left 969,014 42%

Right 962,501 43%

Select 1,212,222 30%

Up 1,110,652 44%

5.3. Experiments on the DvsGesture
Dataset
Amir et al. (2017) released a 10-class (plus a rejection class with
random gestures) dataset of hand and arm gestures, performed
by 29 subjects under 3 different lighting conditions. The camera
is mounted on a stand while the subjects stood still in front of it.
This dataset has no background so theDBSwas not used. Authors
split the dataset into a training set of 23 subjects and a testing
set of 6 subjects, preventing cross-validation for comparison
purposes. We used the same 2-layer network architecture as the
one used for NavGesture. The only difference is that we increased
the number of prototypes in the last layer because the gestures
are more complex. In order to take into account the spatial
component of gestures, we split the pixel array into sub-regions,
using a 3 × 3 grid. This is possible because the centring is very
similar for all clips in the dataset. Hence, the final feature is a
histogram of size 3× 3× 64 = 576. We achieved a classification
accuracy of 96.59% for the 10-class subset and 90.62% for the 10
classes plus the rejection class. One can observe in the confusion
matrix (Figure 7) that “Hand clap,” “Arm roll,” “Air guitar,”
and “Air drum” are the only gestures that are mistaken. These
gestures all share very similar hand movements at the same
spatial location, located in front of the torso. “Arm roll” and
“Air drum” are also very similar. Their difference lie in the fact
that hands in “Arm roll” move along the same vertical line,
and we suspect that the receptive field is too small to capture
this information.

When adding the rejection class, the same gestures get
confused. Indeed, only one clip of "Left hand wave" gets mistaken
for "Air guitar", which is understandable as the left hand in these
two classes performs the same movement at the same location.
The global accuracy decreases mostly because of the "Hand clap"
that gets misclassified more often and because of the "Other
gestures" that also are harder to classify.

One can observe in Table 4 that for the 10-class classification

task our system performs in the same range of accuracy using
a k-NN as other very elaborate systems using state-of-the-art
neural networks.

It must be noted that the same time constants gave best results

for both NavGesture and DvsGesture, which shows that decay
must be chosen in accordance with the stimulus, in both case

gestures. Indeed, previous work such as HOTS (Lagorce et al.,

2016) and (Sironi et al., 2018) used decay times that were three

TABLE 3 | Summary of obtained results on the NavGesture dataset.

ID Dataset
Layer 1 Layer 2

DBS Classifier Results

N R τ N R τ

E1 NavGesture-sit 8 2 10 ms 8 2 100 ms X k-NN 95.9%

E2 NavGesture-walk 8 2 10 ms 8 2 100 ms X k-NN 92.6%

E3 NavGesture-walk 8 2 10 ms 8 2 100 ms k-NN 81.3%

E4 NavGesture-walk 8 2 10 ms X k-NN 88.7%

The use of the Dynamic Background Suppression in E2 allows to drastically improve the recognition rate by over 10% compared to E3. Also, the addition of a second layer is beneficial,

as shown by the improvement in E2 compared to E4.

Frontiers in Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 27561

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

orders of magnitude higher than the duration of the stimulus.
This resulted in time-surfaces that acted as binary frames
instead of encoding the dynamics of the scene. Furthermore,
such high decay values resulted in the incapacity of forgetting
past events.

6. IMPLEMENTATION ON A SMARTPHONE

The proposed gesture recognition pipeline has been implemented
on a mobile phone (Maro et al., 2019), a Samsung Galaxy S6
(model GM-920F), with a custom Android application allowing
easy navigation through basic phone functions, such as making
a call or sending a pre-defined text message (see Figure 8). The
event-based camera was directly plugged into the micro-USB
port of the mobile phone (see Figure 1). The gesture recognition
module is implemented in native C++ using JNI to communicate
with the Android application. The gesture recognition module
consists of basic noise filtering (a refractory period followed by a
spatio-temporal denoiser, known as the background activity filter,
that removes pixel electrical noise), the Dynamic Background
Suppression, a 1-layer Feature Extractor (N = 8, R = 2, τ = 10
ms,) and a k-NN classifier.

We used two strategies to segment gestures, the first one is an
"auto-start" based on the global visual scene activity. This option
works when users are seated but is inadequate for walking cases.
The second strategy relied on pressing a button before a gesture
to start the recording. The duration of the recording was tuned
experimentally to 2 s which seems to be the experimental upper
bound of the duration of a gesture. This 2-s batch of events at
once to the gesture recognition module, that returns the gesture
class to the Android application to be converted to an Android
command. An overview of the system is presented in Figure 9.

To assess processing time, we ran five trials for each gesture in
two different settings. The input event stream having a duration
of 2 s, a real-time processing is reached when the processing
time is below 2 s. In the first scenario, the phone was set on a
table. In the second scenario the phone was handheld in selfie
mode, with the user walking around. All results are compiled in
Table 5. When looking at the first scenario, we can see that all
gestures are under the 2 s barrier, except for the "Home" gesture
(a "Hello-waving" gesture). This is because this gesture produces
3 times more events than all other gestures (see Table 2). The
algorithm being truly event-based, the processing time directly
depends on the number of events to process. Also during trials 3
and 4, the user waved his hand 5, 6 times, while in trials 1, 2, and 5
waved only 3, 4 times. The second scenario is the handheld selfie
mode scenario, where the background generates a high number
of events, hence necessitating longer processing time. However,
all gestures except for the gesture "Home" that could be computed
in real-time. This gesture should be replaced by another more
event-based friendly gesture that would generate less events, or
should be more constrained by forcing users to only wave 1 or
2 times.

This prototype was tested by untrained visually impaired end-
users, in real use conditions. The subjects were asked to perform

FIGURE 7 | (Top) Confusion matrix for DvsGesture using 10 classes. Global

accuracy is 96.59%. "Hand clap", "Arm roll", "Air guitar" and "Air drum" are the

only gestures that get confused. The reason might be that they generate

similar motion in the same spatial location. (Bottom) Introducing the rejection

class "Other gestures" amplifies the mismatch between the four precedent

gestures, leading to a global accuracy of 90.62%. However, it has almost no

impact on other gestures (4.2% in the "Other gestures" row corresponds to

only one clip).

certain tasks to operate the phone. These preliminary tests lead
to a global accuracy of 78%, which is below the 88.7% accuracy
we obtained using the same single layer on the NavGesture-walk
dataset. We suspect this is partly due to framing and off-axis
handling of the phone.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2020 | Volume 14 | Article 27562

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

TABLE 4 | Comparison in accuracy of state-of-the-art methods for the DvsGesture dataset.

Method
DvsGesture

(10 classes)

DvsGesture

(10 classes + 1)

Amir et al. (2017) CNN (avg 192 ms) 91.77% (96.49%) 91.77% (94.59%)

Shrestha and Orchard (2018) SLAYER 93.64%

Kaiser et al. (2018) DECOLLE 94.18%

Ghosh et al. (2019) ST filter + CNN (avg 200 ms) 94.85% (95.94%)

Kaiser et al. (2019) SNN eRBP 92.7%

Wang Q. et al. (2019) PointNet++ (avg 118 ms) 96.34% (97.08%) 94.10% (95.32%)

This work Time-surfaces + k-NN 96.59% 90.62%

When noted (avg) an averaging scheme was proposed to improve the system accuracy. Our method, although using a simple k-NN classifier performs in the same range for the 10-class

classification. However, the k-NN lacks the discriminative power to handle the rejection class on the contrary of more sophisticated classifiers.

FIGURE 8 | Interface of the Android application that was developed in order to operate the phone using the proposed gestures. Right is the main menu, left illustrates

the pre-defined messages the user could send.

FIGURE 9 | Overview of the Android smartphone system.

Frontiers in Neuroscience | www.frontiersin.org 12 April 2020 | Volume 14 | Article 27563

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

TABLE 5 | Processing time in milliseconds for five trials of each gesture on the

mobile phone, depending on two conditions.

Trial Up Home Right Left Select Down

Processing time in ms for 2,000 ms of input

Setting: fixed position (no background)

1 132 2,343 54 127 40 54

2 57 2,798 60 56 57 45

3 74 3,047 44 275 61 42

4 254 3,833 32 42 29 54

5 48 2107 28 45 47 51

Processing time in ms for 2,000 ms of input

Setting: outdoor - moving

1 320 4,119 154 641 138 115

2 614 3,669 704 282 265 451

3 468 4,305 854 421 551 342

4 569 3,681 575 548 956 371

5 899 3,890 722 354 892 620

“Fixed position” corresponds to a mobile phone set on a table, which means no

background. “Outdoor, moving” corresponds to handheld selfie mode, while walking

around. Each gesture corresponds to 2,000 ms of events, meaning that except for the

“Home” gesture, all proposed gestures can be processed on real-time. The event-based

camera is data-driven so a gesture like “Home’ which corresponds to several “swipe”

gestures will generate more events (see Table 2). Our algorithm being truly event-based

it is also dependent on the number of events, and takes more processing time the more

events it receives.

7. DISCUSSION AND CONCLUSION

This paper introduced a proof of concept for an event-based
Android application for gesture recognition using the computing
power of a mobile phone. The main idea was to show that it
is possible to make full use of the high temporal resolution
of event-based cameras on a power-constrained device. The
system used a camera designed to operate with Android using
the USB link to stream events. This is by far a very inefficient
way to input data to the mobile platform as USB is often too
slow and implies time stamping events that adds more bits of
information to the acquired events. It is expected that if this type
of camera is one day introduced in a mobile device it will use
better connectivity such as MIPI buses which are designed for
low-power applications and eventually an associated processor.
This will remove the need for time stamping and allow both
direct routing to the processor and direct computation on the
time of arrival of events with no delays. In this paper due to
the limitations of the developed software we used 2-s packets of
events to optimize communication within the phone. However,
we showed that processing required inmost cases less than 2 s per
batch, which implies that real time performance can be reached if
transmission delays are solved. We are confident that a way can
be found within Android to transmit events from the camera to
the processing stage with no latency. We have also shown that
it is possible to handle the stream of events in an asynchronous
manner. This allows the temporal machine learning algorithm
to be efficient while using only a single core of the phone.
The hierarchical temporal network has been optimized for the
set of defined gestures showing that robust recognition levels
can be reached without requiring the use of GPU or using the

non-event-based concept of generating frames from an event-
based sensor. Experimental results show that as expected the
computation is scene dependent and therefore tightly linked to
the amount of events generated by the observed object.

We have also shown that the temporal precision of event-
based cameras can tackle different tasks, where it would have
been too computationally expensive or even impossible to
compute with frames in an elegant and low-power manner. As
an example, the background suppression algorithm that for the
first time considers outdoor, hand-held scenarios relies on the
simple idea that the foreground being closer to the camera will
on average generate more events than the background. The idea
of using the relative mean activity for background suppression
shows that high temporal precision is a valuable feature as it
implies that velocity is linked to the amount of data produced,
and can be estimated precisely.Moreover, the use of well designed
temporal filters can reduce even more the already sparse steam of
events, leading to faster event-by-event computation.

There is still so much to develop around the concept of using
time as a computational feature for mobile applications. As an
example the use of scene dynamics allows to derive techniques
such as the one in Lenz et al. (2018) that uses the temporal
signature of eye blinks to detect the presence of a face in a scene.
This approach introduces an alternative to the current greedy
stream of thought that believes everything has to be learned using
large databases.

All data collected and used in the paper has been made
available to the community. The introduction of this new
database will set the groundwork for further work on dynamic
background suppression.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.
Written informed consent for participation was not required
for this study in accordance with the national legislation and
the institutional requirements. Written informed consent was
obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

J-MM compiled the new gesture databases, designed the
theory for background suppression, designed the experiments,
performed analysis. J-MM and RB interpreted data for gesture
recognition. J-MM wrote the article. J-MM, S-HI, and RB helped
to edit the manuscript.

Frontiers in Neuroscience | www.frontiersin.org 13 April 2020 | Volume 14 | Article 27564

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

FUNDING

This work received funding from the European Union Horizon
2020 research and innovation program under grant agreement
No. 644096, and is part of the ECOMODE project.

ACKNOWLEDGMENTS

The authors would like to thank Christopher Reeves for his
help in the creation of the NavGesture-sit dataset, and all
the people who took part in it. We also would like to thank

Antonio Fernández, Andrew Watkinson, and Gregor Lenz for
their contribution in the Android application.

This manuscript has been released as a Pre-Print at arXiv
(Maro and Benosman, 2018).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00275/full#supplementary-material

Video S1 | Dynamic Background Suppression at work.

REFERENCES

Aditya, K., Chacko, P., Kumari, D., Kumari, D., and Bilgaiyan, S. (2018).

“Recent trends in HCI: a survey on data glove, LEAP motion and

microsoft kinect,” in 2018 IEEE International Conference on System,

Computation, Automation and Networking, ICSCA 2018 (Pondicherry), 1–5.

doi: 10.1109/ICSCAN.2018.8541163

Ahn, E. Y., Lee, J. H., Mullen, T., and Yen, J. (2011). “Dynamic vision sensor

camera based bare hand gesture recognition,” in 2011 IEEE Symposium On

Computational Intelligence ForMultimedia, Signal And Vision Processing (Paris:

IEEE), 52–59. doi: 10.1109/CIMSIVP.2011.5949251

Amir, A., Taba, B., Berg, D. J., Melano, T., McKinstry, J. L., Di Nolfo, C., et al.

(2017). “A low power, fully event-based gesture recognition system,” in CVPR

(Honolulu), 7388–7397. doi: 10.1109/CVPR.2017.781

Asadi-Aghbolaghi, M., Clapes, A., Bellantonio, M., Escalante, H. J., Ponce-López,

V., Baró, X., et al. (2017). “A survey on deep learning based approaches

for action and gesture recognition in image sequences,” in 2017 12th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2017)

(Washington, DC: IEEE), 476–483. doi: 10.1109/FG.2017.150

Babaee, M., Dinh, D. T., and Rigoll, G. (2018). A deep convolutional neural

network for video sequence background subtraction. Pattern Recogn. 76,

635–649. doi: 10.1016/j.patcog.2017.09.040

Barnich, O., and Droogenbroeck, M. V. (2011). Vibe: a universal background

subtraction algorithm for video sequences. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recogn. 20, 1709–1724. doi: 10.1109/TIP.2010.21

01613

Benosman, R., Clercq, C., Lagorce, X., Ieng, S., and Bartolozzi, C. (2014).

Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25, 407–417.

doi: 10.1109/TNNLS.2013.2273537

Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., and Andreopoulos, Y. (2019).

“Graph-based object classification for neuromorphic vision sensing,” in

Proceedings of the IEEE International Conference on Computer Vision (Seoul),

491–501. doi: 10.1109/ICCV.2019.00058

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al.

(2016). Past, present, and future of simultaneous localization and mapping:

towards the robust-perception age. IEEE Trans. Robot. 32, 1309–1332.

doi: 10.1109/TRO.2016.2624754

Chadha, A., Bi, Y., Abbas, A., and Andreopoulos, Y. (2019). “Neuromorphic vision

sensing for CNN-based action recognition,” in ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings (Brighton),

7968–7972. doi: 10.1109/ICASSP.2019.8683606

Chakraborty, B. K., Sarma, D., Bhuyan, M. K., and MacDorman, K. F. (2018).

“Review of constraints on vision-based gesture recognition for human-

computer interaction,” in IET Computer Vision, Vol. 12 (Institution of

Engineering and Technology), 3–15. doi: 10.1049/iet-cvi.2017.0052

Chen, G., Chen, J., Lienen, M., Conradt, J., Röhrbein, F., and Knoll, A. C. (2019).

FLGR: Fixed length GISTS representation learning for RNN-HMM hybrid-

based neuromorphic continuous gesture recognition. Front. Neurosci. 13:73.

doi: 10.3389/fnins.2019.00073

Cheng, H.-T., Chen, A. M., Razdan, A., and Buller, E. (2011). “Contactless gesture

recognition system using proximity sensors,” in Consumer Electronics (ICCE),

2011 IEEE International Conference on (Las Vegas, NV: IEEE), 149–150.

doi: 10.1109/ICCE.2011.5722510

Clady, X., Maro, J.-M., Barré, S., and Benosman, R. B. (2016). A motion-

based feature for event-based pattern recognition. Front. Neurosci. 10:594.

doi: 10.3389/fnins.2016.00594

Dadiz, B. G., Abrasia, J. M. B., and Jimenez, J. L. (2017). “Go-Mo (Go-Motion):

An android mobile application detecting motion gestures for generating

basic mobile phone commands utilizing KLT algorithm,” in 2017 IEEE

2nd International Conference on Signal and Image Processing, ICSIP 2017

(Singapore: Institute of Electrical and Electronics Engineers Inc.), 30–34.

doi: 10.1109/SIPROCESS.2017.8124500

Delbruck, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010). “Activity-

driven, event-based vision sensors,” in Proceedings. IEEE International

Symposium on Circuits and Systems (Paris). doi: 10.1109/ISCAS.2010.5537149

Deselaers, T., Keysers, D., Hosang, J., and Rowley, H. A. (2015). GyroPen:

Gyroscopes for pen-input with mobile phones. IEEE Trans. Hum. Mach. Syst.

45, 263–271. doi: 10.1109/THMS.2014.2365723

Elgammal, A., Harwood, D., and Davis, L. (2000). “Non-parametric model

for background subtraction,” in European Conference on Computer Vision

(Dublin), 751–767. doi: 10.1007/3-540-45053-X_48

Gálvez, T. V., Dancu, A., Sapkota, S., and Maes, P. (2019). “Byte.it: discreet teeth

gestures for mobile device interaction,” in Conference on Human Factors in

Computing Systems - Proceedings (Glasgow), 1–6.

Ghanem, S., Conly, C., and Athitsos, V. (2017). “A survey on sign language

recognition using smartphones,” in ACM International Conference Proceeding

Series (Rhodes). doi: 10.1145/3056540.3056549

Ghosh, R., Gupta, A., Nakagawa, A., Soares, A., and Thakor, N. (2019).

Spatiotemporal filtering for event-based action recognition. arXiv preprint

arXiv:1903.07067.

Gupta, H. P., Chudgar, H. S., Mukherjee, S., Dutta, T., and Sharma, K.

(2016). A continuous hand gestures recognition technique for human-machine

interaction using accelerometer and gyroscope sensors. IEEE Sensors J. 16:1.

doi: 10.1109/JSEN.2016.2581023

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). Dvs benchmark datasets

for object tracking, action recognition, and object recognition. Front. Neurosci.

10:405. doi: 10.3389/fnins.2016.00405

Ieng, S.-H., Carneiro, J., Osswald, M., and Benosman, R. (2018). Neuromorphic

event-based generalized time-based stereovision. Front. Neurosci. 12:442.

doi: 10.3389/fnins.2018.00442

Jin, C. M., Omar, Z., and Jaward, M. H. (2016). “A mobile application of

American sign language translation via image processing algorithms,” in

Proceedings - 2016 IEEE Region 10 Symposium, TENSYMP 2016 (Bali).

doi: 10.1109/TENCONSpring.2016.7519386

Kaiser, J., Friedrich, A., Vasquez Tieck, J. C., Reichard, D., Roennau, A., Neftci, E.,

and Dillmann, R. (2019). Embodied Neuromorphic Vision with Event-Driven

Random Backpropagation. arXiv [Preprint]. arXiv:1904.04805.

Kaiser, J., Mostafa, H., and Neftci, E. (2018). Synaptic plasticity dynamics for deep

continuous local learning (DECOLLE). arXiv [Preprint]. arXiv:1811.10766.

Kau, L. J., Su, W. L., Yu, P. J., and Wei, S. J. (2015). “A real-time portable sign

language translation system,” in Midwest Symposium on Circuits and Systems

(Fort Collins, CO). doi: 10.1109/MWSCAS.2015.7282137

Frontiers in Neuroscience | www.frontiersin.org 14 April 2020 | Volume 14 | Article 27565

https://www.frontiersin.org/articles/10.3389/fnins.2020.00275/full#supplementary-material
https://doi.org/10.1109/ICSCAN.2018.8541163
https://doi.org/10.1109/CIMSIVP.2011.5949251
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/FG.2017.150
https://doi.org/10.1016/j.patcog.2017.09.040
https://doi.org/10.1109/TIP.2010.2101613
https://doi.org/10.1109/TNNLS.2013.2273537
https://doi.org/10.1109/ICCV.2019.00058
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/ICASSP.2019.8683606
https://doi.org/10.1049/iet-cvi.2017.0052
https://doi.org/10.3389/fnins.2019.00073
https://doi.org/10.1109/ICCE.2011.5722510
https://doi.org/10.3389/fnins.2016.00594
https://doi.org/10.1109/SIPROCESS.2017.8124500
https://doi.org/10.1109/ISCAS.2010.5537149
https://doi.org/10.1109/THMS.2014.2365723
https://doi.org/10.1007/3-540-45053-X_48
https://doi.org/10.1145/3056540.3056549
https://doi.org/10.1109/JSEN.2016.2581023
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.3389/fnins.2018.00442
https://doi.org/10.1109/TENCONSpring.2016.7519386
https://doi.org/10.1109/MWSCAS.2015.7282137
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

Kellogg, B., Talla, V., and Gollakota, S. (2014). “Bringing gesture recognition to all

devices,” in NSDI, Vol. 14 (Seattle, WA), 303–316.

Kim, E. J., and Kang, T. H. (2010). Mobile device having proximity sensor and

gesture based user interface method thereof. US Patent App. 12/814,809.

Kogler, J., Sulzbachner, C., and Kubinger, W. (2009). “Bio-inspired stereo vision

system with silicon retina imagers,” in International Conference on Computer

Vision Systems (Liège: Springer), 174–183. doi: 10.1007/978-3-642-04667-4_18

Kohn, B., Belbachir, A. N., Hahn, T., and Kaufmann, H. (2012). “Event-driven

body motion analysis for real-time gesture recognition,” in ISCAS 2012

- 2012 IEEE International Symposium on Circuits and Systems, 703–706.

doi: 10.1109/ISCAS.2012.6272132

Kyung, K. M., Bae, K., Cho, S. H., Jeong, S., and Kim, T. C. (2014). “Background

eliminationmethod in the event based vision sensor for dynamic environment,”

in Digest of Technical Papers - IEEE International Conference on Consumer

Electronics, 119–120. doi: 10.1109/ICCE.2014.6775934

Lagorce, X., Ieng, S.-H., Clady, X., Pfeiffer, M., and Benosman, R. B. (2015).

Spatiotemporal features for asynchronous event-based data. Front. Neurosci.

9:46. doi: 10.3389/fnins.2015.00046

Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016). Hots: A

Hierarchy of Event-Based Time-Surfaces for Pattern Recognition. IEEE PAMI.

Lahiani, H., Elleuch, M., and Kherallah, M. (2016). “Real time hand gesture

recognition system for android devices,” in International Conference

on Intelligent Systems Design and Applications, ISDA (Marrakech).

doi: 10.1109/ISDA.2015.7489184

Lahiani, H., Kherallah, M., and Neji, M. (2017). Vision based hand gesture

recognition for mobile devices: a review. Adv. Intell. Syst. Comput. 552,

308–318. doi: 10.1007/978-3-319-52941-7_31

Lee, J., Delbruck, T., Park, P. K., Pfeiffer,M., Shin, C.W., Ryu, H., et al. (2012). “Live

demonstration: gesture-based remote control using stereo pair of dynamic

vision sensors,” in ISCAS 2012 - 2012 IEEE International Symposium on Circuits

and Systems (Seoul). doi: 10.1109/ISCAS.2012.6272144

Lee, J. H., Delbruck, T., Pfeiffer, M., Park, P. K., Shin, C.-W., Ryu, H., et al.

(2014). Real-time gesture interface based on event-driven processing from

stereo silicon retinas. IEEE Trans. Neural Netw. Learn. Syst. 25, 2250–2263.

doi: 10.1109/TNNLS.2014.2308551

Lee, J. H., Park, P. K., Shin, C. W., Ryu, H., Kang, B. C., and Delbruck, T. (2012).

“Touchless hand gesture UI with instantaneous responses,” in Proceedings -

International Conference on Image Processing, ICIP (Orlando, FL), 1957–1960.

doi: 10.1109/ICIP.2012.6467270

Lee, K., Ryu, H., Park, S., Lee, J. H., Park, P. K., Shin, C. W., et al. (2012). “Four

DoF gesture recognition with an event-based image sensor,” in 1st IEEE Global

Conference on Consumer Electronics 2012, GCCE 2012 (Tokyo), 293–294.

doi: 10.1109/GCCE.2012.6379606

Lenz, G., Ieng, S., and Benosman, R. (2018). Event-based dynamic face detection

and tracking based on activity. CoRR, abs/1803.10106.

Li, C., Xie, C., Zhang, B., Chen, C., and Han, J. (2018). Deep Fisher discriminant

learning for mobile hand gesture recognition. Pattern Recogn. 77, 276–288.

doi: 10.1016/j.patcog.2017.12.023

Li, J., Shi, F., Liu, W., Zou, D., Wang, Q., Lee, H., et al. (2017). “Adaptive temporal

pooling for object detection using dynamic vision sensor,” in British Machine

Vision Conference 2017 (London, UK). doi: 10.5244/C.31.40

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128x128 120db 15us latency

asynchronous temporal contrast vision sensor. IEEE J.f Solid State Circuits. 43,

566–576. doi: 10.1109/JSSC.2007.914337

Liu, Q., and Furber, S. (2015). Real-time recognition of dynamic hand postures

on a neuromorphic system. Int. J. Electr. Comput. Eng. 9, 507–514.

doi: 10.5281/zenodo.1107243

Maro, J.-M., and Benosman, R. (2018). Event-based gesture recognition

with dynamic background suppression using smartphone computational

capabilities. arXiv-[Preprint] arXiv:1811.07802.

Maro, J.-M., Lenz, G., Reeves, C., and Benosman, R. (2019). “Event-based visual

gesture recognition with background suppression running on a smart-phone,”

in 2019 14th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2019) (Lille: IEEE), 1. doi: 10.1109/FG.2019.8756601

Mueggler, E., Forster, C., Baumli, N., Gallego, G., and Scaramuzza, D. (2015).

“Lifetime estimation of events from dynamic vision sensors,” in 2015 IEEE

international conference on Robotics and Automation (ICRA) (Seattle, WA:

IEEE), 4874–4881. doi: 10.1109/ICRA.2015.7139876

Mueggler, E., Huber, B., and Scaramuzza, D. (2014). “Event-based, 6-dof

pose tracking for high-speed maneuvers,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Chicago, IL: IEEE), 2761–2768.

doi: 10.1109/IROS.2014.6942940

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Regnier, S. (2012). Asynchronous

event-based visual shape tracking for stable haptic feedback in microrobotics.

IEEE Trans Robot. 28, 1081–1089. doi: 10.1109/TRO.2012.2198930

Oliver, N. M., Rosario, B., and Pentland., A. P. (2000). A bayesian computer vision

system for modeling human interactions. IEEE Trans. Pattern Anal. Mach.

Intell. 22, 831–843. doi: 10.1109/34.868684

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015a). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., and

Benosman, R. (2015b). Hfirst: A Temporal Approach to Object Recognition.

TPAMI. doi: 10.1109/TPAMI.2015.2392947

Park, P. K., Lee, J. H., Shin, C. W., Ryu, H. S., Kang, B. C., Carpenter, G. A., et al.

(2012). “Gesture recognition system based on Adaptive Resonance Theory,” in

Proceedings - International Conference on Pattern Recognition (Tsukuba).

Park, P. K., Lee, K., Lee, J. H., Kang, B., Shin, C. W., Woo, J., et al. (2015).

“Computationally efficient, real-time motion recognition based on bio-

inspired visual and cognitive processing,” in Proceedings - International

Conference on Image Processing, ICIP (Quebec City, QC), 932–935.

doi: 10.1109/ICIP.2015.7350936

Pisharady, P. K., and Saerbeck, M. (2015). Recent methods and databases in vision-

based hand gesture recognition: a review. Comput. Vis. Image Understand. 141,

152–165. doi: 10.1016/j.cviu.2015.08.004

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A qvga 143 db

dynamic range frame-free pwm image sensor with lossless pixel-level video

compression and time-domain cds. IEEE J. Solid State Circuits 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Pradhan, B. R., Bethi, Y., Narayanan, S., Chakraborty, A., and Thakur, C. S. (2019).

“N-HAR: A neuromorphic event-based human activity recognition system

using memory surfaces,” in Proceedings - IEEE International Symposium on

Circuits and Systems (Sapporo). doi: 10.1109/ISCAS.2019.8702581

Rao, G. A., and Kishore, P. V. (2016). Sign language recognition system simulated

for video captured with smart phone front camera. Int. J. Electr. Comput. Eng.

6, 2176–2187. doi: 10.11591/ijece.v6i5.11384

Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). “Events-to-video:

Bringing modern computer vision to event cameras,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Long Beach, CA),

3857–3866. doi: 10.1109/CVPR.2019.00398

Reverter Valeiras, D., Orchard, G., Ieng, S.-H., and Benosman, R. B. (2016).

Neuromorphic event-based 3d pose estimation. Front. Neurosci. 9:522.

doi: 10.3389/fnins.2015.00522

Rivera-Acosta, M., Ortega-Cisneros, S., Rivera, J., and Sandoval-Ibarra, F. (2017).

American sign language alphabet recognition using a neuromorphic sensor and

an artificial neural network. Sensors 17:2176. doi: 10.3390/s17102176

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-

Vicente, R., Gómez-Rodríguez, F., et al. (2009). Caviar: a 45k neuron, 5m

synapse, 12g connects/s aer hardware sensory-processing-learning-actuating

system for high-speed visual object recognition and tracking. IEEE Trans.

Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.2023653

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-dvs and mnist-

dvs. their history, how they weremade, and other details. Front. Neurosci. 9:481.

doi: 10.3389/fnins.2015.00481

Sheik, S., Pfeiffer, M., Stefanini, F., and Indiveri, G. (2013). “Spatio-temporal spike

pattern classification in neuromorphic systems,” in Biomimetic and Biohybrid

Systems. Living Machines 2013, Vol. 8064 eds N. F. Lepora, A. Mura, H. G.

Krapp, P. F. M. J. Verschure, and T. J. Prescott. Lecture Notes in Computer

Science (London; Berlin; Heidelberg: Springer).

Shrestha, S. B., and Orchard, G. (2018). Slayer: Spike layer error reassignment in

time. Adv. Neural Inform. Process. Syst. 2018, 1412–1421.

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R.

(2018). “Hats: Histograms of averaged time surfaces for robust event-

based object classification,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Salt Lake City, UT), 1731–1740.

doi: 10.1109/CVPR.2018.00186

Frontiers in Neuroscience | www.frontiersin.org 15 April 2020 | Volume 14 | Article 27566

https://doi.org/10.1007/978-3-642-04667-4_18
https://doi.org/10.1109/ISCAS.2012.6272132
https://doi.org/10.1109/ICCE.2014.6775934
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1109/ISDA.2015.7489184
https://doi.org/10.1007/978-3-319-52941-7_31
https://doi.org/10.1109/ISCAS.2012.6272144
https://doi.org/10.1109/TNNLS.2014.2308551
https://doi.org/10.1109/ICIP.2012.6467270
https://doi.org/10.1109/GCCE.2012.6379606
https://doi.org/10.1016/j.patcog.2017.12.023
https://doi.org/10.5244/C.31.40
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.5281/zenodo.1107243
https://doi.org/10.1109/FG.2019.8756601
https://doi.org/10.1109/ICRA.2015.7139876
https://doi.org/10.1109/IROS.2014.6942940
https://doi.org/10.1109/TRO.2012.2198930
https://doi.org/10.1109/34.868684
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/ICIP.2015.7350936
https://doi.org/10.1016/j.cviu.2015.08.004
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/ISCAS.2019.8702581
https://doi.org/10.11591/ijece.v6i5.11384
https://doi.org/10.1109/CVPR.2019.00398
https://doi.org/10.3389/fnins.2015.00522
https://doi.org/10.3390/s17102176
https://doi.org/10.1109/TNN.2009.2023653
https://doi.org/10.3389/fnins.2015.00481
https://doi.org/10.1109/CVPR.2018.00186
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Maro et al. Gesture Recognition Background Suppression Smartphone

Stauffer, C., and Grimson, W. E. L. (1999). “Adaptive background mixture models

for real-time tracking,” in Proceedings 1999 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (Cat. No PR00149), Vol. 2, (Fort

Collins, CO: IEEE), 246–252.

Valeiras, D. R., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S., and Benosman,

R. (2015). An asynchronous neuromorphic event-driven visual part-based

shape tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 3045–3059.

doi: 10.1109/TNNLS.2015.2401834

Wang, Q., Zhang, Y., Yuan, J., and Lu, Y. (2019). “Space-time event

clouds for gesture recognition: from rgb cameras to event cameras,”

in 2019 IEEE Winter Conference on Applications of Computer Vision

(WACV) (Waikoloa Village, HI: IEEE), 1826–1835. doi: 10.1109/WACV.2019.

00199

Wang, Y., Du, B., Shen, Y., Wu, K., Zhao, G., Sun, J., et al. (2019). “EV-

gait: event-based robust gait recognition using dynamic vision sensors,”

in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (Long Beach, CA), 6358–6367. doi: 10.1109/CVPR.2019.

00652

Wang, Z., Hou, Y., Jiang, K., Dou, W., Zhang, C., Huang, Z., et al. (2019). Hand

gesture recognition based on active ultrasonic sensing of smartphone: a survey.

IEEE Access 7, 111897–111922. doi: 10.1109/ACCESS.2019.2933987

Won, J. Y., Ryu, H., Delbruck, T., Lee, J. H., and Hu, J. (2015). Proximity sensing

based on a dynamic vision sensor for mobile devices. IEEE Trans. Indus.

Electron. 62, 536–544. doi: 10.1109/TIE.2014.2334667

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Maro, Ieng and Benosman. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 16 April 2020 | Volume 14 | Article 27567

https://doi.org/10.1109/TNNLS.2015.2401834
https://doi.org/10.1109/WACV.2019.00199
https://doi.org/10.1109/CVPR.2019.00652
https://doi.org/10.1109/ACCESS.2019.2933987
https://doi.org/10.1109/TIE.2014.2334667
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 08 May 2020

doi: 10.3389/fnins.2020.00451

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 451

Edited by:

Gert Cauwenberghs,

University of California, San Diego,

United States

Reviewed by:

Cornelia Fermuller,

University of Maryland, College Park,

United States

Francisco Barranco,

University of Granada, Spain

*Correspondence:

Giulia D’Angelo

giulia.dangelo@iit.it

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 14 December 2019

Accepted: 14 April 2020

Published: 08 May 2020

Citation:

D’Angelo G, Janotte E, Schoepe T,

O’Keeffe J, Milde MB, Chicca E and

Bartolozzi C (2020) Event-Based

Eccentric Motion Detection Exploiting

Time Difference Encoding.

Front. Neurosci. 14:451.

doi: 10.3389/fnins.2020.00451

Event-Based Eccentric Motion
Detection Exploiting Time Difference
Encoding

Giulia D’Angelo 1*, Ella Janotte 2, Thorben Schoepe 2, James O’Keeffe 3, Moritz B. Milde 4,

Elisabetta Chicca 2 and Chiara Bartolozzi 1

1 Event Driven Perception for Robotics, Italian Institute of Technology, iCub Facility, Genoa, Italy, 2 Faculty of Technology and

Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany, 3Biosciences Institute,

Newcastle University, Newcastle upon Tyne, United Kingdom, 4 International Centre for Neuromorphic Systems, The MARCS

Institute, Western Sydney University, Sydney, NSW, Australia

Attentional selectivity tends to follow events considered as interesting stimuli. Indeed,

the motion of visual stimuli present in the environment attract our attention and allow

us to react and interact with our surroundings. Extracting relevant motion information

from the environment presents a challenge with regards to the high information content

of the visual input. In this work we propose a novel integration between an eccentric

down-sampling of the visual field, taking inspiration from the varying size of receptive

fields (RFs) in the mammalian retina, and the Spiking Elementary Motion Detector (sEMD)

model. We characterize the system functionality with simulated data and real world

data collected with bio-inspired event driven cameras, successfully implementing motion

detection along the four cardinal directions and diagonally.

Keywords: attentional selectivity, motion detection, eccentric down-sampling, spiking elementary motion

detection, bio-inspired visual system, humanoid robotics, event driven

1. INTRODUCTION

Most modern robotic systems still lack the ability to effectively and autonomously interact with
their environment using visual information. Key requirements to achieve this ability are efficient
sensory data acquisition and intelligent data processing. Useful information about the environment
(e.g., how far away an object of interest is, how big it is, whether it is moving) can be extracted from
sensory data. More complex interactions, for example locating and retrieving a particular resource,
require an attentive system that allows robots to isolate their target(s) within their environment as
well as process complex top-down information.

There are a number of ways for autonomous robots and natural organisms alike to gather
information about their surroundings. Teleceptive sensors, for example those using ultrasound
or infra-red light, are common in engineered systems, and are also exploited by some natural
organisms for navigation and object tracking (Nelson and MacIver, 2006; Jones and Holderied,
2007). However, a closer relationship between attention and activation in the visual cortex has been
observed by Maunsell and Cook (2002), showing the importance of vision when interacting and
being attentive within an environment whilst performing a task. Motion detection, in particular,
represents one of the important attentional cues for facilitating agent-environment interactions
(Cavanagh, 1992), and is used by natural organisms to avoid obstacles, respond quickly and
coherently to an external stimulus within a scene, or to focus attention to a certain feature of
a scene (Abrams and Christ, 2003). Due to its wide range of applications, motion detection

68

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00451
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00451&domain=pdf&date_stamp=2020-05-08
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:giulia.dangelo@iit.it
https://doi.org/10.3389/fnins.2020.00451
https://www.frontiersin.org/articles/10.3389/fnins.2020.00451/full
http://loop.frontiersin.org/people/761737/overview
http://loop.frontiersin.org/people/940569/overview
http://loop.frontiersin.org/people/933103/overview
http://loop.frontiersin.org/people/589001/overview
http://loop.frontiersin.org/people/202597/overview
http://loop.frontiersin.org/people/21489/overview
http://loop.frontiersin.org/people/21102/overview

D’Angelo et al. Event-Based Eccentric Motion Detection

has been an area of research for decades and has produced a
number of different detection models, ranging from gradient-
based algorithms (Lucas and Kanade, 1981; Benosman et al.,
2012), over local-plane fitting (Brosch et al., 2015; Milde
et al., 2015) and time-to-travel methods (Kramer, 1996) to
correlation-based approaches (Horiuchi et al., 1991). Gradient-
based methods utilize the relationship between the velocity
and the ratio between the temporal and the spatial derivative.
Hence, to determine the speed and direction of the motion, the
derivation of the spatial and temporal intensity for each pixel is
needed. All correlation-based models share the linear and spatio-
temporal filtering of measured intensities, which are functions of
time and location. The best-known correlation motion detectors
are the biologically derived Hassenstein–Reichardt and the
Barlow–Levick models (Hassenstein and Reichardt, 1956; Barlow
and Levick, 1965). TheHassenstein–Reichardtmodel was derived
from behavioral experiments with beetles, while the Barlow–
Levick model was inspired by motion detection in the rabbit’s
retina. In both cases one elementary motion detection unit is
selective tomotion in one cardinal direction (preferred direction)
and suppresses output to motion in the opposite direction (anti-
preferred direction) (Barlow and Levick, 1965). The models
themselves (from 1956 and 1964, respectively), are still assumed
to describe motion detection in organisms such as fruit flies
(Borst et al., 2010; Maisak et al., 2013; Mauss et al., 2014; Borst
and Helmstaedter, 2015; Strother et al., 2017). A limitation
of correlation-based detectors is that, depending on the time-
constant of the filters used, the detector is only receptive to a
limited range of velocities. This range can be shifted by varying
the parameters but always remains limited.

Environment analysis using traditional frame-by-frame visual
processing generally requires a robot to extract and evaluate
huge amounts of information from the scene, much of which
may be redundant, which hinders the real-time response of
the robot. The computational resources required for visual
processing can be significantly reduced by using bio-inspired
event-based cameras (Lichtsteiner et al., 2008; Posch et al., 2011),
where the change in temporal contrast triggers asynchronous
events. Event-based cameras perceive only the parts of a scene
which are moving relative to themselves. Thus, they are idle
until they detect a change in light intensity above a relative
threshold. When this happens, the pixel reacts by producing
an event characterized by its time of occurrence. Address
Event Representation (AER) protocol allows the asynchronous
readout of active pixels while providing information on the event
polarity and the pixel location. As such, the camera’s output
are ON-events for increments in temporal contrast and OFF-
events for decrements. Optical flow, the vector representation
of the relative velocity in a scene, has a wide range of
uses, from navigation (Nelson and Aloimonos, 1989; Milde
et al., 2015), to predicting the motion of objects (Gelbukh
et al., 2014). We propose that these models can also be used
to direct attention toward moving objects within a scene.
Recent studies have developed event-based motion detection for
optical flow estimation both relying on conventional processing
architectures (Benosman et al., 2012, 2014; Gallego et al., 2018,
2019; Mitrokhin et al., 2018) and unconventional neuromorphic

processing architectures (Giulioni et al., 2016; Haessig et al.,
2018; Milde et al., 2018). Even though the former mechanisms,
which leverage standard processing capabilities, show real-time
optic flow estimation with very high accuracy, they are not
suited for spiking neural networks and neuromorphic processors.
This is due to the way information is represented, using real
values in these algorithms. Additionally, the power consumption
and computational complexity in Gallego et al. (2018, 2019)
is too high for constrained robotic tasks. The neuromorphic
approaches on the other hand can naturally interact with spiking
networks implemented on low-power neuromorphic processing
architectures as information is encoded using events.

In the last decade a number of spike-based correlation motion
detectors have been introduced (Giulioni et al., 2016; Milde et al.,
2018). Of particular interest to this work is the spiking elementary
motion detector (sEMD) proposed by Milde et al. (2018). The
sEMD encodes the time-to-travel across the visual field as a
number of spikes (where time-to-travel is inversely proportional
to velocity). The sEMD’s functionality has been evaluated in
Brian 2 simulations and on SpiNNaker using real-world data
recorded with the Dynamic Vision Sensor (DVS) (Milde et al.,
2018; Schoepe et al., 2019). Furthermore, the model has been
implemented on a neuromorphic analog CMOS chip and tested
successfully. The implementation on chip presents a low latency
and low energy estimate of locally occurring motion. It further
offers the advantage of a wider range of encoded speeds as
compared to the Hassenstein-Reichardt model, and it can be
tuned to different working ranges in sympathy with the desired
output. Event-driven cameras, compared with classic frame-
based cameras, dramatically reduce the computational cost in
processing data, however they produce a considerable amount
of output events due to ego-motion. Previous implementations
of the sEMD have applied a uniform down-sampling across the
camera’s visual field. However, recent studies have found that
motion detection performance depends strongly on the location
of the stimulus on the retina, due to the non-uniform distribution
of photoreceptors throughout the mammalian retina (Traschütz
et al., 2012). Rod and cone density in the mammalian retina is
high at the fovea, and decreases toward the periphery. The non-
uniform distribution of photoreceptors in the retina has a strong
role in speed discrimination, and it should be taken into account
as an important factor in motion estimation. Taking inspiration
from the mammalian visual system (Freeman and Simoncelli,
2011; Wurbs et al., 2013), where Receptive Fields (RFs) linearly
decrease in size going from the retinal periphery toward the
fovea (Harvey and Dumoulin, 2011), we propose an eccentric,
space-variant, down-sampling as an efficient strategy to further
decrease computational load without hindering performances.
A good approximation of the mammalian space-variant down-
sampling is the log-polar mapping, describing each point in the
2D space as logarithm of the distance from the center and angle.
Given its formalized geometrical distribution, the log-polar
mapping provides algorithmic simplification and computational
advantages, for example for tasks such as moving a robot’s
cameras toward a desired vergence configuration (Panerai et al.,
1995), or binocular tracking Bernardino and Santos-Victor
(1999). Recently, the log-polar approach has been studied also

Frontiers in Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 45169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

for event-driven cameras, with the proposal of the Distribution
Aware Retinal Transform (DART) (Ramesh et al., 2019).
Although the log-polar representation would better suit the
implementation of the eccentric down-sampling, the results in
polar dimension would not be comparable with the classic
down-sampling of the sEMD with Cartesian coordinates. For
benchmarking purposes, in this paper we use an approximate
implementation of the mammalian space-variant resolution,
based on Cartesian coordinates.

In this work, we propose a novel approach to spiking
elementary motion detection, exploiting the non-uniform retina
model as a down-sampling of the visual field. By combining
the sEMD with eccentric down-sampling, this work aims to
improve the computational efficiency of the motion computation
and take a step toward a bio-inspired attention model where
information at the center of the field of view is of higher
resolution and more heavily weighted than information at the
periphery, allowing robots to exploit visual information to
effectively interact with their environments in real time. The
proposed architecture is suitable for simulation on neuromorphic
platforms such as SpiNNaker (Furber et al., 2014), and offers
the possibility to be easily implemented for recorded and live
input data. To the authors’ knowledge, artificial motion detectors

with eccentric filtering of the visual field are a novel approach to
motion detection. Link to the authors’ repository containing the
model and the data: https://github.com/event-driven-robotics/
sEMD-iCub.

2. METHODOLOGY

The proposed work integrates bio-inspired eccentric down-
sampling with the sEMD (Milde et al., 2018). Our aim is
to further decrease the computational resources required, by
filtering the number of incoming events into the visual field, while
maintaining a fine resolution in the center of the visual field.

2.1. Eccentric Down-Sampling
Several physiological studies have explored the mammalian
retina topography such as the blind spot, fovea and eccentricities
(Wässle and Riemann, 1978), showing that receptive fields
are uniformly overlapped in the mammalian retina (Devries
and Baylor, 1997). The proposed eccentric down-sampling
approximates the two-dimensional circular retina onto a square,
maintaining a quadrilateral camera resolution (Figure 1B),
where each RF spatio-temporally integrates the information
within its area of sensitivity. The RF size of the squared

FIGURE 1 | The grid in (A) represents the uniform down-sampling of the visual field in equal matrices of n by n. (C) Represents the eccentric down-sampling

decreasing the size of the matrices going to the center of the visual field (fovea). This implementation does not include the blind spot present in the mammalian visual

system. The three gray squares with varied hues represent three RF sizes at different eccentricities: 0, 39, 70 pixels distant from the center. The square with the same

hue in both grids (A,C) represents a matrix with equal size in the two down-samplings. Panels (B,D) represent the encoding in horizontal and vertical trajectories of the

uniform down-sampling (B) and the eccentric down-sampling (D). On both top rows of (B,D), an example of the RFs belonging to the first, middle and last horizontal

trajectories, and on the bottom row the vertical trajectories is given. All RFs are represented with different gray-scale for the reason of visualization.

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 45170

https://github.com/event-driven-robotics/sEMD-iCub
https://github.com/event-driven-robotics/sEMD-iCub
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

approximation decreases linearly toward the foveal region, where
each RF is defined by one pixel. All RFs of the same size create
a square ring around the foveal region, with each successive
ring framing the previous one. The eccentric down-sampling
reproduces the RF overlap between RFs of consecutive rings
ensuring the robustness in response all over the retina. However,
the proposed model does not include the central blind spot
present in mammalian retina.

Equations (1) and (2) describe the relationship between the
receptive field size (Rs) and its distance from the foveal region,
where (Rci) is the center of the top left RF of each squared ring and
i = [1, .., n] is the number of squared rings over the retinal layer.
The term x in Equation (1) represents the x axis of the camera
where the origin is placed in the top left corner, max[Rs] is the
maximum kernel size of the outermost peripheral ring, and dfovea
is the total distance from the periphery to the edge of the fovea.

Rs(x) = −
max[Rs]

dfovea
x+max[Rs] (1)

Rc
i = Rci−1 +

Rci−1

2
(2)

Mt = Mt−1e
−

dt
τ +

1

Rnf
(3)

Each RF is a matrix of input pixels from the sensor. Every RF
is modeled as a leaky integrate and fire (LIF) neuron integrating
the information in space and time (Equation 3), where M is
the membrane potential of the RF, t represents the temporal
information of the incoming event into the RF, dt the difference
in time with the previous event in the RF, and τ is the time
constant of the exponential decay (τ = 1, 000ms). Themembrane
potential of every RF integrates incoming spikes until it reaches
the threshold (threshold = 1), which is the same for all RFs.
The contribution of each event to the increase in membrane
potential of a neuron is normalized with the dimension of the
RF. As the activity of the ATIS is sparse, the normalization factor
(Rnf) is expressed as a percentage of the area of the RF. Every
incoming event triggers the updating of the membrane potential
by calculating the temporal decay of the membrane since the
last event. In addition, the membrane potential is increased by
the normalization factor. This way, the response from all RFs is
normalized by their occupied space over the visual field. Finally,
if the threshold is reached, the neuron emits an output spike.
Hence, the response from each RF coherently encodes the input
information in relationship with the distance from the fovea.

2.2. The Spiking Elementary Motion
Detector (sEMD)
The spiking Elementary Motion Detector (sEMD) depicted in
Figure 2 has been designed for the purpose of encoding optic
flow using event-based visual sensors (Milde et al., 2018). The
use of event-based sensors is suited to perceiving motion. The
edge of an object moving from the receptive field of one pixel
to the adjacent one generates a spike in the two pixels with
a given time difference, depending on the velocity of the edge
and its distance from the pixels. The relative motion or optic

flow is inversely proportional to this time-to-travel. An sEMD
is composed of two pixels and a time difference encoder (TDE).
The TDE encodes the time difference between two pulses into
the number of output spikes produced in response to the second
input pulse. The number of output spikes encodes the motion
flow of objects moving in front of the two pixels.

The synapses connecting the inputs to the TDE are of two
types - facilitator and trigger (see Figure 2 fac and trig). The
facilitator synapse gates the activity of the TDE neuron. The
trigger synapse elicits a response from the TDE neuron only
if its input event occurs after the event from the facilitator
synapse (compare Figures 2B,D). The output current of the
trigger synapse increases the TDE neuron’s membrane potential
as shown in Figure 2C). The strength of the current depends on
the exponentially decaying gain variable of the facilitator synapse.
Therefore, the TDE not only detects the direction of motion
but also encodes the velocity of the stimulus in the number of
output spikes and time to first spike. The faster the stimulus
propagates, the more spikes are produced by the TDE. In order
to mitigate the noise present at the output of a silicon retina, a
pre-processing filtering stage is used. It consist of neural spatio-
temporal filters (SPTCs) used to detect correlated events. Two
uniform neighborhoods, of n by n pixels, are connected to a
LIF neuron each. The neurons fire once only if within a specific
time, defined by their time constant, 66% of the pixels in the
neighborhood produce events. The proposed implementation
exploits the eccentric down-sampling (Chapter 2.1) replacing the
uniform filtering stage previously used with the sEMD model
by Milde et al. (2018).

2.3. Experiments
The objective of this work is to quantitatively and qualitatively
characterize the output of the TDE population receiving input
from the eccentricity filtering layer and to compare it with
the TDE population receiving input from a uniform resolution
filtering layer. This characterization aims to demonstrate the
advantages of our proposed model, namely a decrease in
computational load whilst maintaining the ability to estimate
the velocity of moving entities within the visual field. To this
purpose we characterized and compared the model using moving
bars with 1D and 2D motion. In the following, we will refer
to the two different implementations as “sEMD with uniform
down-sampling” and “sEMD with eccentric down-sampling.”
The characterization of the proposed motion detection system
(Figure 3) is achieved using simulated data. Furthermore,
additional experiments are undertaken using real input1 collected
with ATIS cameras (Posch et al., 2011) mounted on the iCub
robot (see Supplementary Materials for real-world data). The
simulated data used in this work reproduces the activity of an
event driven sensor in response to a barmoving horizontally [Left
to Right (LR), Right to Left (RL)], vertically [Top to Bottom (TB),

1We explored the real-world applicability of the underlying motion detection

mechanism prior to this work in which we demonstrated the functionality of the

underlying given variable contrast and event-rates in natural environments (Milde

et al., 2015, 2018; Schoepe et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 45171

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 2 | Basic principle of the sEMD (Milde et al., 2018). (A) The model consists of an event-based retina sending events into the Time Difference Encoder (TDE).

Two adjacent RFs are connected to the facilitation synapse and the trigger synapse, respectively. (B) TDE computation for a small time difference 1 t between

facilitation event and trigger event. An event at the facilitation synapse generates an exponentially decaying factor called gain. A trigger pulse at the trigger synapse

shortly after causes an exponentially decaying Excitatory Post Synaptic Current (EPSC). The EPSC amplitude depends on the gain factor. The EPSC integrates onto

the membrane potential (mem). Every time the membrane potential reaches the spiking threshold (τSpike) an output digital pulse is produced. (C) Similar to (B) part but

with high 1 t. (D) Similar to (C) but the trigger pulse arrives before facilitation pulse. No output spikes are produced for negative time differences. (E) TDE output spike

response over time difference 1 t between facilitation event and trigger event.

Bottom to Top (BT)] and transversely, i.e., along the diagonal of
the Cartesian plane.

Firstly, we recorded the activity of the sEMD with uniform
down-sampling and eccentric down-sampling model, while the
speed of the input bar ranges from 0.01 to 1 px/ms, in accordance
to the experiments of Giulioni et al. (2016). This ideal input
allows a comparison of the two model’s spike raster plots and
mean population activities.

We first analyzed the selectivity of all sEMDs tuned to
the same movement direction, measuring the mean firing
rate (MFR) of the whole population. Given the symmetrical
connectivity of the sEMD neurons along the eccentric visual
field, the responses from the population of LR, RL, TB, and
BT sEMD neurons are expected to be comparable, responding
with a large MFR to a stimulus moving along their preferred
direction and being unresponsive to a stimulus moving along
their anti-preferred direction.

Further investigations focus on a single population and its
response to its preferred stimulus direction (from left to right,
or top to bottom), assuming transferable responses for the
other directions.

A deeper understanding of the temporal response
from the neurons was achieved by collecting the
spike raster plots for nine speeds of the chosen
range: (0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1
px/ms), respectively.

For each speed, we analyzed the response of each sEMD
in the population, mapping its MRF onto the Cartesian space
and visualizing spatial rather than temporal information.
We analyzed how the Mean Firing Rate (MFR) of each
sEMD changes with speed and distance from the center
of the field of view. Additional experiments have been
performed changing the length of the stimulus, by recruiting
more sEMDs, should increase the MFR of the whole
population tuned to the corresponding stimulus direction.
Eventually, we analyzed the response of the model to a
bar moving transversally exploring the response from the
population to 2D motion. In such a case, the stimulus does
not elicit the maximum response of any sEMD, rather,
it elicits intermediate activity in more than one sEMD
population, that need to be combined to decode the correct
input direction.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 45172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 3 | Basic scheme of the pipeline. From left to right the ATIS output is processed by the eccentric down-sampling model and sent to the sEMD model, hosted

on SpiNNaker neuromorphic hardware. The sEMD model represents the layer of neurons producing spikes and encoding the motion detection. The eccentric

down-sampling and the sEMD model representation show the spatio-temporal filter neurons (green, blue, violet, and orange square), the facilitator and the trigger, both

synaptically connected to the sEMD neuron. Facilitators (F) and triggers (T) are shown for LR sEMD neuron, RL sEMD neuron, TB sEMD neuron, and BT sEMD neuron.

2.4. Experimental Setup
In all experiments the model was simulated on a SpiNNaker 5
board hosting 48 ARM-chips, each with 18 cores. The SpiNNaker
architecture supports highly parallelized asynchronous
simulation of large spiking neural networks in almost real-time.
The aspect of real-time computation is of utmost importance
for the interaction of the robot with the environment. For the
implementation of the SNN we chose 160×160 pixels as a retinal
layer resolution, to limit the number of neurons to be simulated
on SpiNNaker and to further minimize the impact of the residual
distortion in the fringes of the camera after calibration. The
output of the retinal layer serves as input to the uniformly and
eccentrically down-sampled filtering layer, respectively. For the
uniform down-sampling sEMD, we chose a non-overlapping
neighborhood matrix size of 4×4 ATIS pixels to represent one
RF. This filtering layer is simulated on SpiNNaker and consists
of 1600 LIF neurons. It receives input from a SpikeSourceArray,
containing the respective ATIS pixel spike times. The synaptic
weight of the connections is 0.3. In contrast, the fovea (1 RF =
1 pixel) of the eccentric down-sampling covers 10% of the total
retinal layer, and the biggest receptive field has a dimension of
10×10 pixels with a normalization factor of 60% (Equation 3).
The population is made up of 8836 LIF neurons. The eccentric
down-sampling occurs locally before the spike times of the
respective receptive fields are transferred to SpiNNaker in a
SpikeSourceArray. The final layer of the network consists of
four sEMD populations sensitive to local motion in one cardinal
directions, respectively, using sEMD neuron model included in
the extra models of the pyNN library. The sEMD populations
were connected to the filtering layers along the trajectories as
shown in Figure 3. The combination of the output of the four
populations allows the encoding of transversal stimuli. Each
population shares the size of the down-sampling population. For
both down-sampling approaches all sEMD neuron and synapse

parameters are the same. The connectivity of the respective
sEMD populations are displayed in Figure 3. The synaptic
weights are 0.3 and the synaptic time-constants τex and τin are
both 20 ms. The neuron parameters amount to: a membrane
capacitance of 0.25 nF, and time-constants τm and τrf of 10 ms
and 1 ms, respectively. The reset, resting and threshold voltage of
the neurons are defined as −85, −60, and −50 mv, respectively.
To avoid a response of the sEMD-populations perpendicular to
the preferred direction, in case of a bar moving their facilitator
and trigger synapses receive input at the same time, the input to
the facilitator synapse was delayed by 1 ms.

3. RESULTS

Our investigation starts with the characterization of the eccentric
down-sampling sEMD’s response to a simulated bar moving
in the four cardinal directions with a speed of 0.3 px/ms:
left to right, right to left, top to bottom and bottom to top.
Figure 4 shows the response to stimuli moving in the preferred
and anti-preferred directions at fixed velocity 0.3 px/ms (the
middle of the regarded velocity range). In particular, Figure 4A
shows the mean instantaneous firing rates of the preferred and
anti-preferred direction populations. The preferred directions
are colored in red and the anti-preferred directions in blue.
As expected, the preferred direction population’s response is
significantly higher than the response of the anti-preferred
direction population. Furthermore, as expected the response
from all the populations to the respective preferred direction
is similar in terms of instantaneous firing rate and mean firing
rate, and comparable among each other, thus validating the
assumption that the response to stimuli in the preferred direction
is similar for all of the populations. Assuming a bar moving
across the retina at a constant speed, the high variances in

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 45173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 4 | Response of the sEMDs with eccentric down-sampling to a simulated bar moving with a speed of 0.3 px/ms: (A) Instantaneous MFR and variance of the

four sEMD-populations, each tuned to one of the four cardinal directions, to the preferred and anti-preferred stimulus. Similarly to the sEMD with uniform

down-sampling, the response to the anti-preferred stimulus is negligible with respect to the response to the preferred direction stimulus. (B) Raster plot of the left to

right (LR) population in response to a vertical bar moving from left to right. In the first 100 ms, the difference in the size of the RF can be seen, as the active neurons

spike with different spike rates and the number of active neurons increases with time, when the bar moves closer to the fovea. (C) Raster plot of the top to bottom

(TB) population in response to an horizontal bar moving from top to bottom. The sigmoidal shape arises from the geometry of the eccentric down-sampling and the

neurons’ indexing.

preferred and anti-preferred directions can be explained by the
difference in receptive field sizes in our proposed model (see
Figure 1). Depending on the stimulus speed, the size of the
RF determines a period of time in which the stimulus moves
over the RF. Thus, for the same stimulus speed, a peripheral
RF takes more time to respond than one in the foveal region,
leading to a different RF rings having a different sensitivity to
stimulus speed. Only the RFs along the same squared ring have
the same sensitivity to the same speed. If a bar is moving across
the visual field at a certain speed, only neighbor RFs, that produce
spikes able to trigger the TDE neurons, will detect the stimulus.
Consequently, due to the varying RF sizes and varying speed
sensitivities, the size of the RF relative to its neighbor affects the
response of the TDE. This causes the visual field to respond non-
uniformly. Figures 4B,C show examples of characteristic raster
plots of the preferred direction populations, in response to a
bar stimulusmoving horizontally and vertically, respectively. The
color-coding indicates the direction sensitivity of the population:
left to right (red) and top to bottom (green). The first response
to the horizontal and vertical bar movement (Figures 4B,C), is
delayed by 40 ms. This is due to the stimulus taking 30 ms (speed
of 0.3 px/ms) to travel over the first peripheral RF (10 × 10
px), before reaching the RF connected to the trigger. In the first
50 ms of reaction to the stimulus, the resulting spike density is

rather sparse, caused by a lower response from the peripheral
RFs (sensitive to higher speeds). Conversely, from 150 to 400 ms,
the time where the stimulus is expected to cross the fovea, the
spike density is higher because the RFs at the fovea are of a size
more suited to the stimuli velocity. The impact of the proposed
model is more clearly visible in response to the vertically moving
stimulus (Figure 4C). The mapping from the eccentric receptive
fields to the neuron IDs transforms the time sequence of a vertical
bar response to a sigmoid. By contrast, the output of the sEMD
with uniform down-sampling resembles the shape of stairs, with
each row activated after one another, spiking with the same rate.
The non-uniform size of the RFs in our proposed model is again
the cause for the different spike densities produced in response
to the stimulus moving at constant velocity. In this experiment
the sEMDs successfully encode the direction of the bar stimulus
moving across the visual field in all the four cardinal directions,
showing a negligible response to the anti-preferred direction.
This therefore shows that the eccentric down-sampling preserves
the ability of the sEMD populations to encode optic flow of
moving stimuli.

A comparison of the MFR for all populations of the uniform
down-sampling model and the eccentric down-sampling model
in response to a simulated stimulus moving from left to right
at different velocities is shown in Figure 5. The color-coding

Frontiers in Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 45174

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 5 | Comparison of the sEMD model with the uniform down-sampling (A,B) and the eccentric down-sampling (C,D) in response (MFR) to a left to right

moving bar (simulated data). The preferred direction is displayed in red (LR), with the anti-preferred direction in blue (RL). The response for the top to bottom (TB) and

bottom to top (BT) populations are displayed in green and magenta, respectively. Panels (B,D) are a magnification for the anti-preferred direction (right to left) and the

incorrect directions (top to bottom and bottom to top) of the panels (A,C). The Figure compares the behavior from the populations of the two approaches to the same

stimulus and over the same range of speeds.

remains the same as in Figures 4B,C, additionally the response of
the populations selective to stimuli from right to left and bottom
to top is depicted in blue and magenta, respectively. Figure 5A
shows the behavior of the uniform down-sampling model, and
Figure 5C depicts the behavior of the eccentric down-sampling
model. Both methods show a trend of increasing MFR until
target velocity reaches 0.6 px/ms. While the response from the
sEMD with uniform down-sampling keeps increasing after 0.6
px/ms, the firing rate of the population with eccentric down-
sampling gradually reduces as the target velocity approaches 1.0
px/ms. The same trend can also be seen for targets moving
in the anti-preferred direction. Figure 5 shows that, while the
sEMD response of the anti-preferred (right to left) and the
incorrect directions (top to bottom and bottom to top) of the
uniform down-sampling model (Figure 5B) linearly increases
until 1.0 px/ms, the output firing rate of the proposed eccentric
down-sampling model (Figure 5D) increases for target speeds
up to 0.5 px/ms and decreases thereafter. Despite the number of
sEMDs required for the proposed model (8,836 per population)
being significantly higher than for the uniform down-sampling
(1,600 per population) under the same setup conditions, the
eccentric sEMDs’ down-sampling shows an overall significant
decrease in the mean output firing rate of the whole population
in response to the same stimulus. Differently from frame-based
systems, where the number of operations—and hence power
consumption—depend on the number of filters, in event-driven
spiking architectures, filters are active (and consume power)
only when they receive input spikes and produce output spikes.
Figure 5 shows that the proposed eccentric down-sampling
model is able to differentiate between stimulus in preferred
and anti-preferred directions more efficiently than a model with
uniform down-sampling, without sacrificing performance. The
proposed model still maintains an order of magnitude difference
between MFR for stimulus in the preferred direction vs. anti-
preferred direction. Although the eccentric down-sampledmodel
does not allow for an inference of stimulus velocity to be made
based on the MFR of the entire population, the same information

can be extracted based on the eccentricity of the RFs with the
greatest MFR.

The response from sEMDs selected at different eccentricities
(at 0, 39, and 70 pixels distant from the center) is examined
in Figure 6 in relation to the same speed range. In the original
model (Milde et al., 2018) the MFR of all three neurons would
increase proportionally to the target speed. Figure 6 shows that
the speed encoding for our proposed model depends on the RF
size, because the integration time for each RF size corresponds
to a specific range of velocities. This leads to a specific range of
time-differences between two connected RFs. Each sEMD has a
speed limit, which depends on its tuning, above which it will be
unable to detect motion. Figure 2E shows the TDE output spikes
over time difference. If a trigger event occurs before the output
of the facilitation event has had time to reach the minimum
threshold required, the sEMD will not fire. Due to the varying
sensitivity of different RF sizes and enhanced by the 1ms synaptic
delay of the facilitator synapse, while the response from the foveal
region (0 px distance) drops to zero for speeds higher than 0.7
px/ms, the response from the neuron with a middle eccentricity
(39 px distance) begins to decrease dramatically at 0.9 px/ms.
The response from the peripheral neuron keeps increasing until
the end of the examined speed range (1.0 px/ms). A possible
explanation for the relatively low MFR of the peripheral neuron
is the increased number of events needed to trigger the RF and its
specific sensitivity to higher speeds. Figure 6 shows how the RF
size affects the behavior of the correspondent neuron, obtaining a
wider operative range from the whole population. In comparison,
uniform down-sampling where all the RF sizes are the same
provides a comparatively limited operative range.

The spike raster plots (Figures 4B,C) provide the temporal
response from the population but they do not provide any spatial
information. The visualization in Figure 7 maps the response
of the sEMDs to the corresponding x and y locations for
three different speeds: slow (0.03 px/ms, Figure 7A), medium
(0.3 px/ms, Figure 7B) and fast (1.0 px/ms, Figure 7C). The
data displayed in Figure 7B corresponds to the spike raster

Frontiers in Neuroscience | www.frontiersin.org 8 May 2020 | Volume 14 | Article 45175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 6 | Response (MFR) to a left to right moving bar (simulated) from RFs (eccentric down-sampling) of the central horizontal line of the visual field at different

eccentricities (distances from the center of the field of view). In blue, orange and green at 0, 39, and 70 pixels distant from the center, respectively (see Figure 1).

FIGURE 7 | Response from the population of sEMDs with the eccentric down-sampling mapped into the cartesian space with a camera resolution of 160 × 160

pixels. The color-code heatmap represents the MFR of each RF. The stimulus was a bar moving (simulated data) from left to right with constant speed: 0.03 (A), 0.3

(B), 1.0 (C) px/ms, respectively.

plot in Figure 4B. Figure 7 shows that the MFR of the whole
population increases in relation to the speed: 0.26, 33.44, 38.76
Hz, respectively. The spatial visualization highlights the function
of the eccentric down-sampling. As proposed by Traschütz et al.
(2012), the slow speeds are detected primarily in the foveal
region, where RFs have the smallest dimension and are closest
to one another (Figure 7A). As the stimulus speed increases, the
peripheral region starts responding from the first squared ring
around the foveal region (Figure 7B) to the rings with the largest
RF size for the fast speed (Figure 7C).

The response for each RF square ring is different for
horizontal and vertical components (most obvious example
being in Figure 7C. This is because the sEMDs in this case are
only connected horizontally (as we are working with left-right
motion). Therefore, at the left and right peripheries, there is
a descending and ascending scale of RF sizes approaching and
moving away from the foveal region, respectively. A concentrated

region of diverse, overlapping connected RFs improves the
likelihood of the sEMDs picking up the stimulus motion. This
does not exist in the regions above and below the fovea,
in which each RF will only be connected to horizontally
adjacent RFs of the same size, hence the relatively low MFR
in these regions.

The response on the right side of the visual field is attenuated
in Figures 7B,C because the sEMDs from the last RF ring are not
connected with any subsequent facilitator (although this does not
cause a problem in detecting stimuli entering the scene).

As shown in Figure 7, the RF-ring of maximal response
appears to move toward the periphery with increasing velocities.
Figure 8 shows the mean and variance of the MFRs at
different eccentricities for velocities 0.03, 0.3, and 1.0 px/ms,
Figures 8A–C, respectively. It is clearly distinguishable, that the
maximal response in MFR shifts toward the periphery with
increasing velocities.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 45176

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 8 | Mean and variance in MFR of RFs at different distances from the center of the visual field. The stimulus is a moving bar (simulated data) going from left to

right at speeds of: 0.03 (A), 0.3 (B), 1.0 px/ms (C).

The higher variances observed at greater eccentricities
(distance from the center) in Figures 8B,C, can be explained
by the different RFs response from the horizontal and vertical
component of the squared rings (which can be seen in Figure 7).
The low MFR at 29 pixels (Figure 8A) from the center (fovea
region from 0 to 28 px) can be explained by the connections
between RFs of the first peripheral squared ring (about 3 × 3
px) and the fovea, where each RF has a dimension of 1 px.
This sudden increase in size leads to a delay in response from
the TDE receiving input to the trigger synapse from the larger
receptive field.

To compare the trend of the RFs’ peak response increasing in
eccentricity with increasing stimulus speed, the center of mass of
the RFs response is plotted in relation to the speed range, from
0.01 to 1.0 px/ms (see Figure 9). Figure 9 shows that for low
speeds (0.01–0.06 px/ms) the center of mass of the RFs’ response
shifts from 0 to 27 pixels (distance from the center). The center
of mass then plateaus from 0.06 to 0.6 px/ms, where only the
RFs of the edges of the foveal region respond to the stimulus.
For higher speeds (from 0.6 to 1.0 px/ms), the eccentricity of the
center of mass of RF responses starts to increase again, due to a
lack of activity in the fovea. The center of mass of RF responses
eventually shifts to the periphery, reaching a distance of 49 px
from center.

A comparison of the MFR of the sEMD with uniform down-
sampling and eccentric down-sampling has been explored with
simulated data. Figure 10 shows the difference in response,
normalized for the total number of neurons, from all populations
of sEMD neurons with uniform down-sampling and eccentric
down-sampling. Even though the uniform down-samplingmodel
has fewer neurons than the eccentric down-sampling model
(1,600 compared to 8,836 neurons, respectively) the MFR from
the eccentric down-sampling is considerably less at each explored
speed, increasing computational and power efficiency.

Figure 11 shows the MFR from the population of LR sEMD
neurons in response to a stimulus moving from left to right, at
a medium speed of 0.3 px/ms, with bars of varying lengths: 10,
50, 100, and 160 pixels, respectively. The plot shows a positive
correlation between the size of the bar and the response from
the neurons sensitive to the corresponding direction. Figure 11
shows that the MFR increment decays as the length of the bar
increases - most noticeable when comparing the difference in
MFR between the 50 and 100 px bar, and that between the 100

FIGURE 9 | Center of mass (solid line) of the neurons response location to a

left to right moving bar (simulated data), from 0.01 to 1.0 px/ms. The dash line

indicates the end of the foveal region.

and 160 px bar. This is because the bar is vertically centered in
the visual field, and so longer bars cover more of the peripheral
region—where each RF requires a greater number of events in
order to be activated. Finally, Figure 12 shows the behavior of the
population to a barmoving transversely, revealing the response of
the model to 2D motion. Figure 12A shows the response to a bar
moving from the top left corner to the bottom right, Figure 12B
from the top right corner to the bottom left, Figure 12C from
the bottom left to the top right corner and Figure 12D from the
bottom right corner to the top left.

All the explored cases report a similar response from two kind
of sEMD populations and a response close to zero from the other
neurons. The combination of the responding sEMD neurons
successfully detects the transverse motion, showing similar MFR
values of the neurons that actively respond.

4. DISCUSSION

The biological role of detecting temporal changes comprise two
mechanisms: the detection of fast and slow movements. The first
one to identify an entering stimulus into the scene and the latter
one to recognize its spatial structure (Murray et al., 1983). Sudden

Frontiers in Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 45177

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 10 | Comparison, between the sEMD model with the uniform down-sampling (1,600 neurons) and the eccentric down-sampling (8,836 neurons), of MFR

from the LR sEMD neurons in response to a left to right moving bar.

FIGURE 11 | MFR response of the sEMD the LR sEMD neurons for a left to right moving bar at 0.3 px/ms with different bar lengths: 10, 50, 100, 160 pixels,

respectively.

onset of motion can attract our attention (Abrams and Christ,
2003, 2005, 2006). Hence, fast movements, speed and acceleration
similarly increase our perception of a threat—making it a
noticeable stimulus and grabbing our attention (Howard and
Holcombe, 2010). Thus, motion detection collaborates with
attentional mechanisms to react on time and interact with
the surrounding.

In this paper, we have presented a novel implementation of
motion detection based on the use of spiking elementary motion
detectors coupled with non-uniform down-sampling inspired

by the mammalian retina. The proposed model successfully
detects the correct direction of an edge moving in the field of
view at speeds ranging from 30 to 1,000 px/s, being suitable
for the coarse motion processing of robots interacting with the
environment (Giulioni et al., 2016).

With respect to the uniform down-sampling implementation
presented in the original work (Milde et al., 2018), the eccentricity
model significantly decreases the overall activation of each
motion detector at every investigated speed. The reduced spiking
activity makes this implementation more power efficient even

Frontiers in Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 45178

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

FIGURE 12 | MFR response of the sEMD neurons reacting to a bar moving transversely at 0.3 px/ms. (A) Bar moving from the top left corner to the bottom right

corner, (B) bar moving from the top right corner to the bottom left corner, (C) bar moving from the bottom left corner to the top right corner and (D) bar moving from

the bottom right corner to the top left corner. The length of the bar covers the whole visual field.

in face of an increased number of elementary motion detectors.
To achieve the same result in the uniform down sampling
implementation, the size of the spatio-temporal filters should
be increased, at the cost of a coarser resolution in the whole
visual field and a reduced sensitivity to low velocities. The
eccentricity implementation overcomes this issue maintaining
the sensitivity for low and fast speed – distributed over different
regions of the field of view – while significantly reducing the
number of incoming events to be processed by the down-stream
computational layers.

In the proposed non-uniform down sampling, the elementary
motion detectors are tuned to different ranges of speed
depending on their position in the field of view. The peripheral
sEMDs are characterized by large receptive fields and are hence
tuned to higher speeds, that progressively decreases toward the
fovea. Hence, the proposed implementation encodes the speed
based on the location of the active sEMD. RFs with similar
size work in a similar range of speed producing redundant
information, and making the decoding of the population activity
robust. Moreover, thanks to the sensitivity to high speeds of
the peripheral RFs, the detection of objects moving into the
visual field is immediate. The sEMDs in periphery will trigger
a response to a fast stimulus entering the field of view with
extremely low latency. This behavior is desirable in our target
scenario, where a robot shall react quickly to fast approaching
objects suddenly entering the field of view, and attracting its
attention. Furthermore, the combination of RFs with different
size, processing events on the same field of vision, allows working
with a wider operative range of speeds. In the final application,
this motion detection module will be used as one of the feature
maps used to compute the salience of inputs in the field of view,
directing the attention of the robot to potentially relevant stimuli
that will be further processed once a saccadic eye motion will

place the salient region in the fovea. A strong and low latency
response of peripheral sEMDs to fast stimuli could override the
salience of static objects. The characterization of the response
of the sEMDs in the non-uniform down sampling shows the
same qualitative overall behavior for real-world stimuli, showing
robustness to noise and to changing the overall spiking activity
of the input. The analysis of the individual responses of the
sEMDs at different distance from the fovea shows variability
that depends on the discretisation of the receptive fields and
on the uneven distribution of the receptive field sizes. This
effect possibly depends on the Cartesian implementation of the
eccentricity, that approximates the distribution of the receptive
fields with a rectangular symmetry. A polar implementation
of the same concept will reduce the effects of discretisation
and improve the overall population response. In a polar
implementation, the direction of each sEMDwill be aligned along
the polar coordinates (radius and tangent), rather than along
the Cartesian directions, further improving the variability in the
overall response of individual modules and allowing decoding of
stimulus direction beyond the cardinal ones.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the https://
github.com/event-driven-robotics/sEMD-iCub.

AUTHOR CONTRIBUTIONS

GD’A: main author of the manuscript and developer
of the software. CB, EC, and MM: supervision

Frontiers in Neuroscience | www.frontiersin.org 12 May 2020 | Volume 14 | Article 45179

https://github.com/event-driven-robotics/sEMD-iCub
https://github.com/event-driven-robotics/sEMD-iCub
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

assistance and review. JO’K and TS: review assistance.
EJ: assistance during experiments and writing
the manuscript.

ACKNOWLEDGMENTS

We thank our colleagues from Italian Institute of Technology,
Luca Gagliardi and Vadim Tikhanoff, who provided insight
and expertise assisting the research. We would also like to
show our gratitude to Jay Perrett for sharing his accurate

review. Further thanks are issued to the Faculty of Technology
and Center of Cognitive Interaction Technology (CITEC) at
Bielefeld University, for financial support in the form of their
InterAct scholarship.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00451/full#supplementary-material

REFERENCES

Abrams, R. A., and Christ, S. E. (2003). Motion onset captures attention. Psychol.

Sci. 14, 427–432. doi: 10.1111/1467-9280.01458

Abrams, R. A., and Christ, S. E. (2005). The onset of receding motion captures

attention: comment on Franconeri and Simons (2003). Percept. Psychophys. 67,

219–223. doi: 10.3758/BF03206486

Abrams, R. A., and Christ, S. E. (2006). Motion onset captures attention: a

rejoinder to Franconeri and Simons (2005). Percept. Psychophys. 68, 114–117.

doi: 10.3758/BF03193661

Barlow, H., and Levick, W. R. (1965). The mechanism of directionally

selective units in rabbit’s retina. J. Physiol. 178, 477–504.

doi: 10.1113/jphysiol.1965.sp007638

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., and Bartolozzi, C. (2014).

Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25, 407–417.

doi: 10.1109/TNNLS.2013.2273537

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–37.

doi: 10.1016/j.neunet.2011.11.001

Bernardino, A., and Santos-Victor, J. (1999). Binocular tracking: integrating

perception and control. IEEE Trans. Robot. Autom. 15, 1080–1094.

doi: 10.1109/70.817671

Borst, A., Haag, J., and Reiff, D. F. (2010). Fly motion vision. Annu. Rev. Neurosci.

33, 49–70. doi: 10.1146/annurev-neuro-060909-153155

Borst, A., and Helmstaedter, M. (2015). Common circuit design in fly and

mammalian motion vision.Nat. Neurosci. 18, 1067–1076. doi: 10.1038/nn.4050

Brosch, T., Tschechne, S., and Neumann, H. (2015). On event-based optical flow

detection. Front. Neurosci. 9:137. doi: 10.3389/fnins.2015.00137

Cavanagh, P. (1992). Attention-based motion perception. Science 257, 1563–1565.

doi: 10.1126/science.1523411

Devries, S. H., and Baylor, D. A. (1997). Mosaic arrangement of ganglion

cell receptive fields in rabbit retina. J. Neurophysiol. 78, 2048–2060.

doi: 10.1152/jn.1997.78.4.2048

Freeman, J., and Simoncelli, E. P. (2011). Metamers of the ventral stream. Nat.

Neurosci. 14:1195. doi: 10.1038/nn.2889

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gallego, G., Gehrig, M., and Scaramuzza, D. (2019). “Focus is all you need: loss

functions for event-based vision,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Long Beach, CA), 12280–12289.

doi: 10.1109/CVPR.2019.01256

Gallego, G., Rebecq, H., and Scaramuzza, D. (2018). “A unifying contrast

maximization framework for event cameras, with applications to motion,

depth, and optical flow estimation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Salt Lake City, UT), 3867–3876.

doi: 10.1109/CVPR.2018.00407

Gelbukh, A., Espinoza, F. C., and Galicia-Haro, S. N. (2014). “Human-

Inspired Computing and its Applications,” in 13th Mexican International

Conference on Artificial Intelligence, MICAI2014 (Tuxtla Gutiérrez: Springer).

doi: 10.1007/978-3-319-13647-9

Giulioni, M., Lagorce, X., Galluppi, F., and Benosman, R. B. (2016). Event-based

computation of motion flow on a neuromorphic analog neural platform. Front.

Neurosci. 10:35. doi: 10.3389/fnins.2016.00035

Haessig, G., Cassidy, A., Alvarez, R., Benosman, R., and Orchard, G.

(2018). Spiking optical flow for event-based sensors using IBM’s truenorth

neurosynaptic system. IEEE Trans. Biomed. Circ. Syst. 12, 860–870.

doi: 10.1109/TBCAS.2018.2834558

Harvey, B. M., and Dumoulin, S. O. (2011). The relationship between cortical

magnification factor and population receptive field size in human visual

cortex: constancies in cortical architecture. J. Neurosci. 31, 13604–13612.

doi: 10.1523/JNEUROSCI.2572-11.2011

Hassenstein, B., and Reichardt, W. (1956). Systemtheoretische analyse der zeit-,

reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption

des rüsselkäfers chlorophanus. Z. Naturforschung B 11, 513–524.

doi: 10.1515/znb-1956-9-1004

Horiuchi, T., Lazzaro, J., Moore, A., and Koch, C. (1991). “A delay-line based

motion detection chip,” in Advances in Neural Information Processing Systems 3

(NIPS 1990) (San Mateo, CA: Morgan Kauffmann), 406–412.

Howard, C. J., and Holcombe, A. O. (2010). Unexpected changes in direction

of motion attract attention. Attent. Percept. Psychophys. 72, 2087–2095.

doi: 10.3758/BF03196685

Jones, G., and Holderied, M. W. (2007). Bat echolocation calls: adaptation

and convergent evolution. Proc. R. Soc. B Biol. Sci. 274, 905–912.

doi: 10.1098/rspb.2006.0200

Kramer, J. (1996). Compact integrated motion sensor with three-pixel interaction.

IEEE Trans. Pattern Anal. Mach. Intell. 18, 455–460. doi: 10.1109/34.

491628

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128x128 120 db 15us latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ. 43,

566–576. doi: 10.1109/JSSC.2007.914337

Lucas, B. D., and Kanade, T. (1981). “An iterative image registration technique with

an application to stereo vision,” in IJCAI’81: Proceedings of the 7th international

joint conference on Artificial intelligence, Vol. 2 (San Francisco, CA: Morgan

Kaufmann Publishers Inc.), 674–679.

Maisak,M. S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., et al. (2013).

A directional tuning map of drosophila elementary motion detectors. Nature

500, 212–216. doi: 10.1038/nature12320

Maunsell, J. H., and Cook, E. P. (2002). The role of attention in visual

processing. Philos. Trans. R. Soc. Lond. Ser B Biol. Sci. 357, 1063–1072.

doi: 10.1098/rstb.2002.1107

Mauss, A. S., Meier, M., Serbe, E., and Borst, A. (2014). Optogenetic

and pharmacologic dissection of feedforward inhibition in drosophila

motion vision. J. Neurosci. 34, 2254–2263. doi: 10.1523/JNEUROSCI.

3938-13.2014

Milde, M. B., Bertrand, O. J., Benosmanz, R., Egelhaaf, M., and Chicca, E. (2015).

“Bioinspired event-driven collision avoidance algorithm based on optic flow,”

in 2015 International Conference on Event-based Control, Communication, and

Signal Processing (EBCCSP) (Krakow: IEEE), 1–7. doi: 10.1109/EBCCSP.2015.

7300673

Milde, M. B., Bertrand, O. J., Ramachandran, H., Egelhaaf, M., and Chicca, E.

(2018). Spiking elementary motion detector in neuromorphic systems. Neural

Comput. 30, 2384–2417. doi: 10.1162/neco_a_01112

Mitrokhin, A., Fermüller, C., Parameshwara, C., and Aloimonos, Y. (2018). “Event-

based moving object detection and tracking,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Madrid: IEEE), 1–9.

doi: 10.1109/IROS.2018.8593805

Frontiers in Neuroscience | www.frontiersin.org 13 May 2020 | Volume 14 | Article 45180

https://www.frontiersin.org/articles/10.3389/fnins.2020.00451/full#supplementary-material
https://doi.org/10.1111/1467-9280.01458
https://doi.org/10.3758/BF03206486
https://doi.org/10.3758/BF03193661
https://doi.org/10.1113/jphysiol.1965.sp007638
https://doi.org/10.1109/TNNLS.2013.2273537
https://doi.org/10.1016/j.neunet.2011.11.001
https://doi.org/10.1109/70.817671
https://doi.org/10.1146/annurev-neuro-060909-153155
https://doi.org/10.1038/nn.4050
https://doi.org/10.3389/fnins.2015.00137
https://doi.org/10.1126/science.1523411
https://doi.org/10.1152/jn.1997.78.4.2048
https://doi.org/10.1038/nn.2889
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/CVPR.2019.01256
https://doi.org/10.1109/CVPR.2018.00407
https://doi.org/10.1007/978-3-319-13647-9
https://doi.org/10.3389/fnins.2016.00035
https://doi.org/10.1109/TBCAS.2018.2834558
https://doi.org/10.1523/JNEUROSCI.2572-11.2011
https://doi.org/10.1515/znb-1956-9-1004
https://doi.org/10.3758/BF03196685
https://doi.org/10.1098/rspb.2006.0200
https://doi.org/10.1109/34.491628
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1038/nature12320
https://doi.org/10.1098/rstb.2002.1107
https://doi.org/10.1523/JNEUROSCI.3938-13.2014
https://doi.org/10.1109/EBCCSP.2015.7300673
https://doi.org/10.1162/neco_a_01112
https://doi.org/10.1109/IROS.2018.8593805
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

D’Angelo et al. Event-Based Eccentric Motion Detection

Murray, I., MacCana, F., and Kulikowski, J. (1983). Contribution of twomovement

detecting mechanisms to central and peripheral vision. Vis. Res. 23, 151–159.

doi: 10.1016/0042-6989(83)90138-4

Nelson, M. E., and MacIver, M. A. (2006). Sensory acquisition in active sensing

systems. J. Comp. Physiol. A 192, 573–586. doi: 10.1007/s00359-006-0099-4

Nelson, R. C., and Aloimonos, J. (1989). Obstacle avoidance using flow

field divergence. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1102–1106.

doi: 10.1109/34.42840

Panerai, F. M., Capurro, C., and Sandini, G. (1995). “Space-variant vision for

an active camera mount,” in Visual Information Processing IV, Vol. 2488

(Orlando, FL: International Society for Optics and Photonics), 284–296.

doi: 10.1117/12.211981

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid State Circ. 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Ramesh, B., Yang, H., Orchard, G. M., Le Thi, N. A., Zhang, S., and Xiang, C.

(2019). Dart: distribution aware retinal transform for event-based cameras.

IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2919301

Schoepe, T., Gutierrez-Galan, D., Dominguez-Morales, J., Jimenez-Fernandez,

A., Linares-Barranco, A., and Chicca, E. (2019). “Neuromorphic sensory

integration for combining sound source localization and collision avoidance,”

in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS) (Nara), 1–4.

doi: 10.1109/BIOCAS.2019.8919202

Strother, J. A., Wu, S.-T., Wong, A. M., Nern, A., Rogers, E. M., Le, J. Q.,

et al. (2017). The emergence of directional selectivity in the visual motion

pathway of drosophila. Neuron 94, 168–182. doi: 10.1016/j.neuron.2017.

03.010

Traschütz, A., Zinke,W., andWegener, D. (2012). Speed change detection in foveal

and peripheral vision. Vis. Res. 72, 1–13. doi: 10.1016/j.visres.2012.08.019

Wässle, H., and Riemann, H. (1978). The mosaic of nerve cells in the

mammalian retina. Proc. R. Soc. Lond. Ser B Biol. Sci. 200, 441–461.

doi: 10.1098/rspb.1978.0026

Wurbs, J., Mingolla, E., and Yazdanbakhsh, A. (2013). Modeling a space-

variant cortical representation for apparent motion. J. Vis. 13:2. doi: 10.1167/

13.10.2

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 D’Angelo, Janotte, Schoepe, O’Keeffe, Milde, Chicca and

Bartolozzi. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 May 2020 | Volume 14 | Article 45181

https://doi.org/10.1016/0042-6989(83)90138-4
https://doi.org/10.1007/s00359-006-0099-4
https://doi.org/10.1109/34.42840
https://doi.org/10.1117/12.211981
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/TPAMI.2019.2919301
https://doi.org/10.1109/BIOCAS.2019.8919202
https://doi.org/10.1016/j.neuron.2017.03.010
https://doi.org/10.1016/j.visres.2012.08.019
https://doi.org/10.1098/rspb.1978.0026
https://doi.org/10.1167/13.10.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 1

ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/fnins.2020.00421

Edited by:
Emre O. Neftci,

University of California, Irvine,
United States

Reviewed by:
Zhijun Yang,

Middlesex University, United Kingdom
Khaled Nabil Salama,

King Abdullah University of Science
and Technology, Saudi Arabia

*Correspondence:
Marcelo J. Rozenberg

marcelo.rozenberg@
universite-paris-saclay.fr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 15 November 2019
Accepted: 07 April 2020
Published: 12 May 2020

Citation:
Stoliar P, Schneegans O and

Rozenberg MJ (2020) Biologically
Relevant Dynamical Behaviors

Realized in an Ultra-Compact Neuron
Model. Front. Neurosci. 14:421.
doi: 10.3389/fnins.2020.00421

Biologically Relevant Dynamical
Behaviors Realized in an
Ultra-Compact Neuron Model
Pablo Stoliar1†, Olivier Schneegans2† and Marcelo J. Rozenberg3*†

1 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 2 CentraleSupélec, CNRS,
Université Paris-Saclay, Sorbonne Université, Laboratoire de Génie Electrique et Electronique de Paris, Gif-sur-Yvette,
France, 3 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France

We demonstrate a variety of biologically relevant dynamical behaviors building on
a recently introduced ultra-compact neuron (UCN) model. We provide the detailed
circuits which all share a common basic block that realizes the leaky-integrate-and-
fire (LIF) spiking behavior. All circuits have a small number of active components and
the basic block has only three, two transistors and a silicon controlled rectifier (SCR).
We also demonstrate that numerical simulations can faithfully represent the variety of
spiking behavior and can be used for further exploration of dynamical behaviors. Taking
Izhikevich’s set of biologically relevant behaviors as a reference, our work demonstrates
that a circuit of a LIF neuron model can be used as a basis to implement a large
variety of relevant spiking patterns. These behaviors may be useful to construct neural
networks that can capture complex brain dynamics or may also be useful for artificial
intelligence applications. Our UCN model can therefore be considered the electronic
circuit counterpart of Izhikevich’s (2003) mathematical neuron model, sharing its two
seemingly contradicting features, extreme simplicity and rich dynamical behavior.

Keywords: spiking neural networks, neuron models, leaky-integrated-and-fire, artificial intelligence,
neuromorphic electronic circuits, neuromorphic computers

INTRODUCTION

In his 2003 landmark paper Izhikevich (2003) emphasized that to develop a large-scale model of the
brain one faces seemingly mutually exclusive requirements: on one hand the model had to be simple
enough to allow for efficient computation and, on the other, it had to be able to produce a rich
variety of biologically relevant firing patterns. Interestingly, the same dilemma is encountered for
the implementation of neurons in neuromorphic circuits – i.e., circuits that perform computations
based on the architecture of the brain. Recently we proposed an ultra-compact neuron (UCN)
circuit that realizes the leaky integrate and fire model (Rozenberg et al., 2019). That circuit complies
with the first requirement, as it was simply based on only three active devices, two transistors and a
thyristor, or SCR, plus a capacitor and a few resistors. Here we shall show that the UCN model also
complies with the second requirement. Specifically, we shall demonstrate that the UCN is a circuit
block that, with minimal variations, may realize at least 12 out of the 20 biological relevant behaviors
highlighted by Izhikevich (2004). To reproduce those behaviors has become a de facto standard to
demonstrate the relevance of a spiking neuron model implemented on different physical supports.
The literature is very diverse and growing fast, so we shall only cite a few examples here and refer the

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 42182

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00421
http://creativecommons.org/licenses/by/4.0/
mailto:marcelo.rozenberg@universite-paris-saclay.fr
mailto:marcelo.rozenberg@universite-paris-saclay.fr
https://doi.org/10.3389/fnins.2020.00421
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00421&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/articles/10.3389/fnins.2020.00421/full
http://loop.frontiersin.org/people/852080/overview
http://loop.frontiersin.org/people/851710/overview
http://loop.frontiersin.org/people/693682/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 2

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

readers to further references in those works and in the review
of Indiveri et al. (2011): the digital processor chips TrueNorth
developed by IBM (Cassidy et al., 2013; Merolla et al., 2014)
and the more recent ODIN by ICTEAM (Frenkel et al., 2019);
the compact neuron circuit, with only 14 MOSFET transistors
proposed by Wijekoon and Dudek (2008); or the radically
different spiking neuron based on vanadium dioxide (Yi et al.,
2018), a Mott insulator memristive material (del Valle et al.,
2018, del Valle et al., 2019). Other interesting proposals, which
aimed at a faithful physical implementation of the Izhikevich
mathematical model equations are: a compact circuit of MOS
transistors in the subthreshold regime, simulated with MOSIS
libraries (Rangan et al., 2010); a CMOS digital neuron for event-
driven computation, simulated in Spice (Imam et al., 2010).

Silicon Neuron (SiN) Circuits
The UCN belongs to the class of SiN circuits (Indiveri et al.,
2011), which are electronic hardware implementations of systems
that aim to emulate the electric behavior of biological neurons.
These SiN blocks may then be integrated to construct larger
circuits (Qiao et al., 2015), such as to emulate neural network
for artificial intelligence applications, or brain-like systems for
basic neuroscience research. The SiN circuits are inspired from
a multiplicity of mathematical neuronal models that range
from the simplest integrate and fire to the realistic Hodgkin-
Huxley (Gerstner et al., 2014). Depending on the desired goal,
SiN implementations may favor different features, such as low
power dissipation, circuit simplicity, low variability, realistic
behavior, tunability, etc. Typically, they are implemented using
CMOS technology and VLSI (Indiveri et al., 2011), and they
can be broadly classified as sub-threshold or above-threshold
depending on the conduction mode of the transistors. The sub-
threshold systems follow from the pioneer work of Mead (Mead,
1989, Mead, 1990) and of Mahowald and Douglas (1991) that
emphasized the similarity between the exponential behavior of
carrier conduction in transistor channels with that of ionic
channels in neurons, and coined the concept of “neuromorphic
behavior.” The systems in the sub-threshold regime have the
additional attractive features of low power dissipation, which
follows from the small currents, and time constants that are
compatible with the biological ones (Indiveri et al., 2011).
However, a main drawback is the so called device mismatch,
which is a relatively large variability between cells (Indiveri et al.,
2011). As an example of this approach we may mention that
of Yu and Cauwenberghs (2010) that implemented a SiN to
realize the realistic Hodgkin-Huxley model. The above-thershold
implementations avoid mismatch and thus have the precision
needed to faithfully recreate the mathematical models that
motivate them. These SiN circuits also operate a time-constants
that are much faster (103–104) than the biological ones, unless
they adopt off-chip larger capacitors. One example of above-
threshold systems is the implementation of a tunable Hodgkin-
Huxley model by Saighi et al. (2011).

A different approach is to develop SiN circuits that are
motivated on generalizations of the simple integrate and fire
model (Gerstner et al., 2014). Some examples are the AdEx
(Brette and Gerstner, 2005), the Izhikevich (Izhikevich, 2003,

2004) and the Mihalas-Niebur neuron (Mihalas and Niebur,
2009). These models do not necessarily have a biological
underpinning as the Hodgkin-Huxley, but nevertheless were
shown to capture the relevant spiking patterns observed in
biological neurons. Their main attractive is that their relative
simplicity allow for more efficient implementations in both
software and hardware (Wijekoon and Dudek, 2008; Folowosele
et al., 2009; Livi and Indiveri, 2009; Indiveri et al., 2010; Rangan
et al., 2010; van Schaik et al., 2010a,b; Qiao et al., 2015).

The Ultra-Compact Neuron
In this context the UCN that we introduced recently (Rozenberg
et al., 2019) opens a different paradigm. Similar to sub-threshold
systems and faithful to the concept of neuromorphic engineering,
it exploits an intrinsic non-linearity of an electronic device.
Namely the threshold switching of the SCR conductance emulates
the firing of biological neurons. As we discussed in Rozenberg
et al. (2019), this features permits a drastic reduction to the
number of components to implement a basic leaky-integrate-
and-fire (LIF) SiN. So in this regard it may be considered as
belonging to the class of Compact SiN circuits (Indiveri et al.,
2011). However an attractive feature of the UCN is that they can
be directly interconnected, therefore need not a priori require an
additional address-event representation off-chip system. Despite
the fact that the thyristor was introduced in the very beginnings
of semiconductor electronics, it is currently not a conventional
CMOS device. Its development in microelectronics is mostly
restricted to protection circuits (Ker and Hsu, 2005), which
nevertheless demonstrates that there are no a priori impediments
for its CMOS implementation. The time-constants associated to
the switching of a SCR are short, thus in this regard the operation
of the UCN follows similar features as the above-threshold SiN as
we mentioned above. Therefore, if the goal is to achieve biological
time-scales one may need large “membrane” capacitors, hence
our UCN should not be considered compact in regard of the
wafer real estate.

In the present work we shall describe how the functionality
of the basic UCN block can be extended to realize a variety of
biologically relevant spiking patterns, without a sacrifice of circuit
simplicity. The paper is organized as follows: In section Materials
and Methods we shall describe our recently introduced UCN
circuit (Rozenberg et al., 2019). We shall demonstrate how the
basic behavior of the UCN can be very precisely captured by
means of numerical simulations obtained with LTspice (LTspice R©,
2020 that we validate against actual circuit measured data. Section
Results contain the main results of the present work. In the
first part, we exploit the simplicity of the simulation package
capabilities to explore extensions of the basic UCN circuit block,
searching for different types of biologically relevant dynamical
behaviors. We shall demonstrate that small variants of a basic
circuit allow us to capture at least 12 out of the 20 dynamical
behaviors, including some inhibition ones. In the second part
of this section, we use the simulation results to achieve the
main goal of this work, namely to provide the explicit circuits
and measure them to demonstrate that the thyristor-based UCN
can realize the complex firing patterns observed in biological
systems. Our simulations inform and guide the implementation

Frontiers in Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 42183

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 3

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

of the actual electronic circuits that we construct with out-
of-the-shelf components. This feature underscores the relative
ease for the reproducibility of our work and may prompt other
research groups to embark along the present line of work. The
circuits details and the list of components are described in the
Supplementary Material. In section Discussion we finally discuss
some specific technical aspects of our work in regard of different
open challenges in the field.

MATERIALS AND METHODS

The Ultra-Compact Neuron Model
In a recent paper (Rozenberg et al., 2019) we introduced the ultra-
compact spiking neuron model that only requires two transistors
and a thyristor (SCR). We follow the terminology of Indiveri
et al. (2011), where a compact model refers to a simple electronic
circuit with few components. As was argued in Rozenberg et al.
(2019), the UCN has a minimal number of components, just
one capacitor for the integrate, one resistor for the leak, and one
thyristor for the fire functionalities. Therefore, one may consider
the electronic circuit as an ultra compact realization of the LIF
neuron. The thyristor is a standard electronic device, often used
in high power applications, which consists of a tri-junction pnpn
device that can be implemented in VLSI (Tong et al., 2012, 2014).

The behavior of a thyristor can be considered as similar to
that of a diode where the access to the conduction state is
controlled by an adjustable threshold, whose value is set by
the voltage at the gate electrode. Once conducting, the SCR
remains in a low resistance state till the current becomes smaller
than a small holding value Ihold. Thus, the SCR polarized in
direct has two resistive states: a high resistance that switches
to a low resistance one when the threshold Vth is overcome,
and the low resistance that switches back to high when the
current is below Ihold. Therefore, one may consider the SCR as
a memristor since it is a resistive device with a hysteresis or
memory effect. In fact, the I-V characteristics of the SCR are
qualitatively similar to a type of memristive device with volatile
resistive switching, which are based on transition metal oxide
materials that display Mott insulator-metal transitions (del Valle
et al., 2018; Rozenberg et al., 2019). Work along these lines
was recently reported in Yi et al. (2018), where a device made
of two VO2 memristors was conceived to realize a Hodgkin-
Huxley type neuron model. Using variants of that basic device,
the authors demonstrated a large variety of biologically relevant
spiking patterns.

In Figure 1 we show the schematic circuit of the UCN that
can be easily implemented using out-of-the-shelf components.
Details of the circuit elements and their values are provided in
the Supplementary Material. The memristive effect of the SCR
can be straightforwardly exploited in the “soma” block of the
UCN circuit (see Figure 1) to achieve the basic LIF behavior.
The SCR is initially in a high-resistance state during the integrate
phase, providing a small leakage to the capacitor charge. Then,
upon reaching the voltage threshold, the SCR switches to the low-
resistance state and fires a pulse of current. The current is due to
the charge accumulated in the capacitor that rapidly discharges

through the SCR. The small holding current ensures the almost
full discharge of the capacitor.

The UCN circuit has also a second bock, the “axon” block
with two transistors (see Figure 1), which strengthens the current
pulse. This feature is key to enable that the output spikes of one
(upstream) neuron may excite a second (downstream) neuron.
This enables the UCN to be interconnected as modular blocks of
a neural network circuit as it was shown in a previous publication
(Rozenberg et al., 2019).

Validation of Numerical Simulations of
the UCN Circuit
We may exploit the fact that our UCN is simply implemented
with standard electronic components to reproduce the spiking
behavior using the standard electronic circuit simulation package
LTspice, which is freely available (freeware) (LTspice R©, 2020).
In order to represent the actual SCR that we adopted in our
circuits, we found convenient to modify the default parameters
of the EC103D1 thyristor (SCR) model (LITTELFUSE, 2019).
Specifically, we changed the value of the parameter BF from 6.10
to 2.90, and all the other parameters were left unchanged (further
details are provided in the Supplementary Material).

The main results of the simulations of the basic UCN block are
shown in Figure 1. The validation of the numerical data is done
by comparison to the data measured in the actual circuit. As can
be observed in the figure, the agreement is excellent. We may note
a minor difference in a transient effect when the input reached the
threshold voltage to excite spikes. Besides the small difference, the
remarkable agreement validates the LTspice package simulations
as an efficient method to explore variants of the basic UCN
circuit and search for biologically relevant dynamical behaviors.
The results of the numerical exploration will then serve us to
inform the actual circuit implementations, which is the ultimate
goal of our work.

RESULTS

In this section we present our results. We firstly describe
the biologically relevant behaviors obtained through the
numerical simulations study of circuits that are variations
from the UCN basic block. Then, secondly, we describe
the results of the measurements made on actual electronic
circuits, whose implementation was informed by the numerical
simulations study.

Numerical Simulation Study
In Figure 2 we present the results of the exploration of circuits
variants. We were able to obtain 12 out of the 20 biologically
relevant behaviors captured initially by the Izhikevich neuron
model (Izhikevich, 2003, 2004). However, we do not exclude the
possibility of capturing the totality of those behaviors, a task that
we are leaving for future work.

The behaviors that we obtained include some of the most
significant ones. For instance, we find class 1 and class 2
excitability, panels (f) and (g), which were originally identified
by Hodgkin as the two prototypical ways an individual neuron

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 42184

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 4

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

FIGURE 1 | Left panels: Basic circuit of the ultra-compact LIF neuron. The portion of the circuit representing the cell body or soma is in green, and that
representing the axon is in blue (Rozenberg et al., 2019). Right panels: Comparison of the measured (top) and simulated (bottom) basic LIF spiking behavior of the
neuron circuit. VIN (measured in volts) denotes the incoming applied voltage pulses from the voltage pulse generator as function of time (in milli-sec). VMEM denotes
the voltage at the “membrane” capacitor as function of time. VOUT denotes the output voltage showing a spiking pattern. The existence of a threshold value of VIN

for the spiking behavior is clearly observed. It is also observed that as incoming voltage is increased the output spiking rate increases. The agreement between
measured data and the simulations is excellent, with the exception of a small transient near the threshold input voltage value.

can start spiking when excited by an external current source
(Hodgkin, 1948). In addition, we also obtained the most
basic behaviors, such as phasic spiking and phasic bursting,
Figures 2B,C, which are considered to be associated to a
neuron signaling or flagging the beginning of an activity or the
presence of a stimulus. Another biologically relevant behavior
that we captured is spike frequency adaptation, Figure 2E,
which is key to habituation. Importantly this behavior is
also a key feature of neuronal circuits that can reproduce
some basic global brain behaviors, such as asynchronous
irregular and regular oscillatory spiking states (Destexhe, 2009;
di Volo et al., 2019).

We also obtained accommodation, Figure 2J, where the
neuron reacts to the rate of change of the input potential. This
behavior is associated to a threshold in the time domain, as the
neuron gets excited by sudden changes in the environment. It can
also be considered as the neuromorphic equivalent of a high-pass
filter. We should note, however, that our second input pulse is of
the same strength as the first, as small variation with respect to the
respective Izhikevich pattern (Izhikevich, 2004). Delayed phasic
spiking or spike latency was also captured, Figure 2H, which is
a behavior that may allow the system to adjust the timing of its
reaction to a given input.

The two last behaviors displayed in Figures 2K,L, show that
the UCN can also be adapted to accept negative polarity input
and produce both, the rebound spike and inhibition-induced
tonic spiking. The negative polarity excitability is associated to
inhibition and hyperpolarization of the cell body. For further

discussion on the biological relevance of the behaviors we
refer the reader to the work of Izhikevich (2004) and the
references therein.

All these behaviors were obtained with variants of the basic LIF
circuit that involved only one neuron. However, some additional
complex behaviors may require the combination of two or more
neurons. This interesting possibility lies beyond the scope of
the present work.

Simulated Circuits
In Figure 3 we provide some examples of the simulated circuits.
As one can see, they are in fact small variants of the basic LIF
model block, which is indicated by a red dotted box in the panels.
That portion of the circuit is the UCN block that we introduced
and discussed in the previous section and in Figure 1.

Figure 3A, we observe that the small addition made to the
basic UCN block is to merely supplement it with an (RC) passive
differentiator circuit at the input. This enables to obtain either
phasic spiking or phasic bursting behaviors, as the input capacitor
gets charged with the first (or few first) incoming pulses and then
prevents further DC excitation of the UCN block. On the other
hand, in the circuit of Figure 3B we observe that the UCN is
supplemented with a feed-back loop. The key feature here is that
the feed-back is connected to the gate of the SCR, regulating the
effective resistance that grounds the gate. This, in turn, lowers
the value of the anode-cathode threshold voltage for the resistive
switch of the SCR, and hence one may obtain the spike-frequency
adaptation behavior.

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 42185

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 5

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

FIGURE 2 | Twelve biologically relevant behaviors obtained from numerical simulations of small variants of the basic UCN LIF circuit, using the LTspice code. In red
line is the applied input current excitation IIN as function of time. In green line is the “membrane” voltage VMEM at capacitor C1. In blue line is the output voltage VOUT

that shows the dynamical spiking behavior. From left to right and top to bottom: (A) Tonic spiking; (B) phasic spiking; (C) phasic bursting; (D) mixed (burst then
spiking); (E) spike frequency adaptation; (F) class 1 excitable; (G) class 2 excitable; (H) spike latency; (I) integrator; (J) accommodation; (K) rebound spike (negative
polarity input); and (L) inhibition-induced (negative polarity input) tonic spiking.

As shown in Figure 3C, the implementation of the inhibition
induced behaviors can be achieved by simply exchanging the
positions of the SCR with R3, and of T1 with R4. In this case,
the neuron is excited with negative polarity input pulses. In
principle, we no longer need to use the second transistor T2 of

the axon block, which was only meant to invert the polarity of the
outgoing pulse. Therefore, the UCN for inhibition-induced input
excitation requires even less components than the original UCN
block (red box). However, T2 would be required if one desires to
generate negative polarity pulses on output.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 42186

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 6

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

FIGURE 3 | (A,B) The circuits that implement the simulated spiking behaviors shown in the Figure 2 of the main text. They all represent small variants of a basic
UCN circuit block that is indicated by a red dotted line box. We indicate with an arrow the definition of the “membrane” voltage VMEM on the capacitor C1. The circuit
adapted for negative input is shown in (C), where we indicate with a red box the basic UCN block that is slightly modified with respect to the original. Note that the
rebound spike may also be called inhibition-induced phasic spike. The specific values of the components are provided in Supplementary Material.

These simulated circuits will serve as a basis to inform the
implementation of the actual electronic circuits that we describe
in the next subsection.

Biologically Relevant Behaviors Realized
in Actual UCN Electronic Circuits
Our stated strategy was to use simulations to rapidly explore
circuit variants, but the ultimate goal is of course to implement
the actual electronic circuits. The soundness of this approach is
demonstrated by the diversity of the behaviors that we were able
to realize, as shown in Figure 4.

Eleven behaviors, shown in Figures 4A–J,L, are close
implementations of the previously simulated circuits. They
include both, positive and negative input excitation. We note that
a twelfth behavior, rebound spike, can be trivially obtained from
behavior (l) by simply reducing the duration of the input pulse,
therefore is not shown. Interestingly, during our experimental
circuits study, we also found an additional biologically plausible
behavior, shown in Figure 4K that corresponds to delayed
bursting (Zeldenrust et al., 2018). Other interesting spiking
patterns were also observed, including negative input, which we
leave to future work.

Variations of the UCN Electronic Circuit Block
In Figure 5 we show some significant examples of the actually
implemented circuits (the specific values of the components are
provided in the Supplementary Material). Similarly, as was the
case of numerical simulations, all the circuits are rather small
variants of the basic UCN block that we indicate with a red dotted
box in the figure.

The excellent agreement between the spiking patterns of
the simulations and the actual circuits is quite apparent upon

comparison of the many panels of Figures 2, 4. However, we
should also mention that while the simulated circuits always
provided a good starting point, it was necessary to make
further modifications in the actual circuit implementation in
order to achieve the desired spiking pattern. One of the most
significant differences that illustrates the point is in Figure 5D,
which shows the circuit for phasic spiking, mixed mode and
accommodation, and can be compared to that of Figure 3A.
Actually, both circuits provide valid solutions, however, upon
implementation of the simulated 3-a, we found that it imposed
too high a demand of current from the input signal generator.
Hence, we search for a circuit variant. This was obtained by
exploiting the additional freedom of tuning the gate of the SCR.
This small example illustrates the benefits and shortcoming of
simulations, with respect to the ultimate goal, which is the
circuit implementation.

We also note that the implementation of negative input pulses
(inhibition), shown in Figure 5E, also required some small
modifications. The rest of the circuits are almost identical to
the simulated ones. Besides the small circuit changes, it was
also sometimes necessary to adapt the input strengths, such as
comparing (Figure 2F) and (Figure 4F); or different spiking
frequency were obtained, such as in Figures 2G, 4G. In any case,
we want to emphasize that exact agreement was not the goal,
except in the initial validation of the numerical model described
in Section Materials and Methods. For the whole variety of
obtained behaviors the differences remained merely quantitative,
and within an order of magnitude, and the qualitative agreement
was always satisfactory.

Some additional details on the choice of electronic
components and the implementation of the measurement
system are given in the Supplementary Material.

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 42187

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 7

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

FIGURE 4 | Twelve biologically relevant behaviors measured in small variants of the basic UCN circuit. In red line is the applied input current excitation IIN as function
of time. In green line is the “membrane” capacitor voltage VMEM. In blue line is the output voltage VOUT that shows the dynamical spiking behavior. From left to right
and top to bottom: (A) Tonic spiking; (B) phasic spiking; (C) phasic bursting; (D) mixed (burst then spiking); (E) spike frequency adaptation; (F) class 1 excitable; (G)
class 2 excitable; (H) spike latency; (I) integrator; (J) accommodation; (K) delayed burst (note: this behavior is biologically plausible but not among the Izhikevich
set); and (L) inhibition-induced (negative polarity input) tonic spiking (note: the “rebound spike” behavior can be trivially obtained from this one via a shorter time
input). Further details on the measured circuits along with the values of their components are described in the Supplementary Material.

DISCUSSION

In this work we have illustrated the versatility of the UCN circuit
to capture a significant number of biologically relevant neuronal

behaviors. We have not attempted to demonstrate the totality
of the 20 behaviors identified by Izhikevich (2004). Rather, our
goal was to demonstrate that the minimal UCN circuit is a
sound basis to implement a new type of spiking neuron model

Frontiers in Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 42188

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 8

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

FIGURE 5 | (A–D) The circuits that implement the measured spiking behaviors shown in the Figure 3. We indicate with an arrow the definition of the “membrane”
voltage VMEM on the capacitor C1. The circuit adapted for negative input is shown in (E), where we indicate with a red box the basic UCN block that is slightly
modified with respect to the original. The specific values of the components are provided in Supplementary Material.

of remarkable simplicity. Another important result of our study
was the successful implementation of the numerical simulation
package to efficiently search for the complex spiking patterns.
This required the implementation of the SCR model. More
generally, reliable numerical simulations methods become an
essential tool to implement small neural sub-circuits counting
tens or hundreds of spiking neurons.

The key feature that enables this circuit simplicity is the
memristive behavior of the SCR, which is a conventional
electronic component that may be implemented in CMOS
technology (Ker and Hsu, 2005; Tong et al., 2012). However, we
should also note that although the UCN model and the extensions
proposed in the present work only require a reduced number of
electronic components, they are of different types, which may
pose a challenge for the integration into a single technology.
Nevertheless, this may be achieved by Bi-CMOS (Alvarez, 1990),
or the more recent BCD8sP technology (Roggero et al., 2013).
Simulation of our UCN circuits to implement actual chips is an
exciting prospect that is beyond the scope of the present work.

Also in regard of the prospects for microelectronic
implementation, one should be aware that, similarly to all
compact neuron model circuits based on standard electronics,
the UCN also requires a “membrane” capacitor to integrate
charge. This feature remains a significant problem for
miniaturization as the capacitors still require a relatively
large physical space in VLSI.

The ultimate solution for a low-power and low-footprint
spiking neuron device may therefore require memristors based
on Mott materials (del Valle et al., 2018). However, achieving
a reliable control and a theoretical understanding of the metal-
insulator transitions in those compounds still represent a
significant challenge (Yi et al., 2018; del Valle et al., 2019).

To conclude, the UCN model is a simple modular block
that can be used to implement spiking neuron circuits. The
present work demonstrates that its simplicity does not prevent
the realization of complex spiking patterns, beyond the integrate
and fire paradigm.

Our work opens a new way for the implementation of
large neuronal networks with biological plausibility and of
unprecedented simplicity.

DATA AVAILABILITY STATEMENT

All the information required to obtain the datasets generated for
this study is included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

Frontiers in Neuroscience | www.frontiersin.org 8 May 2020 | Volume 14 | Article 42189

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 9

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

FUNDING

MR acknowledges support from ANR Grant MoMA. This
work was supported in part by the JSPS KAKENHI
Grant No. JP18H05911.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00421/full#supplementary-material

REFERENCES
Alvarez, A. R. (1990). Introduction to BiCMOS. BiCMOS Technology

and Applications. Berlin: Springer Science & Business Media.
1–20.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-Icaza,
R., et al. (2013). “Cognitive computing building block: A versatile and efficient
digital neuron model for neurosynaptic cores,” in Proceedings of the 2013
International Joint Conference on Neural Networks (IJCNN), (Piscataway, NJ:
IEEE), 1–10.

del Valle, J., Ramírez, J. G., Rozenberg, M. J., and Schuller, I. K. (2018). Challenges
in materials and devices for resistive-switching-based neuromorphic
computing. J. Appl. Phys. 124:211101

del Valle, J., Salev, P., Tesler, F., Vargas, N. M., Kalcheim, Y., Wang, P., et al.,
(2019). Subthreshold firing in Mott nanodevices. Nature 569, 388–392. doi:
10.1038/s41586-019-1159-6

Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up-Down
states in thalamic, cortical and thalamocortical networks of nonlinear integrate-
and-fire neurons. J. Comput. Neurosci. 27, 493–506. doi: 10.1007/s10827-009-
0164-4

di Volo, M., Romagnoni, A., Capone, C., and Destexhe, A. (2019). Biologically
realistic mean-field models of conductance-based networks of spiking
neurons with adaptation. Neural Comput. 31, 653–680. doi: 10.1162/neco
_a_01173

Folowosele, F., Etienne-Cummings, R., Hamilton, T. J. (2009). “A CMOS switched
capacitor implementation of the mihalas-niebur neuron,” in Proceedings of the
Biomedical Circuits and Systems Conference, BIOCAS 2009 (Beijing: IEEE),
105–108.

Frenkel, C., Legat, J. D., and Bol, D. (2019). MorphIC: a 65-nm 738k-Synapse/mm2
Quad-Core binary-weight digital neuromorphic processor with stochastic
spike-driven online learning. IEEE Trans. Biomed. Circuits Syst. 13, 999–1010.
doi: 10.1109/TBCAS.2019.2928793

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Reading: Cambridge
University Press.

Hodgkin, A. L. (1948). The local electric changes associated with repetitive action
in a non-medullated axon. J. Physiol. 107, 165–181. doi: 10.1113/jphysiol.1948.
sp004260

Imam, N., Wecker, K., Tse, J., Karmazin, R., Manohar, R. (2010). “Neural
spiking dynamics in asynchronous digital circuits” in Proceedings of the
2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX,
1–8.

Indiveri, G., Stefanini, F. and Chicca, E. (2010). Spike-based learning with
a generalized integrate and fire silicon neuron. in Proceedings of the
International Symposium on Circuits and Systems, ISCAS 2010 (Paris: IEEE),
1951–1954.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A.,
Etienne-Cummings, R., Delbruck, T., et al., (2011). Neuromorphic
silicon neuron circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.
00073

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE
Trans. Neural Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.82
0440

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons?
IEEE Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.83
2719

Ker, M. -D., and Hsu, K. -C. (2005). Overview of on-chip electrostatic discharge
protection design with SCR-based devices in CMOS integrated circuits. IEEE
Trans. Device Mat. Res. 5, 235–249.

LITTELFUSE (2019). Link to the EC103D1 SCR SPICE Model Specifications.
Available online at: https://www.littelfuse.com/technical-resources_old/spice-
models/thyristor-spice-models.aspx

Livi, P., Indiveri, G. (2009). “A current-mode conductance-based silicon neuron for
address-event neuromorphic systems,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, ISCAS 2009 (Taipei: IEEE), 2898–2901.

LTspice R© (2020). Analog Devices Inc., USA. (Freeware) Available online at:
https://www.analog.com/en/design-center/design-tools-and-calculators/
ltspice-simulator.html

Mahowald, M., and Douglas, R. (1991). A silicon neuron. Nature 354, 515–518.
Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading: Addison-Wesley

Longman Publishing Co.
Mead, C. A. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,

F., et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673. doi: 10.1126/
science.1254642

Mihalas, S., and Niebur, E. (2009). A generalized linear integrate-and-fire neural
model produces diverse spiking behaviors. Neural Comput. 21, 704–718. doi:
10.1162/neco.2008.12-07-680

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D.,
et al., (2015). A reconfigurable online learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses. Front Neurosci. 9:141. doi: 10.
3389/fnins.2015.00141

Rangan, V., Ghosh, A., Aparin, V., and Cauwenberghs, G. (2010). “A subthreshold
aVLSI implementation of the Izhikevich simple neuron model,” in Proceedings
of the 2010 Annual International Conference of the IEEE Engineering in Medicine
and Biology, (Piscataway, NJ: IEEE), 4164–4167. doi: 10.1109/IEMBS.2010.
5627392

Roggero, R., Croce, G., Gattari, P., Castellana, E., Molfese, A., Marchesi, G., et al.,
(2013). “BCD8sP: an advanced 0.16 m technology platform with state of the
art power devices,” Proceedings of the 25th International Symposium on Power
Semiconductor Devices & IC’s (ISPSD), Kanazawa, 361–364.

Rozenberg, M. J., Schneegans, O., and Stoliar, P. (2019). An ultra-compact leaky-
integrate-and-fire model for building spiking neural networks. Sci. Rep. 9:11123.
doi: 10.1038/s41598-019-47348-5

Saighi, S., Bornat, Y., Tomas, J., Le Masson, G., Renaud, S. (2011). A library of
analog operators based on the Hodgkin-Huxley formalism for the design of
tunable, real-time, silicon neurons. IEEE Trans. Biomed. Circuits Syst. 5, 3–19.
doi: 10.1109/TBCAS.2010.2078816

Tong, X., Wu, H., Liang, Q., Zhong, H., Zhu, H., Chen, D., et al., (2012). “On the
design of 2-port SRAM memory cells using PNPN diodes for VLSI application,”
in Proceedings of the SISPAD, Denver, CO, 316–319

Tong, X., Wu, H., Liang, Q., Zhong, H., Zhu, H., Zhao, C., et al., (2014).
Design of two-terminal PNPN diode for high-density and high-speed memory
applications. J. Semicond. 35, 14006–14003.

van Schaik, A., Jin, C. and Hamilton, T. J. (2010a). “A log-domain
implementation of the Izhikevich neuron model,” in Proceedings of the
International Symposium on Circuits and Systems, ISCAS 2010, (Paris: IEEE),
4253–4256.

van Schaik, A., Jin, C., Hamilton, T. J., Mihalas, S. and Niebur, E. (2010b).
International Symposium on Circuits and Systems, ISCAS 2010, (Paris: IEEE),
4249–4252.

Wijekoon, J. H., and Dudek, P. (2008). Compact silicon neuron circuit with spiking
and bursting behaviour. Neural Netw. 21, 524–534. doi: 10.1016/j.neunet.2007.
12.037

Frontiers in Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 42190

https://www.frontiersin.org/articles/10.3389/fnins.2020.00421/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.00421/full#supplementary-material
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1038/s41586-019-1159-6
https://doi.org/10.1038/s41586-019-1159-6
https://doi.org/10.1007/s10827-009-0164-4
https://doi.org/10.1007/s10827-009-0164-4
https://doi.org/10.1162/neco_a_01173
https://doi.org/10.1162/neco_a_01173
https://doi.org/10.1109/TBCAS.2019.2928793
https://doi.org/10.1113/jphysiol.1948.sp004260
https://doi.org/10.1113/jphysiol.1948.sp004260
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1109/TNN.2004.832719
https://www.littelfuse.com/technical-resources_old/spice-models/thyristor-spice-models.aspx
https://www.littelfuse.com/technical-resources_old/spice-models/thyristor-spice-models.aspx
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1162/neco.2008.12-07-680
https://doi.org/10.1162/neco.2008.12-07-680
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/IEMBS.2010.5627392
https://doi.org/10.1109/IEMBS.2010.5627392
https://doi.org/10.1038/s41598-019-47348-5
https://doi.org/10.1109/TBCAS.2010.2078816
https://doi.org/10.1016/j.neunet.2007.12.037
https://doi.org/10.1016/j.neunet.2007.12.037
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00421 May 10, 2020 Time: 19:24 # 10

Stoliar et al. Behaviors in Ultra-Compact Neuron Model

Yi, W., Tsang, K. K., Lam, S. K., Bai, X., Crowell, J. A., and Flores,
E. A. (2018). Biological plausibility and stochasticity in scalable VO2
active memristor neurons. Nat. Commun. 9:4661. doi: 10.1038/s41467-018-
07052-w

Yu, T., and Cauwenberghs, G. (2010). Analog VLSI biophysical neurons and
synapses with programmable membrane channel kinetics. IEEE Trans. Biomed.
Circuits Syst. 4, 139–148. doi: 10.1109/TBCAS.2010.2048566

Zeldenrust, F., Wadman. W. J., and Englitz, B. (2018). Neural coding with bursts-
current state and future perspectives. Front. Comput. Neurosci. 12:48. doi: 10.
3389/fncom.2018.00048

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Stoliar, Schneegans and Rozenberg. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 42191

https://doi.org/10.1038/s41467-018-07052-w
https://doi.org/10.1038/s41467-018-07052-w
https://doi.org/10.1109/TBCAS.2010.2048566
https://doi.org/10.3389/fncom.2018.00048
https://doi.org/10.3389/fncom.2018.00048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 19 May 2020

doi: 10.3389/fnins.2020.00420

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 420

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Timothée Masquelier,

Centre National de la Recherche

Scientifique (CNRS), France

Arindam Basu,

Nanyang Technological University,

Singapore

*Correspondence:

Germain Haessig

germain@ini.uzh.ch

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 December 2019

Accepted: 07 April 2020

Published: 19 May 2020

Citation:

Haessig G, Milde MB, Aceituno PV,

Oubari O, Knight JC, van Schaik A,

Benosman RB and Indiveri G (2020)

Event-Based Computation for Touch

Localization Based on Precise Spike

Timing. Front. Neurosci. 14:420.

doi: 10.3389/fnins.2020.00420

Event-Based Computation for Touch
Localization Based on Precise Spike
Timing

Germain Haessig 1*, Moritz B. Milde 2, Pau Vilimelis Aceituno 3,4, Omar Oubari 5,

James C. Knight 6, André van Schaik 2, Ryad B. Benosman 5,7,8 and Giacomo Indiveri 1

1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland, 2 International Centre for

Neuromorphic Systems, MARCS Institute, Western Sydney University, Penrith, NSW, Australia, 3Max Planck Institute for

Mathematics in the Sciences, Leipzig, Germany, 4Max Planck School of Cognition, Leipzig, Germany, 5 Institut de la Vision,

Sorbonne Université, Paris, France, 6Centre for Computational Neuroscience and Robotics, School of Engineering and

Informatics, University of Sussex, Brighton, United Kingdom, 7University of Pittsburgh, Pittsburgh, PA, United States,
8Carnegie Mellon University, Pittsburgh, PA, United States

Precise spike timing and temporal coding are used extensively within the nervous

system of insects and in the sensory periphery of higher order animals. However,

conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot

take advantage of this coding strategy, due to their rate-based representation of

signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying

applications where temporal coding outperforms the rate coding strategies of ANNs

is still an open challenge. Neuromorphic sensory-processing systems provide an ideal

context for exploring the potential advantages of temporal coding, as they are able to

efficiently extract the information required to cluster or classify spatio-temporal activity

patterns from relative spike timing. Here we propose a neuromorphic model inspired

by the sand scorpion to explore the benefits of temporal coding, and validate it in an

event-based sensory-processing task. The task consists in localizing a target using only

the relative spike timing of eight spatially-separated vibration sensors. We propose two

different approaches in which the SNNs learns to cluster spatio-temporal patterns in an

unsupervised manner and we demonstrate how the task can be solved both analytically

and through numerical simulation of multiple SNN models. We argue that the models

presented are optimal for spatio-temporal pattern classification using precise spike timing

in a task that could be used as a standard benchmark for evaluating event-based sensory

processing models based on temporal coding.

Keywords: temporal coding, event-based sensors, spatio-temporal patterns, spike-based computing, touch

localization

1. INTRODUCTION

Information transmission in neural networks is often described in terms of the rate at which
neurons emit action potentials. Neurons are typically assumed to encode values—such as the
orientation of a bar—using their mean firing rate, with individual spikes emitted using a Poisson
process (Dean, 1981). Neurons in higher processing areas of the brain (e.g., in primary visual
cortex) have been shown to demonstrate variable spike timing in response to repetitions of identical
stimuli (Hubel and Wiesel, 1962). This variability is commonly interpreted as being the result of

92

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00420
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00420&domain=pdf&date_stamp=2020-05-19
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:germain@ini.uzh.ch
https://doi.org/10.3389/fnins.2020.00420
https://www.frontiersin.org/articles/10.3389/fnins.2020.00420/full
http://loop.frontiersin.org/people/762904/overview
http://loop.frontiersin.org/people/202597/overview
http://loop.frontiersin.org/people/904080/overview
http://loop.frontiersin.org/people/870754/overview
http://loop.frontiersin.org/people/215376/overview
http://loop.frontiersin.org/people/12768/overview
http://loop.frontiersin.org/people/94237/overview
http://loop.frontiersin.org/people/1395/overview

Haessig et al. Event-Based Touch Localization

noise (or noisy background activity) which can be assumed to
be an additive signal to the sensory input one (Baudot et al.,
2013). This linear separation of signal and noise has been used
to justify rate- and/or population-coding by averaging across
time and/or neuronal populations (Shadlen and Newsome, 1998;
Dayan and Abbott, 2001). These observations led to the common
assumption that the main mode of information transmission
in most brain areas is encoded in the neurons average spike-
frequency. This assumption, supported by many experimental
investigations (Softky and Koch, 1993; Dayan and Abbott, 2001),
continues to be used in the field of machine learning.

However, the time at which spikes are emitted might also
carry additional information. If this is the case, the temporal-
correlation of such events can then be used an extra source
of information for models of computation (Dayan and Abbott,
2001; Thorpe et al., 2001). This type of signal representation
is described as a temporal code. In the last three decades,
the advantages of temporal coding have been demonstrated
in computational models of fast visual processing (Thorpe
et al., 2001); for the classification of time-varying signals and
balance (Gütig and Sompolinsky, 2006; Deneve and Machens,
2016); in temporal interval discrimination (Buonomano and
Merzenich, 1995); in state-dependent computation (Buonomano
and Maass, 2009), and even for fine motor control (Laje and
Buonomano, 2013). Furthermore, experimental findings have
shown that the information carried in the timing of spikes
can be used by the brain to discriminate textures (Hipp et al.,
2006; Wolfe et al., 2008), classify temporal patterns (Mainen
and Sejnowski, 1995; Wehr and Zador, 2003; Baudot et al.,
2013; Goel and Buonomano, 2016) or localize an animal in
its environment (O’Keefe and Recce, 1993). This evidence
demonstrates that neural networks—whether biological or
artificial—can use spike timing information to extract relevant
cues for behavior and generate events with precise timing
precision in response to time-varying input patterns (Mainen and
Sejnowski, 1995).

While both rate- and temporal-codes are used to convey
information in the brain, conventional ANNs, for the most
part, are based only on rate-codes. The contexts and tasks
in which temporal-coding can outperform rate-coding remain
elusive, especially as the performance in many tasks is
measured purely in terms of classification accuracy and ignores
additional metrics such as latency, energy consumption and
computational complexity.

In this paper, we first describe a well-constrained spatio-
temporal pattern classification task inspired by the sand scorpion:
localizing the source of a vibration induced by tapping on a
surface, using the spatio-temporal pattern detected by an array of
sensors. We then present a step-by-step analysis of conventional
algorithms and five different models based on spiking neural
networks for classifying the data-set of spatio-temporal patterns
using both supervised and unsupervised learning rules.

2. BACKGROUND

2.1. Sand Scorpion Prey Localization
Sand scorpions, such as the specimen shown in Figure 1A, are
nocturnal predatory arachnids which, despite their primitive

visual systems, can accurately locate prey such as crickets up to
50 cm away (Brownell, 1977). Brownell (1977) discovered that
sand scorpions perform this feat using time-based computation
based on two types of information propagated through the
sand of their desert habitat: Transverse Rayleigh waves and
compressional waves. Rayleigh waves travel slowly across the
surface of the sand at a velocity of ≈ 50m s−1 and are sensed
by the scorpion’s Basitarsal Compound Slit Sensilla (BCSS).
Compressional waves diverge spherically from their source—
traveling through the sand at≈ 150m s−1 and attenuating much
more quickly than the Rayleigh waves (Brownell, 1977). Sand
scorpions detect these waves using sensory hairs on their legs.

Both types of sensory organ are located on the ends of the
scorpion’s legs, maximizing the distance between the sensors
and thus the difference in arrival time between signals measured
at each one. While, theoretically, the arrival time of either
type of wave could be used by the scorpion to detect the
direction of its prey, Rayleigh waves travel and attenuate slower
than compressional waves resulting in better range and larger
time differences (1ms rather than 0.4ms). This intuition was
supported by an ablation study in which Brownell and Farley
(1979a) found that the BCSS was required for sensing direction.

As well as being able to detect the direction of their prey, sand
scorpions can also estimate how far away it is. Brownell and
Farley (1979b) suggested that the difference in amplitude of the
signals received by the sensory hairs on different legs could be
used to perform this computation. Here, the faster attenuation
of the compressional waves is advantageous as it results in larger
differences in amplitude between near and distant stimuli.

2.2. Computational Models of
Spatio-Temporal Pattern Recognition
The ability to learn and recognize spatio-temporal sequences
is a hallmark of biological neural information processing.
Understanding spatio-temporal sequences is at the heart of object
recognition, navigation and, in more general terms, all neuron-
to-neuron communication. Each neuron receives a spatio-
temporal pattern of pre-synaptic action potentials or spikes at its
dendrites and sends output spikes to its post-synaptic partners. In
the case of a single input channel, the problem of spatio-temporal
sequence learning can be addressed by temporal coincidence
detection (Carr and Konishi, 1990) or by temporal correlation
detection (Krammer and Koch, 1997). The former approach
provides binary outputs, whereas the latter approach provides a
continuous output. In both cases, information is encoded in the
timing of the incoming spike. On the other hand, if multiple input
channels are present, spatio-temporal patterns can be represented
by detecting coincidence or correlation of spikes arriving via the
different input channels (Roy et al., 2016). Additionally, neurons
have more options for capturing spatio-temporal patterns when
multiple input channels are present. A neuron can use synaptic
weight plasticity to emphasize certain channels over others,
synaptic delay plasticity to delay certain input channels compared
to others, or any combination of the two. To recognize spatio-
temporal patterns, Gütig and Sompolinsky (2006) proposed the
tempotron model in which synaptic weights are adjusted in a
supervised manner, based on the deviation of the maximum
(post-synaptic) voltage from the spiking threshold for wrongly

Frontiers in Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 42093

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 1 | (A) A sand scorpion in the lab. Image courtesy of Martin Reichert and Wolfgang Stuerzl. (B) Our prototype.

classified patterns. Roy et al. (2016) extended the tempotron
approach by using an online structural plasticity mechanism in
a competitive winner-takes-all (WTA) network relying on binary
synapses. Alternatively, Izhikevich (2006) proposed a learning
framework in which Spike-Time Dependent Plasticity (STDP)
is used to adjust synaptic weights and synaptic propagation
delays are randomly sampled at the beginning of the simulation
and subsequently fixed. Both approaches lead to the learning
of polychronous neural ensembles, each encoding a different
spatio-temporal pattern.Wang et al. (2013) presented a hardware
implementation of polychronous networks in which propagation
delays are learned in a supervised manner, based on the expected
firing time of the post-synaptic neuron. Another approach to
learning synaptic delays is to sample synaptic time constants
from a distribution and select relevant time constants via an
STDP mechanism (Gerstner et al., 1996). Thus only synapses
with fitting delays which trigger post-synaptic spikes are selected.
In the next sections, we will present both biological and event-
based mechanisms for synaptic and neuronal plasticity to learn
spatio-temporal patterns.

2.3. Biological Mechanisms for Synaptic
Delay Plasticity
Spikes are delivered to a neuron’s post-synaptic partners through
its axon with a transmission delay dictated by the axon’s
conduction velocity. The conduction velocity is dependent on
both the diameter of the axon and the thickness of the Myelin
sheath around it (Swadlow and Waxman, 2012). Myelin is a
phospholipid substance formed by glial cells and its presence
increases the conduction velocity of axons by wrapping around
them and acting as an electrical insulator. Furthermore, it
has recently been shown that the myelination of axons can
be influenced by neural activity(Markram et al., 1997; Fields,
2015; Koudelka et al., 2016) suggesting that a form of “myelin
plasticity” is also at work—something that should be taken into
consideration when developing learning algorithms for spiking
neural networks (Baldi and Atiya, 1994; Maass, 2001).

By optimizing conduction delays, a myelin plasticity-based
model opens the way to directly learning the time dynamics
of incoming spikes and extracting meaningful spatio-temporal

patterns. Previous conduction delay-based algorithms have
not often been tested with practical tasks such as pattern
recognition and clustering (Eurich et al., 1999, 2000). The
DELTRON (Hussain et al., 2012) uses the tempotron model
(Gütig and Sompolinsky, 2006) to adjust conduction delays
through gradient descent dynamics. Paugam-Moisy et al. (2008)
extended the polychronization model developed by Izhikevich
(2006) to include learnable conduction delays for classification
and Wang et al. (2013) applied this approach to pattern storage.
Matsubara (2017) developed a probabilistic delay learning model
which adjusts conduction delays and synaptic weights. However,
Matsubara used this to classify time-invariant databases such as
MNIST, which have no temporal structure making them a poor
choice for evaluating computation based on spike timing.

2.4. Event-Based Spatio-Temporal Pattern
Recognition
The task solved by the sand scorpion can be described more
generally as spatio-temporal pattern classification and recently,
two complementary approaches, specifically designed for event-
based sensory signals, were proposed. Both approaches feature
homogeneous and fixed synaptic time constants and adapt
synaptic weights to cluster spatio-temporal patterns. In the
following subsections, we detail these two approaches.

2.4.1. HOTS: A Hierarchy of Event-Based

Time-Surfaces
Lagorce et al. (2017) proposed an algorithm in which events are
converted into a continuous-valued time surface. This approach
can be understood as convolving events within a pre-defined
region of interest (ROI) with an exponential decaying kernel,
with the reference time being the time of the central event
in the ROI. These spatio-temporal contexts are then matched
to learned features using online learning, offline clustering
or other methods. HOTS can be employed in a hierarchical
fashion, with an increasing ROI size and time-constant for the
exponential kernels and has been successfully applied to variety
of classification tasks (Cohen et al., 2016; Afshar et al., 2019a).

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 42094

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 2 | (A) Architecture of the electronic solution. Each accelerometer is read by its own Analog-to-Digital Converter. The local microcontroller receives the

samples, applies level-crossing detection and send the master controller the spikes. (B) The level crossing sampling method employed, and comparison to regular

sampling. In this work, only the first spike is used.

2.4.2. FEAST: Event-Based Feature Extraction Using

Adaptive Selection Thresholds
To guarantee that all feature detector neurons are used equally
when clustering time-surfaces, Afshar et al. (2019b) extended
HOTS to feature coupled, adaptive thresholds. Every time a
given feature detector emits a spike, its threshold is increased.
This results in non-updated feature detectors being more likely
to capture the next time-surface and means that all feature
detector neurons are equally active across the data set1. If no
feature detector captures the present time-surface, however, all
thresholds are decreased. The adaptation of firing thresholds can
be understood as a homeostatic plasticitymechanism (Turrigiano
and Nelson, 2004; Qiao et al., 2016, 2017). In the context of
continual learning, this “global”2 threshold adaptation might
prevent convergence if unrecognized patterns are common
(Afshar et al., 2014).

3. METHODS

3.1. Neuromorphic Tactile Sensor Design
The problem of spatially localizing a stimulus on a 2D surface
is well-defined with 5 sensors (Mahajan and Walworth, 2001;
Hu and Yang, 2010). However, having an array of more than
5 sensors adds robustness to the system, so we developed
the prototype shown in Figure 1 with (arbitrarily) 8 sensors.
A circular configuration of the sensor array would lead to
badly conditioned cases—as depicted by Mahajan and Walworth
(2001)—so our 8 sensors are arranged in the non-circularmanner
shown in Figure 1B. An acrylic plate makes a rigid connection
between the 8 sensors. As the system is statically overconstrained
(5 redundant contact points), a slightly flexible acrylic plate was
chosen to ensure that all 8 sensors could still touch the surface if
there was any fabrication misalignment.

Each sensing unit consists of a Piezoelectric accelerometer for
sensing vibrations and a local microcontroller-based processing
unit (Teensy 4.0, ARM Cortex-M7) which reads samples from

1The occurrences of examples in the data set need to be balanced.
2Global in this context refers to the population of feature detectors at a given level

in a hierarchy, not across a hierarchy of feature detectors.

the Analog to Digital converter at 1MHz, and then applies a level
crossing detection to generate events (Astrom and Bernhardsson,
2002) (Figure 2B. All 8 sensors then transmit these events to
an additional central processing unit which solves the analytical
problem using the approach described in section 3.2.1 and saves
the data for dataset creation (Figure 2A).

While in desert sand, a 1ms resolution would be
sufficient (Brownell, 1977), in order to work on more common
mediums—which typically have faster propagation speed—we
need higher temporal accuracy. Depending on the surfaces used
in our experiments, a wave propagates at a speed between 200
and 300m s−1, which result in a propagation time between
1 and 1.5ms in our setup, between radially opposite sensors.
However, standard accelerometers with digital output are
limited to sampling rate of only a few kHz, so we decided to
use an accelerometer with an analog output (STMicro LIS344),
combined with a separate 1MHz Analog to Digital converter
(Texas Instruments ADS7044).

Figure 2 illustrates the architecture of the electronic solution,
as well as the spike generation method. This approach of fast
sampling followed by level-crossing detection was chosen for it
flexibility (different encoding schemes could be tested). However,
other approaches such as the one introduced by Lee et al. (2017),
or the VLSI event-generator proposed by Corradi and Indiveri
(2015) could be used. While these might reduce the complexity
of the sensing unit and (possibly) increase the time precision, this
would come at the cost of reduced flexibility.

Using this sensor, we recorded a dataset consisting of 10
repetitions of 32 stimuli (8 different angles, every 45◦, and 4
distances (200, 400, 600, 800 mm). The stimuli, i.e., the surface
vibrations, were induced by tapping with the index finger on a
wooden surface.

3.2. Algorithms
In the following section we will present five different solutions
to the problem of localizing the position of a vibration induced
by tapping on a rigid surface. Not all approaches are entirely
successful but, nonetheless, we hope to provide interesting
concepts and ideas which try to emphasize how to extract
task relevant information from the timing of incoming events.

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 42095

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 3 | Definition of the problem. For the sake of simplicity, only 3 sensors

are shown here. The transmitter can be seen as being in the center of

concentric circles.

We selected these algorithms to represent varying levels of
complexity and biological plausibility as well as because they
each require different amounts of information. Specifically, in
section 3.2.1 we will first demonstrate how to localize the position
of the tap analytically if the geometry of sensory array and the
propagation speed are known. Then in sections 3.2.2 to 3.2.6, we
will present more and more biological plausible implementations
which try to solve the task with less and less external information.

While these algorithms do not represent a complete list of
possible solutions, we still hope to provide the reader with a
thorough analysis of several approaches for computation based
on the precise timing of spikes as well as outlining some of
the challenges the community needs to overcome to perform
such computation using event-driven SNNs. More importantly
however, we hope to provide a starting point for the development
of novel algorithms, as well as providing a benchmark task for
further comparison and evaluation.

3.2.1. Analytic Solution
The position of the source can be estimated based on the Time
Difference Of Arrival (TDOA) between each pair of sensors. The
2D problem is shown in Figure 3 and, given the sensor spatial
positions Ri(xi, yi) and the TDOA for each pair of sensors, the
source localization (u, v) and the propagation speed c in the
chosen medium can be retrieved as follows:

x1 − x2 y1 − y2 −1T12 −1T2
12

x1 − x3 y1 − y3 −1T13 −1T2
13

...
...

...
...

x1 − xn y1 − yn −1T1n −1T2
1n

︸ ︷︷ ︸

A

∗

u

v

cd

c2

︸ ︷︷ ︸

X

=

x21 + y21 − x22 − y22
x21 + y21 − x23 − y23

...

x21 + y21 − x2n − y2n

︸ ︷︷ ︸

B

(1)

for N sensors where A ∈ R
N×4, X ∈ R

4×1 and B ∈ R
N×1.

This equation can then be solved using the pseudoinverse A+

of A. Because A+ has to be evaluated every time a stimulus
is presented, we can exploit the fact that our matrices are well
defined [rank(A) being equal to the number of columns of A]
and therefore:

A+ = (ATA)−1AT (2)

allowing us to minimize the required computation and find an
analytic solution to the problem, using bloc decomposition for
the inverse (ATA)−1, given the fact that ATA is a squared matrix
(ATA ∈ R

4×4). An alternative approach would be to iteratively
estimate the pseudoinverse, following the method described by
Tapson and van Schaik (2013).

3.2.2. Temporal Coincidence Detection
A simple way to detect a particular position is to have a have
a neuron associated with every target position, connected to
each receptor with delayed synapses. In this set-up, each neuron
receives one spike from every receptor and must only spike if the
input came from the right place. The natural way to ensure that
the receptive neuron will indeed cross the threshold is to have
the spikes arrive at the same time, so that all the incoming spikes
coincide and create a large increase in membrane potential.

Specifically, a decoding neuron at position p has Ns synapses,
each with a corresponding delay dp(k), and parameters τ and θ ,
corresponding to the decay constant and the firing threshold of
the neuron. For all input spikes to arrive simultaneously, we must
associate the vibration wave generate at each position p to a delay
vector dp ∈ R

Ns . The sub-threshold membrane potential of the
decoding neuron is then

vp(t) =

Ns
∑

k=1

e−
t−t(k)−dp(k)

τ 2(t − tk − dp(k)) (3)

where the exponential corresponds to the decay of the membrane
potential and 2 is a step function that ensures that the input is
only relevant after it arrived at the detector neuron at time t(k)+
dp(k), where t(k) is the time of arrival of the ground vibration
at the detector k and dp(k) is the delay associated with synapse
k. The leaky integrate-and-fire neuron will spike, indicating a
stimulus at position p, if

vmax > θ , vmax = max
t

vp(t). (4)

Hence, we will try to maximize the value of vmax. Since the
exponential decay term in Equation (3) implies that each input
spike is strongest at its arrival so, if we want to maximize the
membrane potential, we must make sure that all those spikes
arrive simultaneously, which can be achieved by setting

dp(k) = d∗p − tp(k) (5)

where tp(k) is the kth entry of the vector tp ∈ R
Ns which

corresponds to time of arrival of the ground vibration from
position p to each sensor k, and d∗p is a value that ensures that

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 42096

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

all the transmission delays are positive. Naturally, there are many
possible values of d∗p , but for simplicity we will set

d∗p = max
k

tp(k), (6)

which implies that all the spikes arrive when the last spike
is detected—as it is impossible to receive all of them earlier
than that.

In the ideal case—where the spikes from a given position are
perfectly timed—θ = Ns, so that, when the spikes arrive exactly
at tk, they will all add up and the membrane potential will cross
the threshold. However, if the spike times vary even slightly, the
fast decay will result in a sub-threshold membrane potential and
the neuron would not fire.

In the real world, the ideal case is unlikely so we must account
for the possibility of jitter by associating a target detector with an
area rather than a point. Assuming that τ is fixed, we must simply
select the value of θ that minimizes our classification error

e = Pr
[

vmax < θ |p
]

+ Pr
[

vmax > θ |¬p
]

, (7)

which is simply the sum of the probabilities of false negatives
and false positives. The simplest way to do this is to realize
that Pr

[

vmax < θ |p
]

increases monotonically with θ , while
Pr

[

vmax > θ |¬p
]

decreases monotonically with θ . Hence, the
computation of the optimal θ from a sample of m examples,
where mp examples were from position p and m¬p were not, can
be done through a simple algorithm:

for allm examples do
compute vmax

if example position = p then
add the tuple

(

vmax, d = 1
)

to list L
else

add the tuple
(

vmax, d = −1
)

to list L
end if

end for

Sort L by vmax, high to low.
e← mp

for every tuple in L: do
e← e− d
Add the tuple (vmax, e) to listM

end for

select the tuple with lowest e inM
Set θ ← vmax from the tuple with lowest error

This approach gives us a simple way of using the leaky integrate-
and-fire nature of neurons to achieve the desired detection as
long as we can compute the appropriate delays a priori.

3.2.3. Complex Weights and Delays
The previous approach, while fundamentally correct, requires
precise knowledge of the delays. If sensors or synapses have
systematic measurement errors or there is significant jitter, it
could be impossible to find delays dp(k) that would be able to
fully compensate for the effects of noise. Furthermore, unreliable
sensors or synapses should be given less importance than if
perfect noiseless sensors or synapses. In this section we present

a statistical method for computing the delays and associated
weights to address this issue (State, 2019).

First we must redefine our leaky integrate and fire neuron
model, described in Equation (13), to include synaptic weights:

vp(t) =

Ns
∑

k=1

wp(k)e
−

t−t(k)−dp(k)

τ 2(t − tk − dp(k)), (8)

While our new synapses now have two parameters (wp(k) and
dp(k)), the logic from the previous section remains the same and
our goal is to force spikes to arrive as synchronously as possible.
In order to manipulate the spike times algebraically, we encode
the input spike train – here consisting of a single spike per neuron
– into Ns variables that can be studied using linear algebra. We
do this by encoding spikes as phases of a complex number so
each spike

s(k) = e
jπ(t(k)−t0)

T (9)

where t0 is the time at which the first spike of a wave arrives
(so that the time of the input wave is not considered) and j is
the imaginary unit. Encoding time in the phase of a complex
number is a known trick when dealing with spikes, often used in
phasor networks (Hirose, 1992; Reichert and Serre, 2013; Frady
and Sommer, 2019). T is the maximum time during which we
can receive spikes and is given by

T =
2rmax

c
(10)

where c is the wave speed and rmax is the radius of the sensors,
meaning that the numerator is two times the maximum distance
between two sensors. The value of T ensures that the phase of
s(k) is in the interval [0,π], which is necessary to avoid geometric
inconsistencies (State, 2019).

Now we can use least squares regression to obtain the delays
and weights associated to each synapse. Thus, for every position
p we will have

ǫ =
1

Ne

Ne
∑

i=1

‖yi −

Ns
∑

k=1

ŵp(k)si(k)‖
2 (11)

where Ne is the number of examples, indexed over i and yi
corresponds to the desired output of the perceiving neuron: one
if the spikes were generated by a tap at position p and zero if the
spikes come from a tap somewhere else.

Once we find the weight vector for position p, ŵp =
[

ŵp(1), ŵp(2), ..., ŵp(n)

]

, it will give us weights with complex
entries. Naturally, this is not something we can put on a synapse,
but rather a complex number that somehow relates s to its
appropriate synapse. To obtain the delays and weights, we inverse
the operation done in Equation (9) and obtain the delay from the
phase and the weight from the absolute value,

ŵp(k)→ wp(k) = |ŵp(k)|, dp(k) =
T

π
arg ŵp(k). (12)

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 42097

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 4 | Biomimetic network architecture. (A) Connections from sensors (red) to TDE neurons (blue). (B) Connections from TDE to inverse direction

neurons (green). (C) Connections from sensors and inverse direction neurons to direction neurons (orange).

It is worth noticing that the conversion from a complex weight
to a weight and a delay used here ensures that all the weights
are positive. This means that all synapses are excitatory, and
is a natural consequence of the encoding chosen originally in
Equation (9).

To understand this procedure, it is useful to look at value of ǫ.
When yi = 1, the sum of the input to the neuron

∑n
k=1 ŵ(k)si(k)

should be real and positive whereas, when yi = 0, it should
be close to zero. In the ideal case, ŵ(k) will have exactly the
same phase as si(k) but the opposite sign, meaning that the
product ŵ(k)si(k) must be real and positive and the phases
somehow uniformly distributed in [0, 2π] when yi = 0 so that
∑n

k=1 ŵ(k)si(k) adds up to zero. Just as the delays were converted
into phases in Equation (9), the phases must now be converted
back into delays so that, when the phases of ŵp(k) and s(k) cancel
each other, the delay of the synapse also cancels out the delay
of the spike. The weights are also easy to interpret: the more
reliable the value s(k) is for a certain position p, the higher |ŵp(k)|.
This is because the least squares regression will “learn” that every
time s(k) has a specific value and the product ŵp(k)s(k)—which
is already real and positive due to the phase cancellation—should
approach y = 1 and hence be large.

As in the previous section, this complex conversion trick is
simply a way to synchronize the arrival of spikes at the neuron
encoding position and therefore we still need to compute the θp
for every neuron, for which we can, again, use Algorithm 3.2.2.
It is also worth noticing that using the complex formulation
intrinsically assumes that the spikes have the shape of a cosine,
as opposed to a decaying exponential (Reichert and Serre, 2013;
State, 2019), meaning that it is more appropriate to use a non-
instantaneous synapse such as an EPSP (Takagi, 2000) with a flat
value at the maximum such that the first derivative is the same;
however, this does not affect our results.

The advantage of this approach compared to similar complex
formulations (Reichert and Serre, 2013; Shrestha and Orchard,
2018) lies in the use of classical linear algebra. Besides being very

data efficient—as a single example would yield a solution just as
well as a combination of examples—this approach easily handles
cases where spikes are unreliable (State, 2019), something that
is often difficult when using delays directly and it is resistant
to over-fitting because the pseudoinverse guarantees that the
weights will have the lowest possible modulus. However, its
simplicity also make it less flexible, as it does not deal with multi-
spike problems (Taherkhani et al., 2015; Shrestha and Orchard,
2018) nor does it work for SNNs with hidden units (Hirose,
1992; Frady and Sommer, 2019) as the linear algebra solution
requires specific values as outputs, rather than step-by-step
error feedback.

3.2.4. Temporal Difference Encoders
The approaches presented in the previous sections encode
target position using individual neurons to represent each
point in space. While this encoding allows for precise
localization, it requires a large number of neurons. In this
section, we will take inspiration from the ring-like neural
structures present in the sand scorpion (Stürzl et al., 2000) to
develop an alternative solution based on Temporal Difference
Encoder (TDE) neurons (Milde et al., 2018) which requires many
fewer neurons3.

In this model, each pair of opposite sensors is connected to
an inner ring of 8 TDE neurons (Milde et al., 2018) as shown
in Figure 4A. The sub-threshold behavior of the TDE neurons is
modeled as a leaky integrate-and-fire neuron:

τm ·
dV(t)

dt
= EL − V(t)+ Rm · I(t) (13)

3The TDE was originally named the spiking Elementary Motion Detector (sEMD)

as it was designed to extract relative motion cues from spatially adjacent pixels

of an event-based vision sensor. However, the computation performed by these

neurons is of much more general nature as it calculates the temporal correlation of

two events based on the difference in timing, irrespective of the sensory modality.

Frontiers in Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 42098

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

where EL denotes the resting potential of the neuron, Rm is the
membrane resistance, I(t) is the injected current at time t, and τm
is a decay constant. These neurons are then driven by an input
current I(t) such that:

I(t) =

{

Itrig · f if f > 0

0 otherwise
(14)

where f represents a dimensionless “facilitating” input and Itrig
represents the “trigger” input current. Both f and Itrig are
exponentially shaped such that:

τsyn ·
df

dt
= −f τsyn ·

dItrig

dt
= −Itrig (15)

where τsyn is the time constant of the synaptic dynamics. When
a spike is received at a facilitating or trigger synapse, the
synaptic weight (wfac and wtrig respectively) is added to the
appropriate input:

f ← f + wfac Itrig ← Itrig + wtrig (16)

The dynamics described by Equations (14)–(16) result in an
input current which is scaled non-linearly depending on the time
difference between spikes arriving at the facilitating and trigger
synapses. Additionally, as Itrig is “gated” by f , these synapses are
also direction-selective. The time difference between the inputs
received at the two opposite sensors will be largest when a
stimulus is located on the line connecting them and smallest
when it is on the line perpendicular to this meaning that the inner
ring of TDE neurons will encode the direction of the stimuli as a
vector in an over-complete 8-dimensional space.

While the directional information required could be decoded
from the activity of the TDE neurons, the desired output for
this system is a ring with a single active neuron identifying the
direction of the stimuli. In order to achieve this, we connect the
TDE neurons to a second ring of “inverse direction” neurons
using the excitatory connections shown in Figure 4B. Weak
connections from the TDE neuron to the adjacent inverse
direction neuron and strong connections to the opposite inverse
direction neuron result in this population of neurons having a
minimum of activity in the direction of the stimulus.

Finally, the inverse direction neurons are connected to
the innermost ring of “direction neurons” with inhibitory
connections as shown in Figure 4C. These neurons are
additionally provided with background excitation—direct from
the sensors—tuned to produce a “1-hot” encoding of the stimuli
direction. In order to maximize the accuracy of this encoding, we
use 16 neurons in this ring with inhibitory weights calculated as:

wij = wpeak.max(0, cos(θi − φj)) (17)

where wpeak is the peak inhibitory weight, θi is the angle of the
sensor adjacent to inverse direction neuron i and φj is the angle
of the direction neuron j. While this approach does not currently
provide an estimate of distance, if magnitude information were
available, this could be provided in place of the excitatory input
to the direction ring.

3.2.5. Synaptic Delay Plasticity
So far we addressed how one can adjust neuronal (2), axonal
and synaptic (w, τ) parameters if the geometry of the sensor
array is known or, in the absence of that information, if a set
of training examples is given. Given this information, we have
outlined how these parameters can be optimized so that one can
localize the position of a vibration source even in the presence
of temporal jitter. While we used biologically motivated neuron
and synapsemodels to perform the computation, the optimization
of the parameters was done offline using conventional regression
algorithms such as the least square method. Such optimization
procedures require non-local information4 such as the neuronal
firing thresholds of other neurons, the onset of the stimulus
and the position of the stimulus itself. The decision on where
the tap originated from is being made through adapting
neuronal firing/spiking thresholds such that the designated
spatio-temporal pattern is matched. In the subsequent sections
we are going to address the localization task by applying three
constraints on our model:

1. Only information which is local to a given pre-post synaptic
neuron pair is used to update synaptic parameters.

2. No a priori knowledge of the sensory system is required.
3. The model parameters must be updated in an

unsupervised manner.

Drawing inspiration from the myelin plasticity discussed in
section 2.3 and from previous work on delay shifts (Hussain et al.,
2012; Wang et al., 2015), in this section we will extract temporal
features by modulating conduction delays.

The proposed model uses gradient descent dynamics to
synchronize spikes emitted by pre-synaptic neurons, by adjusting
delays on the most recently active synapses within an
experimentally set temporal window. Whenever a neuron fires,
mutual inhibition is used to ensure that neurons specialize to a
particular temporal pattern.

The delay plasticity model works in conjunction with leaky
integrate-and-fire (LIF) neurons described in Equation (13). We
chose an exponential excitatory post-synaptic current (EPSC)
shape such that the input current I(t) at time t is:

I (t) = Iinj ·
∑

i

wi · e
−

t−si
τsyn ·H (t) (18)

where Iinj is the injected current every time a neuron fires, wi is
the synaptic weight of synapse i, τsyn is the synaptic time constant,
andH(t) is the Heaviside step function.

When we study the dynamics of a single synapse i, we remove
the discontinuities caused by the input signal by focusing on the
range [si, t] where H(t) = 1, si being the time of arrival of a
spike to a post-synaptic neuron. Assuming initial conditions such
that Vi(si) = EL as we are restricting the network to only one
spike per synapse, and the membrane potential is reset between

4Local information is defined as to have direct access from a neuron perspective,

e.g. post-synaptic density (estimate of synaptic weight), average firing rate (calcium

concentration) or its own spiking threshold.

Frontiers in Neuroscience | www.frontiersin.org 8 May 2020 | Volume 14 | Article 42099

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

each training example through a WTA algorithm, the membrane
equation now has a solution:

Vi (t) = EL +
Rm · Iinj · wi · τsyn

τm − τsyn
·

(

e−
t−si
τm − e

−
t−si
τsyn

)

(19)

The time course of the potential follows a bi-exponential model
with a finite rising time. In order to maximize the membrane
potential of a post-synaptic neuron—and ultimately associate it
with a particular temporal pattern—we compute the gradient of

the neuron’s potential
∂V(t, si)

∂si
and modulate di until all spikes

are aligned. The model assumes only one spike per synapse.
The partial derivative of V(t, si) with respect to si can then be
written as:

∂V(t, si)

∂si
=

Rm · Iinj · wi

τm − τsyn
· (e−

t−si
τm − e

−
t−si
τsyn) (20)

The delay update rule can be represented by the
following equation:

dt+1i = dti + η ·
∂V(t, si)

∂si
(21)

where η represents the learning rate of a neuron, with η >

0. We decay the learning rate across iterations to avoid large
gradient steps.

3.2.6. Structural Plasticity
In this section we propose a neurally implemented, self-
organizing, balanced network of excitatory and inhibitory (EI)
neurons which fulfills the constraints outlined at the beginning
section 3.2.5 by combining event-based STDP (Song et al., 2000)
with a variant of structural plasticity (Bekkers, 2011; Knoblauch
et al., 2014) and adaptive spiking thresholds (Afshar et al., 2019b).
It has been demonstrated that the combination of STDP and a
competitive EI network (i.e., WTA), in the context static inputs
can account for disparity selectivity (Chauhan et al., 2018),
in the context of non-static inputs account for the observed
development of orientation selectivity (Masquelier, 2012), and
even the formation of temporal memory (Kappel et al., 2014).
These mechanisms become especially powerful when sensory
information is encoded using relative latency, i.e., using a
temporal code.

The EI network consists of N neurons of which 80% are
excitatory and 20% are inhibitory5. N depends on the desired
spatial resolution the network should be able to decode. Each
excitatory neuron is connected via simple alpha synapse (Rall,
1967) with the following dynamics

Isyn(t) = Īsyn
t − t0

τsyn
exp

(

1−
t − t0

τsyn

)

(22)

5The excitatory neuron pool has N × k incoming excitatory plastic synapses (see

Equations 24 and 26), whereas the connectivity probability E→ I and I→ E is set

to 0.7 with random and fixed synapses.

where Isyn is the EPSC, Īsyn is the peak EPSC and τsyn is the
synaptic time constant. Given a pre-synaptic spike at t0, Isyn is
updated as follows

Isyn = Isyn + w, (23)

where w is the synaptic weight which is modified according to a
STDP protocol:

1w =

a+w · e
tpre−tpost

τ+ , if tpre ≤ tpost

a−w · e
tpre−tpost

τ− , if tpre > tpost ,
(24)

where a+w and a−w represent the magnitude of increments and
decrements to the weight and can be seen as the learning rate
of the plasticity mechanism. tpre and tpost are the times at which
the pre- and post-synaptic neuron emitted a spike and τ+/−

defines the temporal windowwithin which spikes result in weight
changes. Such “additive” STDP updates (Song et al., 2000) often
result in bimodal weight distributions with all weights ending
up either at 0 or their maximum value. There are numerous
approaches to addressing this problem (Goodhill and Barrow,
1994; Morrison et al., 2008), but here we implement an event-
driven weight decay which is triggered whenever the post-
synaptic neurons emits a spike. The weight decay depends on the
synaptic weight and is calculated as follows:

w = w− (w · κ · η), (25)

where κ is the ratio between weight increment and decrement

(κ =
a+w
a−w

, for balanced STDP protocol κ = 1) and η is the

decay rate (η << 1). The objective of the STDP learning rule is
to detect spatio-temporally correlated activity in the input spike
trains. Here we pair STDP for synaptic weights with a STDP
rule for synaptic time constants. This plasticity rule aims to find
a set of synaptic time constants which, given the post-synaptic
activity, increase the overlap in synaptic input currents across the
8 input channels. The time constants of channels which transmit
spikes early in the sequence are increased, whereas the time
constants of channels which transmit spikes late in the sequence
are decreased. This plasticity rule has the consequence that a
neuron spikes as early as possible to a given spatio-temporal
pattern given the provided competition of the other neurons
in the EI network. The synaptic time constants τ are updated
as follows:

1τ = aτsyn ·
(1t − s) · e

−

∥

∥

∥

1t−s
τ∗−s

∥

∥

∥

(τ ∗ − s) · e−1
, (26)

where aτ is the learning rate of the synaptic time constant and
is set such that the time scale of changes in the synaptic time
constants is much slower than the time scale of weight plasticity

(aτ << a
+/−
w). 1t is calculated based on pre- and post-synaptic

spike timing (1t = tpre− tpost), τ
∗ determines the peak in change

of the time constant with relative to the offset s (τ ∗ > s).
The plasticity kernel for synaptic weights and time constants

are depicted in Figure 5C.
The continuous changes to synaptic weights and time

constants are combined with a form of structural plasticity,

Frontiers in Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 420100

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 5 | (A) Kernels of plasticity. Change in synaptic weights 1w (black, solid) and time constants 1τ (blue, dashed) as a function of 1t. (B) Four example

spatio-temporal patterns elicited by eight different sensors. (C) Example synaptic traces to the same spatio-temporal pattern before (left) and after (right) training. Top

panel shows the spatio-temporal pattern across eight channels. Blue traces show the excitatory post-synaptic currents (EPSCs) of 8 different synapses connected to

the 8 sensors. Black vertical bar indicates the post-synaptic spike time. Black trace in the bottom panel is the post-synaptic membrane potential plotted in

conjunction with its threshold (orange trace on top).

operating on slower time-scale. If the average weight of all
incoming synapses is below a user defined threshold, this rule
deletes all (8) synapse and “re-spawns” a new set with a random
weights and time constant sampled from a Gaussian distribution.
This can be interpreted as modeling the retraction of a dendritic
branch and its replacement by another at a different location
hence its different time constant and strength (Zito et al., 1999).
In this way, the synaptic weights and time constants are sampled
and afterwards adjusted according to Equations (24) and (26)
until each excitatory neuron within the EI network finds a unique
set of w and τsyn. Thus, each neuron is sensitive to particular
spatio-temporal pattern which, in the case of this task, represents
a particular location (see Figure 5C). To prevent each neuron
from learning multiple patterns we install adaptive thresholds,
similar to (Afshar et al., 2019b). However, the adaption of the
firing threshold depends only on the post-synaptic membrane
potential, which reflects the networks activity indirectly via the
recurrent connections.

4. RESULTS

In the following subsections, we will present the results obtained
using each of the algorithms discussed in section 3.2.

4.1. Analytical Solution
Because the matrix A in Equation (1) is not constant,
we need to compute its pseudo-inverse at run-time in
order to use the approach presented in section 3.2.1. While
it would be possible to perform this calculation on the
microcontroller (either direct pseudo-inverse computation, or
iterative methods), it is beyond the scope of this paper.
Instead, we performed the calculation of this pseudo-inverse

offline on the host computer. Due to the temporal resolution
of our system, the positional error (Figure 6A) is significant
(73.4% accuracy) while angles are recovered reliably in almost
all trials (99.7%). Nonetheless, 80% of the position error is
less than 20mm.

After differentiating Equation (1), it appears that our
mechanical implementation has 2 ill-conditioned points,
at 90 and −90 degrees, as shown in Figure 6B. As
Figure 6C illustrates, the angular precision is not affected by
this problem.

4.2. Temporal Coincidence Detection
To compute the delays associated with every point and sensor, we
first need to calculate the propagation speed of the vibration wave
on wood. The simplest way to do this is to use linear regression
on the distances between points and sensors as one variable and
the arrival times as the second. From our recordings we get 2.560
spike times which, as we show in Figure 7, we can match to their
corresponding delay. This gives us a speed of 126m s−1, which
we can then use to compute the delays.

By using the delays calculated by dividing the distance by the
propagation speed we find that we only able to recover 37.5%
of the positions successfully. Within those errors, the angles are
always perfectly recovered, but the distances are not. Although
the distance recovery is better than chance—which would be
25%—the fact that the coincidence detection would mistake
different distances implies that there are errors that we are not
accounting for. This is not surprising given the variance around
the regression line shown in Figure 7.

Interestingly, the percentage of errors remains the same when
we change the number of measurement per point, hinting that
the error in delays is not stochastic but rather systematic. This

Frontiers in Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 420101

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 6 | Analytic solution for the recorded data. (A) Position error to the ground truth. (B) Overview of the results for the full dataset (320 points). (C) Angular error.

80% of the datapoints have a position error lower than 20 mm. The angular error is lower that ±0.04 degrees. The mechanical design of our prototype presents two

ill-conditioned points at 90 and −90 degrees (along a vertical line in this case).

FIGURE 7 | This figure shows the membrane potential for a position detector with temporal coincidence detection (left) and the relationship between spiking delays

and distances (right). The left plot shows how spikes generated from a tap at the preferred position arrive synchronously at the detector neuron and induce a high

membrane potential (blue), while spikes that arrive from taps at other positions (green and red) achieve lower membrane potentials. This plot highlights the difficulty in

differentiating taps coming from the same angle but different distances (green vs. blue). Also, spikes do not arrive precisely at the same time, which prevents the

membrane potential from reaching the theoretical upper bound (gray). The general relationship between distance and delay is easy to see in the right plot, and can be

used to obtain the speed from the slope of the regressed line (black), while the variance around that line accounts for the sub-optimal membrane potentials obtained

in the left plot. It is worth noticing that here we displayed 2560 points, yet they all fall into a few dozens of clusters, meaning that the errors are systematic rather than

stochastic.

can be observed in Figure 7, where despite having 2,560 points
we only see a few of them, meaning that the measurements are
systematically biased.

4.3. Complex Weights and Delays
Knowing that there is a systematic but unknown bias on the
sensors implies that we must resort to techniques drawn from
statistics and machine learning rather than purely analytical
solutions which could extract the information of the biases
automatically. As expected, using the linear regression in the
complex domain yields perfect recovery of the points, implying
that the systematic biases in the recorded times are not
necessarily an impasse.

This can be illustrated in Figure 8, where we see that the
value obtained by the cumulative weighted representation of
the spikes in the complex plane reaches the unit circle only
when the right input is presented. This can be interpreted
in terms of spikes by saying that for any input spike train
that does not correspond to the right input the complex
representation of the spikes do not have their phases aligned,
and therefore they do not arrive to the perceiving neuron at the
same time.

4.4. Temporal Difference Encoders
As the network described in section 3.2.4 is static, we simply
presented the 320 sets of input spikes to the network as shown

Frontiers in Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 420102

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 8 | Complex representation of the spikes weighted by their corresponding complex weights. We show the position of the weighted sum of the spikes in the

complex plane given by ŷp =
∑Ns

k ŵp(k)s(k) for a single position. We used the parameters of a single position detector (angle 135◦ and distance 400 mm), and then

tested the values of ŷp with spike trains generated from a tap in the preferred position (blue) and in every other position (red). On the left we show the full unit circle and

we observe that 32 different positions are clustered together in 8 clusters, corresponding to the 8 different angles. On the right plot we zoom around the solution and

verify that the absolute value of ŷp for other positions within the same cluster—meaning for the same angle but different distances—is indeed lower.

FIGURE 9 | Elementary motion detector network output. (A) Example input spikes from sensor when stimuli is located 800mm away from the sensor at a 90◦ angle.

(B) Corresponding spikes from TDE layer (blue), inverse direction layer (red) and direction output (green). (C) Direction detection performance across all recorded data.

in Figure 9A. Because this approach is only capable of finding
the angle to the target, we can simply treat each output spikes
from a “direction” neurons (green spikes in Figure 9B) as a “vote”

for the target being at the direction neuron’s corresponding
angle. We can then subtract the correct stimuli angle from
the angle associated with each spike and plot the circular

Frontiers in Neuroscience | www.frontiersin.org 12 May 2020 | Volume 14 | Article 420103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 10 | Behavior of a postsynaptic neuron with synaptic delay plasticity. (A) Peristimulus time histogram averaged across 50 data points at the beginning and

toward the end of the simulation. The vertical red line represents the postsynaptic neuron’s firing time, chosen as a reference from which the time difference is

calculated. After learning, more presynaptic neurons fire with a lower time difference compared to the postsynaptic firing time, due to the synchronization of input

spikes. (B) Tuning curve of the postsynaptic neuron averaged across all the data points where the neuron fired, linking the firing rate to each of the 32 different stimuli

positions. Positions 21–24 correspond to the distances 200, 400, 600, and 800 mm, respectively, at a 270° angle.

histogram shown in Figure 9C. This shows that the mean
error of the classified directions is 0◦, although a perfect one-
hot encoding is not achieved resulting in a circular standard
deviation of 17.5◦.

Further investigation supports the existence of systematic
biases in the sensor as, although the network is entirely
symmetrical, the circular standard deviation is 0◦ for stimuli
presented at angles of 0◦ and 180◦ whereas, for stimuli presented
at all other angles, the circular standard deviation is 18.5◦.

We used the GeNN library (Yavuz et al., 2016) to generate
optimized CPU simulation code for this model. This simulation
can be run 10× faster than real-time on a single ARMCortex A57
core running at 2GHz when using a 0.1ms simulation time step,
suggesting that this approach could be used for embedded online
processing of spatio-temporal patterns.

4.5. Synaptic Delay Plasticity
The synaptic delay plasticity network consists of eight pre-

synaptic neurons, sparsely connected in a random fashion to

50 LIF neurons. Sparsity is achieved by limiting the number of

connections toward a LIF neuron N = 4. Synaptic delays are

randomly initialized according to a normal distribution with a
mean of µ = 0.5ms, and a standard deviation σ = 0.3ms and

a fixed weight equal to
w0

N
with w0 = 1. The resting potential

is set to EL = −70mV. The LIF neuron’s decay constant is set

to τm = 2ms, and the injected current Iinj is set to 180 nA to

make sure that each presented spike train is capable of causing a

LIF neuron to fire. The learning rate starts at η = 1 and decays

by 10% after every 100 input spike trains to help the network

converge toward a local minimum.
Each post-synaptic neuron that responds starts specializing to

a particular pattern by synchronizing its input spikes through
a change in synaptic delays following Equation (21). The

winner-take-all mechanism ensures that no other post-synaptic
neurons synchronize their input spikes. With each subsequent
presentation of the pattern, the time differences between input
spikes gradually converge toward zero (Figure 10A).

Frontiers in Neuroscience | www.frontiersin.org 13 May 2020 | Volume 14 | Article 420104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 11 | Average angle accuracy for an increasingly sparse synaptic delay

network. We connected each LIF neuron to a random subset of 8 pre-synaptic

neurons representing the hardware sensors. We varied the size of the subset

across 35 different trials in order to assess the smallest number of connections

between pre-synaptic and LIF neurons capable of preserving an accurate

temporal representation of all 8 angles. A sparse synaptic delay network with

only 2 connections per LIF can already represent all angles with an average

accuracy of 95% and we can achieve 100% accuracy with only 4 connections.

With a temporal resolution of 0.1ms, all eight angles were
successfully represented by at least one LIF neuron (Figure 10B).
Previous implementations of learned delays relied on an all-to-
all connectivity scheme (Hussain et al., 2012), but we obtained
similar performance with fewer connections through a randomly
connected sparse network with high redundancy (Figure 11).
The learned temporal patterns for a network with only two
connections per LIF neuron are enough to represent all angles
with an accuracy of 95% and we can achieve 100% accuracy
with only four connections per LIF neuron. An all-to-all network
would work just as well, but, in addition to being more efficient in
terms of hardware, a randomly connected and highly redundant
sparse network increases robustness against systemic noise or a
faulty sensor.

We also wanted to determine whether the synaptic delay
network could differentiate between stimuli at different distances.
As seen in Figure 10B, an individual neuron seems to respond
more frequently to a particular position. We expect the
membrane potential to be maximized for a particular distance
which was not the case as the membrane potential was similar
across all distances.

While the delay plasticity network managed to specialize
neurons to all directions, due to the slow attenuation of the waves
being measured, the temporal signatures across the measured
distances are not significantly different. Spike synchronization
seems to have a limited impact on the membrane potential
beyond a certain level of synchronization. An inhibitory plasticity
rule could be explored to further specialize post-synaptic neurons
to increasingly precise temporal patterns.

4.6. Structural Plasticity
As a first step, we trained 4 neurons to learn 4 out of the 32
different spatio-temporal patterns (see Figure 6B). The network’s
free parameters, i.e., synaptic weights w, synaptic time constants
τ and firing thresholds, are randomly initialized at the beginning
of the training. Each spatio-temporal pattern, corresponding to
a unique location, is presented 20 times to the network. In

the beginning, the neurons sparsely capture incoming spatio-
temporal patterns and therefore the thresholds slowly decrease.
Each neuron starts to “lock on” to one particular pattern by
decreasing the synaptic time constants of late spikes in the
sequence and increasing the time constants of spikes early in the
sequence following Equation (26) (for visualization of the time
constant change see Figure 6A, blue dashed trace). The synaptic
weights start to increase more for late spikes in the sequence,
than for early spikes following Equation (24) (for visualization
of the weight change see Figure 6A, black solid trace). Therefore
the neuron begins to respond earlier to a given spatio-temporal
pattern, while the mutual inhibition introduces competition on
both the spike itself and the neuronal firing thresholds. After a
given neuron’s threshold—and thus its other free parameters—
starts to stabilize, it reliably spikes in response to a particular
pattern (see Figure 12A). After 15 stimuli presentations, the
thresholds start to stabilize and each neuron locks onto 1 out of 4
different patterns (Figure 12B).

In a second step, we use 32 neurons and present all 32
patterns corresponding to different locations. Each pattern is
presented 100 times to the network. The neurons fail to respond
reliably to the different spatio-temporal patterns which is to
due to the jitter present in the data, leading to too similar
spatio-temporal patterns. While neurons are capable of learning
these patterns, the jitter prevents the stabilization of the firing
threshold and the synaptic weights and time constants keep
on changing (see Figure 12C). This case of failure might also
be due to the number of presentation needed by the network
to learn a unique set of parameters which scales non-linearly
with the number of patterns to learn and number neurons in
the network (see Afshar et al., 2014 for statistical analysis of
this relation).

Structural plasticity mechanisms or variants thereof within
competitive EI networks has been demonstrated before to learn
spatio-temporal patterns of activity in static (Gerstner et al., 1996;
George, 2018) and time-varying (Masquelier, 2012; Roy and
Basu, 2016; Roy et al., 2016) conditions. Unlike Roy et al. (2016),
our approach does not need a reference time, but rather relies
on relative latency encoding similar to Masquelier (2012). The
proposed unsupervised structural plasticity algorithm is designed
to operate on time-continuous, event-based sensory data in
which there exist no start- or end-point to a pattern, nor one
can rely on batch-training. In contrast to the feature extraction
approach proposed by Afshar et al. (2019b)—which inspired
this work—neurons in our network adapt their neuronal firing
threshold solely based on locally available signals. We do so by
utilizing the inhibitory interneuron population which indirectly
signal the presence of captured spatio-temporal pattern by other
neurons by hyperpolarizing the non-spiking excitatory neurons.

Understanding the computational properties and emergent
network dynamics resulting from recurrent excitation and
inhibition mediated balanced activity is beyond the scope of
this paper, but will be subject of future investigations. A
promising next step would be to learn the temporal relations
of different spatio-temporal patterns by exploiting recurrent
excitatory synapses with STDP, as described in Kappel et al.
(2014) and Milde (2019).

Frontiers in Neuroscience | www.frontiersin.org 14 May 2020 | Volume 14 | Article 420105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

FIGURE 12 | Detailed excitatory post-synaptic current traces and spiking behavior of neurons in the context of two different tasks which vary in the number of

patterns presented to the network and the network size. In the first task only four different spatio-temporal patterns (four locations) are presented to a network

consisting of four excitatory and 2 inhibitory neurons. In the second task 32 different spatio-temporal patterns (32 locations, i.e., the entire data set) are presented to a

network of 32 excitatory and 8 inhibitory neurons. (A) Detailed EPSC traces of the eight input synapses to the four excitatory neurons (1 color per post-synaptic

neuron) to 1 out of 4 different spatio-temporal patterns (first task). The top plot represents the input pattern, whereas the bottom panel shows the membrane potential

traces of the four excitatory neurons. Note that only one neuron generates an action potential and subsequently inhibits the others via the inhibitory interneurons. (B)

Membrane potentials and corresponding neuronal firing thresholds of 4 neurons learning 4 different spatio-temporal patterns (first task). Each neuron learns to

represent a single input pattern and consequently spikes reliably to only one out of the four patterns. Two pattern repetitions are shown. After each neuron locks onto

one out of the four patterns the neuronal firing threshold stabilize. (C) Spike raster plot of the input and the network’s activity. Blue dots represent the inhibitory neuron

activity (bottom), black dots indicate excitatory neuron activity (middle) and pink dots represent the different input patterns (top). The network fails to converge and

represent each location using a single neuron. The reason for this might be due to the too short training time given the amount of different patterns or due to the too

high similarity in the input patterns for the same angle but different distances. The sampling frequency of the ADC is too slow to provide the needed temporal precision

to resolve the distance if the stimulus onset is not known.

4.7. Comparison and Extensions
In the preceding sections of this work, we proposed several
approaches for tackling the problem of spatio-temporal pattern
classification, in the context of touch localization based on the
precise timing of input events. Table 1 shows an overview of the
presented results. It is worth noting that, as a community, we lack
clear metrics for assessing the performance of spiking networks.
While a simple accuracy metric can be used, it fails to consider
factors such as power consumption and suitability for real-time
simulation as well as not reflecting constraints present in both
biological SNNs and neuromorphic hardware (Nowotny, 2014).
Further effort will have to be done by the community to overcome
this problem and provide datasets and metrics which do consider
these factors.

5. DISCUSSION

In this paper we demonstrated, through a simple task, different
approaches for tackling spatio-temporal pattern classification
with SNNs. The problem of separating spatio-temporal

TABLE 1 | Comparison for the hereby proposed methods.

Method Angle accuracy (%) Distance accuracy (%)

Analytic solution 99.7 73.4

Temporal coincidence 100 37.5

Complex weights and delays 100 100*

Temporal difference encoders 100 N.A.

Synaptic delay plasticity 100 N.A.

Structural plasticity 100 N.A.

If all the approaches are able to distinguish between the arrival angles, the distance is still

an open issue here. The analytic solution is able to (almost) correctly extract the distance,

under the assumption of a known geometry. Some thoughts about this problem are

detailed in the Discussion section (*). The 100% accuracy for the distance in the Complex

weight and delay method is under the assumption of using an extra linear classifier to

process the output data.

patterns into prototypical features or discrete classes by
learning, clustering or any other form of transformation
resides at the core of both event-driven computing and
event-based neuromorphic processing (Chicca et al., 2014;

Frontiers in Neuroscience | www.frontiersin.org 15 May 2020 | Volume 14 | Article 420106

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

Indiveri and Sandamirskaya, 2019). This work is not intended
to demonstrate high-precision computing, but rather to
open new perspectives on learning these spatio-temporal
patterns and on performing event-based tactile sensory
processing. The presented algorithms were chosen to provide
a qualitative overview given certain constraints of available
information on how to extract task-relevant information
from the timing of incoming events. Despite their different
complexities, all of these approaches extract the required
information solely from the precise timing of the incoming
events. While a major drawback of all of these approaches
is the need for temporal precision on the sensory side, our
experiments expand on how information can be extracted
from the timing of an incoming event in neurally-inspired
processing paradigms.

As discussed in section 2.1, in sand, compressional waves
attenuates rapidly with distance (G(d) = 1

d
) meaning that

the gradient of attenuation across the scorpion’s outspread
legs can be used to estimate distance to the stimuli. However,
on the surface used in this work, attenuation is lower.
Therefore, it seems unlikely that our system would sense a
difference in amplitude between the sensors. Nevertheless, mean
amplitude across the sensors could be used to estimate distance,
although it would be unable to disambiguate between a distant
stimuli with a large amplitude and a nearby stimuli with a
smaller amplitude.

Although it is true that the case of multiple sources is not
addressed in this work, we would highlight that the precision of
the sensors is of a few microseconds, meaning that the vibration
should have to be generated at two sources exactly at the same
time, which is unlikely. We can, however, speculate that in the
case of multiple sources, the methods with excitatory synapses
only—such as complex weights—should promote the activation
of the neurons corresponding to the two sources, while those
with lateral inhibition—such as synaptic delay plasticity—would
resolve a conflict one way or the other, giving one active source at
a time.

Due to the nature of the stimuli, all of the approaches
presented in this paper require simulations with high temporal
resolution. While small models requiring high temporal
resolution—such as the TDE-based approach discussed in
section 4.4—can be simulated in real-time using simple CPU-
based simulations, for larger models many current approaches
are not capable of providing high temporal resolution and real-
time simulation speed.

The majority of digital neuromorphic systems (Furber et al.,
2014; Merolla et al., 2014; Davies et al., 2018; Frenkel et al.,
2018) use a time-driven approach for simulating neurons with
simulation time steps of around 1ms. While some systems
can operate at a higher temporal resolution, this typically
requires increasing the clock speed, leading to increased
power consumption. This programmability of the SpiNNaker
platform (Furber et al., 2014) means that, although this platform
was designed to operate on a 1ms simulation time step, it has
been recently demonstrated that a 0.1ms time step is achievable
through careful programming (Knight and Furber, 2016; Rhodes
et al., 2020). Furthermore, when even higher temporal resolution

is required, truly event-driven models capable of learning
temporal patterns with sub-millisecond precision have also been
demonstrated on SpiNNaker (Lagorce et al., 2015). On the
other hand, in terms of efficient processing with high temporal
precision, mixed-signal analog/digital neuromorphic systems
such as ROLLS (Qiao et al., 2015) or DYNAP-SE (Moradi et al.,
2017) have a distinct advantage, as their neuronal dynamics
arise from the physical characteristics of their analog circuits
so time represents itself. As such, analog systems have been
successfully used for a variety of complex spatio-temporal signal
processing tasks, even exhibiting cognitive abilities Neftci et al.
(2013), or including spike-based plasticity mechanism applied to
learning auditory features from a silicon cochlea (Sheik et al.,
2012), sequence learning (Kreiser et al., 2018a; Milde, 2019) and
simultaneous localization and mapping using a silicon retina
(Kreiser et al., 2018b).

We anticipate that this work will be extended to qualitatively
and quantitatively assess solutions to the problem of spatio-
temporal pattern learning, which exploit the fact that time
represent itself in neural computation, and thus uses the precise
timing of events to learn in a purely event-driven manner.
The Neuromorphic Engineering community is facing and needs
to overcome this canonical problem, to establish itself as
a viable alternative to conventional clock-based sensing and
processing systems.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

GH and MM developed the neuromorphic tactile sensor. GH
developed the analytical solution to the localization problem.
PA developed the temporal coincidence detection and complex
weights and delays based algorithms. JK developed the Temporal
Difference Encoder based algorithm. OO developed the synaptic
delay plasticity algorithm.MMdeveloped the structural plasticity
algorithm. GH,MM, PA,OO, JK, andASwrote the paper. AS, RB,
and GI contributed to the paper writing process and supervised
the research.

FUNDING

This work was partially supported by the EPSRC (Brains
on Board project, grant number EP/P006094/1), the
Bundesministerium für Bildung und Forschung and the Max
Planck Society through the Max Planck School of Cognition,
the NEUROTECH CSA project through the Neurotech
fellowship, the European Union’s Horizon 2020 research and
innovation programme under grant agreement no 732642
and the Swiss National Science Foundation (Sinergia project
#CRSII5-18O316).

Frontiers in Neuroscience | www.frontiersin.org 16 May 2020 | Volume 14 | Article 420107

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

ACKNOWLEDGMENTS

We authors would like to thank the organizers of the CapoCaccia
Neuromorphic Engineering Workshop 2019, where intense

discussion and work on the approaches proposed in this paper
began. Additionally, we would like to thank Wolfgang Stuerzl
for kindly providing us with a library of beautiful photographs
of sand scorpions, Martin Reichert for originally taking them.

REFERENCES

Afshar, S., George, L., Tapson, J., van Schaik, A., and Hamilton, T. J. (2014).

Racing to learn: statistical inference and learning in a single spiking neuron

with adaptive kernels. Front. Neurosci. 8:377. doi: 10.3389/fnins.2014.00377

Afshar, S., Hamilton, T. J., Tapson, J., van Schaik, A., and Cohen, G.

(2019a). Investigation of event-based surfaces for high-speed detection,

unsupervised feature extraction, and object recognition. Front. Neurosci.

12:1047. doi: 10.3389/fnins.2018.01047

Afshar, S., Xu, Y., Tapson, J., van Schaik, A., and Cohen, G. (2019b). Event-

based feature extraction using adaptive selection thresholds. arXiv preprint

arXiv:1907.07853. doi: 10.3390/s20061600

Astrom, K. J., and Bernhardsson, B. M. (2002). “Comparison of Riemann and

Lebesgue sampling for first order stochastic systems,” in Proceedings of the

41st IEEE Conference on Decision and Control, Vol. 2 (Las Vegas, NV: IEEE),

2011–2016. doi: 10.1109/CDC.2002.1184824

Baldi, P., and Atiya, A. F. (1994). How delays affect neural dynamics and learning.

IEEE Trans. Neural Netw. 5, 612–621. doi: 10.1109/72.298231

Baudot, P., Levy, M., Marre, O., Monier, C., Pananceau, M., and Frégnac, Y.

(2013). Animation of natural scene by virtual eye-movements evokes high

precision and low noise in v1 neurons; handwritten. Front. Neural Circ. 7:206.

doi: 10.3389/fncir.2013.00206

Bekkers, J. M. (2011). Changes in dendritic axial resistance alter synaptic

integration in cerebellar Purkinje cells. Biophys. J. 100, 1198–1206.

doi: 10.1016/j.bpj.2011.01.042

Brownell, P., and Farley, R. D. (1979a). Detection of vibrations in sand by tarsal

sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J. Comp.

Physiol. A 131, 23–30. doi: 10.1007/BF00613080

Brownell, P., and Farley, R. D. (1979b). Orientation to vibrations in sand by the

nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization.

J. Comp. Physiol. A 131, 31–38. doi: 10.1007/BF00613081

Brownell, P. H. (1977). Compressional and surface waves in sand:

Used by desert scorpions to locate prey. Science 197, 479–482.

doi: 10.1126/science.197.4302.479

Buonomano, D. V., and Maass, W. (2009). State-dependent computations:

spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10,

113–125. doi: 10.1038/nrn2558

Buonomano, D. V., and Merzenich, M. M. (1995). Temporal information

transformed into a spatial code by a neural network with realistic properties.

Science 267, 1028–1030. doi: 10.1126/science.7863330

Carr, C. E., and Konishi, M. (1990). A circuit for detection of interaural time

differences in the brain-stem of the barn owl. J. Neurosci. 10, 3227–3246.

doi: 10.1523/JNEUROSCI.10-10-03227.1990

Chauhan, T., Masquelier, T., Montlibert, A., and Cottereau, B. R. (2018).

Emergence of binocular disparity selectivity through Hebbian learning. J.

Neurosci. 38, 9563–9578. doi: 10.1523/JNEUROSCI.1259-18.2018

Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. (2014). Neuromorphic

electronic circuits for building autonomous cognitive systems. Proc. IEEE 102,

1367–1388. doi: 10.1109/JPROC.2014.2313954

Cohen, G. K., Orchard, G., Leng, S.-H., Tapson, J., Benosman, R. B., and van Schaik,

A. (2016). Skimming digits: neuromorphic classification of spike-encoded

images. Front. Neurosci. 10:184. doi: 10.3389/fnins.2016.00184

Corradi, F., and Indiveri, G. (2015). A neuromorphic event-based neural recording

system for smart brain-machine-interfaces. IEEE Trans. Biomed. Circ. Syst. 9,

699–709. doi: 10.1109/TBCAS.2015.2479256

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 30, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. (2001). Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.

Dean, A. (1981). The variability of discharge of simple cells in the cat striate cortex.

Exp. Brain Res. 44, 437–440. doi: 10.1007/BF00238837

Deneve, S., andMachens, C. K. (2016). Efficient codes and balanced networks.Nat.

Neurosci. 19:375. doi: 10.1038/nn.4243

Eurich, C. W., Pawelzik, K., Ernst, U., Cowan, J. D., and Milton, J. G. (1999).

Dynamics of self-organized delay adaptation. Phys. Rev. Lett. 82, 1594–1597.

doi: 10.1103/PhysRevLett.82.1594

Eurich, C. W., Pawelzik, K., Ernst, U., Thiel, A., Cowan, J. D., and Milton, J. G.

(2000). Delay adaptation in the nervous system. Neurocomputing 32, 741–748.

doi: 10.1016/S0925-2312(00)00239-3

Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-

dependent myelination. Nat. Rev. Neurosci. 16, 756–767. doi: 10.1038/nrn4023

Frady, E. P., and Sommer, F. T. (2019). Robust computation with

rhythmic spike patterns. Proc. Natl. Acad. Sci. U.S.A. 116, 18050–18059.

doi: 10.1073/pnas.1902653116

Frenkel, C., Lefebvre, M., Legat, J.-D., and Bol, D. (2018). A 0.086-mm2 12.7-

pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic

processor in 28nm CMOS. IEEE Trans. Biomed. Circ. Syst. 13, 145–158.

doi: 10.1109/TBCAS.2018.2880425

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

George, R. M. (2018). Structural plasticity in neuromorphic systems (Ph.D. thesis).

University of Zurich, Zurich, Switzerland. doi: 10.1109/BIOCAS.2017.8325074

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A

neuronal learning rule for sub-millisecond temporal coding. Nature 383:76.

doi: 10.1038/383076a0

Goel, A., and Buonomano, D. V. (2016). Temporal interval learning in cortical

cultures is encoded in intrinsic network dynamics. Neuron 91, 320–327.

doi: 10.1016/j.neuron.2016.05.042

Goodhill, G. J., and Barrow, H. G. (1994). The role of weight

normalization in competitive learning. Neural Comput. 6, 255–269.

doi: 10.1162/neco.1994.6.2.255

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M. E., et al.

(2006). Texture signals in whisker vibrations. J. Neurophysiol. 95, 1792–1799.

doi: 10.1152/jn.01104.2005

Hirose, A. (1992). Continuous complex-valued back-propagation learning.

Electron. Lett. 28, 1854–1855. doi: 10.1049/el:19921186

Hu, J.-S., and Yang, C.-H. (2010). Estimation of sound source number and

directions under a multisource reverberant environment. EURASIP J. Adv.

Signal Process. 2010:870756. doi: 10.1155/2010/870756

Hubel, D., and Wiesel, T. (1962). Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–54.

doi: 10.1113/jphysiol.1962.sp006837

Hussain, S., Basu, A., Wang, M., and Hamilton, T. J. (2012). “Deltron:

neuromorphic architectures for delay based learning,” in 2012 IEEE Asia

Pacific Conference on Circuits and Systems (Kaohsiung: IEEE), 304–307.

doi: 10.1109/APCCAS.2012.6419032

Indiveri, G., and Sandamirskaya, Y. (2019). The importance of space and time for

signal processing in neuromorphic agents. IEEE Signal Process. Mag. 36, 16–28.

doi: 10.1109/MSP.2019.2928376

Izhikevich, E. (2006). Polychronization: computation with spikes. Neural Comput.

18, 245–282. doi: 10.1162/089976606775093882

Kappel, D., Nessler, B., and Maass, W. (2014). STDP installs in winner-take-

all circuits an online approximation to hidden markov model learning. PLoS

Comput. Biol. 10:e1003511. doi: 10.1371/journal.pcbi.1003511

Knight, J., and Furber, S. (2016). Synapse-centric mapping of cortical models

to the SpiNNaker neuromorphic architecture. Front. Neurosci. 10:420.

doi: 10.3389/fnins.2016.00420

Frontiers in Neuroscience | www.frontiersin.org 17 May 2020 | Volume 14 | Article 420108

https://doi.org/10.3389/fnins.2014.00377
https://doi.org/10.3389/fnins.2018.01047
https://doi.org/10.3390/s20061600
https://doi.org/10.1109/CDC.2002.1184824
https://doi.org/10.1109/72.298231
https://doi.org/10.3389/fncir.2013.00206
https://doi.org/10.1016/j.bpj.2011.01.042
https://doi.org/10.1007/BF00613080
https://doi.org/10.1007/BF00613081
https://doi.org/10.1126/science.197.4302.479
https://doi.org/10.1038/nrn2558
https://doi.org/10.1126/science.7863330
https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990
https://doi.org/10.1523/JNEUROSCI.1259-18.2018
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1109/TBCAS.2015.2479256
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1007/BF00238837
https://doi.org/10.1038/nn.4243
https://doi.org/10.1103/PhysRevLett.82.1594
https://doi.org/10.1016/S0925-2312(00)00239-3
https://doi.org/10.1038/nrn4023
https://doi.org/10.1073/pnas.1902653116
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/BIOCAS.2017.8325074
https://doi.org/10.1038/383076a0
https://doi.org/10.1016/j.neuron.2016.05.042
https://doi.org/10.1162/neco.1994.6.2.255
https://doi.org/10.1038/nn1643
https://doi.org/10.1152/jn.01104.2005
https://doi.org/10.1049/el:19921186
https://doi.org/10.1155/2010/870756
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1109/APCCAS.2012.6419032
https://doi.org/10.1109/MSP.2019.2928376
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1371/journal.pcbi.1003511
https://doi.org/10.3389/fnins.2016.00420
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

Knoblauch, A., Körner, E., Körner, U., and Sommer, F. T. (2014). Structural

synaptic plasticity has high memory capacity and can explain graded

amnesia, catastrophic forgetting, and the spacing effect. PLoS ONE 9:e96485.

doi: 10.1371/journal.pone.0096485

Koudelka, S., Voas, M. G., Almeida, R. G., Baraban, M., Soetaert, J., Meyer,

M. P., et al. (2016). Individual neuronal subtypes exhibit diversity in CNS

myelination mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455.

doi: 10.1016/j.cub.2016.03.070

Krammer, J., and Koch, C. (1997). Pulse-based analog VLSI velocity sensors.

IEEE Trans. Circ. Syst. II Anal. Digital Signal Process. 44, 86–101.

doi: 10.1109/82.554431

Kreiser, R., Aathmani, D., Qiao, N., Indiveri, G., and Sandamirskaya, Y. (2018a).

Organizing sequential memory in a neuromorphic device using dynamic neural

fields. Front. Neurosci. 12:717. doi: 10.3389/fnins.2018.00717

Kreiser, R., Renner, A., Sandamirskaya, Y., and Pienroj, P. (2018b). “Pose

estimation and map formation with spiking neural networks: toward

neuromorphic slam,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (Madrid: IEEE), 2159–2166.

doi: 10.1109/IROS.2018.8594228

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R. B. (2017). Hots:

a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L. A., Liu, S.-C., Furber, S. B.,

et al. (2015). Breaking the millisecond barrier on SpiNNaker: implementing

asynchronous event-based plastic models with microsecond resolution. Front.

Neurosci. 9:206. doi: 10.3389/fnins.2015.00206

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns

by taming chaos in recurrent neural networks. Nat. Neurosci. 16:925.

doi: 10.1038/nn.3405

Lee, W. W., Kukreja, S. L., and Thakor, N. V. (2017). Discrimination of dynamic

tactile contact by temporally precise event sensing in spiking neuromorphic

networks. Front. Neurosci. 11:5. doi: 10.3389/fnins.2017.00005

Maass, W. (2001). On the relevance of time in neural computation and learning.

Theor. Comput. Sci. 261, 157–178. doi: 10.1016/S0304-3975(00)00137-7

Mahajan, A., and Walworth, M. (2001). 3D position sensing using the differences

in the time-of-flights from a wave source to various receivers. IEEE Trans.

Robot. Autom. 17, 91–94. doi: 10.1109/70.917087

Mainen, Z., and Sejnowski, T. (1995). Reliability of spike timing in neocortical

neurons. Science 268, 1503–1506. doi: 10.1126/science.7770778

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APS and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Masquelier, T. (2012). Relative spike time coding and STDP-based orientation

selectivity in the early visual system in natural continuous and saccadic

vision: a computational model. J. Comput. Neurosci. 32, 425–441.

doi: 10.1007/s10827-011-0361-9

Matsubara, T. (2017). Spike timing-dependent conduction delay learning model

classifying spatio-temporal spike patterns. Front. Comput. Neurosci. 11:104.

doi: 10.3389/fncom.2017.00104

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Milde, M. B. (2019). Spike-based computational primitives for vision-based scene

understanding (Ph.D. thesis), University of Zurich.

Milde, M. B., Bertrand, O. J. N., Ramachandran, H., Egelhaaf, M., and Chicca, E.

(2018). Spiking elementary motion detector in neuromorphic systems. Neural

Comput. 30, 2384–2417. doi: 10.1162/neco_a_01112

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circ.

Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybernet. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. (2013).

Synthesizing cognition in neuromorphic electronic systems. Proc. Natl. Acad.

Sci. U.S.A. 110, E3468–E3476. doi: 10.1073/pnas.1212083110

Nowotny, T. (2014). Two challenges of correct validation in pattern recognition.

Front. Robot. AI 1:5. doi: 10.3389/frobt.2014.00005

O’Keefe, J., and Recce, M. L. (1993). Phase relationship between hippocampal

place units and the EEG theta rhythm. Hippocampus 3, 317–330.

doi: 10.1002/hipo.450030307

Paugam-Moisy, H., Martinez, R., and Bengio, S. (2008). Delay learning and

polychronization for reservoir computing. Neurocomputing 71, 1143–1158.

doi: 10.1016/j.neucom.2007.12.027

Qiao, N., Bartolozzi, C., and Indiveri, G. (2016). “Automatic gain control

of ultra-low leakage synaptic scaling homeostatic plasticity circuits,” in

Biomedical Circuits and Systems Conference (BioCAS) (Shanghai: IEEE),

156–159. doi: 10.1109/BioCAS.2016.7833755

Qiao, N., Bartolozzi, C., and Indiveri, G. (2017). An ultralow leakage

synaptic scaling homeostatic plasticity circuit with configurable time

scales up to 100 ks. IEEE Trans. Biomed. Circ. Syst. 11, 1271–1277.

doi: 10.1109/TBCAS.2017.2754383

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for

different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30,

1138–1168. doi: 10.1152/jn.1967.30.5.1138

Reichert, D. P., and Serre, T. (2013). Neuronal synchrony in complex-valued deep

networks. arXiv [Preprint] arXiv:1312.6115.

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C.,

et al. (2020). Real-time cortical simulation on neuromorphic hardware. Philos.

Trans. R. Soc. A 378:20190160. doi: 10.1098/rsta.2019.0160

Roy, S., and Basu, A. (2016). An online unsupervised structural plasticity algorithm

for spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28, 900–910.

doi: 10.1109/TNNLS.2016.2582517

Roy, S., San, P. P., Hussain, S., Wei, L. W., and Basu, A. (2016). Learning spike

time codes through morphological learning with binary synapses. IEEE Trans.

Neural Netw. Learn. Syst. 27, 1572–1577. doi: 10.1109/TNNLS.2015.2447011

Shadlen, M. N., and Newsome, W. T. (1998). The variable discharge of cortical

neurons: implications for connectivity, computation, and information coding.

J. Neurosci. 18, 3870–3896. doi: 10.1523/JNEUROSCI.18-10-03870.1998

Sheik, S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T., and Chicca, E.

(2012). Emergent auditory feature tuning in a real-time neuromorphic VLSI

system. Front. Neurosci. 6:17. doi: 10.3389/fnins.2012.00017

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems (Montreal, QC),

1412–1421.

Softky, W. R., and Koch, C. (1993). The highly irregular firing of cortical cells

is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13,

334–350. doi: 10.1523/JNEUROSCI.13-01-00334.1993

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–26.

doi: 10.1038/78829

State, L. (2019). Training delays in spiking neural networks (Master’s thesis). Max

Planck Institute for Mathematics in the Sciences, Leipzig, Germany. Available

from the Preprint repository of theMax Planck Institute forMathematics in the

Sciences, Preprint 96/2019.

Stürzl, W., Kempter, R., and Van Hemmen, J. L. (2000). Theory of arachnid prey

localization. Phys. Rev. Lett. 84, 5668–5671. doi: 10.1103/PhysRevLett.84.5668

Swadlow, H. A., and Waxman, S. G. (2012). Axonal conduction delays.

Scholarpedia 7:1451. doi: 10.4249/scholarpedia.1451

Taherkhani, A., Belatreche, A., Li, Y., andMaguire, L. P. (2015). Dl-resume: a delay

learning-based remote supervised method for spiking neurons. IEEE Trans.

Neural Netw. Learn. Syst. 26, 3137–3149. doi: 10.1109/TNNLS.2015.2404938

Takagi, H. (2000). Roles of ion channels in EPSP integration at neuronal dendrites.

Neurosci. Res. 37, 167–171. doi: 10.1016/S0168-0102(00)00120-6

Tapson, J., and van Schaik, A. (2013). Learning the pseudoinverse solution to

network weights. Neural Netw. 45, 94–100. doi: 10.1016/j.neunet.2013.02.008

Thorpe, S., Delorme, A., Rullen, R. V., et al. (2001). Spike-based strategies for rapid

processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Turrigiano, G., and Nelson, S. (2004). Homeostatic plasticity in the developing

nervous system. Nat. Rev. Neurosci. 5, 97–107. doi: 10.1038/nrn1327

Frontiers in Neuroscience | www.frontiersin.org 18 May 2020 | Volume 14 | Article 420109

https://doi.org/10.1371/journal.pone.0096485
https://doi.org/10.1016/j.cub.2016.03.070
https://doi.org/10.1109/82.554431
https://doi.org/10.3389/fnins.2018.00717
https://doi.org/10.1109/IROS.2018.8594228
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.3389/fnins.2015.00206
https://doi.org/10.1038/nn.3405
https://doi.org/10.3389/fnins.2017.00005
https://doi.org/10.1016/S0304-3975(00)00137-7
https://doi.org/10.1109/70.917087
https://doi.org/10.1126/science.7770778
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1007/s10827-011-0361-9
https://doi.org/10.3389/fncom.2017.00104
https://doi.org/10.1126/science.1254642
https://doi.org/10.1162/neco_a_01112
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1073/pnas.1212083110
https://doi.org/10.3389/frobt.2014.00005
https://doi.org/10.1002/hipo.450030307
https://doi.org/10.1016/j.neucom.2007.12.027
https://doi.org/10.1109/BioCAS.2016.7833755
https://doi.org/10.1109/TBCAS.2017.2754383
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1152/jn.1967.30.5.1138
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1109/TNNLS.2016.2582517
https://doi.org/10.1109/TNNLS.2015.2447011
https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
https://doi.org/10.3389/fnins.2012.00017
https://doi.org/10.1523/JNEUROSCI.13-01-00334.1993
https://doi.org/10.1038/78829
https://doi.org/10.1103/PhysRevLett.84.5668
https://doi.org/10.4249/scholarpedia.1451
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.1016/S0168-0102(00)00120-6
https://doi.org/10.1016/j.neunet.2013.02.008
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1038/nrn1327
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Haessig et al. Event-Based Touch Localization

Wang, R., Cohen, G., Stiefel, K., Hamilton, T., Tapson, J., and van Schaik, A. (2013).

An FPGA implementation of a polychronous spiking neural network with delay

adaptation. Front. Neurosci. 7:14. doi: 10.3389/fnins.2013.00014

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2015).

A neuromorphic implementation of multiple spike-timing synaptic

plasticity rules for large-scale neural networks. Front. Neurosci. 9:180.

doi: 10.3389/fnins.2015.00180

Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies

tuning and sharpens spike timing in auditory cortex. Nature 426:442.

doi: 10.1038/nature02116

Wolfe, J., Hill, D. N., Pahlavan, S., Drew, P. J., Kleinfeld, D., and Feldman, D. E.

(2008). Texture coding in the rat whisker system: slip-stick versus differential

resonance. PLoS Biology 6:e215. doi: 10.1371/journal.pbio.0060215

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/sr5ep18854

Zito, K., Parnas, D., Fetter, R. D., Isacoff, E. Y., and Goodman, C. S. (1999).

Watching a synapse grow: noninvasive confocal imaging of synapticgrowth in

drosophila. Neuron 22, 719–729. doi: 10.1016/S0896-6273(00)80731-X

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Haessig, Milde, Aceituno, Oubari, Knight, van Schaik, Benosman

and Indiveri. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 May 2020 | Volume 14 | Article 420110

https://doi.org/10.3389/fnins.2013.00014
https://doi.org/10.3389/fnins.2015.00180
https://doi.org/10.1038/nature02116
https://doi.org/10.1371/journal.pbio.0060215
https://doi.org/10.1038/srep18854
https://doi.org/10.1016/S0896-6273(00)80731-X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 23 June 2020

doi: 10.3389/fnins.2020.00551

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 551

Edited by:

Alejandro Linares-Barranco,

Universidad de Sevilla, Spain

Reviewed by:

Federico Corradi,

Imec, Netherlands

Jim Harkin,

Ulster University, United Kingdom

*Correspondence:

Arren Glover

arren.glover@iit.it

Yulia Sandamirskaya

yulia.sandamirskaya@intel.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 24 December 2019

Accepted: 04 May 2020

Published: 23 June 2020

Citation:

Kreiser R, Renner A, Leite VRC,

Serhan B, Bartolozzi C, Glover A and

Sandamirskaya Y (2020) An On-chip

Spiking Neural Network for Estimation

of the Head Pose of the iCub Robot.

Front. Neurosci. 14:551.

doi: 10.3389/fnins.2020.00551

An On-chip Spiking Neural Network
for Estimation of the Head Pose of
the iCub Robot
Raphaela Kreiser 1†, Alpha Renner 1†, Vanessa R. C. Leite 1†, Baris Serhan 2,

Chiara Bartolozzi 3, Arren Glover 3* and Yulia Sandamirskaya 1*

1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland, 2 Lincoln Centre for Autonomous

Systems, University of Lincoln, Lincoln, United Kingdom, 3 Istituto Italiano di Tecnologia, Genoa, Italy

In this work, we present a neuromorphic architecture for head pose estimation and scene

representation for the humanoid iCub robot. The spiking neuronal network is fully realized

in Intel’s neuromorphic research chip, Loihi, and precisely integrates the issued motor

commands to estimate the iCub’s head pose in a neuronal path-integration process.

The neuromorphic vision system of the iCub is used to correct for drift in the pose

estimation. Positions of objects in front of the robot arememorized using on-chip synaptic

plasticity. We present real-time robotic experiments using 2 degrees of freedom (DoF) of

the robot’s head and show precise path integration, visual reset, and object position

learning on-chip. We discuss the requirements for integrating the robotic system and

neuromorphic hardware with current technologies.

Keywords: pose estimation, event-based vision, neuromorphic SLAM, on-chip learning, scene memory, iCub

robot, visual reset, spiking neural networks

1. INTRODUCTION

Neuromorphic hardware implements the non-Von Neumann brain-inspired computing
architecture based on known properties of biological neural networks. This computing architecture
features event-based asynchronous processing and fine-grained parallelism of a network of spiking
neurons (Indiveri et al., 2009; Schemmel et al., 2010; Furber et al., 2012; Merolla et al., 2014;
Galluppi et al., 2015; Qiao et al., 2015; Davies et al., 2018; Moradi et al., 2018). Neuromorphic
hardware not only supports parallel processing; it also enables feedback loops, recurrence, and
online adaptation—the key properties of biological brains that lead to flexible and robust behavior.
Biological neural systems evolved to solve tasks that are highly relevant to robotics: perception,
movement control, action planning, or decision making under uncertainty. Thus, robotics is a
promising application domain for neuromorphic hardware (Krichmar and Wagatsuma, 2011).
Autonomous robots require that computing be performed with low latency and low power
consumption, and these are the key characteristics of neuromorphic devices. In this work, we
contribute to the emerging field of neuromorphic robotics by presenting a number of design
patterns—spiking neural network models—to solve one of the key robotic tasks, state estimation.

To be used efficiently, neuromorphic hardware requires a radical rethinking of the computing
paradigm. In neuromorphic hardware, we cannot run functions, create conditional loops, or
have if-then-else statements in the same way as in conventional software. To use the brain-
inspired computing substrate—neurons and synapses—efficiently, we need to abandon the notion
of addition and multiplication as elementary computing operations. Even the mere representation

111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00551
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00551&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:arren.glover@iit.it
mailto:yulia.sandamirskaya@intel.com
https://doi.org/10.3389/fnins.2020.00551
https://www.frontiersin.org/articles/10.3389/fnins.2020.00551/full
http://loop.frontiersin.org/people/574743/overview
http://loop.frontiersin.org/people/794409/overview
http://loop.frontiersin.org/people/910641/overview
http://loop.frontiersin.org/people/877996/overview
http://loop.frontiersin.org/people/21102/overview
http://loop.frontiersin.org/people/269413/overview
http://loop.frontiersin.org/people/21825/overview

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

of values as binary bit-strings becomes obsolete in a neuronal
computing framework. Instead, neuromorphic systems represent
the measured physical variables and perform computation using
events (spikes) spreading in a neuronal network, as brains
do. Thus, in our work, we aim to develop the neuronal
computing elements that are required to solve different tasks,
seeking to derive principles and structures that can be reused
in different domains. Moreover, we show how an interface can
be established between the sensors and motors of a robot and
neuromorphic representations.

Neuronal network-based algorithms currently deliver the
most impressive results in computer vision and machine
learning and are increasingly being deployed in robotics (Chen
et al., 2015; Mnih et al., 2015). Training spiking neuronal
networks (SNNs) using methods developed for deep learning
(i.e., error backpropagation) is challenging and currently leads to
reduced performance compared to conventional, full-precision
DNNs (Shrestha and Orchard, 2018; Neftci et al., 2019). On
the other hand, the neuromorphic hardware supports online
learning, i.e., the adaptation of synaptic weights after deployment
of the system. When designing our SNN models, we do not
rely on tabula-rasa data-driven learning. Instead, we leverage the
knowledge of neuronal circuits that solve similar tasks in animals,
reserving learning only to parts that depend on the environment
with which the robot interacts. This learning can happen in a
“shallow” network.

Findings in neuroscience have inspired a number of neuronal
architectures for addressing the problem of simultaneous
localization and mapping (SLAM) (Arleo and Gerstner,
2000; Cuperlier et al., 2007; Barrera and Weitzenfeld, 2008;
Weikersdorfer et al., 2013; Milford and Schulz, 2014; Jauffret
et al., 2015). SLAM is one of the core problems in mobile
robotics (Stachniss et al., 2016) but can be generalized to any
robotic system that requires state estimation of the robot relative
to its environment. In this work, we present a spiking neural
network (SNN) implemented on Intel’s neuromorphic research
chip, Loihi, for pose estimation of the robot’s head. The pose is
estimated in the SNN based on the “efferent copy” of the motor
commands. The estimate is corrected by a visual cue when the
robot sees an object multiple times during exploration of an
environment. The initial pose, under which the object was seen
the first time, is learned in plastic synapses on chip and is used
for the visual reset. Estimating the pose by integrating the motor
commands is referred to as dead reckoning in robotics and as
path integration in biology.

In robotics, the head-pose estimation amounts to the camera
pose estimation problem (e.g., Scaramuzza and Fraundorfer,
2011). The camera pose is estimated using on-board sensors
to measure an incremental change in pose, e.g., the visual
system itself, a built-in inertial measurement unit (IMU), laser
range finder, time of flight camera (Engelhard et al., 2011) or
sonar (Thrun et al., 2007). Fusion of information from multiple
sensors is performed to provide a more robust estimate of the
pose change. Since integration of movement is prone to error
accumulation, such systems need frequent recalibration. The
global positioning system (GPS) or external cameras, e.g., Vicon
system, help to avoid this problem, but in many cases measuring

the ground-truth pose directly is not possible, and the problem
becomes one of simultaneous localization and mapping (SLAM).
The reference relative to which the pose is measured is itself
estimated concurrently with the estimate of the pose (Stachniss
et al., 2016).

Animals can also navigate in large environments by
combining a set of “on-board” sensors, i.e., the vestibular and
vision system (Burak and Fiete, 2009; Seelig and Jayaraman,
2015; Green et al., 2017; Fisher et al., 2019). They combine
motion commands and internal sensing in their neuronal
systems to provide a motion estimate. Even simple animals,
such as insects, show complex navigation behaviors. A brain
region called the central complex (CX) appears to be their
navigation center (Pfeiffer and Homberg, 2014; Turner-Evans
and Jayaraman, 2016; Heinze, 2017). Visual landmarks (Seelig
and Jayaraman, 2013), rotational optic flow, and non-visual
angular velocity cues (Green et al., 2017; Turner-Evans
et al., 2017) were shown to mediate direction coding in CX
neurons, suggesting that allothetic and idiothetic cues are
continuously integrated to generate a robust representation
of body orientation (Honkanen et al., 2019). The orientation
appears to be encoded in the activity bump of neurons arranged
in a ring that corresponds to the 360◦ of possible directions.
These computational principles were uncovered in brains with
a size of <100K neurons and were shown to fit small-scale
neuromorphic platforms (Dalgaty et al., 2018).

Orientation-selective Head Direction (HD) cells have also
been discovered in rodents. Several models propose attractor
networks to account for their selective firing behavior (Skaggs
et al., 1995; Redish et al., 1996). Such attractor networks
might self-organize to respond best to the observed sensory
information (Stringer et al., 2002). These models have been
mapped onto brain anatomy, explaining which brain regions
might be involved in the encoding of angular velocity
signals, the current head direction estimate, and the update
mechanism (Goodridge and Touretzky, 2000). The detailed
mapping of the HD neuronal circuits gave rise to a Spiking
Neural Network (SNN) model in which persistent activity is
realized through cross-inhibition rather than through recurrent
excitation, as previously assumed (Song and Wang, 2005). The
function of the HD network is to act as a neural integrator that is
supervised by visual signals (Hahnloser, 2003) and supposedly is
calibrated through angular velocity signals (Stratton et al., 2010).
The vestibular information appears to be critical for generating
the directional signal, and landmark information is important for
updating it (Taube, 2007).

Inspired by the biological findings regarding navigation
systems of insects andmammals, several computing architectures
have been developed to estimate the position under uncertainty
and re-calibrate it using familiar landmarks (Skaggs et al., 1995;
Samu et al., 2009; Arena et al., 2013; Erdem et al., 2015;
Seelig and Jayaraman, 2015; Heinze et al., 2018). An early
successful attempt of a bio-inspired SLAM was the RatSLAM
model—a biologically inspired SLAM system able to map indoor
and outdoor environments (Milford et al., 2004). Recently,
the original RatSLAM model was extended to function in
3D environments (Yu et al., 2019). Loop closure detection

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 551112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

was realized based on visual template matching (Gu and Yan,
2019), and multi-sensor fusion was shown to provide more
accurate odometry and precise cognitive mapping (Zhang et al.,
2019). Neural networks of grid cells have been shown to
perform long-range navigation through path integration in the
2-dimensional plane (Edvardsen, 2017), and a model that was
established through the Neural Engineering Framework confirms
the attractor map implementation of path integration and
proposes that the head direction signal can be used to modulate
allocentric velocity input (Conklin and Eliasmith, 2005).

These computational approaches are complemented by
approaches toward neuromorphic SLAM, which realized
neuronal models in neuromorphic hardware. In this line of
research, the formation of a 1D-map was demonstrated on
a neuromorphic chip that could perform Bayesian inference
using path integration and visual estimate (Tang et al., 2019).
A model of the bat navigational system was realized in a
neuromorphic VLSI device (Massoud and Horiuchi, 2012).
This architecture includes a head direction ring attractor
network (Massoud and Horiuchi, 2011a) and online correction
through learned landmarks that are identified using sonar
sensory signals (Massoud and Horiuchi, 2011b). Similarly,
our previous work on neuromorphic SLAM, implemented
on a miniature autonomous vehicle, incorporates a 1D head
direction ring, 2D map formation, and a loop closure detection
mechanism (Kreiser et al., 2018b,c, 2019a) based on vision. A
neuromorphic system that can generate angular velocity and
linear acceleration using IMU signals can be used as input
to an HD network and was implemented on a VLSI chip to
model the vestibular system (Corradi et al., 2014). More recently
an SNN model was proposed for performing angular velocity
regression on event-based visual data (Gehrig et al., 2020) that
could potentially be used as input to an HD network when
implemented in neuromorphic hardware.

Up until now, current approaches to neuromorphic
implementations have been proofs of concept and either
have not been deployed in a real-world scenario using a
robotic agent or do not address the issue of scaling and
performance under disturbances. In this work, we build on
previous implementations for orientation estimation and use
the biologically inspired head-direction network (Seelig and
Jayaraman, 2015; Green et al., 2017; Fisher et al., 2019) to
build an SNN model that estimates the pose of the robot’s head
through path integration using feed-forward commands and
visual landmark detection. Compared to previous work on
neuronal path integration, this work scales up the system to
a higher resolution of pose representation, applies it to a 2D
system of the robot’s head, and quantitatively assesses the path
integration performance.

We realize this model directly and fully in neuromorphic
hardware—Intel’s research chip, Loihi (Davies et al., 2018).
We explore the model’s function with a humanoid robot, the
iCub (Metta et al., 2008), in the system designed to enable
closed-loop experiments, i.e., the network controlling the robot’s
movement. The network tracks the movement in two degrees
of freedom of the robot’s neck. In our experiments, the iCub
explores a wall with an object (a dotted pattern) on it by moving

its head. Here, we do not use proprioceptive sensors (motor
encoders or IMU) to estimate the robot’s pose in an SNN; we
use only the issued motor commands. This is done because we
would like to estimate the precision of path integration in an
SNN without mixing it with sensor errors in pose measurement.
Moreover, sensors directly measuring the state of a joint are often
not available in more complex motor systems or are costly (e.g.,
force sensors of compliant actuators). Such sensors can always be
used to improve state estimation, similar to how vision is used in
our model.

We use an event-based camera and simple visual
preprocessing to estimate the position of an object in the
field of view. More sophisticated event-based feature extraction
could be used instead (Alzugaray and Chli, 2018; Gallego et al.,
2019), but the visual processing was not our focus. When the
object falls in the center of the visual field for the first time, the
network stores the current pose of the robot’s head, estimated
in the network. Each time the object is seen in the center again,
the stored pose is activated and used to correct the current pose
estimate. The stored pose can also be used as long-term memory
for object location and can trigger a goal-directed movement
toward the memorized object, even if it is not in view.

The paper proceeds with a description of the hardware
setup and the hardware and algorithmic interfaces between
the robot and the neuromorphic chip. We then explain the
SNN model and show results for pose estimation through
path integration on-chip and vision-driven object-directed
pose learning. We evaluate network performance in terms
of the precision of state estimation and discuss how the
SNN parameters influence it. Finally, we conclude with a
discussion and the positioning of this work in state-of-the-art
neuromorphic robotics.

2. HARDWARE SYSTEMS

2.1. The iCub Humanoid Robot
Our goal (beyond this paper) is to perform closed-loop
experiments between the SNN and iCub. Therefore, we
built an online interface between the humanoid robot
iCub (Metta et al., 2008) and the neuromorphic device
Kapoho Bay, which contains Intel’s neuromorphic research
chip, Loihi (Davies et al., 2018). An overview of the system
is shown in Figure 1. We used YARP (Metta et al., 2006)—a
middleware that allows seamless communication between
different software components across the network—for modular
processing and transparency between different computers
and devices.

The neuromorphic iCub (Bartolozzi et al., 2011) has two
event-based cameras, specifically, the Asynchronous Time-based
Image Sensor (ATIS) (Posch et al., 2008), as part of its
biologically-inspired vision system. The camera pixels produce
asynchronous events as output. Each pixel emits an event when
the level of sensed brightness changes by a certain amount. We
used an event-driven visual tracking algorithm that produced
“spikes” (event addresses) representing the target object position.
This output was sent to the SNN on Loihi. Specifically, the visual

Frontiers in Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 551113

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

FIGURE 1 | System overview of the integration of the iCub robot and Intel’s neuromorphic research chip, Loihi, highlighting visual and motor components as well as

spiking and non-spiking signals.

input network in our model received input whenever the target
object was in the field of view (as described in section 3.2).

The iCub’s motors are controlled by sending velocity
commands from a motor control loop. In our experiments, we
moved the iCub head within two degrees of freedom, setting
velocities for its yaw and pitch joints. We used movements
at various speeds between the joint limits of the robot. The
motor control module produced the following behaviors used
in our experiments: a constant velocity along a single axis and
a random-walk motion along both axes.

The iCub has encoders that count motor rotations for the
six degrees of freedom of the head and neck. The encoders are
usually calibrated by hand by initializing the robot in the 0◦

positions and measuring the encoder offsets to these positions.
These offsets need to be updated whenever there is a mechanical
change or after time due to wear. In this work, we did not use the
position of the head read by the encoders to control the robot.
Instead, we only controlled the motors’ velocities along each
axis directly, without sensory feedback on the motor position.
Thus, the controller did not rely on the external calibration
of the encoders. The head pose was estimated in the spiking
head-direction network on the neuromorphic chip (section 4).
The encoders were used solely to obtain the ground truth
for experimental analysis and therefore provided no input to
the algorithm.

The overall experimental system consisted of two laptops
and the iCub robot connected to the same local network. We
used the iCub middleware YARP (Metta et al., 2006) to connect
different modules. For clarity, we briefly describe the exact
computer configuration used. An iCub-companion laptop was
used to run the motor control, which communicated with the
iCub’s on-board PC to move the robot. The motor commands

(velocities) were at the same time sent over the network to the
Loihi host laptop. The Kapoho Bay Loihi device was directly
connected to this laptop by USB. The iCub companion laptop
also read the raw camera events and ran the event-driven object
detection algorithm. The object location spikes were sent to the
Loihi host laptop. The output of the head-direction network
was sent from the Loihi host laptop to the iCub companion
laptop for visualization and recording; the encoder values were
sent from the iCub on-board PC to the same module. During
experiments, all signals were recorded except for the direct USB
communication with the Loihi and the direct motor control
with the iCub (the velocities sent to the Loihi host laptop were
recorded instead).

Currently, to get these two cutting-edge, complex technologies
to work together, the systems interface also has to be complex.
One important contribution we make is to highlight this fact,
with the aim of understanding how, in the future, we can
develop a fully neuromorphic-integrated robot with fully spiking
communications. We believe the system as we present it is still
the required first step to doing so.

2.2. The Loihi Neuromorphic Research
Chip
Intel Neuromorphic Computing Lab designed the neuromorphic
research chip, Loihi, in which spiking neural network models can
be simulated in real time efficiently (Davies et al., 2018). The
chip consists of a mesh of 128 neuromorphic cores and three
embedded ×86 processor cores. For this work, we used Kapoho
Bay, the USB form factor version, which contains two Loihi chips.
The chips are configured using a Python API provided by the
Intel Neuromorphic Computing Lab (NxSDK 0.9) that allows
us to define the spiking neural network on the level of groups

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 551114

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

of neurons and synapses. Loihi implements the leaky-integrate-
and-fire neuron model as described by Davies et al. (2018) and
allows flexible on-chip learning.

2.3. Hardware Interface Between iCub and
Loihi Using YARP
Figure 1 gives an overview of the interfaces between the iCub
robot and the Loihi neuromorphic research chip. From the robot,
a copy of the movement commands (section 3.1) and the visual
information (section 3.2) are sent via YARP to the Loihi host
computer. On the latter, a program is running that sends the
values of the motor commands and the visual spikes to the
embedded process running on the×86 processor on the Kapoho
Bay device. The embedded process sends spikes received from the
host to the neural cores and reads the spikes from the previous
time step to send them out to the host process.

At the beginning of each trial, the embedded process waits
for an initialization input from the host computer to confirm
that the robot or data player is sending events. While the
experiment is running, the host process is synchronized to the
embedded process and the neural cores so that they all advance
their algorithmic time steps at the same time. On average, one
algorithmic time step takes about 1.6ms. Most of this time is
taken up by the output being sent from the embedded processor
to the host computer to monitor the spikes. Section 3.1 discusses
the time step duration issues. The output spikes of the head-
direction network—from the “goal head direction” layer—are
designed to be sent through a YARP port, to eventually control
the robot’s gaze to one of the stored object locations in a closed-
loop experiment; however, this is planned for future work.

3. ALGORITHMIC INTERFACES BETWEEN
ROBOT AND NEUROMORPHIC CHIP

In this section, we describe howwe generate input to the SNN on-
chip model from motor commands and camera events and how
we read out SNN activity.

3.1. Input Spike Generation Based on
Velocity Commands
When the robot moves its head, the velocity commands are sent
to both the robot and the host computer of the Loihi chip. On
the host computer, a small C++ program receives the velocity
commands that are interpreted as the neuron’s input current Iin
(in ◦/s) after being multiplied by the measured timestep duration
on Loihi. Four of Loihi’s integrate-and-fire neurons are dedicated
to integrating the velocity input for yaw (left and right) and pitch
(up and down) movements. A change in velocity, therefore, leads
to an immediate change in input current and, with that, changes
the neuron’s membrane potential V(t), Equation (1).

1V(t) = Iin · 1t − Vthr · 2(V(t)− Vthr), where

2(x) = 0, if x ≤ 0;

2(x) = 1, if x > 0.

(1)

Here, at every timestep, t, the current speed command Iin (in
◦/s)

is multiplied by the measured duration of the timestep and added

to the neuron’s membrane potential V(t). Note that timesteps
may take a variable amount of time in the system depending on
spiking rates and other computational overhead. When V(t) of
the velocity neurons surpasses a threshold value Vthr , the neuron
emits a spike, and the magnitude of Vthr is subtracted from the
membrane potential to reset the neuron. The firing rate of the
velocity neuron is thus proportional to the velocity command
sent by the motor controller of the robot, and the proportionality
coefficient can be controlled by the threshold parameterVthr . The
emitted spikes then stimulate the shift layer of the SNNmodel, as
explained in section 4.

The value of V(t) is clipped at a maximum value of V(t) =

2Vthr . Furthermore, we added a refractory period that prevents
the input neuron from firing more often than every third
timestep, which is the time that the head-direction network
needs to fully integrate an input spike in our “every spike
matters” setting.

The threshold Vthr of the simulated velocity input neurons
determines the quantization step and the path integration rate
of the network. For instance, if we set Vthr = 0.5◦, the velocity
neuron will produce a spike whenever the robot has moved its
head by 0.5◦. This spike shifts the current estimate of the head
angle in the head-direction network’s activity by one neuron
within n = 3 time steps, so we need 200 neurons to represent an
angle of 100◦. Assuming an average timestep duration of 1.6ms,
we can calculate that if we set the threshold to Vthr = 0.5◦,
the SNN activity can faithfully follow an angular velocity of

approximatelyω =
Vthr
n1t ≈ 100 ◦ s−1. This sets themaximal speed

at which the activity can be shifted in our SNN model.
The timestep can be further shortened (and the maximal

velocity increased) by optimizing the I/O from the chip. The
duration of timesteps fluctuates as SNN simulation unfolds
in real time. Figure 2 shows the distribution of the measured
timestep duration in our experiments.

Note that all other neurons besides the velocity input neurons
receive spikes from connected neurons as input instead of a direct
change in current. The input to these neurons is the sum of
filtered spikes from connected neurons, leading to a synaptic
response current Iin(t) (Davies et al., 2018). By default, after
each spike, the membrane potential V(t) is reset to zero instead
of subtracting the threshold. Although this neuron model is
often used as an input integrator in computational neuroscience,
it might lead to “loss” of input current at large inputs and
consequently to an error at the value-to-spikes interface. We
thus introduced the “soft-reset” in the input layer to achieve
maximum accuracy of pose representation in the network. At
timepoints with a reliable visual reset or when other external
sensing can be used to correct path integration, this input-
integration error can be neglected.

3.2. Spiking Object Detector
The fundamental purpose of the vision system is to give
a consistent signal about head pose that is not affected by
integration drift. The signal is not explicitly known a-priori, i.e.,
we don’t know where an object will be, but given any pose, the
visual signal will not change over the course of the experiment.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 551115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

FIGURE 2 | Histogram of the algorithmic time step duration as recorded by

YARP in our experiments. The average timestep is 1.6ms, but in rare cases,

time steps can be as long as 40ms. Note, these values hold for the specific

version of the Loihi API used.

However, the relationship between pose and visual signal still
needs to be learned during the experiment.

Our eventual goal would be to use an event-driven object
detection system (e.g., Liang et al., 2019) as an SNN inside the
Loihi chip. However, in this paper, we are focusing on the path
integration and visual reset in the SNN rather than a complex
visual system. One other current integration issue is the data
bandwidth to the Kapoho Bay, which limits the amount of visual
data that can be sent to the chip. Therefore, for this paper, we
used a simplified spiking object detector outside the SNN (in
software) based on a visual tracking algorithm to encode the
position of a single object in the visual field of view. In our current
setup, we consider only a single object in the visual field of view.
However, more complex recognition systems can be extended to
multiple objects.

The spiking object detector receives the raw events from all
pixels of the ATIS neuromorphic camera (Posch et al., 2008)
and outputs spikes associated with the object position, Oxy. The
output array of the detection, therefore, has the same dimensions
as the sensor itself, 304 × 240 pixels. The starting position of the
object of interest O0

xy was marked in an initialization phase in
which the user sets the correct position of the object. Following
initialization, tracking was achieved by setting a region of interest
of size Rsize around the initialized point. When Nevents camera
events were received in the region of interest, the mean position
of the events was calculated, and the output neuron produced a
spike at the position of the object in the visual field, Ot

xy. The new
region of interest was defined around the updated mean-firing
position, Ot

xy, and the events were again accumulated within the
region of interest in order to produce the subsequent spike.

The output of the object detector is event-based: its firing
rate depends on the rate of camera events within the region of
interest. A single spike is output at the moment in time that the
object position moves by 1 pixel. The resolution of the temporal
precision of the output is under 1ms.

The detector’s output spike is sent to the spike-generator
interface on the Loihi host computer and sent to the neuronal
cores, to the visual input network. The visual input network
receives the detector spikes according to their position in the
visual field with a rectangular 2 × 2 pixels receptive field. The
central neuron of this array activates the visual reset neuron.

3.3. Reading Out the Head Direction From
the Network
At every timestep, a data package containing the indices of the
currently firing neurons (“address event representation”) is sent
by the Loihi embedded process to the Loihi host computer. Since
the total processing time is dominated by sending the output
packages to the host computer, we only record the neuronal
populations required for the system’s performance evaluation.
In our place-code representation, the spike’s index (“address”)
directly corresponds to the represented variable value, e.g., the
yaw or pitch.

4. THE HEAD-DIRECTION SNN

4.1. Network Overview
The path integration network consists of two identical SNNs for
yaw and pitch estimation (Figure 3). Each of these SNNs, similar
to networks used in Kreiser et al. (2018a,c), consists of six layers
of N = 200 neurons each:

• the current head direction layer (CHD),
• the shift left layer (SL),
• the shift right layer (SR),
• the integrated head direction layer (IHD),
• the reset head direction layer (RHD), and
• the goal head direction layer (GHD).

The input to each of the two networks comes from two
velocity populations [one for clockwise (“right”) and one
for counter-clockwise (“left”) movement] and several visual-
landmark (visual-reset) populations. We can have as many of
these populations as there are landmarks or objects known to
the robot. As Loihi is a digital, deterministic neuromorphic
system that does not require redundancy to cope with mismatch
and noise in neuronal dynamics, each of the velocity input
and visual landmark populations consists of a single neuron in
our implementation.

4.2. Functional Description of the Network
In the Current head direction (CHD) layer of the yaw and
pitch path integration SNNs, the current pose (yaw or pitch,
respectively) of the robot’s head is encoded in the position of the
active neuron: each neuron corresponds to a specific value of yaw
or pitch.We thus use one-hot encoding. At the start of every trial,
the neuron that codes for the initial position (the central neuron)
is activated. An active neuron in the CHD layer inhibits all but
one neuron in all Shift layers: only neurons with the same index
as the active CHD neuron can be activated.

The Shift layers are responsible for shifting the position of the
active neuron to the left (Shift Left, SL) or the right (Shift Right,
SR). An entire shift layer is activated by the respective velocity

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 551116

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

FIGURE 3 | Overview of the path integration and map learning network: Two identical SNNs with five functional layers each estimate the yaw and pitch of the iCub’s

head pose, integrating the respective motor velocities. When the robot’s gaze is directed at a visual landmark, the yaw and pitch angles are stored in plastic synapses

connecting the Vision and Goal neurons to the Reset Head Direction and Goal Head Direction layers, respectively. Excitatory synapses (red lines) between layers

connect neurons in a one-to-one manner. The velocity input neurons are connected to shift layers in a one-to-all manner. Plastic connections (purple lines) are

one-to-all, and inhibitory connections (blue lines) are all-to-all-but-one. Only exemplary connections are shown, in order to avoid clutter. See section 4.3 for details.

neuron through a “boosting” one-to-all connectivity pattern. The
SL layer is activated by a counter-clockwise movement command
and the SR layer by the clockwise movement command. During
visual reset, the shift layers are inhibited by the visual landmark
population. Both shift layers project their activation to the IHD
layer with a one-to-one-shifted connectivity pattern. The IHD
layer integrates this “shifted” CHD activation with the visually-
driven reset input.

The Reset head direction (RHD) layer is active when it
receives input from the visual-landmark population, which
arrives through plastic connections that are learned when the
landmark is seen in the center of the visual field for the first
time. The plastic weights store the pose (head direction angle:
yaw or pitch) that the robot had when it was looking at the
landmark for the first time. When the landmark is revisited,
the strong potentiated plastic synapses drive an activity bump
in the RHD layer. Weak input from CHD is not sufficient to
induce activity in the RHD on its own. If the RHD layer is active,
it resets the activity in the IHD layer through a set of strong

weights: an active RHD neuron excites the corresponding neuron
in the IHD layer and inhibits all other neurons (the “reset”
connectivity pattern).

TheGoal head direction (GHD) layer behaves exactly the same
as the RHD layer but is only a readout population with no
outgoing connections to the other parts of the network. It is used
in a scenario of goal-directed behavior to look at the learned
object. It receives the same subthreshold activation from the IHD
layer and additionally receives input through plastic synapses
from a goal population that is activated by the visual landmark
input. As in the RHD layer, the plastic weights leading to the
GHD layer act as a memory that associates a specific landmark
with a pose.

Finally, Integrated head direction (IHD) neurons project in a
one-to-one manner to the CHD layer, also with inhibition to
all other CHD neurons (“reset” pattern), thus either shifting the
activity location if no visual landmark is detected or resetting this
activity to an updated location if a visual landmark dictates such
an update.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 551117

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

4.3. Connectivity in the Head-Direction
SNN
To achieve the described behavior, the layers of the model are
connected as shown in Figure 3. Note that all weight values in the
description below and the parameter tables are given in multiples
of the neuron threshold (Vthr = 100 here).

In the CHD layer, every neuron excites itself with a weight
of wCHD_CHD = 1.2 so that the activity of the network is self-
sustained. I.e., the current pose is stored until it is set to a different
position by the IHD.

The CHD layer is connected to the shift layers with all-to-all-
but-one inhibition (“negative preshape” connectivity pattern) so
that only the corresponding neuron can be activated by the one-
to-all excitatory input from the velocity populations (“boost”).
The shift layers have shifted one-to-one synapses to the IHD.

RHD and GHD receive a subthreshold (wCHD_RHD =

wCHD_GHD = 0.2) one-to-one input from the CHD layer that
is used to learn the initial pose of the landmark (“preshape”
connectivity pattern).

Plastic one-to-all connections from the visual-landmark
population add input to the RHD neurons and drive the neuron
with a pre-shaping CHD input above the threshold. The plastic
connections between this neuron and the visual landmark neuron
are updated then and store the pose of the iCub’s head that
corresponds to having the landmark in the center of the visual
field. After learning, plastic connections form a one-to-one
connectivity pattern: a single synapse from the visual neuron to
the correct RHD neuron is potentiated (high); all other synapses
are depressed (low).

A goal neuron is connected via one-to-all plastic synapses
to the GHD layer. The goal neuron can be driven externally
to remember the pose-landmark association without resetting
the current pose estimate through the IHD layer. The goal
neuron receives excitatory one-to-one connections from the
visual landmark neuron to learn the pose-landmark associations.

The RHD layer has one-to-one excitatory and all-to-all-but-
one inhibitory connectivity (the “reset” pattern) to the IHD layer
to override input from the shift layers when the visual reset is
active. The IHD layer is connected to the CHD layer with all-
to-all-but-one inhibition (wIHD_CHD_inh = −1) to delete the
previous state and one-to-one excitation (wIHD_CHD_exc = 1.24)
to “copy” the current state.

The learning rule of the plastic synapses between the
visual-landmark neurons and the RHD/GHD layer is specified
as follows:

1w = y0 · x1 − λ · x0, if w < wmax. (2)

Here, 1w is the weight update at a given timestep. x0 ∈ {0, 1}
and y0 ∈ {0, 1} are variables that become 1 if there is a pre- or
post-synaptic spike, respectively. x1 is a variable that stores an
eligibility trace of the pre-synaptic neuron activity, and it decays
over n time steps (n = 2 here, since the post-synaptic spike
should arrive in the next time step); wmax = 256 is a maximal
weight value at which weights saturate.

According to the learning rule (Equation 2), a synapse
potentiates if an RHD neuron (post-synaptic) fires after the

TABLE 1 | Values of synaptic weights between layers in the head-direction SNN

on Loihi and parameters of neurons.

Parameter Value Parameter Value Parameter Value

wCHD_CHD 1.2 wCHD_Shift −0.5 wVelocity_Shift 1.0

wShift_IHD 1.0 wIHD_CHD_exc 1.2 wIHD_CHD_inh −1.0

wCHD_RHD 0.2 wRHD_IHD_exc 1.0 wRHD_IHD_inh −0.7

wvision_RHD_initial 0.8 Vthr 100 τV , τi 1

All weights are given as multiples of Vthr (i.e., they are multiplied by 100 before being set

on the chip). Both time constants of neurons (τV) and synaptic temporal filters (τi) are set

to 1 timestep, which means that each neuron’s membrane potential is reset after every

timestep, i.e., neurons do not keep a state. Memory in the network is maintained using

the recurrent connectivity.

visual-landmark neuron (pre-synaptic) fired. The closer in time
the visual-landmark neuron fires to the RHD neuron, the higher
the pre-synaptic trace x1, leading to a more significant weight
update. Synapses are depressed (decrease) by a constant factor
of λ if the post-synaptic (RHD) neuron did not fire but the pre-
synaptic neuron (visual) did fire. The weights are initialized to
a subthreshold value (w = 0.8) so that, together with the input
from the CHD, their summed input activates the RHD at the
currently estimated pose. This leads to one-shot learning of the
pose, while all other synapses that connect to non-active RHD
neurons are depressed to 0. Plastic synapses between the goal
and GHD neurons are learned in an online fashion throughout
the whole experiment: learning was not artificially stopped at
any time.

Table 1 lists all neuronal and synaptic weight parameters used
in the head-direction SNN and their values.

5. EXPERIMENTS AND RESULTS

We describe experiments in which the proposed SNN model
estimates the head pose of the iCub robot. Three evaluations
were performed:

• We assessed the accuracy of the integration component of the
head-direction SNN without visual input.

• We assessed the improvement of the network with visual
learning and reset.

• We investigated the representation of the object location in the
SNN and how it relates to the map creation.

5.1. Experimental Setup and Dataset
Data for repeatable experiments were produced using the
neuromorphic iCub robot (Bartolozzi et al., 2011). We evaluated
the entire system using online, live experiments connecting the
SNN and robot. However, the results presented were produced
on recorded data to ensure reproducibility. The datasets are
available permanently and can be downloaded here1. There are
five datasets with random head movements and a simpler one
with a squared movement of the head. Each dataset contains
ATIS features, visual tracker output, motor commands, and

1https://services.ini.uzh.ch/permlink.php/puGu3hai

Frontiers in Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 551118

https://services.ini.uzh.ch/permlink.php/puGu3hai
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

robot encoder values. All datasets start with a calibration
phase (0–25 s) where the robot performs independent yaw and
pitch movements.

The yaw and pitch motors of the iCub head were controlled
to maintain the desired velocity during operation. By using only
velocity commands, the head-control module has no information
about the position of the joints, and in the main part of the
architecture, the only module that estimated the pose was the
head-direction SNN. We used the encoder values in auxiliary
functions to enforce joint limits (to avoid robot damage) and to
center the head between trials, which was required for repeatable
experiments. Encoder values were also used as a ground truth
against which we compared the activity of the head-direction
network. All parameter values used in experiments are listed
in Table 2.

The iCub robot performed the following behaviors:

• Home: The head is moved to the center of the workspace,
controlling the velocity, such that new trials begin with
identical pose.

• Nodding: The robot nods its head upward and downward
between the joint limits (j0min and j

0
max). No horizontal motion.

• Head-shaking: The robot shakes its head side-to-side between
the joint limits (j2min and j2max). No vertical motion.

• Random: The robot chooses random velocities at which to
move both vertically and horizontally. The velocity is chosen
as a uniform distribution between 0 to v0 and 0 to v2 for the
vertical and horizontal motion, respectively. If a joint limit is
reached, the velocity of the respective joint is reversed. New
velocities are chosen after rtimeout seconds.

In addition to direction, we changed the speed of the robot’s
movements: v01 and v21 are the base velocities used, and during
experiments, the speed was increased such that v2 is double
and v4 is four times the base speed, applied to both joints
simultaneously (see Table 2).

Five datasets were recorded with the robot beginning in the
home position and then proceeding with the following strategy:
nodding, home, head-shaking, home, random with speed v1 for
∼30 s, random with speed v2 for ∼30 s, random with speed v4
for ∼30 s, and finally, home. The data were recorded from one
of the ATIS cameras on the robot after a pre-processing stage
to eliminate the saving of uninformative events (a noise filter).
The motor-control module output the velocity of the head when
the commanded velocity changed; the data were saved along with

TABLE 2 | Parameters of iCub movements in the experiments.

Parameter Value Parameter Value

j0min −20 deg. j2min −35 deg.

j0max 10 deg. j2max 35 deg.

v01 7 deg./s v21 14 deg./s

v02 14 deg./s v22 28 deg./s

v04 28 deg./s v24 56 deg./s

rtimeout 3 s

Rsize 50 pix. Nevents 1000

the iCub head encoder values. All data were timestamped to
synchronize during playback correctly and for further processing.

The data were saved and processed offline to enable a
repeatable analysis of the visual integration; however, the entire
pipeline was also tested with the robot in the control loop.
Therefore the system is capable of estimating the robot’s head
pose and memorizing object-directed poses in real time during
the robot operation.

The robot was positioned to look at a dot pattern, which was
chosen because it produced a strong signal in the visual stream
(Figures 4A,B). The background of the scene was predominantly
a blank wall to avoid the interference that would be introduced
by a cluttered scene (as visual processing was not the focus of
this experiment) but also included desks and windows. The dot-
pattern was placed in different positions relative to the robot
for each of the five datasets. The position of the dot pattern
in the visual array of the ATIS sensor was extracted from the
visual stream by visual tracking (Figure 4C), section 3.2. Both
the position of the dot-pattern and the commanded velocities of
the robot’s head motors were sent to the Loihi host process to be
converted to spikes compatible with the SNN on the Loihi neural
core. The SNN produced the estimate of the iCub’s head position,
which was recorded and compared to the encoder values and path
integration in software.

5.2. Integration-Only Pose Estimation
The head-direction SNN was initially evaluated on its ability
to integrate the velocity commands to estimate the position,
without any correction from the visual system. The robot began
each trial in the center of the workspace. The head-direction
network was initialized with an active neuron in the center of
the CHD layer. With the correct input threshold (calculated as
described in section 3.1) applied to the integration dynamics
of the network, we achieved a close correspondence between
the ground-truth pose calculated in software and yaw and pitch
angles estimated by the SNN, as can be qualitatively seen in the
time course of, e.g., experiment 1 shown in Figure 5A. Here,
the yaw and pitch angles estimated in the SNN on-chip (blue
line) and in software (orange line) overlap perfectly. Table 3 lists
the RMSEs of dataset 5 using different thresholds Vthr . We also
show the value measured by the motor encoders (green line) for
completeness. Trajectories in the 2D joint (yaw-pitch) space for
all five datasets are shown in Figures 5B–F. Note that in the last
example, the actual movement, measured by the motor encoders,
deviates more strongly from the motor commands, which will be
noticeable later in the learned map.

Quantitatively, the RMSE between the estimated pose and
pose measured by the encoders was 1.93◦ and 2.43◦ for the yaw
and pitch angles, respectively, for our 2-min long experiments.
Errors compared to the pose measured with motor encoders
appear due to the inertia of the robot’s movements. The encoders
capture the actual position of themotors, and the joint motors are
affected by inertia and other higher-order dynamics; i.e., the head
cannot instantly change velocity. The head-direction network, to
the contrary, immediately integrates the changing velocity—the
motor commands are integrated precisely.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 551119

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

FIGURE 4 | (A) The iCub robot and visual fiducial (dot pattern). (B) The visual trajectory of the fiducial over dataset 1. (C) An example of the ATIS camera output.

Further, we compared the estimated pose from the CHD
layer to a software-based integration of the command signals
performed with precise floating-point computation. To compute
errors, we sampled the software pose estimation with a fixed
interval of 2ms and linearly interpolated to the spike times of
the SNN-based pose estimation. The error was found to be 0.31
and 0.58◦ for the pitch and yaw angles, respectively. Table 3
lists the RMSEs of dataset 5, comparing the SNN estimation
with command-based path integration in software for different
settings of Vthr . A Vthr = 2 corresponds to a network with
N = 25 neurons in the CHD layer, Vthr = 1: N = 50, Vthr = 0.5:
N = 100, and Vthr = 0.25: N = 200.

These encouraging results demonstrate the strong potential of
the network as a head-direction estimator.

5.3. Visual Reset of Imprecise Pose
Tracking
A correctly parametrized head-direction SNN is able to
integrate the motor commands with high accuracy. However,
when running for longer periods and with other (external)
disturbances, it cannot be guaranteed that the estimate will
always remain accurate. To simulate a disturbance within the
shorter time frame of our recorded datasets, we artificially
introduced a bias into the network.We show that the visual input
and the visual reset layer of the network allow the pose estimation
to be corrected.

To corrupt the path integration, we multiplied the velocity
signal, Iin, in Equation (1) by a factor of 1.1 for the clockwise
direction. We applied this bias after ∼45 s (30,000 time steps) of
the experiment. The performance of the resulting biased network
can be seen in Figure 6A. Here, the yaw and pitch estimated
in the CHD layer of the SNN (blue line) diverge from the
software-integrated commands (green line) after the 45-s mark.

The visual reset component of the network allowed the
estimated head direction to be corrected. In Figure 6B, the same
biased network is used, but the active neuron in the CHD layer
is reset when the target object is again seen in the center of the
visual field. At the points of visual reset, the pose “jumps” to
the pose learned when the robot looked at the object for the

first time, thereby correcting the pose estimation. The RMSE,
when compared to encoder information (see Table 4), is 6.05◦

in pitch and 11.10◦ in yaw for the corrupted network without
visual reset and 4.47◦ in pitch and 8.98◦ in yaw when the
detected landmark corrects the network during visual reset. The
visual correction could potentially improve overall performance,
removing the discrepancy between the motor commands and
actual movements. However, our visual preprocessing itself was
not precise enough to achieve improvement here.

The visual reset component of the network is potentially
more than just a correction tool. As we have shown
previously (Kreiser et al., 2019a,b), this “loop closure” event
can also be used to calibrate the gain of path integration,
such that manual parametrization of the velocity input layer
becomes unnecessary.

5.4. Representing the Visual Scene in the
Network (Map Formation)
Although our simple visual pre-processing did not allow us to use
multiple objects in the visual scene, the network can learn poses
that correspond to looking at multiple objects. To demonstrate
this, we concatenated five datasets with different object positions
(two positions were the same). Each target was considered a
unique object, and a new pose was learned for each object without
forgetting the other ones. To achieve this, we introducedmultiple
visual landmark neurons. Each landmark neuron was activated
by the object detected in the central part of the field of view. Here,
we let different landmark neurons be activated in each of the five
datasets. This manual neuron selection is a placeholder for the
output of a fully-fledged object recognition system (e.g., Liang
et al., 2019).

The network was successfully able to store multiple different
objects with the plasticity mechanism described in section 4.3.
We visualize the learned object-directed poses by activating
each of five visual landmark neurons and reading out activity
in the goal head direction (GHD) layer. The resulting 2D
motor poses are shown in Figure 8B (colored crosses), compared
to the ground truth of the encoder values read out when

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 551120

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

FIGURE 5 | Results of robotic experiments on path integration in head-direction SNN on chip. (A) The estimated yaw and pitch angles over time for dataset 5. A

match between the SNN-estimated pose and integrated motor commands can be observed, with small deviations from actual movement as measured by the motor

encoder. (B) The same trajectory in 2D motor space. (C–F) Trajectories for the datasets 1, 2, 3, and 4, respectively.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 551121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

the robot was centering the target object in its field of view
(colored squares).

Figure 7 shows the time course of the whole experiment with
five concatenated datasets. Visual resets occurred throughout the
entire 10 min of dataset, periodically correcting the drift that
accumulated over time. This demonstrates that visual reset is
helpful even if the path integration is precise when the pose is
tracked for a long time.

At the end of the experiment, the goal neurons that represent
the five different landmarks were activated one by one, and the
associated pose was recalled through the activity of neurons in
the GHD layer.

Figure 8A shows the five target locations in the camera’s field
of view, extracted from the events of the object tracker during
the calibration phase when the robot’s head is moved up and
down and left to right. The location of each object was extracted
from the intersection of event-traces during the yaw and pitch
movements. Figure 8B shows the respective five positions in the
robot’s motor space: recorded from the encoders at the time
when the landmark was in the center of the visual field (squares)
and learned by the SNN (crosses). Each marker represents the
pose that the robot needs to take to “look” at the respective
object, i.e., center an object in its visual field. Note that there is
a close match between the estimated pose and the ground truth
(measured movement).

TABLE 3 | Root mean squared errors (RMSE) in degrees for different thresholds of

velocity input neurons, Vthr , for the yaw and pitch estimation.

RMSE (in ◦) Vthr = 2 Vthr = 1 Vthr = 0.5 Vthr = 0.25

Pitch 0.86 0.95 0.31 0.23

Yaw 1.54 2.04 0.58 0.58

RMSEs are calculated based on time-aligned differences in angles estimated from the

CHD layer of the SNN and calculated by path integration in software.

The learned landmark-centering poses can be used to direct
the robot’s gaze to the memorized object locations. E.g., the
vector-integration to end-point (VITE) neuronal motor-control
model generates movement based on the currently estimated
pose and the stored goal pose (Grossberg, 1988). Alternatively,
one can use a saccadic eye-movement-generating neuronal
architecture (Bell et al., 2014; Sandamirskaya and Storck, 2014,
2015) to initiate the gaze to the memorized pose.

Note that during all of our experiments with recorded data,
the data were fed to the SNN on-chip in real time, at a speed at
which the real robot would provide the same data. Thus, no re-
parametrization of the network was needed to run closed-loop
experiments with the robot, and learning can proceed alongside
the behavior in real time.

6. DISCUSSION

In this work, we applied elements of neuromorphic SLAM—
neuronal path integration, visual reset, and map learning—in the
new setting of a humanoid robot observing a visual scene. The
main results of this work can be summarized as follows:

• We have shown that even a small population of spiking
neurons can perform precise path integration of motor
commands to obtain an estimation of the current pose of

TABLE 4 | Root mean square errors (RMSEs) of pose estimation by the biased

head-direction network with and without visual reset.

RMSE, ◦ With visual reset Without visual reset

Pitch 4.47 6.05

Yaw 8.98 11.10

RMSEs are calculated between SNN output and motor commands integrated in software.

FIGURE 6 | Testing the visual reset. After ∼45 s (30,000 time-steps), the clockwise velocity signal is scaled by a factor of 1.1 as a simulated disturbance in the

neuronal estimation of head direction. (A) Pose estimation without visual reset diverges from the ground truth. (B) Pose estimation with visual reset when the object is

revisited. The dashed blue lines indicate the presence of the visual stimulus in the center of the visual field. The first blue line (around 36 s) indicates when the object

was learned.

Frontiers in Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 551122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

FIGURE 7 | Five datasets concatenated in time, leading to about 10 min of recorded data. Visual learning and recall are indicated by the dashed vertical lines, with

each color indicating a “new” object (object in a different location). Five different poses are stored in the network.

FIGURE 8 | Positions of the objects in our experiments: (A) Positions of the objects calculated from ATIS events (in camera pixels when the robot looks straight). (B)

Learned motor poses in the head-direction network (crosses) and object-directed poses calculated from the encoders (squares). Note that red and blue squares are

on top of each other.

the robot’s head. The error, compared to path integration in
software, accumulated over 120 s of the experiment, was at the
resolution of value representation, < 1◦, for the network with
100 neurons representing 100◦.

• We have shown how error that is accumulated due to
imperfections of the robot (motor commands do not perfectly
correspond to executed movements) can be corrected with
external sensing, i.e., vision.

• We have demonstrated online learning of the reference pose
in a closed behavioral loop, i.e., with the weight adaptation
occurring in parallel to the robot’s movements and path
integration. Plastic weights are updated in timesteps, in which
the learning conditions are fulfilled: the respective pre- and
post-synaptic spikes co-occur in the same timestep. These

updates can lead to one-shot learning (as shown here).
The network can also be configured to require several co-
activations of pre- and post-synaptic neurons for the updated
weight to have a noticeable effect after the learning increment.
We have shown how multiple objects can be stored in the
network by adding one “label” neuron per object and a set of
N plastic synapses, where N is the size of the head direction
network layers (N = 100 here).

• We have introduced a number of structural motifs that
solve computational tasks involved in path integration and
map formation, that is, setting, resetting, and shifting
connections and boosting and pre-shaping, as well as input
and output interfaces between the non-spiking periphery and
the neuromorphic chip.

Frontiers in Neuroscience | www.frontiersin.org 13 June 2020 | Volume 14 | Article 551123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

When presenting the SNN model, we paid particular attention
to the computing modules that realize important computational
primitives that can be reused as building blocks in other tasks and
on other neuromorphic hardware. Thus, we hope to contribute
to building-up a neuromorphic “instruction set” that will allow
us to design neuronal models, in particular for robotic tasks.
Such neuronal models can be built using known biological
neural circuits, creating a complementary approach to data-
driven learning, which can be too costly in learning time and
data-preparation effort for some applications. In comparison to
previous work on neuromorphic head direction estimation, we
evaluate system performance in a real-world task to estimate
the 2D head pose of a humanoid iCub robot, particularly
emphasizing the required interfaces between different hardware
components. We have shown that disturbances can be mitigated
by using information of different sensory modalities, and we
evaluated how the path integration error relates to scaling of
the network.

The main contributions of this work that we would like to
emphasize are:

• We use “place code” to represent values (e.g., the angles
of the head’s pose): we represent values by the identity of
the most active neuron (or localized region) in a neuronal
population (layer). In particular, taking advantage of Loihi’s
precise nature, we use “one-hot” and “single-spike” encoding
here, making every spike matter in our network.

• We show an example of combining rate code and place code
to represent values in an SNN architecture, and we show how
non-spiking sensory input can drive a spiking network.

• We use recurrent self-excitatory connections to create self-
sustained activation in a neuron or neuronal population:
an active neuron continues spiking to represent the current
estimate of the pose in the SNN, even in the absence of input.
This models the workingmemory of biological neural systems.

• We propose connectivity patterns between neuronal
populations that solve different computational tasks:

- mapping activity from one population to another one in a
one-to-one or shifted manner;

- resetting activity by inhibiting the currently active neuron(s)
and activating another/others;

- boosting the whole population through
one-to-all connections;

- providing subthreshold localized input (preshape) to create
a potentiality for activation, i.e., when boosted, such a
preshape can lead to fully-fledged activation.

• We demonstrate the integration of different modalities: input
from one modality (motor command) is integrated into the
network to produce the pose, and input from anothermodality
(vision) is mapped onto the network through plastic—
learned—synapses.

• Finally, we demonstrate one-shot online learning of the
object-centering pose and how it can be used to generate
object-directed gaze. To use the learned pose, we introduced
an additional layer that can read out the learned pose

without triggering a reset. Thus, we explicitly distinguish the
“remembered” and the “currently perceived” object-centering
pose representation, modeling different “directions of fit” from
the theory of intentionality (Searle and Willis, 1983).

These elements form the basic algorithmic building blocks
for pose estimation and SLAM-like systems in neuromorphic
technologies. In this work, we realize the SNN to estimate
the pose of a robot’s head within two degrees of freedom
(yaw-pitch). The error of the head-direction network compared
to the integrated velocity commands in software remains
below “one neuron” (i.e., an angle corresponding to Vthr

from Equation 1). Plastic synaptic connections between the
yaw-pitch motor space and visually-activated object-neurons
in our SNN are learned to store the positions of objects
autonomously during operation, i.e., showing online learning.
These connections can be used to produce goal-directed head-
movements toward stored poses, “looking back” at objects. The
stored associations are also used to correct the pose, as the
path integration process may be subject to drift (as shown in
Figure 6).

This work also highlights the interfaces that we developed
between the iCub robot and the Loihi chip. System integration
is an important challenge in robotics in general and in
neuromorphic robotics in particular. Our solution is
still in a prototype stage but already achieves real-time
performance (processing loop of <10ms). Tighter integration
of the hardware system will further improve the system’s
latency. When combined with a more powerful object
recognition system, our pose estimation and learning
SNN can be used as a component of an interactive
scene representation system for robotic and augmented
reality applications.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article.

AUTHOR CONTRIBUTIONS

RK, AR, and VL have worked on the SNN on chip, run the
simulated experiments, and worked on SNN-related plots and
results. BS helped with the initial experiments and writing.
CB supervised the work related to iCub robot and event-
based vision and helped with writing. AG planned and
performed the experiments with the robot, developed the
software infrastructure required to connect the robot and
neuromorphic hardware, worked on the plots and text related
to robot experiments. YS conceptualized the study, suggested
the experiments, supervised all work, and put it in the context
of SoA.

FUNDING

This work has started as a project at CapoCaccia 2019
Cognitive Neuromorphic Engineering Workshop and

Frontiers in Neuroscience | www.frontiersin.org 14 June 2020 | Volume 14 | Article 551124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

was funded by the SNSF grant Ambizione ELMA (Grant
No. PZOOP2_168183), EU ERC grant NeuroAgents
(Grant No. 724295), Forschungskredit of the University
of Zurich (Grant No. FK-76204-03-01), and EU MSCA
(Grant No. 676063).

ACKNOWLEDGMENTS

We would like to thank Intel Neuromorphic Computing Lab
for their continual support with the neuromorphic research
chip Loihi.

REFERENCES

Alzugaray, I., and Chli, M. (2018). Asynchronous corner detection and tracking

for event cameras in real-time. IEEE Robot. Autom. Lett. 3, 3177–3184.

doi: 10.1109/LRA.2018.2849882

Arena, P., Maceo, S., Patane, L., and Strauss, R. (2013). “A spiking network for

spatial memory formation: towards a fly-inspired ellipsoid body model,” in The

2013 International Joint Conference on Neural Networks (IJCNN) (Dallas, TX:

IEEE), 1–6. doi: 10.1109/IJCNN.2013.6706882

Arleo, A., Gerstner, W. (2000). Spatial cognition and neuro-mimetic navigation:

a model of hippocampal place cell activity. Biol Cybern. 83, 287–299.

doi: 10.1007/s004220000171

Barrera, A., and Weitzenfeld, A. (2008). Biologically-inspired robot spatial

cognition based on rat neurophysiological studies. Auton. Robots 25, 147–169.

doi: 10.1007/s10514-007-9074-3

Bartolozzi, C., Rea, F., Clercq, C., Fasnacht, D. B., Indiveri, G., Hofstätter, M.,

et al. (2011). “Embedded neuromorphic vision for humanoid robots,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (Colorado Springs, CO). doi: 10.1109/CVPRW.2011.5981834

Bell, C., Storck, T., and Sandamirskaya, Y. (2014). “Learning to look: a dynamic

neural fields architecture for gaze shift generation,” in ICANN (Hamburg),

699–706. doi: 10.1007/978-3-319-11179-7_88

Burak, Y., and Fiete, I. R. (2009). Accurate path integration in continuous

attractor network models of grid cells. PLoS Comput. Biol. 5:e1000291.

doi: 10.1371/journal.pcbi.1000291

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015). “DeepDriving:

learning affordance for direct perception in autonomous driving,” in 2015

IEEE International Conference on Computer Vision (ICCV) (Santiago).

doi: 10.1109/ICCV.2015.312

Conklin, J., and Eliasmith, C. (2005). A controlled attractor network

model of path integration in the rat. J. Comput. Neurosci. 18, 183–203.

doi: 10.1007/s10827-005-6558-z

Corradi, F., Zambrano, D., Raglianti, M., Passetti, G., Laschi, C., and

Indiveri, G. (2014). Towards a neuromorphic vestibular system. IEEE

Trans. Biomed. Circuits Syst. 8, 669–680. doi: 10.1109/TBCAS.2014.

2358493

Cuperlier, N., Quoy, M., and Gaussier, P. (2007). Neurobiologically

inspired mobile robot navigation and planning. Front. Neurorobot. 1:3.

doi: 10.3389/neuro.12.003.2007

Dalgaty, T., Vianello, E., De Salvo, B., and Casas, J. (2018). Insect-

inspired neuromorphic computing. Curr. Opin. Insect Sci. 30, 59–66.

doi: 10.1016/j.cois.2018.09.006

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–89. doi: 10.1109/MM.2018.112130359

Edvardsen, V. (2017). “Long-range navigation by path integration and decoding of

grid cells in a neural network,” in 2017 International Joint Conference on Neural

Networks (IJCNN) (Anchorage, AK: IEEE), 4348–4355.

Engelhard, N., Endres, F., Hess, J., Sturm, J., and Burgard, W. (2011). “Real-time

3D visual slam with a hand-held RGB-D camera,” in Proceedings of the RGB-

D Workshop on 3D Perception in Robotics at the European Robotics Forum

(Vasteras), Vol. 180, 1–15.

Erdem, U. M., Milford, M. J., and Hasselmo, M. E. (2015). A hierarchical

model of goal directed navigation selects trajectories in a visual

environment. Neurobiol. Learn. Mem. 117, 109–121. doi: 10.1016/j.nlm.2014.

07.003

Fisher, Y. E., Lu, J., D’Alessandro, I., and Wilson, R. I. (2019). Sensorimotor

experience remaps visual input to a heading-direction network. Nature 576,

121–125. doi: 10.1038/s41586-019-1772-4

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2012). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al.

(2019). Event-based vision: a survey. arxiv [Preprint] arXiv 1904.08405.

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. B., et al.

(2015). A framework for plasticity implementation on the spinnaker neural

architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.00429

Gehrig, M., Shrestha, S. B., Mouritzen, D., and Scaramuzza, D. (2020). Event-based

angular velocity regression with spiking networks. arXiv 2003.02790.

Goodridge, J. P., and Touretzky, D. S. (2000). Modeling attractor deformation

in the rodent head-direction system. J. Neurophysiol. 83, 3402–3410.

doi: 10.1152/jn.2000.83.6.3402

Green, J., Adachi, A., Shah, K. K., Hirokawa, J. D., Magani, P. S., and Maimon,

G. (2017). A neural circuit architecture for angular integration in Drosophila.

Nature 546:101. doi: 10.1038/nature22343

Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms, and

architectures. Neural Netw. 1, 17–61.

Gu, T., and Yan, R. (2019). “An improved loop closure detection for RatSLAM,”

in 2019 5th International Conference on Control, Automation and Robotics

(ICCAR) (Beijing: IEEE), 884–888.

Hahnloser, R. H. (2003). Emergence of neural integration in the head-

direction system by visual supervision. Neuroscience 120, 877–891.

doi: 10.1016/S0306-4522(03)00201-X

Heinze, S. (2017). Unraveling the neural basis of insect navigation. Curr. Opin.

Insect Sci. 24, 58–67. doi: 10.1016/j.cois.2017.09.001

Heinze, S., Narendra, A., and Cheung, A. (2018). Principles of insect path

integration. Curr. Biol. 28, R1043–R1058. doi: 10.1016/j.cub.2018.04.058

Honkanen, A., Adden, A., Da Silva Freitas, J., and Heinze, S. (2019). The insect

central complex and the neural basis of navigational strategies. J. Exp. Biol.

222:jeb188854. doi: 10.1242/jeb.188854

Indiveri, G., Chicca, E., and Douglas, R. J. (2009). Artificial cognitive systems: from

VLSI networks of spiking neurons to neuromorphic cognition. Cogn. Comput.

1, 119–127. doi: 10.1007/s12559-008-9003-6

Jauffret, A., Cuperlier, N., and Gaussier, P. (2015). From grid cells and visual place

cells to multimodal place cell: a new robotic architecture. Front. Neurorobot.

9:1. doi: 10.3389/fnbot.2015.00001

Kreiser, R., Aathmani, D., Qiao, N., Indiveri, G., and Sandamirskaya, Y. (2018a).

Organizing sequential memory in a neuromorphic device using dynamic neural

fields. Front. Neurosci. 12:717. doi: 10.3389/fnins.2018.00717

Kreiser, R., Cartiglia, M., Martel, J. N., Conradt, J., and Sandamirskaya, Y. (2018b).

“A neuromorphic approach to path integration: a head-direction spiking neural

network with vision-driven reset,” in 2018 IEEE International Symposium on

Circuits and Systems (ISCAS) (Florence). doi: 10.1109/ISCAS.2018.8351509

Kreiser, R., Pienroj, P., Renner, A., and Sandamirskaya, Y. (2018c). “Pose

estimation and map formation with spiking neural networks: towards

neuromorphic SLAM,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (Madrid). doi: 10.1109/IROS.2018.8594228

Kreiser, R., Renner, A., and Sandamirskaya, Y. (2019a). “Error-driven learning for

self-calibration in a neuromorphic path integration system,” in Robust AI for

Neurorbotics (Edinburgh).

Kreiser, R., Waibel, G., Renner, A., and Sandamirskaya, Y. (2019b). “Self-

calibration and learning on chip: towards neuromorphic robots,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Breaking

News (Macau).

Krichmar, J. L., andWagatsuma, H. (2011).Neuromorphic and Brain-Based Robots,

Vol. 233. Cambridge: Cambridge University Press.

Liang, D., Kreiser, R., Nielsen, C., Qiao, N., Sandamirskaya, Y., and Indiveri,

G. (2019). Neural state machines for robust learning and control of

Frontiers in Neuroscience | www.frontiersin.org 15 June 2020 | Volume 14 | Article 551125

https://doi.org/10.1109/LRA.2018.2849882
https://doi.org/10.1109/IJCNN.2013.6706882
https://doi.org/10.1007/s004220000171
https://doi.org/10.1007/s10514-007-9074-3
https://doi.org/10.1109/CVPRW.2011.5981834
https://doi.org/10.1007/978-3-319-11179-7_88
https://doi.org/10.1371/journal.pcbi.1000291
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1007/s10827-005-6558-z
https://doi.org/10.1109/TBCAS.2014.2358493
https://doi.org/10.3389/neuro.12.003.2007
https://doi.org/10.1016/j.cois.2018.09.006
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.nlm.2014.07.003
https://doi.org/10.1038/s41586-019-1772-4
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.3389/fnins.2014.00429
https://doi.org/10.1152/jn.2000.83.6.3402
https://doi.org/10.1038/nature22343
https://doi.org/10.1016/S0306-4522(03)00201-X
https://doi.org/10.1016/j.cois.2017.09.001
https://doi.org/10.1016/j.cub.2018.04.058
https://doi.org/10.1242/jeb.188854
https://doi.org/10.1007/s12559-008-9003-6
https://doi.org/10.3389/fnbot.2015.00001
https://doi.org/10.3389/fnins.2018.00717
https://doi.org/10.1109/ISCAS.2018.8351509
https://doi.org/10.1109/IROS.2018.8594228
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kreiser et al. On-chip SNN-Based Head-Pose Estimation

neuromorphic agents. IEEE J. Emerg. Select. Top. Circuits Syst. 9, 679–689.

doi: 10.1109/JETCAS.2019.2951442

Massoud, T. M., and Horiuchi, T. K. (2011a). A neuromorphic VLSI head

direction cell system. IEEE Trans. Circuits Syst. I Reg. Pap. 58, 150–163.

doi: 10.1109/TCSI.2010.2055310

Massoud, T. M., and Horiuchi, T. K. (2011b). “Online correction of orientation

estimates using spatial memory in a neuromorphic head direction system,” in

Proceedings–IEEE International Symposium on Circuits and Systems (Rio de

Janeiro). doi: 10.1109/ISCAS.2011.5938094

Massoud, T. M., and Horiuchi, T. K. (2012). “A neuromorphic VLSI grid cell

system,” in ISCAS 2012–2012 IEEE International Symposium on Circuits and

Systems. (Seoul). doi: 10.1109/ISCAS.2012.6271787

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan,

F., et al. (2014). Artificial brains. A million spiking-neuron integrated circuit

with a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.

Int. J. Adv. Robot. Syst. 3, 43–48. doi: 10.5772/5761

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). “The iCub

humanoid robot: An open platform for research in embodied cognition,” in

Performance Metrics for Intelligent Systems (PerMIS) Workshop (Gaithersburg,

MD), 50–56. doi: 10.1145/1774674.1774683

Milford, M., and Schulz, R. (2014). Principles of goal-directed spatial robot

navigation in biomimetic models. Philos. Trans. R. Soc. B Biol. Sci. 369, 1–13.

doi: 10.1098/rstb.2013.0484

Milford, M. J., Wyeth, G. F., and Prasser, D. (2004). “RatSLAM: a hippocampal

model for simultaneous localization and mapping,” in Proceeding of the 2004

IEEE international Conference on Robotics & Automation (New Orleans, LA),

403–408. doi: 10.1109/ROBOT.2004.1307183

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., a., Veness, J., et al. (2015). Human-

level control through deep reinforcement learning. Nature 518, 529–533.

doi: 10.1038/nature14236

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks. IEEE Signal Process. Mag. 36, 51–63.

doi: 10.1109/MSP.2019.2931595

Pfeiffer, K., and Homberg, U. (2014). Organization and functional roles of

the central complex in the insect brain. Annu. Rev. Entomol. 59, 165–184.

doi: 10.1146/annurev-ento-011613-162031

Posch, C., Matolin, D., andWohlgenannt, R. (2008). “An asynchronous time-based

image sensor,” in 2008 IEEE International Symposium on Circuits and Systems

(Seattle, WA), 2130–2133. doi: 10.1109/ISCAS.2008.4541871

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Redish, A., Elga, A., and Touretzky, D. (1996). A coupled attractor model of

the rodent head direction system. Netw. Comput. Neural Syst. 7, 671–685.

doi: 10.1088/0954-898x/7/4/004

Samu, D., Erős, P., Ujfalussy, B., and Kiss, T. (2009). Robust path integration in

the entorhinal grid cell system with hippocampal feed-back. Biol. Cybern. 101,

19–34. doi: 10.1007/s00422-009-0311-z

Sandamirskaya, Y., and Storck, T. (2014). “Neural-dynamic architecture for

looking: shift from visual to motor target representation for memory saccade,”

in ICDL-EPIROB (Genoa). doi: 10.1109/DEVLRN.2014.6982951

Sandamirskaya, Y., and Storck, T. (2015). “Chapter: learning to look and looking

to remember: a neural-dynamic embodied model for generation of saccadic

gaze shifts and memory formation,” in Artificial Neural Network, Vol. 4, eds

P. Koprinkova-Hristova, V. Mladenov, and N. K. Kasabov (Springer), 175–200.

doi: 10.1007/978-3-319-09903-3_9

Scaramuzza, D., and Fraundorfer, F. (2011). Visual odometry. IEEE Robot. Autom.

Mag. 18, 80–92. doi: 10.1109/MRA.2011.943233

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in ISCAS 2010–2010 IEEE International Symposium on Circuits

and Systems: Nano-Bio Circuit Fabrics and Systems (Paris), 1947–1950.

doi: 10.1109/ISCAS.2010.5536970

Searle, J. R., andWillis, S. (1983). Intentionality: An Essay in the Philosophy ofMind.

Cambridge: Cambridge University Press.

Seelig, J. D., and Jayaraman, V. (2013). Feature detection and orientation

tuning in the Drosophila central complex. Nature 503, 262–266.

doi: 10.1038/nature12601

Seelig, J. D., and Jayaraman, V. (2015). Neural dynamics for landmark orientation

and angular path integration. Nature 521, 186–191. doi: 10.1038/nature14446

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems (Montreal, QC),

1412–1421.

Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S., and McNaughton, B. L. (1995). “A

model of the neural basis of the rat’s sense of direction,” in Advances in Neural

Information Processing Systems (Denver, CO), 173–180.

Song, P., and Wang, X. J. (2005). Angular path integration by

moving “hill of activity”: a spiking neuron model without recurrent

excitation of the head-direction system. J. Neurosci. 25, 1002–1014.

doi: 10.1523/JNEUROSCI.4172-04.2005

Stachniss, C., Leonard, J. J., and Thrun, S. (2016). “Simultaneous localization and

mapping,” in Springer Handbook of Robotics, eds B. Siciliano and O. Khatib

(Springer), 1153–1176. doi: 10.1007/978-3-319-32552-1_46

Stratton, P., Wyeth, G., and Wiles, J. (2010). Calibration of the head direction

network: a role for symmetric angular head velocity cells. J. Comput. Neurosci.

28, 527–538. doi: 10.1007/s10827-010-0234-7

Stringer, S. M., Trappenberg, T. P., Rolls, E. T., and De Araujo, I. E. (2002).

Self-organizing continuous attractor networks and path integration: one-

dimensional models of head direction cells. Netw. Comput. Neural Syst.13,

217–242. doi: 10.1088/0954-898X/13/2/304

Tang, G., Shah, A., and Michmizos, K. P. (2019). Spiking

neural network on neuromorphic hardware for energy-efficient

unidimensional slam. arXiv 1903.02504. doi: 10.1109/IROS40897.2019.8

967864

Taube, J. S. (2007). The head direction signal: origins and

sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207.

doi: 10.1146/annurev.neuro.29.051605.112854

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., et al.

(2007). “Stanley: the robot that won the DARPA grand challenge,” in Springer

Tracts in Advanced Robotics, eds M. Buehler, K. Iagnemma, and S. Singh

(Springer), 661–692. doi: 10.1007/978-3-540-73429-1_1

Turner-Evans, D.,Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig, J. D.,

et al. (2017). Angular velocity integration in a fly heading circuit. eLife 6:e23496.

doi: 10.7554/eLife.23496

Turner-Evans, D. B., and Jayaraman, V. (2016). The insect central

complex. Curr. Biol. 26, R445–R460. doi: 10.1016/j.cub.2016.

04.006

Weikersdorfer, D., Hoffmann, R., and Conradt, J. (2013). “Simultaneous

localization and mapping for event-based vision systems,” in International

Conference on Computer Vision Systems (Thessaloniki: Springer), 133–142.

doi: 10.1007/978-3-642-39402-7_14

Yu, F., Shang, J., Hu, Y., and Milford, M. (2019). NeuroSLAM: a brain-

inspired SLAM system for 3D environments. Biol. Cybern. 113, 515–545.

doi: 10.1007/s00422-019-00806-9

Zhang, H., Tang, H., and Yan, R. (2019). “Multi-sensor fusion for a brain-inspired

SLAM system,” in 2019 5th International Conference on Control, Automation

and Robotics (ICCAR) (Beijing: IEEE), 619–623.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Kreiser, Renner, Leite, Serhan, Bartolozzi, Glover and

Sandamirskaya. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 June 2020 | Volume 14 | Article 551126

https://doi.org/10.1109/JETCAS.2019.2951442
https://doi.org/10.1109/TCSI.2010.2055310
https://doi.org/10.1109/ISCAS.2011.5938094
https://doi.org/10.1109/ISCAS.2012.6271787
https://doi.org/10.1126/science.1254642
https://doi.org/10.5772/5761
https://doi.org/10.1145/1774674.1774683
https://doi.org/10.1098/rstb.2013.0484
https://doi.org/10.1109/ROBOT.2004.1307183
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1146/annurev-ento-011613-162031
https://doi.org/10.1109/ISCAS.2008.4541871
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1088/0954-898x/7/4/004
https://doi.org/10.1007/s00422-009-0311-z
https://doi.org/10.1109/DEVLRN.2014.6982951
https://doi.org/10.1007/978-3-319-09903-3_9
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1038/nature12601
https://doi.org/10.1038/nature14446
https://doi.org/10.1523/JNEUROSCI.4172-04.2005
https://doi.org/10.1007/978-3-319-32552-1_46
https://doi.org/10.1007/s10827-010-0234-7
https://doi.org/10.1088/0954-898X/13/2/304
https://doi.org/10.1109/IROS40897.2019.8967864
https://doi.org/10.1146/annurev.neuro.29.051605.112854
https://doi.org/10.1007/978-3-540-73429-1_1
https://doi.org/10.7554/eLife.23496
https://doi.org/10.1016/j.cub.2016.04.006
https://doi.org/10.1007/978-3-642-39402-7_14
https://doi.org/10.1007/s00422-019-00806-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 30 June 2020

doi: 10.3389/fnins.2020.00662

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 662

Edited by:

Chiara Bartolozzi,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Jonathan Binas,

Montreal Institute for Learning

Algorithm (MILA), Canada

Roshan Gopalakrishnan,

Institute for Infocomm Research

(A∗STAR), Singapore

*Correspondence:

Sadique Sheik

sadique.sheik@synsense.ai

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 02 December 2019

Accepted: 28 May 2020

Published: 30 June 2020

Citation:

Sorbaro M, Liu Q, Bortone M and

Sheik S (2020) Optimizing the Energy

Consumption of Spiking Neural

Networks for Neuromorphic

Applications. Front. Neurosci. 14:662.

doi: 10.3389/fnins.2020.00662

Optimizing the Energy Consumption
of Spiking Neural Networks for
Neuromorphic Applications
Martino Sorbaro 1,2, Qian Liu 1, Massimo Bortone 1 and Sadique Sheik 1*

1 SynSense (formerly aiCTX), Zurich, Switzerland, 2 Institute of Neuroinformatics, University of Zürich and ETH Zürich,

Zurich, Switzerland

In the last few years, spiking neural networks (SNNs) have been demonstrated to

perform on par with regular convolutional neural networks. Several works have proposed

methods to convert a pre-trained CNN to a Spiking CNN without a significant sacrifice

of performance. We demonstrate first that quantization-aware training of CNNs leads

to better accuracy in SNNs. One of the benefits of converting CNNs to spiking

CNNs is to leverage the sparse computation of SNNs and consequently perform

equivalent computation at a lower energy consumption. Here we propose an optimization

strategy to train efficient spiking networks with lower energy consumption, while

maintaining similar accuracy levels. We demonstrate results on the MNIST-DVS and

CIFAR-10 datasets.

Keywords: neuromorphic computing, spiking networks, loss function, synaptic operations, energy consumption,

convolutional networks, CIFAR10, MNIST-DVS

1. INTRODUCTION

Since the early 2010s, computer vision has been dominated by the introduction of convolutional
neural networks (CNNs), which have yielded unprecedented success in previously challenging tasks
such as image recognition, image segmentation or object detection, among others. Considering
the theory of neural networks was mostly developed decades earlier, one of the main driving
factors behind this evolution was the widespread availability of high-performance computing
devices and general purpose Graphic Processing Units (GPU). In parallel with the increase in
computational requirements (Strubell et al., 2019), the last decades have seen a considerable
development of portable, miniaturized, battery-powered devices, which pose constraints on the
maximum power consumption.

Attempts at reducing the power consumption of traditional deep learning models have been
made. Typically, these involve optimizing the network architecture, in order to find more compact
networks (with fewer layers, or fewer neurons per layer) that perform equally well as larger
networks. One approach is energy-aware pruning, where connections are removed according to
a criterion based on energy consumption, and accuracy is restored by fine-tuning of the remaining
weights (Molchanov et al., 2016; Yang et al., 2017). Other work looks for more efficient network
structures through a full-fledged architecture search (Cai et al., 2018). The latter work was one of
the winners of the Google “Visual Wake Words Challenge” at CVPR 2019, which sought models
with memory usage under 250 kB, model size under 250 kB and per-inference multiply-add count
(MAC) under 60 millions.

Using spiking neural networks (SNNs) on neuromorphic hardware is an entirely different, and
much more radical, approach to the energy consumption problem. In SNNs, like in biological

127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00662
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00662&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sadique.sheik@synsense.ai
https://doi.org/10.3389/fnins.2020.00662
https://www.frontiersin.org/articles/10.3389/fnins.2020.00662/full
http://loop.frontiersin.org/people/861368/overview
http://loop.frontiersin.org/people/115791/overview
http://loop.frontiersin.org/people/862056/overview
http://loop.frontiersin.org/people/26862/overview

Sorbaro et al. Optimizing Energy Consumption in SNNs

neural networks, neurons communicate with each other through
isolated, discrete electrical signals (spikes), as opposed to
continuous signals, and work in continuous instead of discrete
time. Neuromorphic hardware (Indiveri et al., 2011; Esser et al.,
2016; Furber, 2016; Thakur et al., 2018) is specifically designed
to run such networks with very low power overhead, with
electronic circuits that faithfully reproduce the dynamics of the
model in real time, rather than simulating it on traditional von
Neumann computers. Some of these architectures (including
Intel’s Loihi, IBM’s TrueNorth, and SynSense’s DynapCNN)
support convolution operations, which are necessary for modern
computer vision techniques, by an appropriate weight sharing
mechanism.

The challenge of using SNNs for machine learning tasks,
however, is in their training. Mimicking the learning process
used in the brain’s spiking networks is not yet feasible, because
neither the learning rules, nor the precise fitness functions
being optimized are sufficiently well-understood, although this is
currently a very active area of research (Marblestone et al., 2016;
Richards et al., 2019). Supervised learning routines for spiking
networks have been developed (Bohte et al., 2002; Mostafa,
2017; Nicola and Clopath, 2017; Shrestha and Orchard, 2018;
Neftci et al., 2019), but are slow and challenging to use. For
applications which have little or no dependence on temporal
aspects, it is more efficient to train an analog network (i.e.,
a traditional, non-spiking one) with the same structure, and
transfer the learned parameters onto the SNN, which can then
operate through rate coding. In particular, the conversion of pre-
trained CNNs to SNNs has been shown to be a scalable and
reliable process, without much loss in performance (Diehl et al.,
2015; Rueckauer et al., 2017; Sengupta et al., 2019). But this
approach is still challenging, because the naive use of analog CNN
weights does not take into account the specific characteristics and
requirements of SNNs. In particular, SNNs are more sensitive
than analog networks to themagnitude of the input. Naive weight
transfer can, therefore, lead to a silent SNN, or, conversely,
to one with unnecessarily high firing rates, which have a high
energy cost.

Here, we propose a hybrid training strategy which maintains
the efficiency of training analog CNNs, while accounting for
the fact that the network is being trained for eventual use in
SNNs. Furthermore, we include the energy cost of the network’s
computations directly in the loss function during training,
in order to minimize it automatically and dynamically. We
demonstrate that networks trained with this strategy perform
better per Joule of energy utilized. While we demonstrate the
benefit of optimizing based on energy consumption, we believe
this strategy is extendable to any approach that uses back-
propagation to train the network, be it through a spiking network
or a non-spiking network.

In the following sections, we will detail the training techniques
we devised and applied for these purposes. We will test our
networks on two standard problems. The first is the MNIST-
DVS dataset of Dynamic Vision Sensor recordings. DVSs are
event-based sensors, and, as such, the analysis of their recordings
is an ideal application of spike-based neural networks. The
second is the standard CIFAR-10 object recognition benchmark,

which provides a reasonable comparison on computation cost
to non-spiking networks. For each of these tasks, we will
demonstrate the energy-accuracy trade-off of the networks
trained with our methods. We show that significant amounts
of energy can be saved with a small loss in performance, and
conclude that ours is a viable strategy for training neuromorphic
systems with a limited power budget.

2. MATERIALS AND METHODS

In most state-of-the art neuromorphic architectures with time
multiplexed units like Merolla et al. (2014), Davies et al. (2018),
and Furber et al. (2014), the various states need to be fetched
from memory and rewritten. Such operations happen every
time a neuron receives a synaptic event. Whenever one of
these operations is performed, the neuromorphic hardware
consumes a certain amount of energy. For instance in Indiveri
and Sandamirskaya (2019) the authors show that this energy
consumption is usually of the order of 10−11 J. While there are
several other processes that consume power on a neuromorphic
device, the bulk of the active power on these devices is used by
the synaptic operations. Reducing their number is therefore the
most natural way to keep energy usage low.

In this paper we explore strategies to lower synaptic operations
and evaluate their effect on the network’s computational
performance. We suggest to train, or fine-tune, networks with an
additional loss term which explicitly enforces lower activations
in the trained network—and consequently lower firing rates of
the corresponding spiking network. This is analogous to the L1
term used by Esser et al. (2016) and Neil et al. (2016), but applied
on synaptic operations directly rather than firing rates, and set
up so that a target SynOp count value can be set. Additionally,
we introduce quantization of the activations on each layer, which
mimics the discretization effect of spiking networks, so that the
network activity remains at reasonable levels even when the
regularization term is strong. The following sections illustrate the
technical details and introduce the datasets and networks we use
for evaluation.

2.1. Training Strategies
2.1.1. Parameter Scaling
By scaling the weights, biases and/or thresholds of neurons in
different layers, we can influence the number of spikes generated
in each layer, thereby allowing us to tune the synaptic activity of
the model. This is easy to do, even with pre-trained weights. For
a scale-invariant network, such as any network whose only non-
linearities are ReLUs, this method attains perfect results, because
a linear rescaling of the weights causes a linear rescaling of the
output, which gives identical results for classification tasks where
we select the class that receives the highest activation.

We use this method as a baseline comparison for our results.
We chose to rescale the weights of the first convolutional layer of
our network by a variable factor ρ:

w′

0 = ρw0,

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 662128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

which is equivalent to a rescaling of the input signal by the
same factor. Note that an increase/decrease in the first layer’s
output firing rate causes a correspondent increase/decrease in the
activation of all the subsequent layers, and thereby reduces the
global energy consumption of the whole network.

For baseline comparisons, we also apply the “robust” weight
scaling suggested by Rueckauer et al. (2017). This consists of a
per-layer scaling of weights, in such a way that the maximum
level of activation is constant along the network. For robustness,
the 99th percentile of activations is taken as a measure of output
magnitude in each layer, estimated from forward passes over
25,600 samples of the training set. In this way, the activity of
the network is balanced over its layers, in the sense that no layer
unnecessarily amplifies or reduces the activity level compared to
its input.

The scale-invariance property of ReLU functions does not
hold for the corresponding spiking network, and small activation
values could cause discretization errors, or even yield a
completely silent spiking network from a perfectly functional
analog network.

2.1.2. Synaptic Operation Optimization
We measure the activity of the network, for each layer
group, in correspondence with the ReLU operations, which
effectively correspond to the spikes from an equivalent SNN
(Supplementary Figure 2). We denote the activity of neuron i in
layer ℓ as aℓ

i . We define the fan-out of each group of layers, f ℓout,
as the number of units of layer ℓ + 1 that receive the signal
emitted by a single neuron in layer ℓ. This measure is essential in
estimating the number of synaptic operations (SynOps) sℓ elicited
by each layer:

sℓ = f ℓout

∑

i

aℓ
i (1)

We directly add this number to the loss we want to minimize,
optionally specifying a target value S0 for the desired number
of SynOps:

L = C(aoutput, t)+ α

(

S0 −
∑

ℓ

sℓ

)2

(2)

where C is the cross-entropy loss, t is the target label, and α is
a constant. We will refer to this additional term as SynOp loss.
In this work, we will always choose α = 1/S20, in order to keep
the SynOp loss term normalized independently of S0. Although
setting S0 = 0 and tweaking the value of α instead is also a
valid choice, we found it easier to set a direct target for the power
budget, which leads to more predictable results.

Additionally, we performed some experiments where an
L1 penalty on activations was used, without fanout-based
weighting. Against our expectations, we did not find a significant
difference in power consumption between the models trained
with or without per-layer weighting (Supplementary Figure 1).
However, we use the fanout-based penalty throughout this paper,
since this addresses the power consumption more directly, and
we cannot rule out that this difference may be more significant in
larger networks.

2.1.3. Quantization-Aware Training and Surrogate

Gradient
Optimizing for energy consumption with the SynOp loss
mentioned above has unintended consequences. During training,
the optimizer tries to achieve smaller activations, but cannot
account for the fact that, when the activations are too small,
discretization errors become more prominent. Throughout this
paper, by discretization error we mean the discrepancy that
occurs when a real number needs to be represented in a
discrete way—namely, the value of each neuron’s activation,
which is continuous, needs to be translated in a finite number
of spikes, leading to inevitable approximations. To solve this
issue, we introduce a form of quantization during training. The
quantization of activations mimics, in the context of an analog
network, a form of discretization analogous to what happens in a
spiking network. Therefore, the network can be already aware of
the discretization error at training time, and automatically adjust
its parameters in order to properly account for it. To this end,
we turn all ReLU activation functions into “quantized” (i.e., step-
wise) ReLUs, which additionally truncate the inputs to integers,
as follows:

QReLU(x) =

{

0 x ≤ 0

⌊x⌋ x > 0
(3)

where ⌊·⌋ indicates the floor operation. This choice introduces a
further problem: this function is discontinuous, and its derivative
is uniformly zero wherever it is defined. To avoid the zeroing of
gradients during the backward pass, we use a surrogate gradient
method (Neftci et al., 2019), whereby the gradient of QReLU is
approximated with the gradient of a normal ReLU during the
backward pass:

∇x QReLU(x) ≈

{

0 x ≤ 0

1 x > 0
(4)

This is not the only way to approximate the gradient of a step-
wise function in a meaningful way, and closer approximations
are certainly possible; however, we found that this linear
approximation works sufficiently well for our purposes.

In this work, we apply QReLUs in combination with
the SynOp loss term illustrated in the previous section, but
quantization on activations could be independently used for
a more accurate training of spiking networks. We note that
quantization-aware training in different forms has been used
before (Hubara et al., 2017; Guo, 2018), but its typical purpose
is to sharply decrease the memory consumption of CNNs, by
storing both activations and weights as lower-precision numbers
(e.g., as int8 instead of the typical float32). PyTorch recently
started providing support utilities for this purpose1.

2.2. Spiking Network Simulations With
Sinabs
After training, we tested our trained weights on spiking network
simulations. Unlike tests done on analog networks, these are

1https://pytorch.org/docs/stable/quantization.html

Frontiers in Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 662129

https://pytorch.org/docs/stable/quantization.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

time-dependent simulations, which fully account for the time
dynamics of the input spike trains, and closely mimic the
behavior of a neuromorphic hardware implementation, like
DynapCNN (Liu et al., 2019). Our simulations are written using
the Sinabs Python library2, which uses non-leaky integrate-and-
fire neurons with a linear response function. The sub-threshold
neuron dynamics of the non-leaky integrate and fire neurons are
described as follows:

v̇ = R ·
(

Isyn(t)+ Ibias
)

(5)

Isyn(t) = WS(t) (6)

where v is the membrane potential of the neuron, R is a constant,
Isyn is the synaptic input current, Ibias is a constant input current
term,W is the synaptic weight matrix and S(t) is a vector of input
spike trains. For the results presented in this paper, we assume
R = 1 without any loss of generality. Upon reaching a spiking
threshold vth the neuron’s membrane potential is reduced by a
value v th (not reset to zero).

As a result of the above, between times t and t + δt, for a total
input current I(t) = Isyn(t)+Ibias, the neurons generate a number
of spikes n(t, t + δt) given by the following equation:

n(t, t + δt) =

⌊

R · I(t) · δt

vth

⌋

. (7)

In order to simulate the equivalent SNN model on Sinabs,
the CNN’s pre-trained weights are directly transferred to the
equivalent SNN.

2.3. Digit Recognition on DVS Recordings
2.3.1. Task and Dataset
As a benchmark to assess the performance of the above training
methods, we used an image recognition task on real data
recorded by a Dynamic Vision Sensor (DVS). Given a spike train
generated by the DVS, our spiking networks identify the class
to which the object belongs—corresponding to the fastest-firing
neuron in the output layer. For this task, we used the MNIST-
DVS dataset at scale 16 (Serrano-Gotarredona and Linares-
Barranco, 2015; Liu et al., 2016), a collection of DVS recordings
where digits from the classic MNIST dataset (LeCun et al., 1998)
are shown to the DVS camera as they move on a screen.

During the training phase, we presented the (analog) neural
network with images formed of accumulated DVS events, i.e.,
DVS spike trains divided into chunks and collapsed along the
time dimension. The value of each pixel (0-255 in the image
encoding we chose) was determined simply by the number of
events on that pixel. The DVS recordings were split into frames
not based on time length, but according to event count: the
accumulation of each frame was stopped when the total number
of events per frame reached a value of 3,000 (Figures 1A,B).
This ensured all frames had comparable pixel values without
the need for normalization, and all contained similar amounts
of information regardless of the type of activity presented. The
information regarding event polarity was discarded, resulting in
a 1-channel input frame (analogous to gray-scale image).

2https://sinabs.ai

During testing on the spiking network simulation, the
corresponding spike trains were presented to the network with
1 ms time resolution (Figure 1C), to simulate the real-time event
transmission between the DVS and a neuromorphic chip. This
value was chosen to enable reasonable simulation times, but
could be lowered if needed. Figure 1C, to simulate the real-time
event transmission between the DVS and a neuromorphic chip.
The network state was reset between the presentation of a data
chunk and the next. The polarity of events was ignored. Of the
original 10,000 recordings (1,000 per digit from zero to nine), we
set 20% aside as test set.

2.3.2. Network Architecture
In order to solve the task mentioned above, we used a simple
convolutional neural network, with three 2D convolutional layers
(3 × 3 filters), each followed by an average pooling layer (2
× 2 filters) and a rectified linear unit. The choice of average
pooling is due to the difficulties of implementing max pooling
in spiking networks (Rueckauer et al., 2017). The last layer is a
linear (fully connected) layer, which outputs the class predictions
(Figure 1D). We used a cross-entropy loss function to evaluate
the model predictions and optimized the network weights using
the Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 10−3. Bias parameters were deactivated everywhere in
the network. A 50% dropout was used just before the fully
connected layer at training time. The network was implemented
using PyTorch (Paszke et al., 2017).

The whole procedure can be summarized as follows:

1. The dataset is prepared by dividing the original DVS
recordings in sections of 3,000 spikes each, ignoring event
polarity. From these the following is saved:

(a) The spike train itself, used for testing
(b) An image, corresponding to the time-collapsed spike

train, with pixel values equal to the number of spikes at
that location, used for training.

2. A neural network is trained, applying quantization in
correspondence with every ReLU. The loss used for training is
binary cross-entropy with the addition of the synoploss term
(Equation 2).

3. The trained weights are transferred to a spiking network
simulation, implemented in Sinabs. The network dynamics is
simulated with 1 ms time resolution. The network prediction
is defined as the neuron that spikes the most over the 3,000-
spike input. Synaptic operations are counted as the sum of
spikes emitted by each layer, weighted on the fan-out of
that layer.

For reproducibility, the python code implementing these
methods is available at gitlab.com/aiCTX/synoploss.

2.4. Object Recognition on CIFAR-10
2.4.1. Task and Dataset
In order to validate the approach on a dataset with higher
complexity than MNIST, we also benchmarked our work on
CIFAR-10 (Krizhevsky et al., 2009), a visual object classification
task. The input images were augmented with random crop and
horizontal flip, and then normalized to [−1, 1]. A 20% dropout

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 662130

https://sinabs.ai
https://gitlab.com/aiCTX/synoploss
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 1 | Illustration of the MNIST-DVS dataset, as used in this work, and of the network model we used for the task. (A) A single accumulated frame of 3,000

spikes, as used for training. (B) the corresponding 3,000 spikes, in location and time. (C) Example single-millisecond frames, as sequentially shown to the Sinabs

spiking network during the tests presented in Figure 2. (D) The convolutional network model we used for this task. All convolutional layers and the linear layer are

followed by ReLUs. Dropout is used before the linear layer at training time.

rate was applied to the input layer to further augment the
input data.

For the experimental results on this dataset, we directly
injected the image pixel analog value to the first layer of
convolutions as input current in each simulation time step for
Ndt time steps. The magnitude of the current was scaled down
by the same value Ndt , in order to have an accumulated current,
over the whole simulation, equal to the analog input value. The
Sinabs simulations were run for Ndt = 10 time steps, obtaining
SynOps and accuracy values. The network state was reset between
the presentation of an image and the next.

2.4.2. Network Architecture and Training Procedure
In order to solve the task mentioned above, we used an All-
ConvNet (Springenberg et al., 2014), a 9-layer convolutional
network, without bias terms, which has 1.9M parameters in total.
The ReLU layers in the model, including the last output layer,
were replaced with QReLUs. All the convolutional layers in this
network are followed by a dropout layer with a rate of 10%,
which not only prevents over-fitting, but also compensates the
SNN’s discrete representations of analog values. As illustrated
in Springenberg et al. (2014), training lasts 350 epochs, and the
learning rate is initialized at 2.5 × 10−4 and scaled down by
a factor of 10 at epochs [200, 250, 300]. We use the Adam
optimizer with weight decay of 10−3. Note that the model was
trained without ReLU on the last output layer, since it is harder
to train the classification layer when the outputs are only positive,
while the classification accuracy was tested with ReLU on the
output layer, in order to have an equivalent network to the
spiking model.

The entire experiment is as follows:

1. Train an ANN network, anet, get its MAC and test the
accuracy with original CIFAR10 dataset.

2. Scale up the weights of the first layer of anet by ρ, and transfer
the weights to the SNN equivalence, snet.

(a) Test the accuracy and SynOps of snet with Ndt = 10, the
input current is 1/10 of a pixel value.

(b) Increase ρ, and repeat 2(a) till the accuracy reached about
the ANN accuracy.

3. Select a ρ from Step 2, where the snet have SynOps > MAC,
and start quantization-aware training with the SynOp loss.

(a) Set the target SynOp to half of the current SynOps and
train.

(b) Test the accuracy and get the SynOps, then repeat 3(a)
until the accuracy is too low to be meaningful, and thus
a full accuracy/SynOps curve is obtained.

2.4.3. SynOps Optimization
Before training the network with QReLU activations, the network
was first trained with ReLU to get an initial set of parameters.
The network with QReLU was then initialized with the scaled
parameters (scaling up by ρ on the first layer). The scaling
factor ρ was chosen to initialize the network in a state where
enough information is propagated through layers so that the
network performs reasonably well. Consequently, the weights of
the last weighted layer were scaled by 1/ρ, in order to adapt the
classification loss back to its original range.

During testing, we measured the ANN and SNN performance
in terms of their accuracy and SynOps, and found a mismatch
of SynOps between training and testing. There are two main
reasons: (1) The output of a dropout layer (with a dropout rate
p) is always scaled down by 1− p to compensate the dropped out
activations, however themismatch could be large after a sequence
of dropout layers. (2) Due to discrete spike events operated in
the network where the order (not only the count) of the spikes
matters, the mismatch occurs between the spike count-based
analog activation and the actual spiking ones.

To compensate for this mismatch, for all the trained models
we tested the performance with both 1.5× and 2× scaled-up
first layer weights. Lastly, we optimized the QReLU-based model
with the objective of minimizing the classification error given a
target SynOps. We trained 30 models with lower and lower target
SynOps, and each model was initialized with the trained weights
of the previous one.

3. RESULTS

3.1. The SynOp Loss Term Leads to a
Reduction in Network Activity on DVS Data
In Figure 2, we show the results of four methods to reduce the
activity of the network, in a way that yields energy savings. First,
as a baseline, we trained a traditional CNN using a cross-entropy
loss function, and rescaled down the weights of its first layer.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 662131

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 2 | Results on the MNIST-DVS dataset. Left: SynOps-accuracy curves computed on a spiking network simulation with Sinabs. Each point represents a

different model, trained for a different value of S0 or rescaled by a different value of ρ. The red star represents the original model, standard CNN weights transferred to

the SNN without changes. The solid lines are smoothed versions of the curves described by the data points, provided as a guide to the eye. Center: a zoomed-in

version of the left panel, showing direct comparison between layer-wise gain scaling (Rueckauer et al., 2017) and our method. Right: SynOps per layer, compared

between the baseline model and a selected model trained with the SynOp loss and quantization. This is the model indicated by a black circle in the first panel. Note

that the input SynOps depend only on the input data, and cannot be changed by training.

This is equivalent to rescaling the input values, and has the effect
of proportionally reducing the activity in all subsequent layers
of the network. The “baseline” model in Figure 2 is the same
network, with no input rescaling: weights are transferred from
the CNN to the corresponding layers of the SNN without any
changes or special considerations. Thresholds are set to 1 on all
layers. Second, following Rueckauer et al. (2017), we rescaled the
weights of each layer in such a way that the maximum activation
in each layer stays constant (see section 2). The input weights are
again rescaled as stated above. Third, we introduced an additional
term in the loss function, the SynOp loss, which directly pushes
the estimated number of SynOps to a given value. We trained
CNN models, each with a different target number of synaptic
operations, independently of each other. Furthermore, excessive
reduction of the SynOps leads to the silencing of certain neurons,
and other discretization errors, causing an immediate drop in
accuracy. To account for this we jointly use the SynOp loss term
and quantization-aware training.

We tested our training methods on a real-world use case of
SNNs. Dynamic Vision Sensors (DVS) are used in neuromorphic
engineering as very-low-power sources of visual information, and
are a natural data source for SNNs simulated on neuromorphic
hardware. We transferred the weights learned with the methods
described above onto a spiking network simulation, and
used it to identify the digits presented to the DVS in the
MNIST-DVS dataset.

Our results show that adding a requirement on the number
of synaptic operations to the loss yields better results in terms
of accuracy compared to rescaling input weights and layer-
wise activation gains (Figure 2, orange). Using the SynOp loss
together with quantization during training outperforms the
simpler methods, allowing for further reduction of the SynOps
value with smaller losses in accuracy (Figure 2, blue).

Among the models trained in this way, we selected one with
a good balance between energy consumption and accuracy, and
used it for a direct comparison with the baseline (that is, weights

from an ANN without quantization and no additional loss
terms). The second and third panels of Figure 2 graphically show
the large decrease in the number of synaptic operations required
by each layer of our model, and the very small reduction in
performance. This particular model brings accuracy down from
96.3 to 95.0%, while reducing the number of synaptic operations
from 3.86M to 0.63M, an 84% reduction of the SynOp-related
energy consumption.

3.2. The SynOp Loss Leads to a Lower
Operations Count Compared to ANNs on
CIFAR10
SNNs are a natural way of working with DVS events, having
advantages over ANNs in event-driven processing. However,
it is also interesting to highlight the benefits of using SNNs
over ANNs in conventional non-spiking computer vision tasks,
e.g., CIFAR-10, where SNNs can still offer advantages in power
consumption. As stated in section 2.4, we have trained the
network with two approaches: (1) conventional ANN training
plus weight scaling as the baseline; (2) further training with
QReLU and SynOp Loss for performance optimization.

3.2.1. Weight Scaling
We first trained the analog All-ConvNet on CIFAR-10, attaining
an accuracy of 91.37% and a MAC of 306M (red star in
Figure 3). Then, we transferred the trained weights directly on
the equivalent SNN and scaled the weights of its first layer to
manipulate the overall activity level. This is shown by the blue
crosses in Figure 3: as the SynOp count grows, so does the
accuracy. However, the SynOps are around 10 times to the MAC
of ANN when the accuracy reaches an acceptable rate of 90.7%.
To improve on this result, we fine-tuned this training by adding
quantization and the SynOp loss.

A faster way to measure the same quantities is by testing the
analog model, with ReLU layers all replaced with QReLU, and
count the activation levels instead of the Sinabs spike counts.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 662132

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 3 | Accuracy vs. SynOps curves on the non-spiking CIFAR-10 task. “ANN” results (red crosses and purple dots) are SynOp count estimations based on the

quantized activations of an analog network. “SNN” results (blue crosses and green dots) are SynOp values obtained by Sinabs simulation. The performance of models

fine-tuned with SynOp loss and quantization (dots) shows a clear advantage over weight rescaling (crosses). Right panel: a zoomed-in plot of the dashed region. A

high-light blue cross represents a good performance of the arbitrary weight scaling. The good trade-off points, trained with SynOp loss and quantization, listed in

Table 1 are marked with green “+.” The results from other work are marked with orange triangles. The original ANN model, for which the MAC is plotted instead of the

SynOps, is marked with a red star.

Estimations based on this quantized activation layers are shown
as red crosses in Figure 3. The performance on accuracy and
SynOps of the analog network and its spiking equivalent are well
aligned, showing that quantized activations are a good proxy for
the firing rates of the simulated SNN, at least in this regime.

3.2.2. SynOp Loss Optimization
We further fine-tuned one of the weight-scaled models obtained
above, with the addition of quantization-aware training and the
SynOp loss. Figure 3 also shows the classification accuracy and
SynOps for both quantized-analog and spiking models (blue and
green dots, respectively) trained with this method.

Multiple SNN test trials achieve better accuracy than the
original ANN model (red star, 91.37%), thanks to the further
training with QReLU. As the SynOp goes down, the accuracy
stays above the original ANN model until 91.43% when SynOps
are at 277M (see one of the green “+” in Figure 3). Note that, the
SNN has outperformed ANN both on accuracy and operations
count, where the number of MAC in the original ANN is 306M.
As another good example of accuracy-SynOp trade-off (90.37% at
127M), our model could perform reasonably well, above 90%, by
reducing 58% (Syn-MAC ratio is 0.42) of computing operations
from the original ANN. Therefore, running the SNN model on
neuromorphic hardware will benefit on energy efficiency not only
from the lower computation cost of SynOps but also from the
significant reduction on operation counts. Additionally, the plot
shows how this method outperforms weight scaling in terms of
operation counts by roughly a factor of 10 for all accuracy values.

As far as we know, our converted SNN model from the
AllConvNet reached the state-of-the-art accuracy at 91.75%
among SNN models (see detailed comparison in Table 1 and
Figure 3). In addition, our model is the smallest, at 1.9M

parameters, while the BinaryConnect model (Rueckauer et al.,
2017) is 7 times larger in size and WeightNorm, consisting of a
VGG-16 (Sengupta et al., 2019), is eight-fold in size. Although
achieving the best accuracy requires a SynOp of 2,179M, this
can easily be reduced by 27% by giving up 0.02% in accuracy,
see the two green “+” on the top-right of Figure 3. Comparing
to the result from Sengupta et al. (2019) (orange triangle on
the right of Figure 3), our model achieves 91.47% in accuracy
at 368M SynOps, thus only loses 0.08% in accuracy but saves
41% of SynOps and energy. Thanks to the optimization of
the SynOp loss, the number of SynOps is continuously pushed
down while keeping an appropriate accuracy, e.g., 85.71% at
a SynOp of 64M. This result not only outperforms most of
the early attempts of SNN models for the CIFAR-10 task (Cao
et al., 2015; Hunsberger and Eliasmith, 2015; Panda and Roy,
2016), but also brings down the SynOps to only 1/5 of the
MAC and saves 86% energy compared to Rueckauer et al.
(2017).

In a brief summary, (1) the energy-aware training strategy
pushes down the SynOps 10 times compared to its weight
scaling baseline; (2) the QReLU-trained SNN achieves the state-
of-the-art accuracy in CIFAR-10 task; and (3) the trade-off
performances between accuracy and energy show a significant
save in computation cost/energy comparing to existing SNN
models and the equivalent non-spiking CNN.

3.2.3. SynOp vs. Accuracy for Shorter Inference

Times
Unlike the DVS data, which has its own time dynamics, there
are no restrictions on how static images should be presented
to the network in time. Therefore we measure total spike
count instead of firing rates, thus calculating the total energy

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 662133

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

TABLE 1 | Comparison with best SNN models on CIFAR-10.

SNN models Net architecture Best accuracy Accuracy-SynOps trade-off

N. par. MAC Acc. SynOps
Syn-MAC

ratio
Acc. SynOps

Syn-MAC

ratio

BinaryConnect 14M 616M 90.85 N/A N/A 84.87 460M 0.75

WeightNorm 15M 313M 91.55 618M 1.98 91.55 618M 1.98

Ours 1.9M 306M
91.75

91.73

2179M

1593M

7.12

5.21

91.47

91.43

90.37

85.71

368M

277M

127M

64M

1.20

0.91

0.42

0.21

BinaryConnect: 8-layer ConvNet from Rueckauer et al. (2017); WeightNorm: VGG-16 model from Sengupta et al. (2019). The most efficient model and the best performance are

highlighted as bold fonts. Regarding to the comparisons on accuracy-SynOps trade-off, blue colored result in our models refers to the performance close to that of Rueckauer et al.

(2017); while green shows the result approximates to Sengupta et al. (2019). And the numbers in bold only highlight the winner in these two comparisons.

cost per image, independently of time. For example, Figure 3
shows how SynOp loss optimization pushes the SynOp to
a value lower than the MAC during training. This is one
of the approaches in which SNNs outperform ANNs in the
accuracy-operations trade-off; while the other benefit SNNs
naturally bring is the temporal encoding and computation.
SNNs continuously output a prediction from the moment when
the input currents are injected. This prediction becomes more
accurate with more time. For the experiments presented in the
previous sections, we only measure the classification accuracy
when the input is completely forwarded into the network,
Ndt = 10: the input currents are chosen so that the total
input accumulated over Ndt = 10 time steps is equivalent
to that of the analog network during training. In Figure 4,
we measure how SNN models perform in the course of the
entire process, Ndt = 1, 2, 3, ..., 10. The figure shows how
classification accuracy increases when more simulation time-
steps are allowed, and therefore more accumulated current is
injected to the network. Each gray curve represents a single
trained model, and the SynOp and accuracy are tested with
increasing Ndt . The colored dots mark the accuracy-SynOps pair
at Ndt = 4, 6, 8, 10 over all trained networks. The same-colored
dots approach to the expected SNN result (green dots at Ndt =

10) as Ndt increases.
On the other hand, understanding the relationship between

inference time and accuracy is very relevant when dealing
with DVS data. In general, a global reduction of spike rates

in a rate-based network causes a corresponding increase in

the latency, since more time is needed to accumulate enough
spikes for a reliable prediction. We compared one of our

networks with an equivalent model prepared through the
“robust” layer-wise normalization technique from Rueckauer

et al. (2017), with a few different values of input weight
scale. Figure 5 shows that the dependency of accuracy on

the inference time follows a similar trajectory for all these

models. We conclude that the increase in latency does not
depend on the specific method used for optimization, and our
network’s latency is similar to that of other models with similar
accuracy, despite the much lower power consumption (shown in
previous sections).

FIGURE 4 | Total activity and accuracy on the CIFAR-10 benchmark for

increasing inference times (current injected for longer times, thus leading to

more SynOps). Gray lines correspond to individual SNN models, tested at

Ndt = 1, ..., 10. To facilitate same Ndt comparison, colored dots were added

for all models at Ndt = 4, 6, 8, 10.

3.2.4. Effects on Weight Statistics
Common regularization techniques in ordinary neural networks
often involve the inclusion of an L1 or L2 cost on the network
weights. In rough, intuitive terms, L1 regularization has a
sparsifying effect, pushing smaller connections toward zero;
L2 regularization generally keeps the weights from growing to
excessively large values. Conversely, the effect on weights of
penalizing synaptic operations or reducing the network’s activity,
as we do with the SynOp loss term, is not immediately clear.
We investigate whether imposing low synaptic operations count
has a sparsifying effect on the weight structure. To this end, we
examine how many synaptic connections in our models are null
connections, which we define as weights w such that |w| < 10−9

(this threshold can be changed by several orders of magnitude
without impacting the conclusions). We performed this analysis
on the networks trained on the CIFAR-10 dataset, as explained
in the previous sections. These networks are much wider and

Frontiers in Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 662134

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

FIGURE 5 | Limited-time inference on MNIST-DVS. Here, the accuracy of the networks is measured at a limited input length of 10, 20, 30, 40, 50 ms. The accuracy of

the network trained with our method (again, we chose the one indicated by the black circle in Figure 2) behaves, in relation to observation time, similarly to that of

other networks, but with lower power consumption. The models and color choices are the same as in Figure 2. The different purple lines correspond to different

rescaling of the input layer weights, chosen so to have a comparable accuracy with the other curves.

FIGURE 6 | Effect of the SynOp loss on the network’s weights. Left: the fraction of near-zero weights (|w| < 10−9) greatly increases in models where a stricter

reduction of SynOp counts were imposed. The test-set accuracy values for each model are also shown for comparison. Right: the distribution of weights as a

function of the SynOp count. Shaded areas indicate, from lighter to darker, the following inter-quantile ranges: 10–90%; 20–80%; 30–70%; 40–60%. The solid line is

the median weight. The models used for this test are the same as those shown in Figure 3, trained with quantization on static CIFAR images.

deeper than the ones used for theMNIST-DVS task, and therefore
can better show weight sparseness effects. Figure 6 (left) shows
how the fraction of null weights changes with the SynOp count
(and thus, of the regularization strength), and compares it with
the model’s accuracy. When the number of synaptic operations is
forced to be extremely low, the fraction of null weights reaches
values above 90%. A large increase in null connections, however,
is already noticeable for models above 80% accuracy, showing
that the SynOp loss term does have a sparsifying effect, and
that this is desirable. For the sake of completeness, in Figure 6

(right), we also show a depiction of the distribution of weights as
a function of the number of synaptic operations.

Setting synaptic weights to zero is effectively equivalent to
pruning certain connections between a layer and the next.
Other than L1 regularization of the weights, more sophisticated
pruning-and-retraining algorithms have been studied in the
machine learning literature (LeCun et al., 1990; Hassibi and

Stork, 1993). However, advanced pruning methods (such as
those based on Fisher information) are usually coupled with
partial retraining of the network, and are therefore more alike
a form of architectural search (Crowley et al., 2018). Due to the
retraining of the remaining weights, these forms of pruning are
not guaranteed to reduce the activity levels if not coupled to other
forms of regularization.

4. DISCUSSION AND CONCLUSION

We used two techniques which significantly improve
the energy requirements of machine learning models
that run on neuromorphic hardware, while maintaining
similar performances.

The first improvement consisted in optimizing the energy
expenditure by directly adding it to the loss function during
training. This method encourages smaller activations in all

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 662135

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

neurons, which is not in itself an issue in analog models, but can
lead to discretization errors, due to the lower firing rates, once
the weights are transferred to a spiking network. To solve this
problem, we introduced the second improvement; quantization-
aware training, whereby the network activity is quantized at
each layer, i.e., only integer activations are allowed. Discretizing
the network’s activity would normally reduce all gradients to
zero: this can be solved by substituting the true gradient with
a surrogate.

Applying these two methods together, we achieved an up
to 10-fold drop in the number of synaptic operations and the
consequent energy consumption in the DVS-MNIST task, with
only a minor (1-2%) loss in performance, when comparing to
simply transferring the weights from a trained CNN to a spiking
network. To demonstrate the scalability of this approach, we also
show that, as the network grows bigger to solve a much more
complex task of CIFAR-10 image classification, the SynOps are
reduced to 42% of the MAC, while losing 1% of accuracy (90.37%
at 127M). The accuracy-energy trade-off can be flexibly tuned at
training time. We also showed the consequences of using this
method on the distribution of network weights and the network’s
accuracy as a function of time.

While training based on static frames is not the optimal
approach to leverage all the benefits of spike-based computation,
it enables fast training with the use of state-of-the-art deep
learning tools. In addition, the hybrid strategy to train SNNs
based on a target power metric is unique to SNNs. Conversely,
optimizing the energy requirement of an ANN/CNN requires
modification of the network architecture itself, which can require
large amounts of computational resources (Cai et al., 2018).
In this work, we demonstrated that we can train an SNN
to a target energy level without a need to alter the network
hyperparameters. A potential drawback of this approach of
(re)training the model as opposed to simply transferring the
weights of a pre-trained model is brought to light when
attempting to convert very deep networks trained over large
datasets such as IMAGENET. Pre-trained deep CNNs trained
over large datasets are readily available on the web and can be
used to quickly instantiate a spiking CNN. The task becomes
much more cumbersome to optimize for power utilization using
the method described in this paper, ie. one has to retrain the
network over the relevant dataset for optimal performance.
However, our method can also be effectively used to fine-tune a
pre-trained network, removing the need for training from scratch

(Supplementary Figure 1). Furthermore, no large event-based

datasets of the magnitude of IMAGENET exist currently, and
perhaps when such datasets are generated, the corresponding
models optimized for spiking CNNs will also be developed and
made readily available.

The quantization and SynOp-based optimization used in
this paper can potentially be applied, beyond the method
illustrated here, in more general contexts such as algorithms
based on back-propagation through time to reduce power
usage. Such a reduction in power usage can make a large
difference when the model is ran on a mobile, battery-powered,
neuromorphic device, with potential for a significant impact in
the industrial applications.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: http://www2.imse-cnm.csic.es/caviar/
MNISTDVS.html, http://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

SS designed the research. QL and SS contributed to the methods.
MS, QL, and MB contributed the code and performed the
experiments. All authors wrote the paper.

FUNDING

This work was supported in part by H2020 ECSEL grant TEMPO
(826655). The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Felix Bauer, Mr. Ole
Richter, Dr. DylanMuir, and Dr. Ning Qiao for their support and
feedback on this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00662/full#supplementary-material

REFERENCES

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-

backpropagation in temporally encoded networks of spiking

neurons. Neurocomputing 48, 17–37. doi: 10.1016/S0925-2312(01)

00658-0

Cai, H., Zhu, L., and Han, S. (2018). Proxylessnas: direct neural architecture search

on target task and hardware. arXiv preprint arXiv:1812.00332.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Crowley, E. J., Turner, J., Storkey, A., and O’Boyle, M. (2018). A Closer Look

at Structured Pruning for Neural Network Compression. arXiv preprint

arXiv:1810.04622.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.

H., et al. (2018). Loihi: a neuromorphic manycore processor with

on-chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112

130359

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney, IL: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 662136

http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.frontiersin.org/articles/10.3389/fnins.2020.00662/full#supplementary-material
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/IJCNN.2015.7280696
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sorbaro et al. Optimizing Energy Consumption in SNNs

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,

R., Andreopoulos, A., et al. (2016). Convolutional networks for fast

energy-efficient neuromorphic computing. Proc. Nat. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Guo, Y. (2018). A survey on methods and theories of quantized neural networks.

arXiv preprint arXiv:1808.04752.

Hassibi, B., and Stork, D. G. (1993). “Second order derivatives for network pruning:

optimal brain surgeon,” in Advances in Neural Information Processing Systems,

164–171.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).

Quantized neural networks: training neural networks with low precision

weights and activations. J. Mach. Learn. Res. 18, 6869–6898.

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.

arXiv preprint arXiv:1510.08829.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., and Sandamirskaya, Y. (2019). The importance of space and time for

signal processing in neuromorphic agents: the challenge of developing low-

power, autonomous agents that interact with the environment. IEEE Signal

Process. Mag. 36, 16–28. doi: 10.1109/MSP.2019.2928376

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Krizhevsky, A., Hinton, G., et al. (2009). Learning Multiple Layers of Features From

Tiny Images. Technical report, Citeseer.

LeCun, Y., Cortes, C., and Burges, C. J. (1998). TheMNIST database of handwritten

digits, 1998. Available online at: http://yann.lecun.com/exdb/mnist

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). “Optimal brain damage,” in

Advances in Neural Information Processing Systems, 598–605.

Liu, Q., Pineda-García, G., Stromatias, E., Serrano-Gotarredona, T., and Furber,

S. B. (2016). Benchmarking spike-based visual recognition: a dataset and

evaluation. Front. Neurosci. 10:496. doi: 10.3389/fnins.2016.00496

Liu, Q., Richter, O., Nielsen, C., Sheik, S., Indiveri, G., and Qiao, N.

(2019). “Live demonstration: face recognition on an ultra-low power

event-driven convolutional neural network ASIC,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops.

doi: 10.1109/CVPRW.2019.00213

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an

integration of deep learning and neuroscience. Front. Comput. Neurosci. 10:94.

doi: 10.3389/fncom.2016.00094

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning

convolutional neural networks for resource efficient inference. arXiv preprint

arXiv:1611.06440.

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in

spiking neural networks. arXiv preprint arXiv:1901.09948.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Learning to be efficient: algorithms

for training low-latency, low-compute deep spiking neural networks,” in ACM

Symposium on Applied Computing. Proceedings of the 31st Annual ACM

Symposium on Applied Computing (New York, NY: Association for Computing

Machinery). doi: 10.1145/2851613.2851724

Nicola,W., and Clopath, C. (2017). Supervised learning in spiking neural networks

with force training. Nat. Commun. 8:2208. doi: 10.1038/s41467-017-01827-3

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, CA: IEEE), 299–306.

doi: 10.1109/IJCNN.2016.7727212

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in PyTorch,” in NIPS Autodiff Workshop (Long

Beach).

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,

A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci.

22, 1761–1770. doi: 10.1038/s41593-019-0520-2

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and

MNIST-DVS. Their history, how they were made, and other details. Front.

Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems, 1412–1421.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving

for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy

considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.

doi: 10.18653/v1/P19-1355

Thakur, C. S. T., Molin, J., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,

et al. (2018). Large-scale neuromorphic spiking array processors: a quest to

mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.00891

Yang, T.-J., Chen, Y.-H., and Sze, V. (2017). “Designing energy-efficient

convolutional neural networks using energy-aware pruning,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (Honolulu),

5687–5695. doi: 10.1109/CVPR.2017.643

Conflict of Interest:All authors were employed by SynSense AG during the course

of the work published in this article.

Copyright © 2020 Sorbaro, Liu, Bortone and Sheik. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 662137

https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/MSP.2019.2928376
http://yann.lecun.com/exdb/mnist
https://doi.org/10.3389/fnins.2016.00496
https://doi.org/10.1109/CVPRW.2019.00213
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1145/2851613.2851724
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1109/IJCNN.2016.7727212
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2015.00481
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/CVPR.2017.643
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 27 July 2020

doi: 10.3389/fnins.2020.00587

Frontiers in Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 587

Edited by:

Chiara Bartolozzi,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Guoqi Li,

Tsinghua University, China

Ander Arriandiaga,

University of the Basque Country,

Spain

*Correspondence:

Ryad Benosman

ryad.benosman@upmc.fr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 04 September 2019

Accepted: 12 May 2020

Published: 27 July 2020

Citation:

Lenz G, Ieng S-H and Benosman R

(2020) Event-Based Face Detection

and Tracking Using the Dynamics of

Eye Blinks. Front. Neurosci. 14:587.

doi: 10.3389/fnins.2020.00587

Event-Based Face Detection and
Tracking Using the Dynamics of Eye
Blinks
Gregor Lenz 1,2, Sio-Hoi Ieng 1,2 and Ryad Benosman 1,2,3,4*

1 INSERM UMRI S 968, Sorbonne Université, UPMC Univ. Paris, UMRS 968, Paris, France, 2CNRS, UMR 7210, Institut de la

Vision, Paris, France, 3Departments of Ophthalmology/ECE/BioE, University of Pittsburgh, Pittsburgh, PA, United States,
4 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States

Wepresent the first purely event-basedmethod for face detection using the high temporal

resolution properties of an event-based camera to detect the presence of a face in a

scene using eye blinks. Eye blinks are a unique and stable natural dynamic temporal

signature of human faces across population that can be fully captured by event-based

sensors. We show that eye blinks have a unique temporal signature over time that can be

easily detected by correlating the acquired local activity with a generic temporal model of

eye blinks that has been generated from a wide population of users. In a second stage

once a face has been located it becomes possible to apply a probabilistic framework to

track its spatial location for each incoming event while using eye blinks to correct for drift

and tracking errors. Results are shown for several indoor and outdoor experiments. We

also release an annotated data set that can be used for future work on the topic.

Keywords: face detection, face tracking, event-based computation, neuromorphic vision, silicon retina

1. INTRODUCTION

This paper introduces an event-based method to detect and track faces from the output of an
event-based camera. We also release a dataset of 50 recordings, consisting of a mix of indoor and
outdoor conditions. 25 of those recordings have been annotated for a total of 265 blinks1. The
method exploits the dynamic properties of human faces to detect, track and update multiple faces
in an unknown scene. Although face detection and tracking are considered practically solved in
classic computer vision, it is important to emphasize that current performances of conventional
frame based techniques come at a high operating computational cost after days of training on large
databases of static images. Event-based cameras record changes in illumination at high temporal
resolutions (in the range of 1µs to 1ms) and are therefore able to acquire the dynamics of moving
targets present in a scene (Lichtsteiner et al., 2008). In this work we will rely on eye blink detection
to determine the presence of a face in a scene to in a second stage initialize the position of a bayesian
tracker. The permanent computation of eye blinks will allow to correct tracking drifts and reduce
localization errors over time. Blinks produce a unique space-time signature that is temporally stable
across populations and can be reliably used to detect the position of eyes in an unknown scene. This
paper extends the sate-of-art by:

• Implementing a low-power human eye-blink detection that exploits the high temporal precision
provided by event-based cameras.

• Tracking of multiple faces simultaneously at µs precision, once they have been detected.

1Dataset is available for download under https://www.neuromorphic-vision.com/public/downloads/data-set-face-detection.

tar.gz; Supplementary Material.

138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00587
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00587&domain=pdf&date_stamp=2020-07-27
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ryad.benosman@upmc.fr
https://doi.org/10.3389/fnins.2020.00587
https://www.frontiersin.org/articles/10.3389/fnins.2020.00587/full
http://loop.frontiersin.org/people/665531/overview
http://loop.frontiersin.org/people/32893/overview
http://loop.frontiersin.org/people/94237/overview
https://www.neuromorphic-vision.com/public/downloads/data-set-face-detection.tar.gz
https://www.neuromorphic-vision.com/public/downloads/data-set-face-detection.tar.gz

Lenz et al. Event-Based Face Detection and Tracking

The developed methodology is entirely event-based as every
event output by the camera is processed into an incremental,
non-redundant scheme rather than creating frames from events
to recycle existing image-based methodology. We also show
that the method is inherently robust to scale changes of faces
by continuously inferring the scale from the distance of the
two eyes of the tracked face from detected eye blinks. The
method is compared to existing image-based face detection
techniques (Viola and Jones, 2004; Liu et al., 2016; Jiang and
Learned-Miller, 2017; Li and Shi, 2019). It is also tested on a
range of scenarios to show its robustness in different conditions:
indoors and outdoors scenes to test for the change in lighting
conditions; a scenario with a face moving close and moving
away to test for the change of scale, a setup of varying pose
and finally a scenario where multiple faces are detected and
tracked simultaneously. Comparisons with existing frame-based
methods are also provided.

1.1. Event-Based Cameras
Biomimetic event-driven time-based vision sensors are a novel
class of vision device that—like the biological retina—are
driven by “events”happening within the visual scene. They
are not like conventional vision sensors, which are driven by
artificially created timing and control signals (e.g., frame clock)
that have no relation whatsoever to the source of the visual
information (Lichtsteiner et al., 2008).

Over the past few years, a variety of these event-based
devices has been developed, including temporal contrast
vision sensors that are sensitive to relative luminance
change (Lichtsteiner et al., 2008), some also providing also
absolute light measurement (Posch et al., 2011).

These vision sensors output visual information about the
scene in the form of asynchronous address events using the
Address Event Representation protocol and encode the visual
information in the time dimension rather than as a voltage,
charge, or current. The novel algorithm for face detection and

FIGURE 1 | Working principle of the event-based camera and two types of events. (1) Change event of type ON is generated at t0 as voltage generated by incoming

light crosses a voltage threshold. (2) Time t2 − t1 to receive a certain amount of light is converted into an absolute gray-level value, emitted at t2 used for ground truth

in the paper.

tracking we propose in this paper is designed to take advantage
of the high temporal resolution data representation provided by
event-based cameras. The operating principle of these sensor is
shown in Figure 1. An event is defined as the n-tuple: ev =

(x, y, t, p), where (x, y) are the pixel coordinates, t the time
of occurrence and p is the polarity. Variations of event-based
cameras implement additional functionality.

In this work, we are using the Asynchronous Time-based
Image Sensor (ATIS) (Posch et al., 2011) as it also provides events
that encode absolute luminance information. This additional
information allows for direct and easier comparisons with the
frame-based world.

1.2. Face Detection
State-of-the-art face detection relies on neural networks that
are trained on large databases of face images, to cite the latest
from a wide literature, readers should refer to Yang et al. (2017),
Jiang and Learned-Miller (2017), and Sun et al. (2018). Neural
Networks usually rely on intensive computation that necessitates
dedicated hardware co-processors (usually GPU) to enable real-
time operations (Ren et al., 2008). Currently dedicated chips such
as Google’s Tensor Processing Unit or Apple’s Neural Engine
have become an essential tool for frame-based vision. They are
designed to accelerate matrix multiplications at the core of neural
networks inference. However, the computation costs associated
to these computations are extremely high (thousands of Watts).

Dedicated blink detection using conventional frame-based

techniques operate on a single frame. To constrain the region of

interest, a face detection algorithm is used beforehand (Noman

and Ahad, 2018). In an event-based approach, the computational

scheme can be inverted as detecting blinks is the mechanism that
drives face detection.

1.3. Human Eye Blinks
Humans blink synchronously in correlation to their cognitive
activities and more often than required to keep the surface of the

Frontiers in Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 587139

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

eye hydrated and lubricated. Neuroscience research suggests that
blinks are actively involved in the release of attention (Nakano
et al., 2013). Generally, the observed eye blinking rates in adults
depend on the subject’s activity and level of focus. Rates can
range from 3 blinks/min when reading to up to 30 blinks/min
during conversation (Table 1). Fatigue significantly influences
blinking behaviors, increasing both rate and duration (Stern et al.,
1994). In this paper we will not consider these boundary cases
that will the be subject of further work on non-intrusive driver
monitoring (Häkkänen et al., 1999; Wang et al., 2006). A typical
blink duration is between 100 and 150ms (Benedetto et al., 2011).
It shortens with increasing physical workload, increased focus or
airborne particles related to air pollution (Walker et al., 2001).

To illustrate what happens during an event-based recording
of an eye blink, Figure 2 shows different stages of the eye lid
closure and opening. If the eye is in a static state, few events
will be generated (Figure 2A). The closure of the eye lid happens
within 100ms and generates a substantial amount of ON events,
followed by a slower opening of the eye (Figures 2C,D) and the
generation of primarily OFF events. From this observation, we
devise a method to build a temporal signature of a blink. This

TABLE 1 | Mean blinking rates according to Bentivoglio et al. (1997) and Stern

et al. (1994).

Activity (blinks/min) Bentivoglio et al. (1997) Stern et al. (1994)

Reading 4.5 3–7

At rest 17 –

Communicating 26 –

Not reading – 15–30

signature can then be used to signal the presence of a single eye
or pair of eyes in the field of view that can then be interpreted as
the presence of a face.

2. METHODS

2.1. Temporal Signature of an Eye Blink
Eye blinks can be represented as a temporal signature. To build
a canonical eye blink signature A(ti) of a blink, we convert
events acquired from the sensor into temporal activity. For each
incoming event ev = (xi, yi, ti, pi), we update A(ti) as follows:

A(ti) =

{

AON(ti) = AON(tu)e
−

ti−tu
τ +

1
scale

if pi=ON

AOFF(ti) = AOFF(tv)e
−

ti−tv
τ +

1
scale

if pi=OFF
(1)

where tu and tv are the times an ON or OFF event occurred
before ti. The respective activity function is increased by 1

scale
each time tn an event ON or OFF is registered (light increasing or
decreasing). The quantity scale initialized to 1 acts as a corrective
factor to account for a possible change in scale, as a face that is
closer to the camera will inevitably trigger more events. Figure 3
shows the two activity profiles where 5 profiles of a subject’s blinks
are shown, as well as much higher activities at the beginning
and the end of the sequence when the subject moves as a whole.
From a set of manually annotated blinks we build such an activity
model function as shown in Figure 2 where red and blue curve
respectively represent the ON and OFF parts of the profile.

Our algorithm detects blinks by checking whether the
combination of local ON- and OFF-activities correlates with the
canonical model of a blink that had previously been “learned”
from annotated material. To compute the local activity, the

FIGURE 2 | Mean and variance of the continuous activity profile of averaged blinks in the outdoor data set with a decay constant of 50ms. (A) Minimal movement of

the pupil, almost no change is recorded. (B) Eye lid is closing within 100ms, lots of ON-events (in white) are generated. (C) Eye is in a closed state and a minimum of

events is generated. (D) Opening of the eye lid is accompanied by the generation of mainly OFF-events (in black).

Frontiers in Neuroscience | www.frontiersin.org 3 July 2020 | Volume 14 | Article 587140

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

FIGURE 3 | Showing ON (red) and OFF (blue) activity for one tile which lines up with one of the subject’s eyes. Multiple snapshots of accumulated events for 250ms

are shown, which corresponds to the gray areas. (A–E) Blinks. Subject is blinking. (F) Subject moves as a whole and a relatively high number of events is generated.

overall input focal plane is divided into one grid of n × n tiles,
overlapped with a second similar grid made of (n− 1)× (n− 1)
tiles. Each of these are rectangular patches, given the event-
camera’s resolution of 304×240 pixels. The second grid is shifted
by half the tile width and height to allow for redundant coverage
of the focal plane. In this work we set experimentally n = 16 as
it corresponds to the best compromise between performance and
the available computational power of the used hardware.

2.1.1. Blink Model Generation
A total of M = 120 blinks from six subjects are manually
annotated from the acquired data to build the generic model of
an eye blink shown in Figure 2. Each blink, extracted within a
time window of 250 ms is used to compute an activity function as
defined in Equation (1). The blink model is then obtained as the
average of these activity functions:

B(t) =

BON(t) =
M
∑

k=1

AON (t)
M , if pi=ON

BOFF(t) =
M
∑

k=1

AOFF(t)
M , if pi=OFF

(2)

To provide some robustness and invariance to scale and time
changes to the blink model, we also define N, the number of
events per unit of time and normalized by the scale factor. This
number provides the number of samples necessary to calculate
the cross-correlation to detect blink as explained in section 2.1.2.
Formally, N =

⌊

#events
T.scale

⌋

, where ⌊.⌋ is the floor function giving

the largest integer smaller than #events
T.scale

.
Finally, we used two different models for indoor and outdoor

scenes, as experiments showed that the ratio between ON
and OFF events change substantially according to the lighting
conditions. Although the camera is supposed to be invariant
to absolute illumination, this is practically not the case due to
hardware limitations of early camera generation that we used for
this paper.

2.1.2. Sparse Cross-Correlation
When streaming data from the camera, the most recent activity
within a T = 250ms time window is taken into account in each
tile to calculate the similarity score, here the cross-correlation
score, for the ON and OFF activities. This cross-correlation is
only computed if the number of recent events exceeds an amount
N defined experimentally according to the hardware used. The
cross-correlation score between the incoming stream of events
and the model is given by:

C(tk) = αCON(tk)+ (1− α)COFF(tk), (3)

where

Cp(tk) =

N
∑

i=0

Ap(ti)Bp(ti − tk), (4)

with p ∈ {ON,OFF}. The ON and OFF parts of the correlation
score are weighted by a parameter α set experimentally that tunes
the contribution of the ON vs OFF events. This is a necessary step
-as explained in the previous section-, due to the camera manual
parameter settings, the amount of ON andOFF events are usually
not balanced. For all experiments, α is set to 2

3 .
It is important for implementation reasons to compute the

correlation as it appears in Equation (4). While it is possible to
calculate the value of the model B(t− tk) at anytime t, samples for
A are only known for the set of times {ti}, from the events. This
is illustrated as an example by Figure 4, for an arbitrary time tk,
where triangles outline the samples of the activity for calculated
events at ti and the circles show the samples calculated at the same
time ti with the model. If C(ti) exceeds a certain threshold, we
create what we call a blink candidate event for the tile in which the
event that triggered the correlation occurred. Such a candidate is
represented as the n-tuple eb = (r, c, t), where (r, c) are the row
and column coordinates of the grid tile and t is the timestamp.
We do this since we correlate activity for tiles individually and
only in a next step combine possible candidates to a blink.

2.1.3. Blink Detection
To detect the synchronous blinks generated by two eyes, blink
candidates across grids generated by the cross-correlation are

Frontiers in Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 587141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

FIGURE 4 | Example of the samples used to calculate the sparse cross-correlation for the OFF activity of an actual blink. The gray area represents BOFF , the activity

model for OFF events (in that particular example, it is previously built for outdoor data sets). Blue triangles correspond to the activity A(ti) for which events have been

received in the current time window. Black dots are the BOFF (ti), the value of activity in the model at the same times-tamps as incoming events.

tested against additional constraints for verification. As a human
blink has certain physiological constraints in terms of timing, we
check for temporal and spatial coherence of candidates in order
to find true positives. Themaximum temporal difference between
candidates will be denoted as 1Tmax and is set experimentally
to 50ms, the maximum horizontal spatial disparity 1Hmax is set
to half the sensor width and the maximum vertical difference
1Vmax is set to a fifth of the sensor height. Following these
constraints we will not detect blinks that happen extremely
close to the camera or stem from substantially rotated faces.
Algorithm 1 summarizes the set of constraints to validate the
detection of a blink. The scale factor here refers to a face that has
already been detected.

Algorithm 1: Blink detection

1 Inputs: A pair of consecutive blink candidate events
ebu = (ru, cu, tu) and ebv = (rv, cv, tv) with tu > tv

2 if (tu − tv < 1Tmax) AND (|ru − rv| < 1Vmax × scale)
AND (|cc − cv| < 1Hmax × scale) then

3 if face is a new face then
4 return 2 trackers with scale = 1
5 else

6 return 2 trackers with previous scale
7 end

8 end

2.2. Gaussian Tracker
Once a blink is detected with sufficient confidence, a tracker is
initiated at the detected location. We use trackers such as the

ones presented in Lagorce et al. (2015) that rely on bivariate
normal distributions to locally model the spatial distribution
of events. For each event, every tracker is assigned a score
that represents the probability of the event to belong to
the tracker:

p(u) =
1

2π
|6|

−
1
2 e−

1
2 (u−µ)T6−1(u−µ) (5)

where u = [x, y]T is the pixel location of the event, is covariance
matrix 6 that defines the shape and size of the tracker. The
tracker with the highest probability is updated according to the
activity of pixels and also according to the estimated distance
between the spatial locations of the detected eyes.

2.3. Global Algorithm
The detection and tracking blocks combined operations are
summarized by following algorithm:

Algorithm 2: Event-based face detection and tracking
algorithm

1 for each event ev(x, y, t, p) do
2 if at least one face has been detected then
3 update best blob tracker for ev as in (5)
4 update scale of face for which tracker has moved

according to tracker distance
5 end

6 update activity according to (1)
7 correlate activity with model blink as in (3)
8 run Algorithm 1 to check for a blink

9 end

Frontiers in Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 587142

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

3. EXPERIMENTS AND RESULTS

We evaluated the algorithm’s performance by running cross-
validation on a total of 48 recordings from 10 different subjects,
comprising 248 blinks. The recordings are divided into five
sets of experiments to assess the method’s performances under
realistic constraints encountered in natural scenarios. The event-
based camera is set static. We test the following scenarios of
sequences of:

• indoor and outdoor sequences showing a single subject
moving in front of the camera,

• a single face moving back and forth w.r.t. the camera to test the
robustness of scale change,

• several subjects discussing, facing the camera to test
for multi-detection,

• a single face changing its orientation w.r.t. the camera to test
for occlusion resilience.

The presented algorithm has been implemented in C++ and
runs in real-time on an Intel Core i5-7200U laptop CPU. We
are quantitatively assessing the proposed method’s accuracy
by comparing it with state of the art and gold standard face
detection algorithms from frame-based computer-vision. As
these approaches require frames, we are generating gray-levels
from the camera when this mode is available. The Viola and
Jones (2004) algorithm (VJ) provides the gold standard face
detector but we also considered the Faster R-CNN (FRCNN)
from Ren et al. (2015) and the Single Shot Detector (SSD)

network from Liu et al. (2016) that have been trained on the
Wider Face (Yang et al., 2016) data set. This allows us to
compare the performances of the event-based blink detection
and tracking with state-of-the-art face detectors based on deep
learning. Finally, we also tested a conventional approach that
combines CNN and correlation filter presented in Li and Shi
(2019). It is referred to as the “Correlation Filter” (CF) for the
rest of the paper. This technique, however, relies on creating
frames by summing the activities of pixels within a predefined
time window.

An important statement to keep in mind is that the proposed
blink detection and face tracking technique requires reliable
detection. We do not actually need to detect all blinks since
a single detection is already sufficient to initiate the trackers.
Additional blink detections are used to correct a trackers’
potential drifts regularly.

3.1. Indoor and Outdoor Face Detection
The indoor data set consists of recordings in controlled lighting
conditions. Figure 5 shows tracking results. The algorithm starts
tracking as soon as a single blink is detected (Figure 5A).
Whereas tracking accuracy on the frame-based implementation
is constant (25 fps), our algorithm is updated event-by-event
depending on the movements in the scene. If the subject stays
still, the amount of computation is drastically reduced as there is
a significantly lower number of events. Head movement causes
the tracker to update within µs (Figure 5B).

FIGURE 5 | Face tracking of one subject over 45 s. (A) Subject stays still and eyes are being detected. Movement in the background to the right does not disrupt

detection. (B) When the subject moves, several events are generated.

Frontiers in Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 587143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

TABLE 2 | Summary of results for detection and tracking for four sets of experiments.

No. of recordings Blinks detected (%) Error VJ (%) Error FRCNN (%) Error SSD (%) Error CF (%)

Indoor 21 68.4 5.92 9.42 9.21 10.51

Outdoor 21 52.3 7.6 14.57 15.08 14.88

Scale 3 62.6 4.8 10.17 10.22 17.6

Multiple 3 36.8 15 16.15 14.61 n/a

Total 48 59 7.68 11.77 11.52 12.82

Percentage of blinks detected relates to the total number of blinks in a recording. Tracking errors are Euclidean distances in pixel between the proposed and respective method’s

bounding boxes, normalized by the frame-based bounding box width and height in order to account for different scales.

Subjects in the outdoor experiments were asked to step from
side to side in front of a camera placed in a courtyard under
natural lighting conditions. They were asked to gaze into a
general direction, partly engaged in a conversation with the
person who recorded the video. Table 2 shows that results are
similar to indoor conditions. The slight difference is due to
the non-idealities of the sensor (same camera parameters as
in the indoor experiment). It is important to emphasize that
Event-based cameras still lack an automatic tuning system of
their parameters that hopefully will be developed for the future
generations of a cameras.

3.2. Face Scale Changes
In three recordings the scale of a person’s face varies by a
factor of more than 5 between the smallest to the largest
detected occurrence. Subjects were instructed to approach the
camera within 25 cm from their initial position to then move
away from the camera after 10 s to about 150 cm. Figure 6

shows tracking data for such a recording. The first blink
is detected after 3 s at around 1m in front of the camera
(Figure 6A). The subject then moves very close to the camera
and to the left so that not even the whole face bounding
box is seen anymore (Figure 6B). Since the eyes are still
visible, this is not a problem for the tracker. However, GT
had to be partly manually annotated for this part of the
recording, as two of the frame-based methods failed to detect
the face that was too close to the camera. The subject then
moves backwards and to the right, followed by further re-
detections (Figure 6C).

3.3. Multiple Faces Detection
We recorded three sets of three subjects sitting at a desk talking to
each other. No instructions where given to the subjects. Figure 7
shows tracking results for the recording. The three subjects stay
relatively still, but will look at each other from time to time as
they are engaged in a conversation or sometimes focus on a
screen in front of them. Lower detection rates (see Table 2) are
caused by an increased pose variation, however this does not
result in an increase of the tracking errors due to the absence
of drift.

3.4. Pose Variation Sequences
The subjects in these sequences are rotating their head
from one side to the other until only one eye is visible

in the scene. Experiments show that the presence of a
single eye does not affect the performances of the algorithm
(see Figure 8). These experiments have been carried out
with an event-based camera that has a VGA resolution.
While this camera provides better temporal accuracy and
spatial resolution, it does not provide gray-level events
measurements.

Although we fed frames from the change detection events
(which do not contain absolute gray-level information but are
binary) to the frame-based methods, none of them could detect
a face. This can be expected by the fact that the used networks
have been trained on gray-level images. Perhaps if we re-train
the last layers of the networks with manually labeled frames from
change detection events (binary), they would probably achieve
similar performances. However, the frame data set creation and
the training are beyond the scope of this work.

3.5. Summary
Table 2 summarizes the relative accuracy of the detection and the
tracking performances of the presented method, in comparison
to VJ (Viola and Jones, 2004), FRCNN (Ren et al., 2015), SSD (Liu
et al., 2016), and CF (Li and Shi, 2019). We set the correlation
threshold to a value that is guaranteed to prohibit false positive
detections, in order to (re-)initialize trackers at correct positions.
The ratio of detected blinks is highest in controlled indoor
conditions and detection rates in outdoor conditions are only
slightly inferior. We attribute this fact to the aforementioned
hardware limitations of earlier camera generations that are
sensitive to lighting conditions. A lower detection rate for
multiple subjects is mostly due to occluded blinks when subjects
turn to speak to each other.

The tracking errors are the deviations from the frame-based
bounding box center, normalized by the bounding box’s width.
The normalization provides a scale invariance so that errors
estimated for a large bounding box from a close-up face have
the same meaning as errors for a small bounding box of a face
further away.

VJ, FRCNN, and SSD re-detect faces at every frame and
discard face positions in previous frames, resulting in slightly
erratic tracking over time. They do however give visually
convincing results when it comes to accuracy, as they can detect
a face right from the start of the recording and at greater
pose variation given the complex model of a neural network.
CF uses a tracker that updates its position at every frame that

Frontiers in Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 587144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

FIGURE 6 | Verifying resistance to scale. (A) First blink is detected at initial location. Scale value of 1 is assigned. (B) Subject gets within 25 cm of the camera,

resulting in a three-fold scale change. (C) Subject veers away to about 150 cm, the face is now 35% smaller than in (A).

is created from binning the change detection events, rather
than working on gray-level frames. The tracker update at each
frame based on the previous position ensures a certain spatial
consistency and smoothness when tracking, at the temporal
resolution of the frame rate. However, since a correlation filter
was initially designed for classic (gray-level) images, it relies on
visual information of the object to track to be present at all time,
which is not necessarily the case for an event-camera.

The CF technique from Li and Shi (2019) requires the camera
tomove constantly in order to obtain visual information from the
scene to maintain the tracking, as the algorithms uses rate-coded
frames. This required us to modify their algorithm since in our
data, tracked subjects can stop w.r.t. to the camera, hence they
became invisible. We added a mechanism to the correlation filter
that freezes the tracker’s position when the object disappears. We
use a maximum threshold of the peak-to-sidelobe ratio (Bolme
et al., 2010), which measures the strength of a correlation peak
and can therefore be used to detect occlusions or tracking failure
while being able to continue the online update when the subject

reappears. This results in delays in tracking whenever an object
starts to move again and results in tracking penalties. CF has
further limitations at tracking at high scale variance and cannot
track multiple objects of the same nature at the same time.

4. CONCLUSION

We introduced a method able to perform face detection and
tracking using the output of an event-based camera. We have
shown that these sensors can detect eye blinks in real time.
This detection can then be used to initialize a tracker and avoid
drifts. The approachmakes use of dynamical properties of human
faces rather than relying on an approach that only uses static
information of faces and therefore only their spatial structure.

The face’s location is updated at µs precision once the trackers
have been initialized, which corresponds to the native temporal
resolution of the camera. Tracking and re-detection are robust to
more than a five-fold scale, corresponding to a distance in front

Frontiers in Neuroscience | www.frontiersin.org 8 July 2020 | Volume 14 | Article 587145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

FIGURE 7 | Multiple face tracking in parallel. Face positions in X and Y show three subjects sitting next to each other, their heads are roughly on the same height. (A)

Subject to the left blinks at first. (B) Subject in the center blinks next, considerably varying their face orientation when looking at the other two. (C) Third subject stays

relatively still.

FIGURE 8 | Pose variation experiment. (A) Face tracker is initialized after blink. (B) Subject turns to the left. (C,D) One eye is occluded, but tracker is able to recover.

of the camera ranging from 25 cm to 1.50m. A blink provides
robust temporal signatures as its overall duration changes little
from subject to subject.

The amount of events received and therefore the resulting
activity amplitude varies only substantially when lighting of

the scene is extremely different (i.e., indoor office lighting
vs bright outdoor sunlight). The model generated from an
initial set of manually annotated blinks has proven to be
robust to those changes across a wide set of sequences. The
algorithm mechanism is also robust to eye occlusions and can

Frontiers in Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 587146

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

still operate when face moves from side to side allowing only
a single blink to be detected. In the most severe cases of
occlusion, the tracker manages to reset correctly at the next
detected blink.

The occlusion problem could be further mitigated by using
additional trackers to trackmore facial features such as themouth
or the nose and by linking them to build a part-based model of a
face as it has been tested successfully in Reverter Valeiras et al.
(2015).

The blink detection approach is simple and yet robust
enough for the technique to handle up to several faces
simultaneously. We expect to be able to improve detection
accuracy by learning the dynamics of blinks via techniques
such as HOTS (Lagorce et al., 2016) or HATS (Sironi
et al., 2018). At the same time with increasingly efficient
event-based cameras providing higher spatial resolution, the
algorithm is expected to increase its performance and range of
operations. We roughly estimated the power consumption of
the compared algorithms to provide numbers in terms
of efficiency:

• The presented event-based algorithm runs in real-time using
70% of the resources of a single core of an Intel i5-7200U
CPU for mobile Desktops, averaging to 5.5W of power
consumption while handling a temporal precision of 1µs (Intel
Corporation, 2017).

• The OpenCV implementation of VJ is able to operate at 24
of the 25 fps in real-time, using a full core at 7.5W (Intel
Corporation, 2017).

• The FRCNN Caffe implementation running on the GPU uses
175W on average on a Nvidia Tesla K40c with 4–5 fps.

• The SSD implementation in Tensorflow runs in real-time,
using 106W on average on the same GPU model.

DATA AVAILABILITY STATEMENT

The face detection dataset for this study can be found under
https://www.neuromorphic-vision.com/public/downloads/data-
set-face-detection.tar.gz.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent to
participate was not required in accordance with the national
legislation and the institutional requirements. Written informed
consent was obtained from the individuals for the publication of
any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

GL, S-HI, and RB designed the algorithm. GL was responsible
for data collection and programming. All authors participated in
writing and editing the manuscript.

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print at
Lenz et al. (2018).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00587/full#supplementary-material

REFERENCES

Benedetto, S., Pedrotti, M., Minin, L., Baccino, T., Re, A., andMontanari, R. (2011).

Driver workload and eye blink duration. Transport. Res. Part F 14, 199–208.

doi: 10.1016/j.trf.2010.12.001

Bentivoglio, A. R., Bressman, S. B., Cassetta, E., Carretta, D., Tonali, P., and

Albanese, A. (1997). Analysis of blink rate patterns in normal subjects. Mov.

Disord. 12, 1028–1034. doi: 10.1002/mds.870120629

Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M. (2010). “Visual object

tracking using adaptive correlation filters,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (San Francisco, CA),

2544–2550. doi: 10.1109/CVPR.2010.5539960

Häkkänen, H., Summala, H., Partinen, M., Tiihonen, M., and Silvo, J. (1999). Blink

duration as an indicator of driver sleepiness in professional bus drivers. Sleep

22, 798–802. doi: 10.1093/sleep/22.6.798

Intel Corporation (2017). 7th Generation Intel® Processor Family and 8th

Generation Intel® Processor Family for U Quad Core Platforms Specification Data

sheet.

Jiang, H., and Learned-Miller, E. (2017). “Face detection with the faster R-CNN,”

in 2017 12th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2017) (Washington, DC), 650–657.

Lagorce, X., Meyer, C., Ieng, S.-H., Filliat, D., and Benosman, R. (2015).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720.

doi: 10.1109/TNNLS.2014.2352401

Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016).

HOTS: a hierarchy Of event-based time-surfaces for pattern recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.25

74707

Lenz, G., Ieng, S.-H., and Benosman, R. (2018). High speed event-based face

detection and tracking in the blink of an eye. arXiv[preprint]arXiv:1803.10106.

Li, H., and Shi, L. (2019). Robust event-based object tracking combining

correlation filter and cnn representation. Front. Neurorobot. 13:82.

doi: 10.3389/fnbot.2019.00082

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 db 15 µ

s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Liu,W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). “SSD:

Single shot multibox detector,” in European Conference on Computer Vision

(Amsterdam: Springer), 21–37.

Nakano, T., Kato, M., Morito, Y., Itoi, S., and Kitazawa, S. (2013). Blink-related

momentary activation of the default mode network while viewing videos. Proc.

Natl. Acad. Sci. U.S.A. 110, 702–706. doi: 10.1073/pnas.1214804110

Noman, M. T. B., and Ahad, M. A. R. (2018). Mobile-based eye-blink

detection performance analysis on android platform. Front. ICT 5:4.

doi: 10.3389/fict.2018.00004

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid-State Circ. 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Frontiers in Neuroscience | www.frontiersin.org 10 July 2020 | Volume 14 | Article 587147

https://www.frontiersin.org/articles/10.3389/fnins.2020.00587/full#supplementary-material
https://doi.org/10.1016/j.trf.2010.12.001
https://doi.org/10.1002/mds.870120629
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1093/sleep/22.6.798
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.3389/fnbot.2019.00082
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1073/pnas.1214804110
https://doi.org/10.3389/fict.2018.00004
https://doi.org/10.1109/JSSC.2010.2085952
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lenz et al. Event-Based Face Detection and Tracking

Ren, J., Kehtarnavaz, N., and Estevez, L. (2008). “Real-time optimization of viola-

jones face detection for mobile platforms,” in Circuits and Systems Workshop:

System-on-Chip-Design, Applications, Integration, and Software, 2008 IEEE

Dallas (Dallas, TX), 1–4.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster R-CNN: Towards real-

time object detection with region proposal networks,” in Advances in Neural

Information Processing Systems, 91–99.

Reverter Valeiras, D., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S.-H., and

Benosman, R. (2015). An asynchronous neuromorphic event-driven visual

part-based shape tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 3045–

3059. doi: 10.1109/TNNLS.2015.2401834

Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman, R. (2018).

“Hats: Histograms of averaged time surfaces for robust event-based object

classification,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Salt Lake City, UT), 1731–1740.

Stern, J. A., Boyer, D., and Schroeder, D. (1994). Blink rate: a possible measure of

fatigue. Hum. Factors 36, 285–297. doi: 10.1177/001872089403600209

Sun, X., Wu, P., and Hoi, S. C. (2018). Face detection using deep learning:

an improved faster rcnn approach. Neurocomputing 299, 42–50.

doi: 10.1016/j.neucom.2018.03.030

Viola, P., and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput.

Vis. 57, 137–154. doi: 10.1023/B:VISI.0000013087.49260.fb

Walker, J. C., Kendal-Reed, M., Utell, M. J., and Cain, W. S. (2001).

Human breathing and eye blink rate responses to airborne chemicals.

Environ. Health Perspect. 109(Suppl. 4), 507–512. doi: 10.1289/ehp.01109

s4507

Wang, Q., Yang, J., Ren, M., and Zheng, Y. (2006). “Driver fatigue detection: a

survey,” in The Sixth World Congress on Intelligent Control and Automation,

2006, Vol. 2 (Dalian), 8587–8591.

Yang, S., Luo, P., Loy, C.-C., and Tang, X. (2016). “Wider face: a

face detection benchmark,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Las Vegas, NV),

5525–5533.

Yang, S., Luo, P., Loy, C. C., and Tang, X. (2017). Faceness-net: face

detection through deep facial part responses. arXiv[preprint]arXiv:1701.08393.

doi: 10.1109/TPAMI.2017.2738644

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lenz, Ieng and Benosman. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 July 2020 | Volume 14 | Article 587148

https://doi.org/10.1109/TNNLS.2015.2401834
https://doi.org/10.1177/001872089403600209
https://doi.org/10.1016/j.neucom.2018.03.030
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1289/ehp.01109s4507
https://doi.org/10.1109/TPAMI.2017.2738644
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 05 August 2020

doi: 10.3389/fnins.2020.00637

Frontiers in Neuroscience | www.frontiersin.org 1 August 2020 | Volume 14 | Article 637

Edited by:

Fabio Stefanini,

Columbia University, United States

Reviewed by:

Arren Glover,

Italian Institute of Technology (IIT), Italy

Chetan Singh Thakur,

Indian Institute of Science (IISc), India

*Correspondence:

Elisa Donati

elisa@ini.uzh.ch

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 December 2019

Accepted: 22 May 2020

Published: 05 August 2020

Citation:

Ceolini E, Frenkel C, Shrestha SB,

Taverni G, Khacef L, Payvand M and

Donati E (2020) Hand-Gesture

Recognition Based on EMG and

Event-Based Camera Sensor Fusion:

A Benchmark in Neuromorphic

Computing. Front. Neurosci. 14:637.

doi: 10.3389/fnins.2020.00637

Hand-Gesture Recognition Based on
EMG and Event-Based Camera
Sensor Fusion: A Benchmark in
Neuromorphic Computing

Enea Ceolini 1†, Charlotte Frenkel 1,2†, Sumit Bam Shrestha 3†, Gemma Taverni 1,

Lyes Khacef 4, Melika Payvand 1 and Elisa Donati 1*

1 Institute of Neuroinformatics, University of Zurich, ETH Zurich, Zurich, Switzerland, 2 ICTEAM Institute, Université Catholique

de Louvain, Louvain-la-Neuve, Belgium, 3 Temasek Laboratories, National University of Singapore, Singapore, Singapore,
4Université Côte d’Azur, CNRS, LEAT, Nice, France

Hand gestures are a form of non-verbal communication used by individuals in conjunction

with speech to communicate. Nowadays, with the increasing use of technology,

hand-gesture recognition is considered to be an important aspect of Human-Machine

Interaction (HMI), allowing the machine to capture and interpret the user’s intent and

to respond accordingly. The ability to discriminate between human gestures can help

in several applications, such as assisted living, healthcare, neuro-rehabilitation, and

sports. Recently, multi-sensor data fusion mechanisms have been investigated to

improve discrimination accuracy. In this paper, we present a sensor fusion framework

that integrates complementary systems: the electromyography (EMG) signal from

muscles and visual information. This multi-sensor approach, while improving accuracy

and robustness, introduces the disadvantage of high computational cost, which

grows exponentially with the number of sensors and the number of measurements.

Furthermore, this huge amount of data to process can affect the classification latency

which can be crucial in real-case scenarios, such as prosthetic control. Neuromorphic

technologies can be deployed to overcome these limitations since they allow real-time

processing in parallel at low power consumption. In this paper, we present a fully

neuromorphic sensor fusion approach for hand-gesture recognition comprised of an

event-based vision sensor and three different neuromorphic processors. In particular,

we used the event-based camera, called DVS, and two neuromorphic platforms, Loihi

and ODIN + MorphIC. The EMG signals were recorded using traditional electrodes

and then converted into spikes to be fed into the chips. We collected a dataset

of five gestures from sign language where visual and electromyography signals are

synchronized. We compared a fully neuromorphic approach to a baseline implemented

using traditional machine learning approaches on a portable GPU system. According

to the chip’s constraints, we designed specific spiking neural networks (SNNs) for

sensor fusion that showed classification accuracy comparable to the software baseline.

These neuromorphic alternatives have increased inference time, between 20 and 40%,

149

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00637
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00637&domain=pdf&date_stamp=2020-08-05
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elisa@ini.uzh.ch
https://doi.org/10.3389/fnins.2020.00637
https://www.frontiersin.org/articles/10.3389/fnins.2020.00637/full
http://loop.frontiersin.org/people/540075/overview
http://loop.frontiersin.org/people/761582/overview
http://loop.frontiersin.org/people/711680/overview
http://loop.frontiersin.org/people/870221/overview
http://loop.frontiersin.org/people/754845/overview
http://loop.frontiersin.org/people/586353/overview
http://loop.frontiersin.org/people/305846/overview

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

with respect to the GPU system but have a significantly smaller energy-delay product

(EDP) which makes them between 30× and 600× more efficient. The proposed

work represents a new benchmark that moves neuromorphic computing toward a

real-world scenario.

Keywords: hand-gesture classification, spiking neural networks (SNNs), electromyography (EMG) signal

processing, event-based camera, sensor fusion, neuromorphic engineering

1. INTRODUCTION

Hand-gestures are considered a powerful communication
channel for information transfer in daily life. Hand-gesture
recognition is the process of classifying meaningful gestures
of the hands and is currently receiving renewed interest. The
gestural interaction is a well-known technique that can be utilized
in a vast array of applications (Yasen and Jusoh, 2019), such as
sign language translation (Cheok et al., 2019), sports (Loss et al.,
2012), Human-Robot Interaction (HRI) (Cicirelli et al., 2015;
Liu and Wang, 2018), and more generally in Human-Machine
Interaction (HMI) (Haria et al., 2017). Hand-gesture recognition
systems also target medical applications, where they are detected
via bioelectrical signals instead of vision. In particular, among
the biomedical signals, electromyography [Electromyography
(EMG)] is the most used for hand-gesture identification and for
the design of prosthetic hand controllers (Benatti et al., 2015;
Donati et al., 2019; Chen et al., 2020).

EMG measures the electrical signal resulting from muscle
activation. The source of the signal is the motor neuron action
potentials generated during the muscle contraction. Generally,
EMG can be detected either directly with electrodes inserted
in the muscle tissue, or indirectly with surface electrodes
positioned above the skin [surface EMG (sEMG), for simplicity
we will refer to it as EMG]. The EMG is more popular for its
accessibility and non-invasive nature. However, the use of EMG
to discriminate between hand-gestures is a non-trivial task due to
several physiological processes in the skeletal muscles underlying
their generation.

One way to overcome these limitations is to use a multimodal
approach, combining EMG with recordings from other sensors.
Multi-sensor data fusion is a direct consequence of the well-
accepted paradigm that certain natural processes and phenomena
are expressed under completely different physical guises (Lahat
et al., 2015). In fact, multi-sensor systems provide higher
accuracy by exploiting different sensors that measure the same
signal in different but complementary ways. The higher accuracy
is achieved thanks to a redundancy gain that reduces the
amount of uncertainty in the resulting information. Recent works
show a growing interest toward multi-sensory fusion in several
application areas, such as developmental robotics (Droniou et al.,
2015; Zahra and Navarro-Alarcon, 2019), audio-visual signal
processing (Shivappa et al., 2010; Rivet et al., 2014), spatial
perception (Pitti et al., 2012), attention-driven selection (Braun
et al., 2019) and tracking (Zhao and Zeng, 2019), memory
encoding (Tan et al., 2019), emotion recognition (Zhang et al.,
2019), multi-sensory classification (Cholet et al., 2019), HMI
(Turk, 2014), remote sensing and earth observation (Debes et al.,

2014), medical diagnosis (Hoeks et al., 2011), and understanding
brain functionality (Horwitz and Poeppel, 2002).

In this study we consider the complementary system
comprising of a vision sensor and EMG measurements. Using
EMG or camera systems separately presents some limitations,
but their fusion has several advantages, in particular EMG-based
classification can help in case of camera occlusion, whereas
the vision classification provides an absolute measurement
of hand state. This type of sensor fusion which combines
vision and proprioceptive information is intensively used in
biomedical applications, such as in the transradial prosthetic
domain, to improve control performance (Markovic et al., 2014,
2015), or to focus on recognizing objects during grasping to
adjust the movements (Došen et al., 2010). This last task can
also use Convolutional Neural Networks (CNNs) as feature
extractors (Ghazaei et al., 2017; Gigli et al., 2018).

While improving accuracy and robustness, the multiple
input modalities also increase the computational cost, due to
the amount of data generated to process in real-time which
can affect the communication between the subject and the
prosthetic hand. Neuromorphic technology offers a solution to
overcome these limitations providing the possibility to process
multiple inputs in parallel in real-time, and with very low power
consumption. Neuromorphic systems consist of circuits designed
with principles based on the biological nervous systems that,
similar to their biological counterparts, process information
using energy-efficient, asynchronous, event-driven methods (Liu
et al., 2014). These systems are often endowed with on-line
learning abilities that allow adapting to different inputs and
conditions. Lots of neuromorphic computing platforms have
been developed in the past for modeling cortical circuits and their
number is still growing (Benjamin et al., 2014; Furber et al., 2014;
Merolla et al., 2014; Meier, 2015; Qiao et al., 2015; Moradi et al.,
2017; Davies et al., 2018; Neckar et al., 2018; Thakur et al., 2018;
Frenkel et al., 2019a,b).

In this paper we present a fully-neuromorphic
implementation of sensor fusion for hand-gesture recognition.
The proposed work is based on a previous work of sensor
fusion for hand-gesture recognition, using standard machine
learning approaches implemented in a cell phone application
for personalized medicine (Ceolini et al., 2019b). The paper
showed how a CNN performed better, in terms of accuracy,
than a Support Vector Machine (SVM) on the hand-gesture
recognition task. The novelty introduced here is that the sensor
fusion is implemented on a fully neuromorphic system, from the
event-based camera sensor to the classification phase, performed
using three event-based neuromorphic circuits: Intel’s Loihi
research processor (Davies et al., 2018) and a combination

Frontiers in Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 637150

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

of the ODIN and MorphIC Spiking Neural Network (SNN)
processors (Frenkel et al., 2019a,b). The two neuromorphic
systems present different features, in particular, depending
on the number of neurons available and on the input data, we
implemented different SNN architectures. For example, for visual
data processing, a spiking CNN is implemented in Loihi while
a spiking Multi-Layer Perceptron (MLP) is chosen for ODIN +
MorphIC (see section 2.3). For the case of EMG, the data was
collected using the Myo armband that senses electrical activity
in the forearm muscles. The data was later converted into spikes
to be fed into the neuromorphic systems. Here, we propose a
feasible application to show the neuromorphic performance in
terms of accuracy, energy consumption, and latency (stimulus
duration + inference time). The performance metric for the
energy consumption is the Energy-Delay Product (EDP), a
metric suitable for most modern processor platforms defined
as the average energy consumption multiplied by the average
inference time. The inference time is defined as the time elapsed
between the end of the stimulus and the classification. To
validate the neuromorphic results, we are comparing it to
a baseline consisting of the network implemented, using a
standard machine learning approach, where the inputs are fed
as continuous EMG signals and video frames. We propose this
comparison for a real case scenario as a benchmark, in order
for the neuromorphic research field to advance into mainstream
computing (Davies, 2019).

2. MATERIALS AND METHODS

In the following section, we describe the overall system
components. We start from the description of the sensors
used to collect the hand-gesture data, namely the event-based
camera, Dynamic Vision Sensor (DVS), and the EMG armband
sensor, Myo. We then describe the procedure with which
we collected the dataset used for the validation experiments
presented here and which is publicly available. Afterwards, the
two neuromorphic systems under consideration, namely Loihi
and ODIN + MorphIC, will be described, focusing on their
system specifics, characteristics, and the model architectures
that will be implemented on them. Finally, we describe the
system that we call baseline and which represents the point of
comparison between a traditional von-Neumann approach and
the two neuromorphic systems.

2.1. DVS and EMG Sensors
2.1.1. DVS Sensor
The DVS (Lichtsteiner et al., 2006) is a neuromorphic camera
inspired by the visual processing in the biological retina. Each
pixel in the sensor array responds asynchronously to logarithmic
changes in light. Whenever the incoming illumination increases
or decreases above a certain threshold, it generates a polarity
spike event. The polarity corresponds to the sign of the change;
ON polarity for an increase in light, and OFF polarity for
a decrease in light. The output is a continuous and sparse
train of events, interchangeably called spikes throughout this
paper, that carries the information of the active pixels in

the scene (represented in Figure 1). The static information is
directly removed on the hardware side and only the dynamic
one, corresponding to the movements in the scene, is actually
transmitted. In this way the DVS can reach low latency, down to
10 µs, reducing the power consumption needed for computation
and the amount of transmitted data. Each spike is encoded
using the Address Event Representation (AER) communication
protocol (Deiss et al., 1999) and is represented by the address of
the pixel (in x-y coordinates), the polarity (1 bit for the sign), and
the timestamp (in microsecond resolution).

2.1.2. EMG Sensor
In the proposed work, we collected the EMG corresponding to
hand gestures using the Myo armband by Thalmic Labs Inc.
The Myo armband is a wearable device provided with eight
equally spaced non-invasive EMG electrodes and a Bluetooth
transmission module. The EMG electrodes detect signals from
the forearm muscles activity and afterwards the acquired data is
sent to an external electronic device. The sampling rates for Myo
data are fixed at 200Hz and the data is returned as a unitless 8-bit
unsigned integer for each sensor representing “activation” and
does not translate to millivolts (mV).

2.2. DVS-EMG Dataset
The dataset is a collection of five hand gestures recorded with
the two sensor modalities: muscle activity from the Myo and
visual input, in the form of DVS events. Moreover, the dataset
also provides the video recording using a traditional frame-based
camera, referred to as Active Pixel Sensor (APS) in this paper.
The frames from the APS are used as ground truth and as input in
the baseline models. The APS-frames provided in the dataset are
gray-scale, 240× 180 resolution. The dataset contains recordings
from 21 subjects: 12 males and nine females aged from 25 to 35
(see Data Availability Statement for the full access to the dataset).
The structure is the following: each subject repeats three sessions,
in each session the subject performs five hand gestures: pinky,
elle, yo, index, and thumb (see Figure 2), repeated 5 times. Each
single gesture recording lasts 2s. The gestures are separated by
a relaxing time of 1s, to remove any residual activity from the
previous gesture. Every recording is cut in 10 chunks of 200ms
each, this duration was selected to match the requirements of a
real-case scenario of low latency prosthesis control where there is
a need for the classification and creation of the motor command
within 250 ms (Smith et al., 2011). Therefore, the final number of
samples results in 21 (subjects) × 3 (trials) × 5 (repetitions) × 5
(gestures) × 10 (chunks) for a total of 15,750. The Myo records
the superficial muscle activity at the middle forearm from eight
electrodes with a sampling rate of 200Hz. During the recordings,
the DVS was mounted on a random moving system to generate
relativemovement between the sensor and the subject’s hand. The
hand remains static during the recording to avoid noise in the
Myo sensor and the gestures are performed in front of a static
white background, see Figure 2 for the full setup.

2.2.1. Implementation on Neuromorphic Devices
SNNs, in general, and their implementation on neuromorphic
devices require inputs as spike trains. In the case of the DVS, the

Frontiers in Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 637151

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

T
im

e
 [
s]

0.00

0.02

0.04

0.06

0.08

0.10

Channel 01234567
A

m
p
litu

d
e
 [a

.u
.]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ON events

OFF events

Raw EMG

Tim
e

[s
]

0.00

0.02

0.04

0.06

0.08

Address x 0
5

10
15

20
25

30
35

40

A
d
d
re

s
s
 y

0

5

10

15

20

25

30

35

Events density

ON events

OFF events

DVS Spike Stream EMG Spike Stream

FIGURE 1 | Example, for a gesture “elle,” of spike streams for DVS (left) and EMG (right). In the EMG figure the spikes are represented by dots while the continuous

line is the raw EMG. Different channels have different colors.

C Neuromorphic systems D GesturesB Spike streams

b2. EMG

A Data collection setup

Gesture MyoDVS c1. Loihi

c2. ODIN + MorphIC

b1. DVS

CH1

CH2

CH3

CH4

CH1598

CH1599

CH1600

CH1

CH2

CH3

CH4

CH6

CH7

CH8

CH5

FIGURE 2 | System overview. From left to right: (A) data collection setup featuring the DVS, the traditional camera and the subject wearing the EMG armband sensor,

(B) data streams of (b1) DVS and (b2) EMG transformed into spikes via the Delta modulation approach, (C) the two neuromorphic systems namely (c1) Loihi and (c2)

ODIN + MorphIC, (D) the hand gestures that the system is able to recognize in real time.

sensor output is already in the form of spikes and polarity. The
only requirement that we need to take into account is the limited
number of neurons in the available neuromorphic processors.

For this reason, we decided to crop the 128 × 128 input of the
DVS to 40 × 40 centered on the hand-gesture. On the contrary,
for the EMG, a conversion in the event-based domain is required.

Frontiers in Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 637152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

The solution used here is the delta-modulator ADC algorithm,
based on a sigma-delta modulator circuit (Corradi and Indiveri,
2015). This mechanism is particularly used in low frequency,
high performance and low power applications (Lee et al., 2005),
such as biomedical circuits. Moreover, this modulator represents
a good interface for neuromorphic devices because it has much
less circuit complexity and lower power consumption than
multi-bit ADCs.

The delta-modulator algorithm transforms a continuous
signal into two digital pulse outputs, UP or DOWN, according to
the signal derivative. TheUP (DOWN) spikes are generated every
time the signal exceeds a positive (negative) threshold, like the
ON (OFF) events from the DVS. As described before, the signal
is sampled at 200Hz, this means that a new sample is acquired
every 5 ms. To increase the time resolution of the generated spike
train, which otherwise would contain too few spikes, the EMG
signals are over-sampled to a higher frequency before undergoing
the transformation into spikes (Donati et al., 2019).

For our specific EMG acquisition features, we set the threshold
at 0.05 and an interpolation factor of 3500; these values have been
selected from previous studies which looked at quality of signal
reconstruction (Donati et al., 2018, 2019).

2.3. Neuromorphic Processors
2.3.1. ODIN + MorphIC
The ODIN (Online-learning DIgital spiking Neuromorphic)
processor occupies an area of only 0.086 mm2 in 28 nm
FDSOI CMOS (Frenkel et al., 2019a)1. It consists of a single
neurosynaptic core with 256 neurons and 2562 synapses. Each
neuron can be configured to phenomenologically reproduce the
20 Izhikevich behaviors of spiking neurons (Izhikevich, 2004).
The synapses embed a 3-bit weight and a mapping table bit
that allows enabling or disabling Spike-Dependent Synaptic
Plasticity (SDSP) locally (Brader et al., 2007), thus allowing for
the exploration of both off-chip training and on-chip online
learning setups.

MorphIC is a quad-core digital neuromorphic processor
with 2k LIF neurons and more than 2M synapses in 65nm
CMOS (Frenkel et al., 2019b). MorphIC was designed for high-
density large-scale integration ofmulti-chip setups. The four 512-
neuron crossbar cores are connected with a hierarchical routing
infrastructure that enables neuron fan-in and fan-out values of
1k and 2k, respectively. The synapses are binary and can be either
programmed with offline-trained weights or trained online with
a stochastic version of SDSP.

Both ODIN and MorphIC follow a standard synchronous
digital implementation, which allows their operation to be
predicted with one-to-one accuracy by custom Python-based
chip simulators. As both chips rely on crossbar connectivity,
CNN topologies can be explored but are limited to small
networks due to an inefficient resource usage in the absence of
a weight reuse mechanism (Frenkel et al., 2019b). The selected
SNN architectures are thus based on fully-connected MLP

1The HDL source code and documentation of ODIN are publicly available at

https://github.com/ChFrenkel/ODIN.

topologies. Training is carried out in Keras with quantization-
aware stochastic gradient descent following a standard ANN-to-
SNN mapping approach (Hubara et al., 2017; Moons et al., 2017;
Rueckauer et al., 2017), the resulting SNNs process the EMG and
DVS spikes without further preprocessing.

In order to process the spike-based EMG gesture data, we
selected ODIN so as to benefit from 3-bit weights. Indeed,
due to the low input dimensionality of EMG data, satisfactory
performance could not be reached with the binary weight
resolution of MorphIC. A 3-bit-weight 16-230-5 SNN is thus
implemented in ODIN, this setup will be referred to as the
EMG-ODIN network.

For the DVS gesture data classification, we selected MorphIC,
to benefit from its higher neuron and synapse resources. ON/OFF
DVS events are treated equally and their connections to the
network are learned, so that any of them can be either excitatory
or inhibitory. Similarly to a setup previously proposed forMNIST
benchmarking (Frenkel et al., 2019b), the input 40 × 40-pixel
DVS event streams can be subsampled into four 20 × 20-
pixel event streams and processed independently in the four
cores of MorphIC, thus leading to an accuracy boost when
combining the outputs of all subnetworks, subsequently denoted
as subMLPs. The four subMLPs have a 400-210-5 topology
with binary weights, this setup will thus be referred to as the
DVS-MorphIC network.

To ease sensor fusion, the hidden layer sizes of the EMG-
ODIN and DVS-MorphIC networks and the associated firing
thresholds were optimized by parameter search so as to balance
their activities. These hidden layers were first flattened into a
1,070-neuron layer, then a 5-neuron output layer was retrained
with 3-bit weights and implemented in ODIN. This setup
will be referred to as the Fusion-ODIN network, which thus
encapsulates EMG processing in ODIN, DVS processing in
MorphIC, and sensor fusion in ODIN. From an implementation
point of view, mapping the MorphIC hidden layer output
spikes back to ODIN as sensor fusion requires an external
mapping table. Its overhead is excluded from the results provided
in section 3.

2.3.2. Loihi and Its Training Framework SLAYER
Intel’s Loihi (Davies et al., 2018) is an asynchronous
neuromorphic research processor. Each Loihi chip consists
of 128 neurocores, with each neurocore capable of implementing
up to 1,024 current based (CUBA) Leaky Integrate and Fire (LIF)
neurons. The network state and configuration is stored entirely
in on-chip SRAMs local to each core, this allows each core to
access its local memories independently of other cores without
needing to share a global memory bus (and in fact removing
the need for off-chip memory). Loihi supports a number of
different encodings for representing network connectivity, thus
allowing the user to choose the most efficient encoding for their
task. Each Loihi chip also contains three small synchronous ×86
processors which help monitor and configure the network, as
well as assisting with the injection of spikes and recording of
output spikes.

SLAYER (Shrestha and Orchard, 2018) is a backpropagation
framework for evaluating the gradient of any kind of SNN

Frontiers in Neuroscience | www.frontiersin.org 5 August 2020 | Volume 14 | Article 637153

https://github.com/ChFrenkel/ODIN
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

[i.e., spiking MLP and spiking CNN] directly in the spiking
domain. It is a dt-based SNN backpropagation algorithm
that keeps track of the internal membrane potential of the
spiking neuron and uses it during gradient propagation. There
are two main guiding principles of SLAYER: temporal credit
assignment policy and probabilistic spiking neuron behavior
during error backpropagation. Temporal credit assignment
policy acknowledges the temporal nature of a spiking neuron
where a spike event at a particular time has its effect on future
events. Therefore, the error credit of an error at a particular time
needs to be distributed back in time. SLAYER is one of the few
methods that consider temporal effects during backpropagation.
The use of probabilistic neurons during backpropagation helps
estimate the spike function derivative, which is a major challenge
for SNN backpropagation, with the spike escape rate function
of a probabilistic neuron. The end effect is that the spike
escape rate function is used to estimate the spike function
derivative, similar to the surrogate gradient concept (Zenke
and Ganguli, 2018; Neftci et al., 2019). With SLAYER, we can
train synaptic weights as well as axonal delays and achieve
state of the art performances (Shrestha and Orchard, 2018) on
neuromorphic datasets.

SLAYER uses the versatile Spike Response
Model (SRM) (Gerstner, 1995) which can be customized to
represent a wide variety of spiking neurons with a simple change
of spike response kernels. It is implemented2 atop the PyTorch
framework with automatic differentiation support (Paszke et al.,
2017) with the flexibility of feedforward dense, convolutional,
pooling, and skip connections in the network.

SLAYER-PyTorch also supports training with the exact CUBA
Leaky Integrate and Fire neuron model in Loihi (Davies et al.,
2018). To train for the fixed precision constraints on weights
and delays of Loihi hardware, it trains the network with the
quantization constraints and then trains using the strategy
of shadow variables (Courbariaux et al., 2015; Hubara et al.,
2016) where the constrained network is used in the forward
propagation phase and the full precision shadow variables are
used during backpropagation.

We used SLAYER-PyTorch to train a Loihi compatible
network for the hand-gesture recognition task. The networks
were trained offline using GPU and trained weights and delays
were used to configure the network on Loihi hardware for
inference purposes. All the figures reported here are for inference
using Loihi, with one algorithmic time tick in Loihi of 1ms.

A spiking MLP of architecture 16-128d-128d-5 was
trained for EMG gestures converted into spikes (section 2.2.1).
Here, 128d means the fully connected layer has 128 neurons
with trained axonal delays. The Loihi neuron with current
and voltage decay constants of 1,024 (32 ms) was used for
this network.

For the gesture classification using DVS data we used both a
spiking MLP, with the same architecture as the one deployed on
MorphIC and described in section 2.3.1, and a spiking CNN with
architecture 40x40x2-8c3-2p-16c3-2p-32c3-512-5.

2SLAYER-PyTorch is publicly available at https://github.com/bamsumit/

slayerPytorch.

Here, XcY denotes a convolution layer with X kernels of
shape Y-by-Y, while 2p denotes a 2-by-2 max pooling
layer. Zero padding was applied for all convolution layers. No
preprocessing on the spike events was performed, the ON/OFF
events are treated as different input channels, hence the input
shape 40x40x2. For this network, current and voltage decay
constants for the Loihi neurons were set to 1,024 (32 ms) and
128 (4 ms).

Finally, a third network where the penultimate layer neurons
of DVS and EMG networks were fused together was trained.
Only the last fully connected weights (640-5) were trained. The
parameters of the network before fusion were preserved. The
current and voltage decay constants of 1,024 (32 ms) and 128
(4 ms), respectively, were used for the final fusion layer neurons.
From now on, we will refer to these three networks as EMG-
Loihi, DVS-Loihi, and Fusion-Loihi whenever there is ambiguity.

2.4. Traditional Machine Learning
Baselines
Machine Learning (ML) methods, and in general data-driven
approaches, are currently the dominant tools used to solve
complex classification tasks since they give the best performance
compared to other approaches. We compare the performance
of the two fully neuromorphic systems described in the above
sections, against a traditional machine learning pipeline that uses
frame-based inputs, i.e., traditionally sampled EMG signals and
traditionally sampled video frames. For the comparisons to be
fair, in the traditional approach we maintain the same constraints
imposed by the neuromorphic hardware. In particular, we used
the same neural network architectures as those used in the
neuromorphic systems. Note that two different networks were
implemented, spiking MLP and spiking CNN (see Figure 3 for
more details on the architectures). For this reason, we have two
different baseline models that are paired to the two considered
neuromorphic systems.

2.4.1. EMG Feature Extraction
Traditional EMG signal processing consists of various steps. First,
signal pre-processing is used to extract useful information by
applying filters and transformations. Then, feature extraction is
used to highlight meaningful structures and patterns. Finally,
a classifier maps the selected features to output classes.
In this section we describe the EMG feature extraction
phase, in particular we consider time domain features used
for the classification of gestures with the baseline models.
We extracted two time domain features generally used in
literature (Phinyomark et al., 2018), namelyMeanAbsolute Value
(MAV) and Root Mean Square (RMS) shown in Equation (1).
The MAV is the average of the muscles activation value and it is
calculated by a stride-moving window. The RMS is represented as
amplitude relating to a gestural force and muscular contraction.
The two features are calculated across a window of 40 samples,
corresponding to 200 ms:

MAV(xc) =
1

T

T
∑

t=0

|xc(t)| RMS(xc) =

√

√

√

√

1

T

T
∑

t=0

x2c (t) (1)

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 637154

https://github.com/bamsumit/slayerPytorch
https://github.com/bamsumit/slayerPytorch
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

8c3 2p 16c3 2p 32c3 512 5A DVS CNN

B DVS MLP C EMG MLP4x 400-210-5
c1. 16-128-128-5

c2. 16-230-5

T
im

e
 [
s]

0.00

0.02

0.04

0.06

0.08

0.10

Channel 01234567

].
u.

a[

e
d

ut
il

p
m

A

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

ON events

OFF events

Raw EMG

Tim
e

[s
]

0.00

0.02

0.04

0.06

0.08

Address x 0
5

10
15

20
25

30
35

40

A
d
d
re

s
s
 y

0

5

10

15

20

25

30

35

Events density

ON events

OFF events

Tim
e

[s
]

0.00

0.02

0.04

0.06

0.08

Address x 0
5

10
15

20
25

30
35

40

A
d
d
re

s
s
 y

0

5

10

15

20

25

30

35

Events density

ON events

OFF events

Concatenated during fusion

FIGURE 3 | Architectures of the neural networks implemented on the neuromorphic systems and used in the baselines. (A) CNN architecture implemented on Loihi;

the corresponding baseline CNN receives APS frames instead of DVS events. (B) subMLP architectures implemented on MorphIC, the corresponding baseline

subMLPs receive APS frames instead of DVS events. (C) MLP architecture for the EMG data implemented on Loihi (c1) and on ODIN (c2), the corresponding baseline

MLPs receive EMG features instead of EMG events. The shading indicates those layers that are concatenated during the fusion of the networks.

where xc(t) is the signal in the time domain for the EMG channel
with index c and T is the number of samples in the considered
window, which was set to T = 40 (N = 200 ms) across this work.
The features were calculated for each channel separately and the
resulting values were concatenated in a vector F(n) described
in Equation (2):

F(n) =
[

F(x1), . . . , F(xC)
]T

(2)

where F is MAV or RMS, n is the index of the window and C
is the number of EMG channels. The final feature vector E(n) for
window n is shown in Equation (3), it is used for the classification
and is obtained by concatenating the two single feature vectors.

E(n) =
[

MAV(n)T ,RMS(n)T
]T

(3)

2.4.2. Baseline ODIN + MorphIC
As described in section 2.3.1, a CNN cannot be efficiently
implemented on crossbar cores, which is the architecture ODIN
and MorphIC rely on. We will therefore rely solely on fully-
connected MLPs networks for both visual and EMG data

processing. For the visual input, we used the same subMLP-based
network structure as the one described in section 2.3.1, but with
gray-scale APS frames. The 40 × 40 cropped APS frames are
sub-sampled and fed into four 2-layer subMLPs of architecture
400-210-5, as shown in Figure 3B. The outputs of the four
subMLPs are then summed when classifying with a single sensor
and are concatenated for the fusion network. The EMG neural
network is a 2-layer MLP of architecture 16-230-5. The fusion
network is obtained as described above for the Loihi baseline.

2.4.3. Baseline Loihi
As described in section 2.3.2, we used a spiking MLP and
a spiking CNN to process and classify DVS events. For the
Loihi baseline, we kept the exact same architectures, except for
the axonal delays. Moreover, both architectures of the baseline
receive the corresponding gray-scale APS frames instead of
the DVS events. The baseline MLP architecture and the CNN
architectures are shown in Figures 3A,B, respectively. Note that
the number of parameters between the baseline networks and the
spiking networks implemented on Loihi is slightly different since
the input has one channel (gray-scale) in the case of the baseline

Frontiers in Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 637155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

TABLE 1 | Comparison of traditional and neuromorphic systems on the task of gesture recognition for both single sensor and sensor fusion.

System Modality Accuracy (%) Energy (uJ) Inference time (ms) EDP (uJ * s)

Spiking CNN (Loihi)

EMG 55.7± 2.7 173.2± 21.2 5.89± 0.18 1.0± 0.1

DVS 92.1± 1.2 815.3± 115.9 6.64± 0.14 5.4± 0.8

EMG+DVS 96.0± 0.4 1104.5± 58.8 7.75± 0.07 8.6± 0.5

CNN (GPU)

EMG 68.1± 2.8 (25.5± 8.4) · 103 3.8± 0.1 97.3± 4.4

APS 92.4± 1.6 (31.7± 7.4) · 103 5.9± 0.1 186.9± 3.9

EMG+APS 95.4± 1.7 (32.1± 7.9) · 103 6.9± 0.05 221.1± 4.1

Spiking MLP (ODIN + MorphIC)

EMG 53.6± 1.4 7.42± 0.11 23.5± 0.35 0.17± 0.01

DVS 85.1± 4.1 57.2± 6.8 17.3± 2.0 1.00± 0.24

EMG+DVS 89.4± 3.0 37.4± 4.2 19.5± 0.3 0.42± 0.08

MLP (GPU)

EMG 67.2± 3.6 (23.9± 5.6) · 103 2.8± 0.08 67.2± 2.9

APS 84.2± 4.3 (30.2± 7.5) · 103 6.9± 0.1 211.3± 6.1

EMG+APS 88.1± 4.1 (32.0± 8.9) · 103 7.9± 0.05 253.0± 3.9

The results of the accuracy are reported with mean and standard deviation obtained over a 3-fold cross validation.

TABLE 2 | Inference statistics of Loihi models on 200 ms-long samples.

Network Accuracy % Core

utilization

Dynamic

power (mW)

Inference

speedup

EMG-Loihi 55.74± 2.74 6 29.4± 3.6 (34.01± 1.01)×

DVS-Loihi 92.14± 1.23 95 109.0±15.5 (30.14± 0.65)×

Fusion-Loihi 96.04± 0.48 100 137.2±7.3 (25.82± 0.24)×

that uses APS frames while it has two channels (polarity) in the
input for Loihi.

The MLP architecture used for the EMG classification is
instead composed of two layers of 128 followed by one layer of
5 units. While the input stays of the same size (16) with respect
to the network implemented on Loihi, the input features are
different since the baseline MLP receives MAV and RMS features
while the Loihi receives spikes obtained from the raw signal.

To obtain the fusion network, we eliminate the last layer
(classification layer) from both the single sensor networks,
concatenate the two penultimate layers of the single sensor
networks, and add a common classification layer with five units,
one per each class.

2.4.4. Training and Deployment
The models are trained with Keras using Adam optimizer with
standard parameters. First, the single modality networks are
trained separately, each for 30 epochs. For sensor fusion, output
layer retraining is also carried out for 30 epochs. In order to
compare the baselines against the neuromorphic systems in terms
of energy consumption and inference time, we deployed the
baseline models onto the NVIDIA Jetson Nano, an embedded
system with a 128-Core Maxwell GPU with 4GB 64-bit LPDDR4
memory 25.6 GB/s3.

3https://developer.nvidia.com/embedded/jetson-nano-developer-kit

3. RESULTS

Table 1 summarizes the results for Loihi and ODIN+MorphIC
with the respective baselines. More details are described in the
following sections.

3.1. Loihi Results
The classification performances of these three networks, EMG-
Loihi, DVS-Loihi, and Fusion-Loihi, with 3-fold cross-validation
and inferenced using 200 ms data, are tabulated in Table 2.
The core utilization, dynamic power consumption, and inference
time in the Loihi hardware are also listed in Table 2. The
dynamic power is measured as the difference of total power
consumed by the network and the static power when the
chip is idle. Since one algorithmic time tick is 1ms long,
inference time represents the speedup factor compared to
real time.

With the spiking MLP implemented on Loihi, we obtained
an accuracy of 50.3 ± 1.5, 83.1 ± 3.4, and 83.4 ± 2.1% for the
hand-gesture classification task using EMG, DVS and fusion,
respectively. Being that these results were significantly worse than
the ones obtained with the spiking CNN, we do not report them
in Tables 1, 2 and prefer to focus our analysis on the CNN which
is better suited for visual tasks. This poor performance is due to
temporal resolution of Loihi that causes a drop in the number of
spikes in the MLP architecture while this does not happen in the
CNN architecture.

The EMG network does not perform as well as in the baseline
as shown inTable 1. The reason for this discrepancy can be found
in the fact that the baselinemethod uses EMG from the raw signal
of the sensor. However, to process this signal using neuromorphic
chips (Loihi and ODIN + MorphIC), the EMG signal is encoded
into spikes. With this encoding, part of the information is lost (as
is the case for any encoding). Therefore, the baseline method has
the advantage of using a signal that has more information and
thus it outperforms the neuromorphic approach. Note that these

Frontiers in Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 637156

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

25 50 75 100 125 150 175 200

Stimulus duration [ms]

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 [

%
]

EMG APS EMG+APS EMG (spikes) DVS EMG+DVS

FIGURE 4 | Accuracy vs. stimulus duration for the Loihi system and its software baseline counterpart. In green the results for the CNN (GPU), in purple the results for

the spiking CNN (Loihi). No classification is present for APS frames before 25 ms since the frame rate is 20 fps.

Loihi networks are restricted to 8-bit fixed precision weights and
6-bit fixed precision delays.

To evaluate the performance over time of the Loihi networks,
stimulus duration vs. testing accuracy is plotted in Figure 4.
We can see that the EMG-Loihi network continues to improve
with longer stimulus duration. Table 1 and Figure 4 show the
results of the Loihi baseline. From an accuracy point of view the
baseline reaches a higher classification accuracy only in the EMG
classification, while both the visual classification and fusion are
on par with the Loihi networks and show only a non-significant
difference. In terms of inference time, the baseline running on the
GPU system is systematically faster than Loihi, but never more
than 40% faster. As expected, the energy consumption of the
GPU system is significantly higher than the Loihi system. Loihi is
around 30× more efficient than the baseline with concern to the
fusion network andmore than 150× and 40×more efficient with
concern to the EMG and DVS processing, respectively. Figure 4
shows in more details the effect of stimulus duration on the
classification accuracy. As expected, EMG is the modality that
suffers more from classification based on short segments (Smith
et al., 2011), reaching the best accuracy only after 200 ms for both
the neuromorphic system and the baseline, while the accuracy
for vision and fusion modalities saturate much more quickly,
in around 100 ms for the neuromorphic system and 50 ms for
the baseline. The traditional system reaches its best performance
after 50 ms while the neuromorphic system reaches its best
performance after 200ms. One should, however, also note that
the DVS sensor contains only the edge information of the scene
whereas the baseline network uses the image frame. Therefore,
the spiking CNN requires some time to integrate the input
information from DVS. Despite the inherent delays in a spiking

CNN, the Loihi CNN can respond to the input within a fewms of
inputs. However, for the vision modality, notice that, because the
frame rate of the camera is 20 fps, there is no classification before
25ms. Therefore, for short stimulus duration, the neuromorphic
system has higher accuracy than the traditional system.

3.2. ODIN + MorphIC Results
Inference statistics for a 200 ms sample duration are reported in
Table 3 for the EMG-ODIN, DVS-MorphIC, and Fusion-ODIN
networks. Chip utilization is computed as the percentage of
neuron resources taken by the hidden and output layers in ODIN
and MorphIC, while the power consumption P of the crossbar
cores of both chips can be decomposed as

P = Pleak + Pidlefclk + ESOPrSOP, (4)

where Pleak is the chip leakage power and Pleak + Pidlefclk
represents the static power consumption when a clock of
frequency fclk is connected, without network activity. The term
ESOPrSOP thus represents the dynamic power consumption,
where ESOP is the energy per synaptic operation (SOP) and rSOP
is the SOP processing rate, each SOP taking two clock cycles.
Detailed power models extracted from chip measurements of
ODIN and MorphIC are provided in Frenkel et al. (2019a,b),
respectively. The results reported in Tables 1, 3 are obtained with
ODIN and MorphIC optimizing for power, under the conditions
summarized in Table 4. The dynamic power consumption
reported in Table 4 reflects the regime in which ODIN and the
four cores of MorphIC run at the maximum SOP processing
rate rSOP = fclk/2.

A limitation of the crossbar-based architecture of ODIN
and MorphIC is that each neuron spike leads to a systematic

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 637157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

TABLE 3 | Inference statistics of ODIN and MorphIC models on 200 ms-long samples.

Network Accuracy (%)
Chip utilization (%) Dyn. power (mW) Processing time (ms)

Inference speedup

ODIN MorphIC ODIN MorphIC ODIN MorphIC

EMG-ODIN 53.65± 1.37 91.8 – 0.315 – 23.5 – 8.5×

DVS-MorphIC 85.17± 4.11 – 42.0 – 3.3 – 17.3 11.6×

Fusion-ODIN 89.44± 3.02 91.8 41.0 0.315 3.3 19.5 9.5 10.3×

TABLE 4 | Low-power operating conditions of ODIN and MorphIC at minimum

supply voltage.

Chip Supply voltage (V) ESOP (pJ) Max. fclk (MHz)

ODIN 0.55 8.4 75

MorphIC 0.8 30 55

processing of all neurons in the core, thus potentially leading
to a significant amount of dummy operations (Frenkel et al.,
2019b). Taking the example of the DVS-MorphIC network with
a crossbar core of 512 neurons (Figure 3B), each input spike
leads to 512 SOPs, of which only 210 are useful for hidden
layer processing. Similarly, each spike from a hidden layer
neuron leads to 512 SOPs, of which only five are actually
used for output layer processing. The induced overhead is
thus particularly critical for output layer processing, which
degrades both the energy per inference and the inference time4.
However, this problem is partly mitigated in the Fusion-ODIN
network for output layer processing. Indeed, when resorting to
an external mapping table (section 2.3.1), hidden layer spikes
can be remapped back to the sensor fusion output layer of
ODIN with specific single-SOP AER events (Frenkel et al.,
2019a), thus avoiding the dummy SOP overhead and leading to
a lower energy and inference time compared to the standalone
EMG-ODIN and DVS-MorphIC networks (Tables 1, 3). As
described in section 2.3.1, the fusion results exclude the mapping
table overhead.

The comparison of the results obtained with ODIN +
MorphIC to those obtained with its GPU baseline counterpart
(Table 1 and Figure 5) leads to conclusions similar to those
already drawn with Loihi in section 3.1, with the difference
that while the GPU system is significantly faster, between 2×
and 10× faster, the ODIN + MorphIC neuromorphic system
is between 500× and 3,200× more energy-efficient. Moreover,
it appears from Figure 5 that the EMG-ODIN, DVS-MorphIC
and Fusion-ODIN networks basically perform at chance level
for a 10-ms stimulus duration. This comes from the fact that
the firing thresholds of the networks were selected based on
a 200-ms stimulus duration, which leads the output neurons
to remain silent and never cross their firing threshold when
insufficient input spike data is provided. This problem could be

4As discussed in (Frenkel et al., 2019b), a simple extension providing post-synaptic

start and end addresses would avoid these dummy SOPs and allow for an efficient

processing of fully-connected layers, which will be included in future generations

of the chips.

alleviated by reducing the neuron firing thresholds for shorter
stimulus durations.

3.3. EDP and Computational Complexity
Figure 6 shows a comparison between the Loihi system and the
ODIN +MorphIC system in terms of EDP, number of operations
per classification and a ratio between these two quantities. While
panel (a) reports the same numbers as in Table 1, panels (b)
and (c) allow for a more fair comparison of energy consumption
between the two neuromorphic systems. From panel (b), we
can see how the number of operations is similar for the EMG
networks, both being MLPs for the two neuromorphic systems.
Differently, the number of operations for the visual input and the
fusion differ substantially between the two systems due to the use
of a CNN in the Loihi system. Taking this into account, we can
see in panel (c) that the normalized energy consumption tends to
be similar for both systems, more than the EDP in panel (a) is.

4. DISCUSSIONS

As it has been discussed in Davies (2019), there is a real
need for a benchmark in the neuromorphic engineering field
to compare the metrics of accuracy, energy, and latency. ML
benchmarks, such as ImageNet for image classification (Deng
et al., 2009), Chime challenges for speech recognition (Barker
et al., 2015), and the Ninapro dataset containing kinematic
and surface EMG for prosthetic applications (Atzori et al.,
2014) are not ideal for neuromorphic chips as they require
high performance computing for processing. For example,
floating point bit resolution, large amounts of data and large
power consumption. There have been some efforts in creating
relevant event-based datasets, such as N-MNIST (Orchard et al.,
2015), the spiking version of the widespread MNIST digits
recognition dataset, N-TIDIGITS18 (Anumula et al., 2018),
the spiking version of the spoken digits recognition dataset
from LDC TIDIGITS, and the DVS gesture recognition dataset
from IBM (Amir et al., 2017). These datasets are either toy
examples or are not meant for real-world applications. Here,
we are introducing a hand gesture benchmark in English sign
language (e.g., ILY) using the DVS and Myo sensors. This kind of
benchmark can be directly used as a preliminary test for Brain-
Machine Interface (BMI)/personalized medicine applications.
We have collected this dataset from 21 people and in this
paper have benchmarked it on three digital neuromorphic chips,
measuring the accuracy, energy, and inference time. We believe
this work takes an important first step in the direction of a
real use-case (e.g., rehabilitation, sports applications, and sign

Frontiers in Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 637158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

25 50 75 100 125 150 175 200

Stimulus duration [ms]

30

40

50

60

70

80

90
A

c
c
u

ra
c
y
 [

%
]

EMG APS EMG+APS EMG (spikes) DVS EMG+DVS

FIGURE 5 | Accuracy vs. stimulus duration for the ODIN + MorphIC system and its software baseline counterpart. In blue the results for the MLP (GPU), in red the

results for the spiking MLP (ODIN + MorphIC). No classification is present for APS frames before 25 ms since the frame rate is 20 fps.

EMG DVS FUS

10 − 1

10 0

10 1

E
D
P
 [
u
J
*
s]

EMG DVS FUS

10 6

10 7

S
O
P
s

Loihi ODIN+MorphIC

EMG DVS FUS
10 − 7

10 − 6

E
D
P
 /
 S
O
P
s
[u
J
*
s
/
sp
ik
e
]

A B C

FIGURE 6 | Comparison between the two neuromorphic system with respect to (A) energy delay product (EDP) (see section 1), (B) number of synaptic operations

(SOPs) (see section 2.3.1), (C) EDP normalized by the number of SOPs.

interpretation) which we would like to encourage the community
to use.

Although the dataset we provided is on static gestures, the
DVS and the spiking EMG signals provide the capability for low-
power processing using event-based neuromorphic chips and
enable embedded systems with online on-site processing without
having to send the data to remote sensors. Therefore, this work is
an important first step toward edge-computing applications. The
static dataset also helps with reducing the noise from the EMG

signals as we mentioned in section 2.2. However, this does not
move away from the real application as we have shown in a live
demo in Ceolini et al. (2019a).

The selected multi-sensor data fusion, which combines
vision and EMG sensors, derives from the need of multiple
sources to help the classification in real-scenario cases. Although
the results show a small improvement due to the EMG
sensors, they still provide some classification in case light
conditions or camera occlusions are not ideal. In addition,

Frontiers in Neuroscience | www.frontiersin.org 11 August 2020 | Volume 14 | Article 637159

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

for specific applications, such as neuroprosthetic control, the
EMG is integrated in the prosthetic device and, eventually, the
camera can act as a support input helping during calibration
or more advanced tasks, such as sensory-motor closed loop
(Jiang et al., 2012).

Since the event-based neuromorphic chips require inputs
in the form of events, the continuous sensory signals have
to be encoded into spikes for an event-driven processing.
This quantization loses information (and hence accuracy) in
comparison to the analog information processing in trade-off
with the low power consumption of event-based systems which
is required for edge computing. To compensate for the loss of
information and accuracy, it is important to merge information
from multiple sensors in a sensory fusion setup. In this setting,
the information loss by quantization from one sensor can be
made up for by another one. This is similar to how humans
and animals perceive their environment through diverse sensory
channels: vision, audition, touch, smell, proprioception, etc.
From a biological perspective, the fundamental reason lies in
the concept of degeneracy in neural structures (Edelman, 1987),
which means that any single function can be carried out by more
than one configuration of neural signals, so that the biological
system still functions with the loss of one component. It also
means that sensory systems can educate each other, without an
external teacher (Smith and Gasser, 2005). The same principles
can be applied for artificial systems, as information about the
same phenomenon in the environment can be acquired from
various types of sensors: cameras, microphones, accelerometers,
etc. Each sensory-information can be considered as a modality.
Due to the rich characteristics of natural phenomena, it is rare
that a single modality provides a complete representation of the
phenomenon of interest (Lahat et al., 2015).

There are mainly two strategies for multi-modal fusion in
the literature (Cholet et al., 2019): (1) data-level fusion (early
fusion) where modalities are concatenated then learned by a
unique model, and (2) score-level fusion (late fusion) where
modalities are learned by distinct models and only after their
predictions are fused with another model that provides a final
decision. Early fusion, including feature-level fusion, suffers
from a compatibility problem (Peng et al., 2016) and does not
generalize well. Additionally, neural-based early fusion increases
the memory footprint and the computational cost of the process,
by inducing a full connectivity at the first classification stages. It
is an important factor to take into consideration when choosing
a fusion strategy (Castanedo, 2013), especially for embedded
systems. Therefore, we follow a late fusion approach with a
classifier-level fusion, which has been shown to perform better
than feature-level fusion for classification tasks (Guo et al., 2014;
Peng et al., 2016; Biagetti et al., 2018). It is close to score-
level fusion by combining the penultimate layers of the base
(unimodal) classifiers in a meta-level (multimodal) classifier
that uses the natural complementarity of different modalities to
improve the overall classification accuracy.

In this context, to have a fair comparison, the central
question is the difference between the completely traditional
approaches, such as the CNN and MLP baselines, vs. the event-
based neuromorphic one. In the baseline, the EMG features are

manually extracted, and the classification is done on the extracted
features. Note that this pipeline is completely different from the
event-based neuromorphic approach which extracts the features
directly from the events. Another important thing to mention
here is that although we have encoded the signals separately,
this sensory information can be directly encoded to events at the
front-end. This has already been established for audio and visual
sensors (Lichtsteiner et al., 2006; Chan et al., 2007) and there
have also recently been design efforts for other signals such the
biomedical ones (Corradi and Indiveri, 2015).

To have a reference point for comparison, we trained the
same network architecture used for the two neuromorphic
setups. As can be seen in Table 1, the baseline accuracy on
the fusion is on par with both Loihi and ODIN + MorphIC,
despite the lower bit resolution on the neuromorphic chips in
comparison with the 32-bit floating point resolutions on GPU
in the baseline approach. We speculate that this is because the
SLAYER training model already takes into account the low bit
precision and thus calculates the gradients, respectively. Similar
to that, ODIN and MorphIC take a quantization-aware training
approach which calculates the weights based on the available
on-chip precision. As can be seen from all the experiments in
Table 1, the classification accuracy using only the EMG sensor
is relatively low. However, it should be noted that this is the
result of having a model which is trained across subjects and
there are multiple sources of variability across subjects: (i) The
placement of the EMG sensor is not necessarily in the same
position (with respect to the forearm muscles) for every subject.
(ii) Every subject performs the gestures in a unique manner. (iii)
The muscle strength is different for every subject. In addition,
since the EMG is directly measured from surface electrodes,
it acquires noise while traveling through the skin, background
noise from electronics, ambient noise, and so forth. In a real-
world application, the network model can be trained on a single
subject’s data, yielding much higher accuracy. Moreover, having
the online learning abilities on the neuromorphic chip can aid
in adapting these models to every subject uniquely. Such online
learning modules already exist in Loihi as well as in ODIN and
MorphIC, which can be exploited in the future to boost the
classification accuracy of EMG signals. Furthermore, it becomes
apparent that the fusion accuracy is close, if not higher, at
about 4% to the accuracy achieved with the DVS single sensor.
However, the importance of the EMG signal is in the wearable
application since it is a natural way to control prosthesis and
it is a direct measure of the activity and movement in the
muscles. Given the noisy nature of the EMG signal, it is critical
to combine it with the visual input to boost the accuracy. But
even given the noisy nature of the signal, it still allows to retrieve
relevant information which helps boosting the accuracy of
the fusion.

It is worth noting that while the accuracy between the
spiking MLP on Loihi and ODIN + MorphIC are directly
comparable, the results regarding the spiking CNN on Loihi
and the spiking MLP on ODIN + MorphIC are not. This is
because the two architectures use different features and resources
on their respective neuromorphic systems (as already described
in section 2.3). Based on this, there are different constraints

Frontiers in Neuroscience | www.frontiersin.org 12 August 2020 | Volume 14 | Article 637160

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

present in the two chips. Traditionally, a CNN architecture is
used for image classification which is the network we used on the
Loihi chip, given the large number of neurons that are available
(128k) on this general-purpose platform. However, since ODIN
and MorphIC are small-scale devices compared to Loihi, the
number of neurons are a lot more constrained (i.e., 256 neurons
for ODIN, 2k for MorphIC). Therefore, we resorted to using
a fully-connected MLP topology instead of a CNN for image
classification in MorphIC.

Regarding the latency, it is important to mention that for
real-world prosthetic applications, the latency budget is below
250 ms (Smith et al., 2011). This means that if the processing
happens within this budget, the patient will not feel the lag
of the system. Hence, optimizing the system for having lower
latency than 200 ms will not be beneficial as the patient will
not feel the latency below 200 ms. Therefore, within this
budget, other parameters can be optimized. The neuromorphic
approach is very advantageous in this case since it trades-
off power with latency, but it stays within the latency budget
that is required. Contrarily, the GPU system has an overall
faster inference time but uses much more energy. It is worth
mentioning that our results are reported in accelerated time,
however, the EMG and DVS are slowly changing signals, and
thus, even though the classification is done very fast, the
system has to wait for the inputs to arrive. Therefore, it is
as if the system is being run in real-time. Here, there is a
trade-off between the memory that is storing the streaming
data for processing and the dynamic energy consumption.
The accelerated time allows for lower energy consumption
as the system is on for a shorter time, however, this comes
with the caveat that the input has to be buffered for at least
200 ms in off-chip memory, therefore inducing a power and
resource overhead.

The final comparison provided by Figure 6 shows how
the two systems have a similar energy consumption when
this is normalized by the number of operations done to
run the network and obtain one classification output. While
ODIN + MorphIC consumes less per classification in absolute
terms, when considering the number of operations, it performs
comparably to Loihi. When deploying a neuromorphic system,
one has to take into account all these aspects. Meaning not only
is there a trade-off between speed and energy consumption but
there is also one between accuracy and energy consumption,
given the fact that a more complex network architecture may
have more predictive power while having a higher energy
demand. Overall, one has to look for the best trade-off in

the context of a particular application, the malleability of
neuromorphic hardware enables this adaptation to the task-
dependent constraints within a framework of state of the art
results with respect to system performance.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the Zenodo,
open access repository, http://doi.org/10.5281/zenodo.3663616.
All the code used for the reported experiments can be found at
https://github.com/Enny1991/dvs_emg_fusion.

AUTHOR CONTRIBUTIONS

EC, CF, and SS contributed equally to the work. EC, GT, MP, and
ED participated equally to the development of the work idea and
collected the dataset. EC and LK were responsible for the baseline
experiments. CF and SS implemented the ODIN + MorphIC
and Loihi pipelines, respectively. SS implemented the SLAYER
framework and adapted it for the specific application. All authors
contributed to the writing of the paper.

FUNDING

This work was supported by the EU’s H2020 MSC-IF grant
NEPSpiNN (Grant No. 753470), the Swiss Forschungskredit
grants FK-18-103 and FK-l9-106, the Toshiba Corporation,
the SNSF grant No. 200021_172553, the fonds Européen de
Développement Régional FEDER, the Wallonia within the
Wallonie-2020.EU program, the Plan Marshall, the FRS-FNRS
of Belgium, the EU’s H2020 project NEUROTECH (Grant No.
824103), and the H2020 MC SWITCHBOARD ETN (Grant No.
674901). The authors declare that this study received funding
from Toshiba Corporation. The funder was not involved in
this study design, collection, analysis, interpretation of data, the
writing of this article, or the decision to submit it for publication.

ACKNOWLEDGMENTS

The authors would like to acknowledge the 2019 Capocaccia and
Telluride NeuromorphicWorkshops and all their participants for
the fruitful discussions, and Intel Corporation for access to Loihi
neuromorphic platform. We thank Prof. B. Miramond, Prof. D.
Bol, Prof. S. Liu, Prof. T. Delbruck, and Prof. G. Indiveri. Finally,
we thank Garrick Orchard for supporting us with the use of the
Loihi platform and the useful comments to the paper.

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Nolfo, C. D., et al. (2017).

“A low power, fully event-based gesture recognition system,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu,

HI), 7388–7397. doi: 10.1109/CVPR.2017.781

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature

representations for neuromorphic audio spike streams. Front. Neurosci.

12:23. doi: 10.3389/fnins.2018.00023

Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.-G. M., Elsig, S., et al.

(2014). Electromyography data for non-invasive naturally-controlled robotic

hand prostheses. Sci. Data 1:140053. doi: 10.1038/sdata.2014.53

Barker, J., Marxer, R., Vincent, E., and Watanabe, S. (2015). “The third ‘chime’

speech separation and recognition challenge: dataset, task and baselines,” in

2015 IEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU) (Scottsdale, AZ), 504–511. doi: 10.1109/ASRU.2015.7404837

Benatti, S., Casamassima, F., Milosevic, B., Farella, E., Schönle, P., Fateh,

S., et al. (2015). A versatile embedded platform for emg acquisition

Frontiers in Neuroscience | www.frontiersin.org 13 August 2020 | Volume 14 | Article 637161

http://doi.org/10.5281/zenodo.3663616
https://github.com/Enny1991/dvs_emg_fusion
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1109/ASRU.2015.7404837
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

and gesture recognition. IEEE Trans. Biomed. Circuits Syst. 9, 620–630.

doi: 10.1109/TBCAS.2015.2476555

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Biagetti, G., Crippa, P., and Falaschetti, L. (2018). Classifier level fusion of

accelerometer and semg signals for automatic fitness activity diarization.

Sensors 18:2850. doi: 10.3390/s18092850

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Braun, S., Neil, D., Anumula, J., Ceolini, E., and Liu, S. (2019). “Attention-

driven multi-sensor selection,” in 2019 International Joint Conference on Neural

Networks (IJCNN) (Budapest), 1–8. doi: 10.1109/IJCNN.2019.8852396

Castanedo, F. (2013). A review of data fusion techniques.

TheScientificWorldJournal 2013:704504. doi: 10.1155/2013/7

04504

Ceolini, E., Taverni, G., Khacef, L., Payvand, M., and Donati, E. (2019a).

“Live demostration: sensor fusion using emg and vision for hand gesture

classification in mobile applications,” in 2019 IEEE Biomedical Circuits

and Systems Conference (BioCAS) (Nara), 1. doi: 10.1109/BIOCAS.2019.89

19163

Ceolini, E., Taverni, G., Khacef, L., Payvand, M., and Donati, E. (2019b). Sensor

fusion using EMG and vision for hand gesture classification in mobile

applications. arXiv 1910.11126. doi: 10.1109/BIOCAS.2019.8919210

Chan, V., Liu, S.-C., and van Schaik, A. (2007). Aer ear: A matched silicon cochlea

pair with address event representation interface. IEEE Trans. Circuits Syst. I Reg.

Pap. 54, 48–59. doi: 10.1109/TCSI.2006.887979

Chen, C., Yu, Y., Ma, S., Sheng, X., Lin, C., Farina, D., et al. (2020).

Hand gesture recognition based on motor unit spike trains decoded from

high-density electromyography. Biomed. Signal Process. Control 55:101637.

doi: 10.1016/j.bspc.2019.101637

Cheok, M. J., Omar, Z., and Jaward, M. H. (2019). A review of hand gesture and

sign language recognition techniques. Int. J. Mach. Learn. Cybern. 10, 131–153.

doi: 10.1007/s13042-017-0705-5

Cholet, S., Paugam-Moisy, H., and Regis, S. (2019). “Bidirectional associative

memory for multimodal fusion: a depression evaluation case study,” in 2019

International Joint Conference on Neural Networks (IJCNN) (Budapest), 1–6.

doi: 10.1109/IJCNN.2019.8852089

Cicirelli, G., Attolico, C., Guaragnella, C., and D’Orazio, T. (2015). A kinect-based

gesture recognition approach for a natural human robot interface. Int. J. Adv.

Robot. Syst. 12:22. doi: 10.5772/59974

Corradi, F., and Indiveri, G. (2015). A neuromorphic event-based neural recording

system for smart brain-machine-interfaces. IEEE Trans. Biomed. Circuits Syst.

9, 699–709. doi: 10.1109/TBCAS.2015.2479256

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: training

deep neural networks with binary weights during propagations,” in Advances

in Neural Information Processing Systems, eds C. Cortes, N. D. Lawrence, D.

D. Lee, M. Sugiyama, and R. Garnett (Montreal, QC: Curran Associates, Inc.),

3123–3131.

Davies, M. (2019). Benchmarks for progress in neuromorphic computing. Nat.

Mach. Intell. 1, 386–388. doi: 10.1038/s42256-019-0097-1

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Debes, C., Merentitis, A., Heremans, R., Hahn, J., Frangiadakis, N., van Kasteren,

T., et al. (2014). Hyperspectral and LiDAR data fusion: outcome of the 2013

grss data fusion contest. IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. 7,

2405–2418. doi: 10.1109/JSTARS.2014.2305441

Deiss, S. R., Douglas, R. J., and Whatley, A. M. (1999). “A pulse-coded

communications infrastructure for neuromorphic systems,” in Pulsed Neural

Networks, eds W. Maass and C. M. Bishop (Cambridge, MA: MIT Press),

157–178.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

“Imagenet: a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL: IEEE), 248–255.

doi: 10.1109/CVPR.2009.5206848

Donati, E., Payvand, M., Risi, N., Krause, R., Burelo, K., Indiveri, G.,

et al. (2018). Processing EMG signals using reservoir computing on an

event-based neuromorphic system. in 2018 IEEE Biomedical Circuits and

Systems Conference (BioCAS), pages 1–4. IEEE. doi: 10.1109/BIOCAS.2018.

8584674

Donati, E., Payvand, M., Risi, N., Krause, R. B., and Indiveri, G. (2019).

Discrimination of EMG signals using a neuromorphic implementation of

a spiking neural network. IEEE Trans. Biomed. Circuits Syst. 13, 795–803.

doi: 10.1109/TBCAS.2019.2925454

Došen, S., Cipriani, C., Kostić, M., Controzzi, M., Carrozza, M. C., and

Popović, D. B. (2010). Cognitive vision system for control of dexterous

prosthetic hands: experimental evaluation. J. Neuroeng. Rehabil. 7:42.

doi: 10.1186/1743-0003-7-42

Droniou, A., Ivaldi, S., and Sigaud, O. (2015). Deep unsupervised network for

multimodal perception, representation and classification. Robot. Auton. Syst.

71, 83–98. doi: 10.1016/j.robot.2014.11.005

Edelman, G. M. (1987). Neural Darwinism: The Theory of Neuronal Group

Selection. New York, NY: Basic Books.

Frenkel, C., Lefebvre, M., Legat, J.-D., and Bol, D. (2019a). A 0.086-mm2 12.7-

pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic

processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 13, 145–158.

doi: 10.1109/TBCAS.2018.2880425

Frenkel, C., Legat, J.-D., and Bol, D. (2019b). Morphic: a 65-nm 738k-

synapse/mm2 quad-core binary-weight digital neuromorphic processor with

stochastic spike-driven online learning. IEEE Trans. Biomed. Circuits Syst. 13,

999–1010. doi: 10.1109/TBCAS.2019.2928793

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gerstner, W. (1995). Time structure of the activity in neural network models. Phys.

Rev. E 51, 738–758. doi: 10.1103/PhysRevE.51.738

Ghazaei, G., Alameer, A., Degenaar, P., Morgan, G., and Nazarpour, K. (2017).

Deep learning-based artificial vision for grasp classification in myoelectric

hands. J. Neural Eng. 14:036025. doi: 10.1088/1741-2552/aa6802

Gigli, A., Gregori, V., Cognolato, M., Atzori, M., and Gijsberts, A. (2018). “Visual

cues to improvemyoelectric control of upper limb prostheses,” in 2018 7th IEEE

International Conference on Biomedical Robotics and Biomechatronics (Biorob)

(Enschede: IEEE), 783–788. doi: 10.1109/BIOROB.2018.8487923

Guo, H., Chen, L., Shen, Y., and Chen, G. (2014). “Activity recognition

exploiting classifier level fusion of acceleration and physiological signals,”

in UbiComp 2014–Adjunct Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing (Seattle, WA), 63–66.

doi: 10.1145/2638728.2638777

Haria, A., Subramanian, A., Asokkumar, N., Poddar, S., and Nayak, J. S. (2017).

Hand gesture recognition for human computer interaction. Proc. Comput. Sci.

115, 367–374. doi: 10.1016/j.procs.2017.09.092

Hoeks, C., Barentsz, J., Hambrock, T., Yakar, D., Somford, D., Heijmink, S.,

et al. (2011). Prostate cancer: multiparametric MR imaging for detection,

localization, and staging. Radiology 261, 46–66. doi: 10.1148/radiol.11091822

Horwitz, B., and Poeppel, D. (2002). How can EEG/MEG and fMRI/PET data be

combined? Hum. Brain Mapp. 17, 1–3. doi: 10.1002/hbm.10057

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

“Binarized neural networks,” in Advances in Neural Information Processing

Systems, eds D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett

(Barcelona: Curran Associates, Inc.), 4107–4115.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y.

(2017). Quantized neural networks: training neural networks with low

precision weights and activations. J. Mach. Learn. Res. 18, 6869–6898.

doi: 10.5555/3122009.3242044

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Jiang, N., Dosen, S., Muller, K.-R., and Farina, D. (2012). Myoelectric control of

artificial limbs—is there a need to change focus? IEEE Signal Process. Mag. 29,

152–150. doi: 10.1109/MSP.2012.2203480

Lahat, D., Adali, T., and Jutten, C. (2015). Multimodal data fusion: an

overview of methods, challenges, and prospects. Proc. IEEE 103, 1449–1477.

doi: 10.1109/JPROC.2015.2460697

Lee, H.-Y., Hsu, C.-M., Huang, S.-C., Shih, Y.-W., and Luo, C.-

H. (2005). Designing low power of sigma delta modulator for

Frontiers in Neuroscience | www.frontiersin.org 14 August 2020 | Volume 14 | Article 637162

https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.3390/s18092850
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1109/IJCNN.2019.8852396
https://doi.org/10.1155/2013/704504
https://doi.org/10.1109/BIOCAS.2019.8919163
https://doi.org/10.1109/BIOCAS.2019.8919210
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.1016/j.bspc.2019.101637
https://doi.org/10.1007/s13042-017-0705-5
https://doi.org/10.1109/IJCNN.2019.8852089
https://doi.org/10.5772/59974
https://doi.org/10.1109/TBCAS.2015.2479256
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JSTARS.2014.2305441
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/BIOCAS.2018.8584674
https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1186/1743-0003-7-42
https://doi.org/10.1016/j.robot.2014.11.005
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/TBCAS.2019.2928793
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1103/PhysRevE.51.738
https://doi.org/10.1088/1741-2552/aa6802
https://doi.org/10.1109/BIOROB.2018.8487923
https://doi.org/10.1145/2638728.2638777
https://doi.org/10.1016/j.procs.2017.09.092
https://doi.org/10.1148/radiol.11091822
https://doi.org/10.1002/hbm.10057
https://doi.org/10.5555/3122009.3242044
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1109/MSP.2012.2203480
https://doi.org/10.1109/JPROC.2015.2460697
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ceolini et al. Sensor Fusion Neuromorphic Benchmark

biomedical application. Biomed. Eng. Appl. Basis Commun. 17, 181–185.

doi: 10.4015/S1016237205000287

Lichtsteiner, P., Posch, C., and Delbruck, T. (2006). “A 128 × 128 120 dB 30 MW

asynchronous vision sensor that responds to relative intensity change,” in 2006

IEEE International Solid State Circuits Conference-Digest of Technical Papers

(San Francisco, CA: IEEE), 2060–2069. doi: 10.1109/ISSCC.2006.1696265

Liu, H., and Wang, L. (2018). Gesture recognition for human-robot collaboration:

a review. Int. J. Ind. Ergon. 68, 355–367. doi: 10.1016/j.ergon.2017.02.004

Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R. (2014). Event-

Based Neuromorphic Systems. Hoboken, NJ: John Wiley & Sons.

Loss, J. F., Cantergi, D., Krumholz, F. M., La Torre, M., and Candotti, C. T. (2012).

“Evaluating the electromyographical signal during symmetrical load lifting,” in

Applications of EMG in Clinical and Sports Medicine, ed C. Steele (Norderstedt:

Books on Demand), 1.

Markovic, M., Dosen, S., Cipriani, C., Popovic, D., and Farina, D. (2014).

Stereovision and augmented reality for closed-loop control of grasping in hand

prostheses. J. Neural Eng. 11:046001. doi: 10.1088/1741-2560/11/4/046001

Markovic, M., Dosen, S., Popovic, D., Graimann, B., and Farina, D.

(2015). Sensor fusion and computer vision for context-aware control

of a multi degree-of-freedom prosthesis. J. Neural Eng. 12:066022.

doi: 10.1088/1741-2560/12/6/066022

Meier, K. (2015). “A mixed-signal universal neuromorphic computing system,” in

2015 IEEE International Electron Devices Meeting (IEDM) (Washington, DC:

IEEE), 4–6. doi: 10.1109/IEDM.2015.7409627

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Moons, B., Goetschalckx, K., Van Berckelaer, N., and Verhelst, M. (2017).

“Minimum energy quantized neural networks,” in 2017 51st Asilomar

Conference on Signals, Systems, and Computers (Pacific Grove, CA: IEEE),

1921–1925. doi: 10.1109/ACSSC.2017.8335699

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable

multicore architecture with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A.

R., et al. (2018). Braindrop: a mixed-signal neuromorphic architecture with

a dynamical systems-based programming model. Proc. IEEE 107, 144–164.

doi: 10.1109/JPROC.2018.2881432

Neftci, E., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in spiking

neural networks. arXiv abs/1901.09948.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in PyTorch,” in NeurIPS Autodiff Workshop (Long

Beach, CA).

Peng, L., Chen, L., Wu, X., Guo, H., and Chen, G. (2016). Hierarchical

complex activity representation and recognition using topic model

and classifier level fusion. IEEE Trans. Biomed. Eng. 64, 1369–1379.

doi: 10.1109/TBME.2016.2604856

Phinyomark, A., N., Khushaba, R., and Scheme, E. (2018). Feature extraction

and selection for myoelectric control based on wearable EMG sensors. Sensors

18:1615. doi: 10.3390/s18051615

Pitti, A., Blanchard, A., Cardinaux, M., and Gaussier, P. (2012). “Gain-field

modulation mechanism in multimodal networks for spatial perception,”

in 2012 12th IEEE-RAS International Conference on Humanoid Robots

(Humanoids 2012) (Osaka), 297–302. doi: 10.1109/HUMANOIDS.2012.

6651535

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Rivet, B., Wang, W., Naqvi, S. M., and Chambers, J. A. (2014). Audiovisual speech

source separation: an overview of key methodologies. IEEE Signal Process. Mag.

31, 125–134. doi: 10.1109/MSP.2013.2296173

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Shivappa, S. T., Trivedi, M. M., and Rao, B. D. (2010). Audiovisual information

fusion in human–computer interfaces and intelligent environments: a survey.

Proc. IEEE 98, 1692–1715. doi: 10.1109/JPROC.2010.2057231

Shrestha, S. B., andOrchard, G. (2018). “SLAYER: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems 31, eds S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett

(Montreal, QC: Curran Associates, Inc.), 1419–1428.

Smith, L., and Gasser, M. (2005). The development of embodied cognition: six

lessons from babies. Artif. Life 11, 13–29. doi: 10.1162/1064546053278973

Smith, L. H., Hargrove, L. J., Lock, B. A., and Kuiken, T. A. (2011).

Determining the optimal window length for pattern recognition-based

myoelectric control: balancing the competing effects of classification error

and controller delay. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 186–192.

doi: 10.1109/TNSRE.2010.2100828

Tan, A.-H., Subagdja, B., Wang, D., and Meng, L. (2019). Self-organizing neural

networks for universal learning and multimodal memory encoding. Neural

Netw. 120, 58–73. doi: 10.1016/j.neunet.2019.08.020

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,

et al. (2018). Large-scale neuromorphic spiking array processors: a quest to

mimic the brain. Front. Neurosci. 12:891. doi: 10.3389/fnins.2018.00891

Turk, M. (2014). Multimodal interaction: a review. Pattern Recogn. Lett. 36,

189–195. doi: 10.1016/j.patrec.2013.07.003

Yasen, M., and Jusoh, S. (2019). A systematic review on hand gesture

recognition techniques, challenges and applications. PeerJ Comput. Sci. 5:e218.

doi: 10.7717/peerj-cs.218

Zahra, O., and Navarro-Alarcon, D. (2019). “A self-organizing network with

varying density structure for characterizing sensorimotor transformations in

robotic systems,” in Towards Autonomous Robotic Systems, eds K. Althoefer,

J. Konstantinova, and K. Zhang (Cham: Springer International Publishing),

167–178. doi: 10.1007/978-3-030-25332-5_15

Zenke, F., and Ganguli, S. (2018). SuperSpike: supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.

doi: 10.1162/neco_a_01086

Zhang, Y., Wang, Z., and Du, J. (2019). “Deep fusion: an attention guided

factorized bilinear pooling for audio-video emotion recognition,” in 2019

International Joint Conference on Neural Networks (IJCNN) (Budapest), 1–8.

doi: 10.1109/IJCNN.2019.8851942

Zhao, D., and Zeng, Y. (2019). “Dynamic fusion of convolutional features

based on spatial and temporal attention for visual tracking,” in 2019

International Joint Conference on Neural Networks (IJCNN) (Budapest), 1–8.

doi: 10.1109/IJCNN.2019.8852301

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ceolini, Frenkel, Shrestha, Taverni, Khacef, Payvand and Donati.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 August 2020 | Volume 14 | Article 637163

https://doi.org/10.4015/S1016237205000287
https://doi.org/10.1109/ISSCC.2006.1696265
https://doi.org/10.1016/j.ergon.2017.02.004
https://doi.org/10.1088/1741-2560/11/4/046001
https://doi.org/10.1088/1741-2560/12/6/066022
https://doi.org/10.1109/IEDM.2015.7409627
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/ACSSC.2017.8335699
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TBME.2016.2604856
https://doi.org/10.3390/s18051615
https://doi.org/10.1109/HUMANOIDS.2012.6651535
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/MSP.2013.2296173
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/JPROC.2010.2057231
https://doi.org/10.1162/1064546053278973
https://doi.org/10.1109/TNSRE.2010.2100828
https://doi.org/10.1016/j.neunet.2019.08.020
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1016/j.patrec.2013.07.003
https://doi.org/10.7717/peerj-cs.218
https://doi.org/10.1007/978-3-030-25332-5_15
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1109/IJCNN.2019.8851942
https://doi.org/10.1109/IJCNN.2019.8852301
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 12 August 2020

doi: 10.3389/fnins.2020.00772

Frontiers in Neuroscience | www.frontiersin.org 1 August 2020 | Volume 14 | Article 772

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Shaista Hussain,

Institute of High Performance

Computing (A*STAR), Singapore

Peng Li,

University of California, Santa Barbara,

United States

Tariq Tashan,

Al-Mustansiriya University, Iraq

*Correspondence:

Parami Wijesinghe

pwijesin@purdue.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 09 December 2019

Accepted: 30 June 2020

Published: 12 August 2020

Citation:

Wijesinghe P, Liyanagedera C and

Roy K (2020) Biologically Plausible

Class Discrimination Based Recurrent

Neural Network Training for Motor

Pattern Generation.

Front. Neurosci. 14:772.

doi: 10.3389/fnins.2020.00772

Biologically Plausible Class
Discrimination Based Recurrent
Neural Network Training for Motor
Pattern Generation
Parami Wijesinghe*†, Chamika Liyanagedera † and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Biological brain stores massive amount of information. Inspired by features of the

biological memory, we propose an algorithm to efficiently store different classes

of spatio-temporal information in a Recurrent Neural Network (RNN). A given

spatio-temporal input triggers a neuron firing pattern, known as an attractor, and it

conveys information about the class to which the input belongs. These attractors are the

basic elements of the memory in our RNN. Preparing a set of good attractors is the key to

efficiently storing temporal information in an RNN.We achieve this bymeans of enhancing

the “separation” and “approximation” properties associated with the attractors, during

the RNN training. We furthermore elaborate how these attractors can trigger an action via

the readout in the RNN, similar to the sensory motor action processing in the cerebellum

cortex. We show how different voice commands by different speakers trigger hand

drawn impressions of the spoken words, by means of our separation and approximation

based learning. The method further recognizes the gender of the speaker. The method is

evaluated on the TI-46 speech data corpus, and we have achieved 98.6% classification

accuracy on the TI-46 digit corpus.

Keywords: echo state networks, separation property, approximation property, class discrimination, motor

pattern generation

1. INTRODUCTION

The biological brain continues to be one of the most astounding enigmas of nature. Unearthing
the brain’s mysteries for inspiration is prevalent in recent artificial neuron modeling efforts. For
instance, spiking neural networks have gained attention over the years due to their information
representation with biological neurons (Davies et al., 2018; Wijesinghe et al., 2018). Owing to
spike based inter-neuron communication, the brain has evolved to achieve its signal-processing
capabilities, at a power consumption which is orders of magnitude smaller than the state-of-
the-art super computers (Cruz-Albrecht et al., 2012). Similar to the spike based communication,
the “memory” is another important aspect that makes the biological brain fascinating. Memory
is the information stored inside the brain by tuning synaptic weights through supervised and
unsupervised learning transpired over a duration of time (Reber, 2010). A human brain can
typically store information worth∼ 2.5 petabytes, which is equivalent to the amount of data telecast
through a television over 300 years (Nabavi et al., 2014). Other recent studies have shown that it
could potentially be even 10-folds higher than what it was estimated, due to the discovery of 26

164

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00772
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00772&domain=pdf&date_stamp=2020-08-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pwijesin@purdue.edu
https://doi.org/10.3389/fnins.2020.00772
https://www.frontiersin.org/articles/10.3389/fnins.2020.00772/full
http://loop.frontiersin.org/people/687987/overview
http://loop.frontiersin.org/people/962910/overview
http://loop.frontiersin.org/people/502975/overview

Wijesinghe et al. Class Discrimination

distinguishable synaptic strengths (Bartol et al., 2015). In contrast
to digital memories, the content inside the brain is not byte-
addressable (Forsythe et al., 2014). Instead, the content operates
within a dynamic dictionary that constantly shifts to make room
for new meaning (Forsythe et al., 2014).

The memory of the biological brain is fundamentally
associative. As hypothesized and based on experiments
conducted on monkeys (Suzuki, 2007), the hippocampus is
important for the early formation of the new associations in
memory. A new piece of information can be absorbed well if
it can be associated to an existing knowledge that is already
anchored in the memory. For example, if one wants to learn
a new word called rubeus in Latin, which means “red,” he/she
can potentially think about the “r” sound at the beginning of
both the words. Here the word “red” is in the existing memory
and sound “r” is the association to the new word. The person
can now easily remember that rubeus means red. Finding an
association to an existing content is not merely sufficient to
properly remember new data. For instance, consider the same
previous word rubeus. The person who just remembered the
association of the “r” sound will only be able to answer the
question “which color is rubeus in Latin?,” but not “what is ‘red’
in Latin?.” If one does not remember the actual word, the answer
to question “which color is ravus in Latin?” would again be “red”
since the person merely remembers some association with the
sound “r.” The answer is incorrect since ravus means gray. In a
more complicated situation, assume one should remember the
word rot which is red in German along with rubeus. Now the
person should consider ways of distinguishing the two words
despite the fact that they have the same meaning “red,” in order
to properly digest them simultaneously.

In this work, we consider the above phenomenon related to
memory and construct an algorithm to help store significant
amounts of data in a neural network. The brain is capable
of remembering both static (example an image) and temporal
(example a song) information. We will be focusing on the latter
form of data learning for a recurrent neural network. One
hypothesis for the way the brain stores temporal information
is by means of attractors (Laje and Buonomano, 2013). This
hypothesis is built upon the functionality of the cerebellum: a part
of the biological brain that plays an important role inmaintaining
correct timing of motor actions. The role of cerebellum in
sensory-motor actions is explained by means of experiments
conducted on cerebellar patients (Jacobson et al., 2008). Such
patients have increased temporal variability between motor
actions, such as inaccurate timing of ball release when throwing a
ball (Timmann et al., 2001) or variability shown during rhythmic
tapping (Ivry et al., 1988). Cerebellum is also known for using
associative learning to pair external stimuli with motor timing
tasks (Paton and Buonomano, 2018). The classical eyeblink
conditioning experiment shows how associative learning is
used to program the cerebellum to react to a conditional
stimulus such as a tone with an eyeblink reflex (Medina and
Mauk, 2000; Johansson et al., 2016). This experiment is a
perfect demonstration of the cerebellum’s capacity for temporally
specific learning. There are many standing theories as to how
the cerebellum generates these temporal patterns and one such

theory is the aforementioned attractor hypothesis (Laje and
Buonomano, 2013). In this work we implement a biologically
plausible reservoir computing (Wang and Li, 2016; Tanaka et al.,
2019) network that uses this attractor hypothesis to emulate the
temporal pattern generation capabilities of the cerebellum.

The temporal inputs that belong to a particular class trigger
a certain internal neuron firing pattern. These patterns can be
thought of as a representation of the existing knowledge in the
memory corresponding to the temporal input. Let us call these
anchored knowledge (or the internal dynamics of the network)
as class attractors. The validity of the “attractor” hypothesis
for large amounts of data and classes is yet to be analyzed.
For instance, the work in Laje and Buonomano (2013) shows
motor pattern generation application for voice commands but
the number of inputs and classes are limited. As the number
of different pattern classes increases, the corresponding class
attractors are more likely to stay close to each other leading
to more misclassifications. For example, one might mishear the
word “bold” as “bald.” Here we propose a mechanism to enhance
the deviation between the attractor dynamics by extracting key
differences between input pattern classes.

In order to recognize whether a projection of a particular
input is a better representation (in the context of a classification
task), certain properties must be considered. Two such properties
are “separation” and “approximation.” These are analogous to
the phenomenon described previously on associativity in the
biological memory. In a classification problem, projections of
inputs corresponding to two different classes must stay apart
from each other (separation). The projections that belong to
the same class must stay close to each other (approximation).
For instance, an utterance of the word “one” by male speakers
should converge to one attractor (approximation). When this
particular attractor is triggered, brain recognizes it as the word
“one.” If the same word spoken by females also triggers the same
attractor, then the brain will not be able to recognize whether the
speaker is female or male, despite the fact that it could recognize
the spoken word. Therefore, in a scenario where the gender of
the speaker must be identified, the attractor triggered by the
male speakers and female speakers for the same word should be
different (separation). Closer the attractors are, harder it would
be to recognize the gender of the speaker. Our proposed learning
approach (for a recurrent neural network) takes into account
these properties, and improves class discrimination for better
accuracy in a sensory motor task. i.e., we convert utterances
of words (sensory data) into handwritten impressions (motor
action) using reservoir computing. The network furthermore
recognizes the gender of the speaker, and generates an impression
of letter “f” (for female) or letter “m” (for male).

In the context of temporal information processing, one can
find numerous studies investigating the speech recognition
problem using strictly feed forward networks such as
Convolutional Neural Networks (Swietojanski et al., 2014;
Palaz et al., 2015), Deep Neural Networks (Hinton et al., 2012),
Hidden Markov Models (Tran and Wagner, 1999), and Spiking
Neural Networks (Liu et al., 2019; Zhang and Li, 2019). Recently,
biologically inspired training methodologies (Neftci et al., 2016)
and reservoir computing solutions such as Liquid State Machines

Frontiers in Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 772165

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

(Wang et al., 2015; Jin and Li, 2017) or Echo State Networks
(ESN) (Skowronski and Harris, 2007; Laje and Buonomano,
2013) are been investigated extensively as an effort to bridge the
gap between biological plausibility and practicality. Similarly,
the work presented here are more geared toward replicating
the activity of the cerebellum in generating complex motor
patterns. We employ an ESN configured as a bio plausible
practical implementation on how the cerebellum performs
complex motor timing tasks. Like the cerebellum, the proposed
network reacts to a temporal input and generates a timed motor
response using a single reservoir network. A strictly feed forward
network would be sufficient for the task if the objective was to
simply classify the audio inputs into classes. However, in order
to generate pre-determined timed responses such as motor tasks,
a feed forward network would require additional timers and
memory elements to store the sequences of movements to be
performed.

An ESN is a simple form of a recurrent neural network
with a pool of randomly interlinked leaky integrate analog
neurons called the reservoir (Jaeger, 2007). The time varying
inputs are connected to the reservoir by means of synapses of
random weights. The reservoir neuron dynamics are directed
toward a set of output neurons by means of a readout. These
readout connections are trained using supervised methods.
Some architectures use feedback connections from the output
neurons to the reservoir neurons. However, in this work
we do not use such feedback connections. In addition to
training the readout connections, we also tune the input-
reservoir connections and the recurrent connections within the
reservoir itself.

The training mechanism consists of three major steps.
1. Separation based input-reservoir connection training, 2.
Approximation based innate dynamic training of the reservoir
connections, and 3. Readout connection training for motor
pattern generation. During the first step, we obtain a set of
well-separated innate dynamics per class (class attractors). Then
in the second step, we converge all the reservoir dynamics of
inputs in a given class, to its corresponding class attractor. Finally
we convert the reservoir dynamics to a set of time varying
coordinates to generate an impression of the spoken word, by
means of the readout layer. We employ the entire TI46-digit and
alphabet corpuses for our experiments. Following are the key
contributions of this work.

1. Explaining the need of a set of well-separated attractors when
dealing with bigger data sets.

2. Proposing a training algorithm to initially separate the
attractors, and then make the reservoir dynamics for input
instances, converge to their corresponding class attractor
(discrimination based training).

3. Using two full data sets, validate how the accuracy improved
with the separation based training.

4. Show the ability to generate motor patterns based on other
attributes of the inputs. Apart from drawing the spoken
character, the trained ESN can now recognize the gender of
the speaker and generate a motor pattern corresponding to
that simultaneously.

5. Use the network on an image based application to show the
generality of the discrimination based training method.

2. MATERIALS AND METHODS

2.1. Echo State Networks—The Network
Structure
In this section, the structure of the recurrent neural network
involved in this work will be explained. For spatio-temporal data
processing, we used an echo state network, a simple form of
a recurrent neural network architecture (when compared with
Long Short Term Memory networks or LSTMs; Hochreiter and
Schmidhuber, 1997). An ESN (Jaeger, 2007) consists of a pool
of neurons recurrently interlinked, called the reservoir, and a
readout layer. Inputs are applied on the reservoir neurons by
means of input-to-reservoir connections. Owing to the recurrent
connections within the reservoir, a temporally varying input
signal applied on the network at time t = 0, could potentially
leave the neurons firing (an “echo” of the input) even after the
input has been detached (hence the name echo state network).
Such “echoes” or residuals of the inputs can be measured through
the output layer in order to perform a particular task. The output
connections are typically trained using supervised methods such
as delta rule, backpropagation (Rumelhart et al., 1988) and
recursive least square algorithm (RLS) (Haykin, 1991). Some
architectures (Tanaka et al., 2019) also have a set of feedback
connections from the output to the reservoir (Figure 1). There
have been multiple opinions on whether the brain acts as a
feedback system, and according to studies (Byrne and Dafny,
1997), the brain is mostly a feedforward system. Feedforward
systems are fast and require certain knowledge about the outcome
that correspond to a given input (similar to a lookup table). On
the other hand, systems with feedbacks continuously monitor the
output in order to modify the internal dynamics to achieve a
certain target output. Such systems are sluggish than feedforward
systems. Therefore, with the goal to achieve faster training, we
did not use the feedback connections in our structure.

2.1.1. Reservoir Neurons
The neurons within the reservoir are leaky integrate neurons
(Jaeger, 2007). The dynamics of the neurons are analog in fashion
and can be given by the following equation.

− τuni
dx(t)

dt
= −αlx(t)+Wresr(t)+Winu(t) (1)

r(t) = tanh
(

x(t)
)

where x(t) is the state of the neuron, r(t) is the firing rate of
the neuron (output of the neurons, which is simply a non-linear
function of the neuron’s state),Wres ∈ R

nres×nres is the connection
matrix inside the reservoir, andWin ∈ R

ni×nres is the connection
matrix from the inputs [u(t)] to the reservoir. τuni is the uniform
time constant, and αl is the leak coefficient. The output of the
network is taken from the readout as follows.

y(t) = Woutr(t) (2)

Frontiers in Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 772166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 1 | The structure of an echo state network. A pool of randomly interlinked neurons known as the reservoir is the major component of an ESN. The neurons

are analog leaky integrate neurons. Time varying inputs are connected to the reservoir and the reservoir neuron dynamics are decoded at the end of the readout.

Some ESN architectures have feedback connections from the output to the input.

TABLE 1 | The hyper-parameters and their values used in this work.

Parameter name Value

Sensory phase 300 ms

Motor phase 300 ms

Uniform time constant 0.04 ms

Leak constant 0.8

Time step 1 ms

Input channels 39

Output dimensions 2

Spectral radius scaling factor 1.4

Inverse learning rate (separation) 500

Inverse learning rate (approximation) 100

where Wout ∈ R
nres×nout is the connection matrix from reservoir

neurons to the outputs. The constant parameter values were
selected as proposed in literature (Laje and Buonomano, 2013)
and certain parameter were swept till the highest accuracy
was achieved for a given number of neurons. The values are
illustrated in Table 1. For solving the differential equations, we
used standardHeun’s method (Süli andMayers, 2003) with a time
step (dt) of 1 ms.

2.1.2. Network Connections
In a conventional echo state network, the reservoir and input-
to-reservoir connections are randomly generated and only the
final readout weights are trained. However, all the connections
in the network in this work are trained using RLS learning
rule. In a reservoir with randomly initialized weights (i.e., when
no learning is involved to tune the connections), it is a good
practice to have sparsity within the network in order to get
better projections of the inputs. For example, multiple sparsely
connected small reservoirs can give better class discrimination
(hence better accuracy) for spatio-temporal data classification
tasks using reservoir computing (Wijesinghe et al., 2019). This
is due to the fact that different combinations from the same set
of inputs were fed to the readout by means of an ensemble of
reservoirs. However, in this work, since we are training all the
network connections, we left the percentage connectivity equal

to 100%. This gives more number of hyper parameters to change
and finding the optimum set of weights is much faster using
the RLS method (Sussillo and Abbott, 2009). Before training,
the input-reservoir connections and within reservoir recurrent
connections were randomly initialized using a normal Gaussian
distribution. The reservoir connections were scaled by a factor in
such a way that the spectral radius of the connection matrix is
rs = 1.5 (Laje and Buonomano, 2013).

2.2. Application
We perform a sensory motor application where the sensory
input data are utterances of words, and the outputs are hand
drawn impressions related to the spoken word and the speaker.
For example, if the input voice command is an utterance of
“six” by a female speaker, the output motor action would be
to draw digit 6, and a letter “f.” The inputs words are either
utterances of digits or letters in the alphabet. In order to show
the generality of our training method, we further included a third
application that does not involve voice as an input command.
In this application, the input is a hand drawn image, and
the output is a time sequence that can be used to draw the
corresponding digit. It further generates a letter “i” or “n” as
another output at the same time, depending upon the face of the
drawn digit (“i” for italic, “n” for normal character face). Refer to
the Supplementary Materials for further details and results on
this application.

2.2.1. Inputs
The first step is converting the input commands to a proper
format to be processed by the network. For the input voice
commands, the audio samples available in wave format were
preprocessed based on Lyon’s Passive Ear model (Lyon, 1982)
of the human cochlea, using Slaney’s MATLAB auditory toolbox
(Slaney, 1998). The model was used to convert each audio sample
to temporal variation in the amplitude of 39 frequency channels.
The 39 signals were then down sampled (×4) in the temporal axis
and applied as the input to the reservoir. The time during which
the input data is applied on the network is the “sensory phase.”

The two temporal (speech) data sets used in this work are:

Frontiers in Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 772167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

1. Digit sub-vocabulary of the TI46 speech corpus (Liberman
et al., 1993) (TI-10)

2. TI 26-word “alphabet set”; a sub-vocabulary in the TI46 speech
corpus (Liberman et al., 1993) (TI-alpha).

TI-10 consists of utterances of the words “zero” through “nine”
(10 classes) by 16 speakers. There are 1, 594 instances in the
training data set and 2, 542 instances in the testing data set. TI-
alpha, on the other hand, has utterances of the words “A” through
“Z” (26 classes). There are 4, 142 and 6, 628 instances in the
training and testing data sets, respectively.

2.2.2. Outputs
At the end of the sensory phase, the residual dynamics in the
reservoir are converted to time varying signals at the output by
means of a readout layer. The readout layer gives two sets of
time varying x and y coordinates of hand drawn impressions
(Figure 2). For the applications where the input is a set of voice
commands, one such x and y coordinate set recognizes the gender
of the speaker and draw either “f” (if female) or “m” (if male)
accordingly. The other coordinates set generates the hand drawn
impression of the uttered digit or letter. The duration within
which these impressions are drawn is the “motor phase.” The
motor phase begins just after the sensory phase.

The network presented in this work is different from other
networks that are used for traditional identification problems.
The output of our network does not specifically say what class
the input belongs to. The network responds to a spatio-temporal
input with a spatio-temporal output based on prior knowledge,

and the observer performs the classification task when they are

reading the output. If an input that does not belong to any of
the trained classes is presented to the network, the network can
produce some temporal pattern that is not recognizable by any
observer. Hence this is an open-set problem because the output
can take infinitely different forms.

3. RESULTS

3.1. Training Methodology
The temporal inputs applied during the sensory phase trigger the
neurons to fire in a certain way during the motor phase. The
goal is to activate the same neuron firing pattern when inputs
in a particular class are fed. i.e., there must be a specific firing
pattern per class as shown in Figure 3. These reservoir neuron

firing patterns are called the “class attractors.” The key idea of
the training methodology is to create a good set of class attractors
by means of changing the input-reservoir and reservoir-reservoir
connections, and changing the reservoir-readout connections to
draw the corresponding impression. Following subsections will
explain how the weights are systematically changed to craft these
attractors. The entire training process has three major steps as
explained below.

3.1.1. Step 1 : Separation Based Input-Reservoir

Connection Training
The first step is creating a set of proper attractors which are
triggered by input instances that belong to different classes. In
order to assign an initial value to the class attractors, a set of
inputs that represent each class (or class-template inputs) in the
data set is required. We categorize the instances in the data set
by both the spoken word and the gender of the speaker. For
example, the TI-10 data set contains utterances of words by 8
male speakers and 8 female speakers, and each speaker utters the
same word multiple times. Here the word “six” spoken by female
speakers is considered as one class (notified as Class6,f), and the
word “six” spoken bymale speakers is considered as another class
(notified as Class6,m). This class assignment is done since the
readout layer recognizes both the spoken word and the gender
of the speaker. Therefore, the total number of classes assigned
for the TI-10 dataset is 20 (10 digits ×2 genders). Similarly, the
total number of classes assigned for the TI-alpha dataset is 52 (26
alphabet letters× 2 genders).

A set of class-template inputs are created by taking the mean
value of all the instances in each class. For example, assume there
are f frequency channels, nT number of time steps in the sensory
phase, and nf number of female speakers speaking the word “six”
i times each. This gives nf × i number of 2 dimensional (f × nT)
examples in Class6,f . The average 2 dimensional input among
these nf × i examples is evaluated and assigned as the input
template of the particular class.

The generated class-template inputs are then applied on the
reservoir to obtain the “innate dynamics” (“innate dynamics”
are the firing rate dynamics of the neurons in the reservoir,
for an applied input, under zero initial conditions and in the
absence of noise) that can be considered as the initial assignment
for class attractors. The work in Goudar and Buonomano
(2018) uses these innate dynamics as the final class attractors

FIGURE 2 | The inputs and outputs of the recurrent network. The network dynamics are divided in to two phases. Sensory phase during which the input is applied,

and the motor phase during which two motor patterns are generated.

Frontiers in Neuroscience | www.frontiersin.org 5 August 2020 | Volume 14 | Article 772168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 3 | Innate training: the instances that belong to one class should converge to a pre-assigned attractor.

(without any modifications), and the reason behind using the
dynamics inherently generated by the reservoir as the attractors
is not evident.

The difference among the innate dynamics indicate how
separated the class attractors are. If two class attractors are close
to each other, it is more likely that some input instances that
belong to one class can trigger an attractor that corresponds to
the other class, instead of converging to the correct class attractor.
This will lead to erroneous classification, or improper motor
pattern generation at the readout layer. When the number of
classes and examples are higher, the possibility of two attractors
staying close to each other in the multi-dimensional space is
higher. Hence there is a need for separating the class attractors.

In order to separate the class attractors, a quantitative
measure of separation is required. Multiple measures for
separation (a measure of “kernel quality”) in reservoirs are
available in literature. Two such key ways of quantifying
separation are known as pairwiseseparationproperty and
linearseparationproperty (Maass et al., 2005; Legenstein and
Maass, 2007; Wang et al., 2015). The pairwise separation
property is defined as the distance between two continuous
time states of a reservoir [xu(t) and xv(t)], resultant from two
separate inputs u(t) and v(t). The distance can be calculated by
the Euclidean norm between xu(tn) and xv(tn) at sample point tn.
The average across all the sampled instances (∀tn) can be used to
evaluate the final pairwise separation property, as explained in
the following equation

SPPW =
1

Nsamples

Nsamples
∑

n = 1(0<tn<T)

||xu(tn)− xv(tn)|| (3)

where Nsamples is the number of sample points. The pairwise
separation property (SPPW) can be used as a measure of the

separation property for two given inputs. However, most real-
life applications deal with more than two input spike trains.
To address this, linear separation property is proposed as a
more suitable quantitative measure to evaluate the reservoir
computational power (Maass et al., 2005; Legenstein and Maass,
2007; Wang et al., 2015). The linear separation property (SPlin) is
the rank of the N ×mmatrixMS, which contains the continuous
time states [xu1 (t0), ..., xum (t0)] of the reservoir as its columns.
The continuous time state xui (t0) is the reservoir response to
the input ui (from the training set), at time t = t0. If the rank
of the matrix is m, it guarantees that any given assignment of
target outputs yi ∈ R

Nout at time t0 can be attained by means
of a linear readout (Maass et al., 2005). The rank of MS is the
degree of freedom the linear readout has, when mapping xui to
yi. Even though the rank is < m, it can still be used as a measure
of reservoir quality(Maass et al., 2005).

MS = [xu1 (to), ..., xui (to), ..., xum (to)] (4)

SPlin = rank(MS)

However, it is noteworthy that when the number of reservoir
neurons is much larger than the number of inputs that is required
to be separated (N ≫ m), the rank of the matrix MS is most
likely equal to m (SPlin = m). Furthermore, SPlin is a discrete
function and two reservoirs having the same SPlin does not
necessarily mean that their separation capability is identical. It
is also noteworthy that the reservoir responses tom inputs can be
further separated, even though the SPlin has reached its highest
possible valuem.

In our work, it is required to increase the separation between
the attractors. The number of attractors is equal to the number of
classes, which is larger than two (SPW is not applicable) andmuch
smaller than the reservoir neurons (SPlin is not applicable). The

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 772169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

need for a quantitativemeasure of separation, that is a continuous
function of the ESN weights arise. Therefore, we use insights
from linear discriminant analysis (LDA) (Fisher, 1936; Fukunaga
and Mantock, 1983; Hourdakis and Trahanias, 2013) to quantify
the separation between the class attractors. The between class
scatter matrix in the following equation contains information
on how far each data point is located from the global mean,
in the high dimensional space (Fukunaga and Mantock, 1983;
Wijesinghe et al., 2019). Each data point is a vector that contains
all the elements in an attractor matrix.

Sb =

L
∑

i = 1

P(ωi)(µi − µg)(µi − µg)
T (5)

In the equation, µi is the sample mean vector (centroid) of class
ωi, P(ωi) is the probability of class ωi, L is the number of classes,
and µg is the global sample mean vector. The single measure that
quantifies the separation is given by the trace of the above matrix
(Wijesinghe et al., 2019).

SP = trace(Sb) (6)

Higher SP suggests better separation among the attractors. In
the first step of the training process, we change the input-
reservoir connections, such that the SP is increased. We use a
modified version of the inverse of RLS for this purpose. The
standard RLS learning rule, implemented according to the first-
order reduced and controlled error (FORCE) algorithm can be
used as follows to obtain a target dynamic in the reservoir
(Sussillo and Abbott, 2009)

w(t) = w(t − 1t)− P(t)xin(t)e(t) (7)

w(t − 1t) ∈ R
ni×nres is the input-reservoir connection matrix

before the weight update, xin(t) ∈ R
ni is the input dynamics at

time t. Each weight update is done in 1t time steps and it can be
larger or equal to the simulation time step. The rule is similar to
the delta rule but with multiple learning rates given by the matrix

P(=
(

xin(t)x
T
in(t) + αI

)−1
,α is a constant), which is a running

estimate of the inverse of the correlation matrix of xin(t) (Sussillo
and Abbott, 2009). e(t) ∈ R

ny is the error between the target
f (t) and the actual reservoir dynamics at time t. ni, nres, and ny
are the number of input frequency channels, number of reservoir
neurons and number of readout neurons, respectively.

e(t) = wT(t − 1t)xin(t)− f (t) (8)

The learning rule makes the dynamics of the reservoir to reach a
target function f (t). However, the goal is to increase the distance
between a set of attractors and to that effect, we modify the
learning rule as follows. First we pick an input template of a
particular class i, and apply it on the reservoir. The resultant
reservoir dynamics of class i are then compared with previously
evaluated attractors of class j (j = 1, 2,, L; j 6= i) to evaluate the
difference [ei,j(t)] between them. Ideally we expect this difference

to be large to obtain a set of well separated attractors. Considering
this, the weight update rule can be modified as follows.

w(t) = w(t − 1t)+ γP(t)xin(t)
(−→
1 ⊘ ei,j(t)

)

(9)

where
(−→
1 ⊘ ei,j(t)

)

gives the element-wise inverse of the
error vector, and γ is a scaling factor. The input-reservoir
weight update method extracts subtle differences in the
input templates and exaggerates them, so that the differences
are well-portrayed in the attractors. Figures 4A,B show
how the attractors of Class1,f and Class2,f in the TI-10
dataset vary with time, before and after the weight update,
respectively. Note that the separation between the two classes has
visibly improved.

The main goal of the above elaborated first step (where we
train the input-reservoir connections), is getting a set of well
separated attractors to converge to. The attractors are directly
dependent upon the applied inputs. If the input-reservoir weights
were left randomly initialized and untrained, the contribution
from the inputs will be random. Inputs from different classes
can have different features. For instance, a female utterance of
“one” can have more high frequency components than a male
utterance of “one.” We need to enhance the contribution from
these distinguishing features in the input, to the reservoir. If
this step is done collectively with the reservoir weights, we will
have more hyper parameters to optimize. Therefore, during
collective weight training, the changes in input-reservoir weights
will be miniscule (in order to achieve the same separation
between attractors given by only training the input-reservoir
weights). For instance, when only input weights were used to
train during the first step, 51% of the weight changes (1w)
were > ±0.01. In contrast, when the input-reservoir and
reservoir-reservoir connections were trained collectively, only
0.25% of the input weight changes were > ±0.01. By training the
input-reservoir weights separately, we get the best contribution
from the input toward the reservoir and the optimum usage
of input-reservoir weights which otherwise will be left almost
untrained. Furthermore, collectively training the input -
reservoir and reservoir-reservoir connections is computationally
demanding. For instance, obtaining the attractors with
collective weight training took 43× more time, than the
input-reservoir weight training, for approximately the same
separation amounts.

3.1.2. Step 2 : Approximation Based Reservoir

Connection Training
After generating a well separated set of class attractors, the
next step is converging all the instances in each class to their
corresponding attractor. Figure 5A shows how the reservoir
dynamics change for different instances in the same class. It
is evident from the figure that all the instances in a class do
not necessarily converge to the class attractor (shown in black
dashed lines). To make them close to each other, here we train
the reservoir-reservoir connections by means of the RLS rule
implemented according to the FORCE algorithm (Sussillo and
Abbott, 2009). The synaptic weight update is carried out as

Frontiers in Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 772170

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 4 | The neuron attractor dynamics of 16 randomly picked neurons for two input voice utterance classes, viz. Class1,f and Class2,f . (A) The dynamics before

separation enhancement training (B) The dynamics after separation enhancement training. Note that the separation between the class attractors have

significantly improved.

FIGURE 5 | The neuron firing rate dynamics of 16 randomly picked neurons for multiple input voice utterances of “one.” (A) The dynamics before innate training (B)

The dynamics after innate training. The black dashed line shows the innate dynamics of the same neurons for the class “one”.

shown below.

wres(t) = wres(t − 1t)− P(t)r(t)e(t), (10)

where wres ∈ R
nres×nres is the connection matrix within the

reservoir, r(t) gives the reservoir neuron firing rate at time t, e(t)
gives the error between the actual reservoir dynamics and the
corresponding attractor dynamic. P(t) is anN×Nmatrix updated
along with the weights as follows

P(t) = P(t − 1t)−
P(t − 1t)r(t)rT(t)P(t − 1t)

1+ rT(t)P(t − 1t)r(t)
(11)

The initial value of P(t) is selected as P(0) = I/α, where 1/α is the
learning rate. As shown in Figure 5B, the reservoir dynamics are
close to the class attractor after the training step. In this second
step, we have achieved proper approximation.

3.1.3. Step 3 : Readout Training for Motor Pattern

Generation
In the previous two steps, we obtained a set of well separated
attractors, and made all the instances of each class to converge
to their corresponding class attractor. From these class attractors,
now the readout layer generates two motor patterns that
depict the gender of the speaker and the spoken word itself.

Frontiers in Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 772171

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

Closer the reservoir dynamics are to their class attractors,
easier it is for the readout layer to clearly generate the
motor pattern.

The target motor patterns are given in terms of temporally
varying x and y coordinates. Hence there are two outputs (x and
y) in the readout as shown in Figure 6. The figure shows how the
x and y coordinates vary with time for a hand drawn impression
of digit 6. All the spoken words (10 digits and 26 alphabet letters)
were hand drawn in such a way that no lifting in the hand is
required while drawing. The sequential coordinates of the images
were extracted with the assistance of MATLAB ginput() function.
The obtained x − y coordinates were then resampled to generate
equally distant points. Same RLS rule is used for training the
readout weights wout :

wout(t) = wout(t − 1t)− P(t)r(t)e(t) (12)

where r(t) is the reservoir dynamics and e(t) gives the error
between the expected coordinates and the actual coordinates
at the output. Weight updates for the gender recognition
is independently carried out from that of the spoken word
recognition. Figure 7 shows expected and actual (red)
impressions drawn for the TI-10 motor pattern generation
task. Figure 8 shows expected and actual (red) impression
drawn for the TI-alpha motor pattern generation task. The
color of the motor pattern explains the time evolution
of the coordinates at the readout. Figure 9 shows the
corresponding reservoir dynamics of 10 randomly selected
neurons during the sensory and motor phases for the TI-10
data set. Refer to the Supplementary Video to view the RNN
drawing digits.

3.2. Separation vs. Accuracy
Wemeasure the error by means of the average squared difference
between the actual and the expected output (at the readout) per
input instance in the testing data set. The error d is given by

d =
1

Nex

Nex
∑

i = 1

√

√

√

√

√

Npoints
∑

j = 1

(

xti,j − xai,j
)2

+
(

yti,j − yai,j
)2

(13)

where Nex is the number of examples in the test data set, Npoints

is the number of sample points in the output motor pattern, xti,j
is the target x coordinate and xai,j is the actual x coordinate at the

output of the jth point in the ith example. Similarly, yti,j and yai,j
are target and actual y coordinates at the output, respectively.
In the TI-10 digit drawing task, we noticed an average error of
0.0151, on the entire test data set. This is a ∼ 37% reduction in
average error with respect to a system without the class attractor
separation step. We further evaluated the recognition accuracy of
the ESN by means of an additional neural network.

The final output in our work is a motor pattern. To identify
how well the digits were drawn, (i.e., can a human recognize
the drawn character?), we used a Convolutional Neural Network
(CNN). The CNNwas pretrained to recognize hand drawn digits.
The particular CNN used in the work has two convolutional
layers followed by subsampling. Each convolutional kernel is of
size 5×5 and there are 6 and 12 feature maps at the output of first
and second convolutional layers respectively (28×28−6c5−2s−
12c5−2s−10o; Palm, 2012). The training set for the CNN consists
of the MNIST training data set (TTrain

MNIST), and the 10 target hand
drawn digits involved in this work (TTARGET). Finally, the trained

FIGURE 6 | The preprocessing steps for the outputs. The hand drawn digits and alphabet letters are converted to x, y coordinates and arranged sequentially. Two x

and y coordinate signals are generated to draw the corresponding character.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 772172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 7 | Different motor patterns generated by the ESN for randomly picked 100 input utterances from the TI-10 test data set. (A) The spoken digit in the input

instance. (B) The gender of the speaker with “f” for female and “m” for male. Color code shows the time evolution of the signal and shown in red is the expected

motor pattern.

FIGURE 8 | Different motor patterns generated by the ESN for randomly picked 100 input utterances from the TI-alpha test data set. (A) The spoken alphabet letter in

the input instance. (B) The gender of the speaker with “f” for female and “m” for male. Color code shows the time evolution of the signal and shown in red is the

expected motor pattern.

CNN was fed with the output motor patterns generated by the
ESN (TMOTOR) to observe how “recognizable” they are by a
CNN. For generating the TTARGET and TMOTOR, we converted
the x, y coordinates of the temporal sequences into a 28 × 28
image to match the configuration of the instances in TTrain

MNIST .
The CNN network was capable of classifying the 10 training
images (TTARGET) with 100% accuracy and MNIST testing data
set with 98.9% accuracy. The accuracy on TMOTOR was 98.6%.
This accuracy is approximately similar to that reported in Goudar
and Buonomano (2018) (also used a CNN for classification).
However, it is noteworthy that there are few key differences in
the setup involved in Goudar and Buonomano (2018). Table 2
summarizes these changes along with the performances.

As tabulated in Table 2, the work proposed in Goudar and
Buonomano (2018) uses a network with 4, 000 neurons, and
shows an accuracy of 98.7% on 410 examples across five speakers.
Therefore, we have achieved similar accuracy to Goudar and
Buonomano (2018) with a network of half the size as Goudar and
Buonomano (2018), and on ∼ 4× larger number of examples
(we used all the 1, 594 instances from the TI-10 testing data set),
owing to the discrimination based training approach.

To further validate the effect of class attractor separation on
accuracy, we used the TI-alpha data set which has more number
of classes and examples. We observed an error of 0.0596 in the
spoken word generation task and an error of 0.0413 in the letter
generation task related to the gender of the speaker. Without the

Frontiers in Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 772173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 9 | (A) The hand drawn ESN outputs for 20 randomly selected input voice signals from TI-10 testing dataset. Color elaborates the time evolution of the

drawn impression. (B) Time evolution of reservoir neuron states for randomly picked 10 neurons (out of 400) corresponding to each output in (A).

TABLE 2 | The comparison with reference work.

Network type Discrimination

based training?

RNN type Number of

reservoir

neurons

Number of

novel testing

examples

Number of

speakers

Accuracy on 10

hand drawn

digits (%)

Ability to classify

speaker gender

Goudar and

Buonomano (2018)

No ESN 4, 000 410 5 98.7 No

This work Yes ESN 2, 000 1, 594 16 98.6 Yes

FIGURE 10 | (A) The variation of the error with the amount of separation applied on the attractors. The separation increases with the scaling factor as shown in (B).

The results are for the TI-alpha, spoken word recognition application.

separation step, we noticed an error increment of 29% in spoken
word generation task.

In order to observe the effect on the error at different amounts
of separations, we changed the scaling factor γ in the first step
of the learning process (Equation 9). Higher γ will increase the

separation between the attractors. Figures 10A,B shows how
the error changes with the amount of separation. As the figure
illustrates, high separation leads to lower error. However, if the
separation is too high, then the error increases. We conjecture
that this is due to the inability to converge instances in a class

Frontiers in Neuroscience | www.frontiersin.org 11 August 2020 | Volume 14 | Article 772174

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

to its corresponding attractor, due to the high separation.
With high separation, the network enhances subtle changes
in the input to an extent that the approximation step could
no longer converge the inputs to their corresponding class
attractor. This phenomenon is clearly explained in prior work
(Wijesinghe et al., 2019), showing that the increased separation
along with insufficient improvement in approximation
property leads to reduced classification accuracy in
reservoir computing.

Obtaining this optimum point (that gives the highest
accuracy) before expensive training is beneficial. Multiple
methods of identifying the optimum point based on separation
and approximation for reservoir computing are available in
literature (Wang et al., 2015;Wijesinghe et al., 2019). As proposed
inWang et al. (2015), the metric for optimum performance point
can be obtained by the following equation

D =

√
RS − RG

RS
(14)

Where RS is a metric for separation and RG is a metric for
generalization. RS is the rank of the N × m matrix MS, which
contains the continuous time states [xu1 (t0), ..., xum (t0)] of the
reservoir as its columns (explained in section 3.1.1). Same
aforementioned rank concept is used for measuring RG, but
now on a different matrix Ma. Ma consists of reservoir states
xuij (t0) as its columns, which are measured by feeding jittered
versions of ui (uij) to the reservoir. Unlike RS, lower rank of
Ma (= RG) suggests better generalization. The RS metric for
our work is the rank of the matrix that contains the attractors
sampled at t = t0, as its columns. Given that the attractors
are equal to the number of classes, we need to find the rank
of a 2000 × 20 matrix (for the voice based digit drawing
application). As explained in section 3.1.1, the metric RS is most
likely equal to the number of classes (i.e., 20), since N ≫ m.
Therefore, RS is simply a constant and may not contain any
useful information. Hence the metric D may not be applicable
for our work. However, the Discriminant ratio (DR) proposed
in Wijesinghe et al. (2019) is much general and applicable in
finding the optimum point. The metric can be elaborated in the
following equations.

DR = tr(Sb)tr(Sw)
−1 (15)

Sw =

L
∑

i = 1

P(ωi)6̂i (16)

where P(ωi) is the probability of class ωi, 6̂i is the sample
covariance matrix (Park and Park, 2018) for class ωi. tr(Sb) is
explained in Equations (5) and (6), as separation property (SP).
As shown in Wijesinghe et al. (2019), the point at which this
DR is a maximum, is the optimum accuracy point. As shown in
Figure 10A, for the digit drawing problem, the highest accuracy
point lies at scaling factor ≈ 3.7. Obtaining this point before
the reservoir-output weight training can be done by using the
aforementioned DR metric.

3.3. Convergence and Stability of the
Network
In this section we are exploring the convergence of the training
method and the stability of the trained system. The RLS learning
method involved in this work was specifically proposed for
recurrent neural networks with chaotic activity (such as the
network used in this work). The other algorithms designed for
RNNs are computationally demanding and do not converge
under chaotic activity (Rumelhart et al., 1986; Abarbanel et al.,
2008; Sussillo and Abbott, 2009). The factors that can potentially
affect the convergence are the learning rate and the number of
parameters available for optimization. With more parameters
for optimization, we can attain more convergence (Wijesinghe
et al., 2017). However, as explained in Bengio (2012), when the
number of hyper parameters of a network is high, it becomes
less general i.e., the network can predict the data in its training
set with high accuracy, but it will likely fail to perform correctly
for previously unseen inputs. Mechanisms have been proposed in
literature to avoid such over-training situations including early
stopping of training (Doan and Liong, 2004), adding stochastic
noise (An, 1996) etc. These methods are still applicable to the
training method proposed in this work as well.

As shown in Equation (9), we are using a particular scaling
factor during training. This scaling factor could potentially be
viewed as the learning rate of the system. In general, high learning
rates may hinder the convergence to a required solution. In fact,
the output can oscillate between high accuracy and low accuracy
states between epochs (Attoh-Okine, 1999). Smaller learning
rates on the other hand would take more number of epochs to
achieve convergence, and possibly reach a local minimum point
rather than the global minimum. In this work, we have shown
the effect on the scaling factor to the accuracy in Figure 10A.
We have used the same number of epochs for the experiment.
Therefore, the magnitude of the learning rate decides how
much separation we apply between the attractors. High scaling
factors lead to higher amounts of oscillations in attractors, while
trying to reach higher separation. Figure 11 shows the attractors
corresponding to digit 1 and digit 2 before (Figure 11A) and
after (Figure 11B) training. The training was conducted with a
high scaling factor (20). Note that the amount of oscillations
has increased now to accommodate the separation between the
attractors. Even though a good separation was achieved with
the high separation rate, it is now difficult to converge different
instances available in the same class to the same attractor (due to
the highly detailed nature of the attractors).

We further analyzed the outcome of the trained system by
means of principal components. Since the output is in high
dimensional space, it is difficult to visualize the converged output.
We concatenated temporal information of all the neurons in to a
single vector per instance, and obtained the projection of them
in to the two dimensional space with respect to the first two
principal components. Figure 12A shows the data instances of
two classes (digit 1 and digit 2) before training, and it is evident
that the instances are not well separated and approximated. After
training, the data instances are well separated and approximated
as illustrated in Figure 12B. Note that even the male and female
instances of each class are very well-separated.

Frontiers in Neuroscience | www.frontiersin.org 12 August 2020 | Volume 14 | Article 772175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 11 | The Attractor dynamics corresponding to digit 1 and digit 2, in 16 randomly picked neurons, (A) before training (B) after training with a high scaling

factor. Notice the increased amount of oscillations leading to much detailed attractors after training with high separation.

FIGURE 12 | (A) Instances of class digit 1 and digit 2 (female) projected in to the 2D principal component space, before training. (B) Instances of class digit 1(male,

female) and digit 2 (male, female) projected in to the 2D principal component space, after training.

We further elaborate the effect of training by means of
the Eigen-value spectrum of the reservoir weight matrix. As
explained in Rajan and Abbott (2006), the eigen values of the
weight matrix of a network provides insights on stability of
the network. We noticed that the eigen values of the trained
weights are more compressed on the right hand side, when
compared with the uniformly distributed initial eigenvalue
spectrum (Figure 13). This elaborates increased stability of the
network after the training (Rajan and Abbott, 2006).

4. CONCLUSION

Biological brain; a mystery yet to be solved, is not just a system
that can be perceived as a simple cognitive machine. It has the

capability to go beyond perception based inference, and is capable
of interacting with multiple tasks. Cognitive and motor functions
are interlinked in the brain (Leisman et al., 2016). Taking that
as an inspiration, this work concatenates multiple tasks into a
single network, creating a system that goes beyond perception.
The learning algorithm furthermore tries to mimic the properties
of the brain that allows massive amount of information to
be stored. To enable efficient learning (memorizing), biological
brain creates new connections among the existing memory
structures. For an incoming input, the brain not only can
observe how close it is to an existing memory anchor, but
can also detect how different it is from another anchor. The
learning rule explained in this work emulates such mechanisms
of the brain to store information efficiently utilizing association
(approximation) and dissociation (separation) between the data.

Frontiers in Neuroscience | www.frontiersin.org 13 August 2020 | Volume 14 | Article 772176

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

FIGURE 13 | The Eigen value spectrum of the reservoir weight before (red)

and after training the network.

Our technique allowed to store twice the number of classes,
with a reservoir of half the size (number of neurons), to achieve
the same accuracy reported in Goudar and Buonomano (2018),
on the entire TI-10 data set [which has ∼ 4 times the amount of
data than Goudar and Buonomano (2018)]. We further verified
the accurate performance on an even bigger data set (TI-alpha)
with 52 classes and 6, 628 training examples (in contrast to 20
classes and 2, 542 training examples).

Biological brain does not store everything in one learning
process. Over time it learns new meaning, forgets unwanted
information, and gets reshaped by experience. In contrast, our
proposed algorithm assumes that all the data are available
at the time of training. i.e., it does not learn one instance
completely and move to the rest of the data. However, the
algorithm can potentially be extended to learn things over time.
It will be analogous to increasing the number of attractors

over time, rather than starting with a predefined number of
attractors. It is as if a baby learns mothers voice first (which
is an attractor), and then over time the baby learns different
speakers (more class attractors). The class attractors must be
adjusted over time using separation, in order to make room
for new data and create the dynamic dictionaries the biological
brains have.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

PW and CL performed the simulations. All the authors
contributed in developing the concepts, generating experiments,
and writing the manuscript.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, by the Semiconductor Research Corporation, the
National Science Foundation, Intel Corporation, the DoD
Vannevar Bush Fellowship, and by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement
Number W911NF-16-3-0001.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00772/full#supplementary-material

REFERENCES

Abarbanel, H. D., Creveling, D. R., and Jeanne, J. M. (2008). Estimation of

parameters in nonlinear systems using balanced synchronization. Phys. Rev. E

77:016208. doi: 10.1103/PhysRevE.77.016208

An, G. (1996). The effects of adding noise during backpropagation

training on a generalization performance. Neural Comput. 8, 643–674.

doi: 10.1162/neco.1996.8.3.643

Attoh-Okine, N. O. (1999). Analysis of learning rate and momentum

term in backpropagation neural network algorithm trained to

predict pavement performance. Adv. Eng. Softw. 30, 291–302.

doi: 10.1016/S0965-9978(98)00071-4

Bartol, T. M. Jr, Bromer, C., Kinney, J., Chirillo, M. A., Bourne, J. N., Harris, K.

M., et al. (2015). Nanoconnectomic upper bound on the variability of synaptic

plasticity. Elife 4:e10778. doi: 10.7554/eLife.10778

Bengio, Y. (2012). “Practical recommendations for gradient- based training

of deep architectures,” in Neural Networks: Tricks of the Trade, eds G.

Montavon, G. B. Orr, and K.-R. Müller (Berlin; Heidelberg: Springer), 437–478.

doi: 10.1007/978-3-642-35289-8_26

Byrne, J., and Dafny, N. (1997). Neuroscience Online: An Electronic Textbook for

the Neurosciences. Department of Neurobiology and Anatomy; The University

of Texas Medical School at Houston.

Cruz-Albrecht, J. M., Yung, M. W., and Srinivasa, N. (2012). Energy-efficient

neuron, synapse and STDP integrated circuits. IEEE Trans. Biomed. Circuits

Syst. 6, 246–256. doi: 10.1109/TBCAS.2011.2174152

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Doan, C. D., and Liong, S. (2004). “Generalization for multilayer neural network

Bayesian regularization or early stopping,” in Proceedings of Asia Pacific

Association of Hydrology andWater Resources 2nd Conference (Singapore), 5–8.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic

problems. Ann. Eugen. 7, 179–188. doi: 10.1111/j.1469-1809.1936.tb0

2137.x

Forsythe, C., Liao, H., Trumbo, M. C. S., and Cardona-Rivera, R. E. (2014).

Cognitive Neuroscience of Human Systems: Work and Everyday Life. Boca

Raton, FL: CRC Press. doi: 10.1201/b17445

Fukunaga, K., and Mantock, J. M. (1983). Nonparametric discriminant

analysis. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5, 671–678.

doi: 10.1109/TPAMI.1983.4767461

Goudar, V., and Buonomano, D. V. (2018). Encoding sensory and motor patterns

as time-invariant trajectories in recurrent neural networks. Elife 7:e31134.

doi: 10.7554/eLife.31134

Haykin, S. (1991). Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2020 | Volume 14 | Article 772177

https://www.frontiersin.org/articles/10.3389/fnins.2020.00772/full#supplementary-material
https://doi.org/10.1103/PhysRevE.77.016208
https://doi.org/10.1162/neco.1996.8.3.643
https://doi.org/10.1016/S0965-9978(98)00071-4
https://doi.org/10.7554/eLife.10778
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1109/TBCAS.2011.2174152
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1201/b17445
https://doi.org/10.1109/TPAMI.1983.4767461
https://doi.org/10.7554/eLife.31134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Class Discrimination

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., et al.

(2012). Deep neural networks for acoustic modeling in speech recognition:

the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97.

doi: 10.1109/MSP.2012.2205597

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hourdakis, E., and Trahanias, P. (2013). Use of the separation property

to derive liquid state machines with enhanced classification performance.

Neurocomputing 107, 40–48. doi: 10.1016/j.neucom.2012.07.032

Ivry, R. B., Keele, S., and Diener, H. (1988). Dissociation of the lateral and medial

cerebellum in movement timing and movement execution. Exp. Brain Res. 73,

167–180. doi: 10.1007/BF00279670

Jacobson, G. A., Rokni, D., and Yarom, Y. (2008). A model of the olivo-cerebellar

system as a temporal pattern generator. Trends Neurosci. 31, 617–625.

doi: 10.1016/j.tins.2008.09.005

Jaeger, H. (2007). Echo state network. Scholarpedia 2:2330.

doi: 10.4249/scholarpedia.2330

Jin, Y., and Li, P. (2017). Performance and robustness of bio-inspired digital

liquid state machines: a case study of speech recognition. Neurocomputing 226,

145–160. doi: 10.1016/j.neucom.2016.11.045

Johansson, F., Hesslow, G., and Medina, J. F. (2016). Mechanisms for

motor timing in the cerebellar cortex. Curr. Opin. Behav. Sci. 8, 53–59.

doi: 10.1016/j.cobeha.2016.01.013

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns

by taming chaos in recurrent neural networks. Nat. Neurosci. 16:925.

doi: 10.1038/nn.3405

Legenstein, R., and Maass, W. (2007). Edge of chaos and prediction of

computational performance for neural circuit models. Neural Netw. 20,

323–334. doi: 10.1016/j.neunet.2007.04.017

Leisman, G., Moustafa, A. A., and Shafir, T. (2016). Thinking, walking, talking:

integratory motor and cognitive brain function. Front. Public Health 4:94.

doi: 10.3389/fpubh.2016.00094

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al.

(1993). “Ti 46-word,” in Linguistic Data Consortium (Philadelphia, PA: Texas

Instruments, Inc.).

Liu, Y., Yenamachintala, S. S., and Li, P. (2019). Energy-efficient fpga spiking

neural accelerators with supervised and unsupervised spike-timing-dependent-

plasticity.ACM J. Emerg. Technol. Comput. Syst. 15, 1–19. doi: 10.1145/3313866

Lyon, R. (1982). “A computational model of filtering, detection, and

compression in the cochlea,” in Acoustics, Speech, and Signal Processing,

IEEE International Conference on ICASSP’82, Vol. 7 (Paris), 1282–1285.

doi: 10.1109/ICASSP.1982.1171644

Maass, W., Legenstein, R. A., and Bertschinger, N. (2005). “Methods for estimating

the computational power and generalization capability of neural microcircuits,”

in Advances in Neural Information Processing Systems (Vancouver, BC),

865–872.

Medina, J. F., and Mauk, M. D. (2000). Computer simulation of cerebellar

information processing. Nat. Neurosci. 3, 1205–1211. doi: 10.1038/81486

Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., and Malinow,

R. (2014). Engineering a memory with LTD and LTP. Nature 511:348.

doi: 10.1038/nature13294

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G.

(2016). Stochastic synapses enable efficient brain-inspired learning machines.

Front. Neurosci. 10:241. doi: 10.3389/fnins.2016.00241

Palaz, D., Collobert, R., et al. (2015). Analysis of CNN-Based Speech Recognition

System Using Raw Speech as Input. Technical report, Idiap.

Palm, R. B. (2012). Prediction as a Candidate for Learning Deep Hierarchical Models

of Data. Technical University of Denmark.

Park, K. I., and Park (2018). Fundamentals of Probability and Stochastic

Processes With Applications to Communications. Cham: Springer.

doi: 10.1007/978-3-319-68075-0

Paton, J. J., and Buonomano, D. V. (2018). The neural basis of timing:

distributed mechanisms for diverse functions. Neuron 98, 687–705.

doi: 10.1016/j.neuron.2018.03.045

Rajan, K., and Abbott, L. F. (2006). Eigenvalue spectra of random

matrices for neural networks. Phys. Rev. Lett. 97:188104.

doi: 10.1103/PhysRevLett.97.188104

Reber, P. (2010). Ask the brains. Sci. Am. Mind 20:70.

doi: 10.1038/scientificamericanmind0409-70

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning

representations by back-propagating errors. Cogn. Model. 5:1.

Skowronski, M. D., and Harris, J. G. (2007). Automatic speech recognition

using a predictive echo state network classifier. Neural Netw. 20, 414–423.

doi: 10.1016/j.neunet.2007.04.006

Slaney, M. (1998). Auditory Toolbox. Technical Report, Interval Research

Corporation.

Süli, E., and Mayers, D. F. (2003). An Introduction to Numerical

Analysis. Cambridge, UK: Cambridge University Press.

doi: 10.1017/CBO9780511801181

Sussillo, D., and Abbott, L. F. (2009). Generating coherent patterns

of activity from chaotic neural networks. Neuron 63, 544–557.

doi: 10.1016/j.neuron.2009.07.018

Suzuki, W. A. (2007). Making new memories: the role of the hippocampus

in new associative learning. Ann. N. Y. Acad. Sci. 1097, 1–11.

doi: 10.1196/annals.1379.007

Swietojanski, P., Ghoshal, A., and Renals, S. (2014). Convolutional neural networks

for distant speech recognition. IEEE Signal Process. Lett. 21, 1120–1124.

doi: 10.1109/LSP.2014.2325781

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., et al.

(2019). Recent advances in physical reservoir computing: a review. Neural

Netw. 115, 100–123. doi: 10.1016/j.neunet.2019.03.005

Timmann, D., Citron, R., Watts, S., and Hore, J. (2001). Increased

variability in finger position occurs throughout overarm throws made

by cerebellar and unskilled subjects. J. Neurophysiol. 86, 2690–2702.

doi: 10.1152/jn.2001.86.6.2690

Tran, D., and Wagner, M. (1999). “Fuzzy hidden Markov models for speech and

speaker recognition,” in 18th International Conference of the North American

Fuzzy Information Processing Society-NAFIPS (Cat. No. 99TH8397) (New York,

NY: IEEE), 426–430.

Wang, Q., Jin, Y., and Li, P. (2015). “General-purpose LSM learning processor

architecture and theoretically guided design space exploration,” in 2015 IEEE

Biomedical Circuits and Systems Conference (BioCAS) (Atlanta, GA), 1–4.

doi: 10.1109/BioCAS.2015.7348397

Wang, Q., and Li, P. (2016). “D-LSM: Deep liquid state machine with

unsupervised recurrent reservoir tuning,” in 2016 23rd International Conference

on Pattern Recognition (ICPR) (Cancun), 2652–2657. doi: 10.1109/ICPR.2016.

7900035

Wijesinghe, P., Ankit, A., Sengupta, A., and Roy, K. (2018). An all-memristor

deep spiking neural computing system: a step toward realizing the low-

power stochastic brain. IEEE Trans. Emerg. Top. Comput. Intell. 2, 345–358.

doi: 10.1109/TETCI.2018.2829924

Wijesinghe, P., Liyanagedera, C. M., and Roy, K. (2017). “Fast, low power

evaluation of elementary functions using radial basis function networks,”

in Proceedings of the Conference on Design, Automation & Test in

Europe (Lausanne: European Design and Automation Association), 208–213.

doi: 10.23919/DATE.2017.7926984

Wijesinghe, P., Srinivasan, G., Panda, P., and Roy, K. (2019). Analysis

of liquid ensembles for enhancing the performance and accuracy of

liquid state machines. Front. Neurosci. 13:504. doi: 10.3389/fnins.2019.

00504

Zhang, W., and Li, P. (2019). Information-theoretic intrinsic plasticity for online

unsupervised learning in spiking neural networks. Front. Neurosci. 13:31.

doi: 10.3389/fnins.2019.00031

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wijesinghe, Liyanagedera and Roy. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 15 August 2020 | Volume 14 | Article 772178

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.neucom.2012.07.032
https://doi.org/10.1007/BF00279670
https://doi.org/10.1016/j.tins.2008.09.005
https://doi.org/10.4249/scholarpedia.2330
https://doi.org/10.1016/j.neucom.2016.11.045
https://doi.org/10.1016/j.cobeha.2016.01.013
https://doi.org/10.1038/nn.3405
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.3389/fpubh.2016.00094
https://doi.org/10.1145/3313866
https://doi.org/10.1109/ICASSP.1982.1171644
https://doi.org/10.1038/81486
https://doi.org/10.1038/nature13294
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1007/978-3-319-68075-0
https://doi.org/10.1016/j.neuron.2018.03.045
https://doi.org/10.1103/PhysRevLett.97.188104
https://doi.org/10.1038/scientificamericanmind0409-70
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.neunet.2007.04.006
https://doi.org/10.1017/CBO9780511801181
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1196/annals.1379.007
https://doi.org/10.1109/LSP.2014.2325781
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1152/jn.2001.86.6.2690
https://doi.org/10.1109/BioCAS.2015.7348397
https://doi.org/10.1109/ICPR.2016.7900035
https://doi.org/10.1109/TETCI.2018.2829924
https://doi.org/10.23919/DATE.2017.7926984
https://doi.org/10.3389/fnins.2019.00504
https://doi.org/10.3389/fnins.2019.00031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 26 October 2020

doi: 10.3389/fnins.2020.00907

Frontiers in Neuroscience | www.frontiersin.org 1 October 2020 | Volume 14 | Article 907

Edited by:

Chiara Bartolozzi,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Melika Payvand,

ETH Zurich, Switzerland

Guoqi Li,

Tsinghua University, China

Qingjiang Li,

National University of Defense

Technology, China

*Correspondence:

Yansong Chua

james4424@gmail.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 06 November 2019

Accepted: 04 August 2020

Published: 26 October 2020

Citation:

Gopalakrishnan R, Chua Y, Sun P,

Sreejith Kumar AJ and Basu A (2020)

HFNet: A CNN Architecture

Co-designed for Neuromorphic

Hardware With a Crossbar Array of

Synapses. Front. Neurosci. 14:907.

doi: 10.3389/fnins.2020.00907

HFNet: A CNN Architecture
Co-designed for Neuromorphic
Hardware With a Crossbar Array of
Synapses
Roshan Gopalakrishnan 1, Yansong Chua 1*, Pengfei Sun 1, Ashish Jith Sreejith Kumar 1,2

and Arindam Basu 2

1 Institute for Infocomm Research, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore, 2 School

of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore

The hardware-software co-optimization of neural network architectures is a field of

research that emerged with the advent of commercial neuromorphic chips, such as

the IBM TrueNorth and Intel Loihi. Development of simulation and automated mapping

software tools in tandem with the design of neuromorphic hardware, whilst taking

into consideration the hardware constraints, will play an increasingly significant role

in deployment of system-level applications. This paper illustrates the importance and

benefits of co-design of convolutional neural networks (CNN) that are to be mapped

onto neuromorphic hardware with a crossbar array of synapses. Toward this end, we

first study which convolution techniques are more hardware friendly and propose different

mapping techniques for different convolutions. We show that, for a seven-layered CNN,

our proposed mapping technique can reduce the number of cores used by 4.9–13.8

times for crossbar sizes ranging from 128 × 256 to 1,024 × 1,024, and this can be

compared to the toeplitz method of mapping. We next develop an iterative co-design

process for the systematic design of more hardware-friendly CNNs whilst considering

hardware constraints, such as core sizes. A python wrapper, developed for the mapping

process, is also useful for validating hardware design and studies on traffic volume

and energy consumption. Finally, a new neural network dubbed HFNet is proposed

using the above co-design process; it achieves a classification accuracy of 71.3% on

the IMAGENET dataset (comparable to the VGG-16) but uses 11 times less cores for

neuromorphic hardware with core size of 1,024 × 1,024. We also modified the HFNet

to fit onto different core sizes and report on the corresponding classification accuracies.

Various aspects of the paper are patent pending.

Keywords: neuromorphic computing, neuromorphic chip, hardware constraints, deep learning, neural network,

crossbar array, convolution, convolutional neural network

1. INTRODUCTION

Over the past decade, GPUs have emerged as a major hardware resource for deep learning tasks.
However, fields, such as the internet of things (IoT) and edge computing are constantly in need of
more efficient neural-network-specific hardware (Basu et al., 2018; Deng et al., 2018; Alyamkin
et al., 2019; Roy et al., 2019). This encourages competition among companies, such as Intel,

179

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00907
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00907&domain=pdf&date_stamp=2020-10-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:james4424@gmail.com
https://doi.org/10.3389/fnins.2020.00907
https://www.frontiersin.org/articles/10.3389/fnins.2020.00907/full

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

IBM, and others to propose new hardware alternatives, leading
to the emergence of commercially available deep learning
accelerators (Barry et al., 2015; Jouppi et al., 2017) and
neuromorphic chips (Esser et al., 2016; Davies et al., 2018;
Pei et al., 2019). Deep learning accelerators are application
specific integrated circuits (ASICs) tailored for artificial neural
networks (ANN), whereas, neuromorphic chips can fall in two
categories (Bose et al., 2019): (1) ASICs with biologically inspired
spiking neural networks (SNN), which contain networks of
neurons and synapses for computation and communication, or
(2) ASICs with analog computing by exploiting dense non-
volatile memory based crossbars to accelerate matrix-vector
multiplications. Our paper is not concerned with any specific
hardware but any neuromorphic architecture relying on analog
crossbars for matrix-vector multiplications.

A schematic of a generic crossbar-based neuromorphic chip is
shown in Figure 1. The chip has “N” number of neuromorphic
cores. Network on chip (NoC) or router interfaces are not shown
for illustration purposes. Each neuromorphic core contains a
crossbar array of synapses as shown in the first inset of the figure.
The rows and columns of the crossbar correspond to input axons
and output neurons, respectively. These axons and neurons are
interconnected to each other and represented in the form of
blue dots at these intersections. Within each intersection of the
crossbar between the word line and the bit line is a synaptic device
that has memory and can perform in-memory computation
(as shown in the second inset). The crossbar structure is well-
suited for performing matrix-vector multiplication (MVM) (Hu
et al., 2016) along each column in a crossbar architecture. For
instance, a neuromorphic core with a core size of 256 × 256,
input voltages from the respective 256 axons are fed through
each word line (red horizontal lines). The bit line (yellow vertical
lines) collects all of the weighted current at each synaptic node
(256 × 256) and delivers to the respective output neurons for
integration. The neuromorphic core size refers to the number of
axons (axon size, AS)× the number of neurons (neuron size, NS)
in a single neuromorphic core. The weighted current depends
on the memory element at each intersection of the word line
and bit line. In analog devices, using Kirchoff’s current law, the
total current flowing into each neuron from the respective bit
lines is the sum of currents flowing through each intersection
in every column. This corresponds well with how inputs in a
neural network is the weighted sum of input voltages (

∑

(Input×
Weight)). Considering such a neuromorphic chip, there are
several hardware constraints: firstly, at the single device, we may
have low bit precision of synaptic weights and output activations
(Ji et al., 2018; Deng et al., 2020), synaptic noise and variability
(Ambrogio et al., 2014a,b). Secondly, in the chip architecture, we
have a limited number of neuromorphic cores and a limitation
in the core size of each neuromorphic core and the fan-in/fan-
out degree of each neuron (Ji et al., 2018; Gopalakrishnan et al.,
2019b).

The neuromorphic chip considered in this paper is based
on a crossbar architecture (Prezioso et al., 2015) of non-
volatile memory synapses. Crossbar architecture fits well for
fully connected neural networks, such as the multi-layered
perceptron (MLP). Given that one of the popularly used layers

in SNNs are fully connected ones (Diehl and Cook, 2015),
crossbar architectures are a natural fit. However, with recent
advancement in research related to conversion of ANNs to
SNNs (Rueckauer et al., 2016) and training of convolutional
SNNs (Wu et al., 2019), one of the main challenges is to
efficiently map the neurons in a CNN onto the neuromorphic
chip while fulfilling hardware constraints, such as core size,
number of cores and fan-in/fan-out (Ji et al., 2016). Given
existing CNNs and neuromorphic hardwares, how can we best
map the CNN onto the hardware using the least number of
cores? This requires understanding of the computation at each
crossbar array and how best to map each convolutional layer
onto the core. We may then ask what convolution layers are
best suited for mapping onto neuromorphic hardwares. This is
the first major contribution of this paper and these questions
are addressed under section Mapping. Existing neuromorphic
chips have a mapping framework which is hardware specific.
IBM TrueNorth (Akopyan et al., 2015) uses Matlab based Corelet
(Amir et al., 2013) which is specific to their hardware. Within
Corelet, a mapping technique is implemented as a minimization
problem (Akopyan et al., 2015). SpiNNaker and BrainScaleS use
a simulator-independent Python wrapper, PyNN (Andrew et al.,
2009). Sequential mapping is used in SpiNNaker while neural
engineering framework (NEF) is used for Neurogrid (Voelker
et al., 2017). Neutrams (Ji et al., 2016) implements an optimized
mapping technique based on the graph partition problem:
Kernighan-Lin (KL) partitioning strategy for network on chip
(NoC). For mapping CNNs onto neuromorphic hardwares, an
iterative process is implemented using a Python wrapper, which
is also discussed in section 2.3.2.

While developing deep neural networks that are to be mapped
onto a neuromorphic chip, one need not in principle be aware
of the underlying hardware architecture. The mapping above
assumes that the CNNs and hardware constraints are given. We
may however further ask how software and hardware co-design
can give us both CNNs and neuromorphic hardwares that are
mapped using fewer cores while achieving similar classification
accuracies. Specifically, given a neuromophic hardware with
square crossbar array, we would like to design a CNN that
utilizes fewer cores (section Co-design). In this regard, one may
take two approaches, either design the network from scratch
so as to satisfy the hardware constraints (Esser et al., 2016) or
modify an existing CNN, such as reducing the number of features
(feature maps) in each convolution layer without having to
split the convolution matrix among different cores (“core matrix
splitting”) whereby axons and weight matrix of a particular layer
are split onto multiple cores (detailed in subsection 2.2.1). This
is the second major contribution of this paper, and the proposed
novel hardware-friendly CNN, HFNet, is obtained by iteratively
modifying the layers of existing CNNs (VGG, MobileNet, NIN,
and Squeezenet; this is discussed in section 2) and the number
of features (feature maps) in some layers are altered so as to fit
onto cores of different sizes. This is done to avoid core matrix
splitting. Finally, the different versions of HFNet are trained and
their classification accuracies on the IMAGENET dataset (Deng
et al., 2009) tested so as to study the trade-off between accuracies
and core sizes (section 3.2). This work is mainly focused on

Frontiers in Neuroscience | www.frontiersin.org 2 October 2020 | Volume 14 | Article 907180

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 1 | A schematic of a neuromorphic chip with N number of neuromorphic cores. The first inset shows the crossbar array of synapses within each core. A

memory device is used to implement each synapse at the crossbar intersection (as shown in the second inset).

mapping of feedforward deep neural networks (DNN). During
the investigation of mapping techniques, we understood that
designing and mapping of a CNN must be performed in close
relation to each other for better hardware utilization. Hence, as a
beginning, we have limited the design space to just feedforward
networks instead of skipped connections. We have considered
the better-performing feedforward CNN MobileNet as an initial
candidate for mapping and later modified to HFNet based on
mapping and traditional deep learning techniques.

The trained CNNs have full precision weights and activation
values for fair comparison with existing CNNs. Hardware
limitations on synapses, such as low precision weights and
variability issues are not within the scope of our work.

The paper is organized as follows. Section 2 mainly contains
two subsections, one on mapping and another on co-design.
Mapping describes the computation and mapping in a crossbar
array. Co-design is illustrated with the issue of core matrix
splitting and then the motivation and design flow of the proposed
hardware-friendly neural network, HFNet. Section 3 provides an
experimental framework for the two subsections, mapping and
co-design in section 2. The classification accuracy of different
versions of HFNet on the IMAGENET dataset is included
here. The paper is concluded in section 4 with a discussion of
future works.

2. MATERIALS AND METHODS

2.1. Mapping
2.1.1. Computation in a Crossbar Architecture
The crossbar array of synapses in a neuromorphic chip can be
used to perform convolutions. Mathematically, convolution is
the sum of dot product of feature and input matrices (Figure 2).
In CNNs, the input matrix will be the activations from the

prior layer while the filter matrix is the convolution filter
kernel, saved as weights, W after training. Since these weights
can be either positive or negative, one way of implementing
convolution on a crossbar array is to split the weights into
positive and negative matrices along with two copies of input
matrices in positive and negative values. The details of the
matrix generation is shown in Figure 2, which incorporate
the convolution operation in crossbar arrays as described in
(Yakopcic et al., 2016). A single column crossbar gives the
output of an element of the convolution operation, which is
provided to the corresponding neuron. Convolution operation is
extended across multiple columns of synapses to be computed
in parallel. This requires the weights and inputs to be
represented in a toeplitz matrix, as shown in Figure 2 (Yakopcic
et al., 2017), Figure 3 illustrated such an implementation. This
implementation doubles the hardware resources required, which
is also the case in IBM Truenorth (Esser et al., 2016), where
two synapses are required to implement the ternary weights −1,
0, +1. IBM Truenorth also uses toeplitz structure or structured
kernels for mapping (Appuswamy et al., 2016). In order to
mitigate the aforementioned doubling of hardware requirement
in a neuromorphic hardware, one can implement two memory
devices at each synapse to represent both the positive and
negative weights by subtraction. This implementation does not
need two copies of weights; generating a single weight toeplitz
matrix is sufficient.

2.1.2. Mapping on a Crossbar Architecture
Crossbar architecture is efficient for implementing a fully
connected neural network and its mapping is straightforward.
However, mapping a convolution layer in a CNN onto a crossbar
architecture is not and requires further consideration for efficient
mapping. An example of convolution operation in between layers

Frontiers in Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 907181

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 2 | Division of network parameters–weights and input activations into positive and negative matrices. Here, W2, W4, W6, and W8 are negative, whereas the

remaining weights are positive. Note that the text color codes are in correspondence to the color codes used in Figure 3. Adapted from Gopalakrishnan et al. (2019a).

of a CNN is illustrated in Figure 4A. We consider a 4 × 4 input
layer. Convolution of this input layer with two weight filters
of size 2 × 2 and stride of 1 will result in an output layer
of size 3 × 3 × 2. If this same network was considered fully
connected between input layer of 16 neurons and output layer
of 18 neurons, then, for such a network of full connection, a
core size of 16 × 18 is required, which will have 100% synaptic
utilization in the core. The mapping of CNNs onto a crossbar
array will, however, require a layer-wise core size of 4 × 18
in the above example, while the input will have to be fed in
over many time steps, in order to have 100% synaptic utilization
(with duplication of synaptic weights). Hence, CNN mapping
onto crossbar architecture will always lead to some weights not
being used and we want to explore what mapping techniques
can reduce this wastage. Mapping convolution onto a crossbar
architecture can be constructed by any of the methods as shown
in Figure 4. Note the numbering of neurons in each layer along
with the color of each weight for better illustration of the different
methods of mapping.

• Block method: as shown in Figure 4B, one could see that
mapping is done in a straightforward manner without
optimization. Here, the input sequence is repeated in the rows
of a crossbar array; the neurons across the feature maps in a
layer are arranged in the columns of the crossbar array and
the weights are laid down according to the connections of the
input axons and output neurons. This kind of implementation

results in the weight matrices being mapped onto the crossbar
array in blockwise manner, hence the name. Each block
of weight matrix in Figure 4B are repeated from the same
layers with the weight matrix being flattened into a row
with size of kernel width × kernel height × number of

feature maps (2 × 2 × 2) in the layer. Throughout the
crossbar array these weight blocks (2 × 2 × 2) are repeated

diagonally. In this method, one can find that the neurons

across feature maps (N11 and N21 are the first and second
neurons, respectively) are selected for mapping in the crossbar

array and hence early layers of convolution which contain less

feature maps maybe implemented using this method for better

hardware utilization.
• Toeplitz method: the weight matrices are arranged in the

toeplitz matrix or circular matrix format as shown in

Figure 4C. This optimized method of mapping is commonly

used in a neuromophic core with crossbar array of synapses.
Here, the neurons are selected from a single feature map of
a particular layer instead of selecting neurons across feature
maps (note that the neurons are chosen from first channel
of output layer in cyan color). The corresponding axons are
selected from the previous layer and is arranged sequentially
without any repetitions. The weight matrix per column of a
crossbar array is the flattened structure of weight matrix in a
particular layer of a neural network architecture. This weight
matrix per column repeats along each columns in a circular

Frontiers in Neuroscience | www.frontiersin.org 4 October 2020 | Volume 14 | Article 907182

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 3 | Computation in a crossbar architecture within a single neuromorphic core. Follow the color codes representing the partitioning of input and weight

matrices and its corresponding mapping onto the crossbar array. Taken from Gopalakrishnan et al. (2019a).

shift with respect to the strides of convolution in the particular
layer as shown in Figure 4C. This method maps each feature
map of a layer in crossbar arrays rather than mapping neurons
across the feature maps as in block method. The toeplitz
method of mapping is therefore suitable for certain type
of convolutional layers, such as the depthwise convolutional
layer, in which convolutions are separately performed in each
feature map, independent of other feature maps within a layer
(Howard et al., 2017; Gopalakrishnan et al., 2019a) or suitable
for layer wise computations, such as pooling.

• Hybrid method: Considering the two aforementioned
methods, one may combine the block and toeplitz methods
of mapping in two different ways, as shown in Figures 4D,E.
In Figure 4D, we select the neurons within a feature
map (N11, N12, N13, etc. in cyan color from the same
feature map of output layer) and lay down the weights in
the toeplitz matrix manner. This toeplitz method is then
repeated in a blockwise manner throughout the crossbar
array, mapping a set of neurons across the feature maps of
a particular layer in the neural network architecture. This
can be viewed as implementing the toeplitz method in a
blockwise manner. We can also implement block method

in the toeplitz manner as shown in Figure 4E, where the
neurons across a feature map (N11 in cyan and N21 in
magenta as group of neurons from different feature maps
of output layer) are selected for mapping using the block
method, though without any repeated axons, while the entire
block is repeated in a toeplitz manner throughout the crossbar
array, mapping a set of neurons across the feature maps of a
convolutional layer.

2.2. Co-design
2.2.1. Core Matrix Splitting
For the toeplitz and hybrid method of mapping techniques, as
shown in Figure 4, the axons of the neuromorphic core are
arranged sequentially without any repetition as compared to
the block method of mapping. Such sequential input of axons
is possible only with the circular or toeplitz arrangement of
weight filters in a crossbar architecture. In fact, the mapping of
CNN layers onto crossbar architecture involves conversion of
two-dimensional arrays into one-dimensional arrays. The two-
dimensional convolutional operations in a CNN is converted to
a one-dimensional convolutional operation along each columns
of a crossbar architecture. The neurons in the output layer

Frontiers in Neuroscience | www.frontiersin.org 5 October 2020 | Volume 14 | Article 907183

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 4 | Methods of mapping onto a single neuromorphic core: (A) an example of convolution operation between layers for illustrating different mapping

techniques. Input of size 4 × 4 and filter weights of size 2 × 2 × 2 is considered for convolution to obtain an output of size 3 × 3 × 2. (B) Block method, (C) toeplitz

method and hybrid method, (D) toeplitz method in blockwise manner, and (E) block method in toeplitz manner.

is mapped onto the crossbar array with its corresponding
one-dimensional array of input axons in a sequence and
extending the one-dimensional weight matrix along each column
of crossbar by circularly shifting the one-dimensional weight
matrix with respect to corresponding convolutional strides (as
shown in Figure 4C). Two adjacent convolutional operation
shares a portion of input section with respect to the strides.
This shared portion of input while convolution is reflected as
weight connections along the rows of the core. The number
of weight connections along each row implies the fan-out of
that particular axon in the core, whereas the weight connections
along the column implies the fan-in of that particular neuron
in the core. For the toeplitz method of mapping, a section
of any CNN layer with a rectangular dimension of neuronrow
and neuroncol to a crossbar array, the number of axons

to be selected for such a section of CNN layer can be
expressed mathematically:

Naxons = K × K + K × S× (Neuroncol − 1)+ S× S×

(Neuroncol − 1)× (Neuronrow − 1)+

K × S× (Neuronrow − 1)

(1)

where,
Naxons = total number of axons to be selected from layer N-1.
K = convolution filter size. Here, we have only considered
same width and height for kernel filter size.
S= stride
Neuronrow = number of neurons across row to be selected
from layer N.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 907184

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 5 | Core matrix splitting: splitting of weighted sum of inputs into two cores and summing up of intermediate activations in a third neuromorphic core.

Neuroncol = number of neurons across column to be selected
from layer N.
To decide on core size, a major restriction comes from the

below inequality:

Naxons < Axon size,AS (2)

where Axon size and AS the number of physical axons per core.
In general, we would like to minimize AS to have smaller cores,
and we thus need to minimizeNaxons. In this case, the selection of
neurons, Neuronrow and Neuroncol, in a layer becomes primary
step in mapping. To perform the optimization, we further
consider that output size (Osize) is constant, i.e.,

Osize = Neuronrow × Neuroncol = A (3)

where A ∈ R is a constant. The optimization problem can be
now framed as choosing Neuronrow and Neuroncol to minimize
Equation (1) subject to the constraint in Equation (2). Do note
that Equation (1) considers only a single feature map; this can
be easily extended to multiple feature maps by multiplying right
hand side of Equation (1) with the respective number of feature
maps in each layer.

Now, denoting Neuronrow and Neuroncol by x and y,
respectively, for brevity of notation, Equation (1) can be reduced

as follows:

Naxons = K × K + K × S× (Neuroncol − 1)+ S× S×

(Neuroncol − 1)× (Neuronrow − 1)+

K × S× (Neuronrow − 1)

= K × K + K × S× (y− 1)+ S× S× (y− 1)× (x− 1)

+K × S× (x− 1)

= K2
+ KS(x+ y− 2)+ S2(xy− y− x+ 1)

= (K2
− 2KS+ AS2 + S2)+ (x+ y)(KS− S2)

(4)

where we have used xy = A from Equation (3). Since (KS −S2)
> 0, minimizing Equation (4) is equivalent to minimizing (x+y).
We show in the following theorem that (x+y) is minimized
for x= y.

Theorem: For any given a ∈ R, then x = y, for argmin (x+y),
such that x× y = A, x,y ∈ R.

Proof :

Let x+ y = Z

then x+ A
x = Z

dZ
dx

= 1− A
x2

(5)

at minima dZ
dx

= 0,

∴ 1− A
x2

= 0

Frontiers in Neuroscience | www.frontiersin.org 7 October 2020 | Volume 14 | Article 907185

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

x = ±
√
A

If x, y > 0, then Z is minimum ∴ x = y =
√

A

From the theorem and its proof, we can see that for optimized
mapping, a square shaped selection of neurons is always better.
This implies that, for optimized mapping,Neuronrow =Neuroncol
in Equation (1). Hence, substituting Neuronrow = Neuroncol =
“Nneurons” in Equation (1), we get,

Nneurons = (
√

Naxons − K)/S+ 1 (6)

If we consider input channels in Equation (1), then the above
equation becomes

Nneurons = (
√

Naxons/C − K)/S+ 1 (7)

where, C = number of input channels for each layer.
This equation can be used to determine the design

co-mapping of the convolutional neural network onto a
neuromorphic chip with crossbar array of synapses, where the
hardware constraint is given by the axon size and the convolution
layer design is with respect to K, S, and C for each layer. This
suggests that mapping and designing of a CNN must co-exist for
the better utilization of a neuromorphic hardware.

It can also be seen from the optimized mapping that the
time delay of the hardware design is less. The design space
exploration of core size, [axon size (AS)× neuron size (NS)] w.r.t
Naxons,Neuronrow, andNeuroncol becomes [Naxons×(Neuronrow×
Neuroncol)] = [Naxons × N2

neurons]. This implies that the search
space for neuron size is reduced to only square numbers
(N2

neurons) instead of all the factors (Neuronrow × Neuroncol) of
the neurons in a core (NS = 256, 512, etc). The fact that a
unique HFNet is trained for each topology saves on many days
of training.

In the event that the fan-in degree of a single neuron in a layer
exceeds the maximum number of axons in a neuromorphic core
[Naxons > AS in Equation (1) when Neuronrow = 1 and Neuroncol
= 1], mapping of that particular neuron has to be split among
multiple cores, as shown in Figure 5. In general, if the output of
each neuron undergoes a non-linear activation, the final output
would deviate from the intended output:

given, W = (W1,W2),

f (f (
∑

W1A)+ f (
∑

W2A) 6= f (
∑

WA))
(8)

This method of splitting is termed as core matrix splitting
(Figure 5). Additional hardware considerations have to be
made to communicate only intermediate results without the
activation function. Additional cores are also required for
mapping. In order to avoid core matrix splitting, a hardware-
friendly approach is considered by grouping neurons across
feature maps while training in the IBM TrueNorth chip (Esser
et al., 2016). In this work, we adopt a different approach
by modifying existing CNN architectures and training them.
We consider other forms of convolution operations, such as
depthwise and pointwise convolutions [network-in-network (Lin

et al., 2013) and MobileNet (Howard et al., 2017)] while co-
designing the CNN with the core size in mind so as to avoid core
matrix splitting.

2.2.2. Overview of Convolution Layers in a CNN
Standard convolution can be computationally intensive and
also hard to map onto square neuromorphic cores of limited
sizes. To map them, we would have to consider cores of
different shapes. Given these square cores, we considered other
computationally less intensive convolution techniques, namely,
depthwise, pointwise, and group convolution.

2.2.2.1. Depthwise convolution
In depthwise convolution, the convolution operation is
independently applied to each input channel so as to obtain
its corresponding output feature map (Howard et al., 2017).
In general, the number of output channels from a depthwise
convolution is the same as the number of input channels,
although this may be changed by outputting multiple channels
per input channel (depth multiplier parameter). The depthwise
convolution is typically followed by pointwise convolution,
which is discussed in section 2.2.3. For depthwise convolution,
weights from within rather across feature maps are mapped
first. Hence, the toeplitz method is better suited for mapping
depthwise convolutions.

As shown in Figure 6, the input matrix is convolved with
Finmaps different filters, each of size K × K. The output of each
depthwise convolution involving a filter and a single input
channel is O × O × 1, and Finmaps such filters compute an output

of dimensions O × O × Finmaps. The depth multiplier is set to
one here. The computational cost, C, of depthwise convolution
is given below:

C = O2
× K2

× Finmaps × D (9)

where,
O = output size after convolution
K = filter size
Finmaps = number of input channels
D = depth multiplier.

2.2.2.2. Pointwise convolution
Pointwise convolution is a special case of the standard
convolution operation whereby the filter size per channel is 1 ×

1 (Lin et al., 2013). The entire filter therefore has a shape of 1 ×

1 × Finmaps × Foutmaps, where F
in
maps is the number of input channels

and Foutmaps, the number of output channels. Since the filter size
is reduced, the computational complexity is also reduced by an
order of the square of the filter size. Its computational cost, C, is
given below:

C = O2
× Finmaps × Foutmaps (10)

where,
O = output size after convolution
Finmaps = number of input channels

Foutmaps = number of output channels.

Frontiers in Neuroscience | www.frontiersin.org 8 October 2020 | Volume 14 | Article 907186

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 6 | Illustration of depthwise convolution. Note that depth multiplier is set to one here. The filter size is K × K × 1 with F inmaps such filters to obtain an output

size of O × O×F inmaps. Adapted from Gopalakrishnan et al. (2019a).

FIGURE 7 | Illustration of group convolution adapted from Gopalakrishnan

et al. (2019a).

While we can use either the toeplitz or hybrid method of
mapping for pointwise convolution layers depending on the
CNN architecture and the core sizes, the block method in toeplitz
is preferred if AS < NS; otherwise the toeplitz method in block is
preferred (AS > NS).

2.2.2.3. Grouped convolution
Grouped convolution is a convolution technique whereby
the standard convolution is applied separately to an input
matrix diced into equal parts along the channel axis. As
shown in Figure 7, the input is divided into equal parts
along the channel axis, and group convolution is then applied
separately. The individual outputs are then combined into
a final output, with variations, such as stacked convolution,
dependent stacked convolution and shuffled group convolution
(Zhang and Sun, 2018). Computational complexity of grouped
convolution is calculated as per standard convolution. It
is therefore more hardware friendly as each neuron has
a lower fan-in/fan-out degree when mapped. Either the
toeplitz or hybrid method of mapping may be used for
grouped convolutions.

2.2.3. Insights From Different CNNs

2.2.3.1. MobileNet
Depthwise and pointwise convolutions and depthwise separable
convolutions are introduced in MobileNet (Howard et al., 2017).
For pointwise convolution, one may think of it as duplicates of
full connections between inputs and outputs in the same location
channel-wise. This is ideal for efficient mapping onto crossbar
array of synapses with good core utilization. The application of
depthwise and then pointwise convolution (depthwise separable
convolution) has a much lower fan-in degree per neuron
compared to the standard convolution, which helps to avoid core
matrix splitting. As such, depthwise separable convolution is the
preferred method in our co-design of CNN architectures.

2.2.3.2. VGGNet and NIN
VGGNet (Simonyan and Zisserman, 2014) gradually shrinks
the size of feature maps by applying max pooling after two
convolutions in the shallow layers and every three layers
afterwards. Intuitively, this approach improves classification
accuracy, which we also validate as shown in results in section
3. Using fewer feature maps when each map is large effectively
reduces the fan-in degree of the neurons and avoid core
matrix splitting.

2.2.3.3. Other insights
Global average pooling (GAP) as used in Network in network
(NIN) (Lin et al., 2013) or SqueezeNet (Iandola et al., 2016)
helps to reduce fan-in degree of neurons. Instead of using fully
connected layers in the deeper layers of the CNN, which have
high fan-in degree, one may use GAP for a more hardware-
friendly design. Maxpooling is also not hardware friendly. The
toeplitz mapping method is required for maxpooling, resulting
in poor core utilization. We would therefore avoid maxpooling
when co-designing the hardware-friendly CNN. The reduction
in feature map size achieved by maxpooling may also be achieved
by increasing the stride size of prior convolution layer with no
significant loss in accuracy, even if functionally, they are different

Frontiers in Neuroscience | www.frontiersin.org 9 October 2020 | Volume 14 | Article 907187

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 8 | Hardware-friendly CNN in modular form: standard convolution,

depthwise separable convolution, and global average pooling.

(Springenberg et al., 2014). Hence, the above insights (listed
below) help to guide our co-design of the hardware-friendly CNN
(section 2.2):

• Combined usage of standard convolution and depthwise
separable convolutions,

• Excluding pooling between standard convolutions,
• And replacement of fully connected layers with GAP at end

of CNN.

2.2.4. Co-design Methodology

2.2.4.1. Hardware-friendly CNN
We adopt the modular form of the CNN as shown in Figure 8 for
a hardware-friendly architecture. The iterative process of the co-
design is described in Figure 9. We first initiate certain design
parameters, such as “NC” number of convolutional layers and
“NDP” number of depthwise separable convolution layers. Setting
NC and NDP depends on the input size and the stride size of each
convolution, which affects the classification accuracy of the CNN.
The singular GAP layer is added to end of the CNN.

The complete step by step co-design process is shown in the
flowchart (Figure 9):

• After setting the number of layers in each module, we
next decide on the number of feature maps per layer, with
the constraint of avoiding core matrix splitting (Figure 9).
Fimaps_HF (HF denotes hardware friendly) for each layer i

depends on the number of axons in each core (axon size,
AS) and constraining the fan-in degree of a neuron in i (fan-
in ≤ AS) to avoid core matrix splitting. For the standard
convolution layer, the number of feature maps denoted by
Fmaps can be calculated as below:

Fmaps ≤
AS

Kwidth × Kheight
(11)

where,
Kwidth and Kheight are respectively the width and height of
the convolution kernel.
AS = axon size of crossbar array in a neuromorphic core.
Equation (11) is the maximum possible number of feature

maps, Fmaps, when in Equation (1) we set Neuronrow = 1 and
Neuroncol = 1. By so doing, we set the reference number of
featuremaps in i, Fi

maps_ref
to be less than the fan-in (maximum

possible axon connections) degree of a neuron. In such a case,
toeplitz mapping may also be used.

• For pointwise convolution, we need to ensure that Fmaps ≤

axon size. Core matrix splitting is not an issue for depthwise
convolutions with small kernel size. Hence, for depthwise
separable layers, fan-in degree of pointwise convolution is the
key delimiting factor. The co-designed CNN is thenmapped to
obtain number of cores used, and it is then trained and tested
for classification accuracy (section 2.3). If it is not satisfactory,
the process is repeated with different initial parameters, NC

and NDP.

2.3. CNN Training and Mapping
2.3.1. CNN Training
The co-designed CNNs are trained using Tensorpack (Wu, 2016).
We use “Momentum” Optimizer (momentum of 0.9) with batch
size of 48, and weight regularization with decay of 0.0005. We
initialized the weights using “He normal” initializer. The learning
rate is adjusted using a heuristic whereby it is reduced by 10 every
30 epochs. The learning rate was initialized at 0.01 and reduced
three times prior to termination. We trained the network for 100
epochs on the IMAGENET dataset. Accuracy is chosen from the
best testing accuracy across five trials.

2.3.2. CNN Mapping
The calculation for the number of cores is obtained using the
python wrapper, mapping, and debugging (MaD) framework
(Gopalakrishnan et al., 2019b), which also map the CNN onto
cores. The mapping function outputs the weight matrices for
the crossbar array in each core, a connectivity list between cores
and an estimate of total number of cores needed for mapping.
MaD also allows us to carry out inference in Python on the core
level, which is useful for validating the correctness of themapping
done, and also study communication across cores, such as traffic
volume and energy consumption estimation.

The methods and techniques mentioned in this paper is not
restricted to any kind of neural network like ANN or SNN. The
mapping and designing methods are useful for both ANN and
SNN, especially with convolutional layers in their architecture. In
fact, the simulations are all done for ANN models and not SNN.
All the codes used for generating results in this manuscript is
publicly available at https://github.com/roshan-gopalakrishnan/
NeuromorphicComputing.git.

3. EXPERIMENTAL FRAMEWORK AND
RESULTS

This section is also divided into two subsections: mapping and
a proposed CNN, the HFNet. In section 3.1, we benchmark the
different mapping techniques based on cores used. In 3.2, we
propose a hardware-friendly CNN, the HFNet, and report on
(1) the cores required for mapping, (2) classification accuracy
and cores required with and without maxpooling and full
connections, (3) classification accuracy and cores required for
different core sizes, (4) comparison of the MobileNet and HFNet,
and (5) the results when grouped convolution replaces depthwise
separable convolution.

Frontiers in Neuroscience | www.frontiersin.org 10 October 2020 | Volume 14 | Article 907188

https://github.com/roshan-gopalakrishnan/NeuromorphicComputing.git
https://github.com/roshan-gopalakrishnan/NeuromorphicComputing.git
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 9 | Co-design flowchart: step by step methodology for co-design of hardware-friendly CNN.

3.1. Mapping Results
We first study the advantage of using the hybrid method over
the toeplitz method of mapping a CNN for classifying CIFAR-10
(Krizhevsky, 2009) (Figure 10). As mapping of pooling layers is
done with the toeplitz method andmapping fully connected layer
requires core matrix splitting, we consider only the convolutional
layers for illustrative purposes. The CNN is designed in the
following manner: 32 × 32 × 3 (stride 2) – 16 × 16 × 4 – 14
× 14 × 8 – 12 × 12 × 12 – 10 × 10 × 16 – 8 × 8 × 20 – 6 × 6
× 24 – 4 × 4 × 28. All 7 convolutional layers have kernel filter

size 3 × 3 and stride of 1, unless otherwise stated. We consider
four different core sizes for mapping: 128 × 256 (similar to IBM
TrueNorth), 256 × 256 (NC chip-V1), 512 × 512 (NC chip-V2),
and 1,024× 1,024 (NC chip-V3). The benchmarkingmetric is the
number of cores needed to map the CNN. From the bar graph in
Figure 10, it is observed that hybrid method always utilize less
number of cores compared to the toeplitz method and number of
cores required decrease with core sizes, irrespective of mapping
methods. Quantitatively, 13.88, 15, 16.98, and 4.94 times fewer
cores are utilized in the case of hybrid mapping compared to

Frontiers in Neuroscience | www.frontiersin.org 11 October 2020 | Volume 14 | Article 907189

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 10 | Benchmarking of mapping methods. The bar graph shows the number of cores utilized for both hybrid and toeplitz mapping against different core sizes.

We consider only the convolution layers in the CNN.

toeplitz mapping on neuromorphic chip with core sizes 128 ×

256, 256× 256, 512× 512, and 1,024× 1,024, respectively.

3.2. Hardware-Friendly CNN: The HFNet
Using the co-design process as described in section 2.2, we
propose the HFNet. It is a hybrid architecture, based on our
insights (Figure 8), that borrows from the VGGNet, MobileNet,
and NIN so as to improve mapping on neuromorphic cores. As
shown in Figure 8, the shallow layers are standard convolutional
layers (VGGNet), followed by depthwise separable convolutions
(MobileNet), and fully connected layers with large fan-in degrees
are replaced with GAP (NIN).

The detailed input, output size of each layer in the HFNets
for different core sizes are given in Table 1. We have named
different versions of the HFNets for different core sizes (256 ×

256, 512 × 512, and 1,024 × 1,024, respectively) as HFNet-V1,
HFNet-V2, and HFNet-V3. Core size determines the number
of axons (AS) × number of neurons (NS) in a single core. The
second convolution layer in HFNet-V2 (1) has Fmaps = 56,
which is the maximum it can have (Equation 11) to avoid core
matrix splitting. A kernel size of 3 × 3 is used for standard and
depthwise convolution.

3.2.1. Maxpooling and Fully Connected Layers
This experiment investigates the performance of the proposed
architecture with and without maxpooling and fully connected
layers (Table 1). HFNet-V3 with maxpooling replaces all
convolution layers with stride of two with convolution layer with
stride of 1 and an additional maxpooling layer. For HFNet-V3

with full connections, a fully connected layer (1,024 × 1,000)
is added on top of the average pooling layer in HFNet-V3
while changing the last pointwise convolution layer to 7 × 7
× 1,024 instead of 7 × 7 × 1,000. From Table 2, it can be
seen that there is only very slight improvement in classification
accuracies when maxpooling or full connection is used. This
further validates our design criteria for HFNet. The number
of cores required for HFNet-V3 with pooling layer is huge, as
mapping of pooling layers is done using the toeplitz method.
The number of parameters is higher for HFNet-V3 with fully
connected layer. All CNNs considered in this experiment is
illustrated in Supplementary Material.

3.2.2. Number of Cores and Classification Accuracy
Here we study both the number of cores required for mapping
and the classification accuracy (IMAGENET) for the HFNets
(Figure 11) and three other popular CNN architectures, namely
VGGNet (VGG-16), MobileNet, and REMODEL [a modification
of VGG-16 for mapping the final fully connected layers onto
IBM TrueNorth (Shukla et al., 2019)]. We consider two core
sizes: the minimum 128 × 256 and the maximum size 1,024 ×

1,024. Note that VGG-16 and REMODEL require core matrix
splitting for mapping onto a 1,024 × 1,024 core. Mapping of all
CNNs onto 128 × 256 cores requires core matrix splitting. As
expected, the number of cores used by MobileNet and HFNet are
∼10 times fewer compared to VGG-16 and REMODEL. It can
be seen that HFNet-V1 uses the least number of cores among all
models. The table (Figure 11) shows the classification accuracy
of the CNNs on IMAGENET. The HFNet-V3 is as accurate

Frontiers in Neuroscience | www.frontiersin.org 12 October 2020 | Volume 14 | Article 907190

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

TABLE 1 | Neural network architecture (NN archi.) for different core sizes.

NN HFNet model (core size)

archi. HFNet-V1 (256 × 256) HFNet-V2 (512 × 512) HFNet-V3 (1,024 × 1,024)

Layers Input size Output size Input size Output size Input size Output size

Ca 226 × 226 × 3 112 × 112 × 16 226 × 226 × 3 112 × 112 × 32 226 × 226 × 3 112 × 112 × 32

C 114 × 114 × 16 56 × 56 × 28 114 × 114 × 32 56 × 56 × 56 114 × 114 × 32 56 × 56 × 64

C 58 × 58 × 28 28 × 28 × 64 58 × 58 × 56 28 × 28 × 256 58 × 58 × 64 28 × 28 × 256

Db 30 × 30 × 64 28 × 28 × 64 30 × 30 × 256 28 × 28 × 256 30 × 30 × 256 28 × 28 × 256

Pc 28 × 28 × 64 28 × 28 × 256 28 × 28 × 256 28 × 28 × 256 28 × 28 × 256 28 × 28 × 256

D 30 × 30 × 256 14 × 14 × 256 30 × 30 × 256 14 × 14 × 256 30 × 30 × 256 14 × 14 × 256

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 256 14 × 14 × 512

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 512 14 × 14 × 512

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 512 14 × 14 × 512

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 1,024 14 × 14 × 1,024

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024 14 × 14 × 1,024

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 1,024 14 × 14 × 1,024

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024 14 × 14 × 1,024

D 16 × 16 × 256 14 × 14 × 256 16 × 16 × 512 14 × 14 × 512 16 × 16 × 1,024 14 × 14 × 1,024

P 14 × 14 × 256 14 × 14 × 256 14 × 14 × 512 14 × 14 × 512 14 × 14 × 1,024 14 × 14 × 1,024

D 16 × 16 × 256 7 × 7 × 256 16 × 16 × 512 7 × 7 × 512 16 × 16 × 1,024 7 × 7 × 1,024

P 7 × 7 × 256 7 × 7 × 1,000 7 × 7 × 512 7 × 7 × 1,000 7 × 7 × 1,024 7 × 7 × 1,024

D 9 × 9 × 1,000 7 × 7 × 1,000 9 × 9 × 1,000 7 × 7 × 1,000 9 × 9 × 1,024 7 × 7 × 1,024

P 7 × 7 × 1,000 7 × 7 × 1,000 7 × 7 × 1,000 7 × 7 × 1,000 7 × 7 × 1,024 7 × 7 × 1,000

GAPd 7 × 7 × 1,000 1 × 1 × 1,000 7 × 7 × 1,000 1 × 1 × 1,000 7 × 7 × 1,000 1 × 1 × 1,000

aConvolution layer.
bDepthwise convolution layer.
cPointwise convolution layer.
dGlobal average pooling.

TABLE 2 | With and without pooling and fully connected layers.

HFNet-V3 With pooling

layer

With FC∗

layer

Classification accuracy (%) 71.3 71.6 71.5

Number of parameters (M) 6.46 6.46 7.51

Storage for parameters (MB) 24.63 24.63 28.63

Number of cores (1,024 × 1,024) 4,720 10,940 4,721

∗Fully connected.

as VGG-16 while 2.2% more accurate than the MobileNet.
It also utilizes less number of cores than the MobileNet. All
HFNet models considered in this experiment is illustrated in
Supplementary Material.

3.2.3. Augmenting the HFNet
This experiment adds more hardware-friendly layers to HFNet-
V3 to investigate the increase in classification accuracies.
We report the accuracy results for the adding depthwise

separable convolution layer to end of HFNet-V3 (HFNet-V3-
M0), one or two standard convolution layers to front of
HFNet-V3 (HFNet-V3-M1 andHFNet-V3-M3, respectively) and
both these two layers (HFNet-V3-M2). Figure 12 illustrates
these additions. Table 3 shows the corresponding results. As
expected, the additional layers lead to improved accuracies,
with a standard convolution layer having a larger impact than
depthwise separable convolution, while having less total number
of parameters. This further validates the insight from VGGNet:
the retaining of larger feature maps at shallow layers improves
accuracy. It can be seen that adding depthwise separable
convolution layers has a larger increase in number of parameters
compared to standard convolution in shallow layers but has
a smaller increase in number of cores. Adding two standard
convolutions does not lead to better accuracy compared to one
standard and one depthwise separable convolution. Best accuracy
is obtained for HFNet-V3-M2 among all variants of the HFNet.
All CNNs considered are illustrated in Supplementary Material.

3.2.4. Comparison With Modified MobileNets
In this experiment, we compare the HFNets with modified
MobileNets that are more hardware friendly. The MobilNet is
chosen as it also uses the hardware-friendly depthwise separable

Frontiers in Neuroscience | www.frontiersin.org 13 October 2020 | Volume 14 | Article 907191

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

FIGURE 11 | Comparing different CNNs: the bar graph shows the number of cores required for mapping different CNNs. The table shows the classification accuracy

on IMAGENET for the CNNs. Classification accuracy of HFNet-V3 is close to VGG-16 and MobileNet, while requiring a smaller number of cores.

FIGURE 12 | Illustration of adding different convolutions to the baseline model, HFNet-V3: HFNet-V3-M0 has one more depthwise separable convolution.

HFNet-V3-M1 has one more standard convolution. HFNet-V3-M2 has one more standard and one more depthwise separable convolution. HFNet-V3-M3 has two

more standard convolutions.

convolution which also uses less parameters. The modified
MobileNets are HF-MobileNet-V1 and HF-MobileNet-V2, such
that the number of parameters are close to HFNet-V3-M1
and HFNet-V3, respectively. We also compare MobileNet with

modified version of HFNet-V2, HFNet-V2-M0, by increasing
parameters of HFNet-V2 to be close to those of MobileNet.
From Table 4, the performance of HF-MobileNet-V2 (71.4%)
compared to HFNet-V3 (71.3%) is better by only 1% while

Frontiers in Neuroscience | www.frontiersin.org 14 October 2020 | Volume 14 | Article 907192

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

TABLE 3 | Addition of layers to HFNet-V3.

1 DP∗ layer 1 Conv layer 1 DP + 1 Conv layer 2 Conv layer

HFNet-V3-M0 HFNet-V3-M1 HFNet-V3-M2 HFNet-V3-M3

Classification
71.5 72.2 72.7 72.6

accuracy (%)

Number of
7.52 6.64 7.7 6.75

parameters (M)

Storage for
28.68 25.3 29.35 25.73

parameters (MB)

Number of
4855 6960 6948 11664

cores (1,024 × 1,024)

∗Depthwise separable convolution.

TABLE 4 | Comparison of HFNets with hardware-friendly MobileNets.

HFNet- HF- HFNet-V3 HF- HFNet- MobileNet

V3-M1 MobileNet-V1 MobileNet-V2 V2-M0

Classification
72.2 71.9 71.3 71.4 70 69.1

accuracy (%)

Number of
6.64 6.62 6.46 6.42 4.21 4.24

parameters (M)

Storage for
25.3 25.22 24.63 24.46 16.05 16.14

parameters (MB)

Number of
6,960 7,642 4,720 7,529 3,949 6,964

cores (1,024 × 1,024)

MobileNet accuracy is 70.4% in Keras.

MobileNet (69.1%) compared to HFNet-V2-M0 (70%) is worse
by 0.9% and HF-MobileNet-V1 (71.9%) compared to HFNet-
V3-M1 (72.2%) is worse by 0.3%. Here, all the classification
accuracies are trained using Tensorpack and Tensorflow
framework. Note that MobileNet accuracy in Keras is 70.4%,
1.3% higher compared to Tensorpack result, but for a fair
comparison we report accuracy results for CNN’s trained using
Tensorpack. Comparing MobileNets and HFNets with similar
accuracy and parameter size, HFNet-V3 utilizes 2,809 less
cores than MobileNet-V2, HFNet-V2-M0 utilizes 3,015 less
cores than MobileNet and HFNet-V3-M1 utilizes 682 fewer
cores than MobileNet-V1. The results show that the accuracies
are close while there is a big difference in the number of
cores utilized to make HFNet variants more hardware friendly.
HFNets are therefore more neuromorphic hardware friendly
than the hardware-friendly versions of existing deep learning
architectures like MobileNet. The difference in number of
cores for mapping is compared in Supplementary Material

with respect to core utilization in each layer for HFNet-V3
and MobileNet.

3.2.5. Grouped Convolution
Here we replace depthwise separable convolution with grouped
convolution (Esser et al., 2016): HFNet-GC. HFNet-GC is
compared with HFNet-V3-M2, as it is modified from HFNet-
V3-M2 by using approximately the same parameter size
in each layer. To do so, we set the group convolutions
to eight groups in each HFNet-GC layer. From Table 5,

TABLE 5 | Comparison of HFNet with grouped convolutions (GC).

HFNet-V3-M2 HFNet-GC

Classification
72.7 59.8

accuracy (%)

Number of
7.7 6.91

parameters (M)

Storage for
29.35 26.38

parameters (MB)

Number of
6,948 11,424

cores (1,024 × 1,024)

TABLE 6 | Number of cores for different core shapes.

Core shape Number of cores

64 × 4,096 111,642

128 × 2,048 58,098

256 × 1,024 26,424

512 × 512 14,263

1,024 × 256 14,069

2,048 × 128 28,240

4,096 × 64 56,480

classification accuracy for HFNet-GC is around 13% less than
the HFNet-V3-M2, while number of cores required almost
doubled. HFNets with depthwise separable convolutions are

Frontiers in Neuroscience | www.frontiersin.org 15 October 2020 | Volume 14 | Article 907193

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

hence more hardware friendly than HFNets with grouped
convolutions. The architecture of HFNet-GC is illustrated in the
Supplementary Material.

4. DISCUSSION AND CONCLUSION

In our work, we first study what convolutions are more hardware
friendly and how to best map them onto a neuromorphic
hardware. We next identify deep learning techniques to avoid
which result in poor core utilization or even result in core
matrix splitting. We then propose a framework for the design
of more hardware-friendly CNNs, and implement it using a
Python wrapper (MaD). As a result of the above, the HFNet
is proposed. Different versions of the HFNet are also proposed
using the framework, that have better classification accuracy
with more cores used when mapped. The framework thus
allows us to propose different CNNs in a more principled
manner by changing design parameters. We then evaluate it by
comparison with other CNNs in terms of classification accuracy
on IMAGENET, number of parameters, and cores required
for mapping. It is able to achieve very comparable accuracy,
using about the same number of parameters as per other more
hardware-friendly CNNs but with substantially fewer mapped
cores. Here, we have shown results on one of the biggest andmost
popular datasets in visual classification, IMAGENET, our results
are quite generally applicable for visual tasks which is already
covering a very big application space. Second, it has been shown
that networks pre-trained on IMAGENET can be used as feature
extractors for spectrograms for audio analysis (Acharya and Basu,
2020); our method can thus potentially generalize to other types
of datasets as well. We have also proposed an optimized mapping
technique by considering a square shaped selection of neurons.
As shown inTable 6, we further explore how different core shapes
(64 × 4,096, 128 × 2,048, 256 × 1,024, 512 × 512, 1,024 × 256,
2,048 × 128, 4,096 × 64) affect the number of cores used to map
the HFNet-V3. Overall, the trend in cores used agree with the
intuition provided in the proof (section 2.2.1), which is based on
real numbers; while core sizes are based on integers which may
lead to some discrepancy. We further note that cores required is
not symmetric about 512 × 512, with larger input dimensions
using less cores (e.g., 4,096 × 64 against 64 × 4,096). This is due
to avoiding core matrix split while mapping.

The HFNet is a hardware-friendly CNN that is designed using
an iterative process that takes into account how best it can be
mapped on a neuromorphic hardware with crossbar array of
synapses while achieving good accuracy. One hard constraint
while mapping is avoiding core matrix splitting. As shown
in section 3, a typical HFNet requires thousands of cores for
mapping. This is still larger than most neuromorphic chips. For
future work, we will consider how onemaymap theHFNet onto a
neuromorphic chip with limited number of cores.While we try to
optimize synaptic resources and reduce “wastage” by minimizing
unused synapses, it might be possible to reuse these synapses to
provide a degree of fault tolerance in the hardware by providing
redundancy. Current explorations of fault tolerance mostly show
reduction in performance degradation after retraining a neural
network with faults (Lee et al., 2014; Feinberg et al., 2018);

however, there might be scope to optimize the fault tolerance
by providing some extra synapses. We feel this is an important
avenue of future work. We would also consider quantized CNNs,
both weight and activations, in future work, which is beyond
the scope of current work. Other hardware constraints, such as
synaptic noise in novel devices, will be considered in future work.

Considering chip area, it maybe that only one physical neuron
is implemented per core. This neuron is utilized in a time
multiplexed manner to emulate all neurons within the core. If,
however, there is more than one physical neuron per core, one
can speed up computation by pipelining the time multiplexed
neurons. Further speed-up can be achieved if the number of
fan-in neurons per convolution operation is considered while
increasing the physical neurons.

In our current study, we only studied CNNs without skip
connections. Residual networks (He et al., 2016) have skip
connections that increase the fan-in/fan-out degree of neurons.
Not only that, to map them, we would either have to save
intermediate results of skip-connections at routers or in buffers at
the axons. This would be interesting to consider in future work.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

RG and YC designed the manuscript outline and experimental
framework. RG wrote the manuscript, designed and
implemented the MaD python wrapper, and conducted the
experiments. YC edited the manuscript and conducted the
experiments. PS also conducted the experiments. AS contributed
to the implementation of the MaD python wrapper and
contributed to the figures in the manuscript. AB was involved
in the discussion, experiment design, and editing of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This research was supported by Programmatic grant no.
A1687b0033 from the Singapore Governments Research,
Innovation and Enterprise 2020 plan (Advanced Manufacturing
and Engineering domain).

ACKNOWLEDGMENTS

Short versions of this manuscript has been released as a Pre-print
at Gopalakrishnan et al. (2019a,b).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00907/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 16 October 2020 | Volume 14 | Article 907194

https://www.frontiersin.org/articles/10.3389/fnins.2020.00907/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

REFERENCES

Acharya, J., and Basu, A. (2020). Deep neural network for respiratory sound

classification in wearable devices enabled by transfer learning. IEEE Trans.

Biomed. Circuits Syst. 14, 535–544. doi: 10.1109/TBCAS.2020.2981172

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 MW 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Alyamkin, S., Ardi, M., Brighton, A., Berg, A. C., Chen, B., Chen, Y., et al. (2019).

Low-power computer vision: status, challenges, opportunities. IEEE J. Emerg.

Select. Top. Circuits Syst. 9, 411–421. doi: 10.1109/JETCAS.2019.2911899

Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., and Ielmini,

D. (2014a). Statistical fluctuations in HfOx resistive-switching memory:

part I–set/reset variability. IEEE Trans. Electron Devices 61, 2912–2919.

doi: 10.1109/TED.2014.2330200

Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., and Ielmini,

D. (2014b). Statistical fluctuations in HfOx resistive-switching memory: part

II–random telegraph noise. IEEE Trans. Electron Devices 61, 2920–2927.

doi: 10.1109/TED.2014.2330202

Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S.

K., et al. (2013). “Cognitive computing programming paradigm: a corelet

language for composing networks of neurosynaptic cores,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–10.

doi: 10.1109/IJCNN.2013.6707078

Andrew, P. D., Daniel, B., Jochen, E., Jens, K., Eilif, M., Dejan, P., et al.

(2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/conf.neuro.11.2008.01.046

Appuswamy, R., Nayak, T. K., Arthur, J. V., Esser, S. K., Merolla, P., McKinstry,

J. L., et al. (2016). Structured convolution matrices for energy-efficient deep

learning. arXiv 1606.02407.

Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D., Richmond, R., et al.

(2015). Always-on vision processing unit for mobile applications. IEEE Micro.

35, 56–66. doi: 10.1109/MM.2015.10

Basu, A., Acharya, J., Karnik, T., Liu, H., Li, H., Seo, J. S., et al. (2018). Low-power,

adaptive neuromorphic systems: recent progress and future directions. IEEE J.

Emerg. Select. Top. Circuits Syst. 8, 6–27. doi: 10.1109/JETCAS.2018.2816339

Bose, S., Acharya, J., and Basu, A. (2019). “Is my neural network neuromorphic?

Taxonomy, recent trends and future directions in neuromorphic engineering,”

in ASILOMAR Conference on Signals and Systems (Pacific Grove, CA).

doi: 10.1109/IEEECONF44664.2019.9048891

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, B. L., Li, G., Han, S., Shi, L., and Xie, Y. (2020). Model compression and

hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE

108, 485–532. doi: 10.1109/JPROC.2020.2976475

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009).

“ImageNet: a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL), 248–255.

doi: 10.1109/CVPR.2009.5206848

Deng, L., Zou, Z., Ma, X., Liang, L., Wang, G., Hu, X., et al. (2018). Fast

object tracking on a many-core neural network chip. Front. Neurosci. 12:841.

doi: 10.3389/fnins.2018.00841

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Feinberg, B., Wang, S., and Ipek, E. (2018). “Making memristive neural

network accelerators reliable,” in 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA) (Vienna), 52–65.

doi: 10.1109/HPCA.2018.00015

Gopalakrishnan, R., Chua, Y., and Kumar, A. J. S. (2019a). Hardware-

friendly neural network architecture for neuromorphic computing. arXiv

arXiv:1906.08853.

Gopalakrishnan, R., Kumar, A. J. S., and Chua, Y. (2019b). MaD: mapping

and debugging framework for implementing deep neural network onto a

neuromorphic chip with crossbar array of synapses. arXiv arXiv:1901.00128.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv 1704.04861.

Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., et al.

(2016). “Dot-product engine for neuromorphic computing: programming

1t1m crossbar to accelerate matrix-vector multiplication,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC) (Austin, TX), 1–6.

doi: 10.1145/2897937.2898010

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer,

K. (2016). Squeezenet: Alexnet-level accuracy with 50× fewer parameters and

<0.5 MB model size. arXiv 1602.07360.

Ji, Y., Zhang, Y., Chen, W., and Xie, Y. (2018). “Bridge the gap between neural

networks and neuromorphic hardware with a neural network compiler,” in

Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems (Williamsburg, VA:

ACM), 448–460. doi: 10.1145/3173162.3173205

Ji, Y., Zhang, Y., Li, S., Chi, P., Jiang, C., Qu, P., et al. (2016). “Neutrams:

neural network transformation and co-design under neuromorphic hardware

constraints,” in 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO) (Taipei), 1–13. doi: 10.1109/MICRO.2016.7783724

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture, ISCA 17 (New York, NY: Association for Computing Machinery),

1–12. doi: 10.1145/3079856.3080246

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

Lee, M., Hwang, K., and Sung, W. (2014). “Fault tolerance analysis of digital

feed-forward deep neural networks,” in 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Florence), 5031–5035.

doi: 10.1109/ICASSP.2014.6854560

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. CoRR abs/1312.4400.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards

artificial general intelligence with hybrid tianjic chip architecture. Nature 572,

106–111. doi: 10.1038/s41586-019-1424-8

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.

doi: 10.1038/nature14441

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. (2016). “Theory and tools

for the conversion of analog to spiking convolutional neural networks,” in

Workshop “Computing with Spikes”, 29th Conference on Neural Information

Processing Systems (NIPS 2016) (Barcelona).

Shukla, R., Lipasti, M., Van Essen, B., Moody, A., and Maruyama, N. (2019).

Remodel: rethinking deep cnn models to detect and count on a neurosynaptic

system. Front. Neurosci. 13:4. doi: 10.3389/fnins.2019.00004

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv 1409.1556.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. (2014). Striving

for simplicity: the all convolutional net. CoRR abs/1412.6806.

Voelker, A. R., Benjamin, B. V., Stewart, T. C., Boahen, K., and Eliasmith, C.

(2017). “Extending the neural engineering framework for nonideal silicon

synapses,” in 2017 IEEE International Symposium on Circuits and Systems

(ISCAS) (Baltimore, MD), 1–4. doi: 10.1109/ISCAS.2017.8050810

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2019). A tandem learning

rule for efficient and rapid inference on deep spiking neural networks. arXiv

1907.01167.

Wu, Y. (2016). Tensorpack. Available online at: https://github.com/tensorpack/

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2016). “Memristor

crossbar deep network implementation based on a convolutional

Frontiers in Neuroscience | www.frontiersin.org 17 October 2020 | Volume 14 | Article 907195

https://doi.org/10.1109/TBCAS.2020.2981172
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JETCAS.2019.2911899
https://doi.org/10.1109/TED.2014.2330200
https://doi.org/10.1109/TED.2014.2330202
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.3389/conf.neuro.11.2008.01.046
https://doi.org/10.1109/MM.2015.10
https://doi.org/10.1109/JETCAS.2018.2816339
https://doi.org/10.1109/IEEECONF44664.2019.9048891
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.3389/fnins.2018.00841
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/HPCA.2018.00015
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1145/3173162.3173205
https://doi.org/10.1109/MICRO.2016.7783724
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ICASSP.2014.6854560
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2019.00004
https://doi.org/10.1109/ISCAS.2017.8050810
https://github.com/tensorpack/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gopalakrishnan et al. HFNet: A Hardware-Friendly CNN

neural network,” in 2016 International Joint Conference on Neural

Networks (IJCNN) (Vancouver, BC), 963–970. doi: 10.1109/IJCNN.2016.

7727302

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2017). “Extremely parallel memristor

crossbar architecture for convolutional neural network implementation,”

in 2017 International Joint Conference on Neural Networks (IJCNN)

(Anchorage, AK), 1696–1703. doi: 10.1109/IJCNN.2017.7966055

Zhang, X., Zhou, M. L., and Sun, J. (2018). “Shufflenet: an extremely efficient

convolutional neural network for mobile devices,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),

6848–6856. doi: 10.1109/CVPR.2018.00716

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Gopalakrishnan, Chua, Sun, Sreejith Kumar and Basu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 October 2020 | Volume 14 | Article 907196

https://doi.org/10.1109/IJCNN.2016.7727302
https://doi.org/10.1109/IJCNN.2017.7966055
https://doi.org/10.1109/CVPR.2018.00716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	NeuromorphicEngineering Systems and Applications
	Table of Contents
	Sepia, Tarsier, and Chameleon: A Modular C++ Framework for Event-Based Computer Vision
	1. Introduction
	1.1. Event-Based Cameras
	1.2. Event-Based Computer Vision
	1.3. Frameworks
	1.4. Paper Structure

	2. Framework Overview
	3. Event-Driven Programming
	3.1. A Generic Event-Based Algorithm
	3.2. C++ Implementation

	4. Building Blocks
	4.1. Partial Event Handlers
	4.2. tarsier Implementation

	5. Comparative Benchmarks
	5.1. Duration
	5.2. Latency

	6. Event Displays
	7. Framework Extensions
	7.1. Camera Drivers
	7.2. Complex Pipelines
	7.3. Parallelism

	8. Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Low-Power Dynamic Object Detection and Classification With Freely Moving Event Cameras
	1. Introduction
	2. Materials and Methods
	2.1. PCA-RECT
	2.2. Feature Selection and Matching Using K-d Trees
	2.2.1. vPCA-RECT

	2.3. Event-Based Object Categorization and Detection
	2.4. FPGA Implementation
	2.4.1. Categorization Pipeline
	2.4.2. Detection Pipeline

	2.5. Experiment Setup
	2.5.1. Parameter Settings

	3. Results
	3.1. N-MNIST and N-Caltech101
	3.1.1. Vary Hyper-Parameters

	3.2. N-SOD
	3.3. FPGA Performance
	3.3.1. Timing
	3.3.2. Resource Utilization
	3.3.3. Power Consumption

	3.4. Comparison to CNN

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Synaptic Delays for Insect-Inspired Temporal Feature Detection in Dynamic Neuromorphic Processors
	1. Introduction
	2. Materials and Methods
	2.1. The DYNAP-SE Neuromorphic Processor
	2.1.1. Spiking Neuron Model
	2.1.2. Dynamic Synapse Model

	2.2. Cricket Auditory Feature Detection Circuit
	2.3. Disynaptic Delay Elements
	2.3.1. Neuromorphic Implementation
	2.3.2. Characterization

	2.4. Neuromorphic Feature Detection Circuits
	2.4.1. Cricket Circuit
	2.4.2. Single-Neuron Feature Detector

	2.5. Experiments

	3. Results
	3.1. Characteristics of Delay Elements
	3.2. Cricket Feature Detection
	3.3. Reconfigurability of Delay Elements
	3.4. Feature Detection With Multiple Delay Elements

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Event-Based Gesture Recognition With Dynamic Background Suppression Using Smartphone Computational Capabilities
	1. Introduction
	1.1. Gesture Recognition on Mobile Devices
	1.2. Gesture Recognition Using Event-Based Cameras

	2. Event-based Cameras and the Event-based Paradigm
	3. Methods
	3.1. Dynamic Background Suppression
	3.2. Time-Surfaces as Spatio-Temporal Descriptors
	3.3. Event-Based Hierarchical Pattern Matching
	3.3.1. Creating a Layer and Learning Prototypes
	3.3.2. Building the Hierarchy

	4. A new neuromorphic dataset: NavGesture
	5. Experiments and Results
	5.1. Static Properties: Experiments on the Faces Dataset
	5.2. Dynamic Properties: Experiments on the NavGesture Datasets
	5.3. Experiments on the DvsGesture Dataset

	6. Implementation on a Smartphone
	7. Discussion and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Event-Based Eccentric Motion Detection Exploiting Time Difference Encoding
	1. Introduction
	2. Methodology
	2.1. Eccentric Down-Sampling
	2.2. The Spiking Elementary Motion Detector (sEMD)
	2.3. Experiments
	2.4. Experimental Setup

	3. Results
	4. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Biologically Relevant Dynamical Behaviors Realized in an Ultra-Compact Neuron Model
	Introduction
	Silicon Neuron (SiN) Circuits
	The Ultra-Compact Neuron

	Materials and Methods
	The Ultra-Compact Neuron Model
	Validation of Numerical Simulations of the UCN Circuit

	Results
	Numerical Simulation Study
	Simulated Circuits

	Biologically Relevant Behaviors Realized in Actual UCN Electronic Circuits
	Variations of the UCN Electronic Circuit Block

	Discussion
	Data Availability StatemeNt
	Author Contributions
	Funding
	Supplementary Material
	References

	Event-Based Computation for Touch Localization Based on Precise Spike Timing
	1. Introduction
	2. Background
	2.1. Sand Scorpion Prey Localization
	2.2. Computational Models of Spatio-Temporal Pattern Recognition
	2.3. Biological Mechanisms for Synaptic Delay Plasticity
	2.4. Event-Based Spatio-Temporal Pattern Recognition
	2.4.1. HOTS: A Hierarchy of Event-Based Time-Surfaces
	2.4.2. FEAST: Event-Based Feature Extraction Using Adaptive Selection Thresholds

	3. Methods
	3.1. Neuromorphic Tactile Sensor Design
	3.2. Algorithms
	3.2.1. Analytic Solution
	3.2.2. Temporal Coincidence Detection
	3.2.3. Complex Weights and Delays
	3.2.4. Temporal Difference Encoders
	3.2.5. Synaptic Delay Plasticity
	3.2.6. Structural Plasticity

	4. Results
	4.1. Analytical Solution
	4.2. Temporal Coincidence Detection
	4.3. Complex Weights and Delays
	4.4. Temporal Difference Encoders
	4.5. Synaptic Delay Plasticity
	4.6. Structural Plasticity
	4.7. Comparison and Extensions

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot
	1. Introduction
	2. Hardware Systems
	2.1. The iCub Humanoid Robot
	2.2. The Loihi Neuromorphic Research Chip
	2.3. Hardware Interface Between iCub and Loihi Using YARP

	3. Algorithmic Interfaces Between Robot and Neuromorphic Chip
	3.1. Input Spike Generation Based on Velocity Commands
	3.2. Spiking Object Detector
	3.3. Reading Out the Head Direction From the Network

	4. The Head-Direction SNN
	4.1. Network Overview
	4.2. Functional Description of the Network
	4.3. Connectivity in the Head-Direction SNN

	5. Experiments and Results
	5.1. Experimental Setup and Dataset
	5.2. Integration-Only Pose Estimation
	5.3. Visual Reset of Imprecise Pose Tracking
	5.4. Representing the Visual Scene in the Network (Map Formation)

	6. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
	1. Introduction
	2. Materials and Methods
	2.1. Training Strategies
	2.1.1. Parameter Scaling
	2.1.2. Synaptic Operation Optimization
	2.1.3. Quantization-Aware Training and Surrogate Gradient

	2.2. Spiking Network Simulations With Sinabs
	2.3. Digit Recognition on DVS Recordings
	2.3.1. Task and Dataset
	2.3.2. Network Architecture

	2.4. Object Recognition on CIFAR-10
	2.4.1. Task and Dataset
	2.4.2. Network Architecture and Training Procedure
	2.4.3. SynOps Optimization

	3. Results
	3.1. The SynOp Loss Term Leads to a Reduction in Network Activity on DVS Data
	3.2. The SynOp Loss Leads to a Lower Operations Count Compared to ANNs on CIFAR10
	3.2.1. Weight Scaling
	3.2.2. SynOp Loss Optimization
	3.2.3. SynOp vs. Accuracy for Shorter Inference Times
	3.2.4. Effects on Weight Statistics

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Event-Based Face Detection and Tracking Using the Dynamics of Eye Blinks
	1. Introduction
	1.1. Event-Based Cameras
	1.2. Face Detection
	1.3. Human Eye Blinks

	2. Methods
	2.1. Temporal Signature of an Eye Blink
	2.1.1. Blink Model Generation
	2.1.2. Sparse Cross-Correlation
	2.1.3. Blink Detection

	2.2. Gaussian Tracker
	2.3. Global Algorithm

	3. Experiments and Results
	3.1. Indoor and Outdoor Face Detection
	3.2. Face Scale Changes
	3.3. Multiple Faces Detection
	3.4. Pose Variation Sequences
	3.5. Summary

	4. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing
	1. Introduction
	2. Materials and Methods
	2.1. DVS and EMG Sensors
	2.1.1. DVS Sensor
	2.1.2. EMG Sensor

	2.2. DVS-EMG Dataset
	2.2.1. Implementation on Neuromorphic Devices

	2.3. Neuromorphic Processors
	2.3.1. ODIN + MorphIC
	2.3.2. Loihi and Its Training Framework SLAYER

	2.4. Traditional Machine Learning Baselines
	2.4.1. EMG Feature Extraction
	2.4.2. Baseline ODIN + MorphIC
	2.4.3. Baseline Loihi
	2.4.4. Training and Deployment

	3. Results
	3.1. Loihi Results
	3.2. ODIN + MorphIC Results
	3.3. EDP and Computational Complexity

	4. Discussions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
	1. Introduction
	2. Materials and Methods
	2.1. Echo State Networks—The Network Structure
	2.1.1. Reservoir Neurons
	2.1.2. Network Connections

	2.2. Application
	2.2.1. Inputs
	2.2.2. Outputs

	3. Results
	3.1. Training Methodology
	3.1.1. Step 1 : Separation Based Input-Reservoir Connection Training
	3.1.2. Step 2 : Approximation Based Reservoir Connection Training
	3.1.3. Step 3 : Readout Training for Motor Pattern Generation

	3.2. Separation vs. Accuracy
	3.3. Convergence and Stability of the Network

	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	HFNet: A CNN Architecture Co-designed for Neuromorphic Hardware With a Crossbar Array of Synapses
	1. Introduction
	2. Materials and Methods
	2.1. Mapping
	2.1.1. Computation in a Crossbar Architecture
	2.1.2. Mapping on a Crossbar Architecture

	2.2. Co-design
	2.2.1. Core Matrix Splitting
	2.2.2. Overview of Convolution Layers in a CNN
	2.2.2.1. Depthwise convolution
	2.2.2.2. Pointwise convolution
	2.2.2.3. Grouped convolution

	2.2.3. Insights From Different CNNs
	2.2.3.1. MobileNet
	2.2.3.2. VGGNet and NIN
	2.2.3.3. Other insights

	2.2.4. Co-design Methodology
	2.2.4.1. Hardware-friendly CNN

	2.3. CNN Training and Mapping
	2.3.1. CNN Training
	2.3.2. CNN Mapping

	3. Experimental Framework and Results
	3.1. Mapping Results
	3.2. Hardware-Friendly CNN: The HFNet
	3.2.1. Maxpooling and Fully Connected Layers
	3.2.2. Number of Cores and Classification Accuracy
	3.2.3. Augmenting the HFNet
	3.2.4. Comparison With Modified MobileNets
	3.2.5. Grouped Convolution

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover

