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Editorial on the Research Topic

Endocrine Diseases of Newborn: Epidemiology, Pathogenesis, Therapeutic Option

and Outcome

The aim of this collection is to provide information on recent advances and current thinking
in selected areas of Neonatal Endocrinology, as we believe that this area can be challenging in
presentation and management for both neonatologists and pediatric endocrinologists. To this end,
we invited several leaders in the field to contribute. In addition, we have included 3 manuscripts
submitted to Frontiers that fell within the remit of our topic.

The collection focuses on selected conditions presenting in the newborn consisting of a series of
10 mini-reviews, including some which may be considered the “go to” article for up-to-date science
and management of various conditions.

The neonatal period is complicated by unique physiology, because of the transition from
intrauterine life including the influence of maternal and placental hormones, and “normal” values
for hormone levels can be difficult to define, and many change with increasing postnatal age. The
measurement of hormone levels is further complicated by numerous additional circulating steroids
which may interfere with assays, and the challenges of small sample size. In the context of this
milieu the collection of articles ranges from common neonatal problems such as hypoglycemia
to rare disorders such as neonatal bone disease. The content of all the articles in the collection is
summarized below.

Bosch i Ara et al. provide an extensive review of congenital hypopituitarism, with a thorough
review of the science, including the known genetics, phenotype-genotype correlations, syndromic,
and non-syndromic hypopituitarism with helpful accompanying tables. They also provide a
comprehensive guide to the clinical presentation including red-flag symptoms and signs, diagnosis,
assessment and management of pituitary hormone deficiencies.

Di Dalmazi et al. present a study on the effect of maternal and neonatal factors on neonatal TSH
levels, using retrospective data from screening for congenital hypothyroidism in 62,132 infants in
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Abruzzo, Italy, a relatively iodine deficient area. As both sex and
postnatal age at collection affected the TSH level, they advocate
the use of locally derived TSH cut-offs for both and provide local
percentile charts for TSH based on their data. Effects of maternal
and neonatal factors were modest, but the study was limited by
data routinely collected in the screening programme and the
unknown contribution that iodine deficiency may have played in
this population.

Buonocore et al. describe causes of adrenal insufficiency,
with a focus on genetic conditions that present in the first few
months of life. This superb overview provides clear and concise
information on complex pathways and conditions, identifying
seminal features of presentation in a manner that is easy to read.
Testing for adrenal insufficiency was not in the remit of this
invited review, but assessment of the HPA axis can be found in
the review of congenital hypopituitarism by Bosch i Ara et al..

Balsamo et al. explore the breadth of conditions presenting
as congenital adrenal hyperplasia in the newborn period, and
provide insight into some of the rarer conditions. They describe
how clinical characteristics and diagnostic tests may be used to
distinguish between these, and how steroidogenic biochemistry is
evolving in this field. Therapeutic approaches are also included.

Li et al. from China present a systematic review and
meta-analysis of the screening results for congenital adrenal
hyperplasia involving 7.85 million newborns. The incidence of
1/23,024 was higher in males than females, possibly as a result
of the gender imbalance in China, the greater attention paid to
male infants resulting in a higher recall rate, or the diagnosis
of ambiguous genitalia before or after birth in females, making
screening unnecessary in girls.

With advancement in the genetic diagnosis of disorders of
sex development, Bertelloni et al. outline a different approach
to the investigation of 46XY DSD to the extensive, often
repeated and invasive laboratory testing, by using advanced
genetic technologies (next generation sequencing, whole exome
sequencing, targeted CGH array) as the first line test after
karyotyping and salt-loss exclusion which may result in a
molecular diagnosis and guide more targeted biochemical
investigations. A causative genetic diagnosis allows for accurate
prognosis and recurrence risk.

Lucaccioni et al. review the current understanding of
minipuberty and using this window as an opportunity for
the diagnosis, and potentially treatment, of babies with DSD
which could alter the natural history. They highlight the
hormonal changes that occur and how minipuberty modulates
neurobehavioral development.

Edwards and Harding review clinical aspects of transient
neonatal hypoglycemia. They discuss pathophysiology,
controversy over definitions of hypoglycemia, when and
how to make blood glucose measurements, and use of glucose gel
to prevent hypoglycemia. They highlight the need for evidence
as to whether transient asymptomatic hypoglycemia is associated
with brain injury, and if so, at what level or duration.

Chandran et al. report a family with a novel HNF4Amutation
presenting with differing phenotypic presentations of glucose
dysregulation. They describe an infant with diazoxide responsive
hyperinsulinaemic hypoglycemia, who shares a novel HNF4A

mutation with a sister who had transient neonatal hypoglycemia,
and his father who developed diabetes at the age of 15.
Implications of the genetic diagnosis on treatment and prognosis
are discussed.

Beardsall reviews hyperglycemia with a focus on the
preterm infant, and discusses pathogenesis, glucose insensitivity
and insulin resistance, relative insulin deficiency, the clinical
consequences of hyperglycemia, and its clinical management.
The review provides a wealth of information on underlying
mechanisms, whichmay be of particular value for neonatologists.

Beltrand et al. describe how the recent advances in neonatal
diabetes mellitus can guide management and how the known
genetic mutations define the pathophysiology by causing either
abnormal β-cell function or abnormal pancreatic morphology.
The authors provide a detailed clinical description of both
the permanent and transient forms. The challenge of insulin
therapy in maintaining normoglycaemia is discussed, as is the
management of those with mutations in the KATP channel with
suphonylureas to which the channel remain sensitive in 90% of
cases. A helpful appendix provides practical advice on switching
from insulin to glibenclamide, the oral suspension of which is
licensed for children in the European Union.

In the review of current insights into disorders of calcium
and phosphate in the newborn, Taylor-Miller and Allgrove
examine the current understanding of fetal-to-neonatal mineral
homeostasis mechanisms (calcium, phosphorus, magnesium)
as well as vitamin D. Recent genetic discoveries have shed
light on the pathophysiology of some causes of neonatal hypo
and hypercalcemia. The presentation and management of bone
fragility is discussed as well as the investigation and management
of disorders of calcium and phosphorus homeostasis.

Saraff et al. describe an approach to neonatal bone
disorders for clinicians, highlighting that early and accurate
diagnosis in these rare disorders can be important for
potentially life-saving treatment. The review includes
structural bone defects, and bone mineralization defects,
and an approach to diagnosis and management. This
practical approach could be extremely useful for
neonatal clinicians.

This series of articles was conceived with Dr. Paolo Ghirri,
Associate Professor of Pediatrics at the University of Pisa,
where he was the director of Neonatology at the Santa
Chiara. Following his sudden and untimely death during the
planning stage, we decided to dedicate the series to his life
and work and made our contributors aware of this at the time
of invitation.
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Maturity-onset diabetes of the young (MODY) classically describes dominantly inherited

forms of monogenic diabetes diagnosed before 25 years of age due to pancreatic

β-cell dysfunction. In contrast, mutations in certain MODY genes can also present

with transient or persistent hyperinsulinemic hypoglycemia in newborn infants, reflecting

instead β-cell dysregulation. Of the MODY genes described to date, only hepatocyte

nuclear factor-4-alpha (HNF4A; MODY1) and hepatocyte nuclear factor-1-alpha (HNF1A;

MODY3) mutations may result in a biphasic phenotype of hypoglycemia in early life

and hyperglycemia in later life. We report a family with a novel HNF4A mutation with

diverse phenotypic presentations of glucose dysregulation. The proband was a term,

appropriate-for-gestational age male infant with symptomatic hypoglycemia on day 3

of life needing high glucose infusion rate to maintain normoglycemia. He was born

to a non-obese and non-diabetic mother. Glucose regulation was optimized using

diazoxide upon confirmation of hyperinsulinism. Cascade genetic screening identified

the same mutation in his father and elder sister, but mother was negative. Father

was diagnosed with Type 1 diabetes at 15 years of age that required insulin therapy.

Proband’s elder sister, born at term appropriate for gestational age, presented with

transient neonatal hypoglycemia needing parenteral glucose infusion for a week followed

by spontaneous resolution. The paternal grandparents were negative for this mutation,

confirming a paternal de novo mutation and autosomal dominant inheritance in this

family. This pedigree suggests that the presence of early-onset paternal diabetes

should prompt molecular testing in infants presenting in the newborn period with

diazoxide-responsive hyperinsulinemic hypoglycemia, even in the absence of maternal

diabetes and macrosomia.

Keywords: maturity-onset diabetes mellitus, hepatocyte nuclear factor 4-alpha, hepatocyte nuclear

factor−1- alpha, hyperinsulinemic hypoglycemia of infancy, congenital hyperinsulinism, diazoxide
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Chandran et al. HNF4A Mutation With Multiple Phenotypes

INTRODUCTION

Maturity-onset diabetes of the young (MODY) is an acronym
used to describe dominantly inherited forms of monogenic
diabetes diagnosed before 25 years of age (1). MODY gene
mutations have been described with clinically heterogeneous
phenotypes (2). Among these, only HNF4A (MODY1) and
HNF1A (MODY3) mutations on chromosomes 12 and 20
respectively, may result in a biphasic phenotype (3). HNF4A
is an orphan receptor protein expressed in the liver, kidney,
gut, and pancreatic β-cells (4). Mutations in HNF4A may
lead to biphasic presentations, characterized by transient or
persistent HH in infants, and diabetes in young adults. HNF4A
mutations are a less common cause of MODY (10%) than
glucokinase (GCK) (30–50%) and HNF1A (30–50%). Among
infants with HNF4A mutations, 56% are macrosomic and
15% encounter neonatal hypoglycemia (5). The prevalence of
neonatal hypoglycemia is similar regardless of parental HNF4A
inheritance and persistent hypoglycemia is independent of
gestational glucose control (6). Hyperinsulinemic hypoglycemia
(HH) is characterized by inappropriate insulin secretion while
hypoglycemic and the need for high glucose infusion rate (GIR)
requirements (>8 mg/kg/min) to maintain normoglycemia
(3.5–5.9 mmol/L) in newborn infants beyond 48 h of life.
HH infants have inappropriate insulin and/or C-peptide levels
despite the presence of hypoglycemia, hypoketonemia and
hypofattyacidemia. HH is linked to mutations in at least
eight genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1,
HNF4A, HNF1A) that alter β-cell function (7). Unlike the
majority of mutations involving the KATP channel, HNF4A
mutations causing HH respond well to diazoxide (8). We
present a family with a novel HNF4A mutation identified from
a proband presenting with symptomatic hypoglycemia. The
family members were found to have contrasting phenotypic
presentations of glucose dysregulation in spite of having the same
mutation. We present this pedigree to demonstrate that a history
of paternal diabetes is as important as a history of maternal
diabetes, and relevant in pediatric history-taking when managing
infants at-risk of hypoglycemia.

CASE PRESENTATION

Pedigree Report
A healthy male infant weighing 3,592 gm was born to non-
consanguineous parents at 37+5 weeks gestation and discharged
uneventfully on day 2 of life. Both parents are of Malay ethnicity.
Maternal health during pregnancy and oral glucose tolerance
test results were normal. There was no maternal family history
of diabetes. On day 3 of life, this infant was admitted for
treatment of neonatal jaundice. While on phototherapy he was
noted to be apneic and cyanosed with low plasma glucose (1.8
mmol/L). Resuscitation involved mini bolus intravenous 10%
dextrose and continuous glucose infusion. As the response was
inadequate, GIR was graded up to 16 mg/kg/min before glucose
levels normalized.

Physical examination of the infant was unremarkable. Upon
reduction of GIR in a controlled setting, critical blood tests

were obtained that showed detectable C- peptide [1.7mcg/L]
and insulin [10.4 mU/L] when plasma glucose was 1.6 mmol/L.
Along with suppressed blood ketones of 0.2 mmol/L, these
indicate inappropriate insulin production during hypoglycaemia,
which fulfilled the diagnostic criteria for HH. Serum cortisol
was 494 nmol/L and GH level was 13.4 ug/L, showing adequate
pituitary response. Septic and inborn error of metabolism screens
were negative. On day 7 of life, he was started on diazoxide,
5 mg/kg/day in divided doses, with normoglycemia achieved
after titrating diazoxide up to 10 mg/kg/day on day 19 of
life. Hydrochlorothiazide was added to counteract the salt and
water retaining side effects of diazoxide. Thereafter, his GIR was
weaned over 5 days and he remained normoglycemic on full oral
feeds. Before discharge while on diazoxide, he passed a 6-h safety
fast study, to reassure of his ability to maintain glucose levels
during inadvertent fasting periods at home. Glucose monitoring
continued at home. The absolute diazoxide dose was maintained,
allowing weight-based reduction of the dose toward 24 months
of age. At 36 months, diazoxide was stopped and he underwent
and passed a resolution fasting study. Growth and neurocognitive
development are currently appropriate for age.

Genetic testing for hyperinsulinism was performed at Exeter,
UK. Analysis of coding and flanking intronic regions of the
KCNJ11, ABCC8, and HNF4A genes by Sanger sequencing
was done. Both KCNJ11 and ABCC8 genes were normal. A
novel heterozygous HNF4A missense mutation, p.Asp345Tyr
(c.1033G>T) was identified. Cascade family screening identified
the same HNF4Amutation in his father and elder sister; whereas
his mother and paternal grandparents were negative (Figure 1).
This confirmed that the proband’s father has a de novomutation,
consistent with MODY rather than type 1 diabetes.

The proband’s father was diagnosed with diabetes at age
15 years and treated with insulin. He was obese from early
childhood, even though there was no history of diabetes in
his parents or siblings. Details of initial management prior to
his transfer to tertiary diabetes care are unavailable. At age 33
years, his glycated hemoglobin (HbA1c) was 12%, fasting glucose
18.3 mmol/L, C-peptide 270 pmol/L (364-1655), glutamic acid
decarboxylase (GAD) autoantibody and islet-cell autoantibody
tested negative. Diabetes control was suboptimal due to poor
adherence. On Metformin 850mg twice daiy (BD) and basal-
bolus insulin therapy, HbA1c ranged from 6.9 to 10% over
the next 5 years. At age 38 years, he was reassessed following
his son’s genetic diagnosis. While on Metformin 850mg BD,
subcutaneous (SC) Glargine 16u BD and SC Glulisine 10–14u
thrice daily (TDS), HbA1c was 9%, fasting glucose 16.5 mmol/L
and C-peptide 481 pmol/L. He measured 1.54m, weighed 86 kg,
giving a BMI of 36.3 kg/m2. Given his reasonable insulin reserve,
sulphonylurea therapy was initiated to determine if insulin
doses could be reduced without compromising glucose control.
Ambulatory glucose profiles were conducted over a 2-week
period—in the first week, he was on his usual treatment regimen
while in second week, sulphonylurea was added (Figure 2). He
responded to up-titrated doses of Glibenclamide with reduction
of basal insulin from 32 to 8 units daily, while maintaining similar
glucose profiles. Over these 2 weeks, the composite ambulatory
glucose profile showed average glucose of 9.6 mmol/L, giving
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FIGURE 1 | HNF4A family pedigree. Circles (females) and squares (males). Arrow marks the Proband. Filled symbol indicates MODY (father); unfilled symbol indicates

no history of glucose dysregulation. Diagonal hatching denotes persistent HH (proband). Transverse hatching indicates transient hypoglycemia (sister). M/N =

heterozygous HNF4A genotype; N/N = normal genotype.

an estimated HbA1c of 7.7%. His current medication doses are
Glibenclamide 7.5mg BD, Metformin 850mg BD, SC Glargine
8 units every night (ON) and SC Glulisine 10u BD. After
glibenclamide was added and the basal insulin dose was reduced,
there was improvement in his fasting glucose levels from 11-
13 mmol/L to 5-6.4 mmol/L. Despite subsequent increments in
sulphonylureas, he required prandial (albeit decreased) doses
of glulisine for persistent postprandial hyperglycemia. His total
daily insulin requirements decreased from 1 to 0.5 u/kg/d.
The incomplete response to sulphonylureas was likely due to
progressive defect in beta cell β-cell dysfunction after having had
diabetes for 23 years. His most recent BMI was 36.4 kg/m2.

The proband’s 8 year old sister who was born term,
appropriate for gestational age (birth weight, 2835 g) had
transient hypoglycemia during neonatal period. Work up for
sepsis and inborn error of metabolism screen were negative.
However, her phenotype was mild and she required intravenous
dextrose (highest GIR 7.6 mg/kg/min on day 4 of life), before
gradual increase in feeds normalized her blood glucose levels
by day 7 of life. She has appropriate growth and remains in a
mainstream school (Figure 3).

Family’s Perspective
Upon receiving news of the genetic diagnosis, the proband’s
father was hopeful for better control with reduced insulin.
Although his endocrinologist was able to use this information
to adjust his treatment regimen, he experienced difficulty
making lifestyle changes which limited his glucose control and
prevented further reduction of his medications. The proband’s
mother was more concerned about the implications of the
diagnosis on her children. She was particularly happy that
the proband did not require long-term Diazoxide therapy,
although she was concerned of the risk of diabetes in both her

children. The proband’s paternal grandparents expressed that
the exact diagnosis makes them aware of the risk of childhood-
onset diabetes. They clearly indicated their hope for their
grandchildren to remain healthy and not to develop obesity and
childhood-onset diabetes like their son (the proband’s father) did.

DISCUSSION

We describe a pedigree where a heterozygous novel HNF4A
mutation was identified in 3 individuals of a 2 generation
family. Each of these individuals were phenotypically distinct—
the proband had persistent HH, his sister had transient
hypoglycemia, while his father had juvenile-onset MODY.
The paternal grandparents tested negative, confirming
a spontaneous de novo mutation, followed by dominant
inheritance. Identification of the underlying genetic etiology
allowed for a molecular diagnosis of the proband, clarified the
paternal phenotype as MODY instead of type 1 diabetes and
facilitated his improved diabetes management.

Up to 80% cases of diabetes due to MODY gene mutations are
misclassified as type 1 or type 2 diabetes, leading to inappropriate
medical therapy (9). The diagnosis of MODY requires molecular
confirmation (10). In retrospect, precise molecular diagnosis
of the diabetes in the proband’s father would have permitted
close fetal monitoring for macrosomia and appropriate postnatal
glucose surveillance. Mutations in HNF4A are reported to be
highly penetrant with 50% of carriers developing diabetes by
age 30 years, whereas 60% with HNF1A mutations present by
25 years (11). The father of the proband was diagnosed with
diabetes at age 15 years, expressing the highly penetrant nature
of this novel HNF4Amutation. Infants who inherit HNF4A have
significantly increased birth weight, with more than half having
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FIGURE 2 | Continuous blood glucose patterns of the proband’s father, capturing his daily glucose variability over 2 weeks, while he was on Metformin 850mg twice

daily, Glargine 16 units twice daily and Glulisine 10–14 units thrice daily (first week); and demonstrating improved fasting glucose levels despite progressive reduction

in Glargine doses after Glibenclamide was progressively introduced (second week).

macrosomia. The risk of macrosomia is higher in maternally-
inherited mutations (64%) compared to paternal inheritance
(46%), due to the additional effect of hyperglycemic intrauterine
milieu (6). The paternal inheritance pattern in this pedigree may
explain the absence of macrosomia in both his offsprings.

HNF4A mutations are the third most common genetic
cause of diazoxide-responsive HH, (8) however the mechanism
by which these mutations cause insulin excess in fetal and
neonatal life and insulin deficiency later in life is unclear.
Heterozygous loss-of-function mutations in HNF4A may cause
either transient or persistent HH (6, 12). Current evidence
supports a reduction in expression of inward rectifying
potassium channel subunit (Kir 6.2) and/or reduction in
the levels of peroxisome proliferator-activated receptor alpha

(PPARα), causing inappropriate insulin secretion and resulting
in HH in newborn period (13, 14). Low levels of PPARα

have been reported in HNF4A deficient β-cells, resulting in
the accumulation of lipids and thereby increasing cytosolic
long-chain acyl-CoA levels, signaling insulin release. Long-term
exposure of β-cells to elevated concentrations of fatty acids causes
β-cell dysfunction leading to diabetes (15). Other suggested
theories for the dual phenotype in HNF4A mutations include
variance in HNF4A dependent temporal gene expression, β-
cell exhaustion from hypersecretion in fetal life and infancy
and malfunction of transcription factors that sustain β-cell
function in pancreatic islets (7, 16, 17). MODY responds
well to low-dose sulfonylurea, maintaining the glucose profile
even after 3 decades (16, 18). In individuals with a HNF4A
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FIGURE 3 | Timeline depicting the three phenotypes of this pedigree.

mutation, as the β-cell dysfunction is progressive with age,
insulin treatment may eventually be required. If the proband’s
father had received an early genetic diagnosis, he may have
benefitted from oral sulfonylurea instead of insulin. Secondary
sulphonylurea failure has been described to occur in 3 to
25 years following diagnosis/treatment in transcription factor
linked-MODY patients (19). Unlike GCK mutations, patients
with diabetes due to HNF4A and HNF1A mutations are
at increased risk of micro and macrovascular complications,
(6, 9, 18, 20) and therefore require early and sustained
glucose control.

Diazoxide remains the first line of medical treatment for HH.
Diazoxide response in HH due to aHNF4Amutation is adequate
but the treatment period may vary from months to years (9). In
this proband with a novel HNF4A mutation, glucose levels were
controlled with moderate doses of diazoxide weaned over 3 years.
Following cessation of therapy, resolution of HH was confirmed
with a fasting study. As there is potential of developing MODY,
glucose tolerance testing is planned for the proband and his sister.

The strength of this case study lies in the full phenotypic
characterization of the proband and cascade genetic testing in his
family. However, type 1 diabetesmanagement details of the father
are unavailable prior to the proband’s diagnosis. The proband’s
sister was not evaluated for hyperinsulinism as she did not meet
the criteria for HH.

In conclusion, we present a family with a novel HNF4A
mutation having 3 phenotypic presentations across 2 generations.

This case pedigree supports HNF4A gene sequencing for infants
presenting in the newborn period with diazoxide-responsive
HH and paternal diabetes, even in the absence of maternal pre
or gestational diabetes and fetal macrosomia. Those with prior
molecular diagnosis of HNF4A mutation should be monitored
for early diagnosis of sulfonylurea-sensitive diabetes, to allow
earlier intervention and treatment. Overall, an early molecular
diagnosis of HNF4AMODY can guide a change in therapy from
insulin to sulfonylurea, improving the lifestyle and quality of life
for both patients and their families.
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Background: Neonatal thyrotropin (TSH) on dried blood spot (DBS), the most common

screening strategy for primary congenital hypothyroidism (CH), is influenced by numerous

factors that may hinder a true CH diagnosis. A second test can thus be performed to

clarify the initial findings, although its application varies among screening programs.

Objectives: The aim of this study was to evaluate the effect of maternal and neonatal

factors on neonatal TSH levels and offer practical screening recommendations.

Methods: We retrospectively analyzed screening data of 62,132 neonates born in

Abruzzo, an Italian region consideredmildly iodine deficient, between 2011 and 2016.We

then performed a multiple linear regression to model the relationship between TSH (the

dependent variable) and 13 independent variables extracted from blood collection cards.

Results: Most neonates (53,551 of 62,132, 86%) had normal TSH and no clinical

indications for a second screening. Aminority (1,423, 2.3%) had elevated TSH in the initial

DBS, which was confirmed in 97 cases (7%) on a second screen. The remaining neonates

(6,594, 10.6%) had a normal initial TSH but underwent a second test in accordance

with screening protocols, and were found to have delayed TSH elevation in 23 cases

(0.4%). Those 120 newborns (97 + 23), considered highly suspicious for primary CH,

were referred to a pediatrician for confirmatory testing and excluded from subsequent

analysis of factors influencing TSH levels. Sex (β regression coefficient, β = 1.11 female

to male, 95% CI 1.09, 1.12) and age at collection (β = 0.78 day 5 to days 2–3, 95%

CI 0.74, 0.83) affected neonatal TSH, suggesting the utility of specific nomograms. In

addition, prematurity (β = 0.85 term to preterm, 95% CI 0.80, 0.91), dopamine use (β =

0.71, 95% CI 0.62, 0.81), and birth weight (β = 1.40 normal vs. very low, 95% CI 1.05,

1.89) strongly influenced neonatal TSH.

Conclusions: Neonatal TSH is influenced by several factors supporting the delineation

of local sex- and age-adjusted TSH cutoffs, and the universal adoption of a second TSH

test in neonates at risk of missed primary CH diagnosis.

Keywords: newborn screening, congenital hypothyroidism, thyroid stimulating hormone (TSH), thyroid diseases,

preterm
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INTRODUCTION

Congenital hypothyroidism (CH) indicates the deficiency of
thyroid hormones at birth, a deficiency that if unrecognized
and untreated leads to severe intellectual disability and growth
retardation. To recognize and promptly treat CH, a neonatal
screening program was universally introduced, in Italy starting
in 1977 and reaching full coverage in the early 1990s (1). The
Italian CH screening is performed, as of December 31, 2016, by
26 regional and inter-regional clinical laboratories that screen
newborns using either Dried Blood Spot (DBS) TSH (20 of 26,
77%), or both DBS TSH and total thyroxine (6 of 26, 23%) (2).
Screening data are then reported to the Italian National Registry
of Infants with Congenital Hypothyroidism, an office established
by the Italian Ministry of Health in 1987.

The threshold value to determine whether TSH is elevated
(hence the neonate at risk of primary CH or not) varies across
Italian screening centers, with a range comprised between 6 and
12 mU/L (2). This threshold value has decreased over the years,
resulting in a greater detection of primary CH cases, mostly
mild (3).

Even when the initial TSH value is normal, recent guidelines
(4) suggest collecting a second DBS specimen if the neonate
belongs to categories known to delay the TSH elevation so as
not to miss possible primary CH diagnoses. These categories
include prematurity (i.e., gestational age < 37 weeks), low and
very low birthweight, twin delivery, congenital malformations,
and chromosomal abnormalities such as down syndrome, blood
transfusions, dopamine, total parenteral nutrition, or other
conditions requiring admission to the neonatal intensive care
unit (4, 5). Despite the guidelines, however, a lack of uniformity
in screening programs for preterm, low, and very low birthweight
neonates does occur, as recently reviewed in (6). Most authors
advocate a second screening strategy, while others suggest either
lowering the screening cutoff, using gestational age-adjusted
cutoff, or testing for both TSH and T4 (6). It also remains unclear
whether other factors such as sex, season of birth, and maternal
history of autoimmune thyroid diseases should be considered in
screening protocols.

The aim of this study was to evaluate the effect of maternal
and neonatal factors on neonatal TSH levels and offer practical
recommendations to improve current screening algorithms for
primary CH.

MATERIALS AND METHODS

Study Population and Screening Protocol
We retrospectively analyzed data of all babies born in Abruzzo
between January 1, 2011 and December 31, 2016 and screened for
primary CH by DBS TSH. The Abruzzo CH screening program,
which began in 1994, is housed in Chieti at the Center of Sciences
on Aging and Translational Medicine (CeSI-MeT). In most cases,
blood was collected by heel prick between 48 and 120 h of life,
spotted onto collection cards known as Guthrie cards (Whatman
903, Expertmed SRL, Verona, Italy), and thenmailed to the CeSI-
MeT laboratory. When newborns were transferred to another
hospital, however, blood samples could also be collected before

48 h. Cards of poor quality and/or containing insufficient blood
were considered “inadequate” for the assay and prompted the
request of a new sample.

Cards originated from 12 hospitals (Atri, Avezzano, Chieti,
L’Aquila, Lanciano, Ortona, Penne, Pescara, Sant’Omero,
Sulmona, Teramo, and Vasto) located in the four provinces
(Chieti, Pescara, Teramo, L’Aquila) of Abruzzo, a region that
is still considered mildly iodine deficient (7). The following
information was extracted from the collection cards: sex, date
of birth, province of birth, age at blood collection, prematurity
(reported as gestational age < 37 weeks or not), birthweight,
dopamine, total parenteral nutrition, blood transfusions,
malformations, twin delivery, pre-gestational history of thyroid
disease, and/or use of anti-thyroid drugs during pregnancy.
Unfortunately, gestational age on collection cards was reported
as a categoric variable (i.e., gestational age <37 or not),
limiting the possibility to define the newborn as small or
appropriate for gestational age. Furthermore, cards did not
include information about mode of delivery, APGAR score,
hematocrit, administration of glucocorticoids, and maternal
iodine status.

TSH was measured using an automated time-resolved Fluoro-
Immuno-Assay that uses a monoclonal antibody directed against
the β subunit of human TSH (AutoDELFIA hTSH, Perkin Elmer,
Waltham, MA). According to the manufacturer, the analytical
sensitivity is 2 mU/L, although values comprised between 0.5 and
2 mU/L were reported by the analyzer. The screening program
used a cutoff value of 7mU/L to distinguish normal from elevated
TSH, a value approximating the 98th percentile of the TSH
distribution observed in term and normal weight neonates who
do not have congenital hypothyroidism.

Neonates with DBS TSH values <7 mU/L were considered
negative for primary CH and underwent no further testing.
Those with TSH ≥ 7 mU/L were recalled for a second DBS
collection; if TSH elevation was confirmed, they were considered
highly suspicious for primary CH and referred to pediatrician
for confirmatory testing. Neonates with TSH <7 mU/L in the
initial sample but belonged to “at risk” categories (preterm,
low birthweight, twins, malformations, recipients of blood
transfusions, dopamine, total parenteral nutrition, and/or born
to mothers with a history of autoimmune thyroid disease)
underwent a routine second TSH screening after 15 days of age.

Study Outcomes and Statistical Analysis
DBS TSH was the main outcome variable of the study and was
related to the following 13 covariates: sex (male or female),
calendar year of birth (2011, 2012, 2013, 2014, 2015, or 2016),
season of birth (winter, spring, summer, or fall), province of birth
(Chieti, Pescara, Teramo, L’Aquila), age at blood drawing (in
days), use of dopamine (yes or no), total parenteral nutrition
(yes or no), blood transfusions (yes or no), malformations (yes
or no), maternal history of autoimmune thyroid disease (yes
or no), twin delivery (yes or no), prematurity (yes or no),
and birthweight (normal birthweight, NBW, 2,500–4,500 g, or
abnormal birthweights). Prematurity was defined as pregnancy
duration <37 weeks.
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Abnormal birthweights were classified according to the four
World Health Organization categories (8): high birth weight,
(HBW, >4,500 g), low birth weight (LBW, 2,500–1,500 g), very
low birth weight (VLBW, 1,000–1,499 g), and extremely low birth
weight (ELBW, <1,000 g).

De-identified data were entered into a FileMaker database
(FileMaker Pro Advanced 14.0.1, Inc., Santa Clara, CA, USA)
and then analyzed using the statistical software Stata (Stata
15.1, College Station, TX, USA). We excluded from the analysis
of factors influencing TSH levels, blood samples that were
inadequate for the TSH assay, samples not accompanied by
information about age at collection and/or birthweight, samples
coming from babies born outside of the Abruzzo region, samples
collected beyond 15 days of age, and samples that were classified
as “highly suspicious for primary CH.”

Data were described using mean and standard deviation
for normally distributed quantitative variables, median, and
interquartile range for non-normally distributed quantitative
variables, and frequencies and percentages for qualitative
variables. Monthly birth rate was calculated by dividing the
number of births in each month by the total Abruzzo population
in the corresponding year, this latter information obtained from
the Italian National Institute of Statistics.

The neonatal TSH percentile charts were created
by calculating in healthy neonates the 10, 25, 50, 75,
90, 95, 97.5, and 99th percentiles of TSH according
to sex and neonatal age. Arithmetic TSH values were
transformed to a natural logarithm scale to approximate the
normal distribution.

We initially performed a series of simple linear regressions
where the log-transformed TSH was related individually to
the 13 covariates. We then used multiple linear regression to
model the log-transformed TSH based on the combination of
all covariates.

In this model, prematurity, total parenteral nutrition,
dopamine administration, and blood transfusion were
combined into one regressor called infant factors; whereas
history of maternal autoimmune thyroid disease and
twin-delivery into a regressor called maternal factors.
The final model, therefore, included eight covariates:
sex, calendar year of birth, season of birth, province of
birth, age at blood drawing, birthweight, infant factors,
and maternal factors. A ninth covariate was created
by multiplying prematurity by birthweight to assess
their interaction.

Normal plot of residuals was used to check the normality
of the residual distribution. Linearity and equal variance
(homoscedasticity) of residuals were checked by examining the
plot of standardized residuals. Co-linearity between predictors
was tested using the test of variance inflation factor.

RESULTS

Outcomes of the CH Screening
Between January 1, 2011 and December 31, 2016, a total of 71,743
collection cards were received at the Abruzzo regional screening
center for primary CH, corresponding to 62,132 newborns. Of

them, 53,551 newborns (86.2%) had a TSH value <7 mU/L and
were therefore considered negative for primary CH (Figure 1).

In 1,423 newborns TSH was≥7 mU/L in the initial screening,
prompting the request of a second DBS sample, thus, yielding
a recall rate of 2.3%. The second TSH measurement was
abnormally elevated in 97 of 1,423 babies (7%, Figure 1)
who were therefore referred to a pediatric endocrinologist for
confirmatory testing (“highly suspicious for primary CH”).

In 6,594 newborns (10.6%) the TSH, although normal in the
initial screening, underwent a second test because of clinical
features that made them at higher risk of having a missed
diagnosis of primary CH (negative “at risk,” Figure 1). Of them,
23 (0.4%) have elevated TSH on second screen and were referred
to a pediatric endocrinologist for further investigation.

Of the referred 120 (97 + 23) newborns, 109 (89 + 20) had
abnormal serum T4 and TSH values on confirmatory laboratory
tests and initiated levothyroxine (L-T4) replacement therapy,
whereas 11 (8 + 3) had normal serum T4 and normal or slightly
elevated TSH, thus were classified as having “transient TSH
elevation” and underwent periodic follow-up (Figure 1). The first
group of newborns could not be distinguished from the latter
group based on the 13 covariates analyzed in the study.

A few newborns (564 of 62,132, 0.9%) had cards of poor
quality and/or containing insufficient blood (“inadequate”),
which prompted the drawing of a second blood sample. At the
second testing, the majority of them (98.9%) had normal TSH
values and were considered negative for primary CH.

Overall, the period prevalence of primary CH in this 6-
year interval was 0.17% (109 of 62,132, Figure 1). This value
corresponded to an incidence of primary CH of 1 case every
570 births. The second screening performed in the “negative at
risk” group identified three additional cases for 10,000 births.
No clinical data were available to distinguish transient from
permanent primary CH.

General Characteristics of the Study

Population
Of the total 62,132 screened newborns, 1,315 (2.1%) were
excluded from further analysis of factors influencing TSH
levels because of a lack of information about sex (6, 0.01%) or
birthweight (569, 0.9%), had an age > 15 days at the first blood
drawing (35, 0.06%), were born outside Abruzzo (21, 0.03%),
or lacked TSH value because the collection card was unsuitable
for the assay (564, 0.9%). In addition, we also removed from
the further analysis of factors influencing TSH levels the 120
babies that were confirmed to have elevated TSH, and thus
classified as “highly suspicious for primary CH,” to avoid the
skewness that would derive from the elevated TSH values that are
found in babies with thyroid dysgenesis or dyshormonogenesis
(Supplementary Figure 1). The remaining study population
included 60,817 newborns (Supplementary Table 1). Male
newborns (31,753, 52.2%) were slightly more numerous than
females (29,064, 47.8%; Supplementary Table 1). Summer
months recorded the highest natality (Supplementary Table 1),
with peaks in August and September (Figure 2A). Neonatal TSH
was highest in winter and lowest in summer months during the
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FIGURE 1 | Distribution of TSH results at the initial (first dried blood spot, DBS) and subsequent testing in 62,132 babies born in Abruzzo (Italy) between January 1,

2011 and December 31, 2016. DBS, dried blood spot, *17 lost to follow-up, ∧6 lost to follow-up, #Neonates belonging to the following categories: preterm, low

birthweight, twins, malformations, blood transfusions, dopamine, total parenteral nutrition, maternal thyroid disease CH Congenital hypothyroidism, L-T4

Levothyroxine.

6-year study period (Figure 2B). The province of Chieti had the
greatest number of births (21,837 of 670,818, 36%), followed
by Pescara (13,701, 23%), Teramo (11,344, 19%), and L’Aquila
(13,935, 23%) (Supplementary Table 1).

The median age at blood collection was 3 days (IQR 1), with
the vast majority (98%) of newborns tested between the 2nd and
4th day of age (Figure 2C). The median body weight at birth was
3,280 g (IQR 610, Supplementary Table 1).

About 4% of the newborns were preterm, 0.2% treated with
dopamine, 0.3% received total parenteral nutrition, 0.4% received
blood transfusions, 0.3% had malformations, 1.2% were born to
mothers with autoimmune thyroid disease, and 3.2% were twins
(Supplementary Table 1).

Individual Influence of the Risk Factors on

Neonatal TSH Levels
When the 13 covariates were analyzed individually by
simple linear regression for their influence on neonatal TSH

(Supplementary Table 2, Figure 2, Supplementary Figure 2),
the most notable effects were seen with prematurity, birthweight
(Figure 2), sex, neonatal age at blood collection, blood
transfusions, dopamine administration, and total parenteral
nutrition (Supplementary Figure 2). Prematurity was associated
with significantly lower TSH levels, with an average value
of 1.1 mU/L as compared to 1.8 mU/L in term babies (p <

0.0001, Figure 2D). Birthweight strongly influenced the levels
of TSH, which decreased in a dose-dependent fashion from
high to extremely low birthweight (Figure 2E). The effect of
birthweight on TSH, however, was modified by prematurity.
In particular, term infants with VLBW had higher TSH values
than those with NW, whereas preterm with LBW or VLBW
had lower TSH values than preterm with a normal birthweight
(Figure 2F). Sex and neonatal age at sample collection also
markedly affected TSH levels, which declined from a median of
3.5 mU/L in males and 2 mU/L in females on day 0–1.3 mU/L
in both genders on day 4, 5, and 6 (Supplementary Figure 1A).
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FIGURE 2 | (A) Monthly birth rate in Abruzzo (Italy) between January 1, 2011 and December 31, 2016. (B) Seasonal changes in neonatal TSH during the 6-year study

period. (C) Distribution of newborns according to their neonatal age (in days) at blood collection. Individual influence of prematurity (D), and birth weight (E) on

neonatal TSH levels. Influence of birth weight on neonatal TSH levels adjusted for prematurity (F).
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TABLE 1 | Multiple linear regression analysis of the factors affecting neonatal TSH.

ß Standard error (95% Confidence Interval) p-value

ß0 3.54 0.12 3.31 2.3.80 <0.0001

Sex, Male (Female ref) 1.11 0.01 1.09 1.12 <0.0001

Neonatal age at blood collection (Day 2–3 ref)

Day < 2 1.49 0.04 1.42 1.57 <0.0001

Day 4 0.80 0.01 0.79 0.82 <0.0001

Day 5 0.78 0.02 0.74 0.83 <0.0001

Day ≥ 6 0.80 0.03 0.75 0.85 <0.0001

Season of birth (Winter ref)

Spring 1.00 0.01 0.98 1.01 0.817

Summer 0.87 0.01 0.86 0.89 <0.0001

Fall 0.98 0.01 0.95 0.98 <0.0001

Infant factors

Preterm 0.85 0.03 0.80 0.91 <0.0001

Dopamine 0.71 0.05 0.62 0.81 <0.0001

Total parental nutrition 0.88 0.05 0.78 0.99 0.034

Blood transfusions 0.92 0.05 0.83 1.01 0.110

Malformations 1.17 0.07 1.04 1.31 0.010

Birth Weight (ref NW)

HBW 1.00 0.04 0.93 1.10 0.947

LBW 1.08 0.02 1.04 1.11 <0.0001

VLBW 1.40 0.21 1.05 1.89 0.023

ELBW 0.99 0.16 0.70 1.34 0.853

Interaction term

LBW × Preterm 0.89 0.04 0.82 0.96 0.004

VLBW × Preterm 0.65 0.10 0.48 0.89 0.023

ELBW × Preterm 0.97 0.16 0.69 1.34 0.853

Maternal factors

Maternal autoimmune TD 1.10 0.03 1.01 1.13 0.016

Twin delivery 0.92 0.02 0.89 0.96 <0.0001

Year of birth (2011 ref)

2012 0.68 0.01 0.67 0.70 <0.0001

2013 0.75 0.01 0.74 0.77 <0.0001

2014 0.95 0.01 0.93 0.97 <0.0001

2015 0.86 0.01 0.84 0.88 <0.0001

2016 0.80 0.01 0.79 0.82 <0.0001

Province of birth (Chieti ref)

Pescara 0.92 0.01 0.91 0.94 <0.0001

Teramo 0.85 0.01 0.84 0.87 <0.0001

L’Aquila 0.96 0.01 0.94 0.97 <0.0001

Observations 60,817

R2 0.36

Blood transfusions (Supplementary Figure 2B), dopamine
administration (Supplementary Figure 2C), and total
parenteral nutrition (Supplementary Figure 2D) were

associated with significantly lower TSH levels. Interestingly,
seasons significantly affected TSH levels, with the peak

value observed in winter (Supplementary Figure 3 and

Supplementary Table 2). The individual effect of the remaining
covariates was less pronounced, although reaching statistical

significance (summarized in Supplementary Figure 3 and
Supplementary Table 2).

Combined Influence of the Risk Factors on

Neonatal TSH Levels
When the covariates were analyzed in amultiple linear regression
model that related them to DBS TSH, most of them retained
statistical significance after adjusting for the influence of the
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FIGURE 3 | Values of the β regression coefficients in a multiple linear regression model that related the neonatal blood TSH levels to a set of nine covariates.
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others (Table 1 and Figure 3). The strength of their association
was modest, with regression coefficients ranging from a 50%
decrease to 40% increase in TSH levels, none of them causing a
2-fold or greater effect (Figure 3).

Infant Factors

Neonatal TSH was influenced by sex: males had higher TSH
levels than females (β regression coefficient, β = 1.11; 95%
CI 1.09, 1.12; p < 0.0001). Neonatal TSH, as expected, was
higher on day 0 and 1 compared to days 2–3 (β = 1.49;
95% CI 1.42, 1.57; p < 0.0001), whereas it showed a negative
correlation with age when measured on day 4, 5, or 6 of
life than on days 2–3 (β = 0.78; 95% CI 0.74, 0.83; p
< 0.0001).

The season of birth also influenced the neonatal TSH levels.
Neonates born in summer and autumn had a 13% (β= 0.87; 95%
CI 0.86, 0.89; p < 0.0001) and 2% (β = 0.98; 95% CI 0.95, 0.98; p
< 0.0001) lower TSH than those born in winter, respectively.

Preterm had a 15% lower TSH than term infants (β = 0.85;
95% CI 0.80, 0.91; p< 0.0001). Moreover, the use of dopamine (β
= 0.71; 95% CI 0.62, 0.81; p < 0.0001), total parenteral nutrition
(β = 0.88; 95% CI 0.78, 0.99; p = 0.034), and malformations
(β = 1.17; 95% CI 1.04, 1.34; p = 0.01) were also significantly
associated with TSH. Administration of blood transfusion, on the
contrary, had no significant effect on neonatal TSH.

In the univariate analysis, TSH was lower in LBW, VLBW,
and ELBW than in NW newborns. However, in the final
multiple linear regression model TSH was higher in LBW (β
= 1.08; 95% CI 1.04, 1.11; p < 0.0001) and in VLBW (β
= 1.40; 95% CI 1.05, 1.89; p = 0.023) compared to NW
newborns, after adjusting for prematurity. The relationship
between birthweight and TSH was also influenced by gestational
age. Indeed, preterm newborns with LBW (β = 0.89; 95%
CI 0.82, 0.96; p = 0.004) and VLBW (β = 0.65; 95%
CI 0.48, 0.89; p = 0.023) had lower TSH levels than
term infants.

Maternal Factors

Maternal history of pre-gestational autoimmune thyroid disease
was associated with higher neonatal TSH levels in the multiple
linear regression analysis (β= 1.10; 95% CI 1.01, 1.13; p= 0.016).
Twins had an 8% lower TSH value than singletons (β= 0.92; 95%
CI 0.89, 0.96; p < 0.0001).

Calculation of Neonatal TSH Percentile

Charts Based on Sex and Age
The significant effect of sex and age at blood collection had
on neonatal TSH levels prompted us to devise percentile charts
illustrating the distribution of TSH values in healthy neonates
(i.e., at term, normo-weight, not affected by primary CH,
Figure 4). The charts include eight lines corresponding to the 99,
97.5, 95, 90, 75, 50, 25 and 10th percentile. They depict the slightly
elevated TSH values in males during the first two days of life
and a more stable trend in the upper quartile of the distribution
between the 2nd and 4th day of life (shaded area in Figure 4).
Local percentile charts may be a useful tool to identify elevated
TSH values at each day of postnatal age in each sex.

FIGURE 4 | Neonatal TSH percentiles charts in healthy neonates according to

their neonatal age and sex [(males in panel (A) and females in panel (B)]. The

green line represents the 97.5th percentiles of neonatal TSH, which could be

used to establish TSH cut-off value at the screening centers.

DISCUSSION

We utilized newborn screening data over a 6-year period to
examine the associations between TSH levels and several infant
and maternal factors. This study revealed that neonatal TSH
is influenced by several factors including sex, age at blood
collection, prematurity, use of dopamine and total parenteral
nutrition, birthweight, season of birth, history of autoimmune
maternal thyroid disease, and twin-pregnancy.

Males had significantly higher TSH levels than females
in our study population, in keeping with what has been
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reported by most studies (9–13). Some studies, however, have
failed to show this sex difference (14–17), likely due to
smaller sample sizes and/or a focus on preterm newborns.
The mechanisms underlying the elevated neonatal TSH levels
in males remains unexplained. From a practical perspective,
however, this difference should encourage primary CH screening
programs to devise their own sex-specific cut-off values. When
coupled with age-specific cut-offs, local percentile charts, as we
have developed in this study, could improve the accuracy of
primary CH screening. The TSH for age and sex percentile charts
also underscore the importance of timing the blood collection
between the second and fourth day of life (4), so as not to miss
cases where TSH is mildly but persistently elevated (18).

The effect of prematurity on neonatal TSH has been
extensively investigated. Some studies found lower TSH levels in
preterm newborns than in those born after 37 weeks of gestation
(10, 19, 20), which is also what we found. Other studies, instead,
reported higher TSH values in preterm infants (11, 12, 17), and
others no difference in TSH levels according to gestational age
(9, 15). Since it has been shown that preterm babies have an
immature hypothalamo-pituitary axis (21), it is reasonable to
postulate that preterm infants indeed have lower TSH levels
and ascribe the variability to differences in blood collection
timing and study populations. It has also been proposed that
other conditions occurring in preterm, such as drug exposure
[dopamine (22), glucocorticoids (23)], total parenteral nutrition
(24), sepsis (25), and respiratory distress syndrome (25) decrease
TSH values in preterm babies. In our study, the administration of
dopamine and total parenteral nutrition was indeed associated
with lower TSH levels after controlling for preterm status.
However, the lower TSH levels observed in newborns treated
with dopamine and TPN may be related to concomitant severe
illness, not considered in our multivariate analysis.

The influence of birthweight on TSH remains debatable.
Several studies (10–12, 17, 26) have reported higher TSH levels
in LBW and VLBW babies than in NW babies. When the effect
was analyzed in a multiple regression model, however, we noted
it was modified by prematurity. In particular, preterm babies
with LBW or VLBW had lower TSH values than those with
a normal birthweight, whereas term infants with VLBW had
higher TSH values than those with NW. Our findings suggest
that preterm infants with LBW or VLBW require repeated TSH
testing to properly establish a diagnosis of primary CH, as highly
recommended by Hashemipour et al. (6) who systematically
reviewed previous works on screening for CH in preterm, LBW,
and VLBW infants.

The influence of the season of birth on neonatal TSH
has been reported in Belgium (16, 26), Latvia (27), Turkey
(28), Iran (29, 30), and Iowa (19), but never in Italy. We
found that neonatal TSH is significantly higher in winter than
summer and fall, in keeping with what has been reported
in Turkey, Iran and Iowa. In Belgium and Latvia, on the
contrary, TSH levels were found to be higher during the fall
months. The cause(s) of this seasonal variation is not known.
A decreased maternal consumption of iodine-rich foods during
the winter months could lead to increased TSH levels in the
baby. Alternatively, lower environmental temperatures could

stimulate the fetal pituitary to produce more TSH. In adults,
TSH hypersecretion secondary to low ambient temperatures has
indeed been reported in patients with primary hypothyroidism
on constant replacement dosage of thyroxine (31). Recently,
Yoshihara et al. (32) reported seasonal changes in TSH in 135,417
Japanese adult patients and a negative correlation between TSH
and daily temperature. Another possible explanation is the
relationship between maternal vitamin D and fetal TSH levels.
Barchetta et al. (33) and Das et al. (34) have reported that
TSH is higher in winter and inversely correlated with vitamin
D levels in euthyroid adults, offering a mechanism to explain
TSH seasonality.

Although the history of maternal thyroid disease is generally
considered a risk factor for CH (35–37), few studies have actually
examined its effect on neonatal TSH. Some authors (15, 16,
25) did not observe a relationship between history of maternal
thyroid dysfunction and/or thyroid nodules, and neonatal TSH,
either in univariate models or after adjusting for gestational age.
Others, focusing on the relation between autoimmune thyroid
disease and neonatal TSH levels, reported higher TSH values in
neonates born to mothers with autoimmune thyroid disease (38–
40). Consistent with the latter studies, we found that newborns
born to mothers with pre-gestational history of autoimmune
thyroid disease had higher TSH levels in multivariable, but not
univariate, models. The trans-placental passage of antibodies
blocking the TSH receptor and/or the use of anti-thyroid drugs
could be responsible for these neonatal thyroid dysfunctions.
However, we did not specifically evaluate the influence of anti-
thyroid drugs on neonatal TSH levels.

Twin deliveries represent a challenge for primary CH
screening. Our twins had lower TSH than singletons, in keeping
with the hypothesis that twins have a reduced post-natal rise in
TSH likely due to mixing of fetal blood in monozygotic twins
and increased risk of preterm delivery. We consider twins at
greater risk of missed or delayed primary CH diagnosis (41–44),
and confirm the use of special TSH screening protocols for this
category of newborns. The effect of twin pregnancy on TSH,
however, is not invariably reported. Ryckman et al. (25) and
Bosch-Gimenez et al. (14) reported no effect of twin pregnancy
on TSH levels in preterm newborns. In addition, Lee (15) showed
that the first of twin babies had higher TSH levels than singletons
in univariate analysis. In their multiple regression model, only
birth order influenced TSH levels, suggesting that a greater stress
occurring during delivery, rather than the fact of being a twin,
modified neonatal TSH levels.

Strengths of our study are the comprehensive assessment of
the main infant and maternal factors that have been reported to
influence neonatal TSH, as well as the large size and unbiased
nature of the study population. The multivariate analysis
performed is another strength, as it provides the true influence on
neonatal TSH of the variables analyzed. Weaknesses are related
mainly to the quality of the data source, that is the information
recorded on the collection cards. For example, cards listed the
gestational age as term or prematurity, rather than a true number,
a simplification that limited the possibility to define a neonate
small or appropriate for gestational age and thus to better
clarify the interaction between birthweight and prematurity.
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In addition, our collection cards did not include other factors
known to influence neonatal TSH [such as, maternal origin
(14), maternal thyroid function during pregnancy (25), iodine
supplementation (16), mode of delivery (15), APGAR score (45),
and hematocrit (46)], highlighting the need of replicating our
findings in more extended datasets. One major limitation is that
we lacked measures of iodine status. The Abruzzo region can
be considered a mildly iodine deficient area (47). Therefore,
we cannot exclude that iodine deficiency, even if mild, may
have contributed for any alteration in measured TSH levels in
this population.

In conclusion, this study highlights the influence of several
infant and maternal factors on neonatal TSH supporting
the delineation of own sex- and age-specific TSH cutoff
values that can be used to refine local screening protocols.
The study also supports the universal adoption of a second
TSH screening in neonates at risk of missed primary
CH detection.
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Neonatal Diabetes Mellitus
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Diabetology and Obesity Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland, 5 Inserm
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Neonatal Diabetes (ND) mellitus is a rare genetic disease (1 in 90,000 live births). It is

defined by the presence of severe hyperglycaemia associated with insufficient or no

circulating insulin, occurring mainly before 6 months of age and rarely between 6 months

and 1 year. Such hyperglycaemia requires either transient treatment with insulin in about

half of cases, or permanent insulin treatment. The disease is explained by two major

groups of mechanism: malformation of the pancreas with altered insulin-secreting cells

development/survival or abnormal function of the existing pancreatic β cell. The most

frequent genetic causes of neonatal diabetes mellitus with abnormal β cell function

are abnormalities of the 6q24 locus and mutations of the ABCC8 or KCNJ11 genes

coding for the potassium channel in the pancreatic β cell. Other genes are associated

with pancreas malformation or insufficient β cells development or destruction of β cells.

Clinically, compared to patients with an ABCC8 or KCNJ11 mutation, patients with a

6q24 abnormality have lower birth weight and height, are younger at diagnosis and

remission, and have a higher malformation frequency. Patients with an ABCC8 or

KCNJ11mutation have neurological and neuropsychological disorders in all those tested

carefully. Up to 86% of patients who go into remission have recurrent diabetes when they

reach puberty, with no difference due to the genetic origin. All these results reinforce the

importance of prolonged follow-up by amultidisciplinary pediatric team, and later doctors

specializing in adult medicine. 90% of the patients with an ABCC8 or KCNJ11 mutation

as well as those with 6q24 anomalies are amenable to a successful switch from insulin

injection to oral sulfonylureas.

Keywords: neonatal diabetes mellitus, chromosome 6q24 abnormality, associated malformations,

neuropsychological disorder, KCNJ11 (Kir6.2), ABCC8, sulfonylurea receptor (SUR1)
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DEFINITION

Diabetes mellitus in very young children or neonatal diabetes
is a rare genetic disease (minimal incidence: 1 in 90,000 live
births) with variations within different ethnic groups (1–3). It
is defined by the presence of severe hyperglycaemia requiring
treatment and occurs between the neonatal period and infancy.
It occurs mainly before 6 months of age (155/173 probands
in our published cohort) and rarely between 6 months and 1
year (18/173) (4). In the Finnish population for example, after
6 months of age, patients with diabetes had high HLA risk
genotypes and islet autoantibodies, reflecting the autoimmune
character of diabetes (5). This hyperglycaemia is associated with
insufficient or no circulating insulin (3). Two clinical forms have
been distinguished, based on the duration of the treatment: a so
called “transient form” and a permanent form.

The disease is explained by two major groups of mechanism:
malformation of the pancreas or abnormal function of the
pancreatic β cell that secretes insulin (by poor insulin cell
mass development or malfunction of a cell component or by
destruction of the β cell) (Table 1) (see Figure 1 for the normal
functioning of the β cell).

GENETIC CAUSES

Abnormal β Cell Function
The most frequent genetic causes of neonatal diabetes with
normal pancreas morphology are abnormalities of the 6q24
locus and mutations of the genes coding for the ATP-dependent
potassium channel.

6q24 (MIM#601410 and 603044)
The first genetic causes identified were abnormalities of the
6q24 locus, which include paternal uniparental disomy of 6q24
(pUPD6), partial duplication of paternal 6q24 and relaxation
of the maternal 6q24 imprinted locus. This locus contains
a CpG island, presenting differential methylation depending
on the parental origin (non-methylation on the paternal
allele, methylation on the maternal allele) (6). To date, the
methylation abnormality has not been found in the parents of
affected children. Methylation is used to down-regulate gene
transcription of themethylated allele. All these abnormalities lead
to over-expression of imprinted genes located in 6q24, such as
PLAGL1/ZAC (pleiomorphic adenoma gene-like 1) and HYMAI
(Hydatidiform mole-associated and imprinted transcript), which
are the most “likely” candidate genes (6–8). PLAGL-1 codes for
a transcription factor involved in regulation of stopping the cell
cycle and apoptosis and in induction of the receptor 1 gene
for human pituitary adenylate cyclase-activating polypeptide
(PACAP1, which is a potent stimulant of insulin secretion). The
function of the HYMAI gene is unknown (9). The mechanism
responsible for the diabetes could be linked to a developmental
defect in the β cells but the fact that remission of the diabetes
occurs means that an abnormality in β cell function cannot
be ruled out (10). The 6q24 abnormalities are associated with
“transient” neonatal diabetes (7, 8, 11).

The ZFP57 gene (MIM ∗612192) is involved in maintaining
methylation of the DNA during the very early stages of
embryogenesis. It is localized at 6p22.1. Homozygous mutations
leading to a lack of protein or non-functional protein are
associated with widespread DNA hypomethylation, including
hypomethylation of the 6q24 locus (12). However, there are
patients who have a 6q24 methylation abnormality not due to
mutations of this gene (12).

Mutations of the ABCC8 and KCNJ11 Genes Coding

for the KATP Channel: (MIM ∗600509 and ∗600937)
The ATP-dependent potassium channel (KATP channel) plays a
central role in stimulating insulin secretion by the pancreatic
β cell in response to glucose. At low blood sugar levels
(e.g., fasting), the KATP channels are open (activated) and
their activity maintains a hyperpolarized resting membrane
potential (around −70mV). A rise in blood sugar level (e.g.,
post-prandial) causes increased passage of glucose into the β

cell. Glucose enters the glycolysis pathway, which increases
the intracellular ATP concentration. This causes the KATP

channels to close (inhibition), which leads to the intracellular
potassium accumulation that causes membrane depolarization.
This depolarization activates the voltage-dependent calcium
channels, leading to Ca2+ ions entering the β cell, then enabling
exocytosis of the secretion vesicles and release of insulin into the
bloodstream (Figure 1).

The KATP channel is an octamer formed from two types of
subunits: the Kir6.2 subunits form the channel selective for the
incoming corrective potassium enclosed in SUR1 ion-channel
regulator subunits (13, 14). They are coded by the KCNJ11 and
ABCC8 genes, respectively.

Activating mutations in one of these two genes are responsible
for neonatal diabetes with normal pancreas morphology (15–17).
They result in the KATP channel remaining permanently open,
so that it no longer controls membrane potential in response
to glucose and therefore blocks the event cascade that leads to
insulin release.

Mutations of the Insulin Gene (INS) (MIM ∗176730)
The third cause of neonatal diabetes, by frequency, is mutations
of the insulin gene (INS). The majority are heterozygous
mutations affecting the structure of preproinsulin; these are
transmitted in an autosomal dominant manner (18, 19). The
abnormal proinsulin undergoes degradation in the endoplasmic
reticulum, leading to severe endoplasmic reticulum (ER) stress
and β cell death. This process has been described in mouse
models (20) and in man (21, 22). Recent evidence suggests that
INS mutations do not necessarily lead to beta-cell death but
rather the chronic ER stress interferes with beta-cell growth and
development (23).

Some mutations alter expression of the protein. They are
transmitted in a recessive manner, in the majority of cases
in consanguineous families. These mutations affect the insulin
promoter directly of by mutation in factor that enhances its
activity (24, 25).

Frontiers in Pediatrics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 54071826

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Beltrand et al. Neonatal Diabetes

TABLE 1 | Genetic causes of monogenic neonatal diabetes based on physiopathological mechanisms [excluding 6q24 locus abnormalities (MIM *601410,

*603044, and *612192)].

Gene/Protein Function Locus Transmission mode Type of diabetes Reference

OMIM numbers

BETA CELL FUNCTION ABNORMALITY

ABCC8/SUR1 KATP channel/insulin

secretion

11p15.1 Dominant PND/TND/iDEND/DEND MIM *600509

KCNJ11/Kir6.2 KATP channel/insulin

secretion

11p15.1 Dominant PND/TND/iDEND/DEND MIM *600937

INS/Insulin Hormone 11p15.5 Rare Recessive Isolated TND/PND MIM *176730

GCK/Glucokinase Glucose metabolism 7p15.3-p15.1 Recessive/Dominant Heterozygous: MODY2

Homozygous: PND

MIM *138079

SLC2A2/GLUT2 Membrane receptor 3q26.1-q26.2 Recessive PND/TND + Fanconi-Bickel

syndrome (glycogenosis)

Proximal tubulopathy + small size +

rickets + abnormality of glucose and

galactose metabolism

MIM *138160

SLC19A2 Thiamine transporter 1q23.3 Recessive Rogers Syndrome: Thiamine-sensitive

megaloblastic anemia + diabetes +

perceptive deafness ± PND

MIM *603941

ENDOCRINE PANCREAS DEVELOPMENT ABNORMALITY

GATA6/GATA6 Transcription factor 18q11.1-q11.2 Dominant PND by pancreas

agenesis/hypoplasia + congenital

cardiopathy + biliary tract

abnormalities

MIM *601656

GLIS3/Zinc finger protein,

GLIS3

Transcription factor 9p24.2 Recessive PND + congenital hypothyroidism ±

progressive hepatic fibrosis ± cystic

renal dysplasia ± congenital

glaucoma

MIM *610192

HNF1β/HNF1β Transcription factor 17q12 Dominant MODY5 or TND + pancreatic

hypoplasia + renal cyst

MIM *189907

NEUROD1/BETA2 Transcription factor 2q31.3 Recessive/Dominant Heterozygous: MODY6

Homozygous: PND + cerebellar

hypoplasia + visual defect +

perceptive deafness

MIM *601724

NEUROG3/Neurogenin3 Transcription factor 10q21.3 Recessive Homozygous hypomorphic mutation:

congenital malabsorption diarrhea +

late-onset diabetes (8 years)

Homozygous nonsense mutation:

PND + congenital

malabsorption diarrhea

MIM *604882

PAX6/aniridia type II protein,

Pax6

Transcription factor 11p13 Recessive PND + microphthalmia + cerebral

malformation

MIM *607108

PDX1 (or IPF1)/

Pancreas/duodenum

homeobox protein 1

Transcription factor 13q12.1 Recessive/Dominant Heterozygous: MODY4

Homozygous nonsense mutation:

PND by agenesis/hypoplasia of the

pancreas

Homozygous hypomorphic mutation:

PND by hypoplasia of the pancreas

MIM *600733

PTF1A/Pancreas

Transcription Factor 1

Transcription factor 10p12.2 Recessive PND by agenesis of the pancreas +

cerebellar agenesis

MIM *607194

RFX6/Rfx6 Transcription factor 6q22.1 Recessive Martinez-Frias Syndrome: Pancreatic

hypoplasia + intestinal atresia with

diarrhea + agenesis/hypoplasia of the

gall bladder

MIM *612659

CNOT1 Transcriptional repressor 16q21 De novo specific

mechanism of the mutation

Pancreatic agenesis +

holoprosencephaly

MIM *604917

(Continued)
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TABLE 1 | Continued

Gene/Protein Function Locus Transmission mode Type of diabetes Reference

OMIM numbers

DESTRUCTION/ENDOPLASMIC RETICULUM STRESS WITH LOW INSULIN CELL MASS OR DESTRUCTION OR EARLY IMMUNE DESTRUCTION

OF THE BETA CELLS

INS/Insulin Hormone 11p15.5 Dominant PND MIM *176730

EIF2AK3/EIF2AK3 Enzyme 2p11.2 Recessive Wolcott Rallison Syndrome: PND +

epiphyseal dysplasia

MIM *604032

IER3IP1/immediate early

response 3-interacting

protein 1

Endoplasmic reticulum

protein

18q12 Recessive PND + microcephaly + lissencephaly

+ epilepsy

MIM *300292

FOXP3/Forkhead box

protein P3

Transcription factor

(Forkhead domain)

Xp11.23 X-linked recessive IPEX syndrome:

Immunodysregulation

Polyendocrinopathy Enteropathy

X-linked: PND + increased IgE levels

MIM *300292

STAT3 Transcription factor 17q21.2 Dominant Autoimmune disease, multisystem

PND

MIM *102582

WFS1/Wolframin Transmembrane protein of

the endoplasmic reticulum

4p16.1 Recessive Wolfram Syndrome: PND + optic

atrophy ± diabetes insipidus ±

deafness (DIDMOAD)

MIM *222300

ND, neonatal diabetes; PND, permanent neonatal diabetes; TND, transient neonatal diabetes; DEND, Developmental delay, Epilepsy and Neonatal Diabetes; iDEND, intermediate DEND

= DEND without epilepsy; MODY, Maturity Onset Diabetes of the Young.

FIGURE 1 | Mechanism of insulin secretion in response to glucose and glibenclamide.

Mutations of the Glucokinase Gene (MIM ∗138079)
Glucokinase is responsible for the first step of glucosemetabolism
in the β cell. It acts as a “sensor” of blood glucose, making it
possible to control the quantity of insulin secreted. Nonsense
mutations of the glucokinase gene cause MODY 2 (Maturity

onset diabetes in the youth type 2), which usually presents as
moderate hyperglycaemia (26). Transmission is heterozygous.
In the homozygous state, these nonsense mutations cause
neonatal diabetes by complete deficiency of glucokinase-
mediated glycolysis (27). This is not a frequent cause of neonatal
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diabetes (28, 29). However, an assay of the fasting blood glucose
concentration is required from both parents, particularly if there
is a history of gestational diabetes. The discovery of discreet
glucose intolerance in both parents should therefore lead to a
search for glucokinase gene mutations.

Abnormal Pancreas Morphology
Several genes are linked to neonatal diabetes with abnormal
pancreasmorphology and precise description is beyond the scope
of this chapter (see Table 1 for a brief information). These genes
are involved in development of the pancreas at various stages
in early morphogenesis. These neonatal diabetes cases may be
associated with a deficiency of the exocrine pancreas, based
on the severity of pancreatic damage or to other congenital
malformations. Mutation of the RFX-6 gene deserves a specific
comment. The RFX-6 transcription factor is involved in the
differentiation of beta-cells in the pancreas during embryonic
development of the pancreas. It is also expressed in mature
cells where it has a role in regulating insulin transcription and
secretion. It actually controls the expression and activation of
calcium channels and its inactivation alters insulin secretion in
response to glucose. A few cases of neonatal diabetes have been
reported. Patients display developmental abnormalities of the
pancreas and of the digestive tract. The mechanism is linked to
both a developmental and a functional disorder of the endocrine
pancreas. Transmission is autosomal recessive (Table 1).

Autoimmune Neonatal Diabetes Mellitus
Most patients diagnosed with diabetes between 6 and 12 months
of age will have the “typical” type 1 diabetes mellitus seen in
older children with positive autoantibodies against the beta cell.
Autoimmune diabetes is very rare before 6months of age and will
most often be linked to specific causes.

IPEX Syndrome (Table 1)
Mutations of the FOXP3 gene may be responsible for
enteropathy, immune dysregulation and polyendocrinopathy.
It is a cause of neonatal diabetes associated with early
autoimmunity directed against the beta cells of the pancreas.
This diagnosis should be considered in male infants presenting
diabetes associated with immune deficiency and/or severe
infections. Immunosuppressant treatment can be considered
(serolimus, corticosteroids) but bone marrow transplant must
be considered as soon as the child’s clinical condition allows.
Insulin treatment will be combined with specialized nutritional
management (parenteral ± enteral nutrition) before and after
the transplant. It should be noted that, while correcting immune
deficiencies, this will not eliminate the diabetes.

Down Syndrome and Neonatal Diabetes
Patients with Down syndrome (DS) resulting from trisomy 21
are more likely to have childhood diabetes mellitus. Professor
Hattersley’s group found 13 infants affected by DS who were
diagnosed with diabetes before the age of 6 months. Trisomy 21
was seven times more likely in their PNDM cohort than in the
general population (13 of 1,522 = 85 of 10,000 observed vs. 12.6

of 10,000 expected). Known PNDM genes explains 82.9% of non-
DS PNDM in their work. None of the 13 DS-PNDM patients had
a mutation in those genes. The conclusion from this work is that
trisomy 21 is a cause of autoimmune PNDM that is not HLA
associated (30).

Other mutations, such as the activating STAT3mutations have
been described which cause neonatal diabetes associated with
beta-cell autoimmunity (Table 1).

CLINICAL DESCRIPTION

There are two clinical forms of neonatal diabetes based on the
duration of insulin-dependency. In the transient form, treatment
may be stopped at any time from the first weeks of life to 5 years of
age (4). In the permanent forms, life-long treatment is necessary.

The clinical difference between transient and permanent
neonatal diabetes is not always underpinned by distinct
molecular mechanisms. Abnormalities of the 6q24 locus are
exclusively linked to transient neonatal diabetes. However,
mutations of the ABCC8, KCNJ11, and INS genes are linked to
both permanent and transient forms (17, 18, 25). Other genetic
causes are associated with permanent neonatal diabetes.

Neonatal diabetes is usually diagnosed before 6 months of age.
However, the age of diagnosis varies depending on genetic causes:
diabetes due to a 6q24 locus abnormality appears before the age
of 1 month in 93% of cases and before the age of 3 months in
100% of cases. In ABCC8 and KCNJ11 gene mutations, it appears
before the age of 1 month in 30% of cases and between 1 and 6
months in 66% of cases (4).

At birth, patients have a birth-weight below the 10th percentile
in 62% of cases (4), highlighting the crucial role of insulin
secretion in fetal growth. This intrauterine growth retardation is
found in all genetic groups with a greater proportion in patients
with a 6q24 abnormality than those carrying aABCC8 orKCNJ11
mutation (92 vs. 48%, p < 0.001) (4).

Half of patients with a detectable pancreas by ultrasound
experience remission from the diabetes in our cohort (4). This
occurs at the age of about 4 months. There is a difference
depending on the genetic cause. Patients with a 6q24 locus
abnormality are in remission before the age of 1 year in 97% of
cases (median age 14 weeks) while remission may go as far as the
age of 5 years in patients with an ABCC8 or KCNJ11 mutation
(median age 39 weeks) (4, 31). Patients with a rare recessive
mutation of the INS gene have remission at a median age of
12 weeks (24), whereas the majority of the INS gene mutations
are dominant and they never go into remission. The diabetes
frequently relapses (in up to 86% of cases) at the onset of puberty,
probably due to the insulin resistance of puberty (4, 32). There is
no difference between the genetic groups.

Depending on the genetic cause, patients with neonatal
diabetes may have other clinical signs associated with
diabetes (Table 1).

In neonatal diabetes with normal pancreas morphology,
there are associated neurological disorders and developmental
defects. Approximately 25% of patients with a mutation of
the ABCC8 or KCNJ11 genes have neurological disorders
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ranging from psychomotor disorders to delayed cognitive
development associated with severe epilepsy (DEND syndrome:
Developmental delay, Epilepsy, and Neonatal Diabetes) (33). In
addition, we have shown that when patients undergo detailed
neuro-psychomotor and neuropsychological tests, an attention
deficit or language disorder extending as far as dyslexia is found
in 100% of cases (4).

Patients with a 6q24 locus abnormality may have
developmental defects (macroglossia, umbilical hernia,
cardiac malformations, renal and urinary malformations,
non-autoimmune anemia, hypothyroidism with gland in situ)
and neurological disorders (4, 11).

In neonatal diabetes with abnormal pancreas morphology or
with β cell destruction, the associated malformations depend
on the genetic causes and are often grouped into defined
syndromes (Table 1). Figure 2 illustrates a diagnostic strategy by
molecular biology.

Recent long-term follow-up data in TNDM support a decrease
in maximal insulin secretion capacity to both glucose and
arginine stimuli that reflect low insulin mass (34). This study also
showed that, regardless of the underlying genetic abnormalities
or the duration of diabetes, TNDM was associated with learning
difficulties at school. The high relapse rate and absence of
identified predictors of relapse in TNDM suggest a need for an
HbA1c assay at least every 2 years throughout childhood and
for an HbA1c assay and oral glucose tolerance test every year
throughout adolescence (34). During childhood, close attention
should be directed to education and neurodevelopmental
milestones, in TNDM patients with and without diabetes (34).

THERAPEUTIC ASPECTS

Drug Treatment
Due to the early onset and associated delayed intrauterine
retardation, patients with neonatal diabetes very often receive
their initial treatment in a neonatal department. The initial
treatment aims to rebalance carbohydrate metabolism. It should
be started immediately following diagnosis. The treatment
consists of the balance between a calorie and carbohydrate
intake necessary to restore normal weight without being excessive
to avoid the risk of future insulin resistance (15–18 g/kg/d
carbohydrate) and sufficient insulin-based treatment to achieve
the correct metabolic equilibrium. Restricting intake below
the nutritional recommendations for children with low birth
weight is ineffective given the physiopathology of circulating
insulin deficiency.

Insulin-based treatment is difficult to manage due to the very
low weight. The therapeutic margins between hypoglycemia and
hyperglycemia are small, and both are harmful for neurological
development of the newborn. Using an insulin pump with
or without dilution of the insulin to 1:10 in 0.9% NaCl
(or with a bona-fide diluent if available) can sometimes improve
manageability of the insulin during the first weeks of life (35, 36).
Blood glucose meters must be able to give a reliable measurement
of capillary blood sugar level with the smallest possible quantity
of blood (e.g., 0.3 µl blood). Few “conventional” blood glucose
meters meet this criterion. Conventional capillary measurements

can be done on the side edge of all the fingers, using auto-lancets
offering variable pricking depths. This offers the advantage of
sparing newborns’ heels. An alternative is to use continuous
glucose sensors, either isolated or combined with an insulin
pump. In addition to enabling rapid access to interstitial blood
glucose (they provide a proxy but do not actually measure the
blood glucose value), they can now be coupled to the insulin
pump,making it possible to activate the system to stop the insulin
pump during hypoglycemia or before it occurs. They also have
the advantage of minimizing the number of pricks of the skin.
Used under suitable hygiene conditions, there is no increase in
skin infections. It is advisable to involve experienced clinicians
when treating the child and using these techniques.

Patients with ABCC8 or KCNJ11 mutations are treated
successfully using hypoglycemic sulfonylureas, which act by
binding to the regulator SUR1 subunit of the potassium
channel (37) (Figure 1). The mutated channels remain sensitive
to sulfonylureas in 90% of cases, having an inhibitory
effect on the potassium channel of the pancreatic β cell
and restoring insulin secretion in response to a meal (38).
Sulfonylurea therapy appears to be safe and often successful
in neonatal diabetes patients before genetic testing results are
available (39). An empiric inpatient trial of sulfonylurea can
be therefore considered (39). However, obtaining a genetic
diagnosis remains imperative to inform long-term management
and prognosis.

It has now been demonstrated that treatment with
Sulfonylureas provide a better metabolic equilibrium than
insulin by normalizing the HbA1c while strongly reducing
the incidence of hypoglycemia in cases of neonatal diabetes
with ABCC8 or KCNJ11 mutations. It was also shown recently
that hypoglycemic sulphonylureas were able to improve
neurological, neuropsychological and visuomotor impairment if
they are introduced early in the child’s life (33, 40, 41). Finally,
a recent study has shown that it could sometimes be used
successfully to replace insulin in neonatal diabetes associated
with chromosome 6 methylation abnormalities (42). This
emphasizes the importance of making a genetic diagnosis rapidly
after diagnosing neonatal diabetes, and especially the early
introduction of sulphonylureas. The clinician’s aim will be to
treat the child with the maximum dose that normalizes blood
glucose levels (pre-prandial target: 70–120mg/dL—post-prandial
target: 100–145 mg/dL) without causing hypoglycemia, in order
to optimize the drug’s effect on the central nervous system.
Sulphonylureas are currently only available as a 5mg tablet and
are not licensed for indications in neonatal diabetes. However,
glibenclamide has recently obtained the orphan-drug indication
from the European Medicine Agency (EMA) in neonatal
diabetes. Unlicensed administration is currently achieved by
parents through crushing and extemporaneous dilution of
the tablets. However, the crushed tablets are poorly soluble
in water, which may lead to variations in the dosage actually
received by the child. To resolve this problem, a sulphonylurea
suspension called AmglidiaR has demonstratable efficacy in
this indication (43) and has recently obtained a European
Marketing Authorization; it has been available in France under a
temporary authorization for use (ATU: Autorisation Temporaire
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FIGURE 2 | Molecular biology approach to neonatal diabetes (44).

d’Utilization) since 2019. It will enable dosages to be adapted
more accurately.

An Appendix added to this text describes succinctly the
practical aspects of the switch from insulin injection to
the glibenclamide suspension licensed in European Union
for children and refers to the official summary of product
characteristics for detailed information.

Importance of the Genetic Diagnosis
Genetic analyses enables the diagnosis of monogenic diabetes in
nearly 83% of diabetes diagnosed before the age of 6 months (30).
This genetic diagnosis is essential as it will both influence the
therapeutic treatment and make it possible to predict potential
diabetes-related complications or illnesses. Genetic analyses must
be carried out when diagnosing diabetes mellitus in all of the
following children: age <6 months when diabetes mellitus is
detected, or between 6 months and 1 year if extra-pancreatic
features and/or no evidence of pancreas autoimmunity and/or
multiple autoimmune disorders or unusual family history or
associated congenital defects (Figure 2) (44). Testing should
not be delayed until other symptoms of the disease appear or
potential remission of the disease. It is also of utmost importance
to identify if the sulfonylureas can be introduced successfully

as high-dose sulfonylurea therapy has been shown to be an
appropriate treatment for patients with KCNJ11 permanent
neonatal diabetes from diagnosis. This therapy has been shown
to be safe and highly effective, maintaining excellent glycemic
control for at least 10 years (45).

CONCLUSION

Neonatal diabetes is a model of rare human genetic disease,
important in the understanding of the development and
function of the pancreatic β cell, and in helping to resolve
the pathophysiology of more frequent adult diabetes, such
as type 2 diabetes. Neonatal diabetes is often associated
with specific neuropsychological or developmental disorders
of underlying genetic causes. A multidisciplinary approach is
therefore essential. All clinicians called upon to treat a patient
with neonatal diabetes should look for these clinical signs.
Knowing the natural history and complete phenotype of this
disease makes it possible, firstly, to offer patients better treatment
and, secondly, to broaden the scope of genetic analyses to genes
involved in the development and function of other organs.
Long-term follow-up should be implemented, including for the
so-called “transient” forms of neonatal diabetes.
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Adrenal insufficiency (AI) is a potentially life-threatening condition that can be difficult

to diagnose, especially if it is not considered as a potential cause of a child’s

clinical presentation or unexpected deterioration. Children who present with AI in early

life can have signs of glucocorticoid deficiency (hyperpigmentation, hypoglycemia,

prolonged jaundice, poor weight gain), mineralocorticoid deficiency (hypotension, salt

loss, collapse), adrenal androgen excess (atypical genitalia), or associated features linked

to a specific underlying condition. Here, we provide an overview of causes of childhood

AI, with a focus on genetic conditions that present in the first few months of life.

Reaching a specific diagnosis can have lifelong implications for focusing management in

an individual, and for counseling the family about inheritance and the risk of recurrence.

Keywords: adrenal insufficiency, Addison’s disease, adrenal hypoplasia, congenital adrenal hyperplasia,

glucocorticoid, DAX-1, MIRAGE syndrome, genetic testing

INTRODUCTION

Adrenal insufficiency (AI) is a potentially life-threatening condition that needs urgent diagnosis
and treatment (1–4). AI is relatively rare in early life, affecting approximately 1:5,000–10,000
children, and its features can be non-specific. Children can be initially mis-diagnosed as having
sepsis, metabolic conditions, or cardiovascular disease, highlighting the need to consider adrenal
dysfunction as a differential diagnosis for an unwell or deteriorating infant. Prompt recognition
allows the correct investigations to be undertaken urgently and definitive management to
be established.

AI can be broadly divided into secondary causes, due to disruption of hypothalamic or pituitary
(corticotrope) ACTH release, and primary causes, which affect the adrenal gland itself. Although
some conditions have fairly typical presentation patterns and ages of onset, there is often a spectrum
of features, and milder variants may produce partial or delayed onset forms of classic conditions
(5, 6). Associated features can sometimes give a clue to the diagnosis.

Here, we provide a brief summary of the genetic causes of AI that tend to present in the neonatal
period or first few months of life, and the implications of making a specific genetic diagnosis for
management. While the focus of this minireview is very much on genetic causes, physical causes
(such as adrenal hemorrhage or infiltration) should not be overlooked.
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SECONDARY ADRENAL INSUFFICIENCY

Secondary AI is caused by impaired ACTH synthesis and
release from pituitary corticotrope cells (Figure 1A). ACTH
deficiency can be isolated or can occur as part of a combined
(multiple) pituitary hormone deficiency (CPHD) due to
defects in hypothalamo-pituitary function (Table 1). Usually
glucocorticoid release is affected, whereas disturbances in
mineralocorticoid function and salt balance are unusual as
aldosterone synthesis is primarily under the control of the renin-
angiotensin system.

Combined Pituitary Hormone Deficiency
Several genetic causes of CPHD are reported (e.g., GLI1,
HESX1, LHX3, LHX4, SOX3, SOX2 and others) (8).
Pituitary ACTH insufficiency usually occurs together with
loss of other anterior pituitary hormones (GH, TSH,
LH/FSH). Concomitant GH and ACTH insufficiency
often causes hypoglycemia in young children, and a small
penis and undescended testes may be a sign of congenital
gonadotropin insufficiency in boys (9). Other associated
features include septo-optic dysplasia or specific associations
such as micro-ophthalmia (SOX2, OTX2). Disruption of
PROP1 or GH1 can cause ACTH insufficiency in later
life (10).

Isolated ACTH Deficiency
Isolated ACTH deficiency can occur due to disruption
of TPIT (TBX19), or with associated features due to
defects in pro-opiomelanocortin (POMC) or pro-hormone
convertase-1 (PC-1/PCSK1).

TPIT is a transcription factor that regulates synthesis
of POMC in pituitary corticotrope cells, but not in other
POMC producing cells of the body (e.g., skin, hypothalamus)
(11). POMC is a precursor molecule that is cleaved to
release ACTH along with other peptides (e.g., alpha-MSH,
beta-endorphin) (Figure 1A). Children with severe disruption
of TPIT usually present with evidence of glucocorticoid
insufficiency, such as hypoglycemia or hypoglycemic seizures,
and prolonged conjugated hyperbilirubinemia in the first
few weeks of life (12, 13). This contrasts to late-onset
isolated ACTH insufficiency, where the molecular basis is
currently unknown.

Defects in POMC itself also result in ACTH insufficiency
and adrenal dysfunction in early infancy (14). Children
have red (or auburn) hair and pale skin due to MSH
deficiency, and profound hyperphagia and weight
gain from later infancy due to hypothalamic POMC
disruption (15). MC4R agonists, which mimic MSH,
have had promising results in suppressing hyperphagia
in this condition, so it is an important diagnosis to
make (16).

Disruption of the cleavage enzyme prohormone convertase-
1 (PC-1, PCSK1) also presents with ACTH insufficiency,
together with hypoglycemia, malabsorptive diarrhea, obesity, and
hypogonadism (17, 18). This diagnosis is rare.

PRIMARY ADRENAL INSUFFICIENCY

An overview of monogenic causes of primary adrenal
insufficiency (PAI) in childhood is shown in Table 1 and
Figures 1A,B, together with inheritance patterns and associated
features. Here, we focus primarily on key genetic causes of
PAI that present in the first few months of life. Disorders
of salt-balance (e.g., aldosterone synthase deficiency) are
not included.

Disorders of Steroidogenesis
Smith–Lemli–Opitz Syndrome
Smith–Lemli–Opitz syndrome is a defect in cholesterol
biosynthesis due to disruption of the enzyme 7-
dehydrocholesterol reductase (DHCR7) (19). Common findings
in infancy are microcephaly, cleft palate, syndactyly of the
second and third toes, post-axial polydactyly, congenital heart
defects, gastrointestinal issues (e.g., pyloric stenosis), atypical
genital and undescended testes (46,XY) and characteristic facial
features (20). AI or impaired stress response can occur, but
are surprisingly rare (21, 22). Elevated 7-dehydrocholesterol is
diagnostic, coupled with genetic testing.

Early Steroidogenic Defects (STAR/CYP11A1)
Steroidogenic acute regulatory protein (STAR) plays a key
role in cholesterol transport into the mitochondria, whereas
the P450 cholesterol side-change cleave enzyme (P450scc,
encoded by CYP11A1) catalyzes the conversion of cholesterol
to pregnenolone (Figure 1) (23, 24). These proteins are
both required for adrenal (glucocorticoid, mineralocorticoid)
and gonadal (testosterone, estrogen) steroid synthesis. Severe
disruption causes salt-losing AI in all children and female-typical
external genitalia in 46,XY infants. The onset of PAI usually
occurs at around 3–4 weeks of age in complete STAR deficiency
(also known as “congenital lipoid adrenal hyperplasia”), as build-
up of intracellular cholesterol takes time to cause cellular damage
(“two-hit hypothesis”) (25). In contrast, infants with a severe
P450scc deficiency usually present with salt-losing PAI at around
7-10 days (26, 27). Partial disruption of these proteins results in
predominant glucocorticoid insufficiency in childhood (27–31).

Congenital Adrenal Hyperplasia
The most common cause of PAI in the first month of life
is congenital adrenal hyperplasia (CAH) (23). In virtually all
populations, 21-hydroxylase deficiency (21-OHD, CYP21A2) is
most prevalent, with an incidence of 1:10,000–1:20,000 (although
geographical hotspots occur) (32, 33). Other rare forms of CAH
include 11 beta-hydroxylase deficiency (CYP11B1) (especially
in Jewish populations originating from Morocco), 3 beta-
hydroxysteroid dehydrogenase deficiency (HSD3B2), 17 alpha-
hydroxylase deficiency (CYP17A1) and P450 oxidoreductase
deficiency (POR), all of which have specific presentations and
biochemical profiles (Table 1) (23).

Approximately 80% of 46,XX girls with confirmed 21-OHD
have atypical genitalia at birth, so any baby with genital
differences and non-palpable gonads should be considered as
having 21-OHD until proven otherwise (33, 34). Progressive salt
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FIGURE 1 | Genetic mechanisms of pediatric adrenal insufficiency (AI) along the hypothalamo-pituitary-adrenal (HPA) axis. Key genes are shown in white boxes.

(A) Genetic causes of AI as they relate to the mature HPA axis. These genes are required for a multitude of key enzymatic and biochemical processes occurring within

the nucleus, mitochondria, and cytoplasm. Disruption of these genes gives rise to the clinical phenotypes discussed in the text. OMM, outer mitochondrial membrane;

IMM, inner mitochondrial membrane. (B) Overview of adrenal development and key genes associated with adrenal hypoplasia. Adrenal hypoplasia is mediated by

disruption of key genes required for normal fetal adrenal development. These genes are involved in transcription, signaling, and growth/cell cycle processes.
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TABLE 1 | Selected monogenic causes of adrenal insufficiency in children.

Condition Gene (PROTEIN if different) Inheritance Associated features

Secondary adrenal insufficiency

CPHD GLI1, HESX1, LHX3, LHX4,

SOX3, SOX2, OTX2 and others;

also PROP1, GH1 (delayed)

Variable Many variable associated features including

holoprosencephaly, tooth abnormalities (GLI1); septo-optic

dysplasia (esp. HESX1); short rigid neck, hearing loss (LHX3);

anophthalmia (SOX2, OTX2)

Isolated ACTH deficiency TBX19 (TPIT) AR

POMC deficiency POMC (Pro-opio-melanocortin) AR Obesity, red hair

Prohormone convertase deficiency PCSK1 (PC-1) AR Obesity, hypoglycemia, hypogonadotropic hypogonadism

Primary adrenal insufficiency

Disorders of steroidogenesis

Smith–Lemli–Opitz syndrome DHC7R (7-dehydrocholesterol

reductase)

AR Syndactyly, polydactyly, facial features, microcephaly, cardiac

defects, gastrointestinal features, hypospadias/undescended

testes

Congenital lipoid adrenal hyperplasiaa STAR AR 46,XY DSD, impaired gonadal steroidogenesis

P450 side chain cleavage def.a CYP11A1 (P450scc) AR 46,XY DSD, impaired gonadal steroidogenesis

21-hydroxylase def. (CAH) CYP21A2 (P450c21) AR 46,XX DSD, virilization, early puberty

11β-hydroxylase def. (CAH) CYP11B1 (P450c11) AR 46,XX DSD, virilization, early puberty, hypertension

3β-hydroxysteroid dehydrogenase type 2

def. (CAH)

HSD3B2 (3β-HSD2) AR 46,XY DSD, impaired gonadal steroidogenesis; 46,XX DSD,

clitoromegaly

17α-hydroxylase/17,20-lyase def. (CAH) CYP17A1 (P450c17) AR 46,XY DSD, impaired gonadal steroidogenesis, hypertension

P450 oxidoreductase def. (CAH) POR (P450 oxidoreductase) AR Antley-Bixler syndrome (craniosynostosis, skeletal features,

choanal atresia), atypical genitalia (46,XY and 46,XX),

impaired gonadal steroidogenesis at puberty

Adrenal hypoplasia

X-linked AHC NR0B1 (DAX-1) X-linked Hypogonadotropic hypogonadism, impaired

spermatogenesis

Steroidogenic factor-1 NR5A1 (SF-1) AD, AR, SLD 46,XY DSD, asplenia

IMAGe syndrome CDKN1C Imprinted IUGR, metaphyseal dysplasia, genital anomalies

IMAGe-like syndrome with

immunodeficiency

POLE1 AR IUGR, skeletal changes, adrenal hypoplasia, genital

anomalies, infections/immunodeficiency, developmental

dysplasia of the hip, post-natal growth restriction/facial

features

MIRAGE syndrome SAMD9 AD (de novo) Infections, IUGR/preterm, gonadal dysfunction, enteropathy,

anemia, thrombocytopenia; risk of monosomy 7 and

myelodysplastic syndrome

SERKAL syndrome WNT4 AR 46,XX DSD, renal dysgenesis, pulmonary hypoplasia

ACTH-resistance and related conditions

FGD1 MC2R (ACTH receptor) AR Tall stature (pre-treatment)

FGD2 MRAP (MC2R-accessory protein) AR

Nicotinamide nucleotide transhydrogenase NNT AR Early puberty

Thioredoxin reductase 2 TXNRD2 AR Heart defects

Triple A syndrome (Allgrove syndrome) AAAS (Aladin) AR Achalasia, alacrima, ataxia/neurological involvement,

hyperkeratosis

Minichromosome maintenance-4 MCM4 AR Natural killer cell defects, microcephaly, post-natal growth

failure

Metabolic conditions

Sphingosine-1-phosphate lyase 1

insufficiency

SGPL1 AR Steroid-resistant nephrotic syndrome, ichthyosis, neurological

involvement, hypothyroidism, cryptorchidism

X-linked adrenoleukodystrophy ABCD1 X-linked Neurological dysfunction

Zellweger spectrum disorders (incl.

neonatal adrenoleukodystrophy)

PEX genes; related genes

(Peroxins)

AR Neurological, facial features, hepatic dysfunction

Mitochondrial disorders (Kearne-Sayre

syndrome; Pearson syndrome; others)

Mitochondrial DNA, MRPS7,

NDUFAF5, GFER

Maternal or AR Variable multisystem features

Wolman disease LIPA (Cholesterol ester) AR Failure to thrive, hepatosplenomegaly, adrenal calcification

Autoimmune conditions

APS1 (APECED) AIRE (Autoimmune regulator) AD, AR Hypoparathyroidism, mucocutaneous candidiasis, alopecia,

pernicious anemia, other autoimmune features

CPHD, combined (multiple) pituitary hormone deficiency; AD, autosomal dominant; AR, autosomal recessive; CAH, congenital adrenal hyperplasia, DSD, differences (disorders) in

sex development; SLD, sex-limited dominant; IUGR, intrauterine growth restriction; FGD, familial glucocorticoid deficiency. aPartial defects in STAR and P450scc can present with

predominant glucocorticoid insufficiency in childhood and mimic FGD.

Modified with permission from Lin and Achermann (7). Copyright 2004 Blackwell Publishing Ltd.
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loss usually results in hyperkalemia and hyponatremia at around
5–7 days of life, mandating urgent monitoring and treatment
once the diagnosis is made. Boys (46,XY) with 21-OHD have no
obvious signs at birth and usually present in a salt-losing adrenal
crisis between 1 and 2 weeks of age, so many countries include
17-hydroxyprogesterone in their newborn screening program.
More detailed reviews of CAH and its management are presented
elsewhere (32, 33).

Adrenal Hypoplasia
Adrenal hypoplasia is an underdevelopment of the adrenal
glands, which often presents with PAI in early life (Figure 1B).
Usually this is an X-linked condition, or sometimes associated
with intrauterine growth restriction (IUGR) (fetal growth
restriction, FGR) syndromes.

X-Linked Adrenal Hypoplasia
X-linked congenital adrenal hypoplasia (adrenal hypoplasia
congenita, AHC) primarily affects boys and is associated with
disruption of the nuclear receptor, DAX-1 (encoded by NR0B1)
(35, 36). This condition presents with salt-losing PAI in the
first 2 months of life (40%), or more insidiously with AI in
childhood (37). Late-onset forms of the condition have also been
described (38–40).

X-linked AHC has three main features: PAI,
hypogonadotropic hypogonadism (HH) in adolescence, and
impaired spermatogenesis (41). Some boys may paradoxically
have macrophallia at birth, and initial presentation with
either isolated mineralocorticoid insufficiency or isolated
glucocorticoid insufficiency is reported (42, 43). Growth
hormone insufficiency has also been diagnosed in a small subset
of boys (37, 44–46).

Boys with PAI and HH in adolescence almost invariably have
X-linked AHC, especially if there is a family history of X-linked
adrenal dysfunction. Even without such a history, we found that
approximately 40% of boys presenting with salt-losing AI in the
first two months of life had X-linked AHC, once more common
conditions such as CAH had been excluded (47). Approximately
two-thirds of boys have pathogenic missense or loss-of-function
(stop gain, frameshift) variants in DAX-1/NR0B1, around one-
sixth have a localized deletion of this gene on the X-chromosome
(Xp21), and one-sixth have a larger Xp contiguous gene
deletion syndrome that can involve genes causing glycerol kinase
deficiency (GKD), ornithine transcarbamylase deficiency (OTC)
and Duchenne Muscular Dystrophy (DMD) (47). Very rarely,
girls have X-linked AHC due to skewed X-inactivation (48).
Establishing this diagnosis early allows prompt recognition and
management of both the PAI and potential associated conditions
(39). Families can be counseled about risk in brothers or in the
maternal family, and presymptomatic boys diagnosed (49).

Steroidogenic Factor-1 (SF-1/N5A1)
Steroidogenic factor-1 (SF-1/NR5A1) is a related nuclear receptor
considered as a “master-regulator” of adrenal and reproductive
development (36). Severe disruption of SF-1 has very rarely
been associated with early-onset PAI in 46,XX girls and 46,XY
phenotypic female babies with testicular dysgenesis, usually due

to disruption of key DNA-binding elements of this transcription
factor (50, 51). In contrast, more than 200 individuals and
families with heterozygous pathogenic variants in SF-1/NR5A1
have been reported, having a wide spectrum of reproductive
phenotypes (from gonadal dysgenesis through to male factor
infertility or primary ovarian insufficiency and ovotesticular
DSD) (36, 52–54). To date, adrenal function is normal in most
of these individuals.

IMAGe Syndrome (CDKN1C and POLE1)
AI associated with IUGR/FGR can occur as part of IMAGe
syndrome (intrauterine growth restriction, metaphyseal
dysplasia, adrenal hypoplasia, genitourinary anomalies) (55, 56).

Children usually present with salt-losing PAI in early life. Other
variable features include frontal bossing, impaired glucose
tolerance, and hearing loss.

Classic IMAGe syndrome is associated with gain-of-function
variants in the cell-cycle repressor, CDKN1C (56). This is a
paternally-imprinted (maternally-expressed gene), so is usually
inherited from the mother, but can occur de novo. IMAGe-
associated pathogenic variants are localized within a very specific
motif in the PCNA-binding motif of CDKN1C, causing impaired
cell cycle S-phase progression (57). Variants neighboring this
motif can cause IUGR/Russell-Silver Syndrome phenotypes with
normal adrenal function (58, 59). Of note, loss-of-function of
CDKN1C is associated with Beckwith-Wiedemann syndrome, an
“overgrowth” syndrome, highlighting how different changes in
one gene can have opposing phenotypes (58).

Recently, an “IMAGe-like” syndrome with AI
and immunodeficiency (infections, lymphopenia,
hypogammaglobulinemia) has been reported (60). These
children have profound postnatal growth restriction, distinctive
facial features, hip dysplasia and hypoplastic patellae. This
condition results from pathogenic biallelic variants in polymerase
epsilon-1 (POLE1, Pol ε), often involving a heterozygous intronic
variant (c.1686 + 32C>G). POLE1 is a DNA polymerase that
interacts with PCNA in S-phase DNA replication.

MIRAGE Syndrome (SAMD9)
Another multisystem growth restriction syndrome associated
with adrenal hypoplasia is MIRAGE syndrome (myelodysplasia,
infections, restriction of growth, adrenal hypoplasia, genital

phenotypes, enteropathy) (61, 62). Infants with severe
forms of MIRAGE are born preterm and develop salt-
losing PAI in early life. Recurrent infections (viral, bacterial
and fungal), anemia/thrombocytopenia, nephropathy, severe
enteropathy, esophageal reflux and aspiration are common,
and 46,XY children have penoscrotal hypospadias or gonadal
(testicular) dysfunction with a female phenotype. Mortality
is high and children who survive show long-term growth
restriction. As many of these features are found in sick,
preterm, growth-restricted babies, it is likely that this condition
is under-diagnosed.

MIRAGE syndrome results from heterozygous gain-of-
function missense mutations in the growth repressor, sterile
alpha domain containing 9 (SAMD9) (61, 62). These changes
usually occur de novo and restrict cell growth and division,
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potentially through reduced recycling of growth factor receptors.
SAMD9 also plays a role in innate viral immunity and
host defense.

One interesting aspect of MIRAGE syndrome is how
secondary genetic events can dynamically modify the phenotype
through “revertant mosaicism.” For example, development of
progressive, somatic monosomy 7 in cis (i.e., on the same
allele) “removes” the deleterious gain-of-function mutation in
SAMD9 allowing a clonal growth advantage of these affected
cells, especially in the hematopoietic system, and reversal of
the postnatal anemia and thrombocytopenia (61, 62). However,
monosomy 7 is linked to the development of myelodysplastic
syndrome, which can lead to leukemia if other genetic
changes occur. Interestingly, somatic loss-of-function (nonsense
or frameshift) changes or uniparental disomy in cis can also
“remove” the mutant allele and ameliorate the phenotype (5, 62–
64). Increasingly, children with milder MIRAGE-like features are
being reported, many with normal adrenal function (65).

SeRKAL Syndrome (WNT4) and Other Associations
SeRKAL syndrome (female sex reversal and dysgenesis of
kidneys, adrenals, and lungs) has been reported in a single
family with homozygous disruptive mutations in WNT4, a
signaling molecule implicated in adrenal development (66).
Other historic reports have rarely described AI with Pena–
Shokeir syndrome type I (DOK7, RAPSN), pseudotrisomy 13,
Galloway–Mowat syndrome (WDR73), Pallister–Hall syndrome
(GLI3, with pituitary defects) and Meckel–Gruber syndrome
(MKS1) (67).

ACTH Resistance-Like Conditions
Another important group of conditions causing PAI in childhood
are ACTH-resistance conditions (also known as Familial
Glucocorticoid Deficiency, FGD) and related disorders (68).
Some of these may present in early infancy.

Familial Glucocorticoid Deficiency Type 1 (MC2R)
Familial Glucocorticoid Deficiency Type 1 (FGD1) is a
recessive condition that results from pathogenic variants in
the ACTH receptor (melanocortin 2 receptor, MC2R) (68,
69). Children sometimes present in the first weeks of life
with signs of cortisol insufficiency (hypoglycemia/convulsions,
prolonged jaundice) and marked hyperpigmentation. Genuine
mineralocorticoid insufficiency is very rare, but transient
salt loss or dilutional hyponatremia can occur, sometimes
leading to a misdiagnosis of adrenal hypoplasia (70, 71).
FGD1 can also present later in childhood with recurrent
infections, hyperpigmentation, and lethargy. Generally, children
respond very well to glucocorticoid replacement, but ACTH
concentrations can be difficult to suppress.

Familial Glucocorticoid Deficiency Type 2 (MRAP)
A similar form of ACTH-resistance results from disruption of the
melanocortin 2 receptor accessory protein, MRAP (72). MRAP
trafficsMC2R to the adrenal cell membrane surface, so disruption
of its function (usually due to splicing defects in exon 3) impairs
ACTH signaling (68, 73, 74). Affected children usually present
with severe glucocorticoid insufficiency and hyperpigmentation
in the first few months of life.

Disorders Associated With Oxidative Stress (NNT,

TNXRD2)
Defects in nicotinamide nucleotide transhydrogenase (NNT)
are a well-established cause of isolated PAI in children, and
occasionally additional features such as early puberty have been
reported (68, 75, 76). This condition mostly presents after 1 year
of age but has been reported as early as 4 months of age. To date,
defects in thioredoxin reductase 2 (TNXRD2) are reported in a
single family (sometimes with cardiac defects), and present in
mid- or later childhood (77).

Triple A Syndrome (Allgrove Syndrome)
Triple A syndrome is a well-established condition linking PAI
(“Addison disease”), with alacrima and achalasia of the esophagus
(78, 79). This condition results from disruption of the protein
aladin (encoded by AAAS), a potential nucleoporin component
that may also influence cellular stress (80–82). Alacrima is often
present from birth but is difficult to diagnose. Other features
usually develop in childhood, or in the second decade of life
(83, 84). Progressive neurological and autonomic dysfunction
can also co-occur, so this is an important diagnosis to consider.

Other Related Forms of PAI
Disruption of minichromosome maintenance 4 (MCM4) causes
mild PAI together with short stature and immunodeficiency (85).
To date, this is only reported in individuals of Irish Traveller
ancestry, and typically manifests in mid-childhood. As noted
above, partial (non-classic) high steroidogenic blocks (STAR and
CYP11A1) can present in childhood with PAI. Non-classic STAR
defects are sometimes termed FGD3 (27–31).

Metabolic Conditions
Several metabolic conditions are associated with PAI but the
presentation and features can be variable (86).

Sphingosine-1-Phosphate Lyase (SGPL1) Deficiency
SGPL1 deficiency is a novel sphingolipidosis that results
from impaired breakdown of sphingosine 1-phosphate (87–89).
Key features are PAI (sometimes with adrenal calcifications)
and steroid-resistant nephrotic syndrome (SRNS), as well as
ichthyosis, neurological dysfunction, primary hypothyroidism,
lymphopenia and undescended testes. Many children present
with PAI in the first year of life (hyperpigmentation, or adrenal
crisis), although some first present with SRNS and the use
of steroid treatment may delay the adrenal phenotype. Other
features are variable and can appear or progress with time.

Adrenoleukodystrophy and Related-Conditions
Adrenoleukodystrophy (ALD) is a very important cause of PAI
because of associated progressive neurological features (90). The
X-linked form of ALD due to defects in ABCD1 usually presents
in childhood, and sometimes with adrenal-only features. Thus, all
boys with undiagnosed causes of PAI should have long-chain fatty
acids measured and there are some calls for newborn screening
to increase early detection, since allogenic hematopoietic
stem cell transplantation may reduce the progression of
cerebral X-ALD in patients with early stages of disease, and
hematopoietic stem cell gene therapy has been investigated
(91–94). In contrast, “neonatal adrenal leukodystrophy” is now
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classified as part of the “Zellweger Spectrum Disorders” (with
Zellweger syndrome/cerebrohepatorenal syndrome, infantile
Refsum disease and rhizomelic chondrodysplasia punctata type
1) (95). This spectrum of disorders results from defects in
peroxisomal function (13 different PEX genes and others) and has
many features including hypotonia, seizures, hepatic dysfunction
and renal cysts. PAI has been reported, usually in childhood or
with an impaired stress response (96), so screening after 1 year of
age has been recommended (95).

Mitochondrial Disorders
Mitochondrial defects have a range of causes and presenting
features. Adrenal dysfunction occurs in rare cases, more often
associated with large scale mitochondrial DNA deletions (e.g.,
Kearns-Sayre and Pearson syndromes), but also pathogenic
variants in other related genes (e.g., MK-TK, MRPS7, QRSL1,
NDUFAF5, GFER) (86, 97).

Wolman Disease
Wolman disease (primary xanthomatosis) results from
disruption of lysosomal acid lipase (LIPA), and is associated
with AI (often with adrenal calcifications), failure to thrive,
hepatosplenomegaly and anemia in the first few months of life.
It is a lysosomal storage disorder that is usually fatal, although
improvements with enzyme replacement treatment (sebelipase
alfa) are reported (98–100).

Autoimmune Conditions
Although autoimmune “Addison disease” is the most common
cause of AI in adolescents and adults, autoimmune PAI
is rare in children (101). The best-established condition is
Autoimmune Polyglandular Syndrome type 1 (APS1, also known
as APECED), due to defects in autoimmune regulator (AIRE).
Early features can include mucocutaneous candidiasis and rarely
hypoparathyroidism (hypocalcemia). PAI and other associations
usually occur in childhood or later life.

Other Causes of PAI
Physical causes of AI such as hemorrhage or infiltration
(e.g., neuroblastoma) should not be overlooked. Unilateral
adrenal hemorrhages detected by imaging are common (1:200–
500 newborn), but usually asymptomatic (102). Symptomatic
bilateral hemorrhages are rare but can cause profound AI. As in
older children, prolonged administration of glucocorticoids for
other conditions can suppress the hypothalamo-pituitary adrenal
(HPA) axis and cause AI if withdrawal is rapid.

Transient, relative AI has been described in some very
preterm babies, or in sick newborn children under stress. The
physiological basis of this is unclear, but steroid supplements have
been used in some situations (103).

IMPORTANCE OF MAKING A SPECIFIC

DIAGNOSIS

Making a specific genetic diagnosis has several benefits. It allows
tailored treatment of the specific underlying hormonal defect
(such as the need for ongoing mineralocorticoid replacement or

not) and permits the surveillance, early recognition, and prompt
treatment of associated extra-adrenal features (16, 61, 62, 70, 71,
87, 98).

Reaching a specific genetic diagnosis also has wider
implications for the family, especially as these conditions
have a range of inheritance patterns (e.g., autosomal recessive,
dominant/de novo; X-linked, imprinted). This information
guides genetic counseling during future pregnancies, and
potentially allows pre-symptomatic diagnosis and treatment in
relatives with subclinical disease (49).

GENETIC TESTING FOR PAI IN EARLY LIFE

Traditionally, genetic testing has relied on Sanger sequencing
of candidate genes one at a time. This approach may still have
a role in common conditions such as 21-OHD (CYP21A2),
where there is a specific biochemical profile, well-established
pathogenic variants, and a pseudogene that can complicate
analysis, or in X-linked AHC (DAX-1/NR0B1) when well-
established associations (e.g., HH) or inheritance patterns (e.g.,
X-linked) are present.

However, associated features or pathognomonic biochemical
patterns are often not present when an infant presents with
PAI, so “next generation” sequencing (NGS) approaches are
increasingly time- and cost-effective.

Access to services varies from country to country, but targeted
“panels” to analyze all key PAI genes at once are increasingly
available as a clinical service. In addition, several studies have
shown how “trio” whole exome sequencing (WES) can help
diagnose sick infants and children, especially when there are
complex, multisystem features, and exome analysis has been
reported to help in the diagnosis of children with PAI (104).
Whole genome sequencing (WGS) will become increasingly
available and has potential advantages and disadvantages at
present compared to panels/WES.

In general, genetic testing for PAI has a high diagnosis
rate, certainly when compared to other pediatric endocrine
conditions such as congenital hypothyroidism and hypothalamo-
pituitary hormone deficiencies. For example, in a national
cohort study of rare, undiagnosed PAI in Turkey (with CAH
and obvious metabolic causes excluded), a specific genetic
diagnosis was reached in 80–90% of children (105), although
the diagnostic yield of autosomal recessive conditions was high
due to high consanguinity rates. New genetic causes may still
emerge as our understanding of human adrenal development
expands (106).

Finally, founder effects and genetic “hotspots” can be very
important in identifying a specific genetic cause of PAI and
taking a history of family ancestry is key. For example, in
Turkey the MRAP splice variant cIVS3ds + 1delG is found
in the West, whereas P450scc/CYP11A1 p.R451W occurs in
Eastern regions (105). As families migrate around the world,
founder effects are seen in children born in other countries.
Knowing a specific hotspot can allow focused and cost-
effective screening of “at risk” family members before the onset
of PAI.
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CONCLUSIONS

AI is an important diagnosis to consider in any sick newborn
infant and prompt investigation and treatment is essential.
Genetic testing is increasingly useful for finding a specific cause,
predicting associated features, counseling families and, in some
situations, for modifying treatments.
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Congenital adrenal hyperplasia includes autosomal recessive conditions that affect

the adrenal cortex steroidogenic enzymes (cholesterol side-chain cleavage enzyme;

3β-hydroxysteroid dehydrogenase; 17α-hydroxylase/17,20 lyase; P450 oxidoreductase;

21-hydroxylase; and 11β-hydroxylase) and proteins (steroidogenic acute regulatory

protein). These are located within the three major pathways of the steroidogenic

apparatus involved in the production of mineralocorticoids, glucocorticoids, and

androgens. Many countries have introduced newborn screening program (NSP) based

on 17-OH-progesterone (17-OHP) immunoassays on dried blood spots, which enable

faster diagnosis and treatment of the most severe forms of 21-hydroxylase deficiency

(21-OHD). However, in several others, the use of this diagnostic tool has not yet

been implemented and clinical diagnosis remains challenging, especially for males.

Furthermore, less severe classic forms of 21-OHD and other rarer types of CAHs are

not identified by NSP. The aim of this mini review is to highlight both the main clinical

characteristics and therapeutic options of these conditions, which may be useful for

a differential diagnosis in the neonatal period, while contributing to the biochemical

evolution taking place in the steroidogenic field. Currently, chromatographic techniques

coupled with tandem mass spectrometry are gaining attention due to an increase in the

reliability of the test results of NPS for detecting 21-OHD. Furthermore, the possibility of

identifying CAH patients that are not affected by 21-OHD but presenting elevated levels of

17-OHP by NSP and the opportunity to include the recently investigated 11-oxygenated

androgens in the steroid profiles are promising tools for a more precise diagnosis and

monitoring of some of these conditions.

Keywords: newborn, 21-hydroxylase deficiency, 11-hydroxylase deficiency, 20–22-desmolase deficiency,

StAR deficiency, P-450 oxydoreductase deficiency, 3-beta hydroxysteroid dehydrogenase deficiency,

17-hydroxylase/17-20 lyase deficiency
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INTRODUCTION

The most common and representative example of the congenital
adrenal hyperplasia (CAH) group of disorders (≥90%) is the
21-hydroxylase deficiency (CYP21A2-D). Less frequent types
of CAH are 11β-hydroxylase deficiency (CYP11B1-D, up to
8% cases), 17α-hydroxylase/17–20 lyase deficiency (CYP17A1-
D), 3β-hydroxysteroid dehydrogenase deficiency (HDS3B2-D),
P450 oxidoreductase deficiency (POR-D), P450 cytochrome side-
chain cleavage deficiency (CYP11A1-D), and StAR deficiency
(StAR-D). In CYP21A2-D and CYP11B1-D, only adrenal
steroidogenesis is affected, whereas a defect in the other enzymes
also involves gonadal steroid biosynthesis (1, 2) (Table 1).

Steroid Acute Regulatory Protein

deficiency—Lipoid CAH (StAR-D)
Epidemiology/Genetics
StAR-D is uncommon in most populations, but it is relatively
more frequent in East Asian (3, 4), Arab (5), and Swiss
(6) populations because of the occurrence of the p.Q258X,
p.R182L/p.R182I, and p.L260P founder mutations, respectively.
To date, ∼85 pathogenic variants of the StAR gene have been
reported (www.hgmd.cf.ac.uk) (Table 1).

Essential Biochemistry
StAR is a fundamental actor in steroidogenesis, transferring
cholesterol from the outer (OMM) to the inner mitochondrial
membrane (IMM), where CYP11A1 can convert cholesterol to
pregnenolone (Preg) (Figure 1A). The complex pathophysiology
of StAR-D is explained by the “two-hit disease model” (5): the
major part of steroidogenesis is StAR dependent, and its deficit,
the first hit, activates the ACTH axis and de novo cholesterol
biosynthesis; the consequent steroid underproduction due to the
toxic effects of accumulating cholesterol follows as the second
hit. The impairment of testicular steroidogenesis, which is active
earlier than the ovarian one, is the first consequence of StAR-
D with fetal androgen deficiency, causing undervirilization in
46,XY genetic newborns (7). Fetal adrenal androgen deficiency
also leads to reduction of maternal estriol (E3) levels, prenatally
measurable in a maternal urine sample (8). As placental

Abbreviations: 14A, 14-androstenedione; 11K14A, 11-keto-androstenedione;

11KT, 11-keto-testosterone; 17OHP, 17α-hydroxyprogesterone; 17OHPreg,

17α-hydroxypregnenolone; Aldo, aldosterone; AMH, anti-Mullerian hormone;

Andr, androgens; B, corticosterone; CAH, congenital adrenal hyperplasia;

CYP11A1-D, P450 cytochrome side-chain cleavage deficiency; CYP11B1-D,

11β-hydroxylase deficiency; CYP17A1-D, 17α-hydroxylase/17-20 lyase deficiency;

CYP21A2-D, 21-hydroxylase deficiency; DHEA, dehydroepiandrosterone;

DHT, dihydrotestosterone; DOC, deoxycorticosterone; E1, estrone; E2,

estradiol; E3, estriol; F, cortisol; EGS, External Genitalia Score; EMS, External

Masculinization Score; GC, glucocorticoid; HDS3B2-D, 3β-hydroxysteroid

dehydrogenase deficiency; IMM, inner mitochondrial membrane; LC/MSMS,

liquid chromatography/tandem mass spectrometry; MC, mineralocorticoid;

NIPD, non-invasive prenatal diagnosis; NSP, newborn screening program; OMM,

outer mitochondrial membrane; POR-D, P450 oxidoreductase deficiency; Preg,

pregnenolone; Prog, progesterone; S, 11-deoxycortisol; StAR-D, steroidogenic

acute regulatory deficiency; SV, simple virilising; SW, salt wasting; T, testosterone;

THDOC, tetrahydro-deoxycorticosterone; THS, tetrahydro-deoxycortisol;

US, ultrasound.

steroidogenesis is not StAR dependent, Prog production is able
to maintain pregnancy to term.

Clinical Presentation and Diagnosis
In its most severe form, the affected newborns cannot produce
significant amounts of any steroid (9, 10). They show high
ACTH levels, increased plasma renin activity, and engorged
adrenal glands containing excessive amounts of cholesterol
and its derivatives (5) (Table 1). Classic patients have severe
salt loss within the 1st months of life and female external
genitalia, irrespective of chromosomal sex (11). In 46,XY
babies, Sertoli cells stay intact and the anti-Mullerian hormone
(AMH) inhibits the development of Mullerian structures. The
hydrosaline balance is controlled prenatally by the placenta,
but mineralocorticoid (MC) deficiency emerges within 2–
3 weeks due to progressive cellular destruction and some
remaining StAR-independent MC biosynthesis. “As the ovary is
steroidogenically quiescent until puberty, it is protected from
cellular damage until steroidogenesis begins” (12, 13).

P450 Cytochrome Side-Chain Cleavage

Deficiency (CYP11A1-D)
Epidemiology/Genetics
CYP11A1-D is an even rarer defect than StAR-D, and it is caused
by pathogenic variants of the CYP11A1 gene (14). To date,
40 patients and 25 variations of CYP11A1 have been reported.
Almost all cases are homozygous or compound heterozygous
(15). Autosomal dominant inheritance has also been proposed in
a few cases (16, 17).

Essential Biochemistry/Pathophysiology
CYP11A1 catalyzes the conversion of cholesterol to Preg in
three consecutive rate-limiting steps: 20α-hydroxylation, 22R-
hydroxylation, and cleavage of the C20–C22 carbon side
chain (18) (Figure 1A). CYP11A1-D determines defects in
all three steroidogenic pathways: MC, glucocorticoid (GC)
in the adrenals, and androgen (Andr) in the adrenals and
gonads. Complete CYP11A1-D was considered incompatible
with term pregnancies due to impaired placental progesterone
andmaternal estrone (E1) production; the reason why some cases
survived pregnancy is still not completely clear (19–22). The
expression of CYP11A1-D occurs early in fetal testes, causing
defective gonadal steroidogenesis that dramatically impairs
virilization of 46,XY fetuses (23).

Clinical Presentation and Diagnosis
In newborns, the most severe presentation is characterized by
early adrenal insufficiency with salt wasting (SW), hypoglycemia,
skin hyperpigmentation, and complete feminization of external
genitalia, regardless of sex chromosomes. The 46,XY newborns
show normal or hypoplastic derivatives of Wolffian duct and
small testes, whereas derivatives of Mullerian duct are absent
(11). Histology of the testes reveals immature tissue without
germ cells (20). A phenotype with neonatal and transient adrenal
insufficiency, life-threatening failure to thrive, and normal male
external genitalia in 46,XY patients was reported in 2018
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TABLE 1 | A summary of genetic, early clinical, biochemical features, and therapy of the CAH deficiencies presenting in the 1st year of life [modified by (1)].

STAR PROT

OMIM 201710

CYP11A1

OMIM 118485

HSD3B2

OMIM 201810

CYP17A1

OMIM 202110

CYP21A2

OMIM 201910

CYP11B1

OMIM 202010

POR

OMIM 201750

Genetics Gene StAR CYP11A1 HSD3B2 CYP17A1 CYP21A2 CYP11B1 POR

Locus Chr. 8p11.23;

7 exons

Chr. 15q24.1;

9 exons

Chr. 1p12;

4 exons

Chr. 10q24.32;

8 exons

Chr. 6p21.33;

10 exons

Chr. 8q24.3;

9 exons

Chr. 7q11.23;

17 exons

Clinical/

biochemical

features at

birth

MC Renin ↑↑ ↑↑ ↑↑ ↓ ↑↑ ↑↓ ↓↑

Na/K ↓/↑ ↓/↑ ↓/↑ ↔ ↓/↑ ↔,↓/↔, ↑ ↔

BP ↓ ↓ ↓ ↑ (no in partial

defects)

↓ ↑ ↑

Neonatal SW +++ +++ +++ – +++ – –

GC Neonatal AI +++ +++ +++ ± +++ +++ ++

Hypoglycemia ++ ++ ++ – ± – –

Andr Genitalia 46,XY DSD 46,XY DSD 46,XY DSD;

46,XX DSD (mild

in 25% of cases)

46,XY DSD;

absence of

secondary sexual

characteristics in

both sexes

46,XX DSD 46,XX DSD 46, XY DSD;

46,XX DSD 75%

of cases

Other

features

Adrenal Gland size ↑↑ ↓↓ ↔ ↔ ↑↑ ↑ ↔ ↔

Biochemical

diagnostic

markers

MC ↓↓ ↓↓ Normal/↓ Serum: ↑ DOC

Urine:↑ MC/ GC

and ↑ androgens/

GC metabolites

↓/↔/↑* Serum: ↑ S and

DOC Urine: ↑

THS, THDOC

Normal

GC ↓↓ ↓↓ ↓ Serum ↑ B Serum: ↑ 21-DOF;

urine:21-DOF

(P’TONE)

Serum ↓ F Normal

Andr ↓↓ ↓↓ Serum: ↑

stimulated ratio

of 14 over 15

steroids;

Urine: ↑ ratios

DHEA/GC

Metabolites and

5PT/GC

Metabolite*

↓↓ Serum: ↑ 17-OHP

↑ 11-K14A,

11-KT Urine:

↑17HP,PT Saliva:

↑11-K14A and

11-KT

↑ Blood: mild ↑

17-OHP; ↑

Pregn, Prog,

17-OHP Urine:

combined

impairment of

diagnostic ratios

for CYP17A1

and CYP21A2; ↑

of Pregn

metabolites (PD)

Therapy Hydrocortisone + + + + + + ±

Fludrocortisone + + + – + ± –

Mineralocorticoid receptor antagonists – – – ± – + –

MC, mineralocorticoids; GC, glucocorticoids; Andr, androgens; K, potassium; BP, blood pressure; SW, salt wasting; AI, adrenal insufficiency. *Cross reaction with high levels of other adrenal steroids. For steroid abbreviations, see the

specific table. *It can be notoriously difficult to diagnose HSD3B2-D on urine sample alone due to the naturally high levels of 3βOH5ene steroids in neonates.
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FIGURE 1 | (A) Adrenal and gonadal steroidogenesis (Classic and Backdoor pathways). StAR, steroidogenic acute regulatory protein; OMM, outer microsomal

membrane; IMM, inner microsomal membrane; DHEA/DHEA-S, Dehydroepiandrosterone/D-Sulfate; DOC, Deoxycorticosterone; 17OH-DHProg,

5-Pregnan-17-ol-3,20-dione (diol); 17OH-ALLO, 17OH-allopregnanolone; CYP11A1, cholesterol side-chain cleavage enzyme; CYP17A1, 17-hydroxylase/17, 20

(Continued)
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FIGURE 1 | lyase; SULT2A1, dehydroepiandrosterone (DHEA) sulfotransferase; POR, P450 oxidoreductase; CYP21A2, 21-hydroxylase; HSD3B2, 3-hydroxysteroid

dehydrogenase; CYP11B1, 11-hydroxylase; CYP11B2, aldosterone synthase; HSD17B3, 17-hydroxysteroid dehydrogenase type 3; SRD5A1, 5-reductase type 1;

SRD5A2, 5-reductase type 2; Fdx/ FdR, ferredoxin/ferredoxin reductase; CYB5A, cytochrome b5. (B) The metabolic pathways of classic and non-classic androgens.

The gray box indicates 11-oxygenated C19 steroids. The red, orange, and yellow boxes depict steroids with strong, mild, and weak androgenic activities, respectively.

HSD17B3, 17-hydroxysteroid dehydrogenase type 3; HSD3B2, 3-hydroxysteroid dehydrogenase type 2; AKR1C3, aldo-keto reductase family 1 member C3;

CYP11B1, cytochrome P450 11B1; HSD11B1, 11-hydroxysteroid dehydrogenase type 1; HSD11B2, 11-hydroxysteroid dehydrogenase type 2; HSD17B2,

17-hydroxysteroid dehydrogenase type 2; SRD5A1, 5-reductase type 1; SRD5A2, 5-reductase type 2; Pregn, pregnenolone; 17-OHpregn, 17-OHpregnenolone;

DHEA-S, dehydroepiandrosterone-sulfate; SULT2A1, sulfotransferase family 2A member 1; DHEA, dehydroepiandrosterone; Prog, progesterone; 17-OHP,

17-OH-progesterone; D4-A, androstenedione; 11-OHD4A, 11-hydroxyandrostenedione; 11-KD4A, 11-ketoandrostenedione; 11-OHT, 11-hydroxytestosterone;

11-KT, 11-ketotestosterone; 5-dione, 5-androstanedione; DHT, dihydrotestosterone; 11-OHDHT, 11-hydroxydihydrotestosterone; 11-KDHT,

11-ketodihydrotestosterone.

in three heterozygous related cases (17). One case of mid-
shaft hypospadias and cryptorchidism at birth and another
with penoscrotal hypospadias associated with late-onset adrenal
insufficiency (9 and 2 years of age, respectively) were reported in
2009 (24) and 2012 (25). In newborns, blood tests showed severe
hyponatremia, hyperkalemia, extremely elevated levels of ACTH,
and renin activity with low or inappropriately normal levels of
cortisol and aldosterone. Unlike most classic lipoid-CAH (26),
adrenal glands are reduced in size in CYP11A1-D (27).

3β-Hydroxysteroid Dehydrogenase

Deficiency (HSD3B2-D)
Epidemiology/Genetics
HSD3B2-D is a very rare form of CAH (estimated incidence
of < 1/1,000,000 live births) (18, 28) caused by mutations
in the HSD3B2 gene (Table 1) that encode the 3β-HSD2
enzyme. It is involved in all three steroidogenic pathways:
aldosterone, cortisol, and androgen precursors in the adrenals
and testosterone (T) in the gonads (18). Loss-of-function
mutations (<5% residual enzyme activity) predict the neonatal
SW phenotype. Mutations causing >5% 3β-HSD2 activity lead
to residual MC production without SW (29).

Essential Biochemistry/Pathophysiology
3β-HSD2 enzyme converts 15-3β-hydroxysteroids into
corresponding 14-3-keto isomers, Preg to Prog, 17α-
hydroxypregnenolone (17OHPreg) to 17α-hydroxyprogesterone
(17OHP), dehydroepiandrosterone (DHEA) to 14-
androstenedione (14A), and androstenediol to T. In SW
HSD3B2-D, glucocorticoid and mineralocorticoid are impaired
causing hyponatremia, hyperkalemia, and elevated renin
concentrations in both sexes. In females, 3β-HSD2 deficiency
prevents the flooding of 17OHP and 14A to backdoor and
11-oxyandrogen production pathways (see CYP21A2-D)
(Figures 1A,B); in males, T production is impaired during the
critical period of sexual differentiation and dihydrotestosterone
(DHT) production is subsequently reduced by classical and
backdoor pathways (30).

Clinical Presentation and Diagnosis
Historically, the clinical presentation of HSD3B2-D at birth
is described as the “classic form,” with or without SW,
hypoglycemia, ambiguous genitalia, and hypogonadism in both
sexes. Recent studies have shown that HSD3B2-D rarely causes
ambiguous genitalia in females and thus the affected 46,XX

newborns may present mild clitoromegaly only, whereas affected
46,XY newborns may present some degree of external genitalia
undervirilization or isolated hypospadias, which need to be
graded based on reliable tools (EGS) (31), (EMS) (32), (Prader)
(33). The frequency of HSD3B2-D could be underestimated
in females without SW and normal genitalia. However, in
countries with NSP for 21-OHD, it is possible that newborns
with HSD3B2-D may show false positivity for elevated levels
of 17-OHP (34–37). The principal diagnostic test for HSD3B2-
D is the serum measurement of 17-OHpreg, cortisol, 14A,
17-OHP, and DHEA (basal or post-ACTH stimulation) (28)
with a predominance of 15 steroids (i.e., Preg, 17OHPreg, and
DHEA) over 14 steroids (Prog, 17OHP, and 14A). Guran et
al. (30) reported that high baseline 17OHpreg-to-cortisol ratio
and low 11-oxyandrogen concentrations by LC/MSMS provide
an unequivocal biochemical diagnosis of patients with HSD3B2-
D. Although urinary steroid profiling is considered to be similarly
accurate and less invasive for diagnosis (38), it can be notoriously
difficult to diagnose HSD3B2-D on urine sample alone due to the
naturally high levels of 3βOH5ene steroids in neonates.

17α-Hydroxylase/17,20 Lyase Deficiency

(CYP17A1-D)
Epidemiology/Genetics
The incidence of CYP17A1-D is estimated to be about 1 in 50,000
(39). The disease prevalence is higher in certain countries such as
the Netherlands (Friedlanders), Brazil, China, and Japan, where it
is the second leading cause of CAH. This is attributable to loss-of-
functionmutations in theCYP17A1 gene (40) (Table 1). Over 100
mutations in the CYP17A1 gene are known, mostly resulting in
complete loss of enzymatic activities of both 17-hydroxylase and
17–20 lyase (39). Researchers have also reported partial loss of
enzymatic activity and loss of either hydroxylase or lyase activity
alone (41).

Essential Biochemistry
CYP17A1 mediates three major transformations in cortisol and
sex steroid biosynthesis. In particular, 17-hydroxylase mediates
the synthesis of 17-Preg from Preg and 17OHP from Prog,
whereas 17–20 lyase controls the production of DHEA from
17OHPreg. This latter step is of paramount importance as DHEA
is the progenitor of steroid sex hormones (Figure 1A). The
biochemical markers used to diagnose CYP17A1-D are shown in
Table 1.
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Clinical Presentation and Diagnosis
In 46,XX patients, external genitalia are normal on the neonatal
exam as are the internal one to ultrasound (US). They may
have no complaints before the typical age of puberty when the
deficiency in sex hormones becomes apparent and they may
develop hypertension or hypokalemia and high gonadotropin
levels (hypergonadotropic hypogonadism).

In 46,XY patients, the presentation is typically under
masculinization and can range from phenotypic female to
ambiguous or small male genitalia (41). On physical examination,
they may have a blind pouch instead of a vagina with a lack
of internal female genitalia. The testes are undescended
or located in the inguinal canal on imaging studies. Early
diagnosis and treatment allow for the prevention of morbidity
associated with hypertension, electrolyte abnormalities, and
impairment of sexual development. As NSP identifies classic
CYP21A2-D but does not detect CYP17A1-D, provider
awareness and consideration of this condition are imperative for
appropriate diagnosis.

21-Hydroxylase Deficiency (CYP21A2-D)
Epidemiology/Genetics
The most common form of CAH is represented by CYP21A2-D
(90% cases). The severity of the enzymatic deficiency determines
three clinical forms: SW (<1% enzyme activity), simple virilizing
(SV; 1–2%), and non-classical (NC; 20–60%). The incidence of
classic forms (SW and SV) ranges between 1 in 13,000 and 1
in 15,000 live births (42): in most populations, the frequency
of heterozygous carriers is 1 in 60. CYP21A2-D is caused by
mutations in the CYP21A2 gene (6p21.3). Microconversions or
apparent gene conversions that cause the transfer of an inactive
pseudogene (CYP21P) to the functional gene are responsible for
95% of pathogenic variations (43). Rare patients with classic
CAH (SW) show a “contiguous gene syndrome”, with CAH
and Ehlers–Danlos Syndrome (EDS) features, which is called
“CAH-X” (44).

Essential Biochemistry/Pathophysiology
In SW CYP21A2-D, GC, and MC production is severely
impaired, whereas abnormal amounts of Andr are produced,
stimulated by the increased levels of ACTH. 17OHP elevation
represents the hallmark of the disease, and the large majority
of classic CYP21A2-D patients show basal levels of 17OHP as
>300 nmol/L (>10,000 ng/dL) (45). 17OHP is converted to T
and 5α-DHT, two androgens with potent activity, by the so-called
“front door” pathway and directly to DHT via an alternative
pathway known as “the backdoor pathway” (46, 47) (Figure 1A).
The latter could lead to hyperandrogenism less responsive to
GC treatment (48). 11-Keto-testosterone (11KT) is derived from
11-hydroxylation of 14A and T by CYP11B1 and acts as a
potent androgen with a fundamental role in the pathophysiology
of classic CYP21A2-D (49) (Figure 1B). It could be utilized in
the future as a more precise biochemical marker of the disease
(measured by means of LC/MSMS) than DHEA, 14A, and T
(49, 50).

Neonatal Presentation
All fetuses affected by classic CAH show varying degrees of
genital virilization due to exposure to intrauterine androgen
excess, so that any newborn with ambiguous genitalia or in
extreme cases apparently male genitalia and non-palpable gonads
(45) should be suspected of having SW CAH (2, 45). Patients
with 46,XX very often show a vagina that opens into a common
urogenital sinus with enlarged clitoris and normal cervix, uterus,
and ovaries; 46,XY children may show macrogenitosomia and
genital hyperpigmentation but are generally unrecognized at
birth. Sodium loss and potassium retention occur in newborns
with SW CAH, due to mineralocorticoid deficiency. This may be
detected biochemically from 4 to 7 days of life, but takes longer
to present clinically (2nd week to 1st month of life).

Newborn Screening
In several countries, NBS has been developed for early diagnosis
of CYP21A2-D by measuring 17OHP blood levels on dried blood
spots. NBS is fundamental in preventing SW crises in males
and male sex assignment in affected females. The diagnosis of
CYP21A2-D is made when 17OHP levels are above the cutoff
levels that should be elaborated and adjusted for gestational age at
each screening center (51). A second-tier test on the same blood
sample by LC/MSMS multi-hormonal profile could improve the
positive predictive value of the CAH screening (52) and be
helpful in diagnosing other rarer forms of CAH (35, 53).

Prenatal Treatment
The prenatal diagnosis of affected CAH fetuses is usually made
by chorionic villous sampling at 10–12 weeks of gestation
or by amniocentesis at 15–16 weeks of gestation. Treatment
in utero of potentially affected CAH patients is feasible by
administering dexamethasone to the mother starting from
the first weeks of pregnancy, with the aim of containing
adrenal hyperandrogenism by reducing ACTH hypersecretion
and avoiding genital masculinization in the CYP21A2-D female
fetuses (2). However, it should still be considered an experimental
therapy due to potential adverse effects on both unaffected
children that need to be treated until diagnosis is achieved and
their mothers (45). A non-invasive method using cell-free fetal
DNA in maternal plasma (NIPD at 5 weeks of gestation) could
allow selective treatment in affected females only (54) but is not
routinely performed due to its complexity and associated cost.

11β-Hydroxylase Deficiency (CYP11B1-D)
Epidemiology/Genetics
11-OHD is among the most common causes of CAHs in the
world, after 21-OHD, and accounts for about 5% of CAH patients
with a European ancestry (55) and for about 15% of CAHpatients
in the Muslim and Jewish Middle Eastern populations (56). The
classical form of 11-OHD has an estimated frequency of 1 in
200,000 live births (57). This is caused by mutations in the
CYP11B1 gene (Table 1). Approximately 130 mutations of the
CYP11B1 gene have been described so far.
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Essential Biochemistry
In the normal adrenals, 11β-hydroxylase is expressed in the
zona fasciculata and converts 11-deoxycortisol to cortisol in
response to ACTH. 11β-hydroxylase and aldosterone synthase
can convert DOC into corticosterone (B). 11-OHD disrupts
the synthesis of cortisol with normal production of aldosterone
(1). The key steroid used in diagnosis for the classic form is
elevated 11-deoxycortisol basal levels (27). Serum B, DOC, and
17-OHP are also elevated, and elevated levels of the latter can
cause CYP21A2-D misdiagnosis. The urinary metabolites, such
as tetrahydro-cortisone, tetrahydro-11-deoxycorticosterone, and
tetrahydro-11-deoxycortisol (2), are useful for diagnosis.

Clinical Presentation and Diagnosis
The classical form is characterized by excess androgen and
hypertension. ACTH excess due to cortisol deficit causes
overproduction of androgens and DOC: androgens lead to
virilization similar to CYP21A2-D in affected female patients
(46,XX DSD); excess of DOC causes low-renin hypertension
(2). Hypertension might not be apparent during the neonatal
period (in about one-third of patients) due to mineralocorticoid
resistance, and some patients can present with salt loss during
the neonatal period, especially after the start of the GC
treatment (58).

P450 Oxidoreductase Deficiency (POR-D)
Epidemiology/Genetics
POR-D was first described in 2004 (59) as a rare form of
CAH. Currently, about 100 cases of POR-D have been reported
worldwide with a broad clinical spectrum, and most occurring
in neonates and children (60). Since 2004, some pathogenetic
variants causing defective binding of co-factors and others
causing altered interaction with partner proteins have been
described (61). The homozygous null mutations appear to be
lethal (62, 63).

Essential Biochemistry
POR is involved in the metabolism of drugs and steroid
hormones because “all cytochrome P450 enzymes located in the
endoplasmic reticulum get electrons for their catalytic activities
from the co-factor” (61) NADPH through POR (64, 65). The
main microsomal POR-dependent enzymes are involved in the
biosynthesis of steroid hormones in both the adrenal cortex
and gonads (CYP17A1, CYP19A1, CYP21A2, and CYP15A1), as
well as in the metabolism of drugs and endogenous substrates
(CYP3A4 and CYP2D6) in the liver (66–68). Several studies also
suggest a possible role for POR in bone development and retinoic
acid metabolism, which lead to skeletal anomalies (60).

Clinical Presentation and Diagnosis
POR-D was initially identified as a difference of sex development
(DSD) with ambiguous genitalia similar to some cases of Antley–
Bixler syndrome (ABS), a bone malformation syndrome due to
the presence of mutations in FGFR2 (69). A recent review (60)
meta-analyzed the phenotypic features in newborns with POR-
D, with DSD at birth in 69% of patients (78% 46,XX and 60%
46,XY) (60). Maternal virilization during pregnancy, due to a

defect in aromatase (CYP19A1) activity, is described in 21% of
mothers, with the highest incidence (44.4%) when at least one of
the mutations was R457H (60).

Skeletal malformations resembling ABS features were
described in the 84% of PORD patients without mutations
in FGFR2 (60), such as midface hypoplasia (71%), large joint
synostosis (69%), craniosynostosis (65%), hand and feet
malformations (61%), and bowing of the femora (21%) (63). A
latent form of adrenal insufficiency rarely becomes clinically
evident in the neonatal period (70–72). “Due to a very complex
effect on steroid metabolism, it is preferable to diagnose PORD
by performing mass spectrometry analysis of urine and blood
samples” (61). Hormonal analysis is characteristic of mild to
moderate increase in 17OH progesterone levels (found through
neonatal screening or biochemical analysis), normal baseline
ACTH, and cortisol levels with an inadequate increase in
cortisol production after ACTH stimulation, normal values for
renin and aldosterone, and elevated values for progesterone,
corticosterone, 18OH corticosterone, 11-deoxycorticosterone
(DOC), 18OH DOC, and 21-deoxycortisol (59). Low E3 and
increased metabolites of Preg in urine or amniotic fluid of the
mother can be useful for prenatal diagnosis (73). However,
definitive diagnosis of PORD needs to be done by genetic
analysis of the POR gene.

THERAPEUTIC APPROACH

Glucocorticoids (GCs)
Substitutive treatment with oral hydrocortisone (10–15
mg/m2/day, divided into three daily doses) is mandatory for all
classic forms of CAH presenting during the neonatal period.
In CYP21A2-D and CYP11B1-D, GC administration prevents
further genital virilization. Higher doses (15–30 mg/m2/day,
divided into 3 or 4 daily doses) are often indicated both initially,
to slow down the excessive production of potentially unfavorable
metabolites (21OHD), and subsequently, as neonates and young
infants often require higher doses per surface area than older
children or adults. Other forms of GC are not recommended
due to possible ineffectiveness (cortisone acetate) or detrimental
effects on child growth (prednisolone and dexamethasone).
Alawi et al. (28) suggested administering hydrocortisone at
slightly higher doses (12–18 mg/m2/day) in HSD2B3-D due to
the greater difficulty in suppressing androgens.

We recommend educating parents and caregivers for adrenal
crisis prevention and at least doubling the dose of GC (but
not MC) for situations such as febrile illness (>38.5◦C)
and gastroenteritis with dehydration. Parenteral hydrocortisone
administration (i.v. bolus of 12.5mg in neonates and young
infants, often with glucose and saline and administered within
3–10min; bolus repetition every 4–6 h in the first 24 h or a
continuous infusion of 100 mg/m2/day) is mandatory in cases
of adrenal crisis with vomiting, major surgery accompanied by
general anesthesia, and major trauma.

In patients <18 months of age, close monitoring in the
first 3 months of life and every 3 months thereafter is
recommended (45).
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Mineralocorticoids (MCs)
Fludrocortisone (0.05–0.2mg, once or twice daily) together with
sodium chloride administration during the first 6–12 months of
life (5 mmol/kg/day, divided into 4–5 meals; 17 mmol or mEq =
1 g NaCl) aims to prevent adrenal crisis in StAR-D, CYP11A1-D,
SW HSD2B3-D, and SW CYP21A2-D. Monitoring of K and BP
levels is important for dose management.

Other Medical Treatments
In undervirilized 46,XY newborns with StAR-D, CYP11A1-
D, CYP17A1-D, or POR-D reared as male, sex steroid
replacement (T or DHT) might be useful during minipuberty
(74). In newborns with CYP11B1-D or CYP17A1-D, if
blood pressure control is not achievable by glucocorticoids
alone, then appropriate antihypertensives should also be
administered. Sometimes, treatment with mineralocorticoid
receptor antagonists may be necessary (75). In POR-D, the
supplementation of sex steroids and glucocorticoids must be
based on the steroid profile of the patient, considering the
possibility of impaired drug metabolism. Skeletal malformations
require orthopedic management. Potential therapeutic options
include the introduction of external flavin (66) and treatment
with cysteamine in case of arginine to cysteamine mutations (76).

Surgical Treatment
A multidisciplinary team with competence in DSD management
is recommended. In all pediatric patients with CAH, particularly
minimally virilized girls (Prader I–II) and mildly undervirilized
boys (EMS 7–11) (32), parents must be informed about surgical
options, including delaying surgery and observation until the
child is older.

Usually, the sex assignment in 46,XX newborns with
CYP21A2-D or CYP11B1 is female, and genital surgery may be
necessary, but the timing of the surgery remains controversial.
In patients for whom early surgery is selected, vaginoplasty
using urogenital mobilization is suggested, and if selected,
neurovascular-sparing clitoroplasty for severe clitoromegaly is
suggested (45). With early management (started <2 years of
age), 46,XX patients generally have a satisfactory psychosocial
outcome (77–79).

In male newborns with severe hypospadias, urological surgery
is certainly indicated for functional repair (80). Although a
recent review (81) found that 80% of men are satisfied with
childhood hypospadias repair, it is advisable to refrain from
invasive surgery that is not essential for health and to encourage
patient participation and decisions in the choices regarding the
sexual sphere (82).

Psychological Support
Diagnosis of classic CAH during neonatal age activates concerns
and anxiety in parents related to the risk of electrolyte crises,
genital ambiguity at birth, and the effects of hyperandrogenism
on the brain, gender behavior, and body perception. The option
of genital surgery, in case of highly virilized genitalia, represents a
strong stress factor for families. Although studies in the literature
show controversial results regarding the quality of life of people
with CAH, case reports show that they can be psychosocial
consequences related to the ambiguity of the genitalia (impaired
bodily self-image, stigmatization, etc.). Therefore, we believe that
psychological support is a useful complement to endocrinological
and surgical management, in agreement with the Endocrine
Society guidelines (45).
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Introduction: Neonatal hypoglycemia is common and a preventable cause of brain

damage. The goal of management is to prevent or minimize brain injury. The purpose

of this mini review is to summarize recent advances and current thinking around clinical

aspects of transient neonatal hypoglycemia.

Results: The groups of babies at highest risk of hypoglycemia are well defined. However,

the optimal frequency and duration of screening for hypoglycemia, as well as the

threshold at which treatment would prevent brain injury, remains uncertain. Continuous

interstitial glucose monitoring in a research setting provides useful information about

glycemic control, including the duration, frequency, and severity of hypoglycemia.

However, it remains unknown whether continuous monitoring is associated with clinical

benefits or harms. Oral dextrose gel is increasingly being recommended as a first-line

treatment for neonatal hypoglycemia. There is some evidence that even transient

and clinically undetected episodes of neonatal hypoglycemia are associated with

adverse sequelae, suggesting that prophylaxis should also be considered. Mild transient

hypoglycemia is not associated with neurodevelopmental impairment at preschool

ages, but is associated with low visual motor and executive function, and with

neurodevelopmental impairment and poor literacy and mathematics achievement in

later childhood.

Conclusion: Our current management of neonatal hypoglycemia lacks a reliable

evidence base. Randomized trials are required to assess the effects of different

prophylactic and treatment strategies, but need to be adequately powered to assess

outcomes at least to school age.

Keywords: newborn, insulin, screening, diagnosis, continuous glucose monitoring, oral dextrose gel, child

development

INTRODUCTION

Neonatal hypoglycemia is a preventable cause of brain injury. It is common, affecting 5–15% of
all babies (1) and approximately half of at-risk babies (2) and is associated with a range of adverse
sequelae (3, 4). However, the optimal frequency and duration of screening, as well as the threshold
at which treatment would prevent brain injury, remains uncertain. The purpose of this review is to
summarize the recent advances in clinical aspects of transient neonatal hypoglycemia.
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PATHOPHYSIOLOGY OF NEONATAL
HYPOGLYCEMIA

Glucose is the primary metabolic fuel for the fetus. The fetus
receives glucose from its mother through carrier-mediated
diffusion down a concentration gradient across the placenta
(5, 6). Fetal glucose concentrations are ∼80% of maternal
concentrations and fluctuate with changes in maternal glucose
concentrations (7). The function of insulin in the fetus is as a
growth hormone rather than to regulate glucose concentrations,
and secretion of insulin occurs at a lower glucose concentration
in the fetus than in postnatal life (8).

Maternal and therefore fetal glucose concentrations
increase during labor and delivery in response to secretion
of maternal stress hormones such as catecholamines and
glucocorticoids (9). Once the umbilical cord is clamped,
glucose supply is interrupted and neonatal glucose
concentrations decrease, reaching a low point ∼1–2 h after
birth. In turn, insulin secretion decreases while secretion
of counter-regulatory hormones such as glucagon and
catecholamines increases, stimulating gluconeogenesis
and glycogenolysis, and resulting in a gradual increase in
glucose concentrations (9). However, these do not reach
adult concentrations until after 72 h of age (10, 11). Delay or
interruption of this postnatal metabolic adaptation results in
neonatal hypoglycemia.

Glucose is an essential metabolic fuel for the brain, and
in the newborn the proportionately large brain accounts for
almost all of total tissue glucose requirements (12). Thus,
low glucose concentrations are likely to result in inadequate
brain energy supply. Although the newborn brain can use
alternative metabolic substrates, the supply of these is limited.
Lactate provides a potential alternative fuel in the first
48 h, and ketones may be available on days 3–4, but each
can provide only a small proportion of total brain energy
requirements (13).

DEFINING NEONATAL HYPOGLYCEMIA

The definition of neonatal hypoglycemia remains controversial,
and has changed over time (14). However, since the major
reason for defining hypoglycemia is to identify a threshold
at which treatment would prevent brain injury, an ideal
definition would relate to the glucose concentration at
which brain function is compromised. This makes a
single definition problematic, as the threshold is likely to
vary in different babies, depending amongst other things
on gestational age, postnatal age, concurrent metabolic
demands, co-morbidities and availability of alternative
metabolic fuels.

The most widely used definition for neonatal hypoglycemia
is a glucose concentration of <47 mg/dl (2.6 mmol/l) (15–17).
This arises primarily from two studies published in 1988, which
related glucose concentrations to neurological function. One
was a retrospective study of 661 preterm babies (birthweight
< 1,850 g), which reported that a glucose concentration of

TABLE 1 | Risk factors for neonatal hypoglycemia.

Transient neonatal hypoglycemia

Preterm birth

Small or large for dates

Infant of diabetic mother

Perinatal stress (birth asphyxia, hypothermia, respiratory distress, sepsis)

Birth asphyxia

Poor feeding

Maternal use of beta blockers

Antenatal corticosteroids

Persistent neonatal hypoglycemia*

Congenital hyperinsulinism

Hypopituitarism (ACTH deficiency, growth hormone deficiency)

Cortisol deficiency

Glycogen storage disease

Disorders of gluconeogenesis (FBP deficiency, PEPCK deficiency, PC deficiency)

Fatty acid oxidation defects

*Occurring after or persisting for ≥3 days (27).

ACTH, Adrenocorticotropic hormone; FBP, Fructose-1,6-bisphophatase; PEPCK,

Phosphoenolpyruvate carboxykinase; PC, Pyruvate carboxylase.

<47 mg/dl (2.6 mmol/l) on three or more days was associated
with an increased risk of developmental delay at 18 months’
corrected age (18). Follow-up of a subgroup showed that
reduced motor and arithmetic functioning persisted at 8
years (19).

The second study recorded brainstem or somatosensory
evoked potentials in 17 infants, of whom only five were newborns
(20). None showed flattening of evoked potentials with a glucose
concentration of >47 mg/dl (2.6 mmol/l), although some with
a glucose concentration below this still had normal evoked
potentials. Both studies concluded that a glucose concentration
of >47 mg/dl (2.6 mmol/l) was likely to be safe.

In situations where evidence-based decisions are not
possible, operational thresholds offer a pragmatic guide
to clinicians for when intervention may be warranted (1).
Screening protocols have recommended different operational
thresholds ranging from 18 to 60 mg/dl (1.0–3.3 mmol/l)
(21–24). However, most recommend aiming for a minimum
glucose concentration close to 47 mg/dl (2.6 mmol/l) in
late preterm and term babies more than a few hours old or
requiring treatment.

INCIDENCE AND RISK FACTORS

The incidence of neonatal hypoglycemia varies between
studies depending on the diagnostic threshold, the glucose
screening protocol and measurement method used, and
the population studied (25). However, the incidence of
transient neonatal hypoglycemia is estimated to be 5–15%
of newborns (1, 26), and in at-risk babies, it approximates
50% (2) (Table 1). Babies with multiple risk factors do
not have a higher incidence but may experience more
severe hypoglycemia.
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MANAGEMENT OF NEONATAL
HYPOGLYCEMIA

Screening for Neonatal Hypoglycemia
The clinical signs of neonatal hypoglycemia include, but are
not limited to, cyanosis, apnea, altered level of consciousness,
seizures, lethargy, and poor feeding (24). However, since many
of these signs are non-specific, and the majority of babies
with low glucose concentrations show no clinical signs, it is
recommended that all babies with risk factors undergo regular
glucose monitoring.

The optimal frequency and duration of screening remain
uncertain. Most protocols recommend screening within 1–4 h
after birth and then every 3 or 4 h until euglycemia is maintained
over two or three consecutive glucose measurements (15, 21,
22, 24). However, all of these guidelines are informed by expert
opinion and lack a reliable evidence base (28).

Some specify different monitoring periods dependent on the
clinical profile of the baby. For example, the American Academy
of Pediatrics recommends that monitoring continues until 12 h
after birth for infants of diabetic mothers or large for gestational
age, but for 24 h for babies who are born late preterm or small for
gestational age (21). However, there is no evidence to suggest that
cerebral glucose requirements vary between at-risk groups (15).

One study that screened at-risk babies using an accurate
glucose oxidase method 1–2 h after birth then every 3–4 h before
feeds for the first 24 h and every 3–8 h from 24 to 48 h reported
no difference between risk groups in the incidence or severity
of neonatal hypoglycemia, suggesting that a single screening
protocol would be reasonable for all babies at risk (2).

Blood Glucose Monitoring
Intermittent Glucose Monitoring
A common method for measuring glucose concentrations in
neonates is by heel-prick blood sampling analyzed using point-
of-care non-enzymatic glucometers. These provide quick results
at a low cost, are readily available in neonatal units, user-friendly
and require small volumes of blood (29).

However, these devices are designed for monitoring high
glucose concentrations in diabetics, and are affected by several
factors that vary widely in newborns including bilirubin
concentrations and hematocrit. They are inaccurate at low
glucose concentrations, with estimated false positive and false
negative rates of 10–30%, and are not recommended as the sole
method for diagnosis of neonatal hypoglycemia (21, 30). If point-
of-care non-enzymatic glucometers are used for screening, it is
critical to confirm the results with a laboratory method (21), but
best practice is to use more accurate methods from the start.

Laboratory methods use enzymatic reactions including
glucose oxidase, hexokinase or dehydrogenase (29) which are
more accurate and sensitive for detecting neonatal hypoglycemia
(31, 32). However, laboratory methods are costly, take time which
can delay prompt intervention, and accuracy is also reliant on
the quality of the plasma sample (29). More recent guidelines
recommend blood gas analyzers which are quick and accurate if
they are immediately available (15, 24).

A more feasible alternative in many settings is the newer
enzymatic point-of-care analyzers, which have the same accuracy
as laboratory methods but the convenience and speed of a cot-
side measurement. Although they are more expensive per test
than the widely used (but inaccurate) test strip glucometers,
a recent cost analysis concluded that enzymatic glucometers
incurred lower direct costs overall because they avoided the
additional costs of retesting in the laboratory (33).

Continuous Interstitial Glucose Monitoring
Continuous interstitial glucose monitors comprise a sensor
placed under the skin, and a recording device, often remote from
the sensor, which converts the electrical current generated in the
sensor to a glucose concentration using an inbuilt algorithm.
Most devices provide a reading every 5min, giving detailed
information about glycemic control including the duration,
frequency, and severity of hypoglycemia (34).

Continuous glucose monitors have several limitations. They
require calibration against blood glucose concentrations at least
every 12 h, so they do not abolish the need for blood tests, and
more frequent calibration is recommended for greater accuracy
and precision (35). Continuous glucose monitors are also prone
to measurement error, and the reading can drift from the
calibrated value without detection (35). Because, like point-of-
care glucometers, they are designed for use in diabetes, they
are less accurate at low glucose concentrations. The lag period
between changes in blood glucose concentrations and changes
in the continuous monitor reading is unknown but could be up
to 30min or more, due both to the time required for glucose to
diffuse from blood to interstitial fluid, and to delays built into the
algorithms, so that the rapid changes in glucose concentrations
that are common in newborn babies are poorly reported by
continuous monitors (36, 37). Infection at the site of sensor
insertion is a theoretical concern, but in practice has rarely been
reported, and most studies have reported that sensors can be
left in place for a week without complications, even in very low
birthweight babies (38).

Most importantly, there is a lack of evidence on whether
continuous glucose monitoring is associated with clinical benefits
or harms. Continuous glucose monitoring detects many more
episodes of low glucose concentrations than does intermittent
blood glucose measurement. For example, in 102 babies at
risk of hypoglycemia, continuous glucose monitoring identified
11% more babies and 50% more episodes of low glucose than
intermittent glucose monitoring (39). Others have reported
similar differences (38, 40). Thus, there is a risk that continuous
glucose monitoring may lead to a large increase in diagnosis and
treatment, but without evidence that these additional detected
episodes are related to brain injury, or that additional treatment
will have any long-term benefit.

Despite these limitations, continuous glucose monitoring has
enormous potential to improve the management of neonatal
hypoglycemia. A randomized trial in 48 very low birthweight
babies showed that use of continuous glucose monitoring
reduced the number of blood samples taken, detected more
episodes of neonatal hypoglycemia and reduced the duration
of an episode by half when compared with intermittent
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glucose monitoring (40). Another randomized trial in 50 very
preterm babes reported that continuous glucose monitoring in
conjunction with an algorithm for glucose infusion titration
reduced the duration and severity of hypoglycemic episodes,
thereby promoting glycemic stability (41). However, it is not
yet known if this improved stability will lead to improved
later outcomes.

Treating Neonatal Hypoglycemia
The goal of treating neonatal hypoglycemia is to prevent or
minimize brain injury by maintaining a glucose concentration
above an acceptable threshold (25). The usual initial approach
is to feed the baby, using either formula or breast milk. When
glucose concentrations are <18–25 mg/dl (1.0–1.4 mmol/l)
intravenous dextrose (bolus 200 mg/kg followed by an infusion
of around 4–8 mg/kg per minute) is usually required (21,
24). However, administering intravenous dextrose involves
admission to the neonatal intensive care unit (NICU), which
is costly, invasive, and separates the mother from her baby,
which in turn can increase maternal anxiety and interfere
with the establishment of breastfeeding. Severe or prolonged
hypoglycemia, indicated by persistently high or ongoing (≥3
days) intravenous glucose requirements, suggest underlying
endocrine or metabolic pathology and further investigation
is required (Table 1). Elevated insulin concentrations indicate
hyperinsulinism, which suppresses the production of alternative
metabolic fuels, and hence maintaining blood glucose ≥ 3.5
mmol/l is recommended (24). Additional treatments, such as
diazoxide (42), glucagon (24, 43) or glucocorticoids (44) may
be required.

Oral dextrose gel 200 mg/kg (0.5 ml/kg of 40% dextrose),
in combination with feeding, is increasingly recommended as
a first-line treatment for asymptomatic neonatal hypoglycemia
(45, 46). A randomized trial of 237 late preterm and term babies
at risk of neonatal hypoglycemia [<47 mg/dl (2.6 mmol/l)]
demonstrated that compared with feeding alone, 40% oral
dextrose gel 200 mg/kg plus feeding resulted in fewer treatment
failures (hypoglycemia after two treatment attempts), reduced
admission to NICU for hypoglycemia and reduced formula
feeding at 2 weeks of age (47). A 2-year follow-up established
safety by demonstrating similar rates of processing difficulty and
neurosensory impairment between the oral dextrose and placebo
groups (48). A subsequent cost-utility analysis concluded that
dextrose gel resulted in a cost-saving of US$782 per baby (49).

The incorporation of oral dextrose gel into clinical practice
has been evaluated in pre-and post-introduction observational
studies in several parts of the world, with most reporting that
oral dextrose was associated with a reduced NICU admission and
increased breastfeeding (50–54). Its use is now recommended in
several national guidelines (15, 22, 24).

Prophylaxis
There is some evidence that even transient and undetected
episodes of neonatal hypoglycemia may be associated with
adverse sequelae. One study of 1,395 babies born in a center
where glucose screening was universal showed that a single
episode of transient neonatal hypoglycemia [<35 mg/dl (1.9

mmol/l)] was associated with lower 4th-grade literacy and
numeracy proficiency at 10 years of age (55). The Children
With Hypoglycemia and Their Later Development (CHYLD)
study demonstrated that clinically undetected low interstitial
glucose concentrations were associated with an increased risk
of executive dysfunction at 4.5 years of age (56). These
findings suggest that even an effective treatment for neonatal
hypoglycemia would not be sufficient to optimize outcomes for
all babies, and prophylaxis needs to be considered.

The prophylactic measures currently recommended include
early feeding, ensuring babies are warm and dry, and early
skin-to-skin contact (57). These measures are thought to have
a glucose sparing effect (58), but the evidence that they alter
blood glucose concentrations or the incidence of hypoglycemia
is limited (59–61).

Oral dextrose gel is being tested as an additional prophylactic
measure to prevent hypoglycemia in at-risk babies. A dose-
finding trial (Pre-hPOD) of 416 at-risk babies randomized to
either placebo or dextrose gel at one of four different dosing
schedules reported that a single dose of prophylactic oral 40%
dextrose gel (200 mg/kg) in combination with breastfeeding was
the most effective and practical dose (62), with a number needed
to treat to prevent one case of hypoglycemia of 10. Further, the
treatment was found to be acceptable, well tolerated, and had no
adverse events (62). Follow-up at 2 years’ corrected age showed
no adverse effects, similar rates of neurosensory impairment
between the groups, and a trend toward improved executive
function scores in the dextrose gel group (63).

A quasi-experimental study of 236 at-risk babies reported that
compared with feeding, prophylactic oral dextrose gel 200 mg/kg
was not associated with a decreased incidence of hypoglycemia
[<40 mg/dl (2.2 mmol/l)] or admission to NICU (64). However,
this study was not randomized, and the preparation used
(Insta-Glucose gel) includes additional carbohydrates other than
dextrose, which are likely to have competed with dextrose for
membrane uptake and potentially reduced the effectiveness of
this approach.

Amulticenter randomized trial (hPOD) investigating whether
prophylactic oral dextrose gel prevents neonatal hypoglycemia
and hence reduces NICU admission has finished recruitment
(ANZC Trials Registry – ACTRN12614001263684) (65). The
results, and particularly the findings of the planned long-
term follow-up, will provide valuable insight into whether
prophylaxis with dextrose gel should be introduced into
clinical practice.

OUTCOMES OF NEONATAL
HYPOGLYCEMIA

Magnetic Resonance Imaging (MRI) studies have shown that
neonatal hypoglycemia can cause brain injury (66, 67). The most
widely reported pattern of acute brain injury is localized in the
parietal and occipital regions (68), which are involved in visual
processing. However, the evidence is inconsistent on whether
neonatal hypoglycemia is associated with later visual problems
(69). Injury may extend beyond these regions with reports of
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global or periventricular damage (67) as well as damage to the
basal ganglia and thalamic regions (67, 70).

A systematic review and meta-analysis of six cohort studies
with a sample size of 1,675 babies reported that neonatal
hypoglycemia [definitions ranged from <20–47 mg/dl (1.1–
2.6 mmol/l)] was not associated with neurodevelopmental
impairment, cognitive or motor deficits between 2 and 5 years
of age (4). However, neonatal hypoglycemia was associated
with a 3-fold increased risk of visual-motor impairment and
executive dysfunction at 4 years of age. These risks were
heightened for children who had experienced severe, recurrent
or clinically undetected neonatal hypoglycemia (56). In older
children, limited data (two studies, sample size of 54 babies)
showed that neonatal hypoglycemia was associated with more
than a 3-fold increased risk of neurodevelopmental impairment
at 6–11 years of age, and a 2-fold increase in low numeracy and
literacy (4). No studies reported on outcomes for adolescents.

Most of the evidence about long-term outcomes after neonatal
hypoglycemia comes from retrospective observational studies,
few of which have controlled for potential confounders or looked
at outcomes beyond very early childhood. For example, infants
of mothers with diabetes, who are at increased risk of neonatal
hypoglycemia, have an increased risk of adverse outcomes (71,
72), but it is unclear how much of this risk is attributable to
neonatal hypoglycemia. There is high heterogeneity between the
studies which made comparing outcomes problematic, and there
have been frequent calls for robust randomized trial evidence (3).

A randomized non-inferiority trial was the first to begin
to address this major knowledge gap by comparing treatment
at a threshold of 47 mg/dl (2.6 mmol/l) against treatment
at a lower threshold of 36 mg/dl (2.0 mmol/l) among a
sample of 689 otherwise healthy late preterm and term babies
with mild-moderate hypoglycemia [36 mg/dl (2.0 mmol/l)−46
mg/dl (2.5 mmol/l)] (73). Babies with early (birth to 2 h) and
severe [≤35 mg/dl (1.9 mmol/l)] hypoglycemia were excluded.
In babies randomized to treatment at the lower threshold,
fewer were monitored and treated, but there were more severe
and recurrent hypoglycemic episodes (≥4 episodes) compared
with babies in the higher threshold group. Hospital costs

and duration of stay were similar between the groups, as
were motor and cognitive functioning at 18 months on the
Bayley Scales for Infant and Toddler Development. However,
since previous studies have shown no relationship between
neonatal hypoglycemia and motor or cognitive function at
this age (4), this finding is not surprising, and the greater
exposure to severe and recurrent hypoglycemia in the low
threshold group is of concern. Much longer follow-up, at least
to school age, will be essential to realize the true value of this
important study.

CONCLUSION

Over the last few years, neonatal hypoglycemia has received
much attention. However, what remains unclear is the extent
to which transient asymptomatic neonatal hypoglycemia
is associated with brain injury and neurodevelopmental
impairment, and if so, at what glucose concentration
maintained for how long. To address this, adequately
powered randomized trials are needed of both prophylactic
and treatment interventions at different glucose thresholds,
with neurodevelopmental outcomes assessed at least to
school age.
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Hypothalamic-pituitary-gonadal (HPG) axis activation occurs three times in life: the first

is during fetal life, and has a crucial role in sex determination, the second time is during

the first postnatal months of life, and the third is with the onset of puberty. These

windows of activation recall the three windows of the “Developmental Origin of Health

and Disease” (DOHaD) paradigm and may play a substantial role in several aspects

of human development, such as growth, behavior, and neurodevelopment. From the

second trimester of pregnancy there is a peak in gonadotropin levels, followed by a

decrease toward term and complete suppression at birth. This is due to the negative

feedback of placental estrogens. Studies have shown that in this prenatal HPG axis

activation, gonadotropin levels display a sex-related pattern which plays a crucial role

in sex differentiation of internal and external genitalia. Soon after birth, there is a new

increase in LH, FSH, and sex hormone concentrations, both in males and females, due

to HPG re-activation. This postnatal activation is known as “minipuberty.” The HPG axis

activity in infancy demonstrates a pulsatile pattern with hormone levels similar to those

of true puberty. We review the studies on the changes of these hormones in infancy and

their influence on several aspects of future development, from linear growth to fertility

and neurobehavior.

Keywords: minipuberty, neurobehavior, neonate, gonadotrophins, hypothalamic-pituitary-gonadal axis,

hypogonadism

INTRODUCTION

During embryogenesis, the pituitary gland begins synthesizing both Luteinizing Hormone (LH)
and Follicle-Stimulating Hormone (FSH) at around 9 weeks of gestation (1). LH and FSH can be
detected in fetal blood from 12 to 14 weeks (2, 3) and start to be GnRH-dependent after 31–32
weeks (4, 5).

Prenatal modulation of the HPG axis activity is also due to placental hormone production.
In fact, the structure of hCG is an analog of LH and may bind to the LH receptor, with similar
biological effects on gonadal tissues (2, 6). Moreover, the placenta produces Estrogens (E) and
Progesterone (P), that rise during the third trimester. This has a negative effect on gonadotropin
levels and results in a drop in LH and FSH in cord blood at birth in healthy infants of both
sexes (6–8).

After birth, the removal of placental hormones from the neonate’s circulation results in a lack of
negative feedback on the GnRH pulse generator and reactivation of the HPG axis. This postnatal
activation that starts in the first few days of life is known as “minipuberty” (9).
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Studies on healthy term neonates indicate that the rise of
LH and FSH begins at around 1 week of age. It achieves a
peak, reaching the pubertal range, between 1 and 3 months
of life and then declines toward the age of 6 months (6–
8, 10–13). These postnatal hormonal changes have different
trends in boys and girls. Particularly in males, it seems to be
related to the development and maturation of the reproductive
system. Furthermore, the impact of gonadotropins and sex-
steroid hormones during this first period of life has been studied
and relates to many different aspects of infant growth and
behavior (14).

The aim of this review is to summarize the current
understanding on minipuberty and its role as a temporary
window of opportunity for diagnosis and possible treatment in
babies with disorders of sex development (DSD). Moreover, we
would like to highlight the extent of what happens (or not) during
minipuberty in terms of hormonal changes and trends whichmay
influence future neurobehavior.

INFANTS BORN AT TERM

Males: In male neonates, both LH and FSH levels peak between 1
and 3 months of age and then gradually decrease to prepubertal
levels at around 6-9 months (9, 12, 14). The LH peak is higher
than the FSH level. Testosterone (T) starts to increase 1 week
following the LH rise and declines to prepubertal values by 6
months of age (11, 12, 15). T levels, both in cord blood and in
serum during the first postnatal months, are higher in boys than
in girls (11–13, 15–17).

The number of Leydig cells in both testes increases
considerably until the third month of life, which correlates with
the T trend and then gradually decreases due to an apoptosis
process (18, 19). Sertoli cells also grow during the first postnatal
months under the stimulation of FSH (20) but, without the
expression of androgen receptors (AR) during infancy, they do
not complete their maturation and spermatogenesis does not
occur (21). This leads to an increase of testicular volume during
the first months after birth, which then gradually decreases until
the second year of life due to the halt in cell proliferation,
the reduction of AMH production, and the formation of the
blood-testicular barrier (22, 23).

All these hormonal changes during the first months of life
have a great impact on the urogenital system. This involves not
only the testes but also the development and growth of the penis,
prostate, and scrotal hair. In fact, the postnatal T surge within
the first three months has been associated with penile growth in
infancy (24). The increase in androgens has been associated with
cutaneous manifestations, such as sebaceous gland hypertrophy
and acne (25). There is also a link with the development of
transient isolated scrotal hair between 3 and 6 months of life with
a spontaneous disappearance within the first year of life (26).

Females: In female infants, FSH levels are higher than LH,
following a different trend than in males. FSH shows the same
gonadotropin peak as in males at 1–3 months of age but can
remain elevated up to 3–4 years of life. In contrast, LH levels
decrease at the same age as in boys (9, 12, 27).

E levels at birth are high, with similar values in the cord blood
of both sexes (28), followed by a gradual decrease during the first
days of life and a new increase after the first week only in girls.

E remains high until 6 months with fluctuating levels,
probably related to the FSH trend, and decreases toward 2 years
of life (29–31). The mammary glands and uterus are certainly E
target tissues but evidence of minipuberty effects is not univocal.
At birth, most full-term babies of both sexes have palpable breast
tissue (32) that probably results from placental E effect. In the
following months, breast tissue in females remains larger and
persists longer due to HPG axis activity and its consequent E
production (30). In contrast, uterine length increases in utero but,
after birth, there is a steady decrease from day 7 toward the third
month, after which the volume remains stable until the second
year (30).

With little evidence from few studies, the biological role of
minipuberty in girls is still controversial and partially unknown.

Babies born small for gestational age (SGA): The HPG axis
activation in SGA infants born at term is not well defined and
its short-term and long-term effects on growth and development
are still controversial. Studies on SGA females found higher
postnatal FSH levels compared with neonates born appropriate
for gestational age (AGA). This different pattern of secretion
in SGA females was also associated with reduced uterine and
ovarian size that persisted into young adulthood (33, 34).
Moreover, Anti Mullerian Hormone (AMH) levels have been
reported to be higher in SGA girls at 2–3 months of life,
suggesting possible altered follicular development (35).

In contrast with these findings, other studies have reported
higher E in SGA females after the administration of a GnRH
stimulation test, although the reported basal levels were not
significantly different (35).

In male SGA term neonates, HPG axis activation has been
linked both to lower (36) and higher (34) FSH and T (37) levels,
with uncertain effects in adult life (38).

Further studies are necessary to clarify the pattern of
minipuberty in SGA male and female infants, along with
the clinical implications. It is important to bear in mind
that SGA neonates are at increased risk of metabolic and
endocrinological disorders. These include reduced insulin
sensitivity and increased adrenal hyperandrogenism, with
consequent precocious pubarche and reduced ovulation rate (39).

PRETERM INFANTS

Little is known about the influence of prematurity on HPG
axis activity and its effects. Fewer studies have investigated this
pattern longitudinally in preterm (PT) babies compared with
those born full-term (FT). Preterm birth does not seem to
influence the postnatal HPG axis activation, as gonadotropin
levels begin to rise after birth (whenever that is, as fetal-placental
interruption) with the same timing as in FT infants.

Moreover, this hormonal surge might be even stronger
and more prolonged than in FT infants (40, 41). However,
these data are not univocal (40–42) in either the amplitude
or the duration between different sexes. Immaturity of the
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hypothalamic feedback has been suggested as a possible
mechanism for this strong and prolonged activation, although its
biological significance is still not completely understood.

The most recent longitudinal data suggest that minipuberty
declines at about the same post-term age in term neonates
compared with premature infants, suggesting that the HPG
activity is regulated in an evolutionarily way (13). In particular,
Kuiri-Hanninen et al. (13) used spot urine samples in order to
compare gonadotropin and testosterone levels in a small cohort
of FT and PT male neonates with a gestational age (GA) between
24.7 and 36.6 weeks. From day 7 to 14 months of age they
measured length, weight, penile length, and testicular volume.
They simultaneously collected urine samples to detect urinary
gonadotropins and testosterone levels until 6 months of age.
Their findings revealed higher hormonal levels in PT babies
with a positive association between testosterone levels and penile
growth, as well as between FSH levels and testicular growth after
birth until 5months of age, when a subsequent decrease occurred.
In addition, studies on PT female infants demonstrated higher
gonadotropin levels than those in FT girls with a prolonged
duration of the peak (43) but a sharp decrease around term
age (30). In these PT girls, an amplified postnatal E surge was
observed at around three months of corrected age and there was
an association with increased growth of the mammary gland and
uterine length. Possible clinical consequences of this intensive
stimulation in premature females are evidenced by features of
the ovarian hyperstimulation syndrome with edema of the vulva,
solitary or multiple cysts in the ovaries on ultrasonography,
breast growth, and occasional vaginal bleeding (44, 45).

The hormonal differences between boys and girls during
minipuberty appear to be fundamental for later sexual
differentiation and development. In particular, we think
that increasing knowledge on minipuberty in girls may give us
key information about the premature thelarche of girls below
2 years of age, and the early puberty that occurs before 8 years
of age. In SGA neonates, results are still controversial and more
studies are needed to clarify how gonadotrophins and sexual
hormones change according to sex. This may be very useful,
considering that SGA-born children may go through early
puberty and/or precocious isolated pubarche. In preterm babies,
we speculated that the prolonged activation of HPG axis may be
one of the factors influencing the early re-activation of the HPG
axis before puberty age.

BABIES WITH DISORDERS OF SEX
DEVELOPMENT

The development of internal and external genitalia is a complex
balance between gene expression and hormonal influence and an
anomaly at each stage can result in 46, XY DSD.

From this point of view, minipuberty can be considered as a
window of sensitivity, because it may allow the clinician to come
to an early diagnosis and possible treatment opportunity.

Studies on primates testing the effects of a reversible
suppression of minipuberty using GnRH agonists or antagonists
described lower testis volume and penile length in cases treated

compared with controls (46–48). Male infants with congenital
central hypogonadism (CHH) were found to have an absence
of both fetal and postnatal FSH, LH, and T surges (49). This
lack of postnatal FSH secretion seems to be the main reason
for impaired germ cell differentiation with later infertility,
especially if associated with cryptorchidism (50, 51). As a result,
minipuberty may potentially provide a short window of time to
make an early diagnosis and for treatment in male neonates that
exhibit a micropenis with or without cryptorchidism (52, 53),
improving the outcome of orchidopexy, and also reducing the
long-term consequences of an absent minipuberty.

On the other hand, the finding of elevated gonadotropins
during minipuberty in a 46, XY male neonate with undetectable
testosterone levels may suggest congenital anorchism (vanishing
testis or testicular regression syndrome). Infants with complete
androgen insensitivity syndrome may present with lower-than-
normal postnatal LH and T levels, whereas these hormones may
be normal or high in cases of partial androgen insensitivity
syndrome (54).

We have a unique opportunity to evaluate the spontaneous
function of the HPG hormone axis during minipuberty. It is
therefore recommended that serum FSH, LH, and testosterone
are measured during the first 6 months of life in infants with
DSD or suspected CHH. In particular, we would suggest checking
for these hormones at seven days of life, and one, three, and, if
possible, 6 months of life, to detect the minipuberty trend. The
use of the LH/FSH ratio may provide important information in
the workup of infants suspected of DSD, especially regarding the
sex specific ratio detected in literature (55).

MINIPUBERTY: A WINDOW FOR
TREATMENT?

Neonates affected by cryptorchidism,micropenis, and CHHmust
receive timely treatment to optimize genital development. The
current recommendation for a micropenis is brief therapy with
low-dose testosterone delivered by intramuscular injection or
by topical application to induce penile growth. This treatment
was also assumed to work for cryptorchidism. However,
while exogenous T stimulates penile growth, it does not
affect testicular development. In fact, current recommendations
advocate surgical correction for undescended testes during the
first year of life (56). Nevertheless, there are limitations to this
treatment. Small testes augment the risk of testicular trauma and
tissue loss during orchidopexy (57), increasing the likelihood
of a negative impact on future fertility. Moreover, successful
scrotal repositioning of testes does not prevent infertility.
However, a normal minipuberty after successful surgery may
lead to the presence of Ad spermatogonia (58). The role of
Ad spermatogonia is to maintain the supply of stem cells for
spermatogenesis. In 178 testicular biopsies after orchidopexy the
authors found three groups of high, intermediate, and low risk of
infertility depending on the presence of Ad spermatogonia. After
puberty, sperm concentrations were analyzed and correlated
positively with plasma gonadotropin and testosterone levels.
For all these reasons, recreating the hormonal milieu of
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minipuberty with gonadotrophin treatment could be beneficial
for these patients.

In 2002, Main et al. (59) published the first case of CHH
and micropenis treated with short-term recombinant human LH
and FSH. The outcome of this case was successful; the penile
length increased by 50% and the testicular volume almost tripled.
Similar results were described in other recent cases (60, 61).

The REMAP study (62) investigated the use of recombinant
LH plus FSH preparations in neonates and infants with a
micropenis and/or cryptorchidism due to hypogonadotropic
hypogonadism. During therapy, all ten patients increased their
height velocity: LH levels increased from undetectable to high-
normal; FSH reached supranormal levels; and Inibin-b, AMH,
and T reached normal levels. Penile length normalized among
all children and intriguingly confirms the emerging evidence
that testicular descendance is induced by gonadotrophin
treatment (61, 63). Furthermore, in this study the therapy
may have induced high/normal activation of Sertoli and Leydig
cells, restoring testicular endocrine function and improving
future fertility.

Vincel et al. (64) analyzed testicular biopsies before and
after orchidopexy or hormonal treatment in patients with
isolated bilateral cryptorchidism with a high infertility risk.
Their results showed how the number of Ad spermatogonia
and the number of germ cells per at least 100 tubular cross-
sections increased or decreased post-surgery. Indeed, patients
who received hormonal treatment showed an important increase
in the number of cells and the complete transition of gonocyte
and fetal spermatogonia to Ad spermatogonia. These findings
support the hypothesis that GnRH induces LH release; LH
increases testosterone levels acting directly on Leyding cells,
mimicking minipuberty (50, 65).

Finally, studies have focused on the molecular mechanisms
that explain the ability of GnRH to rescue fertility. The analysis
demonstrates that several IncRNAs involved in epigenetic
programming were responsive to GnRH treatment, helping
in the preparation of Ad spermatogonial stem cells for
commitment to differentiation. In particular, the authors
found that DMRTC2, PAX7, BRACHYURY/T, and TERT were
associated with defective minipuberty and were responsive
to GnRHa (66). Minipuberty may represent a “window of
opportunity” to evaluate the HPG axis by measuring basal
hormone concentrations with no need for stimulation tests
in infants with suspected reproductive disorders. Minipuberty
provides a unique opportunity to evaluate the spontaneous
function of the HPG axis which is lost thereafter for
approximately another 10 years until the HPG axis is reactivated
in puberty (67).

IS OUR ENVIRONMENT INFLUENCING
MINIPUBERTY IN HUMANS AND
PREDISPOSING THEM TO DSD?

Endocrine Disruptor Chemicals (EDC) are compounds
detectable in every setting of daily life. These chemical
compounds are found in a range of products such as those

containing pesticides, metals, additives or food contaminants,
and personal care products (68). In fact, EDCs are so common
that it is almost impossible for individuals to avoid them
during everyday activities. These substances may cause adverse
health effects, disrupting endocrine function. In particular,
they interfere with the endocrine and reproductive systems
through nuclear receptors, non-nuclear steroid hormone
receptors, non-steroid receptors, orphan receptors, enzymatic
pathways, and other mechanisms (69). Children may be exposed
both directly and indirectly to ECDs, especially during the
three main temporal windows of the DOHaD paradigm and
during breastfeeding (70, 71). Concerning breastfed children,
Ortega-Garcia et al. detected a linear positive correlation
between anogenital distance (AGD) in male infants and the
duration of breastfeeding (72). The results of this study, called
MALAMA, suggested breastfeeding to be a protective factor
against the reduction of the AGD of 2-year-old boys. The authors
hypothesized this could be related to early exposure to EDCs
through baby formula milk (72).

Moreover, EDCs may interfere with HPG activation (73),
both during fetal life or immediately after birth, throughout
minipuberty. EDCs during minipuberty in males could impair
testicular descent (74). Focusing on some of the most
analyzed compounds in this research area, several studies have
demonstrated that Bisphenol A (BPA) has an anti-androgen
function, decreasing testosterone levels, an event that impacts sex
differentiation during fetal life and modifies the AGD length (75,
76). In particular, Sun et al. showed how maternal exposure to
BPA was associated with shortened AGD in boys at 12 months of
age, highlighting a gender specific effect (77). Another family of
EDCs influencingminipuberty are phthalates. Maternal exposure
to phthalates during pregnancy showed a reduced T level inmales
at minipuberty and, because of the antiandrogenic effect of these
compounds, the testosterone-luteinizing hormone ratio (T/LH)
is also lower in the same period (78). This is probably due to
compensated Leydig cell function, requiring higher levels of LH
to maintain the necessary level of T for embryo differentiation. It
was demonstrated in animal models that phthalates can inhibit
Insl3 production and consequently modify the gubernaculum
growth necessary for the testes’ transabdominal descent (79, 80).
However, the effects of these compounds on Insl3 and T in
the human testes were less attenuated than in rodents. Table 1
summarizes the most recent studies on the effect of EDC on
HPG axis during minipuberty in humans. The impact of EDCs
is not limited to the postnatal period. Indeed, alongside this
phase there are two more windows of development: fetal and
puberty. In these phases, cells are promptly proliferating, and
epigenetic changes are more likely to occur (81). All this may
lead to additional effects in later stages of life including delayed
or precocious puberty (82–85), small testes and high levels of
follicle-stimulating hormone (FSH) (86, 87), polycystic ovary
syndrome (88), and breast cancer (89).

Our environment plays a crucial role in developmental
programming. The influence of EDCs on minipuberty
may predispose an individual to undescended testis, AGD
modifications, or reduction of T surge. We should always keep
an eye on the appearance of the external genitalia in neonates
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TABLE 1 | Possible effects in humans of the main EDCs on minipuberty and long-term consequences (68–89).

EDcs Possible mechanism of action Effects on minipuberty Future effects

BPA Increased estrogen receptor

Inhibition of apoptotic activity in breast tissue

Lower T level

Shortened AGD in boys

Premature thelarche

Breast neoplastic transformation

Infertility

Phthalates Reduced T synthesis

Modified estrogen activity

Antiandrogenic effect

Insl3 inhibition

Lower T/LH ratio

Undescended testis

Hypospadias

Shortened AGD

Early puberty

Premature thelarche

Delayed pubic hairs development

Increased breast cells proliferation

Less recruitment of primary follicles

PCOS

Spermatogenic failure and infertility

PBDEs/PBB Modified estrogen activity

Antiandrogenic effect

Undescended testis Early pubic hair stage (boys)

Early/late menarche in breastfed girls

Early puberty

Anticipated menarche

DDT/DDE Modified estrogen expression

Antiandrogenic effect

Undescended testis

Hypospadias

Precocious puberty

Anticipated menarche

Later onset of puberty

Increased risk of breast cancer

Testicular cancer

PCBs Augmented level of FSH and estradiol

Antiandrogenic effect

Undescended testis

Hypospadias

Anticipated menarche

Delayed puberty

Augmented adipose tissue in breast

Semen alteration

and on the possible maternal exposure to phthalates and BPA
through a specific interview.

HOW MINIPUBERTY INFLUENCES LINEAR
GROWTH DURING THE FIRST 6 MONTHS
OF LIFE

During minipuberty, the transient HPG axis activation results
in a sex steroid surge. Some studies have indicated a higher
growth velocity and a faster increase in weight (and lean
body mass) associated with somatic changes in boys when
compared with girls during the first 6 months of life (90–
93). Based on these results, studies have tested the hypothesis
of an association with minipuberty, particularly with the peak
of testosterone production. Kiviranta et al. (94) evaluated the
precise timing and the magnitude of this sexual dimorphism
in growth among a large cohort of full-term healthy boys and
girls during the first years of life. In a smaller sample of healthy
neonates, serial measurements of urinary and blood hormones
were assessed. Results from this study demonstrated that linear
growth was significantly faster in boys than in girls, especially
when comparing the first three months of age. Interestingly,
this observation occurred simultaneously with the peak of
postnatal gonadal activation and the authors found a positive
correlation between T levels and growth velocity in both sexes,
elucidating a possible novel biological role of minipuberty as
an engine of growth velocity during the first months of life.
Differences in sex hormones during minipuberty between boys
and girls are important for the sex differentiation in linear
growth and body composition, with males having a higher

growth velocity and accumulating more lean mass compared
to females.

HOW MINIPUBERTY MODULATES
NEUROBEHAVIORAL DEVELOPMENT

As for sexual development, the human brain is also shaped
by a combination of genetic, epigenetic, environmental, and
hormonal exposure. Sex steroid hormones are among one of
the strongest biological factors influencing neural and behavioral
development. Over the past two decades, there has been a
growing interest in understanding how sex determination and
sexual hormones may affect structural and functional brain
development (95, 96). The cellular and molecular mechanisms
induced by T (converted to estradiol in the brain) are
multifaceted and include neurogenesis, cellular differentiation,
axon guidance, synaptic pruning, apoptosis, and phagocytosis.
Several studies on mammalian brains, including humans, have
demonstrated that early androgen exposure has an influence
on sex differences in juvenile behavior (54, 96, 97). Indeed,
manipulating androgens prenatally in non-human primates
alters brain regions and behaviors (98). Many studies have been
performed in girls prenatally exposed to high levels of androgens
because of congenital adrenal hyperplasia (CAH) where there
is strong evidence of male typical play behavior, suggesting a
similar hormonal influence on human brain development (98–
104). This influence of androgen levels on the brain has been
identified not only among affected girls but also in the general
population. Fetal T measured from amniotic fluid positively
correlates with male typical play in preschool girls and boys
assessed with a standardized questionnaire (105). This prenatal
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TABLE 2 | Main studies on minipuberty and neurobehavior.

References Methods Results Future prospectives

Lamminmäki et al.

(110)

– Urinary testosterone

at 7 days of age (D7), and months 1, 2, 3, 4, 5 and 6

(M1–M6)

– The PSAI is a 24-item, standardized questionnaire

designed to discriminate gender related behavior

within the sexes, as well as between girls and boys

(111). It has been validated in the age-group 2 to 7

years. The questions covers three aspects of behavior:

play with sex-typed toys (e.g., dolls, cars),

engagement in sex-typed activities (e.g.,

ballgames, playing at cooking/cleaning) and

sex-typed child characteristics (e.g., interest in

snakes/spiders/insects, liking pretty things).

– The toy preference test: the child was seated in the

middle of a semi-circle formed by 9 toys. These toys

were selected to be female- preferred (a tea set, a

soft doll, and a baby doll and bathtub),

male-preferred (a truck, a train, and a parking

structure with two motorcycles), or gender neutral (a

teddy bear, a soft picture book, and a set of keys).

Two toys from the same category were never adjacent

to each other. The session of 10min was videotaped

and the score consisted on how long (in seconds) that

the child played with each toy, with play defined as the

child touching the toy for 1 s or longer.

– In boys, urinary testosterone concentrations peaked at 1

month postnatal and decreased to low levels by the age 6

months.

In girls, urinary testosterone concentrations were slightly

elevated at D7 and M1, and then decreased to low levels.

In the overall population, urinary testosterone was significantly

higher in boys than in girls.

– In boys, but not in girls, testosterone AUC correlated positively

with PSAI scores.

– Both boys and girls played significantly more with the same

sex-related toy.

– Testosterone in boys was negatively related to the

female-preferred toy playing, but not in girls. Testosterone in

girls was positively correlated with the male-preferred toy

playing. A significant negative association between testosterone

and time spent playing with the truck and a significant positive

association between testosterone and time spent playing with

the soft book among boys was detected.

The study underlined how testosterone may exert

organizational effects on neurobehavioral development

during early infancy both in girls and in boys.

The urinary sampling method could be easier to be used

in neonates and infants.

Constantinescu

et al. (116)

61 healthy infants (29 males, 32 females) and 59

mothers and 3 fathers.

Saliva samples of testosterone when infants were

1–2.5 months of age, and mental rotation performance

was assessed at 5–6 months of age.

Mental rotation ability was assessed using the procedure

developed by Constantinescu et al. (116).

The stimuli were video representations of dynamic 3D

objects, depicted in rotational movement around their

vertical axis in 3D space.

Testosterone concentrations were significantly higher in boys than

in girls at age 1–2.5 months.

In contrast, at age 5–6 months, testosterone concentrations were

significantly lower in both sexes than they were at the first visit.

– male infants spent a significantly longer time looking at the novel

stimulus than at the familiar one, and 65% of the male infants

preferred the novel stimulus.

– In contrast, female infants looked at the familiar and novel test

stimuli about equally, and 46% of the female infants preferred

the novel stimulus. These findings suggest that more male than

female infants had developed an ability for mental rotation at

5–6 months of age.

– The male infants’ novelty preference was significantly greater

than that of the female infants

– Testosterone concentrations at 1–2.5 months of age correlated

significantly with novelty preference scores on the 3D mental

rotation task in 5- to 6-month-old boys but not in girls.

– Testosterone may have organizational influences on

mental rotation performance

– In girls, mental rotation performance at age 5–6

months correlated negatively with parents’ traditional

attitudes on gender. This finding suggests that parents

could influence their daughters. “mental rotation

abilities” beginning very early in life.

(Continued)
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TABLE 2 | Continued

References Methods Results Future prospectives

Kung et al. (114) – -Saliva samples for testosterone between 1 and 3

months old.

– -Between 18 and 30 months, all of the parent

participants were invited to complete an online

questionnaire assessing the children’s expressive

vocabulary size

– -The toddler short form for vocabulary production from

the MacArthur Communicative Development

Inventory [CDI; (117)] is a parent-report measure

designed to assess expressive vocabulary production

in toddlers aged 16–30 months

– -boys had significantly higher concentrations of testosterone

during mini-puberty and significantly lower CDI scores at age

18–30 months than girls

– there was a significant negative correlation between

concentrations of testosterone during mini-puberty and later

CDI scores in boys

– Differences were found between boys and girls in salivary

testosterone at 1–3 months of age and in expressive vocabulary

size at 18–30 months of age. A negative link between

testosterone during mini-puberty and expressive vocabulary

was found in boys, in girls, and in the entire sample. Results

also showed that testosterone accounted for significant

additional variance in expressive vocabulary, when other

predictors, such as child’s age at vocabulary assessment and

paternal education were controlled, suggesting that the effects

of testosterone are independent from those of other predictors

– higher concentrations of salivary testosterone during the peak of

mini-puberty at age 1–3 months predicted smaller expressive

vocabulary at age 18–30 months in boys and in girls.

Similar future research might usefully assess the

independent contributions of prenatal and postnatal

androgen exposure to expressive vocabulary and to

other aspects of development that also differ by sex.

Kung et al. (118) Testosterone in saliva samples collected from children at

1 to 3 months of age (40 boys, 47 girls).

When the children reached 18 to 30 months of age,

parents completed the Quantitative Checklist for

Autism in Toddlers (Q-CHAT).

Boys had higher concentrations of testosterone postnatally and

higher Q-CHAT scores than girls. However, testosterone did not

correlate with Q-CHAT scores in boys, girls, or the entire sample.

There is no relationship between testosterone exposure during

mini-puberty and autistic traits.

This does not preclude effects of mini-puberty on other

behaviors (see the gender-typed play behavior).

Other studies have hypothesized a correlation between

prenatal exposure to testosterone and autistic traits.

Tanja Kuiri-Ha

nninen et al. (13)

Urinary gonadotropins and testosterone were measured

in serial urine samples and compared with testicular and

penile growth in preterm (PT) and full term (FT) neonates.

Urinary prostate-specific antigen was measured as an

androgen biomarker.

LH and testosterone levels were higher in PT boys than FT boys.

Compared with FT boys, FSH levels were lower at day 7 but

higher from month 1 to month 3 in PT boys.

This was associated with significantly faster testicular and penile

growth in PT boys compared with FT boys.

Postnatal HPG axis activation in infancy is increased in

PT boys and associated with faster testicular and penile

growth compared with FT boys.

As mentioned in Table 1, there is a possible long-term

consequence of hyperandrogenism in PT infant boys

warrant further research.

Pasterski et al. (113) – Penile length, Ano-genital-distance (AGD), and body

length were among the growth parameters assessed

as part of the larger baby growth study.

Measurements were taken at birth, and at 3, 12, 18,

and 24 months of age in typically developing infants.

– Gender-related behavior was measured at 3 to 4 years

of age using the Preschool Activities Inventory (PSAI).

AGD at birth and penile growth during the first three months

postnatal independently predicted increased masculine/decreased

feminine behavior in boys at 3 to 4 years of age.

AGD at birth may be employed as a biomarker of prenatal

androgen exposure, while penile growth during mini-puberty may

reliably reflect variance in early postnatal androgen exposure.

Future research could use these biomarkers in

large-scale population studies to further elucidate

neurobehavioral effects of perinatal androgen exposure.

Such large-scale investigations could also permit a

prospective assessment of other factors known to

influence variance in gender-related behavior, such as

socialization and cognitive development, along with their

interactions with early androgen exposure.
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period of HPG axis activation is therefore critical for the sexual
differentiation that drives the different organization in circuitry
and neuroanatomy between the male and female brain. The
early postnatal surge of gonadotropins and T in boys during
minipuberty can potentially provide a window of opportunity
in understanding the effects of sex steroid hormones on human
gender development (106). Emerging evidence suggests that T
levels during minipuberty have an influence not only on male
genitalia and reproductive function but also on later gender-
typical behavior. Indeed, minipuberty occurs during a period of
huge and rapid brain development in terms of volume, cortical
thickness, surface, and cortical network development (107–109).
Lamminmäki et al. (110) found a positive correlation between
T levels in FT infants from day 7 to 6 months and future sex-
typed behavior at 14 months of life. In this study, the Pre-
School Activities Inventory (PSAI) (111, 112) playroom was
used during an observation of toy choices. In boys, T levels
correlated significantly with PSAI scores and playing with trains.
Conversely, playing with dolls was significantly correlated with
a negative trend. In addition, Pasterski et al. (113) used AGD at
birth and penile growth from birth to 3 months of age to estimate
prenatal and postnatal androgen exposure. They re-evaluated
children included in the study at 3 to 4 years of age using
the PSAI suggesting that T levels in both periods, prenatal and
postnatal, are independent contributors to later gender-related
behavior. Language development is another area of investigation
of a possible correlation with early postnatal HPG axis activation.
Results based on small samples suggest a correlation between
T levels and a different expressive vocabulary in boys and girls
(114, 115). We have summarized some of the clearest studies

of the last decade in Table 2 in order to better understand the
influence of hormonal changes happening during minipuberty
on sex-related behavior. All these emerging results may support
a role for the imprinting of T during early infancy in human
neurobehavioral sexual differentiation, although its effects are
still largely unknown in both the short and long-term.

CONCLUSION

Although further studies are needed, pre- and postnatal
activation of the HPG axis could be considered an important
window of prediction on how each newborn will grow and
develop. Measurement of LH, FSH, and testosterone at 7 days,
one and three months, and, when possible, six months, may help
the clinician to better understand how minipuberty develops in
different neonates. This will give us important information once
the baby approaches puberty or when he or she shows impaired
linear growth. Moreover, minipuberty must be considered a
fundamental moment for possible therapeutic intervention in
DSD. Therapeutic interventions may be able to change the
natural history of some DSD or, at least, to improve prognosis
in terms of fertility and quality of life.
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Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or

more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism,

and reproduction. The anterior pituitary produces and secretes growth hormone (GH),

adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone,

luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic

hormone and oxytocin.

Epidemiology: The incidence is 1 in 4,000–1 in 10,000. The majority of CH cases are

sporadic; however, a small number of familial cases have been identified. In the latter,

a molecular basis has frequently been identified. Between 80–90% of CH cases remain

unsolved in terms of molecular genetics.

Pathogenesis: Several transcription factors and signaling molecules are involved in the

development of the pituitary gland. Mutations in any of these genes may result in CH

including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1,

GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in

association with CH, but it is likely that many genes remain to be identified, as the majority

of patients with CH do not have an identified mutation.

Clinical manifestations: Genotype-phenotype correlations are difficult to establish.

There is a high phenotypic variability associated with different genetic mutations. The

clinical spectrum includes severe midline developmental disorders, hypopituitarism

(in isolation or combined with other congenital abnormalities), and isolated

hormone deficiencies.

Diagnosis and treatment: Key investigations include MRI and baseline and dynamic

pituitary function tests. However, dynamic tests of GH secretion cannot be performed in

the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI

findings, and low growth factor concentrations. Once a hormone deficit is confirmed,

hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol

deficiency should be excluded, and if identified this should be rapidly treated, as should

TSH deficiency. This review aims to give an overview of CH including management of

this complex condition.

Keywords: hypopituitarism, newborn, hypoglycaemia, pituitary gland, hormone deficiencies, septo-optic

dysplasia, growth hormone, micropenis
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INTRODUCTION

Congenital hypopituitarism (CH) is defined as the deficiency of
one ormore hormones produced by the anterior pituitary (AP) or
released from the posterior pituitary (PP). Its estimated incidence
is between 1 in 4,000 and 1 in 10,000 live births (1).

The pituitary gland is the central regulator of growth,
metabolism, reproduction and homeostasis. It is located in the
midline of the brain within the sella turcica and consists of three
lobes of dual embryologic origin. The adenohypophysis (anterior
and intermediate lobes) originates from Rathke’s pouch, an
invagination of the oral ectoderm, whereas the neurohypophysis
(posterior lobe) develops from the neural ectoderm of the
ventral diencephalon.

The AP consists of five different cell lineages producing six
hormones: somatotrophs (growth hormone, GH), gonadotrophs
(follicle stimulating hormone, FSH, and luteinising hormone,
LH), corticotrophs (adrenocorticotropic hormone, ACTH),
thyrotrophs (thyroid stimulating hormone, TSH), and
lactotrophs (prolactin, PRL). The intermediate lobe contains
melanotrophs, which secrete proopiomelanocortin (POMC),
a major precursor to endorphins, and melanocyte-stimulating
hormone (MSH). The PP lobe releases two hormones, oxytocin
and antidiuretic hormone (ADH, also known as vasopressin),
which are produced in the hypothalamus (supraoptic and
paraventricular nuclei) and transported axonally via the pituitary
stalk to be stored and released from the PP.

The hypothalamic parvocellular neurosecretory system is
responsible for the release of specific AP hormones. It consists
of neurons secreting thyrotrophin-releasing hormone (TRH)
stimulating secretion of TSH and PRL, corticotrophin-releasing
hormone (CRH) that acts to stimulate the secretion of ACTH,
gonadotrophin releasing hormone (GnRH) that stimulates
release of FSH and LH, growth hormone releasing hormone
(GHRH) that stimulates the secretion of GH, somatostatin
(SS) that negatively regulates GH secretion, and dopamine
that inhibits secretion of PRL. These hypothalamic factors are
rapidly transported to the AP via the hypophyseal portal blood
system (2, 3).

The aim of this review is to describe the range of mechanisms
underlying CH, clinical findings during the neonatal period,
diagnosis, treatment, and future therapeutic options.

ETIOLOGY

CH may occur due to developmental defects of the pituitary
gland, in some cases as a result of genetic mutations.
Acquired forms of hypopituitarism, secondary to perinatal or
neonatal events, rarely occur in the neonatal period. CH may
present as isolated or combined pituitary hormone deficiencies
(CPHD), and may be part of a syndrome involving extra-
pituitary abnormalities.

In the majority of cases, the etiology of CH is unknown.
The overall incidence of genetic mutations in these patients is
low (16% of cases can currently be explained by mutations in
known genes) indicating that many genes remain to be identified
(4). PROP1 mutations are the most frequent known cause of

both familial and sporadic congenital CPHD. Mutations in
other genes have also been described, but appear to be much
rarer. However, it is likely during the next few years that novel
genetic determinants of pituitary disorders will probably be
identified with the availability of next generation sequencing
technology (5).

EMBRYOLOGY AND GENETICS

The development of the pituitary gland is a multifactorial
process that results from the temporo-spatial interactions of
transcription factors and signaling molecules. These occur in
distinct and sequential developmental steps. Although direct
evidence in humans is lacking, the process of pituitary
development is highly conserved across all vertebrate species
including rodents, and development of the mouse pituitary, in
particular, is well-characterized (6).

Pituitary gland development starts at an equivalent human
gestational age of 4–6 weeks and occurs in 4 stages: (i) the
pituitary placode, (ii) the rudimentary Rathke’s pouch, (iii) the
definitive Rathke’s pouch, and (iv) the mature pituitary gland.

In the mouse the pituitary placode appears at embryonic (E)
day 7.5, located ventrally to the anterior neural ridge and next
to the future hypothalamo-infundibular region, which will give
rise to the roof of the oral cavity. Initial pituitary development
consists of a thickening of the roof of the oral ectoderm at E8.5.
By E9.0 it invaginates dorsally and the rudimentary Rathke’s
pouch is formed (7). The definitive Rathke’s pouch, formed by
E10.5, gives rise to the anterior and intermediate lobes. The
posterior lobe is derived from the posterior part of the developing
diencephalon. By E12.5, the precursors of the hormone-secreting
cells start to proliferate ventrally from the pouch to constitute the
future AP.

Normal pituitary organogenesis requires apposition between
the rudimentary Rathke’s pouch and the diencephalon. This is
critical as the induction and correct formation of the pouch
requires at least two sequential inductive signals from the
diencephalon (8, 9). Bone Morphogenetic Protein 4 (Bmp4) is
the first secreted signaling molecule. Fibroblast Growth Factor 8
(Fgf8) that is the second signal activates two key regulatory genes,
LIM homeobox 3 (Lhx3) and LIM homeobox 4 (Lhx4) that play
a critical role in the development of the rudimentary pouch into
a definitive pouch (10–12).

These signaling molecules are derived from different
embryogenic origins: the ventral diencephalon (Bmp4, Fgf8,
Fgf4, Nkx2.1, Wnt5α), the oral ectoderm (Sonic Hedgehog, Shh,
the surrounding mesenchyme (Bmp2, Chordin) and the pouch
(Bmp2, Wnt4) (13, 14).

Transcription factors expressed early in pituitary
organogenesis include Hesx1, Lhx3, Lhx4, Sox2, Sox3, Gli2,
and Otx2. Prop1 and Pou1f1 (previously known as Pit1) are
implicated in the later stages.

Further cell determination and specification rely on the
expression and interaction of multiple signaling molecules and
transcription factors (15) and these will be expanded upon in the
following section.

Frontiers in Pediatrics | www.frontiersin.org 2 February 2021 | Volume 8 | Article 60096275

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Bosch i Ara et al. Congenital Hypopituitarism Neonatal Period

CORRELATION BETWEEN

PHENOTYPE-GENOTYPE

The variety of phenotypes seen in patients with CPHD is a
reflection of the close developmental relationships seen during
organogenesis of the pituitary gland, eye, optic nerve, ear, nose,
and cranial nerve ganglia.

As a general rule, genetic mutations in genes involved in early
development (HESX1, LHX3, LHX4, SOX2, SOX3, GLI2, and
OTX2) tend to be part of a syndrome that includes extra-pituitary
defects and midline abnormalities such as cleft lip and/or palate,
as well as CH (Table 1). In contrast, mutations in the genes
implicated in later stages (PROP1 and POU1F1) result in variable
phenotypes of CPHD without any extra-pituitary defects (16)
(Table 2).

Different gene mutations can result in the same phenotype
and different phenotypes can be secondary to the same
single genetic mutation. Therefore, the clinical phenotype
and associated morphological findings are crucial in the
investigation of the underlying genetic mutations of cases of
congenital hypopituitarism.

Syndromic Hypopituitarism
Syndromic forms of CH are mainly due to mutations
in transcription factors implicated during early pituitary
development as listed in Table 1 and described in detail below.

Septo-Optic Dysplasia and Its Variants
Septo-optic dysplasia (SOD; de Morsier Syndrome) is an
extremely heterogeneous and complex disorder defined by the
presence of at least 2 of the following: (i) optic nerve hypoplasia
(ONH), (ii) midline abnormalities seen in brain and pituitary
MRI [mainly agenesis of the corpus callosum (ACC) and
absence of the septum pellucidum], (iii) pituitary hypoplasia
with hypopituitarism. Its estimated prevalence is 1 in 10,000 live
births (17–19).

To date, transcription factors, such as HESX1, SOX2, SOX3,
andOTX2, are themost common genes implicated in the etiology
of SOD. Genetic mutations implicated in Kallmann syndrome
(KS), such as KAL1, FGFR1, PROKR2, and FGF8, have also been
recently identified in patients with SOD (16, 20, 21).

HESX1

The transcription factor HESX1 is a member of the paired-like
class of homeodomain proteins, the initial activation of which
may be dependent upon LHX1 and OTX2. Hesx1 is one of
the earliest markers of the pituitary primordium and can be
detected in the anterior forebrain from E7.5 to E8.5 and in the
Rathke’s pouch from E8.5 to E135 (22). From E12, it is rapidly
downregulated and becomes undetectable by E13.5 (23).

Hesx1 is a transcriptional repressor and its down-regulation
activates other downstream genes such as Prop1, suggesting that
both function as opposing transcription factors.

Targeted disruption of Hesx1 in mice results in anophthalmia
or microphthalmia and midline neurological defects (such as
absent septum pellucidum and pituitary hypoplasia), reminiscent
of SOD (24).

The first homozygous missense mutation reported in HESX1
(p.R160C) was described in two siblings with SOD born to
consanguineous parents who presented with ACC, ONH, a
hypoplastic AP gland and complete panhypopituitarism (25–27).

Since then, several homozygous and heterozygous HESX1
mutations have been described. There is no clear genotype-
phenotype correlation, and clinical features range from
idiopathic GHD to CPHD, associated in some cases with
anomalies such as SOD and pituitary malformations (28–33).
MRI findings are variable, including a hypoplastic or aplastic AP
and an ectopic posterior pituitary (EPP).

The phenotype of those patients with heterozygous mutations
in HESX1 tends to be milder presenting with isolated GHD
and an ectopic or undescended posterior PP, although midline
forebrain abnormalities can also be seen.

The majority of the cases are sporadic and just around 1% of
the patients with SOD present with genetic mutations in HESX1
(34, 35). In some patients, the penetrance is variable, suggesting
the impact of additional genetic, or environmental factors.

SOX2

SOX2 is a transcription factor member of the SRY-related HMG
box (SOX) family. It is expressed at 4.5–9 weeks of human
pituitary development within Rathke’s pouch and is maintained
throughout AP development as well as in the diencephalon.

It is expressed throughout the developing central nervous
system as well as in sensory placodes, inner ear, cochlea and in
the developing lens, retina, and optic nerve (36–44).

SOX2 is extremely important in the maintenance of pituitary
progenitor cells and its differentiation into all hormone-
producing lineages (45).

The pituitary phenotype associated with murine Sox2
loss of function mutations usually includes GH, TSH, and
gonadotrophin deficiencies (46).

Heterozygous de novo mutations in humans
have been observed in several patients with
hypogonadotropic hypogonadism, bilateral, often severe,
anophthalmia/microphthalmia, small corpus callosum,
hippocampal abnormalities, and variable mental retardation
(47–51). Esophageal atresia has also been reported (52, 53). The
pituitary phenotype occasionally includes GH deficiency (GHD).

Imaging of the hypothalamo-pituitary region can show
morphological anomalies such as hippocampal abnormalities,
hypoplasia of the corpus callosum, hypothalamic hamartoma,
and pituitary enlargement that is reminiscent of tumors (54).

SOX3

SOX3 is also a member of the SRY-related HMG box (SOX)
family. It is located on the X chromosome (Xp27.1) and
is expressed along the full length of the central nervous
system including the brain and spinal cord. SOX3 dosage is
critical for normal hypothalamic-pituitary development and
both under- and over- dosage of the gene can lead to
hypopituitarism (4, 55, 56).

Male patients present with variable hypopituitarism
(CPHD or idiopathic GHD) and infundibular hypoplasia, an
ectopic/undescended posterior pituitary (PP) and abnormalities
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TABLE 1 | Mutations and characteristics of genes involved in syndromic hypopituitarism.

Transcription

factor

Inheritance Hormone deficiencies MRI Phenotype

S
e
p
to
-o

p
ti
c
d
y
s
p
la
s
ia

a
n
d
it
s
v
a
ri
a
n
ts HESX1 AR, AD Isolated GHD

CHPD

APH

EPP

ACC

SOD and its variants

SOX2 AD LH, FSH deficiency

Variable GHD

APH

Thin corpus callosum

Hippocampal abnormalities

Hypothalamic hamartoma

Slow progressing

hypothalamo-pituitarytumour

Anophthalmia/microphthalmia

Esophageal atresia

Genital tract abnormalities

Sensorineural hearing loss

Hypothalamic hamartoma

Spastic diplegia

Mental retardation

Dentalanomalies

SOX3 X-linked Pan hypopituitarism

GH, TSH, ACTH, LH, and FSH

deficiencies

Isolated GHD

APH

EPP

Absent pituitary stalk

Persistent craniopharyngeal canal

Infundibularhypoplasia

Mental retardation

Craniofacial abnormalities

Hearing impairment

OTX2 AD Isolated GHD

CPHD (GH, TSH, PRL, LH, FSH

deficiencies)

Normal

APH

EPP

Chiari Syndrome

Eye malformations (bilateral anophthalmia

or severe microphthalmia, or coloboma)

Developmental delay

Seizures

PAX 6 AR GHD

ACTH deficiency

FSH, LH deficiency

APH Eye malformations

BMP4 AR CPHD Cerebellar abnormalities

Partial ACC

Eye malformations

Sensorineural hearing loss

Developmental delay

Spondyloepiphyseal dysplasiatarda

FGFR1 AD CPHD

(GH, TSH, ACTH, LH, FSH deficiency)

with DI

APH

EPP

Stalk thin or normal

ACC

SOD

Eye malformations

Cleft lip/palate

Brachydactyly

Central incisor

Kallman Syndrome

ARNT2 AR DI, ACTH, GH, and TSH deficiencies

CPHD

APH

Absent PP

Stalk thin

ACC

Frontal and temporal lobe hypoplasia

Large Sylvian fissure

Eye malformations

Microcephaly

Renal abnormalities

Seizures

H
o
lo
p
ro
s
e
n
c
e
p
h
a
ly GLI2 AD

Haplo-

insufficiency

CPHD

GH, TSH, ACTH, LH, and FSH

deficiencies

Isolated GHD

Holoprosencephaly

APH

EPP or normal PP

Hypoplastic corpus callosum

Cavum septumpellucidum

Midfacial defects

Cleft lip/palate

Single central incisor

Postaxial polydactyly

ONH

FGF8 AD

AR

Hypopituitarism

LH, FSH deficiencies

TSH deficiency

ACTH deficiency

DI

Borderline peak GH concentration

Holoprosencephaly

ACC

ONH

Kallman Syndrome (HH + Anosmia)

Moebius syndrome

Spastic diplegia

Developmental delay

SOD

P
S
IS

OTX2 AD IGHD

CPHD (GH, TSH, PRL, LH, FSH

deficiencies)

Normal

APH

EPP

Chiari syndrome

Anophthalmia (bilateral/unilateral)

Coloboma

Retinal dystrophy

Normal eye phenotype

Bilateral severe microphthalmia

Seizures

Developmental delay

(Continued)
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TABLE 1 | Continued

Transcription

factor

Inheritance Hormone deficiencies MRI Phenotype

PROKR2 AD

AR

GH, TSH, ACTH, LH, FSH deficiencies

GHD

PSIS

APH or normal AP

EPP

Absent stalk

Dysgenesis of corpus callosum

Other:

Schizencephaly

Cerebellar hypoplasia

Hypoplastic optic discs and nerves

Neonatal hypoglycaemia

Micropenis

Facial asymmetry

SOD

Kallman syndrome

GPR161 AR GHD PSIS

APH

EPP

Other:

Emptysella

Alopecia

Short 5th finger

Ptosis left eye

O
th
e
r
S
y
n
d
ro
m
e
s IGSF1 X linked TSH, GH, PRL deficiencies / Macroorchidism

Delayedadrenarche

NFKB2 AD ACTH, TSH, GH deficiencies / Variable Immune deficiency (DAVID

Syndrome)

PITX2 AD LH, FSH deficiencies

GH insufficiency

APH

Hypoplasia sellaturcica

Axenfeld—Rieger Syndrome:

Anterior eye chamber

Dental hypoplasia

Craniofacial dysmorphism

Protuberantumbilicus

CHD7 AD GH, TSH, FSH, LH deficiencies EPP CHARGE Syndrome

LHX3 AR CPHD (GH, TSH, FSH, LH, PRL,

deficiencies variable ACTH deficiency)

Pituitary hypo- or hyperplasia

Normal PP and stalk

Skeletal abnormalities

Abnormal head and neck rotation (70%)

Vertebral abnormalities—short cervical

spine (50%)

Sensorineural deafness (mild tosevere)

LHX4 AD Isolated GHD

CPHD (GH, TSH, ACTH deficiencies,

variable FSH, LH deficiencies)

APH

PP normal or EPP

Small sella turcica

Corpus callosum hypoplasia

Cerebellar abnormalities

Chiari Syndrome

Lung defects—respiratory distress

ACC, Agenesis corpus callosum; ACTH, Adrenocorticotropic hormone; AD, Autosomal Dominant; APH, Anterior Pituitary Hypoplasia; AR, Autosomal Recessive; CPHD, Combined

Pituitary Hormone Deficiencies; EPP, Ectopic Posterior Pituitary; FSH, Follicle-stimulating hormone; GH, Growth Hormone; GHD, Growth Hormone deficiency; LH, Luteinizing Hormone;

ONH, Optic Nerve Hypoplasia; PP, Posterior Pituitary; PRL, prolactin; PSIS, pituitary stalk interruption syndrome; SOD, Septo-optic Dysplasia; TSH, thyroid stimulatinghormone.

of the corpus callosum. Intellectual disability is also frequently
reported in these patients (4, 57, 58). Patients with duplication of
SOX3 can present with GHD without other pituitary deficiencies
(59). Loss of function polyalanine expansions and gene deletions
are associated with hypopituitarism including GH, TSH, ACTH,
and gonadotrophin deficiencies. In terms of neuroradiological
features, AP hypoplasia, an absent pituitary stalk, and ectopic
EPP are other findings associated with SOX3 sequence variants
or whole gene deletions/duplications. Persistence of the
craniopharyngeal canal has been reported in association with a
SOX3 deletion (60).

OTX2

Orthodenticle homeobox 2 (Otx2) is a transcription factor gene
involved in brain, eye, nose and ear development (61, 62). It is
expressed from E10.5 to E14.5 in the ventral diencephalon, from
E10.5 to E12.5 in Rathke’s pouch, and then becomes undetectable
at both sites from E16.5 (63).

OTX2 regulates various transcription factors implicated in
brain, eye and pituitary development, including RX1, PAX6,
SIX3, LHX2,MITF, GBX2, andHESX1 in order to coordinate cell
determination and differentiation.

As OTX2 is essential in retinal development, many
patients with OTX2 mutations and pituitary hormone
deficiencies also present with a variety of ocular abnormalities.
In humans, heterozygous OTX2 mutations or gene
deletions have been implicated in the etiology of 2–3% of
anophthalmia/microphthalmia syndromes (64–67).

There is no clear genotype-phenotype correlation, even
among patients with the samemutation. The pituitary phenotype
ranges from partial to complete GHD and brain MRI can
show a normal or hypoplastic AP, normal or EPP, and
Chiari malformation (68, 69). In those patients without
ocular involvement, who have CPHD and a small AP with
or without an undescended PP, mutations in OTX2 have
been rarely reported (70). One of these rare cases is the
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TABLE 2 | Mutations and characteristics of genes involved in non-syndromic Hypopituitarism.

Transcription

factor

Inheritance Hormone deficiencies MRI Phenotype

PIT1/POU1F1 AD, AR GH, PRL, and TSH

deficiencies

APH or normal AP

Normal PP

Normal infundibulum

No extra pituitary abnormalities

No extra- pituitary abnormalities

TSH deficiency may present

early or develop muchlater

PROP 1 AR GH, TSH, PRL, LH, FSH

deficiencies

Evolving ACTH deficiency

APH, normal or enlarged AP

(transient, may change over time)

Normal PP

Normals talk

No extra-pituitary abnormalities

Variable time of onset and

severity of pituitary deficiencies

ACC, Agenesis corpus callosum; ACTH, Adrenocorticotropic hormone; AD, Autosomal Dominant; APH, Anterior Pituitary Hypoplasia; AR, Autosomal Recessive; CPHD, Combined

Pituitary Hormone Deficiencies; EPP, Ectopic Posterior Pituitary; FSH, Follicle-stimulating hormone; GH, Growth Hormone; GHD, Growth Hormone deficiency; LH, Luteinizing Hormone;

ONH, Optic Nerve Hypoplasia; PP, Posterior Pituitary; PRL, prolactin; PSIS, pituitary stalk interruption syndrome; SOD, Septo-optic Dysplasia; TSH, thyroid stimulatinghormone.

p.N233S mutation where patients may not exhibit an ocular
phenotype (71).

PAX6

PAX6 is an early dorsal marker of early AP gland and
its expression is required for somatotrope, lactotrope, and
thyrotrope development. It is also an important regulator
of eye development, and heterozygous mutations in humans
cause congenital eye anomalies (72). Recently, PAX6 mutations
have been reported to be associated with impaired pituitary
function (ACTH deficiency, hypogonadotropic hypogonadism,
and GHD) (73–75).

BMP4

Bone morphogenetic protein 4 (Bmp4) is the first secreted
molecule detected in the prospective infundibulum at E8.5.
It is essential for Rathke’s pouch formation and maintenance.
It is expressed in the optic vehicle, in the diencephalic floor
and in the medial ganglionic eminence and in developing
limbs. A recent study that included patients with eye
abnormalities identified BMP4 mutations in a familial case
of anophthalmia, retinal dystrophy, brain malformation, and
poly/syndactyly (76). Deletions in BMP4 were associated with
bilateral anophthalmia/microphthalmia, in association with
hypothyroidism, deafness, developmental delay, and cerebellar
and pituitary abnormalities.

FGFR1

FGF receptor 1 (FGFR1), a tyrosine kinase receptor for FGF,
is the most important receptor involved in FGF8 signaling.
Mutations in FGFR1 have previously been reported in patients
with Kallmann syndrome; more recently, FGFR1 variants have
been associated with CPHD, absent corpus callosum, SOD, and
midline defects (77, 78).

ARNT2

Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2)
belongs to the HLH-PAS (Per-ARNT-Sim homology) subfamily
of transcription factors. Arnt2 is find on the hypothalamus, eye
(neural retina), and kidney and urinary tract in rodents, and this
expression pattern recapitulates that observed in humans (76).

Holoprosencephaly: Gli2 and FGF8
GLI2, a mediator of SHH signaling, is expressed in the ventral
diencephalon inducing BMP4 and FGF8 expression, and also
in the oral ectoderm, inducing pituitary progenitors. GLI2
mutations are associated with holoprosencephaly (HPE) or HPE-
like features with craniofacial anomalies, pituitary abnormalities
and polydactyly (79–81).

Fibroblast growth factor 8 (Fgf8) is a member of the FGF
family of signaling molecules that are involved in pituitary
organogenesis. It is expressed in the infundibulum at E9.5, 1
day after the expression of Bmp4 (20, 82) and is important in
midbrain development.

FGF8 mutations are associated with Kallmann syndrome
and have more recently been described in association with
recessive HPE, craniofacial defects, and hypothalamo-pituitary
dysfunction (83).

Hypopituitarism With Spine Abnormalities: LHX3
Expression of the LIM homeobox 3 (LhX3) gene, a member of
the LIM class of homeodomain proteins, is detected early during
AP development at E9.5 (Ratkhe’s pouch, ventral hindbrain, and
spinal cord) and persists in the mature pituitary gland. It is one of
the earliest markers implicated in the anterior and intermediate
lobes development and its expression plays an important role for
the formation of gonadotrophs, thyrotrophs, somatotrophs, and
lactotrophs (84).

Mice with homozygous mutations of Lhx3 die soon after birth
as a result of pituitary aplasia whereas those with heterozygous
mutations have no abnormalities (85).

In humans, 14 homozygous (86–94) or compound
heterozygous LHX3 mutations (10) and a heterozygous
variant (95) have been reported to date.

Commonly, patients with LHX3 mutations present with
GH, TSH, and FSH/LH deficiencies while ACTH deficiency is
reported in 50% of cases (94).

The phenotype varies depending on which part of the gene
is affected. If the mutation affects the entire gene or protein, the
LIM domains or the homeodomain, patients will present with
syndromes involving the nervous and skeletal systems, whereas
if the mutation affects the carboxyl terminus of LHX3 protein
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alone, only pituitary dysfunction will be present. LHX3 is also
required for inner ear development.

Extra-pituitary phenotypes can include a short neck with
abnormal head and neck rotation (70% of cases), vertebral
abnormalities (50% of cases) including a rigid cervical spine,
flattened lumbar vertebrae, thoracic kyphosis, and progressive
scoliosis, and variable degrees of sensorineural hearing loss (50%
of cases). Developmental delay or learning difficulties have also
been reported in nearly 40% of the patients. Two of the reported
patients also had respiratory distress. Heterozygous family
members are largely unaffected, although a recent publication has
described a mild limitation of neck movement in a heterozygous
carrier (10).

MRI findings can vary from a normal MRI (10% of the cases)
to aplasia or hypoplasia of the AP, a hypointensity suggestive of
microadenoma, and enlargement with a hyperintense signal (91).

Hypopituitarism With Cerebellar Abnormalities: LHX4
Lhx4 is closely related to Lhx3 and is expressed in the developing
brain and spinal cord (96). It is also detected during early stages
(E9.5 in Rathke’s pouch and E12.5 in the anterior part of the
pituitary) and is subsequently found in the future anterior lobe,
with a decrease in expression by E15.5.

The AP gland in patients with LHX4mutations is hypoplastic,
containing all the differentiated cell types but in reduced
numbers. Other brain abnormalities can also be present such as
an EPP and a hypoplastic sella turcica as well as corpus callosum
hypoplasia or Chiari syndrome (97–105).

In humans, the phenotype can range from isolated GHD to
complete panhypopituitarism (106). Several sporadic or familial
LHX4 mutations have been reported to date. Of note, four
patients also presented with respiratory distress (76, 103, 107) and
one presented with a cardiac defect (76). Several of the variants
are variably penetrant, although the underlying mechanism
remains to be established.

A lethal neonatal phenotype (severe panhypopituitarism
associated with anterior pituitary aplasia and EPP, mild facial
hypoplasia, undescended testes, and severe respiratory distress)
has been recently described, secondary to a homozygous
mutation (107).

Pituitary Stalk Interruption Syndrome (PSIS)
PSIS is a congenital defect of the pituitary gland characterized by
the triad of (i) a thin pituitary stalk, (ii) an EPP gland, and (iii)
hypoplasia or aplasia of the AP gland identified by MRI. Patients
with PSIS may present with either isolated GHD or CPDH (22).
Genetic alterations inHESX1, LHX4,OTX2, SOX3, and PROKR2
have been reported in patients with PSIS, amongst others.

PROKR2, a G protein-coupled receptor essential for proper
neuronal migration and angiogenesis, is involved in sex
development and olfactory bulb development in mice. In
humans, patients with mutations in PROKR2 can present with
hypogonadotropic hypogonadism or Kallmann syndrome. More
recently, mutations have been associated with variably penetrant
hypopituitarism including SOD (108–112). As described
previously (section Septo-optic dysplasia and its variants), OTX2

gene defects were also reported in patients with no ocular
abnormalities (71).

GPR161, an orphan member of the G protein–coupled
receptor family, has also been recently identified in patients with
PSIS. GPR161 is widely expressed in both mouse and human
during the early stages of embryogenesis including the neural
folds, the pituitary and the hypothalamus.

It is a key negative regulator of the SHH pathway, the pituitary
target of which is GLI2. It has been suggested that gain-of-
function mutations of GPR161 could lead to abnormal pituitary
development by repressing the SHH pathway (22).

A homozygous missense mutation p.L19Q in GPR161 has
been recently described in two female siblings with short stature
due to GHD associated with AP hypoplasia and an empty sella
with an EPP. They also had a short 5th finger, congenital alopecia,
and ptosis of the left eye (113).

Central Hypothyroidism and Macroorchidism
IGSF1 is located at Xq26 and is expressed in Rathke’s pouch, in
the pituitary gland (present in GH, prolactin and TSH-secreting
cells), and testis.

IGSF1 mutations (loss of function or deletions) cause
an X-linked syndrome. Male patients with mutations in
IGSF1 present with a characteristic phenotype that consists of
congenital central hypothyroidism, delayed puberty, and adult
macroorchidism. PRL and/or GH deficiencies have also been
reported in some cases (114, 115). Some female patients with
heterozygous mutations in IGFS1 present with central congenital
hypothyrodism, PRL deficiency, and delayed puberty.

Deficient Anterior Pituitary Function With Variable

Immune Deficiency (DAVID) Syndrome
NFKB2 belongs to the NF-κB family, which consists of a
collection of evolutionarily conserved transcription factors
involved primarily in development including the anterior
pituitary gland, immunity, and oncogenesis.

Patients with NFKB2 mutation present with deficit in
AP gland function and common variable immune deficiency,
a novel disorder called DAVID syndrome (116). However,
the precise mechanism underlying endocrine deficits remains
largely unclear.

Axenfeld—Rieger Syndrome
Pitx2, a homeobox gene, is detected in the stomodeum
at E8, Rathke’s pouch at E10.5 and 2 days after in the
anterior and intermediate lobes. Patients affected with PITX2
mutations present with Axenfeld–Rieger Syndrome which is
characterized by eye, craniofacial, dental, cardiac, and umbilical
anomalies (117).

CHARGE Syndrome and Pituitary Deficiencies
CHARGE syndrome is rare autosomal dominant disorder that
affects multiple organs. It is characterized by ocular coloboma,
cardiac defects, choanal atresia, growth, and developmental delay
and ear abnormalities. EPP and hypopituitarism in patients with
CHARGE syndrome has been recently reported in association
with two novel CHD7 variants (118).
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Isolated ACTH Deficiency
Congenital isolated ACTH deficiency is mainly due to recessive
mutations in TBX19 (formerly TPIT) which are responsible of
approximately 65% of the cases of isolated ACTH deficiency
diagnosed during the first month of life (119). Neonates
present with severe hypoglycaemia that can result in seizures
and prolonged cholestatic jaundice. Biochemically this is
characterized by low basal ACTH and cortisol concentrations
and a poor ACTH response to corticotropin releasing hormone
(CRH). It is extremely important to diagnose as this can be
a potential cause of death during the neonatal period if no
replacement treatment is started (120).

Non—syndromic Combined Pituitary

Hormone Deficiencies
Mutations in PROP1 and POU1F1 constitute the main genetic
cause found in patients with non-syndromic GHD or CPHD
(Table 2).

Mutations in PROP1
Prop1 (prophet of PIT-1), a member of the paired-like family
of homeodomain transcription factors, is the earliest expressed
pituitary-specific transcription factor. It is detected within
Rathke’s pouch by E10, peaks at E12 and it disappears by
E15.5 (121).

Prop1 can act as both a transcriptional repressor (for Hesx1
expression) or a transcriptional activator for Pou1f1 (121,
122). Mice with Prop1 over expression present with delayed
puberty as a consequence of a delay in the differentiation of
gonadotrophs (123).

The most frequent genetic cause of CPHD are recessive
mutations in PROP1 (124–130). The most common of these is
a 2 base pair deletion within exon 2, which results in a frameshift
at codon 101 and introduction of a termination codon at position
109 (130).

Recessive PROP1 mutations are associated with GH, TSH,
PRL and gonadotrophin deficiencies which vary in onset and
severity. ACTH deficiency usually occurs later. They vary in the
time of onset and severity and therefore it is important to have
ongoing clinical surveillance.

GHD and growth delay is usually present during the first years
of life in patients with PROP1mutations, however, there is a case
report of a patient who had normal growth and achieved a normal
adult height without GH treatment (131).

Both TSH and gonadotropin deficiency can appear at
birth or later in life (132–134). Some patients may present
with micropenis and undescended testes at birth and some
others with delayed puberty. Spontaneous puberty can also be
seen (135–137).

The majority of the patients do not have ACTH or cortisol
deficiency during the first years of life but this can evolve later
and ongoing surveillance is therefore needed (135, 138).

MRI shows variable pituitary morphology. The commonest
finding is a normal pituitary stalk and posterior lobe with a
small or normal AP gland. An enlarged AP gland has also been
described with posterior regression (137).

TABLE 3 | Clinical presentation of hypopituitarism in a neonate.

Symptom/sign Pituitary hormone deficiency

Poor feeding GH, ACTH

Poor weight gain GH, ACTH, DI

Jitteriness GH, ACTH

Lethargy GH, ACTH

Seizures ACTH

Recurrent sepsis ACTH

Apnoea ACTH

Conjugated jaundice ACTH

Prolonged unconjugated jaundice TSH

Temperature instability TSH

Respiratory difficulties TSH

Polyuria DI

Polydipsia DI

Undescended testes Gonadotropin

Micropenis Gonadotropin, GH

Mutations in POU1F1
POU1F1, a member of the POU family, is expressed later
during the pituitary organogenesis (E14.5) and persists during
adulthood (139). It plays a crucial role in the regulation of the
genes encoding GH, PRL, and TSH-beta and the time of onset
and severity also varies. Gonadotroph and corticotroph axes
usually remain functional.

Patients tend to present first with GH and prolactin
deficiencies during the first years of life whereas TSH deficiency
tends to present later (140).

POU1F1 mutations are mainly recessive. However, dominant
mutations have been recently described being the most frequent
p.R271Wmutation (141).

MRI reveals a normal or small AP gland; The PP and
infundibulum are normal and no midline abnormalities have
been reported (140, 142).

CLINICAL PRESENTATION, DIAGNOSIS,

AND TREATMENT

Given the crucial regulatory role of the pituitary gland, prompt
recognition of those neonates at risk of CH is important,
as a delay in replacement therapy can have devastating
consequences. Identifying neonates with CH can be challenging
because they often present with non-specific symptoms such
as hypoglycaemia, prolonged jaundiced, poor weight gain,
temperature dysregulation, electrolyte abnormalities, and
haemodynamic instability (Table 3).

Birth weight and length tend to be normal, although GHD
can lead to a slight reduction in birth weight. The clinical
presentation and its severity depend on the number of hormones
affected. These patients can have associated genital abnormalities,
eye malformations, and/or midline defects.

Neonates with ACTH deficiency can present with cholestasis
during the first 2 weeks of life. To understand the association
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between cholestasis and ACTH deficiency it is important to
remind that cortisol increases bile flow and therefore, its
deficiency will cause abnormalities in the synthesis and transport
of bile acid leading to cholestasis in some cases.

A rise in transaminase concentrations can be seen after 2–4
weeks but GGT remains normal.

Once cortisol replacement treatment is started, cholestasis
tends to resolve in around 10 weeks’ time. In those cases where
a liver biopsy is performed due to a delay in the diagnosis of CH,
this shows canalicular cholestasis, and histopathology reveals
mild portal eosinophilic infiltration.

Investigations to diagnose CH include baseline pituitary
function tests (+ dynamic tests if indicated) and brain MRI.
Genetic testing should also be considered.

However, the sensitivity and specificity of laboratory tests are
limited in the newborn, especially in premature infants due to
hypothalamo-pituitary axis immaturity, and lack of normative
values. Additionally, GH stimulation tests are contraindicated
under the age of 1 year.

A high index of suspicion for CH and early treatment in these
patients is vital to avoid clinical decompensation. Treatment
involves the physiological replacement of the relevant hormone
deficiencies and requires close lifelong monitoring.

Individual hormone deficiencies are discussed in detail in the
following section.

ACTH Deficiency
Clinical Presentation
Neonates can present with failure to thrive, severe hypoglycaemia
and cholestasis.

Diagnosis
As neonates do not have a circadian rhythm [reported to be
established at around 2 months of age (143), or after 6 months
of age (142), morning cortisol concentrations are not useful
in evaluating ACTH deficiency in this population. Although
cortisol deficiency related hypoglycaemia is severe, low cortisol
concentrations at the time of hypoglycaemia have low specificity
for the diagnosis of adrenal insufficiency and therefore should
not be the only test for the diagnosis of ACTH deficiency (144).
Many patients require a dynamic assessment (ACTH stimulation
test using tetracosactide hexaacetate). The dose of tetracosactide
hexaacetate used to diagnose central adrenal insufficiency, the
timing for collection of blood samples for cortisol measurement,
and the cut-off peak cortisol concentration for both the low-dose
and standard ACTH test are the subject of much controversy.
Stimulated cortisol concentrations ≥18 mg/dL (497 nmol/L) are
indicative of a normal hypothalamo-pituitary-adrenal axis (145).

Treatment
In preterm infants, daily cortisol production is known to be ∼7
mg/m2/day on the fifth day and ∼6 mg/m2/day in the second
week. When a neonate is diagnosed with ACTH deficiency,
treatment needs to be started immediately. The treatment of
choice is hydrocortisone due to its less potent side effects in terms
of growth and bone health compared to other glucocorticoids.

The starting dose of hydrocortisone is 9–12 mg/m2/day in 3–
4 divided doses. This dose is higher compared to older infants
because neonates have greater cortisol secretion rates. The dose
can then be titrated with age. Prior to discharge, education
for families about sick day rules and emergency dosing is
important. In event of illness or stress, hydrocortisone doses
should be doubled or even tripled. In event of an emergency,
poor tolerance of oral hydrocortisone, or a suspected adrenal
crisis, intramuscular hydrocortisone must be administered. The
dose is age-dependent (<1 year 25mg, 1–5 years 25–50mg,
>5 years 100mg) and oral glucose should also be given to
correct any associated hypoglycaemia. Those patients that cannot
tolerate oral hydrocortisone require admission for intravenous
hydrocortisone (1–2 mg/kg every 4–6 h). One they are able
to tolerate oral hydrocortisone this is commenced at triple or
double maintenance dose, and gradually weaned to maintenance
depending on clinical improvement.

It is also important to highlight that cortisol deficiency can
mask DI as cortisol is needed for water excretion. DI may develop
after starting treatment with hydrocortisone and therefore close
monitoring of fluid balance and electrolytes is important after
starting glucocorticoid therapy (145).

Novel treatments such as continuous subcutaneous
hydrocortisone infusion therapy, which may be difficult in
neonates due to limited subcutaneous fat for insertion of the
cannula, and sustained release hydrocortisone preparations
aimed at mimicking physiological cortisol secretion remain to be
established as potential therapies (146).

TSH Deficiency
Etiology
Defects in TRH or TSH signaling are responsible of isolated
central congenital hypothyroidism. As mentioned before, the
most frequent genetic cause of isolated central congenital
hypothyroidism is IGSF1 gene mutation (147). Less common
causes include genetic defects in TSH production, that is,
mutations in the TRH receptor or TSH-B subunit (112, 148).
More recently, mutations in TBL1X have been described in
association with TSH deficiency.

Clinical Presentation
Newborns with TSH deficiency can present with prolonged
physiological jaundice and low energy levels/sleepiness. Other
findings such as temperature dysregulation, umbilical hernia,
dry skin, bradycardia, macroglossia, and constipation may also
be present.

X-linked central hypothyroidism due to IGSF1 mutation
is also later associated with delayed puberty and adult
macroorchidism (149).

Diagnosis
Thyroid hormone is critical for normal brain development within
the first 3 years of life, and therefore a prompt diagnosis is
essential so that treatment can be commenced rapidly. Central
hypothyroidism is characterized by the biochemical picture of
low free T4 and usually low TSH (although it can also be
inappropriately normal or even slightly elevated).
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Treatment
Levothyroxine (LT4) is the treatment of choice in newborns with
TSH deficiency at a starting dose between 10 and 15 µg/kg/day
(150). However, higher doses will be needed in newborns
with cholestasis due to malabsorption. Iron, soy, calcium, and
anticonvulsants can also affect LT4 absorption and thus should
not be co-administered with them. LT4 should ideally be given
on an empty stomach but this is not always practical in neonates
and so may need to be given with a small amount of milk. LT4
solution or crushed tablets can be given with water, breastmilk
or formula.

For those babies unable to tolerate enteral preparations,
intravenous tri-iodothyronine (T3) is available. The
recommended intravenous dose is 75% of the total oral
LT4 dose (151).

Before starting treatment with LT4, it is extremely important
to exclude cortisol deficiency. LT4 increases basal metabolic
rate, enhancing cortisol clearance with the subsequent risk of
precipitating an adrenal crisis.

Monitoring
T4 concentrations should be monitored every 2–4 weeks during
initial period of dose tritration. Thereafter monitoring may
reduce in frequency. The aim is to keep fT4 in the mid-upper
half of the normal range (152). TSH is not useful for monitoring
in these cases.

Gonadotrophin Deficiency
Clinical Presentation
Males present with micropenis, with or without undescended
testes. Micropenis refers to a stretched penile length of −2.5 SD
from the mean value: <1.5 cm at gestational age 30 weeks, 2 cm
at 34 weeks, and <2.5 cm in term babies. Development of female
genitalia is not affected by hypogonadotropic hypogonadism
(HH) as it is independent of hormone secretion.

Diagnosis

Males

Mini puberty (raised LH and FSH) is seen between 15 days and 6
months old. Testosterone concentrations increase with a peak in
the 4–10th week and start to decrease around the 6th month. LH
concentrations <0.8 IU/L and testosterone <30 ng/mL between
day 5 and 6 months of life are suggestive of the diagnosis.
When an hCG test is done to assess testosterone production,
penile growth and testicular descent may ensue and need to
be documented. There are scant normative data pertaining to
hCG tests in the first years of life. However, a study performed
in adolescent males suggested that a peak LH concentration
< 2.8 IU/L after GnRH stimulation, with a testosterone peak
of < 3.6 nmol/L after 3 days of hCG injections and < 9.5
nmol/L after 3 weeks of hCG injections are highly suggestive of
hypogonadotrophic hypogonadism (153).

Females

Mini puberty is seen between 15 days and 2 years of age. FSH
concentrations < 0.1 IU/L between 15 days and 2 years of life are
diagnostic of probable hypogonadotrophic hypogonadism.

Treatment
In newborn male infants, the aim of the treatment is to
ensure normal testicular descent, improve penile length and
maximize fertility potential. Early treatment is recommended,
ideally between 1 and 6 months of age. Testosterone can be
given via intramuscular injections or topical gel (153–156).
Testosterone injections (cypionate or enanthate) are commenced
at a recommended dose of 25mg every 4 weeks for 3 months.
This is followed by clinical evaluation of the stretched penile
length. Topical gel containing 5-α Dihydrotestosterone (DHT) is
also useful and the recommended starting dose is 1 application
(10mg) every day for 3 months (153). The carer who is
applying the testosterone gel should wash hands soon after the
administration with soap and water and if the career is a female,
the use of gloves is recommended. Cryptorchidism increases the
risk of testicular neoplasia and also reduces fertility potential,
therefore surgical correction (orchidopexy) is recommended
during the first 2 years of life, ideally by 18 months of age
(153, 157, 158). Treatment with LH and FSH during the neonatal
period still remains under investigation (158–160).

GH Deficiency
Congenital isolated GH deficiency (GHD) has an incidence of 1
in 4,000–1 in 10,000 live births (33), and is the most commonly
affected pituitary hormone in childhood.

Etiology
Most of the cases are sporadic but there are four genetic
forms that account for 5–30% of cases (161, 162). Congenital
isolated GHD can be secondary to genetic mutations in the
genes encoding growth hormone (GH1) or the growth hormone
releasing hormone receptor (GHRHR), or in the genes encoding
transcription factors SOX3, HESX1, GLI2, OTX2, LHX3, LHX4,
PROP1, and POU1F1 (4, 163). Mutations in GH1 and GHRHR
may also lead to severe early growth failure with hypoglycaemia.
Biallelic mutations in RNPC3 have also been recently described
patients with severe IGHD and AP hypoplasia (23, 164).

Clinical Presentation
Key features of (GHD) include hypoglycaemia and micropenis.
It is important to note that GHD does not significantly affect
fetal growth, and therefore, affected newborns are usually of
normal weight and length at birth, with subsequent post-natal
growth failure.

Diagnosis
GH evaluation in a neonate differs from that in an older child.
During the neonatal period GH concentrations are higher in
the term neonate during the first week of life than throughout
childhood but a rapid decrease is seen during the following
weeks (165). In contrast, IGF-1 concentrations (stimulated by
GH) cannot be used as a screening test in neonates as they
remain low for at least the first 15–18 months of age (166).
A random GH concentration of less than or equal to 5 ng/mL
(5 mcg/L) during the first 7 days of life accompanied by other
pituitary hormone deficiencies and/or the classical imaging triad
(EPP with AP hypoplasia and an abnormal stalk) is sufficient to
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diagnose GHD (165). Binder et al. (167) suggested that a GH
cut-off of 7 µg/L as measured on a neonatal screening card by a
highly sensitive polyclonal ELISA gave 100% sensitivity and 98%
specificity. GH stimulation tests are considered dangerous and
are contraindicated during the neonatal period, and a low GH
concentration at the time of hypoglycaemia in isolation is not
enough to diagnose GHD.

Treatment
In the event of persisting hypoglycaemia, GH treatment can be
commenced during the neonatal period with daily subcutaneous
recombinant human GH (rhGH) injections in the evening
to mimic physiological growth hormone release. The initial
recommended dose is between 0.16 and 0.24 mg/kg per week
(22–35 mcg/kg per day) (165). Lower doses (10–20 mcg/kg/day)
can also lead to excellent responses at this age. GH treatment
can contribute to hypoglycaemia recovery and may improve
cholestasis during the neonatal period (168).

Monitoring
Subsequent dosing should be individualized by monitoring IGF-
I concentrations (at least every 3 months at the beginning).
Patients also should be monitored for hypothyroidism and
adrenal insufficiency as GH treatment increases metabolism of
thyroid hormone and cortisol and may unmask these conditions.

PRL Deficiency
Etiology
Prolactin deficiency is usually due to POU1F1, LHX3, OTX2,
and IGSF-1 gene mutations. It is important to note that some
medications can affect PRL concentrations such as dopamine,
calcium channel blockers and ranitidine.

Clinical Presentation
Puerperal alactogenesis is the only specific physical finding.

Diagnosis
A random prolactin concentrations <31 ng/mL during the
neonatal period supports a diagnosis of PRL deficiency,
however, breast tissue should not be palpated prior to a blood
sample being taken as the levels could be falsely elevated.
Prolactin concentrations are often elevated in association with
midline defects.

Treatment
There is no commercially available treatment for PRL deficiency.

Diabetes Insipidus (DI)
Etiology
In most cases of neonatal DI, anatomical defects or autosomal
dominant or recessive genetic causes are present. DI is also
observed in cases with SOD, corpus callosum agenesis and HPE.
Renal concentrating mechanism can also be affected by other
factors such as neonatal diabetes, hypercalcaemia, hypokalaemia.
It is also important to note that mannitol, dextrose, saline fluids,
and imaging contrast mediums can produce osmotic diuresis and
secondary polyuria.

Clinical Presentation
The clinical features include polyhydramnios, polyuria, weight
loss, irritability, dehydration, and hypernatremia.

Diagnosis
Diagnosis during the neonatal period is challenging as the
capacity to concentrate urine is not as efficient as in older children
and a water deprivation test is not recommended. Polyuria in
DI during the neonatal period is defined as >5 mls/kg/h. Urine
osmolality <300 mOsm/kg with a paired serum osmolality >300
mOsm/kg is suggestive of the diagnosis. If the urine osmolality is
>600 mOsm/kg, DI is unlikely. The vasopressin test is useful to
distinguish between central (CDI) and nephrogenic forms of DI
but this can be hazardous during the neonatal period.

Treatment
Fluid therapy alone, without DDAVP, is the recommended
management during the neonatal period as it can maintain
euvolaemia. However, when CDI is extremely severe, a neonate
may not respond to fluid therapy alone and DDAVP might
be needed. In some cases of severe CDI, a thiazide diuretic
may also be used. DDAVP can result in rapid fluid retention,
hyponatremia and secondary cerebral oedema or even death
in this vulnerable cohort of patients. Over-treatment is more
dangerous than under-treatment and this is why a low starting
dose of DDAVP (e.g., 1 µg) is recommended. Close monitoring
(electrolytes, paired plasma and urine osmolalities, weight, and
clinical examination for signs of fluid retention) is crucial, and
dose adjustment will depend on the response to treatment (169).
It is important to ensure breakthrough urine output prior to the
next dose of DDAVP, in order to avoid severe fluid retention
and hyponatraemia. It must also be highlighted that DDAVP
may need to be withheld in neonates with concomitant ACTH
deficiency who are unable to tolerate or absorb hydrocortisone
when unwell (e.g., if vomiting), until appropriate steroid cover
is provided. This is because cortisol is required for free
water excretion and ongoing therapy with DDAVP without
appropriate steroid replacement puts the neonate at risk of
water intoxication.

IMAGING: BRAIN AND PITUITARY MRI

MRI of the brain and pituitary gland is recommended in all
patients with suspected or confirmed CH. Abnormal brain
and pituitary MRI findings do correlate with the severity and
evolution of the disease (170).

The pituitary gland in newborns tends to be convex showing
high signal intensity on T1-weighted images. As discussed
previously, patients with CH usually have abnormalMRI findings
ranging from a small AP gland to severe hypoplastic pituitary
gland with EPP or undescended PP and an interrupted or
hypoplastic pituitary stalk. A “bright spot” identifies the PP gland,
however it can be absent in 10% of healthy individuals (170).

Pituitary/brain MRI studies should include qualitative
description and dimensions of the AP; location and size of
the PP gland, description of the pituitary stalk and comments
about extra pituitary structures such as the optic chiasm, septum
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pellucidum, and corpus callosum. In order to have a proper
description, the best technique is 2-mm to 3-mm thick, high-
resolution T1-weighted, and T2-weighted images in coronal and
sagittal planes.

The majority of newborns with severe CH show an EPP,
abnormal pituitary stalk, and/or AP hypoplasia on MRI. This
triad is known as “Pituitary Stalk Interruption Syndrome” (PSIS).
Patients with IGHD and PSIS need to be closely monitored for
evolving endocrinopathies as they can progress to CPHD.

Other midline brain abnormalities (absent/hypoplastic
corpus callosum, absent septum pellucidum, schizencephaly,
heterotopia) and ONHmay be associated (33, 171).

CONCLUSION

CH can be a life-threatening condition. A high index of suspicion
is required for its early identification and treatment. However,
early diagnosis during the neonatal period is challenging due
to the variable and non-specific presenting symptoms. Red
flag symptoms of CH include hypoglycaemia at birth and
a micropenis.

In neonates with confirmed or suspected CH, a brain
MRI with pituitary views is essential to exclude structural
abnormalities. Ophthalmological review is also recommended
to evaluate the optic nerves as many cases can have associated
ocular abnormalities.

CH is an evolving and lifelong condition and therefore
neonates with CH will require long term follow-up in order to
detect early evolving endocrinopathies and optimize treatment.
For those cases with a positive genetic finding, counseling is
recommended (172). Currently, genetic analysis is successful in
identifying an aetiological basis only in around 20% of cases
(173). However, rapid advances in next-generation sequencing
technology will help and improve our understanding of the
complex mechanisms involved in congenital hypopituitarism
(174). This technological progress is likely to have a positive
impact on the clinical care of patients in the future (175).
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The physiology and regulation of bone minerals in the fetus and the newborn is

significantly different from children and adults. The boneminerals calcium, phosphate and

magnesium are all maintained at higher concentrations in utero to achieve adequate bone

accretion. This is an integral component of normal fetal development which facilitates

safe neonatal transition to post-natal life. When deciphering the cause of bone mineral

disorders in newborns, the potential differential diagnosis list is broad and complex,

including several extremely rare conditions. Also, significant discoveries including new

embryological molecular genetic transcription factors, the role of active placental mineral

transport, and hormone regulation factors have changed the understanding of calcium

and phosphate homeostasis in the fetus and the newborn. This article will guide clinicians

through an updated review of calcium and phosphate physiology, then review specific

conditions pertinent to successful neonatal care. Furthermore, with the advancement of

increasingly rapid molecular genetic testing, genomics will continue to play a greater role

in this area of fetal diagnostics and prognostication.

Keywords: calcium, phosphate, magnesium, vitamin D, PTH, genetics, fibroblast growth factor 23

TAKE HOME POINTS:

1. Fetal and neonatal mineral metabolism differs significantly from that in later life.
2. The regulation of sodium/phosphate cotransporter activity in the renal tubules is the primary

mechanism by which phosphate homeostasis is maintained. Major phosphaturic hormones that
regulate renal phosphate handling are PTH and FGF23.

3. Advances in genetics have identified new gene mutations in which have clarified the causes of
several conditions previously thought to be “idiopathic.”

4. A thorough understanding of the topic is essential to correct diagnosis and treatment of
disorders of calcium and phosphate in the newborn.
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INTRODUCTION

Over the past 35 years there have been significant advances
in the understanding of materno-fetal mineral homeostatic
mechanisms. Parathyroid hormone related peptide (PTHrP)
was first described in 1985 as a new compound with
parathyroid hormone (PTH)-like bioactivity that accounted for
the discrepancy between human umbilical cord and maternal
PTH levels (1). This discovery provided new insight as
to why fetal PTH levels were so low, yet fetal calcium
levels were maintained higher than and independent of
maternal calcium concentrations. Another important novel
finding was made in 2000, when bone-derived hormone
Fibroblast Growth Factor-23 (FGF23) was found to cause
autosomal dominant hypophosphataemic rickets (ADHR),
which provided the underlying mechanism for the previously
unknown “phosphaturic factor” causing hypophosphataemia (2,
3). Genomic discoveries have continued to provide new insights
into the mechanisms facilitating transplacental bone mineral
transport and unveil the causation of conditions previously
thought to be idiopathic. As the fetus accumulates 80% of its
bone mineral content in the third gestational trimester (4), this
time is critical to achieve normal skeletal mineralisation by 40
weeks gestation and support successful transition to post-natal
life. Passive and active transport of bone-minerals occurs across
the placenta to achieve higher fetal concentration of calcium,
phosphate, and magnesium compared to maternal levels. Once
the baby is born, loss of placental delivery of minerals causes
a sudden drop in serum concentrations of these bone minerals
which triggers a rise in regulating factors such as PTH, 1,25-
dihydroxyvitamin D [1,25(OH)2D, calcitriol] and FGF23 to
maintain postnatal homeostasis. This article will first examine
current understanding of fetal-to-neonatal mineral homeostasis
mechanisms, and then review specific conditions pertinent to
successful neonatal care. Magnesium and vitamin D homeostasis
will also be briefly discussed.

Fetal Calcium Homeostasis
Fetal blood calcium concentrations are maintained ∼0.3–
0.5 mmol/L higher than in maternal circulation, with the
placenta transporting 100–150 mg/kg/day of calcium during
the third trimester (4–6). To achieve this, active materno-
fetal transplacental transport is facilitated by transmembrane
calcium-selective channel TRPV6, calbindin D9k and plasma
membrane calcium-ATPase. Once calcium has been delivered
to the fetus, concentrations are tightly regulated by the calcium
sensing receptor (CaSR) which is primarily expressed in the fetal
parathyroid glands and kidneys. The CaSR activates magnesium-
dependent G-protein coupled downstream signalling cascades to
control PTH secretion and renal calcium handling. Mutations
in CASR result in distinct phenotypes causing either hyper-
or hypocalcaemia.

PTH is integral for achieving normal bone mineralisation and
maintaining fetal calcium homeostasis by regulating expression
of calciotropic genes and other solute transporters within the
placenta (7). By the 10th week of gestation PTH is synthesised
from fetal parathyroid glands, but circulating concentrations

are kept low during fetal life due to relative hypercalcaemia
dictated by the CaSR. Fetal parathyroid glands differentiate from
endoderm cells in the third and fourth pharyngeal pouches, and
mutations in any of the involved genes or transcription factors
results in several genetic hypoparathyroidism conditions (8, 9).
Both PTH and PTHrP, acting on PTH1 receptor to increase
resorption of calcium from bone and kidney and expression
of 1a-hydroxylase enzyme, play a critical role in endochrondral
bone formation and stimulation of placental calcium transport
(4, 10, 11).

Birth causes disruption of the maternal-fetal calcium supply
and rapid 30% drop in serum calcium concentrations (4).
This triggers a 2–5-fold increase in PTH secretion to stimulate
calcitriol synthesis, resorption of calcium from renal tubules,
and mobilisation of calcium from skeletal stores to maintain
normocalcaemia in the first 48 postnatal hours (4, 6).
Hypocalcaemia can be much more pronounced in premature
infants due to lack of third trimester bone mineral accretion
and gestational unresponsiveness of the parathyroid glands
(6). The gastrointestinal tract then becomes the main source
of calcium for the newborn. As such, the feeding mode and
volume determines calcium availability. For example, exclusively
breast-fed infants receive ∼200 mg/day calcium (12). Active
calcium absorption is driven by calcitriol. The PTH surge drives
upregulation of calcitriol synthesis which increases serum total
calcium to adult values within 48 h which are then strictly
maintained between 2.12 and 2.62 mmol/L (12). There is
evidence, however, that the newborn gut is not fully responsive
to calcitriol until 4 weeks of age (4).

Fetal Phosphorus Homeostasis
Fetal serum phosphate is maintained ∼0.5 mmol/L higher in
the fetus compared to the mother, though the mechanisms for
placental transport are unclear (4). The majority of phosphate,
∼60–70 mg/kg/day, is also accumulated during the third
trimester of gestation and is stored primarily within bone as
hydroxyapatite (5, 6). Phosphate is integral to endochondral bone
formation by mediating hypertrophic chondrocyte apoptosis,
and in the mineralisation of fetal bone as it is incorporated into
the osteoid allowing calcium to bind to it (13).

The homeostatic mechanisms by which phosphate
concentrations are “sensed” in humans are not fully understood,
though it is possibly via a plasma membrane complex and that
intestinal lumen levels are involved in feedback-regulation on
renal phosphate reabsorption (14, 15). Elevation of extracellular
phosphate activates FGF23, the primary endocrine regulator
of phosphate that is produced by osteocytes and osteoblasts
in bone. A complex signalling cascade is then activated when
FGF23 binds with co-receptor Klotho to the FGF-receptor
(FGFR1) in the kidney (16). The three primary actions of
FGF23 are: promoting phosphaturia by phosphorylation of
the sodium/hydrogen exchange regulatory factor (NHERF1
coded by SLC9A3R1) and down-regulation of NaPi type 2a/2c
co-transporters in the renal proximal tubule (coded by SLC34A1
and SLC34A3, respectively); reducing calcitriol metabolism by
downregulation of 1-alpha-hydroxylase activity and upregulating
catabolic enzyme 24-hydroxylase activity; and have a direct effect
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on parathyroid glands to reduce PTH secretion (14–17).
Mutations in any of these genes can cause variable degrees of
nephrocalcinosis, hypophosphataemia, hypercalcaemia, and
rickets (18–20). There is emerging evidence that phosphate
also has a direct effect on the parathyroid glands and CaSR, in
that hyperphosphataemia directly inhibits CaSR activity which,
in turn, stimulates PTH secretion and thus promotes renal
phosphate wasting from the proximal renal tubule (21).

Immediately after birth phosphate concentrations are low,
∼2.6 mmol/L, and rise during the first 48 h of life (6). This rise
is likely to be due to immature renal excretion mechanisms (4).
The main source of phosphate is dietary, so the method of infant
feeding will determine phosphate loading. After birth, normal
concentrations of phosphate are dependent on growth and
must be interpreted within the context of age-related laboratory
reference ranges.

Fetal Magnesium Homeostasis
Like calcium and phosphate, fetal magnesium concentrations
in utero are also maintained independently of maternal
concentrations, only 0.05 mmol/L higher though, and accrual of
∼3–5mg/kg/day primarily occurs in the third trimester gestation
(4, 6, 22). Magnesium is absorbed via TRPM6 and TRPM7
transcellular transporters in the gut and renal tubules, however,
and the precise mechanisms controlling placental magnesium
transfer and fetal homeostasis remain unknown (4). Magnesium
is an important cation that binds to the CaSR, causing modest
influence on PTH secretion, and hypomagnesemia can blunt
effective PTH secretion (23, 24).

Fetal Vitamin D Homeostasis
Vitamin D plays a much more important role in postnatal life
rather than assisting transplacental mineral homeostasis or fetal
mineral accretion. Whilst maternal 25-hydroxyvitamin D readily
crosses the placenta to achieve fetal concentrations that are 75–
100% of maternal concentrations (1), maternal calcitriol does not
cross the placenta but is synthesised primarily in fetal kidneys
to achieve fetal concentrations 50% that of maternal (4). These
low concentrations are likely suppressed by the elevated fetal
serum calcium and phosphate, and low concentrations of PTH.
However, it has been demonstrated in animal models that the
1,25(OH)2D vitamin D receptor (VDR), and thus by proxy
calcitriol, is not actually required in utero for the fetus to achieve
normal calcium, phosphorus, or PTH homeostasis, or for normal
skeletal mineralisation as the placenta is providing the required
mineral transfer (25, 26). It is after birth that the role of calcitriol
becomes vital.

After birth the level of vitamin D (cholecalciferol) intake
depends on the mode of feeding as the gut becomes the main
source of absorption. Breast milk primarily contains vitamin D
in the form of cholecalciferol, as very little 25(OH) vitamin D
passes from maternal serum into breast milk. Whilst there is
good correlation between maternal cholecalciferol intake and
infant serum 25(OH) vitamin D concentrations (27), breast milk
contains only a small amount of cholecalciferol – nomore than 25
IU/L – which is insufficient to meet newborn daily requirements
(28, 29). Though infant formulae are fortified with vitamin D,

TABLE 1 | Summary of the various causes of neonatal hypocalcaemia.

Early hypocalcaemia <72h

life

Late hypocalcaemia >72h life

to 10 days of life inclusive

• Prematurity

• Intrauterine growth restriction

• Sepsis

• Perinatal asphyxia causing

cellular damage and release of

intracellular phosphate

• Iatrogenic:

◦ Transfusions with citrate

blood products

◦ Lipid infusions

◦ Loop diuretics

• Maternal factors:

◦ Severe Vitamin D deficiency

◦ Pre-eclampsia

◦ Gestational diabetes

associated with

hypomagnesaemia

◦ Hyperparathyroidism

suppressing infant PTH

synthesis

◦ Anti-convulsants

◦ High dose antacids

• Vitamin D deficiency due to

inadequate synthesis, intake or

absorption

• Increased phosphate load:

◦ Enteral feeding with cow’s

milk

◦ Parenteral nutrition

• Primary Hypoparathyroidism:

◦ Isolated vs. Syndromic

• Secondary Hypoparathyroidism:

◦ Pseudohypoparathyroidism

due to renal disease or

GNAS mutations

◦ Congenital heart disease

◦ Renal disease

◦ Gastrointestinal disease

◦ Critical illness

• Osteopetrosis

it is the international consensus guidance that all infants should
be supplemented with cholecalciferol 400 IU/day for every infant
until 12 months of age regardless of feeding mode (30).

NEONATAL HYPOCALCAEMIA

Neonatal hypocalcaemia is defined in two ways: one, in term
and pre-term infants with birth weight >1,500 g as total
serum calcium <2.0 mmol/L or ionised calcium <1.1 mmol/L;
and two, in pre-term infants with low birth weight (LBW)
<1,500 g as a total serum calcium <1.75 mmol/L or ionised
calcium <1 mmol/L (31). Clinical signs of hypocalcaemia
are difficult to elicit in newborns and hypocalcaemia is often
asymptomatic within 72 h of birth. Acute hypocalcaemia can
present as apnoea, irritability, jitteriness, muscle cramps, tetany
(including laryngospasm), seizures, cardiac arrhythmias, and
QT-segment prolongation. Chronic hypocalcaemia can be more
subtle, presenting with dental enamel hypoplasia, subcapsular
cataracts, cardiomyopathy, congestive cardiac failure, and basal
ganglia calcifications.

The causes of neonatal hypocalcaemia are summarised
in Table 1. Parathyroid glands can take >48 h to become
responsive to the fetal-to-neonatal transition and important
causes of hypocalcaemia can be helpfully thought of as
early onset (<72 postnatal hours), or late onset (>72
postnatal hours) (31–33). Several genetic mutations have
been found to cause Primary Hypoparathyroidism and should
be considered when hypocalcaemia lasts >72 h. Isolated causes
of hypoparathyroidism include GMC2 or PTH-gene mutations,
autosomal dominant activating CASR or GNA11 mutations,
and X-linked SOX3 mutations (8). Mutations in CASR result
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in distinct phenotypes causing either hyper- or hypocalcaemia.
Activating (gain-of-function) CASR mutations decrease the set-
point of CaSR and PTH is not secreted when low calcium levels
would normally trigger PTH release, resulting in Autosomal
Dominant Hypocalcaemia (ADH). Clinically this presents as
hypocalcaemia associated with an inappropriately normal-high
urinary calcium excretion, presumably due to increased activity
of the CaSR in the kidney.

Hypoparathyroidism can also be associated with more
complex syndromes including: 22q Deletion Syndrome;
CHARGE association (CHD7); Autoimmune polyglandular
syndrome type 1 (AIRE); Hypoparathyroidism, sensorineural
deafness, and renal dysplasia (HDR) syndrome (GATA3);
mitochondrial disorders; Sanjad-Sakati and Kenney-Caffey
syndromes (TBCE or FAM111A) (34). The most prevalent of
these complex syndromes is DiGeorge syndrome (DGS) due
to deletions in the chromosome region 22q11 involving the
candidate gene TBX1, however microdeletions on chromosome
10 (GATA3 or NEBL) may cause similar phenotypes also
associated with cardiac abnormalities (35). Hypocalcaemia in
DGS is usually transient and due to underdeveloped parathyroid
glands, occurring in 60% of patients mostly during the neonatal
period (36). Even normocalcaemic DGS infants are likely to have
serum calcium concentrations in the lower half of the normal
range, so all should be routinely screened for hypocalcaemia (37).

Osteopetrosis is a very rare cause of neonatal hypocalcaemia,
where defective osteoclasts are unable to remodel bone.
Hypocalcaemic tetany and seizures can be a presenting feature
due to the inability to mobilise calcium stores from bone
(38). Osteopetrosis is also associated with increased bone mass,
fragility fractures, and bone marrow failure (39). It is usually
identifiable with plain radiograph with osteosclerosis and “bone-
within-bone” appearance on skeletal survey.

NEONATAL HYPERCALCAEMIA

Whilst there is no consensus on definition, neonatal
hypercalcaemia may be considered when calcium is greater
than two standard deviations above the normal mean (ionised
calcium above 1.32 mmol/L or adjusted serum calcium >2.6
mmol/L) (40), or a total serum calcium >2.9 mmol/L (41).
Clinical features in the newborn can be difficult to identify and
may include polyuria, polydipsia, lethargy, vomiting, abdominal
pain, failure to thrive, irritability, and seizures. The causes of
hypercalcaemia associated with appropriately suppressed PTH
secretion are extensive. Neonatal sepsis is the most common
cause that lasts longer than two consecutive days, possibly
due to extra-renal macrophage production of calcitriol and/or
increased cytokine activity (41). Other important common
causes include: subcutaneous fat necrosis where granulomatous
inflammatory cells express increased calcitriol; increased calcium
and phosphate intake in infants receiving parenteral nutrition;
Vitamin D intoxication; and Williams-Beuren Syndrome due
to gene deletion on chromosome 7q11.23, which classically
present with mild hypercalcaemia (2.9 mmol/L) associated with
supravalvar aortic stenosis and distinctive facial features (42).

There has been a number of new genetic discoveries for
various causes of neonatal hypercalcaemia. Identification of the
active calcium placental transport mechanism, transmembrane
calcium-selective channel TRPV6, provides genetic explanation
for a condition previously labelled “Transient Neonatal
Hyperparathyroidism,” which was thought to be have been
caused by congenital vitamin D deficiency. Newly identified
compound heterozygous missense mutations in TRPV6 were
found to prevent adequate transplacental calcium transport and
cause potentially lethal skeletal abnormalities (undermineralised
bone, fractures, periosteal, and metaphyseal changes), elevated
PTH, hypomagnesaemia and hypovitaminosis D (33, 43–45).
New genetic mutations in vitamin D metabolism and urinary
phosphate excretion have also been identified as causes of
previously labelled “Idiopathic Infantile Hypercalcaemia.”
Loss-of-function mutation in CYP24A1 [encoding vitamin D
breakdown enzyme 25(OH) vitamin D3 24-hydroxylase] and in
SLC34A1 (encoding renal proximal tubular NaPi co-transporter)
and NHERF1 (a modifier of SLC34A1) cause accumulation of
calcitriol, hypercalcaemia, hypercalciuria, and nephrocalcinosis
(19, 46). An awareness of these last two conditions is important
in reducing long-term kidney disease in adulthood. Other causes
of neonatal hypercalcaemia currently do not have an identifiable
cause and are truly idiopathic.

When hypercalcaemia is associated with inappropriately
detectable PTH (within laboratory “normal” range or
elevated), then causes to consider include rare inactivating
(loss-of-function) CASR gene mutations which result in CaSR
insensitivity and thus PTH secretion is not switched-off until
higher-than-normal calcium concentrations, causing Familial
Hypocalciuric Hypercalcaemia (FHH). Clinically this presents
as generally asymptomatic hypercalcaemia, inappropriately
detectable concentrations of PTH, associated with reduced renal
calcium excretion. The mode of inheritance appears to cause
a “dosage effect” with regard to the severity of hypercalcaemia
(47). In contrast, homozygous or compound heterozygous
loss-of-function CASR mutations, or heterozygous mutations
where the mother is not affected, cause Neonatal Severe
Hyperparathyroidism (NSHPT), which is a severe phenotype
that is associated with life-threatening hypercalcaemia,
hyperparathyroid bone disease and multiple fractures. Early
diagnosis is critical to prevent death or neuromotor delay (48).

RICKETS AND RICKETS-LIKE DISORDERS

Rickets is a disorder of the growth plate resulting from defective
chondrocyte apoptosis and osteoid mineralisation. Rickets can
be sub-classified as: calciopenic (due to dietary deficiency
of vitamin D or calcium, or due to defects of vitamin D
metabolism or action); or phosphopenic (due to renal phosphate
wasting or deficiency of phosphate intake). A concurrent serum
PTH measurement can be useful when distinguishing between
calciopenic (PTH should be elevated) and phosphopenic rickets
(PTH likely within normal laboratory reference range or only
modest elevation). The radiological and clinical features depend
on the child’s age at presentation and underlying cause, but
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include metaphyseal widening, under-mineralised bone matrix
(osteomalacia), delayed closure of fontanelles, softening of the
skull bones (craniotabes), parietal and frontal bone bossing,
craniosynostosis, bowing of long bones, pseudofracture (Looser
zones) and fractures, sequelae of hypocalcaemia (seizures, tetany,
dilated cardiomyopathy), failure to thrive, decreasedmuscle tone,
and delayed motor milestones (30, 48, 49). It is important to note
that craniotabes and ulnar cupping can be normal variants seen
in healthy neonates without correlation to maternal or neonatal
vitamin D concentrations (4).

Nutritional rickets are the most common form of rickets
in the newborn period, and consensus guidelines recommend
vitamin D sufficiency of 25(OH) vitamin D >50 nmol/L (30).
Breastfed infants of vitamin D deficient mothers, especially
with darker skin pigmentation, are high risk and should be
routinely screened. The resulting hypocalcaemia is exacerbated
by an immature newborn PTH-response. There is significant
controversy about the appropriateness of the term “congenital
rickets,” as mothers were found to have compounding conditions
(such as malnutrition or malabsorption) that interfered with
vitamin D metabolism. Therefore, “neonatal rickets” is the
preferred terminology (4). Genetic mutations in vitamin D
synthesis (25-hydroxylase and 1-alpha-hydroxylase deficiencies)
or action (VDR mutations) are rarer causes of vitamin D
associated rickets. The demand for skeletal mineral delivery is
high, especially in preterm babies, and rachitic skeletal changes
that are absent at birth can develop rapidly within 16 days after
delivery (50).

Hypophosphataemic rickets uncommonly presents in the
newborn. Special consideration is needed, however, to ensure
adequate enteral or parenteral supplementation meets the
increased skeletal mineralisation demands. Feeding with amino-
acid elemental formulas, such as Neocate R©, and high-dose
antacids, has been associated with reduced bioavailability
of phosphate resulting in hypophosphataemic rickets and
fractures (51, 52). Hemizygous mutations in phosphate-
regulating endopeptidase (PHEX) gene lead to overexpression of
FGF23 and cause X-Linked hypophosphataemic rickets (XLH)
(53). While the renal phosphate wasting is present from birth,
XLH does not tend to become clinically apparent until child
begins to weight-bear.

The differential diagnosis for rachitic-appearing skeletal
changes in newborns is large and includes neonatal
hyperparathyroidism, skeletal dysplasias, hypophosphatasia,
metaphyseal chondrodysplasia, osteogenesis imperfecta
(OI), and vitamin C deficiency (Scurvy) (49). Of these,
hypophosphatasia caused by loss-of-function TNSALP
mutations, in its severest forms (perinatal and infantile)
can present with profound skeletal hypomineralisation and bone
deformity, hypercalcaemia with downregulation of PTH, and
hypercalciuria (54).

BONE FRAGILITY

When considering conditions that present in utero and the
neonatal period with bone fragility, OI and OI-like disorders

TABLE 2 | Factors contributing to Metabolic Bone Disease of Prematurity.

Antenatal factors Postnatal factors

• Prematurity <34 weeks of

gestation

• LBW <1,500 grams

• Pathological condition inhibiting

macro- and micronutrient placental

transfer (chorioamnionitis,

pre-eclampsia, intrauterine

growth restriction)

• Necrotising enterocolitis

• Liver or Renal disease

• Late establishment of enteral

feeds/prolonged total PN >4 weeks

• Chronic lung disease/

bronchopulmonary dysplasia

• Medications causing bone

resorption (loop diuretics,

glucocorticoids)

• Antacids

• Methylxanthines (caffeine for

apnoea of prematurity)

may jump to mind. However, they do not tend to present
with biochemical mineral disturbance. The most likely cause
of fragile or poorly mineralised bones associated with mineral
disturbance in the newborn is Metabolic Bone Disease of
Prematurity (MBDP), which has multiple contributors to its
characteristic biochemical and radiological findings, see Table 2.
Clinical features can develop between 3 and 12 weeks of age,
so it is important to screen routinely for biochemical evidence
of MBDP with serum alkaline phosphatase (ALP), albumin-
adjusted calcium, phosphate, and PTH concentrations from
4 weeks of age in at-risk groups (5, 55). In the premature
infant gut phosphate is more readily absorbed than calcium
so it is important to ascertain whether MBDP is due to
hypophosphatemia or hypocalcaemia. A PTH level paired with
serum calcium and phosphate, and urine renal tubular resorption
of phosphate (TRP) measurement will help differentiate between
hypophosphatemia or hypocalcaemia. Secondary elevation of
PTH will occur to maintain normocalcaemia, whereas this
compensation does not tend to occur with hypophosphatemia
and is associated with decreased phosphaturia (56). Initiating the
correct supplementation depending on deficiency is important,
as phosphate supplementation in the hypocalcaemic state
will bind ionised calcium, exacerbating hypocalcaemia, driving
PTH higher, exacerbating renal phosphate loss, and worsening
MBPD. While there is no biochemical cut-off consensus to
diagnose MBDP, in preterm infants <33 weeks of gestation the
combination of bone turnover marker ALP >900 IU/L and
phosphate <1.8 mmol/L is associated with sensitivity of 70%
and specificity of 100% of having low bone mineral density at 3
months corrected age (57). In practice, lower threshold ALP 500–
800 IU/L in infants <34 weeks of gestation is used to implement
supplementation (58, 59).

Radiological changes occur late as bones will only appear
generally osteopenic on X-ray when >20% of bone mineral is
lost (60). Fragility fractures can occur with incidence reported
between 17 and 34%, usually after 10 weeks of age in long bones
or ribs up until 6 months of uncorrected gestational age (5).
Although all fractures are painful, rib fractures often remain
undetected by parents and clinical staff until found incidentally
on routine chest X-ray (61). Routine screening with X-ray for
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MBDP is not indicated in the absence of biochemical disease.
Techniques such as dual energy X-ray absorptiometry, peripheral
quantitative computed tomography, and quantitative ultrasound
have been utilised in research settings (60). There are, however,
no normative data <5 years of age, which limits their widespread
clinical use.

Prevention of MBDP is limited by multiple factors including
the inability of premature infants to tolerate full enteral
feeding volumes, the inability to deliver high-dose calcium and
phosphate via parenteral nutrition (PN) due to solubility and
precipitation limits, and reduced gut absorption of calcium and
phosphate. The recommended range delivered via PN route is
calcium 40–120 mg/kg/day (1.3–3 mmol/kg/day) and phosphate
31–71 mg/kg/day (1–2.3 mmol/kg/day), and via enteral route is
calcium 120–200 mg/kg/day and phosphate 60–140 mg/kg/day
(62, 63). Enteral calcium and phosphate supplementation
should not be given simultaneously or with milk-meals, to
avoid precipitation (56). Effective treatment of MBDP should
include routine supplementation with cholecalciferol once on
full enteral feeding, aiming for serum 25(OH) vitamin D
>50 nmol/L (56, 58). Once treatment of MBDP has been
initiated ongoing monitoring of ALP, albumin-adjusted calcium,
phosphate, serum creatinine levels, and urine creatinine and
TRP is important to avoid hypercalcaemia, hyperphosphataemia,
and nephrocalcinosis.

Investigations to Arrange
Essential investigations to assess calcium and phosphate
homeostasis include concurrent serum calcium, phosphate,
magnesium, PTH, albumin, ALP, electrolytes and renal function,
and 25-hydroxyvitamin D levels. Most laboratories provide a
calcium corrected for albumin concentration, if not then the
following formula will give you the albumin-adjusted serum
calcium mmol/L: measured total serum calcium mmol/L +

0.02 × (40 gm/L – measured serum albumin gm/L). High risk
infants such as LBW, prematurity <34 weeks, infant of diabetic
mother, and prenatal asphyxia should be routinely screened for
hypocalcaemia within the first 48 h of age.

If neonatal blood quantities are particularly scarce, then a
capillary or venous blood gas will give an ionised calcium value,
and serum phosphate can be used as an indirect marker of
PTH activity (i.e., low phosphate concentrations reflect high
PTH activity and vice versa). Additional investigations such
as 1,25(OH)2D and serum DNA for genetic analysis may be
required but this should follow discussion with local Paediatric
Endocrinology service.

Urinary electrolytes and glucose should be part of routine
analysis, to calculate renal calcium: creatinine ratio, and to assess
renal tubular function.

Radiology should be considered in specific circumstances,
namely when bone mineralisation or skeletal dysplasia is a
concern. Usually, diagnosis can be made on a limited series to
reduce the neonate’s radiation exposure including plain films
of anterior-posterior chest and metaphysis of a long bone (e.g.,
unilateral distal femur or wrist). Specific skull films (looking for

Wormian bones) or a full skeletal survey are required if bone
fragility or skeletal dysplasia are a concern. The need for these
more extensive investigations should be discussed with a local
specialist paediatric Radiologist.

TREATMENT

Appropriate treatment depends on the cause. Where the primary
cause is mineral deficiency, additional supplements of calcium,
phosphate and, if necessary, magnesium should be given. This
can usually be achieved orally but, if demineralisation is severe
then intravenous infusion may be required. Vitamin D deficiency
should always be corrected.

Hypoparathyroidism, particularly if symptomatic, may
require treatment with vitamin D analogues calcitriol or
its prohormone alfacalcidol, but caution must be taken to
ensure that hypercalciuria and nephrocalcinosis do not result
from this treatment. New treatment options in the form of
subcutaneous injections of synthetic human PTH teriparatide
(hPTH 1-34) and recombinant human PTH (rhPTH 1-84)
have been used, particularly where activating mutations of
CaSR are the cause of the hypoparathyroidism (23, 64, 65).
Calcilytic agents, which reduce the sensitivity of CaSR, are
also being investigated as novel therapies for activating CaSR
mutations (66).

Hyperparathyroidism can sometimes be corrected with the
use of bisphosphonate therapy (although this can lead to
an increase in PTH secretion) and/or calcimimetic agents
such as cinacalcet (which activate the CaSR, thus increasing
the receptor’s sensitivity and reducing PTH secretion). Total
parathyroidectomy may occasionally be required for intractable
NSHPT. Burosumab, a monoclonal antibody to FGF23, is not
yet licensed for infants with XLH under 1 year of age but
is available in the United Kingdom under an Early Access to
Medicines scheme.

ROLE OF GENOMICS

Genetics plays an important part in diagnosis as an increasing
proportion of cases have been found to have a genetic basis.
Liaison with a clinical geneticist can be invaluable.

CONCLUSION

The physiology of mineral metabolism differs considerably
between fetal and post-natal life. The neonatal period is one of
transition from one to the other and a thorough understanding
of these processes is required to be able to diagnose and treat the
various conditions when they arise.
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Neonatologists care for newborns with either an antenatal suspicion or postnatal

diagnosis of bone disease. With improved ultrasound imaging techniques, more

cases of neonatal bone disorders are identified antenatally and this requires further

diagnostic/molecular testing either antenatally or soon after birth for confirmation of the

diagnosis and facilitating subsequent management. Prompt diagnosis is vital in certain

conditions where initiation of treatment is time critical and life saving. We outline an

approach to diagnosis, investigation, and management of a neonate with a suspected

bone disorder.

Keywords: newborn, bone, mineralization, structural, antenatal

INTRODUCTION

The fetus accrues 80% of bone mineral content between 24 weeks gestation and term (1). Neonatal
bone disorders encompass a spectrum of bone conditions resulting from either structural or
mineralization defects, a process that has already commenced in the fetus (2). Good quality fetal
ultrasound images are likely to detect bone abnormalities in the second trimester onwards (3). This
is followed by molecular confirmation of the diagnosis in some cases and postnatally in the rest.
Early diagnosis and effective management can be vital to the impact this can have on childhood,
adolescent, and adult bone heath. In this manuscript, we have outlined an approach to diagnosis,
investigation, and management of neonatal bone disorders.

APPROACH TO NEONATAL BONE DISORDERS

Fetal ultrasonography has been used since the 1950’s to estimate gestational age, detect multiple
pregnancies and diagnose fetal anomalies (4). Occasionally antenatal ultrasound evaluation raises
suspicion of a bone disorder in the fetus (5). For example, severe osteogenesis imperfecta can be
diagnosed antenatally based onmultiple long bone fractures and limb deformities. Also fetal femora
or humeri length of less than the 5th centile or −2 SD from the mean in a second trimester scan
often raises the suspicion of skeletal dysplasia (6). However more often antenatal fetal radiographs
show a constellation of features which may be common to several disorders. Equally, in many
cases, antenatal imaging may have been completely normal. Based on postnatal x-ray findings
and biochemistry, bone disorders can be largely categorized into either a predominantly structural
bone defect (with normal bone biochemistry) or a mineralization bone defect (with abnormal bone
biochemistry). This classification aids further targeted investigations.

STRUCTURAL BONE DEFECTS

Osteogenesis Imperfecta
Osteogenesis Imperfecta (OI) is a genetic disorder of increased bone fragility and low bone mass
which has a wide spectrum of severity. It has an incidence of 1 in 10–20,000 births and occurs with
equal frequency in genders and ethnic groups.
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The majority are due to defects in the amount or quality
of Type 1 collagen which is coded for by two genes, COL1A1
and COL1A2. These are autosomal dominant in inheritance
accounting for ∼90% of cases of OI. Autosomal recessive forms
have been recognized in the past 20 years and account for
between 5 and 10% of cases. These are due to a variety of different
genes that predominantly affect the synthesis of Type 1 collagen.

The traditional classification of OI described four types with
Type I the mildest and most frequent form, Type III a severe
form with multiple fractures and bowing deformity of limbs
and Type IV an intermediate form of moderate severity (7).
These three types are associated with long term survival. An
additional form, Type II was described, also known as perinatal
lethal as affected babies would die in the neonatal period due
to respiratory insufficiency. As a consequence of the discovery
of new forms of OI in recent years, revised classifications have
been proposed (8, 9). However most specialists who manage
affected individuals like to categorize them as mild, moderate or
severely affected.

Clinical Presentation
There are several ways in which a baby with OI may present in
the neonatal period.

Severe Forms
Antenatal detection at the time of routine ultrasound scans
is increasingly identifying severe forms in utero. Skeletal
abnormalities such as bowed limbs, fractures, and small chest size
may lead to a precise diagnosis of OI or a broader description as a
lethal skeletal dysplasia which is only recognized as OI after birth.

FIGURE 1 | (1a) Thin, gracile and beaded ribs in a case of severe osteogenesis imperfecta at birth. (1b) Lower limbs showing bowing and deformity of long bones

with multiple fractures in various stages of healing. (2a) Hand x-ray in achondroplasia showing short metacarpals and phalanges with trident sign. (2b) Hip shows

classic features of horizontal acetabular roof, squared off iliac crest, small sacrosciatic notch, and scalloping of proximal femur. (3a) Perinatal hypophosphatasia at

birth showing severe skull hypomineralization. (3b) severe hypomineralization of long bones and metaphyseal lucencies. (3c) Healing of metaphyseal lesions and

markedly improved mineralization after 12 months of asfotase alfa treatment. (4a) Knee x-ray in a case of NHSPT at 3 months showing metaphyseal irregularity,

coarsening of trabeculae, and subperiosteal resorption. (4b) progressive changes at 6 months, and (4c) complete healing following total parathyroidectomy. (5a)

Chest X-ray at birth in a baby with TRPV6 mutation. Ribs are malformed with severe demineralization. (5b) Spontaneous improvement at 2 years of age with

remodeling, improved mineralization of ribs and thoracic volume.

If not identified in the antenatal period, some severely
affected infants with small deformed chests due to the
presence of multiple rib fractures (Figures 1-1a) will develop
respiratory insufficiency within a few days of birth requiring
assistance ranging from supplemental oxygen to positive pressure
ventilation. More commonly, a severely affected baby will present
at birth with evidence of short stature, bowed limbs and multiple
fractures (Figures 1-1b). Subsequent investigation with reviews
of skeletal surveys by experienced clinicians will usually lead to a
diagnosis of OI which can be confirmed by genetic testing.

Mild and Moderate Forms
These may present in the neonatal period in several ways. There
may be evidence of a short bowed femur which might have been
detected on an antenatal scan. It is often not apparent that this
is due to OI until the child starts to fracture, which may not be
for some months or years after birth. An alternative presentation
is with a dislocated or unstable hip due to the ligamentous laxity
known to be characteristic of OI. An occasional, but uncommon,
presentation is when an affected baby presents in the neonatal
period with a long bone fracture, which leads to the identification
of other fractures (including rib fractures) on skeletal survey.

Assessment
There are a number of investigations of importance when a
baby presents with a suspected diagnosis of OI. It is important
to perform a skeletal survey including the skull and spine with
review by a pediatric radiologist looking for features such as
Wormian bones (accessory skull bones completely surrounded
by suture lines), rib and vertebral fractures and bowing deformity
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of long bones. Additional imaging of the cervical spine and
brain may be indicated in severely affected infants for the
presence of cervical spine abnormalities which may compromise
spinal cord function, or hind brain abnormalities such as
basilar invagination.

All infants with OI should have blood tests to check bone
profile, renal function, and vitamin D levels to ensure these are
normal if bisphosphonate treatment is being considered. Severely
affected babies are likely to be cared for on a neonatal unit with
routine assessment of respiratory function.

Genetic testing is now readily available in many countries with
initial testing for abnormalities in COL1A1 and COL1A2 which
will account for 90% of cases. If the results of these are normal
consideration should then be given to testing for the recessive
forms of OI (10). Although the results will not be available
for several weeks they are important not only for confirmation
of the diagnosis but for genetic counseling to the parents for
future pregnancies.

Management
A severely affected baby will be managed initially on a neonatal
intensive care unit. There is no reason why milk feeds cannot be
commenced if there is no significant respiratory distress. This will
often be via a nasogastric tube initially, as a continuous feed with
progression to bolus feeds if well-tolerated. Breast feeding can
also be attempted if there is no significant respiratory distress.
Many severely affected infants will still require nasogastric
feeding at the time of hospital discharge. An important aspect
of nutrition in such babies is the recognition that they are short
and therefore it is not appropriate to expect their weight gain to
be within the normal centiles (11). Such a practice may lead to
overfeeding and excess weight gain.

The input of a multidisciplinary OI specialist team is
important in management and will often be undertaken by this
team visiting the neonatal unit to review the baby and meet
the parents. Such support is also important for the staff of the
neonatal unit whomay not be familiar withmanaging such babies
and will be uncertain of activities such as handling. The specialist
OI team will educate the parents and staff about the condition
with information such as likely prognosis and outcome, how
to handle, dress, feed, wash, and transport the baby. They will
continue as an appropriate resource to provide support until the
baby is discharged and is followed up in their own specialist
OI clinic. Advice about where to find additional information on
OI from appropriate websites such as the Brittle Bone Society
(www.brittlebone.org) in the UK will also be provided.

The use of bisphosphonate drugs (given intravenously
as infusions every few months) has become an important
component in the management of severely affected babies
with OI in the past 20 years (12). There is evidence that
bisphosphonates reduce the frequency but do not eliminate the
risk of fractures. Intravenous Pamidronate has been the drug that
has been most used, often given every 8 weeks in the first 2 years
of life. There have been reports of the development of respiratory
insufficiency in babies following the first infusion and so it is
advisable to administer this whilst still on the neonatal unit (13).
Hypocalcaemia is an infrequent occurrence and is more likely to

occur if the baby is vitamin D deficient. Treatment of vitamin D
deficiency and provision of a maintenance daily dose of at least
400 IU is important in such infants. Bisphosphonate infusions
are usually given via peripheral veins although in some infants
with difficult venous access a central line is required.

Some babies who are severely affected develop respiratory
difficulty due to a small chest size secondary to pulmonary
hypoplasia and in addition they can also have multiple rib
fractures. Such infants would historically be considered to have
perinatal lethal forms of OI and would not have survived.
However, with respiratory support such as home oxygen and
CPAP many of these infants are surviving and with time are
capable of being weaned from such support.

It is important for parents of a new baby with OI that they
receive appropriate support and information with an expectation
that they will survive long term, have normal intelligence and will
be able to attend a mainstream school.

Other Skeletal Dysplasias
Skeletal dysplasias, a complex group of heritable disorders
of the bone and cartilage affect the fetal skeleton as it
develops in utero. They often present as congenital bowing
of the long bones, particularly the femurs, detected in the
second trimester ultrasound evaluation. Short long bones when
compared against normative data can determine whether there is
primary rhizomelic or mesomelic shortening (6).

The common angulated femur or bent bone dysplasias in the
neonatal period as described in the Skeletal dysplasia registry
include Campomelic disorders (24.4%) including Campomelic
and Kyphomelic dysplasias, Thanatophoric dysplasias (23.9%),
OI (18.1%), short rib dysplasia (10.2%), hypophosphatasia
(3.5%), Type 2 collagen disorders (3.1%), Stuve Weidman
dysplasia, and Achondroplasia (1.3%) amongst others (14).
Some of these dysplasias, evident on antenatal ultrasound scans
are lethal in the neonatal period owing to the small chest
circumference and associated pulmonary hypoplasia.

FGFR3 Chondrodysplasias
Mutations in the FGFR3 gene lead to a spectrum of conditions
ranging from the lethal Thanatophoric dysplasia to the milder
hypochondroplasia (15, 16). FGFR3 expressed in chondrocytes
and mature osteoblasts regulates bone growth (17).

Achondroplasia
Achondroplasia is the most common form of short limb
dwarfism due to a mutation in the FGFR3 gene, with a prevalence
of 1 in 25,000 individuals. It is inherited in an autosomal
dominant pattern with 80% arising from new spontaneous
mutations (18).

Clinical Presentation
In most cases, short limbs, hands and fingers, frontal bossing,
depressed nasal bridge with a large head on second trimester
antenatal ultrasound scans raises suspicion of Achondroplasia.
The diagnosis is subsequently confirmed by molecular testing
for FGFR3 mutation. Postnatally, the diagnosis is apparent at
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birth due to the rhizomelic shortening of limbs, frontal bossing,
midfacial hypoplasia, and macrocephaly (19).

Management
If a diagnosis of Achondroplasia is suspected at birth, this can
be confirmed by performing a skeletal survey (Figures 1-2a,b).
Large calvaria, narrow foramen magnum, progressive reduction
in the interpedicular distance in the lower spine, small trident
pelvis are hallmark radiological features for Achondroplasia.MRI
brain and spine is recommended to look for cervicomedullary
compression occurring secondary to foramen magnum stenosis.
Genetic confirmation by testing for FGFR3 mutations is also
available. Bone biochemistry is often normal in these neonates
(20, 21).

Treatment in Achondroplasia is mainly supportive. Some
children might require neurosurgery to relieve cervical cord
compression and others orthopedic intervention to help with
limb deformities. Close follow up beyond the neonatal period
is important with clinical assessment, history taking, and
neurological examination. Because of the risk of sleep disordered
breathing a sleep study is recommended in the first 6 months.
With a better understanding of the molecular processes involved
in Achondroplasia, various drug trials looking at blocking FGFR3
ligands, FGFR3 and its downstream signaling including tyrosine
kinase inhibitors and C-type natriuretic peptide (CNP) analogs
such as vosoritide, amongst others, are underway (22). Most
advanced of the possible therapeutic options and the only study
currently recruiting neonates, involves the use of CNP analogs in
the BMN111 (Vosoritide) study by Biomarin.

BONE MINERALIZATION DEFECTS

Hypophosphatasia
Hypophosphatasia (HPP) is a rare heterogenous inherited
metabolic bone disorder caused by a loss of function mutation
in the ALPL gene (23), resulting in the lack of tissue non-
specific alkaline phosphatase (TNSALP) activity. The more
severe forms are predominantly inherited in an autosomal
recessive pattern with an incidence of 1 in 100,000 live births.
Deficiency in TNSALP activity results in the accumulation of
inorganic pyrophosphate (PPi) which disrupts hydroxyapatite
crystal formation and inhibits skeletal mineralization (24). The
clinical spectrum of HPP can be variable and the two forms
relevant to the neonatal period include Prenatal Benign and
Perinatal Lethal form.

Clinical Presentation
Benign Prenatal HPP, as the name suggests, is a mild form
of the condition with asymmetrical skeletal changes first
noticed on prenatal ultrasonography, usually in the second
trimester of pregnancy, including limb bowing, with or without
skeletal hypomineralization and normal chest and abdominal
circumference. The ultrasound appearances usually improve in
the third trimester and they can run a variable postnatal clinical
course ranging from the more severe infantile HPP (symptoms
and signs apparent between 1 and 6 months of age) to the

mild Odonto HPP where only teeth are affected with no skeletal
manifestations (25, 26).

Perinatal HPP, the most lethal form, presents antenatally on
fetal ultrasonography as short long bones, under mineralized
skeleton, small chest, and abdominal circumference. It
is apparent at birth with short deformed limbs, severely
hypomineralized skeleton, small chest with hypoplastic lungs
and, in some cases, pyridoxine deficiency seizures. Perinatal
HPP can mimic hypoxic ischemic encephalopathy (27) and
delay diagnosis in the absence of antenatal suspicion. Low serum
ALP level in the presence of typical radiological features of
tongue-like lucencies in the metaphysis, rickets-like changes, and
hypomineralized skeleton (Figures 1-3a–c) should clinch the
diagnosis of HPP (28).

Management
If HPP is suspected, serum ALP activity, plasma PLP, urine
phosphoethanolamine levels and genetics for ALPL gene
mutation alongside skeletal survey must be performed to confirm
the diagnosis. Age- and sex- specific ALP activity should
be used to prevent delay in the diagnosis of HPP. Prompt
referral to the tertiary pediatric bone service is vital for further
assessments and initiation of enzyme replacement therapy,
Asfotase Alfa (Strensiq), which is time critical and life saving
(28). Strensiq is delivered by subcutaneous injections three times
a week for life. Follow up by a multidisciplinary team is also
extremely important.

Neonatal Hyperparathyroidism
Normally parathyroid hormone (PTH) secretion from the
parathyroid gland is regulated to maintain serum calcium levels
within the normal range. Any drop in calcium level is sensed by
the G protein coupled calcium sensing receptor (CaSR) situated
on the chief cells, resulting in increased PTH secretion. The
reverse occurs in hypercalcemia.

Neonatal severe primary hyperparathyroidism (NSHPT) is a
result of almost complete loss of parathyroid calcium sensing due
to homozygous CaSR mutations, resulting in very high serum
calcium with unsuppressed PTH levels. This is a rare autosomal
recessive disorder which is potentially lethal, often occurring
when there is consanguinity.

Clinical Presentation and Management
Newborns may be asymptomatic at birth, but present within
days to weeks. The presentation may be delayed up to 6
months when failure to thrive, poor feeding, and hypotonia (29)
become apparent. They have severe hypercalcemia (commonly
>4 mmol/L) (30) and X-rays show demineralized bones,
subperiosteal resorption, rib fractures, and changes of rickets
(Figures 1-4a–c). In the majority of cases hypercalcemia is
severe and total parathyroidectomy is the only definitive therapy.
Bisphosphonates such as pamidronate are used in the short
term to control hypercalcemia until total parathyroidectomy can
be performed.
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Mucolipidosis Type II (i-cell disease)
This is an autosomal recessive condition caused by mutations
in the GNPTAB gene that code for N-acetylglucosamine
phosphotransferase complex which catalyze the post-
translational modification of lysosomal enzymes. Impaired
calcium transfer during pregnancy due to affected placenta is
one of the postulated mechanisms for the metabolic bone disease

seen in these babies. Imbalance between osteocyte and osteoclast
function has been shown in mouse models (31).

Clinical Presentation and Management
Antenatal short femurs and intrauterine growth retardation
have been described with radiological abnormalities
detectable by 18–20 weeks of pregnancy (32). Newborns

FIGURE 2 | Approach to the diagnosis of metabolic bone disorders in the newborn. PTH, parathyroid hormone levels; ALP, Alkaline phosphatase; NSHPT, neonatal

severe hyperparathyroidism; TRPV6, transient receptor potential cation channel, subfamily V, member 6.
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may manifest respiratory distress soon after birth (33, 34),
hyperparathyroidism and fractures. X-rays show widespread
osteopenia, sub-periosteal bone resorption, metaphyseal changes,
shortening and undermodelling of long bones consistent with
hyperparathyroidism. Biochemistry is characterized by elevated
PTH and alkaline phosphatase levels with low or normal calcium
levels. Diagnosis is confirmed by enzyme analysis and genetic
studies for GNPTAP gene. Beyond the age of 6 months, typical
manifestations become apparent with coarse facies, skeletal
disproportion, and organomegally.

Homozygous TRPV6 mutations present with clinical,
radiological and biochemical features identical to i-cell disease
(Figures 1-5a,b). TRPV6 (the transient receptor potential cation
channel, subfamily V, member 6) plays an important role in
materno-fetal calcium transfer. Short long bones, bowed femora,
rib deformities and Intrauterine Growth Restriction (IUGR) are
reported antenatally (35). After birth the bone disease rapidly
heals with enteral calcium supply available for mineralization.
Radiological signs completely resolve by 18 months to 2 years
of age.

Miscellaneous Bone Conditions Presenting
in the Neonatal Period
Transient neonatal hyperparathyroidism and bone disease
similar to above situations, has been described in maternal
hypoparathyroidism (36). In some cases, previously unknown
maternal disease may be diagnosed after the birth of an affected
baby. Osteopetrosis can present in the neonatal period with
hypocalcaemia and high PTH with dense, osteosclerotic bones
on X-ray. Osteopenia of prematurity is another condition that
may manifest with pathologic rib and long bone fractures. As
most materno-fetal calcium transfer during pregnancy occurs
during the last trimester, babies born <28 weeks gestational age
are particularly predisposed to this condition. A comprehensive
review of the diagnosis and management of this condition has
been published recently (37).

INVESTIGATIONS

With advancement in technology and expertise, 3D antenatal
ultrasonography and fetal MRI as an adjunct when spinal
abnormalities are suspected, are increasingly used in prenatal
diagnosis of potential bone disorders (38). Good quality
antenatal imaging influences further targeted molecular genetic
testing, invasive prenatal diagnosis in at risk families, antenatal
counseling, informing obstetricians of the best mode of delivery
and perinatal management.

Postnatal x-rays, with or without a complete skeletal survey,
are the most useful investigation in diagnosing both structural

(with normal bone biochemistry) and bone mineralization
defects (with abnormal bone biochemistry) in the neonatal
period. Radiological features suggesting hyperparathyroidism
viz undermineralization, periosteal cloaking, metaphyseal
changes, and subperiosteal resorption (diaphyseal tunneling)
along with an elevated PTH, suggest primary or secondary
hyperparathyroidism (Figure 2).

First line biochemical investigations include bone profile
(including serum calcium, phosphate, and alkaline phosphatase
levels), parathyroid hormone and 25 hydroxy vitamin D
levels. When calcium levels are only marginally elevated,
consider further investigations including maternal calcium
and PTH profile, baby’s urine for glycosaminoglycans and
enzyme assay (for i-cell disease). Based on clinical, radiological,
and biochemical abnormalities, targeted molecular genetics
such as Type 1 collagen mutation, ALPL, FGFR3 CaSR,
TRPV6, and GNPTAB, to name a few should be considered
to confirm the diagnosis. In a few cases, despite extensive
genetic investigations, the cause for the bone disorder may
remain unknown.

Children with complex neonatal bone disorders should
ideally be managed in a tertiary pediatric unit by a
multidisciplinary team comprising of a pediatric endocrinologist,
geneticist, radiologist, orthopedic and neurosurgeon, dentist,
physiotherapist and occupational therapist, clinical psychologist,
specialist bone nurses, and social worker to provide the necessary
family support.

CONCLUSION

Neonatal bone health is of growing interest not only due to
the impact initial management can have on bone health during
childhood, adolescence, and early adulthood but also the need
for early and accurate diagnosis and initiation of life saving
treatment such as enzyme replacement therapy in conditions
such as hypophosphatasia. Neonatal bone disorders are a rapidly
developing area of research interest with interventional studies
and drug trials targeting bone health as early as the antenatal
period in conditions such as osteogenesis imperfecta or in the
neonatal period for Achondroplasia. However, the mainstay
of managing neonatal bone disorders remains follow up by
a specialist multidisciplinary team to achieve best possible
functional outcomes.
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Differences/disorders of sex development (DSD) are a heterogeneous group of congenital

conditions, resulting in discordance between an individual’s sex chromosomes, gonads,

and/or anatomic sex. Themanagement of a newborn with suspected 46,XY DSD remains

challenging. Newborns with 46,XY DSD may present with several phenotypes ranging

from babies with atypical genitalia or girls with inguinal herniae to boys with micropenis

and cryptorchidism. A mismatch between prenatal karyotype and female phenotype is

an increasing reason for presentation. Gender assignment should be avoided prior to

expert evaluation and possibly until molecular diagnosis. The classic diagnostic approach

is time and cost-consuming. Today, a different approach may be considered. The first

line of investigations must exclude rare life-threatening diseases related to salt wasting

crises. Then, the new genetic tests should be performed, yielding increased diagnostic

performance. Focused imaging or endocrine studies should be performed on the basis

of genetic results in order to reduce repeated and invasive investigations for a small baby.

The challenge for health professionals will lie in integrating specific genetic information

with better defined clinical and endocrine phenotypes and in terms of long-term evolution.

Such advances will permit optimization of counseling of parents and sex assignment.

In this regard, society has significantly changed its attitude to the acceptance and

expansion beyond strict binary male and female sexes, at least in some countries or

cultures. These management advances should result in better personalized care and

better long-term quality of life of babies born with 46,XY DSD.
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INTRODUCTION

Phenotypic sex is the result of a coordinated and sequential
series of fetal events controlled by complex gene systems,
transcription factors, and optimal hormone secretion during
critical developmental windows (1–4). Sex development starts
at fertilization by the establishment of chromosomal sex (XX
or XY). In human fetuses with XY karyotype, the SRY (sex
determining region on the Y chromosome) and the related
gene network promote the formation of functional testes (sex
determination). The final step (sex differentiation) leads to
the formation of the phenotypic sex (i.e., development and
stabilization of the external and internal genitalia as well as the
programming of the male or female brain and reproductive axis).
In the 46,XY fetus, this step is based on the hormones secreted
by primordial testes and peripheral response of target tissues to
these hormones (1–4) (Figure 1).

Disorders (or differences) of sex development (DSD) are
defined as congenital conditions which feature an alteration
in the development of genetic, gonadal, or phenotypic sex (5,
6). This terminology recognizes the simple but fundamental
pathway of the nature of sex chromosomes (XX or XY)
organizing the development of the gonads (testis or ovary) whose
hormones (effectively anti-Müllerian hormone and androgens in
fetal life) determine the genital phenotype (male or female) (7).
The 46,XY DSD group includes a wide spectrum of conditions
due to genetic variants, altered hormonal secretion, or abnormal
peripheral sensitivity to testicular hormones that are able to
change the usual male fetal development, causing varying
degrees of under-virilization (5–7). 46,XY DSD may be divided
into two broad categories: (1) disorders of sex determination
characterized by abnormal gonadal development; (2) disorders
of sex differentiation characterized by altered production of
testicular hormones or altered peripheral response to steroid or
protein hormones produced by the fetal testis (Table 1).

FIGURE 1 | Schematic representation of male sex differentiation in utero.

The impact of 46,XY DSD in the life of the affected
individuals and their families is immense, as these conditions
require long-term clinical, endocrinological, and psychological
management (5). Adequate management of the newborn with
46,XY DSD is challenging, because it affects sex assignment
(and possible re-assignment), decisions on gonadal management
(including oncological risk), hormone replacement therapy from
adolescence onward (when needed), and lifelong health status
(3, 5–8). Early correct diagnosis is a key factor for optimizing
quality of life, but true diagnoses based on pathogenetic
pathways is still not reached in some individuals (9–14),
jeopardizing outcome.

In this paper, some aspects related to the diagnosis and
management of newborns with 46,XY DSD are discussed, taking
into consideration some personal views developed during years
of clinical work and exchange of opinions with our colleague
and friend Paolo Ghirri, a frontier soldier in the field of
neonatal endocrinology.

CLINICAL PRESENTATION

Presentation of a newborn with 46,XY DSDmay be characterized
by varying degrees of ambiguity of genital phenotype,
usually leading to easy identification during routine physical
examination. In some instances, few clinical signs, such as
mono- or bilateral inguinal herniae or mild hypospadias or
micropenis associated with undescended testes, may be the
only manifestations (4–6) (Table 2). Accurate phenotypic
examination (appearance of the external genitalia, presence
or absence of palpable gonads, measurement of the phallus
or clitoral length, identification of the position of the urethral
opening, presence or absence of a vagina or urogenital sinus)
must be made (4, 6, 8, 15). A complete female phenotype
or very mild undervirilization may delay the diagnosis for
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TABLE 1 | Main forms of 46,XY DSD (4, mod).

Disorders of gonadal (testis) development

- Complete or partial gonadal dysgenesis (due to genetic variants in SRY, SOX9,

NR5A1, WT1, DHH, DMRT1, etc.)

- Ovotesticular DSD

- Testis regression

Disorders of androgen synthesis

- LH receptor mutations

- Smith-Lemli-Opitz syndrome

- Steroidogenic acute regulatory protein mutations*

- Cholesterol side-chain cleavage (CYP1IA1)*

- 3β-hydroxysteroid dehydrogenase 2 (HSD3B2)*

- 17α-hydroxylase/17,20-lyase (CYP17)*

- P450 oxidoreductase (POR)

- 17β-hydroxysteroid dehydrogenase (HSD17B3)

- 5α-reductase2 (SRD5A2)

Disorders of androgen action

- Androgen insensitivity syndrome (complete, partial, minimal)

- Drugs and environmental modulators of androgen receptor activity

Disorders of AMH synthesis or action

- Persistent Müllerian duct syndrome

Other

- Syndromic associations of male genital development (e.g. cloacal anomalies,

Robinow, Aarskog, Hand-Foot-Genital, syndromes)

- Vanishing testis syndrome

- Isolated hypospadias (CXorf6)

- Congenital hypogonadotropic hypogonadism

- Cryptorchidism (INSL3, GREAT)

- Environmental endocrine disruptors

*Associated with congenital adrenal hyperplasia.

months or years [as may occur in complete and minimal
androgen insensitivity syndrome (AIS) or complete gonadal
dysgenesis]. Salt-losing crises due to adrenal insufficiency
rarely occur in 46,XY DSD (Table 1) (5, 6, 8, 15). Valuable
clinical scores were developed to grade the atypical genitalia
(16, 17). Some well-written reviews or guidelines are available
on how to perform the physical evaluation of neonatal genitalia
(5, 6, 8, 18, 19). Readers are encouraged to refer to these
for a detailed description, but neonatal phenotypes may be
inconclusive for diagnosis in the absence of a clear family
history (Table 2).

Prenatal diagnosis may occur due to the appearance of
atypical genitalia on prenatal ultrasound or a mismatch between
phenotype and genotype or a suggestive family history (20,
21). The growing use of prenatal genetic tests and high-
resolution ultrasound is likely to increase the detection of fetuses
with genotype/phenotype sex mismatch during pregnancy (22).
The management of these conditions is a new challenge
that requires expert counseling. Some genetic investigations
could be performed prenatally, when possible. Complete
evaluation should be performed after delivery to reach a
correct diagnosis and to program personalized management.
Prenatal diagnosis permits the opportunity for counseling and
education of parents prior to the birth of a child with 46,XY
DSD (8).

DIAGNOSTIC PROCEDURES

Rational investigations are mandatory in a newborn with 46,XY
DSD to avoid repeated and invasive tests in a small baby (22).
Balsamo et al. (19) proposed an extensive diagnostic scheme of
laboratory assessment in the first 24–48 h of life (Figure 2, left
panel). Such a scheme is still appropriate to avoid a salt-losing
crisis, caused by rare forms of adrenal insufficiency (Table 1).
During minipuberty (15–90 days after birth), hormonal status
should be re-evaluated (8). This scheme is time and cost
consuming and it may not result in a specific diagnosis
because of the difficulties in steroid determination and because
testicular protein hormone assays are unavailable in some clinical
laboratories and countries (8, 23). Therefore, a parallel approach
should be considered (24) (Figure 2, right panel). This approach
suggests the use of advanced genetic technologies (i.e., next
generation sequencing, whole exome sequencing, targeted CGH
array) as the first-line test after karyotyping (24) which may
result in a molecular diagnosis. After a genetic diagnosis, selected
investigations should be performed to detail the clinical and
biochemical phenotype, minimizing unnecessary tests, sampling,
and analyses. The molecular diagnosis will permit more rational
sex assignment, recognizing the natural history of the identified
46,XY DSD (8, 18), the risk of gonadal neoplasia (25), the
possibility for fertility (26, 27), and mental health (8). In
addition, this approach may aid the understanding of the clinical
and molecular characteristics of emerging DSD associated with
oligogenic mutations, in which multiple hits may contribute
to the phenotype (28). In our experience, patients presenting
between 2007 and 2016 had a higher rate of correct diagnosis and
reduced diagnostic delay in comparison with those presenting
between 2000 and 2006. The advent of new genetic techniques
strongly influenced this result (14).

A recent position paper not specific for DSD from European
Reference Network on rare endocrine conditions (ENDO-ERN,
www.endo-ern.eu) concluded that early diagnosis of a genetically
based endocrine disorder contributes to precise management and
helps the patients and their families in their self-determined
planning of life (29). Furthermore, the identification of a
causative genetic alteration allows an accurate prognosis of
recurrence risks for family planning. Asymptomatic carriers
of pathogenic variants can be identified, and prenatal testing
might be offered, where appropriate (29). Pitfalls leading to
potentially inconclusive results may be due to identification of
variants of unknown significance and inconsistent associations
between DSD phenotypes and molecular findings (8). Costs and
availability of the new genetic technologies may be additional
factors limiting their application in some clinical settings (8),
which might be overcome by establishing centers of expertise at
national levels or by international consortia.

SEX ASSIGNMENT

Sex assignment is one of the main issues in the management of a
newborn with 46,XY DSD (8, 19).

In the past, the “optimal gender policy” hypothesis stated
that gender identity was neutral at birth and developed in the
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TABLE 2 | Clinical findings of main 46,XY DSD (without adrenal insufficiency).

46,XY gonadal

dysgenesis

NR5A1

deficiency*

Leydig cell

hypoplasia

17β-HSD3

deficiency

5α-reductase 2

deficiency

Complete/partial/

minimal Androgen

resistance

Prevalence ? ? Very rare 1: 147.000◦ ? ◦ 1: 20/90.000

Inheritance Variable AD AR AR AR X-linked

Gene SRY, DHH, etc. NR5A1 LHR 17β-HSD3 SRD5A2 AR

Chromosome variable 9q33.3 2p21 9q22 2p23 Xq11–12

External genitalia Female Female to male Female to

ambiguous

Female to

ambiguous

Female to

ambiguous

Female to ambiguous to

male

Wolffian structures No Variable No variable Yes No (complete) to variable to

male (minimal)

Müllerian

structures

Yes Variable No No No No

Gonads Streak Testes Testes Testes Testes Testes

Puberty No No/virilization No Virilization Virilization Femminilizatio to virilization

Sex change No Sometimes No 30–50% ∼75% No (complete/minimal) to

sometimes (partial)

AD, autosomal dominant; AR, autosomal recessive.

*No adrenal insufficiency in heterozygous state; adrenal insufficiency is operative in homozygous state.
◦Frequent in some specific populations with a high rate of consanguineous marriage.

FIGURE 2 | Diagnostic algorithms for early diagnosis of 46,XY DSD in the newborn. The “classic” (22) and the “new” approaches are summarized in the left and right

panels, respectively. The “classic” scheme is based on serial assessment of several biochemical parameters and steroids during the first days of life as well as imaging

studies to reach a suspected diagnosis that should be confirmed by gene analyses. The “new” scheme suggests that updated genetic testing may be performed as

first line of investigation, leading to a molecular diagnosis. Then, only selected investigations are required reducing the stress for babies and their families of repeated

(sometimes unnecessary) tests. The two schemes can work in parallel until more evidence is available; the availability of local resources must also be considered.

postnatal period under the influence of social, familial, and
cultural factors (30). According to this theory, if a child with
a DSD is raised without gender and anatomical sex ambiguity,
gender identity was expected to develop in line with assigned
sex (30). This hypothesis determined the practice of early sex
assignment; early genital surgery was consequently performed
“to correct” the atypical genitalia according to assigned sex.

Long-term studies showed that the “optimal gender policy”
did not always lead to a satisfying adult quality of life and
sexuality (31). In recent years, the management of 46,XY DSD
has changed. New ideas on psycho-sexual development as
the result of multifaceted genetic, hormonal, and psychosocial
influences have arisen (3, 32–36). Both biological sex and
psychosexual development are considered as a spectrum of
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TABLE 3 | 46,XY DSD: similar phenotypes, different decisions, different outcome

in two people with 46,XY karyotype and atypical genitalia at birth.

Person Mary Mario

Description of

phenotype at birth

Ambiguous genitalia with

clitoromegaly, urogenital

sinus, inguinal gonads

Ambiguous genitalia with

severe proximal

hypospadias, urogenital

sinus, inguinal gonads

Assigned sex Female Male

Investigations Repeated endocrine and

imaging studies

Imaging study of genitalia

Early diagnosis Gonadal dysgenesis in

infant with Morris

syndrome*

Male undervirilization

Procedures Gonadal removal,

feminizing surgery

Male reconstructive

surgery

Adult outcome Gender dysphoria (“I’m

sick, I can’t understand

what I am”) plus other

psychiatric disorders,

social withdrawal, poor

education level, and work

opportunity

Married, satisfying social

and sexual activity,

spontaneous proven

fertility (2 daughters),

University degree, top

positions in his work

Age at molecular

diagnosis

30 years old 66 years old

Molecular diagnosis Compound heterozygosity

for SRD5A2 gene variants

Compound heterozygosity

for SRD5A2 gene variants

The same molecular diagnosis (compound heterozygosity for SRD5A2 gene variants) was

made in adulthood.

*Complete androgen insensitivity does not present with ambiguous genitalia and

functioning testes are present and therefore not “gonadal dysgenesis”.

possibilities rather than a simple binary male/female system
(37, 38).

A more open approach is needed in babies where the sex
may not be easily defined at birth and more time is needed in
order to determine the natural inclination of an individual partly
related to their prenatal hormonal milieu (33). For example,
46,XY individuals with SRD5A2 deficiency assigned as female
at birth showed high rates of sex change and gender dysphoria
(56–63%) from adolescence onward (39, 40). Functional brain
imaging studies of women with complete AIS in comparison
with 46,XY male and 46,XX female controls suggest that
testosterone modulates the microstructure of somatosensory
and visual cortices and their axonal connections to the frontal
cortex; testosterone may also influence functional connections
from the amygdala (35). The high rate of gender role switch
from female to male in some 46,XY DSD during puberty may
be due to the prenatal brain androgenization from normal
testosterone secretion during intrauterine life (41) (Table 2).
In these individuals, different decisions at birth can determine
different outcomes in adulthood (Table 3).

Although there is still an association between the external
appearance of the genitalia and the choice of sex assignment,
clear temporal trends pointing toward an increased likelihood
of infants with 46, XY DSD being raised as boys has been
reported (42). Some factors may explain the new tendency for
male gender assignment in some 46,XY DSDs. Fertility potential

has become an important issue to evaluate, because spontaneous
or assisted paternity has been documented in some men with
46,XYDSD (26). Furthermore, new data showed that the gonadal
cancer risk is relatively low in several forms (18, 25, 43). Thus,
recommending early gonadectomy may not be necessary, since
regular follow-up could be an adequate approach (41, 43). In
addition, new RNA microarray technology is likely to lead to
very early identification of gonadal neoplasia (44, 45). The past
recommendation for female assignment based on easier surgery
has been overcome by improvements in male reconstructive
surgical techniques. However, some studies have reported that
the majority of individuals with 46,XY DSD raised as females
have not experienced gender dysphoria (46, 47). Thus, male
gender assignment should not be the rule in every case.

Social and cultural factors may influence decisions on sex
assignment and outcome (48). In some societies, female infertility
precludes marriage, which also affects employment prospects
and creates economic dependence. Religious and philosophical
views may influence how parents respond to the birth of an
infant affected by 46,XY DSD. There may be fatalism and
guilt feelings related to congenital malformations or genetic
conditions; poverty and illiteracymay impair access to health care
or may preclude the availability of updated knowledge and new
technologies (18, 19, 47, 48).

Because the long-term outcome of the early management
of babies with 46,XY DSD remains largely based on evidence
from small series or single reports, ethical guidelines for
the management of infants with DSD must be taken into
consideration (49). These state that the following principles
should guide clinical decisions: minimizing physical and psycho-
social risks, preserving the potential for fertility and satisfying
sexual relations in adolescence and adulthood, leaving options
open for the future if necessary, respecting the parents’ wishes,
beliefs and sociocultural tradition, when possible, to guarantee
the best options for a healthy life (that is a state of complete
physical, mental and social well-being and not merely the
absence of disease or infirmity; WHO, 1948) (49). Future studies
integrating genetic, endocrine, imaging, surgical, psychologic,
and follow-up data will give more objective data to aid
sex assignment.

MULTIDISCIPLINARY TEAMS

Each subject with 46,XY DSD should receive individualized care
by an expert multidisciplinary team. This team should include
medical specialists (pediatric endocrinologists, geneticists,
reproductive medicine specialists, pediatric surgeons and
urologists, mental health specialists, ethicists, etc.) as well as
nurses, social workers, and patient associations to optimize
family-centered care (5, 8, 15, 18). The teams should be available
at reference centers clearly delineated in each country and they
should work closely with smaller centers (hub and spoke model),
because the birth of a baby with 46,XY DSD can occur in any
neonatal unit. The multidisciplinary teams should collaborate in
communicating the correct information on DSD to the parents
as well as pros and cons of management. The multidisciplinary
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teams should help and support the anxieties of parents that
may lead to premature and irreversible decisions (47). They
should also share advanced knowledge (including by e-learning
projects), diagnostic procedures, and facilities for patients. The
team should include the laboratories performing analyses for
DSD (19, 23) and should operate within a quality framework and
actively engage in harmonization of diagnostic and management
approaches, permitting sound comparable data. The DSD–Endo-
ERN as well as the international Disorders of Sex Development
(I-DSD) and International Congenital Adrenal Hyperplasia
registry (I-CAH) registries are relevant examples of tools for
improving practice by virtual expert networks, cooperation
between expert healthcare centers, and multicenter research on
rare disorders (50).

SUPPORT GROUPS

Support groups may be invaluable to individuals with 46,XY
DSD and their families (51, 52). They actively work to improve
management and research in this field and to push healthcare
systems toward higher standards of care (51). For couples
expecting a baby with a genetic/phenotypic sex mismatch or
parents of a newborn with 46,XY DSD, support groups may
provide a context in which intimate issues of concern can
be approached by sharing parents’ and patients’ experiences.
Support groups can also help families find the best quality of
care (www.dsd.guidelines.org; www.dsd-life.eu) (51, 52). Parents
of a baby with 46,XY DSD should be encouraged to contact a
dedicated support group to share emotions and information.

Concerns have been expressed about the authority of LGBT
(lesbian, gay, bisexual, and trans) movements in representing the
community of people with DSD, which might lead to misleading
messages related to confusion in terminology or the clinical
condition (53).

CONCLUSIONS

The care of people with DSD quickly evolves as knowledge in
this field accrues (4–8), but the birth of a baby with 46,XY

DSD is still perceived as a “social” rather than a true “medical”
emergency. Currently, there are no fully established or evidenced
based “right” or “wrong” decisions in this difficult field, but every
family has to find its own path with open support and objective
information from expert teams when dealing with the specific
nature of their child (27, 33, 54). While many patients fare well
and have a good quality of life (46, 47, 55), other individuals
have expressed uncertainty about belonging to a specific gender
or have reported poor quality of life (38, 56) (Table 3). New
knowledge, updated investigations, clear diagnoses, respect for
newborns and their families, and improved collaboration among
national and international networks are likely to result in better
health of people with DSD. Support groups provide added value
to help families and promote quality research and care. Qualified
psycho-social care should be also planned to optimize lifelong
quality of life. Improvements are needed on diagnostic schemes
in the first days of life as well as objective criteria to assign sex,
to predict the risk of germ cell cancers and unnecessary gonadal
removal, and to optimize surgical procedures and future fertility
options. We outline a different approach to the investigation of
46,XY DSD which involves genetic testing, following exclusion of
a salt-losing crisis, as genetic testing advances and becomes more
available in this area.
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Background: Congenital adrenal hyperplasia (CAH) is a group of congenital genetic
diseases caused by defective steroidogenesis. Our study aims to systematically analyze
the screening results for CAH in Chinese newborns.

Methods: Studies were searched from PubMed, Web of Science, Cochrane library and
some Chinese databases up to September, 2020. Meta-analysis was performed after
quality assessment and data extraction.

Results: After a review of 2 694 articles, we included 41 studies enrolling 7 853 756
newborns. In our study, we found that the incidence of CAH in China was 0.43‱ [95%
confidence intervals(CI), (0.39‱, 0.48‱)], or 1/23 024 [95%CI, (1/25 757,1/20 815)].
27 studies were included for analysis of the screening positive rate, which gave a rate of
0.66% [95%CI, (0.54%, 0.78%)]. As for the recall rate of positive cases, 17 studies were
included and showed that the recall rate reached 86.17% [95%CI, (82.70%, 89.64%)].
Among the CAH patients, the ratio of males to females was 1.92:1 (119:62), and the ratio
of salt wasting (SW) to simple virilization (SV) type was 3.25:1 (104:32). The average 17-
hydroxyprogesterone (17-OHP) value of CAH was 393.40 ± 291.85 nmol/L (Range 33-1
300 nmol/L); there was no significant difference between male and female patients
(437.17 ± 297.27 nmol/L v.s. 322.25 ± 293.04 nmol/L, P=0.16), but a significant
difference was found between SW and SV patients (483.29 ± 330.07 nmol/L v.s. 73.80 ±
7.83nmol/L, P=0.04).

Conclusion: We systematically analyzed the current situation of neonatal CAH screening in
China, which will deepen our understanding for future CAH screening and early diagnosis.

Keywords: neonatal screening, incidence, congenital adrenal hyperplasia, 17-OHP, meta-analysis
INTRODUCTION

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive inherited diseases caused by
defects of essential enzymes in the synthesis of steroid hormones. Because of different degrees of
aldosterone and cortisol deficiency, classical CAHmainly manifests with salt-wasting symptoms and SV
type mainly with hyperandrogenism. Many studies have shown that CAH patients often have some
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adverse outcomes during childhood or adulthood (1, 2). Therefore,
early screening, early diagnosis and early treatment are particularly
critical to help patients with CAH to have normal and
healthy development.

About 90-95% of CAH cases are caused by deficiency of steroid
21-hydroxylase (21-OHD), characterized by elevated 17-
hydroxyprogesterone (17-OHP) and reduced glucocorticoid levels.
The current screening for CAH is still dominated by 21-OHD,
although some rare types such as 11b-hydroxylase and 3b-
hydroxysteroid dehydrogenase deficiency may also be found.
Screening for CAH was first performed in United States of
America in 1977, and currently more than 35 countries have
carried out CAH screening (1, 2). In China, such a screening
program started in the early 1990s, and to date, many screening
centers have obtained regional incidence data. However, due to
China’s vast territory and unbalanced medical provision, CAH
screening coverage rate in China was only 18.9%-19.9% according
to the statistics of newborn screening in 2013 (3). In addition, there
were significant differences in reports of the incidence of CAH, for
example, the 2016 CAH guideline (China) stated that the domestic
incidence was 1/16 466-1/12 200 (1), while the 2018 Endocrine
SocietyCAHguideline stated that the incidenceofCAHinChinawas
as high as 1/6 064 (sample size 30 000 cases) (2). National newborn
screening is the only way of obtaining precise incidence data of CAH
in China and promote its early diagnosis, but currently there are still
many difficulties in carrying out such a national screening program.

Therefore, we used the method of meta-analysis to
comprehensively analyze the results of CAH newborn screening
in different regions of China, and conducted a systematic analysis
of its screening positive rate, recall rate and incidence of CAH. Our
study will help us understand the screening status and promote an
effective CAH neonatal screening program in the future.
METHODS

Data Sources and Searches
We developed a protocol for the meta-analysis and followed the
principles of the PRISMA statement (see Supplementary Table 1).
Relevant studies were searched from PubMed, Web of Science,
Cochrane library and some Chinese databases (CNKI, Wanfang,
VIP and CBMD) up to September, 2020. Our searches were based on
combinations of the following index terms: newborn screening,
congenital adrenal hyperplasia, CAH, 17-hydroxyprogesterone, 17-
OHP or 17a-OHP and the corresponding terms in Chinese. We also
reviewed the reference lists of retrieved studies and review articles.

Eligibility Criteria and Exclusion Criteria
The studies would be included if they met following criteria:
(1) Results of CAH newborn screening in different provinces, cities
Abbreviations: CAH, congenital adrenal hyperplasia; SW, salt wasting; SV, simple
virilization; 17-OHP, 17-hydroxyprogesterone; 21-OHD, 21-hydroxylase
deficiency; DELFIA, dissociation-enhanced lanthanide fluorescence
immunoassay; ELISA, enzyme-linked immunosorbent assay; LC-MS/MS, liquid
chromatography-tandem mass spectrometry; AHRQ, Agency for Healthcare
Research and Quality of America; CI, confidence interval.
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and autonomous regions of China; (2) Sample collection was subject
to “Technical Specifications for Blood Collection for Neonatal
Disease Screening(China)” or the regional handbook (72 hours
after the birth, blood is collected from the inside or outside of the
heel to form dried blood spots, which are naturally dried and stored
in a refrigerator at 2-8°C, and then sent for testing); (3) Detection
methods: dissociation-enhanced lanthanide fluorescence
immunoassay (DELFIA) or enzyme-linked immunosorbent assay
(ELISA)wasused toquantitativelymeasure17-OHPvaluesof dried
blood spots (Most Chinese laboratories recognize 30 nmol/L as the
positive cut-off value, only the Children’s Hospital of Shanghai
Jiaotong University takes 40 nmol/L as the cut-off value); (4) The
main indicators are the incidence of CAH, the positive rate, the
recall rate and some other characteristics related to CAH.

The following exclusion criteria were applied: (1) Studies with
overlapping screening regions or screening time; (2) Not meeting
the requirements of the eligibility criteria; (3) Studies with low
quality. In addition, studies which were not published in English
or Chinese were also excluded because of language limitations.

Data Collection and Quality Assessment
According to the above eligibility criteria and exclusion criteria, a
data extraction table was developed and relevant data were
collected. The information included: authors, published year,
screening year and participants, positive cases and positive rate,
recall cases and recall rate, diagnosed cases and their characteristics
(gender, clinical classification and 17-OHP levels), etc.

An 11-item checklist recommended by the Agency for
Healthcare Research and Quality of America (AHRQ) (see
Supplementary Table 2) was used to evaluate the quality of
included studies. An item would score “0” with answer “NO” or
“UNCLEAR”; otherwise, it would score “1”. With a total score of 11
points, article quality was assessed as follows: low quality = 0-3,
moderate quality = 4-7, high quality = 8-11. Two reviewers
individually assessed the quality of eligible studies, and a senior
investigator resolved the discrepancies if necessary.

Summary Measures and Synthesis
of Results
We used the Stata 12.0 software to analyze the data. If different units
were used in the studies, they were converted to international
standard units. The effect size in our study was shown as “rate” and
its 95% confidence interval (95% CI). I2 and Chi2 tests were used to
estimate the heterogeneity, with I2 value less than 50%, heterogeneity
was considered to be small and a fixed effect model was used;
otherwise, the random effect model was used. Subgroup analysis
was also conducted to identify the possible sources of heterogeneity.
Publication bias was shown by a funnel plot and evaluated by the
Begg’s test. Independent sample t test was used for statistical analysis,
P<0.05 indicated that the difference was statistically significant.
RESULTS

Study Selection
Our initial data search yielded a total of 2 694 articles (1 747
articles in Chinese and 947 in English). 2 352 articles were
April 2021 | Volume 12 | Article 624507
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excluded by reading the titles and abstracts, and 266 were
excluded because they didn’t meet the eligibility criteria,
whereas the remaining 76 were considered as potentially
eligible for our analysis. After careful reading of the entire full
text, 41 articles with moderate or high quality met the eligibility
criteria and were included in the meta-analysis. A flow diagram
(Figure 1) shows the flow chart of the literature search.

Quality Assessments
In our included studies, the collection of specimens abided by the
“Technical Specifications for Blood Collection for Neonatal
Disease Screening” or the guidelines of the corresponding
Frontiers in Endocrinology | www.frontiersin.org 3116
region; the DELFIA or ELISA method was used to detect the
17-OHP concentration of dried blood spot specimens; the main
indictors were incidence rate, the positive rate and recall rate of
screening, etc.

Based on AHRQ quality assessment items, 41 studies (4–44)
that scored four or more were deemed as moderate or high
quality. The average score of 7.7 indicated minimal risk of bias.
The results are shown in Table 1 and Supplementary Table 2.

Study Characteristics
After quality assessments, 41 studies (4–44) with 7 853 756
newborns were included, and 381 cases were diagnosed with
FIGURE 1 | Flowchart depicting literature search and selection (Follow the PRISMA Flow Diagram, for more information, visit www.prisma-statement.org).
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TABLE 1 | Characteristics of studies included in the meta-analysis.

alled cases (rate %) Male : Female SW : SV AHRQ scores

6: 7 9: 4 8
176(82.24) 4: 1 9
1 120(93.96) 2: 2 1: 3 9

7
70(100) 6: 5 9: 2 9

2: 0 7
14: 2 9

297(91.95) 2: 1 9
2: 1 3: 0 8

6
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1 386(98.93) 8
1 235(84.82) 5
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5

2 687(93.46) 7: 4 7: 4 9
3 354(97.27) 11: 3 11: 3 8

5
2 310(91.09) 22: 10 9
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2: 3 9
1 113(70.40) 13: 2 9
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Area Years Screening Cases CAH cases Incidence Positive cases (rate %) Rec

Province City

Taiwan (4) 2000-2001 192 687 13 1/14 822
Shanghai (5) 2007-2008 93 971 5 1/18 794 214(0.23)
Hunan (6) 2009-2013 40 988 4 1/10 247 1 192(2.91)
Guangxi (7) 2012-2015 378 252 22 1/17 193 1682(0.44)
Ningxia (8) 2014-2016 160 046 11 1/14 550 70(0.04)
Beijing (9) 2014-2017 22 632 2 1/11 316 156(0.69)
Sichuan (10) 2015-2018 271 283 16 1/16 955
Shanxi (11) 2015-2016 64 378 3 1/21 459 323(0.50)
Zhejiang Ningbo (12) 2014 88 406 3 1/29 469 517(0.58)

Others (13) 2014-2016 1 719 510 69 1/24 920
Shandong Jinan (14) 2003-2011 88 350 11 1/8 032

Taian (15) 2010-2012 161 337 8 1/20 167 1 401(0.87)
Liaocheng (16) 2009-2010 76 383 5 1/15 277 1 456(1.91)
Linyi (17) 2009-2013 740 730 24 1/30 864
Heze (18) 2013 119 560 3 1/39 853
Zibo (19) 2010-2014 178 577 11 1/16 234 2 875(1.61)
Weifang (20) 2012-2015 305 879 14 1/21 849 3 448(1.13)
Rizhao (21) 2012-2014 101 161 9 1/11 240
Qingdao (22) 2013-2017 566 395 32 1/17 700 2 536(0.45)

Guangdong Zhongshan (23) 2008-2010 105 320 2 1/52 660 307(0.29)
Foshan (24) 2010-2011 74 791 5 1/14 958 260(0.35)
Shenzhen (25) 2010-2011 329 135 15 1/21 942 1 581(0.48)
Dongguan (26) 2009-2013 551 538 17 1/32 443 2 757(0.50)
Heyuan (27) 2014-2016 45 000 4 1/11 250

Jiangsu Nanjing (28) 1993-2002 103 935 5 1/20 787 401(0.39)
Wuxi (29) 1992-2006 61 284 4 1/15 321
Changzhou (30) 2001-2010 175 876 13 1/13 529
Suzhou (31) 2010-2012 96 423 5 1/19 285 864(0.90)
Yancheng (32) 2012-2014 199 612 9 1/22 179 366(0.18)
Lianyungang (33) 2016 53 305 3 1/17 768 265(0.50)
Yangzhou (34) 2013-2017 88 829 4 1/22 207 240(0.27)

Jiangxi Nanchang (35) 2011-2013 27 988 2 1/13 994 448(1.60)
Jiujiang (36) 2015-2017 25 000 3 1/8 333 29(0.12)
Yichun (37) 2016-2017 80 305 4 1/20 076 132(0.16)

Chongqing Yuzhong (38) 2012-2017 125 320 7 1/17 903
Others (39) 2012-2017 25 958 1 1/25 958 21(0.08)

Liaoning Shenyang (40) 2013-2014 23 279 2 1/11 640
Hubei Shiyan (41) 2016-2017 70 937 3 1/23 646 308(0.43)
Shaanxi Baoji (42) 2011-2015 192 469 5 1/38 494
Fujian Fuzhou (43) 2013 15 136 1 1/15 136 76(0.50)
Yunan Kunming (44) -2007 11 791 2 1/5 896
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CAH (see Table 1 and Figure 3). Of the screened newborns, 95%
(except part of Ningxia and Sichuan province) were located to
the east of the Heihe-Tengchong line (an imaginary line that
divides the area of China into two roughly equal parts with
contrasting population densities; west of the line: 57% of the area,
but only 6% of the population; east of the line: 43% of the area,
but 94% of the population). Among them, the sex ratio of the
screened newborns described in our studies was 1.10:1 (1 678
399: 1 527 300). We found that the ratio of males to females with
CAH described in some studies was 1.92:1 (119:62), while the
Frontiers in Endocrinology | www.frontiersin.org 5118
ratio of SW to SV type was 3.25:1 (104:32). The average level of
17-OHP (n=74) for patients diagnosed with CAH was 393.40 ±
291.85 nmol/L (Range 33-1 300 nmol/L), there was no significant
difference between patients of different genders [male(n=36):
437.17 ± 297.27 nmol/L (Range 33-1 300 nmol/L) v.s. female
(n=22): 322.25 ± 293.04 nmol/L (Range 33.2-1 040 nmol/L),
P=0.16], but a statistical difference was found between SW
and SV type [SW(n=25): 483.29 ± 330.07 nmol/L(Range 48-1
300 nmol/L) v.s. SV(n=3): 73.80 ± 7.83 nmol/L (Range 65-80
nmol/L), P=0.04].
FIGURE 2 | Meta-analysis of CAH incidence in different regions of China.
April 2021 | Volume 12 | Article 624507
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Results of Meta-Analysis
Incidence of CAH
In the included studies, 41 studies reported the incidence of CAH.
Since there was no evidence of significant heterogeneity among the
studies (I2 = 0%, P<0.05), a fixed-effect model was used for
analysis. The result of meta-analysis showed that the incidence
of CAH was 0.43‱ [95%CI, (0.39‱, 0.48‱)], or 1/23 024
[95%CI, (1/25 757,1/20 815)]. We also performed a subgroup
analysis of regional incidences, among them, the incidence in
Zhejiang, Guangdong, Hubei and Shaanxi province was lower
than the national incidence; but in other regions, it was higher
than the national incidence (see Figures 2 and 3).

Screening Positive Rate
In the included studies, 27 studies reported the positive rate of CAH
screening.We found that 3 985 456 newborns were screened in these
studies and 23 925 cases were considered as suspected positive cases.
As I2> 50%, we used a random effectmodel for analysis. The result of
the meta-analysis showed that the positive rate of CAH screening in
China was 0.66% [95%CI, (0.54%, 0.78%)] (see Figure 4).

Recall Rate of Positive Cases
In the included studies, 17 studies reported the recall rate of
suspected positive cases. We found that 20 158 suspected positive
Frontiers in Endocrinology | www.frontiersin.org 6119
cases were considered in our studies and 17 861 cases were
successfully recalled, among which 135 cases were diagnosed
with CAH (positive predictive value: 0.76%). As I2> 50%, we used
a random effect model for analysis. The result of the meta-
analysis showed that the recall rate of positive cases in China was
86.17% [95%CI, (82.70%, 89.64%)] (see Figure 5).

Publication Bias Across Studies
Publication bias was shown by a funnel plot and evaluated by the
Begg’s test using Stata 12.0 software. As for the main indicator
(the incidence of CAH), the funnel plot showed that all the
included studies were symmetrically distributed in the triangle
area (see Figure 6), which meant that they were less affected by
publication bias. Begg’s test showed P=0.204 for the incidence of
CAH, as for the other indicators, no publication bias was found
between them (P value of the positive rate and the recall rate were
0.868 and 0.902, respectively).
DISCUSSION

Our meta-analysis included 41 studies on CAH screening of
newborns in China, including approximately 7.85 million
newborns, which is the most comprehensive and systematic
FIGURE 3 | The schematic diagram shows the incidence of CAH in different provinces of China (provincial data obtained by subgroup analysis). Note: Of the
screened newborns, 95% cases (except part of Ningxia and Sichuan province) were located to the east of the Heihe-Tengchong line (an imaginary line that divides
the area of China into two roughly equal parts with contrasting population densities; west of the line: 57% of the area, but only 6% of the population; east of the line:
43% of the area, but 94% of the population).
April 2021 | Volume 12 | Article 624507
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analysis of CAH screening in the world. Due to the large sample
size, representative population distribution, and no publication
bias in the literature, the results of our study are objective
and reliable.

According to the degree of enzyme deficiency, classical CAH
represented by 21-OHD can be divided into two types: SW
(about 75%) and SV (about 25%) type. In our study, we found
that the ratio of SW to SV type is 3.25:1, which is consistent with
previous literature reports. Due to the almost complete lack of
enzyme activity, SW type will present with more typical clinical
symptoms, just as in our study, 17-OHP levels of SW type were
significantly higher than that of SV type. Theoretically, the
incidence of autosomal recessive genetic disease such as CAH
is the same for males and females. However, it’s interesting that
the CAH screening results in our study showed that the
incidence of CAH in males was much higher than that in
Frontiers in Endocrinology | www.frontiersin.org 7120
females (1.92:1). Such a difference has not been reported
elsewhere, so we need to be cautious about this result. Possible
explanations based on China’s national conditions need to be
considered: Firstly, there was a serious gender imbalance in
China, and the screening data also showed the proportion of
males was much higher than that of females (1.10:1); and Chinese
parents will pay more attention to boys, such that the recall rate
of positive boys may be higher than that of girls. Another
explanation might be that some females were clinically
diagnosed due to ambiguous genitalia after birth or even
during pregnancy, making sample screening unnecessary (72
hours after birth). Also, since male patients with CAH tend to
have higher levels of 17-OHP than the female, they may be more
sensitive to CAH screening. A study of 220 000 newborns in the
United States (45) showed that the sensitivity of newborn
screening for male infants is 80%, while the female is only
FIGURE 4 | Meta-analysis of the positive rate of CAH screening.
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60%. These reasons may account for the differences in our study
results compared with previously reported studies, but we have
to interpret these results objectively. Large-scale and prospective
research will help verify our analysis.

According to relevant screening statistics, there are obvious
racial and regional differences in the incidence of CAH. The
global incidence of CAH is about 1/14 000-1/18 000 (2), among
which, Japan is 1/19 859 (46), New Zealand is 1/26 727 (47),
France is 1/15 699 (48), and Sweden is 1/14 260 (49). Our study
has shown that the incidence of CAH in China is 0.43‱
(0.39‱, 0.48‱), that is 1/23 024 (1/25 757, 1/20 815),
which is lower than most countries in Europe and America,
and close to Asia-Pacific countries such as Japan and New
Zealand. In China, the incidence in Zhejiang, Guangdong,
Hubei and Shaanxi province is lower than the national
incidence; but in other regions, it is higher than the national
incidence. However, because of the inequality in medical
provision, particularly the under-developed health-care in
Frontiers in Endocrinology | www.frontiersin.org 8121
western China, missed diagnosis and misdiagnosis may occur,
which may render the incidence of CAH screening lower than
the actual incidence.

At present, the DELFIA or ELISAmethod is extensively used in
China to detect the 17-OHP concentration in dried blood spots for
CAH screening. These methods have strong specificity and high
sensitivity, and provide a good technical accuracy for the screening
work. In our study, 27 studies included 3 985 456 newborns
reported the positive rate of CAH screening, among which 23 925
cases were considered as presumptive positive cases. Our study
found that the positive rate (0.66%) of primary screening for CAH
was much higher than the incidence rate (0.43‱), meaning that
the current screening method may have a high false positive rate
and a low positive predictive value. 17-OHP is a sensitive indicator
for screening for CAH, but the setting of an appropriate cut-off
value is difficult especially in premature and low birth weight
infants which may give controversial screening results. Secondary
screening such as liquid chromatography-tandem mass
FIGURE 5 | Meta-analysis of the recalled rate of positive cases during CAH screening.
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spectrometry (LC-MS/MS) can greatly improve the sensitivity and
specificity of CAH screening. For example, within 3 years of using
LC-MS/MS as secondary screening, the positive predictive value of
the CAH screening in Minnesota, the United States, increased
from 0.64% to 7.3%. However, LC-MS/MS can be used only as a
supplement to primary screening and cannot completely replace
the current methods.

In addition, compared with screening for congenital
hypothyroidism and phenylketonuria, the screening coverage and
recall rate ofCAHare still very low.Our study included 17 studies, 20
158 suspected positive cases were considered, but only 17 861 cases
were successfully recalled. Meta-analysis showed that the recall rate
was only 86.17% (82.70%, 89.64%). This suggests that about 14% of
newborns with positive results failed to be recalled, and there was a
risk of delayed diagnosis or even missed diagnosis. The Southeast
region accounts for the vast majority of China’s population, but the
recall of newborns may be hampered by the complex population
structure in southeast China, which has a large number of migrants
and high mobility. We believe that because of the low awareness of
some screening institutions and insufficient diagnostic level of some
underdeveloped areas, CAH screening and diagnosismay be limited.
Therefore, we should endeavor to raise public awareness of CAH to
improve cooperation with the CAH screening program.
CONCLUSION

Through the systematic analysis of the results of CAH screening
for newborns in China, we have obtained a relatively accurate
Frontiers in Endocrinology | www.frontiersin.org 9122
incidence of CAH in China (1/25 757, 1/20 815). In addition, we
have established some interesting clinical characteristics of CAH,
such as the ratio of different types and gender of CAH as well as
their 17-OHP levels, which will provide valuable data for the
screening and diagnosis of CAH in the future. However, we also
realize that there are still some problems with CAH screening at
present, such as the insufficient screening coverage in China, the
difficulty of recalling positive cases, the imperfect setting of the
17-OHP cut-off value and the low positive predictive value,
which will guide our future work in CAH neonatal screening.
In summary, our study involving the largest number of babies on
the incidence and regional characteristics of CAH provides data
which suggest that improving laboratory testing capacity and
equity of the CAH screening service throughout China should
improve survival and quality of life for all.
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Hyperglycemia is common in newborns requiring intensive care, particularly in preterm

infants, in sepsis and following perinatal hypoxia. The clinical significance, and optimal

intervention strategy varies with context, but hyperglycaemia is associated with increased

mortality andmorbidity. The limited evidence for optimal clinical targets mean controversy

remains regarding thresholds for intervention, and management strategies. The first

consideration in the management of hyperglycaemia must be to ascertain potentially

treatable causes. Calculation of the glucose infusion rate (GIR) to insure this is not

excessive, is critical but the use of insulin is often helpful in the extremely preterm infant,

but is associated with an increased risk of hypoglycaemia. The use of continuous glucose

monitoring (CGM) has recently been demonstrated to be helpful in targeting glucose

control, and reducing the risk from hypoglycaemia in the preterm infant. Its use in other

at risk infants remains to be explored, and further studies are needed to provide a

better understanding of the optimal glucose targets for different clinical conditions. In

the future the combination of CGM and advances in computer algorithms, to provide

intelligent closed loop systems, could allow a safer and more personalized approached

to management.

Keywords: hypoxic ischaemia, hyperglycaemia, preterm, glucose, hypoglycaemia, monitoring

INTRODUCTION

Although in utero glucose levels are normally maintained between 4 and 6 mmol/l hyperglycaemia
is common in newborns requiring intensive care, particularly in preterm infants, in sepsis
and following perinatal hypoxia (1, 2). Transient hyperglycaemia may be a physiological
response to stress but when prolonged is associated with significant morbidity and mortality.
Hyperglycaemia has variably been defined based on absolute thresholds, as well as length of
exposure and association with glycosuria. Threshold definitions range from >7 to >13.3 mmol/l
(>126–239 mg/dl) (3–6). The most common definition is blood glucose (BG) >10 mmol/l
(180 mg/dl) (3). However, the European Society for Paediatric Gastroenterology Hepatology
and Nutrition (ESPGHAN) recommends avoiding glucose levels >8 mmol/l (145 mg/dl),
because they are associated with increasing morbidity and mortality (7). Hyperglycaemia is
most commonly seen in the extremely preterm infant in the first week of life, reports varying
between 20 and 86% (1, 8–17). However, glycaemic instability and hyperglycaemia remain in
these infants even at the time of discharge (1, 8–16). Hyperglycaemia is also prevalent in
infants following hypoxic ischaemic (HI) insults (18), associated with sepsis and in neonatal
diabetes which has recently been reviewed (19). The use of systemic steroids, inotropes, and
caffeine (20, 21), as well as stress associated with intubations can also increase glucose levels (1).
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The limited evidence for optimal clinical targets mean
controversy remains regarding thresholds for intervention
and management strategies. The first consideration in the
management of hyperglycaemia must be to ascertain potentially
treatable causes. Hyperglycaemia in the newborn may be
initially considered an acute catabolic response to stress, but
prolonged hyperglycaemia is associated with a poor prognosis.
There are numerous studies reporting its association with
increased morbidity and mortality, and there are biologically
plausible causal pathways. These include the direct effects of
hyperglycaemia per se, as well as the effect of relative insulin
deficiency. As hyperglycaemia is an easily modifiable risk factor
for poor outcomes it is important to understand potential
mechanisms of harm, and intervention strategies that could
improve outcomes.

HYPERGLYCAEMIA IN THE PRETERM
INFANT

The prevalence of hyperglycaemia is inversely related to
gestational age with extremely preterm infants at most risk.
Many preterm morbidities as well as mortality are associated
with increased hyperglycaemic exposure (22). These include
retinopathy of prematurity (23), chronic lung disease (24),
necrotizing enterocolitis (NEC) (25), hypernatraemia, and
reduced white matter in the brain at term (26). Associations are
often reduced or lost after adjusting for gestational age and birth
weight, as there is a close relationship between hyperglycaemia
and immaturity. It is similarly difficult to separate how much
hyperglycaemia is a marker of the metabolic disturbance, that
is the primary etiology for poor outcome, as opposed to
contributing itself to that causal pathway. However, even after
adjustment for gestational age, early hyperglycaemia has been
shown to be associated with an increased risk of death or sepsis,
OR 5.07 (95% CI 1.06–24.3) (27). Furthermore, hyperglycaemia
has been associated with poor growth up to 2 years of age (28, 29).
The implications of hyperglycaemia and prolonged catabolism
on longer term metabolic and neurocognitive outcomes for
preterm infants remains to be determined.

Pathogenesis of Hyperglycaemia in the
Preterm Infant
In preterm infants hyperglycaemia can be considered to
result from a combination of excess glucose delivery, counter
regulatory response to stress and infection, and the impact of
prematurity and growth restriction on insulin secretion and
sensitivity (12, 30, 31).

Central and Peripheral Glucose Insensitivity and

Insulin Resistance
In the healthy adult glucose infusions (6 mg/kg/min) completely
suppress endogenous glucose production. However, in the
preterm neonate glucose production is not suppressed in the
same way by glucose infusions. Studies in the newborn have
shown glucose levels can reach >13.9 mmol/l (250 mg/dl), or
glucose infusion rates (GIRs) >16 mg/kg/min before glucose

production is suppressed (32–34). Similarly large reductions in
the GIRs may not alter glucose production rates, when one might
anticipate it would lead to an increase in gluconeogenesis (35).
Persistent endogenous glucose production, in spite of glucose
infusion, has been shown in preterm infants even at the age 2–
5 weeks (36). This may in part be due to immature expression
of glucose transporters (GLUT), particularly glucose transporter
2 (GLUT2) and glucose transporter 4 (GLUT4). Low GLUT 2
levels in the liver may lead to lack of glucose sensitivity, and
continued hepatic glucose production (37). The less abundant
insulin sensitive tissues (adipose and skeletal muscle), and low
GLUT4 expression in muscle, may also result in reduced insulin
mediated glucose uptake in preterm infants (2, 38). Increased
levels of pro-inflammatory cytokines (tumor necrosis factor-
α, interleukin-1, interleukin-6), secondary to chorioamnionitis,
sepsis or NEC, may also lead to insulin resistance, and altered
insulin receptor signaling. Intensive care interventions, such as
the use of inotropes and corticosteroids, also increase insulin
resistance and suppress insulin secretion.

Relative Insulin Deficiency
In utero studies suggest that insulin levels increase toward
term, and immaturity of the β-cells may result in insufficient
insulin secretion (6). GLUT 2 transporters are involved in
glucose stimulated insulin secretion from the pancreas, but fetal
pancreatic β cells do not express GLUT 2 until 7 months (39, 40),
impacting on the β cell’s response to hyperglycaemia (32). In
the preterm infant the insulin secretory response to glucose is
reduced compared with the term infant, but increases postnatally
over a number of weeks (41). Preterm infants are often also
growth restricted, and this is associated with reduced β cell
mass (42, 43). However, these changes are dependent on the
model and timing of growth restriction (44, 45). The levels of
proinsulin (a less active precursor to insulin), are high in preterm
neonates, suggesting that the processing of proinsulin in β-cells is
partially defective. This relative insulin deficiency may contribute
to reduced insulin like growth factor 1 (IGF-I) generation, with
further impacts on metabolism and growth.

Feeding and Incretins
Incretins play an important role in augmenting insulin secretion
in adults (46, 47), and the delay in enteral feeding of preterm
infants means the normal stimulation of incretins does not occur
(48). In the preterm infant glucose control often improves once
enteral feeds have been established, but even when enteral feeds
are given, preterm infants do not demonstrate an equivalent
incretin response compared to that seen in term infants (49).

Clinical Consequences of Hyperglycaemia
An initial counter regulatory response and transient
hyperglycaemia may be beneficial in acute stress, and may be
considered physiological. However, prolonged hyperglycaemia
in critical illness has been associated with poor prognosis.
Furthermore, for the preterm infant, the period from birth to
term is a critical period of development, and even shorter periods
of hyperglycaemia may be harmful. It remains unclear as to
whether harmful effects of dysglycaemia are mediated by the
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primary effects of hyperglycaemia per se, or the effects of relative
insulin deficiency, with both potentially having short and long
term clinical consequences.

Primary Role of Hyperglycaemia
Hyperglycaemia is harmful to cells and can lead to an over
expression of insulin independent glucose transporters (GLUT-
1, GLUT-2, and GLUT 3), which leads to an increase in
glucose uptake by endothelial, hepatic, immune, and nerve cells
(50). Glucose overload can cause an increased generation of
oxygen free radicals, which can cause mitochondrial dysfunction
and increased apoptosis. Hyperglycaemia also impairs leukocyte
phagocytic function, decreases complement function, increases
pro-inflammatory cytokines, and impairs neutrophil chemotaxis,
all leading to an increased susceptibility to infections (51–54).

Independent manipulation of BG and insulin levels in an
animal model of hyperglycaemia (burn injured parenterally
fed rabbit), demonstrated survival to be better in the
normoglycaemic groups (89% verses those with hyperglycaemia
53–64%) (55). Recent data have also shown a causal pathway
linking hyperglycaemia to an increased risk of microbial gut
translocation in both animal models and adult studies (56).
Persistent hyperglycaemia has been associated with NEC, OR
9.49 (95% CI 1.52–59.3) and infection, OR 3.79 (1.40–10.20)
(1, 25, 27) which are twomajor causes of mortality andmorbidity
for preterm infants (57, 58).

Hyperglycaemia can lead to an osmotic diuresis,
hypernatraemia, and electrolyte imbalance and has been
associated with intraventricular hemorrhage (IVH) (25, 59, 60).
More significant may be the impact of hyperglycaemic on
nervous system development and injury in animal models
(61). Hyperglycaemia increases central nervous system
permeability, oxidative stress, and leads to microglia activation
and astrocytosis, as well as regulation of DNA repairmechanisms,
compromising neuronal and glial cell integrity (62). This can
lead to long-term changes in synaptogenesis and behavior (63).
Clinical correlates include the finding in a cohort of extremely
preterm infants that hyperglycaemia >8.3 mmol/L(150 mg/dl)
on the first day of life was an independent risk factor for
white matter reduction on term MRI (26). Increased BG
concentrations have also been associated with decreased total
absolute band power on EEG, a measure expressing background
brain activity, and associated with long term outcomes (64).
A large retrospective study, (including 443 preterm infants)
showed hyperglycaemia to be associated with lower survival
without neurodevelopmental disability at 2 years of age, but this
did not remain significant after adjusting for gestational age,
birth weight z-score, and socioeconomic status (65). However,
the close relationship between hyperglycaemia and gestational
age make separation of the causal effect of hyperglycaemia from
that of immaturity challenging. Data in press from the Swedish
EXPRESS cohort shows that hyperglycaemia is associated with
worse motor outcomes in early childhood (after multivariate
adjustment). Further long term follow up studies are required
to explore the long term impact of hyperglycemia per se, and
different management strategies.

Impact of Relative Insulin Deficiency
Hyperglycaemia may also be considered a marker of relative
insulin deficiency, and this may have independent effects to those
of hyperglycaemia. In both animal and human models insulin
has been shown to improve innate immunity, and to suppress
pro-inflammatory products, whilst increasing anti-inflammatory
cytokines (66–70). Insulin deficiency may be associated with
reduced expression of nitric oxide synthase (iNOS), and insulin
may be protective by prevention of excess nitric oxide release.
Insulin can also improve cardiac function (55), and in patients
post myocardial infarction and in sepsis, the combination of
glucose and insulin infusion improves cardiac function (71).
Insulin infusions can reduce proteolysis, and in burns have a
positive impact on protein synthesis and wound healing (72–
74). Relative insulin deficiency can also lead to low IGF-I levels,
which can be detrimental, as IGF-I is an important mediator of
growth in the neonatal period. Starvation and critical illness lead
to suppression of IGF-I levels, and IGF-I administration has been
shown to increase nitrogen balance in catabolic states (75, 76).
IGF-I is also an important growth factor influencing perinatal
pancreatic development, with low levels leading to increased
apoptosis, and potentially resulting in reduced β-cell mass.
Therefore, insulin deficiency has implications in the preterm
infants for growth, as well as longer term metabolic health.

Clinical Interventions for the Management
of Hyperglycaemia
Thresholds for intervention remain controversial, but the recent
ESPGHAN andASPEN guidelines clearly advise avoiding glucose
levels >8 mmol/l (145 mg/dl) (7), or >8.3 mmol/l (150
mg/dl) (77, 77). Approaches to management should always
involve reviewing the context of hyperglycaemia, with particular
consideration as to whether there is evidence for acute illness,
such as infection which requires treatment. Limitation of
excess glucose intake should then be considered, and insulin
used in the context of wishing to maintain postnatal growth
when appropriate (4). Simply increasing calorie intake may be
detrimental (14), but optimizing amino acid intakes and the use
of insulin has the theoretical potential to improve lean bodymass,
and pancreatic function (78). The potential benefits of insulin
however need to be balanced with the risks of hypoglycaemia,
and therefore careful monitoring of glucose levels should be
undertaken on any infant on insulin.

The Importance of Parenteral Nutrition
The relationship between glucose infusions and hyperglycaemia
is not consistent. Some studies have shown a direct positive
relationship between GIRs and risk of hyperglycamia, other
studies have not found such a clear relationship (1, 20, 60, 79, 80).
Differences may relate to the rates of glucose being infused,
with excess rates clearly associated with hyperglycaemia, but the
impact of lower rates of glucose infusion more nuanced. At
lower GIRs the influence of differences in other components of
parenteral nutrition (PN) may play an important role. Amino
acids stimulate insulin secretion, and low plasma arginine
levels have been associated with hyperglycaemia (81). Neonates
receiving amino acid infusions in addition to glucose have
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higher insulin levels (82). A Cochrane meta-analysis concluded
that higher amino acid intake in PN was associated with a
reduction in hyperglycaemia. Therefore, reducing PN al intake
may be counterproductive, if it reduces amino acid intake along
with glucose load. One study that reported on the impact of
a change in clinical practice, aimed at limiting dextrose intake
(to minimum of 4 mg/kg/min), demonstrated a reduction in
the prevalence of hyperglycaemia, use of insulin and mortality.
However, total protein and energy intakes were also higher after
the intervention, which cannot therefore be viewed as a simple
intervention on dextrose intake (83). Lipid infusions may have a
beneficial effect, by reducing the glucose load whilst maintaining
energy intakes, they can reduce the prevalence of hyperglycaemia
(84). However, in excess or in acute illness, lipids have been
reported to contribute to hyperglycaemia (85).

A single center study in Norway showed implementation
of an enhanced PN protocol was associated with an increased
prevalence of severe hyperglycaemia, and higher mortality (14).
However, in the multivariate analysis, the enhanced PN regimen
per se was not predictive of mortality, it was the early severe
hyperglycaemia that was the strongest risk factor for death.
After adjusting for potential confounding variables, early severe
hyperglycaemia was an independent risk factor for death (OR,
4.68; 95% CI, 1.82–12.03), greater than that of gestational age
(odds ratio, 0.62; 95% CI, 0.49–0.79). Attempts to reduce the
prevalence of hyperglycaemia, by controlling glucose intake, have
included the use of continuous glucose monitoring (CGM) (86).
In this study, glucose delivery was determined by a computer
guided GIR that was supported by either real time CGM
(intervention), or intermittent BG levels (control). Those in the
intervention arm (using CGM), showed an increased median
time in target (72–144 mg/dL, 4–8 mmol/l), of 84% compared
to 68% in controls.

There are good reasons to ensure that excess glucose delivery
is avoided, as exceeding maximum glucose oxidation rates can
cause increased carbon dioxide production, lipogenesis and fat
deposition including liver steatosis (87). High rates of glucose
infusion and hyperglycaemia can themselves lead to increased
insulin resistance and endogenous glucose production (88). In
appropriately grown preterm newborns the maximum rate of
glucose oxidation has been estimated to be 6–8 mg/kg/min,
compared to term infants, and infants on long term PN where
maximum glucose oxidation rates are 12 mg/kg/min (89). When
determining glucose requirements, and optimal management for
hyperglycaemia it is important to consider the metabolic phase
of illness. During the acute phase of critical illness, such as
sepsis, increasing glucose and nutritional intake will not promote
anabolism and may be detrimental (90). In contrast, in a more
stable preterm infant, where growth and anabolism are the
priority, the approach to hyperglycaemia would normally be to
favor optimizing nutritional delivery. ESPGHAN recommend
parenteral glucose intake of 4–8 mg/kg/min on day 1 (and
during any subsequent acute illness such as infection), rising
to 8–10 mg/kg/min over the subsequent 2–3 days to allow
for growth (7). Both ESPGHAN and the American Society for
Parenteral and Enteral Nutrition recommends maintaining GIRs
(<12 mg/kg/min), but not reducing to <4 mg/kg/min (77). If

hyperglycaemia persists (>10 mmol/l, 180 mg/dL), it is then
recommended that insulin treatment should be started (7).

The Role of Insulin
A number of small single center studies suggest that the use of
insulin can help to maintain nutritional intake. These studies
showed that infants who were hyperglycaemic, and randomized
to treatment with insulin, tolerated higher GIRs, and had greater
weight gain, in comparison to those treated with reduced
glucose intake, who remained catabolic for longer (91–97). These
findings may be related to a decrease in proteolysis, but also
protein synthesis. One small study raised concern that insulin
infusions significantly increased lactic acidosis, and did not
impact on protein synthesis. However, this study infused high
rates of glucose (14–17 mg/kg/min) without the infusion of any
amino acids (98).

There are limited data from larger interventional studies in
the preterm newborn. The NIRTURE Trial, a large multicentre
randomized controlled trial used early insulin treatment prior
to the onset of hyperglycaemia, with the aim of promoting
anabolism. The trial did not demonstrate benefits and was
stopped early on the grounds of futility. The study was important
though in highlighting the high prevalence of clinically “silent”
hypoglycaemia in both study arms. These data were achieved
by uniquely collecting data on glycaemic exposure using CGM
(blinded to the clinical team) and raised concerns about the
challenges of insulin treatment (13).

The use of insulin to achieve “tight” glucose control has been
widely debated since the landmark paper of van den Berghe
which showed dramatic improvements in adult intensive care
outcomes in patients randomized to tight glucose control (99).
Many studies trying to replicate the positive findings of this
study have raised concerns about, or been stopped early, due
to the risk of severe hypoglycamiaemia (100, 101). The largest
adult study showed increased risk of death in the intensive study
arm (OR 1.14; 95% CI 1.02–1.28; P = 0.02), but highlighted
the association of hypoglycaemia with mortality (102). In this
context tight glucose control refers to glucose levels being
maintained within a much narrower “normoglycaemic” range
(typically 4–6 mmol/l), than standard care which aims to prevent
hyperglycaemia (typically >8–10 mmol/l). Further differences
between studies have been highlighted including: underlying
reason for patients requiring intensive care, ability to achieve
target levels of control and the early use of PN (103, 104). The
use of PN having been shown, more recently, to be harmful, in
adult and PICU. Preplanned analyses in these studies showing
harmful effects being related to aminoacids, but not glucose or
lipids (105). There are important differences in the preterm infant
in NICU, compared with the adult in ITU, in relation to the
importance of growth on survival, and differences in prevention
of hyperglycaemia compared to tight glucose control.

The HINT trial is the only trial to explore tight glycaemic
control in preterm infants. In this study the intervention arm
“tight control” targeted glucose levels of 4–6 mmol/L (72–108
mg/dL), compared to the unit standard of care which was 8–
10 mmol/L (144–180 mg/dL). The study showed high rates of
hypoglycaemia in both study arms and variable effects on growth

Frontiers in Pediatrics | www.frontiersin.org 4 July 2021 | Volume 9 | Article 641306128

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Beardsall Hyperglycaemia in the Preterm Infant

parameters (106). The study reported no overall effect on survival
without neurodevelopmental delay, intelligence scores or motor
skills at seven years of age, although there was beneficial effect
in those who actually reached the target of 4–6 mmol/L (72–
108 g/dL), but power was limited for assessing such outcomes.
The effects of hypoglycaemia also had the potential for masking
any effects of prevention of hyperglycaemia. More recently
a large study from the National Swedish EXPRESS Cohort
demonstrated, insulin treatment of hyperglycaemia in the first 28
days of life, was associated with lower 28- and 70-day mortality
(17). However, in this retrospective study there were no clear
criteria either for starting or modifying insulin therapy, or fixed
glucose target within the different study sites.

Challenges in insulin treatment in preterm babies relate to the
combination of rapidly changing insulin sensitivity, the difficulty
of consistent insulin delivery, and the low frequency of glucose
monitoring. Hyperglycaemia itself causes insulin resistance
and following increasing insulin to regain normoglycaemia,
insulin requirements often fall, and this increases the risk of
hypoglycaemia (13). Insulin is easily adsorbed onto intravenous
lines, and the use of large volume syringes for delivery at
small infusion rates makes insulin delivery unpredictable (107,
108). Monitoring of glucose levels in preterm infants is often
infrequent, and studies using CGM have shown that real time
CGM alone, or in combination with computer algorithms, has
the potential to reduce the prevalence of hyperglycaemia without
increasing the risk of hypoglycaemia (91, 109). Furthermore,
a recent international multicentre trial has demonstrated that
the use of CGM in preterm infants can safely support the
targeting of glucose control without causing hypoglycaemia, and
is cost effective (110, 111). However, optimal target glucose levels
remain to be determined.

Hypoxic Ischaemic Encephalopathy
Both hyperglycaemia and hypoglycaemia are common in babies
following perinatal HI insult. The etiology of hyperglycaemia
following HI, in comparison with that of the preterm infant,
is predominantly driven by the effects of stress hormones
and tissue damage from hypoxia. Although hypoglycaemia has
traditionally been considered a more significant risk, there is
increasing evidence that hyperglycaemia is a modifiable mediator
of long-term morbidity (18). Hyperglycaemia is reported in
50% of babies using intermittent BG testing, and CGM has
revealed that exposure to hyperglycaemia is often more frequent
and prolonged (112, 113). Pediatric intensive care studies have
also shown longer duration, higher peak glucose levels, and
increased glucose variability are all associated with mortality and
morbidity (114).

In the analyses of the cool cap study, a multicenter trial
of cooling for HIE, hyperglycaemia was confirmed as an
independent risk factor for poor outcomes at 18 months (18).
Further post-hoc analyses, after adjusting for Sarnat stage and
5min Apgar score, only hyperglycaemic infants randomized
to hypothermia had reduced risk of death and/or severe
neurodevelopmental disability at 18 months (adjusted risk ratio:
0.80, 95% CI 0.66–0.99). This suggests that early glycaemic
profile in infants with moderate-to-severe HIE identifies those

at most risk of multi-organ dysfunction and most likely
to benefit from therapeutic hypothermia (115). In neonates
with encephalopathy, even after adjusting for hypoxia-ischemia
severity, epochs of hyperglycaemia were associated with worse
neural injury, as well as global brain function and seizures
(116, 117). Whether hyperglycaemia causes neuronal injury
or is simply a marker of severe brain injury is yet to be
determined (116, 117).

Many potential causal mechanisms have been implicated
in infants with HIE: dyslipidemia, inflammatory cytokine
production, endothelial dysfunction, hypercoagulation, glucose
toxicity, increased cellular apoptosis, and over-production of
superoxide. However, there are potential differences in impact
related to maturity of the newborn nervous system compared
to similar ischaemic injuries in adults (118). Deleterious
effects on the nervous system may be related to increased
hyperglycaemia-induced blood-brain barrier permeability,
oxidative stress, and microglia activation, which compromise
neuronal and glial cell integrity (62, 119). However, optimal
glucose targets for infants following HI encephalopathy remain
to be determined.

CONCLUSION

Hyperglycaemia is common in newborns requiring intensive
care, particularly in preterm infants, and following perinatal
hypoxia. The pathogenesis and clinical significance varies in
each context, but hyperglycaemia is associated with increased
mortality and morbidity. The limited evidence for optimal
targets that impact on long term outcomes mean controversy
remains regarding thresholds for intervention, and management
strategies. The optimal glucose targets for infants during
the acute phase of critical illness are likely to differ from
those in a more stable state, when trying to achieve growth
and anabolism. The first consideration in the management
of hyperglycaemia must be to ascertain potentially treatable
causes, followed by calculation of the GIR, to ensure it
is not excessive. In term infants who are acutely unwell,
restricting GIRs is likely to be more appropriate, whereas in
stable extremely preterm infants where growth is considered a
primary objective, one might prioritize nutritional intake with
addition of insulin (4). Optimal target glucose levels remain
to be determined but real-time glucose measurements and
innovations in metabolomics will provide a better understanding
of pathological mechanisms. This understanding, combined
with real time CGM and advances in computer algorithms
to provide intelligent closed loop systems, should allow a
safer and more personalized approached to management in
the future.
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