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Editorial on the Research Topic

Predictive Modeling of HumanMicrobiota and Their Role in Health and Disease

The human microbiota—communities of microorganisms living in or on humans as their host—
are deeply involved in various biological processes and functions in our body and play an important
role in maintaining physiological and mental health. The criticality of human microbiota is often
indicated by the fact that bacterial cells (>100 trillion cells) in our body outnumber human cells
(Sender et al., 2016) and carry ∼150 times more genes than the entire human genome (Ursell
et al., 2014)—thus called the second genome (Grice and Segre, 2012). Unlike the first genome,
which remains largely invariable after being inherited from parents, the second genome’s content
dynamically changes under a variety of conditions affected by diets, drugs, stress, injuries, and
myriad lifestyle and environmental factors. Hence, understanding of how microbiota respond to
those perturbations and how the outcomes influence human health is important for developing
microbiome-mediated strategies to improve it.

Mathematical modeling of human microbiota and their interactions with host cells under
various environmental conditions is indispensable in this regard. The effectiveness of mathematical
models has been demonstrated through various applications, including inferring microbe-microbe,
microbe-host, and microbe-host-diet interactions (Song et al., 2014; Li et al., 2019; Chowdhury
and Fong, 2020), creating new insights into the role of human microbiota in health and disease
state (Kumar et al., 2019), and proposing new engineering strategies for intervention (Sheth et al.,
2016; Kessell et al., 2020). In addition to process-based models, data-driven modeling is also being
popularly used (Marcos-Zambrano et al., 2021) and the combination of these complementary
approaches is expected to significantly increase the scope of prediction (Kessell et al., 2020).

Despite promising progress over the past decade, we still lack a complete understanding of the
relationships between microbiota (composition and function) and the host (health and disease)
under perturbed conditions as well as in homeostasis, and consequently have a limited capability of
predicting their interplays. Toward addressing those challenges and promoting new opportunities,
this Research Topic collects nine research articles and one review that present the state-of-the-art
modeling approaches in various areas of human microbiome research. Below we summarize the
contributions from lead computational biologists under the following several categories: discovery
ofmicrobial biomarkers and signatures of diseases, quantitative assessment of the impact of bacteria
on human health and their association with disease, improved profiling of species and genes in
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the microbiome, and incorporation of microbiome data
with other clinical features for improved precision nutrition
and medicine.

Human microbiota show compositional changes across
conditions, including physiological states of the host in health
and disease. Particular enrichments of microbes, if observed,
can therefore be used as a biomarker of specific diseases. Those
signatures could further be considered potential diagnostic and
therapeutic targets. Several contributions in the Research Topic
address this issue. To predict the risk for developing colorectal
metachronous adenoma (MA) after surgical resection, Liu et
al. developed a random forest (RF) model using the relative
abundance of the gut microbial populations with or without
the clinical risk factors. This work is based on the hypothesis
that the composition of the gut microbiota before surgery
was associated with the risk of developing MA and, therefore,
could serve as a potential biomarker for MA. The resulting RF
model identified Escherichia-Shigella and Acinetobacter as key
microbiome biomarkers, although the accuracy of prediction
was improved when linked with other clinical risk factors such
as synchronous adenoma and body mass index. Kort et al.
examined how the hypothesis on the use of gut microbiomes as
a biomarker can be extended to identify the association of gut
microbiota with language development of young children. Using
data from rural 3-year-olds in Uganda, they developed regression
models by accounting for all possible combinations of three or
four species. This comprehensive survey of regression models
of all subsets of species led to the identification of Coprococcus
eutactus, an anaerobic butyrate-producing gut bacterium, as
a major predictor of language development in children. In
the study of non-small cell lung cancer patients treated with
different cycles of osimertinib therapy, Cong et al. identified
the shifts in microbial biomarkers between post- and pre-
therapy. Through the analysis of intestinal microbial ecological
networks constructed by random matrix theory methods, they
also found the structure of microbial interaction networks
became complicated by including more compact modules in
response to osimertinib therapy. A knowledgebase system of
the human colorectal cancer (CRC) microbiome constructed by
Zhou et al. integrates complementary data and information to
improve the predictive power of models in biomarker prediction.
The web-based platform allows for systematic inquiry and
comparison across different models or databases to identify
microbial biomarkers through statistical analysis. The important
goal of this platform is to facilitate diagnosis of CRC, identify
key factors for clinical transformation, and contribute to the
development of cost-effective screening strategies.

Beyond discovering microbiome biomarkers and signatures
of disease, another central research challenge is to decipher direct
linkages between microorganisms and specific disease types,
e.g., through a data-driven network analysis or mechanistic
modeling. Along this line, Lei and Wang proposed a new
method that enables integrating two similarity-based networks
of microorganisms and diseases through the known microbe-
disease associations. The resulting integrative network of
microbes and diseases may potentially create a new mechanistic
understanding of microbe-disease associations that are

previously unknown. Compared to existing approaches,
the proposed method showed effectiveness in predicting
microbe-disease association, as demonstrated through case
studies of asthma, chronic obstructive pulmonary disease, and
inflammatory bowel disease. A more mechanistic prediction
of the bacterial impact on risk factors that may cause disease
was made by Bourgin et al. In order to evaluate the impact
of the microbial activity vs. host on the cholesterol cycle,
they developed a whole-body human model of cholesterol
metabolism by incorporating bacterial conversion of bile salts
and cholesterol into the existing models that focus on host
metabolism. Comprehensive simulations using the model
showed that cholesterol conversion to bile salts is the main flux
of cholesterol cycle, indicating that bacterial metabolism likely
drives cholesterol regulation.

Further, maintenance of the community structure and
function of human microbiomes by regulating the ecological
balance of microbial populations is key, as disturbances are
linked with negative outcomes on human physiological and
psychological health. Maintaining a desirable ecological balance
of populations in the human microbiome is important because
alterations in their composition and function (i.e., dysbiosis) are
linked with detrimental physiological and psychological impacts,
and result in a wide array of disease conditions. The dynamic
model developed by Dedrick et al. can serve as a useful tool
to understand bacterial coexistence and stability. The authors
constructed an in silico model of nasal microbiota composed of
up to 20 isolates to predict how the community composition
responds to the variation of pH fluctuations in amplitude or
frequency. The simulation results showed no significant impact
of temporal pH fluctuations on the species coexistence and
composition. The numerical model also suggested cooperative
interactions among member species that have low niche overlap
as a potential mechanism for the observed robustness of
nasal microbiota.

Development of predictive human microbiome models is
facilitated by advanced gene sequencing technologies, including
amplicon sequencing for bacterial composition profiling and
shotgun sequencing for metagenomic analyses. As pointed
out by Gwak and Rho, it is challenging to perform accurate
taxonomic assignment at species level because the 16S rRNA
sequences among species in the same genus are highly
homologous or even identical. To improve the resolution, they
reannotated inconsistent or mislabeled taxa in three major
16S rRNA databases and determined species-level taxonomy
using a k-nearest neighbor algorithm and the consensus models
constructed for each species. In the case studies using salivary
and gut microbiome data, the proposed method successfully
identified the variation in bacterial composition across different
groups based on improved species-level profiling. Ma argued
that metagenomic gene abundance data can be analyzed in
a similar fashion to operational taxonomic unit analysis by
viewing microbiomes as a community of genes, rather than
species. Using Taylor’s power law, this work analyzed the impact
of obesity, inflammatory bowel disease, and diabetes on the
human microbiota, highlighting the importance of a sound
understanding of metagenomic heterogeneity for the success
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of personalized and precision medicine to treat the human
microbiome-associated diseases.

Finally, one of the major goals in the human microbiome
research is to fundamentally elucidate the complex interactions
among diet, gut microbiome, and human health so that we have
an improved capability of monitoring wellness states, treating
diseases, designing food products, and administering health
interventions. Eetemadi et al. provide a review on this issue by
discussing a critical role of predictive computational models,
particularly machine learning and artificial intelligence. They
shared the state of dietary recommendation systems (RSs) and
highlight the transition from population-wide to microbiome-
aware RSs to provide users with personalized guidelines. They
also discussed the details about three complementary approaches
for realizing microbiome-aware RS, including knowledge-based,
content-based, and collaborative filtering RSs.

The overarching goal of computational modeling of human
microbiomes is to enhance our ability to predict their
dynamics, association with human disease, and control points
that can be used to shape microbiome composition and
functions toward improved human health. Some of these
control points may target the organisms themselves, others
may shape their environments to accomplish these ends.

The work contained in this Research Topic uses multiple
techniques to provide increased insight into environment-
human microbiome-health connections and to substantially
advance the field of predictive human microbiome modeling.
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Food and human health are inextricably linked. As such, revolutionary impacts on health
have been derived from advances in the production and distribution of food relating to
food safety and fortification with micronutrients. During the past two decades, it has
become apparent that the human microbiome has the potential to modulate health,
including in ways that may be related to diet and the composition of specific foods.
Despite the excitement and potential surrounding this area, the complexity of the
gut microbiome, the chemical composition of food, and their interplay in situ remains
a daunting task to fully understand. However, recent advances in high-throughput
sequencing, metabolomics profiling, compositional analysis of food, and the emergence
of electronic health records provide new sources of data that can contribute to
addressing this challenge. Computational science will play an essential role in this
effort as it will provide the foundation to integrate these data layers and derive insights
capable of revealing and understanding the complex interactions between diet, gut
microbiome, and health. Here, we review the current knowledge on diet-health-gut
microbiota, relevant data sources, bioinformatics tools, machine learning capabilities,
as well as the intellectual property and legislative regulatory landscape. We provide
guidance on employing machine learning and data analytics, identify gaps in current
methods, and describe new scenarios to be unlocked in the next few years in the
context of current knowledge.

Keywords: microbiota, gut microbiome, machine learning, artificial intelligence, data analytics, nutrition

INTRODUCTION

During the past two decades, the human microbiome has emerged as a biological system with the
potential to significantly influence health and disease (Shreiner et al., 2015). Despite our limited
understanding regarding its intricate relationship with the host and its environment (Foster et al.,
2017), recent discoveries related to the human microbiome have opened new horizons in food
science (Barratt et al., 2017), precision medicine (Wishart, 2016), and biotechnology (Taroncher-
Oldenburg et al., 2018) among other fields. In parallel, advances in genomics and bioinformatics
have provided inexpensive tools to acquire biological and clinical data, as well as the tools to
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translate the data into knowledge (Shoaie et al., 2015; Zeevi et al.,
2015; Thaiss et al., 2016a; Korem et al., 2017; Baldini et al., 2018;
Bauer and Thiele, 2018; Gilbert et al., 2018; Greenhalgh et al.,
2018; Knight et al., 2018). Given these advances, the integration
of diet, gut microbiome, and human health (DGMH) data has
the potential to drive a paradigm shift in the way wellness states
are measured, diseases are treated, products are designed, and
health interventions are administered. To realize this potential,
advances in knowledge are required in order to optimize the
composition and metabolic dynamics of microbial communities
in relation to desired health and performance outcomes—from
dietary interventions and bioengineered products to lifestyle
changes and the living environment (Figure 1).

In this article, we summarize the research that has been
done related to DGMH, with a focus on DGMH data and
computational methods. We begin with a brief overview of key
areas of current knowledge regarding the interaction between
diet, health, and the gut microbiome. We then proceed to
review the available data sources and the computational methods
currently used, investigate the role that machine learning and
artificial intelligence (AI) can play in this area, and summarize
the intellectual property (IP) and legislative regulatory landscape.
We conclude with recommendations to accelerate research
and development efforts through better integration of research
resources and tools, especially in the context of computational
science and data analytics. A glossary of terms is provided
in Table 6.

In general, the most recent articles reviewing the
computational tools for microbiome data focusing on
metagenomic data processing methods provide limited guidance
on employing machine learning and data analytics and do not
furnish recommendations in the context of DGMH data. The
purpose of this manuscript is to help fill this gap by considering
relevant literature, describing key challenges and potential
solutions, and proposing a framework to improve the potential
for research initiatives to accelerate progress in this exciting and
potentially revolutionary field.

Current Knowledge: Gut Microbiota and
Human Health
Emerging evidence suggests that the intestinal microbiota plays
a significant role in modulating human health and behavior [see
comprehensive reviews (Sherwin et al., 2018; Pereira et al., 2019;
Zmora et al., 2019)]. Several studies have demonstrated that the
human intestinal microbiota is seeded before birth (Stinson et al.,
2019), and the mode of delivery influences the composition of
the gut microbiota (Ferretti et al., 2018; Shao et al., 2019). The
gut of a vaginally born newborn is enriched primarily with the
vaginal microbiota from the mother, while a cesarean procedure
results in the newborn’s gut microbiota being dominated by the
microbiota of the mother’s skin as well as points of contact at
the hospital (Dominguez-Bello et al., 2010). Microbial diversity
is very dynamic during infancy and increases and converges to
an adult-type microbiota by 3–5 years of age (Rodríguez et al.,
2015). Evidence is also building to suggest that diet plays a
key role in shaping the composition of microbial communities

in the infant’s gut. For example, species of beneficial bacteria
such as Lactobacillus and Bifidobacterium have been found to be
dominant in breastfed infants while species of harmful bacteria
such as Clostridium, Granulicatella, Citrobacter, Enterobacter,
and Bilophila have been found to be dominant in formula-fed
infants (Bäckhed et al., 2015). In addition, breastfed babies have
higher gut microbial diversity compared to formula-fed babies,
and several studies indicate that the diversity of bacteria is directly
connected to health (Wang et al., 2008; Bäckhed et al., 2015). An
unbalanced composition of the infant’s gut microbiota has been
linked to several childhood diseases, including atopic dermatitis
(AD) (Abrahamsson et al., 2012; Zheng et al., 2016) obesity (Yuan
et al., 2016), and asthma (Thavagnanam et al., 2008).

The composition of the gut microbiota of an adult human
is relatively stable (Shreiner et al., 2015), but several factors can
influence it, including antibiotic treatment, long-term change
in diet, microbial infections, and lifestyle (Willing et al., 2011;
Conlon and Bird, 2015; Mathew et al., 2019; Zmora et al., 2019).
Several health conditions are linked to changes in a stable and
established gut microbiota such as Crohn’s disease (Manichanh
et al., 2006), psoriatic arthritis (Scher et al., 2015), type 1 diabetes
(de Goffau et al., 2013), atopic eczema (Wang et al., 2008), celiac
disease (Schippa et al., 2010), obesity (Castaner et al., 2018),
type 2 diabetes (Qin et al., 2012), and arterial stiffness (Menni
et al., 2018). However, further research is required to establish
direct links between these conditions and the composition of
microbial communities in the gut. Interventions, such as oral
administration of probiotics/prebiotics and fecal transplants,
have shown efficacy on reducing the severity of some conditions,
such as diarrhea, acute upper respiratory tract infections, eczema,
Crohn’s disease, and ulcerative colitis (Anderson et al., 2012;
Mansfield et al., 2014; Hao et al., 2015; Saez-Lara et al., 2015;
Goldenberg et al., 2017; Delzenne et al., 2019). See Figure 2 for
illustration of factors affecting the gut microbiota.

Data
The increase in size and heterogeneity of information gathered
by microbiome studies present great opportunities and serious
data analysis challenges (Wooley et al., 2010), with many tools
developed to address them (Breitwieser et al., 2017; Quince
et al., 2017). These bioinformatics tools quantify low dimensional
biological variables, such as the relative abundance of microbial
species and metabolites, by using high dimensional data such as
DNA sequence reads and mass spectrometry (MS) signatures as
illustrated in Figure 3. Depending on data quality, sample size,
and research hypothesis, different information dimensionalities
are used, such as gene-level (Vatanen et al., 2018) or functional
gene ontology terms (Brown et al., 2011).

Gut Microbiota Data
Functional characteristics of microbial communities can be
revealed using high-throughput metametabolomics (Walker
et al., 2014) and metaproteomics (Verberkmoes et al., 2009;
Zhang et al., 2018) using MS technologies. Metagenomic and
metatranscriptomic content of gut microbiota (which give rise
to the functional characteristics) can be quantified using DNA
sequencing. The most widely used approach for gut microbiota
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FIGURE 1 | The vision for the next nutrition revolution involves microbiome-aware dietary planning and manufacturing. First, DGMH data is collected, homogenized,
and stored, with any new user data integrated as part of a cohesive compendium. Then, DGMH data are analyzed (data analytics) to identify the functional
characteristics and target microbiota, personalized to the individual and the desired phenotype. This includes data processing followed by supervised and
unsupervised learning using a user profile compendium. Bioinformatic tools are used during data processing to extract meaningful information from raw
high-throughput data such as metagenomic sequence reads. Then, the recommendation system provides dietary recommendations to help achieve target
microbiota. This includes the integration of user profiles in a compendium along with nutrition DB proceeded by data processing then content-based and
collaborative filtering. Finally, diet engineering is performed to create dietary products for the user. This includes the design of prebiotics, probiotics, synbiotics,
manufactured food, and detailed dietary planning. In practice, taste and flavor of dietary products is very important to help users commit to any given diet, therefore
sensory analysis should inform all dietary engineering efforts.

profiling is marker gene sequencing, which relies on sequencing
counts of the hypervariable 16S genes to calculate Operational
Taxonomic Units (OTUs) (Amann et al., 1995). Searching OTUs
against reference databases such as Greengenes (McDonald
et al., 2012) and SILVA (Quast et al., 2012) allows inferring
relative taxa abundances in a microbiome sample (Langille
et al., 2013). Whole-genome or shotgun metagenomics (Quince
et al., 2017) is a recent technique that not only reveals the
microbial community structure, but it can also quantify relative
abundances of genes, taxa, conserved functional groups, or
over-represented pathways. Within-sample (alpha) and cross-
sample (beta) diversity of microbiome can be calculated with
respect to genetic, taxonomic, functional, or metabolic pathway
profiles of samples (Turnbaugh et al., 2009; Martiny et al., 2011;

Huttenhower et al., 2012; Lozupone et al., 2012; Heintz-Buschart
and Wilmes, 2017; Ranjan et al., 2018). The Shannon index,
Chao1, and Abundance-based Coverage Estimator (ACE) are
used to measure alpha diversity while UniFrac, weighted UniFrac,
and Bray–Curtis calculate beta diversity. In longitudinal studies,
the same measures of diversity, or more sophisticated eigenvalue-
based analyses, can quantify the microbiota stability across
timepoints (Lozupone et al., 2012; Relman, 2012; Coyte et al.,
2015; Mehta et al., 2018). Jackknifing and bootstrapping are
used to estimate the bias in diversity estimates, particularly
when estimating the number of species (i.e., species richness)
in samples (Smith and van Belle, 1984). Some of the most
significant publicly available microbiome datasets are listed
in Table 1.
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FIGURE 2 | Factors affecting the gut microbiota. A summary of human gut microbiome taxonomy at the family level and the corresponding modulating factors.

Diet Data
Various types of dietary information are collected in gut
microbiome studies. This includes fine-grain information
such as mass spectrometry (MS) signatures and metagenomic
reads (Quinn et al., 2016) or coarse grain information such
as dietary style [e.g., Western vs. Mediterranean diet (De
Filippis et al., 2016)] from study participants. Diet data
collection is often questionnaire-based, either through self-
reporting or by a trained interviewer. For self-reporting, a
food frequency questionnaire (FFQ) and 24-h dietary recall
(24HR) can be used where participants report their dietary
intake either every 24 h or over a longer period through a
checklist of food items (Shim et al., 2014). A dietary record
(DR) can also be used where data collection is done when
food is consumed (e.g., using smartphones),which minimalizes
reliance on participant’s memory. After data collection,
the intake amount of macronutrients (fat, carbohydrates,
and protein), micronutrients (vitamins and minerals),
and food metabolites can be estimated by querying the
food items against food composition databases such as

the USDA food composition database (US Department of
Agriculture and Agricultural Research Service, 2010) and the
Canadian nutrient file (Canada, 2010). Note that microbiota
of dietary intake can be characterized using metagenomic
sequencing as reviewed previously, if not already defined
[e.g., probiotics with predefined strains (Sánchez et al., 2017)].
Some studies perform metabolic characterization of dietary
intake directly (Quinn et al., 2016), while others rely on pre-
characterized metabolic profiles (Zhao et al., 2018). A significant
limitation of any analysis is that food composition databases
characterize only 0.5% of the known nutritional compounds
(Barabási et al., 2019).

Host Data
Profiled host information types can be very high dimensional
[e.g., high-throughput genome sequences (Hall et al., 2017)] or
low dimensional [e.g., obese vs. non-obese (Thaiss et al., 2014;
Cox and Blaser, 2015)]. Host genotype data can come from
whole-exome sequencing (WES) (Gopalakrishnan et al., 2018) or
a genome-wide association study (GWAS) (Bonder et al., 2016;
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FIGURE 3 | Illustration of data processing, data analytics, and recommendation systems. Data processing generates diverse types of information with different levels
of resolution and dimensionality. Such information needs to be transformed and integrated across all users for building a compendium. Next, data analytics methods
are used to discover the characteristics of target microbiota prescribed for individuals to achieve their health objectives. Finally, recommendation system methods
use the compendium to find the dietary recommendations for helping individuals achieve the target microbiota.

Turpin et al., 2016). It can also be extended by predicting the
whole-genome sequence for each individual through genotype
imputation software (Howie et al., 2009), as done in several
studies (Bonder et al., 2016; Goodrich et al., 2016; Rothschild
et al., 2018). Host transcriptomic profiles can be assessed
directly using microarrays (Schwartz et al., 2012; de Steenhuijsen
Piters et al., 2016) and RNA-Seq (Thaiss et al., 2016b; Pan
et al., 2018) or imputed using tools such as PrediXcan
(Gamazon et al., 2015) with GWAS data. The genetic and
transcriptomic profiles can be summarized into informative
lower-dimensional features through gene ontology categories
and metabolic pathways using databases such as MetaCyc
(Caspi et al., 2017), KEGG (Kanehisa et al., 2011), Reactome

(Fabregat et al., 2017), or GO (Antonazzo et al., 2017). Today,
limited microbiome studies perform such analysis (Blekhman
et al., 2015; Davenport et al., 2015; Dobson et al., 2015).
Other important information such as age, gender, ethnicity,
body weight, blood pressure, dietary restrictions, and diseases
of a host organism can be extracted from medical records,
surveys, and interviews.

COMPUTATIONAL ANALYSIS

There have been various reviews concerning microbiome data
processing and analysis (Tyler et al., 2014; Tsilimigras and Fodor,
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TABLE 1 | Publicly available data from gut microbiota studies.

Project, database, or
repository name

Number of
cases

Sample types Disease
related
(Y/N/B)

Data
availability

(Y/N/Conditional)

Website

Human Microbiome Project
(HMP1)

300 Nasal passages, oral cavity,
skin, gastrointestinal tract, and
urogenital tract

N Y NIH Human Microbiome
Project - Home, 2019

Integrative Human Microbiome
Project (iHMP): pregnancy and
preterm birth (MOMS-PI)

∼2,000 Mouth, skin, vagina, and
rectum

Y Y NIH Human Microbiome
Project - Home, 2019

Integrative Human Microbiome
Project (iHMP): onset of IBD
(IBDMDB)

∼90 Stool and blood Y Y NIH Human Microbiome
Project - Home, 2019

Integrative Human Microbiome
Project (iHMP): onset of type 2
diabetes (T2D)

∼100 Fecal, nasal, blood, serum, and
urine

Y Y NIH Human Microbiome
Project - Home, 2019

American Gut Project (AGP) >3,000 Stool and swabs from
skin/mouth

B Y American Gut, 2019

Personal Genome Project
microbiota component (PGP)

>5,000 Skin/oral/fecal − Y Data – The Harvard Personal
Genome Project (PGP), 2019

TwinsUK >11,000 Multiple − C TwinsUK, 2019

Global Gut Project (GG) 531 Fecal N Y Yatsunenko et al., 2012

Project CARDIOBIOME >4,000 − − N

Pediatric Metabolism and
Microbiome Repository (PMMR)

∼350 Human microbial cell lines,
stool, and/or DNA and RNA

Y N https://clinicaltrials.
govClinicalTrials.gov, 2019

Lung HIV Microbiome Project
(LHMP)

162 Lung, nasal, and/or
oropharyngeal cavities

Y Y BioLINCC, 2019

The Study of the Impact of
Long-Term Space Travel on the
Astronauts’ Microbiome
(Microbiome)

9 Saliva and gastrointestinal N N NASA, 2019

Michigan Microbiome Project
(MMP)

− − − N The Michigan Microbiome
Project, 2019

uBiome − Gut, mouth, nose, genitals, and
skin

B C

Human Oral Microbiome
Database (eHOMD)

− Upper digestive and upper
respiratory tracts, oral cavity,
pharynx, nasal passages,
sinuses, and esophagus

− Y HOMD : Human Oral
Microbiome Database, 2019

Human Pan-Microbe
Communities (HPMC)

>1,800 Gastrointestinal B Y HPMCD: Human Pan
Microbial Communities
Database, 2019

Curated Metagenomic Data >5,000 Multiple B Y curatedMetagenomicData,
2019

European Nucleotide Archive − − − Y European Nucleotide Archive
EMBL-EBI, 2019

EBI-metagenomics portal
samples

>20,000 Multiple B Y EMBL-EBI Mg, 2019

MG-RAST >10,000 Multiple B Y MG-RAST, 2019

2016; Breitwieser et al., 2017; Quince et al., 2017; Knight et al.,
2018). Here we focus on data analytics, machine learning, and AI-
based recommendation system methods that enable microbiome-
aware systems involving diet and wellness. We provide readers
insight into important methods, challenges that arise, suggested
solutions as well as blueprints of example scenarios to be used in
their research. See Qu et al. (2019), Topçuoglu et al. (2019), and
Zhou and Gallins (2019) for further explanation and examples of
the machine learning methods discussed here.

Microbiome Data Processing Tools
There are a substantial number of publicly available microbiome
data processing methods and pipelines that can generate the
various types of data discussed. Table 2 provides a representative
summary of such methods and pipelines. For 16S data, QIIME
(Caporaso et al., 2010) and MOTHUR (Schloss et al., 2009)
provide a wider range of options for the user compared to
UPARSE (Edgar, 2013), but all are popular pipelines. QIIME 2
(Bolyen et al., 2019) is now emerging as a powerful replacement
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TABLE 2 | A summary of highlighted methods and pipelines for microbiome
data processing.

Steps Sub-step
descriptions

Highlighted methods and their
availability in popular pipelines
(QIIME, MOTHUR, and UPARSE)

(1) Quality
control

Chimera removal
and noise
mitigation

Trimmomatic(Q) (Bolger et al., 2014),
AmpliconNoise(Q,M) (Bragg et al.,
2012), UNOISE(M, U) (Edgar, 2016),
UCHIME(Q, M, U) (Edgar et al., 2011),
Deblur(Q, M) (Amir et al., 2017), and
DADA2(Q) (Callahan et al., 2016)

Remove host DNA
contaminant reads

Bowtie2(Q) (Langmead and Salzberg,
2012), BMTagger (Agarwala and
Morgulis, 2011), and DeconSeq
(Schmieder and Edwards, 2011)

(2) Sequence
assembly

De novo read
assembly

MEGAHIT (Li et al., 2015), MAFFT(Q,

M) (Katoh and Standley, 2013),
UCLUST(Q, U) (Edgar, 2010), and
metaSPAdes(Q, M) (Nurk et al., 2017)

Read alignment to
annotated
database

DIAMOND (Buchfink et al., 2014),
NAST(Q, M) (DeSantis et al., 2006),
USEARCH(Q, U) (Edgar, 2010), and
VSEARCH(Q, M) (Rognes et al., 2016)

(3) OTU
analysis

Assignment of
reads to OTUs

UPARSE-OTU(U) (Edgar, 2013),
Kraken (Wood and Salzberg, 2014),
MetaPhlAn2(Q) (Truong et al., 2015),
and DOTUR(M) (Schloss and
Handelsman, 2005)

(4) Functional
profiling

Functional profiling
and prediction

MEGAN (Huson et al., 2016), HUMAnN
(Abubucker et al., 2012), MetaCLADE,
MOCAT (Kultima et al., 2016), and
PICRUSt (Langille et al., 2013)

(5) Diversity
analysis

Diversity, evenness,
and richness
metrics

Alpha [e.g., Chao1(Q,M,U)] and Beta
[e.g., Jaccard(Q,M,U)]

to its predecessors, partly due to its extensibility and support. For
whole metagenomic sequencing, methods such as Kraken (Wood
and Salzberg, 2014), MEGAN (Huson et al., 2016), MetaPhlAn2
(Truong et al., 2015), and HUMAnN (Abubucker et al., 2012)
are used.

Challenges in Microbiome Data Processing
Growth in the variety and complexity of data processing tools
presents opportunities but also significant challenges for new
investigators. First, although best practices have been suggested
(Knight et al., 2018), tools are still far from a fully automated user
experience that would lead to reliable results. Second, microbial
genomes with different abundances are sequenced together,
making metagenomic assembly more challenging compared
to single genome assembly where the sequence coverage is
approximately uniform. Third, the number of uncharacterized
microbes (known as microbial dark matter) exacerbates problems
associated with unaligned and misaligned sequence reads.
Fourth, evaluation of methodology and findings from different
studies is difficult since each study may use a different method
or a different implementation of the same method in their data
processing pipeline. Fifth, data collection and integration of
microbiome data from different studies are difficult because of
many factors including differences in wet-lab library preparation

(e.g., primers used), differences in sequencing devices and their
settings (e.g., coverage), and non-uniform methods of formatting
and storage for microbiome data and metadata. See Quince
et al. (2017) for further discussion concerning microbiome data
processing challenges.

Data Analytics and Machine Learning
Data processing is considered to be the step necessary for
converting the raw data, such as metagenomics sequence reads,
into biologically meaningful representations, such as OTU counts
using bioinformatics tools, some of which are done in the
sequencing device itself. Data analytics, start after the integration
of processed sample data from various information sources (i.e.,
microbiota, diet, and host), as illustrated in Figure 3. In most
cases, all samples are from a single study, which helps ensure
consistency with respect to the experimental settings and data
processing protocols used. Furthermore, limited resources force
the researchers to narrow their data collection to particular
information types in order to have sufficient statistical power
for hypothesis testing. A recent increase in the number of
microbiome studies with publicly available data has enabled
cross-study data integration (Pasolli et al., 2016, 2017; Duvallet
et al., 2017; Wang et al., 2018; Thomas et al., 2019; Wirbel et al.,
2019). In such cases, extra precautions are necessary to minimize
biases introduced by inconsistencies among datasets during data
collection, sample preparation, sequencing, and data processing.

Challenges in Microbiome Data Analysis
A number of challenges arise when analyzing microbiome data, as
summarized in Table 3. The first challenge is due to compositional
quantities in microbiome data. Quantities such as the number of
reads assigned to a given species, which can only be interpreted as
proportions, are called compositional. These quantities cannot be
compared directly across multiple samples. Conclusions should
not be made based on the number of reads assigned to individual
sample features (e.g., OTUs, genes, and functional groups) since
they do not represent absolute abundances due to instrumental
limitations (Gloor et al., 2017). Instead, the assigned number of
reads should be converted to relative abundances and analyzed
with that in mind. Some studies perform rarefaction to adjust
for differences in library size due to unexhaustive metagenomic
sampling. Although several pipelines provide this functionality,
it has been found inadmissible for metagenomics microbiome
studies as it discards many reads leading to decreased sensitivity
in differential abundance testing (McMurdie and Holmes, 2014)
and biased estimates for alpha diversity (Willis, 2019). The
second challenge is due to the high dimensionality associated
with OMICS data. Datasets in which items are characterized by
a high number of features while the number of items is limited
are called high dimensional. In microbiome studies, a limited
number of individuals are characterized using many host, diet,
and microbiome features leading to high dimensional datasets
(Li, 2015). Dimensionality can be reduced by grouping OTUs
into phylogenetic variables, regularization, or unsupervised
dimensionality reduction (DR) (explained below). The third
challenge is about testing multiple hypotheses in an exploratory
analysis. It relates to the fact that, as the number of hypotheses
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TABLE 3 | Key challenges that arise in microbiome data analysis with examples and suggested solutions.

Challenges in microbiome data analysis Examples and solutions

(1) Compositional quantities:
Metagenomic data processing provides read counts for
discovered entities such as genes, species, and OTUs from
a given sample. These read counts are only meaningful
within a sample.

Example: Metagenomic analysis of feces samples tells us that Person A has 5 reads mapped to
bacterium Escherichia coli, while person B has 10. Can we conclude that this bacterium is more
populated in the gut of person B compared to person A? Answer: No, read counts cannot be
compared across samples.
Solutions: (I) Convert read counts to relative abundances before comparison. (II) If an optimization
problem is defined using read counts, add constraint for total counts per sample.

(2) High dimensionality:
Metagenomic data processing results in many entities such
as genes and species discovered for each sample, which
may not be shared among multiple samples. During data
aggregation, one dimension is associated to each entity
resulting in a high number of dimensions compared to the
number of samples.

Example: Metagenomic data processing of feces samples from 20 individuals results in relative
abundances for 10 microbial families per sample. Can we use classical linear regression to predict
an individual’s age using relative abundances from aggregated data? Answer: No, aggregating 20
samples results in more than 20 microbial families.
Solutions: (I) Use dimensionality reduction such as PCA prior to regression. (II) Use regularized
linear regression such as Lasso. (III) Use microbial abundances of higher-order taxonomic ranks
such as phylum instead of family.

(3) Multiple hypotheses:
The high-dimensional nature of metagenomic data allows
the researcher to generate a large number of hypotheses,
which leads to seeing patterns that simply occur due to
random chance. This is sometimes called “the high
probability of low probability events.”

Example: Metagenomic data processing provides relative microbial abundances at species level
using feces samples of 200 individuals, half of which are diagnosed with Crohn’s disease and the
rest are healthy. Performing a t-test identifies that the relative abundance of 40 species (amongst
1,000) are significantly different between microbiota of sick and healthy individuals (p-value < 0.05).
Is this result correct? Answer: No, the standard threshold of 0.05 for p-value is only acceptable
when a single hypothesis is involved while the t-test is performed 1,000 times leading to many false
discoveries.
Solution: Calculate FDR adjusted p-value (i.e., q-value) of 0.05 to control the false discovery rate.

(4) Hierarchical relationships:
Assumptions of independence do not hold in microbiome
data since taxonomic variables (e.g., species and OTUs)
have known hierarchical relationships due to genetic and
phenotypic similarities. Therefore, common statistical
techniques that assume independence between variables
are problematic.

Example: Beta-diversity can be used to calculate the similarity between groups of microbiome
samples. Can we simply calculate the Beta-diversity using standard Euclidean distance between
relative abundances at a given taxonomic order? Answer: No, Euclidean distance doesn’t take into
account the similarity between species.
Solution: Use phylogeny-aware metrics such as UniFrac distance instead, which takes into
account the phylogenetic tree when calculating distances.

(5) Missing quantities:
Metagenomic data often lacks information about the
functions of the microbial communities which can only be
estimated using meta-transcriptomics or meta-proteomics.
However, deciphering microbiota’s function is a major goal
in microbiome studies.

Example: In one case, metagenomic data processing from marker-gene data has provided us with
relative abundances at the genus level, but we do not know the possible functions of the microbiota
in terms of proteins that it can produce. Should we abandon further analysis? Answer: No, although
we don’t have direct information about proteins, we can infer.
Solution: Databases such as Greengenes contain the whole-genome sequence of identified
species at various taxonomic orders which can be used for gene and protein inference.

increases, the chance of false discoveries also increases. This can
be addressed by increasing sample size and p-value adjustment
(explained below). The fourth challenge relates to hierarchical
relationships amongst bacterial species due to their shared
ancestors. Assumptions such as independence among samples
may not hold, leading to wrong estimations of correlation
(Felsenstein, 1985) and phylogeny-aware methods to address
the issue. The fifth challenge is about missing quantities in
sampled data. For example, when marker gene sequencing is
used, quantities relating to the amounts of functional genes
in the microbiome are not directly available (i.e., missing).
Identifying functions of microbial organisms is important for
understanding the gut microbiota. Such information can be
estimated using metatranscriptomics data, which is often not
available. Data imputation tools, such as PICRUSt (Langille et al.,
2013), help to mitigate this through gene imputation based on
annotated databases.

The methods for identifying microbiota characteristics
associated with host phenotypes of interest can be categorized
into two main groups, based on whether they use supervised
or unsupervised learning. Supervised learning methods require
labeled data, while unsupervised learning methods can be used
when records are not labeled. More advanced methods include

semi-supervised learning (Zhu, 2005), which takes advantage of
both labeled and unlabeled data, and transfer learning (Pan and
Yang, 2010), which transfers knowledge learned from one task to
another, are not discussed here.

Supervised Learning Methods
Hypothesis testing and variation analysis
Analysis of variation may involve single or multiple variables.
For a single variable hypothesis, the student’s t-test or non-
parametric tests, such as Wilcoxon rank-sum or Kruskal–Wallis,
can be used. For example, the t-test has been used to show
that patients with ADHD have a lower alpha-diversity
index of gut microbiota compared to healthy controls
(Prehn-Kristensen et al., 2018). Non-parametric tests are
good alternatives when the assumptions regarding the data
being normally distributed do not hold. For example, the
Wilcoxon rank-sum test is used on predicted pathway data,
suggesting that enzymes in the “Glycan Biosynthesis and
Degradation” pathway increase in summer when compared to
winter (Davenport et al., 2014). In cases where a statistical
test is repeated with different hypotheses (i.e., multiple
hypothesis testing), the statistical significance should be
adjusted by methods such as an FDR adjustment (i.e.,
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q-value) (Benjamini and Hochberg, 1995) or Holm’s procedure
(Rice, 1989).

When the hypothesis that is investigated contains multiple
variables, MANOVA (Smith et al., 1962) or non-parametric
alternatives such as PERMANOVA (Anderson, 2001) or
ANOSIM (Clarke, 1993) can be used. The samples are first
assigned to multiple groups (e.g., based on some feature values).
The goal is to quantify how much this grouping can explain
the distribution of values in any given sample feature (response
variable). The simplest case is the popular method called
analysis of variance (ANOVA), which considers a single response
variable with a normal distribution. For instance, in a recent
study, two bacterial phyla (Bacteroidetes and Firmicutes) were
identified using ANOVA with different relative abundance in the
microbiota of children living in a rural African village compared
to European children (De Filippo et al., 2010). ANOVA can be
generalized to multivariate analysis of variance (MANOVA),
which can have multiple response variables. For example, it is
used to investigate the overall difference in composition between
the microbiota of children with Prader–Willi syndrome and
children with simple obesity, before and after treatment (Zhang
et al., 2015). In many cases, normal distribution assumptions do
not hold; hence, non-parametric methods are used. In one study,
PERMANOVA is used to detect taxonomic differences in the
microbiota of patients with Crohn’s disease when compared to
healthy controls (Pascal et al., 2017).

Regression and correlation analysis
A general understanding of the extent of association among
pairs of variables can be achieved using correlation analysis.
Correlation metrics measure different types of relationships. For
example, the Bray–Curtis measures abundance similarities (Bray
and Curtis, 1957), the Pearson correlation coefficient quantifies
linear relationships, and the Spearman correlation coefficient
quantifies rank relationships (Spearman, 1904). In (Weiss et al.,
2016), the authors perform a simulation-based comparison on a
range of correlation metrics for microbiome data. Metrics such
as SparCC (Friedman and Alm, 2012) and LSA (Ruan et al.,
2006) perform particularly better as they are designed to capture
complex relationships in compositional microbiome data. For
example, SparCC is used for analyzing the TwinUK dataset to
identify bacterial taxa whose abundances are influenced by host
genetics (Goodrich et al., 2014). This was done by creating a
correlation network between microbial families based on their
intraclass correlation. More recently, the phylogenetic isometric
log-ratio (PhILR) transform has been introduced (Silverman
et al., 2017) to transform compositional data into non-
compositional space where standard data analytic techniques are
applicable. Usage of such transformations should be limited to
features that are compositional and phylogenetic in nature.

Regression methods aim to predict the change in one
continuous variable using other variables. Correlation analysis
can be considered a special case of regression with a single
input variable. Standard linear regression can be used for various
DGMH predictive tasks. However, when variables relate to OTU
abundances, the typical assumptions of a linear relationship,
normal distribution, and dependence do not hold. For example,

when the goal is to predict the composition of OTUs [normalized
for summing up to one (Tyler et al., 2014)], zero-inflated
continuous distributions are used. Often a two-part regression
model is used where part I is a logistical model to calculate
the probability that the given OTU is present. Part II is a
generalized linear regression using beta distribution to predict
relative abundance assuming the presence of OTU in the
sample (Ospina and Ferrari, 2012; Chen and Li, 2016; Peng
et al., 2016). Phylogenetic comparative methods (PCMs) such as
phylogenetic generalized least squares (PGLS) are used to control
for dependence among observations given the phylogenetic
hierarchies (Washburne et al., 2018). Ignoring the phylogenetic
ancestry of microbial species can increase the chance of false
discovery in regression models (Felsenstein, 1985). PCMs are
not widely used in microbiome studies today, which may be one
reason for a high number of false positives that can be alleviated
by using them (Bradley et al., 2018).

Canonical correlation analysis (CCA) can be used (Hotelling,
1992) to investigate the correlation between two groups
of variables (e.g., abundances of microbiome OTUs and
metabolites). CCA finds linear transformation pairs that are
maximally correlated when applied to data while ensuring
orthogonality for different transformation pairs. The original
CCA, however, fails for high dimensional microbiome data when
the number of variables exceeds the number of samples. This
can be addressed using regularization, giving rise to sparse CCA
methods (Witten et al., 2009). For example, a sparse CCA is
applied to investigate correlations between the gut microbiome
and metabolome features in type 1 diabetes (Kostic et al., 2015).

Classification
In supervised classification, the goal is to build a predictive
model (classifier) using labeled training data. The labels can
have binary or categorical values (in contrast to regression
where labels are continuous and numerical). In one study, a
classifier was built to predict the geographical origin of sample
donors using relative OTU abundances estimated from 16s
rRNA gut samples (Yatsunenko et al., 2012). This was done
using the method called Random Forests (RF), which constructs
an ensemble of decision trees (Breiman, 2001). In a different
study, the classification task was to identify healthy vs. unhealthy
donors given relative OTU abundance data (including species
level) coming from shotgun metagenomics sequencing of the gut
(as well as other body sites) (Pasolli et al., 2016). In addition
to RF, they used the support vector machine (SVM) classifier,
which is a powerful method for building generalizable and
interpretable models and is mathematically well understood
(Suykens and Vandewalle, 1999). In their study, RF classifiers
performed better than SVM except in a few datasets. Both RF
and SVM have built-in capability to deal with overfitting issues
that arise in high-dimensional datasets. RF achieves this using an
ensemble-based technique where the prediction is made based on
predictions from many trained classifiers. In SVM, parameters
of the predictive model are constrained based on a priori
defined criteria. Note that constraining the model parameters
is often mathematically equivalent to regularization (Scholkopf
and Smola, 2001). In both cases, the objective is to minimize the
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value of a loss function that calculates the overall error in model
predictions. When regularization is used, the loss function not
only depends on prediction errors but also on the magnitude
of model parameters. For example, in L1 regularization, the
absolute values of model parameters are scaled and added to
the loss function. Therefore, when two models have a similar
error, the model with smaller parameter values will be selected
during training. L1 regularization is commonly used for feature
selection by picking only the non-zero features of the trained
model because such a model achieves a low prediction error while
using a subset of features.

Artificial neural networks (ANN) can also be used for
classification and are shown to outperform other techniques in
many areas of biology (Kim et al., 2016, 2017; Singh et al., 2016;
Eetemadi and Tagkopoulos, 2018) as well as computer vision
and natural language processing, to name a few (LeCun et al.,
2015). Recently, a new ANN-based method called Regularization
of Learning Networks (RLN) was designed and evaluated
microbiome data. RLN provides an efficient way for tuning
regularization parameters of a neural network when a different
regularization coefficient is assigned for each parameter (Shavitt
and Segal, 2018). They use RLN to predict human traits (e.g.,
BMI, cholesterol) from estimated relative OTU abundances
and gene abundances. We expect the development of new
classification methods that can deal with the aforementioned
challenges arising in DGMH data by considering the biological
phenomenon, properties of measurement instruments, and
upstream data processing pipelines.

Unsupervised Learning Methods
Dimensionality reduction
High-dimensional datasets can provide a high resolution and
multifaceted view of a phenomenon such as gut microbiota.
Predictive performance in data analytics can increase
significantly given such data. Many data analytics methods,
however, fall short when presented with high-dimensional data
that necessitates using DR. Once dimensionality is reduced, data
visualization and analytics become more accessible. Principal
component analysis (PCA) is one of the most widely used DR
methods. It replaces the original features with a few uncorrelated
features called principal components (PCs), which are linear
combinations of the original features and preserve most of the
variance within the data. In one study, PCA was applied to
predicted abundances of about 10 million genes from the gut
microbiota of donors (Li et al., 2014). Reducing dimensionality
from 10 million to two dimensions only enabled visualization
of data on a standard two-dimensional scatter-plot (i.e., PCA
plot) showing a clear distinction between the microbiota of
Danish and Chinese donors. In another study, the top five PCs
of individual bacteria’s genome (sequenced from infant fecal
samples) were used to create a classifier for predicting antibiotic
resistance (Rahman et al., 2018).

The relationships among features in a microbiome study
can be used in DR, giving rise to various factor analysis (FA)
methods we review here briefly. Multiple factor analysis (MFA)
is an extension of PCA that considers predefined grouping of
features during DR to ensure equal representation for all groups

of features in derived PCs (Abdi et al., 2013). In one study
(Robertson et al., 2018), MFA is used for simultaneous 2D
visualization of host and microbiome features (see Morgan et al.,
2012; Raymond et al., 2016 for other examples). Exploratory
factor analysis (EFA) is used to identify unobserved latent
features called factors to explain the correlations among observed
features (Yong and Pearce, 2013). Factors that are identified
by EFA are uncorrelated to each other similar to PCs in
PCA; however, PCs are used to explain overall variance instead
of correlations. EFA has been used in a recent study to
extract four factors explaining the correlations among 25 top
taxa for studying the association of microbiome with early
childhood neurodevelopmental outcomes in 309 infants (Sordillo
et al., 2019). Confirmatory factor analysis (CFA) and structural
equation modeling (SEM) can be used to examine the extent
to which a hypothesized model of latent features and their
relationships with observed variables are supported by the
data (Schreiber et al., 2006). In a recent study, a theoretical
framework is proposed and examined using CFA to model the
influence of maternal and infant factors on the milk microbiota
(Moossavi et al., 2019). The R packages lavaan (Rosseel, 2012) and
FactoMineR (Lê et al., 2008), as well as the IBM SPSS software
(IBM Corp, 2013), are widely used for factor analysis.

Another related method is principal coordinate analysis
(PCoA), also called multidimensional scaling (MDS) (Kruskal,
1964), which is commonly employed for 2- and 3-dimensional
visualization of beta diversity. It can deal with situations where
distances between individual feature vectors from samples cannot
be used directly (e.g., due to significant sparsity and phylogenetic
relationships). PCoA takes a matrix of distances among samples
(e.g., UniFrac distance between OTU abundances of a pair
of sample donors) as input. It then assigns new coordinates
such as PC1 and PC2 to each sample such that the Euclidean
distances in the new coordinate are similar to the ones in the
matrix. For example, PCoA was applied given UniFrac distances
between OTU abundances (from 16S rRNA samples) from
the gut microbiota of donors (Yatsunenko et al., 2012). Two-
dimensional visualization using PC1 and PC2 showed that the gut
microbiota of donors who lived in the United States is distinct
from the gut microbiota in donors living in Amerindian and
Malawian villages.

Linear discriminant analysis (LDA) is also a DR technique,
although supervised and closely related to regression and
ANOVA. Unlike PCA and PCoA, it requires class labels. It
generates new features that are linear combinations of the
original ones while separating samples with respect to their class
labels. In one study, LDA was used to distinguish gut microbiota
samples based on diet but not for DR (Paulson et al., 2013).
Successful usage of LDA for high dimensional microbiome data
may require regularization to account for overfitting as similarly
used for high-dimensional microarray (Guo et al., 2006).

The optimal amount of reduction in dimensionality (e.g.,
the number of principal components) varies given the data and
the task downstream. For data visualization tasks, it is largely
constrained by the limitations of human visual perception (three
dimensional). For downstream supervised learning tasks, we
are often interested in the maximum amount of DR without
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a significant decrease in predictive power. This is showcased
in Bartenhagen et al. (2010), where the impact of the amount
of DR on classification performance is evaluated for gene
expression data.

Cluster analysis
Similar microbial communities are expected to exhibit analogous
effects on the host organism (Gould et al., 2018). Once a similarity
measure is defined, various cluster analysis methods can be
used to find groups of samples with similar microbiota. In
one study, three robust microbiota clusters (called enterotypes)
were identified using cluster analysis from 16s rRNA data of
fecal samples (Arumugam et al., 2011). It was later shown that
such clustering results are not only sensitive to data but also to
choices made during analysis (Koren et al., 2013). We enumerate
four important choices impacting cluster analysis results (other
than upstream data processing). First is the distance measure.
Standard distance metrics such as the Euclidean and Manhattan
distance are simple, well understood, and supported in many
clustering libraries. Applicability of such metrics depends on
prior compositionality aware transformations such as ILR. Beta-
diversity metrics such as weighted and unweighted UniFrac
distances are designed for microbiome analysis considering
compositionality and phylogenetic dependencies of microbiome
data. Researchers should pay attention to the properties of the
distance metric used in order to better understand the clustering
results. Second is the clustering algorithm. Algorithms such
as Partition Around Medoids (Kaufman and Rousseeuw, 1987)
and Hierarchical Clustering (Murtagh and Contreras, 2012)
can employ various distance metrics. Others, such as k-means,
are tied to a single distance measure but computationally
less demanding. Third is the number of clusters. Clustering
algorithms often require the number of clusters to be provided as
input. When unknown, the number that provides higher cluster
scoring is picked. Prediction strength (Tibshirani and Walther,
2005), silhouette index (Rousseeuw, 1987), and Calinski–
Harabasz (Caliñski and Harabasz, 1974) are popular cluster
scoring metrics. Fourth is the method used to identify the
robustness of clustering results. Often a cluster scoring metric
that is not used to identify the number of clusters is used
as a robustness measure. Recent studies consider the effect of
the above choices during cluster analysis to better understand
how results can be generalized (Hildebrand et al., 2013;
Costea et al., 2018).

The integration of data from disparate omics data types
(also called integrative omics) and other heterogeneous metadata
enables a more comprehensive look into the underlying biology
(Karczewski and Snyder, 2018). Integrative omics data analysis
methods have been categorized into three types (Kim and
Tagkopoulos, 2018). First is data-to-data, where disparate data
types are analyzed together. For example, CCA can be used
to investigate the correlations between metagenomics and
metabolomics data, as discussed before. Second is data-to-
knowledge, where the knowledge gained from analyzing some
data types are used to inform analysis of other data types.
For example, a metagenomics analysis of colon cancer patients
can lead to further investigation of candidate genes using

targeted proteomics analysis. Third is knowledge-to-knowledge,
where the data types are initially analyzed separately, but the
acquired knowledge is integrated together afterward to either
identify hypotheses that are supported by multiple data types
or create a more complete view of a given phenomenon.
For example, differentially expressed genes and differentially
abundant metabolites in the digestive tract of patients with
Crohn’s disease can be used together for narrowing down
pathways involved in disease etiology. See Huang et al. (2017),
Karczewski and Snyder (2018), Kim and Tagkopoulos (2018), and
Jiang et al. (2019) for comprehensive reviews.

Recommendation Systems and Artificial
Intelligence
The human microbiome is referred to as “our second genome”
and has a major influence on our health (Grice and Segre,
2012). Although it is known for its resilience (Lozupone
et al., 2012; Relman, 2012), unlike the human genome, it
has considerable plasticity hence providing ample opportunities
in the design of new types of food, medical interventions,
and dietary recommendations (Gentile and Weir, 2018).
Despite recent progress in microbiome research, switching
from population-wide dietary recommendations to microbiome-
aware recommendations is not yet realized. See Table 4, for
a representative summary of recent microbiome-aware diet
recommendation studies. Once a personalized healthy target
microbiome is identified using data analytics methods, a
recommendation system (RS) can utilize this information to
suggest the path toward establishing it in the host and ensuring
the health benefits. One approach is to use a knowledge-based
RS where recommendations are made using a limited number of
approved drugs and dietary prescriptions. Although this would
be a good starting point, such a system would be limited in
its ability to provide precise and personalized recommendations
that usually need a platform that can create new products or
processes on a case-by-case basis. Recent studies simulate a
virtual gut microbiome by integrating known metabolic pathways
of microbial species with the individual’s microbiome and diet
(Shoaie et al., 2015; Baldini et al., 2018; Bauer and Thiele,
2018; Greenhalgh et al., 2018). Such mechanistic modeling is
very promising, however, it is currently hindered by numerous
challenges, such as incomplete characterization of an individual’s
gut and metabolic pathways of their microbiome. There is
considerable research on AI-based RS related to food, drug
design, and health (Tran et al., 2017; Suphavilai et al., 2018), but
its application with microbiome data is in its early stages (Zeevi
et al., 2015; Thaiss et al., 2016a; Korem et al., 2017). Commercial
investments in this area have already started, with companies
such as UBiome and DayTwo using 16S rRNA technology
to provide insights into our personal microbiota and suggest
dietary recommendations.

Recommendation system is defined as “any system that guides
a user in a personalized way to interesting or useful objects in
a large space of possible options or that produces such objects as
output” (Burke, 2002). Microbiome-aware diet recommendations
can be generated from knowledge-based, content-based, or
collaborative filtering, as described next.
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FIGURE 4 | Examples of microbiome-aware diet recommendation pipelines for scenarios (A–D).

Knowledge-Based Recommendation Systems
An ideal knowledge-based RS would be based on in silico
models that can correctly simulate an individual’s gut. It
requires proper characterization of the gut microbiome, human
intestinal cells, intestinal and dietary metabolite concentrations,
their interactions through metabolic pathways, and realistic
objective functions for modeling such complex dynamics. Such
a knowledge-based RS was devised in a recent study involving
28 patients with Crohn’s disease and 26 healthy individuals
(Bauer and Thiele, 2018). Researchers integrated genome-scale
metabolomic reconstructions (GENREs) of 818 microbes from
http://vmh.life (Noronha et al., 2018) with the individual’s
microbiome abundances after metagenomic data processing in
the R package BacArena (Bauer et al., 2017). Their in silico
simulations provide personalized metabolic supplements for
improving patient’s SCFA levels. Earlier studies have created
a metabolic model of the gut microbiome on a smaller scale
(Shoaie et al., 2015). See Magnúsdóttir and Thiele (2018) for a
comprehensive review. Despite their promise, there are several
challenges for the application of such knowledge-based RSs.
The first challenge is the limited availability and accuracy of
GENREs for gut microbes. A recent study has identified 1,520

unique microbes in the human gut (Zou et al., 2019), while the
number of microbes that have GENREs is only 818 (Noronha
et al., 2018). In one study (Tramontano et al., 2018), 75%
of the GENREs required updates [from previously constructed
GENREs (Magnúsdóttir et al., 2017)] so that in silico simulations
could recapitulate growth on new media. This suggests that
in silico GENREs of the gut microbiome are far from complete,
however, progress is being made toward closing this gap. The
second challenge is the metabolic characterization of the media
inside the intestine on which gut microbes grow. This includes
identifying the dietary metabolites available to microbes at
different sites in the gut, which necessitates meticulous dietary
data processing. The third challenge relates to the computational
complexity of in silico simulations, which increases as host
and microbial GENREs become more comprehensive. Although
more challenges can be enumerated, their inclusion here would
go beyond the scope of this article.

Content-Based Recommendation Systems
In content-based RSs, the recommendations are made based
on the item’s content (often characterized using item features).
This is in contrast to collaborative filtering RSs where
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recommendations are based on preferences of other users for
each item. In one landmark study (Zeevi et al., 2015), authors
use a content-based RS for meal recommendations with the
goal of improving post-meal glucose levels. Each meal is first
characterized based on its nutritional profile (macronutrients
and micronutrients). Then a regression model is trained to
predict post-meal glucose level based on the meal’s nutritional
profile, the individual’s microbiome features, and other personal
information. For each new user and meal, post-meal glucose
levels are predicted by the model, and the meal with the
minimum post-meal glucose level is recommended to the user.
The same methodology is used in a later study using only
microbiome features of individuals to predict post-meal glucose
levels in a bread-type recommendation system (Korem et al.,
2017). Several challenges arise when building content-based RSs.
The first challenge is variable data quality and compatibility.
When a group of users (or items) are overrepresented in the
data, the predictive model tends to be biased toward their
favorite items. As a result, the quality of recommendations will
be highly variable. Stratified sampling can be used to alleviate
this issue. The second challenge is difficulty in generalizing
and personalizing recommendations, particularly when feature
vectors are not informative for predictions (also relevant to the
“missing quantities” challenge mentioned in Table 3). This is in
contrast to collaborative filtering RSs, where latent features are
learned instead of being defined a priori. Hybrid RS methods
are designed to take advantage of collaborative filtering RSs to
address such inherent challenges in context-based RSs (and vice
versa) (Burke, 2002). For an extensive review of context-based
RSs, methods see (Lops et al., 2011).

Collaborative Filtering Recommendation Systems
In collaborative filtering RSs, each user is characterized by the
items (foods or ingredients here) they have previously rated,
bought, or generally acted upon. Recommendations are given
based on the idea that users who assign the same rating to
existing items are expected to have a similar rating profile for all
items. Matrix completion is one of the most popular collaborative
filtering methods (Su and Khoshgoftaar, 2009; Ekstrand et al.,
2011). User-assigned scores are first organized in a sparse matrix

where columns correspond to different items and rows to various
users. In cases where most users only have evaluated a few
items, most of the matrix remains empty. Matrix completion
fills the rest of the matrix through the similarities discovered
amongst users and items. See Su and Khoshgoftaar (2009) and
Ekstrand et al. (2011) for a comprehensive review. Collaborative
filtering RSs have not been used for microbiome-aware food
recommendations. We describe an example here to showcase
how it can be used. Consider a matrix where each column
corresponds to a dietary plan and each row to a person—a specific
value can represent gut microbiome alpha diversity during the
time which the user followed a particular dietary plan. Assuming
that each person has only tried a few dietary plans, most of the
matrix will be empty. Here we can use matrix completion to fill
the matrix with predicted alpha diversities to create a complete
matrix. This can be used to recommend dietary plans for a person
with the goal of maximizing gut microbiota diversity. Several
challenges arise in collaborative filtering RS. The first challenge
is the lack of data for new users (“cold-start”). Note that the
recommendations rely on similarities among users, while new
users have not tried any of the items available in the database. The
second challenge is the curse of dimensionality. As the number
of items increases, the chance of having user scores for the same
item combinations decreases, hence items and users become
equally dissimilar (also relevant to the “high dimensionality”
challenges in Table 3). In such cases, hybrid RS can be used. Next,
we bring up a few example scenarios.

Example Scenarios
We discussed various data analytics and recommendation system
methods for microbiome discovery and diet engineering, as
illustrated in Figures 1, 3. Applicability of each method depends
on research objectives and data availability. Here we explain
particular scenarios illustrated in Figure 4 as blueprints for
integrating relevant techniques in a single pipeline. In scenario
A, the goal is to identify metabolic pathways that are enriched
in the gut microbiome of healthy adults using 16S rRNA data
(see Duvallet et al., 2017; Thomas et al., 2019; Wirbel et al.,
2019 for similar works). In scenario B, the goal is to provide
recommended probiotic intake for supporting a healthy gut

TABLE 4 | Highlighted microbiome-aware diet recommendation studies.

Study description Dietary variables Metagenomic
technology

References

A personalized meal recommendation system uses personal, microbiome and dietary
features to select an optimal meal for lowering post-meal glucose levels in patients with
type II diabetes.

Micro and
macronutrients

16S rRNA and whole
metagenomics

Zeevi et al., 2015

Microbiome features enable accurate prediction of an individual’s glycemic response to
different bread types.

Bread type 16S rRNA and whole
metagenomics

Korem et al., 2017

Accurate prediction of weight regain given normal vs. high-fat diet in mice is enabled
using a microbiome-based predictor.

Dietary fat 16S rRNA Thaiss et al., 2016a

Personalized metabolite supplement recommendations for Crohn’s disease are made
using in silico simulation of reconstructed metabolic pathways from gut microbiome
(773 microbes).

Metabolic supplements Whole metagenomics Bauer and Thiele, 2018

Fecal amino acid levels are predicted given dietary macronutrients through in silico
simulation of metabolic pathways from gut microbiome (four microbes) and host cells.

Macronutrients 16S rRNA Shoaie et al., 2015
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microbiome. First, the study participants would be profiled
based on the probiotic products they consume (each containing
specific OTUs) as well as their gut microbiome. Next, microbiome
scores will be calculated for each participant based on the
distance between enriched pathways of their microbiome and the
target healthy microbiome. Then a regression model is trained
to predict microbiome scores based on OTU intakes. Finally,
the OTU intake concentration that is predicted to have an
optimal microbiome score would be used as the recommended
probiotic intake. In scenario C, the goal is to identify optimal
diets for health, performance, and disease. A compendium
needs to be built following a consistent data collection and
processing pipeline for study participants. The compendium
serves the training data necessary for building machine learning
models to predict health metrics such as post-meal glucose
level (Zeevi et al., 2015; Korem et al., 2017) or post-dieting
weight regain (Thaiss et al., 2016a). The predictive models can
then be used as the key part of a recommendation system by
identifying the expected impact of a given diet on health for new
individuals. In scenario D, the goal is to recommend metabolic
supplements needed by an individual’s microbiota to secrete
vital compounds. First, OTU abundances of each individual
are identified using a metagenomic data processing pipeline.

Then, individual gut metabolic pathways are reconstructed using
online resources such as the Virtual Metabolic Human database
(Noronha et al., 2018). Finally, constraint-based reconstruction
and analysis (COBRA) tools (Bauer et al., 2017; Baldini et al.,
2018) are used to perform in silico simulations of GENREs
to identify metabolic intake requirements to secrete vital
compounds of interest. This mechanistically sound approach
has been used in a few recent studies (Shoaie et al., 2015;
Bauer and Thiele, 2018).

INTELLECTUAL PROPERTY
DEVELOPMENT

The potential application impact generated by research on
the relationship between the gut microbiome and diet can be
visualized by the abundant number of patent applications on the
topic, as well as more generally in the field of microbiome and
health research. A search for “gut microbiome” and “diet” returns
over 2,500 patents on Google, deposited by universities, institutes,
and companies such as MicroBiome, Microbiome Therapeutics,
Gutguide, Whole Biome Inc., UBiome, and others, from as early
as 2004. However, it is important to note that most of these hits

TABLE 5 | Highlighted patents relating to diet, gut microbiome, and human health.

Patent number Name Owner Year

US20100172874A1 Gut microbiome as a biomarker and therapeutic target for treating obesity or an
obesity-related disorder

Washington University
in St. Louis

06

WO2007136553A2 Bacterial strains, compositions including same and probiotic use thereof Benson et al. 06

US20110123501A1 Gut flora and weight management Nestec S.A. 07

EP2178543B1 Lactobacillus rhamnosus and weight control Nestec S.A. 07

US9371510B2 Probiotic compositions and methods for inducing and supporting weight loss Brenda E. Moore 07

US9113641B2 Probiotic bacteria and regulation of fat storage Arla Foods amba 07

EP2296489A1 Lactobacillus paracasei and weight control Nestec S.A. 08

EP2216036A1 Lactobacillus rhamnosus NCC4007, a probiotic mixture and weight control Nestec S.A. 09

WO2010091991A1 Lactobacillus helveticus cncm i-4095 and weight control Arigoni et al. 09

US20100331641A1 Devices for continual monitoring and introduction of gastrointestinal microbes Gearbox LLC 09

US20160074505A1 Method and System for Targeting the Microbiome to Promote Health and Treat Allergic
and Inflammatory Diseases

Kovarik et al. 09

US20120058094A1 Compositions and methods for treating obesity and related disorders by characterizing
and restoring mammalian bacterial microbiota

New York University
Dow Global
Technologies LLC

10

US9040101B2 Method to treat diabetes utilizing a gastrointestinal microbiome modulating composition MicroBiome
Therapeutics LLC

11

US20170348359A1 Method and System for Treating Cancer and Other Age-Related Diseases by Extending
the Health span of a Human

Kovarik et al. 11

US20170281091A1 Capsule device and methodology for discovery of gut microbe roles in diseases with
origin in gut

Lowell Zane Shuck 12

US20170372027A1 Method and system for microbiome-derived diagnostics and therapeutics for locomotor
system conditions

uBiome Inc. 14

US20170286620A1 Method and system for microbiome-derived diagnostics and therapeutics uBiome Inc. 14

US20190030095A1 Methods and compositions relating to microbial treatment and diagnosis of disorders Whole Biome Inc. 14

WO2017216820A1 Metagenomic method for in vitro diagnosis of gut dysbiosis Putignani et al. 16

WO2017171563A1 Beta-caseins and cognitive function Clarke et al. 16

WO2017160711A1 Modulation of the gut microbiome to treat mental disorders or diseases of the central
nervous system

Strandwitz et al. 17

US20180318323A1 Compositions and methods for improving gut health Plexus Worldwide LLC 17
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TABLE 6 | Glossary of terms.

Alpha diversity. A measure that quantifies the species diversity in a given
sample. It can be calculated by several methods including richness (i.e. the
number of unique species) as well as the Shannon index which relies on the
relative abundance of unique species.
Beta diversity. A measure that quantifies the difference between species
abundances across samples. It can be calculated by several methods including
the Jaccard index (i.e. the ratio of shared to total unique species in a pair of
samples) as well as the weighted Jaccard index which also considers the
number of times each specie is observed.
Classification. A type of supervised learning problem where the dependent
variables are categorical.
Cluster analysis. Unsupervised learning methodology to identify groups of
similar datapoints automatically.
Collaborative filtering. Recommendation system methodology which relies
on similarities amongst user preferences for new recommendations.
Compositional quantities. Dataset attributes that their absolute quantities are
only meaningful relative to each other for each sample, and cannot be
compared directly across different samples.
Content-based filtering. Recommendation system methodology in which
recommendations are made based on the features for both items and users.
Curse of dimensionality. A set of challenges, such as the need of
exponentially more samples to train a model and increased computational
complexity, that appear when the dimensionality of the data or model increases.
Data imputation. Substitution of missing values in a given dataset.
Diversity metric. Quantitative measure that represents the number of unique
entity types (e.g., species) in a community and evenness in their relative
population.
Dimensionality. Number of attributes available for each sample in a given
dataset. A dataset with relatively few attributes is considered low-dimensional
while a dataset with many attributes is referred to as high-dimensional.
Labeled/unlabeled samples. Samples that have been tagged using particular
labels describing the value of a dependent variable are called labeled. This is in
contrast to unlabeled samples for which such labels are unavailable. Note that
labels can be categorical or numerical.

Marker gene sequencing. Primer-based strategy (such as 16S rRNA) that
targets a specific region of a gene of interest to characterize microbial
phylogenies of a sample.
Multiple-hypothesis testing. A problem that arises in tests of statistical
significance when applied multiple times using different hypotheses.
Overfitting. A problem that arises in machine learning where parameter values
of a model are too closely fit for training data and therefore not useful in practice.
Rarefaction. A bias correction technique used to enable comparison of
diversity measures between communities with unequal sample sizes.
Recommendation system. “Any system that guides a user in a personalized
way to interesting or useful objects in a large space of possible options or that
produces such objects as output.” (Burke, 2002)
Regression. Supervised learning tasks in which the dependent variables are
numerical.
Regularization. Machine learning technique that dampens the variability of
model parameters leading to a less complex model. It is usually used to
mitigate overfitting.
Stability metric. A quantitative measure to assess whether properties of a
community (e.g., gut microbes) are preserved over time.
Supervised learning. Learning tasks that require labeled data. They involve
learning a function to predict the correct label for a new sample given input
attributes.
Unsupervised learning. Learning tasks that do not rely on labeled data. They
involve learning hidden structures, features, or patterns within the data.
Variation analysis. Statistical methods, such as analysis of variance (ANOVA),
used to identify the amount of variance in a dependent variable that can be
explained using independent variables.
Whole metagenomic sequencing. A sequencing strategy that targets the
whole genome of all microbial species within a sample. This is also called
shotgun metagenomics.

are less than a decade old, demonstrating the relatively early
stages in which this area still resides. The exponential growth
in patent applications related to the microbiome since 2007
correlates to a similar curve for the academic publications in the
same period (Fankhauser et al., 2018).

One of the earliest available patent applications
(US20050239706A1) related to the topic of the microbiome and
nutrition describes methods to regulate weight by manipulating
the gut microbiome. Additional patents also aim to use the gut
microbiome as a therapeutic target, monitoring and altering the
composition with the goal of manipulating the host phenotype
such as weight gain/loss and obesity. In general, weight
management with the manipulation of the gut microbiome
(US20110123501A1 and US20100172874A1) appears as a
favored theme for early patent applications in the area of
microbiome and diet. Several patents describe novel probiotics
and their uses (WO2007136553A2), often relating them to
specific target phenotypes such as weight loss (EP2178543B1,
US9371510B2, US9113641B2, EP2216036A1, EP2296489A1,
and WO2010091991A1). Multiple applications for probiotics
focused on weight loss were deposited by Nestec SA, which offers
research and consulting services to the food company Nestlé S.A.

With the development of computational techniques to
analyze larger datasets, and more research on the relationship

of the microbiome and the host homeostasis and disease,
patent applications related to gut microbiome and diet have
subsequently extended to other health conditions beyond
obesity and weight control. Among the newest patent
applications related to the gut microbiome and diet is a patent
describing the characterization, diagnostics, and treatment
of a locomotor system condition based on microbiome data
(US20170372027A1). Other applications include metagenomic
methods specific for the comparison of healthy individuals
and those with gut dysbiosis (WO2017216820A1), diagnostic
tools for Crohn’s disease, inflammatory bowel disease, irritable
bowel syndrome, ulcerative colitis, and celiac disease using
microbiome and other types of data (US20170286620A1), and
devices such as capsules to acquire and monitor microbiome
and metabolites in the gut (US20170281091A1). Research
on the gut–brain axis relationship also resulted in several
applications aimed at monitoring and manipulating the gut
microbiome to enhance cognition or treat mental-health
conditions (WO2017171563A1 and WO2017160711A1).
A recent and thorough review of patents related to the
microbiome identified cancer diagnosis and treatment and
CRISPR technology as recent trends in the field (Fankhauser
et al., 2018). Table 5 shows a summary of highlighted patents
relating to DGMH.
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Even though there is already a considerable number of patent
applications for technologies aiming to manipulate the gut
microbiome for multiple health conditions, regulatory legislation
has not yet become specific to deal with the new scientific
advances in the field. In Europe, the European Food Safety
Authority (EFSA) is responsible for regulating and approving
food products with health claims, including probiotics, while in
the United States, the Food and Drug Administration (FDA)
assumes a similar role. Legislation and regulatory aspects are
changing in an attempt to keep up with the ever-evolving
field. Recently, the FDA has released a statement (Food and
Drug Administration, 2018) clarifying existing regulations and
announcing the intention to work closely with the United States
National Institutes of Health to ensure public safety. Currently,
there is no probiotic approved to be marketed in the United States
as a live biotherapeutic product, defined by the agency as
a “biological product other than a vaccine that contains live
organisms used to prevent or treat a disease or condition in
humans” (Food and Drug Administration, 2016, 2018). This
means that, even though probiotics are legally available as dietary
supplements or food ingredients, they cannot yet have claims
to cure, treat, or prevent any diseases per current regulation
(Food and Drug Administration, 2018), since those claims are
reserved for drugs. Classification of food ingredients targeting the
microbiome, but not composed of living organisms, microbiota-
directed foods or MDFs, prebiotics, and dietary fiber, is also
challenging based on the available legislation. Depending on the
health claims, such products can fall under the categories of drugs
or dietary supplements, which have different requirements for
approval (Green et al., 2017).

CONCLUSION

Significant advances in microbiology, genomics, analytical
chemistry, computational science, bioinformatics, and other
critical disciplines have begun to converge such that it is possible
to foresee a new era of health and nutrition research enabling
the design of food products capable of optimizing health via
predictable interactions with the gut microbiome. Despite the
exciting potential in this context demonstrated by pioneering
research efforts of many investigators, including those cited
in this brief review, the complexity of the microbiome, the
chemical composition of food, and their interplay in situ remains
a daunting challenge in the context of achieving necessary
breakthroughs. However, recent advances in high-throughput
sequencing and metabolomics profiling, compositional analysis
of food, and the emergence of electronic health records as
an opportunity to integrate health information provide new
sources of data that can contribute to addressing this challenge.
Indeed, it is now clear that computational science will play an
essential role in this effort as it will provide the foundation
to integrate these data layers and derive insights capable of
revealing and understanding the complex interactions between
diet, microbiome, and health.

The human microbiome is exceptionally plastic,
which presents both challenges and opportunities

(Gentile and Weir, 2018). Due to its temporal and inter-
individual variability, it is difficult to discover statistically
significant signatures that unambiguously constitute a
healthy versus non-healthy microbiota. At the same time,
its potential for adaptation to diet and other environmental
factors makes the gut microbiome an excellent target for
diet-related interventions to improve health. In this article, we
presented a brief overview of the current state of knowledge
and potential avenues for research at the interface of diet,
gut microbiome, and human health, with particular emphasis
on the role that computational science and data analytics
can play in accelerating this research. Using these tools, we
envision a future in which diets, as well as food and dietary
supplement products, can be better designed for specific
populations, and, in some cases, for individuals, in order to
optimize gut microbiota and health via a platform integrating
two distinct systems. The first system will be responsible for
identifying the optimal target microbiota (discovery) given
the desired target, individual, and environment, while the
second will provide recommendations for achieving that target
microbiota (engineering). Recognizing this distinction and
the requirement for seamless interaction between the two can
reinforce collaborative research in this evolving field where
some teams focus on microbiota discovery and others on
diet engineering.

Microbiome research has attracted much interest in the past
few years and given rise to various software tools and pipelines
for metagenomic data processing and analysis. Many of these
tools address similar problems and researchers may choose a
variety of tools depending on the context. Interestingly, recent
research has shown that synthetic datasets can be used to
assess the performance of competing tools given a project’s
assumptions and hence provide useful benchmarks (Ounit and
Lonardi, 2016; Hitch and Creevey, 2018). We further believe that
progress in simulation-based studies can give rise to new data
processing and analytics pipelines customized for each project
based on factors such as sequencing technology, data availability,
dimensionality, and variability. This can help to build standard
protocols for addressing challenges like the ones mentioned in
Tables 3, 4.

Our current knowledge about the relationship between
diet, gut microbiome, and human health is evolving
fast. Many data analysis methods exist for discovering
characteristics that can define a healthy microbiota and the
factors influencing it. We believe that proper integration of
recommendation systems with existing research developments
will have an unprecedented impact on our way of life.
Given the accelerated pace of advances in sequencing and
computational tools, we expect the next decade to be the era of
computational nutrition that will revolutionize our relationship
with food and diet.
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More and more clinical observations have implied that microbes have great effects
on human diseases. Understanding the relations between microbes and diseases
are of profound significance for disease prevention and therapy. In this paper, we
propose a predictive model based on the known microbe-disease associations to
discover potential microbe-disease associations through integrating Learning Graph
Representations and a modified Scoring mechanism on the Heterogeneous network
(called LGRSH). Firstly, the similarity networks for microbe and disease are obtained
based on the similarity of Gaussian interaction profile kernel. Then, we construct a
heterogeneous network including these two similarity networks and microbe-disease
associations’ network. After that, the embedding algorithm Node2vec is implemented
to learn representations of nodes in the heterogeneous network. Finally, according
to these low-dimensional vector representations, we calculate the relevance between
each microbe and disease by utilizing a modified rule-based inference method.
By comparison with three other methods including LRLSHMDA, KATZHMDA and
BiRWHMDA, LGRSH performs better than others. Moreover, in case studies of
asthma, Chronic Obstructive Pulmonary Disease and Inflammatory Bowel Disease,
there are 8, 8, and 10 out of the top-10 discovered disease-related microbes were
validated respectively, demonstrating that LGRSH performs well in predicting potential
microbe-disease associations.

Keywords: microbe-disease association, heterogeneous network, network embedding algorithm, Node2vec,
skip-gram

INTRODUCTION

Varieties of microbial communities are dominant throughout the human different body niches
including skin, mouth, respiratory tract, throat, stomach, gut and colon, which mainly compose
of bacteria, protozoa, archaeon, viruses, and fungi (Methe et al., 2012; Althani et al., 2016). It
is generally that a wide range of them play fundamental roles in human health and diseases
such as maintaining homeostasis (Bouskra et al., 2008), developing the immune system (Round
and Mazmanian, 2010; Gollwitzer et al., 2014) and resisting pathogens (Methe et al., 2012).
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For example, the majority of microbes reside in the gut, regulating
human physiology and nutrition by modulating host metabolism
and immunity. They can digest and convert dietary constituents
into active forms (Qin et al., 2010; Ahn et al., 2013).

Microbial communities are considered as an essential “organ”
governing health and disease, which can be influenced by host
genetics and host environment such as feeding habits, life styles,
seasons and antibiotics (Huttenhower et al., 2012; Althani et al.,
2016). If the microbial communities become imbalanced, there
may interfere with the symbiotic relationships and cause diseases.
For instance, researchers found that the number of phylum
Actinobacteria among diabetics was significantly lower than the
healthy person (Long et al., 2017). In addition, some studies
found a decrease in the relative percentage of Bacteroidetes
in obese people compared to the general population (Ley
et al., 2006). Moreover, low microbial diversity can lead to
inflammatory bowel disease (IBD) (Qin et al., 2010). Thus,
understanding the microbe-disease associations can help us know
disease pathogenesis to boost disease diagnosis and therapy.

With the advances in sequencing technologies and
bioinformatics, more and more microbes living in oceans,
soil, human bodies and elsewhere began to be investigated by
the scientific community (Gilbert and Dupont, 2011; Methe
et al., 2012; Cenit et al., 2014). The Human Microbiome Project
Consortium (HMP) was funded to explore the relationships
between microbes and human diseases. It generates a wide range
of quality-controlled resources and data to develop metagenomic
protocols, which is available for scientific research (Methe et al.,
2012). Ma et al. (2016) constructed The Human Microbe-
Disease Association Database (HMDAD) through collecting
correlations between microbes and diseases from 61 published
literatures. These achievements provided the foundation for
further research on using computational methods to predict
potential associations.

In recent years, some computational methods have been
conceived for predicting microbe-disease associations based
on the assumption that similarly functioning microorganisms
incline to share similar associations or non-associations with
diseases. By using the Gaussian interaction profile (GIP) kernel
similarity, Chen et al. (2017) developed a prediction method
called KATZHMDA that infers potential associations based
on the number and length of walks in a heterogeneous
network. Li et al. (2019) constructed a bidirectional weighted
network by combining a normalized Gaussian interaction
scheme with a bidirectional recommendation model. Zou
et al. (2017) used a bi-random walk and logistic function
transformation on a heterogeneous network constructed based
on the GIP kernel similarity. Through a combination of the
GIP kernel similarity and LapRLS classification, Wang et al.
(2017) designed a computing model LRLSHMDA, which is semi-
supervised . Meanwhile, through integrating the GIP kernel
similarity with disease symptom similarity, Qu et al. (2019)
implemented the matrix decomposition and label propagation
algorithm on the similarity network for associations’ prediction
. Huang et al. (2017) predicted potential associations based
on known microbe-disease bipartite graph and neighbor
collaborative filtering. Moreover, Fan et al. (2019) proposed

a method called MDPH_HMDA for prediction by executing
standardized HeteSim measurements to weight the relations in a
heterogeneous network combined by the GIP kernel similarity,
the microbe–microbe functional similarity and the symptom-
based human disease similarity. Niu et al. (2019) identified the
potential associations by introducing the concept of hypergraph,
which put all disease-related microbes on a single hyperedge.
In order to take the unequal contributions of microbe and
disease information into consider, Zhang et al. (2018) developed
a bidirectional similarity integral label propagation method with
calculating the microbe functional similarity and the disease
semantic similarity.

At the same time, many network embedded methods have
been proposed, such as DeepWalk (Perozzi et al., 2014),
SDNE (Wang et al., 2016), Node2vec (Grover and Leskovec,
2016), etc. In this study, inspired by the performance of
graph representations for many real-world problems such as
protein network research, text and visual processing (Cao
et al., 2016). We utilize Node2vec (Grover and Leskovec, 2016)
to predict potentially unknown associations (LGRSH) on a
heterogeneous network. First, similarity networks for microbes
and diseases are calculated by the GIP kernel similarity. Then,
we construct a heterogeneous network integrating the two
similarity networks and known microbe-disease associations’
network. After that, the embedding algorithm Node2vec has
been utilized to assign a low-dimensional vector representation
to nodes in the heterogeneous network. Finally, according
to the vector representation of each node, we calculate the
degrees of correlation between microbes and diseases to
discover potential associations with a modified rule-based
inference method. In order to assess the prediction performance
of LGRSH, we implemented Leave-one-out cross validation
(LOOCV) and fivefold cross validation. The area under the
receiver operating characteristic curve (AUC) obtained by
LGRSH are 0.9260 and 0.9254, which is better than the
compared methods. Moreover, case studies of asthma, Chronic
Obstructive Pulmonary Disease (COPD) and IBD demonstrate
that LGRSH can be considered as an effective method for
association prediction.

MATERIALS AND METHODS

Material
We download microbe-disease associations from HMDAD (Ma
et al., 2016), which contains 483 verified associations’ records
between 292 microbes and 39 diseases. After removing the
repetitive relationships, 450 distinct associations’ records are
obtained. Then we construct a 39 × 292 dimensional adjacency
matrix MD of the associations’ network. MD (i, j) is 1 indicating
that there is a known association between disease d(i) and
microbe m(j), otherwise, MD (i, j) is 0.

Methods
As illustrated in Figure 1, firstly, the similarity networks
for microbe and disease have been constructed. And then, a
heterogeneous network integrating two similarity networks and
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FIGURE 1 | The flowchart of LGRSH.

microbe-disease associations’ network can be obtained. After
that, the embedding algorithm Node2vec is utilized to learn the
representation for every node. Finally, according to the topology
information based on Node2vec method, we calculate the relation
score between every microbe vector and disease vector.

Calculation of Microbe Similarities Based on the GIP
Kernel Similarity
Based on the assumption that two microbes are more likely to
share functional similarities potentially if they are related to more
common diseases. We calculate the GIP kernel similarity for
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microbes based on known microbe-disease associations’ network.
For microbes m(i) and m(j), the similarity score is obtained
according to Eq. (1) (Wang et al., 2017):

SM(m(i, j)) = exp(−γm||MD(m(i)) − MD(m(j))||2) (1)

where m(i, j) represents two arbitrary microbes in matrix MD.
Parameter γm is used to control the bandwidth and is affected by
a new bandwidth parameter γm’(Wang et al., 2017), which can be
obtained as Eq. (2):

γm = γ′m/
1

Nm

Nm∑
i=1

||MD (m (i)) ||2 (2)

here, Nm is equal to 292, which indicates the total number
of microbes. The parameter γm’ is set to 1 for simplicity
(Wang et al., 2017).

Calculation of Disease Similarities Based on the GIP
Kernel Similarity
In the similar way, we construct a disease similarity network
by using the GIP kernel similarity for each disease pair. The
similarity between disease d(i) and d(j) is obtained according to
Eq. (3) (Wang et al., 2017):

SD(d(i, j)) = exp(−γd||MD(d(i))−MD(d(j))||2) (3)

where d(i, j) represents two arbitrary diseases in matrix MD. The
parameter γd can be obtained as Eq. (4):

γd = γ′d/
1

Nd

Nd∑
i=1

||MD
(
d (i)

)
||

2 (4)

here, Nd is equal to 39, which indicates the total number
of diseases. The parameter γd’ is set to 1 for simplicity
(Wang et al., 2017).

Constructing a Heterogeneous Network for Microbes
and Diseases
According to the Eqs (1) and (3), we have constructed
two similarity matrices SM and SD. Then we construct a
heterogeneous network including the edges of microbe–microbe,
microbe-disease and disease–disease associations, and it can be
expressed as Eq. (5):

P =
[

SD MD
MDT SM

]
(5)

where P represents the matrix of heterogeneous network. MDT is
the transpose of MD.

Using Node2vec to Learning Representations
Node2vec is a flexible neighborhood sampling strategy which can
explore neighborhoods in the form of Breadth-First Sampling
(BFS) and Depth-First Sampling (DFS) fashion by introducing
two parameters (Grover and Leskovec, 2016). It maximizes the
network neighborhood of nodes by mapping nodes to vector
feature spaces. Therefore, we apply Node2vec to learn vector
representations for nodes in the heterogeneous network.

Firstly, we utilize a bias random walk strategy to calculate
the transition probabilities for every node. For a current node u,
the probability of accessing the next node x can be calculated as
follows:

P(ci = x|ci−1 = u) =

{ πux
Z if (u, x) ∈ E

0 otherwise
(6)

here, Z is a regularization constant. πux is denormalized
transition probabilities on edges (u, x) leading from u, which is
influenced by a weight adjustment parameter α. We suppose the
walk just went from t to u and setπux = αpq (t, x) ·wux, where

apq(t, x) =


1
/

p if dtx = 0
1 if dtx = 1
1
/

q if dtx = 2
(7)

here, dtx is in the range of {0, 1, 2}, representing the shortest
distance from nodes t to x. Parameters p and q are used to strike a
balance between DFS and BFS. As shown in Figure 2, parameter
p is a return parameter that affects the possibility of re-traversing
a node immediately during a walk. If p is set to be larger, it is
less likely to revisit the node that was just accessed. This strategy
can lead to moderate exploration and avoid repetitive sampling. If
the value is set to be smaller, the walk is more likely to backtrack,
and tends to reach nodes near the node. There is more concerned
for the local information. Parameter q is an in-out parameter,
which allows searches to distinguish “inward” and “outward”
nodes (Zeng et al., 2019). If q > 1, the walk tends to be closer
to node u. In contrast, if q < 1, it tends to traverse nodes far from
node u (Zeng et al., 2019).

We first select one node u and mark it as the current node,
and then select one node v from all the neighbors of the current
node u based on the transition probabilities calculated above.
Following, we mark this newly selected node v as the current node
and repetitive such as a node sampling process. The algorithm
terminates when the number of nodes in a sequence reaches a
preset walking length l. By referring to the previous paper, we set
l as10 (Munui et al., 2018).

FIGURE 2 | Description of walking strategy in Node2vec when the traversal
has just gone from t to u.
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Node2vec uses Skip-gram model to generate eigenvectors of
nodes (Jang et al., 2019). Skip-gram model is a word embedding
algorithms for learning distributed vector representations from
a large number of textual corpora which tries to categorize
a word according to other words in the same sentence as
much as possible (Mikolov et al., 2013). In fact, the sequence
of nodes obtained by bias random walk algorithm, each node
actually corresponds to a word. The input of this model
is the sequence encoding of a node, and the output is the
nodes before and after the sequence. In this paper, we set the
context size to 10 and the dimension of these eigenvectors to
128 according to the original parameter selection for the best
performance (Grover and Leskovec, 2016). The algorithm is
detailed in Figure 3.

Association Discovering
According to the popular rule-based inference method for
predicting novel drug-target associations based on indirect
relationships in 2017 (Zong et al., 2017), we utilize a modified
Scoring mechanism to grade microbe-disease relations based
on the low-dimensional vector representation. Considering that
indirect relationships do not fully predict the relationship if there

are few known relations between some microbes and diseases,
especially if there is only single relationship, we have used both
direct and indirect connections to calculate correlations between
microbes and diseases.

We use Score(mi, dj) to represent the correlation score between
the ith microbe and jth disease in the heterogeneous network. It
can be calculated according to Eq. (8):

Score(mi, dj) =∑m
k=1 Sim(mi, mk)MD(j, k)+

∑d
k=1 Sim(dj, dk)MD(k, i)∑m

k=1 Sim(mi, mk)+
∑m

k=1 Sim(dj, dk)
(8)

In this Equation, m and d indicate the numbers of microbe and
disease, MD(i, j) is the association between disease i and microbe
j. The Sim(u, v) is calculated as Eq. (9):

Sim(u, v) =
∑d

k=1 ukvk√∑d
k=1 u2

k

√∑d
k=1 v2

k

(9)

here, d represents the dimension for each vector, uk, vk represent
the components of vectors u and v.

FIGURE 3 | Description of algorithm Node2vec.

TABLE 1 | Effect of parameters p and q in fivefold cross validation.

q = 0.25 q = 0.5 q = 1 q = 2 q = 4 q = 8 q = 16

p = 0.25 0.9251 0.9165 0.9178 0.9246 0.9229 0.9236 0.9244

p = 0.5 0.9253 0.9236 0.9251 0.9246 0.9254 0.9235 0.9229

p = 1 0.9240 0.9250 0.9190 0.9213 0.9234 0.9234 0.9242

p = 2 0.9214 0.9204 0.9239 0.9230 0.9251 0.9181 0.9208

p = 4 0.9215 0.9222 0.9206 0.9229 0.9241 0.9239 0.9235

Bold values: LGRSH achieves the best performance while p = 0.5, q = 4.
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RESULTS

We implement LOOCV and fivefold cross validation on
HMDAD to assess the prediction performance of LGRSH. In
the LOOCV, we regard each known association as a test sample,
with other known associations as training samples (Quan et al.,
2014). All unverified microbe-disease associations are regarded as
candidate samples. In the fivefold cross validation, we randomly
divide all known microbe-disease associations into 5 average
groups. Each of these five groups is regarded as testing sample,
while other four groups are training samples. This process is
conducted five times to mitigate the bias due to random sample
partitioning (Niu et al., 2019). Based on the prediction score, we
evaluate the predictive performance by ranking the test samples.
The AUC can be calculated according to the receiver operating
characteristic (ROC) curve. If there is a random prediction
performance, the AUC value is 0.5.

Effect of Parameters
There are two important parameters in Node2vec. One is a return
parameter p and another is an in-out parameter q. We set various
values under the framework of fivefold cross validation in order
to evaluate the impact of these parameters. According to the

FIGURE 4 | Effect of parameters p and q in fivefold cross validation.

comparison results in Table 1 and Figure 4, we can find that the
performance of LGRSH is best with 0.9254 while p = 0.5, q = 4.
Hence, we set p = 0.5, q = 4 in the subsequent experiments.

Comparison With Other Methods
We compare LGRSH with three methods including LRLSHMDA
(Wang et al., 2017), KATZHMDA (Chen et al., 2017) and
BiRWHMDA (Zou et al., 2017). These four methods are
measured by Precision-recall curve. As illustrated in Figures 5,
6, we can draw a conclusion that LGRSH performs better than
other three methods.

Furthermore, we measure the top-level results of LGRSH
and three other methods in LOOCV. As shown in Figure 7,
LGRSH can find more known associations among the top 500
predicted microbes.

CASE STUDIES

To evaluate the ability of LGRSH for discovering unknown
associations in HMDAD, we implement case studies in asthma,
COPD and IBD. We conduct experiments for 10 times on each
diseases to make the results more stable. After calculating the
similarity of every microbe and disease, the scores are sorted
in descending order to obtain the top-10 candidate microbes
for every disease. The scores of top-10 disease-related microbes
are provided in Supplementary Tables S1–S3, respectively.

Asthma
Asthma is a common inflammatory disease affecting more
than 300 million people all over the world, which is more
common in childhood with recurrent cough, wheezing and
breathing difficulties. In recent years, asthma has been found to
be closely linked with microbes (Caliskan et al., 2013). Hence,
we consider Asthma for case studies. As shown in Table 2, 8
of top-10 discovered microbes were confirmed. For instance,
Clostridium difficile colonization (ranked 1st in the list) in
1 month was associated with asthma between the ages of 6 and

FIGURE 5 | Prediction comparison between LGRSH and other three methods in LOOCV and fivefold cross validation while p = 0.5, q = 4.
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FIGURE 6 | Precision-recall curves for LGRSH and other three methods in
fivefold cross validation.

FIGURE 7 | The number of correctly predicted by LGRSH and other three
methods on HMDAD.

TABLE 2 | Validation results for Top-10 predicted microbes related with asthma.

Rank Microbe Evidence

1 Clostridium difficile PMID:21872915

2 Firmicutes PMID:27078029

3 Clostridium coccoides PMID:21477358

4 Actinobacteria PMID:30286807

5 Enterobacteriaceae PMID:28947029

6 Lactobacillus PMID:30400588

7 Bacteroides PMID:18822123

PMID:29161087

8 Burkholderia Unconfirmed

9 Lachnospiraceae PMID:28912020

10 Enterococcus Unconfirmed

7 (van Nimwegen et al., 2011). Researchers also proved that
colonization with Clostridium coccoides (ranked 3rd in the list)
and Bacteroides (ranked 7th in the list) at 3 weeks were associated
with positive predictors of asthma at age 3 (Carl et al., 2008,
2011). In addition, the abundance of Firmicutes (ranked 2nd
in the list) and Enterobacteriaceae (ranked 5th in the list) were

TABLE 3 | Validation results for Top-10 predicted microbes related with COPD.

Rank Microbe Evidence

1 Proteobacteria PMID:29579057

2 Prevotella PMID:28542929

3 Helicobacter pylori PMID:28558695

4 Actinobacteria PMID:29709671

5 Bacteroidetes PMID:29579057

6 Clostridium difficile PMID:30430993

7 Clostridium coccoides Unconfirmed

8 Lactobacillus PMID:26630356

9 Lachnospiraceae Unconfirmed

10 Staphylococcus aureus PMID:30804927

TABLE 4 | Validation results for Top-10 predicted microbes related with IBD.

Rank Microbe Evidence

1 Prevotella PMID:24013298

2 Bacteroidetes PMID:29492876

3 Clostridium difficile PMID:24838421

4 Helicobacter pylori PMID:22221289

PMID:28124160

5 Firmicutes PMID:25307765

PMID:29492876

6 Clostridium coccoides PMID:19235886

7 Lactobacillus PMID:26340825

8 Enterobacteriaceae PMID:30319571

9 Veillonella PMID:30573380

10 Haemophilus PMID:24013298

higher in severe asthmatics compared with non-asthmatic people,
while Actinobacteria (ranked 4th in the list) and Lachnospiraceae
(ranked 9th in the list) with lower proportion (Marri et al., 2013;
Ciaccio et al., 2015; Zhang et al., 2016; Li et al., 2017). Moreover,
Huang et al. (2018) found that Lactobacillus (ranked 6th in the
list) can reduce asthma severity and improve asthma control,
which is beneficial to children with asthma.

Chronic obstructive pulmonary disease
(COPD)
Chronic obstructive pulmonary disease is a progressive
obstructive pulmonary disease with main symptoms of breathing
difficultly and coughing (Rabe et al., 2007). It is more common
among smokers, and is also influenced by factors like air
pollution and genetics. Although the disease can be slowed down
by treatment, there is still no clear treatment or pathogenesis for
it. Recently, some findings indicate that changes in microbes may
have significant effects in the development of COPD (Malhotra
and Henric, 2015). Thus, we consider COPD for case studies.
As shown in Table 3, 8 of top 10 discovered microbes were
confirmed. For example, the main flora of Proteobacteria (ranked
1st in the list) and Bacteroidetes (ranked 5th in the list) increased
with the deterioration of COPD (Rohde et al., 2004). Researchers
also found that Helicobacter pylori (ranked 3rd in the list)
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infection is associated with reduced lung function and systemic
inflammation in COPD patients (Mammen and Sethi, 2016).
In patients with COPD, the proportion of Prevotella (ranked
2nd in the list) is reduced compared with healthy people, but
phyla Actinobacteria (ranked 4th in the list), Clostridium difficile
(ranked 6th in the list) and Lactobacillus (ranked 8th in the list)
are increased (Yadava et al., 2016; Larsen, 2017; de Miguel-Diez
et al., 2018; Ghebre et al., 2018). For example, the Clostridium
difficile is twice as high in COPD patients as in healthy person.
Moreover, Staphylococcus aureus (ranked 10th in the list) has
been found in the respiratory tract of patients with COPD
(Uddin et al., 2019).

Inflammatory bowel disease (IBD)
Inflammatory bowel disease is a chronic, idiopathic
gastrointestinal inflammatory disease that is thought to be
influenced by environmental and host factors (D’Aoust et al.,
2017). It is characterized by recurrent episodes, diverse
clinical manifestations and severe complications such as
bleeding, abscess formation and perforation (Cosnes et al.,
2002). In this paper, we consider IBD for case studies.
As shown in Table 4, 10 of top-10 discovered microbes
were confirmed. For instance, researchers have found that
IBD is related to gut microbiological disorders including
expansion of Enterobacteriaceae facultative anaerobic bacteria
(ranked 8th in the list) and decrease in some beneficial fecal
bacteria such as Firmicutes (ranked 5th in the list) (Eom
et al., 2018; Zuo and Ng, 2018). In patients with IBD, the
dominant of Prevotella (ranked 1st in the list), Veillonella
(ranked 9th in the list) and Haemophilus (ranked 10th in the
list) were largely contribute to dysbiosis (Said et al., 2014).
Bacteroidetes (ranked second in the list) and Lactobacillus
(ranked 7th in the list) were significantly increased compared
with healthy people, but the Clostridium coccoides (ranked
6th in the list) was less abundant (Sokol et al., 2009; Thomas
et al., 2015; Eom et al., 2018). Researchers also found that
Clostridium difficile (ranked 3rd in the list) infection has
become a significant clinical challenge for patients suffering
from IBD, which can worsen flares of IBD, inducing to
emergent colectomies and mortality (Hashash and Binion,
2014). Moreover, recent experimental results found that
chronic infection with Helicobacter pylori (ranked 4th in
the list) is protective against IBD. And IBD patients are
least likely to be infected with Helicobacter pylori compared
to the normal population (Sonnenberg and Genta, 2012;
Kyburz and Muller, 2017).

CONCLUSION

There are countless microbe communities inhabited in the
human body, having important impacts on human health and
disease by regulating the metabolism and immunity. With
the establishment of relational databases for microbes and
diseases, exploring their associations have become a hot topic for

researchers. In this study, we propose a predictive approach called
LGRSH by utilizing network embedding algorithm Node2vec to
obtain the representation for every node in the heterogeneous
network. According to the vector representation for every node,
we rank the relevance of each microbe vector and disease
vector to discover potential microbe-disease associations. In
LOOCV and 5-fold cross validation, LGRSH performs better
compared with three other methods with AUC reached 0.9260
and 0.9254. The case studies of asthma, COPD and IBD show
that LGRSH can be used as a predictive tool for microbe-
disease associations.

Certainly, there are still some deficiencies in LGRSH. For
example, there are only 450 know micro-disease associations,
which accounts for very small proportion of human microbial
diseases. This may result in less comprehensive for prediction.
We believe that the problem will be solved when more
microbe-disease links are discovered. In addition, the embedding
algorithm itself is a local method. In the future, we will learn
more graph representation algorithms to improve the global
capability. Moreover, we calculate the similarities for microbe
and disease through the GIP kernel, which may biased toward
microbes and diseases with more known associations. Hence,
we will improve the efficiency of LGRSH by integrating some
optimization strategies such as microbe functional similarity,
disease semantic similarity and symptom-based disease similarity
in the future work.
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There are two major sequencing technologies for investigating the microbiome: the
amplicon sequencing that generates the OTU (operational taxonomic unit) tables of
marker genes (e.g., bacterial 16S-rRNA), and the metagenomic shotgun sequencing
that generates metagenomic gene abundance (MGA) tables. The OTU table is the
counterpart of species abundance tables in macrobial ecology of plants and animals,
and has been the target of numerous ecological and network analyses in recent gold
rush for microbiome research and in great efforts for establishing an inclusive theoretical
ecology. Nevertheless, MGA analyses have been largely limited to bioinformatics
pipelines and ad hoc statistical methods, and systematic approaches to MGAs guided
by classic ecological theories are still few. Here, we argue that, the difference between
“gene kinds” and “gene species” are nominal, and the metagenome that a microbiota
carries is essentially a ‘community’ of metagenomic genes (MGs). Each row of a
MGA table represents a metagenome of a microbiota, and the whole MGA table
represents a ‘meta-metagenome’ (or an assemblage of metagenomes) of N microbiotas
(microbiome samples). Consequently, the same ecological/network analyses used in
OTU analyses should be equally applicable to MGA tables. Here we choose to analyze
the heterogeneity of metagenome by introducing classic Taylor’s power law (TPL) and
its recent extensions in community ecology. Heterogeneity is a fundamental property of
metagenome, particularly in the context of human microbiomes. Recent studies have
shown that the heterogeneity of human metagenomes is far more significant than that
of human genomes. Therefore, without deep understanding of the human metagenome
heterogeneity, personalized medicine of the human microbiome-associated diseases
is hardly feasible. The TPL extensions have been successfully applied to measure the
heterogeneity of human microbiome based on amplicon-sequencing reads of marker
genes (e.g., 16s-rRNA). In this article, we demonstrate the analysis of the metagenomic
heterogeneity of human gut microbiome at whole metagenome scale (with type-I power
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law extension) and metagenomic gene scale (type-III), as well as the heterogeneity
of gene clusters, respectively. We further examine the influences of obesity, IBD and
diabetes on the heterogeneity, which is of important ramifications for the diagnosis and
treatment of human microbiome-associated diseases.

Keywords: metagenome ecology, metagenomic gene abundance (MGA) table, Taylor’s power law, power law
extensions, metagenome spatial heterogeneity, metagenome functional gene cluster (MFGC), medical ecology
of metagenome

INTRODUCTION

Understanding the microbiome or “the biome of microbes”
usually starts with cataloging the list of OTUs (operational
taxonomic units) and tabulating their abundance distribution,
leading to the so-termed OTU table. The OTU table has a
counterpart in macrobial ecology of plants and animals, known
as species abundance distribution (SAD). The recognition of
the equivalence between OTU table (or OTU distribution)
and SAD has greatly facilitated the infiltration of macrobial
ecology theories into microbial ecology. The translation and
testing of the ecological theories originated in macrobial
ecology with microbiome datasets also lead to the ongoing
development of a unified or inclusive ecology of plants,
animals and microbes. Of course, OTU tables, which are
usually obtained through amplicon sequencing of marker
genes (e.g., 16S-rRNA for bacteria or 18S-rRNA for fungi),
are not sufficient for understanding microbiome. For this
reason, scientists investigate the metagenome (i.e., the total
genomes of all microbes in a microbiome) by using the
whole-genome or metagenome shotgun (MGS) sequencing
technology. The output from the MGS sequencing technology
is the metagenomic gene abundance (MGA) table, which is
rather similar to the OTU table, given that both are the
abundance of genes (i.e., 16S-rRNA gene vs. regular genes).
Nevertheless, there is an essential difference between the
OTU table and MGA table: the OTU table carries taxonomic
information, but MGA table carries genetic or gene information.
The former has been a de fact standard entity in ecological
analyses of the microbiome datasets, and the latter has been
mostly used in genetic and evolutionary analyses. In existing
metagenomic research, however, few ecological analyses have
been performed with MGA data. We argue that the ecological
analysis of metagenomic MGA, or “the ecology of metagenome,”
is an emerging field where ecological theories should play
a critical role.

The similarity between OTU and MGA tables is far from
superficial. The familiar OTU table is a matrix of OTU reads
that capture the species abundance distribution (SAD) of all
species in N microbial communities (e.g., N microbiome samples
from N individuals, spatial sites or time-points of an individual),
with each row corresponding to the SAD of each species, which
is simply the frequency distribution (relative abundance) of an
OTU across N samples. Together, an OTU table represents a
meta-community or ecosystem (when meta-factors were added
as special columns) in terms of species abundance distribution,
including both taxonomic identities and their population

abundances in the system. Various ecological analyses (theories
and models) such as diversity analysis, power law, diversity-
area relationship (DAR), neutral theory and network analyses
have been conducted with OTU tables, to reveal important
insights on the structure, dynamics and functions of microbiomes
(e.g., Costello et al., 2012; Lozupone et al., 2012; Hanson et al.,
2012; Human Microbiome Project Consortium [HMP], 2012;
Barberaìn et al., 2014; Ma, 2015, 2018, 2019; Ma and Li, 2018,
2019; Li and Ma, 2019; Ma and Ellison, 2019; Ma et al.,
2019). These analyses have become a de facto standard for 16S-
rRNA based (amplicon-sequencing based) microbiome research.
However, few such analyses have been applied to MGA tables.

Conceptually, if we conceive the metagenomic genes as “gene
species,” then these gene species or genes (we use both the
terms interchangeably hereafter) constitute “a community of
gene species,” which is essentially the concept of metagenome.
Each metagenome constitutes one row of a MGA table.
In other words, a MGA table consists of multiple (N)
metagenomes, corresponding to N metagenome samples, and
a MGA table can be considered as an assemblage or meta-
community of metagenomes. Here we coin the term “assemblage
of metagenomes” (=metagenome assemblage) or “assemblage”
(when no confusion occurs) to represent “metacommunity of
metagenomes” or ‘meta-metagenome’ and also to avoid the
double prefix of ‘meta-’. Therefore, a MGA table represents an
assemblage of metagenomes, consisting of N metagenomes, e.g.,
from N individuals (or samples). When meta-factors (such as
host physiology) are added to a MGA table, then the MGA table
describes an “ecosystem of metagenomes.” With such conceiving,
we argue that ecological and network analyses can be harnessed
to investigate important problems in metagenome research
such as diversity (Ma and Li, 2018), heterogeneity, functional
redundancy, mechanisms of diversity maintenance, inter-gene
interactions, and dynamics of metagenomes. In a previous study,
we successfully demonstrated the application of Hill numbers
for measuring metagenome diversity and similarity (Ma and Li,
2018). In this study, we demonstrate the application of Taylor’s
power law (Taylor, 1961, 1984; Taylor and Taylor, 1977) and its
recent extensions to community ecology (Ma, 2015) to assess and
interpret the heterogeneity of metagenome assemblage.

According to Li and Reynolds (1995) heterogeneity can
be defined based on two components: the system property
of interests and its complexity or variability. They defined
heterogeneity as “the complexity and/or variability of a system
property in space and/or time” (Li and Reynolds, 1995).
To some extent, considering heterogeneity as the other side
of evenness coin or as a proxy of biodiversity is not
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unreasonable. However, if we look into its usage in population
ecology, specifically in the studies on the population spatial
distribution of animal or plants, we may quickly recognize
one significant difference in community heterogeneity and
community diversity. That is, the former is either explicitly
or implicitly associated with certain spatial elements, but
the latter is not, arguably, beta-diversity is an exception. In
addition, heterogeneity is a “group” property in the sense that
comparing heterogeneity generally requires at least two entities.
As a side note, the heterogeneity in time (states) or temporal
heterogeneity is similar to (temporal) stability (Ma, 2015) and
is not a topic of this study. In the following, we use the
term heterogeneity to refer to spatial heterogeneity whenever
confusion is unlikely.

In the following, we demonstrate the assessment and
interpretation of the metagenomic heterogeneity of human gut
microbiome at whole metagenome scale with type-I power
law extension (PLE) and metagenomic gene scale (type-III
PLE), as well as the heterogeneity of functional gene clusters,
respectively. Here, the term spatial can be applied to different
individuals or different microbiome habitats of an individual
in the case of human microbiomes, or samples from different
habitats in the case of general environmental metagenomes.
Furthermore, we also investigate the influence of three common
microbiome associated diseases (obesity, diabetes, and IBD) on
the metagenomic spatial heterogeneity in human gut systems.

CONCEPTS AND DEFINITIONS

One of the most important findings that the Human Microbiome
Project Consortium [HMP] (human microbiome project) has
revealed is the enormous inter-subject difference or heterogeneity
among individual subjects. However, much of the evidence
supporting the notion of personalized microbiome comes from
16S-rRNA datasets. This is because the OTU tables generated
from 16S-rRNA sequencing are inherently more submissive to
ecological analyses than the MGA tables generated from the
whole-genome metagenomic sequencing are. Indeed, compared
with the analysis of 16S-rRNA OTU tables, the applications
of ecological theories (laws) to the metagenome MGA data
analysis have been much fewer. Here, we propose to introduce
Taylor’s power law (Taylor, 1961, 1984, 2007; Taylor and Taylor,
1977; Taylor et al., 1983, 1988) and its recent extensions
(Ma, 2015; Oh et al., 2016) to the ecological community,
for assessing and interpreting the spatial (or inter-subject)
heterogeneity within the metagenome assemblage represented
by a MGA table. Figure 1 below shows the flowchart of
various ecological and bioinformatics analyses involved in
the present study.

Taylor’s (1961) power law, describing the scaling relationship
between the population mean abundance (m) and its
variance (V) over space (i.e., V = amb), is one of few well
recognized ecological laws in population ecology, and it offers
a powerful mathematical tool to measure the spatial aggregation
(heterogeneity). Its power law scaling parameter (b) often

FIGURE 1 | Showing the flowchart of analyzing the microbiome heterogeneity
from ecological, taxonomical, functional and evolutionary perspective in terms
of various scales [OTU, MG (metagenomic gene), MFGC (metagenome
functional gene clusters), MF/MP (metagenomic function/pathway) with the
power law extensions (PLEs)]. The right side and framed in red color are newly
introduced in the present study. See the Online Supplementary Information
(OSI) for the R-Scripts implementing the PLE analysis and randomization tests.

embodies rich ecological and evolutionary insights about
specie abundance and distribution over space or time across
different environments (Taylor, 1961, 1984, 2007; Taylor and
Taylor, 1977; Taylor et al., 1983, 1988). Since its discovery
more than a half century ago (Taylor, 1961), Taylor’s power
law has been the target of numerous field tests and theoretical
analyses, especially in macrobial ecology of plants and animals.
In particular, a resurgence of theoretical investigation and
extensions to even wider applications in many fields of science
and technology, particularly inter-disciplinary studies, has
been ongoing in the last few years (e.g., Reuman et al., 2009,
2014, 2017; Cohen et al., 2012, 2013; Ma, 2012, 2015; Stumpf
and Porter, 2012; Wearn et al., 2013; Cohen, 2014; Zhang
et al., 2014; Cohen and Xu, 2015; Cohen and Saitoh, 2016; Oh
et al., 2016; Tippett and Cohen, 2016; Quist et al., 2017). In a
previous study (Ma, 2015), we extended the original Taylor’s
(1961) power law from population to community level and
tested four power law extensions (PLEs) with the 16s-rRNA
amplicon-sequencing datasets of the microbial communities
from the human microbiome project (Human Microbiome
Project Consortium [HMP]). Among the four PLEs introduced
by Ma (2015), Type-I and Type-III PLEs can quantify the
community (level) spatial heterogeneity and mixed-species
(level) spatial heterogeneity, respectively. Type-II and Type-IV
were proposed to assess the community temporal stability and
mixed-species temporal stability, respectively, but this study
does not implicate them since both Type-II and IV require
time-series data, for which we did not get sufficiently large
datasets, but they should still be applicable for measuring the
metagenome stability.
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PLE-I (Type-I Power Law Extension) for
Measuring Metagenome Spatial
Heterogeneity
Similar to the PLE-I for measuring community spatial
heterogeneity (Ma, 2015), we propose to use the following
mean-variance power function for measuring the metagenome
spatial heterogeneity of a metagenome assemblage (or
meta-metagenome, as explained previously):

Vs = amb
s s = 1, 2, . . . , S (1)

where ms is the mean of gene abundances of all genes (species)
(G) in the metagenome of an individual subject (s = 1, 2, . . .S),
Vs is the corresponding variance, S is the number of subjects, and
G is the number of genes contained in the metagenomes of the S
subjects. Note ms is the mean gene abundance per gene species,
not per subject, which is different from the case in PLE-III (type-
III power law extension) introduced below. In addition, the fitting
of Eqn. (1) is performed with S data points, i.e., across S individual
subjects (or S metagenomes), rather than across genes, as in the
case of PLE-III below.

The parameter b describes the fractional scaling of V-m
relationship statistically, or the metagenome spatial heterogeneity
biologically. When b = 1, the heterogeneity is random,
which means that the heterogeneity—the inter-subject difference
in their gene abundance distribution—is essentially random,
statistically follows Poisson distribution. When b > 1, the inter-
subject heterogeneity is non-random and follows highly skewed
long-tail distribution (such as the power law distribution). When
b < 1, the inter-subject heterogeneity in their metagenome is
fixed, or follows the uniform statistical distribution. From field
studies in ecology, the cases when b = 1 or b < 1 are extremely rare
in real world and usually only exist theoretically (Taylor, 1961,
1984). We term a metagenome assemblage (i.e., an assemblage of
metagenomes) with b = 1 random metagenome (strictly speaking,
metagenome assemblage), b < 1, homogenous metagenome, and
b > 1, heterogeneous metagenome.

Parameter a in Eqn. (1) is meanwhile related to sampling
related factors such as sampling unit or sequencing platforms, but
is little influenced by biological interactions. Hence, we generally
do not attempt to draw biological interpretations from parameter
a due to the strong influence from sampling. It is noted that
parameter a also has the same interpretation in PLE-III below.

We further define critical diversity of metagenome
heterogeneity (CDMH) or m0 as:

m0 = exp[ln(a)/(1− b)] (b 6= 1) (2)

where a and b are PLE-I parameters from eqn. (1). The
CDMH or m0 is the mean gene abundance level (per
gene species) at which metagenome spatial heterogeneity
is random, and across which the heterogeneity transits to
either heterogeneous (when m > m0) or regular (uniform
or fixed) (when m < m0). Since the mean gene abundance,
although termed abundance, is essentially a measure of gene
diversity (i.e., the mean abundance of various gene species
in a metagenome), we used the term critical diversity of

metagenome heterogeneity, rather than using the term “critical
abundance.” The latter is indeed used in the next section for
PLE-III, which is the average of single gene abundances from
various individuals and consequently the term abundance is
more appropriate.

PLE-III (Type-III Power Law Extension)
for Measuring Gene-Level Spatial
Heterogeneity
Similar to the PLE-III for measuring mixed-species spatial
heterogeneity in Ma (2015), we propose to use the following
mean-variance power function for measuring the gene-level
(inter-gene, or mixed-gene) spatial heterogeneity:

Vg = amb
g g = 1, 2, . . . , G (3)

where mg is the mean abundance of g-th gene, averaged across
S subjects (g = 1, 2, . . .G), Vg is the corresponding variance,
and G is the number of gene kinds (gene species), and S is the
number of individual subjects sampled. Note mg is the mean gene
abundance of the g-th gene species per subject (not per gene),
which is opposite from the case in the previously introduced PLE-
I for measuring metagenome spatial heterogeneity. In addition,
the fitting of Eqn. (3) is performed with G data points, i.e., across
all G gene species, rather than across S subjects, as in the case of
the previous PLE-I.

Note that the notion of “mixed-gene” is similar to the concept
of mixed-species population in the original Taylor’s power law
(Taylor and Woiwod, 1982; Taylor, 1984). It refers to a virtually
“averaged assemblage” of genes, in which the identities or kinds
of different genes were ignored. The m-V pairs are regressed (see
below, through log-linear transformation into linear regression)
across multiple gene species (millions in the case of this study)
in a mixture manner. Given that the notion of gene species is not
widely used in metagenomic research, we suggest using the term
gene-level or inter-gene heterogeneity, rather than mixed-gene
heterogeneity in the context of PLE-III.

When b = 1, the heterogeneity among metagenomic genes in
terms of their gene abundance distributions should be random,
i.e., all genes in the metagenome are equivalent to each other in
terms of their abundance distribution, similar to the neutrality
assumption in the neutral theory of biodiversity. When b < 1,
the heterogeneity or difference among genes, if any, should be
fixed, or follow a uniform distribution statistically. Both the cases
of b = 1 or b < 1 should be extremely rare in real world, and are
mostly theoretical possibilities. In practice, b > 1 should be the
norm rather than the exception for metagenome heterogeneity
at the gene-level. When b > 1, we say the metagenome is
heterogeneous or aggregated in terms of its gene-level or inter-
gene heterogeneity.

We further define critical abundance of gene-level
heterogeneity (CAGH) or m0 as:

m0 = exp[ln(a)/(1− b)] (b 6= 1) (4)

where a and b are PLE-III parameters from eqn. (3). The CAGH
or m0 is the mean gene abundance level (per individual or
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sample) at which gene-level spatial heterogeneity is random, and
across which the heterogeneity transits to either heterogeneous
(when m > m0) or regular (uniform or fixed) (when m < m0).

Statistical Fitting of PLE-I or PLE-III
To fit the power law, including PLE-I and PLE-III, the most
commonly used approach is to transform the power law model
[eqn. (1) or (3)] into the following linear function:

ln(V) = ln(a)+ b ln(m) (5)

where all the variables (m, V) and parameters (a, b) have the
exactly same interpretations as those in eqn. (1) or eqn. (3).
Standard linear regression procedure can be applied to fit the
model. In fact, there is an advantage for adopting the simple
linear transformed regression approach, which is related to an
important property of power law, scale-invariance. This property
makes parameter a less relevant for determining the most
important parameter of power law, i.e., the scaling parameter
b (Ma, 2015). It is for this reason that we choose the simple
linear regression approach for fitting all the power law models.
This allows us to focus on the scaling parameter (b) for assessing
and interpreting the metagenome heterogeneity revealed by the
metagenomic sequencing data.

As a side note, we may define metagenome temporal stability
with Type-II PLE or gene-level temporal stability with Type-IV
PLE, similar to Ma (2015) for community temporal stability
or mixed-species temporal stability, but their demonstrations
require time-series MGA data obtained with metagenomic
(whole-genome or shotgun) sequencing technologies. We failed
to find sufficiently long time-series MGA data to demonstrate the
PLE-II or PLE-IV models and won’t further discuss the temporal
versions of the PLE in this study (Nielsen et al., 2014).

Bioinformatics Analysis of Metagenomic
Sequencing Data
To fit the power law model, one has to first compute MGA tables
from metagenomic sequencing raw reads (also known as shotgun
or whole-genome sequencing) by using standard bioinformatics
software pipelines (e.g., Li and Godzik, 2006; Qin et al., 2010,
2012; Zhu et al., 2010; Chatelier et al., 2013; Li et al., 2014; Xiao
et al., 2015, 2016; Wang and Jia, 2016; Sczyrba et al., 2017; Ma and
Li, 2018).

Millions of contigs are obtained through the metagenome
assembly step. Those millions of contigs are fed into gene
prediction software and the latter generate a list of non-redundant
genes based on the criteria set by ORFs (open reading frames).
We term those non-redundant genes as metagenomic genes
(MGs) or simple genes. MG embodies single-gene-level genetic
information, and its number in a typical metagenome sample is
in the magnitude of millions (Ma and Li, 2018). The previously
defined MGA table is actually the table of MGs.

Directly characterizing or summarizing information from the
millions of MGs or MGA tables can be rather challenging.
An alternative research strategy is to first group those millions
of genes (MGs) into functional gene clusters, and then
investigate the properties of the functional gene clusters. There

are mature bioinformatics algorithms and software pipelines
to cluster the millions of MGs into hundreds of MFGCs
(metagenome functional gene clusters), and the magnitude
of MFGC numbers (hundreds) is much small that that of
the MGs (millions) (Ma and Li, 2018). Obviously, the huge
reduction in the magnitudes from MGs (millions) to MFGCs
(hundreds) should make our measuring metagenomic spatial
heterogeneity simpler.

DEMONSTRATION AND DISCUSSION

The Datasets of Metagenomes
We collected three gut metagenome datasets from public
domain including, 264 stool samples from overweight and
lean individuals (Qin et al., 2010; Chatelier et al., 2013),
145 stool samples from type-2 diabetes and healthy controls
(Qin et al., 2012), and 219 stool samples from IBD patients
and healthy controls. A total of 628 metagenome samples
with their metagenomic gene (MG) catalog and the gene
abundance (MGA) tables for each dataset were computed with
standard metagenomic analysis pipelines (e.g., Li and Godzik,
2006; Qin et al., 2010, 2012; Zhu et al., 2010; Chatelier
et al., 2013; Li et al., 2014; Xiao et al., 2015, 2016; Wang
and Jia, 2016; Sczyrba et al., 2017). Furthermore, we defined
metagenome functional gene clusters (MFGC) based on Ma and
Li (2018) and obtained their abundance tables. Supplementary
Table S1 showed more detailed information about the three
datasets we use in this paper for demonstrating the application
of the power law.

Specifically, after whole-genome (shotgun) sequencing of a
metagenome sample, sequencing reads from the fecal samples
were processed for quality control, removal of human sequences,
assembling, assembly revision and gene prediction by using
MOCAT pipeline (Kultima et al., 2012). This pipeline consists of a
series of software packages, which can process metagenomes in a
standardized and automated manner while improving the quality
of assembly and gene prediction at run time. In the pipeline,
FASTX Toolkit1 was used for quality control; SOAPaligner2 (Li
et al., 2009) for identifying human sequences; SOAPdenovo v1.06
(Li et al., 2010) for assembling; MetaGeneMark (Zhu et al., 2010)
for gene prediction; CD-HIT (Li and Godzik, 2006) for clustering
genes in each cohort.

The details of the data/software/parameters used to compute
the MGA tables can be found in the online method of
Li et al. (2014). In fact, the MGA tables are available
online at: http://meta.genomics.cn/meta/dataTools. Li et al.
(2014) annotated the metagenomic genes according to the
“Kyoto Encyclopedia of Genes and Genomes” (KEGG) and the
“evolutionary genealogy of genes non-supervised orthologous
groups” (eggNOG) databases. They further identified a total of
6,980 KEGG orthologous groups (KOs) and 36,489 eggNOG
orthologous groups, accounting for 51.6 and 69.3% of the total
sequencing reads.

1http://hannonlab.cshl.edu/fastx_toolkit/
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TABLE 1 | The parameters of PLE-I (type-I power law extension) for metagenome spatial heterogeneity, in terms of the MGA (metagenomic gene abundance).

Power Law Extension (PLE) Case study Treatment b SE(b) ln(a) SE[ln(a)] m0 R p-value N

Type-I PLE for Metagenome Spatial Heterogeneity with MGA Obesity Lean 2.012 0.113 3.740 0.337 0.025 0.878 <0.001 95

Overweight 3.447 0.158 −1.204 0.532 1.636 0.914 <0.001 96

Type-II Diabetes Healthy 3.232 0.210 −0.529 0.650 1.267 0.876 <0.001 74

Disease 1.846 0.143 3.982 0.447 0.009 0.840 <0.001 71

IBD Healthy 1.385 0.079 5.365 0.266 0.000 0.903 <0.001 71

Disease 2.248 0.227 2.754 0.761 0.110 0.766 <0.001 71

In the online Supplementary Information (OSI), the
R-Scripts for implementing the power law analysis and
randomization tests for determining the differences in the PLE
parameters are provided.

Metagenome Spatial Heterogeneity in
Terms of the MGA (Metagenomic Gene
Abundance) Spatial (Inter-Subject)
Distribution Measured With PLE-I
We first fitted PLE-I (type-I power law extension) with
metagenomic gene abundance (MGA) datasets directly in order
to measure the metagenome spatial (inter-subject) heterogeneity
for each treatment (group) of the three datasets, and the results
were listed in Table 1, from which we summarize the following
findings:

(i) PLE-I fitted to all three datasets extremely well with
p-value < 0.0001. This indicates the ubiquitous applicability
of the PLE for assessing the metagenome spatial (i.e., inter-
subject) heterogeneity of either MGA (this section) or
MFGC (the next section).

(ii) The scaling parameter (b) of PLE-I for the most treatments
is between 2 and 4 except for the two treatments (diseased
treatment in the diabetes study, and the healthy treatment
in the IBD study), and the parameter (b) varied significantly
between the treatments with a range of [1.385, 3.447].

(iii) The values of the scaling parameter (b) for the healthy
samples (group) and diseased samples (group) were
significantly different (p-value < 0.05), in all three
case studies (obesity, diabetes and IBD). Therefore,
we conclude that PLE-I can be harnessed to measure
the metagenome spatial heterogeneity in terms of gene

TABLE 2 | The p-value of the randomization test for the difference between the
healthy and diseased treatments in their metagenome spatial heterogeneities
parameters of PLE-I.

Power Law Extension
(PLE)

Case
Study

Treatments b ln(a) m0

Type-I PLE for
Metagenome Spatial
Heterogeneity with MGA

Obesity Lean vs.
Overweight

<0.001 <0.001 <0.001

Type-2
diabetes

Healthy vs.
Disease

0.044 0.038 0.044

IBD Healthy vs.
Disease

0.021 0.043 0.015

abundance distribution. Furthermore, it has a potential
being a discriminant metric for distinguishing between
the healthy and diseased metagenome samples, as revealed
in Table 2 (p-value < 0.05), in which randomization
test (Collingridge, 2013) with 1000 times of re-sampling
was utilized to test the difference in the b-value between
the healthy and diseased treatments. Figure 2 shows the
fitted power law models for the obesity case study, i.e.,
one straight line for the lean group and another for the
overweight group.

The metagenome spatial heterogeneity is the counterpart
of community spatial heterogeneity in community ecology,
and it measures the spatial heterogeneity of metagenomes of
individual subjects or inter-subject metagenome heterogeneity in
a population (or cohort), similar to measuring the heterogeneity
among spatially explicit local communities in community
ecology (Ma, 2015). With our newly coined term of metagenome
assemblage, parameter b measures the heterogeneity of
metagenome assemblage represented by a MGA table. The higher
b-value of PLE-I represents greater heterogeneity (unevenness or
diversity) among individuals in their metagenomes in terms of
their gene abundance distributions. When b = 1, it implies that
the differences among individuals are random. When b < 1, it
implies that the differences among individuals follow uniform
distribution statistically (i.e., a fixed difference).

FIGURE 2 | The PLE-I (type-I power law extension) models fitted for the
obesity case study.
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Gene-Level (or Inter-Gene) Spatial
Heterogeneity in Terms of the MGA
(Metagenomic Gene Abundance)
Distribution Measured With PLE-III
We also fitted the PLE-III (type-III power law extension) with
metagenomic gene abundance (MGA) datasets directly in order
to measure the gene-level or mixed-gene spatial heterogeneity for
each of the 3 datasets, and the results were listed in Table 3 below.
It was shows that:

(i) The PLE-III fitted to all 3 datasets extremely significant
with p-value < 0.0001, and the standard errors of
the model parameters were close to zero. The linear
correlation coefficients were between 0.949 and 0.961. All
the criteria indicate that the goodness-of-fitting to PLE-III
was extremely well given millions of data points were fitted.

(ii) The parameter b of PLE-III for all the treatments fall
in a rather narrow range of [2.340, 2.466]. Therefore,
we conclude that PLE-III can be harnessed to measure
the gene-level spatial heterogeneity in terms of the
gene abundance distribution, but its application for
discriminating the healthy and diseased samples is of
limited value given its insensitivity to host factors such as
diseases. Figure 3 shows the fitted PLE-III with the dataset
from the obesity study.

Taylor’s power law has been tested with hundreds, if not
thousands, of field studies and many theoretical examinations
(Taylor, 1961, 1981, 1984, 2007; Taylor et al., 1983, 1988; Ma,
1991, 2012, 2013, 2015, 2018; Reuman et al., 2009, 2014, 2017;
Stumpf and Porter, 2012; Cohen and Xu, 2015; Tippett and
Cohen, 2016; Quist et al., 2017). However, to the best of our
knowledge, the tests exhibited in Table 3 should be the cases that
have used the biggest numbers of data points (the column N in
Table 3) to fit the power law model, since it was first discovered
more than a half century ago. For example, in the case of obesity
study, for each of the two treatments (lean vs. overweight), more
than five million genes were used to fit PLE-III model. This shows
the exceptional robustness of the power law model.

The PLE-III for measuring the gene-level or mixed-gene
spatial heterogeneity is the counterpart of mixed-species spatial
aggregation in community ecology (Ma, 2015). The term
aggregation is often used in population ecology, and it is
the counterpart of heterogeneity in community ecology. As
explained previously, the term mixed-gene setting assumes that

FIGURE 3 | The PLE-III (type-III power law extension) models fitted to the
obesity study datasets: more than 10 million points (5407291 lean
group + 5134721 overweight) were used to fit the PLE-III models, but here we
only randomly selected 100,000 points (50,000 from each treatment) to draw
the graphs (so as to accommodate the file size of the figure).

we ignore the identities of individual genes, and what is
measured is the aggregation (unevenness or heterogeneity) of
an average gene species. We suggest using the term “gene-level
spatial heterogeneity” for what is measured with the PLE-III in
metagenomic research.

Metagenome Spatial Heterogeneity in
Terms of the MFGC (Metagenome
Functional Gene Cluster) Distribution
Measured With PLE-I
According to Ma and Li (2018), the term MFGC (metegenome
functional gene cluster) refers to cluster of functionally similar
or same genes, generated from functional annotation or gene
annotation through online mapping to functional databases such
as KEGG (for metabolic pathways) and eggNOG (for protein
functions). Hence, MFGC is purely functionality-based and is
mostly cross-species. One of its unique advantages is that it
embodies the functional redundancy in microbiome very well.
The difference between Type-I MFGC (MFGC-I) and Type-
II MFGC (MFGC-II) lies in their differences in handling the
genes within each cluster. In MFGC-I, only the number of gene
species (kinds) is counted but the abundance of individual gene
is ignored. In MGGC-II, both the number of gene species (kinds)
and the abundance of each gene matter in the analysis. In other

TABLE 3 | The parameters of PLE-III (type-III power law extension) for measuring gene-level (inter-gene) spatial aggregation, in terms of the metagenomic gene
abundance (MGA).

Power Law Extension (PLE) Case study Treatment b SE(b) ln(a) SE[ln(a)] m0 R p-value N

Type-III PLE for Gene-Level Spatial
Heterogeneity with MGA

Obesity Lean 2.371 0.000 −0.732 0.001 1.706 0.961 <0.001 5407291

Overweight 2.363 0.000 −0.744 0.001 1.726 0.961 <0.001 5134721

Type-II Diabetes Healthy 2.340 0.000 −0.842 0.001 1.875 0.954 <0.001 4573927

Disease 2.338 0.000 −0.791 0.001 1.806 0.949 <0.001 4432814

IBD Healthy 2.466 0.000 −1.000 0.001 1.978 0.961 <0.001 2898618

Disease 2.351 0.000 −0.791 0.001 1.796 0.957 <0.001 4462890
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words, with MFGC-I, we only care the number of gene species
(kinds), and with MFGC-II we care both the number of gene
species (kinds) and the abundance of each gene within each
cluster. This treatment is very similar to a common practice in
community ecology, where a simplified measure for biodiversity
is to only count the number of species (also known as species
richness), and a more comprehensive measure of biodiversity
uses more sophisticated entropy such as Shannon entropy, which
consider both species richness and abundances.

In the previous section, we conducted power law analysis
in terms of the metagenomic gene (MG) or metagenomic gene
abundance (MGA) distribution. In this section, our analysis is
performed in terms of the metagenome functional gene cluster
(MFGC). That is, using the MFGC abundance tables (similar to
MGA or OTU tables, except that the entity is the MFGC) to
fit the PLE models.

The results of fitting the PLE-I with MFGC tables were listed
in Table 4, from which we can observe the following findings:

(i) The PLE-I model fitted to the MFGC abundances extremely
well (significant with p-value < 0.0001), and this indicates
the ubiquitous applicability of the PLE for assessing the
metagenome spatial (i.e., inter-subject) heterogeneity of
either MFGCs (this section) or MG (previous section).

(ii) MFGC-I and MFGC-II exhibited slightly different scaling
parameter (b) values. The scaling parameter b of PLE-I
ranged [2.027, 2.138] for MFGC-I and [1.715, 1.988]
for MFGC-II, indicating that the MFGC-I has a higher

heterogeneity degree. This difference should be due to their
definitional difference: MFGC-I ignored the information of
individual gene abundances, only taking into account the
number of gene species (kinds), or gene richness. Obviously,
ignoring the gene abundance information should lead to
larger heterogeneity (difference), which explains why the
PLE-I parameter b of MFGC-I was slightly higher (b > 2),
while that of MFGC-II was lower (b < 2). Furthermore,
MFGC-II should better embody functional redundancy
information given that it considers both gene species (kinds
or richness) and abundances.

(iii) Although MFGC-I and MFGC-II displayed slightly
different ranges in their parameter b, the b-values from
two databases (eggNOG and KEGG) within each MFGC
type were rather close with each other and the difference
was negligible. This simply indicates that the heterogeneity
scaling based on metabolic pathways (KEGG database) or
protein functions (eggNOG) makes little difference. This
should be expected given that, at the MFGC level, both
eggNOG and KEGG should be controlled by the same
underlying gene-level mechanisms.

(iv) As shown in Table 5, in terms of the parameter changes
associated with diseases, only IBD treatment displayed
significant difference from its healthy control in MFGC-I,
and the other diseases treatments did not exhibit any
significant differences from their healthy controls. This
result suggests that at the MFGC level, the metagenome
spatial heterogeneity is less sensitive to diseases than at the

TABLE 4 | The parameters of PLE-I (type-I power law extension) for metagenome spatial heterogeneity, in terms of the MFGC (metagenome functional gene
cluster) distribution.

Type of MFGC and database used Microbiome Treatment b SE(b) ln(a) SE[ln(a)] R p-value N m0

Type-I MFGC (eggNOG) Obesity Lean 2.119 0.020 3.187 0.157 0.996 <0.0001 95 0.058

Overweight 2.028 0.017 3.895 0.135 0.997 <0.0001 96 0.023

Type 2 diabetes Healthy 2.058 0.025 3.501 0.180 0.995 <0.0001 74 0.037

Disease 2.057 0.018 3.480 0.126 0.997 <0.0001 71 0.037

IBD Healthy 2.053 0.017 3.690 0.136 0.998 <0.0001 71 0.030

Disease 2.138 0.021 3.014 0.159 0.997 <0.0001 71 0.071

MFGC Type-I (KEGG) Obesity Lean 2.091 0.015 3.505 0.123 0.998 <0.0001 95 0.040

Overweight 2.027 0.014 4.008 0.109 0.998 <0.0001 96 0.020

Type-II diabetes Healthy 2.035 0.020 3.772 0.150 0.997 <0.0001 74 0.026

Disease 2.036 0.014 3.794 0.106 0.998 <0.0001 71 0.026

IBD Healthy 2.042 0.013 3.888 0.104 0.999 <0.0001 71 0.024

Disease 2.111 0.016 3.292 0.130 0.998 <0.0001 71 0.052

MFGC Type-II (eggNOG) Obesity Lean 1.884 0.021 4.912 0.223 0.995 <0.0001 95 0.004

Overweight 1.859 0.019 5.212 0.208 0.995 <0.0001 96 0.002

Type-II diabetes Healthy 1.783 0.059 5.771 0.614 0.962 <0.0001 74 0.001

Disease 1.715 0.091 6.461 0.937 0.915 <0.0001 71 0.000

IBD Healthy 1.967 0.024 3.992 0.260 0.995 <0.0001 71 0.016

Disease 1.937 0.021 4.295 0.232 0.996 <0.0001 71 0.010

MFGC Type-II (KEGG) Obesity Lean 1.915 0.017 4.834 0.197 0.996 <0.0001 95 0.005

Overweight 1.889 0.016 5.136 0.178 0.997 <0.0001 96 0.003

Type-II diabetes Healthy 1.830 0.054 5.572 0.577 0.970 <0.0001 74 0.001

Disease 1.806 0.078 5.856 0.831 0.942 <0.0001 71 0.001

IBD Healthy 1.988 0.021 3.997 0.234 0.996 <0.0001 71 0.017

Disease 1.961 0.018 4.257 0.201 0.997 <0.0001 71 0.012
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TABLE 5 | The p-value of the randomization test for the difference between the healthy and diseased treatments in their PLE-I (type-I power law extension) parameters in
terms of the MFGC.

MFGC Type and Databases used Microbiome Treatments b ln(a) m0

MFGC Type-I (eggNOG) Obesity Lean vs. Overweight 0.347 0.345 0.348

Type 2 diabetes Healthy vs. Disease 0.985 0.937 0.965

IBD Healthy vs. Disease 0.039 0.033 0.059

MFGC Type-I (KEGG) Obesity Lean vs. Overweight 0.442 0.465 0.444

Type 2 diabetes Healthy vs. Disease 0.987 0.913 0.947

IBD Healthy vs. Disease 0.018 0.012 0.025

MFGC Type-II (eggNOG) Obesity Lean vs. Overweight 0.421 0.388 0.432

Type 2 diabetes Healthy vs. Disease 0.551 0.556 0.597

IBD Healthy vs. Disease 0.330 0.370 0.375

MFGC Type-II (KEGG) Obesity Lean vs. Overweight 0.361 0.337 0.382

Type 2 diabetes Healthy vs. Disease 0.781 0.771 0.787

IBD Healthy vs. Disease 0.370 0.427 0.418

TABLE 6 | The p-value of Wilcoxon tests for the difference between the healthy and diseased treatments in their metagenome spatial heterogeneities and community
dominance (also see Supplementary Figure S1A for the V/M heterogeneity index and Supplementary Figure S1B for the community dominance index).

Taylor’s Power Law Extension (TPLE) Case Study Treatments Mean of Healthy Mean of Diseased P-value

Variance/mean-ratio heterogeneity Index (V/m) Obesity Lean vs. Overweight 886.50 1129.0 <0.001

Type-2 Diabetes Healthy vs. Disease 594.10 761.10 <0.001

IBD Healthy vs. Disease 786.70 1064.4 <0.001

Community dominance Index (M∗/m) Obesity Lean vs. Overweight 45.717 39.910 <0.001

Type-2 Diabetes Healthy vs. Disease 27.766 34.444 <0.001

IBD Healthy vs. Disease 28.419 37.765 <0.001

MG level, as indicated by the randomization test results
in Table 2.

MFGC-Level (Inter-MFGC) Spatial
Heterogeneity in Terms of the MFGC
(Metagenome Functional Gene Cluster)
Distribution Measured With PLE-III
In the previous section, we investigated the spatial heterogeneity
of MFGC by using the PLE-I (type-I power law extension)
modeling. That is to analyze the inter-subject heterogeneity of
their metagenomes in terms of the functional gene cluster (i.e.,
MFGC). In this section, we investigate the spatial heterogeneity at
the MFGC-level by using PLE-III (type-III power law extension).
In other words, by assuming that there exists an average MFGC
in a mixed-MFGC setting (by ignoring the difference among
MFGCs), we assess the heterogeneity of MFGCs at the average
MFGC level. Therefore, a fundamental difference between the
analysis here and the analysis in the previous section is that here,
the heterogeneity is measured in terms of a virtually averaged
MFGC (or at MFGC-level), while in the previous section, the
heterogeneity was measured in terms of the whole metagenome
(or at metagenome level).

To save page space, the results for MFGC-level spatial
heterogeneity were listed in Supplementary Table S2 in the
OSI (online Supplementary Information), from which we
summarize the following findings:

(i) The PLE-III model fitted to the MFGC tables extremely
significant with p-value < 0.0001 in all three case studies,

and this indicates the ubiquitous applicability of the PLE
for assessing the spatial (i.e., inter-subject) heterogeneity of
an ‘averaged’ MFGC.

(ii) The scaling parameter (b) of the PLE-III model ranged
narrowly [1.472, 1.654], and varied little either between the
MFGC-I and MFGC-II or between the healthy and diseased
treatments within each case study. This suggests that, the
sensitivity of the scaling parameter (b) of PLE-III to host
factors such as diseases is rather muted, and consequently
may be of limited practical applications.

(iii) Contrary with the pattern of PLE-I in the previous section,
where MFGC-I has slightly larger scaling parameter (b)
value than MFGC-II has, here MFGC-I [1,472, 1.547] has
slightly smaller b-value than MFGC-II [1.525, 1.654] does.

(iv) The scaling parameter (b) of PLE-III, estimated with KEGG
or eggNOG showed little differences, similar with the
previous PLE-I model.

(v) We also performed the randomization tests for the PLE-III
parameters (Supplementary Table S3). In most cases, the
model parameters did not showed significant differences
between the healthy and diseased treatments.

CONCLUSION AND DISCUSSION

In previous sections, we demonstrated that PLE-I and PLE-III,
originally designed to measure community spatial heterogeneity
and mixed-species population spatial aggregation in community
ecology (Taylor, 1961, 1984; Ma, 2015), can be introduced
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to (i) measure metagenome spatial heterogeneity in terms of
either MG or MFGC abundance distribution and measured with
PLE-I; or (ii) MG-level (or MFGC-level) spatial heterogeneity
measured with PL-III. The first application is a measure
at the whole metagenome (more accurately, metagenome
assemblage) level, because it measures the inter-subject (spatial)
heterogeneity within a cohort or population of individuals in
their metagenomes. The second application is a measure at MG
or MFGC level, because it measures the inter-MG or inter-MFGC
heterogeneity from the perspective of a virtually averaged MG
or MFGC. Although we used the metagenomic datasets of the
human microbiome to demonstrate the concepts and modeling
analyses, the approaches should be equally applicable to the
metagenomes of other microbiomes on the planet.

Traditionally, studies on heterogeneity have been mostly
focused on population level, and metrics for community
heterogeneity are relatively fewer. This may be to do with that
community level studies are mostly focused on community
diversity, instead. Nevertheless, heterogeneity and diversity are
not the same (Shavit et al., 2016). First, the heterogeneity is
a “group” property, while diversity can be measured with one
individual or single community. Without comparing two entities,
heterogeneity does not make sense. Second, diversity is a measure
of numbers (and relative abundances), while heterogeneity needs
to be measured by interactions and working together (Shavit
et al., 2016). For example, one may say, “zoos are diverse, and
natural ecosystems are heterogeneous” (Ayelet Shavit and Aaron
Ellison, personal communication, 22 April 2020).

Two additional heterogeneity indexes that can be used to
measure community level heterogeneity are: (i) Variance/mean
ratio (V/m) and (ii) community dominance index M∗/m. Both are
counterparts of spatial aggregation index and patchiness index
at the population level in population ecology (Taylor, 1984; Ma,
1991). Both indexes have different definitions and interpretations.
The V/m heterogeneity index is simply a ratio of the mean
species abundances (m) and corresponding variance (V), and a
larger index value indicates higher heterogeneity (Taylor, 1984;
Ma, 1991). The community dominance index (Dc) was defined
by Ma and Ellison (2018), and a larger index value indicates
lower heterogeneity. Table 6 shows the values of the computed
heterogeneity indexes for the three datasets (see Supplementary
Table S1) we used, as well as the p-values from Wilcoxon tests
for the differences between the healthy and diseased treatments
in each of the three datasets.

Obviously, the two heterogeneity indexes described above
are much simpler to implement than the power law modeling
introduced in this study. Furthermore, both indexes displayed
significant differences between the healthy and diseased
treatments in their metagenome heterogeneity. Given their
simplicity, a natural question is: what are the advantages from
using the power law modeling? The answer is that the power law
analysis we presented offers tools to synthesize and measure the
heterogeneity at various scales (MG, MFGC) across individuals
in a cohort (population), with a unified power law model, which
achieved the rare status of classic ecological laws. In fact, the
power law analysis demonstrated here can also be applied to
measure metagenome temporal stability at similar scales to the

previous spatial versions. Furthermore, the power law analysis
provides a unified modeling tool to assess and interpret the
heterogeneity from ecological, taxonomical, functional and
evolutionary perspectives, because it can be applied to both OTU
tables and MGA tables, with the exactly same mathematical
model (the power law model). When using MGA tables, it can
be universally applied to the scales of the metagenomic gene or
metagenome functional gene cluster.

Perhaps an even more compelling case for using the TPL/PLE
parameters rather than the simple heterogeneity indexes has
to do with the difference between heterogeneity and diversity.
As argued previously, heterogeneity is a “group” property;
measuring heterogeneity requires at least two entities. While
TPL/PLE can synthesize the information from potentially
unlimited number of entities (samples), the two heterogeneity
indexes previously introduced were computed from single
sample. To synthesize information from multiple samples,
additional statistics such as the mean of the heterogeneity
values, as displayed in Table 6, must be used. Nevertheless, the
distribution of heterogeneity values may satisfy the Gaussian
distribution. This may make the usage of mean problematic since
the distribution of heterogeneity per se is usually highly skewed
and follows power law distribution. In addition, it may even argue
that the two simple heterogeneity indexes are similar to diversity
measures. For example, the community dominance (M∗/m), as
heterogeneity index, may even be treated as the other side of the
evenness (diversity) coin (Ma and Ellison, 2018).
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High blood cholesterol levels are often associated with cardiovascular diseases.

Therapeutic strategies, targeting different functions involved in cholesterol transport

or synthesis, were developed to control cholesterolemia in human. However, the gut

microbiota is also involved in cholesterol regulation by direct biotransformation of

luminal cholesterol or conversion of bile salts, opening the way to the design of new

strategies to manage cholesterol level. In this report, we developed for the first time a

whole-body humanmodel of cholesterol metabolism including the gut microbiota in order

to investigate the relative impact of host and microbial pathways. We first used an animal

model to investigate the ingested cholesterol distribution in vivo. Then, using in vitro

bacterial growth experiments and metabolite measurements, we modeled the population

dynamics of bacterial strains in the presence of cholesterol or bile salts, together with their

bioconversion function. Next, after correct rescaling to mimic the activity of a complex

microbiota, we developed a whole body model of cholesterol metabolism integrating

host and microbiota mechanisms. This global model was validated with the animal

experiments. Finally, the model was numerically explored to give a further insight into

the different flux involved in cholesterol turn-over. According to this model, bacterial

pathways appear as an important driver of cholesterol regulation, reinforcing the need

for development of novel “bacteria-based” strategies for cholesterol management.

Keywords: microbiota, holobiont, microbiome, functional ecology, cholesterol metabolism, whole body model,

mathematical model, system biology

1. INTRODUCTION

Cholesterol plays an essential role in the human body (Arnold and Kwiterovich, 2003). It is a
key component of cellular membranes, being involved in membrane fluidity, cellular organization,
and signaling (Ikonen, 2008; Mesmin and Maxfield, 2009). Cholesterol also serves as a precursor
of many biological molecules including bile acids, oxysterols, steroid hormones, and vitamin D
(Schroepfer Jr, 2000; Tabas, 2002). In humans, 30% of total body cholesterol derive from the
diet (exogenous or dietary cholesterol), the remaining 70% are mainly synthesized in the liver
(endogenous cholesterol) (Gylling, 2004). Over the last decades, several studies have aimed at
deciphering the pathways involved in cholesterol homeostasis (Gylling, 2004; Iqbal and Hussain,
2009; Russell, 2009; Millar and Cuchel, 2018). In mammalian bodies, cholesterol balance is
maintained by tightly regulated interactions between cholesterol synthesis, bile salts (BS) synthesis,
absorption, and excretion.
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Although cholesterol exhibits multiple physiological
functions, high blood cholesterol levels are often associated
to cardiovascular diseases (CVD), the leading cause of death
in the world (World Health Organization, 2017). Current
therapeutic strategies mainly target host cholesterol biosynthesis
or transport, with no cholesterolemia reduction in a significant
proportion of patients and major side effects (Thompson et al.,
2002; Potiron et al., 2015). Recently, the gut microbiota has
emerged as a key player that influences metabolic health and
disease (Doré et al., 2017). It is possible that the gut microbiota
could contribute to cholesterol metabolism mostly through
(i) bacterial deconjugation of BS by bile salts hydrolase (BSH)
enzymes and (ii) cholesterol conversion into coprostanol, a
non-absorbable molecule excreted in feces (Begley et al., 2006;
Gérard et al., 2007).

Accumulating data regarding each pathway have been
reported (Swann et al., 2011; Jones et al., 2012; Joyce et al.,
2014; Ridlon et al., 2014; Kriaa et al., 2019), but functional
and mechanistic insights into their impact on whole-body
cholesterol homeostasis are still lacking. To better understand the
complex interplay between each human compartments, whole-
bodymathematical models were previously described (van de Pas
et al., 2010, 2012; Mc Auley et al., 2012; Morgan et al., 2016; Read
and Holmes, 2017). However, existing models were focused on
human cholesterol biosynthesis or lipoprotein metabolism and
do not include the gut microbiota as a crucial and new player in
this complex multicompartments cycle (Pool et al., 2018).

The aim of this work is to provide an estimation of the impact
of the microbial activity on the cholesterol cycle. Since BS are
naturally present in the small intestine lumen where sterol and
BS absorption take place, we hypothesized that bacterial BS
deconjugation and cholesterol-to-coprostanol conversion could
impact the cholesterol fate in the host body compartments. In
order to assess this impact, we adopted an integrative approach
in which literature based knowledge as well as in vitro and
in vivo experimental data are used to generate a whole-body
mathematical model of cholesterol metabolism in human
holobiont including its associated gut microbiota. In a dedicated
experiment, cholesterol was tracked in mice, in order to
investigate the distribution of ingested cholesterol in different
host compartments, and determine the amount of bioavailable
cholesterol in the gastrointestinal tract. We also characterized
in vitro BS deconjugation and cholesterol-to-coprostanol
conversion activity in several commensal bacterial strains.
Finally, we developed a mathematical model to link all the
experimental data, starting from existing models in the literature
(van de Pas et al., 2010, 2012; Mc Auley et al., 2012; Morgan
et al., 2016). The different bacterial pathways for cholesterol
and BS metabolism were calibrated and integrated in the model,
allowing for differential comparison. Numerical exploration was
then conducted to decipher the relative impact of the host and
the microbiota metabolisms on the overall cholesterol cycle.

2. METHODS AND MATERIALS

2.1. Chemicals, Media, and Reagents
Deuterated cholesterol-d5 [cholesterol-2,2,4,4,6-d5] was
purchased from Medical Isotopes, Inc. Medium-chain

triglycerides (MCT) were purchased from Now food
(Healthcenter). Reagents and standards were supplied for
sterol extraction by gas-chromatographic/mass-spectrometry
analysis (GC/MS). Chloroform, cyclohexane, methanol were
purchased from Merck. Butylated Hydroxytoluene (BHT)
was supplied from Sigma and used to prepare BHT solution
in methanol (5 mgmL−1). Hexandiethylether was purchased
from VWR Chemicals. Analytical standard of desmosterol-d6
[cholest-5,24-dien-3-ol] was purchased (Avanti R© Polar lipid,
Inc.). Desmosterol solution was prepared (200 µmol L−1)
with chloroform and used for cholesterol quantification.
Derivatization reagent N,O-bis(trimethylsilyl)trifluoroacetamid
(BSTFA) with 1% trimethylchlorosilane (TMCS) was
obtained from REGIS technology, Inc. Cholesterol, sodium
taurocholate hydrate, sodium glycocholate hydrate, sodium
taurodeoxycholic acid hydrate and sodium glycodeoxycholic
acid hydrate, sodium taurochenodeoxycholic acid hydrate
and sodium glycochenodeoxycholic acid hydrate, ninhydrin,
and trichloroacetic acid were purchased from Sigma-Aldrich.
Bacteria were grown in Brain Heart Infusion-Yeast extract-
Hemin medium (BHI-YH) containing: 5 g L−1 of yeast extract,
5 mg L−1 of hemin, 2 mg L−1 of vitamin K, and 0.5 g L−1 of
cysteine (all products from Sigma-Aldrich). This media was
supplemented when necessary with cholesterol and BS according
to the supplier recommendations.

2.2. Bacterial Growth Procedure and BSH
Assays
Bacteroides xylanisolvens XB1A and Bacteroides sp. D8 were
grown in standard BHI-YH broth. All cultures were grown at
37◦C in anaerobic conditions (Freter chamber Jacomex, France,
85% N2, 10% H2, 5% CO2) during 24 h. Effect of bile acids on
bacterial growth was tested in BHI-YH supplemented with 1 and
30 mM of bile acids (Sigma). For cell lysate preparation pellets
were washed twice in 100 mM sodium-phosphate buffer pH 6.5
and resuspended in the same buffer. Cell disruption was done
by sonication at 4◦C during 1 min (three cycles of 10 s pulses
at amplitude of 40%) using a Vibra-Cell TM 72408 Sonicator
then, cell debris were removed by centrifugation (12,000 g,
30 min at 4◦C). Protein concentration was determined by
measuring the UV absorption at 280 nmusing aNanodrop device
(Thermo Fisher Scientific). The BSH activity was measured by
the determination of the amount of the released amino acid
residues using two BS as previously reported (Tanaka et al., 1999).
At standard conditions, the reaction mixture contained 50 µL
of enzyme preparation at a suitable dilution, 10 mM glyco and
tauro-conjugated BS with 10 mM sodium phosphate pH 6.5 in a
final volume of 1 mL.

The mixture was incubated for 30 min at 37◦C then the
reaction was stopped by adding 20% trichloroacetic acid and
incubated at 37◦C during 30 min. Subsequently, the reaction
mixture was centrifuged (12,000 g, 15 min, 4◦C) and the
supernatant was recovered. For 200 µL of sample we added 500
µL of 1% ninhydrin, 1.2 mL of glycerol 30% and 200 µL of
500 mM citrate buffer pH 5.5. Then, the amount of amino acid
released from conjugated bile acids was determined bymeasuring
the absorbance at 570 nm using a UV-spectrophotometer
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(Spectro-biochrom LibraS11). One unit of BSH activity was
defined as the amount of enzyme catalyzing the release of 1µmol
of amino acids per min under the above specified conditions.

2.3. Animals and Experimental Design
Eleven-week-old male wild type C57BL/6 mice were purchased
from the Laboratory Janvier (Le Gesnest, St Isle, France), and
maintained in our animal facilities (INRA, UMR1319 Micalis,
Anaxem facilities) under specific pathogen-free conditions.
Throughout the experimental period, mice were provided free
access to water and a standard diet containing 0.02% of
cholesterol (SAFE, R03-40) (Wang and Carey, 2003). To curtail
coprophagy during the study, animals were housed in individual
metabolic cages with wire mesh bottoms (Wang et al., 2001).
All procedures were performed according to the European
Community Rules and approved by the Animal Care Committee
(C2E-45 COMETHEA) with authorization number A78-322-6.
Then, a group of experimental mice received an oral dose of
0.6 mg deuterated cholesterol-d5 dissolved in 200 µL MCT (n
= 6) and a group of control mice received 200 µL of MCT as
previously reported (Jakulj et al., 2016). After 3 days, feces were
recovered for sterol quantification (n = 3). Blood collected and
tissue samples were collected following animal euthanasia. Serum
was collected after centrifugation (3,000 g during 10 min, 4◦C)
in presence of 2 mM EDTA. All samples were frozen in liquid
nitrogen then stored at−80◦C.

2.4. Sterol Extraction and Quantification
Plasma, feces and tissue sterols were extracted in the presence of
an internal standard, deuterated desmosterol-d6 (200 µmol L−1)
according to the Folch method with some modifications (Folch
et al., 1957). Each tissue and feces was dried (approximately
0.3 g), powdered and homogenized in chloroform-methanol (2:1
v/v) at 63◦C overnight (Igel et al., 2003). The same protocol was
used for plasma aliquots (200 µL) after previous homogenization
during 1 h. After addition of water (1:1 v/v), samples were
centrifuged and the organic phase was collected. The organic
dried extract, was resuspended in 2 mL methanol-NaOH 1 M, 40
µL BHT-Methanol and 40 µL methanol-EDTA at 60◦C during
1 h allowing the lipids saponification. Subsequently, lipids were
again extracted using hexan-diethyl-ether (1:1 v/v). After mixture
and centrifugation of samples, the organic phase was collected
and dried followed by reconstitution in 1.4 mL of cyclohexane.
The silylation of sterols was performed with 60µL of BSTFAwith
1% TMCS and 1 h incubation at 60◦C. After homogenization and
centrifugation pellets were suspended in 60 µL of cyclohexane.
The samples were stored at−80◦C until the GC/MS analysis.

2.5. Mathematical Model of Specialized
Bacterial Strains in Cholesterol and BS
Metabolisms
Dynamical systems describing bacterial growth and metabolite
concentration dynamics were fitted with the growth assays
of Bacteroides xylanisolvens XB1A and Bacteroides sp D8. A
minimal logistic ordinary differential equation (ODE) (resp.
delayed differential equation (DDE)) was designed to model
Bacteroides sp. D8 (resp. Bacteroides xylanisolvensXB1A) growth,

TABLE 1 | MCMC parameter estimation results.

Parameter Mean Std Geweke

Bacteroides Sp D8

µBspD8 0.44772 0.0281 0.98987

kccD8 0.27441 0.21987 0.76473

KD8 1.6681 1.2765 0.94418

Bacteroides xylanosolvens

µBxyl 1.9375 0.95771 0.82175

βBxyl 1.1186 0.57418 0.8144

δ 24.495 0.29425 0.99817

KBxyl 0.10439 0.0936 0.88024

We indicate, for each parameter, the mean and the standard deviation of the posterior

parameter distribution given by theMCMCBayesian estimation, together with the Geweke

index of the corresponding Markov chains. The corresponding posteriors are given in

Figure S1.

supplemented by metabolic and repression mechanisms (see
Results section for the detailedmodels). The equation parameters
were inferred with a Bayesian inference method based on the
DRAM sampling method (Haario et al., 2006) and a normal
likelihood function, or linear regression (for BSH assays) after
removal of outliers. Markov chains convergence was checked
with the Geweke criterion.

2.6. Whole Body Model of Cholesterol
Metabolism
We built our compartment dynamic model on the global
structure of a previously reported whole-body model (Mc Auley
et al., 2012; Morgan et al., 2016), which included the
enterohepathic BS cycle, the plasmatic regulation and transport
of cholesterol from the intestine toward the peripheral tissues
and the liver, the coupling between bile acids and cholesterol
metabolism through bile production, and the intestinal flux:
dietary influx, hepatic cholesterol release in the digestive
track, and excretion in feces. As in Morgan et al. (2016), a
luminal compartment was introduced including the luminal
primary BS and the luminal cholesterol, to which we added
the microbiota. Furthermore, we simplified several uptake and
transport processes that were not relevant for our study,
following (van de Pas et al., 2011, 2012). A global view of the
model is presented in Figure 3, the precise model description can
be found in section 3.3, and the model parameter in the Table S1,
Table 1).

2.7. Whole-Body Model Calibration
We adapted a strategy previously used for model calibration
(van de Pas et al., 2011, 2012). Documented steady-state flux
and levels of cholesterol in mice were collected, discarding at
this stage the bacterial metabolism. The unknown flux were
reconstructed through mass-conservation equations: at steady
state, flux balance equations involving the unknown flux are
derived. Additional equations are set to conserve the ratio of
transport flux between blood and liver compartments. At end, as
many conservation equations as unknown flux are defined. All
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the parameters were then obtained straightforwardly by direct
computation of the parameters, given the flux and cholesterol
levels at steady-state, as indicated in Table S1. Next, we upscaled
the growth models of specialized strains obtained in vitro to
mimic the metabolism of a complex microbiota in vivo: the
dynamics of coprostanol degradation was calibrated on in vivo
data collected from the literature (see Table S1 and Table 2 for
references), and the BS degradation was deduced from the BSH
activity measured during the animal experiments. Finally, time
was rescalled between the in vitro and the whole-body model,
which allowed to replace the DDE for Bacteroides xylanisolvens
XB1A by a non-delayed ODE (cf section 3.3 for details).

2.8. Numerical Implementation
The model was implemented in the Matlab software
(MathWorks, Natick, MA, USA). The time integration
of the ODEs and DDEs was achieved with, respectively,
the ode15s and the dde23 matlab functions. Bayesian
inference was performed with the MCMC matlab toolbox
(https://mjlaine.github.io/mcmcstat/) (Haario et al., 2001, 2006).
Linear regression was performed with the R lm function.

2.9. Sensitivity Analysis
We first studied the local sensitivity of model outputs
respectively to the bacterial levels. Namely, we applied to the
BS and cholesterol converter carrying capacity (respectively
PBSDMAX and CCCMAX) a multiplicative coefficient q ∈

[ 1
100 ,

1
50 ,

1
20 ,

1
10 ,

1
5 ,

1
2 , 2, 5, 10, 20, 50, 100], and we observed the

impact of these variations on steady-state cholesterol and
BS flux and levels. We then studied the global sensitivity
of our model to flux parameters by computing parameter
Sobol index (Saltelli et al., 1999) and Partial Correlation
Coefficients (PCC) (Saltelli et al., 2000) of the d = 14 main
parameters involved in the flux of the BS and cholesterol
cycles. Namely, we selected for the BS enterohepathic cycle
the bacterial carrying capacity of BS converters (PBSDMAX),
BS synthesis rate (kHBSs), BS release in the lumen (kHBSo)
and absorption by the intestinal epithelium (kLPBSa). For
the cholesterol cycle, we selected the bacterial capacity for
cholesterol converters (CCCMAX), cholesterol synthesis rates
(ICSmax, HCSmax and PCSmax for respectively the intestinal
epithelium, the liver and the peripheral tissues, that were
shifted all together), transport from blood to liver (kLDL,ha
and kHDL,ha, shifted conjointly), transport from liver to blood
(kHCo), cholesterol release (BCRmax) and dietary intake (fmeal).
We sampled uniformly (n = 11 · 105 samples) the
parameter hypercube ranging in ± 50 % the basal value
obtained after model calibration, except for the bacterial
carrying capacities that were uniformly shifted between 0.01
and 100 times the basal value, with the fast99 method
(Saltelli et al., 1999). The R package sensitivity (https://cran.r-
project.org/web/packages/sensitivity Iooss and Lemaître, 2015)
was used to build the experimental design and to compute the
first order Sobol index and the PCC with the function fast99 and
pcc respectively.

3. RESULTS

3.1. In-vivo Cholesterol Body Distribution
To check the cholesterol body distribution, we gave to
three mice a standard diet supplemented with a dose of
deuterated cholesterol. The distribution of labeled cholesterol
among compartments after 3 days is displayed in Figure 1.
We observed that about half of the labeled cholesterol was
excreted in the feces (48.1%) and about one quarter (26.4%)
was stocked in the mice tissues (plasma, peripheral tissue
and liver) while the last quarter (25.5%) was still circulating
in the intestinal lumen and tissues. This indicates that
the cholesterol pool available for bacterial biotransformation
represents an important fraction of the ingested cholesterol,
suggesting that bacteria could have a noticeable impact on
cholesterol fate.

3.2. In vitro Data-Based Models of
Bacterial Cholesterol and BS Metabolism
We next used the bacterial growth assays to model the bacterial
population dynamics and their functions related to cholesterol
and BS. For each assay, we tested several models and chose the
simplest one, i.e., the model providing the best trade off between
goodness of fit and number of parameters.

3.2.1. Bacteroides sp. D8 Cholesterol Conversion
We first modeled the dynamics of Bacteroides sp D8 normalized

density (BspD8 :=

[BspD8]

[BspD8]max
)
, where [BspD8] is the bacterial

concentration ([CFUmL−1]) and [BspD8]max is the maximal
observed bacterial concentration), with the logistic equation

∂tBspD8 = µBspD8BspD8
(

1− BspD8
)

. (1)

Note that no dependency with cholesterol levels was introduced
in the logistic model. This simple model has been selected
because we aimed at modeling the bacterial growth in a complex
nutritional environment, and not only the catabolic capabilities
obtained from cholesterol degradation. The multiple pathways
activated during the growth on BHI-YH are summed up in the
growth rate of the logistic model.

Cholesterol (Cl) is converted to coprostanol (Cp) so that their
respective fraction follow equations

∂tCl = −kccD8
BspD8Cl

KD8 + BspD8
, ∂tCp = kccD8

BspD8Cl

KD8 + BspD8
.

(2)

The parameter µBspD8 , kccD8, and KD8 were inferred with
Bayesian inference, processing conjointly the growth assays
with different initial BS concentrations. We used the uniform
prior µBspD8 ∼ U(0.1αBspD8 ,2αBspD8 )

, kccD8 ∼ U(10−5 ,1), and

KD8 ∼ U(10−3,4) where αBspD8 is an approximation of the
BspD8 growth rate during the log-phase. The posterior parameter
distributions are displayed in Figure S1 and the mean and
variance values can be found in Table 1, together with the
corresponding geweke index of markov chain convergence.
Bacteria and metabolite levels and data fit are displayed
in Figure 2.
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TABLE 2 | Parameters used for the calibration of the whole-body cholesterol cycle.

Parameter Value Unit Description References

Cholesterol steady state fluxes in the whole body model

sskin 0.78 mg day−1 Steady state dietary cholesterol influx. van de Pas et al., 2011

ssref
kLCe

0.8734 mg day−1 Reference total steady state fecal cholesterol excretion. Van der Velde et al., 2007

ssrefchol,copro 0.1 mg day−1 Steady state excreted coprostanol to cholesterol ratio. Sekimoto et al., 1983

sskLCe 1.2352 mg day−1 Total steady state fecal cholesterol excretion.

sskLCe = (1− ssrefchol,copro/(1+ ssrefchol,copro))ss
ref
kLCe

MC

sskCC 0.12352 mg day−1 Steady state conversion of cholesterol to coprostanol.

sskCC = ssrefchol,copro/(1+ ssrefchol,copro)ss
ref
kLCe

MC

sskLCo 0.4852 mg day−1 Steady state direct luminal release of intestinal cholesterol. Van der Velde et al., 2007

ssBCRmax 0.1941 mg day−1 Steady state hepatic cholesterol biosynthesis. van de Pas et al., 2011

sskLCa 0.097 mg day−1 Steady state uptake of luminal cholesterol

sskLCa = sskin + ssBCRmax + sskLCo − sskLCe − sskCC.

MC

ssICSmax 0.87 mg day−1 Steady state intestinal cholesterol biosynthesis. van de Pas et al., 2011

ss1θI
,kICo 0.097 mg day−1 Steady state uptake of intestinal cholesterol by HDL. Van der Velde et al., 2007

ssθI ,kICo 0.3882 mg day−1 Steady state uptake of intestinal cholesterol by LDL

ssθI ,kICo = sskLCa + ssICSmax − ss1,θI ,kICo − sskLCo.

MC

ssHCSmax 1.75 mg day−1 Steady state hepatic cholesterol biosynthesis. van de Pas et al., 2011

sskHCest 0.9705 mg day−1 Steady state hepatic cholesterol esterification rate. Van der Velde et al., 2007

sskHCunest 0.9705 mg day−1 Steady state rate of unesterification

sskHCunest = sskHCest.

MC

ssθ ,kHCo 0.9705 mg day−1 Steady state hepatic cholesterol uptake by LDL van de Pas et al., 2011

ssref1,θH ,kHCo
0.7764 mg day−1 Reference Steady state hepatic cholesterol uptake by HDL Van der Velde et al., 2007

ssrefkLDLha 1.1646 mg day−1 Reference steady state absorption of LDL cholesterol by liver. Van der Velde et al., 2007

ssrefkHDLha 1.7469 mg day−1 Reference steady state HDL cholesterol absorption by liver van de Pas et al., 2011

sskLDLha 1.2542 mg day−1 Steady state absorption of LDL cholesterol by the liver.

sskLDLha = (ssθI ,kICo + ssθH ,kHCo)/(1+

ssrefkLDLpa

ssrefkLDLha

).

MC

sskHDLha 1.5856 mg day−1 Steady state absorption of LDL cholesterol by the liver.

sskHDLha = (ssHCSmax + sskLDLha− ssθH ,kHCo− sskHBSs− ssBCRmax )/(
ssref1,θH ,kHCo

ssrefkHDLha

−1).

MC

ss1,θH ,kHCo 0.7047 mg day−1 Steady state uptake of hepatic cholesterol by HDL

ss1,θH ,kHCo = (ssHCSmax +sskLDLha−ssθH ,kHCo−sskHBSs−ssBCRmax )/(1−
ssrefkHDLha

ssref1,θH ,kHCo

).

MC

ssBH 2.9115 mg day−1 Total steady state absorption of cholesterol by the liver from the blood.

ssBH = sskLDLha + sskHDLha

MC

ssPCSmax 1.16 mg day−1 Steady state peripheral cholesterol biosynthesis. van de Pas et al., 2011

ssrefkLDLpa 0.0970 mg day−1 Ref. steady state absorption of LDL cholesterol by peripheral tissues. Van der Velde et al., 2007

sskLDLpa 0.1045 mg day−1 Steady state absorption of LDL cholesterol by the peripheral tissues.

sskLDLpa = (ssθI ,kICo + ssθH ,kHCo)/(1+

ssrefkLDLha

ssrefkLDLpa

).

MC

ss1,θP ,kPCo 0.7839 mg day−1 Steady state uptake of peripheral cholesterol by HDL

ss1,θP ,kPCo = ssPCSmax + sskLDLpa − sskPloss.

MC

sskPloss 0.4852 mg day−1 Steady state cholesterol loss by peripheral metabolism

sskPloss = sskLCa + ssHCSmax + ssPCSmax + ssICSmax − ssBCRmax − sskHBSs − sskLCo.

MC

We define for each compartment, the steady state fluxes involved in the cholesterol transport processes and a reference in the literature. MC: parameter derived from mass conservation

arguments with the given equation. BS cycle steady state fluxes are given in Table S6 (Supplementary Material).
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3.2.2. Bacteroides xylanosolvens BS Conversion
We then modeled the Bacteroides xylanosolvens normalized

population dynamics (Bxyl :=
[Bxyl]
¯[Bxyl]max

, where [Bxyl] is

the bacterial concentration ([CFUmL−1]) and ( ¯[Bxyl]max) is
the maximal observed bacterial concentration), with a logistic
equation and a repression term that model the bacterial
sensitivity to the primary bile salts (PBS) with delay δ:

∂tBxyl(t) = µBxylBxyl(t)
(

1− Bxyl(t)
)

− βBxyl
Bxyl [PBS](t − δ)

KBxyl + [PBS](t − δ)
. (3)

The deconjugation of PBS into secondary bile salts (SBS) follows
the equations

∂t[PBS] = −
˜kBxyl(Bxyl)[PBS](t),

∂t[SBS] = ˜kBxyl(Bxyl)[PBS](t). (4)

The parameter ˜kBxyl(Bxyl)([h
−1]) representing the degradation

rate induced by the bacteria (that varies with Bxyl) was given by
the enzyme assays with the following heuristic.

The enzyme assays allowed to measure
ABSH[nmolmin−1 mgprot

−1] which was the SBS production
rate by gram of total proteins in the sample for an initial BS
concentration [BS]0([nmol.mL−1]) in the growth media. Note
that ABSH varied with Bxyl so that ABSH := ABSH(Bxyl). Hence

˜kBxyl(Bxyl) := ˜Tk
λ(Bxyl)

[BS]0
ABSH(Bxyl)

where ˜Tk = 60 min h−1 was a time rescaling coefficient
and λ(Bxyl)([mgprot .mL−1]) was the total protein production by
mL of the population Bxyl. The dependence of BSH activity
ABSH(Bxyl) to bacteria levels was first approximated by linear
regression on the data, giving ABSH(Bxyl) := aBSHBxyl + bBSH
with aBSH = 19.2466 (p < 2.10−3) and bBSH = −0.9437
(p= 0.807). As the intercept value was not significant, bBSH was
left null, so that ABSH(Bxyl) := aBSHBxyl. The total protein
levels in bacterial cells λ(Bxyl) was derived from the literature
by writing

λ(Bxyl) := C̃λdc(1− cw)cpVc
¯[Bxyl]maxBxyl

with C̃λ = 10−9mgg−1mLµm−3 a concentration rescaling
coefficient, dc(gmL−1) the bacterial mass density, cw([−]) the
proportion of water in the cell, cp([−]) the fraction of protein in
the dry mass, and Vc the volume of one bacteria, assumed to be
1µm3.CFU−1. The value of the different parameters can be found
in Table S2.

Hence, noting kBxyl :=
˜TkaBSH
[BS]0

C̃λdc(1 − cw)cpVc
¯[Bxyl]max, we

rewrite Equation (4) with

∂t[PBS] = −kBxylBxyl(t)
2[PBS](t),

∂t[SBS] = kBxylBxyl(t)
2[PBS](t). (5)

FIGURE 1 | Averaged distribution of labeled cholesterol in mice. The

proportion of D5 labeled cholesterol in each compartment 3 days after

ingestion is displayed. We obtained the average amount (n = 3) of cholesterol

in each compartment by GC/MS with internal standard (see section Materials

and Methods). During experiments, cholesterol distribution was measured with

a finer granularity than in the mathematical model: the central pie chart

represents the distribution among the different compartments measured

experimentally whereas the external pie chart indicates the corresponding

distribution compartments represented in the mathematical model. The

external pie is obtained by pooling the corresponding sub-compartments

sampled during experiments. We observed that half of the labeled cholesterol

ended up in the feces, while about one quarter remained in the intestinal

compartment.

The parameters µBxyl, βBxyl, δ and KBxyl were inferred with
the uniform prior µBxyl ∼ U(0.6αBxyl ,10αBxyl), βBxyl ∼ U(10−4 ,8),

KBxyl ∼ U(10−3 ,3), and δ ∼ U(15,25) where αBxyl approximates
the Bxyl growth rate during the log-phase from the data.
The posterior distributions are displayed in Figure S1 and
the mean and variance values can be found in Table 1,
together with the corresponding geweke index of markov
chain convergence. Model output and data fit are displayed
in Figure 2.

3.3. Whole Body Model Including the Gut
Microbiota
We first detailed the luminal intestinal compartment, where the
bacterial activity takes place: we upscaled the in vitro model
to be representative of bacterial activities observed in vivo. We
next presented the remaining processes of the whole body model
of cholesterol cycle, all located in host compartments. A global
view of the model is presented in Figure 3. A nomenclature
of the different unknowns of the model can be found
in Table S3.
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FIGURE 2 | Fit of the bacterial growth models with the data. We display the predictive envelopes of the model by sampling parameter values from the posterior

distributions: the black bold line represent the median simulation. The gray areas in the plot correspond to 50, 90, 95, and 99% posterior regions. Data mean and

95% confidence intervals are plotted with green dots and error bars.

3.3.1. Luminal Compartment Including Microbiota
Bacterial growth: the dynamics of the functional bacterial
populations involved in cholesterol-to-coprostanol conversion
(CCC [−]) or primary-bile-salts deconjugation (PBSD [−]) in the
gut were derived from the in vitro experiments by taking

∂tCCC = µCCCCCC(CCCMAX − CCC), (6)

∂tPBSD = µPBSDPBSD(PBSDMAX − PBSD)

− dPBSD
[LPBS]PBSD

(KPBSD + [LPBS])
. (7)

The rescaled growth rates µCCC := 24µBspD8
bgut,max

¯[BspD8]max

(day−1)

and µPBSD := 24µBxyl
bgut,max

¯[Bxyl]max

(day−1) were derived from the

inferred growth rates of Equations (1)–(3), and bgut,max =

5.0 ∗ 1e9 CFUmL−1, the bacterial levels in the small intestine
(Bazett et al., 2016). The terms dPBSD := 24βBxyl and
KPBSD := wPBSKBxyl set the PBSD population susceptibility

to luminal PBS concentration [LPBS](mg.L−1), where wPBS :=

467, 847mg.mmol−1 was the molecular weight of PBS. Note
that we removed in (7) the delay term δ of Equation (3).
Indeed, after time rescaling, the delay had very little impact:

when we replaced Equation (7) by its time-delayed original
version (3), we observed a relative difference lower than 10−6

in L2(0,T) norm. The parameters CCCMAX and PBSDMAX

represent the bacterial carrying capacity. They are set to 1 in the
basal simulations but will be shifted during model exploration
(cf. sections 3.5, 3.6).

Luminal primary bile salts (LPBS) dynamics: next, we
adapted the in vitro BS conversion model to the BSH activity
of a complex microbial in vivo with a suitable upscale
of the parameters. Namely, kPBSD, the rate of primary to
secondary BS conversion by the microbiota, was derived from
the formula

kPBSD := kBxyl
ABSH,micbgut,max

ABSH([Bxyl]max)

where ABSH,mic([nmolmin−1 mgprot
−1]) was the BSH activity

measured in the feces collected during the in vivo experiments.
Additional mechanisms of the LPBS dynamics were the release
of hepatic bile salts HBS through the caniculi with rate kHBSo
([day−1])— first step of the enterohepatic circulation. A major
part of PBS is reabsorbed in the distal ileum through direct
absorption by the epithelium of an emulsion of cholesterol and
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FIGURE 3 | Structure of the model of whole-body cholesterol metabolism. The different compartments included in the model are displayed as gray boxes. The

cholesterol flux are indicated by arrows. The gray arrows display the dietary cholesterol influx while the black arrows show the excretion and the orange arrows

represent the bacterial transformations. The entero-hepatic BS cycle is displayed in light blue, while the cholesterol cycle is represented in green. The yellow arrows

represent the cholesterol biosynthesis. fmeal , dietary cholesterol; LC, luminal cholesterol; CCC, coprostanol-to-cholesterol converter; LPBS, luminal primary bile salts;

PBSD, primary bile salts converter; EC, excreted cholesterol; EPBS, excreted bile salts; ECP, excreted coprostanol; ESBS, excreted secondary bile salts; IPBS,

intestinal primary bile salts; IC, intestinal cholesterol; LDL, low density lipoprotein; HDL, high-density lipoprotein; HC, hepatic cholesterol; HCE, hepatic cholesterol

esters; HBS, hepatic bile salts; PC, peripheral cholesterol; kLCe, Luminal cholesterol excretion; kcc, Cholesterol conversion to coprostanol; kLPBSe, Luminal PBS

excretion; kLPBSc, Luminal PBS conversion to SBS; kLCa, Luminal cholesterol absorption; kLPBSa, Luminal PBS absorption; kLCo, Epithelial cholesterol secretion in

lumen; ICSMAX , Intestinal synthesis maximal rate; kICo, Intestinal cholesterol outflow; θI, Proportion of cholesterol in LDL; kIPBSa, PBS absorption by the liver; kHBSo, BS

outflow in lumen; kLDLpa, peripheral absorption in LDL pool; PCSMAX , Peripheral synthesis maximal rate; kPCo, Peripheral cholesterol outflow; kP,loss, Cholesterol

storage; kHCo, Epithelial cholesterol outflow; θH, proportion of cholesterol in LDL; kHBSs, BS synthesis from cholesterol; BCRMAX , Chol. release maximal rate; HCSMAX ,

Hepatic synthesis max. rate; kHCest, Esterification; kHCunest, Unesterification; kLDLha, Hepatic absorption in LDL pool; kHDLha, Hepatic absorption in HDL pool.

BS with rate kLCa ([Lmg−1 day−1]). A residual excretion through
the feces was modeled with the rate kLPBSe ([day−1]). This
resulted in the equation

∂t[LPBS] =
VH

VL
kHBSo[HBS]− kLPBSD[LPBS]PBSD

2

− kLCa[LC][LPBS]− kLPBSe[LPBS]. (8)

where VL and VH ([L]) were the volumes of the luminal and
hepatic compartments.

Luminal cholesterol (LC) dynamics: LC mainly comes from
the dietary intake fmeal and an hepatic flux through the biliary
canal, modulated by the hepatic cholesterol concentration [HC]
(Mc Auley et al., 2012). When [HC] is above an hepatic
cholesterolemia threshold BCRt , the flux reaches a maximal
rate BCRmax while it collapses when the hepatic cholesterol
level is below BCRt . The sensitivity of this regulation is driven
by the parameter BS ([−]). An additional influx comes from
the intestinal epithelium, with rate kLCo, modulated by LPBS
(Van der Velde et al., 2007). Additional sinks are the natural

excretionmodeled by a constant outflow kLCe, and the cholesterol
absorption by the intestinal tissues promoted by the bile salt.

To characterize in vivo the cholesterol-to-coprostanol
conversion, we used literature data for the ratio Qcol,cop :=

[EC]
[ECP]

between excreted cholesterol ([EC]) and coprostanol ([ECP])
levels in the feces. Low human converters have a ratio
Qcol,cop ≃ 0.01, whereas high human converters have a
ratio up to Qcol,cop ≃ 4 (Sekimoto et al., 1983). We assumed
an intermediary conversion ratio by taking Qcol,cop = 0.1
and we set the conversion time rate kcc := Qcol,copkLCe.
Furthermore, we properly rescale the KD8 Monod constant by

taking KCCC = KD8

¯[BspD8]max
bgut,max

. We got at end

∂t[LC] =
fmeal

VL
+

VH

VL

BCRmax

1+
(

BCRt
[HC]

)BS
− kLCa[LC][LPBS]

+

VI

VL
kLCo[IC][LPBS]− kLCe[LC]− kcc

[LC]CCC

KCCC + CCC
. (9)
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3.3.2. Enterohepatic BS Cycle
A part of the LPBS is directly excreted into the faecall
compartment EPBS with rate kLPBSe or is degraded by the BSH
producers into the excreted secondary bile salts compartment
ESBS. The total amount of excreted compounds was followed
up, but a density was computed when needed by dividing by
the total excretion volume VE(t) at time t, estimated from the
daily stool volume Vst with formula VE(t) = Vstt. The other
part is absorbed together with cholesterol with rate kLCa to
constitute an intestinal tissue PBS pool. Then, cholesterol and BS
are transported with rate kIPBSa to the liver through the portal
vein in order to continue the enterohepatic cycle. In the liver,
cholesterol-to-BS biotransformation takes place; it was modeled
by an overall transformation rate kHBSs modulated by a negative
retro-control of the hepatic bile salts levels HBS. We finally got
the dynamics of the BS in the excreted compartment EPBS and
ESBS, in the intestinal tissues ([IPBS]) and in the liver ([HBS]):

∂tEPBS = VLkLPBSe[LPBS], (10)

∂tESBS = VLkLPBSD[LPBS]PBSD
2, (11)

∂t[IPBS] =
VL

VI
kLCa[LC][LPBS]− kIPBSa[IPBS], (12)

∂t[HBS] = kHBSs
[HC]

[HBS]
− kHBSo[HBS]+

VI

VH
kIPBSa[IPBS].

(13)

We also had [EPBS](t) = EPBS(t)/VE(t) and [ESBS](t) =

ESBS(t)/VE(t).

3.3.3. Whole-Body Dynamics of Cholesterol
In the lumen, the cholesterol is distributed between the intestinal
tissues (through absorption) and the excretion compartment.

3.3.3.1. Excreted cholesterol
A part of the luminal cholesterol is transported into the
excreted cholesterol pool (EC) in the feces while another
part is biotransformed into coprostanol: we assumed that the
coprostanol created in the lumen was directly excreted into the
feces in the excreted coprostanol pool (ECP). Again, we tracked
the total amount of excreted components, and recovered density
by dividing by VE(t).

∂tEC = VLkLCe[LC], (14)

∂tECP = VLkcc
[LC]CCC

KCCC + CCC
. (15)

3.3.3.2. Cholesterol in intestinal tissues
In the intestinal mucosa, additionally to the absorption of the
luminal cholesterol and the direct release of cholesterol into
the lumen, an endogenous cholesterol synthesis was considered.
As in Mc Auley et al. (2012), we assumed that the intestinal
tissues activate the cholesterol synthesis when the free cholesterol
pool reaches a minimal threshold ICt . The cholesterol is then
produced with a constant rate ICSmax and the transition between
the production and the resting regimes is modulated by a

sensitivity parameter IS. Finally, intestinal cholesterol flows
toward the plasmatic compartment with a rate kICo. We got

∂t[IC] =
VL

VI
kLCa[LC][LPBS]− kLCo[IC][LPBS]+

ICSmax

1+
(

[IC]
ICt

)IS

− kICo[IC]. (16)

3.3.3.3. Plasmatic cholesterol
The cholesterol is transported in the plasma by lipoproteins
that are usually separated in distinct lipoproteins populations
according to their content of cholesterol and triglycerids. Here,
we considered only two lipoproteins compartments which are
the most significant for cholesterolemia: high ([HDL]) and low
density lipoproteins (LDL). We considered an absorption flux
kICo (resp. kHCo) from the intestinal (resp. hepatic) tissues which
is dispatched into the plasmatic compartments with proportion
θI (resp. θH) for the LDL compartment and (1 − θI) (resp.
(1 − θH)) for the HDL compartment. We assumed that the
peripheral cholesterol flows in the HDL pool only (van de Pas
et al., 2011) with rate kPCo. The internal flux between HDL and
LDL pools are reduced to the maturation from high to low
density lipoproteins with rate kHDLc (van de Pas et al., 2011).
The reverse process occurs with rate kLDLc. We finally modeled
outgoing fluxes toward the hepatic and peripheral tissues with,
respectively, rates kLDLha and kLDLpa for the LDL compartment
and kHDLha for the HDL carriers (peripheral absorption of HDL
cholesterol is not included). We then obtained, notingVB andVP

the volume of the blood and peripheral compartments,

∂t[HDL] =
VI

VB
(1− θI)kICo[IC]+

VH

VB
(1− θH)kHCo[HC]

+

VP

VB
kPCo[PC]− kHDLha[HDL], (17)

∂t[LDL] =
VI

VB
θIkICo[IC]+

VH

VB
θHkHCo[HC]

− (kLDLha + kLDLpa)[LDL]. (18)

3.3.3.4. Hepatic cholesterol
We separated the liver cholesterol metabolism in three
main pathways: (1) an endogenous cholesterol synthesis with
parameters HCt , HCSmax, and HS like in the intestine; (2),
esterification/de-esterification of free cholesterol with conversion
rates kHCest and kHCunest ; (3) ingoing/outgoing flux from the
plasma with the rates kLDLha, kHDLha, and kHCo. Hepatic discharge
of cholesterol through the canaliculi is modeled with the term

BCRmax

1+
(

BCRt
[HC]

)BS that was introduced in the description of the luminal

compartment. This is expressed in Equations (19) and (20)

∂t[HC] =
VB

VH
kLDLha[LDL]+

VB

VH
kHDLha[HDL]− kHCo[HC]

+

HCSmax

1+
(

[HC]
HCt

)HS
− kHCest[HC]+ kHCunest[HCE]

− kHBSs
[HC]

[HBS]
−

BCRmax

1+
(

BCRt
[HC]

)BS
, (19)

∂t[HCE] = kHCest[HC]− kHCunest[HCE]. (20)
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FIGURE 4 | Model validation. The deuterated cholesterol distribution in

compartments obtained with the model is plotted against the experimental

one. Errorbars representing the SEM of the experimental data are added. We

observe that the points follow the y = x line (red) with a high correlation

coefficient (0.97).

3.3.3.5. Peripheral cholesterol
Plasmatic cholesterol can be stored in the remaining body tissues,
represented by the peripheral cholesterol pool (PC). Both LDL
and HDL plasmatic cholesterol are uptaken with rate kLDLpa
and kLDLha, respectively. Cholesterol synthesis parameters are
PCSmax, PCt , and PS. Finally, a global loss is taken into account
through the parameter kPloss, to model storage in adipose tissues.
We finally got

∂t[PC] =
VB

VP
kLDLpa[LDL]− kPCo[PC]+

PCSmax

1+
(

[PC]
PCt

)PS
− kPloss[PC].

(21)
All the model parameters (except the bacterial growth model
parameters that were inferred as presented in section 3.2), were
obtained with steady-state flux and concentration data from the
literature (see Tables S5, S6, and Table 2) and the calibration
strategy detailed in section 2.7 and in Table S1. No additional
inference was performed to fit the whole body model with the
in vivo experimental data.

3.4. Model Validation
3.4.1. Validation From Deuterated Cholesterol

Experimental Data
We used in vivo labeled cholesterol data to validate our new
model. We duplicated all the cholesterol and BS pools in order
to separate the deuterated and normal sterols and monitored
their respective dynamics. The resulting model is presented
in Equations (S1) to (S28) in the Supplementary Material.

At initial state, the deuterated components are set to zero in
every compartments. Then, the dietary influx of deuterated
cholesterol is set to correspond to the experimental levels.
After 3 days, the simulation is stopped and the different pools
of normal and labeled cholesterol and BS are recomposed
to reconstruct the intestinal, excreted, plasmatic, peripheral
and hepatic levels of normal and labeled cholesterol. Then,
the distribution obtained with the model is compared to the
experimental distribution (Figure 4). We observed that the
points of the scatter plot followed the y = x line with a correlation
coefficient of 0.97. This strong agreement between model and
data indicated that the model correctly captured the flux between
the different compartments.

3.4.2. Flux Repartition at Steady State
We computed a basal simulation until steady state and observed
the resulting flux between compartments. As expected, we
recovered the steady state flux from published data that were
used for the model calibration (see Tables S5, S6, and Table 2,
Supplementary Data). We represented the flux in a Sankey
graph (Figure 5) of the cholesterol and BS whole body cycles.
The Sankey graph helped visualizing mass transfers since it
displayed the flux distribution with arrows proportional to
the flux that they represent. The large discrepancy between
BS and cholesterol flux was particularly emphasized with this
representation. For example, while the BS biosynthesis (sskHBSs
in the model) is a major sink for the cholesterol cycle, it only
represents a minor influx for the BS cycle, counterbalancing
the small BS excretion (Figure 5, gray dashed arrow). The BS
pool conservation mainly relies on BS recycling, which is fueled
by large absorption and transport capacities in the lumen, the
intestine and the liver. The basal bacterial conversion to SBS
represents a negligible outflux compare with the BS circulation
(Figure 5, left).

We observed that the cholesterol cycle was roughly separated
in three main entities (Figure 5, right). (i) A central axis
(intestinal epithelium-blood system-liver axis) supports the main
part of cholesterol transfers. (ii) The luminal compartment
represents the second cholesterol route; it is connected to the
central axis by the epithelial interface and the biliary cholesterol
release. The net balance of the cholesterol exchanges with
the main central stream is slightly negative: the cholesterol
absorption by the epithelium is counterbalanced by the
cholesterol secretion while the small biliary cholesterol release
supports the luminal cholesterol levels. Again, the basal
cholesterol-to-coprostanol bacterial conversion is secondary. (iii)
The third entity is composed by the peripheral tissues. In
this compartment, the cholesterol biosynthesis is nearly entirely
balanced by the cholesterol storage in adipose tissues, giving a
slightly positive contribution to the main central cholesterol flux.
In the central axis, the BS biosynthesis is by far the principal
outflux of the cholesterol cycle, and is mainly fueled by the
hepatic and epithelial cholesterol biosynthesis. The two-side
cholesterol exchanges between the liver and the blood constitute
an important cholesterol sub-cycle: this loop could be seen as
a buffer that regulate the BS biosynthesis outflux, by absorbing
cholesterol fluctuations.
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FIGURE 5 | Sankey diagrams of the BS and cholesterol cycles. We display the Sankey diagrams of the BS and cholesterol cycles at steady state. Each row is

proportional to the corresponding flux (mg day−1 ), and is displayed with a letter referring to the corresponding model coefficient, its steady-state value and its

nomenclature in the model, gathered in the tables. We note that there is a huge discrepancy of flow magnitude between the two cycles, the BS cycle involving much

more higher mass transfers than the cholesterol one. Thus, we could not represent the diagrams with the same scale, resulting in different arrow thicknesses for the

BS synthesis, despite an equal value for this flux in the two cycles. We emphasize this scale change and the connection between both cycles with the gray dashed

arrow. Flux details can be found in Table S6 and Table 2.

3.5. Numerical Exploration of the Bacterial
Impact on Cholesterolemia
To illustrate the impact of bacterial metabolism on the
whole-body cholesterol cycle and to provide a first
analysis of the mechanisms involved, we performed
three new simulations enhancing, respectively, (i) the
bacterial carrying capacity of the BS converters, (ii)
the cholesterol converters, or (iii) both. Namely, we
multiplied by 20 the PBSDMAX (resp. CCCMAX) parameter

which represents a 20-fold growth of the corresponding
population, i.e., a small bacterial increase compared to the
several log fold changes that can occur during bacterial
colonization of the digestive track. We then displayed

the corresponding Sankey graphs of the steady state BS

and cholesterol cycles (Figure S3) with bar plots (Figure 6,

Supplementary Material) representing the relative variations

comparatively to the basal simulation of the different flux and
pool concentrations.
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The enhancement of the BS converter populations PBSD
increased the bacterial activity which dropped down the luminal
level of BS by about 26% (Figure 6, bottom, LPBS). This
reduction induced a 28% decrease of the epithelial absorption
of luminal BS, but also of luminal cholesterol (Figure 6, top,
sskLPBSa ). In the mean time, the cholesterol intestinal excretion
was decreased so that the net balance of cholesterol exchanges
with the central axis was only slightly reduced (Figure S3,
top), buffering the reduction of the cholesterol absorption
and reducing its impact on the whole-body cholesterol cycle.
However, the decrease of the BS epithelial absorption had
stronger effects on the cholesterol regulation. To counterbalance
this loss, the BS biosynthesis was increased by about 17%
(Figure 6, top, sskHBSs ), fueled by a 23% growth of the liver
cholesterol biosynthesis. Worthy of note, the contribution to
the cholesterol cycle of the intestinal biosynthesis remained
unchanged, whereas the liver-plasma exchanges were reduced by

9% to free up cholesterol for the BS biosynthesis. HDL and LDL
cholesterol concentrations decreased by about 5%.

The increase of the CCC population had a different impact
on the cholesterol and BS cycles. The higher loss of cholesterol
in the lumen by direct excretion or conversion into coprostanol
led to a huge decrease (47%) of the luminal cholesterol level
(Figure 6, bottom, LC) which reduced by 35% the cholesterol
and BS absorption, leading to a 21% increase of BS level in
the lumen (Figure 6, top, sskLPBSa, and bottom, LPBS). In turn,
higher luminal BS level increased the excretion and promoted
the intestinal cholesterol secretion, inducing a net negative
cholesterol flux from the intestinal epithelium to the lumen
(Figure S3, bottom right). This local reduction of cholesterol
influx in the intestinal epithelium was partially balanced by a
stronger intestinal cholesterol synthesis by 19%, but the net
contribution of the intestinal tissues to the central cholesterol
stream was reduced by 0.06 mg day−1 comparatively to the basal

FIGURE 6 | Flux and concentration changes for higher bacterial activity. We display flux (A) and concentration (B) changes (in percentage of the basal respective

quantities) for a 20-fold increase of PBSD (resp. CCC) levels in the lumen, i.e., BS (resp. cholesterol) bacterial converters. The steady state flux nomenclature can be

found in Table S6 and Table 2.
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activity (Figure S3, bottom right, and Figure 5), showing that
the conversion of luminal cholesterol had a direct impact on
the cholesterol cycle. In addition to this direct action on the
central cholesterol stream, the same indirect mechanism that
took place in the high PBSD experiment occurred. The reduced
BS absorption was compensated by a higher BS biosynthesis,
with a higher magnitude (21% increase for high CCC vs. 17%
increase for high PBSD populations). Again, the BS biosynthesis
increase was allowed by a higher cholesterol hepatic biosynthesis
(32%) and by a reduced transport between the liver and the
blood (12%, Figure 6, top, ssHCSMAX and sskHCo). We observed
that the magnitude of the flux involved in the indirect BS-
mediated regulation of the cholesterol was higher than the direct
loss of cholesterol allowed by the bio-conversion of cholesterol
to coprostanol (Figure S3, bottom right). The impact on the
plasmatic cholesterol levels was also more important, with a 6.6
and 10.4% reduction for the HDL and LDL, respectively.

When the two bacterial functions were both enforced, the
mechanisms tended to sum up, leading to a lower BS and
cholesterol absorption by the epithelium (approximatively a
60% decrease) and an increase of the BS synthesis by 40%.
The plasmatic levels of HDL and LDL reduced by 10.9 and
15.3%, respectively. We finally observed that the impact on the
peripheral cholesterol was very weak in the three cases.

3.6. Local and Global Sensitivity Analysis of
the Model
After this first exploration of the bacterial impact on the
cholesterol fate, we went deeper in the analysis by conducting
a systematic numerical exploration. We first conducted a local
sensitivity analysis of the model, relatively to the bacterial
converter carrying capacities in the gut microbiota, in order
to study the model response when the bacterial levels evolved.
Then, we performed a global sensitivity analysis by shifting the
parameters that govern eleven flux of the BS and cholesterol
cycles, in order to study the relative importance of each flux in
the output variability.

3.6.1. Local Sensitivity Analysis
We present the result of the local sensitivity analysis in Figure S4,
where different fluxes and concentrations variations were plotted
against log-fold changes of the bacterial carrying capacities of
the CCC (orange lines, crosses) and PBSD (blue lines, circles)
populations, comparatively to the basal carrying capacities. We
observed that decreasing the bacterial levels had little impact
on the overall behavior of the model. When the cholesterol
converters carrying capacity was weaker, a slight increase of
cholesterol levels (luminal cholesterol LC, intestinal cholesterol
IC, LDL, Figure S4) was observed, but smaller BS converter levels
had no effect on the cholesterol or BS cycles due to the negligible
basal BS conversion (Figure 5). Conversely, a monotonous
evolution of the different flux and concentrations was observed
when the bacterial populations levels were increased. No
saturation effects could be observed.

Several features previously observed in Figure S3 and
Figure 6 for a 20-fold increase were confirmed. When the
cholesterol conversion activity was enhanced, we observed a

constant increase of luminal BS concentration, together with
a decrease of the BS intestinal absorption (LPBS and ssLPBSa,
Figure S4). Varying PBSD levels had a very limited impact on the
intestinal cholesterol, on the transport from the intestinal tissues
to the blood stream and on the intestinal cholesterol synthesis
(LC, IC, sskICo, and ssICSMAX , Figure S4). This observation
enforced the claim that the interaction of the BS conversion
with the cholesterol cycle mainly occurred through the BS
synthesis, and not through a direct variation of the cholesterol
absorption. Finally, the impact of the bacterial activity on
peripheral cholesterol remained very weak whatever bacterial
level (PC, Figure S4).

The bacterial effect on the whole-body cholesterol and BS
cycles varied differently when the CCC and PBSD carrying
capacities changed. For intermediate bacterial concentrations
(1 log-fold change comparatively to the basal levels), the
cholesterol converters provided higher effects on the cholesterol
and BS pools. But for higher bacterial levels (2 log-fold change),
the BS converters had a stronger impact on the different flux and
concentrations that were observed, except in the intestinal tissue
compartment where the luminal BS modulation induced by the
bacterial converters had little effects (LC, IC, sskICo, and ssICSMAX ,
Figure S4). We noted that the variations reached 50% for the
highest CCC population in the luminal cholesterol compartment,
while for the highest BS converter population, this level of
variation is obtained all along the enterohepatic cycle (LPBS,
IPBS, HBS) and for the hepatic cholesterol concentrations (HC
and HCE).

3.6.2. Global Sensitivity Analysis
A global sensitivity analysis was performed by modifying 11
parameters controlling the flux involved in the enterohepatic
BS cycle and the whole-body cycle of cholesterol including
the dietary cholesterol intake (kin), the biliary cholesterol
release (BCRMAX), the luminal cholesterol absorption (kLCa),
the cholesterol transport from the liver to the blood (kHCo)
and the reverse flux (B → H, sum of kLDLha and kHDLha
that were shifted simultaneously), the cholesterol synthesis (by
shifting at the same time the ICSMAX ,HCSMAX , and PCSMAX

parameters driving, respectively, the intestinal, hepatic and
peripheral cholesterol biosynthesis), the cholesterol and BS
epithelial absorption (kLPBSa), the BS release in the lumen (kHBSo),
the BS biosynthesis (kHBSs) and the bacterial population carrying
capacities (PBSDMAX and CCCMAX). We displayed the Sobol
first order index, and the PCC of the different parameters
for the concentration outputs in each compartment (namely,
the luminal LPBS, the intestinal epithelium IPBS, the hepatic
HBS levels for the BS cycle, and the luminal LC, epithelial IC,
plamatic HDL and LDL, peripheral PC and hepatic HC and HCE
cholesterol pools). The Sobol index measures the contribution of
a given parameter to the variability of the observed output while
PCC quantifies the correlation between parameter and output
variations. Both criteria are complementary: while the former
helps identifying the main drivers of a given output the later
also provides feedback on the sign of the interaction between
parameter and output. The total sum of the Sobol indices was
nearly 1 for almost all compartments, indicating that the total
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variance was entirely explained by the individual variation of
the parameters tested. However, for the compartments modeling
the enterohepatic cycle and the LC pool a residual variance
was observed, meaning that parameter interactions contributed
significantly to the total variance.

As expected, the bacterial carrying capacities had a stronger
negative impact on the concentration of their respective
substrates in the lumen, i.e., LPBS (resp. LC) for the PBSD
population (resp. CCC). The dietary intake also positively
impacted the luminal cholesterol LC but had very little influence
on the other compartments. We noted that the PBSD population
was themain parameter that tuned down the whole enterohepatic
cycle, whereas the effect of the CCC population was concentrated
on the luminal compartment, the main (positive) contributor to
the cholesterol cycle variations being the cholesterol biosynthesis.
A notable impact of the BS deconjugation on the hepatic
cholesterol concentrations was detected. It must be related to the
strong variations noticed for LPBS in the local sensitivity analysis
(Figure S4). Interestingly, the impact on hepatic cholesterol
variations was distributed among several parameters, mainly
biosynthesis, BS production, BS release and PBSD populations
activity, all being negative but the cholesterol biosynthesis.

The main driver of the LDL and HDL plasmatic levels, which
are the main biomarkers for cholesterolemia, was the hepatic
cholesterol absorption: the most efficient way to reduce plasmatic
cholesterol was enhancing the transport between the plasma and
the liver. The cholesterol biosynthesis by the different organs
and the transport from the liver to the plasma came in second
and third position. The cumulative bacterial contribution was
small and occupied the fourth rank, with an impact similar to
the BS biosynthesis or the BS release. While the impact of the
cholesterol converters was minor, the BS converters supported
the main part of the bacterial contribution to the plasmatic
cholesterol levels. This impact was up to a 27 and 49% reduction
for, respectively, the LDL and hepatic cholesterol for a 2-log
increase of BS converter levels (see Figure S4).

4. DISCUSSION

4.1. Mathematical Modeling Provided
Improved Insights in the Cholesterol Cycle
In system biology, mathematical models can be used to link
heterogeneous data taken at different scales. Modeling allows
to connect these observations with a sequence of mechanisms
involved in regulatory processes, enabling the co-interpretation
of the data otherwise difficult to achieve without the model.

Here, we used a mathematical model to interpret together
in vitro bacterial activity with in vivo animal experiment data.
The in vitro model provided a quantitative evaluation of
bacterial uptake and production rates on BS and cholesterol,
which was upscaled to represent the microbial activity in the
small intestine. This microbial metabolism was then plugged
into a whole-body model of cholesterol and BS cycle to
study the systemic impact of the different cycle drivers. This
whole-body model was derived from existing models. The
overall structure and rate expression of the main mechanisms

was taken from Mc Auley et al. (2012) and Morgan et al.
(2016), and substantially simplified according to van de Pas
et al. (2010). Compared to Morgan et al. (2016), the very
detailed description of cholesterol metabolism was simplified
by keeping primary and final metabolites only. An accurate
population model of cholesterol transport in lipoprotein has
been developed in Sips et al. (2014), that we summed up by
considering only two lipoprotein compartments: HDL and LDL.
The model was calibrated using the method and values taken
from van de Pas et al. (2011). An additional cholesterol outflow
has been added from the intestinal tissue into the lumen, as
observed and measured in Van der Velde et al. (2007). The
outputs of the complete model were compared to the animal
experiment data. As a whole, this modeling approach allowed
to integrate the different data in a comprehensive framework
and showed the consistency of the modeled mechanisms with
the experiments.

The model provided a simplified description of cholesterol
distribution at steady-state. The BS cycle appeared to be
well-balanced, showing similar flux levels across its different
components in a Sankey graph (see Figure 5). Unlike BS cycle,
the cholesterol cycle presents an uneven repartition, the flux
crossing the liver and the blood being sensibly higher than
those involved in the other compartments (see Figure 5). This
systemic view suggests that BS biosynthesis is the principal
cholesterol flux, mainly supported by cholesterol synthesis in
the liver, and by a buffering pool composed by cholesterol
exchanges between the blood and the liver. This simplified
view allows one to hypothesize that blood cholesterol levels
will be mainly driven by the transport mechanisms between
the blood and the liver, whereas liver cholesterol reduction
could be strongly impacted by the biosynthesis of cholesterol
(positively) and BS (negatively). In the cholesterol and BS
cycles, the bacterial fluxes are small compared to others.
But as BS fluxes are one order of magnitude higher than
cholesterol fluxes, a small sink flux in the BS cycle can have
a significant impact in the cholesterol cycle, making bacterial
BSH activity a potential effective driver of cholesterol levels in
the hosts.

In depth numerical exploration of the model allowed ranking
the main factors that influence the distribution of cholesterol
in the body. Global sensitivity analysis confirmed the actual
effect of bacterial activity on host cholesterolemia (see Figure 7).
If the impact of cholesterol-to-coprostanol conversion on the
overall cholesterol cycle was small, bacterial BS conversion
had greater effect on the liver cholesterol level. Plasmatic
levels proved to be massively controlled by host mechanisms
(mainly transport between blood and liver compartments closely
followed by cholesterol biosynthesis), whereas bacterial activity
impacts as strongly as other host mechanism the hepatic
cholesterol pool. We note that the importance of cholesterol
transport for plasmatic cholesterol regulation has already been
highlighted by both modeling and experimental studies (Field
and Gibbons, 2000; Morgan et al., 2016). The model then
helped to predict the effect of targeting specific mechanisms
to manage the different cholesterol pools, and to sort them
by efficiency.
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FIGURE 7 | Global sensitivity analysis of steady-state levels of cholesterol and BS in the different compartments. We display, for each steady-state level of cholesterol

or BS in the different compartments, the first order Sobol index (top) and the Partial Correlation Coefficient (PCC, down) of the different flux parameters involved in the

global sensitivity analysis. The Sobol index measures the proportion of the output variance generated by the variations of a given parameter while the PCC quantifies

the correlation between parameter and output variations. In the upper plot, the lines only link together the bar fractions corresponding to the same parameter, in order

to facilitate the reading of the figure. The nomenclature is: kin, dietary cholesterol intake; BCRMAX , biliary cholesterol release; kLCa, epithelial cholesterol absorption;

kHCo, cholesterol transport from the liver to the blood; B → H, cholesterol absorption by the liver and the reverse flux; synthesis, cholesterol synthesis driven by the

ICSMAX ,HCSMAX and PCSMAX parameters; kLPBSa, BS epithelial absorption; kHBSo, BS release; kHBSs, BS biosynthesis; PBSDMAX , BS bacterial converters; CCCMAX ,

cholesterol bacterial converters.

4.2. Limitations and Potential
Improvements for Model Validation
Some assumptions have been made during the model
construction that are important to keep in mind for correct
interpretation. A first limitation is that the model has been built
on mice data: all the flux and steady-state values used for model
calibration (see Table S1) have been picked up in mice studies, as
well as the model validation data taken from our animal model.
The insights in regulation mechanisms obtained during this
study are valid for mice, and the transposition to humans would
need further studies.

Our model entails a drastic reduction of microbiota and
host physiology complexity. In this study, the individual
activity of two selected bacterial strains with known cholesterol

or BS activity was assumed to be representative of the
overall activity of a complex microbiota after rescaling,
and included in the whole body model. A more realistic
mechanistic model of the bacterial activity related to cholesterol
metabolism in a complex microbiota would ideally require
an ecological model able to track the bacterial phenotypic
diversity and interactions with the environment through
metabolic models including the relevant metabolic pathways,
as this was done for fiber degradation (Muñoz-Tamayo
et al., 2010; Labarthe et al., 2019). The complexification
and validation of the microbiota model would necessitate
the dynamic screening in vivo of the BSH activity and
cholesterol-to-coprostanol conversion of a complex microbiota.
This could be achieved through multi-Omics analyses of feces.
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Metagenomic data would indicate the metabolic potential of
the microbial community regarding cholesterol metabolism,
metatranscriptomic data would give the metabolic activity
effectively expressed and targeted metabolomics would show the
dynamics of key metabolites (e.g., BS, cholesterol, coprostanol).
Our analysis suggests that BS metabolism could be the
main target.

In the same way, host physiology has been sketched: we
chose to provide as well simple phenomenological models
of cholesterol host metabolism. Whereas complete metabolic
pathways include a cascade of elementary reactions, we only
modeled the global resulting relationship between raw substrate
and final metabolites. Here again, odel validation could be
completed with additional experiments. As our model is not
static, model calibration and validation require both steady state
pool values, to capture the physiological levels of the different
pools, and flux values between compartments, to describe
the regulation processes. Measuring fluxes experimentally is
challenging since it necessitates several time points with
dedicated reporters, inducing multiple animal sacrifices and
significant replicates to mitigate inter-individual variability.
That is why we chose to rely on published data for model
calibration (for both flux and steady-states), and to check the
consistency between the model predictions and the observed
distribution of ingested cholesterol after 3 days. Actually,
screening labeled cholesterol fate in the host tissue provides a
much better picture of the system dynamics than measuring
steady state levels only. Indeed, steady state levels could
possibly be reproduced by the model if the compartment
net fluxes were null, even with inaccurate fluxes between
compartments. On the contrary, a correct distribution of labeled

cholesterol after 3 days requires correct fluxes, otherwise D5-
cholesterol propagation between compartments would not be

correctly modeled. The animal experiments then allowed to
both validate fluxes and steady-state values, and represented a

good balance between experimental load and significance for
model validation.

4.3. Is Bacterial Activity an Effective Driver
of Cholesterolemia Control?
Functional characterization of bacteria isolated from gut
microbiota samples allowed to identify functions related to
cholesterol and BS turn-over. The main microbial mechanisms
for cholesterol loss that were identified are direct cholesterol
biotransformation into coprastanol, BS deconjugation and
cholesterol incorporation into microbial membranes (Kriaa et al.,
2019), which make the microbial communities a potential driver
of cholesterol regulation. However, a classical counter-argument
being raised is the spatial segregation between cholesterol and BS
absorption,mainly located in the small intestine, and the bacterial
populations, mainly located downstream in the large intestine:
microbial communities could hardly be an important actor of
cholesterol management if they do not have a physical access
to cholesterol and BS substrates in order to degrade it before
absorption by the human host.

We addressed this issue in two ways. First, we experimentally
checked that cholesterol and BS were available in the large
intestine by measuring in mice labeled sterol levels in the caecum
and the large intestine 3 days after ingestion of the labeled
cholesterol. Caecal and colonic cholesterol represented 4.5% of
the overall labeled cholesterol. It demonstrates that cholesterol is
available to colon microbiome and is present in luminal content
and intestinal tissues. Second, we calibrated the bacterial activity
of BS deconjugation to be representative of microbial populations
located in the small intestine, smaller than colic populations but
active. Indeed, we selected the scaling parameter bgut,max of BS
deconjugation activity which represents the nominal bacterial
concentration, as a proxi of the bacterial levels measured in the
small intestine. Furthermore, BSH production is involved in BS
tolerance by bacteria (Begley et al., 2005) and may be active in the
upper part of the intestinal track where BS levels are high. This
was taken into account in the model by mimicking the activity
and functional dynamics of the Bacteroides xylanisolvens XB1A
strain, a BS deconjugation specialist.

4.4. Relative Impact of Host and Bacterial
Pathways in Cholesterol Metabolism
The contribution of bacterial pathways to the global cholesterol
and BS regulation is complex. Bacterial metabolism is the main
driver impacting BS turn-over. On the contrary, the impact
of the bacteria on the epithelial and peripheral cholesterol is
relatively weak compared to cholesterol biosynthesis by the
host. To manage plasmatic and hepatic cholesterol pools, more
drivers are available. If transport between blood and liver
compartment is the preponderant factor of plasmatic cholesterol
variations, the contribution of bacterial pathways is not null. In
the liver, the impact of the bacterial pathways have the same
order of magnitude than other flux, such as BS production,
BS release or cholesterol biosynthesis. Hence, managing the
host microbiota to enhance BS and cholesterol conversions in
the lumen qualifies as a promising tool to control hepatic,
and to a lower extent plasmatic cholesterol, in addition to the
usual strategies aiming at controlling cholesterol synthesis and
transport between compartments.

5. CONCLUSION

We derived a whole body model of cholesterol dynamics that
includes microbial metabolism. This model, based on existing
models lacking bacterial compartment, is grounded by in vitro
experiments to capture the bacterial conversion of BS and
cholesterol, and by in vivo experiments with labeled cholesterol
that allowed model validation. The labeled cholesterol provided
a snapshot of the deuterated cholesterol distribution after 3
days, and the model gave a precise view of the flux between
compartments in the whole cholesterol and BS cycles. This
study showed that cholesterol conversion to BS is the main
flux of cholesterol cycle, making bacterial BS degradation a
promising target for cholesterol management. An extensive
model exploration confirmed numerically the impact of the
bacterial activity, and the greater influence of BS degradation
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on plasmatic cholesterol levels for high converters. Finally, a
global sensitivity analysis indicated that transport from plasma
to liver is the main driver of plasmatic cholesterol reduction,
but that BS degradation is in second position, with the other
BS cycle drivers: BS biosynthesis and BS release in the lumen.
Bacterial activity is then a promising additional therapeutic
strategy able to provide alternatives for non-responders to
existing therapies.
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Evaluating the risk of colorectal metachronous adenoma (MA), which is a precancerous
lesion, is necessary for metachronous colorectal cancer (CRC) precaution among CRC
patients who had underwent surgical removal of their primary tumor. Here, discovery
cohort (n = 41) and validation cohort (n = 45) of CRC patients were prospectively enrolled
in this study. Mucosal and fecal samples were used for gut microbiota analysis by
sequencing the 16S rRNA genes. Significant reduction of microbial diversity was noted
in MA (P < 0.001). A signature defined by decreased abundance of eight genera and
increased abundance of two genera strongly correlated with MA. The microbiota-based
random forest (RF) model, established utilizing Escherichia–Shigella, Acinetobacter
together with BMI in combination, achieved AUC values of 0.885 and 0.832 for MA,
predicting in discovery and validation cohort, respectively. The RF model was performed
as well for fecal and tumor adjacent mucosal samples with an AUC of 0.835 and
0.889, respectively. Gut microbiota profile of MA still existed in post-operative cohort
patients, but the RF model could not be performed well on this cohort, with an AUC of
0.61. Finally, we introduced a risk score based on Escherichia–Shigella, Acinetobacter
and BMI, and synchronous-adenoma achieved AUC values of 0.94 and 0.835 in
discovery and validation cohort, respectively. This study presented a comprehensive
landscape of gut microbiota in MA, demonstrated that the gut microbiota-based models
and scoring system achieved good ability to predict the risk for developing MA after
surgical resection. Our study suggests that gut microbiota is a potential predictive
biomarker for MA.

Keywords: colorectal cancer, metachronous cancer, colorectal adenoma, gut microbiota, random forest

INTRODUCTION

Colorectal cancer (CRC) is among the leading cause of cancer-related deaths worldwide. Despite
substantial progress in the early diagnosis and treatment of CRC and the fact that more than
two-thirds of CRC patients received surgical resection and adjuvant therapy, nearly 40% of these
patients developed CRC recurrence, including local recurrence, metachronous cancer, and distant
metastasis (Kahi et al., 2016). It has been well-documented that patients with a history of CRC
are at an increased risk of developing metachronous CRC following surgical resection and pre-
operative clearing (Balleste et al., 2007; Mulder et al., 2012). As such, post-operative colonoscopy is
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highly recommend for patients after surgical resection of CRC to
improve survival via diagnosing metachronous CRC at an early
stage or to prevent the occurrence of metachronous CRC via
detecting and removing of the pre-cancerous colorectal polyps
(Kahi et al., 2016). According to the major guidelines, an initial
full colonoscopy is recommended at the time of diagnosis or
within 3–6 months following surgical intervention for detection
of synchronous lesions, while further colonoscopies should be
carried out >6 months, generally 1 year after the surgical
resection (Meyerhardt et al., 2013), followed by colonoscopies
every 3–5 years for detection of metachronous cancer. There is
no first-level evidence in support of the optimal total duration of
surveillance after treatment for CRC (van der Stok et al., 2016).

Despite a certain level risk, there has been a lack of
reliable factors to be used for predicting metachronous
CRC in patients who have undergone surgical treatment.
Thus, life-long colonoscopy surveillance is needed. Currently,
several factors have been shown to be associated with an
increased risk of metachronous CRC, including age, previous or
synchronous adenomas or history of CRC, right-sided tumors,
and microsatellite instability (MSI); many of these reported risk
factors were inconsistent in the previous studies (Balleste et al.,
2007; Bouvier et al., 2008). Identification of individuals at high
risk for the development of metachronous colorectal cancer
is necessary to increase the efficiency of surveillance and to
improve prognosis.

Recent studies have suggested that the community of microbes
inhabiting the gastrointestinal tract plays an important role in
the development and progression of CRC (Arthur et al., 2012;
Kostic et al., 2013). In fact, gut microbiota dysbiosis was already
found in patients with colorectal adenoma, and the disturbance
became more apparent during the progression of adenoma into
CRC (Feng et al., 2015). It has been of note that gut bacteria
may exert a role in tumorigenesis, and in turn, they may have
potential as useful biomarkers for the early detection of disease
(Zeller et al., 2014). A previous study has indicated that gut
microbiota could be used to quantify the risk of recurrence (Sze
et al., 2017). Until now, it remains unknown if gut microbiota
could hold a value in assessment of risk for metachronous CRC
or precancerous lesions such as colorectal adenoma, given the
pathogenesis of CRC.

As CRC develops gradually from premalignant adenomatous,
accurate prediction and early detection polyps provides an
opportunity to halt this process. Our previous study found that
colorectal cancer patients who developed metachronous
adenoma (MA) post-operatively showed distinct fecal
microbiota, which can be potentially used for diagnosis for
MA (Jin et al., 2019). But, the features of MA gut microbiota that
already existed before operation or formed post-operatively is
still unknown. Could pre-operative gut microbiota be used as a
tool to predict the risk for post-operative MA?

In this study, discovery and validation cohort of CRC patients
was prospectively enrolled, the mucosal and fecal samples were
used for analysis of gut microbiota by sequencing the 16S
rRNA genes. We aimed to test the hypothesis that the gut
microbiota composition before surgery was associated with the
risk of developing MA and thus could be used, together with

other independent risk factors, to generate new algorithms for
better predicting MA.

MATERIALS AND METHODS

Study Population
Colorectal cancer patients of discovery and validation cohort
were both prospectively enrolled at the First Affiliated Hospital of
Harbin Medical University during the period between September
2017 and April 2018. All the patients were diagnosed with
primary colorectal adenocarcinoma and underwent surgical
resection of CRC. During the enrollment, the patients who had
the following conditions were excluded from this study: (1)
taking antibiotics in 1 month prior to colonoscopy examination;
(2) previous diagnosis of CRC, IBD, or IBS; and (3) medical
history of surgery, radiation, or chemotherapy. A total of 41
CRC patients were in the discovery cohort, 13 patients had
both fecal and colonoscopic mucosal samples, and 45 patients
in the validation cohort had colonoscopic mucosal samples, but
not fecal samples.

Sample Collection
Cold biopsy forceps were used for collection of colonoscopic
mucosal biopsies from CRC tissues and adjacent, cancer-free
tissues (at least 5 cm away from lesions), respectively. Fecal
samples were taken the night before colonoscopy examination
day. All the samples were snap-frozen in cryovial immediately
following collection and stored at −80◦C until DNA extraction.

Follow-Up
All the study patients were followed up for 12 months; during the
follow-up period, they were scheduled to undergo surveillance
colonoscopy every 1 year. Four patients in the discovery cohort
and seven patients in the validation cohort, combined with a
malignant bowel obstruction (MBO), were asked for colonoscopy
within 2–4 months after surgery to detect synchronous lesions,
followed by repeat colonoscopy at 1 year to detect metachronous
lesion according to the guidelines (Meyerhardt et al., 2013).
For patients with synchronous adenoma detected before surgery,
endoscopic mucosa resection (EMR) was performed to remove
the lesion prior to colon resection. The primary endpoint was MA
detection during follow up period.

DNA Extraction and 16S rRNA Gene
Sequencing for Bacterial Identification
The fecal and mucosal samples as described in the sample
collection were used for DNA extraction. In brief, microbial DNA
was extracted using a DNA kit (Bio-Tek, GA, United States)
according to the manufacturer’s instructions and used for
an amplification of the hypervariable regions (V3-V4) of the
bacterial 16S rRNA gene. The resulting amplicons were purified
and pooled in equimolar concentrations, followed by paired-end
sequencing (2 × 300) on an Illumina MiSeq platform (Illumina,
San Diego, CA, United States), which was performed by Majorbio
Bio-Pharm Technology (Shanghai, China). After the raw reads
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were filtered and quality control was conducted, OTUs were
clustered with a 97% similarity cut-off using UPARSE1 (version
7.1), following which, the identified chimeric sequences were
removed using UCHIME. With the RDP Classifier algorithm,
taxonomic assignments for the 16S rRNA gene sequences were
made2 with the GreenGene 16S rRNA gene database at a
confidence threshold of 70%. The 16S rRNA gene sequencing
runs were separately performed for the discovery and validation
cohorts for both MA and nMA patients.

Bioinformatics and Statistical Analysis
Both α-diversity (Simpson-reciprocal and Shannon indices) and
β-diversity (Bray–Curtis distance) were examined using QIIME
(Version 1.7.0). PCoA was used to reduce the dimension of
the original variables with the Vegan and ggplot2 packages
in R, while Analysis of similarity (ANOSIM) of the distance
matrices in the vegan package in R was used to quantize
the similarity and test the statistical significance between
groups (Buttigieg and Ramette, 2014). Hierarchical clustering
on the basis of similarities in the combination of variables
was carried out using Pvclust in R. The microbiota were
characterized using the linear discriminant analysis effect size
(LEfSe) method for representative taxa discovery, emphasizing
both significance and biological relevance (Segata et al., 2011).
Functional composition of the gut metagenomes were predicted
and profiled in accordance with the 16S rRNA gene sequences
using PICRUSt with level III KEGG database pathways (Langille
et al., 2013). Both PICRUSt and LEfSe were accomplished online3.
A heatmap was created to express the results with the heatmap
package in R. The microbiota features were further analyzed as
categorical variables using an univariate logistic regression to
screen risk factors. The optimal cut-off for each bacterial group
was determined by ROC analysis. Variables with a P value < 0.1
on the univariate analysis were selected for further forward
stepwise multivariate logistic regression to identify independent
predictors. Odds ratios (ORs) were calculated with a 95%
confidence interval (CI). The random forest (RF) algorithm was
used to create the classification models. The optimal number of
variables was determined by maximizing the area under the curve
of the receiver operator characteristic (AUC) with the AUCRF
package, then caret (v6.0.76) and random forest R package were
used to build model. To avoid over-fitting of the data in the
model, 10-time and 10-fold cross-validations were made. The
resulting model was subsequently used for validation cohort.

All categorical data were presented as number of cases and
percentages, while continuous data were shown as median with
range. Categorical variables were compared by the Pearson’s
chi-square (χ2) test, and continuous variables by Mann–
Whitney U test where appropriate. Statistical analysis of the
data was performed using SPSS (SPSS version 19, La Jolla,
CA, United States). Wilcoxon rank sum test and Multiple
hypothesis tests were used for analysis of continuous and
categorical data and adjusted using the Benjamini and Hochberg
FDR. The results with an FDR threshold lower than 0.1 were

1http://drive5.com/uparse/
2http://rdp.cme.msu.edu/
3http://huttenhower.sph.harvard.edu/galaxy

considered significant differences. Spearman’s rank test was
used for correlation analysis, and a P value less than 0.05 was
considered statistically significant.

RESULTS

Characteristics of the Study Patients
Forty-one patients were included for discovery cohort, of which
22 patients developed metachronous adenoma (MA group),
and the remaining 19 patients did not have any signs of
metachronous adenoma [non-metachronous adenoma (nMA)
group]. Demographic and clinical features between the two
groups were summarized in Table 1. Body mass index (BMI) in
the MA group was significantly greater than that of the nMA
group (25.25 vs. 23.0; P < 0.05). Notably, the incidence of
synchronous adenoma was significantly higher in the MA versus
nMA groups (15/22 vs. 7/19; P < 0.05). No other significant
differences between the two groups were observed. Information
for every participant were supplied in Supplementary Table S1.
Another 45 patients were included for validation cohort, 21 of
which developed MA (Supplementary Table S2).

Mucosal Microbial Diversity Is
Significantly Associated With
Metachronous Adenoma
We initially examined the correlation between mucosal
microbial diversity and the development of MA. As shown
in Supplementary Figure S1, the 16S rRNA gene-sequencing
reads and depths were adequate. An analysis of the mucosal
microbial diversity with two methodologies (Shannon and
Simpson-reciprocal indices) showed that alpha-diversity of
the mucosal microbiome was significantly higher in the nMA
group compared with the MA group (P < 0.001 for each index)
(Figures 1A,B). A principal coordinate analysis (PCoA) on
genus level with Bray–Curtis metric distance was performed for
comparison of β-diversity between the two groups. As shown
in Figure 1C, a clear clustering between the MA and nMA
groups was revealed, suggesting that the mucosa microbial
communities exhibited phylogenetic closeness within each group
(P = 0.001). Importantly, we excluded the possibility of any
other potential contributors to the microbial diversity, such as
clinical-pathological features, synchronous adenoma, BMI, sex,
and adjuvant therapies (Supplementary Figure S2).

Mucosal Microbial Composition and
Function in the MA Group Differs
Significantly From Those in the nMA
Group
We next determined if there were differences in the mucosal
microbial composition between the MA and nMA patients
using linear discriminant analysis of effect size (LEfSe).
After bacterial taxa with relative abundance <0.5% were
excluded for comparison, 10 taxa showed differentiated
distribution with LDA score > 4.0 on genus level. The MA
group exhibited a predominance of Escherichia–Shigella and
Roseburia, while the nMA group had a predominance of
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Prevotella_9, Herbaspirillum, unclassified_k_norank_d_Bacteria,
Acinetobacter, Blautia, Faecalibacterium, Rhodococcus, and
Ruminococcus_torques_group (Figure 1D). We then examined
the potential interactions among these 10 taxa with Spearman
rank test. As a result, Escherichia–Shigella was always negatively
correlated (red dots) with others taxa, while the genera enriched
in the nMA group (green text) positively correlated (blue dots)
with each other (Figure 1E).

Further analysis showed there were four taxa on the phylum
level and six taxa on the family level that predominated in the
two groups with LDA score > 4.0 (Supplementary Figure S3).
We then interrogated whether the mucosal microbiome can be
segregated using BMI or synchronous adenoma as grouping
variables. Only one and two predominate genera with LDA
score > 4.0 were found, respectively, based on BMI (high
or normal) and synchronous adenoma status (Supplementary
Figure S4), indicating that MA rather than BMI or synchronous
adenoma was the main explanation to the different microbiota
composition between the two groups.

TABLE 1 | Clinico-pathological characteristics of patients.

MA (n = 22) nMA (n = 19) P value

Gender

Female 12 6 0.139

Male 10 13

Age (years)a 63 (58.5–68.75) 61.3 (53–68.5) 0.619

BMIa 25.25 (22.75–27.98) 23.0 (21.74–23.7) 0.011*

Synchronous adenoma

Yes 15 7 0.045*

No 7 12

Bowel obstructiond

Yes 2 2 0.877

No 20 17

Hematochezia

Yes 11 11 0.613

No 11 8

Tumor sizeac 4 (3.6–4.2) 4 (3.1–4.75) 0.854

Tumor locationb

Left hemi-colon 7 2 0.171

Right hemi-colon 3 6

Rectum 12 11

CEAa 6.725 (2.38–14.30) 3.97 (2.37–12.83) 0.896

CA 19-9a 12.31 (7.15–65.44) 12.55 (10.99–20.06) 0.744

Adjuvant therapy

Yes 13 12 0.790

No 9 7

TNM-stage

I 2 2 0.537

IIA 17 11

IIIA 0 1

IIIB 3 5

aData shown as median (1st and 3rd quartile). bTumor location: splenic flexure,
descending, sigmoid, rectosigmoid were classified as left hemi-colon; ileocecal,
ascending, hepatic flexure, transverse were classified as right hemi-colon.
cTumor size definition: maximum diameter. dBowel obstruction was defined when
coloscopy cannot pass through the tumor obstruction.

The functions of the gut microbiota were predicted using
the PICRUSt analysis. 16S rRNA gene sequencing data were
categorized into 328 KEGG functional pathways; pathways
present in <10% of participants were removed, leaving 284
KEGG pathways for comparation. Fifty five pathways were
differentially enriched between the two groups (Pfdr < 0.1)
(Supplementary Figure S5). We observed significant
upregulation of bacterial invasion of epithelial cells pathway
and lipopolysaccharide biosynthesis protein pathway in the
MA group compared with the nMA group (Pfdr < 0.1). On
the contrary, p53 signal pathway was downregulated in the
MA group (Pfdr < 0.1) (Figures 1F–H). Specifically, the
potential pathogenic bacteria Escherichia–Shigella was positively
correlated with bacterial invasion of epithelial cells pathway
(r = 0.89, P < 0.01) (Figure 1I).

Microbiota Profiles of the Mucosal and
Fecal Samples
Bar plots of the class taxonomic levels showed
Gammaproteobacteria and Clostridia as the top two classes
with higher relative abundance in all samples. *P < 0.05,
different from controls by Wilcoxon rank-sum test or
Chi-squared test for continuous or categorical variables,
respectively. The microbiota composition was similar between
on-tumor and off-tumor mucosal samples, whereas fecal
samples showed independent features without detecting
of unclassified_k__norank_d__Bacteria and Fusobacteriia
(Figure 2A). Despite the collective differences between subjects
with MA and nMA, the microbiota associated with on-tumor and
off-tumor tissues in the same individual (n = 12) did not differ
significantly in PCoA (Figure 2B) (P = 0.691). Hierarchical-
Clustering analysis with Bray–Curtis distance indicated no
apparent difference between the paired On/Off mucosal samples
in the same individual (Supplementary Figure S6). On the
contrary, fecal and mucosal samples in the same individual
showed obviously different in PCoA (Figure 2C) (P = 0.001),
paired fecal and mucosa samples within the same individual did
not close to each other (Supplementary Figure S7).

Next, we assessed whether fecal microbiota profiles could
reflect the difference between MA (n = 11) and nMA (n = 8). As
expected, fecal microbiota profiles in the MA and nMA patients
differed significantly in PCoA analysis (Supplementary Table S3
and Supplementary Figure S8) (P = 0.003). The microbiota of
the fecal samples in LEfSe analysis by MA status produced five
genera with LDA score > 4.0, with Escherichia–Shigella, Blautia,
and Ruminococcus_torques_group profiles consistent with the
findings of the mucosal profiling (Supplementary Figure S9).
These results indicated that even though fecal microbiota do not
corresponded to mucosa microbiota and only partially reflect the
microbiota at the mucus layer, differences due to disease status
are still evident.

Gut Microbiota Variation of MA May Still
Exist to Some Degree in Patients After
Surgery
Our previous cross-sectional study showed significant difference
in post-operative fecal microbiota between patients with and
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FIGURE 1 | Mucosal microbiome diversity and communities are significantly different between MA and nMA. (A,B) α-diversity boxplot (Shannon and
Simpson-reciprocal indices) of mucosal samples in MA and nMA groups. Boxes represented the 25th to 75th percentile of the distribution; the median was shown
as a thick line in the middle of the box; whiskers extend to values with 1.5-times the difference between the 25th and 75th percentiles. (C) PCoA using Bray–Curtis
of β-diversity in MA and nMA groups. (D) LDA score computed from features differentially abundant between MA and nMA in mucosal samples. The criteria for
feature selection was log LDA score > 4. (E) Spearman correlations among two MA-enriched (red) and eight-nMA enriched (green) genera taxa in mucosal samples
of CRC patients. Red dots indicated negative correlation, blue dots indicated positive correlation, cross indicated no significance (P > 0.05). (F–H) Boxplot of
bacterial invasion of epithelial cells pathway, Lipopolysaccharide biosynthesis protein pathway, and p53 signal pathway between MA and nMA. P values were
adjusted using the FDR correction. (I) Spearman correlation between bacterial invasion of epithelial cells pathway and relative abundance of Escherichia–Shigella.
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FIGURE 2 | Fecal and off-tumor samples. (A) Bar plots of the class taxonomic levels of microbiota in fecal, off-tumor and on-tumor samples. Relative abundance is
plotted for each samples. (B) PCoA using Bray–Curtis of β-diversity between on- and off-tumor mucosal samples. (C) PCoA using Bray–Curtis of β-diversity
between fecal and mucosal samples.

without MA, and the alterations in the gut microbiota was
associated with the disease progression in health-adenoma-
carcinoma sequence (Feng et al., 2015), indicating that patients
with occurrence of metachronous had more “carcinoma-like”
gut microbiota compared to clear-intestine patients. Intrigued by
these pervious findings, we examined if there was an association
between pre- and post-operative patients fecal microbiota on MA
profile. To this end, we applied conjoint analysis by importing
our previous 16S rRNA gene sequence data of fecal samples,
assigned as post-operative cohort. The samples from this study
were assigned as pre-operative cohort accordingly.

The overall α-diversity of post-operative patients (n = 47) was
higher than that of pre-operative patients (n = 19) (data not
shown). Similarly, α-diversity of the fecal samples were higher
in the nMA patients (P < 0.05 for both Shannon and Simpson-
reciprocal indices). For post-operative patients, α-diversity was
higher in the nMA patients, whereas the difference was not
statistically significant (P > 0.05 for both Shannon and Simpson-
reciprocal indices) (Figures 3A,B). Next, Escherichia–Shigella
was selected, as it was highly enriched and relatively abundant in
both the mucosal and fecal samples in the MA patients (P < 0.05).
In addition, this difference was also found in post-operative
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FIGURE 3 | Fecal microbiota in CRC patients and CRC patients after surgical therapy. (A,B) α-diversity boxplot (Shannon and Simpson-reciprocal indices) of fecal
samples. (C) Boxplots of relative abundance of fecal Escherichia–Shigella; boxplot illustration was provided in Figure 1. (D) Bar plots of the class taxonomic levels of
fecal microbiota. Relative abundance is plotted for each group. (E) ANOSIM result between fecal samples of groups. R value indicated the strength of the factors on
the samples, while give P-value indicated the significance levels.

patients without reaching statistical significance (Figure 3C). Bar
plots of the class taxonomic levels showed a difference in the
microbiota composition between the MA and nMA patients, as
well as between the post-MA and post-nMA patients. It was
worth noticing that the microbiota composition of the MA
patients was similar to that of the post-MA patients, while that
of nMA was more similar to post-nMA (Figure 3D).

ANOSIM was performed to determine the β-diversity between
groups, in which ANOSIM gave a P value (i.e., significance levels)
and a R value (i.e., the strength of the factors on the samples). As
a result, the R value between the MA and nMA groups was 0.204
(P = 0.033), while R value between the post-MA and post-nMA
groups was 0.045 (P = 0.068), indicating that the discrepancy
between patients with and without MA was less obvious in
patients undergone surgery compared to untreated patients.
R values between post-nMA and MA or nMA (R = 0.709 or
R = 0.301; P = 0.001 or P = 0.01) were higher than those between
post-MA and MA or nMA (R = 0.392 or R = 0.112; P = 0.001
or P = 0.133) (Figure 3E), suggesting that gut microbiota of
post-operative patients without MA to be more different from
CRC patients, especially from CRC patients who develop MA.
Collectively, these results indicated that gut microbiota-based

discrepancy between patients with and without MA remained in
post-operative patients.

Pre-operative Gut Microbiota-Based
Random Forest Algorithms and Scoring
System in the Prediction of
Metachronous Adenoma in CRC Patients
After Surgery
Firstly, 7 of 10 predominance bacterial genera in MA and nMA
identified by LEfSe analysis, together with BMI, and synchronous
adenoma were applied to logistic regression. Herbaspirillum,
Rhodococcus, and Prevotella_9 were excluded, as they were
not detectable in more than five patients. All these variables
were identified as significant risk factors for MA by univariate
logistic regression (P ≤ 0.1) (Table 2), then multivariate logistic
regression analysis was applied for independent risk factor
validation. As shown in Table 3, the predominant bacterial
genera, including Escherichia–Shigella and Acinetobacter, as well
as BMI were identified as independent risk factors for MA
(P < 0.05), with a good ability for differentiating MA from
nMA (AUC, 0.935).
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TABLE 2 | Univariate logistic regression predicting MA.

Cut-off value OR 95% CI P value

Escherichia–Shigella 564.5 10.000 2.350−42.547 0.002*

unclassified_k_norank_d_Bacteria 147 0.206 0.037−1.131 0.069

Faecalibacterium 608.5 0.172 0.044−0.672 0.011*

Ruminococcus_torques_group 10.5 0.097 0.011−0.871 0.037*

Blautia 732.5 0.065 0.007−0.593 0.015*

Acinetobacter 28 0.056 0.006−0.492 0.009*

Roseburia 55 0.172 0.044−0.672 0.011*

Synchronous adenoma 3.673 1.007−13.395 0.049*

BMI 1.396 1.069−1.824 0.014*

TABLE 3 | Multivariable logistic regression model predicting MA.

OR 95% CI P value

Escherichia–Shigella 53.254 3.338−849.676 0.005*

Acinetobacter 0.026 0.001−0.477 0.014*

BMI 1.684 0.993−2.855 0.053

Next, we constructed an RF algorithm using the relative
abundance of the gut microbial populations with or without
the clinical risk factors to predict MA. To determine the
potential of bacterial taxa in discriminating MA, we aimed
to identified a minimal set of bacterial genera that maximally
differentiated nMA from MA. Firstly, 10 predominant bacterial
genera produced by LEfSe were initially screened, and a
combination of Escherichia–Shigella and Acinetobacter optimized
the performance of RF model (Supplementary Figure S10), and
thus were used to generate a new model. 10-times and 10-
fold cross-validations were conducted to optimize the model
in case of over-fitting. As shown in Figure 4, the AUC for
the model was 0.809 and higher than Escherichia–Shigella or
Acinetobacter alone in predicting MA (Figure 4A). Considering
the potential value of some clinical factors in the prediction of
MA, we hypothesized that the predominant bacterial populations
and clinical factors in combination could generate a more
precise RF model. To test the hypothesis, the independent
clinical risk factors, including synchronous adenoma and BMI
(Supplementary Figure S11), together with the predominant
bacterial populations, Escherichia–Shigella and Acinetobacter,
were used to build a new RF model. The AUC for the RF model
was 0.885, which was greater than the AUC for the RF model
using predominant bacterial populations alone (Figure 4A). This
result indicated that, in addition to gut microbiota, clinical
features of patients possessed additional predictive ability on MA.
The RF model were further tested on fecal and off-tumor samples,
the AUC was 0.835 and 0.889, respectively (Supplementary
Figures S12, S13), suggesting that fecal and off-tumor mucosal
samples can be used for MA prediction as well. However, the
AUC for the RF model was 0.61 on post-operative fecal samples
(Supplementary Figure S14). Finally, the RF model was applied
for discovery cohort and got a AUC of 0.832 (Figure 4B).

In order to further validated the specificity of our RF model,
we applied the RF model to predict local recurrence of colon

cancer with previous published data (Bullman et al., 2017). The
AUC value was 0.546, which indicated a poor predict ability for
local recurrence (Supplementary Figure S15).

Finally, we developed a risk score for MA, which utilized
the two predominant bacterial populations and the two clinical
features. Escherichia–Shigella, BMI and synchronous-adenoma
were risk factors, and the presence of each one was assigned one
point, while the absence of beneficial factor, Acinetobacter, was
scored one point. The cut-off values were determined by ROC
analysis in the discovery cohort and applied the same value for
the validation cohort to avoid over-fitting. As a result, the total
risk scores ranged from zero to four points, and the risk score
showed an AUC of 0.94 and 0.835 for the prediction of MA in
discovery and validation cohort. Further, the presence of two
or more risk factors in discovery cohort had a sensitivity and
specificity of 90.9% and 89.5%, but specificity in validation cohort
was 33.3% (Table 4).

DISCUSSION

We conducted the first study, to the best of our knowledge, to
assess the correlation between pre-operative gut microbiota and
MA among Chinese CRC patients after surgery and to develop
novel microbiota-based predictive models. The novel findings are
summarized as follows: (1) There was a significant correlation
between pre-operative gut microbiota and the development of
MA among CRC patients after surgery. (2) Specific members of
the predominant gut microbiota, including Escherichia–Shigella
and Acinetobacter, were identified as independent risk factors
for MA. (3) The microbiota-based RF model was established
utilizing these specific members of predominant gut microbiota
combined with independent clinical risk factors (BMI) and the
status of synchronous adenoma, showing a good performance
(AUC, 0.885) to predict MA among CRC patients after surgery.
(4) The microbiota-based RF model exhibited good ability in
the prediction of MA using fecal and off-tumor samples (AUC,
0.835 and 0.889, respectively). (5) A risk-scoring system was
proposed with four independent predictive factors got an AUC
of 0.94 and 0.835 for the prediction of MA in discovery and
validation cohort.

Colonoscopic mucosa biopsies were used rather than an
intra-operative specimen, because we thought the microbiota of
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FIGURE 4 | Gut microbiota signature can be used to discriminate between MA patients from nMA patients. (A) ROC analysis in discovery cohort with
Escherichia–Shigella along, Acinetobacter along, combination of two genera (Microbiota), and bacterial genera together with BMI (Microbiota + BMI). (B) ROC
analysis with bacterial genera together with BMI (Microbiota + BMI) in validation cohort.

TABLE 4 | Sensitivity, specificity, PPV and NPV of the risk score based on predominant presence of the risk factors.

Risk score Discovery cohort Validation cohort

Sensitivity (%) Specificity (%) PPV NPV MA rate* Sensitivity (%) Specificity (%) PPV NPV MA rate*

0 100 0 53.7 / 0 (0/6) 100 0 46.67 / 0 (0/2)

1 100 31.6 62.9 100 15.38 (2/13) 100 8.33 48.84 100 14.28 (1/7)

2 90.9 89.5 90.9 89.5 83.3 (10/12) 95.24 33.33 55.56 88.89 23.08 (3/13)

3 45.5 100 100 61.3 100 (5/5) 80.95 75 73.91 81.82 66.67 (10/15)

4 22.7 100 100 52.8 100 (5/5) 33.33 95.83 87.5 62.16 87.5 (7/8)

samples from resected tumor after operation may be disturbed
by clinical intervention, such as the preventive antibiotics
application before operation. A clear clustering between the MA
and nMA patients was observed. α-diversity of the mucosal and
fecal samples were both lower in the MA group. As low diversity
microbiota indicated unstable ecosystem, one piece of evidence
that has emerged from many large surveys of gut microbial
communities is that low microbial diversity is almost invariably
associated with disease (Round and Palm, 2018).

It was noticed that there were predominated bacterial taxa
in both MA and nMA, respectively. Specifically, we found the
genera enriched in nMA group positively correlated each other.
This co-abundance groups (CAG) of bacterial taxa resembled
the previously formulated concept of enterotypes. The bacterial
taxa belonged to one CAG may relate to each other not
only quantitatively but also functionally (Flemer et al., 2017).
Escherichia–Shigella was identified as the most abundant genus in
the MA patients. Escherichia comprises eight species, including
the well-known Escherichia coli (E. coli). Although Shigella is
technically a independent genus with four species, they are

inseparable from E. coli in terms of 16S rRNA gene DNA
sequence, so they are commonly bracketed together and named
Escherichia–Shigella in 16S rRNA gene-based microbiota studies.
All these species belong to the Enterobacteriaceae, which was
highly enriched in the MA patients as well. Escherichia–Shigella
has been shown to produce Colibactin, which is encoded by
polyketide synthase (pks) genotoxicity island (Nougayrède et al.,
2006). Colibactin possesses the capacity to damage DNA and
lead to CRC development (Wu et al., 2009; Arthur et al., 2012).
Mucosa-associated E. coli has been found to be significantly more
prevalent in CRC tissue and correlates with tumor stage and
prognosis (Bonnet et al., 2014).

E. coli and Shigella have been shown to increase
intestinal permeability in this intestinal disorder, likely
due to down-regulation of tight junction proteins (Cinova
et al., 2011). Our study demonstrated that Escherichia–
Shigella was positively correlated with bacterial invasion
of epithelial cells pathway, which was also enriched in
the MA patients as identified by PICRUSt method. The
bacterial invasion of epithelial cells pathway indicates that
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the potential pathogens such as Escherichia–Shigella and
Enterococcus could adhere the surface of host cells, cross
host epithelial barriers, and get access to internal tissues,
thereby promoting their dissemination inside the host
(Ribet and Cossart, 2015).

It was striking that there was high similarity in the mucosal
microbiota of paired on–off tumor samples with regard to
overall composition of the microbiota. In contrast, paired fecal
and mucosal samples had lower similarity. These findings were
consistent with a previous study (Nakatsu et al., 2015). We
found that microbiota in the fecal samples can be also separated
between the MA and nMA groups. As such, even though fecal
microbiota differed from and may only partially reflects the
microbiota at the mucus layer, differences due to MA status are
still evident. Unlike mucosal samples, which mainly reflected
the local microbiota, the fecal samples may be a representative
for the whole gut environment. It is possible that except for
the lesion site, other sites of the colon may also possess
more CRC-related bacteria in the MA patients, compared to
the nMA patients.

Our previous cross-sectional study showed differences in
post-operative fecal microbiota between patients with and
without MA (Jin et al., 2019). We wonder whether such
difference could exist in the pre-operative fecal samples. As
observed in our study, similar to pre-operative CRC cohort,
lower microbiota diversity, and higher abundance CRC-related
bacterial taxa were characteristics for MA in the post-operative
cohort, but not obvious as pre-operative cohort. ANOSIM
results also showed the distance value between MA and nMA
was high in pre-operative cohort. Collectively, these findings
suggest residual microbiota features for MA still exist in post-
operative cohort.

In this study, we identified novel microbiome biomarkers for
prediction of the MA. It is important to highlight that MA is
a complex disease that occurs as a combination of microbial
colonization, patient genetic background, and other environment
factors. Given that, we established the RF model utilizing the
gut microbiota together with the clinical risk factors to predict
MA. We observed that the key predictor was Escherichia–Shigella
in this model which was in agreement with logistic regression
result, showing that Escherichia–Shigella was an independent risk
factors with an overt OR value of 53.254. Although synchronous
adenoma was not included in the RF model, in view of it as
a risk factor for MA and in order to translate our result to
clinical application, we developed a risk score based on presence
of the negative prognostic genus Escherichia–Shigella, absence of
the positive prognostic genus Acinetobacter, together with high
BMI and the traditionally accepted risk factors, synchronous
adenoma. The specificity was lower in the validation cohort;
one explanation maybe the discovery cohort derived cut-off
value was not optimized enough, but there was still a high
sensitivity in validation cohort and the overall AUC value was
reasonable. As expected, the RF model performed well for
off-tumor mucosal and fecal samples. The RF model cannot
predict local recurrence with data imported from Bullman et al.
(2017) study, which may indicate the specificity of our predict
model. Although this clinical condition is an excellent model

for investigating whether dysbiosis precedes MA, we can’t draw
conclusions regarding the causality on the basis of our data. We
wonder if CRC patients at high risk for MA could be identified
pre-operatively by gut microbiota; an individual post-operative
surveillance plan can be made to prevent the occurrence of
metachronous CRC.

Our study may have a number of limitations. Firstly,
patients were followed up, but mucosal or fecal samples
were not collected after surgery, for which we cannot make
a before–after analysis in the same cohort of patients. But,
we made conjoint analysis with previous data of another
cohort patients. Secondly, the sample size was relatively
small, and the predicted potential of the selected biomarkers
should be evaluated in an independent cohort. Although
no external cross-validation was achieved in this study,
sufficient internal cross-validation with different samples was
made. Thirdly, the patients were followed up with for
12 months, so we could only observe MA development, but not
metachronous carcinoma.

The findings have demonstrated that specific members of
the dominant gut microbiota as non-invasive biomarkers for
prediction of MA or CRC after surgical resection. The newly
established RF algorithm and the risk-scoring system have a good
ability to predict the development of MA after surgical resection,
and therefore, the novel approaches hold potential to guide
individual post-operative surveillance plan for CRC patients in
future clinical application.
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Osimertinib contributes to the higher efficacy and few intestinal side effects in non-small
cell lung cancer (NSCLC) patients with T790M mutation. Previous studies has reported
that intestinal microbiota play important roles in drug efficacy and toxicity. However, we
have known less about the changes of intestinal microbiota in response to osimertinib
therapy. In this pilot study, we used longitudinal sampling with 6 weeks sampling
collection intervals for about 1 year to model intestinal microbial changes based on
the 16S rRNA genes sequencing in fecal samples from NSCLC patients in response to
osimertinib therapy. The results showed that there was no significantly different on the
intestinal microbial composition at the phylum, family, and genus level among NSCLC
patients with different treatment cycles (P > 0.05). There were no significant differences
in alpha diversity characterized by the richness, Shannon diversity, and phylogenetic
diversity based on the Welch’s t-test among NSCLC patients in response to osimertinib
therapy (P > 0.05). However, the dissimilarity test and principal coordination analysis
showed a few differences among NSCLC patients. The intestinal microbial markers were
changed in post-therapy (Sutterella, Peptoniphilus, and Anaeroglobus) compared to that
in pre-therapy (Clostridium XIVa). Furthermore, the phylogenetic molecular ecological
networks (MENs) were influenced by osimertinib therapy based on the module number,
link number, and module taxa composition of the first six groups. Overall, it indicated
that osimertinib therapy changed the intestinal microbiota to some extent, though not
completely. In all, this pilot study provides an understanding of changes of intestinal
microbiota from NSCLC patients in response to osimertinib therapy. No complete
changes in intestinal microbiota seem to be closely linked with the few intestinal side
effects and higher efficacy in response to osimertinib therapy.

Keywords: intestinal microbiota, 16S rRNA sequencing, non-small cell lung cancer patients, osimertinib therapy,
ecological network analysis
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INTRODUCTION

Lung cancer remains the leading cause of cancer-related
deaths worldwide (Torre et al., 2016). Non-small cell lung
cancer (NSCLC) accounts for most of all cases of lung
cancer, including adenocarcinoma, squamous cell carcinoma,
and large-cell lung cancer, which is generally diagnosed at
a terminal stage of lung cancer. For a long time, platinum-
based chemotherapy has represented the cornerstone for the
first-line treatment of advanced NSCLC patients (Santarpia
et al., 2017a), although with several limitations, including
a number of side effects and a dismal overall survival. In
recent years, the development of specific molecularly targeted
agents has primarily changed the therapeutic landscape for
advanced NSCLC patients, including epidermal growth factor
receptor-tyrosine kinase inhibitors (EGFR-TKIs)-, anaplastic
lymphoma kinase (ALK)-, and BRAF-inhibitors (Rosell and
Karachaliou, 2016). These therapies have greatly improved the
survival and quality of NSCLC patients. Gefitinib, afatinib, and
erlotinib are the standard first-line treatment for advanced
EGFR mutated NSCLC patients. After a variable length of
time from starting treatment, the resistance mechanisms of
first- and second- generation EGFR-TKIs inevitably emerge.
The T790M mutation at exon 20 within the kinase domain
of EGFR is the most common mechanism of acquired
resistance, which occurs in approximately 50–60% of EGFR-TKI-
resistant tumors.

Osimertinib is the third-generation for the treatment of
patients with metastatic EGFR T790M-positive NSCLC (Cross
et al., 2014), which is the first compound granted US Food and
Drug Administration (FDA) and European Medicine Agency
(EMA) approval (Santarpia et al., 2017b). Soria et al. (2018)
found that the advanced NSCLC patients with previously
untreated, EGFR mutation-positive receiving osimertinib had the
significantly longer median progression-free survival (PFS) than
those receiving gefitinib or erlotinib in a double-blind, phase
3 trial (18.9 vs. 10.2 months; P < 0.001). The median overall
survival (OS) was 38.6 months in response to osimertinib therapy
and 31.8 months in response to gefitinib or erlotinib therapy
(Ramalingam et al., 2020). Furthermore, there were less adverse
events of grade 3 or higher in the osimertinib group than that
in the comparator group (34 vs. 45%) (Soria et al., 2018). Mok
et al. (2017) reported that the median duration of PFS in these
T790M-positive advanced NSCLC patients with osimertinib,
who had disease progression after first-line EGFR-TKI therapy,
was significantly longer than those with platinum therapy plus
pemetrexed (10.1 vs. 4.4 months; P < 0.001). The less adverse
events of grade 3 or higher were lower with osimertinib
compared to the platinum therapy plus pemetrexed (23 vs. 47%)
(Mok et al., 2017). Based on its significant efficacy, safety and
favorable toxicity profile, osimertinib has been considered as
a therapeutic option preferable to early generation EGFR-TKI
for further improving the clinical outcome of EGFR-mutated
patients (Mok et al., 2017). However, the disease would progress
after receiving osimertinib therapy for approximately 10 months.
Thus, some novel therapeutic strategies should overcome the
osimertinib resistance.

Recently, intestinal microbiota has emerged as an “organ”
that plays a key role in health and disease. The intestinal
microbial composition shows high inter-individual variations
(Huttenhower et al., 2012). Various studies have proved that
effect of drug intake in intestinal microbiota (Wu et al., 2017).
In turn, intestinal microbiota can also contribute to the different
in response to a specific drug in different individuals (Wu et al.,
2017). The intestinal microbiota can directly transform the drug
or change the host’s metabolism and immune system to modify
the pharmacodynamics of a medication (Rajpoot et al., 2018).
Therefore, understanding the role of intestinal microbiota in drug
response may contribute to the development of microbiome-
targeting approaches that improve the drug efficacy.

Previous studies has reported that the intestinal microbiota
play important roles in drug efficacy and toxicity in response
to chemotherapeutic drugs (Alexander et al., 2017; Cong et al.,
2019). These studies showed that drugs could change the
composition of intestinal microbiota for patients. However,
these works drew the conclusion with only a few times points.
The dynamic patterns of microbial communities across longer
time scales with drug usage remain unclear. In this study, we
longitudinally tracked the changes of intestinal microbiota in
NSCLC patients in response to targeted drug osimertinib therapy
for nine cycles based on the 16S rRNA sequencing data. This pilot
study will help the development of personalized medicine, and try
to modulate the intestinal microbiota to manage drug efficiency
on the level of the individual (Doestzada et al., 2018).

MATERIALS AND METHODS

Study Subjects and Microbial Sampling
Non-small Cell Lung Cancer (NSCLC) Patients
Eight adults with locally advanced (stage IIIB) or metastatic (stage
IV) NSCLC with confirmed T790M mutation from the Affiliated
Hospital of Qingdao University, who have received prior EGFR-
TKI therapy, were recruited to the pilot study (Figure 1).
Exclusion criteria included that those who have inflammatory
bowel disease, irritable bowel syndrome, and other intestinal
diseases, and were treated with antibiotics or probiotics usage,
during the sampling. Sampling time was ranged from April 2017
to May 2018. Daily dosage of osimertinib was administered orally
as one 80 mg tablet. Total of 65 fecal samples were collected
from nine cycles of osimertinib therapy. The sample collection
intervals of every cycle were about 6 weeks. Fecal samples were
self-sampled in the morning prior to the start of drug usage,
including that before the first therapy, before the second therapy,
before the third therapy, before the fourth therapy, before the
fifth therapy, before the sixth therapy, before the seventh therapy,
before the eighth therapy, before the ninth therapy, and before
the tenth therapy, named by T1, T2, T3, T4, T5, T6, T7, T8, T9,
and T10, respectively.

Healthy Individuals
Control samples were obtained from 21 healthy individuals.
These healthy individuals, who have any recorded antibiotics
or probiotics usage, and gastrointestinal tract disorders within
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FIGURE 1 | Timeline representing the clinical course of eight patients. Key time points include timing of fecal sampling; sampling time was ranged from April 2017 to
May 2018; Response evaluations include partial response (PR), stable disease (SD), progression disease (PD) and death. Response evaluations were due to
December 2018. Daily dosage of osimertinib was administered orally as one 80 mg tablet.

1 month preceding the sample collection, were excluded. The
collected samples from the healthy individuals were named by H.

All of the study subjects have been local residents of Qingdao
city. This pilot study was approved by the Affiliated Hospital
of Qingdao University Institutional Review Board, and all pilot
study subjects signed the informed consent before participation.
Fresh fecal samples were put into 5 ml tubes and immediately
stored at −80◦C until the day of analysis.

DNA Extraction, PCR Amplification of
16S rRNA Gene, Amplicon Sequencing
and Data Processing
Total genomic DNA was extracted using the DNA Stool Kit
from Tiangen (Wu et al., 2016) and purity were monitored on
1% agarose gels. 16S rRNA gene of V3–V4 regions amplicon
sequencing was carried out employing the 16S Metagenomic
Sequencing Library Preparation protocol developed by Illumina
(San Diego, California, United States) using the bacterial
universal primers (357F-806R) (Cong et al., 2018). The PCR
amplification products were purified with Qiagen Gel Extraction
Kit (Qiagen, Germany). The DNA quality was assessed on the
Qubit R© 2.0 Fluorometer (Thermo Fisher Scientific) and Agilent
Bioanalyzer 2100 system. Finally, bacterial DNA amplicons were
sequenced from each fecal sample for 2 × 250 bp paired-end
sequencing based on the Illumina Hiseq 2500.

16S rRNA Amplicon Sequencing Data
Analysis
Raw sequences were separated into samples by barcodes based on
the Galaxy Illumina sequencing pipeline. Ambiguous, adapters,
and low-quality reads (“N”) were trimmed by Btrim (Kong,
2011). Forward and reverse reads were incorporated into a
whole sequence by FLASH (Magoc and Salzberg, 2011). After
quality control of the raw data, the clean reads were clustered
into operational taxonomic units (OTUs) by using UCLUST at

97% similarity level (Edgar, 2010). Each OTU was considered
to represent a species (Deng et al., 2012). The ribosomal
database project (RDP) classifier was used to determine the
taxonomic assignment (Wang et al., 2007). Rarefaction analysis
was performed using the original detected OTUs.

Network Analysis
Intestinal microbial ecological networks were constructed and
analyzed by random matrix theory (RMT) methods based on
the online MENA pipeline. OTUs detected in more than half
in each group were used to ensure reliable correlations. To
compare with different networks, the same cutoff of 0.85 was
applied to construct ecological networks for intestinal microbial
communities. Each network was divided into modules by the
fast greedy modularity optimization to describe the modularity
property. In addition, a network developed by OTU abundance
data represented the ecological links of different OTU nodes
(OTUs) in a microbial community, and different nodes played
distinct roles (Guimerà et al., 2007).

Statistical Analysis
The Shannon index, richness, and phylogenetic diversity
were calculated for alpha diversity analysis, which presented
complexity of species diversity for samples. The different tests
of alpha diversity for different groups were performed by
Wilcoxon Rank Sum Test. Beta diversity was calculated by Bray-
Curtis distance. Differences in beta diversity were identified
using the multiple response permutation procedure (MRPP)
algorithm. Community structure based on beta diversity was
visualized using principal coordinate analysis (PCoA). Linear
Discriminant Analysis with Effect Size (LEfSe) was used to
identify the significant P-values associated with microbial clades
and functions. Characteristics with a LDA score cutoff of 2.0 were
known as being different. Significantly different biomarkers at the
phylum and genus levels were identified using STAMP (v2.1.3).
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An absolute Pearson’s correlation was based on a significance
level under 0.05. Principal components analysis (PCA) was used
to determine the changes of intestinal microbiota based on
significant different genera and OTUs. The R software package
(v3.4.1) was used for all statistical analysis, except for two-tailed
unpaired t-tests and Pearson correlation by IBM SPSS statistic
19.0 to determine the significance of the differences.

RESULTS

Study General Characteristic
NSCLC patients and control subjects were matched for age,
sex as well as body mass index (BMI) in this study (Table 1).
Eight NSCLC patients with locally advanced (stage IIIB)
or metastatic (stage IV) NSCLC treated with osimertinib
therapy after progression were enrolled in the present study.
Response evaluation was administered every 6 weeks. During
the treatment, no antibiotics were applied. Patients were
classified based on radiological evaluation according to Response
Evaluation Criteria in Solid Tumors (RECIST 1.1) (Schwartz
et al., 2016). Fecal samples were collected every 6 weeks
during therapy until disease progression, or death, or the study
self-withdrawal, according to the informed consent and study
protocol. Dynamic variation of intestinal bacterial characteristics
was evaluated and analyzed by metagenomic sequencing.

Changes of Intestinal Microbial
Composition at the Taxonomical Level
From NSCLC Patients in Response to
Osimertinib Therapy
A total of 678 OTUs were defined with RDP annotations,
including 351 OTUs belonging to 109 genera, and 327 OTUs
of unclassified genera. Rarefaction curves showed that most
samples leveled out between 100 and 250 taxa (Supplementary
Figure S1). At the phylum level, the distribution pattern
of the top six phylotypes (comprising about 99% of the
total counts) in each group is shown in Supplementary
Figure S2. We explored the differences of phylum Bacteroidetes,
Firmicutes, Proteobacteria, Verrucomicrobia, Actinobacteria,
and Fusobacteria in NSCLC patients and healthy individuals
(Supplementary Table S1). The NSCLC samples showed no
obvious differences in relative abundance of these phylotypes
between pre-therapy and post-therapy (P > 0.05). There were
also no significant different between NSCLC samples and

healthy samples (P > 0.05). At the family level, Bacteroidaceae,
Lachnospiraceae, and Prevotellaceae were the top three
family almost in NSCLC patients and healthy individuals
(Supplementary Figure S3). There were almost no significant
differences in relative abundance of selected taxa between
pre-therapy samples and post-therapy samples, and between
NSCLC samples and healthy samples (P > 0.05, Supplementary
Table S2). At the genus level, Bacteroides was the most abundant
genus, followed by Prevotella in both NSCLC patients and healthy
individuals, except for T9 and T10 (Supplementary Figure S4).
We also explored the differences of the genus Bacteroides,
Prevotella, Faecalibacterium, and other sixteen genera in NSCLC
patients in response to osimertinib therapy. The results also
showed that no significant differences were detected between
pre- and post-therapy samples, and between NSCLC patients
and healthy individuals (P > 0.05, Supplementary Table S3).

Changes of Intestinal Microbial Diversity
From NSCLC Patients in Response to
Osimertinib Therapy
As measures of alpha diversity (Supplementary Figure S5),
which describes diversity within each sample, we used richness
(number of distinct species present in samples), phylogenetic
diversity, and Shannon diversity to explore the changes in
eight patients in response to osimertinib therapy. The results
showed that alpha diversity of individuals changed greatly
(Supplementary Figure S6). Most samples in group T showed
less species richness, phylogenetic diversity, and Shannon
diversity than those in group H (Table 2). The Welch’s
t-test showed almost no significant differences between group
H and group T, and between pre-therapy and post-therapy
(P > 0.05, Supplementary Table S4). Dissimilarity analysis
showed significant differences between pre-therapy (T1) and
post-therapy (T2, T3, T4, T5, T6, T7, T8, T9, T10) based on
the MRPP (P < 0.05, Supplementary Table S5). However, no
significant differences in group H and group T (P > 0.05,
Supplementary Table S5). Principal coordination analysis based
on Bray-curtis dissimilarity index showed a little separation
between healthy individuals and NSCLC patients (Figure 2).

Differences of Intestinal Microbiota From
NSCLC Patients in Response to
Osimertinib Therapy
To identify intestinal microbial responses associated with
osimertinib therapy at the taxonomical level, we determined

TABLE 1 | Characteristics of the study subjects and the samples.

Subject group No. of subjects
(male/female)

Mean age
(range)

Mean BMI
(range)

Treatment period (sample number)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Healthy
individuals (H)

21 (4/17) 54 (26–64) 23.4 21

Non-small cell
lung cancer
patients (T)

8 (2/6) 60 (52–68) 24.4 8 8 8 7 7 7 6 5 5 4
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microbial clade differences using LEfSe analysis (Figure 3).
At the phylum level, we found that the higher proportions
of Actinobacteria were observed in H than that in T1 and
T10 (Supplementary Figure S7). At the genus level, greater
proportions of Bacteroides, Klebsiella, and Parasutterella were
detected in H than that in T1 and T10 (Supplementary
Figure S7). The genera Clostridium XIVa and Cellulosilyticum
were significantly enriched in T1 than that in H and
T10 (Figure 3). The members of Sutterella, Peptoniphilus,
Anaeroglobus, and Neisseria were more abundant in T10 than
that in T1 and H (Figure 3). In addition, we constructed the PCA
plot based on the significant different genera and OTUs in group
T and group H (Figure 4). The results showed that the samples
from NSCLC patients were well separated from the healthy
individuals, but partly overlapped within different treatment
cycles based on the different genera and OTUs (Figures 4A,B).
We also selected the group T1, T3, T5, T7, and T10 to structure
the PCA plot based on the significant distinct genera and OTUs
(Supplementary Figure S8). It also showed the changes in
response to osimertinib therapy.

Molecular Ecological Network Analysis
of Intestinal Microbiota From NSCLC
Patients in Response to Osimertinib
Therapy
The molecular ecological networks (MENs) were constructed for
NSCLC patients to determine the effect of osimertinib therapy
on microbial assemblages that potential interact with intestinal
niches. We focused on representative networks from NSCLC
patients with more than six biological duplications, including of
the group T1, T2, T3, T4, T5, and T6. No less than five nodes
to construct the modules in NSCLC samples (Figure 5). There
were 3, 1, 1, 3, 1, and 1 module(s) in group T1, T2, T3, T4,
T5, and T6 networks, respectively (Supplementary Table S6).
Overall, taxa tended to co-occur (positive correlations, pink
lines) rather than co-exclude (negative correlations, blue lines)

TABLE 2 | The richness, phylogenetic diversity, and Shannon diversity in
non-small cell lung cancer patients and healthy individuals.

Group Richness Phylogenetic diversity Shannon diversity

H 161 ± 39 12.25 ± 2.18 4.44 ± 0.83

T1 125 ± 39 9.84 ± 2.65 3.97 ± 0.96

T2 136 ± 56 10.87 ± 3.34 3.63 ± 1.82

T3 127 ± 55 9.81 ± 3.48 4.20 ± 0.85

T4 142 ± 47 11.01 ± 3.45 4.45 ± 0.83

T5 153 ± 41 11.52 ± 2.49 4.72 ± 0.53

T6 148 ± 61 11.61 ± 3.63 4.30 ± 1.34

T7 127 ± 49 10.14 ± 3.32 4.10 ± 0.82

T8 132 ± 46 10.16 ± 2.73 4.15 ± 0.69

T9 123 ± 41 10.03 ± 2.42 3.78 ± 0.78

T10 127 ± 64 10.12 ± 4.19 3.67 ± 1.33

H represents the healthy individuals; Tn (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10)
represents the non-small cell lung cancer patients in different cycles of osimertinib
therapy.

(Figure 5). The negative correlations accounted for less than
45% of the potential interactions observed at each treatment
stage (Figure 5). The negative correlations in NSCLC patients
were increased by 22.32% from T1 to T6. The composition of
the modules differed within each network and changed over
the treatment time (Figure 5). Firmicutes almost dominated all
the modules from each treatment stage in NSCLC patients. The
phylum Fusobacteria presented in the modules before the third
treatment (T3) and before the sixth treatment (T6). The phylum
Fusobacteria was supposed to be more relevant to intestinal
dysbiosis (Brennan and Garrett, 2019).

DISCUSSION

The identification of tyrosine kinase inhibitors (TKIs), has
marked the advent of the era of precision medicine, which
has revolutionized the diagnostic and therapeutic approach to
NSCLC. Recently, osimertinib, which is designed to preferentially
target sensitizing mutations and the T790M resistance mutation,
over the wild-type receptor, has significantly improved survival
and quality of life in molecularly defined subgroups of NSCLC
patients. It has been reported that intestinal microbiome and
drugs or drug metabolites interact with intestinal and systemic
pharmacological effects. Intestinal microbiota play key roles in
compound modifications including their activation (Tiago et al.,
2014), inactivation (Haiser et al., 2013), or toxification (Wallace
et al., 2010; Zimmermann and Zimmermann-Kogadeeva, 2019).
In turn, the drug metabolite could change composition and
structure. In this study, we explored that the changes of intestinal
microbiota with NSCLC patients in response to osimertinib
therapy for nine cycles.

Firstly, we examined the changes of intestinal microbial
composition from NSCLC patients at the phylum and genus
level in response to osimertinib therapy. Generally, the gut
was dominated by members of four bacterial phyla, Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria, with lesser and
sporadic representation of other phyla, such as Fusobacteria
and Verrucomicrobia (Rajilic-Stojanovic and De Vos, 2014;
Budden et al., 2017; Wexler and Goodman, 2017). Consistent
with it, our results demonstrated that the majority of all
microbial populations identified in our participants were
Bacteroidetes, Firmicutes, and Proteobacteria (Supplementary
Figure S2). Previous numerous studies have characterized the
lung microbiome using bronchoalveolar lavage microbiota of
subjects with lung diseases. Significant differences are found in
bacterial community composition between healthy and diseased
lungs (Garzoni et al., 2013; Dickson et al., 2014). An increasing
number of studies have revealed the close relationship between
the intestinal microbial composition and lung diseases, known
as the gut-lung axis (Budden et al., 2017; Zhuang et al., 2019).
For example, an increase in the abundance of Bacteroides
fragilis and total anaerobes, as well as a decrease in the relative
abundance of Faecalibacterium spp., Veillonella spp., Rothia
spp., and Lachnospira spp. in early life were associated with
increased risk of asthma (Vael et al., 2008; Arrieta et al., 2015).
Recently, Strickertsson et al. (2013), Amarnani and Rapose
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FIGURE 2 | Principal coordinates analysis (PCoA) ordination (operational taxonomic units = 97% 16S rRNA sequence similarity) showing different microbial
composition between NSCLC patients and healthy individuals based on the Bray-Curtis dissimilarity matrix.

FIGURE 3 | Microbial biomarkers among healthy individuals (H) and NLCLC patients (before the first therapy T1 and before the tenth therapy T10). Significantly
different abundant taxa as biomarkers using Kruskal–Wallis test (P < 0.05) with LDA score > 2.0. based on LEfSe analysis.

(2017), and Zhuang et al. (2019) found that patients with
lung cancer in fecal microbiome showed elevated levels of
Enterococcus, which could lead to increased DNA mismatch rate

that indirectly promote rectal cancer. However, there were no
significant differences in intestinal microbiota between NSCLC
patients and healthy individuals and between pre-therapy and
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FIGURE 4 | Significantly different genera (A) and OTUs (B) based on the PCA plot between healthy individuals and NSCLC patients in response to osimertinib
therapy.

post-therapy at the phylum, family, and genus level in our pilot
study (P > 0.05, Supplementary Tables S1–S3). It suggested
that osimertinib therapy did not greatly change the relative
abundance of intestinal microbiota in NSCLC patients based on
the taxonomical level, and that intestinal microbiota of these
NSCLC patients at the baseline did not differ more than that of
healthy individuals.

Secondly, we explored the differences of alpha and beta
diversity of intestinal microbiota from NSCLC patients in
response to osimertinib therapy. In previous study, Zhuang

et al. (2019) found that there was no significant reduction in
alpha diversity of intestinal microbiota in lung cancer patients
compared to healthy individuals. In line with it, our results
indicated that there were almost no significant differences
in richness, phylogenetic diversity, and Shannon diversity
between NSCLC patients and healthy individuals (P > 0.05,
Supplementary Table S4). Moreover, no significant difference
was observed in the richness and Shannon diversity of intestinal
microbiota in NSCLC patients between pre-therapy (T1) and
post-therapy (T2, T3, T4, T5, T6, T7, T8, T9, T10) (P > 0.05,
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FIGURE 5 | Highly connected modules with intestinal microbial networks of NSCLC patients in response to osimertinib therapy. Node colors represent different
phyla; pie charts represent the composition of the modules. A blue link indicates a negative relationship between two phyla, whereas a pink indicates a positive
relationship. The number in bracket means the ratio of negative links accounting for the total links.

Supplementary Table S4), indicating that osimertinib therapy
did not play great roles in alpha diversity of intestinal microbiota.
However, we found that there was significantly different in
beta diversity between pre-therapy and post-therapy in NSCLC
patients based on the dissimilar test (P < 0.05, Supplementary
Table S5), suggesting that osimertinib therapy has made the

intestinal microbial community composition changed from the
whole (Zhuang et al., 2019). At the same time, there was a
little separation among NSCLC samples with different treatment
cycles, and between healthy individuals and NSCLC patients
(Figure 4). Previous studies reported that adaptive immunity in
response to cancer therapy could shape the colonic microbiome
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(Scholz et al., 2014). We speculated that the differences probably
due to the different immune status and dietary behavior among
them in response to osimertinib therapy.

Thirdly, we found the variations of the intestinal microbial
markers in NSCLC patients before the first treatment (T1)
and after the ninth treatment (T10). The microbial biomarkers
in healthy individuals were the Bacteroides, Klebsiella, and
Parasutterella. Bacteroides, commonly found in the human
intestine, has a symbiotic host-bacterial relationship with
humans. They assist in digesting food and producing valuable
nutrients and energy to meet the body needs. Some strains of
Klebsiella are considered as a part of the normal flora of the
human gastrointestinal tract. The genus of Parasutterella has
been defined as a core component of human and mouse gut
microbiota, and has been correlated with various health outcomes
(Ju et al., 2019). These indicated that our healthy samples
were eligible. The genus Clostridium XIVa was considered
as the biomarker in T1, which produce butyrate and other
short chain fatty acids, has been correlated with susceptibility
to enteric pathogens (Lopetuso et al., 2013). It indicated
that intestinal state in NSCLC patients was relatively healthy
before the osimertinib therapy. The Sutterella, Peptoniphilus,
and Anaeroglobus dominated in T10. Sutterella spp. has
been associated with autism, gastrointestinal dysfunction and
metabolic syndrome (Williams et al., 2012; Lavelle et al.,
2015; Lim et al., 2017). Peptoniphilus are important causes of
bloodstream infection (Brown et al., 2014). Anaeroglobus as an
opportunistic pathogen was reported in clinical infection that
presented as pneumonia with empyema (Wang et al., 2015).
Changes of intestinal microbial markers between pre-therapy and
post-therapy showed that osimertinib therapy had certain effects
on the biomarker microbes, suggesting that there were probably
underlying intestinal problems.

Finally, MENs of intestinal microbiota in NSCLC patients
were also changed in response to osimertinib therapy. Microbes
in the intestine are not independent individuals; however,
they always make intricate and inter-connected ecological
communities. The links between nodes (taxa) could explain the
co-exclusion or co-occurrence correlations, mainly caused by
the species performing exclusive and complementary functions
(Zhou et al., 2011). The study results showed that the links in
the module were distinctly increased from T1 to T6, suggesting
that intestinal microbial interspecies interactions within the
constructed ecological networks were changed, and the more
complicated and compact of module was made in response
to osimertinib therapy (Figure 5). Positive interactions usually
signify that nodes cooperate with one another, while negative
interactions indicate competition between the taxa (Deng et al.,
2012). Violle et al. (2010) established the protist communities in
laboratory microcosms to demonstrate that external disturbance
accelerate microbial species-species competition. In our pilot
study, the negative links increased distinctly from T1 to
T6, suggesting that osimertinib probably played key roles
in the competition relationships based on the species-species
interactions of intestinal microbiota (Figure 5).

Although we followed the longitudinal sampling of these
NSCLC patients for about 1 year, there are a number of

limitations in the present study. Since only 8 patients were
enrolled in our study, data of more participants are needed.
Furthermore, we only collected stool samples on the basis of
administration. We will carry out further study to collect stool
samples on the basis of dose and duration of administration
of the drug. In the future, the detail therapeutic modalities
and clinical settings in targeting the “gut-lung axis” need to be
paid more attention for solving NSCLC that seems promise. In
addition, since the main research object of intestinal microbial
diversity analysis is intestinal bacteria, the whole process of the
experiment was carried out using bacterial universal primers
for the amplification of bacterial marker genes; the virus and
mycoplasma present in a small part were not analyzed. It is
necessary to design a completion plan for this limitation in
the future study.

CONCLUSION

In conclusion, our pilot study found that osimertinib therapy
changed intestinal microbial community composition from the
whole, and made the intestinal microbial markers changed,
as well as the varied microbial ecological networks for
NSCLC patients. However, few roles were found in microbial
composition changes at different taxonomical level and alpha
diversity in response to osimertinib therapy. It indicated that
osimertinib did not make radical change in intestinal microbiota
of NSCLC patients. The partly changes of intestinal microbiota
seem to be closely correlated with the few intestinal side effects
and higher efficacy in these NSCLC patients with T790M
mutation in response to osimertinib therapy.
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With the emergence of next-generation sequencing (NGS) technology, there have been
a large number of metagenomic studies that estimated the bacterial composition via
16S ribosomal RNA (16S rRNA) amplicon sequencing. In particular, subsets of the
hypervariable regions in 16S rRNA, such as V1–V2 and V3–V4, are targeted using high-
throughput sequencing. The sequences from different taxa are assigned to a specific
taxon based on the sequence homology. Since such sequences are highly homologous
or identical between species in the same genus, it is challenging to determine the
exact species using 16S rRNA sequences only. Therefore, in this study, homologous
species groups were defined to obtain maximum resolution related with species using
16S rRNA. For the taxonomic assignment using 16S rRNA, three major 16S rRNA
databases are independently used since the lineage of certain bacteria is not consistent
among these databases. On the basis of the NCBI taxonomy classification, we re-
annotated inconsistent lineage information in three major 16S rRNA databases. For
each species, we constructed a consensus sequence model for each hypervariable
region and determined homologous species groups that consist of indistinguishable
species in terms of sequence homology. Using a k-nearest neighbor method and the
species consensus sequence models, the species-level taxonomy was determined. If
the species determined is a member of homologous species groups, the species group
is assigned instead of a specific species. Notably, the results of the evaluation on our
method using simulated and mock datasets showed a high correlation with the real
bacterial composition. Furthermore, in the analysis of real microbiome samples, such
as salivary and gut microbiome samples, our method successfully performed species-
level profiling and identified differences in the bacterial composition between different
phenotypic groups.

Keywords: 16S rRNA, microbial community, differential composition, operational taxonomic units, taxonomy
assignment
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INTRODUCTION

Metagenomics has been widely used to analyze microbial
communities without cultivating strains (Breitbart et al., 2003;
Schloss and Handelsman, 2003; Handelsman, 2004; Petrosino
et al., 2009; Qin et al., 2010; Peng et al., 2019; Yang L. et al., 2019;
Brumfield et al., 2020; Chung et al., 2020; Khachatryan et al.,
2020). Moreover, the 16S ribosomal RNA (16S rRNA) gene has
been regarded as an informative resource for the identification of
the species and the estimation of bacterial composition as it has
both well-conserved and hypervariable regions among different
species. Thus, the conserved regions can be used as primers
to target specific hypervariable regions using targeted amplicon
sequencing (Petrosino et al., 2009), whereas the hypervariable
regions can be used to identify bacterial taxonomy using the
sequence similarities between different species. Although the
16S rRNA gene is a useful material to identify bacteria, it is
challenging to completely discriminate species since 16S rRNA
genes are identical or highly homologous between some different
species. Genome comparisons by DNA–DNA hybridization or
genome sequence comparison (ANI analyses) were needed to
assign an exact species (Cho and Tiedje, 2001; Ciufo et al., 2018).

Using 454 pyrosequencing (Petrosino et al., 2009; Cummings
et al., 2013) and Illumina MiSeq technology (Wen et al., 2017;
Ravi et al., 2018; Sessou et al., 2019), 16S rRNA analysis
pipelines were built to estimate the bacterial composition of
different species (Turnbaugh et al., 2007; Jumpstart Consortium
Human Microbiome Project Data Generation Working Group,
2012). While attempts are being made to analyze the entire
16S rRNA sequence via long-read sequencing using PacBio
(Quail et al., 2012) or Oxford Nanopore (Winand et al., 2019)
technology, the high error rates and costs limit their practical
utility. When estimating bacterial composition using targeted
amplicon sequencing, the results might differ depending on
the choice of hypervariable regions, such as V1–V2 or V3–
V4. Therefore, selecting appropriate hypervariable regions for
analysis is important. Several studies have been conducted
to investigate the manner in which the analysis of different
variable regions affects the estimation of bacterial composition
(Sun et al., 2013; Johnson et al., 2019).

The 16S rRNA analysis pipeline involves preprocessing,
clustering [operational taxonomic units (OTU) picking],
assigning taxonomy, and estimating the bacterial composition.
Although most of the sequencing errors are filtered out at
the preprocessing step, there are still some sequencing errors
that remain. To overcome these errors and strain variations,
processed reads are clustered into OTUs using a 97 or 99%
sequence similarity threshold. Since sequences belonging to
the same OTU are considered to be derived from the same
clade, OTU clustering directly affects the estimation of bacterial
composition. Therefore, several clustering algorithms have been
developed to overcome strain variation and sequencing errors.
For example, the UPARSE algorithm (Edgar, 2013) clusters
sequences on the basis of sequence similarity, whereas the
Minimum Entropy Decomposition (MED) (Eren et al., 2015)
and DADA2 (Callahan et al., 2016) algorithms cluster sequences
via the association of position-specific variations. For taxonomy

assignment, classifiers such as MEGAN (Huson et al., 2007),
RDP naïve Bayesian classifier (Wang et al., 2007), Kraken (Wood
and Salzberg, 2014), and SPINGO (Allard et al., 2015) were
developed. Thus, not only the classifier but also the 16S rRNA
database is important for accurate taxonomical classification.
There are currently three major 16S rRNA databases that are
widely used, namely GreenGenes (DeSantis et al., 2006), SILVA
(Quast et al., 2013), and RDP (Cole et al., 2014). However,
although new bacterial taxa continue to be reported, these three
databases have not been updated for over 2 years. Furthermore,
the lineage of some bacteria is not consistent among these three
databases (Balvociute and Huson, 2017; Edgar, 2018a).

In this study, we re-annotated the inconsistent or mislabeled
taxa in the three 16S rRNA databases on the basis of the
NCBI taxonomy classification. The 16S rRNA sequences were
combined from the re-annotated GreenGenes, SILVA, and NCBI
databases to include species that exist exclusively in each database
or were recently annotated. In the evaluation of taxonomy
classification, the classifier trained with all three databases
showed the best accuracy in terms of precision and recall rates.
Moreover, taxonomic separability was measured for the V1–
V2 and V3–V4 hypervariable regions at the genus and species
level. For each species, we constructed consensus sequences
for each hypervariable region and determined indistinguishable
species. By comparing the consensus sequences of each species,
homologous species groups in which the species share high
similarity were constructed for each hypervariable region, which
was then used for the species-level taxonomy assignment. The
evaluation performed using simulated datasets and mock datasets
showed a high correlation with the real bacterial composition.
Moreover, when analyzing real microbiomes, such as the salivary
and gut microbiome, our method successfully performed species-
level profiling to identify differences in bacterial composition
between different phenotypic groups.

MATERIALS AND METHODS

Re-annotating the 16S rRNA Sequence
Databases
To investigate the taxonomy consistency, GreenGenes v13.5,
SILVA v132, and RDP v11.5 databases were used. As quality
control, sequences whose length range in three times the
standard deviation from the mean without any ambiguous
nucleotide (e.g., N) were used. Out of 1,242,330, 1,861,373, and
3,196,041 sequences obtained from GreenGenes, SILVA, and
RDP databases, respectively, 1,191,315, 1,779,305 and 1,559,121
sequences were retained for the re-annotation after quality
control process (Supplementary Table 1).

To apply the latest version of NCBI taxonomy, NCBITaxa
class in the ete3 python package (Federhen, 2012; Huerta-Cepas
et al., 2016) was used with NCBI taxdump downloaded on
January 3, 2020. The taxonomy tree with seven taxonomic ranks
(superkingdom, phylum, class, order, family, genus, and species)
was used in this re-annotation.

Each 16S rRNA sequence was re-annotated using the taxon
at the lowest taxonomy rank in the database (Figure 1 and
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FIGURE 1 | The workflow of this study. (A) The taxonomy of 16S rRNA sequences in GreenGenes, SILVA, and RDP databases was re-annotated according to the
NCBI taxonomy. (B) GreenGenes, SILVA, and NCBI databases were combined. RDP database was excluded since they have no species annotation. (C) Consensus
sequences of each species were made by hypervariable region sequences extracted from the combined databases. By clustering consensus sequences within 99%
sequence similarity, homologous species groups were established. (D) OTU tables were made in a conventional manner. (E) The taxonomy assignment from phylum
to genus-level was processed by the RDP naïve Bayesian classifier re-trained using the combined database. (F) The species-level classification was processed by
searching sequences against the consensus database. Sequences were labeled as the representative species of the homologous species group that includes the
best hit of the sequence.

Supplementary Figure 1). To identify the lowest rank, the
provided taxa were searched from species to superkingdom. For
each rank, the taxid was returned if it was found using the

get_name_translator() function in NCBITaxa class. Otherwise,
that rank was skipped. When the species name was specified
with the strain name at the species rank, only the species name
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was used. Since Escherichia and Shigella species have essentially
identical 16S rRNA sequences, sequences labeled as Escherichia
or Shigella were collectively labeled as Escherichia.Shigella.

Gathering the 16S rRNA Sequences
From the Genomes in the NCBI RefSeq
Database
The genomes assembled at the complete-level or chromosome-
level were downloaded from the ftp site of the NCBI RefSeq
database1. The information for each genome is listed in the
assembly_summary_refseq.txt file (downloaded on July 16, 2019).
In the generic feature file (GFF), the regions where the feature
is described as “rRNA” and the product as “16S ribosomal RNA”
were identified as the 16S rRNA sequences and extracted from the
genome. Thus, we obtained 78,270 16S rRNA sequences from the
16,337 genomes analyzed. As quality control, the same filtering
step was performed for the sequences extracted and 77,803 16S
rRNA sequences were retained to train the classifier and generate
consensus models.

Simulating the Hypervariable Regions
From the 16S rRNA Sequences
The 27F/308R and 337F/806R primer pairs are widely used
to target the hypervariable regions V1–V2 and V3–V4,
respectively, for Illumina MiSeq amplicon sequencing. The
fragment sequences of the hypervariable regions were simulated
by extracting the sequences between the forward and backward
primers from the 16S rRNA sequences using cutadapt (Martin,
2011). Moreover, an error level of 20% (i.e., 2–3 nt mismatches)
was allowed when matching the primer sequences. The mean
and standard deviation of the extracted fragment length were
also calculated. Fragments longer or shorter than twice the
standard deviation from the mean value were ignored. Fragments
containing “N” were also ignored (Supplementary Table 2).

Constructing Homologous Species
Groups for Each Hypervariable Region
To determine which species are distinguishable by their 16S
rRNA sequences, sequence similarities between species belonging
to the same genus were calculated. A consensus sequence of the
strains belonging to the same species was obtained using the
“cons” function in EMBOSS v6.6.0 (Olson, 2002) with the default
parameter settings. Pairwise sequence similarities were measured
between the consensus sequences of each pair of species using the
Needleman–Wunsch algorithm (Needleman and Wunsch, 1970)
implemented in the “needle” function in EMBOSS v6.6.0 with the
default parameter settings.

On the basis of the sequence similarity of the consensus
sequences, homologous species groups that shared 99% or
higher sequence similarity were constructed. The species in a
homologous species group were considered indistinguishable by
their 16S rRNA sequences. To name the homologous species
group, the species in the group with the largest number of strains
were selected and extended with a “+” sign.

1ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/

Simulating Amplicon Sequences From
the Bacterial Genomes
Amplicon sequences for the V3–V4 hypervariable region were
simulated from the bacterial reference genomes using Grinder
(Angly et al., 2012). To target the V3–V4 hypervariable
region, the 337F (CCTACGGGAGGCWGCAG) and 806R
(GACTACHVGGGTMTCTAAT) primer sequences were used.
For abundance models, the uniform, linear, and power-law with
parameter 1 and 2 models were used. Amplicon sequences were
simulated with a uniform 0.5% error model (-md uniform 0.5)
and a length distribution of 421 ± 11 bp (-rd 421 uniform 11).
Only the forward strands were used (-un 1), and the coverage fold
was set to 1,000 (-cf 1000). Moreover, we considered copy number
bias but not genome length bias (-cb 1 and -lb 0). All other
parameters (i.e., those not mentioned above) were set as default.

Preprocessing of the Illumina Amplicon
Sequencing Reads
The 16S rRNA genes were sequenced using the Illumina MiSeq
sequencer, and paired-end reads were generated and merged
on the basis of their overlapping region. Each read pair was
assembled using FLASH (Magoc and Salzberg, 2011) with the
default parameter settings except for a minimum overlap of 20 bp
(-m 20) and maximum overlap of 300 bp (-M 300). Assembled
contigs (including “N”) were removed using an in-house script.
Merged fragments longer than twice the standard deviation from
the mean of the hypervariable region length (mean and standard
deviation of the V3–V4 region were 421 and 11 nt, respectively)
were also removed using Sickle. The mean and standard deviation
of the V3–V4 region length were calculated from the sequences in
the GreenGenes database.

Constructing the OTUs and Determining
Their Taxonomy Assignment
The classification of the 16S rRNA sequence was performed
according to the conventional classification approach (Figure 1).
Preprocessed reads were clustered into OTUs using cd-hit-
est (Fu et al., 2012). Cd-hit-est was used with the following
parameter settings: no memory limitation (-M 0), word size 10
(-n 10), cluster into the most similar cluster (-g 1), and a 99%
sequence similarity threshold (-c 0.99). The other parameters
were set as default. Each representative sequence was classified
using the RDP naïve Bayesian classifier trained with our
combined database.

RESULTS AND DISCUSSION

Refinement of Inconsistent Taxonomy
Annotation in 16S rRNA Databases
Using the 16S rRNA sequences from three major 16S rRNA
databases, we investigated the consistency of the taxonomic
lineage annotation. When we compared the taxonomic lineage
annotations provided by the three 16S rRNA databases, we
found that the same genus or species was often annotated with
a different lineage. Out of the 1,122, 4,985, and 2,191 genera
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included in the GreenGenes v.13.5, SILVA v.132, and RDP
v.11.5 databases filtered, respectively, 183, 2,794, and 68 were
exclusive to each database (Supplementary Figure 2A). Notably,
out of the 853 genera included in all three databases, only 288
were annotated with the same lineage. Moreover, 112 genera
were annotated with different lineages in all three databases.
For example, the order of Mycobacterium was annotated as
Actinomycetales in the GreenGenes and RDP databases but
as Corynebacteriales in the SILVA database. The order of
Corynebacterium was also annotated as Actinomycetales in the
GreenGenes and RDP database but as Corynebacteriales in the
NCBI taxonomy classification. Taxonomy reclassification also
resulted in inconsistent taxonomic lineage annotation among the
three databases. For example, Propionibacterium was originally
identified as Bacillus but was later renamed as Propionibacterium
(Douglas and Gunter, 1946). However, it was recently reclassified
as Cutibacterium (Dreno et al., 2018).

We re-annotated the three major 16S rRNA databases based
on NCBI taxonomy since inconsistencies between the databases
could produce different bacterial composition profiles depending
on the choice of database. Using the sequences filtered from
GreenGenes, SILVA, and RDP databases, 667,528 (56%), 907,944
(51%), and 1,275,668 (82%) sequences were re-annotated in
this study, respectively (Supplementary Table 1). As a result,
we obtained 879 genera with the same lineage annotation
among three databases (Table 1, Supplementary Figure 2B),
compared to the 288 genera identified before the refinement step
(Supplementary Figure 2A). Only four genera existed exclusively
in the GreenGenes, 15 genera in the RDP, and 955 genera in the
SILVA database (Supplementary Figure 2B).

After the re-annotation, the sequences from GreenGenes
and SILVA databases were used in our classification method
(Figure 1B). The RDP database was excluded since species-
level annotation was not provided. In addition, the 16S rRNA
sequences extracted from the complete genomes in the NCBI
RefSeq database were included. In total, 823,937, 1,306,532,
and 77,410 sequences with the genus-level annotation from
GreenGenes, SILVA, and NCBI, respectively, were used in our
classification method (Supplementary Table 1).

Genus-Level Profiling Using the
Combined Database
For the genus-level taxonomy assignment, the RDP naïve
Bayesian classifier was retrained with the sequences re-annotated

TABLE 1 | The number of taxa for each taxonomic rank after re-annotation.

Green genes SILVA RDP NCBI

Superkingdom 1 1 1 1

Phylum 40 62 49 40

Class 72 85 73 72

Order 163 210 173 164

Family 355 495 380 358

Genus 1,030 3,239 2,154 1,206

Species 570 15,335 0 3,029

Number of sequences 1,191,315 1,779,305 1,559,121 77,869

in this study. Classifiers were tested using the V3–V4 region
sequences extracted from the NCBI database. In the evaluation,
the classifier trained with our combined database showed the
best performance in terms of precision and recall rates from
the phylum to genus level (Figure 2 and Table 2). Notably,
the classifier trained with one database (i.e., GreenGenes) had
precision and recall rates of 89.33 and 81.85%, respectively,
whereas the classifier trained with all three databases had
precision and recall rates of 97.88 and 96.39%, respectively.

To evaluate the classification performance for the newly
annotated bacteria, the gut microbiome of mice (Chung et al.,
2020) were profiled using the classifier trained with our combined
database (Supplementary Figure 4). In the previous report,
the profiling of the bacterial composition of the samples using
metagenomic reads revealed that Muribaculaceae and its genera
were the most abundant taxon, whereas profiling via the 16S
rRNA amplicon sequencing reads showed that Barnesiellaceae
was the most abundant. This difference was explained by the
different versions of the databases used (Chung et al., 2020).
Sequences annotated with these two genera were not included in
the GreenGenes database and RDP database, since Muribaculum
andDuncaniellawere first reported in the NCBI repository in July
2016 and March 2018, respectively. Notably, the classifier trained
in our study correctly predicted the sequences as Muribaculaceae
at the family rank, suggesting that the relative abundance of
Duncaniella is similar to that obtained via metagenomic analysis.
Although Duncaniella was well classified, Muribaculum was still
reported with a low confidence score. This result suggests that
there might be some genera belonging to the Muribaculaceae
family that are still unknown.

Species-Level Profiling Using
Homologous Species Groups
In conventional microbiota profiling, reads are clustered into
OTUs based on sequence similarity. Most OTUs are created
using a 97 or 99% sequence similarity threshold. These thresholds
are based on the empirical observation of 94% or higher 16S
rRNA sequence similarity within a genus and 97% or higher
16S rRNA sequence similarity within a species (Schloss and
Handelsman, 2005). Note that, many studies have reported that
species cannot be completely discriminated using such thresholds
(Stackebrandt, 2006; Edgar, 2018b). We measured the taxonomic
separability (i.e., how well different taxa are separately assigned
to different OTUs) using the V1–V2 region, the V3–V4 region,
and the entire 16S rRNA gene. OTUs were created using a 99%
sequence similarity threshold to measure the proportion of OTUs
that were assigned to multiple taxa (Supplementary Figure 5).

Most of the OTUs created consisted of sequences from one
genus, whereas multiple species were assigned to the same OTU.
Out of the 84,169, 127,223, and 179,039 OTUs created from
the V1–V2 region, the V3–V4 region, and the entire 16S rRNA
gene in the GreenGenes database, 3.58, 1.51, and 0.29% of the
OTUs contained multiple species, respectively (Supplementary
Figure 5A). In the SILVA database, out of the 118,404, 191,585,
and 299,556 OTUs created, 20.26, 25.62, and 18.94% contained
multiple species, respectively. Moreover, in the 16S rRNA gene
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FIGURE 2 | Performance of the genus-level classification with the combined database.

sequences obtained from the NCBI database, 13.01, 19.54, and
13.44% of the 3,137, 2,746, and 3,987 OTUs created contained
multiple species, respectively. While most of the sequences from
different genera were assigned to different OTUs, almost half
of the sequences from different species were assigned to the
same OTU in the SILVA and the NCBI database (Supplementary
Figure 5B). This result indicates that reads from such species are
clustered together when OTUs are created using a 99% sequence
similarity threshold.

To investigate species separability using the 16S rRNA
sequences, a species network was constructed with the
sequences of the V3–V4 region from our combined database

TABLE 2 | Accuracy of the taxonomy classification when using the
combined database.

Recall Precision F1-score

Superkingdom 1 1 1

Phylum 0.9997 0.9995 0.99962

Class 0.9896 0.9989 0.99422

Order 0.9923 0.9981 0.99517

Family 0.9659 0.9954 0.98045

Genus 0.9832 0.9666 0.97482

Species 0.7696 0.7994 0.78423

(Supplementary Figure 6). In the network, each node is a
consensus sequence of a species. If two species share 99% or
higher sequence similarity, the nodes of those species were
connected. Notably, many species from the same genus were
clustered owing to the fact that their 16S rRNA sequences
have 99% or higher similarity. Among the Staphylococcus
species, seven groups were clustered, the largest of which
consisted of 10 species (Supplementary Figure 6A). Moreover,
15 groups were clustered from the Streptococcus species, the
largest of which consisted of eight species (Supplementary
Figure 6B). The homologous species groups were constructed
from the network analysis, which corresponded to the connected
components in the graph.

In the homologous species groups, the consensus sequences
of the included species had 99% or higher sequence similarity.
Figure 3 shows the homologous species groups in the arc of
the same color, which resulted from the network analysis of
two genera, Staphylococcus and Streptococcus (Supplementary
Figure 6). Notably, some strain-level heterogeneity (i.e., 99%
or higher sequence similarity between strains in different
homologous species groups) was also observed (Figure 3). For
example, some sequences belonging to Staphylococcus aureus
and Staphylococcus epidermidis (labeled in blue and red) were
connected. Such strain-level heterogeneity could be caused by
either distinct strains in a specific species or incorrect annotation.
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FIGURE 3 | Homologous species groups of the species in (A) Staphylococcus and (B) Streptococcus. The width of each track is proportionate to the number of
non-redundant strains included in the database. Homologous species groups (i.e., species whose consensus sequences have more than 99% sequence similarity)
were labeled with the same color. Strains that share 99% or higher sequence similarity in different species were linked by an edge.

To assign a species-level taxon to the OTUs, the representative
sequence of each OTU was searched against our species
consensus sequence database using BLAST search (Altschul et al.,
1990). Similar to the k-nearest neighbor method, the species
was determined by considering the most k homologous species.
In this study, k was set to 1 among the sequences with >97%
sequence similarity and an e-value of <1.0e-10. When no hit met
the criteria, it was reported as unclassified. If the assigned species
were from the homologous species groups, the query sequence was
labeled as the name of the homologous species group.

Evaluation Using Simulated Datasets
To test the performance of our species-level profiling method,
simulated datasets were generated using a set of bacteria
reported as the constituents of the Human Microbiome
Project (HMP) gut microbiome (Supplementary Table 3).
The reported strains were downloaded from the NCBI
RefSeq database, and the non-existing or updated strains
were replaced with the latest strains of the same species.
Candida albicans ATCC MY-2876 was not included since
it is a fungus. Four simulated datasets were generated
with the abundance models of uniform, linear, and power-
law parameters with 1 and 2 (Supplementary Table 3).
Methanobrevibacter and Propionibacterium (Cutibacterium)
were excluded from the simulation since the 806R primer
could not extract the region sequences from their genomes.
The simulated datasets were analyzed using our species-level
profiling method.

Regardless of the abundance model, the genus-level
composition was almost perfectly profiled using our method

(Figure 4A). Among the species in the simulated dataset,
Bacillus cereus, Bacteroides vulgatus, Clostridium beijerinckii,
Escherichia coli, Lactobacillus gasseri, Listeria monocytogenes,
Neisseria meningitidis, Pseudomonas aeruginosa, S. aureus,
S. epidermidis, and Streptococcus pneumoniae created the
homologous species groups with other species. For instance,
the V3–V4 region of B. cereus was identical to that of Bacillus
mobilis. These species are technically indistinguishable in
terms of their V3–V4 region. Similarly, the V3–V4 sequence
of S. pneumoniae differs by only one nucleotide from that
of Streptococcus infantis. Notably, our method based on the
homologous species groups was able to accurately estimate the
species-level composition in the simulated datasets (Figure 4B).
Pearson’s correlation coefficient values between the simulated
and estimated bacterial composition were 0.9781 and 0.9790 for
the genus- and species-level classification results. Therefore, our
homologous species groups method could reasonably perform
accurate species-level profiling.

Evaluation Using Mock Datasets
Six mock datasets consisting of 49 bacteria and 10 archaea
(Supplementary Table 4) were downloaded from the EBI
sequence repository2 (Schirmer et al., 2015). The V3–V4 region
was sequenced by Illumina MiSeq2 using the 341F forward
primer and two kinds of reverse primers (806rcb and 805RA).
The mock datasets were analyzed using our method (Figure 5).
Since this mock data set provided a list of microbiome
constituents without their relative abundance, we evaluated the

2http://www.ebi.ac.uk/ena/data/view/PRJEB6244
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FIGURE 4 | Estimating the bacterial composition of the simulated datasets. (A) Genus level and (B) species level profiling. Simulated datasets with four different
abundance models were analyzed using the proposed 16S rRNA classification pipeline. The names of the species that were contained in the simulated datasets
were re-annotated according to the homologous species groups of the V3–V4 hypervariable region to compare the results.

FIGURE 5 | Estimating the bacterial composition of the mock datasets. (A) Genus level and (B) species level profiling. Six mock samples were analyzed using the
proposed 16S rRNA classification pipeline. The names of the species that were contained in the mock datasets were re-annotated according to the homologous
species groups of the V3–V4 hypervariable region to compare the results.

results of our method by checking whether the specified genus
and species were identified.

In total, 31 out of 38 genera were identified, accounting for
an average of 90.7% of the microbiota population. In the case
of Burkholderia, there were reads classified as Paraburkholderia.
Moreover, Anaerocellum could not be identified owing to
the lack of databases. On an average, 5.9% of the reads
were misclassified as Anabaena, Brevundimonas, Dickeya,
Flavobacterium, Hungateiclostridium, Stenotrophomonas, and
Streptococcus. For the species-level classification, 31 out of
41 species were identified, of which 21 were assigned with
specific species and 10 were assigned with homologous species
groups. In total, 73.21% of the microbiota population on
average was profiled at the species level. However, six species,

namely Anaerocellum thermophilum, Burkholderia xenovorans,
Clostridium thermocellum, and Erwinia chrysanthemi, could not
be identified owing to the lack of databases.

A Case Study Using the Salivary
Microbiome
In total, 90 salivary microbiome samples stratified by the oral
hygiene index were downloaded from the DDBJ Sequence
Read Archive (SRA) under the accession number DRA005425.
A previous study reported that Streptococcus and Veillonella
were the most abundant genera in these samples and that
their proportions are associated with the hygiene index
(Mashima et al., 2017). However, details regarding species-level
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information were not provided. To profile the species-level
composition, we re-analyzed the same salivary microbiome
samples (Figures 6A,B). Notably, all of the Streptococcus and
Veillonella OTUs were assigned to a species or homologous species
groups (Figures 6C,D). With the exception of a few OTUs,
most of the OTUs were assigned to the species groups. The
S. pneumoniae group was identified as the most abundant species
among all samples. Moreover, although the S. pneumoniae group
was identified in both the good and poor hygiene groups, its
abundance in the good hygiene group was more than twice that
of the poor hygiene group.

In total, eight major Streptococcus OTUs were identified from
the sample data by considering the size of the OTUs (number
of reads in OTU >10,000): two OTUs with the S. pneumoniae
group, three OTUs with the Streptococcus gordonii group, one

OTU with the Streptococcus sanguinis group, one OTU with
the Streptococcus thermophilus group, and one OTU with the
Streptococcus parasanguinis group (Figure 6C). Two OTUs (OTU
221 and OTU 236) assigned to the S. pneumoniae group were
equally similar to all Streptococcus species in the S. pneumoniae
group, with the exception of S. pneumoniae as five species in
the S. pneumoniae group have identical sequences in the 16S
rRNA V3–V4 region, whereas S. pneumoniae differs by one
nucleotide. Two OTUs (OTU 203 and OTU 411) assigned to the
S. gordonii group also showed a similar pattern: they were equally
similar to three species in the S. gordonii group. As shown in
this case study, many OTUs were indistinguishable among the
species in the species group but were distinguishable among the
species group. Most of the Veillonella OTUs were assigned to
the Veillonella parvula, Veillonella dispar, or Veillonella atypica

FIGURE 6 | Classification of the salivary microbiome samples obtained from three different hygiene index groups. (A) The relative abundance of the top 10 abundant
genera and (B) the relative abundance of the species belonging to the Streptococcus and Veillonella genera are presented. The assignment results for (C) the
Streptococcus and (D) the Veillonella genera are represented by the network. Reference sequences are colored in purple and labeled using their species name.
Each node except the reference node represents one OTU, and the bacterial composition of samples from the three hygiene index groups is plotted as a pie-chart
(blue for good, orange for moderate, and green for poor). All OTUs are represented as being proportional to their log-scaled size, and all OTUs with a size of 10,000
or more are labeled with their OTU number.
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group (Figure 6D). In the V. parvula group, OTU 853 and OTU
276 were equally similar to multiple species in the group. These
results might be inevitable when hypervariable regions are used
at the species level. In addition, some novel species that are
not stored in the 16S rRNA database but are equally similar to
multiple known species could exist in the microbiome.

A Case Study Using the Gut Microbiome
of Colon Cancer Patients
In total, 105 gut microbiome samples, consisting of 35 samples
each from control, adenoma, and cancer patients, were
downloaded from the SRA under the accession number
SRP131074. Bacteroides, Escherichia, and Prevotella were
reported as the most abundant genera in the previous study that
analyzed these samples (Yang T. W. et al., 2019). Our results also

showed that these three genera were the most abundant and in
the same order (Supplementary Figure 7). Among the abundant
genera, the abundance of Megamonas, Pseudomonas, Morganella,
Aeromonas, Megasphaera, Fusobacterium, Veillonella, Roseburia,
Sutterella, Subdoligranulum, and Eubacterium was found to
differ by threefold between any two samples from the control,
adenoma, and cancer groups (Figure 7A). Although most of
the OTUs were assigned to a specific species without ambiguity,
Pseudomonas, Veillonella, Fusobacterium, and Aeromonas
OTUs were assigned to the homologous species groups. Notably,
Aeromonas and Fusobacterium were the most abundant
in the samples from the cancer group. For the Aeromonas
OTUs, most of the dominant OTUs in the cancer group were
assigned to either the Aeromonas veronii or Aeromonas caviae
group (Figures 7B,C). Moreover, Fusobacterium mortiferum,
Fusobacterium necrophorum, and Fusobacterium nucleatum

FIGURE 7 | Classification of the bacterial composition of gut microbiome samples obtained from the stool of control, adenoma, and cancer patients. (A) The relative
abundance of the genera that were found to have an abundance more than three times that of the average relative abundance in at least one pair among the control,
adenoma, and cancer groups and (B) the relative abundance of the species belonging to the Aeromonas and Fusobacterium genera are presented. The assignment
results for the (C) Aeromonas and (D) Fusobacterium genera are represented by the network. The reference sequences are colored in purple and labeled using their
species name. Each node except the reference node represents one out, and the bacterial composition of samples from each type of patient is plotted as a
pie-chart (blue for control, orange for adenoma, and green for cancer). All OTUs are represented as being proportional to their log-scaled size.
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were found to be abundant in samples from the cancer group,
whereas Fusobacterium ulcerans was abundant in samples from
the adenoma group (Figures 7B,D). Therefore, this indicates
that our species-level profiling and network analysis based
on homologous species groups could produce more specific
and reliable information, which is higher resolution than
the genus-level, to show differences in bacterial composition
among patient groups.

CONCLUSION

In the microbiome studies, one of the important tasks is
profiling of the bacterial composition, which helps understand
the biological functions of the microbiome. The species-level
taxonomic assignment is critical, but an optimal solution has not
been available thus far since the 16S rRNA sequences are highly
homologous between the species in the same genus in many cases.
We combined all the sequences from the GreenGenes, SILVA,
and NCBI databases to include species that exist exclusively in
each database. Even in the evaluation of genus-level taxonomy
classification, the classifier trained with the sequences combined
showed the best accuracy in terms of precision and recall rates.
For each species, we constructed a consensus sequence model
and determined homologous species groups, which was used for
the species-level taxonomy assignment. The evaluation using
simulated datasets and mock datasets showed a high correlation
with the real bacterial composition. When analyzing real gut
microbiomes, our method successfully performed species-level
taxonomic assignment and identified differential abundance
between different phenotypic groups.
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Colorectal cancer (CRC) is a common clinical malignancy globally ranked as the fourth
leading cause of cancer mortality. Some microbes are known to contribute to adenoma-
carcinoma transition and possess diagnostic potential. Advances in high-throughput
sequencing technology and functional studies have provided significant insights into
the landscape of the gut microbiome and the fundamental roles of its components
in carcinogenesis. Integration of scattered knowledge is highly beneficial for future
progress. In this study, literature review and information extraction were performed,
with the aim of integrating the available data resources and facilitating comparative
research. A knowledgebase of the human CRC microbiome was compiled to facilitate
understanding of diagnosis, and the global signatures of CRC microbes, sample
types, algorithms, differential microorganisms and various panels of markers plus their
diagnostic performance were evaluated based on statistical and phylogenetic analyses.
Additionally, prospects about current changelings and solution strategies were outlined
for identifying future research directions. This type of data integration strategy presents
an effective platform for inquiry and comparison of relevant information, providing a
tool for further study about CRC-related microbes and exploration of factors promoting
clinical transformation (available at: http://gsbios.com/index/experimental/dts_
mben?id=1).

Keywords: biomarkers, colorectal cancer, database, diagnosis, microbiome

INTRODUCTION

Colorectal cancer (CRC) is a common malignancy worldwide accounting for about 1 in 10 cancer
cases, with incidence and mortality rates of 6.1 and 9.2%, respectively (Bray et al., 2018). Various
genetic and environmental factors contribute to CRC development from aberrant crypts to tumors.
Overall, ∼3 × 1013 bacteria colonize the human gut and abnormal microbiome composition
has been shown to contribute to the initiation, progression and metastasis of CRC (Pitot, 1993;
Qin et al., 2010; Wong et al., 2017c). In cases where patients are rapidly diagnosed and treated
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with surgery at the early stages, survival exceeds 90%. However,
the survival rate is significantly decreased to 13% in patients
with advanced metastatic disease (Shah et al., 2018). The
potential value of microorganisms in early diagnosis has attracted
significant research attention over the last few decades.

The term “microbiome” refers to the entire habitat including
microorganisms (bacteria, archaea, lower and higher eukaryotes,
and viruses), their genomes, and the surrounding environmental
conditions (Marchesi and Ravel, 2015). These factors are
altered along the adenoma-carcinoma sequence, reflected by
changes in abundance. Some microbes produce genotoxic
compounds and induce inflammation while others proliferate in
the tumor-associated niche, designated “driver” and “passenger”
bacteria, respectively (Tjalsma et al., 2012). Systematic analysis
of microbial communities and identification of those with
differential abundance as biomarkers presents an effective
diagnostic strategy. Further advances, such as next-generation
sequencing, have generated massive amounts of data on the
CRC microbiome. Bioinformatics as well as machine learning
methods additionally provide powerful tools to advance our
understanding (Tabib et al., 2020). Metagenomics and 16S
rRNA sequencing studies have revealed different abundance
of some microbes between patients and healthy populations
and effective combinations of microbial biomarkers could be
applied for CRC diagnosis (Sze and Schloss, 2018; Thomas
et al., 2019b). Upon combination of these strategies with
the fecal immunochemical test (FIT), superior sensitivity and
area under the receiver operating characteristic curve (AUC)
were obtained relative to standalone FIT, which facilitated
advanced adenoma detection (Wong et al., 2017a). Several
microbes have been linked with CRC development, including
Fusobacterium nucleatum (Fn), Peptostreptococcus anaerobius
(Pa), Parvimonas micra (Pm), Enterotoxigenic Bacteroides fragilis
(ETBF), Peptostreptococcus stomatis (Ps) and Escherichia coli
(Yu et al., 2017a; Pleguezuelos-Manzano et al., 2020). Recently,
the ratio of pathogenic bacteria to probiotic populations with
decreased abundance in CRC patients was used in a diagnostic
model based on their antagonistic effect (Guo et al., 2018).
Metabolomics and metagenomics studies have shown that shifts
in pathogenicity island genes, short-chain fatty acids (SCFA),
amino acids, butyrate and bile acids occur at the early stages
of CRC development. Some of these factors possess health-
promoting and antineoplastic properties, such as maintenance
of mucosal integrity and suppression of inflammation and
carcinogenesis. Thus, the shift, particularly the decrease of these
health-promoting factors, could contribute to the malignant
outgrowth of the tumors (O’Keefe, 2016; Yachida et al.,
2019). Subsequent mechanistic research further confirmed their
involvement in CRC. For instance, Fn harbors the FadA virulence
factor, which binds E-cadherin and activates Wnt/β-catenin
and TLR4/MYD88 pathways to promote cancer initiation,
proliferation and invasion (Rubinstein et al., 2013, 2019).
Enterotoxigenic Bacteroides fragilis(ETBF) harbors the toxin
BFT that causes inflammatory diarrhea, inflammation-related
tumorigenesis and upregulation of spermine oxidase. Colibactin-
producing E. coli alkylates DNA at adenine residues and induces
double-stranded breaks, anaphase bridges and chromosome

aberrations (Cuevas-Ramos et al., 2010; Goodwin et al., 2011;
Chung et al., 2018; Pleguezuelos-Manzano et al., 2020). Based
on these omics and experimental data, a theoretical foundation
for clinical translation was proposed, which requires validation
with more economical methods, such as quantitative PCR
(qPCR), or integration with other indices, such as FIT, to obtain
optimal benefits (Wong et al., 2017a). More novel biomarkers
should emerge with further research progress. However, effective
diagnostic panels remain to be established.

While several meta-analyses and reviews based on large-
scale, cross-cohort studies have revealed robust associations
between microbiome and diseases, developing solutions from
the perspective of integration remains a considerable problem
due to a number of reasons. First, among the published
studies, feces is the most common sample type owing to
the non-invasive nature and convenience of sample collection.
Other non-invasive types of samples, such as oral swabs,
offer an alternative but still need more studies (Flemer et al.,
2018). Second, a number of studies were based on 16S rRNA
sequencing while others involved metagenomics analyses, which
may generate different taxonomic resolutions and involve
distinct bioinformatics methods (Wirbel et al., 2019). Third,
robustness among different countries or regions is another
key contributory factor in microbiome composition, including
genetic background, dietary habits and the environment. Fourth,
optimal numbers of microbial markers recorded are significantly
variable among studies (Duvallet et al., 2017). Fifth, specificity
deserves further research attention, since only a few studies
to date have included cases of other diseases. For example,
Helicobacter pylori and human papillomavirus are specifically
associated with gastric and cervical cancer types while other
microbes, such as the order of Clostridiales (Lachnospiraceae and
Ruminococcaceae families), are non-specifically associated with
disease (Duvallet et al., 2017). In general, integration of different
types of markers may obtain higher sensitivity, yet specificity
will decrease. Therefore, biomarkers that are specific to CRC
are of great importance. Finally, classification basis, algorithms,
costs and standardization are also worth noting, but systematic
integration of the data is lacking.

In this study, a knowledgebase of CRC-related microbes was
established by reviewing the relevant literature and extracting
key information. Next, a web-based platform using structured
query language (SQL) was constructed and statistical analysis
were performed that included three classifications and more than
seven hundred records of microbial markers. By integrating the
scattered data, our novel database could be used to perform
inquiry and comparison across different models or databases,
such as SILVA, VFDB and the Human Microbiome Oral Database
(HOMD), thus contributing to the study of microbiome-based
diagnosis of CRC.

MATERIALS AND METHODS

Database Construction
Literature was retrieved from PubMed during September
2019 and April 2020 based on the relevant search criteria.
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Two keyword groups were used, the first being “colorectal
cancer” and second comprising “16S rDNA,” “metagenomics,”
“sequencing,” “quantitative real-time PCR,” “biomarker,”
“diagnosis,” “screening,” and “microbiome.” Studies that used
blood samples or focused on prognosis, genes, methylation,
proteins, small molecule metabolites and liquid biopsy
biomarkers were excluded. Following a comprehensive search
of the literature and supplementary materials, the relevant data,
including names of microbes, sensitivity, specificity, changes
in abundance, functions of microbes, technology, algorithm,
number of cases, sources and links, were collected. Furthermore,
information of the taxonomy of microbial markers was collected
from NCBI (Taxonomy) and added into the database. Ultimately,
biomarkers were classified into three categories. Microbes
that displayed statistical significance in both high-throughput
sequencing/pyrosequencing and qPCR experiments were defined
as “Class One,” those confirmed with one of the above techniques
as “Class Two,” and combinations of different microbes for
diagnosis as “Class Three.” Notably, these candidates specifically
refer to gut bacteria although the gut microbiome comprises
bacteria, fungi, archaea, viruses and bacteriophages.

Data Query and Display
Integrated data were accessible through a web interface that
indirectly generates MySQL queries. The interface supports
query functions, such as “scientific name of the bacterium” and
“taxonomy.” Additionally, basic statistics and visualization were
performed according to personalized requirements. Article links
for verification or further research are provided for interested
authors. The organizational framework is presented in Figure 1.

Construction of the Phylogenetic Tree
and Statistical Analysis of
CRC-Associated Microbes
16S rRNA sequences of all the species (all CRC-associated
overabundant and depleted species) in the database were
aligned using MEGA-X v10.1.8 software (Kumar et al., 2018).
Phylogenetic tree was constructed using the following settings:
maximum likelihood as the statistical method, 500 bootstrap
replications, Kimura two-parameter as the substitution model
and Near-Neighbor-Interchange as the ML Heuristic method.
Finally, the tree was adjusted and visualized in Interactive Tree
Of Life (iTOL)1 (Letunic and Bork, 2019). Other statistical
analyses were performed with OriginPro software (OriginLab
Corporation, United States).

RESULTS AND DISCUSSION

Global Signature of CRC-Related
Microbes
In our database, 17 species belonged to Class One (microbes
with statistical importance verified using both high-throughput
sequencing/pyrosequencing and qPCR), 219 species/clusters

1https://itol.embl.de/

to Class Two (microbes confirmed via high-throughput
sequencing/pyrosequencing or qPCR), including 11 phyla, 22
classes, 41 orders, 68 families and 117 genera (Figure 2), and 41
panels to Class Three (combinations of different microbes for
diagnosis). Despite many microbes proposed for diagnosis and
several confirmed conclusions, inconsistent results have been
obtained by different research groups.

In healthy individuals, the most dominant phyla (over 90%)
are Firmicutes, Bacteroidetes, Proteobacteria and Verrucomicrobia
(Eckburg et al., 2005). Moreover, significant differences between
healthy individuals and CRC patients are detected. Meanwhile,
these differences of indices usually showed stepwise decreased
or increased frequency from controls, to dysplasia to cancers,
though some changes may not be statistically significant
between healthy and adenoma groups. In addition to relative
abundance, differences in other indices, such as alpha and
beta diversity, have been identified. Feces of healthy controls
generally contain microbial communities with higher diversity
while tissue samples from CRC patients show greater alpha
diversity. Earlier studies revealed greater microbial diversity
in tumor samples compared with control and polyp samples,
with a 75% higher estimated number of species than tissues
from healthy sites (Mira-Pascual et al., 2015; Vogtmann
et al., 2016), characterized by increased levels of opportunistic
pathogens. Chao1 and Shannon indices are commonly used to
estimate microbial richness and diversity. Decreased Shannon
and Chao1 indices were recently reported in fecal samples
collected from CRC patients (Yang et al., 2019). Similarly, in an
azoxymethane (AOM) mouse model, the CRC group showed
significantly lower bacterial richness and Shannon-Weaver’s
diversity index (Wong et al., 2017b). Other analyses revealed
no significant differences in either richness or biodiversity,
which could be attributable to the relatively small study
cohorts (Wu et al., 2013; Youssef et al., 2018). However,
differences at the taxonomic levels (family, genus and species)
were universally observed. For instance, patients with CRC
usually have increased abundance of operational taxonomic
units (OTU) assigned as Ruminococcus, Porphyromonas,
Peptostreptococcus, Parvimonas, and Fusobacterium, while
healthy individuals possess more beneficial butyrate-producing
bacteria, such as Bifidobacterium and Clostridium butyricum
(Flemer et al., 2017; Sacks et al., 2018). The collective results
clearly demonstrate differences in microbial populations between
CRC and healthy groups.

Biomarker Identification for Diagnosis
Sample Types Used for Diagnosis
In studies on CRC-related microbes, fecal samples from
CRC and adenoma patients and healthy volunteers were the
most commonly used owing to the non-invasive nature and
convenience of sample collection. Cancerous and adjacent non-
cancerous normal tissues represent another type of sample that
can effectively reveal the overall structure of microbiota in the
tumor microenvironment but are unsuitable for early diagnosis
(Gao et al., 2015). The microbial diversity in fecal samples is twice
as high as that in tissue samples (Mira-Pascual et al., 2015). Oral
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FIGURE 1 | Construction and framework of the database.

swabs represent another novel sample type. Previously identified
biomarkers, such as Fusobacterium nucleatum and Parvimonas
micra, are oral microbes. An earlier investigation profiled the
oral microbiome as an alternative screening method for CRC
(Flemer et al., 2018). Interestingly, a retrospective study on
data obtained from adult patients diagnosed with bacteremia
and subsequently CRC reported association with Bacteroides
fragilis, Streptococcus gallolyticus and other intestinal microbes,
thus providing a new perspective for clinicians (Kwong et al.,
2018). Recently, (Poore et al., 2020) reported that predictions
based on microbial DNA in blood could discriminate CRC
from healthy, cancer-free individuals. However, blood samples
were not included in this database due to the requirement for
further exploration.

Diagnostic Techniques
This database involves five technical protocols, specifically,
denaturing gradient gel electrophoresis (DGGE), qPCR,
pyrosequencing, 16S rRNA sequencing and metagenomics
sequencing, which have various advantages and disadvantages.
Initially, the culture-dependent method was used to analyze
CRC microbes as early as the 1960s, which led to significant
underestimation of microbial diversity (Wong and Yu, 2019).
Recently, a library containing 7,758 human gut bacterial
isolates was constructed. Although culture-based methodologies
provide access to data that both overlap and complement
sequencing surveys, yet these protocols were both labor- and
time-consuming compared with culture-independent methods
(Poyet et al., 2019). Molecular analysis technology has developed

from DGGE and qPCR to high-throughput sequencing over
the years. While the efficiency of analysis was improved by
DGGE and qPCR, limitations of low throughput remained
unresolved. In 2005, the introduction of next-generation
sequencing (NGS) facilitated massive parallel, low-cost and
rapid sequencing. 16S rRNA and metagenomics sequencing
have further improved efficiency and are widely employed
at present. The former procedure is based on the 16S rRNA
gene amplicon and facilitates taxonomic and phylogenetic
analyses. While the cost-effective feature enables its universal
application, several limitations exist: (1) amplicon sequencing of
16S rRNA gene via PCR may miss OTU/taxa detection due to
various biases associated with PCR, (2) possible overestimation
of community diversity or species abundance, and (3) lack of
ability to directly analyze the biological functions of associated
taxa (Xia et al., 2018). Recently, potentially unbiased shotgun
metagenomics analyses have been conducted, which provide
higher taxonomic resolution, gene function and comparative
analyses at a decreased cost (Wirbel et al., 2019). However, in
terms of clinical transformation, the qPCR-based method is
more economical and rapid.

Algorithms Used for Diagnosis
Algorithms include the processes of classification, biomarker
identification and model prediction. The classification
approaches comprise OTU-based, metagenomics linkage
group (MLG)-based, integrated microbial genome (IMG)-based
and co-abundant gene group (CAG)-based methods. The model
prediction algorithms include random forest (RF), support
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FIGURE 2 | Basic statistics at different taxonomy levels of all the microbial markers in the database.

vector machine (SVM), logistic regression (LR) and leave-one-
dataset-out (LODO) analyses, among which random forest is the
most widely used algorithm. For the biomarker identification
process, relative abundance and Linear discriminant analysis
Effect Size (LEfSe) methods are the most commonly used.

Random forest provides a measure of variable importance
and out-of-bag (OOB) error when building a tree, making it
suitable for prediction analysis. A recent meta-analysis employed
the random forest classifier to determine accurate predictive
models using a minimal microbial signature. The data showed
that using 16 species, cross-validation of AUC > 0.80 was
achieved for the majority of datasets (Thomas et al., 2019a).
SVM is advantageous for classifying small data volumes and
achieved an overall AUC of 0.80 for the combined population
(Dai et al., 2018). Recent studies have examined different
machine leaning classifiers, including RF, Bayesian network,
SVM, k-Nearest neighbor and general regression neural networks
(Arabameri et al., 2020). LR, applied by most studies, is used
to predict binary outcome from a set of numeric variables and
aims to identify the most significant features (Wong et al.,
2017a). Phylotype-based and OTU-based methods are the main
approaches for sequence identification, with the latter being most
widely used. However, the OTU-based method has a number
of limitations, such as a computationally intensive protocol and

larger memory requirement (Schloss and Westcott, 2011). Other
methods have been developed to overcome these drawbacks. For
instance, CAGs have been proposed to mitigate the ultrahigh
dimensionality challenge of gene-level metagenomics (Minot and
Willis, 2019). In addition, CAG-based clusters could be used to
determine CRC-associated microbe profiles (Flemer et al., 2017).
Taking the collective factors (such as data quantity, number
of cohorts and risk factors) into consideration, appropriate
approaches and classifiers should be adopted.

Overview of Current Biomarkers for Diagnosis
More than 200 species belonged to the Class Two
microbe group (confirmed using either high-throughput
sequencing/pyrosequencing or qPCR), among which only
17 were verified as statistically significant with both high-
throughput sequencing/pyrosequencing and qPCR (Class One).
Fn is a known opportunistic pathogen showing increased
abundance in feces of CRC patients with a sensitivity range of
69.2–82.9%, specificity of 52.8–90.8% and AUC of 0.675–0.875.
Combined with FIT or fecal occult blood test (FOBT), sensitivity,
specificity and AUC values reached 92.3, 94.4% and 0.95,
respectively. Recently, a number of novel markers have been
shown to perform well in CRC diagnosis. Pa was increased in
four different cohorts and induced carcinogenesis in mice via a
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PCWBR2-integrin α2/β1-PI3K–Akt–NF-κB signaling axis with
a sensitivity of 79.8% and specificity of 98% in combination
with FIT (Yu et al., 2017a; Long et al., 2019). Lachnoclostridium
sp. (designated m3) sharing 97% (1883/1935) DNA sequence
similarity with Lachnoclostridium sp. YL32 was significantly
enriched in adenoma. m3 showed specificity of 78.5% and
sensitivity of 48.3% for adenoma and 62.1% for CRC. However,
its role in tumorigenesis warrants further research (Liang et al.,
2019). The other 15 biomarkers are presented in Table 1 (4 were
decreased and 11 were enriched in patients).

With regard to Class Two microbes, basic statistics are shown
in Figure 3 and phylogenetic tree in Figure 4. The majority
of enriched microbes were classified into Fusobacteriaceae,
Peptoniphilaceae, Lachnospiraceae, Porphyromonadaceae,
Peptostreptococcaceae, Bacteroidaceae, Prevotellaceae,
Ruminococcaceae, Streptococcaceae, and Bacillales incertae
sedis at the family level (Figure 3A). Among the group of
decreased microbes, most were classified into Lachnospiraceae,
Ruminococcaceae, Bacteroidaceae, Streptococcaceae,
Bifidobacteriaceae, and Eubacteriaceae (Figure 3B). In the
Venn diagram, only a small overlap of increased and decreased
microbes was observed, supporting the reliability of most
microbial markers despite some inconsistencies (Figure 3C).
At the species level, phylogenetic tree showed details of
current CRC-related biomarkers as well as their evolutionary
relationships. Additionally, species belonging to oral microbes
were marked with stars.

The functions of gut microbes include fermenting complex
carbohydrates to produce large amounts of metabolites,
maintaining epithelial homeostasis, serving as an endocrine
organ and participating in the development, maturation and
differentiation of the immune system of the host (Villéger et al.,
2018; Rastelli et al., 2019). In a sense, intestinal metabolites

directly affect the occurrence of CRC and not intestinal flora.
The majority of nutrients from food are absorbed in the small
intestine with protein residues and complex nutrients, such as
fiber moving to the colon, and consequently metabolized by
the microbial populations (O’Keefe, 2016). Therefore, from the
perspective of microbial function, the majority are associated
with protein fermentation, bile acid biotransformation,
decomposition of polysaccharides and polyphenols and
energy metabolism. For example, Faecalibacterium prausnitzii
(Fp), Bifidobacterium (Bb), Roseburia spp. (Rb), Eubacterium
rectale (EUB), Clostridium butyicum (Cb), Lactobacillus spp.
(Lc), Akkermansia muciniphila (Akk), Ruminococcus, and
Lachnospiraceae were found to be more abundant in healthy
controls compared with CRC patients. Fp is a butyrate producer
decreased in Crohn’s disease (CD) patients, whose metabolites
exert anti-inflammatory effects via blocking NF-κB activation
and IL-8 production (Sokol et al., 2008). Bb and Lc are
used as probiotics for human consumption and benefit the
gut through inducing cancer cell apoptosis, inhibiting cell
proliferation, modulating host immunity and inactivating
carcinogenic toxins (Wong and Yu, 2019). An earlier study
reported that determination of Fn/Bb and Fn/Fp ratios could
improve diagnostic performance for CRC based on their
antagonistic effect (Rezasoltani et al., 2018). Both Rb and EUB
are butyrate-producing Firmicutes and metabolize dietary fibers
to provide energy sources and achieve anti-inflammatory effects
(Paramsothy et al., 2019). Their capabilities as a non-invasive
tool were additionally evaluated but not included in the final
model (Malagón et al., 2019). More recently, the utility of other
widely recognized markers, including Fn, colibactin-producing
E. coli and ETBF, in diagnosis of CRC has been systematically
analyzed (Chung et al., 2018; Malagón et al., 2019; Wu et al.,
2019; Pleguezuelos-Manzano et al., 2020). However, several

TABLE 1 | Diagnostic performance of Class One microbials.

Name Sensitivity% Specificity% AUC Algorithm Sample Case Region References

Fn 73.1 90.8 0.860 Relative Abundance Feces 490 China Wong et al., 2017a

Pa 56.7 86.3 0.720 Logistic regression Feces 390 China Wong et al., 2017a

Pm 45.2 97.1 0.730 Logistic regression Feces 390 China Wong et al., 2017a

Gm 39.0 76.0 0.622 Relative Abundance Feces 333 Spain Malagón et al., 2019

Ps 53.0 76.0 0.710 Relative Abundance Feces 333 Spain Malagón et al., 2019

Bf 33.0 0.76 0.571 Relative Abundance Feces 333 Spain Malagón et al., 2019

pks 56.4 82.0 NA Relative Abundance Feces 238 Sweden Eklöf et al., 2017

Fp 81.8 62.6 0.741 Abundance Rate Feces 549 China Rezasoltani et al., 2018

Bb 90.4 76.4 0.870 Abundance Rate Feces 549 China Rezasoltani et al., 2018

Cs 73.3 66.1 0.736 logistic regression Feces 781 China Xie et al., 2017

Ap NA NA NA Relative abundance Feces 146 Meta Yachida et al., 2019

Gl NA NA NA Relative abundance Mucosa 207 China Nakatsu et al., 2015

m3 62.1 79.0 0.741 Relative Abundance Feces 1012 China Liang et al., 2019

Bd NA NA NA Relative abundance Feces 179 French Sobhani et al., 2011

afaC NA NA NA Relative abundance Tissue 55 South Africa Viljoen et al., 2015

Akk NA NA NA Relative abundance Feces 112 China Wang et al., 2020

Cb NA NA 0.930 Random forest Feces 60 China Yang et al., 2020

NA, non-available; Meta, meta-analysis; Gemella morbillorum (Gm); Bacteroides fragilis (Bf); pks + clbA + Escherichia coli (pks); Clostridium symbiosum (Cs); Atopobium
parvulum (Ap); Granulicatella (Gl); Bacteroides (Bd); afaC-positive E. coli (afaC).
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FIGURE 3 | Basic statistical analysis of Class Two microbes (shown to be significant via high-throughput sequencing/pyrosequencing or qPCR) in the database.
(A) Statistical analysis of the top 10 increased microbes at the family level. (B) Statistical analysis of the top 10 reduced microbes at the family level. (C) Venn
diagram of all CRC-associated microbes at the species level.

issues require further clarification. Although the pathogenesis
and benefits of ETBF and Bb have been validated, inconsistencies
exist among different samples. ETBF was shown to be increased
in tumor tissues and form a biofilm in the gut. However, this
pathogenic bacterium displayed no significant differences in
abundance in patient fecal samples and was not detectable using
qPCR targeting the toxin-producing gene, making it difficult to
discriminate between patients and healthy controls (Zackular
et al., 2014; Kosumi et al., 2018; Sze and Schloss, 2018; Malagón
et al., 2019; Saffarian et al., 2019). Finally, Lachnospiraceae and
Ruminococcaceae families were associated with multiple diseases
(known as non-specific responders), which inspired us to obtain
non-gastrointestinal cancer samples for future experimental
design (Duvallet et al., 2017; Rezasoltani et al., 2018).

Diagnostic Strategy and Performance
Combinations of Different Microbial Markers
Class Three (combinations of different microbes for diagnosis)
included 41 panels verified using various methods (Table 2).
The combinations ranged from two species to 63 OTUs, with
AUC ranging from 0.531 to 0.998. Twelve panels were based on

qPCR, whose algorithms usually link with logistic regression or
relative abundance. Meanwhile, 16 panels and 12 combinations
were based on 16S rRNA and metagenomics sequencing
data, predominantly using the random forest-based model.
Based on AUC, qPCR-based models could achieve comparable
outcomes to the two other technologies with limited biomarkers
(usually no more five species). Nevertheless, 16S rRNA and
metagenomics-based models show performance advantages at
the cost of the number of markers (more than 10 OTUs on
average). In the random forest and Minimum Redundancy
Maximum Relevance (mRMR) models, both OOB and error
rate parameters demonstrated that panels comprising ∼16–20
biomarkers achieved the best prediction accuracy (Flemer et al.,
2018; Wirbel et al., 2019).

Combination of microbes may be operative, rather than
representing a strain that is increased or decreased in the intestine
(Tilg et al., 2018). In addition, prediction models from single
dataset may lead to reduced accuracy and be sensitive to both
technique and heterogeneity (Thomas et al., 2019a). An earlier
study identified 63 OTUs (29 from oral swabs and 34 from
fecal samples) to predict CRC. While the final AUC value
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FIGURE 4 | Phylogenetic tree of all CRC-related microbes in the database. Species marked in red and green refer to the increased and decreased microbes, and
species marked in blue refer to the microbes that show up in both increased and decreased groups. Species marked with yellow stars refer to oral microbes
according to HMOD (16S rRNA sequences of m7 and Sulfurovum sp. SCGC AAA036-O23 are not available, which also belong to the increased group).

was up to 0.98, its application in clinical examination remains
a challenge (Flemer et al., 2018). Several other researchers
used more than 30 OTUs/phylotypes/MLGs to construct a
random forest classifier and obtained AUC values >0.80 (Nakatsu
et al., 2015; Baxter et al., 2016a; Yu et al., 2017a). Previous
studies suggest that the Firmicutes/Bacteroidetes ratio responds
to health and disease states, such as obesity and CRC (Ley
et al., 2006; Saffarian et al., 2019). Interactions between bacteria
provide an ecological perspective for screening, and increase
in pathogenic bacteria is always accompanied by decrease in
beneficial microbes (Dai et al., 2018). Some researchers observed
an association of the group of Bacteroides and Prevotella with
elevated IL17-producing cells in colon cancer and demonstrated
that supernatant from Fn inhibited the bactericidal activities of
Fp and Bb (Sobhani et al., 2011; Guo et al., 2018). Furthermore,
beneficial microbes can contribute to several intestinal functions
and protect the organ from pathogenic microorganisms, and
the “pathogenic bacteria:probiotics” ratio generates a better
effect than single organism model (Eslami et al., 2019; Malagón
et al., 2019; Yang et al., 2020). Thus, the complementary

effects between enriched and reduced microbes should be
highlighted for further investigation. Clearly, combinations of
different microbial markers exhibit better predictive performance
than single markers.

Integration With FIT
In the database, FIT was also presented when available. FIT
has been extensively tested and recommended by National
Comprehensive Cancer Network guidelines. The method
involves direct detection of globin rather than heme, and shows
greater sensitivity than the highly sensitive guaiac fecal occult
blood test. Retrospective analysis showed that replacing 3-year
colonoscopy surveillance with annual FIT could reduce the
requirement for colonoscopy and provide economic benefits.
However, sensitivity was relatively low for advanced neoplasms,
ranging from 21.8 to 46.3% at the preset thresholds (Gies et al.,
2018; Cross et al., 2019a). Combining microbe analysis with FIT
could enhance the detection of advanced precancerous lesions,
as validated in numerous experiments. Taking results from Class
One and Three as representative cases, combined quantitation
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TABLE 2 | Different panels for CRC screening.

Name Sensitivity% Specificity% AUC Technique Algorithm Sample Case Region References

Fn, Pa, Pm 89.4 93.0 0.950 qPCR LR Feces 390 China Wong et al., 2017a

Ps/EUB, Bf/EUB, Bt/EUB 80.0 90.0 0.837 qPCR LR Feces 333 Spain Malagón et al., 2019

pks, Fn 89.7 61.0 NA qPCR DA Feces 238 Sweden Eklöf et al., 2017

Fn/Fp 95.0 71.3 0.914 qPCR AR Feces 549 China Rezasoltani et al., 2018

Fn/Bb 84.6 92.3 0.911 qPCR AR Feces 549 China Rezasoltani et al., 2018

Fn/Fp, Fn/Bb 80.8 85.6 0.910 qPCR AR Feces 549 China Rezasoltani et al., 2018

Fn, Fp, Bb 92.5 83.5 0.943 qPCR AR Feces 549 China Rezasoltani et al., 2018

5 OTUs 90.0 80.0 0.896 16SrDNA LR Feces 90 America Zackular et al., 2014

6 OTUs 90.0 83.0 0.922 16SrDNA LR Feces 90 America Zackular et al., 2014

22OTUs 81.2 97.1 0.673 16SrDNA RF Feces 490 Canada, United States Baxter et al., 2016b

34 OTUs 51.7 97.1 0.847 16SrDNA RF Feces 490 Canada, United States Baxter et al., 2016b

23 OTUs 70.0 92.8 0.829 16SrDNA RF Feces 490 Canada, United States Baxter et al., 2016b

16 OTUs 53.0 96.0 0.900 16SrDNA RF Oral swabs 60 Ireland Flemer et al., 2018

28 OTUs (16 oral swabs, 12 feces) 74.0 94.0 0.940 16SrDNA RF Feces and oral swabs 60 Ireland Flemer et al., 2018

63 OTUs (29 oral swabs, 34 feces) 88.0 94.0 0.980 16SrDNA RF Feces and oral swabs 60 Ireland Flemer et al., 2018

22 OTUs 58.0 92.0 0.840 Metagenomics LR Feces 156 France, Germany Zeller et al., 2014

7 OTUs 87.0 83.7 0.886 Metagenomics RF Feces 128 China Yu et al., 2017a

15 MLGs NA NA 0.983 Metagenomics RF Feces 96 Austria Feng et al., 2015

16 OTUs NA NA 0.860 Metagenomics RF Feces 969 Meta Thomas et al., 2019a

17 OTUs 60.1 84.8 0.804 Metagenomics RF Feces 424 Meta Shah et al., 2018

30 OTUs NA NA 0.830 Metagenomics RF Feces 208 Meta Yachida et al., 2019

8 taxa NA NA 0.750 16SrDNA RF Feces 492 Meta Yachida et al., 2019

12 genus NA NA 0.846 16SrDNA RF Feces 1674 Meta Sze and Schloss, 2018

18 OTUs NA NA 0.831 16SrDNA RF Feces 404 Canada, United States Baxter et al., 2016a

32 OTUs NA NA 0.853 16SrDNA RF Feces 404 Canada, United States Baxter et al., 2016a

41 OTUs NA NA 0.686 16SrDNA RF Feces 404 Canada, United States Baxter et al., 2016a

12 phylotypes NA NA 0.831 16SrDNA LEfSe Mucosa 160 China Nakatsu et al., 2015

18 OTUs NA NA 0.871 16SrDNA RF Mucosa 160 China Nakatsu et al., 2015

38 phylotypes NA NA 0.846 16SrDNA Dirichlet MM Mucosa 160 China Nakatsu et al., 2015

m3, Fn, Ch, Bc 85.2 80.2 0.907 qPCR LR Feces 1012 China Liang et al., 2019

m3, Fn NA NA 0.891 qPCR LR Feces 1012 China Liang et al., 2019

Fn, Ch, m7, Bc 92.8 79.8 0.886 qPCR SLC Feces 370 China Liang et al., 2017

Fn, Ch, m7, Bc, Ri 74.3 88.9 0.843 qPCR LR Feces 128 China Liang et al., 2017

17 IMG species NA NA 0.860 Metagenomics IMG Feces 128 China Liang et al., 2017

7 species-level mOTUs NA NA 0.890 Metagenomics mOTUs Feces 128 China Liang et al., 2017

27 MLG NA NA 0.960 Metagenomics MLG Feces 128 China Liang et al., 2017

Fn, Pa, Pm (4 genes) NA NA 0.770 Metagenomics CRC index Feces 96 China, Denmark, Austrian,
French

Yu et al., 2017a

22 genes NA NA 0.998 Metagenomics RF Feces 107 China Yang et al., 2020

Cb, Cs NA NA 0.935 qPCR RF Feces 60 China Yang et al., 2020

7 CRC-enriched bacteria NA NA 0.800 Metagenomics SVM Feces 526 Meta Dai et al., 2018

55 species NA NA 0.830 Metagenomics RF Feces 181 Meta Sze and Schloss, 2018

DA, Decision Abundance; AR, Abundance Rate; SLC, Simple linear combination; Dirichlet MM, Dirichlet multinomial mixtures; Clostridium hathewayi (Ch); Unclassified species (m7); Roseburia intestinalis (Ri); Bacteroides
thetaiotaomicron (Bt).
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of Fn and FIT showed superior sensitivity to FIT alone, leading
to detection of lesions missed by FIT alone (Wong et al., 2017a).
Similarly, Pa, Pm, Cs, and m3 displayed an obvious improvement
in both sensitivity and AUC, with a slight decrease in specificity
(Xie et al., 2017; Liang et al., 2019). This complementary role
was also illustrated using biomarker panels. Upon combining
22 OTUs identified using the penalized linear model with FIT,
sensitivity increased from 58 to 72% at the same specificity (Zeller
et al., 2014). In another study, combination of Bacteroides clarus
(Bc), Fn, Ch, and m7 showed an increase of 9 percentage points
when integrated with FIT in a logistic regression model (Liang
et al., 2017). In conclusion, clinical screening programs based
on both microbial markers and FIT/FOBT are cost-effective and
present a promising diagnostic tool.

Prospects and Challenges
High-throughput sequencing and other analyses over the
past decade have facilitated significant advances and gradual
elucidation of the role of microbes in CRC. Current research on
the value of clinical transformation of microbial markers in CRC
diagnosis highlights the continued challenges of using available
data effectively for making a contribution to precision medicine.
Inspiration from other fields may additionally facilitate novel
breakthroughs (Figure 5).

Formation of CRC is a multifactorial process and potential
complementary effects between molecular markers require
further attention. More than 80% CRC results from chromosomal
instabilities, including mutation of the adenomatous polyposis
coli (APC) gene and K-ras oncogene. APC gene-deficient mice
can spontaneously grow tumors in the intestine and patients
carrying the KRAS mutation show chemotherapeutic resistance
(Colnot et al., 2004; Kuipers et al., 2015). Fecal DNA samples

have been used to detect colorectal neoplasia (Imperiale et al.,
2004). Septin 9 gene methylation has been shown to be effective
as a biomarker and approved by the FDA (Lofton-Day et al.,
2008). Meanwhile, methylation of bone morphogenic protein
3 and N-Myc downstream-regulated gene 4 displayed high
specificity as an early and frequent event in colorectal tumors
(Melotte et al., 2009; Loh et al., 2010). In 2014, multitarget
stool DNA testing of combined KRAS, BMP3, NDRG4, and
FIT achieved significantly higher detection of cancers, which
led to FDA approval of Cologuard (Imperiale et al., 2014).
Therefore, integration of genomics with microbiome analysis
presents a promising direction. A recent study discussed this
issue, suggesting that associations between tumor genomics
and the microbiome could be beneficial in diagnostics (Burns
and Blekhman, 2018). Since about 11% CRC cases result from
overweight and obesity, other researchers used clinical data, such
as body mass index (BMI) representing overall body fat, which
displayed excellent discriminatory ability. However, no statistical
significance was observed in a number of other analyses (Bardou
et al., 2013; Zackular et al., 2014). To extract data from plain text
files, Natural Language Processing methods or software have been
employed for effective use of clinical features (Yim et al., 2016).
Overall, these findings offer possible solutions and important
directions for future research.

Universality is another key challenge, since differing
opinions exist with regard to universal microbial markers.
On the one hand, cross-cohort studies and meta-analyses
have provided practicable and effective strategies that could
overcome heterogeneity and ethnic differences with unbiased
bioinformatics and statistical analysis. For instance, an earlier
metagenomics analysis involving five ethnically different
cohorts identified not only known biomarkers such as Fn,

FIGURE 5 | Current challenges and opportunities for early diagnosis of CRC using microbial markers.
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Ps, Pm, and Solobacterium moorei, but also a novel strain,
Peptostreptococcus anaerobius, with subsequently confirmed
roles in carcinogenesis using a ApcMin/+ mouse model (Yu
et al., 2017a; Long et al., 2019). Numerous meta-analyses
also leveraged 16S rRNA or metagenomics data sets to reveal
altered microbiome. Wirbel et al. (2019) identified a core set
of 29 species while Dai et al. (2018) found 69 CRC-associated
bacteria with metagenomic analysis. Similarly, two other teams
identified 25 microbial OTUs and 12 common genera based on
a random forest model using 16S rRNA sequencing datasets
(Shah et al., 2018; Sze and Schloss, 2018). On the other hand,
(Yang et al., 2020) proposed a strategy from a new angle, which
inferred that regional biomarkers display high accuracy in
specific populations. This theory was also supported by another
study, which identified multiple Fusobacterium taxa (including
F. varium and F. ulcerans) in Southern Chinese populations as
disease biomarkers or targets that could be tailored according
to discrepancies (Yeoh et al., 2020). Both alternative strategies
provide well-powered assessments.

One of the significant challenges of clinical transformation is
insufficient mechanistic analysis. While efficient computational
frameworks and tools based on feature selection have been
developed, machine learning requires further research (Tabib
et al., 2020). Distinct from FIT/FOBT and fecal DNA tests,
these semi-supervised or supervised learning methods are
more like a “black box” with unclear mechanism. To date,
hundreds of microorganisms have been shown to be linked
with CRC, among which limited numbers have been further
investigated. As a case in point, Fn was shown to be
overabundant in tumor versus matched normal tissue and its
potential role in CRC attracted widespread research attention
(Castellarin et al., 2012; Kostic et al., 2012). Over the
last few years, numerous studies have supported a role of
Fn in promoting colorectal carcinogenesis through various
functions such as inducing inflammatory cell infiltration,
modulating E-cadherin/β-catenin signaling, activating immune
cells, mediating interactions between bacteria, and binding
to tumor-expressing Gal-GalNAc (Rubinstein et al., 2013,
2019; Abed et al., 2016; Yang et al., 2017). These advances
have enhanced our knowledge of the potential relationships
between Fn and chemoresistance, metastasis and poor prognosis
(Mima et al., 2016; Yu et al., 2017b; Chen et al., 2020).
Therefore, detection of Fn for early screening or exploitation of
inhibitors targeting related pathways may be efficacious in clinical
practice. In terms of methodological aspects, Bertrand Routy
proposed a viable solution involving five steps: (1) microbial
metagenomics should be standardized, (2) different “omics”
analyses should be integrated, (3) the amount of cultivable
microbial species should be increased, (4) non-invasive sampling
methods should be combined with capsule endoscopy, and (5)
Avatar mouse models should be standardized and investigated
(Routy et al., 2018). Overall, longitudinal profiling of etiological
and protection mechanisms of microorganisms achieves higher
information richness and pave the way to take advantage of gut
microbiome for diagnosis.

Development of standardized methods should also attenuate
inconsistency of data. Inclusion and exclusion criteria have

been gradually established, including diet, treatment, genetic
background, disease history, antibiotic usage history and
colonoscopy, aiming to avoid intestinal microbiota changes
(O’Brien et al., 2013). During transportation and storage, a
low temperature of −80◦C and preservative buffer, such as
RNAlater or EDTA, are effective to maintain DNA stability
and integrity (Carozzi and Sani, 2013). In particular, compared
to freezing for preservation, smaller technical variability
was introduced without disrupting subject- and time-point
specificity of the gut microbiome (Voigt et al., 2015). DNA
extraction exerted the most significant effect on outcome of
metagenomics analysis, highlighting the standardized DNA
extraction method for human fecal samples (Costea et al.,
2017). To address the complex challenges posed by large-scale
studies, a protocol involving collection of microbiome samples
at home and shipping to laboratories for molecular analysis was
developed by Franzosa et al. (2014). Furthermore, for library
preparation, PCR-free based methods were recommended
to reduce PCR bias and improve assembly for accurate
taxonomic assignment (Jones et al., 2015). Nevertheless, lack
of standardization with regard to data access, metadata and
analysis tools remain a barrier to acquisition of accurate and
comparative results (Laudadio et al., 2018). Data integration
and system-level modeling from multiple omics platforms is
one of the most promising directions of microbiome research
(Nayfach and Pollard, 2016). To improve the status quo,
comprehensive platforms, such as MicrobiomeAnalyst and
gcMeta, were recently constructed for downstream statistical
analysis and functional interpretation (Dhariwal et al., 2017;
Shi et al., 2019). Notably, the International Human Microbiome
Standards (IHMS) project is committed to coordinate the
development of standard operating procedures designed
to optimize data quality and comparability in the human
microbiome field. SYBR Green and probe-based qPCR are
two common choices toward application, the former being
more economical and the latter achieving greater accuracy for
absolute quantification.

Cost-effectiveness is the ultimate challenge, including the
costs of testing, screening intervals and subsequent evaluations
resulting from the initial test (Dickinson et al., 2015). Due
to high-cost resources, colonoscopy is not generally employed
as a screening tool, except in a few countries like the
United States, Germany and Austria. In low-income or middle-
income countries with a low incidence of CRC, colonoscopy
screening strategies may not be sufficiently cost-effective for
implementation (Keum and Giovannucci, 2019). Taking FIT
and Cologuard as examples, although incremental costs per
additional advanced adenoma (AA) and CRC detected using
colonoscopy versus FIT were £7,354 and £180,778, respectively,
annual FIT reduced the colonoscopy incidence by 71% in
intermediate-risk patients compared to three-yearly colonoscopy
surveillance (Cross et al., 2019b). Cologuard shows superior
performance for screening of AA, but carries a higher cost. In
terms of the rate of screening compliance, stool DNA test is
associated with higher patient acceptance owing to its simplicity.
A preliminary calculation showed that combination of FIT and
bacterial markers would avert up to 30% of total colonoscopies
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as well as save an estimated 77 million € per 100,000 participants
(Malagón et al., 2019). Meanwhile, usage of residual buffer from
FIT cartridges is feasible for microbiota-based analysis and could
greatly ameliorate the cost (Baxter et al., 2016a; Gudra et al.,
2019).

Considering the collective findings, bacteriophages, viruses,
archaea and fungi will be integrated into this database
as biomarkers in the future. In addition, with advances
in elucidation of mechanisms and omics analyses (such as
transcriptomics, proteomics, and metabolomics), corresponding
function descriptions should be more systematic. Systems biology
and computational biology play crucial roles in mass data
integration, and machine learning-based algorithms are under
development for analysis of metadata to facilitate CRC diagnosis.

CONCLUSION

Development of colorectal cancer is a multifactorial process
in which gut microbes play an important role. Determination
of dysbiosis of microbial communities and differential patterns
of abundance of microorganisms as biomarkers based on
sequencing, algorithms and experimental data may aid in
diagnosis and reduce morbidity and mortality. Except for
a few pathogenic bacteria, the relationships between several
microorganisms and colorectal cancer remain to be established,
which are reflected by inconsistencies among different studies.
Here, a database of CRC-related microbes was constructed
using SQL and basic statistical analyses were conducted
to outline biomarkers at different taxon levels. Diagnostic
performance and mechanisms are discussed in detail. This

type of knowledge integration is important for understanding
and monitoring CRC. Moreover, this database can be used
to perform inquiries and comparisons across different models
and databases, contributing to further study of CRC-related
microbes and promotion of cost-effective and non-invasive CRC
screening strategies.
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To manipulate nasal microbiota for respiratory health, we need to better understand
how this microbial community is assembled and maintained. Previous work has
demonstrated that the pH in the nasal passage experiences temporal fluctuations.
Yet, the impact of such pH fluctuations on nasal microbiota is not fully understood.
Here, we examine how temporal fluctuations in pH might affect the coexistence
of nasal bacteria in in silico communities. We take advantage of the cultivability of
nasal bacteria to experimentally assess their responses to pH and the presence
of other species. Based on experimentally observed responses, we formulate
a mathematical model to numerically investigate the impact of temporal pH
fluctuations on species coexistence. We assemble in silico nasal communities
using up to 20 strains that resemble the isolates that we have experimentally
characterized. We then subject these in silico communities to pH fluctuations
and assess how the community composition and coexistence is impacted. Using
this model, we then simulate pH fluctuations—varying in amplitude or frequency—
to identify conditions that best support species coexistence. We find that the
composition of nasal communities is generally robust against pH fluctuations
within the expected range of amplitudes and frequencies. Our results also
show that cooperative communities and communities with lower niche overlap
have significantly lower composition deviations when exposed to temporal pH
fluctuations. Overall, our data suggest that nasal microbiota could be robust against
environmental fluctuations.

Keywords: microbial communities, variable environment, nasal microbiota, mathematical model, species
interaction network, community ecology, coexistence

INTRODUCTION

Resident microbes in the human nasal passage protect us from respiratory pathogens (Brugger
et al., 2016; Man et al., 2017). Indeed, previous research shows the role of resident commensals in
suppressing pathogens, such as Staphylococcus aureus (Uehara et al., 2000; Iwase et al., 2010; Bomar
et al., 2016). Investigating how this microbial community is formed and maintained can therefore
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provide powerful insights into microbiota-based therapies to
prevent or treat infections. While such an investigation appears
formidable in complex environments such as the gut microbiota,
it is feasible for nasal microbiota. First, the nasal microbiota
has relatively low diversity, with the majority of composition
often attributed to 3∼8 species (Escapa et al., 2018). Second, the
majority of these species are readily culturable aerobically in vitro
under controlled environments (Kaspar et al., 2016; Escapa
et al., 2018). Third, both the species and the nasal environment
can be sampled relatively easily (Yan et al., 2013; Proctor and
Relman, 2017). The combination of these factors makes the nasal
microbiota a suitable choice for mechanistic studies of human
microbiota and a gateway for more detailed studies of human-
associated microbiota. Despite these advantages, community-
level modeling of nasal microbiota has not been discussed
adequately so far. A majority of existing work has focused
on the biology of specific members of the nasal microbiota
such as Staphylococcus aureus or Streptococcus pneumoniae
because of their disease relevance (Regev-Yochay et al., 2004;
Wertheim et al., 2004; Cespedes et al., 2005). Other reports
have characterized and investigated the interactions among
nasal microbes (Iwase et al., 2010; Bomar et al., 2016), but
often with a focus on the interaction itself, and have only
rarely involved the ecological consequences for the community
(see Margolis et al., 2010; Yan et al., 2013; Krismer et al.,
2017, for example).

Many factors, including interspecies interactions (Bomar
et al., 2016; Brugger et al., 2016, 2020), the host immune
system (Johannessen et al., 2012), and resource availability
and access (Relman, 2012) can impact the nasal microbiota.
However, all these factors take place in an environment
that may fluctuate over time and vary in space. Previous
investigations have revealed that the nasal passage is in fact
very heterogeneous, both spatially and temporally (Proctor
and Relman, 2017). In particular, pH fluctuations (in the
range of 5.8–7.2, depending on the sampling site and time)
were observed within the nasal passage (Washington et al.,
2000; Hehar et al., 2001). Previous studies also demonstrate
that temporal environmental fluctuations can transition the
community to a different state (Abreu et al., 2020) or increase
and support biodiversity (Eddison and Ollason, 1978; Grover,
1988; Abrams and Holt, 2002; Jiang and Morin, 2007; Kremer
and Klausmeier, 2013). The explanation is often based on
the temporal niche partitioning mechanism; i.e., environment
variations creates additional niches and allow for more species
to coexist (Chesson, 2000; Amarasekare, 2003). The purpose
of our work is not to introduce a new theoretical framework
for modeling microbial communities. Instead, we aim for a
predictive mathematical model to study the impact of temporal
pH fluctuations on the nasal microbiota composition. Other
factors notwithstanding, we specifically ask whether, and when,
incorporating temporal pH fluctuations is necessary to accurately
predict compositional outcomes.

To answer the above question, we first characterize six nasal
bacterial isolates as representative of members present in the
nasal community. The rationale behind choosing these nasal
bacteria was that (1) we can culture these strains reliably in

the same cultivation medium and conditions in the lab; (2)
covering different Corynebacterium and Staphylococcus species,
these strains capture some of the natural diversity of microbiota
(Escapa et al., 2018); and (3) Some interactions among these
strains has already been identified (Brugger et al., 2020). For
instance, Corynebacterium have been used to inhibit S. aureus
colonization (Uehara et al., 2000; Kiryukhina et al., 2013)
and S. aureus promotes the growth of C. accolens and gets
inhibited by C. pseudodiphtheriticum (Yan et al., 2013). We then
use in vitro communities constructed from nasal isolates to
quantify the community response to temporal pH variations.
Then, with parameters relevant to nasal microbiota, we use
a phenomenological model to represent microbes and their
interactions in an environment with a temporally fluctuating
pH. Based on our empirical characterizations of nasal bacteria,
we construct in silico examples of nasal microbiota and
quantify their response to temporal pH fluctuations. Our
simulation results suggest that temporal pH fluctuations do
not have a major impact on the stable coexistence of nasal
bacteria. The outline of our procedure to assess the impact
of temporal pH fluctuations on nasal microbiota is shown
in Figure 1.

MATERIALS AND METHODS

Nasal Bacterial Strains
Six strains used in this study were isolated from two healthy
individuals and kindly shared with us by Dr. Katherine
Lemon (Table 1). Interactions between some of these
strains and other nasal bacteria has been studied recently
(Brugger et al., 2020).

Cultivation Conditions and Medium
in vitro
As growth medium, we have used a 10-fold dilution of the Todd-
Hewitt broth with yeast extract (THY, at an initial pH of 7.2). We
have diluted THY to create an environment closer to the nutrient
richness of the nasal passage (Krismer et al., 2014). For collecting
cell-free filtrates, cells were grown in 15 ml of media in sterile 50
ml Falcon tubes with loose caps exposed to the room atmosphere.
For growth rate and carrying capacity characterizations, cells
were grown in flat-bottom 96-well plates. All cultures were grown
at 37◦C with continuous shaking at 250 rpm.

Characterizing the pH Response of
Nasal Isolates in vitro
To assess the response of nasal strains, we grew them in 10%
THY after adjusting the pH within the biologically relevant
range of 5.1 and 7.5 at 0.3 intervals (pH buffered with 10 g/l
of MOPS). For each strain, we measured the growth rate at low
population sizes (before nutrients become limiting or byproducts
become inhibitory) and the final carrying capacity. These values
were measured by growing replicates of each strain (typically
6 replicates) in 96-well microtiter plates incubated inside a
Synergy Mx plate reader. Growth rate and carrying capacity were
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FIGURE 1 | The outline of the procedure for assessing the impact of temporal pH fluctuations on nasal microbiota is shown. To assemble in silico nasal
communities, we characterized 6 bacterial nasal isolates. We then created in silico strains by randomly modulating the parameters of each characterized
strain—schematically illustrated as different shades for each species. Using random assemblies of such strains, we simulated the enrichment process to find
instances of stable nasal communities. We exposed these communities to a fluctuating pH and compared how the community composition was affected.

estimated by measuring the absorption in each well (OD600) at 10
min intervals over 24 h at 37◦C. Between absorption reads, the
plate was kept shaking to ensure a well-mixed environment.

Mathematical Model
To model the growth of species, we assume that in the absence of
interactions, the population growth follows the logistic equations:

dSi

dt
= ri

(
p
) [

1−
Si

Ki
(
p
)] Si − δSi.

In which ri(p) and Ki(p) are the pH-dependent growth rate and
carrying capacity of species i. In our simulations, the growth
rate and carrying capacity values at any given pH are found
using a linear interpolation from experimentally measured values
(pH 5.1–7.5 at 0.3 intervals). pH dependence is experimentally
characterized for each strain in a monoculture, as described
above, and δ is the dilution rate.

TABLE 1 | Nasal strains used in this study are listed along with their designation
based on 16S rRNA gene similarity.

Strain name Genus Most likely species designation

KPL1821 Corynebacterium Corynebacterium tuberculostearicum

KPL1828 Staphylococcus Staphylococcus aureus

KPL1839 Staphylococcus Staphylococcus epidermidis

KPL1850 Staphylococcus Staphylococcus non-aureus 1

KPL1989 Corynebacterium Corynebacterium pseudodiphtheriticum

KPL1867 Staphylococcus Staphylococcus non-aureus 2

When multiple species are present, we assume that the
presence of other species takes away resources from the
environment; as a result, the growth of each species will be
modulated as

dSi

dt
= ri(p)

[
1−

Si − γi

Ki(p)

]
Si − δSi.

where γi =
∑
j6=i

cijSj and ri(p)cij/Ki(p) represents the interaction

strength exerted on species i by species j. Positive values
of cij indicate growth stimulation (e.g., via facilitation by
producing resources) whereas negative values of cij indicate
growth inhibition (e.g., via competition).

Model Parameters
Unless otherwise specified, the following parameters are used in
the model:

Some of these parameters, such as the range, frequency, and
amplitude of pH values are chosen to keep the simulations
close to what is expected in the nasal environment (Washington
et al., 2000; Hehar et al., 2001). Some of the other parameters,
such as the dilution rate or the initial and extinction
population densities are not expected to be critical for the
overall conclusions of this work. We have chosen these
parameters to reflect realistic parameters that can be later
tested experimentally. Finally, parameters such as the number
of instances simulated (Ns) and the number of generations
simulated (Ngen) are chosen to give us enough confidence for our
claims, while keeping the practical considerations of simulation
time and effort in mind.
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Parameter Description Value

Nc Maximum number of strains for in silico
community assembly

20

Ns Number of instances of assembly simulations
run for each case

10,000

Ngen Number of generations simulated to obtain
stable resident communities; also the number
of generations simulated to assess response to
environmental fluctuations

100

pHrng Range of pH values (both in experiments and in
simulations)

5.1–7.5

δ Dilution rate 0.03–0.3 h−1

Next Extinction population density per species (OD) 10−6

fp Inter-strain parameter variation within each
species

20%

S0 Average initial cell density per strain (OD) 10−4

fpH Frequency of sinusoidal temporal pH
fluctuations

1 h−1

1pH Amplitude of sinusoidal temporal pH
fluctuations

0.5

Characterizing the Interspecies
Interactions Using a Supernatant Assay
To characterize how species j affects the growth of other species
i, we use a supernatant assay in which species j is grown to
saturation, then all the cells are filtered out using a 0.22 µm
filter (PVDF syringe filters from Thomas Scientific). The growth
rate and carrying capacity of species i is then measured when
growing in the supernatant taken from cultures of species j.
This formulation allows us to use the experimentally measurable
supernatant responses to formulate a dynamical model for mixed
cultures of multiple species.

Assuming a Lotka-Volterra model, the presence of another
species modulates the growth rate proportionally to the size of
the interacting partner, i.e.,

dSi

dt
= ri

[
1−

Si − cijSj

Ki

]
(1−

Si − cijSj

Ki
)Si.

Calculating the parameters obtained from the cell-free spent
media (CFSM), the carrying capacity for species i is reached at
population Si,cc level when growth rate becomes zero, thus(

1−
Si,cc − cijKj

Ki

)
= 0.

Therefore, the carrying capacity in the supernatant assay (Kij) is

Kij = Si,cc = Ki + cijKj.

And the interaction coefficient (cij, effect of species j on species i)
can be calculated as

cij =
Kij − Ki

Kj
.

In the particular that species i and j are similar (self-effect), we
have Kii = 0 and cii = −1. It should be noted that there are

limitations in using a Lotka-Volterra model. Such models may
not accurately represent microbial interactions (Momeni et al.,
2017). Additionally, under certain conditions, the solutions will
exhibit instability. Particularly for this latter case, we examine
the situations under which “runaway” growth instability may
happen. Consider two mutualistic populations:

dS1

dt
= r1

[
1−

S1 − c12S2

K1

]
S1 and

dS2

dt
= r2

[
1−

S2 − c21S1

K2

]
S2

Instability can happen when the carrying capacity terms fail
to act as a negative feedback to bound the population. This can
happen when

[
1−

S1 − c12S2

K1

]
> 1 and

[
1−

S2 − c21S1

K2

]
> 1

This happens when S1 < c12S2 and S2 < c21S1. Satisfying both
of these inequalities requires that c12 and c12c21 > 1, which
means strong mutual facilitation. In our dataset, we do not
have examples of mutual or cyclic facilitation and facilitation
interaction terms are small, suggesting that instability is not
expected in our simulations. Nevertheless, these conditions
should be kept in mind for other datasets, especially those with
strong facilitation between community members.

Calculating Community Composition
Deviations
To compare community composition of a community that
experienced pH fluctuation with that of the same community
simulated at a fixed pH, we calculated the Bray-Curtis
dissimilarity measure using the f_dis function (option “BC”)
in MATLAB. The necessary files to reproduce the analysis are
included in the accompanied source codes1.

Estimating the Impact of pH Fluctuations
We consider two extremes, when the fluctuations in pH are (1)
much faster or (2) much slower than the population dynamics
of community members. In both cases, for our formulation we
define cii = −1 and use the simplified model of populations at
different pH:

dSi

dt
= ri

(
p
) [

1+
γ̂i

Ki
(
p
)] Si − δSi

and
γ̂i =

∑
cijSj

Case 1. Fast pH fluctuations: To estimate how the community
responds under a rapidly changing pH, we use the framework
of the Wentzel–Kramers–Brillouin (WKB) approximation. For
the general case of dS

dt = r(t)S, we split the population dynamics
into two terms, the primary exponential term and an envelope

1https://github.com/bmomeni/temporal-fluctuations
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function, E, for which E(t) = e−r0tS(t) and thus,

dE
dt
= [r (t)− r0] E

Using the WKB approximation E can be written using the
expansion

E = exp

[
1
ε

∞∑
n=0

εnEn(t)

]

By inserting this expansion into the differential equation, we
obtain (

1
ε

∞∑
n=0

εn d
dt

En(t)

)
exp

[
1
ε

∞∑
n=0

εnEn(t)

]
=

(r (t)− r0) exp

[
1
ε

∞∑
n=0

εnEn(t)

]

Thus
1
ε

∞∑
n=0

εn d
dt

En(t) = r (t)− r0

Assuming sinusoidal changes in pH, p (t) = p0 + pdsin(2πft),
to the first order, the temporal changes in growth rate can be
approximated as, r (t) = r0 + rdsin(2πft). Therefore,

1
ε

∞∑
n=0

εn d
dt

En(t) ≈ rd sin
(
2πft

)
.

In the limit that ε→ 0the first terms of expansion for E are
obtained as

d
dt

E0 (t) = 0, .

d
dt

E1 (t) ≈ rd sin(2πft)

Since the continuous dilutions in our setup keeps the
populations finite, E0 does not affect the solution. The dominant
term for E thus becomes E1 and we have

E1 (t) ≈
−rd

2πf
cos

(
2πft

)
Aa a result,

E (t) ∝ exp
[
−rd

2πf
cos

(
2πft

)]
Importantly, the magnitude of change in this equation drops
inversely proportional to the frequency of pH fluctuations f.
This means that the impact of pH fluctuations diminishes
at high frequencies, consistent with our intuition that
in this case the community dynamics are incapable of
following the environmental fluctuations and only respond
to the mean value.

Case 2. Slow pH fluctuations: In this case, we assume the quasi-
static approximation, in which fluctuations are so slow that the
community approaches its steady-state at each temporal value

of pH. In this situation, assuming dSi
dt = 0, we can rearrange the

equation at steady-state as

[
ri
(
p
)
− δ

]
Si = −

ri
(
p
)

Ki
(
p
)Si

∑
cijSj

Rearranging this, we get[
δ− ri

(
p
)] Ki(p)

ri(p)
=

∑
cijSj.

This can be written in matrix form as

[C] S = b,

where [C] contains the interaction coefficients and bi =[
δ− ri

(
p
)] Ki(p)

ri(p) ; underline in our notation designates a vector.
Since the interaction matrix [C] is pH-independent in our model,
the change in composition within this quasi-static approximation
can be expressed as

[C]
(
S (t)− S0

)
= b(t)− b0,

or.

1S (t) =
(
S (t)− S0

)
= [C]−1 (b(t)− b0

)
= [C]−1 1b(t)

We make an additional simplifying assumption that Ki
and ri change similarly with pH. This leads to 1bi ≈

(ri0 − ri (t))Ki0
ri0

. This means that the magnitude of change in
community composition is the same as the change in the
growth rate of species, regardless of the frequency of fluctuations,
under this regime.

Allowing pH-Dependent Interaction
Coefficients
To examine how pH-dependent interaction coefficients may
affect our results, we assumed that each interaction coefficient has
a linear dependence on pH with a slope (per unit pH) randomly
selected from a uniform distribution in the range of [−m, m]. In
other words,

cij
(
p
)
= cij

(
p0
)
+m(p− p0),

where p0 = 7.2 is the pH at which our characterization is
performed. We examined how the community composition
deviated from the reference with a fixed pH, as m (and thus the
pH-dependency) increased.

RESULTS

In vitro Characterization of Nasal
Bacteria
We experimentally characterized how six representative
nasal bacterial strains respond to different pH values in
their environment. These bacterial strains were chosen
from a set of isolates (see section “Materials and Methods”)
based on three major considerations: (1) they reliably grow
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in our cultivation media under an aerobic environment;
(2) they include commonly observed Staphylococcus and
Corynebacterium species; and (3) they span the phylogenetic
landscape of both closely and distantly related bacteria found in
the nasal environment (Escapa et al., 2018). We assumed that
each of these characterized strains is a representative strain of the
corresponding species.

We first characterized the pH response of each strain
by growing them under different environmental pH values.
Different strains exhibited different degrees of pH dependency
in their growth rates and carrying capacities (Figure 2
and Supplementary Figures S1, S2). Among these strains,
S. epidermidis, S. non-aureus 1, and S. non-aureus 2 show fairly
similar growth properties. We chose to treat these as separate
species in our investigation, because—as shown later—they had
considerably different interactions with other species (Figure 3).

We then examined how different species interact with one
another. For this, we grew each species to its stationary phase
in a monoculture, filtered out the cells, and measured how
other strains grew in the resulting cell-free filtrates (see section
“Materials and Methods”; similar to De Vos et al., 2017; Brugger
et al., 2020). From these measurements, we estimated the inter-
species interaction coefficients based on the generalized Lotka-
Volterra model (Figure 3; see section “Materials and Methods”).
In this formulation, baseline competition with complete niche
overlap will result in an interaction coefficient of −1. Of note,
from our experimental data we cannot distinguish the relative
contribution of competitive niche overlap and interspecies
facilitation. Nevertheless, for simplicity we only use “facilitation”
for extreme cases in which facilitation outweighs competition and
the interaction coefficient turns positive. We interpret different
gradations of negative interaction coefficients from −1 to 0 as
different degrees of niche overlap (with −1 indicating complete
niche overlap), and cases with interaction coefficients less than
−1 indicate inhibition beyond competition for resources. Among
the 30 pairwise interaction coefficients, there were 3 positive
values (bright blue, marked by “+” in Figure 3). For simplicity,
throughout this manuscript, we assume that these interaction
coefficients are not pH-dependent.

In silico Assembly of Nasal Bacterial
Communities
To capture some of the diversity of nasal microbiota, we propose
that other in silico strains of each species can be constructed by
randomly modulating the measured properties of that species
(i.e., growth rate, carrying capacity, and interaction coefficients).
We chose the degree of strain-level modulation to be up to
20%, as a balance between intraspecies and interspecies diversity
(Supplementary Figure S3).

To assess the response of nasal microbiota to temporal
fluctuations in the environment, we first construct an ensemble
of in silico communities that represent a subset of possible nasal
communities. This is chosen as an alternative to performing
an in vivo study, because performing these experiments with
human subjects is not feasible and there is no reliable animal
model for human nasal bacteria. Our approach is, in essence,
similar to several other previous work that have used simple
models to describe the dynamics of human-associated microbiota
(Stein et al., 2013; Fisher and Mehta, 2014; Song et al.,
2014; De Vos et al., 2017; Venturelli et al., 2018). Compared
to in vitro studies, these in silico communities give us full
control over confounding factors and allows us to examine
the mechanisms contributing to sensitivity to pH fluctuations
(Momeni et al., 2011). To construct in silico communities,
we mimicked enrichment experiments (Goldford et al., 2018;
Niehaus et al., 2019) by simulating the dynamics of an initial
assemblage of 20 strains (sampled from the space of in silico
strains) until the community reached stable coexistence. These
in silico communities were largely robust against experimental
noise in characterization (Supplementary Figure S4). The
interspecies interactions in our model appear to be instrumental
in the assembly of these in silico communities, as evidenced by
changes when we assigned the interaction coefficients at given
levels (Supplementary Figure S5A) or modulated the measured
interactions (Supplementary Figure S5B). To assess how pH
fluctuations in the environment influence nasal communities,
we take several instances of in silico nasal communities, expose
them to a fluctuating pH, and quantify how the community
composition is affected. The entire process is outlined in Figure 1.

FIGURE 2 | Growth properties of nasal bacterial isolates are pH-dependent. Growth is characterized using the growth rate in the early exponential phase (A), and
the carrying capacity based on optical density (OD, absorption measured at 600 nm) as a proxy (B). Each data point is the average of at least 6 replicates from two
independent experiments. Error-bars are not shown to avoid overcrowding the plot but the values are available in the raw data. In all cases, growth is experimentally
tested in a 10-fold diluted Todd-Hewitt broth with yeast extract (10% THY).

Frontiers in Microbiology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 613109123

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-613109 February 4, 2021 Time: 15:25 # 7

Dedrick et al. pH Fluctuations and Bacterial Coexistence

FIGURE 3 | Interaction coefficients among pairs of nasal bacteria. Values represent interaction coefficients in a Lotka-Volterra model. In each case, the growth of a
recipient strain is measured when the strain is exposed to cell-free filtrate derived from the effector strain. Positive mean coefficients (indicating facilitation) and
negative mean coefficients below –1.2 (indicating strong inhibition) across different replicates are marked by “+” and “–,” respectively. Standard deviations (shown for
each value) are calculated based on empirical standard deviations of measured carrying capacities in monocultures and supernatant experiments. Diagonal elements
are set to –1, indicating complete niche overlap.

In silico Nasal Communities Are Diverse
and Favor Facilitation
We first examined the properties of assembled in silico
communities at various pH values with no temporal fluctuations.
We found that the prevalence of different species was distinct and
pH-dependent (Supplementary Figure S6). This prevalence is a
result of nasal species’ pH-dependent growth properties as well as
their interspecies interactions.

We also found that during the process of assembling
in silico communities, the prevalence of interspecies facilitation
interactions increased. Comparing the prevalence of facilitation
in initial assemblages of strains vs. the final stable communities,
we found that among the communities that had at least one
facilitation interaction at the start of the in silico enrichment (89%
of communities), facilitation was enriched in ∼66% of the final
community assemblies (Supplementary Figure S7).

Temporal pH Fluctuations Only Minimally
Impact Nasal Microbiota Composition
Next, we asked how the temporal variation in the environment
might influence the community composition. To answer this

question, we used instances of in silico communities to evaluate
the impact of temporal pH fluctuations. We assumed a
continuous growth situation in which all community members
experience a constant dilution rate. This dilution mimics the
turnover in microbiota, for example, when the mucosal layer
gets washed away. To avoid situations in which the in silico
community itself was not stable, we changed the dilution rate
by ± 50% and only kept the communities for which the
modified dilutions only caused a small deviation in community
composition (see section “Materials and Methods”). Indeed,
we found that communities with compositions more sensitive
to dilution rates are also more sensitive to pH fluctuations
(Supplementary Figure S8). In all cases, composition deviations
were calculated using the Bray-Curtis dissimilarity measure (see
section “Materials and Methods”).

To evaluate the impact of pH fluctuations, we simulated
a controlled sinusoidal pH variation over time, with two
parameters: the amplitude and frequency of temporal variations.
Thus, p(t) = p0 +1pH sin(2πfpHt). Keeping the frequency
of fluctuations fixed (f pH = 0.2/h), we observed that the
deviation in population composition increased with an increasing
pH fluctuation amplitude (1pH). However, the resulting
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FIGURE 4 | Nasal microbiota composition is robust against pH fluctuations. (A) For a fixed fluctuation frequency (fpH = 0.2/h), larger fluctuation amplitudes increase
how the community composition deviates from the no-fluctuation steady state (as quantified with composition dissimilarity). (B) The impact of temporal fluctuations is
maximum at intermediate frequencies. Here, the pH fluctuation amplitude is fixed (1pH = 0.5). Number of in silico communities examined for each condition:
n = 10,000.

dissimilarity in population composition was mostly minor,
with> 85% of cases showing less than 0.2 dissimilarity even when
the amplitude of pH fluctuation was set to 1 (Figure 4A). We then
examined the impact of the frequency of pH variations, while
we kept the amplitude of pH fluctuations fixed (1pH = 0.5). At
intermediate frequencies, the pH fluctuations caused the largest
dissimilarity in community composition compared to stable
communities with fixed pH (Figure 4B).

We repeated the assessment of pH fluctuations by assuming
a pH that randomly fluctuated between two discrete pH
values to ensure that our results were not limited to sinusoidal
fluctuations. The results were overall consistent with sinusoidal
pH fluctuations (Supplementary Figure S9): (1) larger pH
fluctuation amplitudes increased the deviation in population
composition, but overall the majority of communities only
experienced modest deviations; and (2) pH fluctuations
at intermediate frequencies had the largest impact on
community composition.

Interspecies Facilitations Dampen the
Impact of Temporal Fluctuations
To explain the low sensitivity of community composition to
pH fluctuations, we hypothesized that interspecies facilitation
stabilizes the composition by creating interdependencies within
the community. From the data in Figure 4, we picked
and compared communities with low (“competitive,” 0%
facilitation) and high (“cooperative,” 50% facilitation) prevalence
of facilitation. The 0% facilitation corresponds to situations
where none of the strains facilitate any of the other members
of the in silico community. In contrast, 50% facilitation happens
when half of the pairwise interactions among the in silico
community are facilitative. Since in our dataset (Figure 3) there
were no instances of mutual facilitation, 50% facilitation is the
maximum fraction that cooperative communities can reach. The
results show that cooperative communities have a consistently
and significantly lower composition deviation when exposed to
temporal pH fluctuations (Figure 5).

To further explore the impact of facilitation, we asked
how interspecies niche overlap (the magnitude of negative

interspecies interactions) and prevalence of facilitation (the
fraction of interspecies interactions that are positive) contribute
to sensitivity to pH fluctuations. In our results, we found that
larger interspecies niche overlap leads to more sensitivity to
pH fluctuations (Figure 6A). This trend holds except when
interspecies niche overlap approaches 1; at such high overlaps the
community loses diversity (Figure 6B), becoming less sensitive
to pH fluctuations. When we directly changed the prevalence
of facilitation, we observed that with higher prevalence of
facilitation the communities became more diverse and less
sensitive to pH fluctuations (Figures 6C,D).

FIGURE 5 | Cooperative communities are more robust against pH fluctuations
compared to competitive communities. For competitive (those with 0%
facilitation among members) and cooperative (those with 50% facilitation
interactions among members) communities, dissimilarity medians were 0.057
and 0.055 and dissimilarity means were 0.12 and 0.058, respectively
(p = 1.2 × 10-6 with a Mann-Whitney U-test). pH fluctuates sinusoidally with a
frequency of fpH = 0.2/h and an amplitude of 1pH = 0.5.
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FIGURE 6 | Lower niche overlap and more prevalent facilitation decrease the sensitivity to pH fluctuations. (A) As we artificially increased the strength of niche
overlap (by setting all off-diagonal coefficients in the interaction matrix to be a fixed negative number and making that number more negative), the sensitivity to pH
fluctuations increased. This trend is disrupted when niche overlap approaches 1, because a majority of communities under such conditions lose interspecies
diversity (B). As we increased the prevalence of interspecies facilitation by randomly setting a given fraction of interaction coefficients to be positive, the communities
became less sensitive to pH fluctuations (C) and more diverse in species richness (D). Here pH fluctuations are sinusoidal, with fpH = 0.2/h and 1pH = 0.5.

DISCUSSION

Using empirically measured species properties, we assembled
stable in silico communities that show coexistence of nasal
bacteria. When these communities were exposed to a fluctuating
pH environment, we observed that the composition of stable
communities was only modestly affected. Larger pH fluctuations
increased the deviation, as expected; however, even at a pH
fluctuation of 1 which exceeds the observed temporal variation
in the nasal passage, the composition of the majority of
communities remained minimally affected. We also found that
intermediate frequencies of temporal pH fluctuations caused the
largest deviations in community compositions. Finally, in our
results, communities with more facilitation interactions were
more robust against pH fluctuations.

In choosing an appropriate model, one must carefully
consider the processes of interest and the required level of
abstraction to capture those processes (Momeni et al., 2011;
Silverman et al., 2018b). Models originally designed for single
species populations have been adapted to characterize microbial
communities. Community ecology modeling frameworks
designed to understand interactions at the macro scale—in both
space and time—have also been applied to microbial populations
to study the dynamics of succession and restoration, along with
the impact of environmental disturbances (Byrd and Segre, 2016;
Gilbert and Lynch, 2019). For example, flux balance analyses,

a mainstay in microbial metabolic models, can be modified
to describe species interactions within a complex microbial
community over time (Larsen et al., 2012; Gerber, 2014; Bucci
et al., 2016; Fukuyama et al., 2017; Äijö et al., 2018; Silverman
et al., 2018a; Shenhav et al., 2019). To create a predictive
model for nasal microbiota, we have extended the generalized
Lotka-Volterra (gLV) equations to study the impact of pH
fluctuations on community composition. Generalized Lotka-
Volterra equations have been previously used to investigate
species interactions in the human gut (Fisher and Mehta,
2014; Song et al., 2014) and in a cheese-associated microbial
community (Äijö et al., 2018; Song et al., 2014). It has also been
similarly extended to describe the impact of environmental
fluctuations (antibiotics) on gut microbiota (Stein et al., 2013;
Song et al., 2014). For our data, the Lotka-Volterra-type model
has proven to—at least to the first-order—capture species
growth, interactions, and pH-dependence.

One important aspect of temporal fluctuations is their time
scale. Even though in nature the fluctuations are not completely
regular, our investigation with sinusoidal temporal fluctuations
reveal the time scale at which the influence on community
composition is the strongest. Our analysis reveals that the
fluctuations are more impactful at intermediate frequencies
between two extremes (see section “Materials and Methods”).
At very low frequencies of pH fluctuations, the community
dynamics are faster than pH changes; thus we can assume
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the quasi-static approximation applies. In this regime, the
community reaches its stable state locally (in time), and the
composition follows the value of pH at any given time,
regardless of the frequency of the pH fluctuations. In the
other extreme, at very high frequencies of pH fluctuations, the
population dynamics cannot follow rapid changes in pH and
essentially the species “see” the average pH. An analysis based on
the Wentzel–Kramers–Brillouin (WKB) approximation suggests
that in this regime, the magnitude of change in composition
(compared to the composition at the average pH) is inversely
proportional to the pH fluctuation frequency. Between these
two extremes is the zone that exhibits the most change in
community composition with pH fluctuations (Figure 4B and
Supplementary Figure S9B). However, for parameters relevant
to the nasal strains we are analyzing, even in this zone the changes
in community composition are not drastic.

Our focus in this manuscript is on how composition of
stable communities changes when environmental pH fluctuates.
Another relevant question is how fluctuations in pH affect
the process of community assembly. For this, we repeated the
community assembly simulations (Supplementary Figures
S6,S7), but under an environment in which the pH temporally
fluctuated. Contrary to our expectation, the richness of resulting
communities did not monotonically increase with an increase
in the amplitude of pH fluctuations, regardless of fluctuation
frequency (Supplementary Figure S10). Instead, we found
that richness only changed in a small fraction of in silico nasal
communities. Furthermore, in cases with increased richness,
S. non-aureus 1 (most facilitative species in our panel) was
most frequently added to the community, whereas in cases with
decreased richness, S. epidermidis (most inhibitory species in
our panel) was most frequently dropped from the community
(Supplementary Figure S11). This observation underscores
the relative importance of interaction (compared to niche
partitioning) in richness outcomes in our model of nasal
communities. Our finding is also consistent with predictions
about augmentation and colonization resistance using a
mediator-explicit model of interactions (Kurkjian et al., 2020).

There are some limitations and simplifications in our study.
First, in our investigation we have assumed that fluctuations in
pH are imposed externally (e.g., by the host or the environment).
It is also possible that species within the nasal community
contribute to the environmental pH. Although outside the
scope of this work, we speculate that if species within the
community drive the pH to specific values (Ratzke and Gore,
2018; Ratzke et al., 2018), the impact of external temporal
fluctuations of pH on community composition will be even
more diminished. Second, in our model, we assumed that
interactions among species remained unchanged at different
environmental pH values. We examined in silico how pH-
dependent interaction coefficients might affect our results. For
this, we assumed that interaction coefficients changed linearly
with pH in each case (see section “Materials and Methods”) and
asked how strong the dependency had to be to considerably
change the community composition under a fluctuating pH.
We observed a significant impact only when the interaction
coefficients were strongly pH dependent (i.e., to the level that

the sign of interactions would change within the range of pH
fluctuations) (Supplementary Figure S12).

Our work suggests that a shift in pH can change the
community composition and coexistence (Supplementary
Figure S6). This is consistent with previous observations from
profiling different locations along the nasal passage (Yan et al.,
2013). However, our prediction is that temporal pH fluctuations
often do not cause a major shift in community structure. As a
future step, we plan to verify this prediction experimentally by
testing how pH fluctuations affect in vitro nasal communities.
If confirmed, our prediction is that the spatial position of
sampling and the heterogeneity of the environment will have
a stronger effect on community composition compared to the
temporal resolution of sampling. The practical implication is
that microbiome profiling of nasal microbes may not require a
high temporal resolution. We proposed that high throughput
sampling of the nasal microbiome along with the corresponding
pH would be an insightful future step to test our predictions.

Finally, one of the main messages of our work is that nasal
microbiota is insensitive to temporal fluctuations in pH. It
is tantalizing to speculate, when examining other microbial
communities, under what conditions this statement is valid.
Recent work by Shibasaki et al. (2020) shows that under a
fluctuating environment species properties play an important
role in community diversity. Our results corroborate their
finding. Insensitivity of the members to the environmental
fluctuations—as trivial as it may sound—is a defining factor for
how sensitive the community is. In the nasal microbiota, species
that we are examining are adapted to the nasal environment and
the range of pH fluctuations experienced in this environment
is not large. As a result, the community is not majorly
affected by pH fluctuations. On top of this, we also observe
that interactions—in particular, facilitation and competition—
can act as stabilizing or de-stabilizing factors for how the
community responds to external variations. In other words,
facilitation between community members acts as a composition
stabilizing factor between populations, which lowers the impact
of external fluctuations (Figure 6A). In contrast, inhibition
between community members typically exaggerates the changes
introduced by external fluctuations (Figure 6C).
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Introduction: The metabolic activity of the gut microbiota plays a pivotal role in
the gut-brain axis through the effects of bacterial metabolites on brain function
and development. In this study we investigated the association of gut microbiota
composition with language development of 3-year-old rural Ugandan children.

Methods: We studied the language ability in 139 children of 36 months in our
controlled maternal education intervention trial to stimulate children’s growth and
development. The dataset includes 1170 potential predictors, including anthropometric
and cognitive parameters at 24 months, 542 composition parameters of the children’s
gut microbiota at 24 months and 621 of these parameters at 36 months. We applied
a novel computationally efficient version of the all-subsets regression methodology and
identified predictors of language ability of 36-months-old children scored according to
the Bayley Scales of Infant and Toddler Development (BSID-III).

Results: The best three-term model, selected from more than 266 million models,
includes the predictors Coprococcus eutactus at 24 months of age, Bifidobacterium
at 36 months of age, and language development at 24 months. The top 20 four-term
models, selected from more than 77 billion models, consistently include C. eutactus
abundance at 24 months, while 14 of these models include the other two predictors
as well. Mann–Whitney U tests suggest that the abundance of gut bacteria in language
non-impaired children (n = 78) differs from that in language impaired children (n = 61).
While anaerobic butyrate-producers, including C. eutactus, Faecalibacterium prausnitzii,
Holdemanella biformis, Roseburia hominis are less abundant, facultative anaerobic
bacteria, including Granulicatella elegans, Escherichia/Shigella and Campylobacter coli,
are more abundant in language impaired children. The overall predominance of oxygen
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tolerant species in the gut microbiota was slightly higher in the language impaired group
than in the non-impaired group (P = 0.09).

Conclusion: Application of the all-subsets regression methodology to microbiota data
established a correlation between the relative abundance of the anaerobic butyrate-
producing gut bacterium C. eutactus and language development in Ugandan children.
We propose that the gut redox potential and the overall bacterial butyrate-producing
capacity in the gut are important factors for language development.

Keywords: gut-brain-axis, butyrate, Coprococcus eutactus, language development, all subsets regression, mixed
integer optimization, metagenomic aerotolerant predominance index

INTRODUCTION

There is an accumulating amount of evidence for a role of the
gut microbiota in brain function and development via the so-
called microbiota-gut-brain-axis, as recently reviewed by Cryan
et al. (2019). The communication along this axis is bidirectional.
Communication from the brain to the gut occurs through signals
to change bowel movements and intestinal permeability, which in
turn changes the enteric microbiota composition, its metabolic
activity and response signal. The gut microbiota signals to the
brain via stimulation of intestinal host immune cells, eliciting
a cytokine response. In addition, signals are transferred to the
brain through bacterial metabolites, including short chain fatty
acids (SCFA’s). This results in altered neurotransmitter release,
hormone secretion and induction of vagus nerve signaling
to the brain (Rhee et al., 2009; Bienenstock et al., 2015;
Jameson et al., 2020).

In this study we investigated the correlation between gut
microbiota composition and language ability of 3-year-old rural
Ugandan children, as assessed by the Bayley Scales of Infant
and Toddler Development (BSID-III) composite scores for
language development (Albers and Grieve, 2007). The scales
provide comprehensive development measures for children
up to 42 months and have been adapted for appropriate
use among children in rural Uganda (Muhoozi et al., 2016).
The data used in this study were collected during a follow-
up trial of a two-armed, open cluster-randomized education
intervention regarding nutrition, child stimulation and hygiene
among mothers of children in the Kisoro and Kabale districts
of South-West Uganda (Muhoozi et al., 2018). The intervention
did not lead to any significant changes in the gut microbiota
diversity compared with the control group at phylum or genus
level. Neither did we observe any significant differences between
the two study groups in the Shannon diversity index at 20–24
and 36 months, respectively. However, the Shannon diversity
index of the gut microbiota increased significantly in both study
groups from 24 to 36 months (Atukunda et al., 2019). Further
analysis of the changes associated with the gut microbiota in the
transition from 24 to 36 months revealed that there was a notable
shift from autochthonous (endogenous) to allochthonous (plant-
derived) Lactobacillus species, and a correlation of Lactobacillus
with stunting, most probably resulting from the change in the
children’s diet from breast milk to solid, plant-based foods
(Wacoo et al., 2020). As follow-up to this study we further

investigate here correlations between the gut microbiota of these
children with language development.

It should be noted that predictors for current cognition
parameters in children may not only be found in past values of
these parameters, but also in current and past gut microbiota
compositions. This is supported by longitudinal studies that
indicate a maturation program of the human gut microbiome in
the first 3 years of life, consisting of distinct phases of microbiome
progression (Backhed et al., 2015; Stewart et al., 2018). Suitable
predictors are usually found by fitting models including the
predictors being assessed and comparing the fit of the model
with the fit of a model that does not include these predictors.
This poses a non-trivial problem, because the number of different
models that can be fitted grows exponentially with the number
of potential predictors, so it is not feasible to fit all possible
models and compare their fit. In addition, the predictors can
be correlated so that different sets of predictors can explain the
response variable of interest equally well. In the present paper,
we successfully address the above mentioned problems in data
analysis of the gut microbiota from rural Ugandan children. Our
key finding is that abundance of butyrate-producing bacterium
Coprococcus eutactus in the gut microbiota at 24 months predicts
language development in these children at 36 months.

MATERIALS AND METHODS

Study Design and Data Collection
The data used in this study were collected during a follow-
up trial of a two-armed, open cluster-randomized education
intervention regarding nutrition, stimulation and hygiene among
impoverished mothers of children in the Kisoro and Kabale
districts of South-Western Uganda (Muhoozi et al., 2018). The
purpose of the study by Muhoozi et al. was to assess the effects of a
nutrition education intervention, delivered in group meetings to
impoverished mothers, on child growth, cognitive development
and gut microbiota in rural Uganda. Developmental outcomes
were assessed with the BSID-III composite scores for cognitive
(primary endpoint), language and motor development. Other
outcomes included gut microbiota compositions.

Stool samples were collected from 139 children at the age of
20–24 months and at 36 months and shipped to Netherlands for
DNA extraction (Atukunda et al., 2019). Quantitative PCR was
performed to determine the relative amount of bacterial template
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and amplicon sequencing was carried out as previously described
(de Boer et al., 2015; Parker et al., 2018). In summary, V4 16S
rRNA gene amplicon sequencing was carried out by paired end
sequencing conducted on an Illumina MiSeq platform (Illumina,
Netherlands). Taxonomic names were assigned to all sequences
using the Ribosomal Database Project (RDP) naïve Bayesian
classifier with a confidence threshold of 60% (Wang et al., 2007)
and the mothur-formatted version of the RDP training set v.9
(Schloss et al., 2009). All 16S rRNA amplicon paired end reads of
the gut microbiota samples sequenced in this study are accessible
at BioProject PRJNA517509 (Kort, 2019).

Language development was determined by the Bayley Scales of
Infant and Toddler Development 3rd edition (BSID−III) using
the language subscale. The BSID-III provides comprehensive
development measures with children up to 42 months and
has been adapted for appropriate use among children in rural
Uganda (Muhoozi et al., 2016, 2018). The BSID-III language
component focuses on pre-linguistic behaviors, communication
and social routines in addition to expressive and receptive
language skills. The children’s performance was scored according
to the guidelines in the administration manual and the raw scores
from expressive and receptive subscales were summed up and
converted to composite scores using BSID−III conversion tables.
In the reference material of United States children the mean score
after conversion is 100.

Model Selection Using Mixed Integer
Optimization
Model selection strategies should reveal sets of predictors that
explain the data equally well, if such is the case. Best subset
selection (Miller, 2002) based on Ordinary Least Squares (OLS)
returns the best k models with p predictors each, so that the
common predictors in the best models form a solid basis to
explain the response variable of interest and the predictors that
differ among the best models point to alternative interpretations
to explain the same variable. However, until recently, subset
selection could only be performed when the total number of
predictors t is fairly small, say, t < 30. Therefore, best subset
selection used to be a less attractive model selection technique
for research that assesses many parameters. Obviously, one could
perform OLS-based forward selection to select predictors (Miller,
2002). This approach has the disadvantage that the resulting
models comprise a single path in multidimensional space. That is,
there is one model for each number of predictors up to p. There is
no guarantee that the model with p predictors corresponds with
the model of the same size from best subset selection.

Bertsimas et al. (2016) proposed methodology to select the
best model with p out of t predictors with t in the 100 s. Their
approach is based on Mixed Integer Optimization (MIO). The
key innovation is that searching unpromising sets of predictors
is cut off in an early stage of the calculations so that not all of
the models with p predictors have to be assessed. In the original
form, just one model with p predictors is returned along a range
of values for p extended the original form to obtain the second-
best up to k-th best models of given size as well (Vazquez et al.,
2020). The method thus results in a list of models compatible with

the data. The authors further employ a powerful visualization
method to reveal possible alternative ways to explain the same
variable. For example, one might observe that either the effect of
predictor X or the effect of predictor Y is in the best ten models
that link language development to four predictors, but the models
do not include both of them.

For ease of reference, we call the method of Vazquez et al.
(2020) MIO after its core element. It was developed primarily
with applications in statistical design of industrial experiments in
mind. The data in these cases usually have few observations and
many controllable experimental factors. This is similar to field
studies on human microbiota compositions where the number
of cases is much smaller than the number of species.

A key element of MIO is best-subset selection, which finds the
best fitting model with p parameters as measured by the model’s
residual sum of squares. Current state-of-the-art algorithms for
best-subset selection, as implemented in SAS 9.4 or JMP 14, or in
the “leaps” package in R, which is based on (Furnival and Wilson,
1974), do not allow solving the problem when the search is over
more than t = 30 predictors (Vazquez et al., 2020). Bertsimas
et al. (2016) proposed a formulation for the best subset selection
in terms of a MIO problem. Modern optimization solvers such
as (Gurobi,, 2017), do permit searching over a large number of
potential predictors. The goal function to be minimized is

min
β̂,η̂, z

η̂T η̂− 2(XTy)T
+ yTy (1)

In this equation, η̂ is an N × 1 vector of fitted values, β̂ is a t × 1
vector of coefficients for the regression equation, y is the N × 1
vector of observations, X is an N × t matrix of predictors, and
z is a t × 1 indicator vector that indicates whether or not the
corresponding elements of β̂ are non-zero. The goal function (1)
is a version of the residual sum of squares rewritten to reduce the
number of quadratic variables from t to N. This is useful because
in our application there are many more potential predictors than
there are subjects.

An optimization model allows for the minimization of the
goal function under constraints. The constraints proposed by
Bertsimas et al. (2016) are:

zu ∈ {0, 1} , u = 1, · · · , t (2)

(1− zu) β̂u = 0, u = 1, · · · , t (3)

t∑
u=1

zu ≤ p (4)

η̂ = Xβ̂ (5)

Constraint (2) defines the individual elements zu of the vector
z as binary variables. Constraint (3) features the regression
coefficients for the individual predictors β̂u. The constraint
specifies that β̂u can be non-zero if zu equals 1 and that β̂u is
exactly zero if zu equals 0. Constraint (4) restricts the regression
model to at most p non-zero parameters. Finally, constraint (5)
defines η̂ as the fitted values matching the coefficients in β̂. The
model (1)–(5) returns for each value of p specified by the data
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analyst the best fitting model as measured by the residual sum of
squares. Vazquez et al. (2020) extended the application potential
by proposing further constraints to obtain the second best, third
best etc. model for each value of p. For example, if parameters
1 and 2 define the best fitting model with p = 2 terms, the
constraint z1+z2 < 2 is added to the constraints (2)–(5) and the
model is rerun. The constraints prevent simultaneous inclusion
of parameters 1 and 2 in the new model so that a second best
model results. Vazquez et al. (2020) implemented the MIO model
in Python using (Gurobi,, 2017) as the solver of the optimization
and used the raster plots of Wolters and Bingham (2011) to
visualize the models. For this purpose, the predictors are rescaled
so that they all have the same length. The raster plot represents
each model with p parameters as p pixels that are darker or lighter
according to the size of the respective coefficients. Each predictor
has its own horizontal coordinate and each model has its own
vertical coordinate. The models are ordered according to the
number of non-zero coefficients and, subsequently, their residual
sum of squares. Predictors that often occur in the models form a
band in the plot.

Promising predictors of the language development of 139
children at 36 months of age were selected for the MIO approach
described above. The data included a total of 1170 potential
predictors (Supplementary File 1), including one parameter
indicating whether or not the mother of the child was included
in the education intervention group), six anthropometric and
cognitive parameters when the children were 24 months 542 gut
microbiota composition related parameters at 24 months and 621
parameters at 36 months. Subsequently, the 20 best models were
established with 1–4 predictors in terms of their residual standard
deviation. The best 4-term models were selected from more than
77 billion models, which is the number of ways one can choose
four objects out of 1170.

In order to compare the results obtained by the MIO approach
to those obtained by a conventional statistical method, the same
data were also evaluated by the Mann–Whitney U test (Mann and
Whitney, 1947). The statistical distribution of the abundance data
is a mixture of binary date (absence or presence of the species)
and rational data (measure of abundance if present). Therefore,
we used the non-parametric Mann–Whitney test rather than
a parametric alternative. Using the Mann–Whitney test we
investigated which bacterial species had a different abundance in
the gut microbiota of children that scored equal or above average
for language development when compared with those that scored
lower than average. For this purpose, all the 139 children at the
age of 3 years old were divided into a “language impaired” or
“language below average” group with a BSD-III score below the
mean value of 100 (n = 61), and a “language non-impaired” or
“equal or above average” group with a BSID-III score of 100 or
higher (n = 78).

PCR-Based Identification of
Coprococcus eutactus in Stool Samples
For the experimental identification of C. eutactus in stool
samples, species-specific primers were designed for the 16S rRNA
gene via primer-BLASTTM (Ye et al., 2012): forward-primer

785F 5′-GGGTTCCAAAGGGACTCGG-3′ and reverse primer
1412R 5′-CAGCTCCCTCTTGCGGTT-3′. The oligonucleotides
were manufactured by BiolegioTM (Nijmegen, Netherlands) and
delivered in 100 µL TAE-buffer with a concentration of 100 µM.
DNA was released from the stool samples in nuclease-free milliQ
by heating an Eppendorf tube at 95◦C for 10 min. The PCR mix
contained 12.5 µL GoTaqTM mastermix, 2.5 µL of 10 µM forward
primer, 2.5 µL of 10 µM reverse-primer, 5.0 µL nuclease-free
milliQ, 2.5 ul template DNA. PCR-samples were placed in the
PCR machine (BiometraTM, model Tgradient) with 1 cycle of
95◦C for 5 min; 30 cycles of 95◦C for 30 s, 60◦C for 30 s and 72◦C
for 1 min, completed 72◦C for 5 min. Products were analyzed
by the use of a 1.5% agarose gel with ethidium bromide in TAE-
buffer. The PCR was validated by the use of genomic DNA from
the cultivated C. eutactus type strain ATCC 27759 as a positive
control. This strain was obtained from the German Collection of
Microorganisms and Cell Cultures (DSM strain number 107541)
and cultivated under anaerobic conditions in chopped meat
casitone (CMC) medium as described by the supplier.

The Core Microbiota of Ugandan
Children at 24 and 36 Months of Age
For the definition of the core, the bacterial 16S rRNA gene
amplicon sequencing dataset of the Ugandan children’s feces
cohort (139 subjects, measured at 24 months) was used, obtained
from the study of Atukunda et al. (2019). The 1163 bacterial V4-
region 16S rRNA gene sequences, delivered in MicrosoftTM Excel
format, were annotated to bacterial genus and species via the
local BLAST in CLC WorkbenchTM Version 20.0 computational
software. All sequence abundances were grouped to species-
level and ordered by most prevalent to least prevalent. Bacterial
V4-region 16S rRNA amplicon sequences with hits of more
than three species with identical identity-scores were grouped
to genus level (e.g., Bifidobacterium). The core was composed
by the top 50 most prevalent bacterial species at a 0.1% relative
abundance detection threshold, as described previously (Shetty
et al., 2017). From the composed core a heat map was created by
MeVTM software (Saeed et al., 2003), thereby including a 0.1–100
logarithmic scale for the x-axis threshold at percentage of relative
abundance and representing the prevalence via color-scaling for
each of the 50 relative abundance detection thresholds.

Assessment of Metagenomic
Aerotolerant Predominance Index (MAPI)
To assess aerobic/anaerobic balance in the gut microbiota
samples of our cohort we used the Metagenomic Aerotolerant
Predominance Index (MAPI) (Million and Raoult, 2018), based
on a previously published database with a list of bacteria and
their aerotolerant or obligate anaerobic metabolism (Million
et al., 2016). This MAPI index indicates the ratio of the
metagenomic relative abundance of aerotolerant species and
the relative abundance of strict anaerobes. From the taxonomic
assignment of amplicon sequence variants (ASV’s) of each
of the 139 stool bacterial communities of Ugandan children
(Supplementary File 1), we calculated the total number of
reads that corresponded to strict aerotolerant or anaerobic
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bacteria. We then calculated the ratio of aerotolerant relative
abundance to strict anaerobic relative abundance. This ratio was
>1 for aerotolerant predominance and <1 for strict anaerobic
predominance. In order to fit a lognormal distribution, the
natural logarithm of the aerotolerant ratio was calculated for each
metagenome for further analysis. The MAPI corresponds to the
variable “ln(Ae/Ana).”

Ethical Approval
All mothers gave written or thumb-printed, informed consent
to participate and could decline an interview or assessment
at any time. The study was approved by The AIDS Support
Organization Research Ethics Committee (no. TASOREC/06/15-
UG-REC-009) and by the Uganda National Council for
Science and Technology (no. UNCST HS 1809) as well as by
the Norwegian Regional Committee for Medical and Health
Research Ethics (no. 2013/1833). The trial was registered at
clinicaltrials.gov (NCT02098031).

RESULTS

Abundance of Coprococcus eutactus Is
a Predictor for Language Development
The application of the MIO approach to identify predictors for
language development in Ugandan children at 36 months of age
resulted in the raster plot of Figure 1A. For this visualization, we
normalized the predictors and the language development score
such that their means are zero and their standard deviations are
one. A coefficient thus expresses the increase in the response,
in terms of multiples of its standard deviation, if a predictor
is increased by one standard deviation. As co-occurrences can
only be recorded in models with two or more parameters, we
ignore models with a single parameter in our evaluation. The
red vertical band with horizontal axis label 5 shows that, with
a few exceptions, the best models with 2–4 parameters include
the language development of the children at 24 months and that
its coefficient is positive. This parameter is included in 52 of
the 60 models with 2–4 parameters. The figure shows that in
7 of the 8 remaining cases, cognition at 24 months (horizontal
axis label 4) replaces language development at 24 months
in the model. The MIO methodology shows here alternative
explanations of the same data by correlated predictors. Indeed,
the Pearson correlation coefficient of the language ability and
cognition parameters equals 0.7. In spite of this correlation, the
much higher frequency of occurrence of the language ability
at 24 months suggests that this parameter should be included
in favor of cognition at 24 months. Further red bands can be
observed at horizontal axis labels 281 and 563, respectively. These
bands correspond with relative abundances of C. eutactus, and
Bifidobacterium from the gut microbiota at 24 and 36 months
of age, respectively. The abundance of C. eutactus occurs in 42
of the 60 models with 2–4 parameters, while the abundance of
Bifidobacterium occurs in 19 of these models. A total of 18 of the
models include both parameters. Species identities were verified
with the BLAST tool. They led to a species assignment on the basis
of a 100% identity match with the partial 16S rRNA sequence

of C. eutactus strain ATCC 27759 (Holdeman and Moore, 1974)
over the total length of the sequenced V4 region of 253 base pairs.
The assignment of the species C. eutactus is unambiguous, but
sequences of Bifidobacterium longum and Bifidobacterium breve
are both aligning to the 16S rRNA V4 sequence with a match of
100% identity, therefore we refer to parameter 563 as a match to
the B. longum group (see also below).

Figure 1 further shows that some predictors enter the fitted
models occasionally. The most frequently occurring parameter
after the B. longum group is Intestinibacter bartlettii (previously
known as Clostridium bartlettii) at 24 months of age (horizontal
label 348). This identification was based on a unique 100%
identity match of the V4 amplicon with the partial 16S rRNA
gene sequence of the type strain I. bartlettii strain WAL 16138
(Song et al., 2004). As this parameter enters only in 8 out of
the 60 models, there is no powerful evidence that it should be
included in a regression model. The residual standard deviations
for the 80 models in Figure 1A were plotted against the number
of predictors in the models in Figure 1B. The latter figure shows
that, for four predictors, many of the 20 subsets explain the
data equally well, so this application of a method to reveal the
common elements in these subsets is warranted. Exploration
of the common elements points to a three-parameter model
with parameters five (language development of the children at
24 months), 281 (abundance of C. eutactus) and 563 (abundance
of the B. longum group at 36 months), respectively. This model
turns out to be the best three-parameter model. The figure shows
that its residual standard deviation clearly stands out from the
remaining 19 models. We conclude that a model including these
three parameters explains these data best. In addition, we checked
the results of MIO with the gut microbiota data expressed on
the genus level comprising a set of 293 potential predictors. The
results show that the genus Coprococcus is present in five of
the top ten four-term models confirming its importance as a
predictor for language development (Supplementary File 2).

The linear regression model for BSID-III language
development at 36 months with all parameters on their
original scale is summarized in Table 1. For the intercept and
each predictor in the model, the entries in columns three to six
show the regression coefficient, its standard error, the ratio of
the coefficient to its standard error (t Ratio) and the P-value
of this ratio. The residual standard deviation of the model is
12 based om 135 degrees of freedom. This measure quantifies
the variability unexplained by the model. The model’s F value
equals 21.5. This measure indicates how much larger the model
mean square is when compared to the unexplained variance. The
adjusted R2 value of 31% is the percentage of variation accounted
for by the model, adjusted for the number of parameters.

All the model coefficients are positive so that higher values
of previous BSID-III language development, previous abundance
of C. eutactus and current abundance of B. longum point to
higher language development at 36 months. The large values of
the abundance coefficients can be explained by the measurement
scale. The observed relative abundances of C. eutactus at
24 months (ID 281) and B. longum at 36 months of age (ID 563)
are at most 4.5%. The model in Table 1 includes the language
development score recorded when the children were at the age
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FIGURE 1 | The 20 best fitting models of 1 up to 4 terms linking language development of children aged 36 months to membership of the intervention or control
group, values of 6 developmental parameters of the same children when aged 20–24 months, their microbiota composition at that age, and microbiota composition
at 36 months. (A) Predictors in the models. Language development and all predictors are normalized to a mean of 0 and a standard deviation of 1. Horizontal labels
correspond with the predictors’ identification number in the data file. The parameters include the following scores at 24 months: the intervention indicator (0); height
to age, HAZ (1); weight to age, WAZ (2); weight to height, WHZ (3); cognition (4); language development (5); motoric development (6). These are followed by the gut
microbiota parameters at 24 months (parameters 7–548) and at 36 months (parameters 548–1169). Vertical coordinates 1–20, 21–40, 41–60, and 61–80 show best
fitting models with 4, 3, 2, and 1 terms, respectively. Blue pixels correspond with negative coefficients and red pixels correspond with positive coefficients. Intensity
of the pixels increases with size of the model coefficients. (B) Residual standard deviations plotted against the number of terms in the models for language
development; language development in original units.

TABLE 1 | Prediction model for language development.

ID Parameter Coefficient Standard error t Ratio P-value Cross-validation

Intercept 57 7.8

5 language (24 months) 0.44 0.082 5.4 <0.001 0.44 ± 0.036

281 Coprococcus eutactus (24 months) 1929 430 4.5 <0.001 1927 ± 178

563 Bifidobacterium longum group (36 months) 417 114 3.7 <0.001 417 ± 32

Coefficients were calculated for the BSID-III scores of children aged 36 months by the MIO approach as indicated in Figure 1.
ID, identification number in data file.
Residual standard deviation = 12; degrees of freedom = 135; model F value = 21.5; Adjusted R2 (%) = 31. Cross-validation: data was split in six sets of 20 children and one
set of 19 children. Coefficients were calculated leaving out each of the seven sets in turn. The table shows means ± standard deviations of the seven coefficient estimates.
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of 24 months. The interpretation of this finding is that children
that had the same development score when they were of that
age, differ in their subsequent language development according
to their microbiota composition at that age and the composition
at their current age.

The number of potential predictors far surpasses the number
of children tested leading to the possibility of happenstance
correlations between language development scores and predictor
variables. Therefore, we cross-validated the model by random
division of the data into six subsets of 20 children and one
subset of 19 children. Subsequently, we fitted the model with
language (24 month), C. eutactus (24 month), and B. longum
(36 month) on the data leaving out each of the subsets in turn,
and predicted the language score (36 month) of the children in
the left out subset. The model residuals have been indicated in
Figure 2. The cross validation root mean square error averaged
over the seven subsets was 12.1. The residual standard deviation
of the model fitted on the entire dataset was 12.0. This value is
only slightly smaller than the average cross-validation root mean
square error. The standard deviation of the language score was
14.4. The models did not overfit the data, because there is still
a substantial unexplained variation. However, this unexplained
variation should not be addressed by the addition of more
terms in the model. The averages and standard deviations of the
coefficients over the seven fitted models are shown in column
seven of Table 1.

Increased Prevalence of Coprococcus
eutactus in the Core Gut Microbiota Over
Time
In order to evaluate the prevalence of C. eutactus in the
microbiota of children of 24 and 36 months in relation to

FIGURE 2 | Model: residuals from Cross-validation: residuals for left-out sets
in cross validation; Root mean square error (RMSE) = 12.1. Fitted: residuals
from the model fitted to all the data; RMSE = 12.0. Null: residuals form a
model with only an intercept; RMSE = 14.4.

other highly abundant members of the intestinal microbiota, we
carried out a comparative analysis of the core gut microbiota
from the Ugandan children at 24 and 36 months (Figure 3). It
should be noted that for this analysis all ASV’s assigned to the
same species have been pooled together. Both cores appear to
be rather comparable in composition (80% of the species are
present in both cores). However, at 24 months only the top three
species, including Faecalibacterium prausnitzii, Prevotella copri,
and Blautia wexlerea, were highly prevalent (>90%, detection
threshold 0.1%), while a set of ten species is highly prevalent
among Ugandan children at 36 months, in line with a decrease
in the variation in the gut microbiota composition among
children at higher age. The overall prevalence and abundance
of Bifidobacterium species increased at 36 months compared
to 24 months (from position 24 to 10), although this is not
the case for ASV’s matching to B. longum (see ASV ID 563
in Figure 4), in agreement with the notion that the relative
abundance of this species reduces when children are no longer
breast fed. The butyrate producing species F. prausnitzii was
the most prevalent bacterial species in the datasets of both ages
and is present in all Ugandan children in our study at the
age of 36 months. Noteworthy, both microbiota cores clearly
show a typical Prevotella gut microbiota type, in agreement with
previous observations that led to the assignment of Bacteroides
and Prevotella as biomarkers of diet and lifestyle in Western
and non-Western subjects, respectively (Gorvitovskaia et al.,
2016), and references herein. Accordingly, Prevotella species,
such as P. copri, show much higher relative abundance among the
majority of subjects in both heat maps of 24 and 36 months than
Bacteroides species, represented in the core only by Bacteroides
xylanolyticus. The gut bacterium C. eutactus is also represented
in both cores, be it at relatively low prevalence and abundance
levels; species position 44 at the age of 24 months and position
37 at the age of 36 months. The prevalence of the C. eutactus
ASV ID 281 among the Ugandan children in this study increased
from 24 to 36 months from 62 to 81%, although the average
relative abundance was slightly lower (Figure 4). This increased
prevalence over time was also evident in the core gut microbiota;
all 11 ASV’s matching to C. eutactus showed an increase from
38 to 44% at 0.1% abundance threshold (Figure 3). These
observations and our best fitting model are in agreement with
the notion that early acquirement of C. eutactus (before or at
24 months) is a beneficial factor for language development.

Butyrate-Producing Species More
Abundant in Children With Above
Average Language Development
The presence of the butyrate-producing bacterium C. eutactus
was confirmed in the fecal samples of the Ugandan children in
our cohort by PCR using specific primers designed in this study
for C. eutactus. PCR-analysis of a random set of stool samples
from the rural Ugandan children showed a product in 75% of
the fecal samples in line with the prevalence range (62–81%)
found for C. eutactus in our 16S rRNA gene sequence data from
the children’s stool samples. In order to further substantiate the
results obtained by the MIO approach, we also checked with
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FIGURE 3 | Heat maps of top 50 most prevalent bacteria in the fecal microbiota of Ugandan children at the age of 24 months (A) and 36 months (B), as determined
by 16S rRNA gene amplicon sequencing. The color gradient indicates the prevalence (see top-legend) at the detection threshold of the relative abundance (%)
presented at the x-axis with a logarithmic scale. The y-axis indicates the order of most prevalent bacteria at a detection threshold of 0.1% abundance. Unambiguous
species assignments include Dialister succinatiphilu, Dialister propionicifaciens; Lactobacillus salivarius, Lactobacillus ruminis; Clostridium saudiense, Clostridium
disporicum; Varibaculum anthropi, Varibaculum cambriense; Prevotella oris, Prevotella albensis, Prevotella salivae; Clostridium amygdalinum, Clostridium
methoxynbenzovorans.

FIGURE 4 | Scatter interval plots of the fraction or relative abundance of C. eutactus and Bifidobacterium. (A) Fraction of Coprococcus eutactus (amplicon
sequence variant ID 281) in the gut microbiota of 139 Ugandan children at the age of 24 and 36 months, (B) Fraction of Bifidobacterium longum group (amplicon
sequence variant ID 563) in the gut microbiota of Uganda children aged 24 and 36 months. P-values were calculated with the two sided Mann–Whitney U test for
language impaired (n = 61) and language non-impaired groups (n = 78) of the children.
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a conventional statistical method (the Mann–Whitney U test)
which bacterial species had a different abundance in children
that scored equal or above average for language development
when compared with children that scored below average. We
first checked for the presence of the specific ASV’s predicting
language development by the MIO approach. We found that the
relative abundances of the identified ASV’s in our best fitting
model of C. eutactus at 24 months (ID 281) and Bifidobacterium
at 36 months (ID 563) were significantly different in both groups
according to the two sided Mann–Whitney U test, with P-values
of 0.003 and 0.03, as presented in Figure 4.

Out of the 542 gut microbiota ASV parameters at 24 months,
397 matched to a bacterial species with an identity score of 97%
or higher. Using the latter composition parameters, we employed
the two sided Mann–Whitney U tests to explore on a per species
basis differences in abundance of these parameters between 3-
year old children that scored equal or above average for language
development and children that scored below average. If these two

language groups would not differ in microbiota composition, we
would expect that 20 out of the 397 tests have P-values below 0.05.
Instead, twenty-five of these tests had such a P-value. Table 2 lists
the corresponding ASV’s. Nineteen ASV’s were more abundant in
the equal or above average group and six ASV’s were more present
in the below average group. Among these were also other unique
sequences matching to parameters identified in the predictive
models as presented in Figure 1, including Bifidobacterium (ID
23), and I. bartlettii (ID 348).

A number of other striking features emerge from this Mann–
Whitney U test. The list in Table 2 contains five unique
16S rRNA gene ASVs which show a match with the genus
Bifidobacterium. Although the V4 16S rRNA gene amplicon
sequence does not allow for unambiguous assignment of species
for this genus, we can assign these ASV’s to three distinct
Bifidobacterium species groups: the Bifidobacterium catenelatum,
adolescentis and longum groups (see Table 2). Members of the
first two groups show at 24 months a positive correlation with

TABLE 2 | Two-tailed Mann–Whitney U test for relative abundance of bacterial species equal or above average and below average language ability groups.

ID Bacterial species Identity (%) P-value core member obligate anaerobic

Species with higher relative abundance in non-impaired language group

281 Coprococcus eutactus 100.0 0.003 yes yes

23 Bifidobacterium catenulatum1 99.6 0.003 yes yes

20 Bifidobacterium adolescentis2 99.6 0.005 yes yes

357 Faecalibacterium prausnitzii 97.6 0.006 yes yes

14 Bifidobacterium adolescentis2 100.0 0.008 yes yes

406 Holdemanella biformis 97.6 0.010 yes yes

294 Roseburia hominis 100.0 0.010 no yes

316 Eubacterium eligens 99.2 0.013 yes yes

513 Campylobacter troglodytis 98.8 0.015 no no

25 Bifidobacterium adolescentis2 99.6 0.020 yes yes

466 Faecalibacterium prausnitzii 97.6 0.021 yes yes

78 Prevotella copri 99.6 0.022 yes yes

348 Intestinibacter bartlettii 100.0 0.024 no yes

352 Terrisporobacter petrolearius 99.6 0.032 no yes

318 Bacteroides xylanolyticus 98.0 0.035 yes yes

390 Clostridium disporicum3 97.2 0.040 yes yes

280 Coprococcus eutactus 99.6 0.042 yes yes

399 Catenibacterium mitsuokai 97.6 0.044 yes yes

519 Campylobacter troglodytis 98.4 0.047 no no

Species with higher relative abundance in impaired language group

219 Granulicatella elegans 100.0 0.0005 no no

57 Parabacteroides 97.2 0.015 no yes

31 Bifidobacterium longum4 99.6 0.027 yes no

529 Escherichia/Shigella 99.6 0.028 yes no

528 Escherichia/Shigella 100.0 0.034 yes no

521 Campylobacter coli 97.2 0.041 no no

A two-tailed test was performed for bacterial relative abundances of the gut microbiota of Ugandan children at the age of 24 months for language impaired (n = 61;
BSID-III scores < 100) and non-impaired groups (n = 78; BSID-III scores ≥ 100).
Bacterial species [based on BLAST searches of amplicon sequence variants (ASV’s)] listed in the table had a P-value below 0.05. Species with identity scores below 97%
were excluded from the list in the table. Unambiguously assigned bacterial species are indicated by superscripts.
The ASV-match of Bifidobacterium catenulatum1 is identical to that of Bifidobacterium pseudocatenulatum, Bifidobacterium kashiwanohense, Bifidobacterium
tsurumiense, Bifidobacterium callitrichidarum, and Bifidobacterium gallicum (assigned to the catenalatum group); Bifidobacterium adolescentis2 is identical to that of
Bifidobacterium faecale and Bifidobacterium stercoris (assigned to the adolescentis group); Clostridium disporicum3 identical to C. saudiense; Bifidobacterium longum4

to B. breve (assigned to the longum group).
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language development. Relative abundance of members of the
longum group show at 24 months a negative correlation with
language development, but a positive correlation at 36 months
(Figure 4). At this point it is not clear why the relative
abundance of the B. longum species group at 24 months,
known to be beneficial and dominant in infants, correlate
negatively with language development, in contrast to species
from B. catenulatum and adolescentis groups, which are generally
more prevalent in adults (Arboleya et al., 2016). Many of the
bacterial species listed in Table 2, which are more abundant
in the above average group, are known butyrate producers,
including C. eutactus, F. prausnitzii, Holdemanella biformis,
Roseburia hominis, Clostridium disporicum, and Catenibacterium
mutsuokai (Vital et al., 2014). The SCFA butyrate has been
implicated to play a role in brain function, as further
discussed below.

Increased Predominance of Oxygen
Tolerant Species in Children Impaired in
Language Development
While 17 out of 19 ASV’s with significant scores in the above
average group matched with strictly anaerobic species (all except
for Campylobacter troglodytis), we identified only one ASV
matching with a strictly anaerobic bacterium (Parabacteroides)
among the significant scores in the below average group (Table 2).
This result is in line with the notion that a relatively high
redox potential in the environment of the gut is an adverse
condition for language development. It should be noted that
majority of the ASV’s in the below average group (4 out of 6)
match to species with known adverse effects in humans, including
Granulicatella elegans (Table 2). Although known to be part
of the normal intestinal human microbiota, this species has
often been implicated in adverse conditions. In addition, aerobic
Escherichia/Shigella, and Campylobacter coli species are known
as major foodborne pathogens, causing the widely occurring
diseases shigellosis and campylobacteriosis, which lead to severe
diarrhea, in particular at relatively high prevalence among
children in the developing world. A box plot of the MAPI
indices among all the children in both language development
groups indicated a slight difference (P = 0.09) between the two
groups (Figure 5).

DISCUSSION

The Value of Alternative Prediction
Models
For the analysis presented in this paper, we identified promising
predictors of language development in a field study from a large
set of potential predictors that are likely to be correlated. Because
of this correlation, it was imperative to use methods that could
reveal alternative explanations of the same data. In the field data
we studied, we indeed found substantial correlations among the
observed microbiota abundances that could serve as potential
predictors (4164 pairwise correlations were larger than 0.5).

Revealing alternative explanations of the same data requires
the fitting of multiple models. We used MIO in our model
search. The strong point of this approach is that one can impose
constraints relevant for the data at hand. We used this option
in our ranking of the second best down to 20th best models.
Of particular use were the models with 3 and 4 predictors.
There was a clear best 3-predictor model among 20 alternative
models. This model included the language ability of the children
at 24 months, the abundance of C. eutactus in microbiota taken at
24 months, and the abundance of B. longum in microbiota taken
at 36 months. The fact that this model is clearly better than the
alternatives suggests that we should include the three predictors
mentioned in any case. However, there might still be additional
predictors that could improve the model fit. This was investigated
by fitting 4-parameter models as well.

There was no clear best 4-parameter model. However,
C. eutactus abundance at 24 months was consistently present
in all 4-parameter models, while the other two predictors in
the best 3-parameter model were included in 14 of the 20 best
4-parameter models. By focusing on the common predictors
present in the best models, we believe that we avoided overfitting
the data. The remaining predictors were present in at most 5 out
of the 20 best 4-predictor models. We conclude that there is no
clear evidence favoring inclusion of a fourth predictor.

A further use of constraints in the MIO approach can help
finding good models that include synergistic or antagonistic
effects of the microbiota species. However, MIO is still limited
in the size of the models it can handle. In particular, it is
computationally infeasible to arrive at the best 5-term model
based on 1170 potential model terms. As there are 1163 individual
predictors involving microbiota composition, synergistic or
antagonistic effects among the species would increase this
number with 0.5 × 1163 × (1163–1) = 675,703 further terms.
It is infeasible to have a successful model search among this
number of terms.

Importance of Early Life Acquirement of
the Butyrate-Producing Coprococcus
eutactus for Language Development
One of the most intriguing findings of this work is the
correlation between the abundance of members of saccharolytic
clostridia in the gut of Uganda children at 24 months with the
composite score for language development of the children at
36 months. We identified C. eutactus (42 out of 60 models)
and I. bartlettii (8 out of 60 models). They belong to the
Lachnospiraceae and Peptostreptococcaceae, respectively, both
families within the Clostridia, a class of obligatory anaerobic
spore-forming bacteria. Both species produce SCFA’s, the primary
end-products of fermentation of non-digestible carbohydrates
that become available to the gut microbiota and gut epithelial
cells. The SCFA’s are mainly produced through saccharolytic
fermentation of carbohydrates. While C. eutactus is known to
produce the SCFA’s formate, acetate and butyrate (Holdeman and
Moore, 1974), I. bartlettii produces the SCFA’s isobutyrate and
isovalerate (Song et al., 2004). It is well established that SCFA’s,
in particular butyrate, are important substrates for maintaining
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FIGURE 5 | The Metagenomic Aerotolerant Predominance Index (MAPI). The index is presented in box plots for the groups of language impaired (n = 61) and
language non-impaired children (n = 78).

the colonic epithelium, elicit effects on lipid metabolism and
adipose tissue at several levels, in appetite regulation and energy
intake, and play a role in regulation of the immune system
(Morrison and Preston, 2016). In addition, butyrate has been
shown to protect the brain and enhance plasticity in animal
models for neurological disease. In agreement with a role for
the production of butyrate in the gut for improved language
development, studies with animal models show that butyrate is
able to reverse stress-induced decrease of neurotrophic factors
and cognition impairment both at early and later stages of life
(Valvassori et al., 2014). A number of mechanisms have been
attributed to the beneficial role of butyrate in brain function,
including its action as a histone deacetylase inhibitor and as an
activator of G protein-coupled receptors (GPR’s); a lower level of
histone acetylation is a characteristic of many neurodegenerative
diseases, and butyrate has been shown to activate GPR109a,
potentially leading to anti-inflammatory effects in the brain
(Bourassa et al., 2016).

The most consistent predictor in our MIO models for
language development at 36 months was the abundance of
C. eutactus in gut microbiota when the children were 24 months
of age. This is in agreement with the concept of a maturation
program with distinct phases of microbiota compositions, where
earlier phases can affect health outcomes later in life (Backhed
et al., 2015; Stewart et al., 2018). The dynamics of the relative
abundance of C. eutactus was highlighted in a study on the human
infant gut microbiome in development and in progression toward

type 1 diabetes (Kostic et al., 2015). This longitudinal study
indicated a maximum of C. eutactus relative abundance in healthy
infants at approximately 24 months, while the abundance of
C. eutactus type 1 diabetes predisposed children remained at
constant, at relatively low levels in the first years of life. So far
we only have analyzed the gut microbiota in children at 24 and
36 months in our cohort, thus at this moment we cannot yet make
any substantiated statements about the longitudinal development
of the gut microbiota in our cohort. However, the results in our
study are in agreement with a model that holds that relatively
high levels of C. eutactus at 24 months are beneficial, as they
are present in the group of children with above average language
development at 36 months.

A number of other uncertainties and limitations should
be considered in the interpretation of our results. Among all
hypervariable regions of 16S rRNA gene, the V4 region used
in this study ranks first in sensitivity as a marker for bacterial
and phylogenetic analysis (Yang et al., 2016). Nevertheless,
these amplicon sequence libraries allow in some cases only
a classification of microbiota members on the genus level.
Therefore, we carefully examined all assignments to the species
level in this study. Overall, the correlation between genomes
of closely related species suggests that it may be effective to
predict functions encoded in an organism’s genome. A recent
study showed phylogeny and function to be sufficiently linked
that prediction of function from 16S rRNA gene amplicons can
provide useful insights (Langille et al., 2013). However, in our
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view metagenome sequencing to reveal the full genetic capacity
of the gut microbiota, intervention studies with C. eutactus in
a germ-free mouse model and in vivo metabolite measurements
are required to acquire additional evidence on a beneficial role of
butyrate production and additional neuroactive potential of the
gut bacterium C. eutactus in cognitive development.

Relative Abundance of Coprococcus
eutactus Correlates to Multiple Cognitive
Outcomes
Interestingly, a recent study on the neuroactive potential of the
gut microbiota with a large cohort (Flemish Gut Flora Project;
n = ?1,054) revealed that butyrate-producing Coprococcus
bacteria were consistently associated with higher quality of life
indicators and depleted in depression (Valles-Colomer et al.,
2019). The authors of this study performed a module-based
examination of metabolic pathways by members of the gut
microbiota in order to investigate its neuroactive potential.
They observed that a gene encoding for the synthesis of 3,4-
dihydroxyphenylacetic acid (a metabolite of the neurotransmitter
dopamine) was strongly associated with the presence of
C. eutactus and quality of life indicators. Notably, a second
metabolic module, which co-varied with quality of life indicators
in their cohort, is the synthesis of isovalerate. This ability to
synthesize this SCFA happens to be present in Intestinibacterium

bartlettii (Song et al., 2004), which is the species matching to ASV
ID 348 in our best fitting models.

A further evaluation of the current scientific literature
confirms that the relative abundance of the genus Coprococcus,
and in particular the species C. eutactus, correlates with
other cognitive outcomes. A lower relative abundance of
Coprococcus was found in autistic patients compared to
neurotypical controls (Table 3). An independent study confirmed
lower levels of fecal acetic acid and butyrate in autistic
subjects (Liu et al., 2019). A decreased relative abundance of
C. eutactus was also observed in fecal samples and mucosal
biopts from Russian and American patients with Parkinson’s
disease (PD), respectively (Table 3). In both studies, potentially
anti-inflammatory, butyrate-producing genera, Coprococcus,
Faecalibacterium and Blautia were significantly more abundant
in feces of controls than PD patients, feeding the hypothesis
that an altered gut microbiota could contribute to inflammation-
induced development of PD pathology (Keshavarzian et al.,
2015). A cross-sectional study on schizophrenia patients also
indicated that the level of butyrate producing bacterial genera,
including Coprococcus, Blautia and Roseburia significantly
decreased in comparison to healthy controls. The observed
differences in microbiota compositions were proposed as
a basis for the development of microbiota-based diagnosis
for schizophrenia (Shen et al., 2018). However, it is clear
that among these differences, i.e., a decrease of a number

TABLE 3 | Correlations between Coprococcus eutactus and human mental health outcomes.

Genus species Finding Cohort Sample
size (n)

P-value Statistical test Study references

Coprococcus Depleted in cohort
participants with
depression

Flemish Gut Flora
project

1054 <0.05 Covariance test Valles-Colomer et al.,
2019

Coprococcus Depleted in cohort
participants with
depression

Dutch lifeline DEEP 1063 <0.05 Covariance test Valles-Colomer et al.,
2019

Coprococcus Lower relative
abundance in autistic
patients compared to
neurotypical controls

American children (20
neurotypical and 20
autistic)

40 0.001 Mann–Whitney U test Kang et al., 2013

Coprococcus Lower relative
abundance in
Parkinson’s-diseased
patients compared to
healthy controls

American adults (34
Parkinson’s patients
and 31 healthy controls)

65 0.03 Kruskal–Wallis test Keshavarzian et al.,
2015

Coprococcus eutactus Lower relative
abundance in
Parkinson-diseased
patients compared to
healthy controls

Siberian adults (89
Parkinson’s patients
and 66 healthy controls)

157 0.03 White’s t-test Petrov et al., 2017

Coprococcus Relative abundance
reduced in
schizophrenia patients

64 schizophrenia
patients and 53 healthy
controls

117 0.004 Principal coordinate
analysis Welch’s t-test

Shen et al., 2018

Coprococcus eutactus Predictor in gut
microbiota at
24 months for language
development at
36 months

Rural Ugandan children 139 <0.001 All subsets regression This study

The table includes information about cohort, sample size, statistical test, P-value, and study reference.
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of butyrate-producing bacterial genera, a similar correlation
can be observed for very different adverse cognitive outcomes,
including the impaired language development with Ugandan
children in our study.

We looked in this study for other overall differences between
bacterial gut communities in the language impaired and language
non-impaired groups of children and found higher levels of
oxygen tolerant species in the first group. This finding concerns
specific, potentially pathogenic species with significant higher
relative abundance in the language impaired group (G. elegans,
Escherichia/Shigella, C. coli), but also to slight differences in
the overall MAPI index. As this index indicates an aerotolerant
predominance for MAPI > 0 and anaerobic predominance for
MAPI < 0, it is clear that both groups have an anaerobic
predominance of bacterial species in the gut. Apparently, the
increase of a number of oxygen tolerant species in the language
impaired group is not so much reflected by the overall MAPI
index. Possibly, this results from the fact that the Ugandan
children in our study group are not severely malnourished, as
they are on average moderately stunted (−3 < HAZ <−2). More
severe malnourishment could have led to the overall depletion of
anaerobic bacteria and proliferation of oxygen tolerant bacteria,
as shown in the gut microbiota of severely malnourished children
(Million et al., 2016). In order to confirm the findings in this
study, we propose to repeat the analysis and investigate cognitive
development as a function of the MAPI index in a similar cohort
accompanied by metabolite measurements in stool samples. In
parallel, we propose to set up an intervention study aiming at
the reduction of the gut redox potential as a stimulus to create
a better growth environment for beneficial, strictly anaerobic
gut bacteria, including C. eutactus and other butyrate producers
identified in this study.
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