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The wealth of observational data available has been instrumental in investigating physical

features relevant to solar granulation, supergranulation and Active Regions. Meanwhile,

numerical models have attempted to bridge the gap between the physics of the solar

interior and such observations. However, there are relevant physical quantities that can

be modeled but that cannot be directly measured and must be inferred. For example,

direct measurements of plasmamotions at the photosphere are limited to the line-of-sight

component. Methods have consequently been developed to infer the transverse plasma

motions from continuum images in the case of the Quiet Sun and magnetograms in

the case of Active Regions. Correlation-based tracking methods calculate the optical

flows by correlating series of images locally while other methods like “Coherent Structure

Tracking” or “Balltracking” exploit the coherency of photospheric granules to track them

and use the group motions of the granules as a proxy of the average plasma flows

advecting them. Recently, neural network computing has been used in conjunction with

numerical models of the Sun to be able to recover the full velocity vector in photospheric

plasma from continuum images. We experiment with a new architecture for the DeepVel

neural network which takes inspiration from the U-Net architecture. Simulation data of

the Quiet Sun and Active Regions are then used to evaluate the response at granular

and supergranular scales of the aforementioned method.

Keywords: active region, granulation, photosphere, neural networks, simulations, sunspots, supergranulation,

velocity fields

1. INTRODUCTION

The Quiet Sun (i.e., in the absence of significant magnetic activity), hereafter QS, is filled with
patterns of flows at multiple spatial and temporal scales. Granules, which typically have a diameter
of 1 Mm and a lifespan of the order of 6 min, are associated with hot plasma upwellings
whereas the intergranular lanes surrounding them, smaller in comparison, are associated with
cold plasma sinking back in the interior. Supergranular flows are found at greater scale, i.e.,
above 20 Mm in diameter and with lifespans that range from hours to nearly 2 full days. This
supercell-like pattern in the Quiet Sun is only revealed indirectly, for example by analyzing
Dopplergrams and magnetograms or by tracking the average motion of granulation. It is believed
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that supergranulation originates from the deeper layers in
the convection zone (see Rieutord and Rincon, 2010, and
references therein). More advanced techniques can provide
actual images of supergranular cells (Potts and Diver, 2008; Attie
et al., 2009, 2016). Sunspots, which appear as dark spots in
intensitygrams with diameters ranging from 1 to 50 Mm and
lifespans of the order of days, are signatures of the magnetic
activity of the Sun (i.e., Active Regions, hereafter ARs), as
revealed bymagnetograms. The strongmagnetic field in sunspots
inhibits the convective motions of the plasma. Centered around
sunspots are moat flows which start from the penumbra and
expand horizontally and radially outward (i.e., away from
the sunspot). This flow was originally revealed through the
analysis of spectroheliograms and moving magnetic features in
magnetograms (Sheeley, 1969; Hagenaar, 2005). When the moat
flow encounters the neighboring supergranular cells of the quiet
sun, it forms a ring-shaped boundary around the sunspot that
looks like a rather dynamic, yet coherent supergranule-like cell
structure (Attie et al., 2018).

Dopplergrams measure only the line-of-sight component of
the aforementioned flows (Welsch et al., 2013). Methods were
thus developed to recover the missing transverse component of
the velocity vector by either inversion of the velocity vector as
is done here or by finding the electric fields instead and then
applying the ideal MHD Ohm’s law to find velocity (Kazachenko
et al., 2014). Subsequent applications include the estimation of
energy fluxes (Kazachenko et al., 2015), the inferral of boundary
conditions from which to drive simulations of the Sun (Fisher
et al., 2015) or the inferral of synthetic observations such as
velocity field reconstructions for data assimilation in a model
of the solar photosphere, as suggested in Abbett and Fisher
(2010). Reconstruction algorithms for ARs solve the magnetic
induction equation with the vertical velocity and magnetic field
vector being assigned Dopplergrams and vector magnetograms
(e.g., Longcope, 2004; Schuck, 2005, 2006, 2008). Intensitygrams
are used to track optical flows in the Quiet Sun, i.e., the
displacement that needs to be applied to one image subfield to
recover the image subfield at the following timestep. Optical flows
were shown to be highly correlated with actual plasma motions
averaged over spatial scales of the order of a megameter or larger
and timescales of the order of 30 min (Rieutord et al., 2001).
Correlation-based tracking methods such as “Local Correlation
Tracking” (LCT: November and Simon, 1988) and “Fourier-
based Local Correlation Tracking” (FLCT: Fisher and Welsch,
2008) calculate optical flows by correlating series of images
locally while other methods like “Coherent Structure Tracking”
(CST: Rieutord et al., 2007) or “Balltracking” (Potts et al.,
2004) exploit the coherency of photospheric granules to track
them and use the group motions of the granules as a proxy
of the average plasma flows advecting them. Recently, a deep-
learning algorithm was trained with computations performed
by a radiative magnetohydrodynamics (MHD) simulation of
the solar photosphere to emulate the physics that relate the
continuum intensity to the velocity vector that appears in the
model equations (i.e., not an optical flow). DeepVel1 (Asensio

1DeepVel is an open-source neural network: https://github.com/aasensio/deepvel.

Ramos et al., 2017) is a fully-convolutional neural network that
infers instantaneous depth-dependent transverse plasmamotions
from pairs of intensitygrams (i.e., the same inputs as tracking
methods). Outputs are dependent on the spatial resolution,
cadence and physics of the model presented during training.
Versions of the neural network have been trained for the QS
(e.g., Asensio Ramos et al., 2017; Tremblay et al., 2018) and ARs
(e.g., Tremblay et al., submitted) and have been used to generate
synthetic SDO/HMI observations, i.e., estimates of the plasma
motions that reflect a numerical simulation but appear as though
they were derived from the Helioseismic Magnetic Imager (HMI:
Schou et al., 2012) onboard the Solar Dynamics Observatory
(SDO: Hoeksema et al., 2014).

A comparison between a sample of intensity-based methods
as a function of spatial scales identified DeepVel as best
capturing the physics of the Quiet Sun at granular scales whereas
it appeared less effective at supergranular scales (Tremblay
et al., 2018). In this paper, we use simulation data at the
HMI instrument spatial resolution to test whether adapting
the architecture of the DeepVel neural network to that of
a U-Net (Ronneberger et al., 2015) could further improve
reconstructions at supergranular scales in the QS and ARs.
Additionally, the architecture ismodified to accept a combination
of intensitygrams, magnetograms, and Dopplergrams as input to
account for the physics and spatial features they encompass and
their impact on the inferred flows.

2. METHODOLOGY

U-nets are widely used for image segmentation, e.g., the
segmentation of coronal holes in solar data (Illarionov and
Tlatov, 2018). This neural network inherits its name from
the shape of its architecture which features a contracting
branch, a bottleneck and an expansive branch (Ronneberger
et al., 2015). The contracting branch identifies the dominant
features at a given spatial scale through convolutional layers and
downsampling operations to halve the resolution. The number
of channels is doubled at each level. The expansive branch
mirrors the contracting branch, upsampling from the low spatial
resolution output of the bottleneck to higher resolution to
provide context. Skip-connections concatenate the outputs of the
contracting branch with inputs of each level of the expansive
branch to localize features (Ronneberger et al., 2015). Moreover,
U-nets have the ability to train for specific spatial scales by
freezing (i.e., stop training) the weights and biases of other layers.

Photospheric flows range from subgranular scales (< 1 Mm)
to supergranular scales (> 10 Mm). We adapt the architecture
of DeepVel to that of a U-net to probe spatial scales that range
from the pixel-size to the size of the sub-images presented to
the neural network during training. We refer to Asensio Ramos
et al. (2017) for a detailed description of the original DeepVel
architecture. Each level of the contracting branch features in
succession a 2D convolutional layer with a kernel of 3 by 3 pixels2,
batch normalization (Ioffe and Szegedy, 2015), a ReLU activation
function and a Dropout layer of 50 % to avoid overtraining.
Downsampling is then performed using 2D convolutional layers
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with strides of two pixels in all directions. The expanding branch
mirrors the contracting branch, with the output of each level
being concatenated with the output from the contracting branch
at the same spatial scale. Upsampling in the expansion branch
is performed by repeating each row and each column twice.
Unlike the classic U-net architecture, the number of channels
is maintained throughout all layers (i.e., 128 channels), with the
exception of the bottleneck (i.e., 256 channels), to diminish the
number of free parameters to adjust.

Versions of the U-net architecture (hereafter DeepVelU) are
trained, validated and tested using the Tremblay et al. (2018)
dataset for the Quiet Sun (hereafter the QS dataset) and the
Tremblay et al. (submitted) dataset which features a mixture of
ARs and QS (hereafter the ARs dataset). Training of the DeepVel
and DeepVelU neural networks relies on a similar approach
to that of measuring optical flows: two consecutive images
(i.e., intensitygrams, Dopplergrams, and/or magnetograms) are
presented to the network and their differences and dominant
features are used to reconstruct a velocity vector. The ARs dataset
is required in addition to the QS dataset as a neural network
trained exclusively with examples of the QS will fail to extrapolate
the flows in Sunspots whose physical mechanisms governing
plasma motions in relation to the observed light intensity is very
different from those in the QS Tremblay et al. (submitted). On
the other hand, although it is presented a dataset that differs
from the one used for training, the neural network is capable of
generalizing the behavior for granulation (Tremblay et al., 2018,
Tremblay et al., submited).

The QS dataset was derived from the STAGGER magneto-
convection simulation2 of solar granulation (Stein, 2012; Stein
andNordlund, 2012). It features maps of the continuum intensity
Ic at 500 nm and the velocity vector Ev at optical depths τ =
{1, 0.1, 0.01} with a field of view of dimensions 96.768 by 96.768
Mm2, spatial resolution 1x = 1y = 96 km pixel−1 and time
step 1t = 60 s for a total duration of 6 h (i.e., many turnover
times). The ARs dataset for Ic, Ev and EB was generated by the
MURaM simulation of a Sunspot (Rempel and Cheung, 2014).
The Sunspot has a diameter of ≈ 25 Mm and is featured at the
center of a field of view of 98.304 by 98.304 Mm2. The spatial
resolution of the dataset is the same as the QS dataset (i.e., 1x =
1y = 96 km pixel−1), but the cadence 1t is higher at 45 s
which coincides with the cadence of SDO/HMI level-2 products
(Hoeksema et al., 2014).

The simulation data was convolved with the SDO/HMI
point spread function (PSF; Wachter et al., 2012) before being
resampled to the SDO/HMI spatial resolution near disk center
(1x = 1y ≈ 368 km pixel−1) using nearest-neighbor sampling.
Patches of 48 by 48 pixels2 were then extracted at random
positions in planes of constant τ and at consecutive times
t = {ti, ti + 1t} where i is a randomly-selected timestep.
The QS dataset includes 2,000 training examples and 200
validation examples for Ic(x, y, τ = 1, t = {ti, ti + 1t}) and
Evt(x, y, τ = {1, 0.1, 0.01}, t = ti). The ARs dataset is comprised
of 3200 training examples and 900 validation examples for

2Computations performed by the STAGGER code are available for download:
http://steinr.pa.msu.edu/~bob/96averages/.

Ic(x, y, τ = 1, t = {ti, ti + 1t}), Evt(x, y, τ = 1, t = ti), the
vertical velocity vz(x, y, τ = 1, t = {ti, ti + 1t}) and the vertical
magnetic field Bz(x, y, τ = 1, t = {ti, ti + 1t}). Computations
were performed on a NVIDIA-GTX-960 GPU using the Keras
library with the Tensorflow backend. Weights and biases were
only updated when the mean square error for the validation
set improved.

3. RESULTS

Full field-of-view maps in sequences of 30 to 80 time steps from
the QS and ARs datasets are used as test sets to evaluate the
performance of DeepVelU at scales equal to and greater than
those analyzed in Tremblay et al. (2018).

3.1. Metrics
Agreement between the simulation vector field [Evref] (i.e.,
the reference case) and the reconstructed vector field [EvD] is
quantified by the mean absolute errors

Eabs = 〈(vref,x − vD,x)
2 + (vref,y − vD,y)

2〉 , (1)

and mean relative errors

Erel =

〈

(vref,x − vD,x)2 + (vref,y − vD,y)2

(v2ref,x + v2ref,y)

〉

, (2)

where 〈·〉 is the spatial average operator. Additionally, the
Pearson linear correlation coefficient between Evref and EvD,
denoted [C], is introduced as a measure of similarity (or
discrepancy) that takes into account different spatial scales of the
vector amplitude. The averaged normalized dot product

A ≡

〈

Evref · EvD

||Evref|| ||EvD||

〉

, (3)

is used to assess the global orientation of the inferred
velocity vectors with respect to the simulation, with values
A = ±1 for parallel/anti-parallel vectors and A = 0 for
perpendicular vectors.

Response as function of the spatial scales is evaluated through
the power spectrum of the total kinetic energy of the transverse
plasma motions. Energy densities

[

E(k)
]

are computed following
the definition of Rieutord et al. (2010) for a square dataset (i.e.,
nx = ny and 1x = 1y):

E
(

k
)

=
nx1x

2π

∑

∀k′∈[k,k+dk]/2π

v̄2x(k
′)+ v̄2y(k

′)

2
, (4)

where v̄x and v̄y are the discrete Fourier transform of vx and vy,
and the wavenumber

[

k
]

is an inversemeasure of the spatial scale.
Finally, for each velocity field, we compute the unsigned

“shear” component of the vertical Poynting flux [Sz] and then
integrate it over the field-of-view (Liu and Schuck, 2012; Welsch,
2015):

Sz = −
1

4π

(

EvD · EBref,t
)

Bref,z , (5)
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where
[

EBref,t
]

and
[

Bref,z
]

are the transverse component and the
vertical component of the magnetic field, respectively, computed
from the reference simulation. Note that the total Poynting flux
also includes the “emergence” term, which contains Doppler
velocity. However the division into “shearing” and “emergence”
terms is done conceptually, since both terms involve emergence
of magnetized plasma across the photosphere (Welsch, 2015).

3.2. Quiet Sun Test Set
Plasma motions EvD,t(τ ≈ 1) inferred by DeepVelU are
consistent with Evref,t , producing divergent velocity vectors at the
center of granules and converging vectors in the intergranular
lanes (Figure 1A). Furthermore, the new architecture results in
reduced errors for EvD,t(τ ≈ 1), ( E∇ × EvD,t)z and E∇t · EvD,t in
comparison to DeepVel (Table 1). Both methods underestimate
flow amplitudes, as suggested by the scatterplot in Figure 1B,
but the similarity with the reference velocity amplitudes increases
from C = 0.841 to 0.947 when transitioning from DeepVel to the
DeepVelU architecture (Table 1). Furthermore, the RMSE, Eabs
and Erel at τ ≈ 1 decrease from 0.777 km s−1, 0.694 km s−1 and
70.6% to 0.501 km s−1, 0.442 km s−1 and 43.7 %, respectively.
Similar improvements are noted for the divergence and the curl
of the flow fields (Table 1). The global orientation of the velocity
vectors is also improved, with A increasing from 0.786 when
using DeepVel to 0.914 when using DeepVelU. Further analysis
identified regions of downflows as the largest sources of errors
(not shown). These are typically associated with intergranular
lanes which feature more complex flow structures confined in
small areas.

Similar conclusions are drawn for the inversion of flows at
optical depths τ ≈ {0.1, 0.01} (i.e., at higher geometrical heights
above the surface) from Ic(τ ≈ 1) (Figure 1 and Table 1). More
specifically, τ ≈ 0.1 is just beyond the height where the reversal
of the granulation pattern occurs (i.e., a few hundred kilometers
above the surface: Cheung et al., 2007), with the center of
granules becoming colder than the intergranular network. At τ ≈
0.01, this pattern is more diffused but remains well-correlated
with the surface granulation pattern (not shown). By extension,
the structures in Evt(τ ≈ {0.1, 0.01}) correlate with Ic(τ ≈ 1).

The power spectrum of the kinetic energy (Equation 4) as
a function of the spatial scales shows an improved response
for DeepVelU at supergranular scales (k−1 ≈ 100 Mm) with
respect to the test set (green and blue curves in Figure 2A).
The transition from a loss to a gain in signal with respect to
DeepVel (orange curve) occurs close to the spatial scale that is
achieved through downsampling at the bottleneck of the U-net
architecture (k−1 ≈ 2.944 Mm). This change is interpreted as
the new architecture favoring signal at supergranular scales over
the pixel-size and granular scales to further optimize the cost
function during the training process.

In addition, Figure 2C shows a significant improvement for
DeepVelU in the correlation between the inferred velocities
and the simulation at all time and spatial scales for the QS.
DeepVel’s flows have the surprising disadvantage of losing
correlation at increasing time averages by a few percents, whereas
the correlation increases for DeepVelU. Similarly, DeepVel’s
correlations significantly decreases at greater spatial averages,

e.g., from (resp.) C ≈ 0.85 to C ≈ 0.62 between 368 km
and 5 Mm (resp.), which is not the case for DeepVelU which
consistently correlates very well with the simulation at C > 0.9.
The latter, however, plateaus near 3 Mm which coincides with
the pixel-size in the bottleneck of the U-net architecture. Future
work will test if increasing the field-of-view of the training images
affects favorably the ability to improve the correlation further at
greater spatial scales.

3.3. Active Region Test Set
Figures 3A,C,E show a subset of velocity field inversions
generated by DeepVelU from single-quantity inputs that relate
to SDO/HMI level-2 data products i.e., intensitygrams, line-of-
sight magnetograms,andDopplergrams, respectively. Only a sub-
field of 50 by 50 pixels2 is shown for clarity. The position of
this patch in the field-of-view was selected to highlight distinct
flow structures in the presence of ARs: the center of the sunspot
(upper right corner), the flows in the penumbra, the moat-like
flows around the latter (close to the diagonal connecting the
upper left corner to the lower right corner), and finally, the
granulation like in the QS dataset (lower left corner). Scatterplots
in Figure 3were computed over the sub-field whereas themetrics
compiled in Table 1 were computed over the entire field-of-
view and include all tested combinations of inputs. An arbitrary
threshold of |Bref,z| ≥ 100 G is set to compute metrics that are
specific to the AR and the magnetic field network. Regions where
|Bref,z| < 100 G are interpreted as QS.

DeepVel and DeepVelU generate very similar velocity fields
from consecutive intensitygrams, with DeepVel performing
slightly better where |Bref,z| < 100 G and DeepVelU (Figure 3A)
improving absolute and relative errors slightly where |Bref,z| ≥
100 G (Table 1) but underestimating low amplitude velocities
(Figure 3B). In fact, the performances of the two neural networks
are comparable to that of DeepVel with the QS dataset (Table 1).
For both architectures, the signal for the continuum intensity
inside the Sunspot results in less effective flow inversions where
|Bref,z| ≥ 100 G. More specifically, the mean relative error
almost doubles when transitioning from the QS to strong field
regions and the metric A describing the global orientation
of the vectors decreases to a value of about 0.55 (Table 1).
For this reason, different combinations of physical inputs were
tested to measure their impact on photospheric flows. Although
these tests were performed using the DeepVelU architecture, we
expect that similar conclusions can be drawn for the DeepVel
neural network.

The use of line-of-sight magnetograms as inputs instead of
intensitygrams slightly improves the errors where |Bref,z| ≥
100 G (Table 1), i.e., where there is the most signal in the
input data. Despite weak magnetic fields in the QS, the neural
network is capable of distinguishing individual granules and their
flow patterns (Figure 3C), but the errors are significantly larger
with greatly underestimated flow amplitudes (Figure 3D) and
misaligned vectors (Table 1). The overall performance is thus
worse due to a larger fraction of the field-of-view being covered
by QS (Table 1).

Dopplergrams, such as the ones depicted in the background
of Figures 3A,C,E, are the inputs that best capture the behavior
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FIGURE 1 | (Left) Patches of 50 by 50 pixels2 extracted from the 30-timestep-averaged transverse velocity fields EvD,t inferred by DeepVelU at optical depths (A)

τ ≈ 1, (C) τ ≈ 0.1, and (E) τ ≈ 0.01. The 30-timestep-averaged vertical velocity vz,ref (τ ≈ {1, 0.1, 0.01}) computed by the STAGGER simulation and resampled to the

SDO/HMI resolution is displayed as background (colorscale). (Right) Scatterplots comparing amplitudes |EvD,t| to |Evref,t| at optical depths (B) τ ≈ 1, (D) τ ≈ 0.1, and (F)

τ ≈ 0.01. The black line represents the expected solution (i.e., a coefficient of determination R2 = 1).
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TABLE 1 | Comparison between the 30-timestep-averaged EvD,t and Evref,t for the QS dataset and ARs dataset.

QS dataset Quantity τ RMSE Eabs Erel C A S

algorithm (units) (%) ∈ [0, 1] ∈ [−1, 1] (no units)

1.00 0.777 0.694 70.6 0.841 0.786 0.811

Evt 0.10 0.697 0.620 65.4 0.867 0.810 0.793

(km s−1) 0.01 0.553 0.491 70.3 0.852 0.791 0.729

1.00 0.735 0.577 195.7 0.912 − −

DeepVel E∇t · Evt 0.10 0.783 0.618 261.3 0.892 − −

(10−3 s−1) 0.01 0.931 0.733 199.9 0.884 − −

1.00 0.767 0.607 281.6 0.887 − −

( E∇ × Ev)z 0.10 0.796 0.630 301.9 0.871 − −

(10−3 s−1) 0.01 0.930 0.726 225.6 0.851 − −

1.00 0.501 0.442 43.7 0.947 0.914 0.796

Ev 0.10 0.473 0.416 43.8 0.945 0.907 0.805

(km s−1) 0.01 0.417 0.367 52.3 0.925 0.876 0.752

1.00 0.618 0.490 172.4 0.941 − −

DeepVelU E∇t · Evt 0.10 0.672 0.532 208.7 0.924 − −

(10−3 s−1) 0.01 0.864 0.682 179.9 0.913 − −

1.00 0.662 0.525 244.5 0.920 − −

( E∇ × Ev)z 0.10 0.689 0.546 244.5 0.908 − −

(10−3 s−1) 0.01 0.852 0.674 195.6 0.913 − −

ARs dataset Quantity |Bref,z| RMSE Eabs Erel C A S

algorithm (units) (G) (%) ∈ [0, 1] ∈ [−1, 1] (no units)

≥ 0 0.719 0.603 70.98 0.905 0.830 1.061

DeepVel Evt < 100 0.701 0.592 56.02 0.912 0.855 −

(inputs: Ic) (km s−1) ≥ 100 0.878 0.717 226.2 0.845 0.563 −

≥ 0 0.789 0.674 62.17 0.898 0.818 0.870

DeepVelU Evt < 100 0.787 0.680 58.20 0.904 0.844 −

(inputs: Ic) (km s−1) ≥ 100 0.814 0.618 103.4 0.847 0.556 −

≥ 0 1.174 1.023 88.18 0.723 0.588 0.864

DeepVelU Evt < 100 1.201 1.062 87.76 0.716 0.590 −

(inputs: Bz ) (km s−1) ≥ 100 0.848 0.618 92.53 0.834 0.565 −

≥ 0 0.645 0.550 55.24 0.928 0.860 0.896

DeepVelU Evt < 100 0.635 0.548 50.41 0.934 0.882 −

(inputs: vz ) (km s−1) ≥ 100 0.574 0.574 105.4 0.884 0.633 −

≥ 0 0.639 0.553 54.67 0.929 0.857 0.970

DeepVelU Evt < 100 0.574 0.564 52.46 0.929 0.874 −

(inputs: Bz , vz ) (km s−1) ≥ 100 0.574 0.440 77.60 0.927 0.678 −

≥ 0 0.602 0.519 52.52 0.937 0.863 0.872

DeepVelU Evt < 100 0.604 0.526 50.28 0.938 0.882 −

(inputs: Bz , Ic, vz ) (km s−1) ≥ 100 0.582 0.449 75.72 0.925 0.661 −

RMSE is the root mean squared error, Eabs is the mean absolute error (Equation 1), Erel is the mean relative error (Equation 2), C is the Pearson correlation coefficient, A is the spatially-

averaged normalized dot product (Equation 3) and S ≡
∫

|SD,z |dM/
∫

|Sref ,z |dM is the ratio between the integrals of the unsigned shear components of the Poynting fluxes Sz (EvD,t ) and

Sz (Evref ,t ) (Equation 5) over the full field-of-view M.

of flows in both QS and ARs (Table 1 and Figure 3F). The
granulation pattern from intensitygrams is clearly outlined in
Dopplergrams by the cold sinking plasma in the intergranular
lanes and the hot rising plasma at the center of granules.
Meanwhile convective motions are inhibited inside Sunspots.
However, flows in the penumbra are predicted by DeepVelU

to be almost purely radial with respect to the center of the
Sunspot (Figure 3E), whereas the simulation penumbral flows
resemble more closely those seen in Figures 3A,C. Although the
metric A was slightly improved in strong field regions, vector
orientations remain much less accurately reproduced than in the
QS (Table 1).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 June 2020 | Volume 7 | Article 2510

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Tremblay and Attie Inferring Photospheric Flows With DeepVel

FIGURE 2 | Power spectra of the total kinetic energy E(k) of the 30-timestep averaged transverse velocities as a function of the wavenumber k. (A) QS dataset. (B)

ARs dataset. (C) Pearson correlation between the simulated transverse velocity field in the QS as a function of time and spatial averaging windows. The latter is shown

with the full width at half maximum of the Gaussian kernel used.

Combining Bref,z and vref,z , which yielded the best
reconstructions for ARs and QS, respectively, significantly
improves the performance for ARs and the integrated Poynting
flux (Table 1). Magnetograms provide to Dopplergrams
additional signal inside Sunspots. Both quantities are coupled
physically to Evt through the magnetic induction equation,
which could further explain the increase in performance. The
addition of intensitygrams provides more context for the QS and
improves the metrics where |Bref,z| < 100 G, with very little to
no decrease in performance where |Bref,z| ≥ 100 G (Table 1).

The use of Dopplergrams or combinations of inputs in
DeepVelU improves the response in the power spectrum
of the kinetic energy for spatial scales larger than k−1 ≈
3 Mm (Figure 2B), which could again be related to the
spatial scales probed in the U-net’s bottleneck. Although
the power is generally underestimated, its variations as a
function of k are matched more consistently by DeepVelU,
with DeepVel generating more signal than the simulation at
supergranular scales.

4. CONCLUSION

We trained DeepVelU, a U-net-inspired architecture for the
DeepVel neural network, using simulations of the QS and ARs
and evaluated the method’s response as a function of spatial
and temporal scales. DeepVelU shows significant improvement
over DeepVel for the QS test set. The correlations for the latter
falls close to 0.6 at spatial scales of 5 Mm whereas it stays
consistently above 0.9 for DeepVelU; increasing at greater time
averages and plateauing at spatial scales above 3 Mm. Thus
DeepVelU’s QS model appears more effective than the other
tracking methods tested in Tremblay et al. (2018) against the
same dataset, with increased correlations and lower errors being
achieved over DeepVel at granular scales and over FLCT at
supergranular scales. The results for the ARs dataset are not
as conclusive, but may be further improved by training for
granulation, penumbra and sunspots separately. This approach
could, however, introduce discontinuities at the edges of the
different structures.
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FIGURE 3 | (Left) Patches of 50 by 50 pixels2 extracted from the 30-timestep-averaged EvD,t (τ ≈ 1) inferred by DeepVelU from (A) Ic(t = ti , ti + 1t), (C)

Bz (t = ti , ti + 1t), and (E) vz (t = ti , ti + 1t). The 30-timestep-averaged vz,ref computed by the MURaM simulation and resampled to the SDO/HMI resolution is

displayed as background (colorscale). (Right) Scatterplots comparing |Evref,t| to |EvD,t| inferred from a combination of intensitygrams Ic(t = ti , ti + 1t), magnetograms

Bz (t = ti , ti + 1t) and Dopplergrams vz (t = ti , ti + 1t). The black line represents the expected solution (i.e., R2 = 1). (Right) Scatterplots comparing |Evref,t| to |Evref,t|

inferred from a combination of (B) consecutive intensitygrams Ic(t = {ti , ti+1t}), (D) magnetograms Bz (t = {ti , ti+1t}) and Dopplergrams vz (t = {ti , ti+1t}), and (F)

Dopplergrams, intensitygrams and magnetograms.
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Current efforts are meant to be a proof of concept. Limitation
of the method include the input image dimensions in each
direction which must be a factor of 2n where n is the number of
downsampling or upsampling layers in the network architecture
(here n = 3). For example, the dimensions of the sub-images
(48×48 px2) presented to the network during training limited the
number of downsampling/upsampling layers in the architecture
to n = 3, corresponding to a spatial of about 3 Mm. This
could explain the plateauing of the correlation above this spatial
scale. In this context, development is underway for a deeper
version of DeepVelU (i.e., with more downsampling/upsampling
layers) that will be trained on (almost) full field-of-view images
(256 × 256 px2 or 94.192 × 94.192 Mm2) of the QS dataset
and that will also double (resp. halve) the number of filters after
each downsampling (resp. upsampling) operation. In addition,
the simulations do not model actual supergranulation which is
known to advect granules over spatial scales greater than 3 Mm.
Therefore it will be worth exploring further inferences on actual
photospheric observations. For example we plan to compare the
inferred supergranular (QS) and moat flow patterns (ARs) with
those of Attie et al. (2018) which uses a new implementation of
the “Balltracking” method that is more accurate than the one
of Potts et al. (2004) and that had not been tested by Tremblay
et al. (2018). Similarly, the MURaM simulation includes a deep
seated flow system with velocities in the 200–500 m/s range
which extends about 10 Mm past the sunspot boundary, which
seems in line with many observations of moat flows (Rempel,
2015). Using the data of both experiments (observations and
simulation), we will compare the moat flow patterns revealed by
DeepVel, DeepVelU and Balltracking.

The inclusion of Dopplergrams and line-of-sight
magnetograms as inputs in the neural network architecture,
both of which provide more signal than intensitygrams inside
sunspots and are tied to the transverse plasma motions through
the magnetic induction equation, have improved reconstructions
in the context of ARs and response at supergranular scales.
Evaluating the impact of additional inputs such as the transverse
magnetic field vector EBt which also appears in the magnetic
induction equation or its strength |EBt| which is not subjected to
ambiguities is left as future work.

Despite the changes in architecture and the success of the
neural network at capturing the spatial distribution of flows,
velocity amplitudes are generally underestimated in the QS and
overestimated in ARs by both DeepVel and DeepVelU. Future
efforts will be dedicated to improving the inferral of amplitudes.

All versions of the neural networks were trained to generate
synthetic data that is consistent with a given simulation and
the SDO/HMI cadence (if the velocity is multiplied by a factor
of 45/60 for the QS dataset) and spatial resolution near disk
center. SDO/HMI level-2 products can thus be used as input,
however one should first assess if the physics and preprocessing

of the training set is consistent with the observations presented
as input. For instance, SDO/HMI Dopplergrams measure
the superposition of the line-of-sight components of the
satellite motion, meridional flows, differential rotation, p-mode
oscillations, and plasma motions. Simulation Dopplergrams
only feature the latter two. Additional preprocessing steps
are thus required to correct SDO/HMI Dopplergrams for
the aforementioned effects (e.g., Welsch et al., 2013) or to
project the simulation data in the observations space prior to
training. The resulting velocity fields may then serve as synthetic
observations or first estimates when performing data assimilation
in anMHDmodel of the photosphere, or as boundary conditions
driving a simulation. The method may also be used to estimate
and evolve a Poynting flux vector that is representative of a given
epoch of the Sun.

The velocity vector that the neural networks are trying to
recover is the same vector as physics-based velocity inversion
methods, i.e., Evt such that the magnetic induction equation is
satisfied. Furthermore, DeepVelU best performed when using
Dopplergrams and magnetograms as input, with both quantities
appearing in the magnetic induction equation alongside Ev. The
training process may be revisited in the future to incorporate
more effectively the physics when estimating the plasmamotions,
e.g., through the loss function or a physics-informed network
(Raissi et al., 2019).
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Magnetosheath jets are transient, localized dynamic pressure enhancements found

downstream of the Earth’s bow shock in the magnetosheath region. Using a pre-existing

database of magnetosheath jets we train a neural network to distinguish between jets

found downstream of a quasi-parallel bow shock (θBn < 45o) and jets downstream of

a quasi-perpendicular bow shock (θBn > 45o). The initial database was compiled using

MMS measurements in the magnetosheath (downstream) to identify and classify them

as “quasi-parallel” or “quasi-perpendicular,” while the neural network uses only solar

wind (upstream) measurements from the OMNIweb database. To evaluate the results,

a comparison with three physics-based modeling approaches is done. It is shown that

neural networks are systematically outperforming the other methods by achieving a

∼ 93% agreement with the initial dataset, while the rest of the methods achieve around

80%. The better performance of the neural networks likely is due to the fact that they use

information from more solar wind quantities than the physics-based models. As a result,

even in the absence of certain upstream properties, such as the IMF direction, they are

capable of accurately determining the jet class.

Keywords: magnetosheath jets, neural networks, solar wind, machine learning, bow shock

1. INTRODUCTION

1.1. Magnetosheath Jets
The magnetosphere, surrounding the Earth, offers protection from plasma flows originating from
the Sun traveling at supersonic speeds. Initially, the solar wind particles interact with the Earth’s
bow shock and are decelerated into subsonic velocities, moving into the magnetosheath region.
The interaction between the solar wind and the Earth’s bow shock can in principle be modeled
through the Rankine–Hugoniot relations, assuming an 1D, time stationary shock (Baumjohann
and Treumann, 2012). However, there are phenomena too complex to be precisely described by the
current theoretical framework. This complexity arises mainly from the geometry of the bow shock
and the rapid changes in the InterplanetaryMagnetic Field (IMF). A phenomenon that is generated
in the interaction of the solar wind with the bow shock is the so called “magnetosheath jet.” These
jets are usually described as localized enhancements of dynamic pressure in the magnetosheath
plasma and are attributed to a velocity or a density increase or in most cases an increase of both
(e.g., Amata et al., 2011; Archer et al., 2012; Plaschke et al., 2018).

For magnetosheath jets, several terms and definitions are used in the literature (Plaschke et al.,
2018). In this work, we use the term “magnetosheath jet” or simply “jet” to describe an enhancement
of the dynamic pressure above the background magnetosheath level, using a time-moving average
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window of ±10 min for the dynamic pressure (e.g., Archer and
Horbury, 2013; Gunell et al., 2014; Gutynska et al., 2015; Karlsson
et al., 2015; Raptis et al., 2019). When an enhancement higher
than two times the background level is observed, a jet is registered
to a list of events.

While jets have been observed since 1998 (Němeček et al.,
1998), there are still several open questions regarding their
origin, their morphology, and their exact generation mechanism
(Plaschke et al., 2018). The predominant generation mechanism
connects jets to bow shock ripples found at the quasi-parallel bow
shock (Hietala et al., 2009; Hietala and Plaschke, 2013). Other
phenomena that are possibly connected to jet generation may be
the so called SLAMS (Short Large Amplitude Structure) that are
foreshock phenomena characterized by very large magnetic field
amplitudes and plasma density enhancements (Schwartz et al.,
1992). It has been hypothesized that SLAMS can pass through
the bow shock ripples and contribute to a density enhancement
that would result in an overall increase of the dynamic pressure
(Karlsson et al., 2015).

Jets are of great interest for the field of space physics and space
weather. It has been suggested that they are connected to various
phenomena such as the radiation belts (Turner et al., 2012; Xiang
et al., 2016) and throat aurora (Han et al., 2017). Recently it
has been shown that by interacting with the magnetopause, jets
can trigger magnetopause reconnection (Hietala et al., 2018),
which may excite surface eigenmodes (Archer et al., 2019)
or even contribute to direct plasma penetration through the
magnetopause (Karlsson et al., 2012). Furthermore, they appear
to be occurring in other planets of our solar system and in
astrophysical shocks (Giacalone and Jokipii, 2007; Plaschke et al.,
2018).

Magnetosphere

Earth

Quasi-perpendicular

Shock

FIGURE 1 | Sketch of the bow shock and its different configuration in the Earth’s environment. An Interplanetary Magnetic Field (IMF) with an angle, approximately 45◦

with the normal at the nose of the bow shock is assumed. As a result, a quasi-perpendicular (θBn > 45) shock takes place on the left part of the image and a

quasi-parallel (θBn < 45) on the right. The instabilities caused by the reflected ions in the Qpar case create the so called ion foreshock which changes drastically the

properties between the Qpar shock and the Qperp one.

An important factor that creates an intrinsic classification to
shock transitions and therefore to both themagnetosheath region
and the jets, is the angle (θBn) between the bow shock normal
vector (n̂) and the IMF (B), as depicted in Figure 1. Due to the
differences in the bow shock formation and in particle dynamics
explained below, quasi-perpendicular (Qperp) shocks (θBn > 45)
exhibit a sharp transition between the upstream flow and the
downstream plasma, followed by a less turbulent magnetosheath
region (Fuselier, 2013; Wilson, 2016). On the other hand, for
quasi-parallel (Qpar) shocks (θBn < 45), the transition is harder
to define and the downstream plasma is irregular and strongly
turbulent. The source of the different properties of each region is
the dynamic behavior of solar wind particles going through the
shock transition. In the case of the Qpar shock, reflected ions can
travel far upstream, interact with the incoming solar wind flow
and cause a number of instabilities leading to wave growth. This,
in turn, creates a foreshock region which is absent in the case of
Qperp shocks where the reflected particles, due to their gyration
around the magnetic field, are quickly returned back to the shock
and hence do not travel as far back upstream. This results in a
less turbulent environment both upstream and downstream of
the Qperp bow shock (Schwartz and Burgess, 1991; Balogh and
Treumann, 2013).

For the generation of Figure 1, the bow shock and
magnetopause model by Chao et al. (2002) are used. The
parameters used are Bz = −0.22 (nT), Pdyn = 2.15 (nPa),
Mms = 6.09 and β = 2.20. These values correspond to the
average conditions of the solar wind for the periods that a Qpar
or a Qperp jet was found.

Classifying jets into different categories is vital to investigate
the possibility of different generation mechanisms. As discussed
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TABLE 1 | Solar wind quantities used as input to the neural network.

Name Unit

Alfven Mach Number (MA) −

Magnetosonic Mach Number(Mms) −

Absolute Electric Field (|E|) [mV/m]

Beta Plasma Parameter (β) −

Kinetic Energy density (Ekin) [nJm−3 ]

Proton Temperature (T ) [K]

Proton Density (n) [cm−3]

Proton Absolute Velocity (|V|) [km/s]

Absolute Magnetic Field (|B|) [nT]

Magnetic Field X-component (Bx ) [nT]

Magnetic Field Y-component (By ) [nT]

Magnetic Field Z-component (Bz ) [nT]

above, there is no consensus regarding the generation of jets.
By classifying jets to different bow shock configurations one
can investigate both the jet properties and the associated solar
wind to determine if any of the suggested mechanism apply
to these subset of jets or even indicate new class-specific
generation mechanisms.

1.2. Neural Networks
Neural Networks (NN) are widely used machine learning (ML)
tools that are often employed to perform classification and
regression tasks. Neural Networks were first introduced in 1943
(McCulloch and Pitts, 1943) and have been used for such
tasks since at least 1958 (Rosenblatt, 1958). The basic principle
behind NNs is that when provided with enough data, they are
capable of adjusting their internal parameters in an optimal
way to perform a specific task related to the data given. By
iteratively parameterizing, and thus training, a neural network
with error minimization techniques, it has been shown that
when presented with unknown data the network is capable of
accurately performing its trained task (Bishop, 1995). Lately,
multi-layered (deep) neural networks have been used in various
applications due to their ability to accurately model complex,
and potentially unknown, relationships (Goodfellow et al., 2016;
Samarasinghe, 2016).

In the last years, machine learning techniques, including
neural networks, have been employed in heliospheric physics
and space weather (Camporeale et al., 2018a,b). Their spectrum
of application is quite broad, tackling many problems that
traditional statistics or physics-based modeling techniques
struggle with. Many applications of neural networks focus on
predictive tasks such as the forecasting of solar flares (Florios
et al., 2018; Jonas et al., 2018), Coronal Mass Ejections (CMEs)
(Bobra and Ilonidis, 2016), CME arrival time (Liu et al., 2018),
and geomagnetic indices (Boberg et al., 2000; Wintoft et al.,
2017; Chandorkar and Camporeale, 2018). Other applications
focus on space environment characterization (Shin et al., 2016;
Aminalragia-Giamini et al., 2018), wave recognition (Balasis
et al., 2019), and the classification of the solar wind (Camporeale
et al., 2017).

In this work, we apply neural networks for a supervised
learning classification task. In particular, to classify
magnetosheath jets using solar wind measurements and
compare the results with physics-based models. The main goal
of this study is to classify jets between those originating from
quasi-parallel shock transitions and those originating from
quasi-perpendicular ones. By doing so, we determine whether
machine learning techniques can outperform physics-based
models in this task and investigate the potential connection
between solar wind conditions and each jet class. Finally, as
detailed below, we use parts of a pre-classified dataset of jets
(Raptis et al., 2019) which we evaluate by investigating the
agreement of each method with the initial classification.

2. DATA

2.1. OMNIweb—Solar Wind (Upstream)
Data
For the upstream conditions, which correspond to the input of
the neural network, data from the OMNI database are used,
available at https://omniweb.gsfc.nasa.gov/form/omni_min_def.
html. The OMNI data mainly originate from the ACE spacecraft
that resides in the Sun-Earth L1 point (Stone et al., 1998) and
are automatically time-shifted to the Earth’s bow shock nose.
The time-shifted data have an 1-min resolution and take into
account the bow shock location and shape (King and Papitashvili,
2005). The solar wind measurements are associated with every
jet as later described, resulting in a dataset of equal length to
the number of jets. This dataset is then used as input to the
neural networks, consisting of the 12 physical quantities shown
in Table 1.

2.2. MMS—Magnetosheath (Downstream)
Data and Jet Database
In this work, we use a list of jets initially presented in Raptis
et al. (2019). The dataset is created using in-situ measurements
from the Magnetospheric Multiscale (MMS) mission during
11/2015–03/2019. For the downstream conditions and for the
initial creation of the jet dataset various plasma moment and
magnetic field parameters are used. The magnetic field data are
taken from the fluxgate magnetometer (FGM) (Russell et al.,
2016) and ion data are taken from the fast plasma investigation
(FPI) (Pollock et al., 2016). Finally, the position of MMS during
each jet is registered in GSE coordinates, using as unit the
Earth radius (RE = 6, 371km). This dataset provides a list of
well-characterized and pre-classified jets. These are used for the
training and the evaluation of the NN system, where the class of
the jets serves as the desired classification output.

All the jets are required to satisfy a criterion of
minimum dynamic pressure compared to the background
magnetosheath plasma:

Pdyn = mpniV
2
i ≥ 〈PMSH〉20min (1)

where the angular brackets indicate an average using a 20 min
time moving window. mp is the proton mass, ni the ion number
density, and Vi the ion velocity.
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After each jet has been registered to the database, a
classification algorithm is applied to determine its class. Themain
feature of the initial classification is that it uses in-situ MMS
measurements to determine whether the jet originated from a
quasi-parallel or a quasi-perpendicular bow shock configuration.
This methodology was preferred over using solar wind data to
calculate θBn for several reasons. Firstly, to avoid the errors
that are generated in time-lagging procedures such as the one
taking place in OMNIweb database (Mailyan et al., 2008; Case
and Wild, 2012). Furthermore, due to the 1-min resolution
of the database, short time scale variations of the IMF are
consequently undetectable. Finally, the jets are detected in the
whole magnetosheath region. As a result, a time-shift on the

TABLE 2 | Main properties of the classes of magnetosheath jets.

Jet’s class Characteristics

Qpar High energy ion flux, low temperature anisotropy, high magnetic

field standard deviation

Qperp Low energy ion flux, high temperature anisotropy, low magnetic

field standard deviation

Boundary Change between Qpar properties to Qperp or Vice Versa

Encapsulated Change from Qperp properties to Qpar and back to Qperp

associated solar wind values is required for every jet in order to
take into account the time it took for every jet to travel inside the
magnetosheath. This procedure itself is difficult to be accurately
implemented and it would further increase the uncertainty of
the method.

The initial dataset, therefore, relies on properties found in
the magnetosheath plasma regions. In particular, the algorithm
uses thresholds on ion temperature anisotropy that is found
to be lower in Qpar plasma than in Qperp (Anderson et al.,
1994; Fuselier et al., 1994). It also takes advantage of the fact
that the magnetic field’s standard deviation is observed to be
higher in the Qpar plasma than in the Qperp (Formisano and
Hedgecock, 1973; Luhmann et al., 1986). Finally, the main
difference between the Qpar and Qperp plasma regions is the
high energy ion population in the ion foreshock which only exists
in the Qpar bow shock (Gosling et al., 1978; Fuselier, 2013).
As a result, in-situ measurements of temperature anisotropy,
magnetic field standard deviation, and high energy ion flux
were used. A summary of the basic characteristics of each
class is shown in Table 2. From these classes, the only ones
used in this work are the Qpar (N = 860) and Qperp
(N = 211) jets.

In Figure 2, an example of MMS measurements for a quasi-
parallel and a quasi-perpendicular jet is shown.
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FIGURE 2 | Left: An example of a quasi-parallel (Qpar) magnetosheath jet. Right: An example of a quasi-perpendicular (Qperp) jet. From top to bottom, ion dynamic

pressure, ratio of the ion dynamic pressure to the background level, ion velocity, ion number density, magnetic field components, ion energy spectrogram and parallel

and perpendicular components of ion temperature. The red vertical line shows the peak of dynamic pressure for each jet, blue vertical lines indicate the start and end

point of the jet. Finally, the green lines indicate a period of time before and after the jet equal to 1 min, respectively. The velocity and magnetic field components along

with the position of the spacecraft are given in GSE coordinates.
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3. METHODOLOGY

3.1. Input Determination
For both the physics-based modeling and the neural networks, it
is necessary to provide an input that corresponds to the same time
intervals in order to have a consistent comparison. The choice
of the input is nontrivial, since, as discussed in the previous
section, the availability of measurements and their association to
jets contains multiple errors and uncertainties. Several possible
inputs were examined, by either taking average or maximum
values of the conditions found within a 5, 10, or 15 min period
of the jet. It was found that taking average solar wind conditions
starting from 5 min before the jet up to the jet observation time
provided the highest agreement to the initial classification in all
presented methods. As a result, the solar wind measurements
(Xu) used for each jet are defined as:

Xu =
1

6

5
∑

i=0

(

Xtjet−i1t

)

(2)

where, tjet is the time the jet was observed byMMS,1t is equal to
60 s and subscript u refers to X being an upstream quantity.

It should be noted that while the input described in Equation
(2) provided the highest agreement with the initial database,
it still has its limitations. Specifically, this input choice means
that jets found very far away from the bow shock nose or
with extremely high or low velocities will potentially not be
characterized correctly.

3.2. Evaluating Jet Class With
Physics-Based Modeling
In order to provide a baseline to compare the results from the
neural networks, we use three different physics-based models to
estimate the θBn angle and distinguish between Qpar and Qperp
magnetosheath jets.

3.2.1. Cone Angle Approximation
A simple approach to estimate θBn is through the cone angle:

θcone = arccos

(

|Bu,x|

|Bu|

)

(3)

where, Bu,x is the x component of the upstream magnetic field
and Bu is the IMF vector. θcone is identical to θBn at the subsolar
point of the bow shock.

By calculating the cone angle, we classify the available jets. For
θcone < 45 a jet is classified as Qpar while for θcone > 45 it is
classified as Qperp. This method should in principle work for
the majority of the jets that are found close to the subsolar point.
However, the number of the jets that are in very close proximity
to the subsolar point (|Y ,ZGSE| < 2RE) is quite small (Qpar: 151/
Qperp: 108). As a result, we expect this method to perform poorly
for jets found close to the flanks of the magnetosheath.

3.2.2. Coplanarity Method
Another set of methods used is the so called coplanarity methods.
There is a variety of methods based on the coplanarity theorem

(e.g., Paschmann and Daly, 1998). In our case, the simplest
version ofmagnetic field coplanaritymethod provides the highest
agreement with the initial dataset and is the one shown in
this work.

Starting from Rankine–Hugoniot relations we can derive the
normal vector of the bow shock as:

n̂ = ±
(Bd × Bu) × 1B

| (Bd × Bu) × 1B|
(4)

In our case, the upstream (IMF) magnetic field was taken as the
average value from 5 min before the observation of the jet to
the time the jet was observed (Equation 2). On the other hand,
the downstream (magnetosheath) magnetic field was taken as the
average value of ±2.5 min before and after the jet measurement
by MMS.

This approximation should in principle be less accurate for
jets found very far away from the bow shock since the jump
conditions refer to points close to the shock. Furthermore, jets
found at the flanks are also prone to errors since the upstream
solar wind measurements are time-lagged to the bow shock nose
and therefore characterize the subsolar region.

3.2.3. Bow Shock Modeling
Another method to calculate θBn requires a model of the bow
shock and an approximation of the origin of each jet.

Assuming that the jet does not get significantly accelerated or
decelerated during its lifetime in the magnetosheath, one can use
the maximum velocity vector (V) to propagate the jet backwards
in time and find its point of origin at the bow shock. For the
modeling of the bow shock, the model described by Chao et al.
(2002) was used. It should be noted that this procedure is prone
to several errors. To begin with, the position of the modeled
bow shock may have a significant error compared to the real
position (Merka et al., 2003; Turc et al., 2013). Furthermore,
the assumption that the velocity is constant may introduce more
errors. To derive a realistic bow shock model, we use the average
associated solar wind conditions starting from 10 min before
the jet up to 5 min after its observation by MMS. After we
approximated a point of origin for each jet, the angle between
the normal vector of that point and the IMF was calculated.

3.3. Evaluating Jet Class With Neural
Networks
For the input of the neural networks, several inputs associated to
each jet were tested. For every jet 12 solar wind measurements
were used (Table 1) and were associated to it (Equation 2). From
the initial number of jets (860 Qpar/211 Qperp) we exclude jets
that contain corrupted data in any of the input that was used in
the neural network (Table 1). As a result, the final dataset consists
of 759 Qpar jets and 196 Qperp jets.

The neural network architecture, algorithm, and back-end
training procedure were implemented in Python by using
TensorFlow library version 2.0.0 (Abadi et al., 2015). One of the
main problems of the neural network application is the treatment
of the class imbalance. We are dealing with a problem where
the majority class (Qpar jets) is roughly ∼ 80% of the whole
dataset. Class imbalance is a non-trivial problem to optimize in
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Input Layer ∈ ℝ¹² Hidden Layer ∈ ℝ²⁰ Hidden Layer ∈ ℝ²⁰ Output Layer ∈ ℝ²

(1) Qpar jet
(2) Qperp jet

...

...

...

Rest of  Hidden layers (Table 4)

FIGURE 3 | Basic architecture of the neural network used for the classification of the jets. The input layer shows all the quantities that were used in the neural network

method. To avoid having too many nodes and neurons shown, the rest of the hidden layers are given in Table 3. The visualization was done by using a publicly

available tool (LeNail, 2019) and editing its output.

machine learning and there is no ideal solution for it (Goodfellow
et al., 2016; Brownlee, 2020). In order to tackle this problem
we utilized the imbalanced-learning library (Lemaître et al.,
2017), and used under-sampling and up-sampling techniques. In
particular, we used ClusterCentroid under-sampling and SMOTE
up-sampling methods on the majority of the trials (Chawla et al.,
2002). It should be noted, that both under-sampling and up-
sampling techniques did not increase the average accuracy of
the neural network significantly. Another direct way to tackle
the class imbalance problem in the training procedure is to
implement a weight factor in the update of the weights and
biases to compensate for the differences in the classes found in
the training samples. As a result, a weighted factor was used for
updating the parameters of the network when the minority class
(quasi-perpendicular jets) is introduced to the network.

For the optimizer of the gradient descent algorithm, we used
the Adam optimizer as implemented in the Keras library (Chollet,
2015) with a smaller learning rate of α = 0.0001 while the
rest of the parameters were left at their default status. Since the
neural network is tackling a binary classification problem, the
error function used for the back-propagation is the binary cross-
entropy loss function. In all trials and in the final architecture we
also used the batch normalization technique (Ioffe and Szegedy,
2015) and parametric rectified linear units (PReLu) (He et al.,

TABLE 3 | Basic architecture of the neural network used for the classification task.

Layer Neurons

Input 12

Fully connected 20

Batch normalization −

Fully connected 40

Batch normalization −

Fully connected 60

Batch normalization −

Fully connected 40

Batch normalization −

Fully connected 20

Batch normalization −

Output 2

2015) in the hidden layers of the network. The final architecture
of the network is shown in Figure 3 and described in Table 3.

3.4. Validation Method
For the training of a neural network we have chosen to use 80% of
the jets, leaving 20% available to test the accuracy of the network.
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To ensure that the results are not biased from a specific
division of the data into training and test sets, the process is
repeated multiple times. At each iteration, the training/testing
division is made randomly resulting in different subsets.
Using this method, the architecture remains the same, while
allowing a reasonable sampling of the, otherwise immense,
space of divisions of the data into training and testing. This
method is then used to evaluate the stability of the NN
classifier. From each iteration, the classifying score can be
calculated and the overall mean accuracy, as well as the
standard deviation of the results, are direct evidence of the
system’s performance. In the following section results from
this iterative process are shown where 100 iterations have
been used.

An additional method used for the validation of the
classification results is the “leave-one-out” method which
produces independent classification results for each and every
sample. This method is very useful when dealing with datasets
of small size as it can give a good measure of the system’s
performance in terms of correctly classified and miss-classified
cases (e.g., Aminalragia-Giamini et al., 2020). With this
procedure, a neural network is trained with all the available data
apart from one sample which is “left out.” After training, this one
sample is input as a test set of size 1 and its class is evaluated by
the network. This process iteratively evaluates all samples, setting
a different one apart each time, and thus requires the training
of a neural network as many times as the total number of jets,
here N = 955. After its completion, this process produces 955
classification results where in each case only the sample tested did
not participate in the training and every other available sample
was used to produce the results. Finally, a single accuracy score
can be calculated for each class which is indicative of the overall
performance. The presented results of the “leave-1-out” method
are the average results of three independent runs using this
validation technique.

4. RESULTS

4.1. Neural Network
An example plot of the neural network training is shown in
Figure 4. The test accuracy (left) increases until ∼ 200 epoches
and as expected the test loss (right) decreases in a respective
trend. Beyond the ∼ 200 epoch point, no significant changes
were observed. After using a validation set to determine the best
number of epoches and batch size, we decided to use 250 epoches
with a batch size equal to 100 training samples per iteration.
Finally, the 80/20 training/testing division of the data results in
absolute numbers in 607 Qpar jets and 157 Qperp jets for training
and 152 Qpar jets and 39 Qperp jets for testing.

The classification results from 100 iterations with the random
training/testing division for neural networks are shown in
Figures 5, 6. Figure 5 shows the individual classification scores
for Qpar and Qperp jets where it is seen that in both cases high
scores with a mean accuracy of∼ 98.2 and∼ 88.9% are achieved,
respectively. Specifically for the Qpar jets, the scores are tightly
clustered in the ∼ 95 − 100% range showing minimal standard
deviation between iterations. On the other hand, the results of
Qperp jets have a higher standard deviation, with accuracy scores
ranging from ∼ 75 − 100%. This could be due to the number of
jets per class not being balanced, which provides more available
information for the neural network regarding the majority class
(Qpar). As a result, the testing set used for each iteration contains
fewer samples which makes it possible to get worse training and
test splits on each iteration. Another possible explanation is that
on top of the class imbalance, due to the way Qpar and Qperp
shocks form,most of Qperp jets occurmuch closer to the subsolar
region compared to Qpar jets. As discussed previously,∼ 50% of
Qperp jets are close to the subsolar region and the other half are
further away toward the flanks. As a result, a split of data can
make the result vary heavily if the training and test sample are
not equally distributed.
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FIGURE 4 | Example of the training procedure for a neural network run. Left: Accuracy vs. number of epoches. Right: cross-entropy loss vs. number of epoches.

The results were stabilized for an epoch number of ∼ 250. Blue lines show the behavior of the training subset while orange lines show that of the testing subset.
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FIGURE 5 | Accuracy of the neural network for 100 different iterations. Left: Results of the quasi-parallel class. Right: Results of the quasi-perpendicular class. The

training of the shown neural networks includes the IMF vector.
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FIGURE 6 | Accuracy of the neural network for 100 random initialization of training/test set, with every point being one iteration. The x-axis represents the accuracy in

quasi-perpendicular class and ranges from 70 to 100%. On the other hand, the y-axis shows the accuracy in the quasi-parallel class and ranges from 94 to 100%.

Special indication of the leave one out result is marked in green color. The training of the shown neural networks includes the IMF vector.

Figure 6 shows the resulting pairs of Qperp accuracy vs. the
Qpar accuracy for each of the 100 iterations. It is seen that the
distributions of the independent iterations does not exhibit any
specific structure but appears random. This is important and
gives confidence in the NN results since it is common in binary
classification problems, such as this one, to have a competing
classification problem; i.e., the higher the score for one class the
lower the score for the other. This is not the case here and the
differences in the respective scores appear to stem only from the
random division of training/testing subsets.

Finally, in Figure 6 the classification score from the leave-one-
out process can be seen with Qpar and Qperp scores equal to ∼

96.7 and∼ 88.2%, respectively. The leave-one-out process scores
lie close to the mean of both the Qpar and the Qperp scores,
while being slightly lower in both cases.We can speculate that the
small differences may originate from the differences between the
two types of validation methods. First of all, the class imbalance
and the fact that resampling methods utilized in this case had
to increase the dataset to a larger number of samples, could
enhance the effect of class imbalance, decreasing the accuracy
of the network. Furthermore, for the leave-one-out method, a
validation set of 10% was used to check at which point the epoch
training should be stopped. This was necessary since optimizing
the epoch number or the batch size, while training with all but
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TABLE 4 | Accuracy of each method used per class.

Class NN - age

(%)

NN - leave-1-out

(%)

θcone

(%)

Coplanarity

(%)

Bow shock

model (%)

Qpar 98 97 61 81 74

Qperp 88 88 94 79 86

Mean 93 93 77.5 80 80

The neural network accuracy is taken as the average performance of the 100 random

iterations as shown in Figures 5, 6.

one jet is time consuming and outside the scope of this work. As
a result, the difficulty in optimizing the hyper-parameters of the
neural network for the leave-one-out case may have had a slight
impact on the overall accuracy of the method.

4.2. Comparison of Neural Networks to
Physics-Based Models
We now compare the classification scores obtained from
the neural networks with the respective scores from the
physics-based models. As seen in Table 4, neural networks
outperform the physics-based modeling methods in reproducing
the classification of the jets in the dataset.

The simple approximation of the cone angle (Equation 3)
performs very well for the Qperp class, achieving the highest
score of all the methods with an accuracy of ∼ 94% surpassing
that of the neural networks. On the other hand, the cone angle
method clearly underperforms in theQpar class having the lowest
score of all methods with an accuracy of only ∼ 61%. These
results show that the cone angle approximation is not well-suited
for this problem. This is expected since a large portion of jets were
not found in close proximity to the subsolar region.

The coplanarity method (Equation 4) performs almost equally
well for the two classes with accuracy scores of ∼ 81 and ∼ 79%
for the Qpar and Qperp classes, respectively. The accuracy scores
are quite high demonstrating it is an appropriate and accurate
method for this problem. However, in both classes, it is heavily
outperformed by the neural networks.

Finally, using a bow shock model to calculate the θBn presents
an in-between case of the other two physical methods. The
accuracy scores of ∼ 74 and ∼ 86% for the Qpar and
Qperp classes, respectively, are good classification scores with
a high tendency to misclassify jets as Qperp, though not as
strong as in the cone-angle method. However, this method is
also outperformed in both classes by the neural networks. It
is interesting to note that the three physics-based methods all
have mean scores, for both classes, close to ∼ 80% implying
possibly an inherent limitation due to the fact that for upstream
information they only use the IMF vector. This is not true for the
neural networks which can accept all the available information.

4.3. Neural Networks Without IMF (Bu)
Input
After establishing the advantage of the neural network method
when providing the upstream magnetic field vector (Bu), we
investigate the performance of NNs even in the absence of the, in

TABLE 5 | Accuracy of each method used per class.

Class NN - age

(%)

NN - leave-1-out

(%)

θcone

(%)

Coplanarity

(%)

Bow shock

model (%)

Qpar 95 95 61 81 74

Qperp 87 86 94 79 86

Mean 91 91 77.5 80 80

In this case, the magnetic field components were not included in the training procedure

of the neural network method. The neural network accuracy is taken as the average

performance of 100 individually trained networks as shown in Figures 7, 8.

principle, vital information of themagnetic field orientation. This
was done to see whether the neural network can still perform well
without the IMF input that is necessary for all the other physics-
based models. It should be noted, that we still used the absolute
magnetic field (|B|) as input to the NN. As a result, the input
in these runs consists of all the parameters shown in Table 1,
except the last three which are the components of the magnetic
field vector.

Similarly to the previous subsections, the results of the
random train/test splits are shown in Figures 7, 8. In Figure 7,
it can be seen that the average classification accuracy of both
Qpar (∼ 94.8%) and Qperp (∼ 87.1%) class remain high even
when the NN’s input does not contain directional information of
the IMF. Once more, the accuracy in the class of Qpar jets has a
lower standard deviation than the Qperp, while in both cases the
standard deviation has increased compared to the results shown
in Figure 5. Again, as shown in Figure 8, there is no specific
structure regarding the scores of each iteration, similarly to the
previous case reported in section 4.1. The leave-one-out result is
slightly lower than the average result of Qperp jets (∼ 85.7%),
while being the same as the average for the Qpar ones (∼ 94.7%).

4.4. Dependence of Solar Zenith Angle
After deriving a classification using all the presented methods,
a possible link between the misclassified jets and their position
in the magnetosheath is investigated. As discussed previously,
the solar wind measurements provided as input for all methods,
characterize the subsolar region and are not ideal for the
characterization of the flanks. As a result, we investigate if this
effect is shown in the classification results of each method.

In Figure 9, we present the probability of jets appearing for
difference solar zenith angles. There are 4 histograms per jet class
that correspond to the 4 presented methods of classifications. On
each histogram, there are 3 plots representing the total number
of jets (blue), the misclassified jets (red) and the normalized
misclassified cases (black). Figure 9A shows the results of the
Qpar jets while Figure 9B shows the Qperp jets. It can be seen
that most cases of misclassification occur for angles close to
the subsolar region (≤ 30◦). However, when looking at the
normalized misclassified rates (black line), it appears that when
taking into account the overall number of jets, the relative
misclassification rate is much higher close to the flanks (≥ 30◦).
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FIGURE 7 | Accuracy of the neural network for 100 different iterations. Left: Results of the quasi-parallel class. Right: Results of the quasi-perpendicular class. The

training of the shown neural networks does not includes the IMF vector.
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FIGURE 8 | Accuracy of the neural network for 100 random initialization of training/test set, with every point being one iteration. The x-axis represents the accuracy in

quasi-perpendicular class and ranges from 70 to 100%. On the other hand, the y-axis shows the accuracy in the quasi-parallel class and ranges from 88 to 100%.

Special indication of the leave one out result is marked in green color. The training of the shown neural networks does not include the IMF vector.

5. DISCUSSION AND CONCLUSIONS

From the results of the neural network application (Figures 5, 6,
and Table 4), it is clearly shown that neural networks are capable
of reproducing the results of the initial database with greater
accuracy than the alternative physics-based models.

The different results for eachmethod likely originates from the
different properties the associated solar wind values between the
Qpar and Qperp jets (Raptis et al., 2019). As shown in Figure 4 of
Raptis et al. (2019), the velocity of Qperp jets is much lower than
that of the Qpar jets, with the first having an average absolute
ion velocity of ∼ 100 km/s, while Qpar have ∼ 230 km/s.

Furthermore, it was shown that the average solar wind velocity
under which Qpar jets were found was 〈VSW,||Jets〉 ≈ 495 km/s
with a standard deviation of σ||,Jets = 96 km/s. On the other hand
for the Qperp jet, 〈VSW,⊥Jets〉 ≈ 400 km/s with σ⊥,Jets = 46 km/s.
These differences in the velocity of the jets can have a large effect
on the final results since they not only affect the input parameter
space (solar wind velocity) but also the association timing (5-min
average) differently for every class.

To begin with, the cone angle approximation is working
effectively only for the Quasi-perpendicular jets. This is most
likely because the majority of them were found close to the
subsolar region. Another reason could be that most Qperp jets
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FIGURE 9 | Histograms showing the relative position of jets in the magnetosheath (solar zenith angle). Blue lines represent the whole number of jets, Red show the

misclassified jets and black show the misclassified cases normalized over the whole number of jets. (A): Quasi-parallel jets (n = 860). (B): Quasi-perpendicular jets

(n = 211).
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TABLE 6 | Number of misclassifications grouped in different solar zenith angles for

every classification method.

Method [0 − 30]◦ [30 − 50]◦ [50 − 90]◦

Neural networks 33 12 3

Cone angle 248 147 16

Coplanarity 146 88 10

Bow shock model 174 97 15

have a lower average velocity (Raptis et al., 2019), that along
with the proximity to the subsolar region may make the 5-min
average values used for the modeling more accurate. The better
overall results of the bow shock modeling method originate from
the estimation of the bow shock normal vector n̂. By finding a
point of origin for each jet, many cases that were found closer to
the flanks of the magnetosheath region were correctly classified.
Finally, the coplanarity method, while still producing overall
worse results than the neural network, showed that a significant
part of the jets can be classified using this approach. As shown in
Figure 9, the majority of the jets, and especially Qperp jets occur
close to the subsolar region (≤ 30◦). However, in all the presented
methods the misclassified cases occur mainly close to the flanks.
This could originate from the poor characterization of OMNIweb
data regarding phenomena that occur close to the flanks. In
particular, OMNIweb has a poor capability of catching intervals
of quasi-radial IMF (Bier et al., 2014; Suvorova and Dmitriev,
2016). Under quasi-radial IMF there is a quasi-perpendicular
shock forming close to the flanks. As a result, Qperp jets found
close to the flanks are probably not characterized well enough by
the available solar wind measurements that were given as input
to all the methods.

The superiority of the neural network provides indirect
support to the initial dataset. This is achieved because the input
of the neural network was independent of the one used in
the initial classification. In particular, the initial database was
classified using only magnetosheath (downstream) data, while
the neural network input contained only solar wind (upstream)
information. According to Figure 9, the highest evaluation
accuracy was obtained for jets found in close vicinity of the
subsolar region. As already stated previously, the OMNIweb
database provides measurements that correspond to the subsolar
region and therefore are not ideal to characterize the flank
regions. Furthermore, the jets found very far from the bow
shock could have taken a longer time to propagate in the
magnetosheath region, making the choice of 5-min averaging
dubious. A better estimation of the jet travel time from the
bow shock to its observation point could possibly increase the
accuracy of all the presented methods. These results show that
the choice of using in-situ measurements for the determination
of jets’ class may indeed provide more accurate results while
not limiting the classification procedure to periods of times
that upstream data are available (Raptis et al., 2019). There
are many jets that were found far away from the subsolar
region (YGSE > 5RE) that were systematically misclassified by
the physics-based methods. However, a good portion of them

was correctly classified by the neural network approach. As
previously discussed, the main problem with jets that are found
at the flanks of the magnetosheath is that the measurements
taken from the solar wind do not accurately characterize this
region. Furthermore, the time propagation error along with
the error of the origin position is greatly enhanced the further
away a jet is found from the bow shock. Nevertheless, due to
the availability of such cases, the neural network was able to
recognize peculiar cases, “train” for them, and correctly identify
a significant portion of them. Table 6, shows the number of
misclassifications done per method grouped in three ranges,
these close to the subsolar region ([0 − 30]◦) these further away
from the subsolar ([30− 50]◦) and the ones far toward the flanks
of themagnetosheath ([50−90]◦). It is clear, that neural networks
not only outperform the rest of the methods in the regions where
jets are found more frequently but also in the not so common
cases of flank jets.

To increase the accuracy of the neural network, one could
in principle train two different NNs to tackle the different
characterization of subsolar jets and flank jets. Then by utilizing
ensemble learning methods, each network could work on
its appropriate dataset possibly providing superior combined
results. This task is not trivial since the boundary of where
a subsolar region starts and ends is not sharp. Furthermore,
depending on the properties of the jet, the association of solar
wind measurements is an extremely complicated task. In this
work, we used 5-min average values that while characterizing
the majority of the events, they may fail to do so if a jet
has very high velocities or if a significant part of its velocity
lies in the yz plane, which could mean that it traveled in the
magnetosheath for a longer period of time. All the above, along
with the determination of the rest of the classes, shown in
the presented database (Table 2) are planned to be done in
future studies.

From a physical point of view, the most interesting result is
perhaps the fact that neural networks maintained a very high
accuracy even in the absence of the directional information of
the IMF (Figures 7, 8 and Table 5). This could be interpreted
in several different ways. The most direct one is that the
neural networks take advantage of the fact that in the initial
database, the jets found in quasi-perpendicular plasma have
on average a lower velocity and density than the jets found
in the quasi-parallel magnetosheath. It is, however, not yet
fully understood if this is the result of an observational bias
or of a real physical mechanism (Raptis et al., 2019). The
observational bias here would be that for conditions of low
velocity and density, the threshold of finding a jet is easier
to be satisfied (Equation 1). This would in principle allow
jets that are found in the quasi-perpendicular plasma to occur
primarily under low velocity and density solar wind. On the
other hand, such a bias is not likely to fully explain the shown
results. The conditions under which Qperp jets are found could
originate from a physical process that makes Qperp jets more
likely to occur under specific solar wind conditions, regardless
of the IMF direction. If the latter is true, it means that an
investigation of solar wind classes (e.g., Habbal et al., 1997;
Camporeale et al., 2017) could give insight as to whether each
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jet class (Table 2) occurs under different conditions or if specific
conditions simply favor the formation of one class over the other.
A final possible explanation is that directional information of
the IMF is “hidden” in various quantities that were used for the
training of the neural network. This, in turn, would allow the
non-linear relationship generated by the network to accurately
find the correct class of the jets by utilizing such previously
undetectable information.

Neural Networks were shown to be a powerful method for
the classification of magnetosheath jets. They outperformed the
physics-based methods used in distinguishing between quasi-
parallel and quasi-perpendicular jets. The results here, also
indicate that upstream solar wind properties are sufficient to
predict the class of the jets even without including the magnetic
field vector. Last but not least, machine learning approaches, such
as this one, can be generalized and applied to several satellite
missions and space environments.
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We explore novel methods of recovering the original spectral line profiles from data
obtained by instruments that sample those profiles with an extended or multipeaked
spectral transmission profile. The techniques are tested on data obtained at high spatial
resolution from the Fast Imaging Solar Spectrograph (FISS) grating spectrograph at the
Big Bear Solar Observatory and from the Interferometric Bidimensional Spectrometer
(IBIS) instrument at the Dunn Solar Telescope. The method robustly deconvolves wide
spectral transmission profiles for fields of view sampling a variety of solar structures
(granulation, plage, and pores) with a photometrical precision of <1%. The results and
fidelity of the method are tested on data from IBIS obtained using several different
spectral resolution modes. The method, based on convolutional neural networks (CNN),
is extremely fast, performing about 105 deconvolutions per second on a CPU and
106 deconvolutions per second on NVIDIA TITAN RTX GPU for a spectrum with 40
wavelength samples. This approach is applicable for deconvolving large amounts of data
from instruments with wide spectral transmission profiles, such as the Visible Tunable
Filter (VTF) on the DKI Solar Telescope (DKIST). We also investigate its application
to future instruments by recovering spectral line profiles obtained with a theoretical
multi-peaked spectral transmission profile. We further discuss the limitations of this
deconvolutional approach through the analysis of the dimensionality of the original and
multiplexed data.

Keywords: convolutional neural networks, astronomical instrumentation, spectroscopy, deep learning,

deconvolution algorithm

1. INTRODUCTION

The finite spectral resolution of real instruments affects the inferred signal by blending the
intensities at different wavelengths. This phenomenon is problematic for (solar) spectral lines, since
the shape of a line encodes essential information about a range of heights in the solar atmosphere.
However, some instruments use a lower spectral resolution (broader spectral transmission profile)
to increase instrument throughput and reduce integration times. Such a broad spectral point-
spread function (sPSF) results fundamentally in a multiplexed sampling of the line profile, with the
information from a given portion of the original spectral profile sampled multiple times at various
positions in the sPSF (i.e., with varying relative attenuation) as the transmission function is tuned
through the line. This means that it should be possible to recover much of the underlying spectral
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information from this linear combination of samplings. The
concept of exploiting this multiplexing to recover spectral
information was originally developed by Caccin and Roberti
(1979) and later Baranyi and Ludmány (1983) in order to
reconstruct spectral profiles sampled by the relatively broad
(0.15–0.5 Å FWHM) sPSF of the tunable Universal Birefringent
Filter (UBF) (Beckers et al., 1975). The method developed, which
relied on analytical descriptions of the sPSF, was employed by
Caccin et al. (1983) and Baranyi (1986) to reconstruct H-alpha
and Na D line profiles recorded through a UBF. However,
the data at the time were recorded on photographic film
and the method was sensitive to noise and computationally
demanding. The current observational demands for high-
resolution imaging have resulted in instruments based on Fabry-
Pérot-interferometers that have sPSF’s that are again suitable for
this method.

In this work, we seek to evaluate machine-learning techniques
that can retrieve higher-resolution spectra from instrumentally
broadened spectral profiles. The effect of spectral smearing on the
line shape is shown in the left panel of Figure 1 with an example
spectrum of Ca II 8,542 Å from the FISS/BBSO (Chae et al., 2013)
spectrograph. The orange line is the spectrum as observed with
the full spectral resolution of FISS of about R∼150,000 (where
spectral resolution R is defined as the wavelength of observation
divided by the FWHMof the profile). Instead, the blue line shows
the same spectrum convolved with a Lorentzian-shaped sPSF
with R∼45,000. Given the typical shape of an absorption line, the
convolution with a broad sPSF raises the intensity around the line
core and broadens the wings of the profile.

This smearing tends to increase the similarity among different
spectral profiles, also reducing the spatial contrast and the
ability to identify small scale structures in images of the solar
atmosphere. An example of this is presented in Figure 1 (central
and right panels), with observations in the core of the Ca II 8,542
Å line from the Interferometric Bidimensional Spectrometer
(IBIS) (Cavallini, 2006) instrument at the Dunn Solar Telescope
The same FOV was observed at the instrument’s normal high
spectral resolution (R∼200,000), but also at a much lower
spectral resolution (R∼50,000), which was achieved by removing
the “narrow passband” Fabry-Pérot interferometer (FPI) from
the optical path (Reardon and Cavallini, 2008). We can see
the reduced contrast in the FOV with lower spectral resolution
which deteriorates the identification of the chromospheric
features. Hence, mitigation of the degraded spectral purity of
our observations is essential for furthering our understanding of
the Sun.

Furthermore, the compressible nature of spectral lines as
suggested by Asensio Ramos et al. (2007) could allow the
sampling and subsequent recovery of the full spectral profiles
with a lesser number of measurements by using a suitably
adopted measurement basis. This approach could improve
instrumental performance by increasing the sampling cadence
through a reduction in the number of instrumental tuning steps
needed to sample the line.

In this paper we perform experiments to test the applicability
of Convolutional Neural Networks (CNNs) to perform the
de-multiplexing of spectral line profiles in different scenarios.
We examine the photometric accuracy than can be achieved

with these techniques. Finally, we discuss the limitations
on the precision of the recovered profiles based on the
dimensionality of the data derived from maximum-likelihood
intrinsic-dimensionality estimate (Levina and Bickel, 2004).

2. A DEEP LEARNING APPROACH

We utilize deep Convolutional Neural Networks (CNNs) for
the deconvolution process as they are powerful function
approximators which are widely used for pattern recognition
and image processing (Goodfellow et al., 2016). We used an
encoder-decoder architecture because it can extract the relevant
features from noisy data (encoder) and then recreate the signal of
interest from the latent space (decoder). The architecture of the
network consists of three convolutional layers, followed by three
symmetric upsampling (“deconvolutional”) layers, followed by
two dense layers with dimensions of the output data. The
three consecutive convolutional layers (and their corresponding
upscaling layers) have [5, 10, 20] filters and used a three-pixel
kernel. Rectified Linear unit (RELU) activation function was used
for all layers with the exception of the last one where we have
used a linear activation function (He et al., 2016). Furthermore,
in section 3 we add the input layer to the last dense layer of
the network to improve the performance of the network. This
is due to the fact that in this architecture, the network has to
estimate only the corrections to the convoluted signal instead
of recreating the whole spectral line profile. However, this will
cause the core of the spectral profile to be poorly fit since the
most significant corrections are needed there (as can be seen
in left panel of Figure 1). To alleviate this issue, we introduce
a custom loss function which is a weighted mean square error.
The weights are chosen inversely proportional to the intensity of
the line profile so as to emphasize the precision of the recovered
profiles in the line core. We trained our network with the Adam
optimizer (Kingma and Ba, 2014) for about one thousand epochs
before satisfactory convergence was achieved. The network was
implemented with Keras under Tensorflow (Abadi et al., 2015)
and can be found in the public repository of the project.

3. SPECTRAL DECONVOLUTION WITH
CNN

3.1. Deconvolution of Synthetic Data From
FISS
To test the CNN approach for sPSF deconvolution, we utilized
Ca II 8,542 Å data from the FISS/BBSO (Chae et al., 2013)
instrument (R∼150,000) obtained on June 22, 2016.We created a
training set by convolving each spectral profile with a Lorentzian
sPSF with an effective R ∼ 45,000 [corresponding roughly to
the FWHM of IBIS’s FPI #2 transmission profile (Reardon and
Cavallini, 2008)]. The bottom left panel of Figure 2 shows a
sample profile from the FISS instrument in blue and convolved
with the FPI #2 profile in green. The CNN was trained with
spectra from a single raster scan 100 × 250 spatial pixels
corresponding to 16 × 20 arcseconds on the Sun centered on a
pore near disk center which took 16.5 s. Satisfactory convergence
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FIGURE 1 | (Left) Comparison of a sample line profile of the Ca II 8,542 Å line from the FISS dataset described in section 3 before (orange) and after (blue)
convolution with the sPSF (magenta); The magenta curve is the transmission profile used for convolving the orange profile to get the blue one (corresponding to FP 2
of IBIS with R∼45,000); (Center and Right) Comparison of chromospheric quiet Sun region observed with IBIS with low spectral resolution (R∼50,000) on the central
panel and with high spectral resolution (R∼200,000) in the right panel.

was accomplished in about 1,000 epochs with the relative RMS
error at the last epoch of the training reaching about 1.5× 10−4.

The performance of the CNN was tested on a different raster
(data not seen by the network previously) from FISS of the
same region of the Sun acquired 5 minutes after the scan used
for training. The line core intensity value and position was
determined as the minimum of a parabola fitted to the 7 points
around the pixel position with the lowest intensity. The core
width of the line profile was measured (following Cauzzi et al.,
2009) as the bisector width at the intensity equal to half the
difference between intensity of the line core and the intensity at a
fixed offset of 0.4 Å from the wavelength position of the line core.

The algorithm achieved 0.76% precision photometry of the
line core intensity and 2.5% precision retrieving the line core
width. These results are illustrated in the right column of
Figure 3. This example shows the robustness of the ML approach
for retrieving spectral line profiles. The algorithm takes about
7× 10−6 s for a single inversion of 40 point spectrum on an Intel
i7-4780HQ CPU and only 0.3 × 10−6 s on a NVIDIA TITAN
RTX GPU. We take into account the I/O overhead for the GPU
inversions, as we used a dataset of 16 million spectra with 40
wavelengths points (similar to the VTF full CCD readout) which
amounts to about 20% of thememory of the GPU. This method is
slightly faster than the scipy.signal.deconvolve algorithm which
uses a digital filter, but the latter cannot reproduce the wings
of the line well due to boundary effects. Compared to more
computationally intensive algorithms such as the Richardson-
Lucy (Richardson, 1972) deconvolution algorithm, we found that
our algorithm is about 100 times faster. Furthermore, it does
not require fine tuning of parameters once a suitable training set
is provided.

3.2. Deconvolution of Real Spectral Data
From IBIS
To test the method on real Fabry-Pérot data we obtained a
dataset with the IBIS instrument at the DST with high (R ∼

200,000) and low (R ∼ 50,000, similar to the FISS tests above)
spectral resolution of the same region of the Sun. We achieved
the different spectral resolutions by utilizing the fact that the IBIS
instrument consists of two Fabry-Pérot (FP) interferometers in
series, one of which has a profile three times narrower than the
other (the components of the IBIS instrument are presented in
the left panel of Figure 3). Hence, if we take the narrower FP (FP
#1) out of the optical path, we obtain observations with a lower
spectral resolution. We imaged a region near disk center of the
Sun in the Ca II 8,542 Å line, where we scanned a spectral region
of 4.4 Å centered around the line core with a spacing of 50 mÅ.
We acquired five separate exposures at each wavelength [for post-
processing MOMFBD (van Noort et al., 2005) reconstruction to
minimize seeing effects] which resulted in two datasets of the
same solar structures with different spectral resolution taken 4
minutes apart. We applied the deconvolution algorithm to the
these datasets using as the input the lower spectral resolution
data obtained with a single FP and as the expected output the
higher spectral resolution dataset obtained with both FPs. Images
from the two datasets are presented in the central and right panels
of Figure 1.

We had limited success with deconvolving this dataset as the
spectral profiles had changed significantly even over the 4 minute
interval between the datasets. To illustrate this, the central panel
of Figure 3 shows the density plot of the quasi-continuum in
the wings of the two datasets. The lack of obvious correlation
(confirmed by visual inspection of the data) shows that the
structures on the solar surface have significantly changed between
the two datasets were obtained (consistent with granular lifetimes
of∼8 minutes).

To explore the validity of this deconvolution approach, we
chose a subset of spatial pixels from the IBIS scans based on
certain criteria to identify spectral profiles that did not change
significantly between the two samplings. This step allows the
CNN to train primarily on the effects from the spectral smearing,
not the evolution of the solar atmosphere. The imposed criteria
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FIGURE 2 | (Top left) Continuum image/Line core intensity of Ca II 8542 Å of the FISS dataset used for the experiment in sections 3.1 and 4; (Bottom left) A sample
profile (coordinates [4, 21] in our datacube, green cross in top left panel) shown before convolution with wide SPSF (blue line), after the convolution (green) and after
the deconvolution with the CNN (black); (Top right) Comparison of the line core intensity recovered with the algorithm—true line profile (black line is the one-to-one
line). The approach for measuring line intensity and width are described in section 3.1. (Bottom right) Same as the previous panel but for the line core width of the Ca
II 8,542 Å line.

are that the measured Doppler velocity change1 between the two
consecutive samplings is no greater than half a resolution element
(0.6 km/s) and that the location of the pixel in the cumulative
distribution of intensity and width (relative to the other pixels
sampled at the same spectral resolution) does not change by
more than 5 percentiles. The expected vs. deconvolved core
intensities are presented in the right panel of Figure 3 (compare
to Figure 2). The scatter is larger than the FISS synthetic data
due to the effects of solar surface evolution occurring between
the acquisition of the two components of the training set, whose
correction is beyond the scope of this project. Future tests of this
method could emphasize obtaining a more nearly cotemporal
training dataset by restricting the range of the spectral scan
around line core, reducing the time separation between the
different spectral resolution scans significantly. We note that
distinct training datasets, derived at different times or even

1For symmetric line profiles, Doppler velocity does not depend on R.

using a separate instrument (e.g., a slit spectrograph), could
be applied to multiple datasets obtained with a low-spectral-
resolution FP instrument [e.g., VTF (Kentischer et al., 2012)
at the DKIST (Tritschler et al., 2016)], under the assumption
that: (a) the sPSF and straylight of each instrument is well
characterized; and (b) the same general types of solar spectral
profiles are sampled in both cases.

4. RECOVERING UNDERSAMPLED
SPECTRAL PROFILES WITH
MULTI-PEAKED SPSF

It was suggested by Asensio Ramos et al. (2007) that not all
wavelength points in a spectral line are linearly independent
and that recovery of a full spectral profile with lesser number
of measurements (in a suitably chosen basis) is possible. This
presents us with the opportunity to extract useful information
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FIGURE 3 | (Left) Transmission profile of the components of the IBIS Instrument centered around 8,542 Å. The transmission profiles of the two Fabry-Pérot etalons
are in red and blue; the 8,542 Å prefilter profile is the black line; The effective transmission profile of the instrument is presented in green; (Center) Histogram of the
wing intensity in the data sets with single FP (low R) and both FPs (high R) in the optical system; (Right) The result of the deconvolution algorithm applied to real IBIS
data (same as top right panel in Figure 2) for the line core intensity.

FIGURE 4 | (Top left) The spectral transmission profile is (magenta scaled by 9 for best representation) applied to the spectral profiles overlaid over the average Ca II
8,542 Å line. (Top right) Sample spectral profile from the multiplexing (red), the retrieved spectral profile (green) and the original spectral profile (blue); (Bottom left)

Retrieved line core intensity from this approach vs the original line core intensity; (Bottom right): Maximum Likelihood Intrinsic Dimensionality Estimate for the original
FISS data, the multiplexed FISS data and the data convolved with the wide sPSF in section 3.1.

from undersampled spectral line profiles which can result
in more efficient spectral sampling or better compression
techniques for space-based missions.

To test the ability of CNNs to recover spectral profiles
multiplexed with multipeaked transmission profiles as suggested
in Asensio Ramos and López Ariste (2010) we created
a transmission profile of a hypothetical dual Fabry-Pérot
interferometer with spacings of the etalons of 2.6 and 0.058
cm with 0.99 reflectance coatings. The resulting transmission
profile of this hypothetical instrument is presented in the top

left panel of Figure 4 overplotted on the Ca II average line
profile. The transmission profile was designed such that the
higher-spectral-resolution FP generatesmultiple peaks within the
chromospheric core of the solar spectral line while the lower-
spectral-resolution FP selects a limited range such that 80% of
the transmitted light is coming from the three central peaks. The
properties of the FPs were chosen to optimize the precision of the
deconvolutions. If the peaks of the transmission profile are too
close or too far apart, the neural network’s performance drops.
Further optimization of the FP setup can be achieved through
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exploration of the dimensionality of the data as described in the
following paragraphs.

We applied the transmission profile to the FISS data used
in section 3.1 where we downsampled the number of spectral
samples by 3 for this particular example. A sample deconvolution
is presented in the top right panel of Figure 4, which shows a
good agreement between the original and deconvolved spectral
profiles. The bottom left of Figure 4 shows the scatter of the
derived line core intensity of the multiplexed line vs. the original
line core intensity. We achieve a RMS of the retrieved line core
intensity of about 2% for this numerical setup. This is about
three times worse than the previous experiment with FISS data
in section 3.1. Our result is close to the precision obtained by
Asensio Ramos (2010) where the author uses a single FP etalon
with a prefilter.

To explain the lower precision of this multipeaked-
multiplexing deconvolution approach compared to the
deconvolution of the wide sPSF in section 3, we evaluate
the dimensionality of the data. The dimensionality quantifies
how much information is contained in the observations and can
be used to evaluate the losses due to the spectral multiplexing.
We computed the maximum likelihood intrinsic estimated
dimensionality [MLIED, introduced by Levina and Bickel (2004)
and suggested for spectroscopic use by Asensio Ramos et al.
(2007)], which is an estimate of the dimensionality of the data
based on phase density distribution. The bottom right panel of
Figure 4 shows the dimensionality estimate for the original data,
the multiplexed data, and the data convolved with a wide sPSF
vs. the number of neighboring spectra used for the computation
of the dimensionality. We find that the dimensionality of the
multipeaked-multiplexed data is lower than the data convolved
with a wide sPSF, while the original data has the highest
dimensionality. It is expected since the convolution process
introduces a loss of information. This greater loss of information
is why the multipeak approach (as modeled in this section)
results in a lower precision compared to the results those for a
single, broad sPSF.

This approach, evaluating spectral dimensionality, could be
used in future design studies of instruments as a way toward
building more efficient instruments, optimizing throughput and
preservation of spectral information. Further work is needed
to connect the dimensionality analysis (and resulting choice
of instrumental sPSF) with the accuracy and precision of the
retrieval of physical information from the spectral profiles via the
optimal choice of parameters for the FP system.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel way to perform deconvolution of
spectral data with deep learning. Our method is robust and
reliable if the sPSF of the instrument is well known a priori and
we have a reliable training set. Our method can deconvolve a
single, 40-wavelength spectrum in 0.3 microsecond on a NVIDIA
TITAN RTX GPU with a photometric precision of the line core
intensity of <1%. The speed of the proposed algorithm makes
it very effective for processing large numbers of spectra, with

further improvements possible if the deconvolution is performed
on batches of data on a GPU. With the next generation of solar
instruments (such as the VTF at the DKIST), which will produce
terabytes of spectral data per day, the speed of deconvolutional
techniques will become increasingly important.

The technique was demonstrated here only for non-polarized
spectroscopic measurements, but full spectropolarimetric
measurements (including also the spectral dependence of the
circularly and linearly polarized components of the signal)
are a key aspect of observational solar science. There is no
conceptual reason why this method could not be extended to the
measurement of the Stokes profiles, given suitable training sets.
However, since the polarized components of the signal tend to be
just a small fraction of the overall signal (a few percent or less),
any systematic errors introduced into the deconvolved profiles
might bias the recovery of the information about the magnetic
field. Future work will evaluate the application of this method to
this common usage scenario.

We successfully recovered spectral line profiles observed
with a multipeaked spectral transmission profile, as suggested
before in Asensio Ramos and López Ariste (2010), using a
theoretical dual Fabry-Pérot etalon instrument with optically
realistic parameters. Our numerical experiments showed that a
careful choice in the separation of the peaks of the transmission
profile allows the retrieval of the spectral line profiles with a
photometric precision of about ∼ 2% while requiring 3 times
fewer spectral samples. This could be used in the design of
future Fabry-Pérot based instruments that would require fewer
measurements (higher cadence) and potentially have higher
transmission (shorter exposure times).

Future work will include obtaining a more suitable dataset
for improving the results from the experiment with IBIS data
in section 3.2. In order to apply this deconvolutional approach
to real observations in a routine manner we will need training
sets consisting of low and high resolution data of a variety of
regions on the Sun. One approach would be to obtain nearly
simultaneous observations of the same region of the Sun with
low and high spectral resolution instruments at comparable
spatial resolution. Another feasible way to create the training
dataset is by numerically convolving data from a high-spectral-
resolution instrument with the known sPSF of the low-spectral-
resolution instrument to generate simulated observations Both
approaches have advantages and disadvantages but provide
alternative approaches to real world applications of this method.
We therefore hope that future instruments will consider the
approaches described here and in Asensio Ramos and López
Ariste (2010) to leverage the advantages of machine learning
and compressive sensing to more efficiently retrieve information
from the solar spectrum and further our understanding of
the Sun.
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Analyzing AIA Flare Observations
Using Convolutional Neural Networks
Teri Love*, Thomas Neukirch and Clare E. Parnell

School of Mathematics and Statistics, University of St Andrews, St. Andrews, United Kingdom

In order to efficiently analyse the vast amount of data generated by solar space missions

and ground-based instruments, modern machine learning techniques such as decision

trees, support vector machines (SVMs) and neural networks can be very useful. In

this paper we present initial results from using a convolutional neural network (CNN)

to analyse observations from the Atmospheric Imaging Assembly (AIA) in the 1,600Å

wavelength. The data is pre-processed to locate flaring regions where flare ribbons are

visible in the observations. The CNN is created and trained to automatically analyse the

shape and position of the flare ribbons, by identifying whether each image belongs into

one of four classes: two-ribbon flare, compact/circular ribbon flare, limb flare, or quiet

Sun, with the final class acting as a control for any data included in the training or test

sets where flaring regions are not present. The network created can classify flare ribbon

observations into any of the four classes with a final accuracy of 94%. Initial results show

that most of the images are correctly classified with the compact flare class being the only

class where accuracy drops below 90% and some observations are wrongly classified

as belonging to the limb class.

Keywords: solar flares, ribbons, machine learning, classification, CNNs

1. INTRODUCTION

The steady improvement of technology and instrumentation applied to solar observations has led
to the generation of vast amounts of data, for example the Solar Dynamics Observatory (SDO)
collects approximately 1.5 terabytes of data everyday (Pesnell et al., 2012). The analysis of these data
products can be made much more efficient by the use of modern machine learning techniques such
as decision trees, support vector machines (SVMs) and neural networks. In this paper we describe
some initial results we obtain using a convolutional neural network (CNN) to analyse SDO data.
Basic applications of CNNs to solar physics data classification is shown in e.g., Kucuk et al., 2017;
Armstrong and Fletcher, 2019, however CNNs have also started being applied to the prediction of
solar events, in particular flares and CMEs, that can affect space weather as considered, for example,
by Bobra and Couvidat (2015), Nagem et al. (2018), and Fang et al. (2019).

In this paper we focus on solar flares and in particular on the classification of the morphology
of flares displaying visible flare ribbons (e.g., Kurokawa, 1989; Fletcher and Hudson, 2001).
Throughout this paper, flare observations from the Atmospheric Imaging Assembly (AIA) Lemen
et al. (2012) onboard SDO were used, specifically AIA 1,600Å. These observations clearly show the
flare ribbons as they appear on the solar surface.

The locations and shapes of flare ribbons are thought to be closely linked to the geometry and
topology of the solarmagnetic field in the flaring region. For example, the ribbon shapes and lengths
have been connected to the presence of separatrix surfaces and quasi-separatrix layers (QSLs) (e.g.,

37
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Aulanier et al., 2000; Savcheva et al., 2015; Janvier et al., 2016;
Hou et al., 2019). The ribbon shapes found and analyzed
throughout these studies are mostly two-ribbon flares with two
“J” shaped ribbons, however it is known that other ribbon shapes
can also occur with circular or compact flare ribbons also being
observed. One motivation of the work presented in this paper is
to create a tool that allows the classification of large data sets to
generate a catalog of flares associated with their ribbons, which
could automatically be detected and classified. The catalog could
then, for example, be used in connection with magnetic field
models to obtain better statistics on the possible correlation of
ribbon geometry and magnetic field structure.

This paper considers all C, M, and X class flares (see e.g.,
Fletcher et al., 2011, for a definition of GOES classes) that
occurred between November 2012 and December 2014 and
attempts to classify the shape of all observable flare ribbons. To
do this a CNN consisting of two hidden layers was created and
trained to predict four classes of ribbons and flares. These four
classes are two-ribbon flares, limb flares and circular/compact
ribbon flares, with the fourth class acting as a control class to
process quiet Sun images that may also be processed through
the CNN. The network was trained on a dataset containing 540
images (including validation images), and was tested using an
unseen dataset containing 430 images.

The paper is structured as follows. In section 2, we describe the
design and training of our CNN. The preparation of the data used
in the paper is discussed in section 3, our results are presented
in section 4 and we conclude with a discussion of our findings
in section 5.

2. METHODS

Convolutional neural networks (CNNs) are a type of machine
learning technique commonly used to find patterns in data and
classify them. Instead of being given explicit instructions or
mathematical functions to work they use patterns and trends in
the data, initially found through a “training data” set. This data
set should be the set of inputs for the CNN—usually a subset of
the data that one would initially want to classify or detect. This
allows the network to “learn” the patterns and trends such that it
can independently classify unknown data.

2.1. CNN Design
To create a basic CNN there must be at least 3 layers; an input
layer, a hidden layer and an output layer (e.g., Cun et al., 1990;
Hinton et al., 2012; LeCun et al., 2015; Szegedy et al., 2015;
Krizhevsky et al., 2017). The input layer is the first initial network
layer which accesses the data arrays inputted into the model
which are to be trained upon. The data input has usually been
through some pre-processing before being used by the network,
the pre-processing used on the AIA data is discussed in section 3.

The hidden layer is a convolutional layer where instead of
applying a layer using matrix multiplication, as in general neural
networks, a layer using a mathematical convolution is used
instead. Although this is the basic set-up for a CNN, most CNNs
have multiple hidden layers before having a fully connected
output layer. The different types of hidden layers that can be used

are: convolutional, pooling, dropout (Hinton et al., 2012) and
fully connected layers. The final output layers are usually built
from fully connected (dense) layers. These layers take the output
from the hidden layers and process it such that for each data file
a pre-defined class is predicted by the network.

A convolutional layer performs an image convolution of the
original image data using a kernel to produce a feature map.
These kernels can be any size but are commonly chosen to be
of size 3 × 3. The stride of the kernel can also be set in the
convolutional layers indicating how many pixels it should skip
before applying the kernel to the input—this has been set as 1 for
the CNN here such that the kernel has been applied to every pixel
in the input. If larger features were to be classified larger strides
could be used.

The kernel moves over every point in the input data,
producing a single value for each 3 × 3 region by summing the
result of a matrix multiplication. The value produced is then
placed into a feature map which is passed onto the next layer.
As the size of the feature map will be smaller than the input, the
feature map is padded with zeros to ensure the resulting data
is the same size as the original input. After the feature map is
produced the convolutional layer has an associated activation
function which produces non-linear outputs for each layer and
determines what signal will be passed onto the next layer in
the network. A common activation function used is the rectified
linear unit (ReLU, Nair and Hinton, 2010), which is defined by;

f (x) = max(0, x). (1)

Other activation functions such as linear, exponential or softmax
(see Equation 3) can also be implemented, however for the
convolutional layers in our model only ReLU is used, as the
function can be calculated and updated quickly with gradients
remaining high (close to 1), with ReLU also avoiding the
vanishing gradient problem.

Although convolutional layers make up the majority of the
hidden layers within a CNN, other hidden layers are also
important to avoid over-training of the network. Implemented
after convolutional layers, pooling layers are commonly used
to deal with this. Pooling layers help to reduce over-fitting of
data and reduce the number of parameters produced throughout
training—which causes the CNN to learn faster. The most
common type of pooling is max pooling which takes the
maximum value in each window and places them in a new and
smaller feature map. The window size for the max pooling layers
can be varied similarly to the convolutional kernels, however
throughout this paper all max pooling layers had a kernel of size
2 × 2. Although the feature map size is being reduced, the max
pooling layers will keep the most important data and pass it onto
the next training steps.

For the CNN created to analyse the flare ribbons, two
convolutional layers were implemented after the input layer.
These layers were both followed by max-pooling layers with a
stride of 2. Both layers were implemented using ReLU activation
functions, however the first convolutional layer had 32 nodes
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FIGURE 1 | Layout of CNN created, including two convolutional and max pooling layers and two fully connected layers. The first convolutional layer has 32 channels

followed by max pooling layer and the second convolutional layer has 64 channels followed by a max pooling layer. The fully connected layer has 128 nodes and then

the final fully connected layer has four nodes which correspond to each of the classes—Quiet Sun, two-ribbon flares, limb flares, and circular/compact flares.

TABLE 1 | Details pf each CNN layer with the number of filters, size of kernels, and activation functions used shown.

Layer Number of nodes Kernel size (weights) Stride Activation function

Convolution 32 3× 3 1 ReLU

Max Pooling / 2× 2 2 /

Convolution 64 3× 3 1 ReLU

Max Pooling / 2× 2 2 /

Fully Connected 128 61 ∗ 61 ∗ 64× 128 / ReLU

Fully Connected (Output) 4 128× 4 / Softmax

whereas the second layer was implemented with 64 nodes before
being passed onto fully connected layers.

Once the convolutional and pooling layers have been
implemented as hidden layers, the final feature map output is
passed onto output layers which allows the data to be classified.
These classification layers are made up of fully connected (FC)
layers—similar to those in a normal neural network. FC layers
only accept one-dimensional data and so the data must be
flattened before being passed into them. The neurons in the FC
layers have access to all activations in previous layers—this allows
them to classify the inputs. The final fully connected layer should
have the number of classes as its units, with each output node
representing a class.

An additional output layer that can be implemented before a
FC layer is a dropout layer. This layer is implemented before a FC
layer to indicate that random neurons should be ignored in the
next layer i.e., they have dropped out of the training algorithm
for the current propagation. Hence if a FC layer is indicated to
have 10 neurons, a random set of these will be ignored when
training (see e.g., Hinton et al., 2012, for further information on
dropout layers).

The CNN was created and trained using Keras Chollet et al.
(2015), with the network layout shown in Figure 1. This shows

the two convolutional and pooling layers previously discussed,
with a dropout layer implemented before the data is passed onto
two FC layers, with 128 and 4 nodes, respectively. A breakdown
of all parameters used in each layer are shown in Table 1.

2.2. Model Training
The previous section described the basic design of the CNN used
throughout this paper. Here we will describe the training process
carried out on the model.

When data is passed through the network, at each layer a
loss function is used to update the model weights. This loss
function carries out the process known as back-propagation
(Hecht-Nielson, 1989), where differentiation takes place and the
network learns the optimal classifications for each training image.
The loss function chosen for our model is known as categorical
cross entropy. This cross entropy loss is calculated as follows;

CEP = −

M
∑

c=1

y(xi)log(p(xi)), (2)

whereM is the number of classes (hereM = 4) and y is the binary
indicator (0 or 1) such that if y = 1 the observation belongs to the
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class and y = 0 if it does not. Finally p is the probability that the
observation belongs to a class, c.

The probability, p(xi), of each class is calculated using a
softmax distribution such that;

p(xi) =
exi

∑

k e
xi
. (3)

This function should tend toward 1 if an observation belongs to
a single class and tends to 0 for the other 3 classes to indicate that
the network does not recognize it as belonging to those classes.
The resultant classification is selected by choosing the largest
probability that lies above p(xi) = 0.5.

The network is trained on 540 1,600Å AIA images. The
data processing is discussed in section 3, with each image used
containing a single flare, unless it belongs to the quiet Sun class.
The four classes are as follows:

1. Quiet Sun

No brightenings present on the surface, hence should give
an indication of general background values (It should be noted
that none of these observations are taken on the limb).

2. Two-ribbon Flare

Two flare ribbons must be clearly defined in the
observations. However, the shape does not matter here e.g.,
if there are 2 semi circular ribbons the flare is classified as a
two-ribbon flare and not a circular flare.

3. Limb Flares

The solar limb must be clearly observed in this snapshot
observation with a flare brightening being visible. The limb
class was chosen to start at a specific distance from the solar
limb to reduce confusion with other classes. This will be
discussed further in section 4.

4. Circular Flare Ribbons
Here a circular ribbon shape of any size must be observed.

It should be ideally a singular ribbon so as not to be
confused with the two-ribbon flare class. Compact flares were
also included here, they appear in the data as round “dot”
like shapes.

Classes were divided almost evenly to stop observational bias
from entering the model during training and although there is a
slight class imbalance it is not large enough to affect the accuracy
of the model. From the training set used, 40% of the data was
used as a validation data set with the remaining 60% used to train
the model. The learning rate chosen was 10−4 with a batch size
of 32 selected for both training and validation to allow the use
of mini-batch gradient descent throughout training. Although
larger batch sizes would speed up the training process, to get
better generalization of the model a smaller batch size was picked
to improve the model accuracy.

Figure 2 shows the results from training and testing the
model. Figures 2A,B show the results from training, with the
training and validation accuracy plotted in Figure 2A. It is
shown that the network was trained only for 10 epochs to
prevent over-fitting. The training accuracy was 98% and the
validation accuracy was slightly lower at 94%, these are excellent
accuracies for the number of epochs used. Figure 2B shows the

training and validation loss for the same number of epochs.
Both losses fall quite sharply and then start to level off, these
could be improved with a larger data set which could be
run for more epochs. The loss leveling out indicates that
training should be stopped to prevent over-fitting and further
improvements can be made from creating larger data sets. To
further validate the training process and its outputs, k-fold
cross validation was implemented, similar to that implemented
by Bobra and Couvidat (2015). The loss and accuracy values
from five-fold cross validation are shown in Figure 2E, with
the mean accuracy across the five-folds being approximately
92.9 ± 2.98%.

3. DATA PREPARATION

To create a neural network that can analyse the flare ribbons
observed, a robust data set of flaring regions and their
ribbons was created. The data set must be created from
observations from the same wavelength and instrument
to ensure the CNN will not train on varying parameters
such as wavelength or smaller features that would perhaps
only be found by using a certain instrument. Due to
this the data has been collected from the AIA on board
the Solar Dynamics Observatory (SDO) at the 1,600Å
wavelength. This wavelength has been chosen as it observes
the upper photosphere and transition region allowing for a
clearer view of the flare ribbons than those observed in the
EUV wavelengths.

To find dates where flares were observed on the solar disk,
the flare ribbon database created by Kazachenko et al. (2017)
was used. From this database all flares that occurred between
November 2012 and December 2014 were included in the
training set, this included all C, M, and X class flares. To create a
training set all of the flares included must be labeled as belonging
to a class that is defined for the CNN. Flares where ribbons
were not well-defined were removed from the data set. This
resulted in a training set containing 540 image samples with 160
quiet Sun regions, 160 two-ribbon flares, 95 limb flares, and 125
circular flares.

When creating the training and test sets, flares have been
chosen such that they should clearly fall into a particular
class. To be able to classify each image the following process
was implemented.

For each flare, the observation was chosen at peak flare
time according to the Heliophysics Event Knowledgebase (HEK)
(Hurlburt et al., 2012). It should be noted that this means the
CNN does not take into account the evolution of the flare
ribbons from the start to the end of the flare, although this is
something that could possibly be included in further work. For
some observations there is more than one flare present and in
this case both regions are processed and classified separately,
although they occurred on the solar disc simultaneously.

Once the flare position has been located, a bounding box
is created around the central flare position. For each flare this
creates a bounding box of size 500× 500× 1 pixels. This step was
included to reduce the size of the data the neural network would
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FIGURE 2 | (A) Training accuracies with both validation and training accuracies shown over 10 epochs; (B) Training and validation loss shown over 10 epochs; panel

(C) shows the confusion matrix created on the test set, with the diagonal showing the correctly identified ribbon types; panel (D) shows the receiver operating

characteristic (ROC) curve which has been modified to include a curve for each class and the micro and macro average curves; panel (E) shows the results for loss

and accuracy whilst using k-fold cross validation, where k = 5.

have to process due to large data sets increasing the number of
training parameters quickly. The original AIA level 1 data files
are 4, 096 × 4, 096 × 1 in size, hence this step allows the data

input size to be drastically reduced. This code works in a similar
way to that of an object detector creating bounding boxes around
objects to be classified.
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FIGURE 3 | Model output on previously unseen images in the test set. All of the data should belong to the limb flare class, however confusion is seen between limb

flares and compact flares.

Once located each image is labeled manually according to
the classes previously discussed; the quiet sun, two-ribbon flares,
circular/compact ribbon flares, or limb flares. Once one of these
has been chosen, the label is entered into an array ready for
training the CNN.

Once each image has been classified the final steps of the data
preparation is to ensure all ROIs were of a suitable size for the
CNN to process, hence the data was down-sampled so each image
was of size 250× 250× 1. Hence the final set of input data would
be of size n× 250× 250× 1, where n is the total number of ROI
samples contained within the training data.

The final step for the data preparation was to normalize the
data slightly before training, this will ensure the best results when
training the CNN and so all of the ROIs were normalized using
their z-scores as follows:

normalized =
data−mean(data)

standard deviation(data)
.

Once all of the above processes had been carried out on the
observations the CNN could begin training as discussed in
section 2.2.

4. RESULTS

Once training was completed the network was tested using a
previously unseen data set. This test set contained 430 images
consisting of 160 quiet sun images, 160 two-ribbon flares, 47 limb
flares, and 63 circular ribbon. Note that some flares included in
the test data may have occurred in the same active regions as
images included in the training data set. The test outputs are
shown using a confusion matrix and ROC curves as shown in
Figures 2C,D.

A confusion matrix is a good way to visualize model
performance on test data that has already been labeled. It
summarizes the number of correct and incorrect classifications
and shows them by plotting the predicted classes against the true
classes of the data. The confusion matrix shown in Figure 2C

indicates the percentage of data correctly classified by the
diagonal. It shows that for the quiet Sun, two-ribbons and limb
classes approximately 95% of all test data was correctly classified,
however for compact flares only 88% of the data is being
correctly classified with approximately 11% being incorrectly
classified as limb flares. This may be due to the distortion of
ribbons on the limb, making them look almost compact or
circular in shape. The 11% being incorrectly classified could
possibly be corrected by training the model further on a larger
data set.
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Figure 2D shows multiple receiver operating characteristic
(ROC) curves. A ROC curve is plotted as the true positive rate
(TPR) against the false positive rate (FPR) at various thresholds.
The area under the ROC curve (AUC) indicates the performance
of the model as a classifier. The closer to 1 the AUC is indicates
how well the model works, with 0 indicating that the model is
not classifying anything correctly. hence the further to the left
of the diagonal the ROC curve lies the better the classifier. The
ROC curves in Figure 2D show how well the model works for
each class, with high AUC values found—all approximately 99%.

To further investigate the model outputs for the limb class,
three different images from the test set were considered. Figure 3
shows these three flares and their probabilities of belonging to
each class. The first flare is clearly identified as a limb flare
with the flaring region sitting just away from the limb. For
the second flare it is shown that the model is confused, with
very little difference in the confidence that the flare is either a
compact or limb flare, both with approximately 50% probability
that the flare could belong to either class. For the final limb flare
considered, the model is almost 100% confident that the flare
belongs to the compact/circular ribbon class. This may be due
to the flare being slightly further from the limb and so instead of
picking up the limb region and the flare, the network has only
identified the flare which looks to belong to the circular ribbon
class. To rectify this problem in further work some changes to
the network and its input could be applied, this could include
the inclusion of spatial co-ordinates as one of the inputs which
could help with the confusion about which images belong to the
limb class.

5. DISCUSSION

In this paper, we have demonstrated a basic application
of CNNs to solar image data. In particular, the model
classifies the shapes of solar flare ribbons that are visible
in 1,600Å AIA observations. The four classes chosen (Quiet
Sun, two-ribbons, Limb flares, Compact/Circular ribbons)
were picked due to there being obvious differences between
each class, hence more complicated classes could have been
chosen but may have effected the overall performance of
the CNN. Each of the classes chosen when tested were all
found to be well-defined with most of the images being
correctly classified by the network, with an overall accuracy of
approximately 94%.

The network created is a shallow CNN with only two
convolutional layers, unlike deeper networks used on solar image
data (Kucuk et al., 2017; Armstrong and Fletcher, 2019). Both of
these papers tried to classify solar events such as flares, coronal
holes and sunspots, with varying instruments used. However,
even with such a shallow CNN as used here, the accuracy
of the overall model is still good at approximately 96%. Our
model currently focuses on flare ribbon data and Analyzing their
positions and shapes. This model and data could be compared
to a similar setup used to analyse the MNIST dataset containing
variations of the numbers 0 to 9 (e.g., Lecun et al., 1998).

However, to generalize the model further training could be
carried out on features such as sunspots or prominences which
can also be viewed in the current wavelength, although to do
this a deeper network would be needed to extract finer features
in the data. Varying the image wavelengths for the AIA data or
using a different instrument such as SECCHI EUVI observations
from STEREO (Solar Terrestrial Relations Observatory) or EIS
EUV observations from Hinode could also make the model
more robust.

If it was chosen to implement more layers in the
network, a CNN such as the VGG network could be
used (Simonyan and Zisserman, 2014). These networks
would take longer to train, particularly on larger data sets
containing more images and classes and would require
more epochs to properly train the network. As well as
increasing the number of convolutional layers used, other
layers or parameters could also be modified to alter the
model speed and performance. The parameters discussed
in Table 1 could all be altered to affect the model speed
and accuracy.

The main result from this paper shows that even with a
shallow CNN we can get excellent accuracy in the dataset
that we considered here. Such a result is encouraging and
shows basic CNNs can be very useful tools in analyzing large
datasets. The model created in this paper can be applied to other
data pipelines and can be used to locate many more features
from Solar observations obtained from both space and ground-
based instruments.
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Recent improvements in data collection volume from planetary and space physics

missions have allowed the application of novel data science techniques. The Cassini

mission for example collected over 600 gigabytes of scientific data from 2004 to 2017.

This represents a surge of data on the Saturn system. In comparison, the previous

mission to Saturn, Voyager over 20 years earlier, had onboard a ∼70 kB 8-track

storage ability. Machine learning can help scientists work with data on this larger scale.

Unlike many applications of machine learning, a primary use in planetary space physics

applications is to infer behavior about the system itself. This raises three concerns: first,

the performance of the machine learning model, second, the need for interpretable

applications to answer scientific questions, and third, how characteristics of spacecraft

data change these applications. In comparison to these concerns, uses of “black box”

or un-interpretable machine learning methods tend toward evaluations of performance

only either ignoring the underlying physical process or, less often, providing misleading

explanations for it. The present work uses Cassini data as a case study as these

data are similar to space physics and planetary missions at Earth and other solar

system objects. We build off a previous effort applying a semi-supervised physics-based

classification of plasma instabilities in Saturn’s magnetic environment, or magnetosphere.

We then use this previous effort in comparison to other machine learning classifiers with

varying data size access, and physical information access. We show that incorporating

knowledge of these orbiting spacecraft data characteristics improves the performance

and interpretability of machine leaning methods, which is essential for deriving scientific

meaning. Building on these findings, we present a framework on incorporating physics

knowledge into machine learning problems targeting semi-supervised classification for

space physics data in planetary environments. These findings present a path forward

for incorporating physical knowledge into space physics and planetary mission data

analyses for scientific discovery.

Keywords: planetary science, automated event detection, space physics, Saturn, physics-informed machine

learning, feature engineering, domain knowledge, interpretable machine learning
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1. INTRODUCTION

Planetary space physics is a young field for large-scale data
collection. At Saturn for example, it was only in 2004 that the first
Earth launched object orbited this planet (Cassini) and landed
on Titan (Huygens). After arriving Cassini collected data about
Saturn and its near-space environment for 13 years, resulting
in 635 GB of scientific data (NASA Jet Propulsion Laboratory,
2017a). To put this into perspective, the Voyager I mission
which flew by Saturn in 1980 had onboard ∼70 kB of memory
total (NASAHeadquarters, 1980). The Cassinimission represents
the first large-scale data collection of Saturn. This enabled the
field of planetary science to apply statistics to large-scale data
sizes, including machine learning, to the most detailed spatio-
temporally resolved dataset of the planet and its environment.

This surge of data is not unique to Saturn science. In planetary
science broadly, Mars in 2020 has eight active missions roving
along the surface and orbiting (Planetary Society, 2020). The
Mars Reconnaissance Orbiter alone has already collected over
300 TB of data (NASA Jet Propulsion Laboratory, 2017b).
It is commonly accepted that upcoming missions will face
similar drastic advances in the collection of scientific data.
Traditionally planetary science has employed core scientific
methods such as remote observation and theoretical modeling.
With the new availability of sampled environments provided by
these missions, methods in machine learning offer significant
potential advantages. Applying machine learning in planetary
space physics differs from other common applications. Cassini’s
data are characteristic of other planetary and space physics
missions like the Magnetospheric Multiscale Mission (MMS)
at Earth and the Juno mission to Jupiter. The plasma and
magnetic field data collected by these missions are from orbiting
spacecraft. This conflates spatial and temporal phenomena.
This is a shared characteristic with the broader field of
geoscience which often represents complex systems undergoing
significant spatio-temporal changes with limitations on quality
and resolution (Karpatne et al., 2019).

The main use of these data in planetary science is to
advance fundamental scientific theories. This requires the ability
to infer meaning from applications of statistical methods.
Unlike similar missions at Earth, machine learning for space
physics data at Saturn has limited direct application to the
prediction of space weather. A central interest in space weather
prediction is to give lead-time information for operational
purposes. As a result, the prediction accuracy inmachine learning
applications in space weather prediction is seen as paramount..
In comparison, at Saturn, machine learning applications require
highly interpretable and explainable techniques to investigate
scientific questions (Ebert-Uphoff et al., 2019). How to improve
machine learning generally from an interpretability standpoint
is itself an active research area in domain applications of
machine learning (e.g., Molnar, 2019). Within this work we
specifically focus on evaluating and implementing interpretable
machine learning. Interpretable machine learning usually relies
on domain knowledge and is therefore domain specific, but it
can be extended to generally refer to models with functional
forms simple enough for humans to understand how they make

predictions, such as logical rules or additive factors (Rudin,
2019). Complexity depends in part on what constitutes common
knowledge within a domain. Scientists are trained to interpret
different models depending on their field. As a result models
will range in perceived interpretability across fields. While the
final models must be relatively simple in order for humans
to understand their decision process, the algorithms which
produce optimal interpretable models often require solving
computationally hard problems. Importantly, despite widespread
myths about performance, interpretable models can often be
designed to perform as well as un-interpretable or “black box”
models (Rudin, 2019).

In planetary science it’s important to discern the workings
of a model in order to understand the implications for the
workings of physical systems. Interpretability is not the same
as explainability: explainability refers to any attempt to explain
how a model makes decisions, typically this is done afterwards
and without reference to the model’s internal workings.
Interpretability, however, refers to whether the inner workings
of the model, its actual decision process, can be observed and
understood (Rudin, 2019). Within this work we are concerned
with interpretability in order to gain scientifically actionable
results from applied machine learning. The dual challenges
of spatio-temporal data and interpretability are compounded
for planetary orbiting spacecraft. Complications for orbiting
spacecraft can range from rare opportunities for observation,
and engineering constraints on spacecraft data transmission. A
main interest in this work is to begin to ask: how can machine
learning be used within these constraints to answer fundamental
scientific questions?

Scientists have approached interpretable machine learning for
physics in two ways. First, they have added known physical
constraints and relationships into modeling. Within the space
weather prediction community, such integration has shown
promise in improving the performance of deep learning models
over models that do not account for the physics of systems
(Swiger et al., 2020). Several fields including biology have argued
for an equal value of domain knowledge and machine learning
techniques for that reason (see discussion within Coveney et al.,
2016). These discussions have culminated in several reviews
for scientific fields on the integration of machine learning for
data rich discovery (Butler et al., 2018; Bergen et al., 2019).
Second, scientists have long tried to use machine learning for the
discovery of physical laws from machine learning (e.g., Kokar,
1986). Recently, this work has turned to deep learning tools (e.g.,
Ren et al., 2018; Raissi et al., 2019; Iten et al., 2020). However,
as Rudin (2019) points out, explanations for the patterns deep
learning tools find are often inaccurate and at worst, totally
unrelated to both the model and the world it models. These
two approaches lie on a continuum between valuing increasing
data and model freedom, or incorporating physical insight and
model constraint.

In Figure 1, we present a diagram for considering physical
theory and machine learning within the context of theoretical
constraints. The examples at one end of the continuum represent
applications of traditional space physics from global theory
driven modeling, while those at the other end of the continuum
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FIGURE 1 | Framework for incorporating physical understanding in machine learning. This figure diagrams a continuum moving from purely theory bound, toward

model free. The figure in model bound is from Jia et al. (2012), a magnetohydrodynamics simulation of Saturn’s magnetosphere. The figure in model free is from Chen

et al. (2019), deep learning feature correlations for solar flare precursor identification. This figure contains subfigures from American Geophysical Union (AGU) journals.

AGU does not request permission in use for republication in academic works but we do point readers toward the associated AGU works for citation and figures in Jia

et al. (2012) and Chen et al. (2019).

focus on data driven approaches to space weather and solar flare
prediction. The model adjusted center presented below takes
advantage of data, but limits or constrains the application by
merging with domain understanding. Our work is in the middle
of the continuum. We leverage domain knowledge about space
physics, while also aiming to learn more about the physical
system we study. Importantly, we use an interpretable machine
learning approach so that we can be more confident in drawing
physical insights from the model.

We present comparisons between a range of data sizes and
physics incorporation to classify unique plasma transport events
around Saturn using the Cassini dataset. As a characteristic
data set of space physics and planetary environments, this
provides valuable insights toward future implementation of
automated detection methods for space physics and machine
learning. We focus on three primary guiding axes in this
work to address implementations of machine learning. First,
we address the performance and accuracy of the application.
Second, we consider how to increase interpretability of machine
learning applications for planetary space physics. Third, we tackle
how characteristics of spacecraft data change considerations of
machine learning applications. All of these issues are essential
to consider in applications of machine learning to planetary and
space physics data for scientific interpretation.

To investigate these questions and provide a path toward
application of machine learning to planetary space physics

datasets, we compare and contrast physics-based and non-
physics based machine learning applications. In section 2, we
discuss the previous development of a physics-based semi-
supervised classification from Azari et al. (2018) for the Saturn
system within the context of common characteristics of orbiting
spacecraft data. We then provide an outline for general physics-
informed machine learning for automated detection with space
physics datasets in section 3. Section 4 describes the machine
learning model set up and datasets that we use to compare and
contrast physics-based and non-physics based event detection.
Section 5 details the implementation of logistic regression and
random forest classification models as compared to this physics-
based algorithm with the context of physics-informed or model
adjusted machine learning. Section 6 then concludes with paths
forward in applications of machine learning for scientific insight
in planetary space physics.

2. BACKGROUND: SATURN’S SPACE
ENVIRONMENT AND DATA

Saturn’s near space environment where the magnetic field exerts
influence on particles, or magnetosphere, ranges from the planet’s
upper atmosphere to far from the planet itself. On the dayside
the magnetosphere stretches to an average distance of 25 Saturn
radii (RS) with a dynamic range between 17 and 29 RS (Arridge
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et al., 2011) (1 RS = 60,268 km). This distance is dependent on a
balance between the internal dynamics of the Saturn system and
the Sun’s influence from the solar wind. Within this environment
a complex system of interaction between a dense disk of neutrals
and plasma sourced from a moon of Saturn, Enceladus, interacts
with high-energy, less dense plasma from the outer reaches of the
magnetosphere (see Figure 2).

This interaction, called interchange, is most similar to
Rayleigh-Taylor instabilities and results in the injection of high-
energy plasma toward the planet. In Figure 2, a system of
interchange is detailed with a characteristic Cassini orbit cutting
through the interchanging region. The red box in this figure
is presented as an illustrative slice through the type of data
obtained to characterize interchange. One of the major questions
in magnetospheric studies is how mass, plasma, and magnetic
flux moves around planets. At the gas giant planets of Saturn
and Jupiter, interchange is thought to be playing a fundamental
role in system-wide transport by bringing in energetic material
to subsequently form the energetic populations of the inner
magnetosphere, and to transport plasma outwards from the
moons. Until Cassini, Saturn never had a spacecraft able to
develop statistics based on large-scale data sizes to study this
mass transport system.

The major scientific question surrounding studying these
interchange injections is what role these injections are playing
in the magnetosphere for transport, energization, and loss of

FIGURE 2 | Diagram of interchange injection in the Saturn system. The

illustrated orbit is an equatorial Cassini orbit from 2005. Injections are denoted

by the pale orange material interspersed with the water sourced plasma from

Enceladus. Along the example orbit the red box denotes a hypothetical

segment of Cassini data discussed in Figure 3. The purpose of developing an

automated event detection is to identify the pale orange material traveling

toward the planet. This figure is produced in consultation with, and copyright

permissions from Falconieri Visuals.

plasma. To answer this question, it’s essential to understand
where these events are occurring and the dependency of these
events on other factors in the system, such as influence from other
plasma transport processes and spatio-temporal location. From
Cassini’s data, several surveys of interchange had been pursued
by manual classification, but these surveys disagreed on both the
identification of events and resulting conclusions (Chen and Hill,
2008; Chen et al., 2010; DeJong et al., 2010; Müller et al., 2010;
Kennelly et al., 2013; Lai et al., 2016). The main science relevant
goal was to create a standardized, and automated, method to
identify interchange injections. This list needed to be physically
justified to allow for subsequent conclusions and comparisons.

In section 2.1, we provide background on the Cassini dataset
and summarize the previous development of a physics-based
detection method in section 2.2. We then provide a generalized
framework in the following section 3 for incorporating physical
understanding into machine learning with the development of
this previous physics-based method as an example. Subsequent
sections investigate comparisons of this previous physics-based
effort to other automated identification methods.

2.1. Cassini High-Energy Ion Dataset
Cassini has onboard multiple plasma and wave sensors which
are in various ways sensitive to interchange injections. However,
none of the previous surveys focused on high-energy ions, which
are the primary particle species transported inwards during
injections. In Figure 3, a series of injections are shown in high-
energy (3–220 keV) ions (H+) and magnetic field datasets.
This figure shows three large injections between 0400 and
0600 UTC followed by a smaller injection after 0700 most
noticeable in the magnetic field data. It is evident from these
examples that using different sensors onboard Cassini will result
in different identification methods for interchange injections.
This was a primary driver in a standardized identification
method for these events. The top two panels detail the
Cassini Magnetospheric Imaging Instrument: Charge Energy
Mass Spectrometer (CHEMS) dataset while the last contains
the Cassini magnetometer magnetic field data (Dougherty et al.,
2004; Krimigis et al., 2004).

The CHEMS instrument onboard Cassini collected multiple
species of ion data and finds the intensity of incoming particles
in the keV range of data. This datastream can be thought of
as unique energy channels, each with a spacecraft position and
time dependence. In Figure 3b, three unique energy channels are
shown from the overall data in the top panel, to illustrate the
nature of these high-energy data. This type of spatio-temporal
data is often a characteristic of space physics missions (see Baker
et al., 2016, for a review of MMS’ data products).

2.2. Development of Physics-Based
Detection Method
When applying automated or machine learning methods,
such data discussed above provides unique challenges and
characteristics including: rare events (class imbalances), spatio-
temporal sampling, heterogeneity in space and time, extreme
high-dimensionality, and missing or uncertain data (Karpatne
et al., 2019). These challenges are in addition to desired
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FIGURE 3 | Series of interchange injections characterized by high-energy ions. (a) Details an energy time spectrogram of the intensity from the Cassini CHEMS

sensor. The color black denotes flux either below the colorbar limit or missing data. The three lines are placed at the energy channels for the plot in (b). (b) Shows the

same CHEMS data, but split out into three characteristic energies over the entire CHEMS range. (c) Shows the magnetic field data in KRTP (Kronocentric body-fixed,

J2000 spherical coordinates).

interpretability. It’s essential that an interpretable model is used
to learn substantive information about this application. One
common use of machine learning is to input a large number of
variables and/or highly granular raw data (e.g., individual sensor
readings or image pixel values) into amodel, letting the algorithm
sort out relationships among them. Such models are inherently
“black boxes” because the number and granularity of variables,
not to mention complicated recursive relationships among them,
makes it difficult or impossible for humans to interpret (Rudin,
2019). One solution to this issue is to reduce dimensionality to
fewer, more meaningful-to-humans inputs. But at the same time,
the model needs to be informative, and the inputs need to be
meaningful. Incorporating domain knowledge and then letting
the model determine their effectiveness in the system of study is
a potential framework to consider.

For this reason, when developing a detection method to
standardize, characterize, and subsequently build off the detected

list, a physics-based method was chosen to address these unique
challenges. This previous effort is discussed in Azari et al.
(2018) and the resultant dataset is located on the University
of Michigan’s Deep Blue Data hub (Azari, 2018). We build on
this effort in the present work to provide a new evaluation of
alternative solutions for data-driven methods.

To develop this physics-based method, the common problems
in space physics data described in Karpatne et al. (2019) were
considered and addressed to develop a single dimension array
(S). S was then used in a style most similar to a single
dimensional logistic regression to find the optimum value for
detecting interchange events. This classification was standardized
in terms of event severity, as well as physically bounded in
definition of events. As a result, it was able to be used to
build up a physical understanding of the high-energy dynamics
around Saturn’s magnetosphere including: to estimate scale sizes
(Azari et al., 2018) and to demonstrate the influence of tail
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injections as compared to the ionosphere (Azari et al., 2019).
Following machine learning practices, S was designed through
cross validation. It was created to perform best at detecting
events in a training dataset and then evaluated on a separate test
dataset. These sets contain manually identified events and were
developed from 10% of the dataset (representing 7,375/68,090
time samples). Training and test dataset selection and limiting
spatial selection is of critical importance in spatio-temporal
varying datasets. Our particular selection considerations are
discussed in following sections. The training set was used to
optimize the final form of S . The test dataset was used to compare
performance and prevent over fitting. The same test and training
datasets are used in the following sections.

S was developed in Azari et al. (2018) to provide a
single-dimension parameter which separated out the multiple
dependencies of energy range and space while dealing with
common challenges in space physics and planetary datasets. S is
calculated from Sr by removing the radial dependence through
normalization. In mathematical form, Sr can be written as:

Sr =

14
∑

e=0

w(Ze,r−C) (1)

S can be thought of as a single number which describes the
intensification of particle flux over a normalized background. In
other words, S can be calculated as: S = (Sr − S̄r)/σSr . In which
S̄r is the average radially dependent average and σSr the radially
dependent standard deviation. These calculations allow for S to
be used across the entire radial and energy range for optimization
in units of standard deviation. The variables w and C represent
weighting values which are optimized for and discussed in the
following section. The notations of e and r represent energy
channel and radial value. Ze,r represents a normalized intensity
value observed by CHEMS. This is similar to the calculation of S
from Sr .

Additional details on the development, and rationale behind,
S are described in section 3 as a specific example for a
general framework for inclusion of physical information into
machine learning.

The final form of S depends non-linearly on the intensity
values of the CHEMS sensor and radial distance. In Figure 4, we
show the dependence of the finalized S value over the test dataset
for the intensity at a single energy value of 8.7 keV and over all
radial distances. Within this figure the events in the test dataset
are denoted with dark pink dots. From Figures 4d,e, it’s evident
that S disambiguates events from underlying distributions, for
example in Figure 4b. By creating S it was possible to create
a single summary statistic which separated events from a
background population.

The strategies pursued in developing S are most applicable for
semi-supervised event detection with space physics data. They
can, however, prove a useful guide in starting to incorporate
physical knowledge into other applications in heliophysics
and space physics. Within the previous effort we used the
model optimization process from machine learning to guide
a physics incorporated human effort. This was a solution to

incorporating the computational methods employed in machine
learning optimization to a human-built model. The end result
was optimized in a similar fashion as machine learning models
but through manual effort to ensure physical information
preservation. Moving from this effort, we now present a
framework for expanding the style of integrating human effort
and physical-information into other applications for space
physics data.

Below we provide a framework for incorporating physical-
understanding into machine learning. In each strategy we discuss
common issues in space physics data, using a similar phraseology
as Karpatne et al. (2019). In addition to characteristics in the
structure of geoscience data, we also add interpretability as a
necessary condition. For space physics and planetary data, the
challenges within Karpatne et al. (2019) are often compounded
and where appropriate we note potential overlap. After each
strategy, we provide a walk-through of the development of S
employed in Azari et al. (2018).

3. FRAMEWORK FOR PHYSICS
INCORPORATION INTO MACHINE
LEARNING

This framework focuses on interpretable semi-supervised event
detection with space physics data from orbiters for the end goal
of scientific analysis. Depending on the problem posed certain
solutions could be undesirable. For a similarly detailed discussion
on creating a machine learning workflow applied to problems in
space weather (see Camporeale, 2019). The framework presented
here can be thought of as a directed application of feature
engineering for space physics problems, mostly for requiring
interpretability. In general the strategies below provide a context
for careful consideration of the nature of domain application
which is essential for applications of machine learning models to
gather scientific insights.

1. Limit to region of interest. Orbiting missions often range
over many environments and limiting focus to regions of
interest can assist in automated detection by increasing the
likelihood of detection of events.

Issues: heterogeneity in space and time, rare events
(class imbalance)

Example: The Cassini dataset represents a wide range of
sampled environments, the majority of which do not exhibit
interchange. In addition, the system itself undergoes seasonal
cycles, changing in time, presenting a challenge to any long-
ranging spatial or temporal automated detection. The original
work targeted a specific radial region between 5 and 12 RS in
the equatorial plane. This region is known to be sensitive to
interchange from previous studies. Similarly, each season of
Saturn was treated to a separate calculation of S, allowing for
potential temporal changes to the detection of interchange.

2. Careful consideration of training and test datasets. Due
to the orbiting nature of spacecraft, ensuring randomness in
training and test datasets is usually not sufficient to create a
representative set of data across space and time. For event
studies, considerations of independence for training and test

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 July 2020 | Volume 7 | Article 3650

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Azari et al. Machine Learning: Planetary Space Physics

FIGURE 4 | Distributions of S parameter developed in Azari et al. (2018). This figure represents a subset of multiple dependencies of S from a kernel density

estimation (kde). The data used in this figure is from the test dataset of the data. (a,c,f) Represent a single dimension kde of a CHEMS energy channel intensity,

spacecraft location in radial distance, and of S. (b,d,e) Represent two dimensional distributions. This figure was developed using the Seaborn statistics package’s kde

function (Waskom et al., 2020).

dataset while containing prior and post-event data (at times
critical for event identification) are important. This is similar
to recent strides in activity recognition studies with spatio-
temporal data, in which training set considerations drastically
affect the accuracy of activity classification (e.g., Lockhart and
Weiss, 2014a,b).

Issues: heterogeneity in space and time, spatio-temporal
data, rare events, small sample sizes

Example: While the test and training set represent 10% of
the data for the worked example, the 10% was taken such that
it covered the widest range of azimuthal and radial values,
while still being continuous in time and containing a range
of events.

3. Normalize and/or transform. Many space environments
have a spatio-temporal dependent background. Normalizing
separately to spatial or other variables will address these
dependencies and can prove advantageous if these are not
critical to the problem.

Issues: heterogeneity in space and time, spatio-temporal
sampling, multi-dimensional data

Example: As seen Figure 4b flux values depend on radial
distance and energy value. Similarly, flux exhibits log scaling,
where values can range over multiple powers of 10 in the
span of minutes to hours as seen in Figure 3. To handle the
wide range of values from the CHEMS sensor, each separate
energy channel’s intensity was first converted into logarithmic
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space before then being normalized by subtracting off the
mean and dividing by its standard deviation. Effectively,
this transforms the range of intensities to a near-normal
distribution dependent on radial distance and energy value
(see Ze,r in Equation 1). A similar treatment is performed
on creating the final S from Sr . This is important due to
the commonality of normalcy assumptions in which models
can assume normally distributed data on the same scale
across inputs.

4. Incorporate physical calculations. Space physics data can
come with hundreds if not thousands of features. While
many machine learning techniques are designed for just this
kind of data, they do not typically yield results that are
amenable to human interpretation and scientific insight into
the processes of physical systems. They express a complex
array of relationships among raw measurements that do little
to help humans build theory or understanding. Summary
statistics like summing over multiple variables, or taking
integrals, can preserve a large amount of information from the
raw data for the algorithmwhile leaving scientists with smaller
sets of relationships between more meaningful variables to
interpret. For other fields rich in noisy and incomplete time-
series data with a longer history of automated detection
methods, summary statistic transformations have been a
valuable way of handling this type of data for improved
performance (e.g., Lockhart and Weiss, 2014a).

Issues: interpretability, multi-dimensional data,
missing data

Example: To addressmissing values . building up summary
statistics, for example through summing over multiple energy
channels can help. This creates an particle pressure like
calculation (see sum in Equation 1). Particle pressure itself
is not used to identify events, as the ability to tune the exact
parameters was desired in the identification of injections and
developing S proved more reliable. This allows for the lower
14 energy channels to contribute without removing entire
timepoints from the calculation where partial data is missing
and also increasing interpretability of the end result . Only the
lower 14 channels are used as the higher energy channels also
show long duration background from earlier events drifting in
the Saturn environment (see Figure 3).

5. Compare with alternate metrics. Dependent on your use
case, the trade-off costs between false positives and false
negatives could be different from the default settings in
standard machine learning tools. Investigating alternate
metrics of model performance and accuracy are useful toward
increasing interpretability.

Issues: interpretability, rare events (class imbalance)
Example: In the training and test datasets only 2.4% of the

data exist in an event state. This proves to be challenging for
then finding optimum detection due to the amount of false
positives and usage for later analysis. In Equation (1) scaling
factors of w and C are introduced. These scale factors are
chosen by optimizing for the best performance of the Heidke
Skill Score (HSS) (Heidke, 1926). HSS is more commonly
used in weather forecasting than in machine learning penalty
calculations but has shown potential for handling rare events
(see Manzato, 2005, for a discussion of HSS). In section

5, we evaluate how HSS performs as compared to other
regularization schemes (final values: w = 10, C = 2).

6. Compare definitions of events, consider grounding in

physical calculations. Much of the purpose of developing
an automated detection is to standardize event definitions.
Developing a list of events then can become tricky.

Issues: lack of ground truth, interpretability, rare events
(class imbalance)

Example: At this point in the calculation of S, there is
a single number, in units of standard deviations, for each
time point. This calculation so far, takes in the flux of the
lowest 14 energy channels of CHEMS before normalizing
and combining these values to return a single value at each
time. This number is higher (in the useful units of standard
deviation) for higher flux intensifications and lower for flux
drop outs. The final question becomes at which S value should
an event be considered real or false.

Based on the training dataset, 0.9 standard deviations
above the mean of S is the optimum parameter for peak HSS
performance. As discussed in section 2.2 0.9 was determined
through optimizing against the training set. Since S is in terms
of standard deviations, additional higher thresholds can be
implemented to sub-classify events into more or less severe
cases with a physical meaning (ranking). This allowed for the
application as a definition task with a physical justification.

7. Investigate a range of machine learning models and

datasets. Incorporating a range of machine learning models,
from the most simple to the most complex in addition
to varying datasets, can offer insights in the nature of the
underlying physical data.

Issues: interpretability
Example: In developing S, alternative feature inclusions

were considered. S was settled on for its grounding in physical
meaning. A secondary major consideration was its accuracy
compared to other machine learning applications. In the
following sections we discuss additional models.

As similarly discussed within Camporeale (2019), the desire
to incorporate physical calculations comes from an interest
in using machine learning for knowledge discovery. In the
use cases of interest here, both the needs for accuracy and
interpretability are essential. These presented strategies are
designed to improve the potential performance for semi-
supervised classification problems and the interpretability for
subsequent physical understanding. Creating the final form of S
was a labor intensive process to create and then optimize. Due
to S’s non-linear dependence on the features shown in Figure 4,
this was a non-trivial task. Similarly expanding S into additional
dimensions is challenging. This is where the machine learning
infrastructure offers significant advantages as compared to the
previous effort. In the following sections 4 and 5 we discuss
alternative solutions to identification of interchange.

4. METHODS: MODELS AND
EXPERIMENTAL SETUP

In the previous physics-based approach, events were defined
through intensifications of H+ only, allowing for comparisons
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to other surveys and advancement of the understanding of
events. This was a non-intuitive approach as common logic in
application of machine learning algorithms suggests that greater
data sizes will result in additional accuracy given a well-posed
problem. To explore both the potential for higher accuracy
as well as interpretability of the application, we compare the
performance of two distinct machine learning models with access
to varying data set sizes. Below we discuss models we use in this
comparison effort.

4.1. Models
Two commonly used machine learning models for supervised
classification are logistic regression and random forest
classification. Both are considered standard classification models
when applying machine learning and performing comparative
studies (Couronné et al., 2018). While both models can be
interpreted by humans, the additive functional form of logistic
regression and the broad literature on interpreting it make it
highly interpretable. Random Forest models consist of easy
to interpret logical rules, but the large numbers and weighted
combinations of those rules mean it is less interpretable (Rudin,
2019). The original physics-based algorithm was designed
with a logistic regression method in mind, but with significant
adjustment. Comparisons to this model are directly informative
as a result. Logistic regression categorizes for binary decisions
by fitting a logistic form, or a sigmoid. Logistic regression is
a simple, but powerful, method toward predicting categorical
outcomes from complex datasets. The basis of logistic regression
is associated with progress made in the nineteenth century in
studying chemical reactions, before becoming popularized in the
1940s by Berkson (1944) (see Cramer, 2002, for a review). When
implemented and optimized using domain knowledge, highly
interpretable models, like logistic regression, generally perform
as well as less interpretable models and even deep learning
approaches (Rudin, 2019).

Random forest in comparison classifies by building up
collection of decision trees trained on random subsets of the
input variables. The predictions of all trees are then combined
in an ensemble to develop the final prediction. Similar to
logistic regression, the method of random forest has been built
over time with the most modern development associated with
Breiman (2001). While logistic regression requires researchers
to specify the functional form of relationships among variables,
random forests add complexity toward classification decisions,
by allowing for arbitrary, unspecified non-linear dependencies
between features, also known as model inputs.

The models used within this chapter are from the scikit-learn
machine learning package in Python (Pedregosa et al., 2011).
Within the logistic regression the L2 (least squares) regularization
penalty is applied. Within the random forest a grid search with 5-
fold cross-validation is used to find the optimum depth between
2 and 5, while the number of trees is kept at 50. These search
parameters are chosen to constrain the random forest within the
perspective of the noisy nature of the CHEMS dataset and to
prevent over fitting. Alterations to this tuning parameter scheme
are not seen to alter the results in the following section. Events
are relatively rare in the data (2.4% of the data in the training

and test datasets corresponds with an event), and this can bias
the fit of models. As such, unless otherwise noted, we use class
weighting to adjust the importance of data from each class (event
and non-event) inversely proportional to its frequency so that the
classes exert balanced influence during model fitting. This results
in events weighted higher more important than non-events due
to their rarity. Performance is shown in section 5 against the test
dataset defined above.

4.2. Dataset Definitions and Sizes
To explore the performance of logistic regression and random
forest, four distinct subsets of the Cassini plasma and magnetic
field data are utilized ranging in data complexity and size
as follows:

1. S\C (Spacecraft) Location and Magnetic Field
6 features, 68,090 time samples

2. S\C Location, Magnetic Field, and H+ flux (3–220 keV)
38 features, 68,090 time samples

3. Low Energy H+ flux (3–22 keV)
14 features, 68,090 time samples

4. Azari et al. (2018) (S Value)
1 feature, 68,090 time samples

These subsets are chosen to represent additional features,
complexity, and physics inclusion. All of these subsets should be
sensitive in varying amounts toward identification of interchange
injections as evidenced in Figures 3, 4. The first two datasets
are a comparison of increasing features that should assist in
identification of interchange injection. The third dataset includes
less features, but is the originator most similar to the derived
parameter from Azari et al. (2018). The final dataset contains the
single summary statistic array of the S parameter. In the following
result section, these four dataset segments are used to evaluate the
two models.

5. RESULTS AND DISCUSSION

We are interested in evaluating how the former physics-based
S parameter performs with other commonly used subsets
of space physics data. Our primary goal in this section is to
investigate the trade off between the performance of these more
traditional models and their interpretability, and therefore
usage for scientific analyses. We complete this through applying
supervised classification models and evaluate the ease of
interpretability and their relative performance.

5.1. Supervised Logistic Regression
Classification
In Figure 5, the ROC curve of a logistic regression for all four
subsets of Cassini data is presented. ROC or receiver operating
characteristics, are a common method employed for visualizing
the efficacy of classification methods (see Fawcett, 2006, for
a generalized review of ROC analysis). ROC curves in this
particular example are created by sweeping over a series of
classification thresholds. Ideally a perfect classifier will result
in a curve that carves a path nearest to the upper left corner.
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FIGURE 5 | Logistic regression ROC diagram for Cassini data subsets. The

gray dots represent the cut-off for L2 regularization for logistic regression. The

orange dot represents the peak HSS value, used for optimization in Azari et al.

(2018). The distinct curves represent separate ROC curves for each subset of

data described in section 4. The Azari et al. (2018) subset denotes the usage

of S.

Area under the curve, or AUC is presented as a metric to
understand the overall performance of each logistic regression
evaluation. AUC has the ideal parameters of ranging between 0
and 1, with 0.5 representative of random guessing, 1 representing
perfect classification, and 0 as the inverse of truth. AUC can
be thought of as an average accuracy of a model and isn’t
sensitive to class-balance and thresholds. ROC curves present the
ratios of true positive rate (y-axis) to false positive rate (x-axis).
This can be thought of as the trade off for classifiers between
events successfully identified (y-axis), and events unsuccessfully
identified (x-axis).

The purple curve represents the logistic regression with only
the derived physics-based S as an input . This is rather redundant
with optimizing by hand as it’s a single variable space. Instead
the purple curve is provided as a benchmark against the identical
performance and curves found within Azari et al. (2018). From
this figure, this single summary statistic (S) outperforms all other
subsets of Cassini data with an AUC approaching near 1.0 (0.97).
This is evidence for the current case, that incorporating physical
information, even at the expense of greater dataset size improved
the performance of certain machine learning applications.

Following this it is not the largest dataset that has the second
best performance. Instead, the red curve which contains only
the low energy H+ intensities shows the best performance of
the non physics-adjusted datasets. The magnetic field is a useful
parameter for the prediction of interchange as demonstrated in
Figure 3, but the form of the logistic regression is unable to
use this information successfully. This is possibly due to the
higher time resolution needed for interchange identification from
magnetic field data and any future identification work needs
to focus on adjusting the magnetic field inputs and models.
The current dataset is processed such that each time point

in the CHEMS set is matched with a single magnetic field
vector. Normally within interchange analyses, the magnetic field
information is of a much higher resolution. It is likely if a study
pursued solely magnetic field data of higher time resolution
and processed these data to represent pre and post event states
dependent on time, the performance of the magnetic field data
would be improved. It’s evident from Figure 4, that S exhibits
non-linear behavior from the distribution of S on intensity,
distance, and energy. Similarly the magnetic field values likely
range over a far range due to the background values, that the
linear dependency requirements of logistic regression are unable
to use this information. Without the flux data especially (the
blue curve) logistic regression is unable to predict interchange as
compared to the previous physics-based parameter.

The AUC doesn’t capture the entire picture for our interest.
While it shows the performance of the algorithm, it contains
information for multiple final classifications of events. The gray
dots on Figure 5 demonstrates the chosen cut-point for L2
regularization for class weighted events, or the final classification
decision for an optimal trade between real events and false events.
Within the previous section, the Heidke Skill Score or HSS was
discussed as the final threshold separating events from non-
events (denoted as the orange dot on Figure 5). Deciding the
threshold of what separates an injection event from a non-event is
critical for the implementation of statistical analysis on the results
especially in this case, in which non-events outnumber events at
a ratio of∼50:1. One solution would be to rank events, in similar
style of the previous work of S with categories of events (Azari
et al., 2018).

5.2. Rare Event Considerations
We now move to evaluating the previous HSS optimization to
the logistic regression L2 regulation for both class weighted and
non-class weighted models. In Figure 6, the final forms of the
weighted and non-weighted logistic regression for the trivial
1 dimensional array case of the S parameter are shown. The
thresholds for the final decisions and for HSS are shown as
vertical lines (the orange dashed line represents HSS). Due to
the extreme imbalance of non-events to events, implementing
class weighting results in large shifts between what is considered
an injection event or not. We suggest that the class imbalance
inherent in this problem is the main rationale between the
differences of HSS and other regularizations. Between the two
decision points of the blue and purple vertical lines there are 46
real events, but 202 non-events. This means that if using class-
weighting in logistic regression for this problem, 202 non-events
would be classified as events. Non-intuitively, for this application
where the final events are used to understand the Saturn system,
it’s advantageous to use a non-class weighted model, as it limits
the non-events. However the un-class-weighted model results in
removing many real events as well as can be seen in the bulk
of the pink events (real events) being misclassified by the purple
vertical line.

The Heidke Skill Score provides an in-between choice of
these by providing a higher threshold than the class-weighted,
and lower than non-class weighted. The logistic regression for
the S parameter shown here is easily intuited since the X-axis
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FIGURE 6 | Finalized logistic regression against test dataset. The gray dots

represent the test dataset values of non-events, and the pink of events. The

scatter in the dots around 0 and 1 are for aesthetic reasons and do not

represent offset values. This figure contains logistic regressions performed on

the physics-based parameter from Azari et al. (2018). The blue curve

represents a class-weighted model and the purple without class weights.

Similarly the dashed lines for blue and purple represent the finalized cut-off

points for the class-weighted and un-weighted models. The orange dashed

line represents the HSS optimization used within Azari et al. (2018). The x-axis

is in logarithmic scale to demonstrate the range of the values, S itself does

span both negative and positive values. From being presented in logarithmic

space this gives the false illusion that the blue curve does not approach zero.

represents only one variable. The power of machine learning
however is most advantageous in multiple dimensions. HSS has
shown to be a more applicable metric for rare events. Other skill
scores, such as the True Skill Score have also shown promise
in machine learning applications to space physics (Bobra and
Couvidat, 2015). Skill score metrics themselves have a long and
rich history in space physics before more recent applications
in machine learning with interest originating in space weather
prediction (see Morley, 2020, for an overarching review of space
weather prediction). We also direct the reader to discussions of
metrics for physical model and machine learning prediction of
space weather (Liemohn et al., 2018; Camporeale, 2019). How can
these traditional metrics for space applications be integrated into
the regularization schemes? Future work in machine learning
applications should consider shared developments between
the physical sciences communities usage of skill scores and
regularization of models.

5.3. Supervised Random Forest
Classification
In Figure 7, the ROC diagram for the same subsets of data
but for a random forest model are presented. In this case,
unlike the logistic regression, other subsets of data can reproduce
the same performance (or AUC) as the derived parameter.

FIGURE 7 | Random forest ROC diagram for Cassini data subsets. The gray

dots represent the final optimization location for random forest classification.

The orange dot represents the peak HSS value, used for optimization in Azari

et al. (2018). The distinct curves represent separate ROC curves for each

subset of data described in section 4. The Azari et al. (2018) subset denotes

the usage of S.

All curves, with the exception of the spacecraft location and
magnetic field, quickly approach or slightly surpass the AUC of
the physics-based parameter at 0.97, with small differences in
the performance of the low energy H+ flux (0.98) and of the
combined spacecraft location, all flux, and magnetic field (0.97).
The model form of random forest allows for non-linear behavior
in the intensity and magnetic field data to find injection events.
Increasing the features then helps in the case of random forest
whereas it did not for logistic regression. Similar to the logistic
regression, HSS results in a different ratio between true positive
rate and false positive rate than the random forest model cut-off
point with the gray dots.

Comparing back to logistic regression, even with a relatively
complex model such as random forest, the AUC of the best
ROC curves are near-identical. Given that S is an array, this is
not that surprising. In both cases the physics-derived parameter
outperforms or is effectively equivalent to all other data subsets,
including those with access to a much richer information
set and therefore more complex model. For the application
of interpretability for then gathering scientific conclusions,
logistic regression is advantageous as it presents a much simpler
model. However, random forest, has shown ability to mimic the
underlying physics adjustments through selection of datasets.

Within these results, it’s evident that the S parameter performs
as well as simplistic machine learning models. Given that S is
also grounded in a physics-based definition dependent on solely
a variable flux background, this offers advantages to subsequent
usage in scientific results. However, many of the adjustments
in creating S can be implemented into other space physics
data, and integrated into machine learning as evidenced here.
In the description of the development of S, several challenges
in geoscience data from the framework discussed in Karpatne
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et al. (2019), and CHEMS specific solutions were presented.
From the above evaluation, it is evident that applications of
machine learning are useful to the task of automated event
detection from flux data, but with diminishing interpretability.
A potential solution to both enhancing the interpretability,
similar to the S based parameter, but also incorporating the
advantages of machine learning is presented in Figure 1. Rather
than consider incorporation of physics-based information as
deleterious to the implementation of machine learning, we
have found that including this information simplifies the
application, enhances the interpretability, and improves the
overall performance.

6. CONCLUSION AND FUTURE
DIRECTIONS

Planetary space physics has reached a data volume capacity at
which implementation of statistics including machine learning
is a natural extension of scientific investigation. Within this
work we addressed how machine learning can be used within
the constraints of common characteristics of space physics
data to investigate scientific questions. Care should be taken
when applying automated methods to planetary science data
due to the unique challenges in spatio-temporal nature. Such
challenges have been broadly discussed for geoscience data
by Karpatne et al. (2019), but until now limited attention in
comparison to other fields has been given toward reviews of
planetary data.

Within this work we have posed three framing concerns
for applications of machine learning to planetary data. First,
it’s important to consider the performance and accuracy of the
application. Second, it’s necessary to increase interpretability of
machine learning applications for planetary space physics. Third,
it’s essential to consider how the underlying issue characteristics
of spacecraft data changes applications of machine learning. We
argue that by including physics-based information into machine
learning models, all three concerns of these applications can
be addressed.

For certain machine learning models the performance
can be enhanced but importantly in this application, the
interpretability improves along with handling of characteristic
data challenges. To reach this conclusion we presented a
framework for incorporating physical information into machine
learning. This framework targeted considerations for increasing
interpretability and addressing aspects of spacecraft data into
machine learning with space physics data. In particular,
it addresses challenges such as the spatio-temporal nature
of orbiting spacecraft, and other common geoscience data
challenges (see Karpatne et al., 2019). After which we then cross-
compared a previous physics-based method developed using the
strategies in the framework to less physics-informed but feature
rich datasets.

The physics-based semi-supervised classification method was
built on high-energy flux data from the Cassini spacecraft
to Saturn (see Azari et al., 2018). In investigating the

accuracy of machine learning applications, we demonstrated
this physics-based approach outperformed automated event
detection for simple logistic regression models. It was found
that traditional regularization through L2 penalties both under,
and overestimated ideal cutoff points for final event classification
(depending on class weighting). Instead, metricsmore commonly
used in weather prediction, such as the Heidke Skill Score,
showed promise in class imbalance problems. This is similar
to work demonstrating the applicability of True Skill Score in
heliophysics applications (Bobra and Couvidat, 2015). Future
work should consider building on the rich history of prediction
metrics in the space physics community for shared development
between the physical sciences usage of skill scores and in
regularization of models.

While logistic regression is a more interpretable model,
random forest proved that with the addition of more and
lower level variables from the Cassini mission, the model could
approximate our physics-based logistic model successfully. In
this case physics-informed or model adjusted machine learning,
can each the same performance but with different levels of
interpretability, thus different ability to draw further conclusions
about implications of the results. The logistic approach provides
a coefficient and threshold for a meaningful physical quantity,
S, effectively the normalized intensification of particle flux. The
random forest approach can provide an “importance” score for
S or show a large number of conjunction rules involving it, but
neither is as useful for human analysts. A forest model using
a large number of raw variables instead of a small number of
more meaningful ones like S is even harder for humans to
make sense of. Deep neural networks, as multi-layered webs of
weighted many-to-many relationships, are even less informative
for human analysts interested in understanding the workings
of the model and physical system. Further, findings that the
interpretable model performs as well or better than other
approaches demonstrate that, despite the widespread myth to the
contrary, there is no inherent tradeoff between performance and
interpretability (Rudin, 2019). For example, the ability to further
split and define identified events based on their flux intensity
using S gives the ability to address further scientific questions
as to the fundamental mechanisms behind the interchange
instability itself. The simplistic model of logistic regression which
results in the same performance as random forest is highly
advantageous for the current task.

The framework and comparison presented here opens up
avenues toward consideration of applying machine learning
to answer planetary and space physics questions. In the
future, cross-disciplinary work would greatly advance the
state of these applications. Particularly within the context of
interpretability toward scientific conclusions through physics-
informed, or model adjusted machine learning. The inclusion
of planetary science and space physics domain knowledge in
application of data science allows for the pursuit of fundamental
questions. We have found that incorporating physics-based
information increases the interpretability, and improves the
overall performance of machine learning applications for
scientific insight.
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Dynamic Time Warping as a New
Evaluation for Dst Forecast With
Machine Learning
Brecht Laperre*, Jorge Amaya and Giovanni Lapenta

Department of Mathematics, Centre for Mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium

Models based on neural networks and machine learning are seeing a rise in popularity
in space physics. In particular, the forecasting of geomagnetic indices with neural
network models is becoming a popular field of study. These models are evaluated with
metrics such as the root-mean-square error (RMSE) and Pearson correlation coefficient.
However, these classical metrics sometimes fail to capture crucial behavior. To show
where the classical metrics are lacking, we trained a neural network, using a long
short-term memory network, to make a forecast of the disturbance storm time index
at origin time t with a forecasting horizon of 1 up to 6 h, trained on OMNIWeb data.
Inspection of the model’s results with the correlation coefficient and RMSE indicated a
performance comparable to the latest publications. However, visual inspection showed
that the predictions made by the neural network were behaving similarly to the
persistence model. In this work, a new method is proposed to measure whether two
time series are shifted in time with respect to each other, such as the persistence
model output versus the observation. The new measure, based on Dynamical Time
Warping, is capable of identifying results made by the persistence model and shows
promising results in confirming the visual observations of the neural network’s output.
Finally, different methodologies for training the neural network are explored in order to
remove the persistence behavior from the results.

Keywords: space weather, forecast, Dst, machine learning, DTW, evaluation, LSTM, storm

1. INTRODUCTION

The disturbance storm time (Dst) index is calculated from the measurements of four ground-based
magnetometer stations, located close to the equator and spread evenly across the Earth (Sugiura and
Kamei, 1991). The index, introduced by Sugiura (1963), is the average of the magnetic disturbance
of the Earth’s magnetic field horizontal component. Most often, the Dst is used as a measure of
the strength of the axi-symmetric magnetosphere currents, capturing the dynamics of the inner
magnetospheric current system. The most important types of these dynamics are geomagnetic
storms. The Dst index can be used to identify the three phases of these storms: the initial phase,
the main phase and the recovery phase.

Geomagnetic storms are large perturbations in the Earth’s magnetic field. They are caused by
the coupling between solar wind and magnetosphere, in particular the southward component
of the interplanetary magnetic field (IMF) (Burton et al., 1975). When magnetic reconnection
happens between the IMF and the Earth’s magnetosphere, an influx of energetic particles from
the solar wind into the magnetosphere occurs. This increases the intensity of the Earth’s ring
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current, which is reflected by the Dst index (Akasofu, 1981;
Gonzalez et al., 1994). In the case of very intense geomagnetic
storms, satellites and power grids can be damaged, as well as
extensive pipeline systems such as those used to transport gas,
oil and water (Kasinskii et al., 2007). The most prominent
examples of intense geomagnetic storms are the Carrington
event and the 2003 Halloween storm. From these historical
storms, it is clear that there will be global economical losses
and damages when another intense geomagnetic storm would
hit Earth (Kappernman and Albertson, 1990; Pulkkinen et al.,
2005; Council, 2008). Consequently, the ability to timely forecast
geomagnetic storms has been a topic of interest in geophysics for
the past three decades.

Because of how the Dst index is linked to geomagnetic
storms, forecasting the Dst is the most direct way of forecasting
geomagnetic storms. Burton et al. (1975) was one of the first to
construct a model of the Dst. Their linear data-driven model
consisted of a driver and decay term. These terms were estimated
using the available data of the solar wind velocity and density,
and the southward component of the IMF. Others have tested
and improved the initial model by modifying the driver and
decay term (see e.g., Klimas et al., 1998; Temerin and Li, 2002,
2006), with Ji et al. (2012) providing an overview of these
models. However, a linear coupling between solar wind and
magnetosphere is inadequate for predicting large geomagnetic
disturbances, and non-linear systems are required to fully capture
the behavior of the Dst (Iyemori, 1990).

A popular approach to modeling this non-linearity is through
neural networks. Feed-forward neural networks were used first
for this application. Lundstedt and Wintoft (1994) was one of
the first to use this type of neural network, using as input the
Bz component of the IMF and the velocity and density of the
solar wind to forecast the Dst 1 h in advance. Later, Stepanova
and Pérez (2000) used the previous Dst values as input to predict
the Dst 3 h in advance. Bala and Reiff (2012) was able to
forecast the Dst 6 h in advance by using the Boyle index as their
most important input (Boyle et al., 1997). Lazzús et al. (2017)
used a feed-forward neural network, but used particle-swarm
optimization instead of backpropagation (Eberhart and Kennedy,
1995) to train their model. Using the past Dst as an input, they
were able to provide a forecast of the Dst up to 6 h in advance,
showing the benefit of this type of training algorithm.

With the introduction of the recurrent neural network, in
particular the Elman recurrent network (Elman, 1990), new
forecast models where introduced. Wu and Lundstedt (1997)
used an Elman recurrent network to provide a forecast of the Dst
index up to 6 h in advance. Similarly, many more used an Elman
recurrent network and input from the solar wind to forecast the
Dst index (see e.g., Barkhatov et al., 2001; Lundstedt et al., 2002;
Pallocchia et al., 2006; Watanabe et al., 2002). More recently,
Gruet et al. (2018) used a long short-term memory (LSTM)
neural network instead, and combined it with Gaussian processes
to provide both a regressive and a probabilistic forecast of the Dst
for 1–6 h in advance (Hochreiter and Schmidhuber, 1997).

However, some authors detected problems with the forecast of
the Dst. Stepanova and Pérez (2000) used a feed-forward neural
network and previous Dst values to provide a forecast up to 3

h in advance. More advanced forecasts had shown a time shift
between the observed and predicted Dst, forecasting geomagnetic
storms too late. This effect was also detected by Wintoft and Wik
(2018), who evaluated forecasts of the Kp and Dst with their
neural network up to 3 h in advance. Their Kp forecast had a
time shift between forecast and observation for 2 and 3 h in
advance, while Dst forecast of the main phase of geomagnetic
storms showed time shifts at already 1 h in advance.

This paper aims to highlight this time shift problem. Section
2 sets up an experiment where a recurrent neural network is
trained to forecast the Dst 6 h in advance. It compares our model
with those in the literature, and concludes by highlighting the
time shift observed in geomagnetic storm forecasts. Then, in
section 3 a newmeasure is introduced that is capable of accurately
measuring this time shift between observation and prediction.
Finally, section 4 looks further into why this time shift behavior
is observed, and potential solutions.

2. THE EXPERIMENT

This section concerns the details of the experiment, together with
the discussion of the results that lead to the discovery of the
problems. The initial problem was to train a neural network to
forecast the values of the Dst-index at times t + l, l ≥ 1, while
having information up to time t.

The layout is the following: first the data used to train the
neural network model is explained. Second, the processing of the
data is discussed. Then the method of evaluation is described.
Afterwards, the neural network model is described in detail.
Finally, the results of the model are analyzed and discussed.

The following terminology will be used throughout this
section. Box et al. (2015) defines Dst(t + l) as a forecast at origin
t with a lead time l. We will differ from this terminology, instead
naming the Dst(t + l) a forecast at forecasting horizon t + l.

2.1. The Data
The data used to train and test the neural network model were
obtained from the NASA/GSFC’s OMNI database (King and
Papitashvili, 2005). From the database, the hourly averages of the
solar wind velocityVsw and density ρsw, the IMF z-component Bz
andmagnitude |B|, together with the geomagnetic Dst index were
extracted. These physical quantities will be referred to as ‘features’
throughout the paper. In particular, these features were measured
between 00:00, 14 January 2001 and 23:00, 31 December 2016,
and the full extracted data set contains a total of 139,944 entries.

2.2. Preprocessing the Data
The preprocessing of the data is done with the following steps.
The data are first split into a training, test, and validation set, to
prevent information bias through validation leakage. Next, each
set is scaled and normalized using scaling parameters measured
from the training set. Finally invalid measurements are removed
from each of the sets by using a sliding window. Each step of this
procedure is discussed in more details below.

Before assigning entries to one of the data sets, the data are
split into monthly samples. The first sample corresponds to the
month January of 2001, the final sample to the month December
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of 2016, equating to 181 samples. The reason for this split is the
high temporal correlation of the data. Hourly samples are highly
correlated, which causes the model to artificially perform better
on the test set (Camporeale, 2019).

The data sets are constructed as follows. The test set consists
of the months April, August, and December of each year,
corresponding to 25% of the total data. These months have been
chosen arbitrarily, and mainly ensure a good spread of the test
data over the given time period. We expect to see the same
kind of results when the test set would be taken differently. An
experiment to determine the effect of the chosen test set on the
performance will be done in section 2. From the remaining data,
60% of the months are distributed randomly into the training set.
The remaining 15% of the data are placed in the validation set.
This corresponds to 77,544, 20,520, and 33,120 entries in training,
validation, and test set, respectively.

The choice of training, validation and test set plays a huge
role in the performance of the model. A difference in these sets
makes direct comparison of forecasting models difficult, as stated
by Lazzús et al. (2017). In order tomeasure the variance caused by
this choice, 10-fold cross validation is performed and the results
are reported in section 2.6.

After this step, the sets are scaled and normalized. This ensures
that every feature lies within the same range of values, ensuring
comparability of the different features and faster convergence of
the machine learning algorithm (see e.g., Juszczak et al., 2002).
The full transformation process is done in two steps: first the
scaling constants are determined from the training set, then the
transformation is applied on the training, validation, and test set.
The features are transformed by removing the mean and scaling
to unit variance:

X̄train =
Xtrain − µtrain

σtrain
, X̄valid =

Xvalid − µtrain

σtrain
,

X̄test =
Xtest − µtrain

σtrain
, (1)

where X is the data set, µtrain the mean of the training data set
and σtrain the standard deviation of the training set.

The final step of the preprocessing extracts valid time series
window samples from each set. A sample is valid if, for every
feature, there are no missing or invalid measurements. The
output can be ignored, because the Dst index contains nomissing
values. The samples are extracted by moving a sliding window
over the full data set. The size of the sliding window is equal
to the size of the length of the time series used as input for the
model, which in our case will have a length 6 h. We chose 6 h
based on results of Lazzús et al. (2017), who evaluated their time
series input from length t back to t − 48h through an exhaustive
procedure, and found no significant improvement in the forecast
when using data from times further in the past than t − 6h.
The target of the forecast is the Dst index from times t + 1h
to t + 6h. We chose 6 h to be able to compare to other results
found in the literature. After the preprocessing, there are 74,117,
19,596, and 32,166 valid samples in the training, validation, and
test set, respectively. This corresponds to about 96% of the initial
total data.

2.3. Evaluation of the Model
Throughout the paper, evaluation of the model’s forecast is done
through three distinct methods. The first method compares the
neural network model to a naive forecasting model, a so-called
baselinemodel. The secondmethod is evaluation by use of a set of
metrics. The third method is k-fold cross-validation (k-fold CV),
a statistical method to test the model’s predictive capabilities. Al
of these methods are explained in this section.

2.3.1. Baseline Model
The baseline model is a simplified empirical law that can generate
a zero order forecast. Themost simple type of time-series forecast
is done with the persistence model. This model assumes that the
value at the current time step does not change, so the next time
step is predicted as:

Dst(t + 1h) = Dst(t). (2)

This model is easily extended to forecast multiple hours in
the future:

Dst(t + p) = Dst(t), p ∈ N. (3)

The work by Owens et al. (2013) has shown that the persistence
model can be a reliable predictor for some solar wind parameters,
comparable to numerical models when evaluated in a point-by-
point assessment method. In particular, geomagnetic activity and
solar wind speed show good results when evaluated with a 27-
day persistence model, and can be used as a benchmark for more
sophisticated models.

2.3.2. Metrics
Now the set of metrics used for the model evaluation are defined.
The root mean square error (RMSE) and the Pearson linear
correlation coefficient (R) are often used for the evaluation
of time series. In addition, the set of fit performance metrics
recommended by Liemohn et al. (2018) will also be used. These
are the linear fit parameters, the mean absolute error (MAE), the
mean error (ME), and the prediction efficiency (PE). All these
metrics and their definitions are summed up in this section.
DefineMi as the forecast of the model and Oi the corresponding
real observational value, with i = 1, . . . ,N, and N the number
of samples.

• The RMSE is defined as:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Mi − Oi)2. (4)

This metric puts emphasis on outliers, which in the case of
the Dst index corresponds to geomagnetic storms. A low
RMSE thus corresponds to good accuracy of the forecast of
geomagnetic storms.

• The Pearson linear correlation coefficient (R), is given by:

R =
cov(Mi,Oi)

√
var(Mi)var(Oi)

. (5)
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This correlation coefficient gives a more global view of the
prediction. It indicates if the model predicts the trend of the
index correctly.

• Since the model M is predicting the observations O, a linear
relationship is expected. Computing the linear fit of the model
M to the observations O allows the results to be evaluated
independent of time. CallA the offset of the linear fit, and B the
slope. Then these parameters linearly relateM to O as follows:

Mi = A+ B · Oi. (6)

In the case of a perfect prediction, B is 1 and A is 0.
• The MAE emphasizes the “usual” state of the index, which in

the case of the Dst index corresponds to quiet time, where no
geomagnetic storms are happening. The MAE indicates how
well the model predicts these values. This value is defined as

MAE =
1

N

N
∑

i

|Mi − Oi|. (7)

• The ME indicates if the model systematically over- or under-
predicts the observations, based on its positive or negative
sign. If the mean error is zero, under and over predictions
are balanced:

ME =
1

N

N
∑

i

(Mi − Oi). (8)

• Finally, the PE is used to quantify the model’s ability at
reproducing the time variation of the Dst index:

PE = 1−

∑N
i=1(Mi − Oi)2

∑N
i=1(Oi − Ō)2

, (9)

where Ō is the average of the observational values. The
maximum value of the PE is 1, corresponding to a perfect
prediction at all times. A prediction efficiency equal to or less
than zero indicates that the model is incapable of forecasting
the time variation seen in the observations.

2.4. K-Fold Cross-Validation
K-fold CV is a training technique for the model in order to
learn its capabilities, without having to make use of the test set
and so prevent an information bias. When applying CV, the
training and validation sets defined in section 2.1 are used, unless
stated otherwise.

The technique firsts randomly splits the (monthly) data into
k equal-sized partitions (or folds). One of these folds is picked
as the validation set, and the other remaining folds are used as
the training set. The model is trained on the training set and
evaluated on the validation set, and the evaluation is stored.
This is repeated until every fold has been used exactly once as
the validation set. By taking the average of the result of each
run, an estimate of the predictive performance is given. This
allows us to evaluate the model on different parameters, both
hyperparameters and features, while preventing any optimization
on the test set, as this would otherwise invalidate our results.

2.5. The Model
Aneural networkmodel is constructed and trained to forecast the
Dst index for forecasting horizons t + 1h up to t + 6h. As input,
the model receives a multidimensional time series Xt , containing
the data described in section 2.1, ranging from time t−6h to time
t, as displayed in Equation (10). The output then consists of a 6-
dimensional vector Yt , corresponding to the forecast Dst values
for forecasting horizon t + 1h up to t + 6h.











Vsw(t − 6h) Vsw(t − 5h) . . . Vsw(t)
|B|(t − 6h) |B|(t − 5h) . . . |B|(t)

...
...

. . .
...

Dst(t − 6h) Dst(t − 5h) . . . Dst(t)











︸ ︷︷ ︸

Xt

→











Dst(t + 1h)
Dst(t + 2h)

...
Dst(t + 6h)











︸ ︷︷ ︸

Yt

(10)
The programming language Python, and in particular the
package PyTorch (Paszke et al., 2017), was used to implement and
train the neural network. A link to the source code can be found
in Appendix.

2.5.1. Model Description and Training
The model architecture of the neural network model consists
of a LSTM, combined with a dense neural network, as shown
in Figure 1.

LSTMs are a type of recurrent neural network, where the
output of the previous iteration is used as an additional input.
When multiple past events are used as inputs, classic recurrent
neural networks loose training information in a phenomena
called gradient vanishing (Hochreiter, 1998). LSTMs are designed
to work better for long time series, by incorporating two internal
memory states: the hidden state, ht , and the memory state,
ct . A detailed explanation of how these memory states retain
information and how they work is presented in Hochreiter and
Schmidhuber (1997). We refer the reader to this publication for
mode details on the exact internal workings of the LSTM.

The LSTM memory machinery is encapsulated in the LSTM
cell. Figure 1 shows how the input, Xt is connected to the output,
Yt . Each time step, xt−τ of the input Xt is given to a single LSTM
cell. The input is concatenated to the hidden memory output of
the preceding LSTM cell, ht−1, forming x′t . The input x

′
t and the

internal weights of the current LSTM cell change the information
ct−1 from the previous cell by propagating, modifying or blocking
the information. Finally, a new hidden state ht is created by first
transforming x′t with one of the LSTMs internal neural networks
and then combining it with the new memory state ct . The final
output of the cell, the hidden state ht , is obtained by the internal
combination of the cell input x′t and thememory of previous cells,
ct , using an internal neural network.

The final hidden state vector, h6, is then fed to a classical,
fully connected feed-forward neural network, where the input
is transformed to a vector of the size of the target vector Yt .
Throughout the rest of the paper, we will refer to this model as
the “LSTM-NN model.”

The model is trained using the RMSProp method, an
unpublished adaptive learning rate method proposed by Goeff
Hinton (see http://www.cs.toronto.edu/~tijmen/csc321/slides/
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FIGURE 1 | The architecture of the LSTM-NN model. The time series input is first given to an LSTM, which iteratively uses each time step of the input xt, together with
the previous hidden state ht−1, to update the memory state ct and construct a new hidden state ht. The LSTM cell requires as input the concatenated vector from xt

and ht−1, together with the output of the LSTMs internal dense NN taking that same vector as input. The final hidden state of the LSTM is given to a dense neural
network, who transforms it to a six-dimensional output vector Yt = {yt+1h, yt+2h, . . . , yt+6h}. The output Yt represents the forecast Dst, as displayed in Equation (10).

lecture_slides_lec6.pdf). As with any other neural network based
technique, LSTMs “learn” by iteratively adjusting the weights
of the inter-neuron connections. The iterative process is similar
to the Newton-Raphson method, adjusting the free parameter
of the model by gradual changes based on the derivative of the
error between the real output and the forecast output (Hecht-
Nielsen, 1992; LeCun et al., 2012). LSTMs are composed of a
chain of neural networks that learn together. This requires a
special optimization method called RMSprop. RMSprop ensures
that the error is correctly propagated backwards through all the
chain of neural networks that compose the LTSM. The method
has been used successfully for training LSTMs in generating
complex sequences (Graves, 2013).

The PyTorch library provides an implementation of this
method. The error criterion of the model was the mean squared
error loss:

MSE =
1

N

N
∑

i=1

(Mi − Oi)
2. (11)

When themodel is trained with a training set, the error on this set
will be smaller for every iteration (or epoch). In order to prevent
over-fitting, the process where the model starts memorizing the
training set instead of learning the training set, after every epoch,
the performance of the model on the validation set is checked.
When the model performance stops improving on the validation
set is a good indicator that the model is starting to over-fit on the
training set, and we can stop the training of the model. This is the
classic early stopping method.

2.5.2. Parameters of the Model
When training a neural network, there are many parameters
that can be chosen that have an impact on the performance.

However, finding the optimal value for these parameters is
problem-dependent, the so-called No Free Lunch theorem
Wolpert and Macready (1997), and finding the optimal values
is a computationally exhaustive task. In our model, there are
three sets of hyperparameters. The first set is intrinsic to
the architecture of our model itself, the second set to the
learning method, and the third set to the training method.
The hyperparameters were obtained by manually tweaking their
values over the course of 15–20 runs and evaluating their
performance using 7-fold CV. We found that for our particular
case, we observed no significant changes in the accuracy of the
model caused by the tweaking. Because the model seemed robust
under the tweaking, we decided to not do an exhaustive search
for the optimal values of the hyperparameters. We now provide
an overview of the important hyperparameters and the values we
gave them. A final list of the parameters are summed up at the
end of this section.

In our model itself, the LSTM has a few hyperparameters
that have impact on its performance. The first is the number of
neurons in the hidden layer of the LSTM. This number must be
large enough to ensure it can encode the process behind the data,
but not too large to prevent over-fitting and plain computational
cost. This number has been determined by performing CV, and
we found the best performance to be around 50 neurons. Next
there is the number of layers in the LSTM. Multiple LSTM’s
can be stacked on top of each other, where the first LSTM
gives the intermediate hidden states (see Figure 1) as input for
the second LSTM, and so on. This increases the complexity
and computational cost of the model. In our search we tested
using multiple layers of LSTMs, but did not find any significant
performance increase and set the number of layers to 1. Finally,
there is the option to make the LSTM bidirectional, where the
model has access to both future and past states. But this is
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TABLE 1 | Evaluation of the LSTM-NN model and the persistence model with the
metrics from section 2.3.2.

Forecasting

horizon

RMSE R A B MAE ME PE

(nT) (nT) (nT) (nT)

LSTM-NN model

t+ 1h 3.731 0.980 −0.166 0.960 2.391 0.318 0.960

t+ 2h 5.689 0.953 −0.770 0.915 3.820 0.271 0.907

t+ 3h 7.155 0.924 −1.438 0.866 4.823 0.198 0.853

t+ 4h 8.172 0.899 −1.963 0.826 5.479 0.161 0.808

t+ 5h 8.926 0.878 −2.358 0.793 5.929 0.168 0.771

t+ 6h 9.566 0.859 −2.769 0.761 6.280 0.143 0.737

Persistence model

t+ 1h 4.745 0.974 1.884 0.975 3.265 2.179 0.935

t+ 2h 6.853 0.934 0.101 0.935 4.400 0.875 0.865

t+ 3h 8.998 0.895 1.571 0.898 5.884 2.798 0.767

t+ 4h 9.913 0.860 −0.652 0.864 6.300 0.979 0.717

t+ 5h 10.937 0.829 −1.487 0.834 6.943 0.507 0.655

t+ 6h 11.864 0.799 −1.592 0.805 7.464 0.742 0.594

The values in bold showwhere the persistencemodel performed better than the LSTM-NN

model.

unnecessary in the context of the Dst forecast, thus this has been
set to false.

The RMSProp method has a lot of tweakable parameters, but
we will focus on the twomost important parameters, the learning
rate and the momentum. The learning rate is the most important
parameter, and controls how strongly the model weights will be
changed by the error gradient. A too large learning rate might
cause unstable learning, with the performance swinging widely
during training and preventing convergence. A too small learning
rate might cause the model to barely change and converge too
slowly or not at all. The momentum parameter will affect the
learning rate parameter throughout the training process, and
will accelerate the training process. Most often, the momentum
parameter is chosen close to 1. We found that setting the learning
rate to 0.0003 and the momentum to 0.8 gave us the best
performance, with stable convergence of the training error.

Finally, when training the model, we can also set a few
parameters that can affect the performance. There are two
parameters that are important: the number of epochs and the
batch-size of the training set. The number of epochs decide
how many times we loop over the full training set for training.
This number must be large enough that the model has time
to converge to the ideal solution before the training is stopped
by the classic early stopping method. The batch-size determines
how many samples of the training data are given to the model
before the error is computed and backpropagation is applied.
Setting the batch-size to one would corresponds with so-called
online learning, where the model is trained separately on every
sample. The opposite is offline learning, i.e., setting the batch-
size to the size of the training set, so the model is optimized
on the accumulated error over the complete training set. Offline
learning is almost never used as it fails to learn more outlying
cases, and online learning is more prone to over-fitting. Using a
small batch-size is typically recommended. We found that setting

the batch-size to 64 gave a fast convergence and did not have a
large impact on the performance.

Finally, we sum up the parameters of the model:

1. LSTM hyperparameters

• Number of hidden layer neurons: 50
• Number of layers: 1
• Bidirectional: False

2. RMSProp hyperparameters:

• Learning rate: 0.0003
• Momentum: 0.8

3. Training hyperparameters

• Number of epochs: 30
• Training set batch-size: 64

2.6. Results and Discussion
The LSTM-NNmodel is now evaluated using the defined metrics
and baseline model of section 2.3. The evaluation is discussed
and a comparison of the model to some of the latest forecasting
models is made. Finally, the forecast is visually observed.

The first analysis examines whether the LSTM-NN model
performs better than the persistence model defined in section
2.3.1. Table 1 displays the results from the metrics defined in
section 2.3.2, applied on the forecast of both the LSTM-NN
model and the persistence model. The LSTM-NN model was
found to overall perform better than the persistence model. Only
the linear relation of the persistence model is consistently better
for every forecasting horizon compared to the LSTM-NNmodel.

Taking a closer look at the remaining metrics, it seems that
the MAE of the LSTM-NN model and the persistence model
are similar. It increases with the forecasting horizon, and always
remains smaller than the RMSE. The correlation, linear model
parameters, and prediction efficiency of the LSTM-NN model
are close to that of the persistence model for forecasting horizon
t+1h and t+2h; however, its accuracy quickly disappears for later
forecasting horizons. This would indicate that the persistence
model could serve as a strong benchmark for nowcasts of the
Dst index. Taking into account the results reported in Table 1,
we conclude that using the more complicated LSTM-NN model
will result in better forecasts. In particular, forecasts made at
forecasting horizon t+3h to t+6h show significant improvement
in accuracy compared to the persistence model.

Next we compare the LSTM-NN model to the models
reported in the work of Gruet et al. (2018) and Lazzús et al.
(2017). Both publications present a neural network trained on
OMNIWeb data used to forecast the Dst index. The model by
Gruet et al. (2018) also makes use of LSTM modules in their
model, while the model of Lazzús et al. (2017) consists of a
feed-forward neural network instead of a RNN, trained with a
particle-swarm optimization method. The performance of their
models were evaluated with the RMSE and Pearson correlation
coefficient, and are summarized in Table 2, together with the
results from the LSTM-NN model and the persistence model.

However, before we can do quantitative comparison of the
LSTM-NN model with the two other models presented in the
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TABLE 2 | The RMSE and Pearson linear correlation coefficient of the persistence
model and LSTM-NN model compared to the models of Gruet et al. (2018) and
Lazzús et al. (2017).

Forecasting

horizon

Persistence LSTM-NN Gruet et al.

(2018)

Lazzús et al.

(2017)

Correlation

t+ 1h 0.974± 0.003 0.980± 0.008 0.966 0.982

t+ 2h 0.934± 0.009 0.953± 0.010 0.946 0.949

t+ 3h 0.895± 0.015 0.924± 0.013 0.923 0.918

t+ 4h 0.860± 0.019 0.899± 0.017 0.902 0.887

t+ 5h 0.829± 0.023 0.878± 0.019 0.882 0.858

t+ 6h 0.799± 0.026 0.859± 0.021 0.865 0.826

RMSE (nT)

t+ 1h 4.75± 0.47 3.73± 0.78 5.34 4.24

t+ 2h 6.85± 0.85 5.69± 0.59 6.65 7.05

t+ 3h 9.00± 1.10 7.16± 0.55 7.86 8.87

t+ 4h 9.91± 1.39 8.17± 0.59 8.86 10.44

t+ 5h 10.94± 1.56 8.92± 0.70 9.59 11.65

t+ 6h 11.86± 1.74 9.57± 0.83 10.24 13.09

The confidence intervals were obtained from the cross-validation experiment, detailed in

section 2.6 and shown in Figure 2.

literature, we have to keep in mind the following problem: direct
comparison of two different neural network models is considered
bad practice when the sets used to train and test both models are
not identical, as also stated by Lazzús et al. (2017). Because we
are unable to recreate the exact same training and test set used
by Gruet and Lazzús, we instead will quantify the impact that
the choice of training and test set has on the performance of the
LSTM-NNmodel. By performing 10-fold CV, we canmeasure the
variance in performance caused by the choice of training and test
set, as 10-fold CV will replicate the effect of training the model
for 10 different choices of training and test set.

From this we can learn two things. The first has already
been discussed in section 2.2, namely a way to quantify the
effect of our final choice of training, validation and test set. By
choosing an ideal training and test set, it is possible to cause
an artificial improvement of the model performance. Computing
the variance caused by the choice of training and test makes it
possible to determine if the reported performance is an outlier,
or expected. The results are shown in Figure 2. The average
performance of the LSTM-NN and the persistence model from
the CV is indicated by the blue and dark green bars, and the
standard deviation on the performance is indicated by the error
bars. The uncertainty interval obtained from this experiment has
also been included in Table 2. We find that for both RMSE and
correlation, the reported performance of the LSTM-NN and the
persistence model lies inside the variation, indicating that there
is no artificial improvement of the results by choosing an ideal
training and test set.

The second reason to do this experiment was to be able to
perform a qualitative comparison of the LSTM-NN with the
model of Gruet and Lazzús. Their reported values have also
been added to Figure 2. Let us first look at the results for the
correlation in the left bar chart. The model of Lazzús et al. (2017)

has a performance that is comparable to that of the LSTM-NN
model for forecasting horizons t + 1h to t + 4h. However, for
later forecasting horizons, the LSTM-NN performs significantly
better. The model by Gruet et al. (2018) is outperformed by the
LSTM-NN for the forecasting horizon t + 1h, but performance
equivalently for all the later forecasting horizons.

Looking at the RMSE, we see that the model by Lazzús
has comparable performance for forecasting horizon t + 1h.
However, for later forecasting horizons the LSTM-NN model
is significantly better. This seems to agree with the observation
made by Gruet et al. (2018), stating that the choice of an LSTM
module in the model architecture improves the accuracy of the
forecast. Looking at the performance of Gruet, the LSTM-NN
shows a significant improvement for forecasting horizons t + 1h
to t + 2h, but is equivalent in performance for later times.

In conclusion, our model seems to be comparable to that of
Lazz’us for forecasting horizons t+1h and t+2h, but outperforms
it for later times. Our model shows some improvement over that
of Gruet for forecasting horizons t+1h and t+2h, but is otherwise
comparable to theirs.

Finally, a visual observation of the forecast is analyzed.
Figure 3 displays three geomagnetic storms contained in the
test set, together with the forecast of the LSTM-NN model for
forecasting horizon t + 1h, t + 3h, and t + 5h. The first column
displays the t + 1h forecast, and seems to be an almost perfect
prediction of the storm. However, the forecast of the Dst-index
for forecasting horizon t + 3h and t + 5h, displayed in column
2 and 3 of Figure 3, shows a distinct delay in the forecasting of
the main phase. Take for example the prediction at forecasting
horizon t + 5h: the sudden offset of the storm is predicted
5 h too late.

This brings us to the main problem of this paper. The purpose
of the experiment was to create a LSTM-NNmodel that forecasts
the Dst-index with the same accuracy and correlation as other
presented architectures. We managed to create such a model,
but, when visually inspecting the forecast, it was observed that
there is a distinct time shift between forecast and observation. If
geomagnetic storms are forecast only when they start, it means
the LSTM-NNmodel will not give us any more information than
the persistence model. While it is not possible to say that the
models from Gruet et al. (2018) and Lazzús et al. (2017) also have
this problem, we believe that one should pay close attention to
this problem and ensure it does not happen.

An additional problem that most modern machine learning
techniques have to face is that rare events can not be properly
forecasted. Neural networks learning by gradient descent
requires that patterns show up frequently in the data. In order
to forecast dangerous super-storms, like the 2003 Halloween
or the Carrington events, the networks must have to learn to
identify them. From 2001 to 2016 there are only 100 entries of
the Dst index recorded with values bellow −200 nT (including
consecutive hours of individual storms). Possible solutions to
this issue can be of four types: (1) data augmentation by
duplication, where months with high number of storms are
used multiple times in a singular epoch, (2) generative data
augmentation, where a second machine learning technique,
like auto-encoders or generative adversarial networks, is used

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 July 2020 | Volume 7 | Article 3965

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Laperre et al. DTW for Dst Forecast Evaluation

FIGURE 2 | Using 10-fold cross validation, the LSTM-NN model and persistence model were evaluated for 10 different training and test sets with the RMSE and
correlation coefficient to determine the impact of the choice of set on the performance. The left figure displays the correlation coefficient, whose values we want to
have as close to 1 as possible. The right figure displays the RMSE, whose values we want to minimize. The circle and triangle display the values reported in Table 1,
the bars and error bars respectively display the mean and variance of the performance of the 10-fold cross-validation, and the square and cross display the
performance of the models reported by Lazzús et al. (2017) and Gruet et al. (2018), respectively. All of these values are also summarized in Table 2.

to generate artificial storms, (3) augmentation by computer
simulations, using 3D models of the interaction of the solar
wind and the magnetosphere of the planet to artificially generate
data with large storms, and (4) multi-tier machine learning
architectures, where multiple models specialize in the detection
of different types of inputs and storms strengths. These solutions
are out of the scope of the present paper but will be studied in a
future work.

3. THE DYNAMIC TIME WARPING METHOD

Section 2 revealed that the LSTM-NN model failed to give an
accurate forecast of the Dst index, and in particular geomagnetic
storms, despite the evaluation of the model indicating that the
model should have a high accuracy and correlation. This problem
has also been observed byWintoft andWik (2018) and Stepanova
and Pérez (2000), but not by other similar forecasting models.
It is often unclear whether or not this was overlooked or if
the forecasting model did not have this problem. Wintoft and
Wik were able to detect this time shift by manually shifting
their forecast in time and analysing the correlation coefficient
between shifted forecast and observation, while Stepanova and
Pérez visually observed this time shift.

Because this phenomena seems detrimental in the evaluation
of a forecasting model, we propose a new method, which we will
name the “warping measure.” This measure is more capable of
quantifying the time shift between model and observation, and
is based on the Dynamic Time Warping (DTW) algorithm (see
Berndt and Clifford, 1994), a method that measures the relative
similarity between two time series. At the very least, we expect
the warping measure to be able to detect the forecast made by a
persistence model. What follows first is a brief overview of the
DTW algorithm, followed by the modifications we made to tailor
the algorithm to our specific problem.

3.1. Dynamic Time Warping
The DTW algorithm is a method first developed for speech
recognition and is now commonly used in the fields of
economics, biology, and database analysis (see e.g., Wang et al.,
2012; Skutkova et al., 2013). DTW is mainly used as a measure
to investigate how much a sample time series matches or is
contained in a target time series. The strength of DTW is that
it can compare two time series even though they might be shifted
or stretched in time, which is a property that is essential to our
goal. This section summarizes the algorithm developed by Berndt
and Clifford (1994). A visualization of this algorithm is shown
in Figure 4. Take two time series, Q and S, of length n and
m, respectively.

Q = [q1, q2, . . . , qi, . . . , qn], (12)

S = [s1, s2, . . . , sj, . . . , sm]. (13)

The DTW algorithm first constructs a distance between these two
time-series by placing them in an n×m grid. Each grid point (i, j)
then corresponds to an alignment of qi and sj. An alignment is
given a cost by a distance function d(qi, sj). The distance function
can be chosen freely, and for our case the Euclidean distance
function, d(x, y) =

√

(x− y)2 is used. The DTW algorithm then
searches for a path (the so-called warping path) P in this grid that
minimizes the sum of said distance. The warping path P can be
defined as:

P = [p1, p2, . . . , pK], with max(m, n) ≤ K < m+ n− 1, (14)

where each point pk corresponds to a grid point (i, j)k. The path
must then minimize the cost function, so

DTW(Q, S) = min

√

√

√

√

K
∑

i=1

pk, (15)
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FIGURE 3 | Forecast of the LSTM-NN model for three separate geomagnetic storm events. Each plot shows the observed Dst index (Truth) and the forecast Dst
index (Pred). Every row shows the same storm, and every column corresponds to a different forecaseting horizon. Notice that the LSTM-NN model systematically
forecasts the main phase of the storm too late by a number of hours equivalent to the forecasting horizon.

and must hold to the following conditions:

1. Boundary conditions: the beginning and the end of the
sequences are matched;

2. Continuity: there are no gaps, every point is mapped to at least
one other point;

3. Monotonicity: the points are ordered in time, ik−1 ≤ ik and
jk−1 ≤ jk;

4. Warping window w: an optional constraint that sets the
maximumdistance in time between ik and jk to w: |ik−jk| ≤ w.

In order to find this optimal path, the following dynamic
programming technique can be used. Starting at point (1, 1), the
cumulative distance 1 at each grid point is computed by the
following recursive equation:

1[i, j] = d(qi, sj)+min(1[i−1, j−1],1[i−1, j],1[i, j−1]). (16)

Once all the cumulative distances are computed, the optimal
warping path can be found by starting at the point (n,m) and

tracing backwards in the grid, taking the smallest value each time.
This is displayed in Figure 5.

A warping window constraint can be added on the algorithm.
This window will change the warping cost and warping path P.
Let w ∈ N be the warping window, then

∀pk ∈ P, |ik − jk| ≤ w. (17)

Faster and better implementations of this algorithm exist (see
e.g., Keogh and Pazzani, 1999; Keogh and Ratanamahatana, 2005;
Salvador and Chan, 2007; Lemire, 2009), but they are outside the
scope of this text.

3.2. The Warping Measure
It should be mentioned that the DTW algorithm does not satisfy
the necessary properties to be a metric. For example, it is easy
to see that the algorithm does not satisfy the triangle inequality.
Consequently, this method will be called a measure, and not
a metric.
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FIGURE 4 | (A) Shows two time series we want to compare. (B) Illustrates the cumulative distance matrix, together with a warping window w and the ideal warping
path P in blue. (C) Illustrates the warping path P aligning the two time series.

FIGURE 5 | Illustration of how the warping path is determined from the
distance matrix D.

This measure does not make use of the warping cost, and
instead uses the information contained in the warping path W.
Themeasure is then able to determine how exactly a forecast time
series is shifted in time in comparison to the true or observed time
series. Take the two time seriesM andO, whereM is the predicted
time series and O the true time series.

M = [m1,m2, . . . ,mi, . . . ,mn], (18)

O = [o1, o2, . . . , oj, . . . , om]. (19)

The DTW algorithm is applied on these time series, giving a cost
matrix D of dimensions n × m. The warping constraint defined
in Equation (17) is applied, and w is set equal to the forecasting
horizon time. However, an additional constraint is included:
the warping window is restrained such that the algorithm only
compares the predictionM at t+ p with the observations O from

time t to t + p, i.e., predictions are not compared to observations
that are in the future. Applying this constraint can be done as a
modification of the warping constraint defined in Equation (17):

Letmi be the modeled value, oj the observation, then w ≥ i− j ≥ 0.
(20)

This is also illustrated in Figure 6. After computing the warping
path, we take each step pk = (ik, jk) and compute what we define
as the warp value:

1t = |ik − jk|, with 1t ∈ [0, 1, . . . ,w]. (21)

Finally, a histogram is taken from all the different values of 1t.
The percentages reflect how time series M is shifted compared
to time series O. We now present the results of this measure
applied to the persistence model prediction and the LSTM-NN
model prediction.

3.3. Results
3.3.1. DTW Measure Applied to the Persistence

Model
The warping measure is first applied to the forecast of the
persistence model. The persistence model can be seen as
the textbook example for this algorithm. Assuming that the
persistence model is set as follows:

Dst(t + p) = Dst(t), p ∈ N, (22)

then the algorithm should detect that almost all of the forecast
values are shifted with a time p compared to the actual
observation. The algorithm will not detect 100% of the values to
be shifted with p, because of the constraint in the DTW algorithm
that forces the beginning and the end points of the two time series
to match, as discussed in section 3.

The persistence model is applied to the test set defined in
section 2.1, and the resulting warp values are shown in Table 3.
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FIGURE 6 | Overview of the warping measure. (A) Displays the two time-series O and M that are compared for alignment. However, the warping algorithm is adapted
with a new window w that prevents comparing values of M with values of O that lie in the future, as seen in (B). (C) Shows the alignment from (B) from which the
measure is determined. Notice that there is no alignment from M to points in O that lie in the relative future of M.

FIGURE 7 | An illustration of a potential problem with the measure. (A) Illustrates the result for a persistence model with a small time-shift. (B) Illustrates the case of a
persistence model with a large time shift. When the time series is too small, the counts will be dominated by the green-colored block, while the actual truth will appear
very small due to normalization.

The results confirm our expectations, where except for a few
percentile, all the values are detected to be shifted by the
forecasting horizon.

One potential problem that can arise is when the time shift in
the two compared time series is very large. First, the algorithm
will take longer to run as the window-size w needs to be much
larger. Second, because the boundary conditions require the
beginning and end of both sequences to match, if the time series
is too short, the algorithm might give a shifted results. Take the
extreme example shown in Figure 7, showing both a persistence
model with respective time shift s1 and s2. If the time shift is very
large and the time series is small, the number of values counted to
have shift s2 are made insignificant due to the path also including
the boundary condition. This effect is already starting to show in

the final row of Table 3, where around 2% of the shifted values
are artificial due to the boundary constraint. Potential changes to
the algorithm that could account for this problem is a topic for
future work.

3.3.2. DTW Applied to the LSTM-NN Model
The normalized values of the DTW measure applied to the
LSTM-NNmodel presented in section 2.5 can be seen in Table 4.
The highest percentages are located on the offset diagonal,
identical to the results of the persistence model. As discussed
before, this indicates that a shift in time exists between the
observations and the model predictions. This confirms that our
observation of the results discussed in section 2.6 are happening
throughout the whole time series. We notice that the second
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TABLE 3 | The row-normalized fractions of the warping measure on the
persistence model.

Forecast

horizon

Time shift

0 h 1 h 2 h 3 h 4 h 5 h 6 h

t+ 1h 0.003 0.997 0.0 0.0 0.0 0.0 0.0

t+ 2h 0.003 0.003 0.994 0.0 0.0 0.0 0.0

t+ 3h 0.004 0.003 0.003 0.991 0.0 0.0 0.0

t+ 4h 0.003 0.003 0.003 0.003 0.988 0.0 0.0

t+ 5h 0.004 0.003 0.003 0.003 0.003 0.984 0.0

t+ 6h 0.004 0.003 0.003 0.003 0.003 0.003 0.981

The algorithm detects that the persistence model is shifted with the expected number of

hours.

The largest values of each row are annotated in bold.

TABLE 4 | The row-normalized fractions of the DTW measure on the LSTM-NN
model.

Forecast

horizon

Time shift

0 h 1 h 2 h 3 h 4 h 5 h 6 h

t+ 1h 0.352 0.578 0.045 0.015 0.006 0.003 0.002

t+ 2h 0.115 0.334 0.428 0.069 0.03 0.015 0.009

t+ 3h 0.074 0.113 0.287 0.355 0.09 0.047 0.034

t+ 4h 0.068 0.066 0.115 0.249 0.309 0.11 0.083

t+ 5h 0.073 0.054 0.073 0.117 0.225 0.28 0.178

t+ 6h 0.079 0.052 0.06 0.079 0.117 0.215 0.397

The results are in agreement with the visual inspection of the model: for each forecasting

horizon time, the highest percentage is located at the corresponding time shift.

The largest values of each row are annotated in bold.

highest percentage of each row is located on the diagonal,
indicating that the model is actually capable of providing some
accurate prediction of the Dst for one hour into the future, similar
to the observations of Wintoft and Wik (2018) and Stepanova
and Pérez (2000).

4. DISCUSSION

4.1. Dst Index Analysis
What follows is a statistical analysis of the Dst index itself. The
autocorrelation of the Dst is shown in Figure 8B. Notice the very
high autocorrelation of the Dst index with itself for delay times
up to t + 7h. This can also be seen in the lag plot, shown in
Figure 8A. This could explain why the persistence model has
such high accuracy and correlation when evaluated with the
metrics of section 2.3.2, shown in Table 1. We believe that this
also explains why the linear fit parameters of the persistence are
so high.

The partial autocorrelation is also an important value. The
partial autocorrelation α(k), defined by Equation (23), behaves
as the autocorrelation between zt and zt+k, adjusted from the
intermediate variables zt+1, zt+2, . . . , zt+k−1 (Box et al., 2015).

α(k) =

{

cor(zt+1, zt) for k = 1

cor(zt+k − Pt,k(zt+k), zt − Pt,k(zt)) for k ≥ 2,
(23)

where k is the lag between the two time series values zt and
zt+k, and Pt,k(z) is an operator of orthogonal projection of
z onto the linear subspace of the Hilbert space spanned by
zt+1, zt+2 . . . , zt+k. The partial autocorrelation of the Dst can be
seen in Figure 8C. This shows what can actually be learned from
the Dst index: after the correction applied by the autocorrelation,
only the Dst at time step t + 2h still has some significant
correlation to the Dst at time t. This would explain why the neural
network model has difficulty accurately predicting values beyond
t + 1, and instead relies on behaving as a persistence model to
predict the next values.

4.2. Removing the Autocorrelation
The autocorrelation properties of the Dst index are most likely
the causes of the problem in the forecast. Direct workarounds
consist of either changing the input or the output. A first solution
is not to include the Dst index in the input vectors, as done by
Wu and Lundstedt (1997). This gives a forecast based purely on
the solar wind parameters.

Another solution is to de-trend theDst time series, and instead
forecast the change in the Dst. Let us call 1Dst the difference of
the Dst between two time steps:

1Dst(t) = Dst(t)− Dst(t − 1). (24)

This parameter has also been introduced by Wintoft and Wik
(2018). However, they do not forecast the 1Dst directly with
their model, but use it as a parameter for data selection. A
lag plot of 1Dst shows that the correlation with the previous
time step has almost completely vanished, as is visible in
Figure 9A. Computing the autocorrelation confirms this, as seen
in Figure 9B. Notice now that the autocorrelation behaves almost
identical to the partial-autocorrelation, displayed in Figure 9C.

The 1Dst is a new parameter that we can use to train the
LSTM-NN model with. The experiment described in section 2 is
repeated, only this time the model will forecast the 1Dst model.
As input we use, next to the parameters described in section
2.1, also the previous values of the 1Dst. Tables 5, 6 show the
results of the LSTM-NN using this data. The forecasting of the
1Dst seems to work well for forecasting horizons of 1–2 h. For
later forecasting horizons, the correlation coefficient decreases
sharply, and the prediction efficiency becomes close to zero.
The RMSE does not increase substantially when the forecasting
horizon increases. The results of the DTW measure are shown
in Table 6. Notice the absence of a persistence effect, as most
values are no longer on the offside diagonal. Only in the last row
does there seem to be some delay, but this could be explained
by taking the prediction efficiency of Table 5 into account, which
is close to 0 for forecasting horizon t + 6h. This means that the
forecast most likely no longer resembles the observed time series
anymore, and the evaluation of the DTWalgorithm does not have
much meaning anymore.

The forecast now accurately shows us that the predictive
power of the LSTM is linked to the partial autocorrelation
of the 1Dst, and demonstrates the difficulty to provide an
accurate forecast beyond t + 2h. The advantage of using the
1Dst is that there is no longer a false sense of accuracy. The
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FIGURE 8 | (A) Displays three lag plots of the Dst, with lag times of 1, 3, and 5 h. The color of each point represents the how many times this value was encountered
in the data. Notice the strong linear behavior for all three lag times. (B) Shows the autocorrelation of the Dst index for up to 15 h of lag. In (C), the partial
autocorrelation of the Dst index. Notice that there is almost no more correlation past 2 h.

persistence effect gave the illusion of a strong forecast, while
the 1Dst does not. Using this as a basis, it will be much more
transparent when a forecasting model provides us with an actual
accurate forecast.

Finally we discuss the possible causes of why forecasting the
Dst is so difficult. We believe that there are two problems that we
have not yet taken into account. The first is the variation of the
geo-effectiveness of the quiet solar wind, mainly caused by how
the tilt of the Earth effects the interaction of magnetosphere with
the solar wind. Together with the inclination of the equatorial
plane of the Sun, this causes a yearly variation which was not
taken into account in this experiment. This is called the Russel-
McPherron effect (Russell and McPherron, 1973) and has been
shown to effect the Dst index (Siscoe and Crooker, 1996). The
second is that we believe that it is misguided to forecast the
Dst index using the solar wind data measured at L1. These
measurements are taken too close to the Earth, which causes an
intrinsic limit on how far in the future we can give a forecast.
We believe that having measurements at L5 would provide a
large improvement in our abilities to provide timely forecasts, as
discussed by Hapgood (2017). The effects of using measurements
at L5 could be explored in future research, where simulations

such as EUFHORIA (Pomoell and Poedts, 2018) are used to
provide artificial measurements.

5. CONCLUSIONS

An LSTM-based neural network, called the LSTM-NN model,
is trained to forecast the Dst index 1–6 h in the future, using
solar wind parameters and the Dst from 6 h before the prediction
as an input. While the evaluation scores have indicated that the
LSTM-NN model is comparable to the latest publications, visual
inspection shows that the model’s forecast behavior is similar to
that of a persistence model, using the last known input of the
Dst as its output. Although the prediction performs better than
the persistence model, showing that some information can be
learned from the solar wind, the LSTM-NNmodel effectively fails
in its objective.

In order to detect this new type of error, a new test is
developed based on the DTW algorithm, to measure the shift
between observation and model prediction. DTW can compare
two time series in a time window, instead of comparing two
values on the same timestamp such as done by the RMSE and the
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FIGURE 9 | (A) Displays a lag plot of the 1Dst, with lag times of 1, 3, and 5 h. The color of each point represents the how many times this value was encountered in
the data. Notice the lack of any linear relation between the lagged values. (B) Displays the autocorrelation of the 1Dst, (C) the partial autocorrelation. Notice that the
1Dst no longer shows any strong autocorrelation.

TABLE 5 | Evaluation of the LSTM-NN model and the persistence model with the
metrics from section 2.3.2 when forecasting 1Dst.

Forecasting

horizon

RMSE R A B MAE ME PE

(nT) (nT) (nT) (nT)

LSTM-NN model

t+ 1h 3.215 0.630 −0.064 0.396 2.156 −0.064 0.397

t+ 2h 3.807 0.393 −0.031 0.163 2.505 −0.029 0.154

t+ 3h 3.943 0.305 −0.016 0.106 2.571 −0.016 0.091

t+ 4h 3.995 0.260 0.059 0.082 2.601 0.057 0.064

t+ 5h 4.057 0.197 −0.018 0.053 2.640 −0.021 0.033

t+ 6h 4.075 0.168 0.009 0.038 2.646 0.006 0.025

Persistence model

t+ 1h 5.160 0.311 1.729 0.311 3.524 1.730 −0.553

t+ 2h 6.170 −0.042 1.530 −0.042 4.189 1.532 −1.220

t+ 3h 6.178 −0.080 1.068 −0.080 4.169 1.069 −1.226

t+ 4h 6.078 −0.063 0.685 −0.063 4.065 0.686 −1.155

t+ 5h 6.067 −0.035 1.144 −0.035 4.076 1.145 −1.147

t+ 6h 6.088 −0.016 1.490 −0.016 4.150 1.491 −1.162

correlation coefficient, allowing the detection of temporal trends.
By using the output of the DTW algorithm, first a least-distance
mapping is given between the two time series, which can then

TABLE 6 | The DTW measure of the LSTM-NN model forecasting the 1Dst.

Forecast

horizon

Time shift

0 h 1 h 2 h 3 h 4 h 5 h 6 h

t+ 1h 0.426 0.449 0.053 0.03 0.019 0.014 0.009

t+ 2h 0.482 0.355 0.061 0.028 0.026 0.024 0.024

t+ 3h 0.424 0.319 0.152 0.021 0.026 0.03 0.028

t+ 4h 0.287 0.283 0.25 0.107 0.022 0.028 0.023

t+ 5h 0.186 0.192 0.228 0.229 0.118 0.024 0.022

t+ 6h 0.147 0.139 0.165 0.188 0.22 0.127 0.013

Notice that the persistence-like behavior is absent.

be used to compare the timestamps of the points mapped to
each other. This gives us a measure of the time warp between
these two time series, from which we can infer a potential
persistence effect.

When this new measure was applied to the persistence
model, the results were as expected, and completely captured the
temporal behavior of the persistence model. When the measure
was applied to the time series forecasting of the LSTM-NNmodel,
it detected the temporal lag in the forecast, proving its usefulness.

Finally, the possible origin of this lag was discussed by
observing the autocorrelation of the time series, together with
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possible different experiments that do not suffer this temporal
lag. It was shown that the forecasting of the differentiated Dst
did not have this temporal lag. The LSTM-NN model showed
promising results for forecasting horizons of t+1h and t+2h, but
later forecasts did not have a very high accuracy or correlation
to the observations. Future studies focusing on forecasting the
differentiated Dst could provide more transparent results. We
believe that new research also has to explore the effect of the
variability of the solar wind interacting with the magnetosphere
in function of the Earth tilt and the inclination of the solar
equatorial plane.

Finally, we believe that the observational data measured at L1
plays a big role in limiting the forecast horizon of the Dst index.
Looking at the effects of having measurements at L5 should be
further explored in future work, using simulations to provide the
artificial measurements.

As a concluding remark, we would like to emphasize
that researchers should be very prudent when reporting
results of time series forecasting with the metrics
defined in section 2.3.2. These metrics fail to capture
behaviors that are only seen when taking into account the
temporal dimension of the forecasting, and could provide
misleading results.
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APPENDIX

ADDITIONAL INFORMATION

Training and evaluating the model takes on average 10 min on a
machine with the following specifications:

• OS:Windows 10
• Processor: Intel(R) Core(TM) i7-8850H CPU @ 2.60 GHz,

2592 Mhz, 6 Core(s), 12 Logical Processor(s)
• RAM: 16 Gb

The source code and experiment can be found on the following
webpage: https://github.com/brechtlaperre/DTW_measure.
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The near-Earth plasma sheet is the source for electrons in the inner magnetosphere.

The coupling between the solar wind and the near-Earth plasma sheet is dominated

by non-linear processes, making any relationship difficult to infer. We report on the

development of a neural network to capture the non-linear behavior between solar wind

variations and the response of energetic electron flux in the plasma sheet. To train

the neural network algorithm, we developed a data set with inputs from solar wind

monitoring spacecraft. The targets come from three probes of the Time History of Events

and Macroscale Interactions during Substorms mission as the spacecraft traversed the

plasma sheet from years 2008–2019. Preliminary findings during the development of the

neural network model show that tuning input parameters based on previously known

physical properties is conducive to improving model performance.

Keywords: neural network, plasma sheet, solar wind, machine learning, keV electron flux, deep learning, feature

engineering, space weather

1. INTRODUCTION

The fluxes of <200 keV electrons in the Earth’s inner magnetosphere constitute the seed population,
which is critically important for radiation belt dynamics. It is through cyclotron resonance with
the electrons of energies between a few and tens of keV (Kennel and Petschek, 1966; Kennel and
Thorne, 1967; Li et al., 2008, 2012) that chorus waves are generated outside the plasmapause
in association with the injection of Plasma Sheet (PS) electrons into the inner magnetosphere
(Tsurutani and Smith, 1974; Meredith et al., 2002). Whistler mode chorus waves play an important
role in accelerating the seed electron population to relativistic energies in the outer radiation belt
(Horne et al., 2005; Chen et al., 2007). Moreover, low-energy electrons (electrons with energies
less than about 100 keV) are responsible for hazardous space weather phenomena such as surface
charging (Garrett, 1981; Davis et al., 2008). The electron flux of low energies varies significantly with
geomagnetic activity and even during quiet time periods. The source of the low-energy electrons
is the PS. Much of the behavior of the PS is driven by variations in the solar wind (SW) and
interplanetary magnetic field (IMF) upstream of Earth’s bow shock (e.g., Aubry and McPherron,
1971; Nishida and Lyon, 1972; Tsutomu and Teruki, 1976; Terasawa et al., 1997; Wing et al., 2005;
Nagata et al., 2008; Cao et al., 2013). It is therefore an important challenge to understand the
distribution of energetic plasma entering the inner magnetosphere, as dependent upon SW driving.

Several studies have examined the link between SW variations and PS particles. For example,
Borovsky et al. (1998) found that there are several PS properties that are highly correlated with
upstream SW. Namely, the density, temperature, and total pressure of the PS are highly correlated
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with density, velocity, and dynamic pressure of the SW,
respectively. Tsyganenko and Mukai (2003) used Geotail and
Advance Composition Explorer (ACE) (Stone et al., 1998) data
to develop an empirical model for PS ions dependent upon
SW driving. Luo et al. (2011) additionally used Geotail and
ACE to investigate the PS electron population with an empirical
model for electron fluxes with energy >38 keV. Their model
achieved good performance compared to observations; yet, it
had limitations. Not being able to measure below 38 keV
and using integrated flux made it impossible to accurately
describe the behavior of electrons with lower energy. More
recently, Dubyagin et al. (2019) estimated PS differential electron
fluxes from Maxwellian and Kappa distribution functions
derived from plasma moments obtained using an empirical
model developed by Dubyagin et al. (2016). They found
that for thermal and superthermal energies (.1 keV) the
estimations are accurate within a factor of two. Yet, for
higher energy (≥10 keV), the estimates of electron flux diverge
by more than an order of magnitude from observations.
They suggest that to obtain a realistic representation of
PS electrons at these energies, a flux based model should
be developed.

Considering the limitations of previous empirical
relationships to model plasma sheet properties from SW,
an alternative method is to utilize machine learning (ML). ML
is viable in the present era, yet there are challenges regarding the
utility of using so-called “black- or gray-box” ML techniques.
(e.g., Camporeale, 2019). We have a sufficiently large amount
of observations (more than two 11-year solar cycles) of the
SW and PS, and we have the necessary modern computational
resources to process this amount of data. Bortnik et al. (2016)
described a ML method to predict the value of some observable
in the inner magnetosphere dependent upon a set of inputs
and their time history. Using the methodology described by
Bortnik et al. (2016), Chu et al. (2017) developed a neural
network model of electron density in the inner magnetosphere
with inputs of spacecraft location and time history of several
geomagnetic indices. In a similar study, Zhelavskaya et al. (2017)
used geomagnetic indices but included SW parameters as inputs
to neural networks. They found their neural networks that
included a combination of SW parameters and geomagnetic
indices performed the best. Yue et al. (2015) used Support
Vector Regression ML to develop an inner PS pressure model,
during substorm growth phases only, based on inputs of SW
dynamic pressure, sunspot number, Cross Polar Cap Potential,
and the Auroral Electrojet Index. Their ML model was able to
predict the observed pressure in the near-Earth PS during the
substorm growth phase. In the present work, we used ML to
develop an electron flux-based empirical model of the near-Earth
PS during all times, using only the time history of upstream
SW plasma and IMF parameters. The purpose of this brief
report is to (1) establish that a machine learned model can, with
some skill, predict the electron flux in the PS from SW input
drivers only, and (2) demonstrate that using large amounts of
data in a machine learning model is not as useful as using a
limited dataset while applying established physical knowledge
as inputs.

2. METHODS

We used a feed-forward neural network (NN) to investigate the
response of 1–200 keV energy electrons in the near-Earth PS to
variations in the SW upstream of Earth’s bow shock. There are
two versions of a NN, which we label as Version 1 and Version
2, that we will describe. In both versions, there is an input layer,
two hidden layers, and an output layer. The differences in both
versions involve the number and types of inputs, the number
of nodes in each hidden layer, and the amount of underlying
physical information included as input.

2.1. Data Description
The data that were used in this study come fromOMNI (King and
Papitashvili, 2005) and Time History of Events and Macroscale
Interactions during Substorms (THEMIS) (Angelopoulos, 2008).
OMNI combines upstream SW measurements and calculated
derivations for several plasma parameters. Measurements from
multiple Lagrange L1 spacecraft have been combined and
propagated to the assumed Earth’s bow shock at approximately
15 Earth radii (RE). An advantage of OMNI data, rather than data
directly from the source spacecraft, is its continuity over several
decades and multiple spacecraft. Each THEMIS satellite carries
an Electrostatic Analyzer (ESA) (McFadden et al., 2008) and
Solid State Telescope (SST) (Angelopoulos et al., 2008), which
combined measure electrons in the energy range from a few eV
to a fewMeV. All OMNI and THEMIS data were obtained via the
NASA Goddard Space Physics Data Facility.

2.1.1. Version 1 Target Data

The target data are PS electron flux of energies between
approximately 1–200 keV. The THEMIS Science Team has
combined measurements from the ESA and SST instruments
into a single data product called GMOM (Ground combined
MoMents). Altogether, there are 46 energy channels in the
GMOM data set ranging from about 5 eV to ∼300 keV. We
chose 17 energy channels of electron flux between 1 and 200
keV because this energy range is most correlated with the
generation of chorus waves and with spacecraft surface charging.
The approximate energy of each channel is shown in Table 1.
The log10 of the energetic flux values make up the target
vector, Ey (Equation 1a), which has 17 entries, one for each
energy channel. Although there are several methods for filtering
spacecraft observations to the PS (e.g., Roziers et al., 2009;
Dubyagin et al., 2016), we adopt the method used by Ruan et al.
(2005) that uses only a single criterion of plasma β ≥ 1. The
β ≥ 1 criterion follows from average properties of the central PS
described by Baumjohann et al. (1989).

All of the data that we use for training the neural networks are
from three probes, THEMIS-A, -D, and -E. The spacecraft have
a nominal spin rate of 3 s, and thus have flux data with nominal
time cadence of the same. However, electron flux enhancements
resulting frommagnetotail processes occur onminute time scales
(e.g., Bame et al., 1967). We down-sampled the GMOM flux data
to 1 min by taking the mean of intervals closed on the left and
open on the right. From all observations marked by the THEMIS
mission team with a good data quality flag from 1 February 2008
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TABLE 1 | Comparison of architecture and test metrics for Version 1 and Version

2 neural networks.

Neural network models comparison

Characteristic Version 1 Version 2

Physical Considerations

Plasma sheet location β ≥ 1 β ≥ 1, MLT

SW time resolution 30 min 5 min

SW time history 8 h 4 h

SW parameters VX ,VY ,VZ , |V|

BX ,BY ,BZ , |B|

Pdyn, n, T,E,β

BY ,BZ , |V|, n

Solar cycle period Solar minimum Declining phase

Number of inputs 208 174

Number of examples ∼650K ∼280K

1st hidden layer

Number of nodes 624 (208 × 3) 522 (174 × 3)

Activation fn ReLU ReLU

2nd hidden layer

Number of nodes 1,248 (624 × 2) 1,044 (522 × 2)

Activation fn ReLU ReLU

Output layer

Number of outputs 17 17

Activation linear linear

Train target std. dev. 1.31 1.29

Test target std. dev. 1.41 1.39

Loss function Mean squared error

Optimization Adam; batch size: 50

Apprx. energies 1.3, 2.2, 3.9, 6.7, 11.7, 20.2

of channels 27, 28, 29, 30, 31, 41

used (in keV) 52, 65.5, 93, 139, 203

Test Metrics

Bias −0.05 0.15

Extremes 0.46 0.36

PE (skill) 0.76 0.80

MSE (loss) 0.47 0.38

MAE 0.51 0.44

Association 0.43 0.69

sMAPE 90% 80%

SSPB −30% 20%

MSA 151% 110%

Orange cells highlight characteristics that were expected to be advantageous toward

modal performance. Blue cells highlight the metrics with the better test score of the two

model versions. PE, prediction efficiency; MSE, mean squared error; MAE, mean absolute

error; SSPB, symmetric signed percentage bias; sMAPE, symmetric mean absolute

percentage error; MSA, median symmetric accuracy.

through 31 July 2019, we selected those that occurred when the
spacecraft were between −9RE ≥ XYGSM ≥ −11RE, had a
measured plasma β ≥ 1, and were on the night side [between
magnetic local times (MLTs) 18-06]. The spatial region chosen
does not relate to any static structure in the magnetosphere.
Rather, we presume that varying characteristics in the PS at these
locations will be captured by the model since they are dependent

upon SW driving. Combining observations that fit these criteria
from all three spacecraft yielded around 830,000 one-minute
observations. Note that not all of these were used in training due
to missing data in the input data set, which is described next.

2.1.2. Version 1 Input Data

The inputs to the Version 1 NN are OMNI data from −0.5 to
−8 h of each event identified in the target data set. Following
evidence that the magnetosphere acts as a low-pass filter of
the SW (Ilie et al., 2010), we used 30-min averaged OMNI
data. Creating the input vector for each event is shown in
Equations (1b) and (1c). We assumed a time delay of τ = 30
min to account for the time that it would take variations in
the upstream SW to have an effect in the magnetotail. Thirteen
OMNI parameters were used: SW proton number density, three
velocity components and flow speed as well as IMF geocentric
magnetic BX, BY, BZ, and |B|. Derived parameters included are
SW proton temperature, electric field, dynamic pressure, and
plasma beta. A full investigation quantifying the importance of
these SW input drivers to PS electron flux is underway, however,
such an investigation is beyond the scope of this brief report.
As a preconditioning step, the values of each OMNI parameter
were scaled to the range [−1, 1] by dividing all observations by
the observed absolute maximum value between 2008 and 2019
for that particular parameter. With inclusion of these parameters
and their time history, each input vector had 208 features. For
each input vector Exi, if there were any missing data, that input
vector and its associated 1-min output vector Eyi were discarded
from the database. Approximately 26% of training examples were
removed due to missing data, reducing the total number from
about 830,000 to 613,952. We intentionally did not randomize
our training and testing sets due to the time series nature of
the observations in the PS. Rather, we selected February 2008 to
February 2018 as the training data and March 2018 to July 2019
as the test data.

Eyi = log10
[

eflux1, . . . , eflux17
]

(1a)

ξ =
[

BX ,BY ,BZ , |B|,VX ,VY ,VZ , |V|,E, n,T, Pdyn,β
]

(1b)

Exi =
[

ξ̄tyi−τ , ξ̄tyi−τ−1t , . . . , ξ̄tyi−1T

]

(1c)

In Equations (1b) and (1c), ξ̄ is the 30-min averaged ξ , τ =
30min is a time delay, tyi is observation time of Eyi, 1t = 30min,
and 1T = 8h.

2.1.3. Version 2 Training Data

Based on physical understanding of the behavior of PS electrons
to SW driving, we made changes to the input dataset. The
Version 1 NN uses 30-min averaged OMNI data. However, 1–
200 keV energy electron flux in the near-Earth PS can vary
on timescales of minutes. By averaging out the smaller scale
variations using the 30-min averaged SW, we had neglected to
include information that could potentially increase the accuracy
of the training. Moreover, many previous studies (e.g., Newell
et al., 2007), have identified SW and IMF parameters that tend
to influence the response of the magnetosphere, typically in some
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functional form. These studies have shown the most import
contribution to magnetosphere response to be a combination of
n, V , BY , and BZ (e.g., Newell et al., 2007; Balikhin et al., 2010).

In the Version 2 NN, we restrict our input to include
only these four parameters. The PS responds to solar wind
variations through an increase in dayside reconnection and
dynamic pressure, allowing plasma and energy to enter Earth’s
magnetosphere where it is stored in the magnetotail. The release
of this stored energy both increases Earthward plasma flow
and magnetic flux in the near-Earth PS, leading to increased
energetic electron flux there. We chose these four parameters
as indicators of how much reconnection and dynamic pressure
will be impacting the dayside magnetosphere. We note that three
of these parameters—V , BY , and BZ—have long been shown to
be an accurate predictor of energy input from the SW to the
magnetosphere (e.g., Perreault and Akasofu, 1978).

2.1.3.1. Version 2 input data
For Version 2, we alter the input data to include only the four
parameters from section 2.1.3. These parameters are averaged
to 5 min and restricted to a time history of −0.5 to −4 h. To
them, we add two inputs related to the spacecraft position. In
a similar manner described by Bortnik et al. (2016), we encode
spacecraft location by including the magnetic local time (MLT).
For the purposes of this study only, we made a simplification
that the characteristics of the PS within ±1 RE in radial distance
at 10 RE are approximately consistent. Similar to the Version
1 input vector, the OMNI parameters that are included start at
t0 − 30min. The Version 2 input data is shown in Equation 2.
Each input vector has 174 features; there are 172 OMNI inputs
(4 parameters · (240−25) min/5 min) and 2 position inputs. The
creation of the target vectors was unchanged.

φ =
MLT

24
2π ξ = [BY ,BZ , |V|, n] (2a)

Exi =
[

ξ̄tyi−τ , ξ̄tyi−τ−1t , . . . , ξ̄tyi−1T , cosφi, sinφi

]

(2b)

In Equation 2, ξ̄ is the 5-min averaged ξ , τ = 30min is a time
delay, tyi is observation time of Eyi, 1t = 5min, 1T = 4h, and
MLT is the magnetic local time of the spacecraft when each of the
i observations were recorded. Unlike the Version 1 OMNI inputs,
data in Version 2 were not scaled to the range [−1, 1]. Similar to
the Version 1 input data, if there were any missing OMNI data
in an input vector, then we discarded that (Exi, Eyi) example from
the dataset. Since it is more likely to have missing data when
averaging over 5 min than when averaging over 30 min, a much
larger number, about 66%, of training examples were excluded
in the Version 2 data. After removing examples with missing
data, there were 282,294 total training examples remaining. As
with Version 1, 10% of the examples were reserved for testing.
The date ranges for Version 2 data are training: February 2008–
August 2015 and testing: September 2015–May 2017. We note
that these are not the same training/testing periods that were
used for the Version 1 model. We discuss this discrepancy and
its consequences in section 4.

2.2. Neural Network Description
A NN has the proven ability to fit any non-linear function
between two sets of variables (Hornik et al., 1989). While we can
be confident that some ambient SW plasma eventually finds its
way to the PS, all of the non-linear methods involved for how
it arrives there are not completely understood (e.g., Wing et al.,
2014). To capture the unknown non-linear processes, we used the
machine learning tool of a NN as a statistical mapping between
upstream SW and PS observations.

2.2.1. Version 1 Neural Network

The Version 1 NN used an input layer, two hidden layers, and
an output layer. The number of nodes in each hidden layer is
based on a multiple of the number of inputs to that layer. The
first hidden layer has 624 nodes, which is the number of inputs
times three, and the second hidden layer has 1,248 nodes, which
is 624 times two. All neurons in both layers are activated using
the rectified linear unit function (ReLU, defined in Equation 3).
In the output layer, a linear activation function is used to render
the log of the flux values.

ReLU : f (x) =

{

0, x < 0

x, x ≥ 0
(3)

2.2.2. Version 2 Neural Network

Wemade modifications to the NN by modifying both the inputs,
targets, and NN architecture. See section 2.1.3.1 for descriptions
of how the inputs were modified from the Version 1 model. The
NN architecture modifications fromVersion 1 to Version 2 are as
follows. The number of inputs to the Version 2 model is 174. The
first hidden layer has 522 nodes, which is three times the number
of inputs. The second hidden layer has 1,044 nodes which is twice
the number of nodes in the first hidden layer. As in the Version 1
model, all nodes in both hidden layers are activated using ReLU,
and the output layer is activated using a linear function.

2.3. Neural Network Training
We utilized Keras with Tensorflow (Abadi et al., 2015) software
for our NN training. Weights and biases were updated
using a loss function of mean squared error (MSE) and the
Adam optimization algorithm (Kingma and Ba, 2014) with
hyperparameters set to α (learning rate) = 0.001, β1 = 0.9,
β2 = 0.999, and ǫ = 10−7. Although MSE was calculated using
all 17 energy channels in the Ey− and Êy-vectors, the weights and
biases for each channel were updated independently. For both
versions, we stopped training when it was detected that the test
loss had stopped decreasing after three consecutive epochs. This
occurred after ten epochs for both versions.We trained both NNs
in batches of 50 training examples, resulting in several thousand
updates per epoch.

Figure 1 shows the training loss and test skill for both Version
1 and Version 2 neural networks. In Figures 1A–D, the black
line was calculated using training data and the red line was
calculated using the test data. Figure 1A is the MSE of predicted
output vector vs. observed electron flux channels calculated after
each epoch of training for model Version 1. We define a single
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FIGURE 1 | Training and test loss and skill for the two different model configurations. Panels (A,B) show the loss and skill metrics after each epoch of training the

Version 1 model. Panels (C,D) show the same as (A,B) except they are from the Version 2 model.

epoch of training to be a complete pass through all training
data. The curves do not look “smooth” because the weights were
updated after each batch of 50 training examples and the loss
was only recorded after each complete epoch (11,052 batches
per epoch in Version 1 and 5,082 batches per epoch in Version
2). Figure 1B shows the skill of the model calculated after each
epoch. Model skill was determined using the prediction efficiency
(PE) metric, which was calculated as unity minus the ratio of
the MSE to the observed variance. Figures 1C,D show the loss
and skill of the Version 2 model for both train and test data
after each epoch of training. In Version 1, the final training loss
was 0.34, and the final training skill was 0.76. In Version 2, the
training loss and skill are similar to Version 1, at 0.33 and 0.80,
respectively. The test loss for both versions have final values of
0.47 for Version 1, and 0.38 for Version 2. The final test skill
between the two versions are Version 1 PE is 0.76 and Version
2 PE is 0.80.

3. RESULTS

We have calculated several model-observation metrics for the
two neural networks in order to evaluate their performance.

Each metric was calculated using the data designated as
test for both versions. Observations include the full set
of Ey, and model output, Êy, is obtained by applying the
trained weights and biases to the test inputs, Ex. The bottom
section of Table 1, labeled Test section, shows all of the
test metrics calculated for both versions of the NN. We
use several different metrics for a more comprehensive
model comparison (e.g., Liemohn et al., 2018). The first
five (“Bias” through “MAE”) are calculated using the log of
flux values and the last four (“Association” through “MSA”)
are calculated using actual flux values. We highlighted in
blue the metric between the two versions that more closely
represents the observations. For all metrics calculated except
Bias and Extremes, the Version 2 NN outperforms the
Version 1 NN.

Bias is calculated as mean
(

Êy
)

− mean
(

Ey
)

. Version 1 has

a slight negative bias of −0.05 and Version 2 has a larger,
positive bias of 0.15. The Extremes are the ratio of the range
of model flux to the range of observed flux. An Extreme score
of 1 would indicate that the model output perfectly captures
the observed range of flux values. Since the Version 1 score
of 0.46 is closer to unity than the Version 2 score of 0.36, we
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can infer that the Version 1 model is better at capturing the
range of observed flux values than Version 2. PE and MSE are
defined in section 2.3, and for both, Version 2 outperforms
Version 1. In training, the algorithm was attempting to minimize
MSE on the training data, and PE was monitored to impede
overfitting (see section 2.3). The MSE of Version 1 is 0.47
and the MSE of Version 2 is 0.38. The Version 2 PE of 0.80
is an improvement over the Version 1 PE of 0.76. We use
Mean Absolute Error (MAE) as a second measure of the spread
of the deviation between observed and modeled values. The
Version 1 MAE is 0.51 and the Version 2 MAE is 0.44. If we
take the square root of MSE to obtain the Root Mean Square
Error (RMSE), then RMSE and MAE have the same units,
in this case log10

(

cm−2s−1sr−1
)

. RMSE is larger than MAE
for both models, which reveals that it is likely that there is
a substantial spread of modeled flux values compared to the
observed values.

The remaining metrics that are described were calculated
using actual flux values. With Association, we use the standard
textbook r2 value commonly used for regression analysis. Our
interpretation of Association is that the Version 1model captures
only 43% of the variance in the observed fluxes, while the Version
2 model is capturing nearly 70% of the variance in observed
fluxes. The symmetric mean absolute percent error (sMAPE)
ranges from 0 to 200 percent. The Version 1 model has a sMAPE
of 90% and the Version 2 model has a sMAPE of 80%. The
signed symmetric percent bias (SSPB) and the median symmetric
accuracy (MSA) are twometrics described byMorley et al. (2018)
that provide a more robust comparison of flux values that vary
by orders of magnitude. SSPB is calculated using the median
value of the log of flux, rather than the mean of the log of flux.
Consistant with the Bias calculated using the mean of the log of
flux values, The SSPB for Version 1 is negative, at −30% and the
SSPB for Version 2 is positive at 20%. The fact that the absolute
SSPB is lower for Version 2 than Version 1 implies that there
is larger spread in the Version 1 modeled values than in the

Version 2 modeled values compared to the observed values. This
is consistant with the comparison of MAE and RMSE described
in the previous paragraph. Despite the name, the MSA is a
measure of error, and the values of MSA for Version 1 and
Version 2 models indicates that there is less error in the Version
2 model. A percent error of 100% would imply that on average,
there is a factor of two in the discrepancy between the observed
flux and the modeled flux. The Version 2 NN achieves a MSA of
110%, which is better than the Version 1 MSA of 151%.

The comparison of observed to modeled electron flux using
observations from the test data and modeled output from both
versions of the NN is shown in Figure 2. Figure 2A shows the
scatter for the Version 1 NN and Figure 2B shows the scatter for
the Version 2 NN. The Version 1 scatter diagram shows a higher
number of points overall than the Version 2 scatter diagram,
because there was a larger amount of data in the Version 1
dataset (see section 2.1.2). The black diagonal dash-dotted line is
a hypothetical ideal perfect correlation between observation and
model. For both model versions, the scatter shows a clustering of
the densest points close to the black line. The Version 2 model
shows a larger portion of the points closer to the black line.
Figure 2 is a general picture of model output and observational
comparisons, and we are hesitant to draw conclusions regarding
the behavior of plasma sheet electrons from it.

4. DISCUSSION

The Version 1 model assumes no a priori knowledge about which
quantities in the SW are important contributions to near-Earth
PS variations. We made this choice in order to allow the NN
to appropriately weight any parameters or combinations thereof
that might have been overlooked by previous SW-magnetosphere
coupling studies. There is a longer time history of the SW that
is used in Version 1 than Version 2. The Version 1 NN is also
trained on more than twice as many training examples than
Version 2. These factors might suggest that the Version 1 NN

FIGURE 2 | Scatter density correlation of modeled vs. observed electron flux at all 17 energy channels for (A) the Version 1 model and (B) the Version 2 model. The

comparison for both models was performed on the data reserved for testing.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 July 2020 | Volume 7 | Article 4281

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Swiger et al. Physics Informed Plasmasheet Neural Network

would produce more accurate output than the Version 2 NN.
However, despite the assumed advantages of the Version 1model,
the Version 2 model outperforms the Version 1 model in most
model-data comparison metrics calculated (see Table 1). We
propound that Version 2 outperforms Version 1 because of two
modifications that were made based on physical information.

The first modification toward incorporating physical
information relates to the time resolution of the inputs. When
deciding to use 30-min averaged SW inputs, we used evidence
that the magnetosphere acts as a low-pass filter of SW variations
(e.g., Ilie et al., 2010). However, there is evidence that some
higher time resolved information contained in the SW effects the
PS (Lyons et al., 2009; Wang et al., 2017). Additionally, much
of the behavior in the PS occurs on cycles of a few hours, i.e.,
substorm activity (e.g., Hones, 1972). By reducing the SW time
history to 4 h, we neglect information that is likely relevant to
predicting the electron flux in the PS. Others have found time
delays of 6 h (Nagata et al., 2008) and 8 h (Borovsky et al., 1998)
between SW/IMF variations and PS response. Even though the
Version 2 model does not consider delays longer than 4 h, it still
outperforms Version 1.

The second item of physical information that we introduced
to the input set is the spatial distribution of observed electron
flux. It is widely observed that there is a dawn-dusk asymmetry
of electron fluxes in the PS (e.g., Walker and Farley, 1972;
Lui and Rostoker, 1991; Sarafopoulos et al., 2001; Imada et al.,
2008). We would expect both a higher flux and a larger number
flux enhancements in the post local midnight, dawn section of
the PS. Moreover, Wang et al. (2007) demonstrated that the
spatial distribution of electrons within the PS is correlated with
varying SW parameters. Wang et al. (2011) additionally show
that the distribution of electron flux can be characterized by
MLT as electrons drift closer toward the inner magnetosphere.
Therefore, treating the PS as uniform in electron flux at a single
radial distance, as modeled by the Version 1 NN, is physically
inappropriate. By including the spacecraft location as an input
for the Version 2 model, we are encoding the physical knowledge
that the variation of electron flux is dependent upon spatial
location within the PS.

Both model versions were trained using periods of the
solar cycle that include quiet and active periods: Version 1,
solar minimum through the declining phase and Version 2,
solar minimum through solar maximum of solar cycle 24.
However, Version 1 was tested on a period of solar quiet (solar
minimum) and Version 2 was tested with data during a solar
active period (declining phase). While we might expect the
model to perform better during quiet SW conditions, this is
not what we see when comparing Version 1 to Version 2.
Moreover, there is not a substantial difference in the variance of
training and testing target data between Versions 1 and 2. The
Version 1 target data has standard deviations of 1.31 and 1.41
log10

(

cm−2s−1sr−1
)

for train and test sets, respectively, while
the Version 2 target data has standard deviations of 1.29 and
1.39 log10

(

cm−2s−1sr−1
)

, respectively. This further indicates that
including physical information is more important than using a
larger amount of data when training these neural networks.

5. CONCLUSION

In summary, this study showed that including additional physical
understanding, even while reducing the data set and inputs
in other ways, improved the quality of the NN predictive
capability. With neural networks, tracing the contribution from
inputs to outputs is difficult, hindering interpretability of
results, i.e., determining which inputs contributed to which
output, or finding a functional mapping between inputs
and outputs. Azari et al. (2020) showed that incorporating
physical knowledge into ML additionally improves scientific
interpretability along with performance for certain models.
Development of a robust NN model of PS electron flux from SW
input using additional physical understanding shows promise for
improving performance.
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Neural networks (NN) provide a powerful pattern recognition tool, that can be used

to search large amounts of data for certain types of “events”. Our specific goal is to

make use of NN in order to identify events in time series, in particular energy conversion

regions (ECRs) and bursty bulk flows (BBFs) observed by the Cluster spacecraft in

the magnetospheric tail. ECRs are regions where E·J 6= 0 is rather well-defined and

observed on time scales from a fewminutes to a few tens of minutes (E is the electric field

and J the current density). BBFs are high speed plasma jets, known to make a significant

contribution to magnetospheric dynamics. Not surprisingly, ECRs are often associated

with BBFs. The manual examination of the Cluster plasma sheet data from the summer

of 2001 provided start-up sets of several ECRs and, respectively, BBFs, used to train

feed-forward back-propagation NNs. Subsequently, larger volumes of Cluster data were

searched for ECRs and BBFs by the trained NNs. We present the results obtained and

discuss the impact of the signal-to-noise ratio on these results.

Keywords: neural networks, feedforward backpropagation, cluster, energy conversion region, bursty bulk flow

INTRODUCTION

As sensor resolutions and sampling frequencies increase, data available from space missions is
steadily increasing. For example, the SMILEmission will generate 30 Gbits/orbit of data (Raab et al.,
2016). Processing these data requires large amounts of time spent by researchers in order to identify
interesting events. For example, Paschmann et al. (2018) assembled a database with thousands of
manually selected events from the MMS mission.

Pattern recognition tasks can be handled very well by the human brain which has a highly
complex, non-linear and parallel structure (Haykin, 2009). Such an information processing system
is able to perform these tasks much faster than today’s computers. An artificial neural network is
based on a simplified model of the biological neural network and brings the pattern recognition
power of the brain into the world of computers.

As another example, Wing et al. (2003) showed the application of a multilayer feedforward
neural network in the classification of radar signals from ionospheric irregularities. The neural
network implementation correctly classified 98% of the signals.

In this paper we show results obtained by using a feedforward neural network for automatically
locating regions of interest in time series. We searched for events in data from the Cluster mission,
consisting of four identical spacecraft launched in pairs in July and August 2000, with a perigee
of 4 RE and an apogee of 19.6 RE (Escoubet et al., 2001). The mission, whose operational phase
started in February 2001, allows for in situ exploration of particle and field data, with emphasis
on investigations that require multi-point data and techniques—for example, analysis of vector
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fields, like deriving current density from magnetic field data, or
examination of magnetospheric boundary layers, like, e.g., the
magnetopause. While in the following we concentrate on Cluster
data, the broader goal of the paper is to investigate and illustrate
the potential benefits of applying neural networks to time series
of space physics interest. We aim to provide examples of using
NN algorithms to quickly identify specific events, and by doing so
to enable automated build-up of event databases. This can help a
better exploitation of big volumes of data, much of which are time
series, and by that a better view over the phenomena under study
and a better insight to the relevant physics.

In the next section we present the type of neural networks
architecture used in this paper and detail the software
implementation of the algorithm. In section Neural Network
Identification of ECRs: Key Questions, we describe several
difficulties encountered during the application of the algorithm
and the solutions to overcome those. In sections Neural Network
Identification of ECRs: Comparison With an Algorithmic
Approach and Neural Network Identification of BBFs, we
present the application of this algorithm on two types of
time series data provided by instruments onboard Cluster
spacecrafts, namely energy conversion regions (ECRs) and
bursty bulk flows (BBFs). These two examples illustrate the
cases of low and high signal to noise ratio, for ECRs and
BBFs, respectively, and provide qualitative information on
the impact of this parameter, as well as a test bed for an
upcoming quantitative assessment. In the last section we present
our conclusions.

NEURAL NETWORKS

Introduction: Various NN Types
Depending on the interconnection between the artificial neurons,
neural networks can have different architectures. We further
present three main classes:

• Single-layer feedforward networks: contain just an input and
an output layer. The information is passed from the input
directly to the output. This network architecture contains only
one layer of processing neurons, as the input layer does not
perform any computations.

• Multi-layer feedforward networks: contain more than one
processing layer. Information is passed from the input layer
to the output layer via one or more hidden layers.

• Recurrent networks: these networks contain at least one
feedback loop connecting the output to the input.

Neural networks can learn either helped by a “teacher” or without
one. The first case is called supervised learning and it involves a
previously known set of input-output pairs that can be presented
to the network. When learning without a “teacher,” the method is
called unsupervised learning. In this case, the network attempts
to split the input data in different classes. A combination of the
two methods is reinforcement learning, where the network is
just presented with the consequences of its actions. In this case,
the network attempts to minimize a given criterion by modifying
the decisions it makes.

Feedforward Back Propagation NN
In order to identify the regions of interest in time series, we
make use of a feedforward back propagation neural network,
which is of single or multi-layer feedforward network type. The
feed-forward direction refers to the traveling of the processed
input toward the output when the trained network is used. The
back propagation refers to the traveling of the error backwards
through the network as part of the training of the network.

During the training phase, the network learns to map a series
of input vectors to the corresponding, known, output vectors.
The learning process modifies the values of the inter-neuron
connection weights.

The first layer of the network, the input layer, has the size
equal to the size of the input vector and does not perform any
computations. Its function is to feed the input information to the
network. The next layers, one or more hidden layers or directly
the output layer, process the information.

As data travel through the network, it is adjusted via the inter-
neuron connection weights. Based on these inputs, each neuron
computes its activation function. The usual types of activation
functions are sigmoid and linear, and both of them are used in
this paper.

The forward mechanism involves the processing of the input
data by the neurons, through use of weights and transfer
functions. While the latter are fixed, the weights of the network
are adjusted during the training process. Data are multiplied
with the corresponding weights and the input of each neuron is
computed as the sum of the weighted input values:

I
(1)
j =

m
∑

i=1

ωjiO
(0)
i

Where

• I
(1)
j is the input of neuron j from layer 1

• ωji is the weight of the connection from input i to neuron j

• O
(0)
i is the output of the i-th element of the previous layer

(input value in the case of the first layer of neurons)
• m is the number of elements of the previous layer (input in the

case of the first layer of neurons).

The computed weighted sum I
(1)
j is further passed to the

activation function of the neuron j and the corresponding
output computed:

O
(1)
j = f (I(1)j )

Where

• O
(1)
j is the output of neuron j from layer 1

• f is the activation function of the neuron

In case of the last layer, the output (O(1)
j ) of the neuron is an

element in the output vector of the network.
During training, the values of the corresponding output vector

for a given input vector are known. The error vector (e) is
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computed as the difference between the desired output and the
actual output:

e = D− O

Where

• D—desired output vector
• O–actual output vector.

The aim of the algorithm is to minimize the error, so the weights
are adjusted backward from the output, in an iterative process:

ωji (n+ 1) = ωji (n) + α
[

1ωji (n− 1)
]

+ ηδj (n) Ii(n)

Where

• ωji (n+ 1) is the adjusted weight (step n+1)
• ωji (n) is the unadjusted weight (step n)
• α is the momentum constant
• η is the learning rate
• δj is the local gradient—takes into account the error and the

derivative of the activation function.

Essentially, the training phase represents the non-linear
optimization of the weights, by using specific functional forms
for the activation functions and interconnection between
neurons. The learning rate and momentum constant are fixed
parameters for a given instance of the network, that can be
adjusted during the training phase. Together with the number of
layers and the number of neurons in each layer, they represent
the global parameters of the network. The user has to tune
these parameters during the training phase in order to improve
the results of the network. As detailed under Section Neural
Network Identification of ECRs: Key Questions, the key tasks of
the training phase are both the training per se and identifying the
network configuration that optimizes the results.

The training stops when one of these conditions is met:

• The error drops below a certain value
• The specified number of training epochs was reached
• The error decrease rate is slow enough.

Key Features/Parameters
The sizes of the input and output layers are determined by the
sizes of the input and corresponding output, respectively. The
hidden layer size is determined experimentally by the user. There
is no fixed rule that specifies the size or even the presence of the
hidden layer.

In general, an increase in the size of the hidden layer can help
the network to better learn the features of the training set. On the
other hand, if the network size is increased too much, it might
lose its ability to generalize and therefore to address data sets
which are different from the training set—which is the actual
goal of the training. A correctly configured and trained NN must
be able to accurately evaluate new data, based on key features
learned from the training set.

The neural network architecture presented in this paper
relies either on none or one hidden layer and can be tuned
to better perform the task at hand by adjusting the size of

this hidden layer, the learning rate (η) and the momentum
constant (α). Further degrees of freedom that need to be handled
are the intrinsic variability of the network results and setting
the training stop condition—all detailed under Section Neural
Network Identification of ECRs: Key Questions.

Software Implementation
We implemented a feedforward neural network algorithm
(private communication by Simon Wing) in C. The C
programming language gives more flexibility in choosing the
platform where to run the software (Linux or Windows). For
switching between platforms, the program requires only a
recompilation on the target platform.

The program configuration parameters are read from a file,
whose name is given at runtime as a command line parameter.
Inside the parameter file, the user must specify:

• Number of layers of the network
• Transfer function for each layer
• Number of neurons for each layer
• Number of training pairs
• Name of the file containing training data (input-output pairs)
• Number of testing pairs
• Name of the file containing testing data (input data)
• Name of the file containing the evolution of the error rate
• Name of the file containing the response of the network to the

testing data.

The parameters that control the evolution of the network during
training, the learning rate and the momentum, are specified
inside the C code and can be modified if needed. This setup
gives the user the possibility to explore in parallel multiple
network configurations. A simple script can start the predefined
configurations, each with its separate output file. A batch system
allows the execution of multiple instances in parallel, each with
different parameters and input data. This allows the user to search
the parameter space more efficiently.

NEURAL NETWORK IDENTIFICATION OF
ECRs: KEY QUESTIONS

The manual examination of the Cluster plasma sheet data from
the summer of 2001 provided a first set of energy conversion
regions (ECRs; Marghitu et al., 2010), where E·J 6= 0, with E the
electric field and J the current density. Estimates of E are typically
available on Cluster from more than one instrument, providing
a necessary redundancy when the electric field is low, while J is
inferred from the magnetic field, B, measured by the four Cluster
satellites, as a direct application of Ampère’s law.

More specifically, the electric field, was derived as E = –V ×
B, with plasma velocity, V, inferred from the Hot Ion Analyzer
(HIA) and Composition and Distribution Function (CODIF)
sensors of the Cluster Ion Spectrometer (CIS) experiment. At
each time, the electric field was obtained as an average value, by
using ion data from Cluster 1, Cluster 3, and Cluster 4, where one
or both sensors were operational (no CIS sensor was operational
on Cluster 2). Data from the Electric Field and Wave (EFW)
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experiment were only used to cross-check the CIS estimates.
EFW provides just the spin plane projection of the electric field
and the assumption E·B = 0 is needed to derive the full electric
field vector. In the tail plasma sheet, where we searched for
ECR events, the angle between the magnetic field vector and
the Cluster spin plane was in general too small for inferring
the missing electric field component (perpendicular to the spin
plane) from the condition E·B = 0. Therefore, EFW data were
just used to cross-check the spin plane electric field, in particular
the dawn-dusk, Ey component (Ex, typically small and affected by
a Sun offset, is less reliable). The current density, J, was computed
from magnetic field data of the FluxGate Magnetometer (FGM)
experiment, by using the Curlometer method (Dunlop et al.,
2002), taking care of the spacecraft separation, as well as planarity
and elongation of the Cluster tetrahedron (see below). For further
details on the electric field and current density estimates, used to
derive the power density E·J, the reader is referred to Marghitu
et al. (2006).

Among the observed ECRs, some were concentrated
generator regions (CGRs), E·J < 0, where mechanical energy
is converted into electromagnetic energy, while others, more
numerous in the geomagnetic tail, were concentrated load
regions (CLRs), E·J > 0, where the sense of energy conversion
is reversed. As illustrated in Figure 1, in both cases energy
conversion is rather well-defined and observed for a relatively
short time (a few minutes to a few tens of minutes). Since energy
conversion is associated with interesting signatures in the plasma
parameters (notably plasma velocity and related BBFs), and is
known to be an important ingredient of key plasma processes, it
appeared as useful to replace the time-consuming manual search
with an automated procedure.

An algorithmic procedure has been developed byHamrin et al.
(2009a) which led to the identification of 151 ECR events, of
which 116 CLRs and 35 CGRs, in the Cluster crossings of the
plasma sheet from 2001. The adjusted and refined procedure was
applied later on to Cluster plasma sheet crossings from 2001,
2002, and 2004 (Hamrin et al., 2010), resulting in a total of 555
ECRs, of which 428 CLRs and 127 CGRs. A broader set of events,
extended to cover also 2003 and 2005 (with due care to the small
Cluster tetrahedron size in 2003 and multi-scale configuration
in 2005), was used to select the NN training base, consisting of
81 CLRs and the testing set consisting of 326 CLRs (see section
Selection of the Training Set).

The 81 CLRs selected for training had the following
distribution over 2001–2005: 11 of 2001, 28 of 2002, 19 of 2003,
21 of 2004, and 2 of 2005. The testing set consisted of 326 events,
distributed as follows: 59 of 2001, 107 of 2002, 46 of 2003, 108
of 2004, and 6 of 2005. As indicated by Hamrin et al. (2009a),
for all selected ECRs the tetrahedron was reasonably regular
(elongation and planarity<0.4), which applied also for the events
of 2003 and (few) of 2005. Moreover, ECR events that were too
short (<100 s), too weak (absolute value of average E·J < 0.4
pW/m3, absolute value of integrated power density <200 pJ/m3),
or too close to the kinetic regime (duration multiplied by plasma
velocity <5 proton gyro-radii) were not selected. Further details
of the event selection algorithm are provided by Hamrin et al.
(2009a). While specific thresholds of this procedure were tuned

manually, its application provided a fair selection of ECR events,
whose features could be examined subsequently in a consistent
manner (Hamrin et al., 2009a,b, 2010).

In a first stage, the trained NNs were used to identify both
CLRs and CGRs. Accordingly, the NN output was a vector of the
same size as the input data, populated with one of three values: 1
for CLRs,−1 for CGRs, and 0 in rest. Later on, as described below
(sections Sliding Window Approach, Selection of the Training
Set), we concentrated just on CLRs.

Size of the Input/Output Layer
Our first approach to identify energy conversion events with
neural networks consisted of dividing the data into fixed size
intervals (of about 100 elements). For each input interval, we had
a corresponding output interval of the same size. This approach
resulted in a highly complex network architecture, with 100
input neurons, a hidden layer of various sizes, and 100 output
neurons. Since the feed-forward backpropagation NN we used
was fully connected (every neuron in a layer was connected
to all the neurons in the next layer), the training algorithm
had to compute a large number of weights, which required
significant training time and computer resources (memory, cpu).
The trained network was also not very good in identifying
the events. The data used to train the network consisted of
concatenated intervals of satellite readings, containing both event
(1 or −1 desired output) and non-event data (0 desired output),
of which non-event data were by far dominant, therefore the
trained network regarded the non-event data as the “right” ones
and mostly ignored the event data.

Use of Synthetic Data for Training and
Testing
Using real E·J data raised additional problems: the training
set was limited and the data used for training could not be
explored later—in a consistent manner—for the presence of
CLRs and CGRs. In order to overcome these problems, we tried
to use synthetic data for training and testing the NN. When
building the synthetic data sets, we randomized the intensity,
duration, and sign. During the tests with synthetic data, we
noticed an improvement in detection for less complex network
configurations. The network worked better for a smaller number
of neurons on the hidden layer, but after training with more
input data.

For simplicity, we further considered only the search for CLR
events (E·J > 0), as presented in section Selection of the Training
Set. This search is also similar to the case of BBFs (section
Neural Network Identification of BBFs), where events are as
well-positive and NN output is accordingly just 1 (event) and 0
(non-event). Moreover, in the tail plasma sheet CLRs dominate
over CGRs, consistent with the large-scale load character of
this region.

Sliding Window Approach
In order to decrease the training time and the complexity of
the network, we opted eventually for another structure of the
NN by implementing a sliding window algorithm. The sliding
window consists of a certain number of input neurons, typically
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FIGURE 1 | Left: CLR Event, Right: CGR event—after (Marghitu et al., 2010).

more than one, and just one output neuron; which implies a
great decrease in the complexity of the NN and accordingly of
the training time (from days to tens of minutes). As the window
moves across the time series, the output is 1 when the window
slides over the CLR event.

Selection of the Training Set
During the tests with real and synthetic data we noticed the
importance of a heterogeneous and representative selection of
input data for training the network. By including many non-
event data points (associated with an output value of 0), the
network is biased toward false negatives (more values of 0 in the
output), therefore a balanced input selection is required (see also
Section Size of the Input/Output Layer).

Starting from the dataset of ECRs observed in 2001, 2002, and
2004, analyzed by Hamrin et al. (2010), extended to cover also

2003 and 2005 (as described above), we constructed training sets
with equally distributed events, in duration or intensity. In the
data presented to the network during training, onemustmaintain
a balance between event and non-event intervals. Given that the
quality of the network training is judged by the mean error of
the output (difference between desired and actual output), if one
uses mostly non-event intervals (i.e., mostly 0 desired output) a
network trained to supply mostly 0 will be wrongly considered
well-trained. By using a better tuned training set, we managed to
improve the detection accuracy of the NN.

A key question for this better tuning was the uniform selection
of training data. For this aim, we sorted the events considering
their duration, as well as their intensity, quantified by the median
E·J value (similar to Hamrin et al., 2009a). The median was
computed over the length of each event, consisting of at least
25 points (minimum duration 100 s, with 4 s per point—see also
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the brief description of the event selection algorithm above).
After sorting the events, we tested two selection methods: a
linear sampling, 1 out of n, and a logarithmic sampling, to
take into account that most events are weak, i.e., of short
duration and low intensity While the linear sampling selects
mostly weak events, and thus is essentially biased comparable
to the case of dominant non-event intervals, the logarithmic
sampling emphasizes longer/stronger events, which turns out
to compensate this bias and to provide better results. Hamrin
et al. (2009a) found that intensity is indeed distributed close
to logarithmic, while Hamrin et al. (2009b) found the same for
duration, in particular of CLRs, therefore logarithmic sampling
appears to be a better choice.

While the linear selection 1 out of n is self-explanatory (every
nth event), in the case of logarithmic sampling we used the
natural logarithms of the respective values andmade the selection
according to the following formula:

Index = 1+ (N − 1) ·
ln

(

y1+j
yN−y1

M
y1

)

ln
(

yN
y1

)

Where

• Index is the index of the element to be selected from the input
set, comprising in our case 407 CLR events.

• y1, N are the elements of the input set (of size N, in our case
407), from which we select elements of the training set; y1 is
the first element of the input set and yN the last one.

• j is the index in the destination (selected) training set,
containing selected elements, and runs from 0 to M; in our
case M is 80 and the training set comprises 81 events.

In Figure 2 we present the duration of the events in the training
set, selected by linear sampling 1 out of 5 (top panel-red line) and
logarithmic sampling (top panel-blue line), as well as the duration
of the events used for testing (bottom panel). The full set of events
includes 407 CLRs, the training sets 81 events, and the testing
set 326 events. For logarithmic sampling, 81 was the maximum
number that ensured distinct indices after rounding at the low
index end. For the linear selection, 1 out of 5 provides a training
set of similar size with the logarithmic selection. As expected,
the logarithmic sampling provides a more uniform selection as
compared to the linear sampling, that a is, a somewhat better
representation of the longer events. The plots are similar (not
shown) when duration is replaced by intensity, in agreement with
the distributions observed by Cluster (Hamrin et al., 2009a,b).

Other Parameters: Momentum Constant,
Learning Rate, Stop Condition, Initial
Conditions
One difficulty encountered in the tests with ECR data was the
unstable NN behavior, with fast growth of the weights (defining
the connections between neurons) and error (i.e., the difference
between the actual response of the NN and the target response)
sometimes leading to numerical overflow.

The momentum constant (α) controls the adjustment of the
network’s weights, based on the previous evolution of the weight.
The value of α must be kept >-1 and smaller than 1. A value of 0
means nomomentum influence during training the network. The
momentum constant can prevent the network from stopping in
a local minimum during training. In our tests, we found that a
momentum constant of 0.5 favors the stability of the network.

A smaller learning rate parameter (η) determines a smaller
change in the synaptic weights of the network from one iteration
to another. If the learning rate parameter is too large, in order to
speed up the training, the resulting large changes of the weights
may render the evolution of the network unstable during the
training phase. The value of the learning rate parameter should
be kept above 0 and less or equal to 1. In practice, we found
appropriate a small η value, of 0.0001.

Two more important features proved to be the stop condition
and the intrinsic variability of the network. Thus, the stop
condition had to be formulated in terms of relative decrease in
the error, as opposed to a fixed number of iterations. The intrinsic
variability of the network was related to the randomly selected
initial weights. In practice, the network was trained several times,
and the best instance selected for further operation.

NEURAL NETWORK IDENTIFICATION OF
ECRs: COMPARISON WITH AN
ALGORITHMIC APPROACH

The detailed examination of the results on real E·J data (not
concatenated individual events) shows that the NN identifies
neighboring events as separate ones, while the semi-automatic
algorithmic procedure set up by Hamrin et al. (2009a) includes a
post-processing that merges such neighboring events into a single
one. As detailed below, since post-processing introduces further
degrees of freedom, we decided to skip it for the time being and
to compare the results in a way that is less sensitive to this step,
by using the cumulative sum of E·J.

In Figure 3 we present a sample output of the NN search for
ECR events over a time interval of ∼3 h. The NN configuration
in this case included no hidden layer and the sliding window
(Section Sliding Window Approach) had five points. During
our tests, we explored the use of different window sizes, from
5 to 101 points, with various hidden layer sizes, from 0 (no
hidden layer) to 71. Following the evaluation detailed below, the
NN configuration behind Figure 3 provided the results that we
regarded as the best match to the algorithmic approach, used
for reference. This means that most events identified by the
algorithmic approach were also detected by the NN (which does
not exclude additional events detected by the NN).

In order to evaluate the multiple network configurations, we
compared the NN output with the results of the algorithmic
approach by building pie charts and scatter plots for all network
configurations, as illustrated in Figure 4. This allowed a quick
and overall visual comparison of the events selected by the
NN with those selected by the algorithmic approach. Figure 4
corresponds to a NN with no hidden layer and an input sliding
window of five elements. The events used for training were
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FIGURE 2 | CLRs sorted by duration—training selection (top), testing selection (bottom). The top panel shows both the logarithmic selection (blue) of 81 events and

the linear selection (red) 1 out 5, which provides a similar number of events with the logarithmic one. The x axis shows the event index in the respective set, while the y

axis shows the event duration in Cluster spin periods of 4 s (the number on y axis should be multiplied by four to get the duration in seconds). See text for details.

FIGURE 3 | NN output on E·J data: NN output (rounded) in red, E·J in green (normalized to the maximum value of the time interval, here 17.4 pW/m3). Events found

by the algorithmic approach are shaded in blue.
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FIGURE 4 | Comparison between the algorithmic approach and NN output. Pie chart representation of the total cumulative sum of E·J (left) and scatter plot of the

cumulative sum of E·J for individual events, as derived by the two procedures (right). The unit for the cumulative sum of E·J is pW/m3. The scatter plot is presented on

logarithmic scale, in order to emphasize the more numerous weak events (compare with Figure 2). The points on the x and y axis are identified just by the algorithmic

and NN approach, respectively, and the actual cumulative sums are 0. In order to make these points visible in logarithmic representation, the value of 0 was changed

artificially to 10. See text for details.

logarithmically distributed in duration and selected from Cluster
data between 30th May 2001 and 30th December 2004.

The left plot of Figure 4 shows the cumulative sum of E·J
over the selected events. As hinted at above, we picked the
integrated magnitude of the events since this is less sensitive to
the exact definition of an event—whether the individual spikes
identified by the NN are merged together, as in the algorithmic
approach, or not. We also selected the pie chart for the visual
representation, even if in this case the whole pie does not have
the usual meaning, namely it is not equal to the sum of the
slices. Nevertheless, it provides a useful tool to quickly assess the
matching of the two procedures. More exactly, dark/light blue
indicates events found only by the neural network/algorithmic
approach, while light green/yellow shows the cumulative sum
for the common events, computed over the results of the neural
network/algorithmic approach. For the first, the small light blue
and large dark blue slices show that the NN events is essentially
a super-set of the events derived by the algorithmic approach,
which looks promising. For the latter, the positive difference
between yellow and light green is consistent with the visual
impression of Figure 3, that the “elementary” events identified
by the NN do not fully fill the merged events obtained by the
algorithmic approach after post-processing.

A complementary view is provided by the scatter plot on the
right side of Figure 4, which helps to substantiate further the
comparison of the results by an event-oriented perspective. Each
event is indicated by an empty bullet, with the cumulative sum
of E·J as derived by the algorithmic/NN approach on the x/y
axis. Most bullets indicate values of< ∼1,000 pW/m3, consistent
with the point made before that most events are observed to be
short and weak (Figure 2). Most of the bullets identified by both

the algorithmic and the NN approach are also slightly under the
first bisector, consistent with the larger yellow slice compared to
the light green one, and the respective cumulative sums of the
algorithmic approach are larger than 50 pW/m3, as required by
the threshold of 200 pJ/m3, indicated in Section Neural Network
Identification of ECRs: Key Questions (which, when expressed in
terms of cumulative sum, should be divided by the 4 s duration
of each sample). Several bullets are aligned along the x and y
axes, consistent with the light blue and dark blue slices of the
pie chart, respectively, in the left plot of Figure 4. For these
latter bullets, 10 pW/m3 were artificially added, to make them
visible in logarithmic representation—whose origin here is the
point (10, 10) pW/m3.

Since typical magnitudes of E and J are in the range of a few up
to several mV/m and nA/m2, respectively, the power density unit
for E·J, and for the cumulative sum of E·J in Figure 4, is pW/m3.
Note that by scaling E·J with 4 s (the duration of the sampling
interval), one can derive the energy density profile along Cluster
crossing of the CLR, in pJ/m3. From this perspective, by scaling
the cumulative sum of E·J with 4 s and by dividing the result
through the number of points (i.e., 4 s intervals), one can derive
a proxy for the average energy density of each CLR event. While
Cluster data provide some information on the size and lifetime
of the CLR events (Hamrin et al., 2009b), the precise relevance
of this proxy depends on the particular geometry of the Cluster
crossing with respect to the CLR. For this reason, we prefer
to show the cumulative sum of E·J and refrain from scaling
this result.

The visual information provided by the pie chart and scatter
plot can aid in quickly assessing the performance of the NN
and is preferred here against the standard evaluation in terms
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FIGURE 5 | NN output for ion velocity data. Velocity is normalized to a maximum value of 1,000 km/s. Actual BBF events are shaded in blue.

of false positive and false negative events. As described above
(section Neural Network Identification of ECRs: Key Questions),
the definition of the “event” in the algorithmic approach—
which provides our comparison benchmark—is to some extent
empirical, and cannot be regarded as an “absolute” reference.
The identification of the events allows for jitter in the start
and end time, the NN approach can select individual smaller
events corresponding to a larger, singular event of the algorithmic
approach, and several new events are detected by the NN
(the dark blue slice of the pie chart and the points on the y
axis of the scatter plot in Figure 4). Therefore, comparing the
results in terms of “events” is not straight forward and, in this
case, performance assessment by means of the more flexible
cumulative sum looks better suited than the classical manner.

NEURAL NETWORK IDENTIFICATION OF
BBFs

Using the software developed to search for ECRs, we considered
testing the functionality of the selection tool provided by the
neural network implementation on other time series. We decided
to explore the possibility of using this setup to locate Bursty
Bulk Flow (BBF; Angelopoulos et al., 1992) events in ion velocity
observed by the HIA instrument (Rème et al., 2001) on Cluster.
In qualitative terms, BBFs are better defined than ECRs, meaning
less weak events and a better signal-to-noise ratio. Intuitively,
one can expect that an automatic pattern recognition tool will
work better with BBFs. Unlike for ECRs, in the case of BBFs
we did not benefit from an event database at hand, to provide

the training set. On the other hand, the definition of BBF
events is documented in several studies (even though there is
some variability in the relevant criteria), therefore assembling a
training set is significantly easier compared to ECRs. Moreover,
observation of BBFs requires just single-s/c ion data, compared
to multi-s/c, multi-instrument data for ECRs. This has a positive
effect on the errors and on the signal-to-noise ratio.

In order to assemble the training set, we manually selected
39 events, with duration between 500 and 3,000 s and a velocity
threshold of 400 km/s. The actual training set was built by
extending the selection around the events to include also non-
event data points and by finally concatenating the data. Similar
to the ECR case, we tested several network configurations with
this training set and eventually selected once again the one used
with ECRs (window size 5, no hidden layer).

Figure 5 shows a representative sample output of the trained
network over a ∼5 h Cluster crossing of the plasma sheet.
Compared to the ECR sample in Figure 3, covering a shorter
interval, the NN output is less abundant (fewer red events per
unit time), which is a consequence of the better signal-to-noise
ratio. The event selection seems reasonably accurate, but it still
requires further post-processing (i.e., joining short, neighboring
events; rejecting events below the velocity threshold). For this
particular time interval, the actual number of BBF events is 4
(shaded in blue), while the NN output is ∼20 (counting the red
rectangles/spikes). This suggests a rough multiplication factor
of five, between the actual number of events and the network
result. Implementing the post-processing will also make possible
a quantitative assessment of the NN performance, in the standard
terms of false positive and false negative events.
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The test data was built by using Cluster plasma sheet
measurements from the tail seasons of 2001–2004, 1st of August
to 10th of October. The actual tail seasons were actually
somewhat longer, but we made a conservative choice, to avoid
contamination with magnetosheath data on the dawn flank
(before 1st of August) and on the dusk flank (after 10th of
October). A preliminary count provided about 4,150 NN events,
namely some 800 actual events for the roughmultiplication factor
of five estimated above. Compared to the training set of 39 events,
the gain in the number of events is of the order of 20, which
consolidates the case for using NNs in exploring time series.
Obviously, in a particular case like this, the human effort to build
up a large event data base, appropriate, e.g., for statistical studies,
is tremendously decreased.

CONCLUSIONS

The NN approach explored in this paper provides an efficient
tool to automatically identify specific events in time series.
When using supervised learning, as illustrated here, a key
stage is building a representative training set, to be extended
by the network later on, during its nominal use. Another
essential feature is that the user must explore different network
configurations, by training and testing, in order to find the right
setup for the problem at hand.

The effort spent on finding the proper NN setup can be
considerable, as illustrated with the case of the weaker/noisier
ECRs, which are also harder to identify. In such cases, the benefits
of using the NN approachmay appear questionable. On the other
hand, for the stronger/clearer BBF events, detection is both easier
and more reliable. Opposite to ECRs, the benefits of using NNs
to build up large event data bases are in such cases obvious.
In the future, we plan to further explore and try to quantify
the connection between the noise level and the results of neural
networks approaches.

Time series data are generously supplied nowadays by a broad
spectrum of high-resolution satellite (and ground) experiments.

Searching such data for specific events, as well as assembling
relevant statistical sets, are notoriously time-consuming in space
physics research. By taking advantage of machine learning tools,
like neural networks, to automate such operations, the time share
for creative (and rewarding) research will increase, to the benefit
of both event-oriented and statistical studies.
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Global-scale energy flow throughout Earth’s magnetosphere is catalyzed by processes

that occur at Earth’s magnetopause (MP). Magnetic reconnection is one process

responsible for solar wind entry into and global convection within the magnetosphere,

and the MP location, orientation, and motion have an impact on the dynamics. Statistical

studies that focus on these and other MP phenomena and characteristics inherently

require MP identification in their event search criteria, a task that can be automated

using machine learning so that more man hours can be spent on research and analysis.

We introduce a Long-Short Term Memory (LSTM) Recurrent Neural Network model to

detect MP crossings and assist studies of energy transfer into the magnetosphere. As

its first application, the LSTM has been implemented into the operational data stream of

the Magnetospheric Multiscale (MMS) mission. MMS focuses on the electron diffusion

region of reconnection, where electron dynamics break magnetic field lines and plasma

is energized. MMS employs automated burst triggers onboard the spacecraft and a

Scientist-in-the-Loop (SITL) on the ground to select intervals likely to contain diffusion

regions. Only low-resolution survey data is available to the SITL, which is insufficient to

resolve electron dynamics. A strategy for the SITL, then, is to select all MP crossings. Of

all 219 SITL selections classified as MP crossings during the first five months of model

operations, the model predicted 166 (76%) of them, and of all 360 model predictions,

257 (71%) were selected by the SITL. Most predictions that were not classified as

MP crossings by the SITL were still MP-like, in that the intervals contained mixed

magnetosheath and magnetospheric plasmas. The LSTM model and its predictions are

public to ease the burden of arduous event searches involving the MP, including those

for EDRs. For MMS, this helps free up mission operation costs by consolidating manual

classification processes into automated routines.

Keywords: magnetosphericmultiscale (MMS), scientist in the loop (SITL), burst datamanagement, magnetopause,

long-short term memory (LSTM), ground loop, mission operations
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1. INTRODUCTION

Earth is a strongly magnetized planet whose internal dynamics
are largely influenced by its interaction with the solar wind
and the resulting cycle of magnetic reconnection (Dungey,
1961). Reconnection occurs initially at the magnetopause (MP),
at the interface between the shocked solar wind and Earth’s
magnetosphere (MSP), in what is known as the electron
diffusion region (EDR). The EDR had been enigmatic, with
few direct observations (Nagai et al., 2011, 2013; Scudder
et al., 2012; Tang et al., 2013; Oka et al., 2016) because
spacecraft lacked the spacial and temporal resolution to resolve
electron-scale dynamics. These limitations were overcome by the
Magnetospheric Multiscale (MMS) mission. Leading up to its
launch, so little was known about the EDR that it was unclear
how or if EDRs could be identified in the data, which led to
speculation into the best EDR indicator (Mozer, 2005; Scudder
and Daughton, 2008; Scudder et al., 2008; Zenitani et al., 2011;
Aunai et al., 2013; Hesse et al., 2014; Swisdak, 2016). Since launch,
however, MMS has identified more than 50 EDRs (see Webster
et al., 2018 for a partial list) and greatly expanded our knowledge
of what catalyzes the global reconnection cycle.

To do this, MMS made significant efforts to capture enough
of the right data to achieve its mission goals. The amount of
high time resolution burst data recorded onboard is such that
only about 4% can be downlinked. We present the first machine
learning (ML) model that has been fully implemented into the
mission operation’s data flow in order to ensure that the selected
4% of burst data is able to address MMS science objectives (Burch
et al., 2016; Torbert et al., 2016). Our efforts help to transfer
mission operations resources to science and to work around
external constraints to advance our understanding of energy flow
within the MSP.

MMS is not the only mission to face data limitations. Missions
such as WIND, THEMIS, Cluster, STEREO, and others have
burst mode schemes that operate only when triggered. Some
burst modes are triggered on a pre-determined duty cycle, while
others are triggered on an instrument-by-instrument basis when
on board measurements meet certain criteria. Still others are
coordinated among multiple or all instruments. While burst
modes and their triggers are mentioned in the instrumentation
literature, details about the algorithms and the criteria behind
them are mostly omitted, and their efficacy is largely unknown.
Some WIND and THEMIS triggers used to detect plasma
boundaries are described by Phan et al. (2015). Triggers used on
STEREO for shock detection, their evolution, and their efficacy
are documented in Jian et al. (2013). The MMS mission, driven
by the large data volumes required to study electron dynamics at
Earth’s MP, is the first to fully document its burst system from the
beginning of the mission. In this paper, we describe our efforts to
build upon the early mission design work in order to automate
the burst data selection process.

The MMS burst management system consists of the
automated burst system (ABS) that selects burst intervals by
passing 10 s averaged trigger data numbers (TDNs) to on-
board tables that set the burst trigger criteria (Baker et al.,
2016; Fuselier et al., 2016), and a human Scientist-in-the-Loop

(SITL) who examines all of the low-resolution survey data,
and who manually selects and classifies burst intervals. Survey
data, however, is insufficient to resolve electron dynamics. A
strategy for the SITL, then, is to select all MP crossings.
This has resulted numerous EDR encounters but is labor- and
resource-intensive; after manual reclassification, just ∼0.7% of
MP crossings, or∼0.0001% of the mission lifetime duringMMS’s
first two years contained an EDR. Such challenges were foreseen
when designing the ABS and SITL selection processes and it
was envisioned that automated algorithms would supplement or
replace them. Algorithms that use the survey data available to
the SITL on the ground fit into the “ground loop.” Presented
below are the design, implementation, and results of the first
ground loop.

Most applications of ML to magnetospheric physics problems
to-date have been geared toward the prediction of catastrophic
events, including geomagnetically induced currents (Wintoft
et al., 2015) that threaten power grids, solar energetic particles
that threaten space assets (Boubrahimi et al., 2017), and
geomagnetic indices (Lundstedt, 1997; Borovsky, 2014; Bhaskar
and Vichare, 2019) that indicate when global geomagnetic
activity could lead to such events. Most methods associate
upstream conditions at L1 to those at geosynchronous orbit or
on the ground because of the continuous data coverage linking
upstream and downstream conditions. Unfortunately, because
such models lack knowledge of processes internal to the MSP
(e.g., Bhaskar and Vichare, 2019), they tend to suffer precisely
during the extreme events they are trying to predict. Space
weather prediction can be improved by creating several ML
models with knowledge of specific aspects of magnetospheric
dynamics. We later describe how several MMS ground loops
could be combined to identify complex geomagnetic processes
and support special science campaigns.

The primary science goal of MMS is to study electron
dynamics associated with magnetic reconnection. However,
because electron dynamics are not resolved in the survey data,
the strategy employed by the SITL during the dayside phase is
to select all MP crossings, a prominent location for magnetic
reconnection (Phan et al., 2015). Past attempts to identify the
MP in an automated fashion used gradients in plasma parameters
such as density or ion flux (Boardsen et al., 2000; Phan et al.,
2015). Other methods introduce machine learning to identify
the MP indirectly by classifying topologically distinct regions
then locating the transition between them. The solar wind,
magnetosheath, and magnetosphere were identified by applying
probability functions (Jelínek et al., 2012) and support vector
machines (da Silva et al., 2020) to ion density and temperature
data, 3D convolutional neural network to 3D ion distribution
functions (Olshevsky et al., 2019), and random forests to
magnetic field and plasma data (Nguyen et al., 2019). The MP
is then inferred as the boundary between the MSH and MSP.
We present the first model specifically trained to identify MP
crossings, thereby automating the primary SITL task.

It is clear from the number of MP classifiers above that
identifying the MP is important not just for the SITL. The MP
is the primary location of mass, momentum, and energy transfer
into Earth’s magnetosphere. Because of this, many statistical
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TABLE 1 | Guidelines used during Phase 5A (30 September 2019 through 24 November 2019) specifying how the SITL should classify magnetopause crossings.

Event type FOM category Data signatures/Notes

Complete high magnetic shear

magnetopause crossing

1 (1− if very long crossing

or low-shear)

Full density gradients and full magnetic field rotations, includes separatrix and exhaust

boundary

Magnetopause diffusion region candidate 1+ Reversals of high speed jet and B normal during magnetopause crossing

Magnetopause diffusion region candidate 1+ Magnetopause without boundary layer. At current sheet center: positive sunward

pointing normal electric field. (Such events can be difficult to identify in SITL data)

Magnetopause: Kelvin-Helmholtz induced

current sheet

2 Quasi-periodic magnetic field and density oscillations, field direction changes. Can

select a long interval (tens of minutes) if spectacular

Magnetopause: FTE 2 Bipolar B normal and strong enhancement of |B|

Magnetopause: partial crossings 2 Incomplete B rotation and density transition (i.e., not reaching magnetospheric levels)

Boundary layer traversals 3- Excursion into the boundary layer, characterized by magnetosphere B and slight

increase in density and appearance of magnetosheath ion population

Events in categories 1–4 are given FOMs of 150–199, 100–149, 50–99, and 0–49, respectively. A “+” or “–” after a given category indicate a selection at the upper- or lower-range of

the category. FOMs ≥ 200 are reserved for special events, such as calibration intervals or a definitive EDR encounter.

studies have focused on MP properties (Paschmann et al., 1993;
Phan and Paschmann, 1996); MP processes like flux transfer
events (Fear et al., 2012), Kelvin-Helmholtz instabilities (Kavosi
and Raeder, 2015), velocity rotation events (Matsui et al., 2019),
impulse events, and kinetic Alfvèn waves (Wing et al., 2014); and
creating MP models (Boardsen et al., 2000; Jelínek et al., 2012).
Statistical studies such as these traditionally require arduous
event searches. Automated algorithms and event lists can be used
as a first-step data filter to make searches less burdensome. For
this reason, our model and its predictions are publicly available
for use in future studies (Argall et al., 2020a; Small et al., 2020).

This paper serves two purposes: (1) to document the burst
management system and infrastructure and (2) demonstrate the
performance of the first ground loop ML model. It is outlined as
follows. First, the systems for making burst selections, including
the SITL, ABS, and GLS, are described in section 2. Next, an
overview of the tools and processes developed to support the GLS
infrastructure is provided in section 3. Then, a description of the
data is given in section 4 and the model in section 5. In section
6, we present the model results and performance. Section 7 is
the Discussion, and section 7.1 outlines the GLS Hierarchy, a
framework needed to fully automate the SITL selection process.
Finally, a summary is given in section 8. Those interested in only
the model and its results are referred to sections 5 and 6.

2. BURST MANAGEMENT SYSTEMS

MMS burst memory management consists of three systems for
selecting intervals of burst data for downlink: the Scientist-in-
the-Loop (SITL), the Automated Burst System (ABS), and the
Ground Loop System (GLS).

2.1. Scientist-in-the-Loop
The SITL is a role that rotates among MMS team members.
Currently, there are 73 participating SITL scientists that have
made selections on over 1,090 orbits of data. Each orbit
contains Sub-Regions of Interest (SROIs) that encompass the
most probable MP location, the bow shock, and other regions
of scientific interest. SITLs make selections from the SROIs

within a SITL window, a timeframe in which the MMS satellites
make contact with ground-based radio communication network
and incrementally downlink data. Data is passed through to
the Science Data Center (SDC) (section 3.1) where preliminary
calibrations are applied and the data is made available to the SITL.
The SITL then uses the EVA tool (section 3.2) to interactively
select data intervals for downlink.

SITLs follow guidelines set by mission PIs and Super SITLs
(SITLs with super-user privileges) to help standardize the
selection process. Those related to the MP are provided in
Table 1. Each selection is given a Figure of Merit (FOM), a
ranking between 0 and 255 split into five categories, to prioritize
which selections are downlinked first. Priorities change based on
the type of MP crossing. For example, complete, high-shear MP
crossings receive a category 1 ranking (FOM 150–199), indirect
reconnection signatures such as FTEs receive a category 2
ranking (FOM 100–149), and boundary layer encounters receive
a category 3 ranking (FOM 50–99). Using these guidelines, the
SITL makes a median of 30 selections per orbit, with a maximum
to-date of 200 selections in a single orbit. The time spent by
the SITL in making such selections can be saved by automating
the process.

2.2. Automated Burst System
The ABS applies configurable tables of weights and offsets to 10 s
averaged burst quantities from each instrument, named Trigger
Data Numbers (TDNs), to assign a Cycle Data Quality (CDQ)
index to each 10 s buffer of burst data. The four CDQ values
provided by the four spacecraft are downlinked, multiplied by
another weighting factor, then summed to provide an overall
Mission Data Quality (MDQ) index. The MDQ index is used to
prioritize data for download (Fuselier et al., 2016).

There are 34 TDN terms available to the ABS. Early in
the mission, the system was configured to look only for large
changes in the magnetic field Bz component. Reconnection
events identified by scientists during the first 2 years of the
mission have subsequently been used to determine which of the
TDNs efficiently parameterize reconnection and to determine
their relative importance.
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For the dayside magnetopause, a set of six parameters is now
employed in the search for reconnection. These involve changes
in the magnetic field components, the electric field wave power,
the electron pressure, and the ion density. The parameters and
their corresponding weights were determined based on their
ability to select the 32 intervals that contained potential dayside
EDRs identified by Webster et al. (2018). The ABS as it is now
configured would have selected 31 of the 32 (Webster et al.,
2018) events for download with efficiency comparable to that of
the SITL.

For the magnetotail, a different set of parameters is used. Six
trigger terms that respond strongly to reversals of the magnetic
field and bulk velocity were identified in data acquired during the
2017 magnetotail phase of the mission. Weights and gains were
optimized through linear regression. The resulting ABS tables
currently in use would have captured two well-substantiated
magnetotail EDR encounters (Torbert et al., 2018; Zhou et al.,
2019) with total download of burst intervals equivalent to the
actual number of SITL selections.

2.3. Ground Loop System
The GLS is designed to be a system of ML or empirical models
that automate the event classification process using all of the data
available to the SITL. Data available to the SITL is of restricted
use because it is lower quality that the Level-2 science-quality
data freely available to the public. ML models trained on SITL
data, such as the MP model described in this manuscript, may
not perform as well when applied to Level-2 data. And, vice
versa, a model trained using Level-2 data may under-perform if
incorporated into the GLS.

The first GLS model (section 5) uses the text description given
to each burst selection by the SITL as the ground-truth manual
classification for training purposes. To encourage expansion of
the GLS, our model development notebooks (Small et al., 2020)
can generate additional models simply by changing the text filter
(e.g., replace “Magnetopause” with “Dipolarization Front”). SITL
classifications significantly reduce the time required to train a
supervised learningmodel, and the variety of selections made can
facilitate a hierarchical ground loop infrastructure (section 7.1),
thereby reducing the burden of the SITL and allowing them to
spend more time looking for new science.

3. INFRASTRUCTURE AND TOOLS

3.1. Science Data Center
The MMS Science Data Center (SDC) is a collection of virtual
machines and software applications that collectively support the
science data processing and data access requirements for the
MMS mission. It has been running since mission launch in
March 2015 and currently manages a collection of over 11million
science data files accessible to MMS mission team members and
4 million files available to the public.

One of the key activities for the GLS is the ability to process
the data used as input to the ground loop prediction models. This
activity starts with a fixed time schedule or an external event set
to trigger a science data processing job. The event sets relevant
to the GLS are Deep Space Network (DSN) contacts that transfer

spacecraft telemetry data to a ground station. The ground station
transfers the raw data files to a NASA facility which then uploads
them to the LASP Payload Operations Center (POC), where they
are ingested to a raw telemetry database. A spacecraft-specific
processing task is scheduled at the end of each DSN contact,
delayed enough to allow the various data transfer and ingest
tasks to complete. Each MMS instrument has a set of associated
processing tasks for different data rates (survey vs. burst) and data
levels. Processing tasks for the SITL ground loop are associated
with survey data and the lowest data levels.

The GLS model-evaluation task is delayed an additional
amount to allow completion of the various science data products
that it needs to evaluate the model. Each GLS job produces a
csv file containing the time range and FOM for each of the
automated selections. A dropbox manager transfers the ground-
loop selections into main SDC storage and indexes it for web-
service access by the remote scientist’s EVA tool (section 3.2).
The EVA tool can then plot the ground-loop selections alongside
those of the ABS and the science data products, allowing the SITL
to make informed selections.

The SITL must make selections within 12 hr of observation
time to ensure that spacecraft commands used to “lock”
the selected memory buffers are received before valuable
observations are overwritten by newer ones. Although current
MMS orbit periods are about 84 hr, spacecraft memory can hold
only about 48 h of burst data. The spacecraft contacts have
variable schedules and cannot be optimized just for MMS. The
SDC completes the GLS processing within about 2 h of the end of
each DSN contact, well within required time limits.

The SDC mails reports to a broad team of experienced
MMS SITL scientists, allowing review and comment on the
latest selections. If it becomes practical to make fully automated
selections based on algorithmic analysis, the SDC could short-
circuit the human loop and transfer GLS results directly to the
POC without human intervention.

3.2. EVA
EVA is a graphical user interface (GUI) designed specifically for
the MMS/SITL activity and provided as a part of the MMS plug-
in for the Space Physics Environment Data Analysis Software
(SPEDAS) package (Angelopoulos et al., 2019). SPEDAS is a
software package for the IDL language that provides scripts for
convenient plotting of spacecraft time series data and particle
distributions. The MMS plugin includes the EVA GUI software,
as well as software routines to load and plot data from every
instrument onboard MMS. The main functions of EVA are to:

1. Load and display reduced-resolution, survey data for the
entire duration of Region-of-Interest (ROI)

2. Help the SITL to identify and prioritize scientifically-valuable
time ranges for downlinking the full-resolution burst data, and

3. Send the list of selected time ranges and their FOMvalues back
to SDC for commanding.

A key feature of EVA is that it provides some pre-defined
parameter sets. Parameter sets consist of data products frequently
used by the SITLs (many are listed in Table 2) in combinations
tailored to individual instruments, specific investigations, or
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TABLE 2 | Features used for the development and application of the GLS magnetopause model.

Instr. Feature Description

AFG

1–3 (Bx , By , Bz ) X, Y, and Z-components of the magnetic field in DMPA coordinates

4 |B| =
√

B2
x + B2

y + B2
z Magnitude of the magnetic field

5 Q1Bx Quality value for Bx

6 PB = |B|2/µ0 Magnetic pressure

7 θC = arctan (By/Bx ) Clock angle.

EDP

8–10 (Ex , Ey , Ez ) X-, Y-, and Z-component of the DC electric field in DSL coordinates

11 |E| =
√

E2
x + E2

y + E2
z Magnitude of the electric field

DIS

12–42 Ei Omni-directional energy spectrogram

43 Ni Number density

44–45 (Vi,x , Vi,y ) Bulk velocity in DBCS coordinates

46–47 (Qi,xx , Qi,yy ) Heat-flux vector in DBCS coordinates

48–49 Ti,‖, Ti,⊥ Parallel and perpendicular temperatures

50–55 Pi Upper diagonal elements of pressure tensor in DBCS coordinates

55–60 Pi Upper diagonal elements of pressure tensor in DBCS coordinates

61 Ai = Ti,‖/Ti,⊥ − 1 Temperature anisotropy

62 Ti = (Ti,‖ + 2Ti,⊥)/3 Scalar temperature

63 Q1Ni Quality value for Ni

64 Q1Vi,z . Quality value for the Vi,z

65 Q1Ni |Vi |. Quality value for ion ram pressure

DES

66–97 Ee Omni-directional energy spectrogram

98 Ne Number density

99–100 (Ve,x , Ve,y ) Bulk velocity in DBCS coordinates

101–102 (Qe,xx , Qe,yy ) Heat-flux vector in DBCS coordinates

103–104 Te,‖, Te,⊥ Parallel and perpendicular temperatures

105–110 Pe Upper diagonal components of pressure tensor in DBCS coordinates

111–116 Pe Upper diagonal components of pressure tensor in DBCS coordinates

117 Ae = Te,‖/Te,⊥ − 1 Temperature anisotropy

118 Te = (Te,‖ + 2Te,⊥)/3 Scalar temperature

119 pe = (Pe,xx + Pe,yy + Pe,zz )/3 Scalar pressure

120 Q1Ne Quality value for Ne

121 Q1Ve,z Quality value for Ve,z velocity

Multiple

122 γ1 = Ti/Ti Custom feature

123 γ2 = 2Ti/|E| Custom feature

Post-processing on the ground allows the raw data to be partially calibrated and expanded into a richer dataset than is available on the spacecraft. The model makes use of most data

available to the SITL plus metafeatures that were used as burst triggers for previous missions.

regions of space. For example, there are parameter sets for
the magnetopause, magnetotail, bow shock, and solar wind.
By selecting a specific parameter set, in addition to the
desired spacecraft ID, date, and time period, a SITL scientist
can go straight to the task of viewing data needed for
the SITL activity.

Parameter sets are displayed as tiles of time-series data
in an interactive window in which the SITL can add, edit,

and delete burst selections. In the earlier phases of the
mission, EVA would append an ABS selections panel to
the bottom of the window and the SITL scientist would
manually adjust them while inspecting the data. Today,
ground loop selections are also available to better guide
the SITL in their selection process. This helps reduce
personal bias when selecting similar phenomena, such as
MP crossings.
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FIGURE 1 | The GLS magnetopause model is an example of a supervised learning model that made use of data labeled previously by the SITL for training and

testing. Applying historical SITL labels to preprocessed data significantly reduce the time needed for model development.

3.3. PyMMS
PyMMS (Argall et al., 2020b) is a software package written in
Python and freely available on GitHub and PyPI that makes full
use of theMMS SDC’s data API. It is able to download instrument
data (including both SITL and L2 quality data), as well as the
ABS, GLS, and SITL selections. The SITL provides an ASCII text
description of each burst interval that they select, which can be
easily downloaded and searched with PyMMS to train supervised
learning models. The GLS model described in this paper (section
5) was trained in this way.

Note that the SITL, GLS, or ABS selections can be submitted
multiple times (section 3.1), often with changes, so the available
selections files have duplicate and overlapping entries, and may
not necessarily be in chronological order. Also, because of
downlink and storage limitations, selections of long duration
are broken into smaller chunks. PyMMS has tools to deal with
these issues.

4. DATA

The flow of data used to train the MP model is shown in
Figure 1. The SDC provides data from the Analog Fluxgate
(AFG) magnetometer (Russell et al., 2014), the Electric field
Double Probes (EDP) (Ergun et al., 2014; Lindqvist et al., 2014),
and the Fast Plasma Investigation (FPI) Dual Ion Spectrometer
(DIS) and Dual Electron Spectrometer (DES) (Pollock et al.,
2016). Fast survey data from each instrument was subjected
to a preliminary set of calibrations to produce SITL-quality
data, which is suitable for making informed decisions about
burst selections but not for deep scientific scrutiny. This is

necessary because of the urgency with which selections need
to be made.

From these products, the 123 features listed in Table 2 were
chosen to be inputs into the ML model. Most are standard
products from the instruments, such as the B and E fields
and their magnitudes, and the plasma energy spectrograms and
moments. Others, like the temperature anisotropy, the custom γ

values, and the Q1 values are metafeatures, features computed
from the standard features. The Q1 features are gradient-based
trigger terms used on Wind and THEMIS, and are calculated as
Q1x = |x−x̄|, where x̄j+1 = [x̄j(2M−1)+xj]/2M , andM = 2 sets
the amount of smoothing (Phan et al., 2016). This set of features
represents a large portion of the data available to the SITL.

It is worth noting that all features listed in Table 2 are
calculated from single spacecraft data; in this case, MMS1. This
was done primarily for three reasons: (1) contact times for data
downlink are variable so data from multiple spacecraft is not
guaranteed, (2) orbit configurations can change; spatial gradients
valid in a tetrahedron configuration are not be valid in a strong
of pearls, and (3) events may occur at different times for different
spacecraft, especially in a string of pearls. If the model does
not produce satisfactory results for other spacecraft, or if an
instrument on MMS1 experiences a problem that invalidates any
of the features in Table 2, the model can be retrained.

Data from 1 January 2017 to 30 January 2017 were used to
train the model. During this time period, MMS had a single
SROI keyed on apogee (8 < XGSE < 12RE); apogee was
at 12RE geocentric distance and was located near the subsolar
point (−6 < YGSE < 0RE). The amount of training data was
limited by resources on the platform onwhichmodel training was

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 September 2020 | Volume 7 | Article 54101

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Argall et al. MMS SITL Ground Loop

FIGURE 2 | Evolution of the non-linearity and time-dependence of neural network models that make up the bidirectional Long Short Term Memory GLS

magnetopause model.

performed. Once downloaded, all data outside of the intervals
selected and labeled by the SITL were discarded to ensure the
accuracy of the ground truth. The data was then interpolated
onto the 4.5 s cadence of the FPI fast survey data products, then
scaled and regularized. Because of an imbalance between the
number of measurements that were selected as MP crossings
compared to those that were not, class weights were applied to the
“MP” and “not MP” classified data. We normalized all features
with standardization, calculated as x′ = x−x̄

σx
, where x is the

original vector for a given feature, x̄ is the average of that vector,
and σx is its standard deviation. This method of normalization
is widely used in machine learning applications to boost the
performance of the model’s gradient descent while learning.
Finally, each orbit was broken down into consecutive sequences
of 250 measurements to reduce computational complexity. Of all
such sequences, 80% were used for training and 20% were used
for testing.

5. GLS MAGNETOPAUSE MODEL

We develop an ML model that aids and automates a key task
performed by the SITL. Using the same low-resolution data as
the SITLs, we identify time intervals that are likely to contain
MP crossings. The ML models are trained using historical data
annotated by SITL selections. The input is a low-resolution (4.5 s)
time sequence of the data quantities outlined in Table 2. The goal
is to predict, for each data point at time t, whether the particular
4.5 s interval would be selected by the SITL as an MP event.

Our machine learning model is based on neural networks
(NNs) (Goodfellow et al., 2016). A conceptual understanding
of the MP model is built up from the NNs shown in Figure 2.
The most simple of NNs is a perceptron, which takes a linear
combination of the input features, xi, for a given time sample
and passes the results through a sigmoid (“S” -shaped) activation
function that maps the result to the interval [0, 1] to predict

the output. Training occurs via backpropagation, a process by
which the error in the prediction is used to adjust the weights
applied to the inputs, usually via some gradient of the sigmoid
function. After iterating, the NN output, y, converges to a
“yes” or “no” prediction. Perceptrons identify linear relationships
between inputs and outputs.

Feed Forward NNs (FFNNs), Recurrent Neural Networks
(RNNs), and Long-Short Term Memory (LSTM) Neural
Networks evolve the perceptron to learn more complex, non-
linear concepts. FFNNs do so by adding hidden layers whose
weights determine the relationship between the input features
themselves. They are trained via backpropagation in the same
way as perceptrons. Like perceptrons, FFNNs make predictions
using data from a single time sample. RNNs take the output
of a FFNN at time t−1 and combine it with the input
of the FFNN at time t0, thereby incorporating the context
inherent to time series data. Training backpropagates errors
not only through the hidden layers, but also through time.
Vanishing gradients in long prediction chains cause RNNs to
have short-term memory. LSTMs create long-term memory
by applying gates to information carried forward from past
predictions. Our model uses an adaptation of the LSTM to
identify MP crossings.

The GLS MP model is composed of two bidirectional LSTM
layers (Goodfellow et al., 2016), as depicted in Figure 3. The
output activation functions are hyperbolic tangents and the
recurrent activation functions passed to units in t+1 and t−1

time steps are logistic. Each LSTM layer is followed by a
drop-out layer with a drop probability of 0.4 as a means of
forgetting information. Dropout layers help to reduce over-
fitting when training the network (Srivastava et al., 2014). The
output layer is a single unit with a logistic (sigmoid) activation
function. The LSTM’s output is passed through a threshold filter
before contiguous segments of selected points are grouped to
form selections.
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FIGURE 3 | The Architecture of the GLS magnetopause model mimicks how scientists interpret data. It makes decisions by placing data in the context of past and

future observations.

Contiguous data points with positive predictions are
combined to determine the time interval and duration of a
suspected MP crossing. These suspected MP crossings are then
presented to SITLs during their selection process to quicken,
improve, and ultimately replace the manual selection process.
Figure 1 shows a graphical representation of the data flow in our
proposed automated SITL model. Data is downloaded from the
SDC using PyMMS (section 3.3) and is pre-processed (section 4)
before being fed to our model to identify predicted MP crossings.
These predictions are saved to csv files and stored on the SDC’s
servers until finally transferred to the EVA team for a SITL to
view when making selections.

The training and validation data, notebook used to create the
model, as well as the weights, scaling parameters, and notebook

to run the model are publicly available (Argall et al., 2020a;
Small et al., 2020). Both notebooks have a flag to switch between
SITL-quality and science-quality data, and the model creation
notebook can easily be modified to generate a new model for any
SITL-classified event type. Additional details about the model,
threshold filter, and the hardware the model was trained on can
be found in the Supplementary Material.

6. RESULTS

6.1. Case Studies
On 19 October 2019, the model was installed and executed at
the SDC for the first time and has been providing guidance
to the SITL ever since. By this time, MMS apogee was near
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FIGURE 4 | Burst selections made by three different SITL scientists surrounding the magnetopause crossings of three separate orbits. Just as the SITLs have different

opinions on how and what to select, and with what FOM value, so too do the GLS and ABS.

25RE geocentric distance and had transitioned from one SROI to
three SROIs to capture the inbound and outboundmagnetopause
crossings (SROI1 and SROI3), and a segment of the solar wind
(SROI2). Figure 4 shows MP crossings from SROI1 on orbits
1055 (left) and 1058 (center), and SROI3 on orbit 1075 (right),
along with the selections made by the ABS, GLS, and SITL. The
MP is identified in the ion and electron energy spectrograms
(panels 1 and 2) as the transition between the hot, tenuous
plasma of themagnetosphere and the colder, denser plasma of the
magnetosheath. MMS transitions outward from the MSP to the
MSH in SROI1 and inward from the MSH to the MSP in SROI3.
During the transition, the MSH and MSP plasmas are observed
simultaneously, Bz (panel 3) often changes sign, and the density
(panel 4) transitions from ∼1 cm−3 in the MSP to > 10 cm−3

in the MSH. SITL selections for these intervals are displayed in
the bottom panel while the SITL-provided description of each
selection is given in Table 3. Panels 5 and 6 show similarities
and differences between the time intervals and FOM values of
selections made by the SITL and those made by the ABS and GLS.

Orbits 1055 and 1058 SROI1, and orbit 1075 SROI3 were
chosen because of the presence or absence of GLS and ABS
selections. Orbit 1055 SROI1 consisted of three full and one
partial MP crossings as the MP moved back and forth over the
spacecraft during the 1.5 hour interval shown. Both the ABS

and GLS made selections similar to the SITL, but with notable
differences. First, whereas the SITL selected a large portion
of the MSP and MSH on either side of the MP to provide
relevant contextual information, the ABS and GLS selections
were more focused on the MP transition. In this case, they are
under-selecting when compared to the SITL, but are correctly
identifying the MP (i.e., they are not classifying the surrounding
MSP and MSH as the MP like the SITL did). Second, the GLS
makes a selection at∼2,022 that the SITL does not. This selection
represents a typical false-positive for the GLS despite the fact that
the interval is MP-like in that the MSP and MSH plasmas are
observed simultaneously and the plasma density is higher than
the MSP proper. So, while differences exist between the SITL,
ABS, and GLS, those differences are often subtle, and similar
differences also exist between selections made by different SITL
scientists. We consider the SITL to be the ground truth for the
sake of model validation; however, operationally the GLS acts as
a co-SITL with its own suggestions for what should be selected.

During orbit 1058 SROI1, the SITL selected intervals
containing cold ions (∼0722–0722), the boundary layer (∼0744–
0820), an MP crossing (∼0823–0845), and a flux transfer event
(∼0839–0841; see Table 3). None of these intervals were selected
by the ABS but the GLS captured most of them. In particular,
the intervals marked “cold ions” and “boundary layer’’/‘‘BL” were
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TABLE 3 | Selections made by the SITL during the intervals shown in Figure 4.

Orbit Date Start End FOM Description

1055 2019-11-05 19:27:03 19:38:23 150 Lower shear full magnetopause crossing with Vz flow reversal

1055 2019-11-05 19:52:53 19:59:43 150 Full lower shear magnetopause crossing

1055 2019-11-05 19:59:53 20:09:03 125 Partial magnetopause crossings with deep B-minima

1055 2019-11-05 20:26:43 20:34:33 150 Full low-shear

1058 2019-11-16 07:22:33 07:31:23 35 Cold ions

1058 2019-11-16 07:38:23 07:39:13 200 FPI Burst Cal - Segment 2 (1058) - H2 - MSP

1058 2019-11-16 07:44:23 07:59:03 35 Boundary layer

1058 2019-11-16 08:01:33 08:02:23 200 FPI Burst Cal - Segment 3 (1058) - H2 - MSP

1058 2019-11-16 08:07:13 08:10:43 70 BL Traversal

1058 2019-11-16 08:10:53 08:12:23 35 Additional context between BL traversals

1058 2019-11-16 08:12:33 08:14:33 70 BL Traversal

1058 2019-11-16 08:17:13 08:19:33 70 BL Traversal

1058 2019-11-16 08:19:43 08:22:43 35 Additional context between boundary layer traversal and MP Crossing

1058 2019-11-16 08:22:53 08:34:53 175 Full MP potentially with a jet

1058 2019-11-16 08:35:03 08:38:23 175 Continuation of FULL MP

1058 2019-11-16 08:38:33 08:39:03 35 Additional context between MP and FTE

1058 2019-11-16 08:39:13 08:41:03 80 FTE

1075 2020-01-17 20:00:13 20:01:43 105 Magnetosheath IMF rotation with bifurcated signature - unresolved exhaust

1075 2020-01-17 20:02:23 20:02:53 125 Potential magnetosheath flux rope

1075 2020-01-17 20:08:43 20:13:03 175 High-shear complete MP

1075 2020-01-17 20:13:13 20:15:23 125 Partial MPs with Vz < 0 jetting

1075 2020-01-17 20:15:33 20:15:53 45 Fill

1075 2020-01-17 20:16:03 20:17:23 125 Partial MPs

1075 2020-01-17 20:17:33 20:18:33 45 Fill

1075 2020-01-17 20:18:43 20:20:23 125 Partial MPs

1075 2020-01-17 20:20:33 20:21:33 45 Fill

1075 2020-01-17 20:21:43 20:24:23 125 Partial MPs

1075 2020-01-17 20:24:33 20:25:23 45 Fill

1075 2020-01-17 20:25:33 20:26:33 125 Partial MPs

“Partial”, “low-shear”, “high-shear”, “full”, and “complete” refer to classes of MP crossings that receive different FOM values. By selecting a “fill” interval at low-FOM, the SITL provides

context to adjacent events that is saved on board and can be increased to higher FOM later by a Super-SITL. “FPI Burst Cal” = calibration, “FTE” = flux transfer event.

selected by the GLS because they show signs of mixing of MSP
and MSH plasmas, as occurs at the MP. Such selections are
similar in nature to the false positive shown in orbit 1055 SROI1.

Orbit 1075 SROI3 is one in which the SITL and ABS select the
MP but the GLS does not. The SITL selects a complete, high-shear
MP crossing at 2010 UT followed by several partial crossings
(Table 3), as well as reconnection-like signatures in theMSHnear
2000 UT. The ABS also selects the high-shear crossing but only
some of the partial crossings. It also captures the reconnection
signatures in the MSH. For this time interval, the ABS over-
selects in the MSH and under-selects at the MP. As for the GLS,
further testing on this interval reveals that the GLS does select the
MP if the LSTM model is run on a limited interval surrounding
the MP, as opposed to the entire SROI. More generally, the GLS
selects the majority of MP crossings during all SROI1 intervals
but very rarely selects MP crossings during SROI3. These two
facts could indicate that the training and validation sets need to
be expanded to include data from a time period when MMS had
three SROIs.

6.2. Statistical Study
To more broadly assess model performance, we make
comparisons between the GLS, SITL, and ABS for all selections
made in SROI1 between 19 October 2019 and 25 March 2020.
Figure 5 is a Venn diagram depicting (a) the number of GLS
and ABS selections that have at least partial overlap with all
SITL selections and (b) only those SITL selections that were
identified as MP crossings. More detailed histograms showing
the two-way overlap between SITL and GLS, SITL and ABS,
and GLS and ABS are included in Figures S1–S3 for SROI1,
SROI3, and SROIs1 and 3, respectively. Such comparisons take
into account partial- and multiple-overlaps between SITL and
GLS selections, something not possible with the more traditional
precision, recall, and F1-score metrics (Tatbul et al., 2018)
presented in section 6.3.

6.2.1. SITL-GLS Comparison

Most selections made by the GLS are of interest to the SITL, but
the GLS is selecting more than just MP crossings. Of the 360
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A B

FIGURE 5 | A comparison of SITL, GLS, and ABS segments from SROI1 that takes into account the range-based nature of event selection intrinsic to time series

data. (A) Considers all SITL selections whereas (B) includes only SITL-classified magnetopause selections.

GLS selections, 257 (71%) were also selected by the SITL and
176 (49%) were classified as MP crossings by the SITL. At first
glance, the latter might seem low for a model that was trained
to select MP crossings. This can be explained partly because
the SITL is aware of external control factors such as telemetry
restrictions, and partly because some GLS segments are MP-like
but are not classified as MP crossings by the SITL, as was the case
for segments in orbits 1055 and 1058 SROI1 (Figure 4). Such
selections include intervals that exhibit plasma mixing between
theMSP andMSH. They also include bow shock crossings, which
have field and plasma gradients similar to those present during
MP crossings. While not MP crossings, these extra selections
made by the GLS are still of interest to the SITL, as indicated by
the larger number of overlapping segments when all of the SITL
selections are included.

Again, because of the possibility of partial and multiple
overlaps in time series selections, the inverse relationship relating
the number SITL selection also selected by the GLS can only
be qualitatively inferred (for a quantitative comparison, see
Figures S1–S3). On one hand, the GLS selections represent only
a small percentage (30%) of all SITL selections. On the other
hand, the majority of SITL MP crossings (78%) are selected by
the GLS. Machine learning models, therefore, are an effective
means of automating subsets of SITL functions outlined in the
SITL guidelines. Later (section 7.1), we discuss how multiple
GLS models can be combined to assimilate more of the manual
classification tasks.

6.2.2. SITL-ABS Comparison

Next, we compare the ABS to all SITL selections (Figure 5A)
and to only those SITL selections that were classified as MP
crossings (Figure 5B). The SITL selects 229 of 278 ABS segments,
a larger percentage (82 vs. 71%) than GLS segments; however,
only 19% of ABS segments (59 of 278) were classified as MP by
the SITL. Conversely, only 28% of SITL selections and 34% of

MP crossings were selected by the ABS (Figures S1E,K). While a
majority of ABS selections are of interest to the SITL, the ABS is
significantly under-selecting both in general and with respect to
MP crossings.

The differences between the ABS and GLS are most likely
due to how they were trained. The ABS was trained to select
MP crossings that contain EDRs, which typically exhibit larger
amplitude variations than MP crossings that do not. Non-EDR
time intervals that exhibit large amplitude variations are still of
interest to the SITL, but most MP crossings do not exhibit such
activity (e.g., the MP crossings in Orbit 1058 shown in Figure 4),
meaning they are not selected by the ABS.

6.2.3. ABS-GLS Comparison

We have been incorporating the ABS into the discussion so
far because it is representative of how most other missions
with burst memory management systems select data. Here, we
compare it to the new GLS machine learning model. While the
two systems were trained differently and for slightly different
purposes, comparing them may provide a general impression of
(a) the efficacy of a linear combination of summary data (TDNs)
vs. a non-linear combination of a more robust dataset (survey
data), and (b) models trained for a specific task vs. a potential
catch-all model. A comparison may also be influential to future
mission designs.

The Venn Diagram shows that only a small fraction of GLS
segments were selected by the ABS (83 of 360, or 23%). Of those,
nearly all (81) were selected by the SITL, but only about half (43)
were classified as MP crossings. The GLS selects a similarly low
fraction of ABS segments (30%), but of the 53 ABS segments
that were also selected by the SITL as MP crossings, the GLS
selected 42 of them (Figures S1F,L). So although both the GLS
and ABS under-select compared to all SITL selections, they are
not redundant; they each make useful, complementary selections
that are highly relevant to the SITL.
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A B C

FIGURE 6 | Point-by-point comparison between (A) all SITL and GLS selections, (B) SITL selections filtered for magnetopause crossings and GLS selections, and (C)

all SITL and ABS selections. Such a point-wise metric is typical for machine learning models but does not properly weight predictions with partial or multiple overlap,

as when the SITL selects additional context around a given event (Figure 4, Orbit 1055), or when multiple GLS selections are encompassed by one SITL selection

(Figure 4, Orbit 1058).

6.3. Performance Metrics
6.3.1. Precision, Recall, and F1 Score

Performance of the MP model is directly tied to the threshold
filter described in section 5. The filter turns the prediction into
a binary classifier, where 1 indicates that the observations are
from the MP and 0 indicates otherwise. If the model predicts
an MP crossing (or not) that was actually classified as a MP
crossing by the SITL, this is known as a true positive (false
negative). Conversely, if the model classifies the observations as
MP (or not) and the SITL does not, this is known as false positive
(true negative). Such labels were determined for predicted GLS
segments using all SITL selections and only those selections
classified as MP crossings, as well as for ABS segments. They are
shown in the form of a confusion matrix in Figure 6 for SROI1
during the same date range as covered by Figure 5.

Results from the confusion matrix can be summarized by the
precision, recall, and F1 scores. Precision is the fraction of all
positive predictions that were correctly classified, while recall
is the fraction of all actual positive cases that were correctly
predicted and gives a sense of the number of cases missed by the
model. The F1 score is a measure that captures the properties of
both precision and recall.

The precision, recall, and F1 score for the GLS were (0.58,
0.15, 0.23) for all SITL selections and (0.42, 0.39, 0.41) for just
the MP SITL selections. The GLS precision is higher and its recall
is lower when compared to all SITL selections, alluding to the
MP-like selections that were not classified as MP encounters by
the SITL, as mentioned in relation to Figure 4. From recall, we
infer that large fraction of MP points are left unselected by the
GLS. This is due, in part, to the fact that the SITL is selecting
contextual information than the GLS is not (again, see Figure 4).
The F1 score is higher when only MP selections are considered,
reflecting the better match between the model and the
data considered.

For the ABS, the precision, recall, and F1 score were (0.64,
0.24, 0.35). High precision and low recall indicates that most ABS
selections are important to the SITL, but that the SITL is selecting
much more than the ABS. Similar conclusions were deduced

FIGURE 7 | Trade-off between over-selecting false events and under-selecting

true events. For MMS, electron diffusion regions are rare and difficult to

impossible to observe with the SITL data, so the SITL is willing to over-select

by choosing all MP crossings, but they still has to contend with telemetry

restrictions. The choice of thresholds for the GLS MP model tries to emulate

this approach.

from the Venn diagram in Figure 5. The F1 score is better than
that of the GLS when all selections are considered, but lower than
when the GLS is compared to only MP points.

6.3.2. ROC Curve

The ability of a model to distinguish between positive
and negative cases is indicated by the Receiver Operating
Characteristic (ROC) curve, which plots recall (the true positive
rate) against the false positive rate, or the number of false
positives out of all actual negative cases, for a variety of threshold
values. If the area under the ROC curve is 1.0, the positive and
negative cases are perfectly distinguishable by the model. If it
is 0.5, the model has no ability to distinguish between positive
and negative cases. The ROC curve from the validation data of
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the GLS MP model is shown in Figure 7. It has an area under
the curve of 0.92, indicating it can tell MP data from non-MP
data accurately.

Implementing the model requires a choice in threshold values
that involves a trade-off between true positive and false negative
rates. The MP model uses a threshold value of 0.5, resulting
in a true positive rate of 0.7 and a false positive rate of 0.07.
Comparing to the confusion matrix results in Figures 6A,B, both
the model recall and false positive rates are lower than for the
validation set. Themodel selects fewer SITL-classified points (MP
or otherwise), but also makes significantly fewer false predictions
than for the validation set.

7. DISCUSSION

The GLS MP model presented above is the first ML model
implemented into the MMS burst management system to
automate critical mission operation tasks. To fully automate the
burst selection process, the GLS and ABS systems need to be
expanded to:

1. Identify the variety of phenomena listed in the Seasonal
SITL Guidelines.

2. Assign appropriate FOM values to each phenomena.
3. Include an appropriate amount of context around

each selection.
4. Respond to external control factors.

To classify all phenomena within the SITL Guidelines (Item
1), models could be trained on all SITL selections. However,
as the SITL rotates and mission priorities change, model
performance would suffer. A better approach would be
to create a hierarchy of classification models, as described
in section 7.1.

To assign appropriate FOM values (Item 2), two basic
approaches could be considered: use a regression instead of
a classification model, or create another model that classifies
only on sub-types of MP crossings. In terms of the LSTM MP
model, radial basis functions could be used instead of sigmoid
functions for activation. Unlike sigmoid functions, radial basis
functions map inputs to a continuous output variable so the
model could be trained to predict FOM values. These models,
however, would have to be retrained whenever mission priorities
changed. As an example from MMS, during Phase 3B, low-shear
MP crossings were classified as Category 3 events, whereas in all
other phases they have been Category 1. To be more adaptable
to changing mission priorities, events classified as MP crossings
by the MPmodel could go through another stage of classification
that identifies their sub-type (complete/partial, high-/low- shear,
etc). The sub-type, then, passes through a look-up table to assign
a more appropriate FOM value.

Adding contextual information (Item 3) is relevant to the
selections made on orbits 1055 and 1058 SROI1 in Figure 4.
Model predictions could go through some post-processing
to simply expand the selection forward and backward in
time by a fixed amount or by some percentage of the
selection duration.

Outside of the science considerations are operational control
factors (Item 4), such as the amount of on-board memory
available to store selections. Such considerations often influence
the number of selections that the SITL makes. Once GLS
selections are made (Items 1 and 3), they can be passed through
the GLS Guideline look-up table and assigned an appropriate
FOM (Item 2), then filtered through a system monitor that is
aware of the state of on-board memory and can make decisions
regarding the current set of selections. In some sense, the FOM
prioritization does this intrinsically; however, selecting 2.5 h of
a low-shear, slow MP crossing could potentially overwrite many
other selections.

The GLS is an example of progressive autonomy (Truszkowski
et al., 2005). It follows similar efforts undertaken by NASA
to reduce mission costs through greater autonomy in ground
control and spacecraft operations (Truszkowski et al., 2006).
Autonomy can alleviate mission complexity and provide real-
time decision making when communications latency exists
(Truszkowski et al., 2004). The GLS MP model represents
a key advancement toward reducing mission complexity by
(1) facilitating larger data rates and more spacecraft through
consolidation of event selection processes into a near real-time
expandable and adaptable machine learning framework, and
(2) accurately identifying and classifying events associated with
prime science objectives.

7.1. Ground Loop Hierarchy
In the design phase, it was always envisioned that the ABS
and GLS would eventually replace the SITL. So now that the
first ground loop is in place, what can be done to expand
the ground-loop infrastructure for that purpose? We propose
the Ground Loop Hierarchy. The Hierarchy follows leaders in
industry that found that combining many specialized models
often out-performs one comprehensive model (e.g., Rascoff and
Humphries, 2015) For the GLS, this means training a hierarchy of
models, as shown in Figure 8. At its lowest level, The Hierarchy
consists of region classifiers that segregate data from topologically
distinct regions of space. Tier 2 of the hierarchy consists of
event classifiers that identify phenomena that are peculiar to a
specific region. A third tier could distinguish between similar
events to assign more appropriate FOM values, as suggested by
the SITL Guidelines for MP crossings (Table 1). The final tier
then activates sets of event classifiers from Tier 2 to answer
science questions.

Applying the Ground Loop Hierarchy to the dayside region of
Earth, all of the SITL data would be passed through the region
classifiers to identify which data was recorded in the solar wind,
magnetosheath, and magnetosphere, with the bow shock and
magnetopause data being classified as the transitions between
regions. Next, solar wind data would be passed to the Hot Flow
Anomaly (HFAs) event classifier to identify HFAs. A similar
process would be applied to all event classifiers, such as to identify
mirror mode structures in the magnetosheath, plasmaspheric
plumes in the magnetosphere, etc. In this way, the model that
classifies HFAs does not have to know anything about the
magnetosheath or magnetosphere. Finally, as mission objectives
evolve from the primary mission through extended missions,
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FIGURE 8 | A hierarchy of machine learning models to automate science objectives and reduce mission costs. Data is filtered through region classifiers (green

rectangles) and passed to specialized event classifiers (black text) specific to those regions. Multiple event classifiers are activated together to automate science

campaigns (blue ovals).

different combinations of event classifiers can be activated to
adapt to changing science goals or to strategic science campaigns.

As an example of a science campaign, we build upon a
recent MMS discovery of micro-injections at the dusk flank MP
in conjunction with ULF wave activity (Fennell et al., 2016).
Simulations proposed that Kelvin-Helmholtz waves (KHWs) on
the MP surface were the cause (Kavosi et al., 2018). To gain
more insight into this multi-scale process, one could create event
classifiers for micro-injections (Claudepierre et al., 2020), field
line resonances, and KHWs. Formulating a science campaign
around micro-injections would entail activating each model. The
models not only allow the mission to detect a complex series of
events, they can also provide additional insights into the nature of
the phenomena. Results from such automated science campaigns
can be distributed to the wider scientific community in near
real time, increasing the potential scientific impact and return of
the data.

Work on the Ground Loop Hierarchy is already underway.
Several models that could serve as region classifiers have already
been developed (Nguyen et al., 2019; Olshevsky et al., 2019;
Piatt, 2019; da Silva et al., 2020), and one is being adapted for
that purpose (Piatt, 2019). The LSTM RNN model described
above could serve as either a region or an event classifier. Other
event classifiers have been developed using MMS data (e.g.,
Claudepierre et al., 2020), but more are needed. Fortunately, the
SITL has done the work to manually classify many events in
many years of MMS data, and the tools provided as a product
of this endeavor (Argall et al., 2020a,b,c; Small et al., 2020)
further reduce the effort required to make additions to the GLS.
Soon there should be enough event classifiers to create the first
automated science campaigns, thereby establishing the Ground
Loop Hierarchy.

8. SUMMARY

MMS is providing key insights into the electron dynamics that
catalyze the global flow of energy throughout the magnetosphere.
Mission-critical science objectives depend on selecting a subset
(∼4%) of the high time resolution data that fit into its telemetry
budget. A burst management system consisting of the Scientist-
in-the-Loop (SITL), Automated Burst System, and Ground Loop
System (GLS) ensure that the right ∼4% of data makes it to the
ground. This paper documents the tools and infrastructure of
the burst management system and demonstrates the performance
of the first machine learning (ML) model implemented into the
GLS to automate the SITL selection tasks. The GLS model is a
Long Short-TermMemory Recurrent Neural Network trained on
historical SITL selections to classify the magnetopause (MP), a
primary task for the SITL as the MP is a key location for studying
electron dynamics associated with magnetic reconnection. Since
being implemented into the near real-time data stream, the GLS
MP model has selected 78% of SITL-identified MP crossings
in the outbound leg of its orbit, 44% more than the ABS.
This represents the first attempt to introduce ML into critical
mission operation tasks. By expanding the GLS into a hierarchy
of ML models, MMS progresses toward full autonomy in its
burst management system, thereby reducing operations costs
and transferring information and resources back to answering
fundamental science questions.
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The proper classification of plasma regions in near-Earth space is crucial to perform

unambiguous statistical studies of fundamental plasma processes such as shocks,

magnetic reconnection, waves and turbulence, jets and their combinations. The majority

of available studies have been performed by using human-driven methods, such as visual

data selection or the application of predefined thresholds to different observable plasma

quantities. While human-driven methods have allowed performing many statistical

studies, these methods are often time-consuming and can introduce important biases.

On the other hand, the recent availability of large, high-quality spacecraft databases,

together with major advances in machine-learning algorithms, can now allow meaningful

applications of machine learning to in-situ plasma data. In this study, we apply the

fully convolutional neural network (FCN) deep machine-leaning algorithm to the recent

Magnetospheric Multi Scale (MMS) mission data in order to classify 10 key plasma

regions in near-Earth space for the period 2016-2019. For this purpose, we use

available intervals of time series for each such plasma region, which were labeled by

using human-driven selective downlink applied to MMS burst data. We discuss several

quantitative parameters to assess the accuracy of both methods. Our results indicate

that the FCN method is reliable to accurately classify labeled time series data since it

takes into account the dynamical features of the plasma data in each region. We also

present good accuracy of the FCNmethod when applied to unlabeled MMS data. Finally,

we show how this method used on MMS data can be extended to data from the Cluster

mission, indicating that such method can be successfully applied to any in situ spacecraft

plasma database.

Keywords: heliophysics, classification, near-Earth regions, magnetospheric multiscale mission, time series,

machine learning
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1. INTRODUCTION

Near-Earth space regions classification is a very challenging
topic in space physics because of the strong plasma dynamics
resulting from the interaction between the propagating solar
wind and the standing Earth’s magnetosphere. This obstacle
forms a collisionless bow shock (Kivelson et al., 1995) which
can reflect and backpropagate energetic ions into the supersonic
solar wind, forming the ion foreshock region upstream. However,
most of the plasma is decelerated and heated downstream
to a subsonic flow which forms a sheath around the Earth’s
magnetosphere called the magnetosheath. The boundary on
which magnetosheath and magnetospheric pressures balance
is called the magnetopause. The plasma flows along the
magnetopause toward the magnetotail, driving the frozen-in
magnetic field lines through the lobes, plasma sheet boundary
layer and ultimately the plasma sheet, in which they eventually
reconnect (Dungey, 1963). This large-scale solar-terrestrial
interaction process is dominated by the highly-variable solar
wind conditions, but also by localized and intermittent small-
scale processes in each region. As a result, the plasma throughout
the near-Earth space is highly dynamic which make it impossible
to classify the different regions using only spacecraft location
along its orbit.

Yet, this classification is needed for statistical studies of the
plasma properties of the different regions. These large-scale
statistics are allowed by the ever-growing quantity of available in-
situ data from space missions that cover most of the near-Earth
space. A large amount of available data has been used to identify
near-Earth space regions using human-driven (i.e., threshold-
based) methods (e.g., Jelínek et al., 2012). However, finding the
optimal set of thresholds which characterizes every region of the
magnetosphere is time-consuming and presumably not flexible
enough with regard to the large variability expected from the
strong plasma dynamics. This may introduce important biases
depending on the chosen thresholds, and may also result in many
“unclassified” regions (i.e., a significant loss of information).

One way to bypass this issue and benefit from this large
amount of data is to make use of supervised learning, the most
common form of machine learning. The role of the supervised
algorithms is to learn the relationship between data instances
and an associated label for each data instance. For example,
the text from an email may represent the data instance and
the label is a binary encoding the presence or not of spam in
order to detect and filter spams from emails. Supervised methods
aim at expanding human knowledge automatically by identifying
the intrinsic differences between labeled points in a dataset.
This knowledge is then generalized to other unlabeled datasets.
Such machine learning techniques show extremely promising
(often state-of-the-art) results in various tasks, such as image
and speech recognition, analyzing particle accelerator data, or
natural language understanding (LeCun et al., 2015). They have
already been used specifically in heliophysics: to classify time
series into several categories defined by the solar origin of the
wind (Camporeale et al., 2017), to detect magnetospheric ultra-
low frequency waves (Balasis et al., 2019), to forecast solar
flares (Nishizuka et al., 2017), or in particular to identify different

regions of the near-Earth space (Nguyen et al., 2019; Olshevsky
et al., 2019). Nevertheless, these models remain usually region-
or mission-specific because the process of human-labeling is a
time-consuming and tedious task and there is still a blatant lack
of human labels to cover the whole near-Earth space.

However, the Magnetospheric Multi Scale mission
(MMS) (Burch et al., 2016), launched in 2015 and whose
orbit covers most of near-Earth space, has enabled such a dataset
to be built. This mission uses the so-called Scientist In The
Loop (SITL) system (see the following section for more details)
to human-label phenomena and regions of interest. The SITL
process involves that an expert scientist is designated to select
data of interest that will be transmitted to the ground as high-
time resolution (burst) data. The selected intervals are tagged
with timestamps and a comment, which are reported in the SITL
reports. This system has been active since July 2015 and thus
provides more than 4 years of commented data as of now. This
makes it the biggest dataset of commented events and regions to
our knowledge. We developed an automatic parser to convert all
the comments, written by different scientists, in a unified list of
labels that can be used by a machine learning algorithm.

All SITL comments are associated with a time interval,
therefore the temporal variations of the measurements can
be used to predict the label of the signals. Thus, each data
instance can be interpreted as a time series and the near-Earth
classification using SITL data can be seen as a time series
classification (TSC), a very challenging problem in data mining
andmachine learning (Esling and Agon, 2012; Fawaz et al., 2019).
The main difference with classical classification problems comes
from the ordering of the data. The important features helping
to discriminate the labels are mainly found in the ordering of
the values while classical methods only consider the values at
a given time. We employ two different techniques to solve this
multivariate and multicategory classification task: the multilayer
perceptron is applied naively on instantaneous data and is
considered as a baseline for comparison and the convolutional
neural network is applied on time series.

In this article, we use the magnetic field and particle
measurements of the MMS mission to establish a vast and
reproducible automatic detection of 8 plasma regions that cover
almost the entire near-Earth space. First, we introduce the MMS
and Cluster missions, and how we used the SITL reports to
build a large labeled dataset of magnetic field, plasma moments
and plasma distributions from the 2016-2019 period. Then,
we present the two machine learning algorithms we used and
their characteristics, as well as the metrics to measure their
performances. Later, we present their respective results for the
MMS mission and the adaptation to the Cluster mission. Finally,
we discuss these results and show our conclusions.

2. DATA

A fundamental and time-consuming step in any machine
learning application is collecting, cleaning, and labeling data.
This is a very important task as the quality of the data defines
accuracy and the generalization capability of the model.
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2.1. The MMS and Cluster Missions
MMS is a NASA space mission, launched in 2015, designed
to study the electron-scale physics in Earth’s magnetosphere
and in particular where magnetic reconnection occurs (Burch
et al., 2016). Its equatorial orbit is optimized to spend extended
periods in locations where reconnection is known to occur and
thus covers the majority of the near-Earth space key regions.
The mission is composed of four identical spacecraft flying
in an adjustable tetrahedral formation and its highly-elliptic
orbit also covers almost all regions of near-Earth space. The
direct-current (DC) magnetic field data are provided by the
Fluxgate Magnetometer (FGM) from the FIELDS instrument
suite (Russell et al., 2016; Torbert et al., 2016) with a temporal
resolution of 0.1s in “survey” mode and the plasma parameters
by the Fast Plasma Investigation (FPI) instrument Pollock et al.
(2016) with a temporal resolution of 4.5 s in “fast” mode.

Cluster is an ESA space mission, launched in 2000, whose aim
is to study the ion-scale physics of Earth’s magnetic environment
and its interaction with the solar wind. The mission is also
composed of four identical spacecraft flying in a tetrahedral
formation and its highly-elliptic polar orbit also covers almost all
regions of near-Earth space. The magnetic field data are provided
by the Fluxgate Magnetometer with a temporal resolution of
4 s (Balogh et al., 2001) and the plasma parameters by the Hot Ion
Analyzer instrument (Rème et al., 2001) when the instrument was
working under the magnetosphere or the magnetosheath mode.

2.2. The Labels Datasets
One of the most important innovation brought by the MMS
mission is its burst data management and selection system.
The MMS spacecraft collect a combined volume of ∼ 100
gigabits per day of particle and field data. On average, only 4
gigabits of that volume can be transmitted to the ground. With
nested automation and “Scientist-in-the-Loop” (SITL) processes,
this system is designed to maximize the value of the burst
data by prioritizing the data segments selected for transmission
to the ground.

Concretely, the SITL system consists of a manual selection
process by a scientific expert designated to eyeball daily survey
(low-time resolution) data and pick time intervals of interest that
will be transmitted to the ground as burst (high-time resolution)
data. The selected intervals are tagged with timestamps and a
comment, which usually includes the type of event selected and
eventually the near-Earth region in which it occurred. For each
orbit, these selections are written up in a “SITL report,” in the
form of a text file notably. An example of these reports can be
found in Argall et al. (2020).

We developed a Python code which parses these text files to
extract the timestamps and comments by identifying keywords
associated with the near-Earth region where the event occurred.
Each time interval was then associated with a label indicating
where the spacecraft was located as follows.

If a region cannot be identified from the SITL comment,
then the time interval is rejected. If FGM or FPI data is not
available during a labeled time interval, then the time interval
is also rejected. Using this technique, from the date at which
the SITL reports are available as text files, i.e., April 2016,

to the end of 2019, we collected 7, 832 labeled time intervals
relevant for our study. We note here that the number of
occurrences for each regions were somewhat unbalanced, so
we added a total of 605 time intervals labeled by hand to
undersampled regions (examples of typical plasma parameters
for the different magnetospheric regions can be found in
textbooks, e.g., Baumjohann and Treumann, 1996), bringing
the total to 8, 437 labeled time intervals of various lengths. We
resampled the label data to the same cadence as FPI data, i.e.,
4.5 s, representing a total of 1, 331, 133 labeled data points. This
constitutes the biggest dataset of labeled time intervals for near-
Earth space to our knowledge. The labels of the different regions
are sorted roughly according to their distance to the Sun, and
summarized in Table 1.

Regarding the Cluster mission labels, we use the dataset
presented in Nguyen et al. (2019). This dataset covers three
near-Earth space regions, namely the magnetosphere, the
magnetosheath and the solar wind, over a 2-year time period
(2005–2006). The data is resampled to a 1 min resolution,
yielding a total of 148, 762 labeled points.

2.3. Final Data Set
Once the labels are defined, we build the final dataset that will
feed the ML models. In Earth’s magnetosphere, the plasma is
dominated by its core magnetic field, thus the first feature we
took into account is the magnetic field vector EB. Additionally,
in each magnetospheric region the plasma has a rather typical
distribution function. However, the full particle distribution
function constitutes an enormous amount of data when dealing
with several years of data (as done here), in particular with
the MMS mission (several TB of data). Furthermore, important
differences exist between different heliospheric missions in the
specificities of the distribution functions, e.g., energy and angular
ranges as well as energy and angular resolutions. Therefore, we
chose not to consider those products and focused on moments
only (density, bulk velocity and temperature), to keep our model
lightweight and as general as possible (i.e., applicable to different
heliospheric missions such as Cluster). For this latter reason,
we also decided not to use the spacecraft location as a feature,
because different missions cover different locations in near-Earth

TABLE 1 | Labels for the 10 different near-Earth regions in our model.

Regions Labels

Solar wind SW

Ion foreshock FS

Bow shock BS

Magnetosheath MSH

Magnetopause MP

Boundary layer BL

Magnetosphere MSP

Plasma sheet PS

Plasma sheet boundary layer PSBL

Lobe LOBE
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space (e.g., Cluster has a polar orbit while MMS has an equatorial
orbit; apogees/perigees are different, etc.).

We start with loading the rawMMSmagnetic field and plasma
moments data from FGM and FPI instruments for the 2016–
2019 period using the aidapy package1, and resample the data
to the FPI cadence, i.e., 4.5 s. The resulting dataset contains 12
variables: the magnetic field magnitude Btot and its components
Bx, By, Bz , the ion density Ni, the bulk velocity magnitude Vitot

and its components Vix , Viy , Viz , the parallel and perpendicular
temperatures T‖,T⊥ with regards to the ambient magnetic field
and the total value Ttot . The dataset is matched with the labels
points defined in the previous section. If data gaps are present
in the specified time interval, then the whole interval is rejected.
This method yields a total dataset of size 1, 331, 133× 12.

The TSC model requires as input arrays of equal sizes with
one label per array. Thus the dataset is grouped as time series
corresponding to the labeled time intervals, resulting in 6, 928
data blocks of various sizes. We decided to split these time series
into equal chunks of 3 min, because this time length correspond
roughly to the mean value of the data blocks (i.e., it minimizes
the padding) and yields enough points (40) in each block given
the time sampling resolution. To do so, we apply the following
scheme: if the data block is shorter than 3 min, it is padded with
the wrap of the vector along the axis (i.e., the first values are used
to pad the end and the end values are used to pad the beginning);
and if the data block is longer than 3 min, then it is split into
several time series of 3 min each (the last one being padded as
described above if also shorter than 3 min). Table 2 gives the
distribution of the occurrences for each class.

This operation yields a dataset as an multidimensional array
of size (34159, 40, 12). Finally, to input this array to the TSC
model (and to avoid temporal bias due to the spacecraft orbit), we
shuffle and randomly split the time series into training (56.25%),
test (25%), and validation (18.75%) datasets. These three classical
categories are defined such as:

• The training set is used to determined the weights of
the model;

• The validation set is an out-of-sample set and allows to
evaluate the error for data which has not been observed.
In particular, the validation set is used for hyperparameter
search and early stopping to avoid over-fitting ensuring a good
generalization of the model;

• The test set is also an out-of-sample set which has not been
used during training. The data are only used after the training
to assess the performance of the final model, after training and
hyperparameter optimization.

3. CLASSIFICATION METHODS WITH A
FULLY CONVOLUTIONAL NEURAL
NETWORK

In this section, we overview the machine-learning algorithm
we use: the fully convolutional neural network (FCN). This

1https://gitlab.com/aidaspace/aidapy

TABLE 2 | Number of occurrences for each class.

Time series

SW 2,130

FS 4,714

BS 2,328

MSH 4,274

MP 3,764

BL 4,544

MSP 4,658

PS 3,576

PSBL 2,703

LOBE 1,468

Total 34,159

algorithm is assessed with several evaluation metrics. FCN works
with time-dependant inputs (time series) in order to learn
dynamical features. The main purpose of classifying time series
and not only the instantaneous values is to learn automatically
different features across the time dimension. The events can be
characterized by dynamical insights at different scales learned
by the model. We present a second model, called Multilayer
perceptron (MLP), in the Supplementary Materials. It considers
the input of the 12 variables as time independent. The main
advantages of this method are its simplicity to prepare the
machine learning pipeline and the possibility to work with any
temporal resolution. However, the classification performance is
much lower.

The FCN belongs to the category of artificial neural networks.
They are usually characterized by their architecture: number of
layers, type of connection (feedforward, feedback, convolution,
etc.), and the activation functions. A layer is defined as a set
of neurons which are not connected to each other. We selected
neural network as they are able to learn non-linear models and
can handle large datasets compared to kernel methods.

3.1. Model Presentation
Time series classification (TSC) is an active field of research
and hundreds of different algorithms have been developed in
recent years (Bagnall et al., 2017). Classical TSC usually uses
new features spaces generated from the time series. The best
performingmodels can combine dozen of different classifiers and
feature transformations, leading to significant complexity and an
important computational cost (Lucas et al., 2019).

Even if deep learning has seen very successful applications in
the last decades, only a few examples of algorithms for TSC exist.
This lack of overview has been filled recently (Fawaz et al., 2019)
and several models show very promising results. In particular,
we are convinced that convolution architectures can build very
accurate classifiers. The convolutional layers use convolution in
place of general matrix multiplication.

Local groups of values are often highly correlated in time
series and they form distinctive local motifs that are easily
detected. Convolutional layers are designed to identify these
patterns invariant to location: if a motif specific to a label
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appears in one part of the time series, it could also appear
anywhere. Hence a convolutional layer sharing the same weights
at different locations can detect temporal patterns in different
parts of the time series (LeCun et al., 2015). Moreover, several
deep learning frameworks, such as Tensorflow (Abadi et al., 2016)
or Pytorch (Paszke et al., 2019), are nowadays freely available.
They provide differentiable programming to build very efficient
neural networks. Thus, we consider deep learning for TSC for
these two reasons: the availability of high-quality frameworks and
the relevance of convolutional architectures.

The Fully Convolutional Network (FCN) (Wang et al., 2017)
is a competitive deep-learning architecture for TSC yielding good
results on large benchmarks (Fawaz et al., 2019). The network
architecture is relatively simple and is comprised of a sequence
of thee time convolution blocks followed by a global average
pooling block (Lin et al., 2013). Each time convolution block
is divided into a convolution layer, a batch normalization layer,
and a Rectified Linear Unit (RELU) Nair and Hinton (2010)
activation function. The convolutional layer is used to extract
temporal features from the inputs by performing a convolution
between the input signal and several filters. Each convolutional
block has different filter lengths in order to analyze several time
scales. The extracted features of the last convolutional block are
used as inputs for the global average pooling (GAP) module
to output the classification result. This last block is composed
of the global average pooling layer and the Softmax layer. A
more complete description of the FCN architecture can be found
in Wang et al. (2017) and Fawaz et al. (2019).

As regards the numerical parameter, we performed a bayesian
optimization to select the hyperparameters using the validation
set for four parameters:

• The optimizer: adam or rmsprop
• The learning rate: between 10−6 and 10−3;
• The batch size: 32, 64, or 92;
• The number of filters: the baseline of the FCN paper, half

the baseline and twice the baseline. The baseline given by
the FCN paper (Wang et al., 2017) is the following: the first
convolutional block has 128 filters with a filter length equal to
8, the second convolution extracts features with 256 filters of
size 5 and the final convolutional layer is defined by 128 filters,
each one with a length equal to 3.

The final FCN is trained for 1, 000 epochs with the categorical
cross entropy as loss function. The result of the bayesian
optimization provides the different hyperparameters. The Adam
optimizer is used with an initial value of the learning rate set to
0.00002. An adaptive learning rate decrease is selected (with a
minimum learning rate of 10−6), reducing the learning rate when
the validation accuracy has stopped improving for 50 epochs.
A batch size of 92 is used with twice the baseline configuration
for the number of filters. The final FCN has 1, 079, 000 free
parameters. The method of early termination is adopted to avoid
over-fitting and stops the learning process when the validation
loss did not decrease for 20 epochs. All the time series are
standardized before the training process. The learning curve is
presented in Figure 1. The learning process stopped after 140
epochs thanks to the early termination strategy.

FIGURE 1 | Learning curve history comparing training and validation loss.

3.2. Performance Evaluation
Assessing accurately the quality of a classification model raises
significant challenges. A single and unified performance metric
cannot effectively evaluate a multi-class classifier from all
perspectives, such as class-balance or the number of different
outcomes. Therefore, several metrics generalized from binary
classification are considered.

The confusion matrix is a basic but useful tool to visualize
the distribution of the predicted classes. Each column of the
matrix gives the instances of a true class while each row represents
the instance of a predicted class. Several metrics from binary
classification can be generalized to multiclass by considering the
prediction of each class as a binary classification problem: the
given class has been predicted (positive) or not (negative). Then,
the total number of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) can be computed and
several metrics are defined:

- Accuracy is the most intuitive metric and gives the percentage
of correct predictions among all the predictions Np:

accuracy =
TP + TN

Np
. (1)

- Precision, also called positive predictive value, measures the
proportion of positive values that are correctly identified
as such among all predicted positives. In other words, it
corresponds to the percentage of detections that are right.
High precision is associated to a small amount of FP:

precision =
TP

TP + FP
. (2)

- Recall, also called the true positive rate, measures the
proportion of positives detected. A significant number of
missed true values (FN) leads to low recall:

recall =
TP

TP + FN
. (3)
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- F1-score is the harmonic mean of precision and recall.
Usually, high recall is detrimental to precision and vice
versa. Therefore, the F1-score gives a trade-off between the
two quantities and can help to compare two classifiers with
different precision and recall values:

accuracy = 2.
precision.recall

precision+ recall
. (4)

All thesemetrics are computed for each class. Therefore, averaged
quantities can be also defined to provide a more general view
of the classifier. A macro-average gives the unweighted mean of
the metric without taking imbalance into account and a micro-
average computes the average weighted by the number of true
instances for each class. The micro-average will account for
label imbalance.

Finally, a receiver operating characteristic (ROC), also called
ROC curve, is a graphical tool illustrating the performance of
a binary classifier system when the discrimination threshold is
varied. Indeed, each class prediction is associated to a probability.
Usually, the class predicted by the classifier is chosen as the class
with the highest probability. Instead, a threshold value can be
used to decide if the class is effectively predicted by the classifier.
The ROC curve plots the fraction of true positives out of all
the predicted positives (True Positive Rate) vs. the fraction of
false positives out of all the predicted negatives (False Positive
rate) at various threshold values. For instance, all classes are
predicted with a zero threshold (False Positive Rate and True
Positive Rate of 1.0) while there are no correct predicted class
and no false positive with a unit threshold (False Positive Rate
and True positive rate of 0.0). A perfect classifier is located on
the left corner of the curve with a true positive rate of 1.0 and
a false positive rate of 0.0. A ROC curve can be drawn for each
class. In case of a model with no discrimination capacity to
distinguish between positive class and negative class, the ROC
curse is a straight line of slope 1. The area under the ROC curve
(AUC) summarized in one number if the model is capable of
distinguishing between classes.

4. RESULTS

4.1. Classification of MMS Data
We use here the test set (the out-of-sample set that is not
involved in the training process) to evaluate the performance of
the model. It is obtained by shuffling 25% of the data as described
in section 2.3.

Table 3 summarizes the precision, recall, f1-score, and AUC
evaluated by the FCN for the 10 different classes. In term of
absolute values, the FCN shows great performance metrics. The
AUC value is above 0.98 for all the classes. It means that a
significant probability is always associated to the correct region
by the classifier, even it is not the highest probability. For
instance, the classifier could give a probability of 45% to the SW
and 35% to the FS for a test sample belonging to the FS. Even if the
prediction is wrong, the classifier still has detected some features
which can belong to the correct class.

Two different groups of regions are identified in Table 3. The
first group consisting of the FS, the MSP, and the LOBE is very
well-predicted with a respective f1-score above 0.94 and a AUC of
1.00. Such regions show usually very specific patterns, explaining
why the classification metrics are very high. The second group
is formed by the BS, the MP, the BL, the PS, and the PSBL, with
smaller metric values, such as a f-1 score between 0.82 and 0.88
and a AUC between 0.98 and 0.99. Figure 2 shows the different
ROC curves for the FCN. BL and BS are the lowest curves. They
have a much higher false positive rate when they reached a true
positive rate of 1.0 compared to the other classes. It means that,
for some very specifics predictions, the classifier associates a very
low probability to the correct class. The BL and the BS are thin
regions marking the boundary between larger regions. Therefore,
several time intervals labeled by SITLs may overlap two or more
nearby regions. It could explain the lower metric values for these
two regions.

From the Supplementary Material, the second model (MLP)
has important also problems to classify regions with strong

TABLE 3 | Classification report for FCN computed on the test set.

Precision Recall f1-score AUC

SW 0.88 0.92 0.90 1.00

FS 0.93 0.95 0.94 1.00

BS 0.85 0.80 0.83 0.99

MSH 0.91 0.91 0.91 0.99

MP 0.84 0.84 0.84 0.99

BL 0.84 0.84 0.84 0.98

MSP 0.96 0.95 0.96 1.00

PS 0.89 0.89 0.89 0.99

PSBL 0.86 0.87 0.87 0.99

LOBE 0.95 0.95 0.95 1.00

Macro average 0.89 0.89 0.89 0.98

Micro average 0.89 0.89 0.89 0.99

Accuracy 0.89

FIGURE 2 | Receiver operating characteristic curve computed on the test set.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 September 2020 | Volume 7 | Article 55117

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Breuillard et al. Supervised Machine Learning With MMS Data

TABLE 4 | Confusion Matrix for FCN computed on the test set.

True

SW FS BS MSH MP BL MSP PS PSBL LOBE

P
re
d
ic
tio

n

SW 493 53 8 0 2 1 0 0 0 0

FS 42 1,140 40 0 0 0 0 0 0 0

BS 2 12 450 54 8 1 0 0 0 0

MSH 0 1 52 982 41 5 0 0 0 0

MP 0 0 10 37 801 92 5 3 2 1

BL 0 0 1 4 78 933 49 39 10 0

MSP 0 0 0 0 10 32 1,101 0 0 0

PS 0 0 0 0 5 38 5 803 54 1

PSBL 0 0 0 0 7 13 0 59 572 15

LOBE 0 0 0 0 0 0 0 1 16 354

The gray background corresponds to the correct classification in the confusion matrix.

variations, such as the BS with a f-1 score below 0.5. Thus, it
seems that convolutional methods help to improve the accuracy
of the classifier for the most challenging regions and it validates
the choice of such algorithms designed to extract important
temporal features and variations.

Table 4 gives details on the FCN predictions with a confusion
matrix. Very typical errors can be observed for nearby regions,
such as: SW and FS; PS, BL, and PSBL; PSBL and LOBE;MP,MSH
and BL. These errors can be explained by physical arguments. The
plasma properties can be similar for several nearby regions. For
instance, we may expect that MP shares common properties with
MSH and MSP as the MP acts as a boundary between the two
other regions. The SW region can also be very similar to the FS as
the latter comes from the reflection of the SW on the BS, as stated
in the introduction. Therefore, it may be concluded that the FCN
model really learned the typical patterns associated to each region
as the main errors are identified for regions with similar physics.

4.2. Examples of MMS Classification
In this section, we show some examples of time series observed
by the MMS spacecraft as it spanned the different near-Earth
regions, along with the labels of the classifications made by the
FCN model.

Figure 3 shows the MMS1 probe observations for the whole
day of 2019-11-09, during which it flew through the dayside
region. From top to bottom, the figure panels show the energy
spectrum of the omnidirectional ion flux, the three components
of the magnetic field (Bx,By,Bz) in GSE coordinates and its
magnitude Btot , the ion number density, the three components
of the ion bulk velocity (Vx,Vy,Vz) in GSE coordinates, the ion
temperatures parallel and perpendicular (T‖,T⊥) to the ambient
magnetic field, and finally the labels given by the FCN model
(FCN labels). The time in UT format and the spacecraft position
(Xpos,Ypos,Zpos in RE and GSE coordinates) are displayed at the
bottom of the X-axis.

In this example, the FCN model classifies well the regions, as
its labels follow to a great extend the MMS1 observations: first
the spacecraft is located in the magnetosphere, then it crosses

the magnetopause to enter the magnetosheath, afterwards it flies
through a series of bow shocks and goes back and forth to the
solar wind, until it finally enters the solar wind. The model is
even able to precisely detect the small-scale dynamics of the
boundary regions such as partial magnetopause, boundary layer
and bow shock crossings, and the come and go between the
solar wind and the ion foreshock. Only three points seem to
be clearly misclassified (as MSP) in the ion foreshock. However,
these points can be easily eyeballed as outliers or discriminated
by their low quality flag.

Figure 4 shows another example of the FCN classification
method described above, but this time when MMS spacecraft
flew through the nightside region. The MMS1 observations take
place during the whole day of 2019-07-13, and the format is
the same as in Figure 3. In this example again, the FCN model
is able to label properly the regions spanned by MMS1: at the
very beginning MMS1 exits the magnetosphere to the plasma
sheet boundary layer, then goes in and out the lobe regions
before reaching the plasma sheet. Again, the FCN model is also
able to pick up the small-scale dynamics such as short plasma
sheet crossings.

The two examples shown in this section therefore support
the good metrics obtained in the previous section, showing
concretely that the FCN model is suited to properly label most
of the MMS data with the regions spanned.

4.3. Locating Important Feature in Time
Series With Class Activation Map
Class Activation Map (CAM) is a technique developed by Zhou
et al. (2016) to get the discriminative regions used by a CNN
to identify a specific class in the input data. I. CAM has been
applied to TSC for one-dimensional case in Wang et al. (2017)
for the first time. The objective in our case is to highlight the
subsequences (i.e., sections) in each time series which are relevant
to its class. Thus, this approach allows to explain the decision
taken by the classifier. The mathematical description of the
method can be found in Zhou et al. (2016), Wang et al. (2017),
and Fawaz et al. (2019). This method works only for models with
the global average pooling as last layer (Lin et al., 2013). CAM
is represented by a univariate time series (with the same size
than the FCN input) where the value gives the importance of the
signal to classification. Low values mean the subsequence does
not contribute to the decision of the classifier while high values
mean the section contributes significantly.

Figure 5 shows CAM examples for two different classes:
the solar wind and the foreshock. For each class, a well-
predicted time series is drawn and colored by the value of
the CAM, illustrating the results from MMS data given in
section 4.1. As regards the SW example, almost all the input
signal contributes to the classification, as stated by the uniform
CAM values above 0.8 between 20 and 160 s. It means that
the values of input features are much more important than
their variations or than specific patterns. On the other hand,
the classifier detects the FS mainly thanks to a specific pattern
around 65 s associated to extrema for Bx, By, Ni, and Vy and
significant slopes for the other features. Only a few specific time
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FIGURE 3 | Example of MMS dayside classification. Labels, not present in the initial data set, have been manually added to compare the FCN predictions with a

ground truth. They are represented by colored regions on the FCN labels plot.

intervals are involved in the decision of the classifier for FS.
The CAM analysis strengthens the conclusion that temporal and
dynamical analysis are fundamental to classify nearby regions
with fluctuating behaviors. For instance, the MLP results given
in the Supplementary Materials shows that a significant number
of SW region are misclassified as FS as the model works only on
instantaneous quantities.

4.4. Extension to Cluster Mission
In this section, we put to test the adaptability of the FCN model
to different magnetospheric data, namely data from the Cluster
mission. This mission has been chosen as the data is pretty close
to MMS data (notably the data sampling), and a 2-year period
of labeled data is available (see Nguyen et al., 2019) to audit the
classification resulting from the model.

First, we qualitatively assess the quality of the different
classification methods, by comparing them with C1 probe
observations. We randomly select a day during which the C1
probe flew through the dayside region. This example, from
the day of 2005-02-13, is shown in Figure 6 in the same
format as Figures 3, 4, except that we include the manual
labels from Nguyen et al. (2019) (named “Man labels”) in the
penultimate bottom panel.

The “Man labels” are in good agreement with the observations
of C1, as the probe is first located in the magnetosphere, then
flies through the magnetosheath and finally reaches the solar
wind. The “FCN labels” show also good agreement with C1
observations: the probe is first located in the magnetosphere
and then crosses the magnetopause a few times before entering
the magnetosheath, then it crosses the bow shock to enter the
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FIGURE 4 | Example of MMS nightside classification. Labels, not present in the initial data set, have been manually added to compare the FCN predictions with a

ground truth. They are represented by colored regions on the FCN labels plot.

solar wind before crossing several times again the bow shock and
finally spanning the ion foreshock. As in the examples shown for
the MMS mission, the FCN model is able to pick up the small-
scale dynamics of the near-Earth frontiers: themagnetopause, the
bow shock and the foreshock. As a result, the model is able to
outperform the manual labels by identifying in more detail the
magnetospheric regions, in particular the small-scale dynamics
of the transition regions.

Then, we take advantage of the 2-year period of Cluster
labeled data from Nguyen et al. (2019) to quantify the quality of
the FCN model classification, by investigating the performance
metrics. We select the points labeled as “MSP,” “MSH,” and
“SW” by the FCN model using Cluster data from the 2005–
2006 period, and compare them with the labels for these 3

regions obtained from Nguyen. Using this method, we obtain
an accuracy classification score of 0.97 over a total of 10, 929
common labeled points. the classification report can be found
in Table 5. We note here that this score is not an exact
quantization of the model’s accuracy on Cluster data, and
the classification score is probably overestimated because only
3 classes (i.e., magnetospheric regions) are considered here
instead of the 10 included in the FCN model. Therefore, a
dataset of Cluster data labeled with these 10 near-Earth regions
is required to get an absolute quantification of its accuracy
regarding the Cluster mission. However, it shows globally that
our FCN model classification is a reliable method for the
labeling of the Cluster mission data and potentially other
heliophysics missions.
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FIGURE 5 | The Class Activation Map highlighting the important sections of the time series contributing most to the classification. Low values mean the time step of

the time series does not contribute to the decision of the classifier while high values mean the time step contributes significantly. (A) Solar wind. (B) Foreshock.

4.5. Resources
The most time-consuming task in the present work has been the
data preparation and the parsing of the SITL reports. Training
a FCN model needs about 200 CPU hours on a workstation
featured with an Intel Xeon E5-2670 v3 (12 cores at 2.30 GHz).
These values must be multiplied by the number of different trials
needed to optimize the hyperparameters (about 40 in that case).

5. DISCUSSION AND CONCLUSIONS

Using deep learning algorithms, namely a fully convolutional
neural network (FCN), we built an automatic detection of 10
near-Earth regions: the solar wind, the ion foreshock, the bow
shock, the magnetosheath, the magnetopause, the boundary
layer, the magnetosphere, the plasma sheet, the plasma sheet
boundary layer and the lobes.

Using more than 3 years of labeled (SITL and additional
human-labeled) MMS mission data, we showed that this
method are reliable to classify near-Earth regions. The FCN
method(1,079,000 free parameters) has been very effective
in taking into account the dynamical features of the most
challenging plasma regions (important data variability due to
the fluctuations of the plasma), in particular the bow shock
and the boundary layer. The high accuracy of the FCN model

also highlights the quality of the labeled data set generated
from SITL reports. We demonstrate the good accuracy of the
classification predictions on the test and validation datasets,
but also on unlabeled data from the MMS mission. We also
show the adaptability of the trained FCN model by applying the
classification to the Cluster ESA mission data. The predictions
showed good accuracy and enhanced dynamics in comparison
with previous human-labeled dataset.

These results show on one hand that the model can be applied
to the whole MMS dataset, which would be of great interest
to map the different magnetospheric boundaries and build
empirical models of the properties and dynamics of the plasma in
the near-Earth space. On the other hand, these results show that
the model could be applied on different space missions orbiting
around Earth (such as Cluster or THEMIS) or other planets
to automatically label available data. However, we recommend
to build a small labeled dataset specific to each mission with
limited retraining of the last layer. This process called transfer
learning could help improving the generalization of our labeled
dataset to other missions such as the JUICE mission, which will
be launched in 2022 and for which selective downlink strategies
are being discussed.

As a matter of fact, the model could be used as a support to
the scientific experts in charge of the data selection process (such
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FIGURE 6 | Example of Cluster dayside classification.

TABLE 5 | Classification report for FCN computed on the Cluster dataset.

Precision Recall f1-score

MSP 0.84 0.97 0.90

MSH 1.00 0.97 0.98

SW 0.95 0.99 0.97

Macro average 0.93 0.97 0.95

Micro average 0.98 0.97 0.97

Accuracy 0.97

as the SITL system), providing classification of the regions that
would contribute to ease and speed up this time-consuming and
tedious task. Such lightweight and easily-adaptable algorithms

could also be important for the so-called SOC (Science Operation
Center) of current and future spacecraft missions, both on
ground and onboard. For the latter case, these algorithms could
be implemented within onboard spacecraft digital boards to
automatically select regions and events of scientific interest,
much reducing the complexity and the cost of science operations.

The intended integration of this model into the aidapy
package2, which allows to automatically load selected data from
open-access databases, will be of particular interest by providing
plasma data accompanied with region labels and quality flags on
the fly for use case and statistical studies. The integration of such
lightweight algorithms can be also generalized to other programs.

2https://gitlab.com/aidaspace/aidapy
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In terms of modeling, we expect to improve the FCN results by
generalizing the use of hyperparameter optimization for a higher
number of hyperparameters and on larger ranges. We also plan
to investigate the use of convolution methods directly on the
omnidirectional ion energy fluxes.

Finally, the classification of near-Earth regions represents
only a first step for the time series classification in heliophysics.
It paves the way to more ambitious models, such as the
identification and the classification of space plasma processes
(e.g., magnetic reconnection and structures, waves and
turbulence or plasma jets), as well as their combinations.
However, this topic is beyond the scope of the present study and
is left for a forthcoming study.
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In this paper, we explore the potential of neural networks for making space weather

predictions based on near-Sun observations. Our second goal is to determine the

extent to which coronal polarimetric observations of erupting structures near the Sun

encode sufficient information to predict the impact these structures will have on Earth.

In particular, we focus on predicting the maximal southward component of the magnetic

field (“−Bz”) inside an interplanetary coronal mass ejection (ICME) as it impacts the Earth.

We use Gibson & Low (G&L) self-similarly expanding flux rope model (Gibson and

Low, 1998) as a first test for the project, which allows to consider CMEs with varying

location, orientation, size, and morphology. We vary 5 parameters of the model to

alter these CME properties, and generate a large database of synthetic CMEs (over

36k synthetic events). For each model CME, we synthesize near-Sun observations,

as seen from an observer in quadrature (assuming the CME is directed earthwards),

of either three components of the vector magnetic field, (Bx,By,Bz) (“Experiment 1”),

or of synthetic Stokes images, (L/I,Az,V/I) (“Experiment 2”). We then allow the flux

rope to expand and record max{−Bz} as the ICME passes 1AU. We further conduct

two separate machine learning experiments and develop two different regression-based

deep convolutional neural networks (CNNs) to predict max{−Bz} based on these two

kinds of the near-Sun input data. Experiment 1 is a test which we do as a proof of

concept, to see if a 3-channel CNN (hereafter CNN1), similar to those used in RGB image

recognition, can reproduce the results of the self-similar (i.e., scale-invariant) expansion

of the G&L model. Experiment 2 is less trivial, as Stokes vector is not linearly related to B,

and the line-of-sight integration in the optically thin corona presents additional difficulties

for interpreting the signal. This second CNN (hereafter CNN2), although resembling CNN1

in Experiment 1, will have a different number of layers and set of hyperparameters due

to a much more complicated mapping between the input and output data. We find that,

given three components of B, CNN1 can predict max{−Bz} with 97% accuracy, and for

three components of the Stokes vector as input, CNN2 can predict max{−Bz} with 95%,

both measured in the relative root square error.

Keywords: coronal mass ejection, initiation and propagation, convolutional neural network (CNN), Gibson and Low

model, interplanetary CMEs, spectropolarimetric data classification
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1. INTRODUCTION

Geomagnetic storms are powerful disturbances in Earth’s
magnetosphere, which become increasingly more important as
our technologies develop. The technological progress increases
the quality of our lives and our understanding of world around
us, yet it renders us increasingly more dependent on electricity,
telecommunications, satellites, and air transportation. These are
some of the areas most impacted by the geomagnetic storms
(National Research Council, 2008; Eastwood et al., 2017). While
the well-known Carrington event has resulted, in 1859, in some
damage to telegraph lines and spectacular auroras seen as far
as Hawaii (Cliver and Dietrich, 2013), an event of a similar
magnitude happening today would be devastating for themodern
civilization (National Research Council, 2008; Baker, 2013).

The mitigation efforts depend on our ability to predict the
strength and the duration of a storm before it happens, in order
to take costly, yet necessary protective measures. These include
redirecting air traffic, taking measures to protect the power grid,
or preparing for inevitable disturbances in telecommunications
(e.g., Knipp and Gannon, 2019).

Geomagnetic storms are often caused by the collision of
Earth’s magnetic field with clouds of magnetized plasma, which
are typically of solar origin. The strength of a storm crucially
depends on the strength of the magnetic field in the cloud, and
also on its orientation with respect to the Earth’s own magnetic
field. A large southward component of the magnetic field
(hereafter Bz < 0) will result in stronger storms than if the field
had a comparable northward component (Bz > 0). These clouds
are associated with coronal mass ejections (CMEs), the eruptive
phenomena observed on the Sun (Webb and Howard, 2012).

The ability to predict the strength of geomagnetic storms,
consequently, relies on our ability to detect a CME as it departs
the Sun, to predict whether Earth will lie on its way, and to predict
its properties at the moment of its encounter with Earth (Kilpua
et al., 2019). Typically, after a CME is detected, simulations of its
propagation through interplanetary space are needed to predict
its further evolution as an interplanetary CME, or ICME (e.g.,
Arge et al., 2004; Manchester et al., 2017).

CMEs are magnetic in nature (e.g., Chen, 2011; Bak-Stȩślicka
et al., 2013; Forland et al., 2013); hence, near-Sun observations
sensitive to the strength of a magnetic field are needed to
determine the properties of a particular erupting structure. To
obtain magnetic information, measurements of spectral line
profiles of polarized light must be obtained. Unfortunately, many
existing observations of magnetic field regard only the solar
photosphere and chromosphere, while the CMEs are observed
in the solar corona. As the corona is significantly dimmer than
the solar surface in visible/infrared light, observations of CMEs
in these wavelengths require a coronagraph to occult the disk of
the Sun.

The spectropolarimetric measurements generally include four
Stokes parameters (I,Q,U,V) (unpolarized intensity, intensity
in two directions of a linear, and intensity of a circular
polarization, respectively) at several locations along a spectral
line. These carry information about the magnetic field in the
emitting plasma. In solar photospheric observations (e.g., Schou

et al., 2012), the Stokes vector can be inverted (e.g., Ruiz
Cobo and del Toro Iniesta, 1992) to obtain components of
the magnetic field, (Bx,By,Bz), at the solar photosphere. But
in coronal observations, the inversion is greatly complicated
by the fact that corona is optically thin; the observed signal is
integrated not over a relatively small range of heights, like in
photospheric observations, but over hundreds of megameters.
Nevertheless, although the direct inversion of Stokes data in
the corona is complicated, we often observe clear signatures of
magnetic structures, consistent with existing models of CMEs, in
coronal spectropolarimetric measurements (Gibson, 2015). This
introduces the possibility of using such observations to diagnose
the magnetic field at the core of the CME at its origins at the
Sun. We note, however, that because the observations are at the
limb of the Sun, the CME being diagnosed would be aimed at
a right angle to the observer. Ideally, one would want to make
the limb observations from an instrument placed in quadrature
with respect to the Sun-Earth line. Such an instrument does not
yet exist but the usefulness of it can be explored with the use
of synthesized observations for example using forward modeling
(Gibson et al., 2016).

At least two factors will affect the ability of coronal
spectropolarimetric measurements to provide a good predictor
of geomagnetic storms. First, since the corona is optically
thin, spectropolarimetric measurements of linearly and circularly
polarized light diagnose magnetic field strength and geometry
in a weighted line-of-sight integral that must be inverted
to obtain magnetic field. Second, evolution between the Sun
and Earth will change the erupting structure in ways that
will not be captured in the measurement obtained in its
early stages in the solar atmosphere. The purpose of this
work is to investigate how good of a predictor such coronal
signatures are for the strength of the associated geomagnetic
storm at the Earth if machine learning algorithms are used,
bypassing the need for inversions of line-of-sight integrated
spectropolarimetric signals, and also bypassing computationally
expensive simulations of how ICMEs propagate through the
interplanetary space.

In this paper, the first factor is examined by the following
two machine learning experiments. A particular model of a CME
called G&L (Gibson and Low, 1998), described in section 2, is
used for generating input and output data in both experiments.
The total of 36,288 different configurations of magnetic flux
ropes are generated over the 5D space of parameters that control
morphology, shape, and position. We then generate two kinds
of synthetic near-Sun input data, at the time prior to eruption:
either three components of the magnetic field (Bx,By,Bz) on a
slice at the central meridian (“Experiment 1”), or the Stokes linear
and circular polarization normalized by intensity (L/I,Az,V/I),
integrated along the line of sight (“Experiment 2”). (Note that
L/I =

√

(Q/I)2 + (U/I)2 and Az = − 1
2atan(U,Q) contain the

same information asQ andU normalized by I.) We also generate
synthetic 1AU output data, common for both experiments:
as the flux rope expands, we record the maximal southward
component of the magnetic field (hereafter max{−Bz}) within
the ICME flux rope as it impacts the Earth and drives
the storm.
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In Experiment 1, a binary classifier using fully connected
feedforward neural network (FNN), is constructed to determine
whether the ICME is launched in such a direction as to impact
Earth (a “storm” or a “no storm” prediction), based on an
input image of one of the three magnetic field components. We
further refer to this network as FNN1. For those ICMEs classified
as a “storm,” we further construct a 3-channel convolutional
neural network (CNN), which inputs all three components of the
magnetic field, and has the objective to predict max{−Bz} at 1AU.
We further refer to this network as CNN1.

Based on the optimistic results from CNN1, we perform
a separate Experiment 2 with synthetic spectropolarimetric
data. As these data are of a different nature, we create a new
set of neural networks, independent from Experiment 1, but
with similar type architectures. For this experiment, the input
data are pre-eruption near-Sun coronal spectropolarimetric
measurements. Another binary classifier, hereafter FNN2,
uses spectropolarimetric data in different combinations
(only circularly polarized light, only linearly, and all three
components), to make, as in Experiment 1, a “storm” / “no
storm” prediction. Next, a new CNN, hereafter CNN2, is
constructed in the similar fashion as in Experiment 1. It is again
run on those events classified as a “storm,” and uses all three
components of the Stokes data, to predict max{−Bz}. In this way,
we take into account the line of sight weighting of the observable
quantity, and also consider the different diagnostic potential of
circularly vs. linearly polarized light.

The paper is structured as follows. In section 2, we describe the
G&L model used for synthesizing the data and describe in detail
the parameters which were varied. In section 3, we describe the
synthetic input and output data, and the architecture of neural
networks which we constructed for each experiment. In section 4,
we report the results of each experiment and demonstrate that in
both cases of input data, both networks could make successful
predictions. Finally, in section 5 we discuss the implication of
the results and outline the path for future development of this
machine learning application.

2. ANALYTIC CME MODEL USED FOR
TRAINING AND TESTING CNN

We use a CME model called G&L (Gibson and Low, 1998)
to build a database of erupting flux ropes with varying
characteristics. G&L is an analytical 3D magnetohydrodynamic
(MHD) model with a spheromak-like magnetic flux rope1

embedded in a bipolar background magnetic field and radially
symmetric background hydrostatic atmosphere. The bubble
which contains the flux rope expands self-similarly with time,
modeling the propagation of a CME through the interplanetary
space.While the self-similar expansion is a rather idealizedmodel
of CME propagation, the current work is meant to prepare the
framework for the next step of the project. In the next step,

1(A specific analytical solution for a toroidal flux rope embedded in a spherical
shell, which is a common object of study, e.g., in laboratory plasma research and
in solar physics, e.g., Hagenson and Krakowski , 1987; Gibson and Low, 1998;
Borovikov et al., 2017, etc.)

FIGURE 1 | Examples of various initial G&L configurations. Blue and green

lines are magnetic field lines sampling the magnetic structure of the

G&L spheromak, shown here with different combinations of parameters for

angular size, topology, orientation. The solar surface is shown in thin black

lines for reference.

TABLE 1 | Ranges of the G&L parameters.

Parameter Notation Min Max Nsteps
a

Front height f 1.3R⊙ 2.5R⊙ 6

Angular size � 10◦ 45◦ 8

Topology τ1 0.5 min(4.1, τ1,max)
b 6c

Orientation σ 0◦ 330◦ 12

Latitude θ −0.8�/2 0.8�/2 9

aUniform steps for all parameters.
bSee section 2.3 for description.
cSee note on coupling of the parameters in section 2.2.1.

we will keep the structure of the project, but instead of a self-
similar expansion, will use results from more realistic MHD
simulations (Merkin et al., 2016) of ICME propagation, which
will nonetheless use the same G&L flux ropes as initial condition.
This is further explained in section 5.

A given G&L solution depends on a large number of analytical
and empirical parameters (Gibson et al., 2016). For the purpose
of this study, we choose to vary 5 parameters most relevant to the
shape, topology, and position of the flux rope These parameters
are: height of the front of the CME, its angular width, the
“topology” parameter, the rotation about the Sun-to-1-AU line
that passes through the center of the CME, and latitude from
which the CME is launched. The further sections describe the
parameters in detail. Several of the solutions from the database
are shown in Figure 1. The ranges of each parameter are further
listed in Table 1.

2.1. Size and Initial Height Parameters
The original Gibson and Low (1998) defined the geometry
of the embedded spheromak through the following three
parameters. The bubble of radius r0 was located at a distance
x0 from the origin (Sun’s center), and the subsequent stretching
transformation r → r + a was applied in spherical coordinates,
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FIGURE 2 | Flux rope which correspond to different values of the stretching parameter a. Left: a < 0, middle: a = 0, right: a > 0. The exact values are a = −0.5R⊙,

a = 0R⊙, and a = 0.8R⊙, respectively. The values of the other parameters used in this illustration are: f = 1.95R⊙, � = 50◦, σ = 90◦, and θ = 0◦.

FIGURE 3 | The coordinates used in the model. The Sun-Earth line is along x̂

axis. The dotted lines show the location of the “key” points along x̂ axis, from

left to right: back of the bubble A, back end of the minor axis B, major axis C,

front end of the minor axis D, and front of the bubble E.

where a = const is a stretching parameter, constant for the entire
domain. Further, in the FORWARD suite which we use for the
calculations (Gibson et al., 2016), r0 and x0 were replaced by two
parameters which are more directly related to observations: the
angular size of the bubble �, defined as tan(�/2) = r0/x0, and
the height of the front of the bubble f = x0+ r0−a. By definition
in the model, all points for which r ≤ a are fixed at the origin
(r = 0) and stay in the origin during the self-similar expansion.
The resulting solution has a spherical bubble for a = 0, teardrop-
shaped bubble for a > 0, and umbrella-shaped bubble for a < 0,
as shown in Figure 2.

2.2. Topology/Stretching Parameter
In this study, we introduce a new parameter to replace a, which is
more directly related to the topology of the over-the-limb portion
of the flux rope: τ1. Consider the coordinates shown in Figure 3,

with ẑ normal to the plane of the solar equator, and the flux rope
propagating radially along x̂ axis along the Sun-Earth line.

We notice that there are several geometrically special points
along x̂ axis, shown in Figure 3. E.g., consider point A which is
the back end of the bubble (or closest to the origin). If the value
of a is such that xA > R⊙ (or x0 − r0 − a > R⊙)2, then the
entire spheromak is above solar surface (called the photosphere),
and field lines are generally infinite, wrapping infinitely about
the core of the spheromak. If a is such that xA < R⊙, but
xB > R⊙, then some portion of the bubble will be under the
solar surface prior to “eruption”; for the purpose of the study
we keep track of this portion during the self-similar expansion
and do not include this portion in the calculations of the strength
of geomagnetic storm. The coronal portion of the bubble will
contain spheromak-like field lines, as well as field lines which
begin and end at the solar surface—the overall configuration will
appear as a spheromak suspended in sheared-arcade of field lines.
Similarly, xB < R⊙ < xC would create an apparent classical
flux-rope configuration (e.g., Gold and Hoyle , 1960; Fan and
Gibson, 2003), in the sense that both footpoints of field lines are
anchored at the photosphere, but the field lines wrap around a
common arch-like axis and have dips which potentially could
support cool prominence material (Fan and Liu, 2019). Further,
xC < R⊙ < xE would mean that all field lines above the r = R⊙
surface are arches and the overall coronal portion would appear
to be a sheared arcade.

For the purpose of this study, we ignore the portion of the
flux rope which is underneath the solar surface prior to eruption
(see section 3 for detail on how is this implemented in the output

data.) The parameter τ1 = 2 (f−1)(k+1)
k(f+a) , where k = tan(�/2) =

r0/x0, is an empirical dimensionless parameter related to how
many special points are above the photosphere. For example,
τ1 < 0means that all special points are below r = R⊙, 0 < τ1 < 1
means one of these points is above r = R⊙, etc, and τ1 > 4
means the entire bubble is above the surface3. Note that τ1 is also
related to the shape of the bubble: decreasing τ1 while keeping
constant f and � will make the bubble more teardrop-stretched.
For example, Figure 2 shows, from left to right, solutions for
τ1 ≈ 4.1, 3.2, 2.2, with 5, 4, and 3 special points above the surface

2We hereafter assume a system of units in which R⊙ = 1.
3To see this, one could express both τ1 and the coordinates of the special points via
x0, r0, and a: τ1 =

x0−a−1
r0/2

+ 2; xA = x0 − r0 − a, etc.
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respectively. Varying τ1 allows us to sample qualitatively different
magnetic configurations, including, for example, the classical flux
rope (2 ≤ τ1 ≤ 3) and the toroidal spheromak (τ1 ≥ 4).
Observational evidence for different topologies including simple
flux ropes (Bak-Stȩślicka et al., 2013) and spheromaks (Dove
et al., 2011) have been found in polarimetric observations of
coronal cavities, known to be precursors of CMEs (Gibson, 2015).

Lastly, we notice that the value of τ1 for which a = 0 and the
bubble is spherical is τ1,max = 2(f−1)(k+1)/(kf ).We do not use
solutions for a < 0, or equivalently, of τ1 > τ1,max, as they are
deemed unphysical4. In addition, choices of τ1 > 4 result in a flux
rope bubble that hovers above the photosphere at t = 0. Coronal
cavity CME precursors tend tomaintain somemeasure of contact
with the photosphere—although, for highly stretched, teardrop-
shaped bubbles some hovering is observed (e.g., Forland et al.,
2013). Therefore, we cap the range of τ1 by the smallest of two
values: τ1 < min(4.1, τ1,max) ensuring that none of the bubbles
are in either the unphysical a < 0 regime, nor too far from the
photosphere before the eruption. Note that this implies that the
parameter space is not uniform in τ1: for each pair of (f ,�), the
range of τ1 is calculated independently, and uniform steps in τ1
are taken in that range.

2.2.1. Coupling of the Parameters
The three parameters described above, f ,�, and τ1, are secondary
in the sense that they have been introduced and can be expressed
through the primary parameters which define properties of the
spheromak in the G&L model, x0, r0, and a:

f = x0 + r0 − a,
tan(�/2) = k = r0/x0,

τ1 = x0−a−1
r0/2

+ 2.
(1)

However, the secondary parameters can be more easily related
to the observed properties of CMEs (e.g., x0 is the location of the
spheromak’s center before the stretching has been applied, and the
resulting position of the bubble would in general be different.) To
make our study more useful for future work in CME predictions,
we invert the system (1) and express primary parameters through
the secondary ones:

x0 = (f + a)/(k+ 1),
r0 = k(f + a)/(k+ 1),
a = (f − k− 1− (τ1 − 2)(k+ 1))/k.

(2)

We then vary the secondary parameters, in the ranges shown in
Table 1, calculate the primary parameters through (2), and use
these as the input to the G&L model.

2.3. Orientation and Latitude Parameters
The orientation of the spheromak’s core, with respect to the
Earth’s North, is an important parameter for determining the
strength of the geomagnetic storm. We vary parameter σ that
defines rotation of the bubble about the radial direction. Figure 4

4In Gibson and Low (1998), the stretching parameter a is introduced in MHD
equations as the additional gravity term. Therefore, a < 0 will physically mean
a gravity force directed away from the Sun’s center.

shows several solutions with varying σ .

The last parameter that we vary is the starting latitude of
the CME, θ . Since the subsequent expansion is self-similar, the
direction of propagation is radial and a CME remains within the
same solid angle at all times. The Sun-Earth line is along x̂, so
CMEs launched at θ > �/2 with respect to the equator will
miss Earth completely, and θ ≈ �/2 will have a vanishingly
small effect on Earth. As we show later, the CNN is taught to
determine which CMEs will result in a “storm,” and which will
result in “no storm” at the Earth. We adjust σ range so that about
82% of all CMEs result in a “storm” at the Earth, in the sense of
max{−Bz} > 10−7.7G ≈ 2× 10−3nT.

3. NEURAL NETWORKS: DATA AND
ARCHITECTURES

Two experiments are conducted, each with two neural networks
(NNs)—a feedforward fully connected neural network (FNN)
and a 3 channel convolutional network (CNN) that can also
accept 1 or 2 channels of data. For each experiment, these NN
are different. Hence, there are a total of 4 separate NNs. The
FNN acts as a binary classifier, determining whether there is a
“storm”5 or a “no storm.” Both CNN1 in Experiment 1 andCNN2

in Experiment 2 perform a non-linear regression to estimate
max{−Bz} inside the flux rope as it impacts Earth and drives the
storm, for those events classified as “storms.” The big difference
between the experiments is 1) the input data and 2) the NN
architectures, due to a change in the characteristics of the input
data. Both will be discussed in the following subsections. We
refer the readers who are not familiar with FNN and CNN to
textbooks and overview articles on the topic (e.g., Svozil et al.,
1997; Goodfellow et al., 2016; Yamashita et al., 2018). All code
was programmed inMATLAB package “Deep Learning Toolbox”
(The MathWorks , 2019).

For both experiments, the output data are the same—the
maximal negative (southward) amplitude of the Bz component in
the flux rope at 1AU:max{−Bz(t)}, which serves as a proxy for the
strength of the geomagnetic storm. It is calculated as follows. The
flux rope was allowed to expand self-similarly, and time profile of
Bz(t, r = 1AU) was stored, starting from the time the expanding
bubble first encounters the r = 1AU sphere, and ending at
the time when the plasma elements which were at r = 1R⊙ at
t = 0 first encounter the r = 1AU sphere. Note that the plasma
elements which were under the solar surface prior to eruption are
excluded from the time series; as the rate of expansion is known,
this is a trivial task. We do this to emulate the eruption of only a
portion of the spheromak geometry.

Since the non-zero values of max{−Bz} range from 10−7.7G to
10−3G, we work in a log10 scale. The distribution of the output,
log10{max{−Bz}}, is shown in Figure 5. Not shown in the figure
(due to dwarfing the distribution) is a spike at 0 of 6517 samples
(18% of the total number of samples) corresponding to CMEs
that miss the Earth. For values less than 10−6.3G, there are less

5In the sense of max{−Bz} > 10−7.7G ≈ 2× 10−3nT
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FIGURE 4 | Flux ropes rotated by a different amount σ about the direction of propagation (in this case, x̂). From left to right: σ = 0◦, 42.4◦, 84.7◦.

FIGURE 5 | Distribution of log 10(|max{−Bz}|) values, where max{−Bz} is in G.

than 40 samples in each histogram bin, resulting in a long tail of
the distribution. Due to the low sample size, the CNN will not be
able to make adequate predictions in this regime.

Regardless of the experiment:

1. The data were separated into 2 vectors, grouped by “storm”
(max{−Bz} > 10−7.7G; 82% of the data) and “no storm”
(max{−Bz} < 10−7.7G; 18% of the data).

2. The pointers to those two groups were randomly permuted,
thus shuffling the data.

3. Two-thirds of the pointers were used for training, and one-
third for testing, maintaining the 82 to 18% ratio of “storm” to
“no storm” in both the training and testing data.

4. The input observations (be it magnetic field components
of Stokes parameters) are in the solar equator plane in
quadrature with Earth, along the ŷ direction. The field of views
(FOVs) are identical in both experiments (x ∈ [1.0, 2.6]R⊙,
z ∈ [−0.8, 0.8]R⊙). The observer is located at infinite distance

from the origin, so that the lines-of-sight are parallel to each
other for all image pixels.

5. The architecture of the FNN in each experiment remained the
same regardless of the input data. However, for each different
type of input the FNN was retrained, as the numerical values
of the weights and bias is dependent on the type of input data
(e.g., (L/I,Az), or V/I).

6. The FNN were run on an Intel CORE i7 9th generation CPU
with 16 GB of RAM. The CNNwere run on aNVIDIAQuadro
P6000 GPU with 24 GB GDDR5X.

3.1. Experiment 1: Input Data
The G&L model is run to generate a total of 36288 magnetic
3D magnetic flux ropes that span a 5D parameter space (see
Table 1). Two thirds (24192 flux ropes, 19847 “storm” + 4345 “no
storm”) were used for training the machine learning algorithms
and one third (12096 = 9923 “storm” + 2173 “no storm”) was
used for testing the quality of the predictions. For Experiment 1,
a single input sample showing a slice of all three magnetic field
components Bx, By, and Bz , is given in the left panel of Figure 6,
represented by a slice of the 3D datacube at the y = 0 plane. At
present, no instrument can provide such input off the solar limb,
but this Experiment is by design but a sanity-check test for the
overall machine-learning pipeline.

Although Figure 6 shows gray-scale images, the input for
Experiment 1 are 64 × 64 matrices of magnetic-field values
in Gauss. While We are using the concept of image pattern
recognition architectures (but with regression) to see if we
can, instead of the byte-scaled images, use matrices that have
values of a coronal magnetic field or its corresponding Stokes
parameters that, for example, can range continuously from
0.7235 to 3.52513×10−5 to -0.764515. Further, for both FNNs we
convert the input from a 64× 64 matrix into a 4096× 1 vector.

For the training of the FNN for Experiment 1 (hereafter
FNN1), only one of these magnetic field components should be
needed as an input (given as a 4069 × 24192 matrix); this is
because, in this experiment, FNN1 is a binary classifier for a
self-similar mapping—which means that due to the underlying
symmetry of the solution, the number of variables is reduced.
For training of the CNN for Experiment 1 (hereafter CNN1),
we use all 3 channels as input (given as a 64 × 64 × 3 matrix),

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 September 2020 | Volume 7 | Article 62130

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Malanushenko et al. CNNs for Geomagnetic Storm Predictions

FIGURE 6 | Left: an example of input for Experiment 1, three components of

the magnetic field evaluated in the y = 0 plane, which is equivalent to an

observation in quadrature to Earth. (This is akin to a vector magnetogram

observed in the quadrature in the (x, y = 0, z) plane.) Right: an example of

input for Experiment 2, three synthetic spectropolarimetric images, as they

would appear to the same observer. These data are for f = 2.1R⊙, � = 35◦,

σ = 180◦, τ1 = 3.38, θ = 7◦. The field of view (FOV) is the same in all panels:

x ∈ [1.0, 2.6]R⊙, z ∈ [−0.8, 0.8]R⊙.

since although we still have a self-similar mapping, we are trying
to estimate a number, max{−Bz}, to at least one decimal place
of accuracy that varies over 5 orders of magnitude, not just (1,
“storm”) or (0, “no storm”) as in FNN2. Note that CNN1 predicts
the output that is simply a scaled-down version of the input,
evaluated at a point. CNN1 is simply finding this scaling or
mapping, which is what NNs are very good at.

3.2. Experiment 1: FNN and CNN
Architecture
The first network, FNN1, is an FNN with one hidden
layer. Its architecture is given in Figure 7 and its properties
are listed below. The figure is generated by the simple
command “view [(name of the NN)]” in MATLAB’s
Deep Learning Toolbox.

1. FNN1 has an input of a vector 4096 by 1, representing either
the Bx, By, or Bz component of a GLOW flux rope.

2. It has 1 hidden layer with 10 neurons. In the Figure 7, the box
with “w” and the box with “b” represent the weights and the
biases for that layer, respectively.

3. The hyperbolic tangent curve in the hidden layer box
indicates that we are using a tanh activation function.
Approximating a binary classifier, where the probabilities
fall between certain ranges, is easier with combinations of
tanh(x) than the more popular piecewise linear functions
(ReLu, e.g., Glorot et al., 2011) that is used in more
complex NN.

4. The hidden layer is then connected to the output layer
that uses a soft-max activation function, to calculate the
probabilities of the ICME being a “storm” or “no storm,”
represented by the graph with red dots.

5. Lastly, the cross-entropy loss function is used to measure the
performance of the network against the true labels.

6. The stochastic gradient descent as the optimization algorithm.
7. The network was trained for 500 epochs.
8. MATLAB’s feedforwardnet in the Deep Learning Toolbox

was used.

The final output is a probability p, 0 ≤ p ≤ 1. For this paper, we
assume that if p ≥ 0.8 then the output is classified as a “storm”;
if p ≤ 0.2 it is a “no storm”; if 0.2 < p < 0.8 we assume the
network was unable to classify the output (in other words, the
results are inconclusive).

All the “storms” correctly identified by the feedforward
network are then passed into CNN1 for measuring the strength
of log10{max{−Bz}} of the passing CME. The architecture of
CNN1 for Experiment 1 is given in Figure 8 with its properties
listed below. The figure is generated by the simple command
“analyzeNetwork([name of the NN]) ” in MATLAB’s
Deep Learning Toolbox.

1. The first layer is an image input layer of 3 channels (that is,
the values of Bx, By, Bz near the Sun). Consequently, it has
dimension of 64× 64× 3.

2. There are two 2D convolutional layers, the first with 8 16× 16
filters, the second with 20 8 × 8 filters. CNN1 is a shallow
network due to the fact that we are simply mapping the
magnetic field to a self-similar counterpart.

3. Each convolutional layer is followed by a ReLU activation
function (Glorot et al., 2011).

4. Each ReLu layer is followed by a maxpooling layer,
taking the maximum value from each 2 × 2 pixel
region, resulting in a reduction of the matrix by a
factor of 4.

5. The last layer is a fully connected layer which gives a
prediction for log10{max{−Bz}}.

6. The error, compared to ground truth, is calculated by the
root mean square error function and optimized through
backpropagation with the Adam optimizer (Kingma and Ba,
2014).

7. The output values were normalized using a linear translation
to between 0 and 1.

8. It was trained on 100 epochs.
9. A batch size of 567 was used.
10. The initial learn rate was set at 0.001.
11. The learning rate schedule was a piecewise drop with a learn

rate drop of 0.75 and a learn rate drop period of 6.
12. An L2 Regularization of 10−4 was added.
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FIGURE 7 | The feedforward fully connected network (FNN) used in Experiment 1 (FNN1). The letters “w” and “b” denote weights and biases, respectively; the full

description of the scheme is given in the itemized list in section 3.2.

FIGURE 8 | The 9 layer architecture of the convolutional neural network (CNN) constructed for Experiment 1 (CNN1) with the number of activations per layer and total

number of learnable weights and bias in the convolutional layers and fully connected layer.

3.3. Experiment 2: Input Data
For Experiment 2, the input data are synthetic
spectropolarimetric data corresponding to the magnetic
fields generated for Experiment 1. A single input sample of the
36,288 synthetic Stokes observables is shown in the right panel of
Figure 6. Although Figure 6 shows gray-scale images, the input
for Experiment 2 are 64× 64 matrices of the Stokes vector values
in the same FOV and with the same resolution as Experiment
1. We use FORCOMP (CLE) package (Judge and Casini , 2001)

of FORWARD suite (Gibson et al., 2016) in SolarSoft IDL
(Freeland and Handy, 1998), to synthesize the components of
the Stokes vector, (I,Q,U,V). In this work we use an alternative
vector, which is derived from the Stokes vector: (I, L,Az,V). We
further focus on the last three components of it, normalized
by the intensity I, (L/I,Az,V/I). L/I =

√

(Q/I)2 + (U/I)2 and
Az = − 1

2atan(U,Q) contain the same information as Q and U.
We find this representation more useful because it describes the
linear polarization in terms of magnitude (L/I) and polarization
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FIGURE 9 | The feedforward fully connected network used in Experiment 2 (FNN2) The full description of the scheme is given in the itemized list in section 3.4.

angle (Az). In particular, it allows us to plot the polarization
angle with respect to the local vertical (solar radial coordinate)
and show how linear polarization is rotated in the presence of
magnetic field. It also lets us immediately identify regions of
highly reduced linear polarization associated with van Vleck
angles and magnetic nulls (Gibson, 2018).

In this experiment, we are mapping observables measured
in one space (Stokes data) to those measured in another space
(magnetic field strength). The input and output data is no longer
related by a mere scaling factor as in Experiment 1. Therefore,
we will use either linearly polarized light (L/I,Az), or circularly
polarized light (V/I), or the combination of the two, as various
input data into the FNN constructed for Experiment 2 (hereafter
FNN2) to understand the contribution of each to the results.
Those that are classified correctly as “storms” are then inputted
into the CNN architecture for Experiment 2 (hereafter CNN2).

3.4. Experiment 2: FNN and CNN
Architecture
The fact that the functional mapping with the NNs is no longer
self-similar and consequently, we do not have a reduction in the
variables, will alter how we set up the architecture, requiring
more degrees of freedom. In addition, we are passing the original
G&L data through a highly non-linear model to synthesize Stokes
images from the full-MHD variables, and yet we still expect
CNN2 to map back to the original max{−Bz} output of the
G&L model.

The architecture of FNN2 for Experiment 2 is given in
Figure 9. All the properties are the same as for FNN1 from
Experiment 1, except for those enumerated below.

1. FNN2 has an input of a vector 4096×1, 8192×1, or 12, 288×1,
depending on whether we are inputting V/I, (L/I,AZ), or all
three channels.

2. It has 1 hidden layer but now with 20 neurons.
3. There is a L2 regularization added with a parameter of 5e-4.
4. It was trained for 1,500 epochs.

As in Experiment 1, those events classified correctly as “storms”
(i.e., the above mentioned p ≥ 0.8) are then inputted into CNN2.

The architecture of CNN2 is given in Figure 10 and its properties
are listed below.

1. In the case for the Stokes parameters, the input layer can either
be of size 64× 64× 1, 64× 64× 2, or 64× 64× 3, depending
on how many channels we are using.

2. There are now three 2D convolutional layers, the first with 10
16 × 16 filters, the second with 64 8 × 8 filters, and the third
with 128 4× 4 filters.

3. The initial random weights for each convolutional layer are
defined using He initialization (He et al., 2015).

4. Each convolutional layer is followed by a ReLU activation
function (Glorot et al., 2011).

5. Each ReLu layer is followed by a maxpooling layer, taking the
maximum value from each 2 × 2 pixel region, resulting in a
reduction of the matrix by a factor of 4.

6. The last layer is a fully connected layer which gives a
prediction for log10{max{−Bz}}.

7. Again, the error was calculated by the root mean square error
function and optimized with the Adam optimizer (Kingma
and Ba, 2014).

8. Again, the output values for training were normalized using a
linear translation to between 0 and 1.

9. V/I wasmultiplied by 103 so that it would be of the same order
of magnitude as L/I and Az for training.

10. It was trained on 160 epochs.
11. A batch size of 735 was used.
12. The initial learn rate was set at 0.0015.
13. The learning rate schedule was a piecewise drop with a learn

rate drop of 0.75 and a learn rate drop period of 10.
14. An L2 Regularization of 3× 10−4 was added.

4. RESULTS

4.1. Experiment 1
This first experiment is a proof of concept. Essentially, using
Bxyz near Sun as inputs and predicting Bz at 1AU means we
are simply trying to teach NNs to predict a simple scaling of a
number. If we can not succeed in this, then we cannot even hope
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FIGURE 10 | Twelve layer architecture of CNN2 with the number of activations per layer and total number of learnable weights and bias in the convolutional layers and

fully connected layer.

to replace the G&L model output at the Earth with model output
from MHD CME solar wind models, nor can we hope to predict
the strength of magnetic field in passing ICMEs from coronal
spectropolarimetric observations, as is done in Experiment 2
(albeit using synthetic observations).

We compare the results of the first (predictor, “storm” / “no
storm”) NN against random guesses. Table 2 shows the outcome
of random guessing: a guess was phrased (with probability of
the outcomes weighted by their known ratio in the data), then
an outcome was selected. The numbers in Table 2 can be easily
calculated analytically as follows. ConsiderN events, out of which
qN are storms, and (1−q)N are not storms (0 ≤ q ≤ 1). Suppose
the random guesser knows the value of q a priori, but makes
predictions at random, weighted by q. It will classify qN events
as storms. However, if predictions are truly random, amongst
these qN events the fraction of actual storms will still be q;
therefore, a random guesser will correctly predict a storm for
q2N events, and will make false positive prediction for (1− q)qN
events; likewise, the amount of events correctly predicted as not
storms and the amount of false negatives would be (1− q)2N and
q(1 − q)N respectively. In our case, q = 9923/12096 ≈ 0.82. A

successful FNN prediction must result in a table more diagonal
than Table 2.

Tables 3–5 show the results when only one of the components
was taken as input. Using either of the three components, the
predictor-based FNN1 can predict the outcome (“storm” / “no
storm”) significantly better than a random guess. The Bz input
produces the best predictions for the output, which is hardly
surprising. The Bx input results in the worst prediction of the
three (but still significantly better than a random guess). This
could be caused by the fact that the ŷ and ẑ components of the
flux rope are coupled by the orientation parameter σ , while the
x̂ component is independent of both. However, even in the case
of using Bx as input to the binary classifier, the ROC curve (a
statistical tool to give the diagnostic ability of a binary classifier)
gives excellent results with an AUC (area under curve) of 0.95
(a perfect predictor would have AUC=1, that is a zero false
positive rate) as shown in Figure 11.

We further examine the efficiency of CNN1, the regression,
for predicting the strength of the storm. We use the outcome of
the FNN1 classifier based on Bx component as an input since,
as is evident from the previous paragraph, it proves the most
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FIGURE 11 | The ROC (Receiver Operator Characteristic) curve for the binary

classifier FNN1 with Bx input. An AUC > 0.9 is considered excellent.

TABLE 2 | No FNN, random guess (weighted by storm:no storm ratio).

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 67.3% (8,140) 14.7% (1,783)
—

No storm 14.7% (1,783) 3.2% (390)

Hereafter, the values are reported as: “A% (B),” where A is percentage of the total 12096

events, and B is the actual number of events.

TABLE 3 | Experiment 1: FNN1 using Bx only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 76.3% (9,228) 1.6% (191)
7.7% (933)

No storm 2.3% (274) 12.2% (1470)

TABLE 4 | Experiment 1: FNN1 using By only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 79.1% (9,572) 2.1% (259)
1.5% (184)

No storm 2.0% (242) 15.2% (1,839)

challenging scenario for the first NN, and, consequently, the
results based on By and Bz are expected to supersede it. The
results, shown in Figure 12, demonstrate that the predictions are
successful, which ultimately means that the NN pipeline is overall
working well.

4.2. Experiment 2
The first part of the experiment is to understand how well the
binary classifier performs if the input is (a) only linearly polarized
light, (b) only circularly polarized light, and (c) using both,

TABLE 5 | Experiment 1: FNN1 using Bz only.

P
P

P
P

P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 80.7% (9,758) 1.0% (121)
0.6% (68)

No storm 0.9% (111) 16.8% (2038)

comparing to random choice shown in Table 2. Recall that the
output of the classifier is a number p (where 0 ≤ p ≤ 1)
indicating a probability, and we interpret p ≥ 0.8 as a storm,
p ≤ 0.2 as no storm, and 0.2 < p < 0.8 as inconclusive, the
results are given in Tables 6–8. First, notice that the input of
just (L/I,Az) gives results that are worse than if the guess was
random. Also note that approximately 30% of the results (3570
of 12096) are inconclusive. Secondly, when using only V/I as an
input, the true positives could be determined to within 93.5%,
the true negatives to within 73%, and only 7% of the cases are
inconclusive. By using all 3 Stokes components, we get a slight
improvement of ≤ 1% which could easily be considered within
the noise of the classifier. However, what is impressive is that
if the ROC is plotted for the case where we use all the 3 Stokes
components, as seen is in Figure 13, the AUC is 0.99.

The second part of this experiment takes those samples
that correctly classified as storms and run them through the 3
channel CNN2 to predict the strength of the storm. Figure 14
shows the results both in histogram form and as scatter plots
of ground truth vs. prediction. First, note that just considering
the V/I inputs from the binary classification results in a
histogram that seems to overall fit the true data (blue) rather
well (except for maybe accruing larger sample sizes for peak
values around 10−4.25 G). However, the scatter plot shows that
the slope is not quite unity and there is a slight bias to
overpredict values of max{−Bz} < 10−4 G. In this case, the
Pearson correlation coefficient is 0.95. If instead we use CNN2

trained on the data from the binary classifier that includes all 3
channels (L/I,Az,V/I), we see that the bias is corrected and the
predictions line up perfectly with the ground truth. The Pearson
correlation coefficient in this case is 0.98.

Finally, we calculate the relative root square error for
the accuracy of predictions for both NNs. We use the
following definition:

E = 1−

√

n
∑

i=1
(4GT − 4NN)2

√

n
∑

i=1
42

GT

, (3)

where for brevity we denoted 4 = max{−Bz}, GT stands for
“ground truth,” and “NN” stands for “NN-predicted value.” We
find that, given three components of B near Sun, CNN1 can
predict max{−Bz} at 1AU at 97% accuracy (E = 0.97), and for
three components of the Stokes vector near Sun as input, CNN2

can predict max{−Bz} at 1AU with 95% accuracy (E = 0.95).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 11 September 2020 | Volume 7 | Article 62135

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Malanushenko et al. CNNs for Geomagnetic Storm Predictions

FIGURE 12 | A histogram (blue is ground truth) and scatter plot, of ground truth vs. predictions of CNN1, when using the Bx component of magnetic field at the Sun

as input for the binary classifier FNN1 and then feeding the events labeled as “storms” into the 9 layer CNN1 to predict the value of max{−Bz}. The color bar indicates

the number of samples. The axes in the scatter plot are that of log10{max{−Bz}}, and in both plots the units of max{−Bz} are G.

TABLE 6 | FNN2 using L/I and Az only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 64.6% (7816) 0.6% (73)
29.5% (3570)

No Storm 2.4% (296) 2.8% (341)

TABLE 7 | FNN2 using V/I only.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 76.7% (9283) 1.4% (168)
7.0% (850)

No Storm 1.7% (211) 13.1% (1584)

TABLE 8 | FNN2 using L/I, Az, and V/I.

P
P
P
P
P
P

Reality

Prediction
Storm No storm Inconclusive

Storm 77.6% (9390) 0.9% (103)
6.8% (819)

No Storm 1.3% (155) 13.5% (1629)

5. CONCLUSIONS

In this paper we have developed a machine learning
algorithm to set a baseline for testing the efficacy of coronal
spectropolarimetric measurements for predicting max{−Bz}
at the Earth. We have found that the circularly polarized light
maintains the crucial magnetic field information for making
a good prediction, at least for the simple model we examined.
This is not unexpected, as circular polarization is directly
related to the line-of-sight (in our case, By) field strength (see
Rachmeler et al., 2012, for further discussion). However, the

FIGURE 13 | The ROC (Receiver Operator Characteristic) curve for the binary

classifier FNN2 with all 3 Stokes components as input (L/I,Az,V/I). An AUC

> 0.9 is considered excellent.

polarization signal is a result of the line-of-sight integration
of the data, and disambiguation is required to derive the 3D
structure of the field. The ability of neural networks to perform
this disambiguation, which only yields information about By
signal, and then to form meaningful Bz predictions at a later
time, demonstrates that machine learning is a valuable asset
for space weather predictions. Linearly polarized light on its
own does not do so well, as it is not sensitive to the magnetic
field strength but only to its geometry. It nonetheless proves to
be important when considered in combination with circularly
polarized light. Indeed, the most accurate prediction arises when
all the components of the Stokes vector are included.
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FIGURE 14 | Two representations, histogram and scatter plot, of predictions of CNN2 vs. ground truth, on the subset of events which FNN2 has predicted was a

“storm.” Top: when using only circularly polarized light, V/I, as input to FNN2. Bottom: when using both linearly and circularly polarized light, (L/I,Az,V/I), as input to

FNN2. The color bar indicates the number of samples. Blue lines are ground truth in both histograms. The axes in the scatter plot are that of log10{max{−Bz}}, and in

all panels the units of max{−Bz} are G.

Full-MHD simulations of interplanetary CME evolution from
Sun to Earth are typically computationally expensive. CNN
allows us to explore a large space of CME models with different
characteristics to study which initial states result in the strongest
geomagnetic storm. The role of CNN in this case is, given either
magnetic field or the synthetic spectropolarimetric observables
of a CME near Sun in quadrature view, paired with max{−Bz}
values at Earth, to predict magnetic field inside a CME at later
time and therefore to facilitate the magnetic storm predictions.

This project could be considered as preparatory work for
future projects. Some of these could include, for example,
exploring near-Sun signatures of CMEs in other channels
(such as extreme ultraviolet), and in the addition to predicting
max{−Bz}, to also predict other parameters of the storm (such as
its duration).

In the introduction, wemention twomajor factors influencing
our ability to use near-Sun spectropolarimetric signatures of
CMEs for space weather predictions. Our work explicitly
addresses the first factor, i.e., the capability of the neural networks
to use near-Sun spectropolarimetric signatures for predicting
magnetic field strength in the erupting flux rope. The evolution
of the CME from Sun to Earth, i.e., the second factor mentioned
in the introduction, requires a model that can take into account
the changes of the structure as it interacts with the solar wind.
Provornikova et al. (2020, in preparation) will show an example
of such a simulation, as part of a project which is currently in
development (NASA award 80NSSC17K0685). The project will
yield a database of tens of thousands of MHD simulations, in
which various configurations of a G&L flux rope will be used
as inputs, along with realistic solar wind models (Arge et al.,
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2004), and their interaction will be modeled in MHD simulations
(Merkin et al., 2016). We tailored our input and output for
maximal compatibility with this project. Our plan is to follow up
the current work with an equivalent analysis using a large number
of MHD runs of CME propagation through the solar wind. By
doing this, we will be able to determine how much information
is retained even when non-ideal evolution of ICME in the solar
wind between Sun and Earth is taken into consideration.
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Visualizing and Interpreting
Unsupervised Solar Wind
Classifications
Jorge Amaya*, Romain Dupuis, Maria Elena Innocenti and Giovanni Lapenta

Mathematics Department, Centre for Mathematical Plasma-Astrophysics, KU Leuven, Leuven, Belgium

One of the goals of machine learning is to eliminate tedious and arduous repetitive work.

The manual and semi-automatic classification of millions of hours of solar wind data

from multiple missions can be replaced by automatic algorithms that can discover, in

mountains of multi-dimensional data, the real differences in the solar wind properties. In

this paper we present how unsupervised clustering techniques can be used to segregate

different types of solar wind. We propose the use of advanced data reduction methods to

pre-process the data, and we introduce the use of Self-Organizing Maps to visualize and

interpret 14 years of ACE data. Finally, we show how these techniques can potentially

be used to uncover hidden information, and how they compare with previous empirical

categorizations.

Keywords: solar wind, ACE, Self-Organizing Maps, clustering, autoencoder, PCA, unsupervised, machine learning

1. INTRODUCTION

The effects of solar activity on the magnetic environment of the Earth have been observed since
the publication of Edward Sabine’s work in 1852 (Sabine, 1852). During almost 200 years we
have learned about the intimate connection between our star and the plasma environment of
the Earth. Three main physical processes connect us to the Sun: the transfer of electromagnetic
radiation, the transport of energetic particles, and the flow of solar wind. The later is a continuous
stream of charged particles that carries the solar magnetic field out of the corona and into the
interplanetary space.

The name solar wind was coined by Parker in 1958 because “the gross dynamical properties of
the outward streaming gas [from the Sun] are hydrodynamic in character” (Parker, 1958). Over
time we have learned that the wind also has many more complex properties. Initially, it was natural
to classify the solar wind by defining a boundary between fast and slow winds (Neugebauer and
Snyder, 1966; Schwenn, 1983; Schwenn and Marsch, 1990; Habbal et al., 1997). The former has
been associated with mean speed values of 750 km/s (or in some publications with values larger
than 600 km/s), while the later shows a limit at 500 km/s, where the compositional ratio (Fe/O)
shows a break (Feldman et al., 2005; Stakhiv et al., 2015). The solar wind also carries information
about its origins on the Sun. At certain solar distances the ion composition of the solar wind is
expected to be frozen-in, reflecting the electron temperature in the corona and its region of origin
(Feldman et al., 2005; Zhao et al., 2009; Stakhiv et al., 2015). These particles have multiple energies
and show a variety of kinetic properties, including non-Maxwellian velocity distributions (Pierrard
and Lazar, 2010; Matteini et al., 2012).
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The solar wind is also connected to the Sun by Interplanetary
Magnetic Field (IMF) lines directed toward the Sun, away from
the Sun, or in the case of flux ropes, connected at both ends
(Gosling et al., 2010; Owens, 2016). The region separating IMF
lines of opposite polarity (directed away or toward the Sun) is
called the Heliospherc Current Sheet (HCS) (Smith, 2001). When
a spacecraft crosses the HCS instruments onboard measure
the change in polarity of the magnetic field. In quiet wind
conditions the plasma around the HCS presents discontinuities
in density, temperature velocity and magnetic field (Eselevich
and Filippov, 1988). This perturbed region surrounding the
HCS is called the Heliospheric Plasma Sheet (HPS). The passage
of the spacecraft from one side of the HPS to the other is
known as a Sector Boundary Crossing (SBC) (Winterhalter et al.,
1994). In spacecraft observations these are sometimes confused
with Corotating Interaction Regions (CIR), which are zones
of the solar wind where fast flows have caught up with slow
downstream solar wind, compressing the plasma (Fisk and Lee,
1980; Richardson, 2004).

From the point of view of a spacecraft SBCs and CIRs can
show similar sudden changes in the plasma properties. These two
in turn are often grouped and mixed with other transient events,
like Coronal Mass Ejections (CME) and Magnetic Clouds (MC).
Since 1981 when Burlaga et al. (1981) described the propagation
of MC behind an interplanetary shock, it was suspected that
CMEs and MC where coupled. However, more recent studies
show that CMEs observed near the Sun do not necessarily
become MC, but instead “pressure pulses” (Gopalswamy et al.,
1998; Wu et al., 2006).

Much more recently it has been revealed, by observations
from Parker Solar Probe, that the properties of the solar wind can
be drastically different closer to the Sun, were the plasma flow
is more pristine and has not yet mixed with the interplanetary
environment. Patches of large intermittent magnetic field
reversals, associated with jets of plasma and enhanced Poynting
flux, have been observed and named “switchbacks” (Bale et al.,
2019; Bandyopadhyay et al., 2020).

The solar wind is thus not only an hydrodynamic flow, but
a compressible mix of different populations of charged particles
and electromagnetic fields that carry information of their solar
origin (helmet streamer, coronal holes, filaments, solar active
regions, etc.) and is the dominion of complex plasma interactions
(ICMEs, MC, CIRs, SBCs, switchbacks).

To identify and study each one of these phenomena we
have relied in the past on a manual search, identification and
classification of spacecraft data. Multiple authors have created
empirical methods of wind type identification based on in-situ
satellite observations and remote imaging of the solar corona.
Over the years the number and types of solar wind classes
has changed, following our understanding of the complexity of
heliospheric physics.

Solar wind classification serves four main roles:

1. it is used for the characterization of its origins in the corona,
2. to identify the conditions where the solar wind is geoeffective,
3. to isolate different plasma populations in order to perform

statistical analysis,

4. to study the basic transport effects of space plasmas of
different nature.

Among the existing classifications we can include the original
review work by Withbroe (1986), the impressive continuous
inventory by Richardson et al. (2000) and Richardson and Cane
(2010, 2012), and the detailed studies by Zhao et al. (2009)
and (Xu and Borovsky, 2015). These publications classify the
solar wind based on their ion composition, and on the transient
events detected. Each system includes two, three, or four classes,
generally involving coronal-hole origins, CMEs, streamer belt
origins, and sector reversal regions.

The precise point of origin of the solar wind can be
traced back from spacecraft positions to the solar corona and
the photosphere: multiple authors (Neugebauer et al., 2002;
Zhao et al., 2009, 2017; Fu et al., 2015) have used a ballistic
approximation coupled to a Potential Field Source Surface
(PFSS) model to trace back solar wind observations to their
original sources on the Sun. This procedure relies on multiple
assumptions, including a constant solar wind speed and a
force free magnetic field configuration of the solar corona. The
uncertainty on the source position is estimated around ±10◦

by Neugebauer et al. (2002). This is currently the best method
to acquire the ground truth about the origin of the solar wind.
Unfortunately, to our knowledge, there is no central repository
of solar wind origins for any space mission that we can use to
train or verify our novel machine learning techniques.

We are moving now toward a new era of data analysis,
where manual human intervention can be replaced by intelligent
software. The trend has already started, with the work by
Camporeale et al. (2017) who used (Xu and Borovsky, 2015)
classes to train a Gaussian Process algorithm that autonomously
assigns the solar wind to the proper class, and by Roberts et al.
(2020) who used unsupervised classification to perform a 4 and
8 class solar wind classification. A recent publication by Bloch
et al. (2020) uses unsupervised techniques to classify ACE and
Ulysses observations, and Li et al. (2020) have successfully tested
10 different supervised techniques to reproduce the categories
introduced by Xu and Borovsky (2015).

The most basic ML techniques learn using two approaches:
(A) in supervised learning the algorithms are shown a group
of inputs, X ∈ R

n, and outputs, Y ∈ R
o, with the goal of

finding a non-linear relationship between them, ξs :X → Y,
(B) in unsupervised learning the machine is presented with a
cloud of multi-dimensional points, X ∈ R

n, that have to be
autonomously categorized in different classes, either performing
associations with representative points in the same data space,
ξu :X → W ∈ R

n, or by grouping neighboring data points
together into an assigned set, ξu :X → g ∈ R. This means that
we can program the computer to learn about the different types
of solar wind using the existing empirical classifications using
method (a), or allowing the computer to independently detect
patterns in the solar wind properties with method (b).

In the present work we show how the second method,
unsupervised classification, can be used to segregate different
types of solar wind. In addition, we show how to visualize and
interpret such results. The goal of this paper is to introduce the
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use of unsupervised techniques to our community, including the
best use practices and the opportunities that such methods can
bring. We promote the use of one specific type of classification,
called Self-Organizing Maps, and we compare it to simpler
classification techniques.

In the next sections we present in detail the techniques of
data processing (section 2.1), data dimension reduction (sections
2.2.1, 2.2.2 and 2.2.3) and data clustering (section 2.2.4) that we
have used. We then present in detail the Self-Organizing Map
technique and all its properties in section 2.2.5. We show how
to connect all of these parts together in section 2.2.6, and finally
we show how the full system can be used to study 14 years of solar
wind data from the ACE spacecraft in section 3.

2. MATERIALS AND METHODS

2.1. Data and Processing
2.1.1. Data Set Used
The solar wind data used in this work was obtained by the
Advanced Composition Explorer (ACE) spacecraft, during a
period of 14 years, between 1998 and 2011. The data can
be downloaded from the FTP servers of The ACE Science
Center (ASC) (Garrard et al., 1998). The files in this repository
correspond to a compilation of hourly average data from
four instruments: MAG (Magnetometer) (Smith et al., 1998),
SWEPAM (Solar Wind Electron, Proton, and Alpha Monitor)
(McComas et al., 1998), EPAM (Electron, Proton, and Alpha
Monitor) (Gold et al., 1998), and SWICS (Solar Wind Ion
Composition Spectrometer) (Gloeckler et al., 1998). A detailed
description of the entries in this data set can be found in the ASC
website listed in the Data Availability Statement.

A total of 122,712 data points are available. However, routine
maintenance operations, low statistics, instrument saturation
and degradation produce gaps and errors in the data. The
SWICS data includes a flag assessing the quality of the calculated
plasma moments. We retain only Good quality entries. Our
pre-processed data set contains a total of 72,454 points.

2.1.2. Additional Derived Features
We created additional features for each entry, based on previous
knowledge of the physical properties of the solar wind. Some
are derived from the existing properties in the data set,
others computed from statistical analysis of their evolution. We
introduce here the additional engineered features included in our
data set.

Multiple techniques have been proposed in the literature to
identify ejecta, Interplanetary Coronal Mass Ejections (ICME),
and solar wind origins in the ACE data. Zhao et al. (2009) suggest
that, during solar cycle 23, three classes of solar wind can be
identified using its speed, Vsw, and the oxygen ion charge state
ratio, O7+/O6+. It has been shown that slow winds originating
in coronal streamers correlate with high values of the charge
state ratio and fast winds coming from coronal holes present low
values (Schwenn, 1983; Withbroe, 1986; Schwenn and Marsch,
1990). Plasma formed in coronal loops associated with CMEs also
show high values of the charge state ratio (Xu and Borovsky, 2015;

Zhao et al., 2017). The classification boundaries of the Z09model,
proposed by Zhao et al. (2009), are presented in Table 1.

Xu and Borovsky (2015) suggested an alternative four classes
system based on the proton-specific entropy, Sp = Tp/n

2/3
p

[K cm2], the Alfvén speed, VA = B/(µ0mpnp)1/2 [Km s−1],
and the ratio between the expected and the measured proton
temperature, Texp/Tp = (Vsw/258)3.113/Tp [–], where np is the
proton number density, mp is the proton mass, and µ0 is the
permeability of free space. The classification boundaries used for
the X15 model, proposed by Xu and Borovsky (2015), are also
presented in Table 1. For each entry in the data set we have
included the values of Sp, VA, Texp, Tratio = Texp/Tp, and the
solar wind type.

Two additional empirical threshold methods will be included
in this work for comparison. These two methods were derived
from the compositional observations of the solar wind at higher
heliospheric latitudes, using data from the Ulysses mission
(Wenzel et al., 1992). The first model, that we call vS15,
comes from the work by von Steiger and Zurbuchen (2015),
where the first figure shows a clear division between Coronal
Hole (CH) sources and non-Coronal Hole (NCH) wind. The
boundary between the two classes is presented in Table 1. The
second threshold model was presented as an example by Bloch
et al. (2020). This boundary, named here B20, is an empirical
approximation that divides CH and NCH origin winds. The
threshold values are shown in Table 1.

In addition to the instantaneous properties of the solar wind
used in all previous classifications, we can perform statistical
operations over a window of time of 6 h, including values of the
maximum, minimum, mean, standard deviation, variance, auto-
correlation, and range. We expect to capture with some of these
quantities turbulent signals or sudden jumps associated with
different transient events. These additional rolling operations are
a complement to the stationary solar wind parameters mentioned
above and add information about the temporal evolution of
the plasma. The selection of the statistical parameters and the
window of time is arbitrary and will require a closer examination
in the future.

An additional term, which has been successfully used in the
study of solar wind turbulence (D’Amicis and Bruno, 2015;
Zhao et al., 2018; Magyar et al., 2019; Adhikari et al., 2020), is
included here to account for additional time correlations. The
normalized cross-helicity, σc, is defined in Equation (1), where
b = (B− 〈B〉) /(µ0mpnp)1/2 is the fluctuating magnetic field
in Alfvén units, v = Vsw − 〈Vsw〉 is the fluctuating solar wind
velocity, and 〈.〉 denotes the averaging of quantities over a time
window of 3 h (Roberts et al., 2020).

σc = 2 〈b · v〉 /
〈

b2 + v2
〉

(1)

Due to gaps in the data, some of the above quantities can not be
obtained. We eliminate from the data set all entries for which the
derived features presented in this section could not be calculated.
This leaves a total of 51,374 entries in the data set used in the
present work.
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TABLE 1 | Solar wind types and boundaries as defined by the empirical models: Z09, X15, vS15, and B20.

# SW type Condition References

0 CH log10 O
7+/O6+ ≤ 0.145 Zhao et al., 2009

2 NCH 0.145 < log10 O
7+/O6+ < 6.008e(−0.00578Vsw )

4 TR log10 O
7+/O6+ > 6.008e(−0.00578Vsw )

0 CH Not type TR, and Xu and Borovsky, 2015

log10(Sp) > −0.525 log10(Texp/Tp)− 0.676 log10(VA) +1.74

2 SB Not type CH, TR, or SR

3 SR Not type TR, and

log10(Sp) < −0.125 log10(Texp/Tp ) −0.658 log10(VA) +1.04

4 TR log10(VA) > 0.055 log10(Texp/Tp) +0.277 log10(Sp) +1.83

0 CH log10 O
7+/O6+ × log10 C

6+/C5+ ≤ 0.01 von Steiger and Zurbuchen, 2015

2 NCH Not type CH

0 CH 1.25× log10 O
7+/O6+ + 6.75 < log10(Sp) Bloch et al., 2020

2 NCH Not type CH

The four types are: fast solar wind of coronal hole origin (CH), slow wind of non-coronal hole origin (NCH), transients, including ejecta, ICMEs, CIRs, MCs or other sudden jumps in solar

wind parameters (TR), solar wind originated in the streamer belt (SB), and solar wind of sector reversal origins (SR). The ID value in the first column is arbitrary and has been chosen to

simplify the visualization of our results.

To account for the differences in units and scale, each feature
column F in the data set is normalized to values between 0 and 1,
using: f = (F −min F) / (max F −min F).

Not all the features might be useful and some of them can be
strongly correlated.We do not perform here a detailed evaluation
of the inter dependencies of the different features, and we leave
that task for a future work. The present manuscript focuses on
the description of the methodology and on the visualization
and interpretation capabilities of unsupervised machine learning
classification.We limit our work here to test and compare a single
model that incorporates a total of 15 features. These are listed in
Table 2.

2.1.3. Complementary Data Catalogs
We support the interpretation of our results using data from
three solar wind event catalogs. The first is the well-known Cane
and Richardson catalog that contains information about ICMEs
detected in the solar wind in front of the Earth (Cane and
Richardson, 2003; Richardson and Cane, 2010)1. We used the
August 16, 2019 revision. As the authors state in their website,
there is no spreadsheet or text version of this catalog and offline
editing was necessary. We downloaded and re-formatted the
catalog to use it in our application. The CSV file created has been
made available in our repository.We call this, the Richardson and
Cane catalog.

The second catalog corresponds to the ACE List of
Disturbances and Transients2 produced by the University of

1Near-Earth Interplanetary Coronal Mass Ejections Since January 1996:
http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable 2.html
2ACE Lists of Disturbances and Transients: http://www.ssg.sr.unh.edu/mag/ace/
ACElists/obs_list.html

New Hampshire. As in the previous case, the catalog is only
available as an html webpage, so we have manually edited the
file and extracted the catalog data into a file also available in our
repository. This is hereafter referred to as the UNH catalog.

Finally, we also included data from the Shock Database3

maintained by Dr. Michael L. Stevens and Professor Justin C.
Kasper at the Harvard-Smithsonian Center for Astrophysics.
Once again we have gathered and edited multiple web-pages in
a single file available in our repository. In this work this database
will be known as the CfA catalog.

2.2. Dimension Reduction and Clustering
2.2.1. Dimension Reduction Using PCA
Principal Component Analysis (PCA) is amathematical tool used
in data analysis to simplify and extract the most relevant features
in a complex data set. This technique is used to create entries
composed of linearly independent principal components. These
are the eigenvectors, v, of the covariance matrix 6 = (6ij)
applied to the centered data (Equation 2), ordered from the
largest to the smallest eigenvalue, λ1 ≥ λ2 ≥ . . . ≥ λn,
where X is the mean value of each one of the n original features
(Equation 3), and m is the total number of entries in the data
set. The projection of the data onto the principal component
space ensures a maximal variance on the direction of the first
component. Each subsequent principal component is orthogonal
to the previous ones and points in the direction of maximal

3Harvard-Smithsonian, Center for Astrophysics, Interplanetary Shock Database—
ACE: https://www.cfa.harvard.edu/shocks/ac_master_data/
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TABLE 2 | List of features used for the AE+DSOM model.

ID Name in the database AE + DSOM

0 proton_speed X

1 proton_density X

2 O7to6 X

3 C6to5 X

4 FetoO X

5 avqFe X

6 proton_temp X

7 sigmac(∗) X

8 Sp X

9 Va X

10 Tratio X

11 proton_speed_range X

12 Bn_range X

13 FetoO_range X

14 O7to6_range X

Initial year 1998

Final year 2011

Neurons / encoding layer [15, 10]

Optimizer Adam

Learning rate 0.042

Lattice nodes 10×10

ǫ 0.005

η 3.0

The logarithm of all quantities was used, except for the features marked with an asterisk

(*). Bottom: data range and hyper-parameters of the AE and the SOM.

variance in the residual sub-space (Shlens et al., 2014).

6ij =
1

m

m
∑

k=1

(

Xk
i − Xi

) (

Xk
j − Xj

)

(2)

X =
1

m

m
∑

i=1

Xi (3)

6v = λv (4)

The PCA transformation creates the same number of
components in the transformed space, X̃, as features in the
original data space X. However, components with small
eigenvalues belong to a dimension where the variance is so small
that it is impossible to separate points in the data. It is a general
practice in data reduction to keep only the first k components
that explain at least a significant portion of the total variance
of the data,

∑k
i=1 λi/Tr(6) > ǫ. This allows for a selection of

information that will effectively differentiate data points, and for
a reduction of the amount of data to process during analysis.
Many techniques have been suggested for the selection of the
values of k and the cut-off ǫ (Rea and Rea, 2016). We use the
value of ǫ = 0.95.

2.2.2. Dimension Reduction Using Kernel PCA
PCA has a limitation: the principal components are a linear
combination of the original properties of the solar wind. The
Kernel PCA (KPCA) is an extension of the PCA that allows to
perform non-linear transformations of the original data. The goal
in KPCA is to perform the original PCA operations in a high
dimensional space.

For a list of m data points composed of n features, it is
sometimes difficult (or impossible) to build a linear hyper-plane
that dissects regions of different density. However, it is possible to
conceive a function, ξ :X ∈ R

n → X̃ ∈ R
m, that will transform

all the data into a space where each cluster of points can be
linearly separable. The goal is then to avoid explicitly calculating
the high-dimensional function ξ by building a Kernel, K , which
is the inner product of the high-dimensional space:

K = k(Xi,Xj) = ξ (Xi)
T
ξ (Xj) (5)

In this space the projected points are linearly separable using the
same principles of the PCA. In this case the covariance matrix
would be expressed as:

6ij =
1

m

m
∑

k=1

ξ (Xi)ξ (Xi)
T (6)

v =

n
∑

i=1

aiξ (xi) (7)

Popular kernel functions include Gaussian, polynomial and
hyperbolic tangent. The transformation is reduced to solving the
eigenvalue problem: Ka = λa, where a are the coefficients of the
linear combination of the eigenvectors (Equation 7). Although a
powerful tool, KPCA requires the creation of an m × m matrix
that can consume large amounts of time and memory resources.

In this work we use KPCA with a polynomial kernel of order
eight (8). We also apply the procedure described before to select
the total number of retained components: we impose ǫ = 0.95.
Cutting off the number of components implies a loss of data.
To verify that only minimal information is lost, we perform
a transformation of all our data set followed by an inverse
transformation. The relative error between the two is normally
distributed around zero with<1% of variance.

2.2.3. Dimension Reduction Using Autoencoders
An alternative to data reduction is the use of Autoencoders
(AE). These are machine learning techniques that can create non-
linear combinations of the original features projected on a latent
space with less dimensions (Hinton and Salakhutdinov, 2006).
This is accomplished by creating a system where an encoding
function, φ, maps the original data X to a latent space, F ∈ R

d

(Equation 8). A decoder function, ψ , then maps the latent space
back to the original input space (Equation 9). The objective of
the autoencoder is to minimize the error between the original
data and the data produced by the compression-decompression
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FIGURE 1 | Density of points, projected on two arbitrary components, for each of the four X15 classes. The axis titles indicate the corresponding component (C1 for

component 1, C8 for component 8, etc.). Colors, normalized between 0 and 1, correspond to solar wind classes: CH (red), SB (blue), SR (green), and TR (purple). The

three columns correspond to three possible data transformations: (A) Original normalized data, (B) data transformed with the Kernel Principal Component Analysis,

and (C) data encoded with our Autoencoder. Black lines are isocontours of data point density.

procedure as shown in Equation (10).

φ :X → Z ∈ F (8)

ψ :Z ∈ F → X (9)

φ,ψ =argmin
φ,ψ

∥

∥X − (φ ◦ ψ)X
∥

∥

2
(10)

Autoencoders can be represented as feed-forward neural
networks, where fully connected layers lead to a central
bottleneck layer with few nodes and then expands to reach again
the input layer size. An encoded element, z ∈ F , can be obtained
from a data entry, x ∈ X, following the standard neural network
function (Equation 11), where W is the weights matrix, c is the
bias, and f is the non-linear activation function.

z = f (Wx+ c) (11)

x̂ = f ′
(

W′z + c′
)

(12)

L(x, x̂) =
∥

∥x− x̂
∥

∥

2
(13)

The decoding procedure, shown in Equation (12), transforms
z → x̂, where the prime quantities are associated with
the decoder. The loss function, L(x, x̂), is the objective to be
minimized by the training of the neural network using gradient
descent. Once training is completed, the vector z is a projection
of the input vector x onto the lower dimensional space F .

Additional enhancements and variations of this simple
autoencoder setup exist in the literature, including multiple
regularization techniques to minimize over-fitting (Liang and
Liu, 2015), Variational Autoencoders (VAE) that produce
encoded Gaussian distribution functions (Kingma and Welling,
2013), and Generative Adversarial Networks that automatically
generate new data (Goodfellow et al., 2014). In this work we use
the most basic form of autoencoders, presented above.

In the present work we will be showing different
representations of the solar wind data, transformed with
different techniques and projected on flat planes. Figure 1

presents our data set in three different projections: (A) the
original feature space, normalized between zero and one, (B)
the transformed data set using the KPCA method, and (C) the
AE transformed data. In each panel four histograms present the
distribution of the X15 classes, on two arbitrary components
identified by the axis title.

2.2.4. Clustering Techniques
The goal of unsupervised machine learning is to group data
points in a limited number of clusters in the N-dimensional space
� ∈ R

n, where n is the number of features (components or
properties) in the data set. Multiple techniques can be used to
perform multi-dimensional clustering. We present in Figure 2

the application of two basic clustering techniques to classify our
data set. Following the same order as before, the first column
in the figure contains all data points projected in the original
normalized feature space; column two contains scatter plots of
the points after KPCA transformation; column three contains
the same points encoded in the AE latent space. Each row
corresponds to a different clustering method. The colors in
the top row were obtained using the k-means method (Lloyd,
1982), while the colors in bottom panels were obtained using the
Bayesian Gaussian Mixture (BGM) (Bishop, 2006).

The k-means technique has already been used in multiple
publications for the determination of solar wind states (Heidrich-
Meisner andWimmer-Schweingruber, 2018; Roberts et al., 2020).
The BGM technique has also been recently used by Bloch et al.
(2020) to classify solar wind observations by the ACE and
Ulysses missions. Mixture models similar to the BGM have also
been recently used to classify space plasma regions in magnetic
reconnection zones (Dupuis et al., 2020). None of these previous
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FIGURE 2 | Scatter plot of all data points projected on two of the components of the three transformed spaces: the original normalized space (left column), the KPCA

space (central column), and the AE space (right column). In the left column the components C0 vs. C8 correspond to the proton temperature, Tp, vs. the proton

specific entropy, Sp. Colors correspond to the classes obtained by two unsupervised clustering methods: k-means (first row) and BGM (second row). Black lines are

isocontours of data point density.

publications used data transformation to solve the classification
problem in a more suitable latent space.

The colors used in Figure 2 are assigned randomly by
each clustering technique. The most glaring issue with them
is that different methods can lead to different clusters
of points. The BGM and the k-means do not agree on
their classification in the PCA and the AE space. More
importantly, for each technique, slight modifications of the
clustering parameters, e.g., using a different seed for the
random number generator, can lead to very different results.
We address this last issue using an algorithm that launches
the k-means (the BGM) algorithm 100 (30) times until the
method converges to a global minimum. The final results are
implementation dependent.

In the present data set, the cloud of points is convex and
well-distributed in all components. This raises one additional
issue, observed more clearly in the second column of Figure 2:
when classical clustering methods are applied to relatively
homogeneously dense data, it divides the feature space in
Voronoï regions with linear hyper-plane boundaries. This is
an issue with all clustering techniques based on discrimination
of groups using their relative distances (to a centroid or to
the mean of the distribution). To avoid this problem density-
based techniques, such as DBSCAN (Ester et al., 1996), and
agglomeration clustering methods, use a different approach.

However, we can not apply them here because in such
homogeneous cloud of points these techniques lead to a trivial
solution where all data points are assigned to a single class.
An alternative projection was used by Bloch et al. (2020), who
performed a Uniform Manifold Approximation and Projection
(UMAP). We performed the same projection unsuccessfully:
the Ulysses data used in that publication contains a very
dense and large number of CH observations. ACE lacks such
a rich variety of CH data, so applying a UMAP leads to a
single class.

There is no guarantee that a single classification method,
with a particular set of parameters will converge to a physically
meaningful classification of the data if the points in the data do
not have some level of separability, or have multiple zones of
high density. This is also true for other classification methods
based on supervised learning. The same issues will be observed
when the training data include target classes derived from dense
data clouds using simple hyper-plane boundaries, as done for
the Z09 and X15 classes. An example of such application was
published by Camporeale et al. (2017) and Li et al. (2020).
The authors used the X15 classification to train supervised
classifiers. No new information is gained with such methods,
as the empirical boundaries are already mathematically known.
A more compelling task would be to compare all classification
methods against a ground truth, i.e., against a catalog of footpoint
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locations on the solar surface. But such catalog, to our knowledge,
does not exist.

2.2.5. Self-Organizing Maps

2.2.5.1. Classical SOM
Following the definitions and notations by Villmann and

Claussen (2006), a class can be defined as Ci
def
= {x ∈ �|8(x) =

wi}, where 8 is a function from � to a finite subset of k points
{wi ∈ R

N}i=1··k. A cluster Ci is then a partition of �, and {wi}
are the code words (also known as nodes, weights or centroids)
associated. Themapping from the data space to the code word set,
8 :�→ W , is obtained by finding the closest neighbor between
the points x and the code words w (Equation 14). The code word
ws, the closest node to the input xs, is called the winning element.
The class Ci corresponds to a Voronoï region of � with center
in wi.

8 : x → argmin
i∈N

(‖x− wi‖) (14)

A Self-Organizing Map (SOM) is also composed of structured
nodes arranged in a lattice, each one assigned to a fixed position
pi inR

q, where q is the dimension of the lattice (generally q = 2).
The map nodes are characterized by their associated code words.
The SOM learns by adjusting the code words wi as input data x
is presented.

The SOM is the ensemble of code words and nodes {wi, pi} ∈
(� × R

q). For a particular entry xs, the code word s ∈ N is
associated to the winning node ps if the closest word to xs is ws.
At every iteration of the method, all code words of the SOM are
shifted toward x following the rule:

1wi = ǫ(t)hσ (t, i, s)(x− wi) (15)

with hσ (t, i, j) defined as the lattice neighbor function:

hσ (t, i, j) = e
−

∥

∥

∥
pi−pj

∥

∥

∥

2

2σ (t)2 (16)

where ǫ(t) is the time dependent learning rate (Equation 17), and
σ (t) is the time dependent lattice neighbor width (Equation 18).
The training of the SOM is an iterative process where each data
point in the data set is presented to the algorithm multiple times
t = 0, 1, ··, tf . In these equations the subscript 0 refers to initial
values at t = 0 and the subscript f to values at t = tf .

ǫ(t) = ǫ0

(

ǫf

ǫ0

)t/tf

(17)

σ (t) = σ0

(

σf

σ0

)t/tf

(18)

This procedure places the code words in the data space� in such
a way that neighboring nodes in the lattice are also neighbors in
the data space. The lattice can be presented as a q-dimensional
image, called map, where nodes sharing similar properties are
organized in close proximity.

The main metric for the evaluation of the SOM performance
is called the quantization error:

QE =
1

m

m
∑

i=1

∥

∥xi − wxi

∥

∥ (19)

wherem, is the total number of entries in the data set. It has been
shown that the SOM tends to converge in the mean-square (m.s.)
sense to the probabilistic density center of the multi-dimensional
input subset (Yin and Allinson, 1995). This means that, if the
SOM hyper-parameters are chosen correctly, the code words of
the SOM will have a tendency to move toward high density
regions of subsets of the input data, and will be located close to
the mean of the subset points.

Once the training of the SOM is finished, the code words wi

can be grouped together using any clustering technique, e.g., k-
means. The nodes of the SOM with close properties will be made
part of the same class. The classes created are an ensemble of
Voronoï subspaces, allowing a complex non-linear partitioning
of the data space�.

The final number of clusters is an input of the algorithm, but
can also be calculated autonomously. The Within Cluster Sum of
Squares (WCSS) can be used as ametric of the compactness of the
clustered nodes. As its name implies the WCSS is the sum of the
squared distances from each node to their cluster point. If only
one class is selected, the large spread of the nodes would produce
a high WCSS. The lowest possible value of the WCSS is obtained
for a very high number of classes, when the number of classes
is equal to the number of nodes. But such extreme solution is
also unpractical. The optimal number of clusters can be obtained
using the Kneedle class number determination (Satopaa et al.,
2011). We use this automatic technique to let the machine select
the optimal number of solar wind classes.

2.2.5.2. Dynamic SOM
The time dependence of the SOM training allows the code
words wi to reach steady coordinates by slowing down their
movement over the iterations. Due to the minimization of the
distance in Equation (14) code words tend to agglomerate around
high density zones of the feature space. The Dynamic Self-
Organizing Map (DSOM), introduced by Rougier and Boniface
(2011), eliminates the time dependence and allows to cover larger
zones of the space outside of the high density regions.

The DSOM is a variation of the SOM where the learning
function (Equation 15) and the neighbor function (Equation 16)
are replaced by Equations (20) and (21), respectively:

1wi = ǫ ‖x− wi‖� hη(i, s, x)(x− wi) (20)

hη(i, s, x) = e
− 1
η2

∥

∥

∥
pi−pj

∥

∥

∥

2

‖x−ws‖
2
� (21)

where ǫ is a constant learning rate, hη(i, s, x) is defined as the
new lattice neighbor function, and η is the elasticity parameter.
In their work (Rougier and Boniface, 2011) show that DSOM can
be used to draw a larger sample of the feature space �, reducing
the agglomeration of code words around high density zones. The
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main parameters of the DSOM, η and ǫ, control the convergence
of the method. A large ǫ moves the code words, w, very fast with
each new iteration; a very low value moves the points slowly in
the space. A high elasticity, η, keeps all the nodes extremely close
to each other, while a low value does not induce movement on
far away code words. The best compromise is to use a very low
value of the learning rate coupled with a mid-range elasticity, and
a large number of training epochs. This can ensure a relative good
convergence to a steady set of code words.

One special advantage of the DSOM is that it can be trained
online, i.e., it is not necessary to re-train all the model when new
data arrives: it adapts automatically to new information.

2.2.5.3. Visualization of SOM and DSOM
Most clustering techniques do not guarantee to converge
to a steady immutable solution. Differences in the training
parameters or slight changes in the data can have an important
impact on the final classification. Clustering tools can be used for
statistical analysis, comparisons, data visualization and training
of supervised methods. But it will be practically impossible to
claim the existence of a general objective set of states discovered
only by the use of these basic clustering techniques.

However, SOMs and DSOMs provide an important tool
for the study of the solar wind: the maps are composed of
nodes that share similar properties with its immediate neighbors.
This allows for visual identification of patterns and targeted
statistical analysis.

We used the python package MiniSom (Vettigli, 2013) as the
starting point of our developments. Multiple methods of the
MiniSom have been overloaded to implement the DSOM, and
to use a lattice of hexagonal nodes. All auxiliary procedures used
to calculate inter-nodal distances, node clustering, data-to-node
mapping, and class boundary detection have been implemented
by us. All visualization routines are original and have been
developed using the python library Matplotlib (Hunter, 2007).

Figure 3 shows the basic types of plots that can be generated
using the SOM/DSOM techniques. We present in this figure
the outcome of our model, combining a non-linear AE
transformation of the ACE data set with the unsupervised
classification of the encoded data using the DSOMmethod. Panel
(A) shows a histogram of two components of the feature space
�, with dots marking the position of the code words wi. The
colors of the dots represent their DSOM classification. The red
lines connect a single code word ws with its six closest neighbors.
Panel (B) shows the same information as in the previous panel,
but using a scatter plot colored by the DSOM classification.
This image shows the domain of influence of each one of the
DSOM classes.

Panel (C) shows the hit map of the DSOM. It contains the
lattice nodes pi associated to the code wordswi. They are depicted
as hexagons with sizes representing the number of data points
connected to each node and colored by their DSOM class. The
thickness of the lines between lattice nodes represent the relative
distance to its neighbors in the feature space�. Red lines connect
the node ps, associated to the code word ws in panel (A), to its
closest neighbors.

Figure 3D displays three components of the code words wi

associated to each one of the pi nodes. The node components
have been mapped to the basic colors Red, Green and Blue (RGB)
and combined together to produce the composite color shown in
the figure.

These four representations are only a few examples of the
variety of data that can be represented using SOMs. The most
important aspect of the SOMs is that data is represented in simple
2D lattices where the nodes share properties with their neighbors.
Here we also decided to use hexagonal nodes, connecting 6
equidistant nodes, but other types of representations are also
valid, e.g., square or triangular nodes.

2.2.6. The Full Architecture
The previous sections introduced all the individual pieces that
we use for the present work. Here, we give a global view of
the full model. Figure 4 shows how all the components are
interconnected. At the center of the image is the processed and
normalized original ACE data set. The blue dashed lines show the
unsupervised techniques already presented by Heidrich-Meisner
and Wimmer-Schweingruber (2018), Bloch et al. (2020), and
Roberts et al. (2020). The KPCA step is added to the data
pipelines used in the literature in order to project the data into
a hyper-space where the class boundaries are better defined.

On the right side of the same figure we present our main
approach: we perform first a data encoding using an AE, then
we perform unsupervised classification of the solar wind with
the k-means, BGM and DSOMmethods. After training, the code
words of the DSOM are clustered to group together nodes that
share similar properties. This second level classification is done
using the k-means++ algorithmwith 100 re-initializations (it is in
general recommended to use between 50 and 500 initializations,
searching for a global optimum, as different random runs can
lead only to a local minima). We use the Kneedle method
to automatically select the number of classes that the DSOM
will produce (Satopaa et al., 2011). The BGM and the k-means
clustering techniques are included for comparison.

All the software was implemented in Python using as main
libraries PyTroch (Paszke et al., 2019), Scikit-learn (Pedregosa
et al., 2011),Matplotlib (Hunter, 2007), MiniSom (Vettigli, 2013),
Pandas (McKinney, 2010), and NumPy (Oliphant, 2015).

2.2.6.1. Feature selection
Table 2 lists all the features used in our model. A detailed
description of each feature can be found in the ACE Level
2 documentation. To spread the data over a larger range of
values in each component, we have used the logarithm of all the
quantities, except of those marked with an asterisk in the table.

Features 11–15 contain an additional suffix, corresponding to
a statistical operation performed on the corresponding feature.
In our model we only include range operations, but we have
provided our software with the ability to calculate also the mean,
the standard deviation and the auto-correlation of quantities over
a window of time of 6 h. This window allows to capture temporal
(spatial) fluctuations in some of the solar wind parameters.

On the lower part ofTable 2we present the range of dates used
for the model. The same table also contains the hyper-parameters
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FIGURE 3 | Visualization of the Self-Organizing Maps. (A) Histogram with the normalized density of data points superposed by the code words of the DSOM,

projected on two components of the latent AE space. A single node is connected to its closest neighbors by red lines. (B) Scatter plot of all data points, colored by

the DSOM class. (C) Hit map: the size of the hexagon corresponds to the number of data points associated to the map node, and the color is the corresponding

DSOM class. Black lines between nodes represent their relative distance. Red lines connect the nodes similarly highlighted in (A). (D) Map of the nodes colored by

three of their components, combined as a single RGB color. White lines mark the boundaries between DSOM classes.

FIGURE 4 | General overview of the pipelines tested in this work. Starting from the center, the ACE data set is processed and normalized. Blue dashed lines show the

work done in previous publications by different authors. Black lines show how data in this work is first transformed and then classified using multiple methods. The

original techniques presented in this paper are highlighted in red.
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selected to run the two models. The number of neurons per layer
in the encoding half of the neural network is listed in the table.

2.2.6.2. Autoencoder architecture
We use a basic, fully connected feed-forward neural network for
the encoding-decoding process. The neural network is symmetric
in size but the weights of the encoder,W, and the decoder,W′, are
not synchronized (see Equations 11, 12). Each layer is composed
of a linear regressor, followed by a GELU activation function. The
output layer of the network contains a linear regressor followed
by a sigmoid activation function. The AE has been coded in
python using the PyTorch framework (Paszke et al., 2019).

The final architecture of the AE and its hyper-parameters have
been optimized automatically using the Optuna library (Akiba
et al., 2019). We instructed this Hyper-Parameter Optimization
(HPO) to select the optimal values for the following parameters,
given the corresponding constraints:

• Number of layers: an integer between 2 and 6.
• Number of neurons per layer: it must be larger than 3 and

smaller than the number of neurons in the previous encoder
layer.

• The neural network optimizer: selected among Adam,
Stochastic Gradient Descent, and RMSprop.

• The learning rate: a float value between 10−5 and 10−1.

The automatic HPO is based on a technique called Tree-
structured Parzen Estimator (TPE) (Bergstra et al., 2013), which
uses Bayesian Optimization to minimize a target function, H,
provided by the user. We use the test loss of the AE as target
function to be minimized.

The HPO performs a total of one thousand (1,000) different
trials. However, to accelerate the optimization process, we built a
smaller complementary data set. To avoid over-fitting on a sub-
set of the original data we used the k-means algorithm to produce
a representative sample ofm′ = 4

√
m data points. This allows to

explore a much broader set of hyperparameters in a short period
of time. This artificial data set is then discarded and the AE is
trained on the real data set.

TheHPO selected the Adam optimizer (Kingma and Ba, 2014)
for the gradient descent with a learning rate of 0.042. The total
number of layers selected is 2, and the number of nodes in the
bottleneck is 10. The loss function is the Mean Squared Error
(MSE). We train the network for 500 epochs, after which no
additional improvement in the loss function is observed. The
full data set was randomly divided 50/50% between training and
testing sets. We track the evolution of both data sets during
training. We did not observe any variance or bias error.

The final architecture is trained using the full data set for 500
epochs. Figure 5 shows the distribution of data in the original
feature space, panel (A), and in the AE latent space, panel (B). The
data in the original space contains extreme data points far from
the mean value, and most features present a normal distribution.
The combination of these two properties makes it difficult for
any unsupervised clustering technique to separate points and
accurately categorize different kinds of solar wind.

Panel (C) shows the error in the encoding-decoding procedure
of the AE. It shows a histogram of the relative error, Er = X̂/X−

1, observed between the input data, X, and the decoded values,
X̂. A normal distribution function has been fitted to the values
of the histogram. It shows that the relative error is centered near
zero and its variance is around 1%.

2.2.6.3. Selection of parameters for the DSOM
In this manuscript we have introduced the use of the DSOMs for
the classification of solar wind data. This technique requires the
selection of four main Hyper-Parameters (HPs): the size of the
lattice, (Lx × Ly), the constant learning rate, ǫ, and the elasticity,
η. These last two parameters where chosen manually, while
the lattice size was automatically selected by Hyper-Parameter
Optimization (HPO) using Optuna (Akiba et al., 2019).

For the selection of the number of nodes in the lattice
we propose the use of the objective function, H, described in
Equation (22):

H
(

σ , η, Lx, Ly
)

=
QE(σ , η, Lx, Ly)

Q0
+ α

Lx

mmax
+ β

Ly

nmax

+ γ
LxLy

max (mmax, nmax)
(22)

where QE is the quantization error at the end of the training, Q0

is a reference quantization error before training, Lx and Ly are the
number of lattice nodes in each dimension, and mmax and nmax

are the given maximum number of possible nodes. The weight
factors α, β , and γ are used to impose restrictions on each term.
We have fixed their value to α = β = 0.08 and γ = 0.6. When
a large number of nodes is available smaller values of QE are
automatically obtained because the mean distance from the data
set entries to the code words is reduced. The second and third
terms on the RHS ofH leads the optimizer to reduce the number
of nodes in the SOM. The squaring term γ LxLy forces the map to
be as squared as possible.

After a total of 500 trial runs of the model using different
HPs, the optimizer selected the parameters presented in the lower
section of Table 2. The optimization was accelerated using the
same technique as in the optimization of the AE: we generated
a reduced number of points using the k-means algorithm, with a
total number of entries equal to one twentieth the size of the full
data set,m′ = 1

20m.
The two remaining parameters of the DSOM, the elasticity

η = 3.0 and the learning rate ǫ = 0.005, have been manually
selected. These two values control the speed at which the code
words move toward the data entries, and the attraction between
neighboring code words. It has been shown by Rougier and
Boniface (2011) that high values of the elasticity, η, lead to tightly
packed code words, while low values lead to loose connections.
The elasticity takes in general values between 1 and 10. On the
other hand, the learning rate indicates to the code words how
fast they should move toward new incoming data. Very small
learning rates could lead to very slow convergence to a solution,
while very large values might produce code words that jump from
value to value without converging to a global solution. The value
of the learning rate can be set somewhere between 0.001 and 0.9.

Figure 6 shows how the elasticity and the learning rate can
affect the convergence of the DSOM. In this figure we evaluate
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FIGURE 5 | Violin plots showing the data distribution in (A) the original normalized data set, and (B) the AE transformed data set. (C) Shows a histogram of the

relative error produced by the lossy compression-decompression procedure in the AE. The error is close to zero, with a variance of <1%.

the effect of using different values of η and ǫ. Three different
graphs are used to understand the evolution of the training and
its convergence to a stable solution. The first row shows how the
code words move away from their original position during the
training: as the iterations advance the code words move until
they find a stable location. It is clear that lower values of ǫ and
η, as presented in the left panel of the first row, lead to very
long convergence times. At the other extreme, very high values of
the two parameters produce strong movements with a compact
group of code words, leading to a non-converging solution.

In the second row of the same figure we show the distance
traveled by the code words at each iteration of the training. In
the best case scenario this distance is large at the beginning of
the training and converges toward zero as the iterations pass. The
third panel of this row shows how large values of η and ǫ produce
solutions of the DSOM that do not converge.

The third row of Figure 6 shows the evolution of the
quantization error (Equation 19). This value explains the
compactness of the data points around the code words. Scattered
points will show large QE, while dense clouds of points gathered
around the code words will show low QE values. Once again in
this last row we see that there is a compromise between a slow
convergence with small values of ǫ, and large values of the two
parameters that can lead to unstable solutions.

This figure also shows that, even if the DSOM is a dynamic
technique that does not use a decay of the learning rate with
time, it is a method that converges to a steady solution, if the
parameters are properly selected.

2.2.6.4. Budget
Machine learning models require fine tuning of different
parameters, from the selection and testing of multiple methods,
to the parameterization of the final architecture. Dodge et al.
(2019) suggests that every publication inmachine learning should
include a section on the budget used for the development and
training of the method. The budget is the amount of resources
used in the data processing, the selection of the model hyper-
parameters (HP), and its training.

The most time-consuming task in the present work has been
the data preparation, the model setup and debugging and the
writing of the SOM visualization routines. All the techniques
described in the previous sections have been coded in python
and are freely accessible in the repositories listed in the Data
Availability Statement. We estimate the effort to bring this work
from scratch to a total of two personsmonth. Of these, one person
week was dedicated to the manual testing an selection of different
model HPs (autoencoder architecture, feature selection, learning
rates, initialization methods, number of epochs for training,
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FIGURE 6 | Effects of the elasticity, η, and the learning rate, ǫ, on the training of the DSOM. (Top row) Mean value of the difference between the position of the code

words at each iteration,W, and their original position, 〈|W0 −W|〉. (Middle row) Moving average (1,000 iterations) of the mean distance traveled by the code words in

one iteration, 〈1W〉1000. (Bottom row) Quantization error per iteration, QE .

selection of data compression method, size of the time windows,
etc.).

All classic clustering techniques presented in section 2.2.4
require only a few lines of code and can be trained in minutes
on a mid-range workstation (e.g., Dell Precision T5600, featuring
two Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz with four cores
and eight threads each). The most time consuming tasks of our
models are the training of the autoencoder (5% of the total run

time), the multiple passages of the clustering algorithms (15% of
the run time), and the optimization of the hyper-parameters (80%
of the run time). The training of the DSOM is performed in less
than a minute.

For reference, the total run-time of our model is 30 min. The
python scrips used do not contain any particular acceleration
(e.g., using GPUs) or optimizations (e.g., using Numba), so there
is large room for improvement of the computational efficiency.
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3. RESULTS AND COMPARISONS

3.1. Interpretation of the DSOM Plots
When the DSOM method converges to a solution, each one
of the code words is a representative of their N-dimensional
neighborhood. We perform then a k-means clustering of the
code words and apply the Kneedle method (Satopaa et al., 2011),
presented in section 2.2.5.1, to select the final number of classes.
Here, the automatic procedure selects a total of six classes,
numbered from 0 to 5. The Class Map on the first panel of
Figure 7 shows that all nodes are organized in continuous groups.

The weights of the code words can be decoded and scaled to
obtain the corresponding physical properties of the associated
solar wind. These physical quantities are plotted in Figure 7 for
each one of the solar wind features.

Black continuous lines in the maps mark the boundary
between different DSOM classes. All of the maps show
uninterrupted smooth transitions between low and high values,
without sudden jumps or incoherent color changes. Inside
DSOM classes solar wind properties can present variations. This
is an expected consequence of projecting 15 dimensions in a
2D lattice.

The most obvious class to identify is the DSOM class 0, with
clear indications of coronal hole origin. It is characterized by very
low values of the O7+/ O6+ and C6+/ O5+ ratios, associated
with plasma originating from open magnetic field lines (Zhao
et al., 2009; Stakhiv et al., 2016), high wind speed, low proton
density, high absolute values of σc (a sign of Alfvenicity), high
proton entropy, high proton temperature and moderately high
values of Alfven speed [associate by Xu and Borovsky (2015) with
coronal holes].

The proton density has a very broad range of values for class 1.
A close examination of the map of cross-helicity, σc, shows that
this class also contains Alfvénic solar wind with both polarities.
Class 1 also showcases high proton temperatures, high solar wind
speeds, but average oxygen and carbon ionization ratio, and
average iron charge. All these observations point toward solar
wind originated at the boundary of coronal holes (Zhao et al.,
2017).

Class 5 can be associated to transient event, such as ICME and
ejecta. It presents the very high O7+/ O6+ ratio values that Zhao
et al. (2009), Xu and Borovsky (2015), and Stakhiv et al. (2016)
associate to CME plasma, and the low proton temperature values
usually found in ICMEs. It is also characterized by the high (but,
quite surprisingly, lower than for class 0) solar wind velocity,
σc ∼ 0 (Roberts et al., 2020), the high values of Alfvén speed
which are usually associated to explosive transient activity (Xu
and Borovsky, 2015).

Class 4 has similar properties as class 5 and can be mainly
composed of transient events, but it also contains more Alfvénic
plasma, and very high carbon charge state ratios, C6+/C5+.
Fluctuations in this class are slightly less significant than the ones
observed in class 5, except for jumps in the normal magnetic field,
range Bn. These can point toward a class that contains magnetic
clouds or Sector Boundary Crossing (SBC) events. Classes 4
and 5, identified as transients, remain rare, as clearly shown in
Figure 3C.

At this point is important to remember that a different set
of initial conditions or a different number of map nodes could
lead to a slightly different repartition of the data, or to a different
number of classes. However, points with similar properties will
always remain topologically close and the interpretation of a
different set of DSOM classes will lead to similar results. This
is not necessarily the case with other unsupervised methods,
like k-means, as the topological organization of the data is not
maintained, so different runs can produce different results for
which previous interpretations can not be re-cycled.

Class 2 and 3 are composed of slow, dense solar wind, the
kind of wind that Zhao et al. (2017) associates to the Quiet Sun
and that Xu and Borovsky (2015) associates to either Streamer
Belt (SB) or Sector Reversal (SR) region plasma. As expected for
the slow wind, the cross helicity is low, the proton temperature
intermediate between the low values associated to ICMEs and
the higher values observed in the fast wind, the proton entropy
and the Alfvén speed are low (Xu and Borovsky, 2015). The
high O7+/O6+ and C6+/C5+ ratios (lower only to the values
associates to class mappable to transient events, class 4 and 5),
point to plasma originating in closed field lines (Zhao et al., 2009;
Stakhiv et al., 2016). Of the two classes, class 2 is characterized
by lower wind speed, higher density, lower proton temperature,
lower entropy.

In summary we can group our classes on three major
categories: CH wind (classes 0 and 1, colored in red), quiet
or transitional wind (classes 2 and 3, colored in green), and
transients (classes 4 and 5, colored in blue).

3.2. Verification of the DSOM Classes
In addition to the interpretation of the maps presented in the
previous section, we have extracted histograms of the occurrence
frequency of O7+/O6+ ratio (Figure 8) and proton speed, Vsw

(Figure 9). The panels in the figures contain the histograms for
six (6) different categorizations: k-means (AE), k-means (KPCA),
BGM (AE), BGM (KPCA), DSOM, and the X15 classification.
All the histograms have been normalized row by row (class
by class), following the work done by Zhao et al. (2017). This
representation of the data is inspired by Figure 5 of that paper,
where the authors showed an important overlapping among
different solar wind classes, and a bi-modal velocity distribution
for coronal hole wind including an important population of
slow wind.

The assignment of class numbers by the clustering algorithms
is random. We have sorted the classes so they present an
ascending value of the O7+/O6+ ratio in Figure 8. It has been
shown that solar wind originated in Coronal Holes present very
low values of the O7+/O6+, while at the other extreme transient
events present very high O7+/O6+ ratios (Zhao et al., 2009, 2017;
Stakhiv et al., 2016). Figure 8 confirms the class identification we
presented in the previous section.

von Steiger and Zurbuchen (2015) and Bloch et al. (2020)
examine the O7+/O6+ ratio in Ulysses data, which include
abundant measures of wind originating from the polar CHs.
Our data is composed of ACE observations from the ecliptic
plane. For this reason, in all different classifications in Figure 8,
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FIGURE 7 | Map colored by the DSOM classes (top left panel), and composition of the solar wind associated to each one of the map nodes. The black line marks the

boundaries between DSOM classes.

including the X15 empirical categorization, class 0 does not reach
log10 O

7+/O6+ ≈ −2, where the peak of points is observed in
publications using Ulysses data.

In our data set, the majority of points can be mapped to
Quiet Sun (QS), conditions, i.e., slow solar wind. Even in these
conditions, the DSOM method is able to sample and distribute
enough data to each one of the classes. The BGM method
applied to Kernel PCA transformed data also provide a good
sample of the different classes, in particular for transient solar
wind (classes 4 and 5). The X15 classification was designed with
clear boundaries in O7+/O6+, for this reason the differences
among the four classes is clear in the histograms. However, this
observation contradicts the foot point back tracing performed
by Zhao et al. (2017): X15 shows almost no overlap in the
distribution functions between the different classes, while the
back tracing shows important overlaps. We express caution in
the use of this classification to train any type of supervised
machine learning technique, or in the evaluation of the accuracy
of unsupervised techniques.

Figure 9 shows how velocity is distributed among the different
classes for each unsupervised classification method, and for the
X15 categories. Zhao et al. (2017) remarks that the different
classes are more difficult to identify using the solar wind speed

histograms. We verify in these plots that three conditions
are satisfied: (1) the classes we associate to the QS (class
2 and 3 in the DSOM classification) are associated to low
velocity regions (Neugebauer et al., 2002), (2) high oxygen
state ratios are associated with low solar wind speeds, and
(3) CH wind has a highly spread velocity distribution, with
two possible peaks around 400 and 600 km/s (Zhao et al.,
2017).

The fact that class 0 and 1, that we associate to wind
of CH origin, contains slow wind data points is particularly
significant. D’Amicis and Bruno (2015) has provided proof of
the presence, at 1 AU, of highly Alfvénic slow wind originating
from the boundaries of coronal holes. This slow, Alfvénic wind
has the same composition signature and high cross helicity that
characterized the classic fast Alfvénic wind of CH origin, but
presents lower speed and lower proton temperature. This way of
visualizing our results seems to suggest that slow Alfvénic wind
is classified together with fast Alfvénic wind in the classes that we
associate to CH origin.

Figure 9 shows that CHwind in the k-means and DSOMplots
present a broad range of speeds, with a bimodal distribution.
The BGM (KPCA) method separates these two populations in
two different classes (0 and 1). the k-means (KPCA) method
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FIGURE 8 | Histograms of the distribution of log10 O
7+/O6+ ratio on each one of the classes obtained by multiple classification methods and by the X15 classification.

differentiates the fast solar wind, in the first two classes, from the
slow wind in the remaining classes.

Balancing the results from Figures 8, 9 we conclude that the
BGM (KPCA) and the DSOM are the techniques that approach
the most the direct observations of the solar wind origins
obtained by Zhao et al. (2017). The X15 model creates a very
sharp separation of solar wind types, with fast winds clearly
segregated in class 0, slow winds in classes 1 and 2, and transients
in class 3. The X15 model does not recognize that plasma of CH
origin also contains an important population of slow winds.

3.3. Hit Maps of Empirical Classifications
Another advantage of the SOM/DSOM method is that it can be
used to visualize additional hidden statistics. Figure 10 shows
what nodes are activated by the Z09 and X15 classes. To perform
this analysis, instead of using the full data set, we extract three
subsets corresponding to the entries categorized as CH, ICME,
and NCH wind in the Z09, and CH, SB, SR, and ICME in the
X15 catalogs. Each one of these three (four) subsets is passed
through the DSOMmodel and we observe how each one activates
the nodes.

We see that CH wind, in column 1 of the figure, activates very
similar nodes for both classifications, in classes 0 and 1. Most
of the hits are located on nodes where the absolute value of the

cross-helicity σc is the largest, i.e., in regions of open field lines
associated with coronal holes.

NCH wind from the Z09 classification is distributed over
classes 2, 3, and 4, but also includes a node from class 1
characterized by an extremely negative cross-helicity. The same
zone is activated by the SB class from X15. The two affected
nodes also feature a very low Texp/Tp. The X15 model splits
solar wind points using hyperplanes in a three-dimensional space
composed by Sp, O7+/O6+, and Texp/Tp, None of those planes
cuts the points in the Texp/Tp dimension (Xu and Borovsky,
2015). However, in our maps this dimension seems to play an
important role in the separation between quiet and CH winds.

The X15 Sector Reversal (SR) class activates nodes at the
boundaries of classes 1, 2, and 3. These nodes separate the quiet
sun from the coronal hole wind, and coronal holes to transients.
It also contains a large population of slow quiet solar wind.

Finally transients, in both the Z09 and X15 categorizations, are
associated to our class 4 and 5. However, a large portion of the
X15 transients is associated to class 3 of the DSOM, particularly
in nodes showing low proton temperatures and specific entropy
Sp, characteristics of ICMEs.

Figure 10 shows also that, on average, the values of the
O7+/O6+ ratio do not change radically among the nodes, except
for small variations in the CH and the ICME classes of X15.
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FIGURE 9 | Histograms of the distribution of solar wind speed, Vsw, on each one of the classes obtained by multiple classification methods and by the X15

classification.

FIGURE 10 | DSOM plots showing the activation of nodes for the different classes of the Z09 and X15 classifications. All maps are colored by the log10 O
7+/O6+

ratio, and the size of the hexagon represents the frequency of points, or number of hits.

3.4. Quantitative Comparison With
Empirical Classifications
We have included a Matching Matrix in Table 3 showing
the frequency of occurrences of our model with respect
to the Z09 and X15 classifications. Bold numbers in
the table mark the highest common frequency and
regular fonts mark the second highest frequency for

each one of the columns. Matching matrices must not
be confused with confusion matrices, as the later imply
that there is a ground truth. Matching matrices are used
in unsupervised learning to compare the frequency of
occurrence of classes between models, so we can not
perform additional metrics, like accuracy, precision, sensitivity,
or specificity.
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TABLE 3 | Matching matrix comparing the DSOM, X15, and Z09 classifications.

DSOM Class Z09

0 1 2 3 4 5 CH NCH TR

X
1
5

CH 7,727 3,994 3,330 125 502 47 14,273 993 459

SB 7,423 6,295 7,194 916 950 138 12,904 9,244 768

SR 3,233 392 1,404 584 434 157 877 4,747 580

TR 1,263 575 387 2,373 403 1,362 1,343 3,011 2,009

D
S
O
M

C
la
ss 0 13,357 5,966 323

1 9,040 2,213 3

2 6,173 5,789 353

3 637 2,848 513

4 170 987 1,132

5 20 192 1,492

Values in bold (underline) font represent the highest (second highest) frequency for each

column (row) in the top (bottom) half of the table.

In this matrix we see that CH and SB categories from the X15
classification are mostly associated with classes 0, 1, 2, and 4 in
the DSOM model, while TR winds are associated with classes 3
and 5. No particular class is clearly associated with SR winds, but
the highest frequency is observed for class 0.

CH in the Z09 classification are accurately associated with
classes 0 and 1, but a big part of the NCH wind is also grouped in
class 0. Transients are correctly distributed among classes 4 and
5 of the DSOM.

We highlight that the X15 and Z09 models, the two
classifications most used for the verification of machine learning
results (see Camporeale et al., 2017; Li et al., 2020), are not fully
compatible among themselves. A large number of CH winds
from the Z09 classification is associated with SB winds in the
X15 classification, and a considerable number of transients are
cataloged as sector boundary crossings (SB).

3.5. Time Series Comparisons
A complementary method to compare the different classification
techniques is to visually inspect windows of time and check, with
the help of a human expert, that the time series are in agreement
with the previous analysis. Figure 11 shows, in two columns,
two windows of time of 4 months. The left column contains a
high solar activity period, from May 2003 to September 2003,
and the right column contains a period of low solar activity,
between January 2008 and May 2008. Each one of the eight (8)
rows contains a plot of the solar wind speed colored by a different
classification method, from empirical models (Z09, vS15, and
X15) to unsupervised methods (k-means, k-means, BGM, and
DSOM). The colors of the empirical methods in the time series
correspond to the labels assigned in Table 1, and the colors of
the models were all assigned by manually ordering the classes
following the frequency log10(O

7+/O6+), from low values (low
category number) to high values (high category number).

In the same figure vertical gray zones correspond to
Richardson and Cane ICME catalog entries (Richardson and
Cane, 2012), and vertical lines to entries in the UNH and
CfA catalogs.

It is clear that among the empirical models, the vS15, based on
observations by the Ulysses mission, is the most restrictive in the
selection of CH origin winds, however during the plotted quiet
time in the right column, which corresponds to the declining
phase of the solar cycle, a significant part of the solar wind
originates in coronal holes, and in fact High Speed Stream and
Corotating Interaction regions, associated to wind of CH origin,
are the main driver of geomagnetic activity during the declining
phase of the cycle (Tsurutani et al., 2006; Innocenti et al., 2011).
During both solar activity windows the Z09 and X15 models
assign an important number of observations to coronal holes.
von Steiger and Zurbuchen (2015) shows that the threshold used
in the Z09 classification to identify coronal holes is not accurate
and can misclassify NCH as CH. Both models accurately identify
transients in the data. Quiet solar wind is more clearly visible
during the low solar activity window in the X15 model.

k-means (KPCA) and BGM (KPCA) correctly classify CH
origin winds (classes 0 and 1). A clear transition between class 1,
CH wind, and class 3 can be observed on both panels. Transients
are also well-captured with classes 4 and 5. On the other hand,
classifications based on the k-means (AE) and BGM (AE), do
not show high accuracy in these two windows of time, but are
able to detect transients. These two methods show difficulties in
discerning QS winds from CH solar winds.

The DSOMmodel shows good performances. The two classes
associated with CH origin wind, classes 0 and 1, are more
restrictive than the Z09 and X15 classes. Classes 4 and 5
distinguish between two different types of transients. ICMEs in
these time windows are mainly associated with class 5, except
for transients observed around 2003-05-20 and 2003-06-15. The
model also detects a very slow transient around 2003-07-10.
The 27 days solar period is also evident on the oscillations of
the solar wind speed and the periodic nature of the solar wind
types. In the low solar activity window the solar wind is more
homogeneous and shows mainly CH and QS origin winds, as
expected (Tsurutani et al., 2006).

Different classification methods lead to different classes with
different properties. Roberts et al. (2020) performed detailed
descriptions of the categorized solar wind classes based on the
mean values observed in each subset of points. Zhao et al. (2017)
shows that it is important to look at the frequency distribution
and not only the mean. Our model shows that some features can
present very large distributions inside a single class, evenmultiple
peaks, as is the case of the solar wind speed for the CH classes.

We will perform further refinements of the model and its
interpretation in a future work. These preliminary results show
the great potential of the techniques introduced in this paper.
DSOMs show the variability of solar wind and how it can be
visually characterized. The DSOM is a helpful guide in the study
of the different types of solar wind, but is not necessarily an
objective, unbiased and final classificationmethod. In our current
understanding, the main factor that determines classification
results is the choice of the solar wind parameters used in
the DSOM training. Choosing parameters that, according to
previous studies and our physical understanding of the wind,
can discriminate between specific wind types can guide the
classification results. On the other hand, the possibility exists that
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FIGURE 11 | Solar wind speed observed by ACE in two windows of time: during high solar activity (left column) and during low solar activity (right column). Each row

corresponds to a different solar wind classification method. Vertical gray zones and lines correspond to entries in the Richardson and Cane, UNH, and CfA catalogs

described in section 2.1.3.

an unsupervised classificationmethods, such as the one used here
will highlight the presence of solar wind types that could warrant
future physical investigation. DSOMs open the possibility for a
fast visual characterization of large and complex data sets.

4. DISCUSSION

In this paper we show how the categorization of solar wind can
be informed by classic unsupervised clustering methods and Self-
OrganizingMaps (SOM).We demonstrate that a single technique
used in isolation can be misleading in the interpretation of
automatic classifications.We show that it is important to examine
the SOM lattices, in conjunction with solar wind composition
and velocity distributions, and time series plots. Thanks to
these tools we can differentiate classes associated with known
heliospheric events.

We are convinced that basic unsupervised clustering
techniques will have difficulties in finding characteristic solar
wind classes when they are applied to unprocessed data. A

combination of feature engineering, non-linear transformations
and SOM training leads to a more appropriate segmentation of
the data points.

The classification of the solar wind also depends on the
objectives that want to be attained: if the goal is to classify the
solar wind to study its origin on the Sun, features related to solar
activity must be included in the model; however, if the goal is
to identify geoeffectiveness, other parameters should be added to
the list of features, including geomagnetic indices.

In this work we have presented a first test of the capabilities
of the SOMs for the analysis of data from a full solar cycle.
Due to the extent of the work done, in this paper we introduce
all the methods and techniques developed, but we leave for a
future publication a more refined selection of all the model
parameters, and the corresponding interpretation of the solar
wind classification.

Finally, we advocate for the creation of a catalog of foot
point locations for every solar mission, that connect solar wind
observations to points on the solar surface. Due to the uncertainty
of on the exact foot point, such catalog should be composed of
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a set of probabilities for each possible solar origin. This ground
truth will vastly improve the efficacy of our classification models,
which in turn can be used to reduce the initial uncertainties of
the catalog.

All the tools and the techniques presented here can be applied
to any other data set consisting of large amounts of points with a
fixed number of properties. All the software and the data used in
this work are freely available for reproduction and improvement
of the results presented above.
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Acquisition of relatively large data sets based on measurements in the interplanetary

medium, throughout Earth’s magnetosphere, and from ground-based platforms has

been a hallmark of the heliophysics discipline for several decades. Early methods of time

series analysis with such datasets revealed key causal physical relationships and led

to successful forecast models of magnetospheric substorms and geomagnetic storms.

Applying neural network methods and linear prediction filtering approaches provided

tremendous insights into how solar wind-magnetosphere-ionosphere coupling worked

under various forcing conditions. Some applications of neural net and related methods

were viewed askance in earlier times because it was not obvious how to extract or

infer the underlying physics of input-output relationships. Today, there are powerful new

methods being developed in the data sciences that harken back to earlier successful

specification and forecasting methods. This paper reviews briefly earlier work and looks

at new prospects for heliophysics prediction methods.

Keywords: non-linearity, dynamics, informatics, multiscale, analytics

INTRODUCTION

Modern information and communication technologies have created an interoperable era in which
access to data can be essentially universal. Open access to these data and related services enables
the research and applications community to meet new challenges of understanding Earth and
its space environment (Baker, 2008). Given the complex system, understanding the Earth and
near-Earth space requires managing and accessing large data sets. It also requires acquisition of
progressively higher spatial and temporal resolution measurements. In the modern era, there is
particular need for very rapid (near real-time) response modalities. In many instances, acquired
data must be assimilated into empirical or physics-based models. Such work often requires crossing
of disciplinary boundaries in order to achieve the ultimate research and applications goals.

Traditionally, science has been viewed as being based on two fundamental pillars:
Experimentation (i.e., observations) and theory. In the past century or so, computational methods
and related modeling have been added as an essential pillar of basic science. In fact, most domains
of science today could simply not be viable without the availability of computational modeling.
In recent times, it has been further recognized that “informatics” —the science of processing data
for storage and retrieval—is an indispensable fourth pillar of modern science (Baker et al., 2008).
Thus, for the present-day purposes of understanding and predicting the behavior of the coupled
Sun-Earth system, information science is as much a key foundation as are the more traditional
elements of science (see Figure 1).

In this brief review, the goal is to use the coupled solar wind-magnetosphere-ionosphere system
to illustrate the application and utilization of various data analysis methods. Many topics to
be discussed were based on time series analysis and prediction filter methods. This work led

162

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2020.540133
http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2020.540133&domain=pdf&date_stamp=2020-10-02
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:daniel.baker@lasp.colorado.edu
https://doi.org/10.3389/fspas.2020.540133
https://www.frontiersin.org/articles/10.3389/fspas.2020.540133/full


Baker Solar Terrestrial Data Science

naturally to the understanding that the magnetosphere-
ionosphere system often evolves toward highly non-linear states
that must be examined carefully. Methods employed decades
ago have now become quite relevant again in the present era of
machine learning. Appreciation of the roots of solar-terrestrial
data science are important looking toward the future.

THE DRIVEN
MAGNETOSPHERE-IONOSPHERE
SYSTEM

Figure 2 is a schematic diagram of the Earth’s magnetosphere
and some of its key plasma physical regions. The diagram

FIGURE 1 | The pillars supporting basic science have long been considered to

be experimental observations and theory. In more recent times, computation

has also been an integral part of most scientific disciplines. Today, informatics

(that bridges between information and communication technology on the one

hand and the use of digital data on the other) must also be considered as a

fundamental pillar of the science enterprise (From Baker et al., 2008).

FIGURE 2 | A schematic design showing the overall structure of Earth’s magnetosphere and some of the key plasma regions and current systems comprising the

geospace domain.

also illustrates the external solar wind flow and many
of the large-scale current systems that shape the overall
magnetospheric cavity. From this picture, we see that the
Earth’s magnetosphere-ionosphere system is a large, highly-
coupled plasma domain. In its ground state, the magnetosphere
is characterized by a relatively stable configuration standing
off the solar wind at ∼12 RE (Earth radii) at its sub-
solar point. It extends into an elongated magnetotail on
the nightside. The basic steady-state relationship with the
interplanetary magnetic field (denoted BIMF) during quiet
times gives rise to a coherent global structure with persistent
boundary features.

As the solar wind impinging on the magnetosphere
changes velocity or density and, notably, when the IMF
changes magnitude or direction, the magnetosphere undergoes
substantial evolution. The size of the magnetospheric cavity
changes, strong ionospheric currents are set up, and large
configurational changes can be seen throughout the magnetotail.
The elemental and repeatable sequence of events that occurs
starts with a southward turning of the interplanetary magnetic
field. This causes enhanced coupling from the solar wind into
the magnetosphere.

Figure 3 shows the commonly accepted picture of the
resulting magnetospheric substorm sequence (Baker et al., 1993,
1996). Figure 3A shows a cross-sectional view of the magnetotail
and illustrates its relaxed or quiescent state. The plasma sheet is
rather thick and there is little excess “free energy” in the system.
Figure 3B shows the magnetotail as the interplanetary field has
turned southward and a large amount of magnetic energy has
been added to the tail. This growth phase is characterized by
considerable excess stored energy in the magnetotail lobes and
a thin, stressed plasma sheet. Finally, in Figure 3C we show
the explosive onset of near-Earth magnetic reconnection (x-line
formation) which gives rise to a plasmoid that pinches off and
leaves the system. This entire sequence constitutes a magnetic
“loading-unloading” system. As such, it can be modeled using
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FIGURE 3 | Cross-sectional views of the Earth’s magnetosphere showing the

solar wind interaction and dynamical evolution. (A) The quiet time or “ground

state” configuration showing weak solar wind energy coupling to the

magnetosphere. (B) The growth phase of the magnetospheric substorm

showing increased solar wind energy coupling (due to dayside magnetic

reconnection) and a plasma sheet thinning on the nightside. (C) Explosive

reconnection at a near-Earth magnetic neutral line in the plasma sheet and

plasmoid formation at substorm onset.

non-linear dynamic methods (Sharma et al., 2005) in analogy
with concepts developed in statistical physics and in branches of
applied mathematics.

The magnetospheric energy unloading process early on was
considered to be analogous to a dripping faucet (Hones, 1979)
(see Figure 4): The plasma sheet in the magnetotail distends as
part of the substorm growth phase. Then a portion of the plasma
sheet pinches off to form the separated plasmoid at substorm
onset. The plasmoid moves tailward and leaves the magnetotail
and the Earthward part of the plasma sheet snaps back toward
the Earth, in analogy with a dripping faucet.

Figure 5 illustrates conceptually the steps of the solar
wind-magnetosphere coupling process. Basically, the coupling
effects are controlled by the dawn-to-dusk component of the

FIGURE 4 | An illustration of the analogy between a dripping faucet and the

formation of large-scale plasmoid in Earth’s magnetotail during a

magnetospheric substorm (from Hones, 1979). This concept has been

extended to develop non-linear analog models of substorms.

interplanetary electric field ESW (=-VSW × BIMF) with VSW the
solar wind speed. Therefore, taking into account this “rectifier”
effect, many studies have shown that the main parameter driving
substorms is the solar wind speed (VSW) multiplied by the
southward IMF component (Bs) (Bs = –BIMF for BIMF < 0,
and Bs = 0 for BIMF > 0). Changing of VBS (=VswBs) causes
variations in the dayside magnetic merging rate. As shown by
Figure 5, this change in dayside reconnection directly drives
ionospheric currents which show up in the auroral electrojet
(AE) indices. The westward electrojet (AL) index is particularly
indicative of the coupling process (Baker et al., 1996).

As energy is transferred to the magnetosphere, merged flux
is transported from the dayside to the nightside. This leads to
enhanced magnetotail flux and enhanced convection from the
distant x-line toward the Earth. The addition of tail flux is
indicative of an intensification of the cross-tail electrical currents
flowing in the plasma sheet. After about 1 h of tail flux loading,
(i.e., a 1-h substorm growth phase) there normally is a substorm
expansion phase onset. In the near-Earth neutral line (NENL)
model of substorms (Baker et al., 1996), the expansion phase
onset is produced by the sudden appearance of a new x-line
which causes strongmagnetic reconnection in the relatively near-
Earth portion of the plasma sheet. The reconnection process and
the accompanying cross-tail current disruption drives further
flow of currents through the nightside ionosphere to form the
“unloading” currents. These energy-dissipation processes show
up prominently in the AE index.

It is worth noting that there can bemany variants of substorm-
like activity in the magnetosphere. There can be so-called
steady convection events and other energy dissipation events
that may not clearly exhibit all the “phases” noted above (see
Shukhtina et al., 2014). Nonetheless, the basic pattern of energy
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FIGURE 5 | A notational sketch of an isolated substorm as seen in a time series of auroral electrojet (AE) values vs. time. The boxes in the flow chart around this

schematic describe the key, repeatable physical phenomena occurring during substorms. BBFs are bursty bulk flows of plasma. These are localized, high-speed

particle transport regions.

loading, rapid energy dissipation, and relaxation back toward a
ground state seems clearly established in many cases. Obviously,
there is great value in examining events that depart from the
classic pattern.

The energy flow from the solar wind through the
magnetosphere into the ionosphere has been addressed in
terms of a global-scale convection process. This has been
modeled in terms of linear filter relationship between VBS as
an input time series and AL as a magnetospheric output time
series (Blanchard and McPherron, 1992). As shown here in
Figure 6, the transfer (or filter) function g(t) can be viewed
as a general linear relationship between the solar wind driver
and the magnetospheric response (Bargatze et al., 1985). When
many different intervals of geomagnetic disturbance were
considered, Bargatze et al. (1985) found that periods of weak or
moderate disturbances showed linear response filters with two
peaks (Figure 7). These were interpreted as the directly-driven
response (at 20-min lag time) and the unloading response (at
60-min lag). During high geomagnetic activity periods, the
60-min response peak was seen to disappear or even to merge
into the 20-min peak. This was interpreted by Baker et al. (1990a)
as evidence of a non-linear evolution of geomagnetic activity as
the system moved from weak to strong disturbance levels.

LOW-DIMENSIONAL ANALOG MODELS

Taking into account observed evolution of linear prediction filters
with increasing geomagnetic activity (Bargatze et al., 1985), Baker
et al. (1990a) developed a mechanical analog model of substorm
dynamics. As shown in Figure 8A, the model considered a mass
on a spring. The mass increases at a fixed loading rate, dmL/dt,
until a critical distention D = DC is reached. Then a portion
of the mass is released from the spring at a rate (dmu/dt) that
is governed by the velocity of the mass (dD/dt = p/m) at the
critical displacement point. In this formulation, p represents the
momentum of the weight on the spring. The movement of this
mass on the spring is described by dp/dt=Gm – κD – ηp/m. The
spring constant, κ and the frictional coefficient, η, are assumed
fixed. The set of equations for dD/dt and dp/dt, as closed by
the conditions on the dm/dt, give rise to a set of non-linear
equations. When dmL/dt increases toward large volumes, the
system moves from weak periodic unloading to highly chaotic,
non-linear behavior. In essence, the addition of mass and its
subsequent unloading gives rise to complex interactions as the
loading rate changes.

The mechanical analog model of Baker et al. (1990a) was
inspired by a similar model of drippy faucets developed by Shaw
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FIGURE 6 | The response of the magnetosphere to the solar wind IMF. In this diagram, the global configuration and magnetic topology are shown and currents are

illustrated. The magnetosphere is treated as a linear filter relating VBS to AL (adapted from Blanchard and McPherron, 1992).

FIGURE 7 | A pair of linear prediction filters (or impulse response curves)

showing the time-lagged response between the interplanetary electric field

(VBS) and the AL geomagnetic activity index. The linear prediction filters are

chosen for a weak average activity interval and a strong activity period. An

evolution from double-peaked (bimodal) filter to single-peaked filter suggests a

non-linear dynamical behavior of magnetospheric activity (adapted from

Bargatze et al., 1985).

(1984). Baker et al. took rather literally the analogy between
substorm unloading processes and a dripping faucet (Hones,
1979). As noted, the plasma sheet distends considerably and in
the substorm growth phase. During the near-Earth reconnection
onset, a part of the plasma sheet pinches off to form the substorm
plasmoid. The remaining plasma sheet snaps back sunward. The
upper part of Figure 4 illustrates that the dripping faucet behaves
analogously to the Earth’s plasma sheet during substorms.

The mass-on-spring analog model of Baker et al. (1990a) was
capable of reproducing aspects of magnetospheric substorms;

the sequence shown above in Figure 3 were reproduced rather
well. Moreover, when a loading rate increased, the analog system
exhibited non-linear behavior: period doubling and “bifurcation”
resulted such that fully developed chaotic behavior ensued. Given
the elementary, 2½ dimensional nature of the model, this was a
quite successful simulation. Nonetheless, the mechanical analogy
was limited. As a follow-on approach, Klimas et al. (1992)
developed the Faraday loop model (Figure 8B) which was based
more on a plasma analog.

The Faraday loop approach was a dynamical convection
model with three degrees of freedom: (1) The average cross-tail
electric field in the near-Earth current sheet, Ey; (2) The variation
of Ey due to solar wind input, noted E0 on Figure 8B, and Esw
earlier in the text, to the tail near the X-line position; and (3)
variable magnetic flux content of magnetotail. The Faraday loop
model was very much like the drippy faucet model. Flux was
loaded into the tail at a rate determined by the (solar wind) input,
E0. In the model, the tail unloads by forming a plasmoid, thereby
dumping much of the tail flux in the tail (as in Figure 3 above).

One of the most important findings of the early linear
prediction filter analysis was the “bimodal” response behavior
(see Figure 7). The 20-min driven response time scale and the
60-min unloading time scale emerged as clear features during
moderate activity periods. Using the Faraday loop model, we
were able to use the observed VBs values measured upstream of
the Earth to drive the Faraday loop model with realistic inputs.
This allowed examination of analog model outputs as was done
by Bargatze et al. (1985) using linear filter analysis. Of course,
it was also possible to compute the linear filter elements in the
Faraday Loop model as for the real magnetospheric response (as
measured by the AL index).

Important studies in this early period went further to examine
underlying dynamics as revealed within indicial time series data.
Consolini et al. (1996) used the auroral electrojet indices to infer
multifractal aspects of the dynamical system behavior. These
authors examined the infrerred turbulent character involved
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FIGURE 8 | (A) The mechanical analog model for the substorm process:

Mass on a spring is increased until a critical distance is reached. At that point,

part of the mass is unloaded which causes the mass to move upward, after

which the mass loading continues. (B) A Faraday loop model for the

magnetospheric activity (Klimas et al., 1992). The dynamical substorm cycle is

represented by a system of changing electric fields and magnetic flux content

of the tail lobes. The magnetic flux changes in terms of the electric field

imbalance and the magnetic flux content as produced by the tail currents.

with the magnetosphere-ionosphere dynamics. Subsequently in
important studies of the nature of the Earth’s plasma sheet
behavior during active times, Angelopoulos et al. (1999) found
evidence of intermittency in the plasma flows. This work was
extended by Vörös et al. (2003) who confirmed such intermittent
multiscale behavior of themagnetic field in the near-Earth plasma
sheet (see section Multi-Scale Aspects).

Follow-on work (e.g., Freeman and Morley, 2004, 2009) has
sought to assemble “minimal” substorm models that contain
the key aspects of substorm dynamical processes and timing
properties. While substorms in the real world can have many
complex variations, there is a basic, repeatable underlying
pattern of substorms that is usually present. While early
studies tended to focus on the auroral electrojet index time
series, subsequent studies also examined other available indices.
Wanliss (2005) found fractal behavior in the stormtime (SYM-
H) index time series and this fractal nature of the dynamics was

amplified upon in a broad study of magnetic storm development
(Balasis et al., 2006).

MULTI-SCALE ASPECTS

The traditional methods of studying the solar wind
interaction with Earth’s magnetosphere have been to take a
magnetohydrodynamic (MHD) approach. This framework was
described in the foregoing sections of this review. The MHD
method has had many successes and has helped, for example,
to illuminate much about the fundamental substorm dynamical
cycle. However, MHD models use different computational
techniques and approaches which can lead to different predicted
dynamical (substorm) behavior (see Gordeev et al., 2016).
Moreover, as we have also detailed in this paper, there are
complex and non-linear aspects of solar wind-magnetosphere
coupling that are not always adequately captured by the
straightforward MHD models and simulations (Baker et al.,
1999 and references therein). This has led various authors to
take different tacks and these alternatives have provided valuable
and novel understanding of the coupling issues. For example,
Chapman et al. (1998) and Chang (1999) employed analog
models to characterize the most general dynamical properties of
the terrestrial plasma sheet and its coupling in the ionosphere.
These ideas are based on the slow buildup of a system until
it reaches an unstable state at which point an “avalanche”
occurs and the system collapses. Chapman et al. (1998) gained
valuable insight into the energy buildup and release in the
Earth’s magnetotail using such a “sand pile” approach. The
basic advances from this kind of work have been the realization
that the growth phase of substorms is an essential element
of the substorm cycle. Either a spontaneous relaxation of the
system must eventually occur after sufficient loading or else even
the slightest perturbation of the system can trigger a massive
energy release.

Another approach considered for the magnetospheric system
was predicated on a variant of “catastrophe theory.” This was
based on the idea of a system that has evolved to a highly
stressed state. Then, after further forcing, the system undergoes
a catastrophic transition to a much more relaxed state. As shown
here in Figure 9 from Baker et al. (1999), the magnetosphere can
be thought of late in the substorm growth phase as being primed
for catastrophic collapse. Then by means of one or more plasma
physical processes, the magnetotail can collapse into a relaxed
configuration. This kind of reasoning was also explored by Lewis
(1991) in an attempt to help resolve some of the longstanding
debates about the exact mechanisms and physical instabilities
that lead to substorm onsets. Baker et al. (1999) noted that
it might be a variety of different instabilities that could play
important triggering roles in the state transition, depending on
the circumstances.

Based upon decades of in situ and remote sensing observations
of the global magnetospheric system and based upon the revealed
complexity of the underlying magnetospheric dynamics, one
can say that many different approaches have been necessary
to disentangle the various facets of geomagnetic activity. But
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FIGURE 9 | A diagram illustrating the abrupt (“catastrophic”) transition of the

magnetosphere from a highly stressed, or taillike, magnetic connection to a

much more relaxed configuration. Several different physical pathways for such

relaxation may be possible once the magnetosphere exceeds a critical value of

a magnetospheric state variable λ* (adapted from Baker et al., 1999).

quite clearly, all the evidence suggests that the solar wind-
magnetosphere-ionosphere interactions have strongly non-linear
aspects to them. In light of this recognition, space plasma physics,
as applied to magnetospheric dynamics, must move away from
traditional plasma stability analyses and must utilize techniques
that incorporate global, non-linear interactions. In trying to
embrace such approaches, ideas from other branches of physics,
engineering, applied mathematics, etc., can provide valid and
extremely useful insights.

Adopting a more generalized point of view has certainly
driven home the point that multiscale phenomena play a crucial
role in magnetospheric dynamics. For example, global auroral
images have been examined on a wide range of temporal and
spatial scales (Lui, 2002; Uritsky et al., 2002). The results of such
analysis point clearly toward essentially scale-free distributions
over a wide spectrum of system conditions. This may further
imply that the magnetotail can undergo strong dissipation events
in part due to local plasma instabilities and in part due to control
elements remote from the central plasma sheet. These elements
may largely lie in the incident solar wind driver or theymay reside
in the distant ionosphere. Under such circumstances, it may
appear that regional plasma instabilities are spontaneous or are
even occurring in an essentially random fashion (Lewis, 1991).
Thus, a lesson from many prior, diverse types of studies is
that non-traditional analysis and modeling can reveal important
aspects of our terrestrial space environment.

STATE SPACE ANALYSIS AND PHASE
SPACE RECONSTRUCTION

Phase space reconstruction and analog model development—
as discussed here—give considerable insight into all aspects

FIGURE 10 | (a) Illustration of a simple nonlinear relationship between the

state of the magnetosphere (X) and solar wind input (U); (b) Neighboring

trajectories through magnetospheric state space.

of magnetospheric dynamics. The evidence has suggested that
substorms are the manifestation of a fundamental dynamical
cycle. But this work also has shown that the magnetosphere is
never really linear in its interaction with the solar wind since the
nature of the substorm response varies as the general level of the
activity increases.

In light of such analysis, one can speak in terms of a
certain “state” of the magnetospheric system (see Vassiliadis
et al., 1995). This state can be characterized by the level of
geomagnetic activity (as might be measured by AE, AL, Kp, or
other global indices). One can identify a state variable, X(t),
which characterizes the global magnetospheric condition, but
which also takes cognizance of the recent past history of the solar
wind input [U(t)] and the resultant magnetospheric response.
Figure 10a illustrates a simple non-linear (i.e., quadratic)
relationship between U(t) and X(t). At a particular point (X0, U0)
one approximates the relationship by a “local linear” filter (LLP).
In general, the LLF varies depending on the input level.

Pursuing the notion of amagnetospheric state, Vassiliadis et al.
(1995) asserted that the system evolved according to dX/dt =
F(X; U). It assumed that an index such as AL contains sufficient
information to characterize the whole magnetospheric system.
The basis for this assumption has been examined in earlier studies
and analogous questions have been addressed for many complex
systems (Gleick, 1987). It seems clear that global geomagnetic
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indices embed within them the “shadow” of all the key dynamical
processes. Proceeding on this presumption, the recent history of
input [U(t)] and output [X(t)] specifies a clear trajectory in state
space. This concept is illustrated in Figure 10b where the open
dot at time, t, is followed by another point in state space at time
= t + T. Because of the repeatable cycle in substorm dynamics,
there is a reasonable possibility of extrapolating the dynamical
evolution of the magnetosphere into the future. By examining
the “nearest neighbors” of a given point (X0, U0) in state space,
and using the average state space trajectories represented by the
nearest neighbor points, one can predict the future evolution of
the solar wind-magnetosphere system (Vassiliadis et al., 1995).

The method of state space construction proved to be
a powerful way of predicting future geomagnetic activity.
As described above, one can use a large data base of
previous input-output (e.g., VBs-AL) relationships to construct a
multidimensional state space. One can then consider the recent
values of VBs and AL leading up to this point. For example,
consider the previous 15min of AL behavior. Then looking
back in the historical data base, find all previous examples of
VBs-AL behavior that closely parallel the one in question. By
averaging together these “nearest neighbor” trajectories in state
space one can predict with some assurance the future evolution
of the ongoing geomagnetic activity pattern. In many ways this
is similar to predicting terrestrial weather based upon previous
similar patterns of season, temperature, pressure, humidity, etc.

All of this work may be termed “data-mining” and it has
shown significant successes over many years. There have been
crucially important models of the terrestrial magnetic field built
on such data mining efforts (Tsyganenko and Sitnov, 2007; Sitnov
et al., 2008). More recently, using this kind of global magnetic
field information has allowed extraction of magnetospheric
substorm growth phase and expansion phase patterns (Stephens
et al., 2019). Going beyond simple index data to global in situ data
exploitation may hold even greater modeling promise.

NON-LINEAR DYNAMICS AND
COMPLEXITY

As discussed above, linear prediction filters can be convolved
with input time-series in order to approximate the output of
a specified system process. This was the approach taken for
substorm onset forecasting (Bargatze et al., 1985; Blanchard
and McPherron, 1992) and the method met with considerable
empirical success. However, the approach was also criticized
because it did not reveal in great detail the underlying physical
processes producing substorm onsets.

Many other magnetospheric properties have been modeled
using linear filter methods. For example, Nagai (1988) applied
this approach to the problem of specifying and forecast energetic
electron fluxes at the geostationary orbit using Kp geomagnetic
indices as the driving input. Baker et al. (1990b) applied linear
prediction filter methods to the same problem but using solar
wind speed data as the driver input. This latter approach
proved to be very useful and powerful. Even today—three
decades later—the Space Weather Prediction Center of the

National Oceanic and Atmospheric Administration (NOAA)
uses the Baker et al. (1990b) method as the basis of its
Relativistic Electron Forecast Model (REFM). This model
provides 1–8 day predictions of omni-directional electron fluxes
at geostationary orbit using real-time solar wind data fromNASA
spacecraft at L1.

While linear analyses can work well in such system
applications, there is ample evidence that non-linear behavior is
exhibited in several ways by the Earth’s magnetosphere. This was
well-documented by the Bargatze et al. (1985) work concerning
magnetospheric substorms described above. Much work over the
past several decades has further demonstrated that geomagnetic
activity can exhibit output that is not proportional to input. There
are clear examples in the ionosphere and the magnetospheric
proper where there are feedbacks (that is, output influences input
to some greater or lesser degree). The near-Earth system thus
can exhibit what seems to be random behavior and there can be
immense sensitivity to initial conditions. These are all properties
of non-linear dynamics (Gleick, 1987). This has also been termed
low-dimensional behavior or “deterministic chaos.” Such non-
linearity can lead to self-organization in which global patterns
emerge from local interactions amongmany subunits (see Pepper
and Hoelzer, 2001) In these cases—as in the magnetosphere-
ionosphere system—the interactions are often shaped bymultiple
feedback loops.

As described by Klimas et al. (2000), the magnetotail
and its embedded plasma sheet (see Figure 2) exhibit many
of the properties just discussed. Klimas et al. noted that
the magnetotail is a spatially distributed loading-unloading
system. The hypothesis—well-supported by observations—is that
magnetic flux is the relevant conserved quantity. Klimas et al.
also demonstrated that the magnetotail is often near a threshold
instability that can produce localized magnetic reconnection.
Thus, the system exhibits self-organized criticality (SOC) with a
level of global coherence in a broadly distributed spatial region
that is near instability (see, also, Sitnov et al., 2001). Often in the
magnetotail system, localized reconnection, “pseudo-breakups,”
and full-fledged magnetospheric substorms produce a rather
“scale-free” cascade (avalanche) of geomagnetic disturbances
(Klimas et al., 2000).

A persistent question in system analysis is how much
information content may be inherently contained in a given
parameter sequence or activity time series. Measures of ‘entropy”
are often used to assess such information content and many
studies have suggested that the magnetosphere exhibits clear
evolution frommore complex to a more orderly state as the near-
Earth space moves from pre-storm to full geomagnetic storm
conditions (Balasis et al., 2008, 2009). More recent work building
on such entropy assessments have examined the information
transfer via solar wind forcing leading to radiation belt flux
enhancements (Wing et al., 2016). Entropy analyses have also
helped understand more deeply the substorm-storm relationship
that lies at the heart of the magnetospheric dynamical pattern
(Runge et al., 2018).

As shown schematically in Figure 11 (from Baker, 2011),
there has been quite a progression of thought about non-linear
magnetospheric dynamics over the past several decades. From
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FIGURE 11 | A timeline of ideas and papers dealing with various aspects non-linear dynamics in magnetospheric physics (from Baker, 2011).

the rudimentary analogy of the dripping faucet by Hones (1979)
through the several models and approaches of the 1990s and
early 2000s, many methods of data analysis have shown that
the magnetosphere-ionosphere system is a complex, non-linear
domain. With new large data sets from observing platforms such
as the Magnetospheric Multiscale (MMS) mission (Burch et al.,
2015), new opportunities now exist to examine questions that
were not accessible in earlier times.

NEURAL NETWORKS, MACHINE
LEARNING, AND FUTURE PROSPECTS

In the 1990s and into the 2000s, several authors and research
groups began to employ artificial neural network (ANN)methods
to study such things as solar wind driving of radiation belt particle
fluxes (e.g., Stringer and McPherron, 1993) and geomagnetic
activity (e.g., Gleisner and Lundstedt, 1997; Takalo and Timonen,
1997). These multi-layer feed-forward neural nets were able to
provide—in many cases—impressive specification and forecasts
of important space weather indicators such as the AE/AL indices
or geostationary-orbit electron fluxes. Somewhat later, related
ANN methods were able to specify and predict up to 1-h ahead
the ionosphere total electron content (TEC) (see, e.g., Tulunay
et al., 2006). While these approaches often gave remarkably good
forecasts of geophysical conditions, there were also criticisms
that the methods did not reveal deep insight into the underlying
physics that produced specific responses.

In today’s era of machine learning (ML), there seems to be
less concern about always needing to understand precisely why
a given method works. Rather there is more concern about

how well a ML tool might be able to do. Recent studies have
used vast new spacecraft data sets for a wide range of purposes
such as assessing magnetospheric field models (Yu et al., 2014)
and identifying radiation belt pitch angle distribution patterns
(Souza et al., 2016). In these instances, and many more that
could be cited, neural network tools permit data examination and
classification in rather automatic ways.

Machine learning has reached even more full flower in just
the last few years. Combining physical models with machine
learning techniques has provided the capability to analyze and
understand relationships between cold plasma properties, local
wave characteristics, and relativistic electron flux distributions
throughout the inner magnetosphere (Chu et al., 2017; Bortnik
et al., 2018). Particularly notable successes have been achieved
using non-linear autoregressive moving average with exogenous
inputs (NARMAX) methods to predict energetic particle events
(e.g., Boynton et al., 2011, 2013). Both acceleration and loss
processes for relativistic electrons, including the amount of
“memory” in the system, have been more deeply understood
through the use of ML techniques.

Looking to the future, it is obvious that both space missions
and ground-based systems will continue to increase in
their capabilities. This means even higher volumes of solar,
interplanetary, and geospace data. “Non-linear” approaches
(spectral methods, filter techniques, ANNs, etc.) will
also probably keep increasing in complexity and in their
“data-mining” capabilities. Many useful applications of these
capabilities will probably result. They likely will include:

– Data conditioning (gap filling, noise reduction, data
smoothing, etc.);
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– Empirical model development and coupling to other models
(either first-principles or other empirical models);

– Data assimilation (related to non-linear dynamics, control
theory, radiation belt behavior, thermospheric properties, GPS
performance, etc.); and

– Prediction algorithms.

SUMMARY AND CONCLUSIONS

Advances in computer technology in the 1980s allowed
scientists and mathematicians to solve numerically many vexing
problems posed decades earlier. This meant that fields of
fractal geometry, non-linear dynamics, chaos theory, wavelet
(and other) transform methods, neural networks, etc., could
be formulated as extensions (or juxtapositions) to traditional
linear and spectral approaches. Hence, concepts such as the
“state” of a plasma, fractals, chaos (as opposed to turbulence),
cellular automata, and several other ideas trace back to that time.
From these ideas, especially in the 1990s, sprang a plethora of
methods for data analysis. In this brief review, we have touched
on some examples in geomagnetic field studies, radiation belt
behavior, ionospheric and thermospheric changes, and solar
wind-magnetosphere coupling, among others. These approaches
often gave rise to improved methods of numerical simulations of
the magnetospheric domain.

While some of the methods explored in earlier decades found
only limited use and therefore did not develop further into
the 2000s, others revealed great utility. This often sprang from
data analysis methods developed in earlier times that now have
found applications in processing large volumes of data returned
by spacecraft missions and ground-based observation platforms.
In this machine learning era, this is an extremely important
outcome. These earlier methods now are aiding in producing new
(and effective) empirical and physical models. These results hold

great promise for predicting the state of geoplasma systems going
forward. Thus, space situational awareness and space weather
applications seem to be on the threshold for a new and highly
productive phase.

It is perhaps worth noting that much of the early work
described in this brief review was built upon analysis and
modeling of geomagnetic index information. With years of in
situ measurements throughout the magnetosphere-ionosphere
system, we now have plasma, energetic particle, and magnetic
field data sets that could be organized and used to examine
dynamical properties of the solar-terrestrial system that were not
accessible readily based only on ground indices such as AE or
Dst. It would be quite valuable (in the author’s opinion) to use
different long-term descriptors of themagnetospheric system and
repeat some of the kinds of studies that have been reviewed here.
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Geomagnetically induced currents (GIC) can drive power outages and damage power

grid components while also affecting pipelines and train systems. Developing the ability

to predict local GICs is important to protecting infrastructure and limiting the impact of

geomagnetic storms on public safety and the economy. While GIC data is not readily

available, variations in the magnetic field, dB/dt, measured by ground magnetometers

can be used as a proxy for GICs. We are developing a set of neural networks to

predict the east and north components of the magnetic field, BE and BN, from which

the horizontal component, BH, and its variation in time, dBH/dt, are calculated. We

apply two techniques for time series analysis to study the connection of solar wind and

interplanetary magnetic field properties obtained from the OMNI dataset to the ground

magnetic field perturbations. The analysis techniques include a feed-forward artificial

neural network (ANN) and a long-short term memory (LSTM) neural network. Here we

present a comparison of both models’ performance when predicting the BH component

of the Ottawa (OTT) ground magnetometer for the year 2011 and 2015 and then when

attempting to reconstruct the time series ofBH for two geomagnetic storms that occurred

on 5 August 2011 and 17 March 2015.

Keywords: space weather, GIC, geomagnetic storms, ground magnetic field, machine learning, neural network,

LSTM

1. INTRODUCTION

Geomagnetically induced currents (GICs) are one of the most significant space weather effects
due to their potential to damage the power grid and can cause widespread, long-term power
outages. Thus, the ability to forecast GICs is of significant interest to the space weather community,
industry partners, and national interests. The intensity of GICs is determined by the strength of
the geoelectric field. However, neither measurements of GICs nor the geoelectric field are readily
available. The geoelectric field is driven by temporal changes in the magnetic field and the local
geology. Thus, measurements of dB/dt using ground magnetometers are used as a proxy for
studying GICs. Ngwira et al. (2018) studied two storms during which intense dB/dt peaks occurred
and indicated that substorms appear to be the driver of GICs, but state that it’s not clear how the
widespread features of substorms lead to localized peaks in dB/dt. They theorize that it could be
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due to “the mapping of magnetospheric currents to local
ionospheric structures,” but indicate that further study is needed.
Physics based models are used to determine magnetic field
fluctuations, but high resolution models are needed to obtain
the spatially localized variations (Welling et al., 2019). Such
models are computationally expensive and take longer time to
run, posing challenges for their use as a forecasting tool. Machine
learning based models have the potential for providing efficient,
computationally inexpensive forecasts. Wintoft et al. (2015)
developedmodels using Elman neural networks to predict the 30-
min maximum of dBH/dt (horizontal component of dB/dt) from
ACE solar wind and magnetic field measurements. Their models
generally predict the timing of GICs caused by sudden impulses
well, even when they train the model using only ACE magnetic
field measurements.

While many studies of GICs focus on high magnetic latitudes
(>60◦) that lie under the auroral oval, it has been shown that
mid- (50◦–60◦) and low- (<50◦) latitude regions are also at risk
(Gaunt and Coetzee, 2007; Ngwira et al., 2008; Pulkkinen et al.,
2010; Oliveira et al., 2018). Lotz and Cilliers (2015) developed a
neural network based model using solar wind and IMF inputs
and dB/dt measurements at a Southern hemisphere mid-latitude
station as outputs. They developed separate models for the north
and east components of the geomagnetic field and found that
fluctuations in the eastward component are more dependent on
the interplanetary magnetic field (IMF) Bz . Similar to Wintoft
et al. (2015), they found reasonable predictions of the timing of
intense fluctuations, with less accuracy as the storm evolved.

More complex neural network architectures can be used
to improve the predictions for time-series data. For example,
recurrent neural networks such as long short-term memory
(LSTM) techniques are used to "remember" parameters from
earlier times that have a strong influence on the output features.
In this study we present a comparison of models using a
feed-forward artificial neural network (ANN) with a built-
in time dependence and a LSTM neural network to predict
the ground magnetic field north and east components (and
therefore the perturbations dBH/dt) at the mid-latitude ground
magnetometer station located in Ottawa (OTT). We then discuss
the performance of the models by using two of the benchmark
geomagnetic storms suggested by Welling et al. (2018) and
Pulkkinen et al. (2013). Finally, we discuss several model
variations that were implemented during the course of this
study to determine possible improvements to the performance
of the models.

2. DATA

For this study, we use solar wind and interplanetary magnetic
field (IMF) data obtained from the OMNIWeb dataset available
through NASA’s Space Physics Data Facility from 1995 through
2010 for the purpose of training and validation of themodels, and
from 2011 and 2015 for testing. These 2 years were selected for
testing because they include storms from the Pulkkinen-Welling
validation set for ground magnetic perturbations (Pulkkinen
et al., 2013; Welling et al., 2018). Baseline-removed ground

magnetometer data fromOTT has been obtained from SuperMag
(Gjerloev, 2012). The Ottawa ground magnetometer is located
at magnetic latitude 54.98◦ N and lags UT by 5 h (meaning
local midnight occurs at 05:00 UT). The choice of using solar
wind data from OMNI instead of the more traditional and
continuously available geomagnetic indices is based on the long-
term goal of being able to forecast variations in the ground
magnetic field ahead of time, and real time solar wind parameters
obtained at the L1 position tend to give a 30–40 min window
to distribute a warning. However, the OMNI dataset has been
mostly avoided in the past as it contains approximately 20% of
missing data distributed roughly evenly through the years in the
plasma parameters and∼ 8% in the IMFmeasurements. This was
noted by Wintoft et al. (2015), leading them to compare models
trained on just the magnetic field vs. combined magnetic field
and plasma measurements. Our intention is to use both IMF
and plasma parameters. Since a relatively continuous dataset is
preferred for training, some linear interpolation has been done
in the training/validation dataset of up to 10 min in all missing
parameters, which reduces the missing values to ∼ 6% in both
IMF and plasma measurements. OTT ground magnetic field
measurements have less than 1% of missing data during the
period of study. Those missing data points have been removed
from the training set. For the testing periods of 2011 and 2015
a full linear interpolation has been performed to the solar wind
data to achieve a completely continuous dataset.

Although dBH/dt is the best proxy measurement to GIC
forecasting, it is also very noisy and therefore difficult to forecast
directly with data-driven models. Tóth et al. (2014) also found
this to be true for first principles-based models. We therefore aim
to first predict the northward and eastward components of the
baseline-removed groundmagnetic field,BN and BE, respectively,
using two independent models and then combine them to obtain
the predicted horizontal component

BH =

√

B2N + B2E. (1)

For the purpose of comparison with the metrics defined by
Pulkkinen et al. (2013) we also need to obtain

(

dB/dt
)

H
, which is

calculated as

(

dB

dt

)

H

=

√

dBN

dt

2

+
dBE

dt

2

(2)

where

dBi

dt
=

[Bi(t + 1min)− Bi(t)]

1min
.

t is determined by the ground data resolution (1 min), and i
represents the components N or E. We emphasize that large
variations are most likely to result in significant GIC events.

3. MODELS

3.1. Feed-Forward Artificial Neural Network
In our first attempt to forecast the BE and BN components we
have chosen to train a fully-connected, feed-forward, artificial
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neural network (ANN) developed using the TensorFlow-
Keras environment (Abadi et al., 2015). The Tensorflow-Keras
environment is highly modular and allows the easy integration
of data and different types of networks. It also allows integration
and computation through GPUs instead of the traditional CPU
computing which reduces significantly (in our case, up to a factor
of 10) the training times. For the network architecture we have
chosen a 4-layer deep network with hidden layers of 291-146-73-
36 neurons plus a dropout layer (rate 0.1) in between the first
and second layer to avoid overfitting. Such selection of neurons
matches the dimensionality of the feature vectors and then each
layer is halved. We have selected mean square error (MSE) as our
loss function, ADAM as our optimizer, and a REctified Linear
Unit (RELU) as our activation function. We track the loss in
the validation dataset and stop the training after the MSE has
not decreased for 25 epochs to avoid overfitting. To incorporate
time dependence in the ANN, the input vector for t includes
features from previous time steps, e.g., t − 1, t − 2. We have
chosen to include a 2-h time-history for solar wind speed (VT ,Vx,
Vy, Vz), IMF (BT , Bx, By, Bz), proton density, dynamic pressure,
temperature and solar wind electric field using a 1-min cadence
for the first 12 preceding minutes (i.e., up to t − 12) plus 10-min
averages over the entire interval (yielding 12 additional values).
Additionally, ground magnetometer sin(MLT) and cos(MLT)
values have been included to ensure a cyclical dependence over
the Earth’s rotation and solar zenith angle as a proxy of both
longitude and yearly seasonality. The resulting feature vector thus
contains 291 features and that explains our choice of neurons
in the first layer. OMNI data from 1995 to 2010 was split
sequentially 70% for training and 30% for validation. The model
was then trained and the result used on the test data from 2011
to 2015.

Figure 1 (top row) presents a density plot of the log10(real)
vs. log10(predicted) BH values calculated using the validation
and test results obtained for BE and BN and Equation ( 1).
The ANN performs a relatively good job at predicting values
for the validation set with a root mean square error (RMSE)
of ∼8.7 nT and an explained variance of 39%, resulting in a
correlation coefficient of 0.61. For the test cases, the respective
RMSE values are ∼ 9.2 nT with explained variance of 36% and
correlation coefficient 0.60 for the year 2011 and an RMSE of
∼14.7 nT and explained variance of 44% with a correlation
of 0.66 for the year 2015. While the predictions could be
improved, the consistency of the values of Figure 1 indicate
that the model is not overfitting. The correlation coefficient
values are a bit lower to those obtained by Lotz et al. (2017)
of 0.71 and 0.69 for models predicting separate components of
the horizontal magnetic field at a mid-latitude station. Wintoft
et al. (2015) obtainmuch higher correlation coefficients, although
they are only considering the maximum value within each 30-
min window. The slightly worse RMSE values obtained for
the year 2015 could be due to the higher variability of a
year in the solar maximum. We have also plotted the error
distributions for the predictions of the validation and 2011 and
2015 test sets (See Supplementary Material). The similarity in
the error distributions is also an indication of a model that is not
overfitting, consistent with Figure 1.

3.2. Long Short Term Memory
The long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) recurrent neural network was developed
using TensorFlow-Keras (Abadi et al., 2015). The input features
used in the LSTMmodel were the same as were used for the ANN
as was the training-validation split of the 1995-2010 OMNI data.
The LSTMmodel requires an extra dimension in the input vector
to build in the time history. To keep the models consistent with
each other, the LSTM model also uses the preceding 12-min plus
10-min averages over the preceding 2 h time history. Memory
limitations required the use of a custom data generator which
fed batch sizes of 512 training samples sequentially into the
model for training. The network consists of a single LSTM layer
with 147 neurons and a single dense layer with one neuron. A
RELU is used as the activation function, the optimizer is ADAM,
and the loss function MSE. As with the ANN, validation loss
was monitored and training was stopped after the MSE had not
decreased in 25 epochs. Although recurrent neural networks,
and in particular LSTM, are capable of utilizing the time history
of the target parameter (in this case, BN or BE) to improve the
prediction, in this study we have chosen not to use it in order
to obtain a closer comparison with the ANN model. Once the
model was trained, it was tested on data from 2011 and 2015.

The real vs. predicted values of BH for the validation and
test datasets are shown as a density plot in Figure 1 (bottom
row). The RMSE of the validation set is 8.7 nT with a 33%
explained variance, 9.7 nT for the 2011 dataset with a 35%
explained variance and 16.8 nT for the 2015 dataset with a 36%
explained variance. The consistency of the correlation coefficients
(shown in Figure 1) indicates that the model did not suffer from
overfitting, which could have been a concern with the amount
of input data. Considering these parameters, the LSTM model
seems to under-perform the ANN. Similarly to the ANN case,
the error distribution for the predictions of the LSTM model
further indicate that the model is not severely overfitting (see
Supplementary Material).

4. RESULTS

The two types of models we trained are used to predict BN
and BE during storms that occurred on 5 August 2011 and 17
March 2015. The selection was based on the recommendations
from the Pulkkinen-Welling validation set for ground magnetic
perturbations (Pulkkinen et al., 2013; Welling et al., 2018). These
two storms were selected because they are outside of the time
range used to train and validate the models and because they
correspond to two very different years in terms of geomagnetic
activity, 2011 being on the minimum-ascending part of the solar
cycle, and 2015 corresponding to the solar cycle maximum.
The predicted values are used to calculate BH (Equation 1) and
dBH/dt (Equation 2), and both values are compared to the real
measurements. The results for a third storm from the validation
set, 17 March 2013, are shown in the Supplementary Material.

4.1. August 5 2011 Storm
Figure 2 shows the temporal evolution of the 5 August 2011
geomagnetic storm,including SYM-H index, solar wind speedVx,
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FIGURE 1 | Density plots of real vs. predicted values of BH for the ANN (top) and the LSTM (bottom). The comparisons of actual measurements to model predictions

using validation data (left column) and test data from 2011 (middle column) and 2015 (right column) are shown. The correlation coefficient, R, is given in each panel.

IMF magnetic field z-component, along with the measured BH
and dBH/dt at Ottawa station, and the predicted BH and dBH/dt
from the ANN and LSTM models. This is a strong storm with a
minimum SYM-H value of –126 nT, driven by a combination of
a coronal mass ejection and high speed stream, with the shock
arriving at Earth leading to a sudden storm commencement
around 18 UT on August 5. In this event, BH presents a clear
response to the storm that shows as repeated dBH/dt variations
of up to ∼50 nT/min occurring for several hours during the
storm main phase, following the period of quick increase in solar
wind speed and mostly during the time in which the IMF Bz
component is strongly and persistently southward.

In terms of reconstructing the BH evolution, neither model
does a good job of predicting the first two enhancements.
The ANN does a decent job predicting the third and fourth
enhancements. After ∼23:00 UT on August 5, the ANN
predicts some increases but does not match the magnitude
likely due to these being later in the storm when the
magnetic field perturbations are controlled more by parameters
within the magnetosphere or ionosphere, although this is
also a period in which the actual fluctuations in BH are
relatively small. The LSTM doesn’t do well predicting the
enhancements during this storm in general. Considering the
dBH/dt, the ANN comes close to predicting the timing
of the biggest spike in dBH/dt at ∼20:00 UT on August
5, at about half the magnitude, while the LSTM misses
this completely.

4.2. March 17 2015 Storm
Figure 3 shows the evolution of the 17 March 2015 geomagnetic
storm using the same format as Figure 2. This was the largest
geomagnetic storm of solar cycle 24, with minimum SYM-H
index of –234 nT. Carter et al. (2016) analyzed the ground
magnetic perturbations during this storm, showing that the
mid- and low-latitude fluctuations predominantly occurred at
the sudden storm commencement. This indicates that the solar
wind parameters are most important for predicting GICs at
mid-latitude.

Both models miss the initial spike at the sudden storm
commencement just before 5:00 UT, and start to predict
enhanced BH about 2–3 h later. Both models predict some
enhancement near 8:00 UT, though matching the real
enhancement is unlikely due to this being an interval of
linear interpolation of the input data (as seen in the straight
line in the solar wind velocity and IMF Bz over 7:00–9:00 UT).
This linear interpolation results in the ANN overpredicting the
magnitude and the LSTM predicts significant spikes. The LSTM
does a better job of predicting the enhancement just after 12:00
UT, even getting close in overall magnitude of BH . Again, the
linearly interpolated input data (∼15:00–17:00 UT) reduces the
ability to accurately predict the second half of this enhancement.
Only the ANN predicts the largest enhancement at ∼21:00 UT,
but does not match the shape of the peak or timing.

It is important to note that in this particular storm, there
are some gaps in the solar wind measurements, particularly
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FIGURE 2 | August 5, 2011 storm measurements and predictions, including Sym-H index, solar wind velocity, interplanetary magnetic field z-component, measured

(blue solid) and predicted (red dashed) horizontal magnetic field and time-dependent variation at OTT ground station for the ANN and LSTM models.

between 06–08 UT and then on 16–18 UT on March 17. In
order to generate a prediction, the solar wind data has been
linearly interpolated. Despite the missing data, a simple linear
interpolation allows the models to recover part of the variability
of the ground magnetic field fluctuations, suggesting that efforts
on gap-filling, including empirical modeling of the solar wind
data could still yield positive results in the risk assessment
of GICs.

4.3. Validation Metrics
The Pulkkinen-Welling recommendations include four metrics
for validating predictions of ground magnetic perturbations
(Pulkkinen et al., 2013; Welling et al., 2018) using binary event

analysis. For a particular storm, the interval of interest is divided
into non-overlapping, 20-min windows, and for each window, a
dB∗H/dt value is calculated as the maximum measured dBH/dt
within the window. In addition to the method of calculating
(dB/dt)H using Equation (2), we use the power law empirical
fitting for the OTT station described by Tóth et al. (2014),

dBH

dt
=

(

BH

248 nT

)1.04 nT

s
, (3)

and present both results for comparison. Pulkkinen-Welling
propose four different thresholds of 0.3, 0.7, 1.1, and 1.5 nT/s
to evaluate if the model is able to predict a variation of that
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FIGURE 3 | March 17, 2015 storm measurements and predictions, including SYM-H index, solar wind velocity, interplanetary magnetic field z-component, measured

(blue solid) and predicted (red dashed) horizontal magnetic field and time-dependent variation at OTT ground station for the ANN and LSTM models.

magnitude. Since the thresholds are in nT/s, and our calculated
dBH/dt is in nT/min, we multiply the thresholds by 60. Using
the values of the predicted dB∗H/dt, we determine whether the
model accurately predicts the events by calculating true positives,
false positives, true negatives, and false negatives. Accuracy is
determined by calculating the following metrics: probability of
detection (POD), probability of false detection (PFD), proportion
correct (PC), and Heidki Skill Score (HSS). Table 1 displays the
metrics for the ANN and LSTM for the 2011 and 2015 storms.
The missing values are due to no occurrences of the real and

predicted values crossing the higher thresholds. The metrics for
the 2013 storm are also shown in the Supplementary Material,
and although they are a bit better than for the 2011 and 2015
storms, it suffers from having very few thresholds crossings
beyond 0.3 nT/s for the Ottawa station.

The poor prediction of the LSTM for the 2011 storm is
evident in the low POD and HSS values. The low PFD (lower
is better) and high PC are indicative of the low numbers of
real crossings of the threshold levels. The Tóth et al. (2014)
empirical fitting method results in improved metrics for these
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TABLE 1 | Validation metrics for the 05 August 2011 and the 17 March 2015

geomagnetic storms using dBH/dt maximum values every 20 min calculated from

the Pulkkinen definition (Equation 2) and the Tóth empirical fitting (Equation 3).

Pulkkinen Tóth

18 42 66 90 18 42 66 90

2011 Storm ANN POD 0.33 0.00 — — 0.50 0.50 — —

LSTM POD 0.08 0.00 — — 0.00 0.00 — —

ANN PFD 0.02 0.00 0.00 0.00 0.02 0.03 0.03 0.01

LSTM PFD 0.08 0.00 — — 0.00 0.00 — —

ANN PC 0.88 0.97 1.00 1.00 0.90 0.96 0.97 0.99

LSTM PC 0.85 0.97 1.00 1.00 0.84 0.97 1.00 1.00

ANN HSS 0.41 0.00 — — 0.58 0.37 — —

LSTM HSS 0.13 0.00 — — 0.00 0.00 — —

2015 Storm ANN POD 0.09 0.00 0.00 0.00 0.69 0.77 0.00 0.00

LSTM POD 0.13 0.11 0.20 0.00 0.38 0.33 0.20 0.00

ANN PFD 0.00 0.00 0.00 0.00 0.13 0.13 0.00 0.00

LSTM PFD 0.05 0.07 0.07 0.07 0.19 0.08 0.03 0.00

ANN PC 0.73 0.92 0.95 0.98 0.82 0.86 0.95 0.98

LSTM PC 0.71 0.86 0.90 0.92 0.68 0.87 0.94 0.98

ANN HSS 0.13 0.00 0.00 0.00 0.56 0.42 0.00 0.00

LSTM HSS 0.09 0.04 0.10 0.00 0.19 0.23 0.19 0.00

Four threshold values in nT/min are used.

models, as they found for a first principles-based model. In
fact, the ANN has a similar HSS for the 0.3 nT/s threshold
as they report for mid-latitude stations (0.583). However, our
methods have a lot of potential for improvement. We had
originally trained and optimized a single model of each type that
predicted BH , rather than independent models for BN and BE.
The single models of each type had better correlation coefficients,
explained variance, and RMSE than the values discussed in
section 3, but much lower validation metrics than those shown
in Table 1. (We note that predicting only BH requires calculation
of dBH/dt directly, rather than being able to use Equation 2,
such that the metrics do not have a one-to-one comparison.
We implemented separate modeling of the north and east
components for more direct comparison with other models
since the Pulkkinen et al. (2013) method is widely accepted.)
Using this single model method, we also trained models that
use only 24 min of time history but all at a 1-min cadence. The
use of the 10-min averages produced higher explained variance
scores of BH . However, this resulted in a smoothing of the BH
prediction. This smoothing causes less variation in the dBH/dt
predictions and decreases the HSS. Additionally, the LSTM
performs poorly, likely due to the fact that we did not use the time
history of the target parameter, despite that being the strength of
the LSTM.

5. CONCLUSIONS

We have developed and compared two types of models that
predict the north and east components of the ground magnetic

field, BN and BE, at a single mid-latitude ground station. One
model is a feed-forward artificial neural network that includes
time dependence as input features and the other is a long short-
term memory neural network. The predictions from each model
are compared to real measurements for 2 years, 2011 and 2015,
including a storm during each year. There is some ability for
each of the models to predict the timing of magnetic field
perturbations, though this ability is not consistently better for
either model between the storms and neither is able to predict
the magnitude of the enhancements or predict enhancements
later in the storm. Validation metrics indicate that the LSTM
is barely more skilled than random or constant predictions,
and that using an empirical fitting improves HSS as it does
for first principles-based models. Next steps to improve the
models include adjustments of the input parameters, increased
time history cadence, and comparison to additional time series
techniques. Another limitation of these models is the use of only
one ground magnetometer station. We expect better predictions
if we include more ground stations in the mid-latitude range to
get more MLT coverage.
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Magnetotail Reconnection and
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Modeling
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Magnetic reconnection is a fundamental process providing topological changes of
the magnetic field, reconfiguration of space plasmas and release of energy in key
space weather phenomena, solar flares, coronal mass ejections and
magnetospheric substorms. Its multiscale nature is difficult to study in
observations because of their sparsity. Here we show how the lazy learning
method, known as K nearest neighbors, helps mine data in historical space
magnetometer records to provide empirical reconstructions of reconnection in
the Earth’s magnetotail where the energy of solar wind-magnetosphere
interaction is stored and released during substorms. Data mining reveals two
reconnection regions (X-lines) with different properties. In the mid tail ( ∼ 30RE

from Earth, where RE is the Earth’s radius) reconnection is steady, whereas
closer to Earth ( ∼ 20RE ) it is transient. It is found that a similar combination of
the steady and transient reconnection processes can be reproduced in kinetic
particle-in-cell simulations of the magnetotail current sheet.

Keywords: data mining and knowledge discovery, nearest neighbor method, magnetosphere, magnetotail,
magnetic reconnection, space weather, particle-in-cell simulations

1 INTRODUCTION

Charged particles, electrons and ions forming space plasmas usually drift in the ambient magnetic
field making plasmas frozen in that field [1]. The frozen-in conditionmay be broken when oppositely
directed field lines approach each other so closely that particles become unmagnetized and their
orbits become different from conventional drift motions. As a result, magnetic field lines may change
their connectivity near so-called X-lines in the process of magnetic reconnection. This process was
introduced to explain major sources of space weather disturbances on the Sun, solar flares [2, 3] and
coronal mass ejections (CMEs) [4]. It was also invoked by Dungey [5] to describe the structure of the
Earth’s magnetosphere, the plasma bubble surrounding our planet and protecting its life from the
hazardous stream of high-energy particles emitted by our star. According to Dungey, reconnection
takes place on the day side of the magnetospheric boundary, the magnetopause, to provide the solar
wind plasma entry into the magnetosphere through the reconnected magnetic flux tubes. Then the
flux tubes reconnect again on the night side, in the region where the Earth’s dipole magnetic field
lines are stretched in the antisunward direction forming the magnetotail. Finally, to explain a delayed
explosive response of the polar regions of the magnetosphere to solar wind disturbances during
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substorms [6], Hones [7] proposed that the substorm explosions
are powered by the unsteady reconnection in the tail due to the
formation of another “near-Earth” X-line.

The magnetotail reconnection is important not only as a key
element of the space weather chain. It occurs in space plasma
practically in the absence of particle collisions. Similar
collisionless reconnection processes are expected to occur in
the solar corona during flares and CMEs, where in-situ
observations are impossible [1]. They are also expected in
sufficiently hot laboratory plasmas that are investigated on the
way to controlled nuclear fusion [8]. Thus, the magnetotail
represents a natural space laboratory for collisionless
reconnection due to many dedicated missions, such as Geotail
[9], Cluster [10], THEMIS [11] and MMS [12].

The magnetotail is also very interesting because it reveals
different regimes of reconnection. On the one hand, it must
experience steady reconnection, which was conjectured by
Dungey [5] in his description of the magnetospheric
convection cycle and later confirmed in observations of steady
magnetospheric convection (SMC) regimes [13]. On the other
hand, the magnetotail experiences unsteady reconnection during
substorms [7].

Both the first-principle modeling and the empirical
reconstruction of magnetotail reconnection are very difficult
to perform because of its multiscale nature. It links global
reconfigurations of the nightside magnetosphere to kinetic
processes on the scales of ion or even electron gyroradii
that provide irreversibility for global reconfigurations. As a
result, its kinetic particle-in-cell (PIC) simulations describing
the full dynamics of electrons and ions (largely protons) and
their self-consistent electromagnetic fields [14] are usually
limited to the immediate X-line vicinity [15] and the
moments after the X-line formation in global
magnetohydrodynamic models [16], where the
reconnection onset is provided due to numerical or ad hoc
plasma resistivity. Moreover, it is very difficult to take into
account that the magnetotail itself becomes multiscale prior
to the reconnection onset. In-situ observations suggest that it
may contain thin (ion-scale) current sheets (TCS) embedded
into a thicker current sheet (CS) [17–21]. The latter may also
be split in two current layers forming bifurcated TCSs [19,
22–24].

The major problem in the empirical reconstruction of
magnetotail reconnection, common to all in-situ space
observations, is the extreme sparsity of these observations
with fewer than a dozen probes available at any moment.
To solve this problem, it has recently been proposed to mine
data in the multi-mission database covering many years of
historical spaceborne magnetometer observations [25, 26]. It
was found that such a data-mining (DM) method resolves the
formation of embedded TCSs in the growth phase of substorms
and their decay after the substorm onset. It also resolves the
formation of the near-Earth X-lines during substorms [27].
Here we show that the DM approach allows one to resolve the
formation of two different X-lines in the magnetotail during
substorms. Moreover, it becomes possible to quantitatively
assess their steadiness. We also show that PIC simulations

guided by the DM reconstruction of the magnetotail reproduce
the formation of X-lines and reconnection regimes similar to
those found in the DM analysis.

2 DATA MINING METHOD

In the DM approach, the geomagnetic field is reconstructed
using not only a few points of spaceborne magnetometer
measurements available at the moment of interest, but also a
much larger number of other measurements made at the
KNN ≫ 1 moments in the past. These moments called “the
nearest neighbors” or NNs are similar to the event of interest
in terms of similar values of the geomagnetic indices Sym-H
and AL, their time derivatives and the solar wind input
parameter vBIMF

s . Here BIMF
s is the southward component

of the Inteplanetary Magnetic Field (IMF): BIMF
s � −BIMF

z if
BIMF
z < 0 and BIMF

s � 0 otherwise (The Geocentric Solar
Magnetospheric coordinate system (GSM) coordinate
system is used throughout this paper. Its origin is at the
center of the Earth; the X-axis is directed toward the Sun; the
y-axis is defined as the cross product of the GSM x-axis and
the magnetic dipole axis, directed positive toward dusk; the
z-axis is defined as the cross product of the x- and y-axes.)
The large number of NNs is at the same time much smaller
than the size of the database KDB ≫KNN . This allows one to fit
with the NN subset a complex empirical magnetic field model
[26], and at the same time, to make the model
reconstructions sufficiently flexible to reflect the
characteristic variations of the magnetosphere during
storms and substorms.

This approach resembles very much the “lazy-learning”
pattern recognition technique known as the K-nearest
neighbor (KNN) learning [28, 29]. At the same time, our DM
approach differs from conventional KNN regression methods,
where both finding the NNs (“mining”) and regressions (model
fitting) are made in the same space. Here, as is illustrated in
Figure 1, we first detect NNs as a (sub)set of KNN present and
historical moments in similar phases of similar substorms. Their
similarity (“neighborhood”) is quantified by the closeness of the
corresponding global magnetospheric activity parameters and
their time derivatives to their values at the moment of interest
(Figure 1A). Then we use these KNN moments to form an event-
oriented subset of the original database of magnetic field
observations (Figure 1B) and to fit our magnetic field model
with this subset (Figure 1C).

The NN subset is formed by points G(i) � [G1(ti), . . . ,G5(ti)],
i � 1, . . .KNN , in the 5-D space that are closest to the query point
(moment of interest tq) G(q) � [G1(tq), . . . ,G5(tq)] by the
Euclidean metric

R(i)
q �

�������������������∑5
k�1

(G(i)
k − G(q)k )2/σ2Gk

√√
. (1)

where σGk is the standard deviation of the component Gk and the
coordinates G1-G5 are defined by the formulae:

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6448842

Sitnov et al. Data Mining Reconstruction of Magnetotail Reconnection

182

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


G1(t) � 〈Sym − H*
∣∣∣∣∝ ∫0

−Πst/2
Sym −H*(t + τ)cos(πτ/Πst)dτ

(2)

G2(t) � D〈Sym −H*
∣∣∣∣/Dt∝ ∫0

−Πst/2
Sym − H*(t + τ)

sin(2πτ/Πst)dτ (3)

G3(t) � 〈AL|∝ ∫0

−Πsst/2
AL(t + τ)cos(πτ/Πsst)dτ (4)

G4(t) � D〈AL|/Dt∝ ∫0

−Πsst/2
AL(t + τ)sin(2πτ/Πsst)dτ (5)

G5(t) � 〈vBIMF
s

∣∣∣∣∝ ∫τ∞

0
vBIMF

s (t − τ∞ + τ)exp[(τ − τ∞)/τ0]dτ
(6)

Here Sym − H* � A · Sym −H − B · ����
Pdyn

√
is the pressure-

corrected Sym-H index [30], Pdyn is the solar wind dynamic
pressure (in nPa) and the values of A and B are taken to be
0.8 and 13.0, respectively. The functions G1 and G3 in Eqs. 2, 4
describe weighted moving averages of the indices Sym-H and AL
limited to their past values (see [25] for further details), while G2

and G4, defined by Eqs. 3, 5, describe the corresponding
smoothed time derivatives. Weighting in moving averages
(2–5) is provided by the sine and cosine kernel functions and
by the exponential function in Eq. 6. The averaging scaling
parameters Πst � 12 hr and Πsst � 2 hr reflect the characteristic

storm and substorm scales. The parameter G5 defined by Eq. 6
describes the integral effect of the magnetic flux accumulation in
the tail during the growth phase due to the dayside reconnection.
Its scale τ0 � 0.5 hr is selected based on observed values of a
typical growth phase duration [31]. The selected upper
integration limit in Eq. 6 τ∞ � 6τ0 corresponds to six
e-folding times.

In the 5-D space of the binning parameters (2)–(6), the AL
index and its time derivative (G3,G4) determine the strength and
phase of the substorm activity, because the AL index reflects the
strength of the substorm electrojet [32]. These parameters may
still be insufficient to capture the substorm growth phase, which is
characterized by the accumulation of the magnetic flux in the tail
lobes without any significant electrojet enhancement. To take this
effect into account, we involve in the analysis the solar wind
electric field parameter through the binning variable G5.
Furthermore, many substorms occur at the moments of the
storm activity, which may substantially modify the substorm
evolution of the magnetosphere [33]. To take these effects into
account, we further extend the binning space at the expense of the
parameters G1 andG2 reflecting the storm-time index Sym-H and
its time derivative (to distinguish between main and recovery
storm phases).

The conjecture that the substorm dynamics of the
magnetosphere is coherent and hence the distribution of its
magnetic field can be determined by a few control parameters
had been formulated many years ago (e.g., [34], and refs. therein).

FIGURE 1 | DM algorithm of the magnetic field reconstruction used in this study: (A) Nearest neighbor selection using KNNmethod. (B) The event-oriented subset
of the database formed using the selected set of KNN nearest neighbors. It is used to fit the magnetic field model. Gray dots show the projections of the spacecraft
coordinates on the equatorial plane, where the normal magnetic field componentBz is color coded. (C) The resultingmagnetic field lines (black) and the equatorial fieldBz

(color-coded) assuming zero tilt angle (adapted from [27]).
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Later, the singular spectrum analysis of substorms [35] revealed
that the mean-field dynamics of the magnetosphere can be
described as a motion on a folded 2-D surface in a 3-D state
space formed by the average AL index, average vBIMF

s parameter
and its average time derivative. An increase of the dimensionality
through the Sym-H index and its time derivative, to take magnetic
storms into account and to distinguish between their main and
recovery phases, is consistent with the original DM-based storm-
time model, TS07D [36]. The latter was also justified by the
empirical relationship between the vBIMF

s parameter and the Dst
index, a 1-h time resolution analog of Sym-H [37]. Independent
description of storms and substorms assuming their common
solar wind driver is consistent with recent analysis of the storm-
substorm relationship using a multivariate information-theoretic
approach [38]. The further increase of state space dimensionality
(e.g., using higher time derivatives of storm and substorm indices
as well as the solar wind input parameter) is also possible (e.g.,
[25]). However, it was found [39] that the effect of higher
dimensions often resembles the second-order phase transition
fluctuations that require a probabilistic description of the
magnetospheric states [40].

The database consists of KDB � 3, 668, 101 records of the
magnetic field vector with 5 and 15-min cadence inside and
outside 5RE , respectively, in archived data from IMP-8, Geotail,
Polar, GOES-08, GOES-09, GOES-10, GOES-12, Cluster,
THEMIS, Van Allen Probes and MMS missions covering more
than two decades (1995–2017) of observations. The KNN subsets
are selected using AL, Sym-H and vBIMF

s time series with 5-min
cadence. At every moment tq, the subset is found as KNN points
i � 1, . . . ,KNN satisfying the condition R(i)

q <RNN(KNN ), where
R(i)
q is defined by Eq. 1, as is illustrated in Figure 1A. Since the

resulting magnetic field geometry is determined by the
instantaneous KNN swarm of virtual probes, its time
resolution is largely determined by the global parameter
cadence. This is seen, for instance, from rapid substorm
dipolarizations reproduced by the KNN method in [27]
(Fig. 8i), when the Bz field increases from 3 to 10 nT in 5 min
over a significant part of the magnetotail. It was found [26, 27]
that the use of NN subsets with KNN ∼ 32, 000 and the magnetic
field model parameters specified below provides both sufficient
selectivity of the model, which allows one to distinguish different
substorm phases, and the high spatial resolution to resolve the
distinctive features of the magnetospheric morphology in these
phases, such as TCSs (and their buildup and decay), flux
accumulation regions and X-lines. Smaller KNN values were
found to cause overfitting.

At every moment of interest tq, the KNN subset of the database,
whose elements neighbor tq in the state and input space of the
magnetosphere by the metric (1), is used to fit the geomagnetic
field model SST19 [26]. Since KNN ≫ 1, its architecture can be
made quite complex and flexible (compared, for instance, with
the event-oriented models using only a few points of data
available at the moment of interest [41, 42]) to capture key
features of the substorm current system. In fact, we only
assume that the magnetic field is formed by two major current
systems inside the magnetosphere, equatorial and field-aligned
currents, whose contributions are presented as sums of basis

functions with the corresponding amplitude coefficients (more
general 3-D expansions of the magnetic field using radial basis
functions were considered in [43]). Moreover, to describe the
multi-scale structure of the equatorial currents, including the
formation of embedded and bifurcated TCSs, these currents are
described by two independent expansions:

B(eq)(ρ, ϕ, z) � B(eq)(ρ, ϕ, z;D) + B(eq)(ρ, ϕ, z;DTCS) (7)

where (ρ, ϕ, z) are cylindrical coordinates in a system with the
origin at the center of the Earth and the z axis normal to the
equatorial plane. They represent the magnetic field of thick and
thin current sheets with the same structure determined by the
approximate solution for the magnetic field of an arbitrary
distribution of equatorial currents [44] with different thickness
parametersD andDTCS to be derived from the fitting with the NN
subset. Each expansion is a finite-sum approximation of an
integral solution of the Ampère’s equation for the magnetic
field of an infinitely thin CS (D � 0) above and below the
equatorial plane z � 0 by separation of variables. Tsyganenko
and Sitnov [44] showed that the sum consists of N azimuthally
symmetric radial expansions and 2M angular Fourier harmonics
(even and odd parity in ϕ) with the total number of N + 2M · N
elements. The basis functions of the solution for the vector
potential with an infinitely thin CS contain factors like
exp(−k|z|). Their regularization comes from assuming the
finite CS half-thickness D and it can be provided by replacing
the function |z| by the smooth function ζ � ������

z2 + D2
√

. The radial
expansions include Bessel functions and they can be exemplified
by the azimuthal component Aϕ of the vector potential
corresponding to the azimuthally symmetric group of basis
functions B(s)

0n : (Aϕ)(s)0n � J1(knρ)exp(−kn
������
z2 + D2

√ ), where J1 is
the Bessel function of the first order, kn � n/ρ0, and ρ0 is the radial
scale, corresponding to the largest mode in the radial expansion.

The parameters ρ0, N andM are fixed because they determine
the adopted resolution of the expansions in Eq. 7. Other
parameters, such as the weights of individual radial and
azimutal harmonics, as well as the CS thickness parameters D
and DTCS, are determined from fitting the model to data. In
particular, to distinguish between thick current sheets and TCS,
we impose the condition DTCS <D(max)

TCS � 1RE. The latter value is
intermediate between the observed thick and thin current sheet
values [19] and it does not significantly constrain the specific
values of D and DTCS inferred from data. Thus, the spatial
resolution of such an expansion is determined by the number
of terms in expansions (7) and can be increased to any desired
level, commensurate with the data density. To take the global
scaling of currents due to variations of the solar wind dynamic
pressure Pdyn into account, each amplitude coefficient in
expansions (7) is further expanded in two parts, one of which
is constant and another is a linear function of

����
Pdyn

√
. The

equatorial expansion has several other nonlinear parameters to
take into account global deformations of the tail CS along the
dawn-dusk direction and arising from the finite dipole tilt angle,
which are described in [44].

Another major group of currents are the field-aligned currents
(FACs), connecting the ionosphere with the magnetopause and
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the tail CS. It is described in SST19 using a similar system of
finite current elements [45], sufficiently flexible to
reproduce the spiral FAC structure at low latitudes [46]
whose night-side part is likely associated with the Harang
discontinuity [47]. Each element of the FAC system is
described as the magnetic field of two deformed conical
surfaces corresponding to Region 1 (R1) and Region 2 (R2)
FACs [48]. The size of each system is an adjustable
parameter, while their azimuthal distribution is controlled
by the relative contributions of two groups of basis functions
with odd and even symmetry due to factors sin(lϕ) and
cos(lϕ), (l � 1, 2, . . .). The first group represents the main
part of the FAC system, in which the dusk-side currents
have the same magnitude but opposite direction to those at
dawn, while the second group has an even distribution of
currents with respect to the noon-midnight meridian plane,
which allows one to model the azimuthal rotation of
the FACs.

Originally two groups of such FAC elements were proposed
in [44] to describe R1 and R2 systems in their DM-based
storm-time model, TS07D [36]. Later, it was proposed [45] to
use more elements similar to the original TS07D FAC basis
functions, shifted in latitude to describe more complex FAC
distributions. Eventually, Stephens and coauthors [26] showed
that the FAC system can be described with many details
important for substorm reconstructions, including the
Harang discontinuity and the substorm current wedge [49],
with the following set of elements. It consists of NFAC � 16
basis functions with the first two Fourier harmonics (l � 1, 2)
for R1 and R2, as well as their latitude-shifted clones. Each
element in equatorial and FAC expansions is independently
shielded (has its own subsystem of Chapman-Ferraro-type
currents at the magnetopause).

Thus, the resulting DM algorithm, which links the SST19
model with KNN binning, represents a typical “gray box”
model combining empirical algorithms with physics-based
constraints [50]. As is shown in [26, 27], it reproduces the
multiscale CS thinning process with the formation of an ion-
scale TCS (DTCS ≪ 1RE) inside a much thicker CS (D> 2RE),
which takes place in the substorm growth phase and causes
stretching of the tail magnetic field lines in the antisunward
direction. In particular, Figs. 11a–11c in [27] show the
current distribution in the equatorial plane during the
growth phase of the 13 February 2008 substorm discussed
below. The corresponding current distributions in the
meridional plane presented in their Figs. 12a–12c reveal
the multiscale CS structure with an ion-scale TCS
embedded into a thick CS halo. The peak TCS current
density ∼8 nA/m2 is consistent with in-situ Cluster
observations (see, for example, Figs. 2–4 and 9 in [19]).
Further quantitative analysis made in [27] showed that
while the TCS thickness in DM reconstructions remains
approximately constant DTCS ≈ 0.2RE (Fig. 8e), consistent
with Cluster and THEMIS observations [19, 20, 51], their
strength (measured as the TCS contribution to the total tail
current) changes drastically with the substorm phase
(Fig. 12d). At the same time, the contribution of the TCS

to the total tail current is relatively small (≈ 1/6). It is worth
noting that, as is seen from the comparison of Figs. 10a and
11a in [27], the extended TCS forms earthward of the flux
accumulation region (Bz hump).

The DM SST19 algorithm also describes the magnetic field
dipolarization in the expansion phase (see, for example, Fig. 4
in [26]) with the formation of a substorm current wedge seen
as a curl of the difference between the expansion and growth
phase magnetic field distributions ([26], Fig. 10). The
disappearance of TCS after the dipolarization can be seen,
for instance, from the comparison of Fig. 12d in [27] with other
panels in Fig. 12. It can also been seen from their Fig. 8f, where
the relative strengths of thin and thick CSs are quantified by
integrating the current density over the regions |z|< 1RE and
|z|< 5RE .

The new DM reconstruction has a characteristic property of
machine learning algorithms [29, 52]: given more data in the
database it may provide more details about the
magnetospheric structure and evolution. In particular, as is
shown in [27], with adding to the database first two years of the
MMS mission data (2016–2017), it becomes possible for the
same SST19 model with the parameters (M,N) � (6, 8) and
KNN � 32, 000 to resolve more details of the magnetotail
structure and evolution. In particular, the 2017 MMS data
help resolve the X-lines forming largely beyond 20RE , where
the pre-MMS database had a substantial drop in the
occurrence rate distribution ([27], Fig. 1). This is seen in
particular, from the comparison of the SST19 validation
using THEMIS data beyond 20RE in Fig, 2e of [26] with
THEMIS validation in a similar region in Fig. S6 of [27].
The former reveals clear signatures of overfitting while the
latter does not. In spite of a relatively small total number of the
new MMS data, they fill the main gap in the existing database
distribution ([27], Fig. 1) and thus become particularly
important in solving the overfitting problem.

FIGURE 2 | Two X-lines, Xn and Xm resolved in the equatorial distribution
of the magnetic field Bz (using 0-degree tilt angle for the sake of visualization
simplicity) as earthward parts of the contours Bz in case of the 13 February
2008 substorm. The format of this figure is similar to that of Figure 1B.
The projections of the spacecraft coordinates on the equatorial plane (gray
dots) show that the NN subset of data for the moment considered is sufficient
to resolve both X-lines.
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3 13 FEBRUARY 2008 SUBSTORM: STEADY
AND UNSTEADY X-LINES

In this section we describe the global structure and dynamics of
reconnection on the example of a relatively small and short
substorm (13 February 2008 02:05–02:55 UT) considered
earlier in [27] with the reconstruction parameters
(M,N) � (6, 8), KNN � 32, 000 and NFAC � 16. The latter
analysis is extended here by increasing the maximum radial
distance of the spacecraft data used in the reconstruction from
31RE to 35RE (largely, due to IMP8 data). Figure 2 shows the
equatorial magnetic field distribution at the moment 02:40 UT in
the expansion phase of this substorm. It reveals the formation of
two X-lines Xn and Xm in the near-Earth (x ≈ − 20RE) and
midtail (x < − 27RE) regions, respectively. They are seen as
earthward parts of the Bz � 0 contours in the distribution of
the equatorial north magnetic field component Bz in Figure 2 and
they are additionally marked by blue arrows. The tailward parts of
the Bz � 0 contours represent O-lines.

This global X-line reconstruction is quite unique. In fact,
because of the extreme sparsity of in-situ space observations,
such reconstructions were not available before the machine
learning era. Earlier, Nagai et al. [53, 54] described the
location and the dawn-dusk extension of X-lines using single-
point observations. More recently, the reconstructions of the
X-line vicinity were made by processing multi-probe MMS
data with Grad-Shafranov [55] and polynomial [56]
techniques. However, these were still very local reconstruction,
largely limited to the size of theMMS tetrahedron (<30 km). Here
we demonstrate for the first time how the DM approach based on
the KNN algorithm resolves simultaneously two X-lines in the
near-Earth and midtail regions.

The formation of transient near-Earth X-lines, which was
proposed by Hones [7] as a mechanism of substorms, has

been discussed since that time in many studies, including
correlated multi-probe and remote sensing analyses (see, for
instance [57, 58], and references therein). At the same time,
persistent reconnection in the midtail around 30RE follows from
THEMIS and ARTEMIS statistics of traveling compression
regions [59, 60]. However, neither the co-existence of the
second, midtail X-line Xm with Xn nor its relatively steady
reconnection, as suggested by Dungey’s convection cycle [5],
have ever been demonstrated. Here we not only resolve two
X-lines in the tail but also propose a method to quantify their
steadiness.

This can be done using the Faraday’s law, which in the 2-D
picture of reconnection takes the form

zEy/zx � −zBz/zt, zEy/zz � zBx/zt, (8)

It suggests that the temporal variations of Bx and Bz magnetic
field components determine the spatial gradients of the dawn-
dusk (reconnection) electric field. If the magnetic field varies
slowly, the corresponding reconnection electric field is broadly
distributed over the whole reconnection region. This justifies the
concept of the reconnection rate, one of the key global parameters
characterizing steady reconnection regimes [61–63].
Reconnection can also be unsteady with the electric field being
localized in space and the magnetic field changing in time
consistent with (8). For example, Sitnov and Swisdak [64]
showed reconnection regimes with the electric field localized
near dipolarization fronts (DFs) [65–67] with their values
strongly exceeding the steady reconnection values. Localization
of the dawn-dusk component of the electric field near DFs was
later confirmed by Cluster [68] and THEMIS [69] observations.

The noon-midnight meridional maps of magnetic field lines
presented in Figures 3, 4 reveal interesting distinctions of
magnetic reconnection in the mid tail region and closer to
Earth (Xm and Xn vicinities) in this substorm. As is seen from
the comparison of solid and dashed field lines in these figures,
reconnection near Xn is accompanied by strong changes of the

FIGURE 3 | Color-coded variations of the x-component of the magnetic
field between moments t0 � 02 : 30 UT and t2 � 02 : 55 UT dBx � Bx(t2) −
Bx(t0) in the noon-midnight meridional plane with overplotted magnetic field
lines (solid lines for themoment t2 and dashed lines for the moment t0) for
the 13 February 2008 substorm. The approximate location of the X-lines Xn

and Xm is marked by gray arrows. Magnetic field lines start from the
ionosphere at 60+ with 2+ step in latitude. White disks 1RE < r < 9RE in panels
(B) and (C) mask magnetic field variations in the inner magnetosphere.

FIGURE 4 | Color-coded variations of the z-component of the magnetic
field between moments t0 � 02 : 30 UT and t2 � 02 : 55 UT dBz � Bz(t2) −
Bz(t0) in the noon-midnight meridional plane with overplotted magnetic field
lines in the format similar to Figure 3 in case of the 13 February 2008
substorm.
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magnetic field geometry, especially, earthward of that X-line,
while near Xm the geometry barely changes, which is seen
particularly well in the lobe region. The color-coded variations
of the z- and x-components of the magnetic field between
moments t0 � 02 : 30 UT and t2 � 02 : 55 UT dBx,z � Bx,z(t2) −
Bx,z(t0) in the same noon-midnight meridional plane in
Figures 3, 4 quantify these steady and unsteady
reconnection regimes.

The difference in dBx,z values in regions x ≈ − 20RE and
x ≈ − 31RE seen from Figures 3, 4 suggests that the
reconnection process near Xm is more steady-state than near
Xn. The unsteady nature of the near-Earth reconnection is
particularly well seen from Bz variations earthward of Xn in
Figure 4. Moreover, the analysis of the equatorial Bz(x) profiles

with the 5-min cadence provided in Fig. 8i of [27] shows that the
main part of the Bz changes earthward of Xn shown in Figure 4
occurs in the 5-min interval between 02 : 35 UT and 02 : 40 UT.
Furthermore, the analysis of the magnetic flux redistribution in
the lobes made in [27] gives an estimate of the average electric
field in the steady-state reconnection region Ey ∼ 0.01vAB0/c for
B0 � 40 nT and vA � 1, 000 km/s, consistent with the theoretical
estimates that impose the upper limit for the reconnection rate
Ey/(vAB0/c) ∼ 0.1 [61, 62, and refs. therein] or ≈ 0.2 [63].
Therefore, one can expect the reconnection near Xm to be
steady and its electric field homogeneous in space, whereas
near Xn to be more transient and structured. Below we show
that a similar combination of steady and unsteady reconnection
regions can be reproduced in PIC simulations of weakly driven

FIGURE 5 | Validation results (using MMS1 data with 5-min cadence) and analysis of the 6 August 2017 substorm. Panels (A–C) show observed (black lines) and
reconstructed (red lines) values of the GSM magnetic field components, (D) the MMS1 probe ephemeris (X, Y, Z and the radial distance R (black solid, dashed, dotted
and purple lines, (E) Sym − H* ) (black line) and AL (orange line) indices of storm and substorm activity, as well as (f) the solar wind electric field parameter vBIMF

z (black line)
and solar wind dynamic pressure Pdyn (orange line). Dotted lines in panels (E, F) show the smoothed values of indices and solar wind electric field corresponding to
their DM input functions (2), (4) and (6). The moment of the possible X-line crossing is marked by the vertical dashed line. Panels (G) and (H) repeat the solar wind electric
field and dynamic pressure parameters as well as geomagnetic indices (dotted lines show the corresponding smoothed values) to guide the analysis. (I, J) The square
root of the sum of the squared amplitude coefficients for the high and low-altitude parts of the FAC modules, respectively (labeled here as FAC R1 and FAC R2). (K) The
equatorial CS half thickness parameters D (green) and DTCS (orange). (L) The westward current from the thick CS module passing through the rectangle: −16RE ≤ X ≤ −
6RE and −5RE ≤ Z ≤5RE (deep violet) and the westward current from the TCS module passing through the rectangle: −16RE ≤ X ≤ − 6RE and −1RE ≤Z ≤ 1RE (orange).
(M) Total modeled Bz field sampled at r � (−6.6RE , 0, 0) in red and r � (−10.5RE ,0, 0) in blue. (N, O) Total modeled Bz sampled along the line (−31RE ≤X ≤ − 7.5RE )
during the growth and expansion phases, respectively. The moment of time, when each Bz-profile was sampled, is specified by the corresponding colored text in the
format “DOY-hour-minute”.
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magnetotail equilibria with some of the observed growth phase
features.

4 6 AUGUST 2017 SUBSTORM: COMPLEX
RECONNECTION PICTURE RESOLVED
USING ADVANCED DM METHOD
In this section we consider another substorm event with a more
complex structure of dipolarizations and X-lines. It occurred on 6
August 2017 and is also interesting because of a possible X-line
crossing detected by the MMS mission. Its signatures were the Bz

reversal (Figure 5C), the ions bulk flow reversal and the large
dawnward electron bulk flow velocity (not shown). At the same
time, at the moment of the reversal the |Bx| and By magnetic field
components were relatively large (Figures 5A,B) so that the total
magnetic field exceeded 10 nT. We reconstruct this event using an
advanced version of the KNN algorithm where the statistical weights
of NNs depend on their proximity to the event of interest (e.g., [29]).
In this algorithm, the model magnetic field B(mod) is determined by
minimizing the RMS of its deviation from observations B(obs)

M(NN)
err �

���������������������������������∑
j ∈ SNN

∑
i�x,y,z

wjw(0)(r)[B(mod)
i (r(j)) − Bj,obs

i ]2√
, (9)

where SNN is a set of K(B)
NN magnetometer measurements of the

magnetic field components Bj,obs
i with ephemeris r(j),

corresponding to the selected set of KNN nearest neighbors;
w(0) is the original weighting factor, which is a function of the
real-space distance r from Earth, introduced in [44] to mitigate
the spatial inhomogeneity of observations, especially at
geosynchronous orbit. A distinctive feature of the weighted
KNN algorithm is that each term in the sum in Eq. 9 has now
an additional weighting factor

wj � exp[ − (R(j)q /σRNN)2/2], (10)

Here R(j)
q is the distance (1) of the corresponding NN from the

query point q and RNN is the radius of the sphere containing
NNs in the binning space (G1, . . . ,G5). When σ≫ 1, all
distance-modulated weights wj ≈ 1 and NNs are not
weighted. In contrast, for σ < 1, the new weighs wj are well
modulated within the sphere R(j)

q <RNN . This increases the
statistical weight of measurements that were made at the more
similar state and input conditions of the magnetosphere,
according to the metric (1).

The weighted KNN approach is shown to result in better
sensitivity of the model to variations of the magnetospheric state
(e.g., storm or substorm phase) by using effectively much smaller
numbers of NNs without overfitting [70]. Below we provide the
DM reconstruction results with the parameters similar to those
used in the previous section and with the weighting factor σ � 0.5.
Validation results for this event using the MMS1 probe data are
presented in the left panels of Figure 5 and they show a
reasonable agreement, especially for the Bz component, where
it does not exceed ∼2 nT.

The reconstruction summary for this substorm in the format
used earlier in [26, 27] is presented in the right panels of Figure 5.
Following [26], we consider the growth phase starting from the
first point with BIMF

z < 0 in the 5-min cadence series (vertical red
dashed line corresponding to t � 04:00 UT). The onset time 04:20
UT (vertical orange dashed line) is selected because of the strong
change of the negative slope of the AL(t). The start of the
recovery phase (23:40 UT, vertical blue dashed line)
corresponds to the minimum of the AL index. The recovery
phase is postulated to end when the AL > −25 nT, in accordance
with [26, 27].

Figures 5H–J show weak storm activity: small and constant
values of -Sym − H* and low-latitude field-aligned currents
FAC R2. In the expansion phase (yellow zone) the amplitude of
the TCS (Figure 5L) decreases, consistent with the earlier DM
analyses [26, 27] (with small variations of the thickness
parameters D and D_{TCS}, according to Figure 5K), while
the equatorial magnetic field in the near-Earth tail
(Figure 5M) increases making the magnetic field more
dipole-like. At the substorm onset, the evolution of the
equatorial magnetic field along the midnight meridian (red
lines in Figures 5N, O) reveals wavy perturbations similar to
the tearing mode (e.g., Fig. 6.2.9 in [71]). However, their
wavelength is rather macroscopic, in contrast to the
electron- or ion-scale tearing modes discussed earlier in
theory and kinetic simulations of the magnetotail
reconnection onset ([72, 73] and refs. therein). Further it
results in the formation of new X-lines (Figure 5O) whose
structure and evolution are better seen in Figures 6, 7.

An interesting feature of this event is that the magnetic field
dipolarization in the expansion phase has two sub-phases: 04:20–04:
35 UT and 04:40–04:55 UT. Indeed, Figures 6, 7, which describe the
evolution of the equatorial magnetic field and current, reveal two
successive reconfigurations developing in the premidnight and
postmidnight sectors. Figure 6 shows that during the first
dipolarization a new X-line forms at x ∼ − 20RE along with the
pre-exisitng X-line near x ∼ − 30RE. As it is shown in Figure 8, the
used NN subsets are sufficiently extended over the tail to resolve both
X-lines. As is seen from Figures 6D–F, the equatorial current during
this dipolarizaation becomes bifurcated.

The second dipolarization described in Figure 7 causes
stronger and more global changes of the near-Earth magnetic
field (regions R(15RE in Figures 7A–C). It also causes not only
the formation of new flux ropes in the postmidnight sector but the
azimuthal extension of the region of the depressed or even reversed
equatorial magnetic field. According to Figures 7D–F, this is
accompanied by the reduction of the equatorial current density.
To quantify these processes, we integrated the equatorial field Bz

over arcs similar to dashed blue lines in Figure 7A from the dawn to
dusk magnetopause boundaries. Each arc represents a part of the
circle with the center (x, y) � (3RE , 0) (the shift is used to avoid
integration over whole circles within the magnetopause). As was
argued in [27], the distribution along the tail of the corresponding
integral parameter Int(Bz) � ∫Bzds (where ds is the arc length
element) may be a good proxy of the magnetic flux evolution in the
closed field line region of the magnetotail. The distributions of
Int(Bz) along the tail shown in Figure 9 as functions of the arc’s
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most tailward value of x indicate that the main flux redistribution in
this substorm is provided by the second dipolarization. They also
suggest that the main part of the near-Earth dipolarization is
provided by the redistribution of magnetic flux in the closed field
line region. Indeed, the area under these curves is nowmagnetic flux.
According to Figure 9B, the increase in flux during the second
dipolarization in the region 10 − 17RE is roughly equivalent to the
decrease in flux at 17 − 26RE . If the dipolarization were provided by
an increase of the lobe field reconnection at a30RE that would be
seen as a net increase of flux within ∼ 30RE .

To further investigate two dipolarizations occuring during this
substorm, we present in Figures 10, 11 the meridional cuts of the
cross current and in-plane magnetic field components Bx′ ,x″ and

Bz in the planes marked by dashed lines in Figures 6, 7 (x′GSM and
x″GSM are the coordinates along the dashed lines in Figures 6, 7).
These figures show processes similar to the 13 February 2008
dipolarization and shown in Figs. 12 and 13 in [27] as well as in
Figures 3, 4. In particular, both dipolarizations reveal stronger
variations of dBx,x′ and Bz magnetic field components in the near-
Earth reconnection region (around Xn) compared to the midtail
one (around Xm). The differences between the magnetic field
variations in Figures 10, 11 and those in Figures 3, 4, such as for
instance, different relative phases of dBx and dBz variations can be
explained by the larger time difference used in case of the 13
February substorm to calculate these variations. In fact, Figures 3,
4 describe the magnetic field variations during the 25-min long

FIGURE 6 | Distributions of the equatorial magnetic fieldBz [(A–C)] and the electric current [(D–F)] obtained using 0-degree tilt angle for the first dipolarization of the
6 August 2017 substorm. The arrows are vectors of the equatorial current density whose absolute value is color coded. The oblique dashed pink lines show the
meridional planes, which are used below to investigate this dipolarization.
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interval covering the whole expansion phase of that substorm,
whereas Figures 10, 11 describe 15-min long partial
dipolarizations that constitute the more complex tail
reconfiguration during the 6 August 2017 substorm.

As one can seen from the comparisons of Figures 10A,B, the
first dipolarization is relatively weak, and it does not cause any
significant flux redistribution, according to Figure 9B. During the
first dipolarization, the magnetic field variations near Xn (Figures
10C,D) are confined to the region x > − 27RE and
−2RE(z(4RE . The near-Earth X-line during this
dipolarization forms in the center of the TCS, which extends

from −28RE to −9RE (Figure 10A). It only moderately
redistributes its current density (Figure 10B).

In contrast, during the second dipolarization, the (already
shorter, less than ∼ 10RE in the radial extension) TCS disappears
(Figures 11A,B), the near-Earth X-line forms at its tailward end
and these processes are associated with a significant flux
redistribution shown in Figure 9B (compare yellow and green
curves).

It is important to note that these processes of the tail thinning
and dipolarization often occur under weak variations of the lobe
magnetic field. Its weak variations in the growth phase were

FIGURE 7 |Distributions of the equatorial magnetic fieldBz [(A–C)] and the electric current [(D–F)] obtained using 0-degree tilt angle for the second dipolarization of
the 6 August 2017 substorm. The format is similar to Figure 6. The oblique dashed pink lines show the meridional planes, which are used below to investigate this
dipolarization. The dashed blue arcs in panel (A) show sample integration paths, which are used below to evaluate the closed magnetic flux evolution.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 64488410

Sitnov et al. Data Mining Reconstruction of Magnetotail Reconnection

190

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


reported in [74–76] and they are seen in Figure 10C as well as in
[27] (Figs. 12, 16, S4 and S13). Even rapid dipolarization
processes shown in Figures 4, 11C are accompanied by more
gradual lobe field variations, consistent with other data analyses
[58, 74].

5 KINETIC SIMULATIONS OF
MAGNETOTAIL RECONNECTION GUIDED
BY EMPIRICAL RECONSTRUCTIONS
In order to understand the physical mechanisms of the formation
of several X-lines in the magnetotail and their different
reconnection regimes revealed in the DM analysis, we
performed PIC simulations of the tail current sheet
equilibrium sharing some of the observed pre-onset tail
features. In particular, the reconstruction of the February 13

event discussed above in ([27], Fig. 8h) suggests that the near-
Earth reconnection is preceded by the formation of a flux
accumulation region near x ≈ − 22RE. According to
Figure 6A, similar pre-onset features in the form of a wide
valley with small Bz values at R ∼ 22RE and the enhanced Bz

ridge earthward of that valley took place prior to the 6 August
2017 substorm. To take these features into account, the PIC
simulations start from a 2-D equilibrium with a Bz hump
described by the vector potential A(0) � [0,−ψ(x, z), 0], where
ψ � LB0ln(β(x)cosh{z/[Lβ(x)]}), L is the characteristic current
sheet thickness parameter, and the x-axis points from Earth to
Sun. Its variation along the tail is determined by the function
β(x) � exp[ε1g(ξ)], with ξ � x/L, ε1 ≪ 1 and
−g(ξ) � ξ + (α/ε2){1 + tanh[ε2(ξ − ξ0)]}, which provides a
region of accumulated magnetic flux near ξ � ξ0. This is seen
from the magnetic field profile Bz(x, z � 0) � ε1B0{1 +
αcosh−2[ε2(ξ − ξ0)]} having a characteristic hump. The

FIGURE 8 | Two X-lines, Xn and Xm resolved in the equatorial distribution of themagnetic fieldBz (using 0-degree tilt angle) as earthward parts of the contours Bz for
the 6 August 2017 substorm. The format of this figure is similar to that of Figures 1B, 2. However, in contrast to Figure 2, the projections of the spacecraft coordinates
on the equatorial plane are now shown by colored dots. The color of the jth dot reflects the distance R(j)

q of the corresponding NN from the query point
logwj � −(R(j)

q /σRNN)2/2, according to the weight definition (10).

FIGURE 9 | Analogs of Figs. 5n and 5o, now showing the line integral Int(Bz) � ∫Bzds over the arcs similar to dashed blue arcs in Figure 7A from dusk to dawn
magnetopause boundaries (and expressed in units nT RE ) as a function of the arc’s most tailward value of x. The function Int(Bz) better reflects the redistribution of the
magnetic flux over the tail taking its width in the dawn-dusk direction into account.
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corresponding class of isotropic plasma equilibria was first
proposed in [77] based on the 2-D generalization [78] of the
1-D Harris model [79] to describe spontaneous onset of the ion
tearing instability.

The PIC simulations were performed using an open boundary
modification [64, 80] of the explicit massively parallel code P3D
[81] in a 3-D box with dimensions
L(s)x × L(s)y × L(s)z � 80di × 5di × 20di, where di � c/ωpi is the ion
inertial scale and ωpi � (4πe2n0/mi)1/2 is the plasma frequency; n0
is the plasma number density at the earthward side of the
simulation box near the neutral plane (z � 0). The choice of
such a relatively long in x and narrow in the y-direction box was
motivated by the available computer resources and the necessity
to cover a large portion of the tail containing both X-lines
resolved by the DM method and described in the previous
section. In particular, with di∼500 km ∼ 0.1RE [82], the
distance between X-lines in our run is 30di ∼ 3RE , that is only
3–4 times smaller than in the DM reconstruction. At the same
time, our previous simulations of similar equilibria with shorter
in x and wider in y boxes, up to L(s)y � 20di (see, for instance,
Fig. 13 in [82]) suggest that the selected value of Ly � 5di with
periodic boundaries in the y-direction is sufficient to reproduce
major structuring in that direction, including ballooning/
interchange and flapping motions.

The plasma parameters include the mass ratio mi/me � 128,
ion-to-electron temperature ratio Ti/Te � 3 and the effective
Alfvén speed vA � B0/

������
4πn0mi

√ � c/15 where c is the speed of
light. The equilibrium magnetic field parameters are ε1 � 0.03,
ε2 � 0.2, α � 3, and ξ0 � −30 with the CS thickness parameter
L � 1di. The magnetic and electric fields are normalized,
respectively, by B0 and vAB0/c. The coordinates are normalized
by di and velocity components by vA. The simulation grid has
2560 × 160 × 640 cells with ≈ 230 particles per cell
corresponding to n � n0. The magnetic field configuration at
the early stage of the run is shown in Figure 12A.

In contrast to earlier simulations ([83], and refs. therein) that
described spontaneous onset regimes, here we drive the system by
imposing a weak external electric field E(dr)

y at top and bottom
boundaries. This setup resembles earlier simulations of the
externally driven electron tearing [73], and the whole setup is
therefore a combination of the earlier ion and electron tearing
modeling efforts. Still, in contrast to earlier setups with localized
in x driving fields [73, 84, 85] and similar to [64], we do not
assume any localization of the driving electric field along the tail.
It remains constant throughout the main part of the box length
Lx , being only attenuated near open boundaries. For example
near the left boundary E(dr)

y � E0[tanh(x − δ)/δ]2 with δ � 0.1Lx .
The actual structure of the driving electric field remains

FIGURE 10 | (A, B) Color-coded distributions of the current density component Jy′ normal to the meridional plane shown by the dashed lines in Figure 6 with
overplottedmagnetic field lines (black solid lines) for themoments t0 � 04 : 20 UT and t2 � 04 : 35UT of the first dipolarization during the 6 August 2017 substorm. (C, D)
Color-coded distributions of the x’- and z-components of the magnetic field variation between moments t0 � 04 : 20 UT and t2 � 04 : 35 UT dBx′ ,z � Bx′ ,z(t2) − Bx′ ,z(t0)
in the same meridional plane with overplotted magnetic field lines (solid lines for the moment t2 and dashed lines for the moment t0). x′GSM is the coordinate along
the dashed lines in Figure 6.
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insufficiently resolved in observations and it can only be
conjectured from global MHD simulations (e.g. [86]). In this
situation, the assumption of the homogeneous electric field
appears to be the most plausible ad hoc assumption. The
driving field amplitude E0 smoothly increases in a half of the
ion gyrotime 1/ω0i at the beginning of the run and then remains
constant with E0 � 0.05.

The external driving first results in the CS thinning and
stretching, which are seen particularly well in the tailward part
of the box (Figure 12B). It also causes the buildup of the plasma
pressure in the region x( − 24di (not shown), consistent with
previous studies of the driven reconnection regimes (e.g., Fig. 9 in
[73]). This makes the CS configuration more similar to empirical
reconstructions with extended TCS, such as for instance in
Figures 10A, 11A (see also [27], Figs. 12b). At some point,
the first X-line X′m forms in the “tailward” part of the
simulation box (Figure 12C). However, the second X-line X′n
forming later in the left (“earthward”) part of the box
(Figure 12D) is not the secondary X-line caused by the
tearing instability of the reconnection exhausts (e.g. [87]),
because it also forms in the absence of any primary X-lines
[88–90] or when the primary X-line shows no reconnection
signatures [72, 82]. X′n rather forms because of the flux
starvation effect created by the earthward-moving DF in its

trailing part. As it was shown in [72, 88, 89], the DF appears
from the original Bz hump due to its spontaneous acceleration
and further localization in x.

It is very interesting that the magnetic field perturbations
shown in Figure 12E strongly resemble the DM reconstructions
of substorm dipolarizations shown in Figures 4, 10D, 11D with
much stronger bipolar Bz perturbations around the near-Earth
X-line compared to the midtail region. This suggests that
reconnection near X′n is unsteady, in contrast to the steady
midtail reconnection process at X′m. This conclusion is further
confirmed in our simulations by the analysis of the electric field
and plasma parameters.

Figure 13A shows that the electric field distributions around
the X-lines are indeed drastically different. Around X′m
(x ∼ − 50di) the distribution of Ey(x, z) is homogeneous and
its value Ey(x, z) ≈ 0.1 is consistent with the theoretical estimates
[61–63]. These are strong indications of the steady reconnection
process. In particular, the broad distribution of the electric field Ey
over a large area in the plane (x, z) justifies the concept of the
reconnection rate, measured by Ey , as a global parameter, which
characterizes the reconnection process as a whole. In contrast,
near X′n (x ∼ − 15di) the reconnection electric field strongly
varies in space. However, not all these variations are related to
unsteady reconnection. In particular, the sign-alternating

FIGURE 11 | (A, B) Color-coded distributions of the current density component Jy″ normal to the meridional plane shown by the dashed lines in Figure 7 with
overplotted magnetic field lines (black solid lines) for the moments t0 � 04 : 40 UT and t2 � 04 : 55 UT of the second dipolarization during the 6 August 2017 substorm.
(C, D) Color-coded distributions of the x”- and z-components of the magnetic field variation between moments t0 � 04 : 40 UT and t2 � 04 : 55 UT dBx″ ,z � Bx″ ,z(t2) −
Bx″ ,z(t0) in the samemeridional plane with overplottedmagnetic field lines (solid lines for themoment t2 and dashed lines for themoment t0). x″GSM is the coordinate
along the dashed lines in Figure 7.
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variations of Ey near the O-line (x ∼ − 23di) describe north-
south flapping motions of the CS as a whole, which are also seen
in Figure 13F as strong variations of the magnetic field Bx

( ∼ 0.5B0) without noticeable Bz variations in the same region
(Figure 13G). The properties of non-reconnection flapping and
ballooning/interchange motions (seen in the region x ∼ − 5di in
Figure 13G) in this run with a relatively small extension in the
y-direction are similar to non-reconnection motions investigated
with larger in y boxes in PIC simulations of spontaneous
reconnection onset regimes [82], where they are compared
with the corresponding magnetotail observations and other
kinetic simulations.

At the same time, earthward of Xn′ and near the DF, the
electric field is structured in the y-direction due to ballooning/
interchange perturbations that are best seen in variations of the
magnetic field Bz (Figure 13G). All in all, the electric field
associated with the earthward motion of the DF is highly
localized near its Bz peak and its value strongly exceeds the
steady-state reconnection limit 0.2 [63]. Note, that such strong
values of the reconnection electric field were reported before in
simulations of the ion tearing instability ([82], Fig. 5) and
interchange-driven reconnection ([92], Fig. 11). Thus, the
kinetic reconnection picture in our PIC simulation, which
combines steady and unsteady reconnection regions, is quite
consistent with the empirical DM-based reconstructions
described in the previous section. Moreover, kinetic
simulations reveal its features that cannot be captured from
the empirical geomagnetic field analysis, because they
represent spontaneous or small-scale plasma modes or they

are not reflected in the magnetic field data at all. The
examples of the first group of such phenomena are flapping
and ballooning/interchangemotions seen in Figures 13A,B. They
are indeed observed in the tail [93–97], although their relation to
substorms and their reconnection modes remains a topic of
ongoing discussions [98]. Another example is DFs, with their
ion-scale leading edges and fast (vx ∼ vA) earthward propagation
(e.g. [93]), forming out of relatively stationary and macroscopic
Bz-humps (compare, for instance, Figures 12A,E).

In Figures 13B–D we present another group of signatures,
which cannot be resolved using the DM analysis. Figure 13B
shows the electric field directed toward the neutral plane z � 0
and arising in ion and sub-ion-scale TCS due to different
motions of electrons and ions on those scales [85, 99–102].
Similar effects of the electric field directed toward a negatively
charged TCS were shown in PIC simulations ([101], Fig. 8) and
in observations ([23], Fig. 9). Figures 13C,D show plasma
signatures that are usually associated with the electron
diffusion region (EDR) in steady reconnection regimes: The
first shows super-Alfvénic dawnward electron flows [103] that
have been found one of the key distinctive EDR features in
recent MMS observations of the magnetotail reconnection
[104]. The second reveals non-gyrotropic electron motions
that are quantified using the agyrotropy parameter

���
Qe

√
proposed by [91] and shown later in MMS observations as
a distinctive EDR signature [105].

Finally, in Figure 14 we present the kinetic dissipation
parameters for the unsteady part of this run and compare
them with similar parameters inferred from MMS

FIGURE 12 | (A) The initial magnetic field configuration in PIC simulations of magnetotail reconnection, which is shown here as a color-coded distribution of the Bz

component with overplotted magnetic field lines in the plane y � 2.5di (“2D-equivalent” field lines calculated by treating a slice of the 3-D domain as if it were a 2-D
simulation). (B–E)magnetic field distributions at later moments showing (B) the CS thinning, (C) the formation of the “mid-tail” X-line Xm′, (D) another “near-Earth” X-line
Xn′ near x � −20di , (E) the fully developed tail reconnection picture at the moment, which is further explored in more detail.
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observations. In contrast to the steady-state reconnection area
near X′m, the unsteady reconnection region near X′

n does not
reveal impressive EDR signatures, such as the super-Alfvénic
dawnward electron flows or the agyrotropy enhancement (left
parts of Figures 4B,C). This is because the main process in this
region is the formation and fast earthwardmovement of a DF and
the resulting dipolarization of the magnetic field configuration
[72, 88, 89]. Moreover, many key aspects of these processes can be
described by ideal MHD models [106, 107], whereas the DF
formation and acceleration processes are shown to resemble the
ion tearing instability [64, 72] supported by the ion Landau
dissipation [108]. However, quantifying the latter in
simulations and observations is a challenging problem because
the conventional single-fluid measure, the Joule heating rate
cannot distinguish between ion and electron Landau
dissipation in collisionless magnetospheric plasmas. Indeed,
the energy conversion rates in the frame moving with ions or
electrons j · E′e,i (where j � ji + je, E′e,i � E + ve,i × B/c, je,i are the
electron/ion currents in the laboratory frame of reference and ve
and vi are the electron and ion bulk flow velocities) are same for
ion and electron species j · E′e ≈ j · E′i assuming plasma quasi-
neutrality ne ≈ ni).

To solve this problem, it has recently been proposed [109] to
employ the new kinetic parameter Pi − D(α) � −Π(α)

ij D(α)
ij

(α � e, i), the double contraction of deviatoric pressure tensor
Π(α)

ij � p(α)ij − δijp(α) (where p(α) � p(α)ii /3) and traceless strain-
rate tensor D(α)

ij � (ziv(α)j + zjv
(α)
i )/2 − δijθ

(α)/3 (with
θ(α) � ∇ · v(α)), which was introduced earlier in [110]. It was
demonstrated [109] that the Pi − D parameters represent direct
analogs of the MHD Joule heating as an entropy variation
measure and that they have different distributions for
electrons and ions. It was shown that in the regions with ion
Pi − D(i) peaks, at the leading part of the DF, ion distributions
show signatures of multi-flow motion, including ions reflected
from the DF. Such multi-flow ion motions have indeed been
detected at DFs in Cluster, THEMIS, and MMS observations
[111–114].

In Figures 14A–D we present kinetic dissipation measures
obtained in PIC simulations and averaged over the y direction
0< y < 5di, along with the corresponding profile of the magnetic
field Bz shown here to provide the global context for this local
investigation. As one can see from Figures 14A,B, while the
linear distribution of the electron dissipation parameter
〈Pi − D(e)〉y remains irregular and not obviously positive, its

FIGURE 13 | Steady and unsteady reconnection regions in weakly driven magnetoatail at the moment ω0i t � 45.8 corresponding to Figure 12E. (A–D) The
distributions in the plane y � 2.5di of the electric field components Ey and Ez , the electron bulk flow velocity � −Vey and the electron agyrotropy parameter

���
Qe

√
[91]

marking the localization of the electron diffusion region (in the latter case, to reduce noise in simulation outputs, the original numerical distributions are averaged over
20 × 20 grid cells). (E–G) The distributions of the electric field Ey and the magnetic field components Bx and Bz in the neutral plane z � 0.
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integration along the tail reveals its persistent accumulation
upstream of the DF structure (red line in Figure 14B). The
increase starts from theX′n vicinity with another buildup near the
corresponding O-line. The ion dissipation parameter is even
more impressive: Already its average over the y-coordinate
reveals a peak near the DF (Figure 14C), and when integrated
along the tail ∫x

0
〈Pi − D(i)〉ydx builds up near the DF and

remains elevated farther in the tail (red line in Figure 14D).
Figures 14E–H show the dissipation parameters similar to

those in Figures 14A–D but now derived from MMS
observations of a DF on 6 July 2017, a relatively rare case of a
slow moving DF with the ion bulk flow speed smaller than
200 km/s. The four-probe sub-ion-scale MMS observations of
the electromagnetic field and plasma parameters provide the
unique opportunity to measure the kinetic dissipation
parameters Pi − D for both electrons and ions. At the same
time, even with the MMS capability of calculating higher
moments of the plasma distribution, the assessment of the
kinetic dissipation parameters remains a challenging problem.
In particular, even in the MMS burst mode with the sampling
time δt � 0.15 s [115] and probe spacing δr(20 km, any velocity
gradient estimates necessary for calculation of the tensorD(i)

ij may
give trivial results for structures moving much faster than
Vmax � δr/δt ≈ 133 km/s. Thus, MMS data is only appropriate

so far to study the kinetic dissipation in relatively slow
moving DFs.

In spite of these caveats, simulation and observation results
presented in Figure 14 have interesting similarities. In particular,
both simulations and data show the accumulation of positive Pi −
D values for electrons after integration (over x in simulations and
in time in observations) seen in Figures 14B–G. Both in
simulations and in observations (Figures 14B,F) the electron
dissipation builds up behind the DF, upstream of the ion
dissipation buildup, in the regions with relatively small values
of the magnetic field, while for ions the dissipation starts
accumulating at or even before the DF.

6 DISCUSSION

6.1 Error Analysis of Empirical
Reconstructions
In this study we provided a DM reconstruction of magnetic
reconnection in the Earth’s magnetotail associated with its
dipolarizations during substorms. A direct validation of this
reconstruction can only be provided using a limited number
of in-situ observations available at the moment of interest. This is
an unavoidable feature of the DM method as a data discovery

FIGURE 14 | (A–D) Kinetic dissipation parameters in the unsteady reconnection region in PIC simulations (Figure 13) and (E–F) similar parameters derived from
MMS observations of a DF on 6 July 2017 at (x, y, z) � (−19, 3, 3)RE . From top to bottom the panels show the profiles of averages 〈 . . . 〉y over the y direction 0< y <5di

for (A) the electron dissipation parameter 〈Pi − D(e)〉y (gray line), (B) its value integrated in x: ∫x

0
〈Pi − D(e)〉ydx (red line), (C) the ion dissipation parameter 〈Pi − D(i)〉y

(gray line), (D) its value integrated in x: ∫x

0
〈Pi − D(i)〉ydx (red line) at the moment ω0i t � 45.8, which is also described in Figures 12E, 13. In all panels the magnetic

field Bz profile is shown by blue lines. Panels (G–M) show parameters similar to (A–F) as functions of time in MMS observations in the format (hour:min:sec).
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tool, which extracts from data the information (e.g., on the global
structure of the magnetotail), which cannot be obtained by other
methods. We simply have no real constellations of ∼ 3 · 104
probes to comprehensively validate our results. Still, the 13
February 2008 substorms were validated by all five THEMIS
probes (Figs. S6–S7 in [27]), while for the 6 August 2017 event,
the MMS1 validation results are presented in Figure 5. Moreover,
the uncertainty of the DM method caused by averaging over the
NN bins can be quantified by comparing the original values of the
parametersG1-G5 with their NNmeans. For the 13 February 2008
reconstruction such information was provided in Fig. 19 of [27].
For the 6 August 2017 substorm we provide it in Figure 15. This
figure shows in particular that during the dipolarization intervals
considered in Section 4 and shown by vertical dashed lines, the
maximum deviation of the binning parameters averaged over
their NN bins from their original values defined by Eqs. 4–6 does
not exceed ∼10% (the largest deviation is seen for 〈AL| at the end
of the second dipolarization interval). This means that statistical
errors of the presented reconstruction of the magnetic field
during this substorm are much smaller compared to major
variations of the binning parameters. Therefore the presented
DM-based picture of magnetotail reconfigurations should indeed
reflect the characteristic features of magnetic reconnection during
substorms.

Consistent with the analysis of the 13 February 2008
substorms [27], we have found that the relatively strong
deviations of the binning parameters from their means over
NNs take place for the solar wind parameter 〈vBIMF

s

∣∣∣∣ and the
AL index in the recovery phase. This suggests that the solar wind
and the magnetosphere after substorms are less coherent

(perhaps turbulent) and hence less reproducible, compared to
the evolution of the magnetosphere during growth and expansion
phases.

An important source of uncertainty in the present NN
approach may be the instrument errors and combining probes
from different epochs. Fortunately, the accuracy of magnetic field
measurements critical for our investigation (with a few nT
accuracy necessary to resolve the Bz magnetic field in the tail)
was sufficiently high. In particular, the IMP8 magnetometer was
good to 0.3 nT [116] and later missions had largely better
instruments (e.g. [117–119]) with a few caveats. Significant
errors (up to 7 nT) were found for some geosynchronous
missions [120] and they were mitigated using inter-spacecraft
calibration. The errors in the external magnetic field (difference
between the measured and dipole magnetic field values) may also
be large in the inner magnetosphere because of the spacecraft
attitude uncertainty and large values of the dipole field there
[121]. However, this is not an issue in the magnetotail.

6.2 Implications for Local Reconnection
Models and Tearing Stability
The concept of magnetic reconnection was introduced to explain
explosive energy release and rapid changes of magnetic field
topology associated with solar flares [2, 3], magnetospheric
substorms [7, 108, 122] and laboratory current disruptions
([123], and refs. therein). But its theory turned out to be built
mainly on models of steady-state reconnection regimes ([63,
124–127], and refs. therein). The few exceptions include the
tearing instability theory [87, 108, 122, 128], and catastrophe
models of coronal mass ejections and solar flares [129, 130].

At the same time, the description of transition from the slow
evolution of the tail to its rapid reconfiguration has long been
complicated by the almost universal tearing stability of the tail
current sheet provided by magnetization of electrons due to
nonzero northward magnetic field Bz [131, 132]. As a result,
the tail can be unstable when electrons become unmagnetized,
under the condition Bz/B0(kρ0e, where B0 is the field outside CS,
k is the wave vector and ρ0e is the thermal electron gyroradius in
the field B0 [73, 122, 133]. The resulting electron tearing
instability is enabled by the free energy of the mutual
attraction of the parallel electric current filaments and the
electron Landau dissipation of unmagnetized electrons. In PIC
simulations, the corresponding electron-demagnetization
mediated reconnection (EDMR) onset used to be reproduced
due to stretching and thinning of a CS by the external electric field
[73, 101, 134]. It is important that after the electron tearing
instability phase (or in its absence in simulations with spatially
localized driving [84, 85]) the reconnection process becomes
quasi-steady ([83], and refs. therein), consistent with regimes
found earlier in kinetic simulations with non-self-consistent
setups using 1-D CS equilibria with an imposed X-line
perturbation ([127], and refs. therein).

In 1974 Schindler [108] hypothesized that the tail could
become unstable even with magnetized electrons if the CS is
sufficiently thin to demagnetize ions and provide their Landau
dissipation. The corresponding tearing instability must be much

FIGURE 15 | The substorm part of the binning parameters (4)–(6) 〈AL|,
D〈AL|/Dt and 〈vBIMF

s

∣∣∣∣∣ (blue lines) and their means over 32,000 NN bins
({ . . . }NN , red lines) for the 6 August 2017 substorm. Parameters 〈AL| and
D〈AL|/Dt are normalized by the corresponding unit convolution integrals
〈1|. Vertical dashed lines mark two dipolarization intervals considered in
Section 4.
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faster compared to the electron tearing. However, later it was
found [135] that magnetized electrons change the free energy of
the tearing mode, and eventually Lembege and Pellat [131]
showed that the corresponding sufficient stability condition
coincides with the Wentzel–Kramers–Brillouin (WKB)
approximation π(Bz/B0)(kLz , which allows one to consider
stability neglecting the CS variations along the tail with the
scale Lx ∼ Lz(B0/Bz) (Lz is the CS half-thickness) making the
ion tearing impossible.

A missing key for ion tearing destabilization was found
relatively recently when it was discovered [77] that the
stability condition derived by Lembege and Pellat [131] is only
valid for constant Bz values. If Bz changes along the tail, the
stability condition takes the form π(Bz/B0)C2

d(kLz , where the
parameter Cd � VBz/(πLz) is determined by the flux tube volume
per unit magnetic fluxV � ∫ dl/B. In particular, in the presence of
a flux accumulation area with the tailward gradient of Bz , the
parameter Cd > 1 and a room for instability arises. The
corresponding instability had indeed been found in PIC
simulations with ad hoc configurations having Bz(x) profiles
with a hump [72, 88, 89]. Since electrons remained initially
magnetized by the field Bz , the instability was essentially the
ion tearing. It first led to the formation of an earthward-moving
dipolarization front (DF), in whose wake new X-lines formed due
to the flux starvation process [89]. The resulting ion-
demagnetization dominated reconnection (IDMR) onset did
not require any external driving and could be considered as
spontaneous or “internally driven” by the DF formation and
evolution processes.

Despite this clarity in the tearing stability theory and
consistent simulation results, until now, the role of EDMR and
IDMR regimes in the actual magnetotail dynamics remained
unclear. In particular, it is unknown if/when the driving
(ultimately due to the solar wind) is sufficiently strong to
squeeze the CS down to electron scales and to provide EDMR
with the subsequent steady reconnection, and when (if any) Bz

humps form to provide IDMR.
The present study provides interesting implications for the

magnetotail stability and reconnection onset mechanisms. Our
DM reconstructions suggest that both steady and unsteady
reconnection regimes are possible in the magnetotail during
substorms. At the same time, our PIC simulations guided by
empirical reconstructions suggest that both IDMR and EDMR
regimes are possible in the tail. Moreover, the former resembles
the unsteady reconnection, while the latter becomes eventually
steady, consistent with the classical fast and steady reconnection
models ([62] and refs. therein).

6.3 Role of Thin Current Sheets
The use in Section 5 of isotropic plasma equilibria with shifted
Maxwellian distributions for ions and electrons, inherited from
the 1962 Harris solution [79], to explain the reconnection features
found in our DM reconstructions may be questioned in view of
another discovery in the DM analysis of substorms, namely the
buildup of extended TCSs in the substorm growth phase and their
decay in the expansion phase [26, 27] (see also Figures 10A,B,
11A,B of the present study).

The analysis of 2-D isotropic equilibrium models [136]
suggests that they require strongly stretched magnetic field
configurations (with sufficiently large values of the ratio B0/Bz)
to explain the formation of the ion-scale TCS sufficiently far from
the Earth. Large values of B0/Bz are required to maintain the force
balance between the magnetic field line tension and the pressure
gradient 1/Lx ∼ (Bz/B0)/Lz , where Lx is the inhomogeneity scale
of the TCS, Lz is its half-thickness and B0 is the lobe field [137].
Modeling TCSs with Lx ≫ Lz(B0/Bz) might require more
sophisticated equilibria with anisotropic and agyrotropic
particle distributions (e.g. [136], and refs. therein).

Indeed, three of four substorm events on 13 February 2008
considered in [27] had relatively small values of B0/Bz ∼ 10
(according to their Figs. 15b–15d), whereas their aspect ratios
Lx/Lz often exceeded 50 (Fig. 16 in [27]). That finding was
consistent with signatures of the multiscale structure of the
magnetotail inferred from local observations of the pre-onset
CSs [19, 20, 23, 51].

However, this is not the case for the event considered in
Section 3, whose specific features (the Bz hump and the ion-scale
TCS earthward of it) guided our PIC simulations. In that first
substorm of the 13 February 2008 series, the ratio B0/Bz reaches
70 in the late growth phase (yellow line in Fig. 15a, corresponding
to 02:25 UT). Thus, the specific substorm event, considered in
Section 3 of our DM analysis is close to the isotropic force balance
state and it can be consistently described by 2-D isotropic CS
equilibrium models of the class [78]. Moreover, the specific
parameters used in our simulations correspond to
Lx/Lz ∼ B0/Bz ≈ 33 and DTCS ∼ 0.1RE and they are quite close
to similar TCS parameters of the first substorm in the 13 February
2008 series in its late growth phase (02:25 UT): Lx/Lz ∼ 25,
B0/Bz � 20 − 70 and Lz � 0.2RE .

One can also provide more general arguments why the
isotropic 2-D models can still be used in the local stability
analysis of the realistic magnetotail. First, statistical studies
show that the tail plasmas away from the dipole region are
weakly anisotropic [138, 139]. At the same time, the DM
reconstructions demonstrate that the current of the embedded
TCS in the late growth phase may be small, compared to the total
current, as is seen, for instance, from Figure 5L (this is the case for
all four 13 February 2008 events as is seen from Fig. 8f in [27]).
This suggests that the embedded TCS features and underlying
non-isotropic plasma properties may only serve to provide the
formation of the ion-scale TCSs sufficiently far from Earth, where
their local stability properties can still be realistically reproduced
by PIC simulations with isotropic equilibria and open
x-boundaries. This is consistent with the results of statistical
studies based on Geotail data [140], which suggest that the near-
Earth X-line mainly forms near the tailward edge of the TCS. This
appears to be the case during the second dipolarization in the 6
August 2017 event (Figure 11), although this is likely not the case
during the first dipolarization when the near-Earth X-line forms
in the middle of a very long TCS (Figure 10). Besides, even if the
initial TCS is relatively short because of the corresponding force
balance, the simulations performed in Section 5 suggest that it
becomes more stretched and closer to empirical TCS
reconstructions due to the external driving. To conclude, while
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some substorm dipolarizations certainly require a generalization
of the isotropic plasma approximation, as it was outlined in [136],
others can still be described using the conventional class of
isotropic CS models [78, 79].

7 CONCLUSION

In this study, we investigated for the first time the magnetotail
reconnection picture using modern data-mining methods, which
allow us to employ for the reconstruction not only the magnetic
field measurements available at the moment of interest but also other
events in the historical database when the magnetosphere was in
similar global states (substorm phases). The DM reconstruction
revealed two distinctly different regions of magnetic reconnection
withweak and strong changes of themagnetic field geometry. For both
the 13 February 2008 and the 6 August 2017 substorms considered in
our study the near-Earth X-line appears near x � −20RE at the
substorm onset, which is defined in our work as a transition to the
AL(t) index evolution with a strong negative slope (dashed vertical
orange line in Figure 5G–M). This result is consistent with the original
conjecture of Hones [7], later single- and multi-probe studies of the
near-EarthX-lines [57, 58], as well as with the plasmoid statistics [141].
In both events, the near-Earth X-line first appears in the pre-midnight
sector (Figures 2, 6B), which is consistent with the earlier statistical
investigations using Geotail [142] and Cluster [143] data.

In addition to earlier investigations, our DM reconstruction
reveals that the near-Earth X-line (Xn) often co-exists with
another more distant midtail X-line (Xm) located at x ≈ − 30RE .
In spite of the fact that its location is near the edge of the main cloud
of historical magnetometer measurements [44], the analysis of data
in the corresponding NN bins (Figures 2, 8) shows that the selected
NN subsets provide sufficiently broad radial coverage of data to
resolve both X-lines. The finding of the midtail X-line is consistent
with another group of earlier observations suggesting persistent
reconnection in the midtail around 30RE, which was inferred
from THEMIS and ARTEMIS statistics of traveling compression
regions [59, 60]. However, the coexistence of near-Earth and midtail
X-lines has never been demonstrated before.

Moreover, the DM analysis shows that reconnection regimes at
near-Earth and midtail X-lines are different. The near-Earth X-line
appears at the substorm onset and then disappears from that region or
reappears in another near-Earth region, e.g., in the postmidnight sector
(compare Figures 7A,B or Figures 2, 10 in [27]). In contrast, the
midtail X-line, after its appearance within the reconstruction validity
region (here R< 32RE) in the late growth phase remains relatively
stable and only gradually approaching the Earth (Figures 6A–C,
7A–C). Furthermore, the analysis of the magnetic field changes in the
meridional plane (Figures 3, 4), which according to the Faraday’s law
8) quantifies the steadiness of the reconnection process, suggests that
the latter is relatively steady near Xm and transient at Xn.

To understand the physical mechanisms of the formation of
several X-lines in the magnetotail and their different
reconnection regimes, we performed 3-D PIC simulations of a
relatively long (Lx � 80di) tail CS region with open boundaries in
the Sun-Earth direction. A new aspect of simulations was the
combination of the initial TCS configuration having a region of

the flux accumulation (Bz hump) with a relatively weak and
homogeneous external driving. The formation of the flux
accumulation regions prior to unsteady reconnection in the
near-Earth tail is found in the DM reconstruction of both
substorm events (Fig. 8h in [27], as well as Figures 6A, 7A),
consistent with earlier statistical results [144, 145]. Recently, it has
been inferred from remote-sensing observations of 30–100 keV
energy electrons precipitating from the tail CS during the
substorm growth phase [146]. This feature is also interesting
because the corresponding region with the tailward Bz gradient
(earthward of the Bz hump) has been found in the tail stability
theory [77] to be the only mechanism of destabilization of the ion
tearing mode [108]. The second feature, the external driving was
used before to reproduce the tail reconnection onset through the
electron tearing instability [73]. It was also used in forced
reconnection models [84, 85].

The reconnection picture in PIC simulations, guided by the
DM reconstructions, is found to be surprisingly consistent with
the empirical picture of the magnetotail reconnection. It also
reveals two reconnection areas with distinctly different
reconnection regimes, whose steadiness can now be checked
using the explicit distributions of the electric field in the
meridional plane (Figure 13A). It is found that farther in the
tail, the reconnection process is steady and it reveals many
signatures of the sustained collisionless reconnection process
with the region of agyrotropic electron motion in its center.
The corresponding dusk component of the electric field is broadly
distributed in the meridional plane and hence it becomes
effectively a global parameter of this reconnection regime. Its
value Ey ≈ 0.1 matches earlier theoretical estimates for this
regime supported by local PIC simulations [61–63]. At the
same time, the evolution of the Bz hump is found to result in
an unsteady reconnection process with the peak electric field near
the dipolarization front exceeding the steady reconnection rate
limit by more than an order of magnitude, the result, which is
consistent with earlier PIC simulations of local unsteady
reconnection regions [82, 92]. The analysis of kinetic
dissipation parameters in the unsteady reconnection region
shows that the ion dissipation parameter Pi − D(i) peaks near
the DF and it is further accumulated upstream of the propagating
front. The electron dissipation is largely accumulated behind the
DF near new X- and O-lines. Similar ion and electron dissipation
parameters are inferred from MMS observations.

Both empirical and first-principle pictures of magnetotail
reconnection still need further refinement. The present DM
approach provides an empirical picture on the magnetotail on
the time scales greater than 5 min and on the spatial scales larger
than ∼ 0.2RE for the TCS thickness and a few RE in the equatorial
plane. On these scales, the magnetic field dipolarization is likely a
cumulative effect of the smaller-scale processes, such as multiple
DFs (e.g. [58, 66, 147]). These cumulative effects are not yet
reproduced in PIC simulations. On the other hand, the midtail
X-lines are found close to the gap region 31RE <R< 55RE in
historical data [44, 148]. Thus, a better resolution of the midtail
reconnection picture requires more measurements in that gap
region. PIC simulations were made in a relatively thin CS, whose
non-Harris properties, such as its negative charging and
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multiscale structure, are only partially captured now due to the
external driving. In simulations with thicker CSs and broader Bz

humps, as well as more realistic values of the parameters mi/me

and c/vA, one can expect stronger negative charging effects,
slower growth of DFs and subsequent reconnection, as well as
weaker electron dissipation. A further improvement of the tail
reconnection and stability picture is also required to better
reproduce less stretched embedded TCS.
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NOMENCLATURE
The following abbreviations are used in this manuscript:

CME Coronal Mass Ejection

CS Current Sheet

DM Data Mining

EDR Electron Diffusion Region

EDMR Electron Demagnetization Mediated Reconnection

FAC Field Aligned Current system

GSM Geocentric Solar Magnetospheric coordinate system

IDMR Ion Demagnetization Mediated Reconnection

KNN K Nearest Neighbors method

PIC Particle-In-Cell simulation method

R1,2 Region 1,2 field-aligned current

SMC Steady Magnetospheric Convection

TCS Thin Current Sheet

UT Universal Time

WKB Wentzel–Kramers–Brillouin approximation
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Exploring Three Recurrent Neural
Network Architectures for
Geomagnetic Predictions
Peter Wintoft * and Magnus Wik

Swedish Institute of Space Physics, Lund, Sweden

Three different recurrent neural network (RNN) architectures are studied for the prediction
of geomagnetic activity. The RNNs studied are the Elman, gated recurrent unit (GRU), and
long short-term memory (LSTM). The RNNs take solar wind data as inputs to predict the
Dst index. The Dst index summarizes complex geomagnetic processes into a single time
series. The models are trained and tested using five-fold cross-validation based on the
hourly resolution OMNI dataset using data from the years 1995–2015. The inputs are solar
wind plasma (particle density and speed), vector magnetic fields, time of year, and time of
day. The RNNs are regularized using early stopping and dropout. We find that both the
gated recurrent unit and long short-term memory models perform better than the Elman
model; however, we see no significant difference in performance betweenGRU and LSTM.
RNNs with dropout require more weights to reach the same validation error as networks
without dropout. However, the gap between training error and validation error becomes
smaller when dropout is applied, reducing over-fitting and improving generalization.
Another advantage in using dropout is that it can be applied during prediction to
provide confidence limits on the predictions. The confidence limits increase with
increasing Dst magnitude: a consequence of the less populated input-target space for
events with large Dst values, thereby increasing the uncertainty in the estimates. The best
RNNs have test set RMSE of 8.8 nT, bias close to zero, and linear correlation of 0.90.

Keywords: space weather, recurrent neural net, cross-validation, solar wind–magnetosphere–ionosphere coupling,
prediction, dropout

1 INTRODUCTION

In this work we explore recurrent neural networks (RNNs) for the prediction of geomagnetic activity
using solar wind data. An RNN can learn input–output mappings that are temporally correlated.
Many solar terrestrial relations exhibit such behavior that contains both directly driven processes and
dynamic processes that depend on time. The geomagneticDst index has been addressed in numerous
studies and serves as a parameter for general space weather summary and space weather models. The
Dst index is derived frommagnetic field measurements at four near-equatorial stations and primarily
indicates the strength of the equatorial ring current and the magnetopause current (Mayaud, 1980).
The Dst index has attained a lot of attention over the years, both for understanding solar terrestrial
relations and for use in space weather.

An early attempt to predict the Dst index from the solar wind made use of a linear filter (Burton
et al., 1975) derived from the differential equation containing a source term (the solar wind driver)
and a decay term. After removing the variation in Dst that is controlled by the solar wind dynamic
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pressure, one arrives at the pressure-corrected Dstp index
(O’Brien and McPherron, 2000) which is modeled as

dDstp

dt
� Q − Dstp

τ
, (1)

whereQ is the source term that depends on the solar wind and t is
the decay time of the ring current. The decay time t may be a
constant, but it may also vary with the solar wind. (see, e.g., the
AK1 (constant τ) and AK2 (variable τ) models in O’Brien and
McPherron (2000)). As the functional form of Q is not known,
the equation is numerically solved by

Dstp(t + Δt) � Dstp(t) + (Q(t) − Dstp(t)
τ(t) )Δt. (2)

Based on observed solar wind data, for hourly sampled data,
the time step is Δt � 1 hour. The source term Q is a nonlinear
function of the solar wind parameters, and different forms have
been suggested. The AK1 model defines the source term as

Q(V ,Bs) � aVBs nT/h, (3)

where a � −2.47 is a constant, V is the solar wind speed (km/s),
and Bs is

Bs � { 0 , Bz ≥ 0
−Bz , Bz < 0

nT. (4)

Bz is the vertical solar wind magnetic field component. Thus,
as long as Bz < 0, the Dst index will be driven to increasing
negative values; for example, if τ is a constant and the solar wind
conditions are constant with negative Bz , then Dstp will
asymptotically approach Q · τ. With τ � 17 hours (AK1), V �
600 km/s and Bz � −20 nT give VBs � 12mV/m and
Q · τ � −500 nT. The AK1 model has been further extended by
letting τ be a function of Dst and adding components for the
diurnal and seasonal variation that are present in Dst (O’Brien
and McPherron, 2002).

The machine learning (ML) approach could be viewed as a set
of more general algorithms that can model complex functions.
The development of an ML model is more involved and time
consuming. For the prediction of the Dst index, many ML
methods have been applied, and we here list some examples
using different approaches: neural network with input time delays
(Lundstedt and Wintoft, 1994; Gleisner et al., 1996; Watanabe
et al., 2002), recurrent neural network (Wu and Lundstedt, 1997;
Lundstedt et al., 2002; Pallocchia et al., 2006; Gruet et al., 2018),
ARMA (Vassiliadis et al., 1999), and NARMAX (Boaghe et al.,
2001; Boynton et al., 2011).

An RNN models dynamical behavior through internal states
so that the output depends on both the inputs and the internal
state (see, e.g., Goodfellow et al. (2016)) for an overview. Thus,
structures that are temporally correlated can be modeled without
explicitly parameterizing the temporal dependence; instead, the
weights in the hidden layer that connects to the internal state
units are adjusted during the training phase. An early RNN was
the Elman network (Elman, 1990) which was applied to
geomagnetic predictions (Wu and Lundstedt, 1997) and later

implemented for real-time operation (Lundstedt et al., 2002). The
Elman RNN can model complex dynamical behavior; however, it
was realized that it could be difficult to learn dynamics for
systems with long-range memory (Bengio et al., 1994). To
overcome that limitation, other RNN architectures were
suggested, such as the GRU (Cho et al., 2014) and LSTM
(Hochreiter and Schmidhuber, 1997). The LSTM has been
applied to geomagnetic predictions of the Kp (Tan et al., 2018)
and Dst indices (Gruet et al., 2018; Xu et al., 2020). It should be
noted that Elman RNN is less complex and has the shortest
training times of the three architectures and may be suited for
certain problems, and that it is not clear whether there is a general
advantage of using GRU or LSTM (Chung et al., 2014;
Goodfellow et al., 2016).

In this work, the main goal is to compare the three RNNs:
Elman, GRU, and LSTM. The geomagnetic Dst index is chosen as
target as it captures several interesting features of the geomagnetic
storm with different temporal dynamics. The initial phase is
marked by an increase in Dst caused by a directly driven pressure
increase in the solar wind; the main phase is marked by a sudden
decrease inDstwhen solar wind energy enters the magnetosphere
through mainly reconnection with southward Bz , and later, the
storm enters the recovery phase when energy is dissipated by
internal processes not related to the solar wind condition.

The inputs to the RNNs are solar wind, local time, and time of
year. Specifically, past values of Dst are not used as inputs,
although the autocorrelation is very strong (0.98). Clearly, all
statistical measures of performance will improve for short lead
time predictions when past values ofDst are used. However, as the
solar wind controls the initial and main phases of the storm, the
strong autocorrelation is mainly a result of quiet time variation
and the relatively slow increase in Dst during the recovery phase.
Another aspect is that for real-time predictions, the variable lead
time given by the solar wind must be matched against available
real-timeDst if it is used as input. Also, any errors in real-timeDst
will affect the predictions, and as an example, during the period
June–September 2020, the real-time Dst was offset by about
−30 nT. It is also interesting to note that in a recent Dst
prediction competition1 hosted by NOAA, it was stated that
the models “may not take Dst as an input.”

As the idea here is to compare three RNN architectures that
map from solar wind to Dst, the prediction lead time is not
explored. The solar wind data used have been propagated to a
location close to Earth, and no further lead time is added; thus,
propagated solar wind at time t is mapped to Dst(t). Clearly,
possibilities to increase the lead time are of great interest, and
many attempts have been made with models driven by measured
solar wind (e.g., Gruet et al. (2018); Xu et al. (2020)). However,
without any information other than L1 solar wind measurements,
the initial phase cannot be predicted with any additional lead
time, except that given by the L1-Earth solar wind propagation
time, while the main phase may be predicted with possibly up to
an additional hour due to magnetospheric processes. The effect of

1https://www.drivendata.org/competitions/73/noaa-magnetic-forecasting/
page/278/
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forcing models driven by measured solar wind to predict Kp and
Dst with different lead times was studied in Wintoft and Wik
(2018).

2 MODELS AND ANALYSIS

2.1 Models
A neural network performs a sequence of transforms by
multiplying its inputs with a set of coefficients (weights) and
applying nonlinear functions to provide the output. It has been
shown that the neural network can approximate any continuous
function (Cybenko, 1989). For a supervised network, the weights
are adjusted to produce a desired output, given the inputs, known
as the training phase. The training phase requires known input
and target values, a cost function, and an optimization algorithm
that minimizes the cost.

The Elman RNN was first developed for Dst predictions by
Wu and Lundstedt (1997) and later implemented for real-time
operation (Lundstedt et al., 2002). In this work, we use the term
Elman network, but it is the same as the simple RNN used in the
Tensorflow package that we use (Abadi et al., 2015). Using linear
units at the output layer, the Elman network at time t is
described by

yt � b +∑J
j�1

vjh
j
t � Vht , (5)

hjt � f⎛⎝aj +∑I
i�1

wjix
i
t +∑J

k�1
ujkh

k
t−1⎞⎠ � f (Wxt + Uht−1)j, (6)

with the output layer bias b, J hidden weights vj, nonlinear
activation function f, J hidden layer biases aj, J × I weights wji,
and J × J recurrent weights ujk. Note that we use superscripts
i, j, and k as indices, not powers. The equations can be written
more condensed using weight matrices W and U, where the bias
terms (aj, b) have been collected into the matrices and increasing
the lengths of xt and ht by adding a constant set to one. For
example, in Lundstedt et al. (2002), there are I � 3 inputs
(Bz , n,V) and J � 4 hidden units.

A minimalistic Elman network can be constructed by using
only one input unit and one linear unit in the hidden layer, thus
b � 0, v1 � 1, leading to

yt � a1 + w11x
1
t + u11yt−1, (7)

which after some rearranging can be written as

yt � yt−1 + a1 + w11x
1
t − (1 − u11)yt−1, (8)

which is identical to Eq. 2 for τ � const and Δt � 1, and by letting
a1 � 0, w11x1t � Q(t), and 1 − u11 � 1/τ. This simple network is
trained using the pressure-corrected Dst index as the target. As
the weights in the network are initiated with random values
before training begins, there will be some variation in the final
weight values if the training is repeated. We find typical values of
w11 and u11 corresponding to a ∈ [−2.4,−2.7] (Eq. 3) and
τ ∈ [14, 16] hours, which are close to the values used by
O’Brien and McPherron (2000). However, the algorithm can

get stuck in local minima that results in quite different values. We
provide code on Github2 for the minimalistic Elman network (see
Model005.py).

The gated recurrent unit (GRU) neural network (Cho et al.,
2014) has a more complex architecture than the Elman network.
We implement a single GRU layer, and the output from the
network is as before, given by yt � Vht (Eq. 5). The GRU layer
output at unit j is

hjt � zjth
j
t−1 + (1 − zjt)~hjt , (9)

where zjt is the update gate and ~h
j
t is the candidate activation. The

update gate is defined as

zjt � σ(Wzxt + Uzht−1)j, (10)

where σ is the sigmoid function with output range 0–1. The
weight matrixWz operates on the input vector xt , and the matrix
Uz operates on the past activation ht−1. The candidate activation
is defined as

~h
j

t � f (Wxt + U(rt⊙ht−1))j, (11)

where f is a nonlinear function with two additional weight
matrices W and U. The U matrix operates on the past
activation weighted by the reset gate

rjt � σ(Wrxt + Urht−1)j, (12)

which has a further set of weights matrices Wr and Ur . Clearly,
the GRU network is more complex than the Elman network, and
it has approximately 3 times more weights than the Elman
network for the same number of units. As the update and
reset gates have outputs between 0 and 1, we see that when
both produce ones [(zjt , rjt) � (1, 1)], the GRU network simplifies
to the Elman network. On the other hand, when zjt � 0, no
information of the current input xt is used, only the past state
ht−1. Finally, when rjt � 0, no information of past states goes
through the candidate activation (Eq. 11); information on past
states only goes through Eq. 9 and is weighted by 1 − zjt .

The long short-term memory (LSTM) neural network
(Hochreiter and Schmidhuber, 1997) was introduced before
GRU and has further complexity with the number of weights
approximately four times that of the Elman network, given the
same number of units. We will not repeat the equations here but
instead refer to for example, Chung et al. (2014). The LSTM has
three gating functions, instead of GRU’s two, that control the flow
of information: the output gate, the forget gate, and the input gate.
When they have values 1, 0, and 1, respectively, the LSTM
simplifies to the Elman network.

Given a network with a sufficient number of weights, it can be
trained to reach zero MSE; however, such a network will have
poor generalizing capabilities; that is, it will have large errors on
predictions on samples not included in the training data.
Different strategies exist to prevent over-fitting (Goodfellow

2https://github.com/spacedr/dst_rnn
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et al., 2016). We apply early stopping and dropout (Srivastava
et al., 2014; Gal and Ghahramani, 2016).

In order to make a robust estimation of the performance of the
networks, we apply k-fold cross-validation (Goodfellow et al.,
2016). During a training session, one subset is held out for testing
and the remaining k − 1 subsets are used for training and
validation, and out of the k − 1 subsets, one is used for
validation and the remaining k − 2 subsets for the training.
During training, the validation mean squared error (MSE) is
monitored, and the network with lowest validationMSE is chosen
(early stopping). In practice, to know that the minimum
validation MSE has been reached, the training is continued for
a number of epochs after the lowest MSE has been reached. The
final evaluation of the models is performed on the k different test
sets (see Section 2.2 to know how the different sets are selected).

2.2 Data Sets
The hourly solar wind data and Dst index are obtained from the
OMNI dataset (King and Papitashvili, 2005). The inputs are the
solar wind magnetic field magnitude B, the y- and z-components
(By,Bz) in the geocentric solar magnetospheric (GSM)
coordinate system, the particle density n, and speed V. To
provide information on diurnal and seasonal variations
(O’Brien and McPherron, 2002), four additional variables are
added: the day of year parameterized as sine and cosine of
2πDOY/365, and local time as sine and cosine of 2πUT/24.
Thus, in total, nine input variables. Several previous
geomagnetic prediction models also use diurnal and seasonal
inputs (e.g., Temerin and Li (2006); Wintoft et al. (2017); Wintoft
and Wik, (2018)). Many different coupling functions (Q) for the
dayside reconnection rate have been suggested and investigated
(Borovsky and Birn, 2014), but as the neural network can
approximate any function, the exact function does not have to
be specified as long as the relevant inputs are available.

The target variable (Dst) depends on both the solar wind and
past states of the system, where past states can be described by
past values of Dst itself or by past values of the solar wind. We
choose to only include solar wind, thereby not relying on past
observed or predicted values of Dst. For the RNN training
algorithm, the data are organized so that the past T solar wind
observations are presented at each time step. The input data are
thus collected into a N × T × 9 tensor, and the target data have
N × 1 dimension, where N is the number of samples in the set.
The input history should be long enough to capture typical
storm dynamics, and we found that validation errors leveled

out at T � 120 hours (see also the results regarding T in Sections
2.3 and 2.4).

To implement the k-fold cross-validation (CV), the dataset
must be partitioned into subsets; we perform a five-fold CV. We
choose the five sets to each have similar target (Dst) mean and
standard deviation so that training, validation, and testing are
based on comparable data. If a more blind approach were done,
then there is a high risk that training is performed on data
dominated by storms, while testing is performed on more quiet
conditions. Further, the samples in a subset cannot be randomly
selected because there will be considerable temporal overlap
between samples of different subsets due to the T � 120 hour
window. Instead, we build the subsets from data covering
complete years. The data we use cover the years 1995 to 2015,
extending over almost two solar cycles and with few solar wind
data gaps. We define five subsets based on the data for the years
shown in Table 1. The datasets used for training, validation, and
test are selected by cycling through the subsets. For the first CV
(CV-1) subset, one is selected as test set; subsets two, four, and
five for training; and subset three for validation. The process is
repeated according to Table 2.

The input and target values span very different numerical
ranges, whereas the training algorithm should receive input-
target data that have similar numerical ranges. Therefore, the
input and target data are normalized, where the normalization
coefficients are found from the training set. By subtracting the
mean and dividing with the standard deviation for each variable
separately, the training set will have zero mean and one standard
deviation on all its inputs and target variables. However, as the
distributions for each variable are highly skewed, they result in
several normalized values with magnitudes much larger than one.
Another way to normalize is to instead rescale the minimum and
maximum values to the range [-1, 1]. This guarantees that there
will be no values outside this range for the training set. We found
that the min–max normalization gave slightly better results,
especially at the large values.

2.3 Hyperparameters
There are a number of hyperparameters (HPs) that control the
model complexity and training algorithm that need to be tuned,
but it is not feasible to make an exhaustive search. Initially, a
number of different combinations of HP values were manually
tested to provide a basic insight into reasonable choices and how
the training and validation MSEs vary with epochs. In this initial
exploration, we found the Tensorboard (Abadi et al., 2015)
software valuable in monitoring the MSE.

TABLE 1 | Summary of the five subsets showing the years, number of samples,
the mean (nT), standard deviation (nT), and minimum Dst (nT).

Years Count Mean Std Min

1 1995, 2003, 2006, 2010 34,890 −15.0 19.8 −422
2 2001, 2002, 2009, 2011 35,021 −13.2 23.4 −387
3 1998, 2004, 2008, 2012 35,089 −11.3 20.9 −374
4 1996, 2000, 2013, 2015 35,059 −13.0 21.0 −301
5 1997, 1999, 2005, 2014 34,754 −12.7 19.2 −247

TABLE 2 | Selection of subsets for the different cross-validation (CV) sets.

CV Training Validation Test

1 2, 4, 5 3 1
2 1, 4, 5 3 2
3 1, 4, 5 2 3
4 1, 3, 5 2 4
5 1, 3, 4 2 5
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The Adam learning algorithm (Kingma and Lei, 2015), which
is a stochastic gradient descent method, has three parameters:
learning rate ϵ and two decay rates for the moment estimates
(β1, β2). We fix the latter to the suggested values β1, β2 �
0.9, 0.999 and vary ε ∈ [5 · 10− 4, 1 · 10− 3, 2 · 10− 3].

The learning algorithm updates the weights in batches of
samples from the training set, where the number of samples in
each batch NB is much smaller than the total number of training
samples (NB ≪N). We test batch sizes of NB ∈ [32, 64, 128]. One
training epoch includes approximately N/NB training iterations
in which the weights are updated at each iteration.

The model capacity is determined by the number of weights and
the network architecture. In this work, we have one input layer, a
recurrent layer (hidden layer), and a single output. Thus, the capacity
is determined by the network type (M ∈ [Elman,GRU, LSTM]) and
the number of hidden units (NH).

The current state (ht) in the RNN depends on both its inputs
(xt) and the past state (ht−1). For computational performance
reasons, past states are not kept indefinitely; instead, there is a
limit T on the length of the memory. We explored
T ∈ [48, 72, 96, 120] hours and found that the validation MSE
decreased with increasing T, but that it leveled out for large T. We
therefore set T � 120 hours. This also means that any dynamical
processes extending past 120 h cannot be modeled internally by
the RNN. The choice of T for the Elman and GRU networks is
studied on simulated Dst data in the next section.

The dropout is controlled by parameters that specify the
fraction of network units in a layer that are randomly selected
per epoch and temporarily disregarded. The dropout can be
applied to all layers: the input layer (di), the recurrent layer
(dr), and the hidden layer (dh). The dropout is a number between
0 and 1, where 0 means all units are included and 1 that all units
are unused.

For each combination of HP that we explore, we train three
networks initiated with different random weight values as there is
no guarantee that the training algorithm will find a good local
minimum. The network with the lowest validation error is
selected. Note that here validation refers to the split into
training and validation sets used during training, which is
different from the cross-validation sets that make up the
independent test set.

2.4 Training Network on Simulated Data
It is interesting to study the RNNs on data generated from a
known function relating solar wind to Dst, and for this purpose,
we use the AK1model (O’Brien andMcPherron, 2000). Using the
datasets defined in the previous section, we apply the AK1 model
to the solar wind inputs and create the target data. Thus, there
exists an exact relation between input and output, and the
learning process of the RNN will only be limited by the
amount of data, network structure (type of RNNs), and
network capacity (size of RNNs). We showed that the
minimalistic Elman network (Eq. 7) can model the pressure-
corrected Dst. The AK1 model also includes the pressure term,
and its inputs are Bz , n, and V. The five-fold CV is applied to
Elman and GRU networks, and we vary the time window T and
the network size NH .

In Figure 1, the validation errors as function of T are shown
for the Elman and GRU networks. At each T, the optimal
networks with respect to NH are used. We see that for small
T, the RMSE is large, but it is similar for the two network types. At
small T, only part of the storm recovery phase can be modeled.
But as T is increased, the RMSE becomes much smaller for the
GRU network than for the Elman network. It is likely that the
Elman network suffers from the vanishing gradient problem
(Bengio et al., 1994): the reason for introducing GRU and
LSTM networks. We also see that the GRU network reaches
an RMSE of lower than 0.6 nT, which could be further decreased
by increasing T. Thus, the GRU network can learn the AK1model
using the observed solar wind data.

2.5 Result for the Dst Index
As described in Section 2.2, the inputs to the Dstmodel are solar
wind magnetic field (B, By,Bz), density (n), and speed (V); the
day of year parameterized as sine and cosine of 2πDOY/365; and
local time as sine and cosine of 2πUT/24. The DOY and UT are
added to model the seasonal and diurnal variations in Dst
(O’Brien and McPherron, 2002).

We perform a search in the hyperparameter space as described
above and conclude that training is not very sensitive on the
learning rate (ϵ) or batch size (NB), and therefore fix them at
(ε,NB) � (10−3, 128).

For each of the five splits, we select the corresponding training
set (Tables 1,2), and RNNs are trained with different number of
hidden units (NH) and different dropout rates (di, dr, dh). For
each combination of (NH , di, dr , dh), three networks are trained
starting from different random initial weights. During training,
the validation error is monitored, and the network with lowest
validation error is selected. The training is stopped 20 epochs
after the minimum validation error has been reached, and the

FIGURE 1 | The average validation RMSE as function of memory size (T
in hours) for the Elman and GRU networks.
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network at minimum validation error is saved. Typically, the
minimum validation RMSE is found after 40 to 80 epochs. This
results in five different networks for each HP combination that
can be tested using the CV approach. See Appendix for software
used and typical training times.

The coupling function from solar wind to observed Dst is
subject to a number of uncertainties, and to provide a few
examples: the solar wind data have been measured at different
locations upstream of Earth, mostly from orbit around the L1
location, and then shifted to a common location closer to Earth
(King and Papitashvili, 2005); We rely on a point measurement;
there may be both systematic and random errors in the derived
Dst index. The uncertainties introduce errors in the input–output
mapping, and to reduce their effect and improve generalization,

we apply dropout. From a search of different combinations of
(NH , di, dr , dh), it was found that dropout on the inputs (di)
always led to poor performance, which can be understood as
several inputs individually are critical, for example Bz . Therefore,
we set di � 0. The performance improved when dropout was
applied on the recurrent and hidden layers. Figure 2 shows the
training and validation RMSE as a function of NH for different
dropouts. In the case with no dropout (left panel), it is seen that
the GRU and LSTM validation errors are similar and significantly
below the Elman validation errors. There is also a large gap
between the training and validation errors, indicating over-fitting
on the training set. When dropout is introduced (middle and
right panels), the network size must be increased to reach similar
validation RMSE as when no dropout is applied, which is
expected as only a fraction of units are active at any one time.
But we also see that the gap between training and validation
errors decreases. We also applied dropout on the Elman network,
but the validation errors became large when dr > 0; therefore, the
results are not included in the middle and right panels. When
dr � 0.5 and dh � 0.5 (right panel), the optimal GRU and LSTM
networks haveNH � 50 andNH � 40, respectively. In terms of the
number of weights, they are of similar sizes, 9,051 and 8,041,
respectively. When dropout is applied, the number of active
weights drops to 2,651 and 2,421

For each CV set, we select the GRU and LSTM networks with
minimum validation RMSE with and without dropout, and run
them and collect the 5 CV sets into one set. We thereby get an
estimate of the generalization performance for the whole 1995 to
2015 period. Figure 3 shows scatterplots of predicted Dst vs.
observed Dst on the test sets for different networks. Table 3
summarizes the performance on the training, validation, and test
sets. The 95% confidence intervals have been estimated by both
assuming independent data points and taking into account the
autocorrelation (Zwiers and von Storch, 1995). It is clear that
using dropout significantly improves the generalization
capability. We also see that there is no significant difference
between the GRU and LSTM networks. The bias (mean of errors)
and linear correlation coefficient are computed on the test set and
shown in Table 4.

The performance of the networks varies with the level of Dst;
the errors have a tendency to increase with the magnitude of Dst.

FIGURE 2 | The average training (dashed lines) and validation (solid lines) RMSE as function of the number of hidden units (NH ) for the Elman, GRU, and LSTM
networks. The panels show errors, from left to right, when no dropout is applied (dr � 0,dh � 0), dropout dr � 0.5,dh � 0.3, and dropout dr � 0.5,dh � 0.5. Note that the
dropout on the inputs is di � 0. Gray horizontal line marks the minimum validation RMSE.

FIGURE 3 | Scatterplots of predicted vs. observed Dst based on the five
CV test sets. The left panels show predictions without dropout using GRU and
LSTM networks (gru-10 and lstm-10), while the right panels are predictions
based on networks trained using dropout of (dr ,dh) � (0.5, 0.5) (gru-50
and lstm-40).
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Figure 4 shows the RMSE binned by observed Dst. Down to
Dst � −300 nT, the networks with dropout have the lowest
RMSE. The bin at Dst � −400 nT has too few samples to be
interpretable. The main reason the errors increase with the
magnitude of Dst is that there are very few samples around
the extremes; thus, the uncertainty of the function estimation will
be large. In Wintoft et al. (2017), this problem was addressed by
using an ensemble of networks; the predictions from several
networks with different weights were averaged. In this work, we
study the use of dropout not only in the training phase but also in
the prediction phase. The algorithm that temporarily cancels

units at random during training can also be applied during
prediction. This means that there is practically an indefinitely
number of weight combinations that can be used to produce an
arbitrary number of predictions at each time step. For the GRU
network with (NH , dr , dh) � (50, 0.5, 0.5), there are more than
1028 possible combinations. There is a Bayesian interpretation of
dropout as the estimation of model uncertainty (Gal and
Ghahramani, 2016b). The idea is that the weights are random
variables leading to a distribution of predictions for fixed inputs.
For each sample, a large number of predictions can be generated,
which randomly use different combinations of network units. For
each sample, we generate 100 predictions and compute the mean
and standard deviation. Figure 5 shows two examples, the first a
severe geomagnetic storm and the second a major storm. The
mean predictions with dropout come close to the predictions
without dropout. The prediction uncertainty is small during quiet
times (Dst close to zero) and increases with storm magnitude.
Again, this is a result of the greater uncertainty in parameter
estimates in regions which are poorly sampled.

As time of day and season are included in the inputs, the
network can model diurnal and seasonal variations in Dst. These
variations are not strong, and the left panel in Figure 6 shows Dst
for all years averaged over month and UT hour. Running the
GRU networks on the test data from the five CV sets reveals a very
similar pattern (second panel from left). Thus, the network shows
similar long-term statistics considering that it is driven only by
solar wind and time information. The two left panels contain
contributions from all levels ofDst from quiet conditions to storm
conditions. But we may now simulate solar wind conditions that
we can define as quiet conditions. The two right panels show
predicted Dst, assuming solar wind flowing out from the Sun
(GSEQ system) along the Parker spiral with a 45+ angle at L1 at
two different speeds, 350 km/s and 400 km/s, respectively. In this
configuration, Bz � 0 in the solar coordinate system, but via
geometric effects (Sun’s and Earth’s tilts with respect to the
ecliptic and Earth’s dipole tilt), Bz will be nonzero in the GSM
system showing diurnal and seasonal variations (Lockwood et al.,
2020).

3 DISCUSSION AND CONCLUSION

There is a close correspondence between Elman networks and
models expressed in terms of the differential equation for the Dst
index. A minimalistic Elman network trained on simulated data
from the pressure-corrected Dst index (Eq. 1) results in weights
that translate to values around a � 2.45 and τ � 15, close to those
used in Eqs 2,3. However, using solar wind data from the years
1995–2015 and targeting simulated Dst from the AK1 model, we
find that the RMSE for Elman network basically levels out for
temporal history of Ta40 hours. This is not the case for the GRU
network, which has similar RMSE up to(20 hours but continues
to improve for T > 20 hours. We interpret this as an effect of the
vanishing gradient problem (Bengio et al., 1994) that is solved in
the GRU and LSTM networks. It should be noted that the Elman
network takes less time to train, and if the dynamics of the system
can be captured in less than about 20 time steps, then the Elman

TABLE 3 | Training, validation, and test RMSE (nT) for networks with and without
dropout. The training and validation RMSE are averages over the five CV splits,
while the test RMSE is computed from the combined five CV test sets. Networks
with NH � 10 have no dropout and the larger networks have dropout
(dr ,dh) � (0.5, 0.5). The 95% RMSE confidence interval is approximately
± 0.03 nT assuming independent errors but increases to ± 0.17 nT if the
autocorrelation is taken into account.

Net NH Train Val Test

GRU 10 7.21 8.79 9.24
GRU 50 8.43 8.67 8.85
LSTM 10 7.06 8.84 9.37
LSTM 40 8.34 8.77 8.81

TABLE 4 |BIAS, RMSE, and CORR for the GRU and LSTMmodels on the test set.
BIAS and RMSE are in units of nT. The 95% confidence intervals are ± 0.04 to
± 0.2 nT for BIAS, ± 0.03 to ± 0.17 nT for RMSE (same as Table 3), and
± 0.001 to ± 0.01 for CORR. The lower limits assume independence and the
higher limits take into account the autocorrelations.

Gru-10 Gru-50 Lstm-10 Lstm-40

BIAS −0.41 −0.10 −0.59 0.16
RMSE 9.24 8.85 9.37 8.81
CORR 0.89 0.90 0.89 0.90

FIGURE 4 | The test RMSE binned by observed Dst. The RMSE is
computed on the five CV test sets. Bins are 100 nT wide, and the numbers
show the number of samples in each bin. Legend: GRU (gru-10) and LSTM
(lstm-10) networks without dropout, and GRU (gru-50) and LSTM (lstm-
40) networks with dropout dr � 0.5,dh � 0.5.
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network could be sufficient. In the future, it would be interesting
to perform similar experiments for other solar terrestrial
variables, for example, other geomagnetic indices with
different temporal dynamics. Another line of experimenting
could be to separate processes with different dynamics in the
construction of the RNN.

The GRU (Cho et al., 2014) and LSTM (Hochreiter and
Schmidhuber, 1997) networks include gating units that control
information flow through time. However, it is not clear if one
architecture is better than the other (Chung et al., 2014). In order
to reliably study the differences between the two RNNs, we applied
five-fold cross-validation. Further, it was also essential to apply
dropout (Gal and Ghahramani, 2016) to reduce over-fitting and
achieve consistent results. Using solar wind data and observed Dst
from 1995 to 2015, we see no significant difference between the two

architectures. However, the GRU network is slightly less complex
than the LSTM and will therefore have shorter training times.

An interesting effect of using dropout is that it can also be applied
during the prediction phase as a way of capturing model uncertainty
(Gal and Ghahramani, 2016b). Using dropout during prediction is
similar to ensemble prediction based on a collection of networks with
identical architectures but different specific weights (Wintoft et al.,
2017), but with the great advantage that the predictions can be based
on, in principle, unlimited number of models. However, it is different
from using an ensemble of different types of models like in Xu et al.
(2020). We illustrated the prediction uncertainty using dropout for a
couple of storms from the test set. Estimating the prediction
uncertainty is important and was addressed by Gruet et al. (2018)
using a combination of LSTM network and a Gaussian process (GP)
model. In that case, the LSTMnetwork provides themean function to

FIGURE 5 | Two geomagnetic storms predicted with the GRU network using the test set. Panels show observed Dst (blue solid), predicted Dst without dropout
during prediction phase (dashed green), and mean prediction with dropout (orange solid). The dark orange regions show the predicted ± σ and the light orange regions
the ± 2σ. The dash-dotted curve is the quiet time variation. Note that the intensity of the storms is different and that the y-scales span different ranges.

FIGURE 6 | The panels show averageDst binned bymonth and UT hour. From left to right, the averages are based on all observed Dst (Dst), predictedDst from the
CV test sets (Predicted), predicted Dst from quiet solar wind at 350 km/s (Quiet 350), and predicted Dst from quiet solar wind at 400 km/s (Quiet 400) (see text for
definition of quiet solar wind).
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the GP model from which a distribution of prediction can be made.
For future work, it will be interesting to further study the use of
dropout for estimating model uncertainty.

Predictions based on the test sets using the GRU networks
show very good agreement with observedDstwhen averaged over
month and UT (Figure 6). The semiannual variation (Lockwood
et al., 2020) is clear, with a deeper minimum in autumn than in
spring and a weak UT variation. It is a combination of
geometrical effects that cause the asymmetric semiannual
variation leading to a modulation of the Bz component in the
GSM system, and, together with the nonlinear solar
wind–magnetosphere coupling, gives rise to the variation in
Dst. The two rightmost panels in Figure 6 show predictions
based on simulated data with Bz � 0 in the GSEQ system using
two different speeds. In these cases, the semiannual variation is
only caused by geometrical effects, while the two panels to the left
also contain storms caused by different solar wind disturbances
like coronal mass ejections. We also see that the difference
between the spring and autumn minima is about 6 nT for
both observed and predicted Dst, while the difference is about
14–18 nT for quiet time-simulated Dst. In this work, we only
showed that the semiannual variation is reproduced by the

simulations, but for the future, other types of simulations that
contain CME structures could be performed to provide further
insights into the semiannual variations.
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APPENDIX: SOFTWARE AND HARDWARE

The code has been written in Python where we rely on several
software packages: Pandas for data analysis (T. pandas-dev/
pandas: Pandas, 2020); Matplotlib for plotting (Hunter, 2007);
and TensorFlow and TensorBoard for RNN training (Dataset]
Abadi et al., 2015).

The simulations have been run on an Intel Core i9-7960X
CPU at 4.2 GHz with 64 GB memory. In total, 32 threads can be

run in parallel. Typical training time for one Elman network with
30 hidden units for 50 epochs ranges between 5 and 15 min,
where the shorter time is due to that the process could be
distributed on multiple threads. We noted that one training
process could be distributed over four threads, when the
overall load was low. A GRU network with 10 hidden units
could take between 30 min and slightly more than 1 h for
50 epochs. A 10-hidden unit LSTM network ranged between
50 min and 1.5 h.
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Data mining (DM) has ushered in a new era of empirical magnetic reconstructions of

the magnetosphere via application of the k-nearest neighbors (kNN) method. In this

approach, the combined magnetosphere storm-substorm state is characterized by the

Sym-H and AL indices, their time derivatives, and the solar wind electric field vBIMFz .

However, using the DM reconstructions to account for the substorm contributions to

the ring current as well as describing storm-time substorms remains a problem. The

inner region r ≤ 12RE , where the ring current develops, has a much higher density

of data than the tail region 12RE ≤ r ≤ 22RE , where substorms operate. This

results in two models inconsistent in their scales dictated by the corresponding data

densities. The inner model reconstructs storm time dynamics, including the formation

of the westward and eastward ring current and pressure distributions. The outer model

captures substorm features, including the thinning and rapid dipolarization of the tail

sheet during the growth and expansion phases, respectively. However, the substorm

model is insufficient to reconstruct the eastward ring current while the storm model

cannot fully reproduce substorm effects because it overfits in the tail region. This

issue is addressed by constructing a hybrid model which is fit using virtual magnetic

field observations generated by sampling the other two models. The resulting merged

resolution model concurrently captures the spatial scales associated with both storms in

the inner region and substorms in the near-tail region. Hence it is particularly useful for

investigation of the storm-substorm relationship, including storm-time substorms and the

impact of individual substorm injections to the buildup of the storm-time ring current.

Keywords: substorm, storm, data mining, empirical model, magnetotail, ring current

1. INTRODUCTION

Storms and substorms represent two major modes of magnetospheric activity and the resulting
space weather (e.g., [1, 2]), which is reflected in the corresponding low- and high-latitude
geomagnetic indices, e.g., Sym-H [3] and AL [4]. Substorms frequently occur during the
development of storm main phases and to a lesser extent during the recovery phase [5]. Although
the original idea of substorms viewed them as building blocks of storms [6], which is reflected in
the names of these phenomena, that view is now strongly modified [7, 8], as it is clear that storms
and substorms are related because of their common driver, the solar wind [9, 10]. Despite this,
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storm-time in-situ observations during substorm expansions
show charged particles injected deep into the inner
magnetosphere [11, 12]. Furthermore, statistical analyses
of particle measurements from the RBPSICE and HOPE
instruments on the Van Allen Probes identified an energization
of the ring current during substorm expansions [13, 14].
Additionally, empirical magnetic field models found that the
substorm expansion phase was correlated with an increase in the
amount of current contained within the symmetric ring current
(SRC) during both storm and non-storm substorms [15]. As
both types of disturbances have dramatic impacts on the global
configuration of the geomagnetic field and associated current
systems, a concurrent description of storms and substorms and
their phases is needed.

Since the development of the earliest empirical magnetic
field models [16], the storm state of the magnetosphere was
considered in their construction by binning the magnetometer
data by storm activity level. Over time, empirical models
became more complex in their description of the storm state,
by incorporating additional current systems and making them
functionally dependent on storm activity indices and solar wind
conditions [17–20]. Data mining (DM) ushered in an entirely
different approach to the empirical modeling of storms, the
first of which was termed the TS07D model [21, 22]. The DM
technique refits the model for each snapshot in time to a small
subset of the entire magnetometer database. This subset of data is
identified by mining the whole database for other time intervals
when the magnetosphere was presumably in a similar storm state
configuration, characterized using the storm index Sym-H, its
derivative, and the solar wind electric field parameter vBIMF

z . The
DM algorithm employed in TS07D is the k-Nearest Neighbor
(kNN) method [23], which is described in section 2.2. The first
applications of the TS07D model were to investigate the global
magnetic field and current system configuration of storms driven
by different solar wind phenomena [22, 24].

In contrast to the storm state, until recently, inclusion of
the description of the substorm state of the magnetosphere
within empirical magnetic field models has been limited. Event-
oriented approaches sought to describe the substorm growth
phase by incorporating a magnetotail thin current sheet (TCS)
into storm models and then adjusting the TCS to match
particular event observations [25, 26]. Wire-models attempted to
describe the substorm expansion by hand tailoring the substorm
current wedge (SCW) [27–29]. Showcasing the flexibility of the
DM approach, TS07D was customized to picture geomagnetic
substorms [15, 30] by including the substorm index AL and its
time derivative as binning parameters and by incorporating a
TCS into the model structure. Termed the SST19 model, it was
successful in reconstructing the primary substorm features of
the magnetosphere including the stretching of the magnetotail
associated with the enhancement of the TCS in the near-tail
during the growth phase and the rapid dipolarization of the
magnetotail along with the formation of the substorm current
wedge during the expansion phase. It also revealed a connection
between the substorm expansion phase and the ring current
enhancement, seen as ≈ 1 MA increase in the dayside ring
current during a non-storm substorm.

However, the resolution of the SST19 model was insufficient
to fully resolve the innermost magnetosphere, in particular, it
was unable to reconstruct the eastward component of the ring
current. Earthward (r . 4RE) of the dominant westward ring
current, the azimuthal component of the ring current changes
sign becoming eastwardly oriented [31]. Assuming force-balance
and pressure isotropy, the boundary between the eastward and
westward oriented ring current identifies the location of the
plasma pressure peak [32].

An advantage of the DM approach, which reflects a postulate
of machine learning techniques, is that the addition of more
high quality data sets allows for increasing model complexity.
Thus, an obvious remedy to enable the model to more fully
resolve the inner magnetosphere is to increase the resolution of
the equatorial field, taking advantage of the numerous spacecraft
missions that fly through this region (e.g., Van Allen Probes,
THEMIS, Polar, Cluster). Indeed, several applications of the
TS07D family of models have demonstrated this [33–36], but
unlike SST19, the focus of these studies was largely limited to the
inner magnetosphere. As this study reveals, the higher equatorial
resolution used for those inner magnetosphere investigations
overfits the near-tail, introducing numerous artifacts in the
reconstruction of the magnetic fields and electric currents. On
one hand, this is a key advantage of the TS07D approach, that is,
the resolution of the model can be customized to the particular
region of interest, but on the other hand, it is also a shortcoming
in that no single resolution is adequate for the entirety of the
spatial domain of the magnetosphere. This dilemma is discussed
in detail in section 2.4.

In section 3 we present a simple yet effective solution for
how to concurrently reconstruct both the inner magnetosphere
necessary for storm features and the near-tail needed for the
description of substorms. Two separate models are constructed
with varying equatorial resolutions, one customized for the inner
and the other for the near-tail regions. Both models are then
sampled in their respective regions to synthesize a distribution
of virtual magnetic field observations dense enough to fit a
third model, effectively merging the two other models while
maintaining the divergenceless property of the magnetic and
current density fields. The focus of this study will be a pair of non-
storm time substorms that occurred on 8March 2009. These were
previously analyzed by Stephens et al. [15] and as such represent
a good test case for comparing the merged model to the SS19
model, as is described in section 3.2.

2. USING DATA MINING TO EMPIRICALLY
PICTURE THE MAGNETOSPHERE

2.1. Magnetic Field Architecture
Empirical magnetic field models are designed with two primary
considerations: the spatial structure of the current systems and
their dynamical evolution over time. For describing the spatial
structure, it is useful to model each current system individually
as a sub-model termed a module [20]. The total magnetic field
Btot is then the sum of magnetic field of each module along
with the internal field, e.g., Btot = BFAC + BPRC + BSRC +
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Btail + BMP + Bint corresponding to the magnetic field from the
field-aligned currents (FACs), partial and symmetric ring current
(PRC and SRC), the cross-tail current, and the magnetopause
(or Chapman-Ferraro) currents, respectively. The internal field,
Bint , is readily determined with ground magnetometers and as
such is not in the scope of this research and the IGRF model
[37] is used to represent it. Earlier models sought to define these
modules by hand, crafting a mathematical description based on
the theoretical picture of the current system (e.g., [19]). Each of
these modules will have non-linear parameters that determine
their spatial scales and linear amplitude coefficients controlling
their intensity. For example, a magnetic field module could
take the form B′(r) = a1B(r;β1), where a1 is the amplitude
coefficient and β1 is a non-linear parameter defining the module’s
mathematical structure (e.g., the current system’s spatial scale size
or thickness). The total model’s set of ais and βjs are then fit to the
available magnetometer data [20]. The dynamical evolution of
the current systems can thus be introduced by simply making ais
and βjs functions of time. Some of the earliest models achieved
this straightforwardly by binning the magnetometer data by
the Kp storm index and performing separate fits for each bin
[16, 38]. The proceeding models instead opted to make ais and
βjs as functions of solar wind conditions and geomagnetic indices
[17, 18]. Again, the mathematical structure of the functions
was hand-tailored.

The TS07D [22] and derivative models [15, 33–35] utilized a
wholly different approach that sought to eliminate many of the
hand tailored elements, motivated by the principle that the data
should dictate the model instead. First, all the equatorial field
modules (SRC, PRC, and tail current) were replaced by a single
regular expansion that had no predefined azimuthal or radial
structure derived from the general magnetic vector potential
solution of a thin current sheet in the cylindrical coordinate
system [21] taking the form:

Bsheet(ρ,φ, z) =
N

∑

n=1

a
(s)
0nB

(s)
0n +

M
∑

m=1

N
∑

n=1

(a(o)mnB
(o)
mn + a(e)mnB

(e)
mn) (1)

whereB(s)
0n,B

(o)
mn, andB

(e)
mn are the basis functions with azimuthally

symmetric, odd (sine) symmetry, and even (cosine) symmetry,

respectively; while a
(s)
mn, a

(o)
mn, and a

(e)
mn are the corresponding

amplitude coefficients determined in the fitting procedure. M
represents the number of azimuthal harmonics (odd/even pairs)
and N determines the number of radial (Bessel functions)
harmonics used in the expansion. The thickness of the current
sheet comes about by substituting z with ζ =

√
z2 + D2

in the magnetic vector potential solution, introducing D as
the characteristic half-thickness parameter. The SST19 model
expanded upon this approach by including two such systems, one
for the thick current sheet and one for the TCS, giving:

B(eq)(ρ,φ, z) = B(eq)(ρ,φ, z;D)+ B(eq)(ρ,φ, z;DTCS) (2)

where DTCS is the half-thickness for the TCS. This TCS
system is key for reconstructing the enhancement of a thin

cross tail current sheet which acts to thin and stretch the
magnetotail during the substorm growth phase [15]. Later storm
investigations also found the TCS facilitated in reconstructing the
eastward ring current during quiet and weak storm times [35].

The FAC module is similarly mathematically described using
a regular expansion, in this case a Fourier series in local time
[39] which is duplicated and initialized to different latitudes to
mimic an expansion [34] in both local time and latitude. The
SST19 configuration is used here, which employs four different
latitudes with the first four Fourier harmonics, totaling 16 total
basis functions which describe the FAC field structure [15]. This
factor of four increase over the original TS07D configuration
proved critical in reconstructing a realistic FAC morphology
associated with substorms (e.g., [40]). The FAC current sheets
are bent to flow along approximately dipolar field lines [41]
and are allowed to expand and contract by introducing two
global rescaling factors κR1 and κR2. κR1 applies to the 8 basis
functions at higher latitudes (region-1 or R1 FACs) while the κR2
corresponds to the 8 at lower latitudes (region-2 or R2 FACs).

Each current system along with Bint is given a complementary
shielding field together represented as BMP which acts to contain
Btot within themagnetopause boundary [20]:Btot ·n|S = 0, where
S is the modeled magnetopause boundary [42].

2.2. kNN Method Application
The second key element of the TS07D model is the DM
approach. DM identifies time intervals when the state of the
magnetosphere was in a similar global configuration as the
moment of interest. These time intervals are intersected with
the historical magnetometer database to form a subset of data
that is then used to fit the model’s ais and βjs. The procedure
is repeated for each step in time giving the ais and βjs their time
dependence, thus fulfilling the motivating principle that the data
should dictate the model’s structure and dynamic evolution. The
DM algorithm employed is k-nearest neighbors (kNN), where the
global configuration of the magnetosphere and its dynamics are
assumed to be represented by some finite dimensional state-space
constructed from global parameters, such as geomagnetic indices
or solar wind conditions and their time derivatives [43].

As the magnetosphere evolves in time, it traces curves,
represented by the state-vector G(t), within state-space. Here, as
with previous studies, the state-vector is discretized to a 5 min
cadence, forming a cloud of points. Similar dynamical events
(such as storms and substorms) will trace similar curves in this
state-space, meaning for a moment of interest G(t = t′) there
will be other points in proximity to it, termed nearest-neighbors
(NNs). The number of NNs used (KNN) is much larger than unity
but much smaller than the total number of points in the state-
space database (KDB): 1≪ KNN ≪ KDB. The distance between an
NN point G(i) and the moment of interest G(t = t′) = G(q) is
determined using the standard Euclidean distance metric:

R(i)q =

√

√

√

√

5
∑

k=1

(

G
(i)
k

− G
(q)
k

)2
/σ 2

Gk
(3)
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where each component is standardized by dividing by its
standard deviation σGk

. Here, the combined storm-substorm 5D
state-space from SST19 is utilized:

G
(sst)
1 (t) = 〈Sym-H∗| ∝

∫ 0

−5st/2
Sym-H∗(t + τ ) cos (πτ/5st)dτ

(4)

G
(sst)
2 (t) = D〈Sym-H∗|/Dt

∝

∫ 0

−5st/2
Sym-H∗(t + τ ) cos (2πτ/5st)dτ (5)

G
(sst)
3 (t) = 〈AL| ∝

∫ 0

−5sst/2
AL(t + τ ) cos (πτ/5sst)dτ (6)

G
(sst)
4 (t) = D〈AL|/Dt ∝

∫ 0

−5sst/2
AL(t + τ ) cos (2πτ/5sst)dτ

(7)

G
(sst)
5 (t) = 〈vBIMF

s | ∝

∫ τ∞

0
vBIMF

s (t − τ∞ + τ ) exp [(τ − τ∞)/τ0]dτ

(8)
where Sym-H∗ and AL are common indices used to measure
storm and substorm intensities, respectively [3, 4, 44]. The
correction Sym-H∗ = A · Sym-H − B ·

√

Pdyn is performed to
approximately isolate the ring current contributions to this index
(by removing magnetopause and induction fields) [45]. The half-
wave rectified solar wind electric field value vBIMF

s (where BIMF
s =

−BIMF
z when BIMF

z < 0 and BIMF
s = 0 otherwise) is correlated

with both storm [46] and substorm [47] activity. The integrals
notated by 〈. . . | in Equations (4), (6), and (8) act to smooth
the inputs. The storm intensity parameter 〈Sym-H∗| and the
substorm intensity parameter 〈AL| use half-cosine smoothing
windows sized to the characteristic time scales of storms and
substorms with 5st = 12 h and 5sst = 2 h, respectively.
vBIMF

s is instead smoothed using themore responsive exponential
smoothing window with τ0 = 0.5 h and τ∞ = 6τ0, which
better captures the substorm growth phase. Also included in the
state-space are the smoothed time derivatives of Sym-H∗ and AL
constructed using derivative windows (5) and (7) represented
by the notation D〈. . . |/Dt [48]. It is critical to include the
derivatives in the state-space as they act to differentiate between
storm/substorm phases (main/expansion vs. recovery phases).
Each of the components are standardized by dividing them by
their standard deviations computed over the entire state-space.

Not all the hand tailored elements were removed from
the TS07D model, in particular, as with earlier models, some
dynamical features are explicitly built into the model structure,
including the contraction/expansion of the magnetosphere in
response to the changes in the solar wind dynamic pressure Pdyn
and the warping of the current sheets due to dipole tilt angle
effects [21]. The contraction/expansion can readily be modeled
by assuming all the current systems change in a self-similar way,

that is, by using a simple spatial rescaling: r′ ∝ PDyn
−κr (e.g.,

[20]). Meanwhile, near the Earth (r . 4RE), the geometry of the
current systems tends to be oriented with respect to the geodipole
axis, while further down the tail (r & 8RE), the current geometry
is controlled by the solar wind flow direction. These dipole
tilt angle effects are accounted for in the model by application
of the general deformation technique [49, 50]. For example
the flat current sheet described by Equation (1) is warped to
account for the “bowl-shaped” deformation when the dipole tilt
angle is non-zero [51], introducing three additional non-linear
parameters (the hinge distance RH , the warping parameterG, and
the twisting parameter TW), yielding B(eq)(ρ,φ, z) [35].

It is important to mention here that the kNN DM technique
is an instance-based machine learning method [52] which
drastically differs both from model-based ML methods, such as
ANNs [53] and classical Tsyganenko models [17, 19]. In the case
of Tsyganenko models, tuning the parameters other than the
linear regression coefficients and selected non-linear parameters
is redundant, because the resulting model is universal and its
architecture is custom-made and fixed from the outset. In case
of ANNs, it is usually possible to split the model into training
and validation sets and to use the latter to further optimize
the model architecture [parameters, like KNN , or M and N in
Equation (1) that are termed hyper-parameters]. This can also
be done when kNN is used for data classification or when the
binning and fitting spaces are the same. However, this is almost
impossible in our case, when the binning and fitting procedures
are made in different spaces, the global index state-space (4)–(8)
and the real space, which is extremely sparsely filled with data,
with no more than a dozen of probes available for validation at
any given moment.

At the same time, the selection of the kNN binning space (4)–
(8) can be optimized in our DMmethod using important physics
constraints and dynamic systems theory. First, we take explicitly
into account the storm and substorm states of the magnetosphere
that are known to be assessed by indices Sym-H [3] and AL [4],
whereas their trends are described by the corresponding time
derivatives (5) and (7). The latter can be extended to higher
time derivatives following the idea of the time delay embedding
in the non-linear time series analysis [48]. The averaging time
scales in (4)–(8) are also physics-based and they are consistent
with the observed characteristic times for storms [19, 46, 54] and
substorms [55]. This physics-based optimization makes our kNN
method similar to gray-box models (e.g., [56]).

Further selection of the hyper-parameters is done as follows.
For a given set of the magnetic field model complexity
(parameters M, N, and the number of the FAC modules
NFAC) there is usually an optimal range of KNN values where
the reconstruction is stable (no overfitting) and yet resolves
important storm or substorm features, such as the westward
and eastward ring currents, thinning and dipolarization of the
magnetotail. Then validation tests are performed within that
optimal range (e.g., SI in [30] to quantify the reconstruction
fidelity). These tests are discussed below in section 3.4. At the
same time, the uncertainty of the kNN binning is independently
quantified by comparing the original binning parameters (4)–
(8) with their means and standard deviations within the bin
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FIGURE 1 | Radial distribution of magnetometer data. A histogram showing

the radial distribution of the magnetometer database using r = 0.5RE radial

bins. The database covers three distinct regions with differing numbers of data

points: the inner (blue), near-tail (orange), and midtail (brownish-red) regions.

as is also detailed in section 3.4. The optimal choice of KNN

minimizes the bias and standard deviation of the NN means
but at the same time avoids overfitting with the model structure
parameters (M, N, NFAC, and others), i.e., KNN still needs to be
large enough to resolve the corresponding storm and substorm
structures and dynamics.

2.3. Magnetometer Database
The spacecraft magnetometer database used in this study is also
the same as [30] spanning the years 1995 through 2018. It covers
three distinct regions with different densities of magnetometer
measurements as shown by the radial histogram in Figure 1. The
inner magnetosphere region r ≤ 12RE has ample spatial coverage
with the THEMIS [57] (five probes) and Van Allen [58] (two
probes) missions sampling the inner equatorial magnetosphere,
including the vicinity of the eastward current system (2RE ≤ r ≤
4RE) which is crucial to resolving the peak in the plasma pressure.
The geosynchronous orbiting (r ∼ 6.6RE) GOES (08, 09, 10, and
12) spacecraft reside within the ring current region. The THEMIS
orbits have changed over the years but one of the primary apogees
for the three inner probes has been r = 12RE, providing good
coverage throughout the Inner Region.

The Near-tail Region 12RE ≤ r ≤ 22RE has a noticeable drop
in data coverage, as only two outer THEMIS probes were ever
located here and only for about 2 years before then were moved
into a lunar orbit becoming the ARTEMIS mission [59]. With
an apogee of r ≈ 18RE, the Cluster mission (four probes) helps
populate this region, however, as a polar orbiting spacecraft, they
spent a limited amount of time in the equatorial region.

Beyond 22RE the data density drops off by nearly an order
of magnitude as the only spacecraft in the database that spent
a considerable time in this region was Geotail. The near-earth
reconnection sites are expected to be located here [60]. This
motivated including the 2016–2017MMS data.With an apogee of
r ∼ 26RE, it nearly doubled the amount of data between 22RE ≤
r ≤ 26RE. The only other spacecraft included in the database
is IMP-8, however, it comprises a relatively small amount of the
total dataset.

For each time step, the model is fit to the identified subset
of magnetometer data by minimizing the root mean square of
the difference between the model B(mod) and the observed Bj,obs

magnetic field vectors:

M(NN)
err =

√

√

√

√

∑

j∈SNN

∑

i=x,y,z

wjw(0)(r)
[

B
(mod)
i (r(j))− B

j,obs
i

]2
, (9)

where SNN is the number of data points in the magnetometer
subset identified through the kNN technique. The model is
evaluated at the spacecraft’s position r. Two weight factors are
incorporated into the objective function, one based on the data
point’s position in physical space w(0)(r) and the other on its
position in state-space wj. The first, w(0)(r), lowers the weight
factor in regions of the magnetosphere with a high density of
data and was introduced to limit the bias of the fit toward
these regions, in particular, to decrease the influence of the
GOES satellites which are all located at the same radial distance
[21]. The other weighting factor wj gives higher weights toward
observations which correspond to NNs that are closer to the
moment of interest in state-space and will be described in the
next section. The set of non-linear parameters (D, DTCS, κR1,
κR2, RH , G, and TW) are found by minimizing Equation (9)
using the downhill simplex method [61], while the amplitude
coefficients are solved using the singular value decomposition
(SVD) pseudo-inversion method [62, 63] also by minimizing (9).

2.4. Model Resolution Dilemma
The kNN approach has shortcomings caused by both the
disparate density of NNs in the state-space and also the
disparate density of magnetometer observations within the
magnetosphere. The cause of the former is that, like many
observed outputs of complex natural systems, geomagnetic
indices, such as the substorm (AL) and storm (e.g., Sym-H∗)
indices, tend to follow lognormal distributions [64–66], meaning
the distribution contains many weaker storms and substorms
than stronger ones. The result is that the NNs are inhomogeneous
within the state-space, biasing the kNN method toward weaker
events, which is especially problematic for strong and extreme
events. DecreasingKNN helps resolve this problem but introduces
another, overfitting. This problem was addressed in a pair of
studies [35, 36] that demonstrated introducing a simple distance-
weighting of the NNs could significantly reduce this bias while
keeping the KNN large enough to temper overfitting. The NNs
are weighted using a Gaussian function of the form

wj = exp

[

−
(

R
(j)
q /σRNN

)2
/2

]

, (10)

where Rq is the distance of each NN to the query point and
RNN is the radius of the NN n-sphere, which is the maximum
Rq (the distance between the query point and the most distant
NN). σ determines the narrowness of the Gaussian and the
value of σ = 0.3 is utilized here. These weights are then
attached to the magnetometer datapoints when the model is fit by
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minimizing Equation (9). However, the second problem that was
left unaddressed in those studies was the disparate data density
in real/physical space caused by the distribution of spacecraft as
shown in Figure 1.

The choice of KNN in the kNN approach is a tradeoff. A
small number (KNN ∼ 1) is akin to event-oriented modeling
but requires a similarly small number of degrees of freedom
in the model, i.e., the combined number of scaling coefficients
ai and non-linear parameters βj are also on the order of unity
[25, 26]. Increasing KNN permits more complex models with
a larger number of degrees of freedom (more ais and βjs),
but when KNN approaches the size of the database the model
becomes a universal statistical fit similar to classical Tsyganenko
models (e.g., [17, 19, 38]) with a weaker sensitivity to storm and
substorm phases. During the development of the SST19 model,
it was found that an equatorial model resolution of (M,N) =
(6, 8) using KNN = 32, 000 was sufficient for reconstructing
the primary substorm configuration of the magnetotail while
avoiding overfitting. For this study, the model described in
section 2 using these SST19 values of (M,N) = (6, 8) and
KNN = 32, 000 will be labeled the Tail Model. Figure 2 (right
panels) displays the Tail Model’s 2D equatorial distributions of
the magnetic, electric current, and pressure fields during the
late growth phase of a substorm (described below in section
3.2). For the sake of simplicity, these equatorial slices ignore
dipole tilt and twisting effects, thus aligning the magnetic equator
with the equatorial plane. Current densities are determined by
numerically evaluating Ampere’s law j = 1

µ0
∇ × B. The pressure

is computed by integrating j × B radially inward starting at the
boundary r = 10RE in the manner detailed in [35]:

P(r)− P(r0) =

r
∫

r=10RE

[−j× B]rdr
′ (11)

where the boundary pressure P(r0) is assumed to be small and
set to zero. Figure 2 demonstrates how the Tail Model performs
well throughout the near-tail and midtail regions and thus is
suitable for substorm studies. However, within the predominant
THEMIS inner probes apogee (gray circle) the current densities
appear underresolved. Specifically, the eastward currents are
almost entirely absent (Figure 2D). Without an eastward current,
the integrand [−j × B]r monotonically increases earthward
from the boundary r = 10RE meaning the pressure also
increases monotonically. Thus, the location of the pressure
peak is absent and the pressure radial gradients are also
missing (Figure 2F).

In contrast, storm-time empirical reconstructions of the inner
region (r ≤ 12RE) were able to reconstruct the eastward
current and thus the pressure, its peak, and gradient with the
essential difference in the configuration of these models being a
larger radial expansion number N = 20 used in the equatorial
current module [33, 35, 36, 67]. Furthermore, the inclusion of
the TCS particularly helped in resolving the eastward current
when the storm state of the magnetosphere was relatively quiet
[35]. However, the addition of the TCS in the model resulted

in reconstructed pressures with rather large azimuthal gradients.
This was mitigated by halving their number from M = 6 to
M = 3, yielding a smoother pressure distribution, resulting
in an equatorial resolution of (M,N) = (3, 20). Thus, the
Inner Model is defined using this resolution of (M,N) =
(3, 20) with all other model configurations being the same as
the Tail Model. The analogous reconstruction of the substorm
growth phase using this Inner Model are plotted in the left-
hand panels of Figure 2 demonstrating that it does indeed
capture the eastward ring current (Figure 2C) and appropriate
pressure distributions (Figure 2E). However, the magnetic and
current density reconstructions now contain numerous artifacts
throughout the near-tail region (Figures 2A,C) indicating
overfitting there.

Herein lies the dilemma; no single resolution is capable of
adequately reconstructing both the inner and near-tail regions
using KNN = 32, 000 (the amount required to reconstruct
the near-tail). Higher equatorial resolutions are necessary to
describe the eastward current systems but will overfit the
near-tail due to the lesser amount of data there and vice
versa; lower equatorial resolutions perform well in the near-
tail but miss the eastward currents in the inner region. This
results in a bifurcation of models: the Inner Model (higher
resolution) is suitable for storm spatial-scale reconstructions
and the Tail Model (lower resolution) is applicable to substorm
scales. A potential solution is to dramatically increase the
value of KNN , however, due to the disparate density of data
in state-space, this would weaken the model’s sensitivity to
the event of interest and would begin to resemble statistical
modeling instead of the DM approach sought. A simple
solution would utilize a piecewise field, that is, to evaluate
the Inner Model in the inner magnetosphere region and the
Tail Model in the near-tail region. However, the equatorial
current sheet described by Equations (1) and (2) ensures a
divergenceless B and j fields. Such a piecewise field would
introduce discontinuities which would violate these conditions
and would also introduce infinitely thin current sheets. The
resultant question is how to transition between these regions
in a way that maintains ∇ · B = 0 and ∇ · j = 0? The
next section 3 presents a simple resolution to this dilemma that
smoothly transitions between the two regions while maintaining
divergenceless fields.

It must be stressed that this resolution dilemma is not
just a technical issue related to the sparse data distribution in
space and the need to improve it is some regions. It reflects
different physics processes associated with magnetic storms in
the inner magnetosphere and substorms that reconfigure the
magnetotail and create new FAC systems. In the earlier DM
algorithms both storm and substorm descriptions used fleets of
synthetic probes mined in the history of the magnetosphere.
But these descriptions did not exchange the information gained
from inner and outer magnetosphere description. So the fitting
challenge resembles the first-principles model problem of the
concurrent description of magnetic storms using the dedicated
ring current models [68–70] and global MHD models [71–
73] that often properly describe the outer magnetosphere. The
resolution of that physics-based problem is similarly offered
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FIGURE 2 | The model resolution dilemma. 2D equatorial distributions of the late growth phase (11:25) of a substorm on 8 March 2009 using two different equatorial

resolutions. (A,B) The equatorial distribution of the total modeled magnetic field. The location of the spacecraft magnetic field observations used to fit the model are

overplotted with gray dots. The predominant apogee of the inner probes of the THEMIS mission r = 12RE is represented by the gray circle. (B,C) The equatorial

distribution of the current density. The overplotted arrows show the direction and magnitude of the current density vectors. (E,F) The equatorial distribution of the

pressure computed by integrating j× B according to Equation (11). The Inner Model is used for the left hand panels (A,C,E) which is fit using an equatorial resolution

of (M,N) = (3, 20). It performs well in the inner region but overfits the near-tail region. The Tail Model is used for the right hand panels (B,D,F) which is fit using an

equatorial resolution of (M,N) = (6, 8). It performs well in the near-tail region but under resolves the inner region.

in the form of coupled models [74–77], when the information
on the plasma conditions at some boundary separating inner
and outer magnetosphere is transferred from MHD to ring

current models. At the same time, the latter are used to
adjust the equation of state in MHD taking storm effects
into account.
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3. MERGED MODEL

3.1. Merged Model Algorithm
In this section, a simple method for concurrent reconstruction
of both substorm and storm spatial scales is proposed, thus
addressing the model resolution dilemma described above. The
general approach is to introduce a third model, termed here
the Merged Model, constructed using an equatorial resolution
of (M,N) = (6, 20), the lowest common resolution between
the Tail (M,N) = (6, 8) and Inner (M,N) = (3, 20) models.
However, instead of fitting theMerged Model to actual spacecraft
magnetometer data points, it is instead fit to virtual data, which
are simulated by randomly sampling the equatorial regions of the
Tail and Inner models outside and inside the merging boundary,
respectively. Because the Tail and Inner models can be sampled
at any location, the introduction of these virtual datapoints allows
theMergedModel to be fit with an arbitrary density of points. The
result is a Merged model (given a proper distribution of virtual
data points) that tends to reflect the Inner Model within the
merging boundary and the Tail Model beyond it with a smooth
transition between the two in the vicinity of the boundary. Also,
because the Merged Model’s equatorial field is still described by
Equations (1) and (2), by construction ∇ · B = 0 and ∇ · j =
0 is ensured.

For simplicity, a cylindrical boundary is used identified by the
merging radiusRM . Initially,RM was defined to be commensurate
with the demarcation between the inner and near-tail regions as
characterized by the predominant THEMIS inner probes apogee
(r = 12RE from Figure 1), though, this yielded unsatisfying
results. Figure 3 shows 1D plots of the external magnetic field
Bextz (Figures 3A,B) and the westward component of the current
density jw = −jφ (Figures 3C,D) for the Inner (blue lines)
and Tail (orange lines) models along the X axis. Two different
moments are shown corresponding to the late growth (left
panels) and expansion (right panels) phases, respectively. Ideally,
there would exist a clear boundary where Bextz and jw from
the two models intersect. Instead, the intersections (between
the blue and orange lines) vary between ∼ 6RE–10RE. This
justifies moving RM earthward of the THEMIS apogee of 12RE.
Ultimately, the center of this region, that is, a cylindrical radius
of RM = 8RE was chosen, which will be used as a constant
merging boundary throughout the rest of the study. Although
this is a rather arbitrary value, as shown below, this choice of
RM enables the Merged Model to fully capture the deep BIMF

z

minimums and eastward currents of the Inner Model while also
reconstructing the substorm scale features of the SST19 and Tail
Model. The merging algorithm can be enhanced in future studies
by incorporating a dynamical merging boundary that minimizes
the differences of Bextz and jw between the Tail and Inner models.
The use of elliptic cylindrical boundaries should also be pursued
as Figure 3 indicates that day-night asymmetries exist in the
optimal merging location.

To create the Merged Model, the non-linear parameters (D,
DTCS, κR1, κR2, RH , G, and TW) are taken to be the average of
their values from the Inner and Tailmodels and are not included
in the fit; while the linear amplitude coefficients for the equatorial
and FAC systems are fit in the manner described before, that is by

using the SVD least-squares method to minimize Equation (9).
However, instead of using real magnetometer data points, the

B
j,obs
i terms in (9) are populated with virtual measurements

constructed by evaluating the Inner and Tail models. The Inner
Model was randomly sampled to achieve a data point density of
1RE−3 within the cylindrical volume 1.1RE ≤ r ≤ RM , −6RE ≤
z ≤ +6RE. The value of ±6RE was chosen as it is twice the
typical value of the thick current sheet half thickness D ≈ 3RE.
Meanwhile, given the lower radial resolution of the Tail Model,
it was only sampled at a data point density of 0.2RE

−3 within
the cylindrical volume RM ≤ r ≤ 31RE, −6RE ≤ z ≤ +6RE.
While this worked well for resolving the thick current sheet, due
to the small height scale size of the TCS, additional samples were
needed from the region −1RE ≤ z ≤ +1RE, where ±1RE is
twice the typical TCS half-thickness DTCS ≈ 0.5RE now using
six times the densities from before, 6RE−3 and 1.2RE−3 for the
Inner Model and Tail Model, respectively. The reason for using
a random distribution of points in contrast to a regular grid, is
that fitting a regular grid of points with a magnetic field described
by the regular expansion in Equation (1) may introduce artifacts
caused by the model aligning to the grid instead of the underlying
magnetic field distribution. In total, 18, 260 virtual spacecraft
datapoints were included in fitting the amplitude coefficients of
theMerged Model.

The output of the Merged Model is overplotted in Figure 3

as brown dashed lines. Earthward of RM the Merged Model

generally tracks the Inner Model (blue line) including the deep
minimums in BextZ (Figures 3A,B) and the eastward currents
(Figures 3C,D), both of which are key characteristics needed to
reconstruct the storm-time dynamics of the innermagnetosphere
[33]. Tailward of RM the Merged Model closely matches the Tail
Model (orange line). This indicates that theMerged Model should
also reconstruct the primary substorm scale features, such as the
thinning and stretching of the magnetotail during the growth
phase and its rapid dipolarization during the expansion phase,
as will be shown in the next section 3.2. In the ∼ ±2RE region
bounding RM , the Merged Model smoothly transitions between
the Inner and Tailmodels.

In order to qualitatively compare the Merged Model to the
Inner and Tail models, 2D equatorial slices of the magnetic
and current density fields are plotted for the late growth phase
in Figure 4. Inside the merging radius RM = 8RE (yellow
circles) the Merged Model qualitatively resembles the Inner
Model, and importantly for the evaluation of the pressure,
resolves the eastward currents (orangish-red region r .

5RE in Figures 4D,F). Outside of the RM , the Merged Model
(Figures 4C,F) is nearly indistinguishable from the Tail Model
(Figures 4B,E). Notably, the Merged Model resolves the Bz
minimum formation in the tail at 10RE . r . 13RE and the
enhancement of the cross tail current at 7RE . r . 16RE. The
distribution of the virtual spacecraft projected into the equatorial
plane used to fit the Merged Model is overplotted in Figure 4C,
showing how random sampling of the other two models evenly
fills in data gaps present in the near-tail and midtail regions,
particularly beyond the Cluster apogee (r ≥ 19RE). A note,
as can be seen in Figure 4, the Inner Model is now only being
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FIGURE 3 | Determination of the merging radius. Line plots of (A,B) the z-component of the external magnetic field Bext
z and (C,D) the westward component of the

current density jw = −jφ along the x axis for the Inner (blue line), Tail (orange line), and Merged (dashed brown line) for two different moments in time corresponding to

the growth phase (left panels) and expansion phase (right panels) of the 8 March 2009 substorm. The location of the chosen merging radius RM = 8RE is denoted by

the vertical yellow lines.

fit using data within the predominant THEMIS inner probes
apogee of r ≤ 12RE. Including data beyond this serves no
purpose because the Inner Model is only being sampled within
r ≤ RM when creating theMerged Model and their inclusion may
bias its reconstructions.

The differences between the Inner/Tail and Merged models
from the panels in Figure 4 are displayed in Figure 5. Within
geosynchronous orbit, the differences between Inner andMerged
models are relatively small (Figures 5A,C), with maximum
values of B = 1.9 nT and j = 3.6 nA/sq.m and mean differences
of B = 0.66 nT and j = 0.9 nA/sq.m. In this same region, the
differences between the Tail and Merged models are about two
to three times larger, with maximum values of B = 3.9 nT and
j = 6.8 nA/sq.m and means of B = 1.8 nT and j = 2.5 nA/sq.m.
The comparison between the Tail and Merged models shows
negligible differences beyond ∼ 10RE (Figures 5B,D), while the
equivalents for the InnerModel display large differences there.
This confirms that the Merged Model largely mimics the Inner
Model in the inner magnetosphere and the Tail Model in the
near-tail. However, of interest are the differences in the vicinity
of the merging boundary. Within the ±2RE region bounding
RM , the mean differences are B ≈ 1 nT and j ≈ 2 nA/sq.m
but show rather large maximum differences; B = 5 nT, j = 10

nA/sq.m for the Inner Model and B = 3 nT and j = 6.5 nA/sq.m
for the Tail Model. The cause of this being the relatively large
mismatch between the Inner and Tail models as is evident in the
Figures 3, 4. This further supports additional investigation into a
more optimal merging boundary in future works.

3.2. Merged Model Reconstruction of 8
March 2009 Substorms
Global reconstructions for the second 8 March 2009 substorm
are displayed in Figures 6, 7, the first corresponding to the late
growth phase at approximately the time of the substorm onset
and the second is 25 min later during the expansion phase as
indicated by the AL index (Figure 6a). These reconstructions
highly resemble the reconstructions of the same event using the
SST model [15] (Figures 3, 4 from that work). This confirms
that the Merged Model is mostly analogous to the SST19
model throughout the near-tail region as was expected from the
analysis shown in Figures 3, 4. However, theMerged Model now
reconstructs the eastward currents as can be seen near the planet
in Figures 6e, 7e.

During the growth phase, the magnetotail is stretched
(Figure 6e), particularly in the region between ∼ 8RE and
15RE corresponding to the Bz minimum region (Figure 6d). The
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FIGURE 4 | The Merged Model. 2D equatorial distributions of the late growth phase (11:25) of a substorm on 8 March 2009 using the merged equatorial resolution

model compared to the Inner and Tail models. (A–C) The equatorial distribution of the total modeled magnetic field. The location of the spacecraft magnetic field

observations (virtual for the Merged Model) used to fit the model are overplotted with gray dots. The merging radius RM = 8RE is represented by the yellow circle.

(D–F) The equatorial distribution of the current density. The overplotted arrows show the direction and magnitude of the current density vectors. Note how theMerged

Model resembles the Inner/Tail models inside/outside RM.

TCS is especially intense on the night side in this same region
(Figure 6e). The 66 and 68◦ field lines cross the magnetic equator
at 12RE and 18RE, respectively while the 68◦ line is open. The
height integrated thick current sheet is plotted (Figure 6f) as it
is a better proxy for the content of the ring current compared
to the equatorial slice of the current density (as is shown in
Figures 2, 4) because the current density of the TCS tends to
be the dominant source of current density along the magnetic
equator. This panel shows a modest westward ring current within
geosynchronous orbit r . 6.6RE as well as a strong outflow to the
magnetopause at the dusk terminator. The pressure during the
growth phase is relatively azimuthally symmetric, with a pressure
peak at 4–5RE.

During the expansion phase, which takes only 25 min, the
global configuration of the magnetosphere is drastically altered
(Figure 7). The magnetotail becomes much more dipolar. The
66◦ field line (Figure 7e) now crosses the magnetic equator at
7.5RE (compared to 12RE in the growth phase) and the 68◦ line

crosses at 10RE (compared to 18RE). The previously open 70◦

field line now crosses at 14RE, indicating the conversion of open
to closed flux presumably from reconnection. This dipolarization
is congruous with the formation of the magnetic flux pileup in
this region (Figure 7d). There is a strong enhancement of an
westwardly directed thick current all across the night side taking
the appearance of a PRC (Figure 7f). However, the SST19 analysis
[15] along with magnetohydrodynamic (MHD) simulations [78]
indicated that the enhancement of this PRC is associated with
closure through the substorm current wedge. The substorm
current wedge manifests as a eastwardly directed TCS in the
vicinity of the magnetic equator, but its closure out of the
plane is via a westwardly directed thick current, some of which
closes through the ionosphere as R2 currents. Another point
of agreement between the Merged Model and the SST19 model
is the strengthening of the dayside thick current sheet within
geosynchronous orbit (r ≤ 6.6RE), which was interpreted as an
intensification of the symmetric ring current.
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FIGURE 5 | The Merged Model differences. The difference between Inner/Tail and the Merged Model 2D equatorial distributions from Figure 4. The format is the

same as Figure 4 but the range on the color bars has been halved to emphasize the differences.

3.3. Merged Picture vs. Earlier Substorm
Reconstruction
The quantitative analysis performed using the SST19 model
for the 8 March 2009 substorms [15] is now recreated using
the Merged Model, in particular their Figure 6 is recreated
and is shown as Figure 8. Compared to that substorm-focused
reconstruction, the Merged Model reveals more profound
variations of the R2 FAC amplitudes (Figure 8d), stronger
buildups and decays of the TCS integrated current (orange line
in Figure 8f) with significant negative values implying bifurcated
current structures. One such bifurcated current structure is
well seen in the meridional current distribution presented in
Figure 7e.

The merged resolution picture reveals stronger variations
of the Bz magnetic field at the Van Allen Probes inner
probes apogee (red line in Figure 8g). These stronger variations
reflect the impact of distance-weighting the NNs along with a
better resolution of the inner magnetosphere region resulting
eventually in the resolution of the eastward current and the

plasma pressure shown in Figures 6g, 7g. At the same time,
it resolves the formation of the near-Earth X-line around the
substorm onset (red and orange lines in Figures 8h,i), which
is also seen in Figure 6d. Its resolution becomes possible
not only due to the solved overfitting problem for the tail
region, but also due to the use of the MMS data and the
distance-weighted kNN algorithm as is elaborated in detail
in [30].

The comparison also reveals some pitfalls of the present
merging algorithm. In particular, unlike the SST19 model, the
merged resolution model no longer has a clear correlation
between the substorm phase and the amplitude of the R1 currents
(Figure 8c). The probable explanation, is that because the R1
currents do not close through the equatorial plane (in contrast
to the R2 currents), relatively few of the virtual spacecraft points
sample them. To rectify this in future reconstructions using the
Merged Model, the amplitude coefficients for the FAC systems
should be set in a similar fashion to the non-linear parameters
and not included in the fit. This is reasonable since the focus of
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FIGURE 6 | The merged resolution model’s reconstruction of the late growth phase of the 8 March 2009 substorm. (a) Geomagnetic indices: the pressure-corrected

storm index Sym-H∗ and substorm index AL in solid black and orange lines, respectively. Their smoothed values G
(sst)
1 (t) = 〈Sym-H∗| and G

(sst)
3 (t) = 〈AL| are shown by

dashed black and dotted orange lines, respectively. (b) Solar wind parameters: the electric field vBIMF
z and dynamic pressure Pdyn in solid black and orange lines,

respectively, with G
(sst)
5 (t) = 〈vBIMF

s | shown as the dotted black line. The vertical purple lines in (a,b) represent the moment in time. (c) The pattern of FACs flowing into

(blue) and out of (red) the ionosphere. (d) The equatorial distribution of the total modeled magnetic field. The simulated magnetic field observations used to fit the

model are overplotted with gray dots. (e) The meridional distribution of the Y component of the current density showing current flowing out of the page (green) and

into the page (purple). Magnetic field lines originating from the ionosphere (ranging from 60 to 90◦ magnetic latitude with 2◦ steps), three of which are highlighted: 66◦

(red), 68◦ (yellow), and 70◦ (green). (f) The height integrated equatorial distribution of the thick current sheet’s current density integrated from 0 ≤ Z ≤ 5RE . The

overplotted arrows show the direction and magnitude of the current density vectors. (g) The equatorial distribution of the pressure computed by integrating j× B

according to Equation (11).

the merged modeling approach is to combine two models with
different equatorial resolutions.

The primary enhancement of this Merged Model over the
previous SST19 model is the resolution of the pressure in the
inner magnetosphere. In order to quantify the change in pressure

during the course of a substorm, the 2D pressure distributions
from Figures 6g, 7g are averaged over all local times for a
given radial distance r. The resultant average pressures 〈P〉 are
plotted as a function of radial distance r for the second 8 March
2009 substorm in Figures 9D,E for several moments during
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FIGURE 7 | The merged resolution model’s reconstruction of the expansion phase of the 8 March 2009 substorm. Panels are the same as Figure 6 except 25 min

later.

the growth and expansion phases (the solar wind values and
geomagnetic indices are included for context in Figures 9A,B).
During the growth phase, the average pressure stays relatively
stable, with a max value between ∼ 5–6 nPa located at 4.25–
4.5RE. In contrast, during the expansion phase 〈P〉 rapidly
increases reaching values as high as 10 nPa while the location
of the peak stays relatively stable. The time series for 〈P〉 at
4.5RE is then plotted in Figure 9C for both substorms, showing
that during quiet and growth phases the pressure is stable and
low but then rapidly increases during the expansion phase.
〈P〉 then decreases during the recovery phase, although for the
second stronger substorm, it does not return to the nominal

value until more than 3 h after the substorm onset. Such an
enhancement of inner magnetosphere pressure is consistent with
in-situ observations [12] of particle injections as well as statistical
analyses [13] of substorm expansion phases.

3.4. Uncertainty Quantification
An important aspect of empirical model development is its
validation via comparison of the model output to the data that
went into its construction. In this section, three different analyses
are performed to test the model’s fidelity. First, the DM approach
is analyzed to ensure that the identified NNs characterize the
8 March 2009 substorm event and next the in-situ spacecraft
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FIGURE 8 | The Merged Model quantitative analysis. (a,b) Geomagnetic indices and solar wind parameters in a format similar to Figures 6a,b. (c,d) The root mean

square of the FAC amplitude coefficients for the R1 and R2 FAC modules, respectively. (e) The values of the current sheet half thicknesses for the thick sheet (green

line) and TCS (orange line), i.e., D and DTCS from Equation (2). (f) A measurement of the amount of current contained in the dayside SRC (green line) and nightside

TCS (orange line). The SRC current (green line) is computed by integrating the dayside westward current density of the thick current sheet module flowing within

geosynchronous orbit 1.0RE ≤ x ≤ 6.616RE and z = ±5RE . The TCS current (orange line) is computed by integrating the nightside westward current density of the

TCS module flowing within the rectangle −16RE ≤ r ≤ −6RE and z = ±1.0RE . (g) The z-component of the total magnetic field Bz sampled at x = −5.8RE (red line)

and x = −10.5RE (blue line). (h,i) The z-component of the total magnetic field Bz along the nightside x-axis at different times during the growth and expansion phases.

magnetometer data is compared to the reconstructed field. Lastly,
the three different models are statistically cross-validated using
∼28 days of model reconstructions to quantitatively assess the
model error as a function of activity mode and radial distance.

The DM approach assumes that there are enough similar
events in the state-space that the NNs collectively match the event
of interest. This assumption can be tested by using the state-space
analysis performed in earlier studies [30, 35, 67] in which the
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FIGURE 9 | Substorm enhancement of pressure. (A,B) Geomagnetic indices and solar wind parameters in a format similar to Figures 6a,b. (C) The value of the

pressure averaged over all local times at r = 4.5RE . (D,E) The averaged pressure vs. radial distance at different times during the growth and expansion phases.

time evolution of the state-space components Gi(t) (the binning
parameters) for the studied event are compared to the mean of
those parameters over the NNs G(NN)

i (t). Ideally, G(NN)
i (t) should

match Gi(t).
Figure 10 shows the evolution of the five components of

the combined storm and substorm state-space (black lines)
during the two 8 March 2009 substorms corresponding to the
quantities described by Equations (4)–(8). Panels a, c, and
e demonstrate how the integral convolutions act to smooth
the original data (pink lines). It should be stressed that the
smoothing windows are asymmetric in time, that is, they are
only computed over previous and not future data points [note
the zeros on the upper bounds in the integrals (4)–(8)]. This
was introduced to prevent the smoothed parameters from
changing prior to the start of an event [48]. For example,
without this asymmetry, the model would begin reconstructing
storm activity prior to the arrival of the southward IMF in
the solar wind. This causes the smoothed values to lag the
original (black lines lag behind the pink lines). However, as
demonstrated by Figure 8, this is not problematic as the time
lag is universally applied over the entire dataset. Note how
the modeled magnetic field (Figure 8g) and model parameters
(Figures 8d–f) are still largely correlated with the original value

of AL (Figure 8a solid orange line) and not its smoothed value
(dotted orange line).

The weighted average of the state-space vector over the closest
KNN = 32, 000 NNs is shown by the blue lines: G(WNN) =
∑KNN

j wjGj/
∑KNN

j wj, where the weight factor wj is computed
using the Gaussian distance weighting from Equation (10). In
a similar manner, the weighted standard deviations of these
parameters over the set of NNs is also computed and the
±1σ values are indicated by light blue envelopes that surround
G(WNN) (blue line) in Figure 10. Overall, G(WNN) largely stays
within 1σ for the event of interest (black line).

The most notable inconsistencies appear in 〈Sym-H∗| and
D〈Sym-H∗|, which is a result of mixing parameters of different
smoothing scales. Sym-H∗ and its derivative are smoothed over
storm time frames of 5st = 12 h while the AL equivalents
are instead smoothed over substorm scales 5sst = 2 h. This
also demonstrates that the pressure-corrected storm indices
contain contributions from substorm current systems and is not
representative of just a pure ring current as has been discussed in
previous studies [79, 80]. Other deviations appear in particularly
when 〈AL| it reaches its minimum. The cause of this is the
inhomogeneity of the datapoints in state-space as has been
extensively discussed in earlier works [35, 36, 67]. This biases
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FIGURE 10 | Storm-substorm 5D state-space. (A–E) Time series of the five

individual components (black lines) of the state-space used to characterize the

combined storm and substorm state of the magnetosphere as defined in

Equations (4)–(8) during the two 8 March 2009 substorms. Their standardized

values are used to find KNN = 32, 000 nearest-neighbors (NNs) in the entire

state-space. The weighted mean of the 32, 000 NNs are overplotted by the

blue lines. The weighted standard deviation of the NNs is then overplotted by

showing ±1σ as the light blue envelopes around the weighted NN means.

the DM approach toward weaker events as they occur more
frequently which is only exacerbated as the events of interest
become more extreme [36]. Distance-weighting the NNs can
drastically mitigate this issue [35], although, as is shown in the
second substorm, it does not entirely correct it. For instance, the
minimum value for the second substorm is 〈AL| = −576 nT
while the mean over the NNs is only 〈AL|(WNN) = −478 nT.

Next, the reconstructed magnetic field of theMerged Model is
compared to the available in-situ magnetic field measurements
from the THEMIS and GOES satellites (Figure 11). For this
event, all five THEMIS probes are located in the magnetotail,
with probes A, D, and E being in a similar orbital configuration
situated at about post-midnight and r ≈ 12RE, while probes B
and C are at ∼ 21 MLT with r ≈ 25 and 16RE, respectively.
As the magnetotail current sheet thins, less magnetic flux threads
through it resulting in a decrease in Bz (e.g., [81]), as is observed
by all five THEMIS probes during the growth phases, with Bz
approaching values of Bz ∼ 1 nT prior to substorm onset
(panels b, e, h, k, and n; black lines). The model captures these
thinning signatures for the inner probes A, D, and E (panels b,
k, and n; brown lines) as their location places them within the
Bz minimum and TCS region as was shown in Figures 6d,e. The

model underestimates the thinning, as the Bz values only reach
Bz ∼ 4 nT during the growth phases. One explanation is that
the 〈vBIMF

s | parameter is a suboptimal proxy for the development
of the TCS in the magnetotail while another is that the DM
approach smears the singularly thin nature of the TCS effectively
making it thicker than in reality.

Following substorm onset and throughout the expansion
phase, magnetic flux is transported earthward accumulating in
the near-tail region and enhancing the value of Bz there (e.g.,
[82]), leading to a more dipolar magnetic field configuration.
The three inner probes observe this dipolarization as a ∼ 20 nT
increase in Bz for the first substorm and a∼ 30 nT increase for the
second (panels b, k, n; black lines). As was shown in Figure 7d,
the model reconstructs this flux pileup across the whole nightside
magnetotail to a distance of r ≈ 16RE. The in-situ validation
demonstrates that the model nicely captures these Bz increases
for the inner probes (panels b, k, n; black lines). While the model
effectively captures the magnitude of the flux enhancement for
the first substorm, it underestimates it for the second. This is
not unexpected, as the state-space analysis shown in Figure 10

demonstrated the DM approach underestimated the intensity of
the second substorm (Figure 10c).

However, the model misses the TCS formation and the
dipolarizations at the locations of outer probes B and C
(Figures 11e,h) which are further down tail and whose MLTs
are significantly away from midnight. Further, while the
model displays good consistency with the GOES-10 and
12 magnetometers (Figures 11p,q,v,w), there are quite large
deviations for GOES-11 (Figure 11t). This particular pair of
substorms appears quite global in nature, showing signs of
current sheet thinning as far as r ∼ 20RE down tail at 21MLT and
large dipolarizations at geosynchronous orbit at 3 MLT. While
theAL index is a good indicator of the overall substorm intensity,
it has its limitations. Firstly, it is derived from a rather small
(10–12) number of magnetometer stations [44] and secondly, it
yields no information about the local time configuration of the
substorm currents [83]. As such, the DM approach will tend to
reconstruct the typical substorm as is represented by the state-
space parameters but will have no specific insight into the event’s
MLT configuration. This may be the underlying cause of the
deviations between themodel and the THEMIS B and C as well as
the GOES-11 satellites. Some of these issues might be addressed
by using another substorm index constructed from amore robust
collection of magnetometer stations, such as the SML index [84],
which furthermore, is computed for differing local time bins [85].

Overall, these results largelymirror to the validation of the SST
model as shown in [15] (their Figure 2). This is not unexpected
as the Merged Model closely matches the Tail Model at these
spacecraft’s locations and given that the Tail Model is very
similar to the SST19 model. A shortcoming of the spacecraft
configuration for this particular event is that none of them are
earthward of geosynchronous orbit and according to Figures 3,
4, the improvement of the Merged Model over the SST19 model
should be most apparent in this region. This will be addressed by
a quantitative statistical analysis next.

In order to preform a quantitative uncertainty estimate the
three models are cross-validated. In this technique, a subset of
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FIGURE 11 | In-situ validation of the Merged Model. The comparison between the THEMIS and GOES magnetometer data and the Merged Model reconstruction of

the 8 March 2009 substorms. (a,b) The x and z components of the total magnetic field Btot observed by the THEMIS-A magnetometer (black line) averaged to 5 min

resolution compared to the Merged Model evaluated at the spacecraft location (brown line) in the GSM coordinate system. (c) The THEMIS-A ephemeris in GSM

coordinates with the x, y, z, and r components in solid, dashed, dotted, and purple lines, respectively. (d–x) The same as (a–c) except now for the other four THEMIS

and three GOES satellites. (y,z) Geomagnetic indices and solar wind parameters in format similar to previous figures.

the data is reserved, that is it is not included when the model is
fit, and instead forms a validation dataset. Statistical analysis is
then performed on the independent validation set, and because
this set was not used while fitting the model, it represents an
out-of-sample test.

For the purposes here, the validation set should include
spacecraft which adequately cover both the inner magnetosphere
and near tail regions while there is also storm and substorm
activity. The year 2015 was chosen to be the validation time
interval as both the Van Allen probes and the THEMIS missions

Frontiers in Physics | www.frontiersin.org 17 May 2021 | Volume 9 | Article 653111233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Stephens and Sitnov Data Mining Reconstruction Storms Substorms

were sampling the inner magnetosphere, while the Cluster and
MMS missions observed the near-tail. Further, the maximum
sunspot count of solar cycle 24 peaked in April of 2014, so
solar activity was still quite high throughout 2015 resulting
in an elevated occurrence of geomagnetic storms [86]. Thus,
when performing the model cross-validation, the entirety of
the spacecraft dataset for the year 2015 was excised from the
magnetometer database when fitting the models. That is, only
data from spacecraft missions spanning the years 1995–2014 and
2016–2018 are used during fitting, while only data from 2015
are used in this cross-validation. Owing to the computational
expense needed to fit the model, it was not feasible in this
study to model the entirety of the year 2015. Instead, only times
corresponding to storm and substorm activity from the 3 months
of June, September, and December were modeled. At least one
strong storm (Dst / −100 nT) occurred during each of these
months, and their separation in time allowed the spacecraft to
sample a range of different local times. The start of September
corresponds to the beginning of the MMS primary science
mission phase, and as such is when the MMS magnetometer
data becomes available. Here, storm and substorm activity time
intervals are defined as when 〈Sym-H∗| ≤ −50 nT or 〈AL| ≤
−300 nT. To ensure that broader portions of the storm main
and recovery phases and substorm growth and recovery phases
were also included, the time intervals were expanded by±3 h and
±30min, respectively. In total, the identified storm and substorm
activity time intervals across these 3 months spans 673.5 h or
about 28 days, corresponding to 8,046 model fits and ≈ 68, 000
spacecraft magnetic field observations when evaluated at a 5 min
cadence. Here, the out-of-sample model error is quantified using
the magnitude of the difference between the model evaluated at
the spacecraft location and the observed magnetic field there:

ǫi = ‖B(mod)(ri)− Bobs
i ‖. (12)

This quantity is similar to the model residuals which are key
to its fitting, for example, as seen in the objective function
(9), but without the weighting factors. They also have been
the primary metric for testing empirical magnetic field model
fidelity in previous studies (e.g., [87–89]). Specifically, the
average magnitude of the difference between the model and
observation 〈ǫ〉 = 1

N

∑

ǫi is reported in Table 1, where N is the
number of samples.

The Inner Model performs marginally better for the Van Allen
Probes data than the Tail Model as their orbit is entirely within
the inner magnetosphere region. As Figures 3, 4 indicated,
this marginal improvement in B is crucial for reconstructing
the current density j which depends on the spatial derivatives
of B. In contrast, the Tail Model has lower errors for the
Cluster spacecraft which spends relatively little time in the inner
equatorial magnetosphere. The THEMIS and MMS missions
have similar errors for both models. All models display notably
lower errors for the less active times, presumable because
the global configuration is more regular. Substorm and storm
performance is rather similar, although, the storms during the
validation interval contain significant substorm activity based on
the AL index. Further analysis could be performed to separate
isolated,multiple, and storm-time substorms, and storm intervals

with and without substorm activity. Importantly, the Merged
Model generally matches the lower error of the two other models,
statistically validating the algorithm discussed in 3.1. Indeed, the
Merged Model has the smallest error across the entire validation
set at 〈ǫ〉 = 16.228 nT. To put this in context, running the
samemodel cross-validation for the commonly used T89 and T96
yields errors of 〈ǫ〉 = 20.006 and 21.777 nT, respectively, while
using no model (Bext = 0) gives is 37.458 nT.

To get a better indication of how the model errors change as
a function of distance, the errors were collected into different
radial bins (1r = 0.25RE when r < 12RE; 1r = 1.0RE when
r > 12RE, where 1r is the size of the bin) and for the different
types of activity levels as are displayed in Figure 12. The Tail
Model (orange lines) has significantly lower errors tailward of
r = 12RE compared to the Inner Model (blue lines), although,
recall the later was not fit using data in this region, so it should
not be expected to perform well here.

Meanwhile, the Inner Model (blue lines) has lower errors
within 3RE ≤ r ≤ 6RE, indicating that it does yield
a more accurate reconstruction of the ring current region.
However, errors are still relatively high here, particularly during
storm times (Figure 12D), indicating the model still potentially
underestimates the ring current intensity. One cause might be,
given that there were several strong storms during this validation
period (one storm reached a minimum Dst ≈ −200 nT while
another hit Dst ≈ −150 nT), the aforementioned bias toward
weaker events. Another, is that strong storms tend to have a
complex morphology (e.g., [36]), and the multitude of mesoscale
features can simply not be discerned with the DM approach. Also
of note, the errors significantly increase earthward of r = 2.5RE.
This has been observed in in-situ comparisons in previous studies
and was attributed to attitude uncertainty issues which make it
difficult to distinguish between the internal and external fields
(e.g., [35]) as the former is very large close to the planet. If these
are indeed observational errors, then perhaps these datapoints
earthward of r = 2.5RE should be excised from the model
database in future studies. Importantly for the context of this
study, is that the errors of theMerged Model (dashed brown line)
tend to follow the smaller of the other two across all radial bins.
This confirms that the merging algorithm discussed in section 3.1
works as intended.

4. DISCUSSION AND CONCLUSION

In this paper we presented a new method of the empirical
reconstruction of the magnetospheric substorms, which not only
resolves the corresponding reconfiguration of the magnetotail
but also resolves both westward and eastward currents in
the inner magnetosphere that reflect the associated storm-type
phenomena. In particular, it becomes possible to resolve and
quantitatively evaluate the buildup of the storm-time plasma
pressure, which was under-resolved in the previous substorm
reconstructions [15]. The key to the solution of such a combined
description of the inner magnetosphere is similar to the original
kNN DM method [15, 22], where a swarm of many synthetic
probes neighboring the event of interest in the binning parameter
space was used. Here similar virtual probes were used and
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TABLE 1 | Out-of-sample model errors 〈ǫ〉 for the Inner, Tail, and Merged Models for different spacecraft and activity levels.

Samples No model 〈ǫ〉(nT) Inner model 〈ǫ〉(nT) Tail model 〈ǫ〉(nT) Merged model 〈ǫ〉(nT)

All 67,801 37.458 17.021 16.891 16.228

Van Allen 14,958 45.520 16.458 18.713 16.862

THEMIS 18,125 35.769 17.753 17.597 17.240

MMS 14,533 34.590 18.721 19.855 19.281

Cluster 20,185 35.093 15.558 12.773 12.649

Storm times:

〈Sym-H∗| ≤ −50 nT 28,778 45.757 20.547 20.680 19.709

Substorm times:

〈AL| ≤ −300 nT 35,111 40.790 19.135 18.801 18.047

Less active times:

〈Sym-H∗| > −50 and 〈AL| > −300 nT 17,265 29.719 13.034 13.010 12.526

The equivalent errors with no external field model is given for reference.

FIGURE 12 | Mean model errors as a function of radius. The mean model errors 〈ǫ〉 computed in different radial bins for the Inner Model (blue lines), Tail Model

(orange lines), and Merged Model (dashed brown lines). The errors when no model for Bext is applied is shown for context using the black lines. The errors are further

binned into different activity levels: (A) the entire validation set, (B) active substorm times 〈AL| ≤ −300 nT, (C) less active times 〈Sym-H∗| > −50 and 〈AL| > −300 nT,

likely during the substorm and storm growth/main and recovery phases, and (D) active storm times 〈Sym-H∗| ≤ −50 nT.

combined from different versions of the SST19 model focused on
the inner magnetosphere and the tail region.

This merged resolution approach is also similar to coupled
first-principles models of the magnetosphere [74, 75, 77, 90],
where the kinetic description of the inner magnetosphere is
combined with the magnetohydrodynamic (MHD) description

of the whole magnetosphere in global MHD models. An
important advantage of the present empirical method, compared
to the aforementioned combinations of the first-principle
models, is that the empirical reconstructions weakly depend
on the location of the coupling boundary and they do not
require any special description of the interaction between
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inner and outer magnetosphere models. This approach may be
further improved by using a more optimized merging boundary
instead of the simple static cylindrical boundary used here. For
instance, the merging boundary can be made dynamical, either
redetermined for each time step or made a function of storm
and substorm activity level. Further, the azimuthally symmetric
boundary used here is suboptimal as it does not account for
day-night asymmetries. This can be addressed by introducing
a shift to the center of the cylinder or by instead using an
elliptic cylinder.

In conclusion, the merged modeling technique using
virtual observations effectively reconstructs regions of the
magnetosphere possessing different spatial scales. This may also
have utility in other DM and machine learning applications in
which disparate density of data makes it difficult to model the
system using a single resolution.
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