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Editorial on the Research Topic

Computational Epitranscriptomics: Bioinformatic Approaches for the Analysis of

RNAModifications

RNA modifications were discovered decades ago, and more than 150 different marks have been
found decorating various RNA species, including coding and non-coding transcripts (Boccaletto
et al., 2018). Yet, only in the last decade this research field rapidly expanded, due to the development
of simple and effective methods for the genome-wide identification of some of these marks, such
as MeRIP-seq for the profiling of N6-methyladenosine (m6A) (Dominissini et al., 2012; Meyer
et al., 2012). The renowned interest in the field led to the identification of key effectors—writers,
erasers, and readers—that establish and decode the patterning of specific marks. This suggested
that RNA modifications have the potential to be dynamically controlled, similarly to their genomic
counterparts, the modifications of DNA and chromatin. Indeed, in analogy to the epigenome, the
collective set of RNAmodifications was named epitranscriptome. Altogether, the epitranscriptome
is considered an important determinant of RNA fate, and specific marks were found to be involved
in various steps of the RNA life cycle including, while not limited to, transcription, processing,
decay, and translation (Roundtree et al., 2017).

As often occurs, following the birth of a new omics, the development of computational methods
that are tailored to the analysis of those high-throughput datasets started to flourish. In analogy
to the development of computational epigenomics (Bock and Lengauer, 2008), this research field
could be referred to as computational epitranscriptomics.

This Research Topic collects a number of contributions in this field. Few manuscripts focused
on the development of novel methods for the prediction of RNA modifications. A Galaxy-based
user friendly graphical workflow was developed that cover the preprocessing of omics data, the
quantification of mismatch and arrest rates with single-nucleotide resolution, and the subsequent
machine learning, modification calling and visualization (Schmidt et al.). A computational
workflow dedicated to 2′-O-methylation marks was optimized, allowing a more accurate detection
of these marks and a more precise quantification of their level variations (Pichot et al.). A novel tool
(LITOPHONE) was developed that adopts an ensemble predictor relying on sequence features to
predict m6A sites in long non-coding RNAs (Liu L. et al.). A web server (PIANO) was implemented
that relies on various genomic features, including sequence information, for the prediction and
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functional annotation of pseudouridine sites (Song et al.). Finally,
a bioinformatic pipeline (tRFs-Galaxy) was developed for the
study of small non-coding RNAs derived from tRNAs (tRFs),
allowing the study of tRFs biogenesis in Drosophila melanogaster
(Molla-Herman et al.).

Two additional contributions discussed pitfalls in the analysis
of specific marks. A first study discussed the impact of different
bioinformatics steps on the detection of RNA editing events,
describing key metrics for the quantification of their level of
activity (Giudice et al.). A second contribution compared m6A
genome-wide maps generated in various studies based on eight
different methods, discussing the agreement of the data and the
challenges in their comparative analysis, revealing an expression
bias in the detected genes (Capitanchik et al.).

Two contributions were focused on the use of direct RNA
sequencing through the Nanopore platform that enables long-
reads sequencing of native transcripts. A perspective discussed
how these data could allow quantifying the dynamics of modified
RNAs at the level of individual isoforms (Furlan et al.). A
second study introduced MasterOfPores, a NextFlow workflow
that facilitates the analysis of these data, allowing the prediction
of RNA modifications and the estimation of polyA tail lengths
(Cozzuto et al.).

Finally, three different studies introduced bioinformatics
workflows for studying the impact of RNA modifications in
various tumor types. In the first study, a workflow based
on consensus clustering and gene set enrichment analysis
was presented that allowed the subsequent construction of a
prognostic risk model suggesting the involvement of three m6A-
related genes in liver cancer (Wang et al.). In the second
study, bioinformatics analyses revealed a risk signature based on

three m6A regulators, proposing candidate prognostic markers
predictor of the clinicopathological features in hepatocellular
carcinoma (Liu W. et al.). In the third study, integrated
bioinformatics analyses led to the identification of differentially
expressed transcripts with aberrant methylation patterns in
malignant pheochromocytoma (Lin et al.).

Despite the rapid advance of the field, which allowed
expanding the set of known marks, profiling their pattern, and
disclosing their functional roles, a number of open questions
remain (Frye et al., 2016). Most modifications remain poorly
characterized, it is unclear whether different marks crosstalk
and whether an epitranscriptional code exists. We are only
starting to understand how, where and when these modifications
are altered and whether they represent potential therapeutic
targets in diseases. Key for answering these and other questions
will be the continuous development of methods to map and
analyze these marks. This research would benefit from the
establishment of large scale collaborative and networking efforts
such as the European Epitranscriptomics Network (www.epitran.
eu) (Jantsch et al., 2018).
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Graphical Workflow System for 
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Signatures
Lukas Schmidt 1†, Stephan Werner 1†, Thomas Kemmer 2, Stefan Niebler 3, Marco Kristen 1, 
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Modification mapping from cDNA data has become a tremendously important approach 
in epitranscriptomics. So-called reverse transcription signatures in cDNA contain 
information on the position and nature of their causative RNA modifications. Data mining 
of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing 
in importance, and the field is still lacking effective tools. Here we present a versatile 
user-friendly graphical workflow system for modification calling based on machine 
learning. The workflow commences with a principal module for trimming, mapping, and 
postprocessing. The latter includes a quantification of mismatch and arrest rates with 
single-nucleotide resolution across the mapped transcriptome. Further downstream 
modules include tools for visualization, machine learning, and modification calling. From 
the machine-learning module, quality assessment parameters are provided to gauge 
the suitability of the initial dataset for effective machine learning and modification calling. 
This output is useful to improve the experimental parameters for library preparation and 
sequencing. In summary, the automation of the bioinformatics workflow allows a faster 
turnaround of the optimization cycles in modification calling.

Keywords: RT signature, Watson–Crick face, Galaxy platform, RNA modifications, machine learning, m1A

INTRODUCTION

In the rapidly growing field of epitranscriptomics (Saletore et al., 2012), the detection of RNA 
modifications is typically based on a combination of reagents and tools for wet work on the one 
hand, and bioinformatics processing of massive amounts of RNA-Seq data, on the other hand. 
Because of a sequence space that may include up to 107 nucleotides and more, transcriptomes must 
be scrutinized by computer-assisted detection schemes, resulting in what is called modification 
calling (Helm and Motorin, 2017).

With the exception of the up-and-coming nanopore direct RNA sequencing technology (Byrne 
et al., 2017; Garalde et al., 2018; Smith et al., 2019), RNA-Seq data are obtained after reverse 
transcription of the modified RNA template into DNA, a process during which information about 
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modification type and position may get erased, partially or 
completely, since the newly synthesized cDNA is composed only 
of the four canonical deoxynucleotides. Attempts to circumvent 
this problem included, for example, the use of various chemical 
reagents, which specifically react with a given modification, 
to alter cDNA synthesis at sites of RNA modifications. One 
such reagent is CMCT, a carbodiimide leading to stalling of 
cDNA synthesis at sites of pseudouridine modification in the 
RNA template (Ofengand and Bakin, 1997; Carlile et al., 2014; 
Schwartz et al., 2014). Other modifications do not require 
chemical derivatization to alter cDNA synthesis. In particular, 
modifications with chemical alterations on their Watson–Crick 
face are liable to cause cDNA synthesis differing from that 
expected of an unmodified RNA template. A case in point is 
m1A, a modification featuring a methyl group on the Watson–
Crick face of adenosine, which interferes with proper base 
pairing, in RNA structure (Helm et al., 1998) (Helm et al., 1999) 
(Lempereur et al., 1985; Zhou et al., 2016), as well as during cDNA 
synthesis by reverse transcription (Motorin et al., 2007). In the 
particular case of m1A, the resulting cDNA was shown to contain 
products of transcription arrest, i.e. abortive cDNA fragments, 
as well as misincorporation, most frequently of dATP being 
incorporated instead of dTTP at the position corresponding to 
the modification site. The ensemble of erroneous events in cDNA 
synthesis has been termed reverse transcription signature and 
was shown to depend on a number of factors including e.g. the 
nature of the penultimate base encountered by the RT enzyme 
before engaging the modified RNA residue (Hauenschild et al., 
2015). The RT signature of m1A can be experimentally altered 
e.g. by enzymatic demethylation with the AlkB enzyme (Zheng 
et al., 2015; Liu et al., 2016; Li et al., 2017) or at alkaline pH, 
which induces a Dimroth rearrangement to m6A (Dominissini 
et al., 2016; Safra et al., 2017). Since these processes are relatively 
specific to m1A, they can be exploited to increase confidence in 
modification calling, therein being used as a validation (Helm 
and Motorin, 2017).

All of the above processes require significant computing 
efforts to extract information on RNA modifications from RNA-
Seq data. Given that the composition of RT signature of a given 
modification in terms of RT arrest, misincorporation, and even 
template nucleotide skipping (“jumps”) (Ebhardt et  al., 2009; 
Findeiss et al., 2011; Ryvkin et al., 2013; Hauenschild et  al., 
2015) is subject to variations caused by factors that are not 
fully characterized and thus cannot be entirely controlled, an 
innovative approach to account for a maximum of these features 
and exploit them for computer-based prediction (“modification 
calling”) involves machine learning. A particular brand of 
machine learning, the random forest, was used for the purpose 
of modification by several groups, including us (Hauenschild 
et al., 2015).

Optimizing the performance of a modification calling 
protocol requires multiple rounds, beginning with a wet work 
part of library preparation and subsequent Illumina sequencing, 
as illustrated in Figure 1A. Here, a pretreatment (A1) of the 
samples by using auxiliary reagents such as the demethylase AlkB 
or changes in the library preparation part (A2), e.g. by employing 
different reverse transcriptase enzymes or variegated reaction 

conditions, are implemented experimentally. After sequencing 
(A3), a fast evaluation of their influence on the RT signature and 
consequently on RF performance (A4) is necessary to proceed 
with the next round of optimized library preparation in the wet 
lab. The associated computational data mining thus represents a 
bottleneck on the path to optimal modification calling.

To address this shortcoming, we here present an automated 
workflow implementation based on Galaxy (Afgan et al., 2018), 
whose components are depicted in Figure 1B. The Galaxy 
implementation provides a first module (B1) for the automation 
of typical and recurrent RNA-Seq–associated operations such 
as trimming and mapping. While these operations can be 
customized to accommodate a range of data formats, it allows 
procedurally stable and reproducible treatment of data package 
of comparable content, such as RNA-Seq data obtained under 
variegated conditions for library preparation. This, in turn, allows 
a comparative evaluation of those experimental conditions, as 
outlined above. The same holds true for subsequent modules 
(B2), designed and implemented following the requirement for 
fast comparison of data packages. The implemented tools allow 
to quantify mismatch, jump, and arrest rates in the relevant 
transcriptome, thus compiling RT signatures at single-nucleotide 
resolution. Still automatized, RT signatures of modified RNA 
nucleotides can be transferred as positive instances for machine 
learning, along with negative instances, i.e. signatures of 
unmodified nucleotides. Positive and negative instances are then 
used to train a Python-based random forest implementation of 
machine learning, and the performance of the trained machine 
in modification calling is evaluated and reported as a feedback 
in a further round of experimental optimization. Finally, with 
the implementation of a visualization module, graphics can be 
displayed and extracted for visual examination and comparison 
of individual sequence segments as well as the entire RNA 
fragments in a publishable manner.

MATERIALS AND METHODS

RNA Sequencing Analysis
The present workflow serves as the main process for the analysis 
of RNA sequencing data in respect to the detection of several 
modifications. Its Galaxy distribution comes with a number 
of adjustable elements for variegated workflows, in which the 
particular element (Workflow RNA_Seq_Standard_Workflow) 
serves as basis for the remaining workflows and functionalities. 
Therefore, it is referred to as “standard workflow.” The overall 
scheme of the workflow is illustrated in Figure 1 (B1) and 
consists of the following steps:

Preprocessing of Raw Reads (Trimming)
The raw reads from the sequencing data (stored in fastq-
format) are first subjected to removal of auxiliary sequences 
such as adapters, barcodes, and unique molecular identifiers 
(UMIs). For this task, the workflow uses the Cutadapt trimming 
software (Martin, 2011). Due to the necessity to remove multiple 
sequences from the raw reads, their respective arrangement, and 
the configuration of Cutadapt, the trimming is separated into 
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FIGURE 1 | Main overview of the modification calling pipeline. A diagram showing the different steps for creating and analyzing RNA-Seq data. The pipeline has 
two parts: (A) general workflow for the processing of RNA samples and (B) the implemented automated graphical workflow system with the available modules for 
bioinformatics data analysis. (A) consists of (A1) possible and partly necessary pretreatments for different RNA species, (A2) library preparation with the possibility 
of adaptations (e.g. conditions for reverse transcription), (A3) sequencing with Illumina sequencing platforms (e.g. MiSeq/NextSeq and HiSeq), and (A4) data 
processing including basic data treatment like adapter trimming, alignment, and format conversion, as well as data analysis (e.g. machine learning and RT-signature 
analysis). The elaborate data processing (A4) was fully automated in (B) by using the open-source Galaxy platform to create and provide a quick and user-friendly 
feedback mechanism to optimize the experimental design, sample preparation, and data processing. The standard workflow (B1) is supplemented by various 
additional modules (B2) including workflows for (a) machine learning, (b) visualization, and (c) filtering.
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multiple steps. In a typical Illumina paired-end sequencing run, 
the forward and reverse reads are stored in individual fastq files; 
the reads show slightly different characteristics concerning the 
auxiliary elements; hence, the trimming for forward and reverse 
reads is performed separately. The first substep in the trimming 
process consists of the removal of Illumina adapter sequences. 
In a second step, terminal barcode sequences and UMIs (Miner 
et al., 2004; McCloskey et al., 2007; Casbon et al., 2011) are cut 
from the raw reads.

Alignment
Mapping to a given sequence reference file is performed with 
Bowtie 2 (Langmead and Salzberg, 2012). Again, this process 
is performed separately for forward and reverse reads (–nofw/–
norc option) and therefore in single-end mode. For the detection 
of RT-impairing modifications like m1A, it is necessary to allow 
for mismatches (One mismatch [“N1”] allowed in seed length of 
6 [“L6”]). Values are tailored toward tRNAs (e.g. high amounts 
of RT-impairing modifications). Additionally, if the evaluation is 
performed on samples containing a large number of modifications 
(affecting the RT), the amount of allowed mismatch occurrences 
has to be increased by adjusting the seed-length option (Bowtie 
standard parameters allow for one mismatch within a given 
seed; hence, seed length has to be decreased for highly modified 
samples). The alignment is stored in BAM format.

The two BAM files, one for the forward and one for the reverse 
reads correspondingly, are merged using the SAMtools (Li 
et al., 2009) “merge” function, and the aligned reads are sorted 
according to chromosomal coordinates.

File Conversion and Overhang Trimming
Further analysis steps require information of mapped reads 
at single base resolution for each position in the reference 
sequence, as every position is evaluated for mismatch and arrest 
properties. Accordingly, the BAM-file is converted into Pileup-
format using the SAMtools (Li et al., 2009) “mpileup” function. 
As described in Tserovski et al. (2016), the library preparation 
includes a step in which C-tailing at the 3′ end of the cDNA 
strand was performed. Due to this tailing step in the library 
preparation protocol, despite the previous trimming steps, some 
tailing bases (overhangs) can remain and were then aligned 
with the reads. As these overhangs can impede the detection 
of modified sites, they have to be removed from the alignment. 
Therefore, a Python-based algorithm for postalignment 
manipulation was developed. This algorithm finds read-ending 
bases and compares them to reference base and removes them 
in case of a mismatch. After the overhang trimming, the data are 
still stored in Pileup format.

Feature Extraction
Information on each position of the reference is then extracted 
from the Pileup format and subsequently stored in a format 
termed “Profile” (example shown in Table 1). The information 
consists of the following features:

Arrest rate: Drop in coverage in relation to the preceding 
(N+1) position (arrest).

Mismatch rate: Relative amount of mapped nucleobases 
not matching the respective base in the reference 
(mismatch).

Jump rate: Relative amount of deletions (bases left out 
during reverse transcription) occurring at the given 
position in the reference (jump). A distinction is made 
between deletions at the given position in the reference 
(single jumps direct), deletions at the neighboring 
position (−1 position) (single jump delayed), and 
deletions at the given position, as well as the neighboring 
position (double jump).

In addition, the reference name (ref seg), reference base 
(refbase), reference position (pos), and coverage at the respective 
position (cov) are stored in the Profile. Also included is detailed 
information on the alignment numbers for each type of base (A, 
C, G, T) and unknown read bases (N), as well as the type of base 
preceding the position (prebase) in question.

In many cases, modified positions heavily differ from 
nonmodified positions in these key characteristics. Nonmodified 
bases are not expected to cause arrest and mismatch signals (at 
least not at high levels), making these features a main target for 
differentiation between modified and unmodified sites.

Downstream Analysis
The generation of the Profile file concludes the standard workflow. 
From this point on, the proceedings heavily vary depending on 
the question being investigated, with the Profile file serving as 
the starting point. Options for downstream analysis are shown in 
Figure 1 (B2) and include the following:

Filtering
An option for further evaluation is a simple filtering process. 
Here, adenosine instances can be separated into two categories, 
namely, “likely m1A” and “likely non-m1A.” The selectable filter 
criteria include threshold values for mismatch and arrest rates, 
minimum coverage, and the nucleobase of interest. In most cases, 
the arrest and mismatch rates should be sufficient to separate 
m1As from non-m1As.

Another filtering option includes the comparison of two 
samples after different treatment. In our Galaxy pipeline, the 
sample comparison after enzymatic or chemical treatment is 
implemented wherein one sample serves as a reference (Figure 2). 
The algorithm calculates the absolute and relative changes in the 
mismatch rate between 2 samples for each position and filters 
by means of adjustable thresholds for changes and coverage. The 
resulting Profile file contains candidates filtered according to the 
selected thresholds. This module can be used for verification of 
modification candidates by e.g. applying enzymatic or chemical 
treatment to remove the alterations at the Watson–Crick face 
impeding reverse transcription and therefore decreasing the 
mismatch rate (exemplary analysis shown in Results section).

Machine Learning
For the prediction of m1A and other modifications, a machine 
learning model for binary classification is included in the Galaxy 
distribution (Workflow Workflow_Prediction). The associated 

10

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


S
chm

idt et al.
M

odification C
alling on G

alaxy P
latform

5
S

eptem
ber 2019 | Volum

e 10 | A
rticle 876

Frontiers in G
enetics | w

w
w

.frontiersin.org

TABLE 1 | Extracted Profile file after filtering with Demethylation_relative_change module with all m1A candidate positions.

ref_seg pos refbase cov prebase mismatch A G T C N a g t c n single_
jump_
direct

single_
jump_

delayed

double_
jump

arrest

tdbR00000370|Saccharomyces_
cerevisiae|4932|Arg|TCT

57 A 699 C 0.29471 493 8 2 94 0 0 5 5 92 0 0.00000 0.02710 0.00285 0.10941

tdbR00000300|Saccharomyces_
cerevisiae|4932|Asn|GTT

59 A 961 C 0.37045 605 7 6 125 0 0 7 69 142 0 0.00000 0.00407 0.02238 0.15544

tdbR00000021|Saccharomyces_
cerevisiae|4932|Cys|GCA

57 A 405 T 0.21728 317 13 39 0 0 0 7 28 1 0 0.00000 0.00000 0.00000 0.43399

tdbM00000003|Saccharomyces_
cerevisiae|4932|Gln|TTG

57 A 475 A 0.15789 400 11 18 1 0 0 12 29 4 0 0.00000 0.00000 0.00000 0.26810

tdbR00000170|Saccharomyces_
cerevisiae|4932|Ile|AAT

59 A 919 T 0.38085 569 55 88 6 0 0 67 127 7 0 0.00429 0.00000 0.01072 0.15350

tdbM00000006|Saccharomyces_
cerevisiae|4932|Ile|TAT

58 A 373 T 0.25469 278 13 28 4 0 0 7 34 9 0 0.00000 0.00000 0.00000 0.31934

tdbR00000192|Saccharomyces_
cerevisiae|4932|Lys|CTT

58 A 2715 G 0.16317 2272 102 103 9 0 0 108 112 9 0 0.00037 0.00000 0.00293 0.07658

tdbR00000193|Saccharomyces_
cerevisiae|4932|Lys|TTT

58 A 619 G 0.43942 347 49 75 10 0 0 62 68 8 0 0.00478 0.00000 0.00955 0.16511

tdbR00000323|Saccharomyces_
cerevisiae|4932|Pro|TGG

57 A 459 T 0.43573 259 3 69 0 0 0 12 112 4 0 0.00000 0.00000 0.00000 0.18905

tdbR00000324|Saccharomyces_
cerevisiae|4932|Pro|TGG

57 A 439 T 0.43508 248 4 56 1 0 0 9 121 0 0 0.00000 0.00000 0.00000 0.20364

tdbR00000443|Saccharomyces_
cerevisiae|4932|Thr|AGT

58 A 396 A 0.28283 284 23 23 3 0 0 28 30 5 0 0.00000 0.00222 0.12195 0.38608

tdbR00000444|Saccharomyces_
cerevisiae|4932|Thr|AGT

58 A 616 A 0.31656 421 39 47 5 0 0 41 54 9 0 0.00145 0.00000 0.10320 0.30152

tdbR00000464|Saccharomyces_
cerevisiae|4932|Val|AAC

59 A 1066 T 0.18386 870 33 55 22 0 0 18 61 7 0 0.00187 0.00000 0.00094 0.69026
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workflows for training and prediction are based on a random 
forest model from the “scikit-learn” Python package (Pedregosa 
et al., 2011). For the training process, the positive class (modified 
bases) and negative class (nonmodified bases) are given as 
input in a 1:1 ratio. This ratio is used in order to counter the 
tendency of RF models to bias toward the majority class. This 
RF property frequently leads to false negatives for the positive 
class (the modifications) when making predictions. Importantly, 
this bias is not necessarily reflected by the evaluation scores. 
The random forest performs e.g. 10 repetitions of a 5-fold cross-
validation. These parameters can be adjusted as required for 
different models. The model’s performance is measured by the 
area under the receiver operating characteristic curve. A detailed 
description of the concept of the random forest model used for 

this workflow can be found in Hauenschild et al. (2015). The 
prediction workflow requires a trained random forest model and 
a Profile file as input and performs a binary classification.

Visualization
A graphical representation of the position of interest within 
sequence context can be created using a Python-based script 
(Workflow Visualize_V3), extracted from the CoverageAnalyzer 
tool (Hauenschild et al., 2016). The user can plot a sequence 
containing up to 1000 bases where the leftmost and rightmost 
bases can be selected by position. In addition, various sizes can 
be adjusted, including the width and height of the plot, the font 
size, and the size of markers within the graphic (exemplary plot 
shown in Figure 3).

FIGURE 2 | Galaxy Filtering module Demethylation_relative_change interface. As input, two Profile files, yeast total tRNA untreated and yeast total tRNA AlkB 
treated, are used with the following selected parameters for filtering: adenosine (A) as nucleobase of interest, 0.5 or 50 (%) and 0.3 or 30 (%) as thresholds for the 
minimum relative and absolute changes in the mismatch rate and 250 as threshold for the minimum coverage required.

FIGURE 3 | Graphical plots of untreated (A) and AlkB-treated (B) yeast tRNALys (CTT) using the additional module Visualize_V3 for visualization. Sites with error rates 
of more than 10% are highlighted with yellow arrows, with colored bars indicating the nature of the reads. Mismatch rates are depicted as black crosses, and arrest 
rates as red lines. The m1A site is located in the middle of the shown sequence segment at position 58.
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RNA Sequencing—Sample Preparation
Library Preparation and Sequencing
Sample preparation and sequencing are performed according to a 
previously published protocol (Hauenschild et al., 2015; Tserovski 
et  al., 2016). This library preparation protocol includes the possibility 
to catch abortive products during the reverse transcription step, 
important for the detection of modifications impeding reverse 
transcription and generating a certain amount of RT stop products. 
The protocol also allows the adaptation of almost all necessary steps 
for preparation of RNA-Seq libraries, including adapter ligations, 
reverse transcription, and polymerase chain reaction. This allows 
fast screening of different conditions during sample preparation. 
Special experimental changes (e.g. buffer changes or pretreatment 
of the RNA) during library preparation for the preparation of our 
shown exemplary data are mentioned in the Results section.

RESULTS

Enzymatic Demethylation of m1a Sites in 
Yeast tRNA With AlkB
In an exemplary sample processing, two samples of total tRNA 
from Saccharomyces cerevisiae were used for sample preparation, 
sequencing, data processing, and analysis. One of the samples 
had been subjected to pretreatment (Figure 1 [A1]) with 
α-ketoglutarate–dependent dioxygenase AlkB that “repairs” 
alkylated DNA and RNA containing 3-methylcytosine (m3C) 
or 1-methyladenine (m1A) by oxidative demethylation. Protein 
preparation and sample treatment were performed according to 
a previously published protocol (Zheng et al., 2015). The second 
sample was used as reference. Both samples were then used as 
starting material for library preparation and subsequent sequencing 
(Figure 1 [A2, A3]). Library preparation and sequencing were 
performed as described in our published workflow by Hauenschild 
et al. (2015) and Tserovski et al. (2016). The sequencing output data 
packages in FASTQ format were then processed with the standard 
automated Galaxy workflow RNA_Seq_Standard_Workflow 
(Figure 1 [B1]) to create Profile files for downstream analysis.

Filtering for Demethylation Candidates
The Profile files were used for statistical analysis. Figure 2 
illustrates the Galaxy Filtering module Demethylation_relative_
change, which was used to filter and extract all positions that show 
an absolute and relative change in the mismatch rate of a certain 
threshold between the untreated and AlkB-treated sample. 
Table 1 shows the extracted Profile file with all candidate positions 
after filtering. From our sample comparison, with our selected 
thresholds, 13 candidate positions fulfilling the requirements 
were filtered out, with high probability to be m1A sites.

Visualization of Demethylation Candidates
In addition, the Profile files were used in the visualization workflow 
Visualize_V3 to obtain graphical plots for each sample. The visual 
comparison of the untreated (A) and AlkB-treated (B) yeast tRNALys 

(CTT), which includes an m1A at position 58, is shown in Figure 3. The 
strong decreases of the mismatch and arrest rate from 0.845 and 0.518 
to 0.163 and 0.077 after AlkB treatment at position 58 of the shown 

sequence segment indicate a successful removal of the methylation 
and therefore enabled valid reverse transcription. Such changes in the 
reverse transcription signature are considered as effective validation 
of the actual presence of m1A at the considered position.

Influence of Mn2+ on the RT Signature at 
m1A Sites in Yeast tRNA
In a second exemplary sample processing, four samples of total 
tRNA from S. cerevisiae were used for sample preparation, 
sequencing, data processing, and analysis. The samples were used 
for library preparation and differed in the reverse transcription step 
(Figure  1 [A2]). For reverse transcription, we used SuperScript® 
III Reverse Transcriptase (Thermo Fisher Scientific, Germany) in 
four different buffer mixtures to investigate the influence of Mn2+ 
during reverse transcription (Zhou et al., 2018). Sample A served 
as a reference and was prepared according to the supplier’s manual, 
using the standard RT buffer with Mg2+. For the other three test 
samples, custom-made RT buffers, including the standard buffer 
components, and Mn2+ in different concentrations (0.5 mM [B], 
1.0 mM [C] or 3.0 mM [D]) instead of Mg2+, were used. Library 
preparation and sequencing were performed as described in our 
published workflow by Hauenschild et al. (2015) and Tserovski 
et al. (2016). The sequencing output data packages in FASTQ 
format were then processed with the standard automated Galaxy 
workflow RNA_Seq_Standard_Workflow (Figure 1 [B1]) to create 
Profile files for downstream analysis.

Visualization of tRNAAsn (GTT) Using Mg2+ or 
Mn2+ as Buffer Components for Reverse 
Transcription During Library Preparation
The Profile files were used in the visualization workflow Visualize_
V3 to obtain graphical plots for each sample. The visual comparison 
of the reference (Figure 4A) and the Mn2+ (0.5 mM [Figure 4B], 
1.0 mM [Figure 4C], or 3.0 mM [Figure 4D]) yeast tRNAAsn (GTT) 
samples, including an m1A at position 59, is shown in Figure 4. The 
high mismatch rates (≥90%) throughout all samples are driven by the 
prebase influence (Hauenschild et al., 2015), leading to a consistently 
high C mismatch. Considering the m1A at position 59, the strong 
decrease in the arrest rate at position 59 from 0.846 (A) over 0.869 
(B) and 0.704 (C) down to 0.070 (D) indicates an increasing read-
through capability of the reverse transcriptase due to a stabilizing 
effect by increased Mn2+ concentrations. In addition, by exchanging 
Mg2+ through Mn2+, the number of jumps (single_jump_direct, 
single_jump_delayed, double_jump) increases with higher Mn2+ 
concentrations, visible in Table 2, as well as in the graphical plots 
by coverage drops (through deletions/jumps), especially visible in 
Figure 4D.

DISCUSSION

We here present a versatile, user-friendly graphical workflow 
system for modification calling to analyze RNA-Seq data. It can 
also be used to analyze any high-throughput data as long as they 
follow the formats listed in this technology report. Although 
this package allows creation and implementation of various 
workflows for processing and analysis, the application of this 
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TABLE 2 | Extracted Profile data for yeast tRNAAsn (GTT) after library preparation with 4 different buffer mixtures for the reverse transcription step. Shown are data for positions 58, 59 (m1A), and 60.

ref_seg pos refbase cov prebase mismatch A G T C N a g t c n single_
jump_
direct

single_
jump_

delayed

double_
jump

arrest

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT Reference

58 A 3238 A 0.02471 3158 4 4 33 2 0 5 7 25 0 0.01927 0.00056 0.00000 0.4574

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 0.5 mM Mn

58 A 1380 A 0.04855 1313 4 1 47 3 0 2 0 10 0 0.02404 0.00000 0.00060 0.32355

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 1.0 mM Mn

58 A 3546 A 0.04061 3402 15 9 79 0 0 13 6 22 0 0.02913 0.00000 0.00067 0.14965

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 3.0 mM Mn

58 A 2239 A 0.04332 2142 9 6 37 7 0 12 5 21 0 0.05623 0.00172 0.00138 0.0565

tdbR00000300| 
Saccharomyces_
cerevisiae|4932|Asn| 
GTT Reference

59 A (m1A) 6311 C 0.90160 621 79 36 3431 6 0 119 25 1994 0 0.00000 0.01048 0.04161 0.84647

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 0.5 mM Mn

59 A (m1A) 2210 C 0.93167 151 37 59 1238 8 0 37 15 665 0 0.00041 0.01630 0.09902 0.86879

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 1.0 mM Mn

59 A (m1A) 4454 C 0.95757 189 65 95 2208 1 0 75 35 1786 0 0.00038 0.02481 0.14907 0.70422

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 3.0 mM Mn

59 A (m1A) 2568 C 0.96145 99 9 9 1149 14 0 7 5 1276 0 0.00000 0.05323 0.16101 0.06965

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT Reference

60 C 42890 C 0.00445 87 30 22 42699 21 20 10 1 0 0 0.00000 0.00000 0.00000 0.36943

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 0.5 mM Mn

60 C 18703 C 0.00733 51 12 10 18566 50 11 3 0 0 0 0.00000 0.00005 0.00000 0.43528

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 1.0 mM Mn

60 C 17706 C 0.00345 17 7 10 17645 10 9 6 2 0 0 0.00006 0.00011 0.00011 0.35852

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 3.0 mM Mn

60 C 3287 C 0.01156 2 1 9 3249 14 5 5 2 0 0 0.00000 0.00000 0.00030 0.03294
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pipeline has limitations, which we would like to indicate hereafter 
and to point out possible solutions for adjustment.

Limitations and Adjustability
The limitations of the workflow pertain mostly to the specific 
characteristics of the library preparation protocol. The workflow 
is tailored to the analysis of short RNA sequences, mostly 
tRNAs, and uses a “splice unaware” alignment because in the 
examples given, splicing is irrelevant. Accordingly, analysis 
of transcriptomic data should use an alignment tool that is 
specifically tailored to mapping of splice variants (“splice aware”).

Furthermore, algorithms such as the overhang trimming are 
not optimized for parallelization, which can lead to very long 
runtimes for the analysis, a problem potentially exacerbated by the 
large size of transcriptomic input data. Of course, as this Galaxy 
distribution makes use of the local computer’s processing power, 
large-scale analysis should not be performed on a device with weak 
computing capabilities. This Galaxy distribution, developed in a 
Unix environment, has not been tested on Windows platforms.

Detection efficiency of modified ribonucleotides is highly 
dependent on the dataset. tRNA samples show a high number 
of RT-impairing modifications, which can negatively affect the 
RT signals for surrounding positions, making it more difficult to 
detect modified positions of interest through filtering or machine 
learning. We also observed that detectability is highly dependent 
on read coverage. In some cases, modified low-coverage sites could 

not be detected as the RT signatures were noisy and thus not very 
pronounced. Moreover, the machine learning and prediction 
processes require an adequate number of training instances for 
a given modification. Modifications that are present only in low 
amounts are not compatible with the available machine learning 
process. Lastly, the workflow here presented was created and 
optimized to detect modifications, which naturally impair reverse 
transcription. However, this does not preclude modifications, which 
are made accessible for analysis through changes in the structural 
or chemical characteristics in a pretreatment by generating RT 
events like increased mismatch and arrest rates. Examples include 
the generation of RT signatures for N6-methyladenosine (m6A) 
with an engineered polymerase with reverse transcriptase activity 
to induce mutations at m6A sites (Aschenbrenner et al., 2018), the 
enzymatic introduction of a bio-orthogonal propargyl group to 
trigger RT termination for m6A detection (Hartstock et al., 2018), 
and the site-specific installation of an allyl group to the N6-position 
of adenosines, spontaneously inducing the formation of N1,N6-
cyclized adenosine by iodination to create mutations to differentiate 
m6A, which is inert to allyl labeling, from adenosines at individual 
RNA sites (Shu et al., 2017).

While the available workflows were tailored toward our specific 
library preparation protocol and were created with the goal of 
detecting m1A, the workflows are easily adjustable for analysis 
of other modifications and other protocols. For example, the 
standard workflow also works without the overhang-trimming 

FIGURE 4 | Graphical plots of yeast tRNAAsn (GTT), which was used for library preparation, visualized by using the additional module Visualize_V3. The reverse 
transcription step was performed by using SuperScript® III Reverse Transcriptase in different reaction buffers. The supplier’s standard reaction buffer (First Strand 
Synthesis buffer) with Mg2+ serves as reference (A), and the tested buffer mixtures differ by increased concentrations of Mn2+ [0.5 mM (B), 1.0 mM (C), 3.0 mM (D)] 
as Mg2+ substitute. Sites with error rates of more than 10% are highlighted with yellow arrows, with colored bars indicating the nature of the reads. Mismatch rates 
are depicted as black crosses, and arrest rates as red lines. The m1A site is located in the middle of the shown sequence segment at position 59.
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step, which allows the user to remove this step when using other 
library preparation protocols. In addition, the Galaxy interface 
allows for user-friendly customization of many input parameters. 
The customization is not limited to the software packages such as 
Cutadapt (Martin, 2011) and Bowtie (Langmead and Salzberg, 
2012), but also includes individual Python scripts for the multiple 
workflows. Accordingly, adapter and barcode sequences can be 
replaced to fit the library preparation protocol, and other tasks like 
quality trimming can be performed. For the Python scripts, the range 
of adjustable parameters allows the user to change the modification 
of interest, filter criteria, features, and parameters for the machine 
learning model as well as several options for the visualization.

Furthermore, existing workflows can be easily rearranged to suit 
the desired analysis. The associated Galaxy toolshed allows for the 
installation of additional bioinformatics programs and enables the 
user to create entirely new workflows. For example, other alignment 
tools can be implemented that may improve or accelerate data 
processing or allow transcriptome-wide analysis for other data 
packages. In the provided tutorial, the installation of new software 
is described. As an example, we have incorporated the CUSHAW2 
tool (Liu et al., 2012), which allows significant acceleration of the 
alignment speed, as a substitute for Bowtie 2. Our performance 
assessment showed that the alignment process could be sped up by 
a factor of up to six of the same datasets and on the same hardware 
platform. By reducing the time of the rather costly alignment step of 
the pipeline, it is possible to increase overall throughput. In return, 
the analysis of larger datasets is feasible within the same time in 
order to further increase the accuracy of the obtained results.

CONCLUSION/SUMMARY

Machine learning as an efficient tool for data mining is currently 
receiving enormous attention, which also extends to high-
throughput sequencing data. Based on previous progress in machine 
learning for modification calling (Hauenschild et al., 2015), we here 
present a workflow that not only automatizes all steps, but which 
also, in principle, allows adaptation to “nonnatural” modifications, 
i.e. bioconjugate derivatives of RNA nucleotides after treatment with 
a chemical reagent or enzymes (Ofengand and Bakin, 1997; Carlile 
et al., 2014; Schwartz et al., 2014; Shu et al., 2017; Hartstock et al., 
2018). In the course of development of reagent- and enzyme-based 
mapping procedures, repeated cycles of optimization, e.g. of reaction 
conditions, are necessary, but an assessment of modification calling 
performance for a given set of reaction conditions is extremely time 
consuming. The workflow here presents a solution to this bottleneck; 
while developed using the naturally occurring modification m1A 
as an example, it is conceived as such to be easily adaptable to the 
development of chemical reagents for modification mapping.

DATA AVAILABILITY

The graphical workflow system, an instruction manual, and 
a tutorial are available at: https://github.com/HelmGroup, 
Repository: Galaxy_modification_calling.

Operating system(s): Linux, Programming language for 
custom scripts: Python, Other requirements: Docker (software) 
needs to be installed.

The AlkB test datasets analyzed and generated for this study 
can be found in the repository: Galaxy_modification_calling 
(https://github.com/HelmGroup/Galaxy_modification_calling/
tree/master/TestData/AlkB).

Compressed files are provided in PKZIP and ZIP format and 
were compressed with 7-Zip.

Files: total_tRNA_yeast_untreated_R1.fastq (untreated yeast 
total tRNA – Read 1)

total_tRNA_yeast_untreated_R2.fastq (untreated yeast total 
tRNA – Read 2)

 total_tRNA_yeast_AlkB_treated_R1.fastq (AlkB-treated 
yeast total tRNA – Read 1)

total_tRNA_yeast_AlkB_treated_R2.fastq (AlkB-treated 
yeast total tRNA – Read 2)

 total_tRNA_yeast_untreated.profile (untreated yeast total 
tRNA – Profile)

total_tRNA_yeast_AlkB_treated.profile (AlkB-treated yeast 
total tRNA – Profile)

total_tRNA_yeast_reference.fasta (Reference total tRNA yeast)
Files for testing of the machine learning workflow can be 

found in the repository: Galaxy_modification_calling (https://
github.com/HelmGroup/Galaxy_modification_calling/tree/
master/TestData/Prediction).

Files: Known_m1A_sites_yeast (list of known m1A sites)
 total_tRNA_yeast_untreated.profile (untreated yeast total 

tRNA – Profile)
All other data are available from the corresponding authors 

upon reasonable request.
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The Identification of Differentially 
Expressed Genes Showing 
Aberrant Methylation Patterns in 
Pheochromocytoma by Integrated 
Bioinformatics Analysis
Dengqiang Lin 1†, Jinglai Lin 1†, Xiaoxia Li 2†, Jianping Zhang 1, Peng Lai 1, Zhifeng Mao 1, 
Li Zhang 1, Yu Zhu 3* and Yujun Liu 1*

1 Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China, 2 Department of 
Radiology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China, 3 Department of Urology, Ruijin 
Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China

Malignant pheochromocytoma (PHEO) can only be fully diagnosed when metastatic 
foci develop. However, at this point in time, patients gain little benefit from traditional 
therapeutic methods. Methylation plays an important role in the pathogenesis of 
PHEO. The aim of this research was to use integrated bioinformatics analysis to identify 
differentially expressed genes (DEGs) showing aberrant methylation patterns in PHEO 
and therefore provide further understanding of the molecular mechanisms underlying this 
condition. Aberrantly methylated DEGs were first identified by using R software (version 
3.6) to combine gene expression microarray data (GSE19422) with gene methylation 
microarray data (GSE43293). An online bioinformatics database (DAVID) was then used 
to identify all overlapping DEGs showing aberrant methylation; these were annotated and 
then functional enrichment was ascertained by gene ontology (GO) analysis. The online 
STRING tool was then used to analyze interactions between all overlapping DEGs showing 
aberrant methylation; these results were then visualized by Cytoscape (version 3.61). Next, 
using the cytoHubba plugin within Cytoscape, we identified the top 10 hub genes and 
found that these were predominantly enriched in pathways related to cancer. Reference to 
The Cancer Genome Atlas (TCGA) further confirmed our results and further identified an 
upregulated hypomethylated gene (SCN2A) and a downregulated hypermethylated gene 
(KCNQ1). Logistic regression analysis and receiver operating characteristic (ROC) curve 
analysis indicated that KCNQ1 and SCN2A represent promising differential diagnostic 
biomarkers between benign and malignant PHEO. Finally, clinical data showed that 
there were significant differences in the concentrations of potassium and sodium when 
compared between pre-surgery and post-surgery day 1. These suggest that KCNQ1 and 
SCN2A, genes that encode potassium and sodium channels, respectively, may serve 
as putative diagnostic targets for the diagnosis and prognosis of PHEO and therefore 
facilitate the clinical management of PHEO.
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2

INTrODUCTION
Pheochromocytoma (PHEO) arises from the extra-adrenal 
sympathetic and parasympathetic ganglia (also referred to 
as the paraganglioma), as well as the intra-adrenal medulla. 
This tumor is rare, with a reported incidence of 1 in 300,000 
(Else et al., 1993; Lefebvre and Foulkes 2014; Lenders et al., 
2014). However, PHEO is a frequent cause of secondary 
hypertension, a potentially life-threatening cardiovascular 
complication (Zelinka et al., 2012; Prejbisz et al., 2013). 
Clinical reports show that up to 36% of patients develop 
malignancy (Pacak et al., 2007). On the other hand, reports 
from autopsy research estimate that 0.05–0.1% of cases 
remain undiagnosed (Jain et al., 2019). Current guidelines 
for the early treatment of PHEO recommend radical surgical 
resection. The 5-year survival rate post-surgery in benign 
cases of PHEO ranges from 84% to 96%, but is less than 50% 
in malignant cases; the recurrence rate can be as high as 65.45 
within 5 years (Schurmeyer et al., 1988; Walther et al., 1999; 
Kopf et al., 2001; Edstrom Elder et al., 2003). Once PHEO 
enters an advanced stage, effective treatment modalities are 
limited, but include radionuclide therapy (131I-MIBG) (van 
Hulsteijn et al., 2014), chemotherapy (a combination of 
cyclophosphamide, vincristine, and dacarbazine) (Vogel et  al., 
2014), and external  beam radiation therapy (Vogel et al., 
2014). However, patients suffering from the advanced stages 
of PHEO gain little benefit from such treatment modalities. 
Therefore, there is an urgent need to investigate the key genes 
involved in the progression of this disease. The identification 
of new biomarkers could help us to improve the prognosis of 
patients and facilitate clinical management.

Research studies have identified germline mutations 
in around one third of patients with PHEO (Lenders and 
Eisenhofer, 2017) and have identified a range of susceptibility 
genes, including RET, HIF2A, VHL, NF1, SDHx (SDHA, SDHB, 
SDHC, SDHD, SDHAF2), FH, TMEM127, and MAX (Wallace 
et al., 1990; Latif et al., 1993; Mulligan et al., 1993; Baysal et al., 
2000; Niemann and Muller, 2000; Astuti et al., 2001; Hao et al., 
2009; Burnichon et al., 2010; Qin et al., 2010; Comino-Mendez 
et al., 2011; Castro-Vega et al., 2014). Although genomic 
variation appears to occur more commonly in PHEO than in 
any other human tumors (Karagiannis et al., 2007; Fishbein 
and Nathanson, 2012), research has failed to identify specific 
genes related to carcinogenesis. Over recent years, the use 
of microarrays and sequencing has become a promising and 
effective technique with which to screen hub disease-causing 
genes and identify biomarkers of diagnostic, prognostic, and 
therapeutic value. To our knowledge, a complete bioinformatic 
analysis of PHEO, using the Gene Expression Omnibus (GEO) 
database and The Cancer Genome Atlas (TCGA), has yet to 
be carried out, particularly with regards to gene expression 
and methylation.

In this study, we first identified and screened differentially 
expressed genes (DEGs) showing aberrant methylation 
in PHEO by combining gene expression microarray 
data (GSE19422) and gene methylation microarray data 
(GSE43293). We then identified 10 core genes showing 

differential expression and aberrant methylation to act as 
suitable candidates for further interaction network analysis. 
TCGA was then used to verify the expression of these core 
genes and investigate their prognostic value. Our overall goal 
was to explore new genetic targets that may help us to improve 
patient outcomes.

MATErIAlS AND METhODS

Microarray Data
Two gene expression profiles were downloaded from GEO 
(https://www.ncbi.nlm.nih.gov/geo/): platform GPL6480—
Agilent-014850 Whole Human Genome Microarray 4x44K 
G4112F (GSE19422, including 84 PHEO tissues and six normal 
adrenal tissues); and the gene methylation dataset—Illumina 
HumanMethylation450 arrays (GSE43293, including 22 PHEO 
tissues and two normal adrenal tissues).

Data Processing
All aberrantly methylated DEGs were analyzed with R software 
(version 3.6) (https://www.r-project.org/). For DEGS, we used a 
|log(fold change [FC])| value >1 and an adjusted P value <0.05 
as cutoff criteria following normalization and background 
correction with the affyPLM package in R. Data relating to 
aberrantly methylated genes were first normalized using the beta-
mixture quantile dilation (BMIQ) method in the R wateRmelon 
package. We then used a β value >0.2 and an adjusted P value 
<0.05 as cutoff standards.

Gene Ontology Functional Enrichment 
Analysis
An online bioinformatics database (DAVID, Database for 
Annotation, Visualization, and Integrated Discovery, https://
david.ncifcrf.gov/) was used to identify all overlapping DEGs 
showing aberrant methylation. These were annotated and then 
functional enrichment was ascertained by gene ontology (GO) 
analysis, including biological processes (BP), molecular function 
(MF), and cellular component (CC) (Consortium, 2006; Huang 
da et al., 2009). The GO functional enrichment results were 
visualized using the ggplot2 package in R.

Protein–Protein Interaction Network 
and Module Analysis
The online STRING tool (http://string-db.org) (Park et al., 
2009) was used to search for potential correlations among the 
overlapping DEGs showing aberrant methylation. Cytoscape 
software (version 3.61; https://cytoscape.org) (Haffner et al., 
2017) was then used to build a protein–protein interaction (PPI) 
network and analyze potential interactions. The cytoHubba 
plugin and the maximal clique centrality (MCC) method were 
then used to identify the top 10 hub genes. We then used the 
MCODE plugin to screen core modules of the PPI network with 
a standard degree cutoff of 2, a node score cutoff of 0.2, a k-core 
of 2, and a maximum depth of 100.
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Expression Analysis of Candidate 
Genes in TCGA
The cBioPortal (https://www.cbioportal.org/) and UCSC Xena 
(http://xena.ucsc.edu/welcome-to-ucsc-xena/) platforms, in 
combination with the TCGA database (TCGA-PCPG), were 
used to analyze genetic alterations, gene expression levels, and 
the relationship between expression and methylation. In total, 
TCGA featured 184 datasets that were available for methylation 
and expression analysis. We also used the Human Protein Atlas 
(HPA) database to investigate the expression levels of candidate 
genes in normal adrenal tissues.

Kaplan–Meier Survival Analysis for 
Candidate Genes in TCGA
The Kaplan–Meier plotter (http://www.kmplot.com/) was used 
to determine the prognostic value of candidate genes in TCGA. P 
values <0.05 were considered to be statistically significant.

Clinical Information
With the approval of our institutional ethics review board, we 
collected clinical information, including tumor size and biochemical 
data, from 136 patients who underwent adrenalectomy and were 
subsequently diagnosed with PHEO following surgery. The clinical 
data (Supplementary Table 1) were collected between January 
2016 and May 2019 from the Department of Urology in Ruijin 
Hospital affiliated to the Medical School of Shanghai Jiaotong 
University in China.

Statistical Analysis
All data are presented as means ± standard deviation. Statistical 
analyses were performed with SPSS software (version 23.0;IBM). 
Bar graphs and scatter diagrams were created by GraphPad Prism 
7 software. Data analysis and correlation were carried out using 
paired t tests and either Pearson’s or Spearman’s correlation 
analysis, as well as line regression analysis. Outliers were analyzed 
using Spearman’s correlation analysis. We then created a logistic 
model featuring two selected variables, the expression levels of 
KCNQ1 and SCN2A, to act as a test for differential diagnosis. 
Finally, a receiver operating characteristic (ROC) curve was 
drawn to evaluate the effect of this differential diagnostic test. 
P values <0.05 were considered to be statistically significant.

rESUlTS

The Identification of Aberrantly Methylated 
DEGs in PhEO
In order to identify genes that were differentially expressed in 
PHEO and normal tissues, we first downloaded the gene expression 
profile dataset GSE19422 (84 PHEO tissues and six normal tissues) 
from the NCBI GEO database. Analysis of GSE19422 led to the 
identification of 1,935 significant DEGs (948 upregulated and 987 
downregulated) for further study (Figures 1A, B). Methylated data 
were then standardized in the GSE43293 dataset to further identify 

3,444 hypermethylated and 5,660 hypomethylated genes (Figure 
1C). To identify DEGs showing aberrant methylation, all 948 
upregulated genes and 5,660 hypomethylated genes were imported 
collectively into a Venn diagram. This led to the identification 
of 412 hypomethylated and highly expressed genes for further 
analysis (Figure 2A). Analysis also identified 148 hypermethylated 
genes with low expression levels (Figure 2B).

GO Enrichment Analysis of Aberrantly 
Methylated DEGs by DAVID 6.8
Next, we attempted to identify the biological function of the 560 
aberrantly methylated DEGs. To do this, we used the DAVID 6.8 
online tool to carry out GO functional enrichment analysis. As 
shown in Figure 3, the top 5 functions for BP were as follows: 
development of the nervous system, the positive regulation of 
GTPase activity, homophilic cell adhesion via plasma membrane 
adhesion molecules, axonal guidance, and signal transduction. 
The top 5 functions for MF were as follows: enriched in hydrolase 
activity, acting on carbon–nitrogen (but not peptide) bonds, 
Ras guanyl-nucleotide exchange factor activity, microtubule 
binding, transcriptional repressor activity, RNA polymerase II 
core promoter proximal region sequence-specific binding, and 
structural constituent of cytoskeleton. The top 5 locations for CC 
were plasma membrane, cell junction, postsynaptic membrane, 
postsynaptic density, and axon.

The Identification of hub Genes by 
Protein–Protein Interaction Analysis Using 
STrING and Cytoscape 3.61
Next, we attempted to identify hub genes among the 560 
aberrantly methylated DEGs. To do this, we used PPI analysis 
and the online STRING platform to examine protein interaction 
effects among aberrantly methylated DEGs. As illustrated in 
Figure 4A, the PPI network included a total of 550 nodes and 
1,463 edges (PPI enrichment P < 1.0 × 10−16); these results were 
imported into Cytoscape 3.61 software for visual analysis. Using 
the cytoHubba plugin and the MCC method, we identified the top 
10 hub genes: CALM1, CACNA1C, KCNH2, KCNQ2, KCNMA1, 
KCNN2, GRIA2, KCNQ1, KCNN3, and SCN2A (Figure 2B). The 
MCODE plugin of Cytoscape 3.61 was then used to analyze the 
whole network; this identified 13 sub-networks (Figure 2C). Of 
these, module 1 achieved the highest score (score: 6.667), while 
module 2 featured the most hub genes (five in total: KCNH2, 
KCNMA1, KCNN2, GRIA2, KCNQ1, and KCNN3). Core module 
analysis indicated that hub genes may play roles in pathways 
related to cancer, such as the phospholipase D signaling, cAMP 
signaling, IL-17 signaling, Toll-like receptor signaling, TNF 
signaling, and MAPK signaling (Figure 5). Consequently, these 
10 candidate hub genes were selected for further analysis.

Expression levels of Candidate hub 
Genes in TCGA
The TCGA database was used to further verify our selection of 
key hub genes. Analysis showed that the 10 hub genes in PHEO 
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FIGUrE 1 | Identification of differentially expressed genes (DEGs) and differentially methylated genes. (A) Heat map of DEGs in GSE19422. Red, upregulated 
genes; blue, downregulated genes. (B) Volcano plot of DEGs in GSE19422 (red dots). (C) Heat map of DEGs in GSE43293. Red, hypermethylated genes; green, 
hypomethylated genes.

FIGUrE 2 | Identification of aberrantly methylated differentially expressed genes (DEGs). (A) 412 upregulated and hypomethylated genes were identified. (B) 148 
downregulated and hypermethylated genes were identified.
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tissues showed similar expression levels when compared between 
the TCGA and the GSE19422 dataset (Figure 6A) and similar 
methylation patterns (Figure 6B). As shown in Figures 7A, B, 
these hub genes showed alterations in 44.57% of the 184 cases, 
including mutation (3.26%) and amplification (4.89%). In 
addition, we found that the mRNA expression levels of the 10 hub 
genes showed a significant and negative relationship to the levels 
of DNA methylation (Figure 7C). Collectively, these findings 
indicated that DNA methylation exerts a significant effect on the 
progression of PHEO progression by influencing the expression 
of hub genes.

The Clinical Value of Candidate hub 
Genes in PhEO
To evaluate the prognostic value of the candidate hub genes, 
we performed survival analysis using the online Kaplan–Meier 
plotter. Figure 8A shows that the overexpression of KCNH2, 
KCNQ2, and KCNQ1 was significantly associated with a 
good prognosis; in contrast, the overexpression of SCN2A 
was significantly associated with a poor prognosis. Because 

of the overexpression of KCNH2 and KCNQ2 in PHEO when 
compared with normal tissues, we eliminated these genes in 
our subsequent analysis (Figure 8A). Immunohistochemical 
staining results from the Human Protein Atlas database 
indicated that KCNQ1 showed strong expression levels in 
normal adrenal tissue (Figure 8B); in contrast, SCN2A was only 
expressed in very small levels in normal adrenal tissue (Figure 
8C). Therefore, we investigated KCNQ1 and SCN2A further 
to identify their potential therapeutic value. As depicted in 
Figure 9A, the expression levels of KCNQ1 in PHEO tissues 
were negatively associated (Spearman’s r = −0.46, P < 0.0001, 
and line regression coefficient = −0.4018, P  < 0.0001) with 
the expression levels of SCN2A, suggesting that patients with 
PHEO may benefit from interventions targeting one of them. 
To this end, we established a relationship network (Figure 
9B), including KCNQ1 and SCN2A, as well as the 50 most 
frequently altered neighboring genes. Furthermore, some 
cancer drugs targeted to KCNQ1 and SCN2A were included in 
the network, some of which are known to exhibit anti-PHEO 
effects, such as Propofol (Wang et al., 2018) and lidocaine 
(Tan et al., 2016).

FIGUrE 3 | Enrichment analysis of aberrantly methylated differentially expressed genes (DEGs). BP, biological processes; MF, molecular function; CC, cellular component.
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Due to the dilemma posed by the differential diagnosis of 
benign and malignant PHEOs, we performed logistic regression 
analysis. We attempted to improve efficiency of differential 
diagnosis by analyzing two gene expression datasets: GSE39716 
(36 benign and nine malignant profiles) and GSE67066 (40 
benign and 11 malignant profiles). Two variables, the expression 
levels of KCNQ1 and SCN2A, were entered into backwards 
stepwise logistic regression analysis (Table 1). KCNQ1 from the 
GSE39716 dataset showed the largest relative risk (RR) (50.562, 

P  = 0.028), followed by SCN2A from the GSE67066 dataset 
(4.424, P = 0.009).

Then, we created a ROC curve to evaluate the value of this 
procedure for differential diagnosis. The area under the ROC 
curves for GSE39716 (Figure 9C) and GSE67066 (Figure 
9D) were 0.756 [P = 0.019, 95% confidence interval (CI) = 
0.606–0.906] and 0.786 (P = 0.004, 95% CI = 0.619–0.954), 
respectively. Corresponding sensitivity and specificity were 
0.667 and 0.778, and 0.818 and 0.7, respectively, indicating 

FIGUrE 4 | Protein–protein interaction (PPI) network analysis and the identification of hub genes for the aberrantly methylated genes. (A) The PPI network included 
a total of 550 nodes and 1,463 edges. (B) The top 10 hub genes were evaluated using the maximal clique centrality method. (C) Module analysis for aberrantly 
methylated DEGs.
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that KCNQ1 and SCN2A may represent promising differential 
diagnostic biomarkers.

Finally, we found that there was significant difference 
between potassium concentration (3.98 ± 0.29 mmol/l vs. 
3.63  ± 0.33 mmol/l, P < 0.0001) and sodium concentration 
(140.36 ± 2.26 mmol/l vs. 137.90 ± 3.66 mmol/l, P < 0.0001) 
when compared between pre-surgery and post-surgery day 1 
(Figures 10A, B). However, the concentrations of potassium 
and sodium prior to surgery were not associated with tumor 
size (Figures 10C, D).

DISCUSSION
Despite significant effort, there is still little we can do to improve 
the prognosis of patients with PHEO, particularly in malignant 
cases. Consequently, there is a clear need to explore the specific 
pathogenesis of this disease and identify core genes or proteins 
that may facilitate clinical diagnosis and treatment. As a free 

and commonly used resource, the NCBI GEO database features 
a significant body of microarray profiling and next-generation 
sequencing for a variety of human tumors. Using this database, 
we downloaded gene expression microarray data (GSE19422) 
and gene methylation microarray data (GSE43293) for further 
analysis. In particular, we screened two of the most important 
hub genes, a downregulated hypermethylated gene (KCNQ1) 
and an upregulated hypomethylated gene (SCN2A) in PHEO 
tissues, both of which were further validated by the TCGA 
database. Functional enrichment results indicated that these 
hub genes played a role in the pathogenesis and progression of 
PHEO through certain pathways. We aimed to provide a new 
perspective for the pathogenesis, diagnosis, and treatment of 
PHEO, thus leading to improved patient outcomes.

Using R software, we identified a total of 560 aberrantly 
methylated DEGs. GO enrichment analysis further indicated 
that aberrantly methylated DEGs were predominantly involved 
in cancer-related biological processes, such as the positive 
regulation of GTPase activity, homophilic cell adhesion via 

FIGUrE 5 | Pathway enrichment analysis for the genes from a core module MCODE 2.
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plasma membrane adhesion molecules, axonal guidance, and 
signal transduction. By cycling between an inactive GDP-
bound and an active GTP-bound state, the family of GTPases 
can act as molecular switches and are involved in a range of 

cellular processes, including cell proliferation, apoptosis, and 
migration (Olson et al., 1995; Vega and Ridley, 2008; Cherfils 
and Zeghouf, 2013; Croise et al., 2014; Mack and Georgiou, 
2014). The relative effects of GTPases depend on whether they 

FIGUrE 6 | Expression and methylation of 10 hub genes in The Cancer Genome Atlas (TCGA) database. (A) Box plots showing 10 hub genes at the mRNA 
expression level using data from the TCGA database and the GEPIA tool. (B) Heat map showing the correlation between the mRNA expression and DNA 
methylation of the 10 hub genes with the UCSC Xena platform. M DNA methylation, E mRNA expression. Red, upregulated genes in E or hypermethylated genes in 
M; blue, downregulated genes in E or hypomethylated genes in M.
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exert action during the initiation or progression of tumors 
(Ellenbroek and Collard, 2007; Orgaz et al., 2014). The most 
commonly investigated members of the family of GTPases 
are RhoA, Cdc42, and Rac1. In a previous study, Croise et al. 
(2016) reported that PHEO was associated with the reduced 
activity of Cdc42 and Rac1, and the reduced expression of two 
Rho-GEFs, FARP1 and ARHGEF1. Our own previous research 
demonstrated that it inhibited PHEO progression that promotes 
adhesion molecules, E-cadherin and β-catenin, translocation 
from cytoplasm to membrane (Lin et al., 2019).

Visualization of the PPI network using Cytoscape software 
identified a total of 550 nodes and 1,463 edges, thus indicating 
that almost all of the aberrantly methylated DEGs interacted 
with each other, either directly or indirectly. These data imply 
that by manipulating the expression of core genes, it may be 
possible to interfere with the initiation and progression of 
PHEO. To this end, we used the cytoHubba plugin to identify 
the top 10 key genes: CALM1, CACNA1C, KCNH2, KCNQ2, 
KCNMA1, KCNN2, GRIA2, KCNQ1, KCNN3, and SCN2A. 
Similar to the GEO database, there were similar patterns of 
expression and methylation for these 10 core genes in PHEO 
when compared with normal tissues in the TCGA database, such 
as the downregulated and hypermethylated genes KCNN2 and 

KCNQ1. In total, 44.57% of the 184 PHEO tissues showed genetic 
alterations in KCNN2 and KCNQ1. These results demonstrated 
that these 10 core genes may play important roles in the initiation 
and progression of PHEO. However, only two core genes, KCNQ1 
and SCN2A, showed any potential prognostic value when we 
considered their expression patterns in PHEO.

The KCNQ1 gene is located on chromosome 11 and has 16 exons 
and 15 introns. This gene encodes for the pore-forming α-subunit 
of a voltage-gated potassium channel that allows potassium to 
flow out of the cell membrane following depolarization. Under 
physiological conditions, this process maintains homeostasis with 
regards to ion concentration, cell volume, and pH (Felipe et al., 
2006; Huang and Jan, 2014). An increasing body of evidence now 
supports the essential role of potassium channels in the initiation 
and progression of tumors, particularly in colorectal cancer 
(den Uil et al., 2016; Rapetti-Mauss et al., 2017), hepatocellular 
carcinoma (Fan et al., 2018), and gastric cancer (Liu et al., 2015). 
Research carried out by Rapetti-Mauss et al. indicated that KCNQ1 
is a target gene for the Wnt/β-catenin pathway and that the loss 
of KCNQ1 promoted the disruption of cell–cell contact, thus 
contributing to EMT (epithelial–mesenchymal transition), cell 
proliferation, and invasion in colorectal cancer (Rapetti-Mauss 
et al., 2017). In a previous study, we demonstrated that ApoG2, 

FIGUrE 7 | Use of the TCGA database to validate the 10 hub genes. (A) Genetic alterations in the 10 hub genes. (B) An overview of genetic alteration in the 10 hub 
genes. (C) Correlation between mRNA expression and DNA methylation for the 10 hub genes. Sp Spearman correlation analysis, Pe: Pearson’s correlation analysis.
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a small molecular inhibitor, could inhibit PHEO cell migration 
and invasion by promoting the translocation of E-cadherin and 
β-catenin from the cytoplasm to the membrane dependent and 
that this process depended on downregulation of the PI3K/
AKT pathway. This suggested that the regulation of β-catenin by 
KCNQ1 may play a similar role in the metastasis of PHEO (Lin 
et al., 2019). Although the rate of KCNQ1 mutation was only 1.7% 
(3/179), the expression level of KCNQ1 was closely associated 
with the prognosis of patients with PHEO. Based on our current 
findings, we speculate that the methylation rate of KCNQ1 might 
be more relevant than the rate of DNA mutation; this requires 
verification by further research.

In addition, we hypothesize that KCNQ1, as a potassium 
channel gene, could also influence the levels of potassium. 

As expected, analysis of our clinical data showed a significant 
difference for potassium concentration when compared between 
the pre-surgical state and post-surgery day 1. However, it remains 
unknown as to whether the concentration of potassium could 
serve as a prognostic biomarker or not. This is because the levels 
of potassium can be influenced by a range of factors, including, 
but not limited to, the progression of PHEO. Furthermore, it 
is not clear whether cutoff points for potassium concentration 
would be instructive in clinical practice. These points need to be 
addressed in future research.

Voltage-gated sodium channels are transmembrane 
glycoprotein complexes composed of a large α-subunit with 24 
transmembrane domains and one or more regulatory β-subunits. 
The SCN2A gene is located on chromosome 2 and has 31 exons 

FIGUrE 8 | Prognostic value of the 10 hub genes and the expression levels of KCNQ1 and SCN2A in normal tissues. (A) Correlation between gene expression and 
prognosis. (B) KCNQ1 showed strong expression in normal adrenal tissue. (C) Normal adrenal tissue was negative for SCN2A immunostaining.
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that encode one member of the sodium channel α-subunit gene 
family. Several previous publications have reported an association 
between SCN2A gene mutation and a variety of seizure types (Liu 
et al., 2015). However, mutation of the gene has not been associated 
with pathogenesis of tumors, including PHEO. However, analysis 
of our clinical data revealed a significant difference for sodium 
concentration when compared between the pre-surgical state 
and post-surgery day 1, thus suggesting that the pre-surgical 
concentration was influenced by the tumor. Furthermore, the rate 
of mutation in the SCN2A gene was as high as 6% (10/179) and 
its expression levels were closely associated with the prognosis of 

patients with PHEO. Consequently, the biological role and clinical 
value of SCN2A in PHEO clearly warrant further investigation.

CONClUSION
In summary, we used two microarray datasets (GSE19422 and 
GSE43293) to identify a number of important DEGs showing 
aberrant methylation in PHEO-related pathways. These findings 
may help us to develop a better understanding of how genetic 
alterations are involved in the initiation and progression of PHEO 
and identify which genes and pathways we should investigate 

FIGUrE 9 | (A) Correlation between KCNQ1 and SCN2A expression levels by Spearman’s correlation and line regression analysis. (B) Interaction network between 
KCNQ1 and SCN2A, along with other cancer drugs targeted to KCNQ1 and SCN2A. (C) ROC analysis of GSE39716 to discriminate between benign and malignant 
PHEOs, showing the sensitivity and specificity of this test. (D) ROC analysis of GSE67066 to discriminate between benign and malignant PHEOs, showing the 
sensitivity and specificity of this test. Sen sensitivity, Spe specificity, AUC area under the curve, ROC receiver operating characteristic.

TABlE 1 | Logistic regression analysis.

Dataset Genes level (Ben vs. Mal) B P value rr (95%CI)

GSE39716 KCNQ1 7.12 ± 0.46 vs. 6.82 ± 0.22 3.923 0.028 50.562 (1.542–1658.4)
SCN2A 8.18 ± 0.82 vs. 8.33 ± 0.48 0.434 0.556 1.544 (0.364–6.554)

GSE67066 KCNQ1 7.39 ± 0.83 vs. 7.26 ± 0.68 0.95 0.097 2.586 (0.841–7.957)
SCN2A 7.49 ± 0.84 vs. 6.50 ± 1.13 1.487 0.009 4.424 (1.444–13.556)

Ben, benign PHEO; Mal, malignant PHEO; B, regression coefficient; RR, relative risk; CI, confidence interval.
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further. Most importantly, we showed that two of the DEGs 
showing aberrant methylation (KCNQ1 and SCN2A) represent 
potential biomarkers for the prognosis of patients with PHEO 
and may help in differential diagnosis between benign and 
malignant tissues. Consequently, KCNQ1 and SCN2A represent 
valuable targets for the diagnosis and treatment of PHEO.
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A major trend in the epitranscriptomics field over the last 5 years has been the high-
throughput analysis of RNA modifications by a combination of specific chemical treatment
(s), followed by library preparation and deep sequencing. Multiple protocols have been
described for several important RNA modifications, such as 5-methylcytosine (m5C),
pseudouridine (y), 1-methyladenosine (m1A), and 2′-O-methylation (Nm). One commonly
used method is the alkaline cleavage-based RiboMethSeq protocol, where positions of
reads' 5'-ends are used to distinguish nucleotides protected by ribose methylation. This
method was successfully applied to detect and quantify Nm residues in various RNA
species such as rRNA, tRNA, and snRNA. Such applications require adaptation of the
initially published protocol(s), both at the wet bench and in the bioinformatics analysis. In
this manuscript, we describe the optimization of RiboMethSeq bioinformatics at the level
of initial read treatment, alignment to the reference sequence, counting the 5′- and 3′-
ends, and calculation of the RiboMethSeq scores, allowing precise detection and
quantification of the Nm-related signal. These improvements introduced in the original
pipeline permit a more accurate detection of Nm candidates and a more precise
quantification of Nm level variations. Applications of the improved RiboMethSeq
treatment pipeline for different cellular RNA types are discussed.

Keywords: 2′-O-methylation, RNA, ribose methylation, high-throughput sequencing, bioinformatic pipeline,
receiver operating characteristic
INTRODUCTION

The precise and high-throughput mapping of modified nucleotides in RNA is a real challenge in the
field of epitranscriptomics (RNA modifications). Several recent publications have demonstrated the
presence of numerous RNA modifications, not only in rather well studied species such as tRNA/
rRNA/sn(sno)RNA, but also in coding RNAs (mRNA), in all living organisms studied to date. Thus,
several high-throughput methods for the identification of RNA modifications have been developed
and successfully applied for mapping m5C, m6A, pseudouridines, and (more recently) 2′-O-
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methylations (2′-O-Me), along with m1A and m7G/m3C/D
(Dominissini et al., 2012; Squires et al., 2012; Carlile et al.,
2014; Schwartz et al., 2014; Hauenschild et al., 2015; Dai et al.,
2017; Marchand et al., 2018; Schwartz, 2018).

The major impediment to applying high-throughput
screening methods resides in various experimental and
bioinformatics biases, which are only partially controlled and
may affect the precision of the final result or even lead to a
nonnegligible number of false-positive identifications. Taking
into account the size of eukaryotic transcriptomes, thousands
of false-positive signals may appear at the transcriptome-wide
level, even with extremely strict criteria for candidate site
selection (e.g., False Discovery Rate [FDR]< 1%). Thus, every
step in bioinformatic data treatment, conversion and
manipulation should be optimized in order to minimize the
number of potential false-positive signals.

Recently, we published a high-throughput deep sequencing-
based approach, named RiboMethSeq, for mapping of 2′-O-
methylations in highly abundant RNAs, mostly in rRNA
(Marchand et al., 2016; Erales et al., 2017), with possible
extension to tRNA (Marchand et al., 2017a; Freund et al.,
2019). This protocol is also suitable for low abundance RNAs
(Krogh et al., 2017). The RiboMethSeq protocol is based on the
enhanced protection of the phosphodiester bond in RNA from
nucleolytic attack and cleavage due to the presence of 2′-O-
methylation at the 5′-neighboring ribose moiety. This enhanced
protection is evaluated as a normalized number of 5′- and 3′-
ends of randomly cleaved fragments present in the sequencing
library. If a residue is 2′-O-methylated, this reduces the cleavage
efficiency and thus the relative number of fragments starting and
ending at +1 nucleotide relative to the modification. In the
RiboMethSeq approach, such relative protection compared to
neighbors is calculated using different scoring schemes, and the
presence/absence of a 2′-O-methylation is then deduced on this
basis. An alternative calculated score (ScoreC) also allows
precisely measuring the methylation ratio at a given nucleotide.

In this work, we report the comprehensive optimization of
every step of the bioinformatic treatment used for the detection
and quantification of ribose 2′-O-methylation by the
RiboMethSeq protocol. We systematically evaluated the
importance and the impact of 5′- and 3′-trimming strategies,
parameters for alignment to the reference sequence, as well as the
use of specific calculated scores for 2′-O-Me mapping and
quantification. Our results demonstrate that a reduced
calculation interval is favorable for the general discrimination
of 2′-O-Me signals from potential false-positive hits. We propose
new, optimized scores (ScoreMEAN2, ScoreA2, and
MethScore2) that provide better FDR values and also improve
the relative quantification of 2′-O-methylation in RNA.
MATERIALS AND METHODS

Biological Material
To optimize the RiboMethSeq scores, we used previously
published datasets obtained for wild-type yeast Saccharomyces
cerevisiae and human HeLa cell rRNA 2′-O-methylation
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analysis, as well as additional samples for hTERT immortalized
human mammary epithelial cell line (HME) (Marchand et al.,
2016; Erales et al., 2017; Sharma et al., 2017); accession numbers
PRJEB43738, PRJEB34951 and PRJEB35565.

RiboMethSeq Protocol
The RiboMethSeq protocol (Marchand et al., 2016; Marchand
et al., 2017b) consists of random RNA fragmentation under
alkaline conditions (96°C, pH 9.3, ~12−14 min for rRNA), an
end-repair step consisting of de-phosphorylation of the 3′- ends
of the RNA fragments and 5′-end phosphorylation, library
preparation using 3′ -end and 5′-end ligation of adapters, an
RT-step and PCR amplification coupled with barcoding. The
resulting library is sequenced in paired-end PE 2x75 or, more
commonly, in single-end mode (SR50) using an Illumina
sequencing device (MiSeq or HiSeq1000).

Trimming and Alignment
Adapter removal in this study was performed using the
Trimmomatic utility (Bolger et al., 2014). With the default
trimming parameters, the recognition of adapter sequences
requires at least a 16 nt length. Shorter fragments of adapters
are not recognized and thus are not removed. However, with a
stringency of 7 (instead of 10), the adapter recognition requires
only 10 nt. Considering this, 3′-end counting was carried out
only for reads shorter than 40 nt after trimming. The alignment
of raw reads was conducted by Bowtie2 (Langmead and Salzberg,
2012) in end-to-end mode.

Comparing the Performance of 2′-O-
Methylated Site Detection
For the selected datasets, we first applied the RiboMethSeq
pipeline under standard conditions, and the previously
described scores (ScoreMAX6, ScoreA, B and C) were
calculated (Birkedal et al., 2015; Marchand et al., 2016). Score
values were sorted in descending order, and the known
modification status of every nucleotide (2′-O-methylated
residue, pseudouridine, other modified residue or unmodified
nucleotide) was attributed. Receiver operating characteristics
(ROC) curves were plotted using these data, together with
associated Matthews correlation coefficient (MCC) values.
Other associated parameters of the ROC curves were calculated
for maximal MCC value, taking into account true positive/false
positive/true negative/false negative (TP/FP/TN/FN) hits. The
performance of the treatment was evaluated on the basis of both
the maximal MCC value and the associated FDR.
RESULTS AND DISCUSSION

Brief Overview of RiboMethSeq
Experiment
As described above, the high-throughput mapping of 2′-O-Me
residues in RNA is based on random fragmentation of the
phosphodiester bonds under mild alkaline conditions. The
presence of a 2′-O-Me group protects the 3′-adjacent
phosphodiester bond from nucleolytic cleavage, thus
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generating the characteristic gap in the 5′-end (as well as 3′-end)
coverage profile of the sequencing library prepared from the
fragmented RNA (Supplementary Figure S1). This enhanced
protection is used as a signature for 2′-O-methylation and
protection (and thus the gap's depth) and is supposed to be
proportional to the level of 2′-O-Me at a given position.

In previously published studies (Birkedal et al., 2015;
Marchand et al., 2016; Erales et al., 2017; Sharma et al., 2017),
we and others used rather standard parameters for read
trimming and alignment, and calculations arbitrarily used
cleavage efficiency for 12 neighboring nucleotides (+/−6 from
the methylation site). Scores allowing 2′-O-Me detection
(ScoreMAX6 and ScoreA, called here ScoreA6), were
calculated. The 2′-O-methylation level was assessed by
calculating the MethScore (identical to the previously reported
ScoreC, called ScoreC6 here).

Selection of Representative Datasets for
Optimization
Initial screening and optimization of the RiboMethSeq
bioinformatic pipeline was performed with >40 available human
rRNA RiboMethSeq datasets obtained under standard, previously
described (Marchand et al., 2016; Erales et al., 2017; Sharma et al.,
2017), conditions of RNA fragmentation, sequencing, trimming,
alignment and score calculation. We used a cumulative list of
human modified rRNA positions reported in a 3D rRNA
modification database (Piekna-Przybylska et al., 2008) and in
the LBME snoRNA database (Lestrade and Weber, 2006),
including two new positions that were recently reported (Krogh
et al., 2016). Altogether, we considered 40 sites in 18S rRNA, 64
sites in 28S rRNA, and 2 positions in 5.8S rRNA (see
Supplementary Table S1). Some of these positions are probably
variably modified, or even not modified at all in some human cell
lines or tissues (Krogh et al., 2016; Erales et al., 2017; Sharma et al.,
2017); therefore, these incomplete modifications necessarily affect
the number of FN hits and the max MCC values in the
RiboMethSeq analysis. For each dataset, calculations of the
RiboMethSeq scores were performed, and the performance of
each dataset was evaluated for the detection of known rRNA 2′-O-
methylated positions. Based on the preanalysis of available
RiboMethSeq human rRNA samples, we selected three
representative human datasets corresponding to two different
cell lines (HUVEC and HeLa), as well as cultured bone marrow
stem cells for further, more extensive analysis and optimization of
the whole treatment pipeline (respectively named Sample 1 –
HUVEC, 2 – BMSC, and 3 – HeLa (Figure 1 and Supplementary
Figure S2, Supplementary Table S2).

To allow a performance comparison between datasets, we
selected samples with similar numbers of raw RiboMethSeq
sequencing reads (>20 mln, see Supplementary Table S2).

Minimal Number of Reads Required for
Analysis
An optimized volume of sequencing reads required for complete
RNA analysis is highly important, since it allows to obtain
reliable results with a minimal sequencing cost per sample.
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From the analysis of the yeast rRNA samples (Marchand et al.,
2016), sufficient coverage was evaluated to be ~ 750–1,000 reads/
RNA position. For a more detailed analysis, we applied human
rRNA datasets. Despite a similar number of raw sequencing
reads (~20 mln), these datasets behaved differently regarding the
precision of 2′-O-Me detection. Notably, the fraction of 5S rRNA
reads varied substantially from one sample to another (Figure 1),
probably also reflecting the different RNA extraction protocols
used. However, there was no correlation between the total
coverage and the prediction quality for 2′-O-Me. To define the
minimal amount of raw sequencing information required for the
successful application of RiboMethSeq analysis of human rRNA,
we compared the performance of the method using a variable
number of input reads for the same sample.

As anticipated, human 28S rRNA was the most difficult target
to get full representation for all positions in the sequence. A
comparison of missing positions in 28S rRNA in relation to the
sequenced population is given in Table 1. A low number of raw
reads (4 mln) can still be used, but numerous positions of 28S
rRNA have zero raw read 5′-/3′-end counts in the final set.
Despite this, the analysis of known 28S rRNA 2′-O-Me was not
affected, because underrepresented regions are far away from
these modified positions. Increasing the read number (8–12 mln, >
1,000 reads/nt) improves representativity, with only a marginal
number of uncovered nucleotides, while 15–20 mln reads is
recommended to achieve full coverage.

Minimal Trimming Length
The minimal trimming length used in the treatment pipeline
may affect 2′-O-Me detection. Trimming parameters
considerably influence the precision of 3′-end mapping for
SR50 reads and the alignment quality. We thus tested variable
minimal trimming lengths keeping alignment parameters
constant. The calculated max MCC values for the tested
human datasets showed no influence of these parameters on
the final results, even if the number of ambiguously aligned short
reads increased with a decreased minimal trimming length
(Supplementary Figure S3). Depending on the length and
complexity of the target RNA sequence, we recommend
adapting the minimal length and Bowtie2 seed length (see
below); the optimal seems to be 10 or 12 for human or yeast
rRNA, or even lower for shorter RNAs (e.g., tRNA).

Variation of Alignment Parameters
The original RiboMethSeq protocols (Marchand et al., 2016;
Marchand et al., 2017b) used rather strict alignment parameters in
Bowtie2: end-to-end mode, a minimal seed length of 22 nt and zero
mismatches allowed in the seed (preset option “– sensitive”). The
influence of the alignment mode (end-to-end versus local) was
previously evaluated, and the soft read trimming performed in the
local mode was found to be unsuitable for precise mapping of the
read ends (Marchand et al., 2016). However, the seed length and
number of mismatches allowed may also influence the quality of the
alignment, since human rRNA has variations in nucleotide sequence
and contains other modified nucleotides, which alter cDNA
sequences, thus perturbing alignment to the reference.
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To evaluate the importance of the alignment parameters, we
proceeded with treatment using a reduced seed length and
allowing (or not) mismatched nucleotides in the seed. The
following parameter combinations were tested: seed lengths of
22 nt (default value for “– sensitive” preset option, and used
previously), 16 nt, 12 nt, and 8 nt, allowing (or not) mismatched
nucleotides in the seed.

The data in Supplementary Figure S4A show that the total
proportion of aligned reads (unique or multiple alignments) vary
only very slightly as a function of seed length and allowed
mismatches; a seed length of 22 nt and mismatches in the seed
allows only a slightly better alignment (69.41% vs. 65.41% of
aligned reads). Variation of the Bowtie2 seed length does not
much affect the max MCC value for both scores used for
Frontiers in Genetics | www.frontiersin.org 435
optimization (Supplementary Figure S4B). Similarly, allowing
mismatches in the seed also has no influence on the final results.
This shows that the alignment to the reference sequence is quite
robust and mostly depends on the quality of sequencing data.
Based on these observations, we recommend the use of 8–12 nt
seed length, depending on the complexity and the length of the
target RNA sequence. For better performance, the seed length
can be coordinated with the minimal trimming size for
sequencing reads (Supplementary Figure S5).

Importance of the Calculation Window
With Neighboring Nucleotides
In the originally published RiboMethSeq protocols (Birkedal
et al., 2015; Marchand et al., 2016), 12 neighboring nucleotides
FIGURE 1 | Selection of RiboMethSeq datasets for optimization. Three human datasets providing representative performance of 2'-O-Me detection (Sample 1 –

HUVEC, 2 – BMSC, and 3 – HeLa) were selected on the basis of receiver operating characteristics (ROC) curves and the associated max Matthews correlation
coefficient (MCC) values for ScoreMAX6 (A–C). Graphs represent zoom to ROC curve 0–0.05 for false positive rate (FPR) and 0–1 for true positive rate (TPR). It was
previously shown (Marchand et al., 2016) that 5'-end coverage (light blue curve) is sufficient for reliable construction of the RNA protection profile, but cumulated 5'-
and 3'-end coverage (violet curve) provides better discrimination between methylated positions and false positive (FP) hits. (D) shows the read coverage per position
for human rRNAs. 5S rRNA shows quite variable coverage, probably due to variations in 5S rRNA content in the total rRNA fraction due to biased extraction.
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(+/−6 nt window) were taken into account to calculate the 2′-O-
Me scores (ScoreA, B and C). Since the size of this window was
arbitrarily selected, we explored the influence of the window's
size on the discrimination of 2′-O-Me signals from background.
We compared the maximal MCC and the FDR values for the
calculation interval from +/−2 nt up to +/−8 nt (window of 4 to
16 nt). The graph in Figure 2A shows that the ScoreMAX is
nearly insensitive to the size of the calculation window, while
ScoreA shows the best performance (and the lowest FDR) with
the smallest window size (+/−2 nt). A larger window size has a
detrimental effect for both scores. On the basis of these
observations we suggest reducing the calculation window size
to four neighboring nucleotides (Score 2 calculation scheme,
+/−2 nt); the scores calculated with this window are referred to as
ScoreMAX2 and ScoreA2.

Quantification of 2′-O-Methylation With
MethScore (ScoreC)
In the original RiboMethSeq protocol (Marchand et al., 2016),
the MethScore [identical to ScoreC (Birkedal et al., 2015; Krogh
et al., 2016)] was used for quantification of the 2′-O-Me level
because the MethScore demonstrates a linear dependence on the
depth of the gap in a cleavage profile, which is supposed to
represent the protection and thus the degree of 2′-O-Me. In an
ideal situation of a homogeneous cleavage profile, the MethScore
varies from 0 to 1.0 and thus can be used as a measure of the
degree of RNA methylation. In the case of yeast rRNA studied
previously, the MethScore varied from negative values to 1.0,
while conserving the linear dependence on the methylation rate
(Marchand et al., 2016).

We noticed that RiboMethSeq detection scores behave better
with a reduced calculation interval (+/−2 nt); therefore, we also
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explored variations of the MethScore. To select the best
calculation interval, we compared the MethScore for intervals
from two to eight neighboring nucleotides for naturally modified
yeast rRNA and for unmodified synthetic rRNA transcripts. The
MethScore values were expected to reach maximum for naturally
modified rRNA and minimum for the unmodified counterpart.
Figure 2B shows the difference between the MethScore values
calculated for variable intervals for rRNA and synthetic
transcript. For MethScore6 (+/−6 nt), we also tested different
weight contributions of neighboring nucleotides.

The MethScore demonstrates the maximal cumulative
difference between rRNA and synthetic transcript for the
shortest interval of +/−2 nt; the other tested intervals gave
roughly the same results. On the basis of this observation, we
suggest calculating the MethScore for two neighboring
nucleotides (referred to as MethScore2).

A detailed analysis, position by position, for 18S and 25S
rRNA (Figures 2C, D) shows that methylated yeast rRNA
displays MethScore2 values close to 0.9–1.0 for almost all
modified positions (blue dots and line for average value), while
the average level for synthetic unmodified transcript (red dots
and line) is rather low. However, it is notable that the
MethScore2 values for unmodified transcript are extremely
variable, ranging from −1 to almost 0.9. For a limited subset of
sites (Gm1428 in SSU 18S-rRNA and four positions in LSU 25S-
rRNA), the difference of MethScore2 between modified and
unmodified RNA is as low as 0.1. Precise measuring of the 2′-
O-Me level variations at these rRNA positions is thus extremely
difficult. However, over 90% of methylation sites display
considerable MethScore2 differences between the modified and
unmodified state, thus validating relative quantification of the
methylation rate. Absolute values of the 2′-O-methylation
TABLE 1 | Alignment statistics and uncovered rRNA positions in samples used for analysis.

Sample number of raw reads used 4 mln 8 mln 12 mln 16 mln 20 mln

Sample 1
HUVEC

trimmed reads 3873996 7741257 11607806 15471803 19341955

short reads for alignment 1761248 3581209 5338558 7104102 8909438
aligned to rRNA reference 1513287 3077770 4587105 6104305 7657111
uncovered pos 5S rRNA 0 0 0 0 0
uncovered pos 5.8S rRNA 0 0 0 0 0
uncovered pos 18S rRNA 4 1 0 0 0
uncovered pos 28S rRNA 100 37 21 11 7

Sample 2
BMSC

trimmed reads 3878093 7752516 11628210 15494852 19371588

short reads for alignment 1473330 2986750 4455805 5927702 7428697
aligned to rRNA reference 999714 2027867 3023042 4022365 5042133
uncovered pos 5S rRNA 0 0 0 0 0
uncovered pos 5.8S rRNA 0 0 0 0 0
uncovered pos 18S rRNA 2 1 0 0 0
uncovered pos 28S rRNA 18 5 0 0 0

Sample 3
HeLa

trimmed reads 3882713 7764523 11644031 15516647 19387461

short reads for alignment 2582027 5182220 7776132 10353556 12934621
aligned to rRNA reference 2222928 4460722 6693085 8910528 11132036
uncovered pos 5S rRNA 0 0 0 0 0
uncovered pos 5.8S rRNA 0 0 0 0 0
uncovered pos 18S rRNA 0 0 0 0 0
uncovered pos 28S rRNA 0 0 0 0 0
Febru
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cannot be directly measured using the RiboMethSeq approach;
however, for a limited subset of sites the values of MethScore2 are
comparable with independent measurements of 2′-O-Me rates
assessed by LC-MS/MS (Buchhaupt et al., 2014; Taoka
et al., 2016).

Optimization of the ScoreMAX
The originally used ScoreMAX6 (Marchand et al., 2016) was
designed to favor directional 5'- > 3′ gap depth compared to the
opposite orientation. This design was based on the assumption
that directional 5'- > 3′ drop is more informative for measuring
the protection of the phosphodiester bond, while the drop in the
opposite direction (3′- > 5') may represent nonspecific RNA
structural effects. To verify the validity of such assumption, we
tested different variants of ScoreMAX and their performance in
Frontiers in Genetics | www.frontiersin.org 637
the detection of 2′-O-Me. We compared the ScoreMAX2 (+/−2
nt window) with two modified versions. The first modified score
retained the maximal value of normalized 5'- > 3′ and 3′- > 5'
drop (ScoreMAX-MAX), while the second version calculated the
average value between the two (ScoreMEAN2).

Calculation of the max MCC value demonstrated that
ScoreMAX-MAX is less performant than the original
ScoreMAX2, while ScoreMEAN2 shows better discrimination
of FP hits. For the same dataset, Sample 3 – HeLa application of
the ScoreMEAN2 allows attainment of the maximal MCC value
of 0.7954 and reduces the FDR from 27% to 4%. A similar
tendency was observed for two other datasets (Supplementary
Table S3).

An important source of FP hits in RiboMethSeq analysis is the
reduced ligation efficiency observed when modified RNA
FIGURE 2 | (A) Performance of ScoreMAX and ScoreA calculated using variable numbers of neighboring nucleotides (from +/−2 to +/−8). The standard
RiboMethSeq protocol uses a +/−6 interval. Values for FDR and max Matthews correlation coefficient (MCC) are given. The scale on the left corresponds to false
discovery rate (FDR), and on the right to MCC. Sample 2 – BMSC was used here for all calculations; other datasets gave similar trends. (B) shows global values for
MethScore (ScoreC) calculated for modified yeast rRNA and in vitro rRNA transcripts using different neighboring intervals. The total number of “2'-O-Me groups” in
rRNA is given (red - in vitro transcript, blue - modified rRNA). (C, D) MethScores2 (ScoreC2) for individual 2'-O-methylated positions in 18S (C) and 25S rRNA [(D),
red - in vitro transcript, blue - modified rRNA]. Lines correspond to average values.
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nucleotides are present at the 5'-end extremity of the fragment.
This was experimentally observed for pseudouridine and other
rare RNA modifications (Birkedal et al., 2015; Marchand et al.,
2016). Since this reduced ligation efficiency also generates a
Frontiers in Genetics | www.frontiersin.org 738
“gap” in the sequencing profile, such FP signals are difficult to
discriminate from undermethylated 2′-O-Me sites. Both scores
(MEAN2 and A2) show a fair separation of values for 2′-O-Me
nucleotides (blue) and unmodified residues (gray), but the peak
FIGURE 3 | Improvement of ScoreMAX/MEAN (MAX6 and MEAN2) with 5'/3'-counts and reduced calculation window (Score 2 calculation scheme). Boxplot shows
max Matthews correlation coefficient (MCC) values (left) and associated false discovery rate (FDR) (right) for all 19 RiboMethSeq datasets used for validation. Identity
of the RiboMethSeq datasets is given on the right.
FIGURE 4 | Validation of ScoreMEAN2 and ScoreA2 with the S. cerevisiae rRNA RiboMethSeq dataset. Comparative distribution of ScoreA6/ScoreMAX6 signals (A)
and ScoreA2/ScoreMEAN2 signals (B) for the same S. cerevisiae rRNA dataset. Graphs represent scatter plots for two scores, with the associated density plot on
top (ScoreA6 or ScoreA2) and on the right (ScoreMAX6 and ScoreMEAN2). RiboMethSeq signals for 2'-O-Me positions (light blue), pseudouridines (red) and
unmodified nucleotides (gray) are shown.
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for pseudouridines (red) partially overlaps with that of 2′-O-
methylation. ScoreA2 shows better separation of 2′-O-Me and
pseudouridine signals, while ScoreMEAN2 demonstrates a
higher MCC and thus better performance for 2′-O-methylation
detection (Supplementary Figure S6).

We also attempted to cumulate values for ScoreA2 and
ScoreMEAN2 together by calculating their normalized sum
(ScoreD). Despite the fact that ScoreA2 and ScoreMEAN2
generally pick out different FP hits, ScoreD does not further
improve the performance (max MCC and FDR) compared to
ScoreMEAN2 alone. In conclusion, the best results for
detecting 2′-O-methylated residues were obtained with a
calculation window of 4 nt (+/−2 nt) using ScoreA2
and ScoreMEAN2.

Validation of ScoreMEAN2 and ScoreA2
With Human and S. cerevisiae rRNA
Datasets
To compare improvements associated with the use of
ScoreMEAN2 and ScoreA2, we used independent human
RiboMethSeq datasets obtained for other HeLa samples,
human mammary epithelial cells (HME), human fibroblasts
and Wharton's jelly MSC (19 altogether). Comparison of
max MCC and FDR values obtained for Scores MAX6/
MEAN2 and Scores A6/A2 calculated with different scoring
schemes is shown on Figure 3 and Supplementary Figure
S7). In all cases, calculation scheme Score 2 improved
detection of rRNA 2′-O-methylation (Supplementary
Table S3). Additional validation was also performed with
yeast S. cerevisiae rRNA RiboMethSeq dataset. Figures 4A, B
show a side-by-side comparison of ScoreMAX6 and ScoreA6
values with their respective distributions (panel A), as well as
ScoreMEAN2 with ScoreA2 (panel B). The new scoring
scheme provides better separation of 2′-O-Me signals from
those for pseudouridine and unmodified nucleotides, which
is also confirmed by a better FDR and MCC values
(Supplementary Figure S8). These data validate the newly
proposed ScoreMEAN2 and ScoreA2, which can now be used
for the detection of 2′-O-methylation in various RNA types.
CONCLUSION

The results of this optimization suggest that RiboMethSeq
analysis of rRNA can be performed using short trimming
lengths (10–12 nt) and adapted Bowtie2 alignment
Frontiers in Genetics | www.frontiersin.org 839
parameters, which allows a gain in sequencing information.
Calculations of RiboMethSeq scores for short calculation
intervals (4 neighboring nucleotides) and ScoreMEAN2
and ScoreA2 can be used for mapping of the modified
positions. Quantification of 2′-O-Me is accomplished using
MethScore2, also calculated for four neighbors. A minimal of
4–6 mln of raw reads (~400 reads/nt on average) can be used
to evaluate the methylation level for known rRNA
methylation sites, but at least 15 mln reads (~1,500 reads/
nt on average) should be used to discover new methylation
candidates. For different RNA species such as tRNAs, the
trimming/seed length can be further reduced (up to 8 nt), but
the calculation of RiboMethSeq scores with four neighbors
can be maintained. The optimal read coverage is somewhat
s im i l a r ( 1 5–20 m ln r aw r e ad s f o r y e a s t / human
tRNAs, respectively).
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Massive transcriptome sequencing through the RNAseq technology has enabled
quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms
such as alternative splicing and RNA editing. The latter is abundant in human
transcriptomes in which million adenosines are deaminated into inosines by the ADAR
enzymes. RNA editing modulates the innate immune response and its deregulation has
been associated with different human diseases including autoimmune and inflammatory
pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate
profiling of RNA editing using deep transcriptome data is still a challenge, and the
results depend strongly on processing and alignment steps taken. Accurate calling of
the inosinome repertoire, however, is required to reliably quantify RNA editing and, in
turn, investigate its biological and functional role across multiple samples. Using real
RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA
editing detection and describe the main metrics to quantify its level of activity.

Keywords: RNA editing, transcriptome, RNAseq, deep sequencing, Alu editing index

INTRODUCTION

Eukaryotic organisms exhibit quite complex and dynamic transcriptomes whose regulation is
essential for all cellular processes and for maintaining the homeostatic state (Mele et al., 2015).
The complexity and dynamicity of transcriptomes depends on highly controlled and modulated
post-transcriptional mechanisms such as alternative splicing and RNA modifications (Pan et al.,
2008; Meyer and Jaffrey, 2014; Roundtree et al., 2017). The latter are now emerging as key
players in promoting transcriptome diversity and fine tuning gene expression (Helm and Motorin,
2017; Roundtree et al., 2017). Transient and non-transient RNA modifications belong to the
epitranscriptome world (Schwartz, 2016; Tajaddod et al., 2016; Boccaletto et al., 2018). Non-
transient modifications occurring in a variety of RNA molecules and organisms through base
insertions/deletions or substitutions are referred to as RNA editing changes (Gott and Emeson,
2000). In mammals, the most common RNA editing event involves the deamination of adenosine
(A) into inosine (I), carried out by members of the ADAR family of enzymes acting on double
stranded RNA (dsRNA) (Nishikura, 2016; Eisenberg and Levanon, 2018).

Deep transcriptome sequencing, through the RNAseq technology, has greatly promoted
identification of RNA editing events at genomic scale, revealing the extent of A-to-I editing in
humans, with more than 4.6 million modification sites identified so far. The majority of RNA
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editing modifications (>95%) resides in Alu repetitive elements
that are widespread in human genes (accounting for around
10% of the human genome) (Levanon et al., 2004). Transcripts
harboring two such elements with inverted orientations may
fold to form dsRNA structures targeted by ADARs. In contrast,
only a minute fraction of RNA editing events occurs in protein-
coding genes and can lead to recoding, i.e., non-synonymous
substitutions that generate novel protein isoforms. Recoding
sites are enriched in neural tissues and over-represented in
transcripts encoding proteins linked to the nervous system
function (Rosenthal and Seeburg, 2012).

Accumulating evidence indicates that A-to-I RNA editing in
mammals modulates the innate immune response (Mannion
et al., 2014) and its deregulation has been observed in various
human diseases including autoimmune and inflammatory tissue
injury (Gallo and Locatelli, 2012; Roth et al., 2018; Shallev
et al., 2018; Vlachogiannis et al., 2019), neurodegenerative and
psychiatric disorders (Khermesh et al., 2016; Breen et al., 2019;
Tran et al., 2019), and tumors (Gallo, 2013; Han et al., 2015;
Paz-Yaacov et al., 2015; Silvestris et al., 2019).

An important property of RNA editing is that its levels
vary across different tissues and cell types. Both the edited and
unedited versions of transcripts co-exist in the same tissue or
cell and the ratio between the unedited and edited variants is
regulated by a variety of factors depending on tissue type or
developmental stage. Consequently, quantifying RNA editing,
detecting levels of edited variants or measuring the overall editing
activity, are crucial for investigating its functional involvement
and biological role.

A variety of bioinformatics programs and workflows have
been released to profile RNA editing in deep transcriptome
datasets (Picardi et al., 2015a; Diroma et al., 2019; Lo Giudice
et al., 2020). Although based on different algorithms, all of them
predict RNA editing candidates mitigating biases mainly due to
sequencing errors, mapping errors, and genomic SNPs (Diroma
et al., 2019). Hereafter, we describe a number of important
metrics to quantify RNA editing in RNAseq experiments,
enabling comparative analysis of whole inosinomes across
multiple samples. Using real RNAseq data, we elaborate on
different bioinformatics steps that have an impact on the profiling
of RNA editing. These include pre-processing of raw reads or
the specific strategy for alignment to the genome. As of to date
no single computational methodology guarantees detection of
all real editing events occurring in a sample, and the specific
procedures for RNA editing detection and quantification in a
given RNAseq dataset should be carefully selected, bearing in
mind that the same procedure should be applied to all samples
of a study to allow comparison of the results.

METHODS

RNAseq Samples, Pre-processing, and
Alignment
RNAseq data from four tissues and 10 “body sites” (Table 1
and Supplementary Table S1) were downloaded from
Genotype-Tissue Expression (GTEx) Project through the

dbGAP accession phs000424. Raw data were initially inspected
using FASTQC and reads were trimmed using FASTP. Then,
high quality reads were aligned onto the human genome
(hg19 assembly from UCSC) using STAR v.2.5.2b (Dobin
et al., 2013), providing a list of known gene annotations
from GENCODE (Derrien et al., 2012). In addition, human
cerebellum reads (accession SRR607967) were aligned to
the human genome (hg19 and hg38 primary assemblies)
using BWA v.0.7.17 (Li and Durbin, 2009) and HISAT2
v.2.1.0 (Kim et al., 2015) with known splice sites and
exons from GENCODE.

RNA Editing Detection
A list of de novo RNA editing candidates per sample was
generated using REDItools, following the filtering procedure
described in Picardi et al. (2015b) and Lo Giudice et al. (2020).
Aligned reads from run SRR607967 were also analyzed by
JACUSA (Piechotta et al., 2017) using common basic filters.
Hyper-edited reads were identified using the computational
procedure described by (Porath et al., 2014).

RNA Editing Quantification
The overall RNA editing level per sample was calculated using a
custom python script, taking as input a list of positions inferred
by REDItools. The same program was also used to quantify RNA
editing levels at known positions, downloaded from REDIportal
database (including more than 4.5 million events in humans).
The robustness of the overall editing metric over the number
of RNA editing positions was tested selecting randomly growing
numbers of positions from the REDIportal collection and
calculating the overall editing per each sampling and “body site.”
Then, we measured the Pearson correlation between the overall
editing calculated per each group of positions and the same
metric detected using the whole database collection, by means of
a custom script (pearsonr function from scipy python module).

Recoding index was also calculated using a custom python
script working on REDItools tables. We considered as recoding
sites all 1585 editing positions in REDIportal that are marked
as non-synonymous in all three gene annotations available in
the database (RefSeq, UCSC, and GENCODE). Alu editing index
(AEI) was calculated using the methodology by Roth et al. (2019).

TABLE 1 | Summary table of experiments used.

Tissue Body site N. samples

Artery Aorta 14

Artery Tibial 14

Brain Amygdala 13

Brain Cerebellum 12

Brain Frontal cortex 13

Brain Hippocampus 11

Brain Hypothalamus 14

Brain Spinal cord 10

Lung Lung 9

Muscle Skeletal 13
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Differential RNA Editing
Differential RNA editing at REDIportal recoding sites was
identified using the non-parametric Mann–Whitney (MW)
U-test. Recoding sites were collected per each artery tibial and
cerebellum sample from REDItools tables. The comparison was
carried out by a custom python script taking into account sites
covered by at least 10 RNAseq reads in at least 50% of the samples
per group. p-values were corrected for multiple testing using the
Benjamini–Hochberg method.

Software, command lines, and scripts used in this work are
available at the following GitHub repository https://github.com/
BioinfoUNIBA/QEdit.

RESULTS AND DISCUSSION

Pre-processing and Alignment of
RNAseq Experiments
Profiling RNA editing in whole transcriptome data is yet a
challenging task, due to sequencing errors, read-mapping errors,
genome-encoded polymorphisms (SNPs), somatic mutations,
and spontaneous RNA chemical changes. SNPs and somatic
mutations may be partly filtered out using genomic reads from
matched whole genome sequencing (WGS) or whole exome
sequencing (WXS) experiments, as well as tables of known SNPs

from public databases. Alignment and sequencing errors may be
partly removed using stringent filters of read and base quality. All
of these aforementioned issues require careful design and tuning
of computational pipelines to detect RNA editing candidates,
as each step or procedure or software can affect the yield and
quality of predictions.

Here we demonstrate the effects of pre-processing and genome
alignment steps on RNA editing calling using a single GTEx
RNAseq experiment from human cerebellum (run accession
SRR607967). Raw reads were initially inspected using FASTQC
and their low quality regions were removed by means of FASTP.
Two datasets were generated, the first containing original raw
reads and the second including trimmed reads. Both datasets
were aligned onto the hg19 and hg38 reference chromosomes
of the human genome using three different aligners, BWA
designed for unspliced reads and STAR and HISAT2 optimized
for handling spliced reads. Resulting multi-alignments were
processed with REDItools in order to provide the distribution
of single RNA variants according to a common basic filtering
scheme. Known SNPs from the WGS of the same individual
(run accession SRR2165704) were removed. In all tested cases, we
achieved quite similar distributions, in which A-to-G and T-to-C
changes (putative editing events on the direct or reverse strand)
are over-represented, suggesting enrichment in true RNA editing
events (Figure 1). However, the number of detected sites varied

FIGURE 1 | Distribution of single nucleotide variants detected by REDItools on trimmed and untrimmed reads (from accession SRR607967) aligned by means of
BWA, STAR, and HISAT2 onto hg19 and hg38 human genome assemblies.
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FIGURE 2 | Venn diagrams, showing the AG/TC overlapping positions for BWA, STAR, and HISAT2 aligners. The comparison is made for trimmed and untrimmed
reads mapping onto hg19 and hg38 assemblies, respectively.

depending on the processing steps, suggesting that the trimming
procedure as well as the aligner type affect the detection of RNA
editing. The three different aligners resulted in different results,
reflecting the slightly different algorithms. STAR has returned the
highest number of candidates. Surprisingly, HISAT2 yielded the
lowest number of variants, even though it is splice-aware and
did align the same proportion of reads as STAR (Figure 1 and
Supplementary Table S2).

The genome version used (hg19 and hg38 human genome
assemblies) did not make an appreciable difference (Figure 1),
but the alignment of raw or trimmed reads did have an aligner-
dependent effect (Figure 1). Although deviations in all checked
cases do not appear graphically marked, they do influence the
final list of candidates (Figure 2). We thus see that simple
computational steps or the adoption of specific software can
dramatically change the final results and impact commonly used
metrics for quantification of global or local RNA editing activity
in a sample. Adopting the same computational pipeline to analyze
multiple samples or compare results from already published
works is highly recommended.

RNA Editing Detection
Once trimming and alignment steps have been performed,
the final list of RNA editing candidates strongly depends on
the methodology used to call them. In general, two types of

approaches can be pursued, de novo or “known”. The former
aims to identify all potential RNA editing events of a sample
or the hyper-edited regions only without relying on previously
known sets of editing positions, while the latter focuses on a
restricted number of known changes from literature or well-
established databases.

De novo Approach
Several software packages to detect de novo RNA editing events
in deep transcriptome data have been released to date. They
all suffer from some level of false positives, and each tool
requires fine tuning of a variety of parameters that can strongly
affect the quality of results and, thus, sensitivity and specificity
of predictions (Diroma et al., 2019). The behavior of several
RNA editing detection programs has been recently assessed
(Diroma et al., 2019). Here we analyze comparatively two
de novo approaches for RNA editing identification, REDItools
(Picardi and Pesole, 2013) and JACUSA (Piechotta et al.,
2017), using the same aligned human cerebellum reads. The
two methods require traversing multiple alignments of reads
through a pileup function. REDItools detect events applying
different empirical filters while JACUSA implements a statistical
model for variant calling. Both tools were applied to trimmed
reads aligned onto the hg19 genome by STAR, followed
by common basic filters such as the removal of sites in
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homopolymeric stretches longer than five residues or falling in
the first and last six bases of a read, the exclusion of positions
covered by less than 10 reads and showing a phred quality
score less than 30.

The two programs return a similar number of variants,
but with different precision. REDItools yielded 99,657 putative
editing sites (49.56% of all observed modification sites) while
JACUSA predicted 91,955 putative editing sites (75.23% of all
observed modification sites) (Figure 3). In this specific example,
JACUSA appeared more stringent than REDItools showing a
higher signal-to-noise ratio, likely due to its statistical model and
further filtering step by a companion R script, the JacusaHelper.
This example demonstrates that RNA editing calling tools should
be used with care, paying attention in advance to the various
combinations of parameters and the experimental features of
samples. A good practice is to estimate the false discovery
rate comparing the A-to-G fraction (and T-to-C for unstranded
reads) with the noise due to other base changes not expected
to be edited, and then tune the parameters accordingly. Indeed,
multiple filters can greatly improve the quality of final results.
For example, to mitigate mapping errors (by Blat re-alignment)
and other spurious changes occurring near splice sites or in
genomic regions containing poorly aligned reads we applied
more stringent filters to REDItools (Lo Giudice et al., 2020).
Doing so, the number of variants detected in the same sample
dropped down to only 52,400 sites including about 99% (51,888
positions) of potential RNA editing events (A-to-G and T-to-C
changes) with a very low estimated false discovery rate, <1%.
The effect of the different filtering steps on the distribution of
RNA variants is shown in Figure 4. Importantly, the third step
(coverage cut-off) results in a sizable drop in the number of
excess AG/TC mismatches. While this step is necessary in order
to achieve a good signal-to-noise ratio, one should bear in mind
that the vast majority of the signal is lost during this step.

Note that in other species, e.g., mice, Alu elements are not
present and the number of expected RNA editing candidates
is much lower compared to humans (Neeman et al., 2006;
Ramaswami and Li, 2014). This might require re-tuning the
alignment and calling parameters. Furthermore, in case multiple
samples from biological replicates are available, these may be used
to further improve final results, looking only at putative RNA
editing candidates common to all replicates.

“Known” Approach
The de novo approach generates a list of candidate sites likely to
be edited in the specific RNAseq dataset. Sometimes, however,
it could be useful to focus on a set of known events in
order to better investigate RNA editing dynamics in different
experimental contexts. For example, RNA editing could be
profiled in known recoding events of neurotransmitter receptors
to study its involvement in synaptic function or its deregulation
in neurological/psychiatric disorders or cancer (Gallo, 2013; Han
et al., 2015; Paz-Yaacov et al., 2015; Khermesh et al., 2016;
Silvestris et al., 2019). REDItools package is the most suitable
tool for this task (Picardi and Pesole, 2013). Providing a list of
genomic positions and a pre-aligned file of RNAseq reads, it
recovers the exact site and the corresponding RNA editing level.

The “known” approach has been successfully applied also to large
scale genomic projects. In the specialized database REDIportal
(Picardi et al., 2016), for example, REDItools have been used to
interrogate multiple read alignments from 2660 GTEx RNAseq
experiments employing a large collection of known RNA editing
sites from the ATLAS repository (Picardi et al., 2015b) and
DARNED database (Kiran et al., 2013). Another example is
The Cancer RNA Editome Atlas (TCEA) (Lin and Chen, 2019),
where REDIportal positions (4,656,896) have been explored in
more than 11,000 RNAseq data from the TCGA project (Cancer
Genome Atlas Research Network et al., 2013).

Hyper-Editing
ADAR enzymes are known to have the ability to deaminate
clusters of adjacent adenosines leading to hyper-edited RNA
molecules (Eisenberg, 2016). Many RNA editing calling
programs, however, fail to discover hyper-editing events
because of the high number of mismatches per read that
avoids its correct alignment on the genome (Porath et al.,
2014). Heavily edited reads can be detected through a specific
computational protocol in which not aligned sequences are
rescued and mapped again onto a transformed genome
replacing As with Gs (Porath et al., 2014). Since hyper-editing
occurs mainly in Alu repetitive elements, it could lead to
altered AEI values with a trend to underestimate the RNA
editing activity per sample. As an example, we applied the
computational strategy by Porath et al. (2014) to the above
cerebellum RNAseq experiment (run accession SRR607967)
using 3,490,661 unmapped reads by STAR. The alignment
onto the transformed human genome yielded 19,377 reads
enriched in A-to-G clusters, corresponding to 124,546 RNA
editing changes. Of these, only 3586 were present in the filtered
list of candidates by REDItools. Consequently, more than
120,000 A-to-G RNA editing events, missed by REDItools
in the previous analysis, have been de novo identified in
hyper-edited regions. So, events falling in hyper-edited reads
should not be excluded a priori since they may represent
a considerable fraction of sites. Large scale investigations
based on TCGA samples have proven that the number
of unique editing sites identified in hyper-edited regions
follows the same trend as the AEI index calculated excluding
hyper-edited reads (Paz-Yaacov et al., 2015). These findings
suggest that the expected AEI underestimation does not
significantly affect the global RNA editing activity measured at
Alu level.

Metrics for RNA Editing Quantification
Once RNA editing has been detected in RNAseq samples,
quantification is the next step that allows comparing values
across samples and study of the potential role of RNA editing
in different experimental conditions, such as its involvement
in human disorders. Quantification of RNA editing is also
important to identify molecular markers that could be the
target for engineered ADAR enzymes or modified CRISPR-
Cas systems, according to the recent paradigm of the precision
medicine. Quantification of RNA editing has always been a
challenging task, especially in the last few years in which deep
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FIGURE 3 | Distribution of single nucleotide variants detected by JACUSA vs REDItools on trimmed reads SRR607967 aligned by STAR on hg19 human genome
assembly.

FIGURE 4 | Distributions of RNA variants detected by REDItools obtained following the different filtering steps: (A) all mismatches found following mapping, with a
phred quality score of at least 30; (B) selecting only sites supported by at least 10 WGS reads and removing positions in dbSNP; (C) selecting sites covered by at
least 10 reads and not falling in homopolymeric stretches longer than five residues or in the first and last six bases of a read; (D) selecting sites with an editing
frequency of at least 0.1; (E) excluding sites in mis-mapped reads (by Blat correction) or near splice sites or in genomic regions containing poorly aligned reads.

transcriptome sequencing has enabled large scale investigations.
Several metrics have been proposed, some of them take into
account the global RNA editing activity (Tan et al., 2017; Roth
et al., 2019), while other approaches focus on specific sites

only (Khermesh et al., 2016; Silvestris et al., 2019). Below,
we illustrate the main metrics using GTEx RNAseq data from
four tissues and ten “body sites” (see section “Methods” for
further details).

Frontiers in Genetics | www.frontiersin.org 6 March 2020 | Volume 11 | Article 19446

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00194 March 5, 2020 Time: 20:7 # 7

Lo Giudice et al. RNA Editing Quantification

FIGURE 5 | Overall editing levels in 10 selected “body sites” from the GTEx project. Each box plot represents samples from one tissue type. The overall editing level
is defined as the percentage of edited nucleotides at all known editing sites. Cerebellum and skeletal muscle emerge, respectively, as the most edited tissue and the
less-edited tissue among the analyzed tissues.

FIGURE 6 | The effect of the number of sites on the overall editing. We calculated the overall editing calculated in all 123 GTEx samples using a growing number of
positions randomly selected from REDIportal database. The Pearson correlations between the overall editing measured per each group of positions and the same
metric on the entire REDIportal collection are depicted.

Overall Editing Level
To quantify the global RNA editing in a sample, one can average
the editing levels measured over the sites detected previously,
or by de novo methods (Tan et al., 2017). This metric, referred

to as the overall editing, is determined as the total number of
reads with G at all known editing positions over the number
of all reads covering the positions without imposing specific
sequencing coverage criteria (Tan et al., 2017). The overall editing
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depends on the number of known editing sites included in the
analysis that have to be the same for all samples analyzed. Using
de novo editing events for this purpose is not recommended,
as the number of detected sites is unevenly distributed across
samples and strongly depends on the amount of raw reads
input and the bioinformatics procedure (Picardi et al., 2015b;
Diroma et al., 2019). Even merging de novo candidates from all
samples of interest does not remove the coverage bias altogether.
Alternatively, one may calculate the overall editing employing
known events stored in public databases such as REDIportal
(Picardi et al., 2016), RADAR (Ramaswami and Li, 2014), or
DARNED (Kiran et al., 2013). To illustrate the behavior of the
overall editing index, we calculated this metric in 123 GTEx
RNAseq experiments from 10 “body sites” employing REDIportal
as it stores the largest public collection of human RNA editing
annotations (4,665,677 sites in its last release). As shown in
Figure 5, RNA editing appeared reduced in skeletal muscle
compared to other tissues, as already observed in previous
studies (Picardi et al., 2015b; Tan et al., 2017). On the contrary,
cerebellum displayed the highest RNA editing level. These
results are consistent with the Alu editing level among “body

sites” (Roth et al., 2019) with cerebellum emerging as the top
tissue carrying the highest editing level, higher that other brain
regions including cortex. It has been estimated that there are
about 3.6 times as many neurons in the cerebellum as in the
cortex (Herculano-Houzel, 2010). Possibly, the higher level in
cerebellum is merely a result of a higher fraction of neurons in
this tissue, as neurons are highly edited compared to other brain
cells (Gal-Mark et al., 2017).

To evaluate the effect of the number of RNA editing
positions on the robustness of the overall editing metric, we
randomly selected growing numbers of positions from the
REDIportal collection and calculated the overall editing per
each sampling and “body site.” Assuming the highest accuracy
when all REDIportal positions are used, we measured the
correlation between the overall editing calculated per each
group of positions and the same metric detected using the
whole database collection. As reported in Figure 6, 100,000
RNA editing positions are sufficient to obtain a very high
correlation (Pearson R = 0.99 Pval << 10−4) with the entire
REDIportal database. Using the RNA editing sites from DARNED
(333,215 sites) and RADAR (2,576,459 sites), we obtained a

FIGURE 7 | Distributions of Alu editing index (AEI) values over 10 selected tissue types from the GTEx project. AEI represents the weighted average editing level
across all expressed Alu sequences. Distributions are presented as box-plots. AEI clearly recapitulates the same trend as overall editing thus confirming that the sites
in Alu regions are those that have the greatest impact on the global editing activity.
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correlation with REDIportal of 95% (Pval << 10−4) and 99%
(Pval << 10−4), respectively.

Alu Editing Index
Another metric to quantify the global RNA editing activity is
to calculate the weighted average of editing events occurring
in all adenosines within Alu elements, defined as the AEI. As
mentioned above, the vast majority of editing activity takes place
within Alu elements, with almost every adenosine in the ADAR-
targeted Alu repeats being edited to some extent (Bazak et al.,
2014a). The AEI is defined to be the ratio (for convenience in
percentage) of the number observed A-to-G mismatches to the
total coverage of adenosines (both A-A matches and presumed
editing events, A-to-G mismatches). It is therefore the weighted
average of the measured editing levels weighted by the coverage of
each site (Bazak et al., 2014b). The AEI avoids the quantification
of editing rates per-sites, while accounting for editing in lowly
covered regions. It also frees the user from dependence on
public databases that might be continuously changing (or even
unavailable for other species). Since the AEI is calculated over
millions of positions it is highly robust to the number of input
raw reads, and as few as one million input reads already provide
a consistent and almost invariable signal (Roth et al., 2019). It
is, however, affected by the alignment process (i.e., aligner and

read lengths), but preserves the relative rank of each sample. As
an example, Figure 7 shows the distribution of AEI values for
123 GTEx samples, calculated as described in Roth et al. (2019).
Results indicate a general agreement between the measured AEI
and the overall editing index depicted above (Figure 5). It should
be noted that this approach is not limited to the human genome.
One can use the index for any organism, as long as a large set
of highly editable elements (often, SINE elements) is available
and the editing is strong enough to result in a sufficiently large
signal-to-noise ratio.

Recoding Index
Similarly to the overall editing, recoding activity due to RNA
editing could be quantified, focusing on editing levels at recoding
positions (residing in coding protein genes). For example, one
may calculate the weighted average over all known recoding sites,
known as the recoding editing index (REI) (Silvestris et al., 2019).
This measure is well correlated with ADAR2 expression, at least
in normal brain (Silvestris et al., 2019), and may be a good
indicator of ADAR2 deaminase activity. Interestingly, REI may
be utilized to investigate RNA editing deregulation in different
brain regions or neurological disorders (Khermesh et al., 2016)
or cancer (Silvestris et al., 2019). REI is simply defined as the
number of reads with G at recoding positions over the number

FIGURE 8 | Distributions of recoding editing index (REI) values over 10 selected tissues from the GTEx project reported as box-plots. REI is calculated as the
weighted average of editing levels over all known recoding sites from the REDIportal database. Most brain sub-tissues show similar levels of recoding editing.
A remarkable exception is represented by the aorta and tibial artery showing a surprisingly high editing level.
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of all reads covering the same positions (same as AEI, but for the
recoding sites). As in the case for the overall editing, the reliability
of REI depends on the number of recoding sites to assay. Indexing
over very small numbers, e.g., the 35 recoding sites known to
be conserved across the mammalian lineage (Pinto et al., 2014),
could lead to biased values and misleading conclusions. The
list of recoding sites can be obtained from databases such as
REDIportal (Picardi et al., 2016), RADAR (Ramaswami and Li,
2014), or DARNED (Kiran et al., 2013). However, one should
bear in mind that the false positive level of recoding sites in these
public collections is notoriously high.

Here, we show the REI results using 1585 non-synonymous
RNA editing events from REDIportal (see selection criteria in
section “Methods”) for the above GTEx RNAseq experiments
(Figure 8). Our results, similarly to those by Tan et al. (2017)
from the complete GTEx dataset, show a very high recoding
activity at arteries compared to other tissues, with lung and brain
being at similar levels and skeletal muscle showing the lowest REI
levels. Of note, the ADAR2 expression level (as shown by GTEx
in Supplementary Figure S1) overlaps well the results shown in
Figure 8. So far, many studies, including ours, have underlined
the important role played by RNA editing at recoding sites in the

central nervous system (CNS). In contrast, the role of A-to-I RNA
editing in angiogenesis, artery, endothelium, and vascular disease
was only recently explored (Stellos et al., 2016; Jain et al., 2018).
While Stellos et al. (2016) have pointed to ADAR1 activity within
the 3′ untranslated region (3′ UTR) of cathepsin S mRNA (CTSS),
Jain et al. (2018) reported that recoding at FLNA (Q/R) is an
important regulator of vascular contraction and blood pressure.
Our data and a previous study (Jain et al., 2018) indicated the
presence of some almost fully edited sites in artery, similar to the
GRIA2 Q/R in CNS, and extended the list of important recoding
sites in artery that may play a crucial role in vascular physiology
and diseases (Figure 9). Indeed, among the top edited genes in
arteries, there is the Insulin-like growth factor-binding protein
7 (IGFBP7). IGFBP7 is a secreted protein involved in diverse
biological functions, from apoptosis to inhibition/stimulation of
growth and angiogenesis (Brahmkhatri et al., 2015). Proteolytic
processing of IGFBP7 modulates its biological activity as it
can stimulate growth of DLD−1 colon carcinoma cells in
synergy with insulin/IGF−I but, if cleaved, IGFBP7 completely
abolishes this growth-stimulatory activity (Ahmed et al., 2003).
Interestingly, editing of IGFBP7 transcripts (K/R site) affects the
protein’s susceptibility to proteolytic cleavage, thus providing a

FIGURE 9 | Heatmap representing RNA editing levels at 99 selected recoding events. Body sites are reported in the same order as in the previous box-plots and
follow the same color code. The hierarchical clustering (dendrogram not shown) of the recoding sites shows how the artery (both aorta and tibial) are characterized
by a very peculiar and specific set of strongly (>90%) edited sites, thus suggesting a possible key functional role of these sites in the vascular system.
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means for a cell to modulate its multiple activity through A-to-I
RNA editing (Godfried Sie et al., 2012).

The REI is a measure of global RNA editing activity at
recoding sites. However, one should bear in mind that recoding
activity is often unevenly distributed across the different sites.
High REI values could mean overall high recoding activity, but
might also occur at a few highly expressed and highly edited
sites only. In the aforementioned artery samples, for instance,
three recoding events in IGFBP7 and FLNA transcripts account
for more than 90% of all edited Gs, and for the high value of
the REI as compared to other tissues. In case one is interested
in the distribution, a common practice is to look at graphical
visualizations of editing levels through all sites of interest, using,
for example, a heatmap plot (Figure 9).

Differential RNA Editing
An important question related to the RNA editing profiling is the
identification of differentially edited sites. A variety of statistical
tests have been proposed so far, but reliable, consistent, and
reproducible detection of dysregulated RNA editing is still a
major task. The observed A-to-I levels at individual sites depend

strongly on the methodology used to call them, sequencing depth
and coverage. Events residing in repetitive elements, comprising
the majority of A-to-I changes, exhibit low levels (typically lower
than 0.01), requiring ultra-high coverage for reliable detection
and quantification. A given position could appear edited in some
samples but unedited in others (because of limited coverage), a
fact that is often ignored in the statistical testing. Sometimes,
when the number of samples is sufficiently high, missing editing
levels could be imputed using methods based on the principal
component analysis (Josse and Husson, 2016), chained equations
(Buuren and Groothuis-Oudshoorn, 2011), or random forest
(Stekhoven and Bühlmann, 2012).

Finally, the large number of editing sites requires an aggressive
multiple-testing correction, and severely limits the statistical
power. This leads to an underestimate of the number of
differentially edited sites.

Identification of differential RNA editing is most relevant
at recoding sites, where altered A-to-I levels could lead to
different protein isoforms. Editing dysregulation at recoding sites
between two groups of samples is often assayed applying the two-
tailed MW U-test followed by Benjamin–Hochberg multiple test

FIGURE 10 | Volcano plot reporting the differentially edited sites between cerebellum and tibial artery. The horizontal dotted line marks a multiple test-corrected level
of significance (adjusted padj < 0.05, Mann–Whitney with Benjamini–Hochberg correction). The vertical dotted lines indicate a Delta editing of 0.1 and -0.1. Red,
blue, and gray points indicate, respectively, over-edited (UP) sites, under-edited (DOWN) sites, and non-significative sites (NS.).
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corrections. For example, such an approach was used to identify
many recoding sites differentially edited in cancer compared with
normal samples (Maas et al., 2001; Paz et al., 2007; Cenci et al.,
2008; Chen et al., 2013; Qin et al., 2014; Han et al., 2015; Paz-
Yaacov et al., 2015; Hu et al., 2016; Lin and Chen, 2019; Silvestris
et al., 2019). Here, we demonstrate this approach by detecting
statistically significant differentially recoded sites between 14
artery tibial and 12 cerebellum samples, looking at 1585 non-
synonymous REDIportal positions quantified using REDItools.
We considered only sites supported by at least 10 RNAseq
reads in at least the three samples per group, thus obtaining 85
positions to test for differential RNA editing levels (Figure 10).
Of these, 26 sites, residing in 21 target genes, were statistically
significant (Table 2). Sixteen positions appeared more edited in
artery tibial than cerebellum while 10 appeared more edited in
cerebellum than in artery tibial (Table 2). Sites showing higher
differences in RNA editing levels belonged to well-characterized
target genes such as COG3 (Han et al., 2015; Peng et al., 2018;
Silvestris et al., 2019), IGFBP7 (Chen et al., 2017), COPA (Han
et al., 2015; Peng et al., 2018), FLNA (Riedmann et al., 2008;
Jain et al., 2018), and ZNF358 (Zhang et al., 2016; Lee et al.,
2017). The functional impact of RNA editing at these substrates
is mostly unknown.

As an alternative to MW U-test, deregulated A-to-I editing has
been identified using the statistical pipeline proposed by Tran
et al. (2019) to detect dysregulated RNA editing in brains of
autistic individuals. In this case, differential RNA editing sites
are defined as positions having significantly different average
editing levels between autistic donors and controls, or observed
at significantly different population frequencies (Tran et al.,
2019). Editing candidates are ranked by read coverage and the
Wilcoxon rank-sum test is used if at least five samples in both
control and donor groups have the required depth (Tran et al.,
2019). By applying this pipeline to the above data, we found 10
differentially edited sites, eight of them already detected by the
MW U-test (Table 2).

To date performance of statistical tests for differential RNA
editing has never been tested and systematically assessed.
Typically, the tests applied ignore the inherent noise introduced
by the limited reads’ coverage. Generally, tests assuming a normal
distribution of RNA editing levels (such as the t-test) should
be avoided. Indeed, accumulating evidence from large scale
projects indicates that RNA editing levels seem to follow a beta
distribution rather than a normal distribution (Picardi et al.,
2015b). Further investigations are, in any case, needed to better
understand the statistical properties of RNA editing levels.

TABLE 2 | Statistically significant differential recoding sites.

Chr:position Gene AA change 1 editing Pval (MW) Padj (BH)

chr4:57976234* IGFBP7 K95R −0.417 0.000015 0.000016

chr13:46090371 COG3 I635V −0.536 0.000016 0.000017

chr19:7585273 ZNF358 K382R −0.381 0.000016 0.000017

chr1:160302244* COPA I164V −0.416 0.000017 0.000018

chr4:57976286* IGFBP7 R78G −0.522 0.000019 0.000019

chrX:153579950* FLNA Q474R −0.310 0.000027 0.000027

chr4:17805279 DCAF16 I162M 0.059 0.000088 0.000088

chr8:103841636 AZIN1 S367G −0.081 0.000218 0.004633

chr20:36147572* BLCAP Y2C 0.090 0.000295 0.005015

chr20:36147563 BLCAP Q5R 0.063 0.000178 0.005043

chr4:77979680 CCNI R61G −0.100 0.000132 0.005610

chr20:36147533 BLCAP K15R 0.029 0.000464 0.005634

chr19:14593605 GIPC1 T62A −0.237 0.000458 0.006488

chr12:133682596 ZNF140 Y142H 0.061 0.000998 0.010604

chr14:26917530 NOVA1 S363G 0.099 0.000128 0.010880

chr3:9876560 TTLL3 K419R 0.016 0.001442 0.011143

chr3:58141801* FLNB Q2103R −0.228 0.001180 0.011144

chr5:156736808 CYFIP2 K124E −0.007 0.001350 0.011475

chr15:75646086 NEIL1 K242R 0.182 0.001673 0.011850

chr4:77977164 CCNI K123R −0.009 0.002107 0.013777

chr1:12091858 MIIP S355G 0.018 0.002867 0.017407

chr21:34922801* SON T422A −0.146 0.003614 0.020479

chr3:58141791 FLNB M2100V −0.116 0.004256 0.022610

chr18:32825609 ZNF397 K314E 0.058 0.004582 0.022910

chr10:79397298 KCNMA1 S35G −0.051 0.005179 0.024456

chr6:44120349* TMEM63B Q619R −0.144 0.006899 0.030864

Per each position we report the target gene and amino-acid change induced by RNA editing, the difference between mean editing levels of groups, the Mann–Whitney
p-value, and the adjusted p-value by Benjamin–Hochberg. Positive 1 values indicate higher editing in cerebellum than artery, while negative 1s are associated to lower
editing in cerebellum than artery. Positions marked by * are differentially edited by also the Tran et al. statistical pipeline.
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CONCLUSION

RNAseq is currently the technology of choice for large-
scale studies of transcriptional and co-/post-transcriptional
mechanisms. In the last few years, several computational
tools have been developed to profile A-to-I editing in a
variety of RNAseq data. Yet, RNA editing prediction is
still not a fully solved bioinformatics task. However, noise
and biases due to sequencing errors, read-mapping errors,
and SNPs can be partly mitigated pre-processing reads
and fine tuning program parameters depending on the
selected algorithm.

The accurate detection of A-to-I editing is indispensable to
systematically quantify RNA editing and facilitate comparative
investigations across multiple samples. Similarly, A-to-I
quantification metrics should be carefully selected. Indeed,
measuring RNA editing activity across samples counting de novo
detected sites or averaging over de novo sites leads to very noisy
and confounding results. RNA editing is unevenly distributed
across samples and different intrinsic (read quality, coverage, or
depth) and extrinsic (mapping tool, read pre-processing, RNA
editing calling software) factors affect the de novo detection that
is far from being exhaustive. Averaging over millions of known
sites from public databases can help but it requires estimated
RNA editing levels that are dependent on a prefixed coverage
cut-off that, in turn, drastically reduces the number of usable
sites and leads to unreliable, often irreproducible, measures.
The weighted average (or an index) over millions of known
sites from public database, named here as the overall editing,
is a much better solution. However, using this approach one
has to rely on a specific set of sites from a given database, a
set that might be continuously being modified. In contrast, the
AEI is calculated over all tens of millions of genomic adenosines
located within Alu sequences and accounts for the editing
activity in low covered regions, while avoiding the need to
quantify the editing level per-site. An index similar to AEI can
be determined for recoding events. However, as the number of
recoding sites is much lower, and the current set is known to
be very noisy, the REI, while informative in some cases, should
be used with care.

Identification of differential RNA editing is an important task.
Although many studies have been employing various parametric
and non-parametric approaches, further investigations are
required. Given the non-normal distribution of RNA editing
levels, and the strong (yet, usually ignored) effect of variable

coverage, ad hoc models may be probably required to better
perform this task.
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Known as the “fifth RNA nucleotide”, pseudouridine (Y or psi) is the first-discovered and
most abundant RNA modification occurring at the Uridine site, and it plays a prominent
role in a number of biological processes. Thousands ofY sites have been identified within
different biological contexts thanks to the advancement in high-throughput sequencing
technology; nevertheless, the transcriptome-wide distribution, biomolecular functions,
regulatory mechanisms, and disease relevance of pseudouridylation are largely elusive.
We report here a web server—PIANO—for pseudouridine site (Y) identification and
functional annotation. PIANO was built upon a high-accuracy predictor that takes
advantage of both conventional sequence features and 42 additional genomic features.
When tested on six independent datasets generated from four independent Y-profiling
technologies (Y-seq, RBS-seq, Pseudo-seq, and CeU-seq) as benchmarks, PIANO
achieved an average AUC of 0.955 and 0.838 under the full transcript and mature
mRNAmodels, respectively, marking a substantial improvement in accuracy compared to
the existing in silico Y-site prediction methods, i.e., PPUS (0.713 and 0.707), iRNA-PseU
(0.713 and 0.712), and PseUI (0.634 and 0.652). Besides, PIANO web server
systematically annotates the predicted Y sites with post-transcriptional regulatory
mechanisms (miRNA-targets, RBP-binding regions, and splicing sites) in its prediction
report to help the users explore potential machinery of Y. Moreover, a concise query
interface was also built for 4,303 knownY sites, which is currently the largest collection of
experimentally validated human Y sites. The PIANO website is freely accessible at: http://
piano.rnamd.com.

Keywords: pseudouridine sites, genome-derived feature, RNA modification, Web-server, functional annotation
INTRODUCTION

Pseudouridine (5-ribosyluracil, Y, and psi) is the first-discovered (Cohn and Volkin, 1951) and
most abundant RNA modification occurring at the Uridine site catalyzed by 13 pseudouridine
synthase (PUS) (Chen and Patton, 2000; Zhao et al., 2004; McCleverty et al., 2007; Shaheen et al.,
2016; Jacob et al., 2017). Y is present in many classes of RNA within all organisms, such as
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messenger RNA (mRNA), transfer RNA (tRNA), small nucleolar
RNA (snoRNA), small nuclear RNA (snRNA), and ribosomal
RNA (rRNA) (Ge and Yu, 2013). Y was termed as “the fifth
nucleotide” with an estimated Y/U ratio of 7–9% (Jacob et al.,
2017), and it is considered to be the most prevalent of the mRNA
modifications (Meyer and Jaffrey, 2017). Y plays a prominent
role in many biological processes. The presence of Y in tRNA
and rRNA regulates the entry site binding process in ribosomal
RNA (Jack et al., 2011) and RNA structure stabilization (Kierzek
et al., 2014). A recent study also demonstrated thatY is related to
transcript stability (Schwartz et al., 2014), environmental signal
response (Carlile et al., 2014), and genetic code switching in
mRNA (Karijolich and Yu, 2011; Fernández et al., 2013). Y
deficiency may be associated with various diseases. It has been
found that the dysregulation of Ymodification of mitochondrial
tRNA acts as an etiology of mitochondrial myopathy and
sideroblastic anemia (MLASA) (Bykhovskaya et al., 2004).
Furthermore, mutations in pseudouridine are also involved in
diseases like lung cancer and duykeratosis congenita (Mei
et al., 2012).

Several high-throughput sequencing approaches have been
developed for profiling the transcriptome-wide distribution ofY,
including Pseudo-seq (Carlile et al., 2014),Y-seq (Schwartz et al.,
2014), PSI-seq (Lovejoy et al., 2014), and CeU-seq (Li X,et al.,
2015). These approaches all share the same principle, in which
RNA is treated with the N-cyclohexyl-N’-(2-morpholinoethyl)-
carbodiimide-metho-p-toluenesulfonate (CMC) to leave a bulky
group on Y and stop reverse transcription. Since the bulky
adduct on the Y may reduce the sensitivity in the detection of
Y, Vahid et al. recently developed a new approach, RBS-seq,
which is based on a modification of RNA bisulfite sequencing
and claims better sensitivity (Khoddami et al., 2019). Currently,
the experiment-validated Y sites in human, mouse, and a few
other model organisms are available from RMBase database
(Xuan et al., 2017), and the regulation pathways of Y were
more explicitly explained in MODOMICS database (Boccaletto
et al., 2017).

Wet-lab approaches are surely effective for the study of
transcriptome pseudouridylation with respect to a specific
biological context; however, they are also laborious and offer
only limited coverage, i.e., the reported RNA Y sites by wet-lab
experiments are still restricted to the transcripts more readily
expressed under a specific cell/tissue condition. Alternatively,
computational efforts may provide a more cost-effective avenue
(Chen X, et al., 2017). To date, many computational efforts have
been made to facilitate the study of RNA epigenetics (Boccaletto
et al., 2017; Chen X, et al., 2017; Chen Z, et al., 2019; Xue et al.,
2020; Liu et al., 2020) in terms of both experimental data
collection and site prediction works. For predictors related to
the identification of Y RNA modification, PseUI (He et al.,
2018), XG-PseU (Liu et al., 2019), and iRNA-PseU (Chen et al.,
2016) allow for prediction of putative Y sites from an RNA
sequence, and PPUS (Li Y.H, et al., 2015) can predict the Y sites
regulated by a specific pseudouridine synthase. However, these
three predictors are all based on sequence-derived features only
without considering other genomic features (such as
Frontiers in Genetics | www.frontiersin.org 257
conservation, gene annotation, and miRNA binding) that may
contribute to the prediction, and thus their performance is
limited (Chen K, et al., 2019). Moreover, their prediction
results are not functionally annotated with potential post-
transcriptional regulation machineries that may explain the
functional consequences of the predicted Y sites.

We present here a web server—PIANO—for pseudouridine site
identification and functional annotation. Inspired by theWHISTLE
framework (Chen K, et al., 2019), PIANO took advantage of both
the conventional sequence features and 42 additional genomic
features. Using six independent datasets generated from four
different technologies, we showed that PIANO adds a marked
improvement to the accuracy of existing Y-site prediction.
Moreover, the PIANO web server accepts both genomic location
and RNA sequence format as input file when making predictions,
and the putative Y sites returned are also annotated with various
post-transcriptional regulations, including miRNA-targets, RBP-
binding regions, and splicing sites, to unveil potential functional
mechanisms ofY. The PIANO website is freely accessible at: http://
piano.rnamd.com.
MATERIALS AND METHODS

Training and Testing Data for
Y-Site Prediction
To construct the Y-site prediction model, we used the known
human Y sites detected from four different base-resolution Y
profiling techniques, including Y-Seq, RBS-Seq, CeU-Seq, and
Pseudo-Seq (see Table 1). The Y sites at base-resolution were
directly downloaded from Gene Expression Omnibus (GEO).

In the beginning of the performance evaluation, dataset H1 (see
Table 1) was used as the testing data, while dataset H2-H4 were
used as for training. Specifically, the base-resolution Y sites in
training datasets were used as the positive training data. The
negative sites used in model training were randomly selected
from unmodified U sites located on the same transcripts of
positive sites (see Figure 1). To make the best use of the limited
volume of positive data, we randomly selected 10 negative sites for
TABLE 1 | Base-resolution dataset used for Y-site prediction.

Dataset Cell line Treatment Technique Site
#

Source

H1 HEK293 Y-Seq 652 (Schwartz et al.,
2014)

H2 Hela RBS-Seq 322 (Khoddami et al.,
2019)

H3 HEK293T CeU-Seq 1555 (Li X, et al., 2015)
H4 HEK293T H2O2 460
H5 HEK293T Heat Shock

(HS)
421

H6 Hela Pseudo-
Seq

156 (Carlile et al., 2014)
March 2
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The experimentally validated human Y sites used in this project are also available from the
PIANO website of this project (http://piano.rnamd.com), annotated with various post-
transcriptional regulations.
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each of the positive sites. To balance the positive-to-negative ratio,
the negative sites were then randomly split into 10 subsets, and 10
separate predictors were generated with a 1:1 positive-to-negative
ratio. The negative sites of testing data were generated following the
same procedure. Consequently, 10 separate predictors were
generated, and their prediction results were averaged.

Following the experimental design of WHISTLE framework
(Chen K, et al., 2019), we performed dataset level leave-one-out
validation over the H1-H5 base-resolution datasets; four samples
from H1–H5 were used as training, while the other was used for
testing. Subsequently, the sites from the datasets H1–H5
(generated from Y-Seq, RBS-Seq, and CeU-Seq) were used to
establish a predictor, whose performance was evaluated on the
dataset H6, which was generated from an independent
technology (Pseudo-Seq).

Features Used for Y-Site Prediction
Sequence-Derived Features
The length of 41bp was widely used to extracted sequence
information in many previous studies, which was determined
as a suitable flanking window by relevant tests, i.e., iRNA-m7G
(Liu et al., 2019), iRNA-2OM (Yang et al., 2018), andMethyRNA
(Chen W, et al., 2017). Consequently, the sequence-derived
information of 41 bp flanking window of Y and non-Y (U)
sites as central was generated using the chemical properties of
nucleotides, position-specific nucleotide propensity (PSNP), and
cluster information.

In the first encoding method, the nucleotides are classified
into three categories based on three distinct structural chemical
properties. Ring structures of nucleotides are the first to be
considered; here, adenosine and guanosine have two rings,
while cytidine and uridine only have one ring. In addition, the
guanosine and cytidine have stronger hydrogen bonding than
adenosine and uridine. Furthermore, adenosine and cytidine can
be classified as the amino group, while guanosine and uridine
contain the keto group. Based on these chemical properties
defined above, the i -th nucleotide from sequence S may be
encoded by a vector Si = (xi, yi, zi):

xi =
1 if  si∈ A,Gf g
0 if  si∈ C,Uf g,  yi =

1 if  si∈ A,Cf g
0 if si∈ G,Uf g ,  zi =

1 if  si∈ A,Uf g
0 if si∈ C, Gf g

nnn
(1)

Thus, the A, C, G, and U may be encoded as a vector (1,1,1),
(0,1,0), (1,0,0), and (0,0,1), respectively.

The position-specific nucleotide propensity (PSNP) stands for
the differences of the frequency of nucleotides calculated in
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specific locations between RNA sequences of positive and
negative data. The frequency of occurrence of A, U, G, and C
in the i -position were calculated for both positive and negative
data, respectively, to obtain two matrices with 4×41 dimension as
Zplus and Zminus, where Zplus was extracted from sequence of all
positive data, and Zminus was extracted from sequence of all
negative data. The position-specific nucleotide propensity
(PSNP) matrices was defined as ZPSNP:

ZPSNP = Zplus = Zminus (2)

For the cluster information, the average relative position of
the closest k (k=1,2 and 3) nucleotide to center Y/non-Y was
calculated for each nucleic acid (A, G, C, and U). The k was
considered as 1 to 3. Using sequence ‘AGCUAGCCAUC
CUACGGUACAGCAU’ as an example, the center U is at the
ninth positive. For encoding the cluster information of adenine,
the average relative position of the closest 1 (k=1) adenine to
center U is 1 (1/1); when k equals to 2, the relative position of the
second closest adenine to center U is 4, and, therefore, the
average relative position of the closest 2 (k=2) adenine to
center U is 2.5 (5/2) and 3.7 (11/3) when k equals to 3.
Similarly, the cluster information of guanosine in this example
sequence is 3 (3/1), 3.5(7/2), and 4.7(14/3) when k equals to 1, 2,
and 3, respectively.

The sequence-derived encoding methods employed by the
three previously published predictors were used to reproduce the
PPUS, iRNA-PseU, and PseUI with the same training data of
PIANO, respectively, and their performances were compared
with PIANO using independent datasets.

Genome-Derived Features
In the original WHISTE approach, 35 additional genomic
features that might contribute to the prediction of m6A RNA
methylation sites were considered (Chen K, et al., 2019). In
PIANO, seven new genomic features were added to the
prediction model, the details of the 42 genomic features
considered in the predict ion were summarized in
Supplementary Table S1. Specifically, genomic Features 1–
16 are dummy variable features indicating whether the uridine
sites shall fall within the transcript regions that satisfy certain
topological properties. All the features in this category are
generated by the GenomicFeatures R/Bioconductor package
using the transcript annotations hg19 TxDb package
(Lawrence et al., 2013). To remove the ambiguity caused by
transcript isoforms, only the primary (longest) transcripts of
FIGURE 1 | Negative and Positive Data. Negative sites were randomly selected from un-modified U sites located on the same transcripts of the positive sites.
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each gene were kept for the extraction of the transcript sub-
regions. The longest transcript isoform was used to
unambiguously assign m6A peak regions to mRNAs (Ke et
al., 2017) and contributed to a better performance in accuracy
compared with using the average value of multiple transcripts.
Genomic Features 17–20 are real valued features defining the
relative position of the transcript regions (3’UTR, 5’UTR,
CDS, and whole transcript), i.e., the distance from the
adenine to the 5’ end divided by the width of the region.
The values are also set to zero for sites that do not belong to
the region. Genomic features 21–25 represent the length of the
transcript region containing the modification site. The values
are also set to zero for sites that do not belong to the region.
Features 26–27 captured the distance from the adenine sites to
the 5’end or 3’end of the splicing junctions. Additionally, the
distance to the nearest neighboring y sites in the training data
is generated to measure the clustering effect of the y RNA
modification sites. Evolutionary conservation score of the
uridine sites and its flanking regions are measured by Phast-
Cons (Siepel et al., 2005) score, and the fitness consequence
(Gulko et al., 2015) scores were presented in features 28–31.
To consider the RNA secondary structures around the uridine
site, the RNA secondary structures are predicted using
RNAfold from the Vienna RNA package (Lorenz et al.,
2011) and presented in features 32–33. Genomic properties
of transcripts containing theY sites were presented in features
34–38. Finally, features 39–42 represent omics information,
such as microRNA target sites (Chou et al., 2017) and
HNRNPC binding sites (2012).

Machine Learning Approach Used for
Y-Site Prediction
As a high-efficiency machine learning algorithm in
computational biology, the SVM (Support Vector Machine)
has been widely applied in microRNA target prediction (Liu et
al., 2010), protein phosphorylation prediction (Wong et al.,
2007), and m6A RNA methylation site prediction (Chen W, et
al., 2017). In this project, the R language interface of LIBSVM
(Chang and Lin, 2011) was used to build our model with the
radial basis function as kernel, and the other parameters were
set at the default.

Performance Evaluation of Y-Site
Prediction
To evaluate the performance of PIANO, a 5-fold cross-validation
was employed on training datasets using the SVM classifier, and
the independent testing dataset was used to measure the final
performance of PIANO. There is no overlap between the training
sites and testing sites, as only the Y sites not previously used as
training data were considered during performance evaluation;
the performance evaluation result should thus directly reflect the
capability of the algorithm to identify previously unknown Y
sites. To evaluate the performance, the ROC (receiver operating
characteristic) curve (sensitivity against 1-specificity) was used,
and the area under ROC curve (AUROC) was calculated as the
main performance evaluation metric.
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Estimate the Probability of Y
The likelihood ratio (LR) of a Y site is calculated to estimate the
probability of Y RNA methylation:

LR =
P(observationjY)
P(observationjU) (3)

In the PIANO web server, a site was predicted to be a putative
Y site if its predictive value was above 0.5 with a minimum LR
value of 1. A site with a larger LR value suggests that it is more
likely to be a Y site. The machine learning classifiers usually
obtain the lowest empirical rate with the value of 0.5 as cutoff.
The statistical significance of LR is assessed by an upper bound of
the p-value, indicating how extreme the observed LR is among all
the transcriptome U sites. It is calculated from the relative
ranking of the putative Y sites among all the transcriptome U
sites, i.e., if only 0.1% of U sites have a LR score larger than a
specific U site, then the upper bound of the p-value of this site is
0.001. In the report of PIANO web server, a putative Y site is
considered to be of high confidence if its LR within the top 0.5%
of all transcriptome Us (corresponding to an upper bound of the
p-value < 0.005) of all the transcriptome U sites, followed by
medium confidence (0.005 < upper bound of the p-value ≤ 0.05)
and low confidence (p-value > 0.05).

Functional Annotation of Putative Y Site
The gene symbol, Ensembl gene ID, gene region, and gene type
for each putative Y site were annotated using ANNOVAR
package (Wang et al., 2010). Furthermore, we annotated the
putative Y sites with three kinds of post-transcriptional
regulation, including RNA-binding proteins (RBPs) regions,
miRNA-RNA targets, and splicing sites. We first found the
intersection between the computational predicted Y sites and
POSTAR2-derived RBP binding regions (Zhu et al., 2018). For
miRNA targets, we obtained the information from miRanda
(Agarwal et al., 2015) and starBase2 (Li et al., 2013), and we
found the Y sites within the miRNA targets regions to explore
the potential influence of Y on miRNA-target interactions.
Finally, we obtained the Canonical splice sites (GT-AG) from
UCSC (Lawrence et al., 2013) annotations, 100 bp upstream
region from 5’ splicing sites and 100 bp downstream region from
3’ splicing sites were extracted for the subsequent analysis of Y
sites on splicing sites. The detailed information of the post-
transcriptional regulation association analysis can be found in
Supplementary Table S2.
RESULTS

Although the genome-derived features alone are already very
effective for predicting Y sites, the best performance was
achieved when the sequence features and genomic features were
combined. Consequently, our PIANO predictor was established
based on both the genome-derived features and sequence-derived
features. When designing the encoding methods for sequence
features used for the PIANO approach, the chemical properties of
nucleotides, position-specific nucleotide propensity (PSNP), and
March 2020 | Volume 11 | Article 88
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cluster information were considered. We found that this
combination (sequence and genomic features) achieved the best
performance in accuracy compared with combining genome-
derived features with other basic sequence encoding methods
(i.e., one-hot encoding method).

The performance of the predictor was evaluated under two
modes. For the full transcript mode, the positive and negative Y
sites located in both exonic and intronic regions are all
considered to construct the predictor. In the mature mRNA
mode, only positive and negative Y sites located on mature
mRNA transcripts are considered; this is because existing
experimental datasets overwhelmingly relied on polyA
selection in RNA-seq library preparation, and intronic Y sites
are likely to be underrepresented in the data, which may lead to
an over-estimation of accuracy under the full transcript mode.

To avoid potential over-fitting and to identify the most
significant subset of genomic features, feature selection was
implemented; the datasets H2–H5 were used as training data,
while dataset H1 was used for the independent testing data. The
relative importance of each genome-derived feature were
measured by the Perturb method (Gevrey et al., 2003).
According to the rank of importance, the top N most
important features were reserved in the prediction and were
evaluated with a 5-fold cross-validation. For the predictor under
full transcript model, the top 17 genomic features led to the best
predictor performance, with fitCons scores, exons containing
stop codons, and number of exons as the top three most
important genomic features for prediction. Similarly, the top
20 genome-derived features were selected under the mature
mRNA model. The length of the mature transcript plays the
most important role under this model, and the exons containing
stop codons and an miRNA target won the second and third
significance. Consequently, to obtain the most robust
performance, only the top 17 and 20 genomic features were
used under full transcript model and mature mRNAmodel forY
site prediction, respectively. Please see Supplementary Figure S1
for more details.

We showed that the newly developed method PIANO
substantially outperformed competing approaches on cross-
validation (Supplementary Table S3) when tested on
independent datasets (Supplementary Table S3) or
benchmarked by an independent technique (Supplementary
Table S4). To sum up, by testing independent datasets
generated from four different Y profiling technologies (Y-seq,
RBS-seq, Pseudo-seq, and CeU-seq), the newly developed
method PIANO achieved an average AUC of 0.955 and 0.838
under full transcript and mature mRNA modes, respectively (see
Table 2), representing a marked improvement compared to
PPUS (0.713 and 0.707), iRNA-PseU (0.713 and 0.712), and
PseUI (0.634 and 0.652).

The performance of the purposed predictor was further
evaluated by separating the training and testing datasets
between the cell type in which datasets H3–H5 generated from
HEK293T were used for training, while datasets H2 and H6 from
Hela were used for independent testing. Consistent with previous
validation results, our method PIANO achieved a marked
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improvement in prediction accuracy compared with existing
predictors, using the AUROC (area under ROC curve) and
AUPRC (area under precision-recall curve) as an evaluation
metric, when tested on independent dataset with a 1:1 positive to
negative ratio (Supplementary Table S5) and 1:10 positive to
negative ratio (Supplementary Table S6), respectively,
suggesting the reliability of our newly proposed approach.
Besides, the comparison between different algorithms indicated
that SVM (Support Vector Machine) was a quite effective
machine learning approach and achieved the best performance
in our study (Supplementary Table S5). In addition, to further
evaluate different approaches, we also considered the prediction
of PUS-specific Y sites. In this experiment, TruB1, PSU7, and
TruB2 were considered, and the goal was to predict their specific
substrates (Safra et al., 2017). Consistent with previous results in
Y-site prediction, the PIANO method again substantially
outperformed competing approaches under both the full
transcript and mature mRNA model (Table 3), suggesting the
effectiveness of the approach.

Construction of the PIANO Website
A website PIANO, which stands for pseudouridine site
identification and functional annotation, was built for the
convenience of academic users. Hyper Text Markup Language
TABLE 2 | Performance evaluation of Y-site predictors.

Mode Method Benchmarking data (AUC) Average
AUC

Y-
Seq

RBS-
Seq

CeU-
Seq

Pseudo-
Seq

Full
transcript

PIANO 0.957 0.978 0.914 0.972 0.955
iRNA-
PseU

0.679 0.727 0.721 0.708 0.713

PPUS 0.700 0.721 0.724 0.705 0.713
PseUI 0.631 0.710 0.610 0.585 0.634

Mature
mRNA

PIANO 0.859 0.770 0.864 0.857 0.838
iRNA-
PseU

0.753 0.582 0.760 0.751 0.712

PPUS 0.749 0.575 0.757 0.748 0.707
PseUI 0.666 0.651 0.652 0.639 0.652
March 2020 | Volume 11 |
The table presents the performance of differentY site predictors achieved on independent
human datasets with different technologies as a benchmark, and it is summarized from
Supplementary Table S3 and S4. Only the Y sites not previously used as training data
were considered during performance evaluation, so the training sites and testing sites did
not overlap. Because existing datasets overwhelmingly relied on polyA selection in RNA
library preparation and intronic Y sites are likely to be underrepresented in the data, the
performances were evaluated under two modes: full transcript and mature mRNA modes.
In the mature mRNA mode, only positive and negative Y sites located on mature mRNA
transcripts are considered, as previously described (Chen K,et al., 2019). Our new
approach PIANO substantially outperformed competing approaches in accuracy.
TABLE 3 | PUS-specific substrate prediction.

Method Full transcript model Mature mRNA model

TruB2 PSU7 TruB1 TruB2 PSU7 TruB1

PIANO 0.981 0.966 0.973 0.837 0.960 0.910
iRNA-PseU 0.812 0.829 0.838 0.719 0.812 0.731
PPUS 0.806 0.824 0.824 0.733 0.816 0.739
PseUI 0.853 0.870 0.840 0.805 0.861 0.786
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(HTML), Cascading Style Sheets (CSS), and Hypertext
Preprocessor (PHP) were used to construct the PIANO web
interface. This included a database containing 4,303
experimentally validated Y sites reported from four different
high-throughputY profiling techniques, which is so far the most
complete collection of Y in humans. Among those
experimentally validated Y sites, we found Y was distributed
most often along coding DNA sequence and 3’UTR, but it was
relatively rare in 5’UTR (Supplementary Figure S2). Secondly, a
web server for putative Y-site identification from the user-
defined genomic ranges or provided FASTA sequences
(detailed in Figure 2) was used. The help document of the
PIANO web server is provided in the Supplementary Materials.
Both experimentally validated Y sites and the predicted putative
Y sites are functionally annotated with various post-
transcriptional regulations to unveil potential functional
mechanism concerning Y. The data and prediction results may
be conveniently downloaded and visualized with web browser.
The PIANO website is freely accessible from: http://piano.
rnamd.com.
CONCLUSION

With recent advancements that unveiled various biomolecular
functions of Y under different biological contexts, Y starts to
capture broader interests of the scientific community (Schwartz
Frontiers in Genetics | www.frontiersin.org 661
et al., 2014; Carlile et al., 2014; Li X, et al., 2015; Karijolich et al.,
2015; Dominissini et al., 2016; Penzo et al., 2017; Guzzi et al.,
2018; Adachi et al., 2018; Shaheen et al., 2019). To date, a number
of high-throughput approaches have been developed for
profiling the transcriptome-wide distribution of Y (Adachi
et al., 2019), including Pseudo-seq (Carlile et al., 2014), Y-seq
(Schwartz et al., 2014), PSI-seq (Lovejoy et al., 2014), CeU-seq
(Li X, et al., 2015), and RBS-seq (Khoddami et al., 2019). These
technologies all reported the widespread occurrence of Y on
mRNA and lncRNA in human cells. Four Y site predictors have
been built, including PseUI (He et al., 2018), XG-PseU (Liu et al.,
2019), iRNA-PseU (Chen et al., 2016), and PPUS (Li Y.H, et al.,
2015); however, all of them are based on sequence-derived
features only without considering other genomic features that
may contribute to the prediction and thus limited
their performance.

Here, by integrating 42 genomic features together with
conventional sequence-derived features, we have developed the
(so far) most accurate Y-site predictor. Our new method
(PIANO) substantially outperformed competing approaches
when using four different Y profiling protocols as the
benchmarks (with 0.24 and 0.12 improvement in terms of
AUC under full transcript and mature mRNA modes,
respectively) and supports functional annotation for the
putative Y sites. A web site—PIANO—was also developed,
including (1) a database hosting currently the largest collection
of 4,303 experimentally validated human Y sites; and (2) a web
FIGURE 2 | Interface and output of the PIANO web server for Y-site prediction and functional annotation. (A) When predicting human Y sites, the PIANO web
server supports two types of input: the genomic ranges of human genome assembly and the FASTA sequences. As the prediction process may take quite some
time, it is highly recommended that the user should provide an email address, where an email notification will be sent when the job is finished. (B) The basic
information of each putative Y site, such as gene symbol, likelihood ratio, confidence level, and the number of related post-transcriptions associated with the putative
site. (C) The source and detailed information of each putative Y site. If the input file contains any experimental validated Y sites collected in PIANO, the sites will be
annotated with additional information. (D) The details of the site-relevant RBP information. (E) A graph to visualize the position of predicted Y sites on a user-
provided FASTA sequence. (F) An overall review of the prediction result.
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server enabling the prediction of novel Y sites from given
genomic ranges or FASTA sequences. Users may query and
download their predicted results with clear and simple
instructions (see Supplementary Materials). The scripts used
to generate genomic and sequence features considered in
PIANO’s framework, the training and testing data, and
datasets related to the construction of the PIANO database
were provided in the download page of PIANO website. In
conclusion, our work will serve as a useful resource for
researchers who are interested in Y and its role concerning
various post-transcriptional regulations.

Nevertheless, it is worth noting that there exist significant
discrepancies in the Y sites reported by different technologies
(Zaringhalam and Papavasiliou, 2016; Adachi et al., 2018).
Although the discrepancy may be due to the context-specificity
of pseudouridylation and technology preferences, our PIANO
predictor achieved reasonable consensus with all the four high-
throughput profiling Y techniques; Y is, however, considered as
the most prevalent mRNA modifications (Meyer and Jaffrey,
2017) with an estimated Y/U ratio of 7–9% (Jacob et al., 2017).
Currently, only a small number ofY sites have been reported; we
are therefore not able to calculate a reasonable number for the
real-life estimate of class imbalance. This may due to the limited
detection power of existing experimental approaches. With an
estimated real-life Y/U ratio as 8%, we can expect at least 10
times the number of negative sites. Under this assumption, we
tested the stability of our method by assigning 1:10 and 1:1
positive-to-negative ratio for the training and testing data. The
result showed that the performance generated by the 1:10 class
were more stable than the 1:1 class (Supplementary Figure S3).
We further calculated the value of FDR, FPR, and TPR in this
setting, using different LRs as cutoff (Supplementary Table S7).
To sum up, we cannot rule out the possibility of experimental
bias, and the training data (gold standard data) may be further
optimized in the future as more experimental evidence is
Frontiers in Genetics | www.frontiersin.org 762
accumulated. To make the PIANO method more practically
useful, the predictor should be used by combining with other
experimental evidence and knowledge, e.g., the Us within a
binding site of PUS. The performance of PIANO method is
much better than all existing approaches, and it can provide the
most reliable putative Y sites for users.
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The direct RNA sequencing platform offered by Oxford Nanopore Technologies
allows for direct measurement of RNA molecules without the need of conversion to
complementary DNA, fragmentation or amplification. As such, it is virtually capable of
detecting any given RNA modification present in the molecule that is being sequenced,
as well as provide polyA tail length estimations at the level of individual RNA molecules.
Although this technology has been publicly available since 2017, the complexity of the
raw Nanopore data, together with the lack of systematic and reproducible pipelines,
have greatly hindered the access of this technology to the general user. Here we address
this problem by providing a fully benchmarked workflow for the analysis of direct RNA
sequencing reads, termed MasterOfPores. The pipeline starts with a pre-processing
module, which converts raw current intensities into multiple types of processed data
including FASTQ and BAM, providing metrics of the quality of the run, quality-filtering,
demultiplexing, base-calling and mapping. In a second step, the pipeline performs
downstream analyses of the mapped reads, including prediction of RNA modifications
and estimation of polyA tail lengths. Four direct RNA MinION sequencing runs can
be fully processed and analyzed in 10 h on 100 CPUs. The pipeline can also be
executed in GPU locally or in the cloud, decreasing the run time fourfold. The software
is written using the NextFlow framework for parallelization and portability, and relies on
Linux containers such as Docker and Singularity for achieving better reproducibility. The
MasterOfPores workflow can be executed on any Unix-compatible OS on a computer,
cluster or cloud without the need of installing any additional software or dependencies,
and is freely available in Github (https://github.com/biocorecrg/master_of_pores). This
workflow simplifies direct RNA sequencing data analyses, facilitating the study of the
(epi)transcriptome at single molecule resolution.
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INTRODUCTION

Next generation sequencing (NGS) technologies have
revolutionized our understanding of the cell and its biology.
However, NGS technologies are heavily limited by their inability
to sequence long reads, thus requiring complex bioinformatic
algorithms to assemble back the DNA pieces into a full genome
or transcriptome. Moreover, NGS technologies require a PCR
amplification step, and as such, they are typically blind to DNA
or RNA modifications (Novoa et al., 2017).

The field of epitranscriptomics, which studies the biological
role of RNA modifications, has experienced an exponential
growth in the last few years. Systematic efforts coupling
antibody immunoprecipitation or chemical treatment with
next-generation sequencing (NGS) have revealed that RNA
modifications are much more widespread than originally
thought, are reversible (Jia et al., 2011), and can play major
regulatory roles in determining cellular fate (Batista et al., 2014),
differentiation (Lin et al., 2017; Furlan et al., 2019; Lee et al., 2019)
and sex determination (Haussmann et al., 2016; Lence et al., 2016;
Kan et al., 2017), among others. However, the lack of selective
antibodies and/or chemical treatments that are specific for a given
modification have largely hindered our understanding of this
pivotal regulatory layer, limiting our ability to produce genome-
wide maps for 95% of the currently known RNA modifications
(Jonkhout et al., 2017; Boccaletto et al., 2018).

Third-generation sequencing (TGS) platforms, such as the
one offered by Oxford Nanopore Technologies (ONT), allow
for direct measurement of both DNA and RNA molecules
without prior fragmentation or amplification (Brown and Clarke,
2016), thus putting no limit on the length of DNA or RNA
molecule that can be sequenced. In the past few years, ONT
technology has revolutionized the fields of genomics and
(epi)transcriptomics, by showing its wide range of applications in
genome assembly (Jain et al., 2018), study of structural variations
within genomes (Cretu Stancu et al., 2017), 3′ poly(A) tail
length estimation (Krause et al., 2019; Workman et al., 2019),
accurate transcriptome profiling (Bolisetty et al., 2015; Sessegolo
et al., 2019), identification of novel isoforms (Byrne et al., 2017;
Križanovic et al., 2018) and direct identification of DNA and RNA
modifications (Carlsen et al., 2014; Simpson et al., 2017; Garalde
et al., 2018; Leger et al., 2019; Liu et al., 2019; Parker et al., 2020).
Thus, not only this technology overcomes many of the limitations
of short-read sequencing, but importantly, it also can directly
measure RNA and DNA modifications in their native molecules.
Although ONT can potentially address many problems that NGS
technologies cannot, the lack of proper standardized pipelines for
the analysis of ONT output has greatly limited its reach to the
scientific community.

To overcome these limitations, workflow management
systems together with Linux containers offer an efficient solution
to analyze large-scale datasets in a highly reproducible, scalable
and parallelizable manner. In the last year, several workflows to
analyze nanopore data have become available, which are aimed at
facilitating genome assembly (e.g., Katuali),1 genome annotation

1https://github.com/nanoporetech/katuali

(e.g., Pinfish2) and single nucleotide polymorphism analyses (e.g.,
NanoPipe3). However, none of the current available pipelines
cannot be used for the analysis of direct RNA sequencing datasets.

Here we provide a scalable and parallelizable workflow for
the analysis of direct RNA (dRNA) sequencing datasets, termed
MasterOfPores,4 which uses as input raw direct RNA sequencing
FAST5 reads, which is a flexible HDF5 format used by ONT
to store raw sequencing data, which includes current intensity
values, metadata of the sequencing run and base-called fasta
sequences, among other features. The MasterOfPores workflow
performs both data pre-processing (base-calling, quality control,
demultiplexing, filtering, mapping, estimation of per-gene or per-
transcript abundances) and data analysis (prediction of RNA
modifications and estimation of polyA tail lengths) (Figure 1).
Thus, the MasterOfPores workflow facilitates the analysis of
nanopore (epi)transcriptomics sequencing data.

For each step, the workflow extracts metrics which are
compiled in a final HTML report that can be easily visualized an
analyzed by non-expert bioinformaticians. For each sequencing
run, the pipeline produces as output a FASTQ file containing
the base-called reads, a BAM file containing the mapped
reads, and up to three plain text files containing gene or
isoform quantifications, polyA tail length estimations and RNA
modification predictions. A direct RNA sequencing run produced
by MinION or GridION devices, which typically comprises 1-
2M reads, takes ∼2 h to process on a CPU cluster using 100
nodes, and∼1 h or less on a single GPU (see Table 1 for detailed
metrics). Moreover, the pipeline can also be run on the cloud (see
section “Running on AWS”).

MasterOfPores simplifies the analysis of direct RNA
sequencing data by providing a containerized pipeline
implemented in the NextFlow framework. It is important
to note that this approach avoids the heavy-lifting of installing
dependencies by the user, and thus, is simple and accessible to
any researcher with little bioinformatics expertise. We expect
that our workflow will greatly facilitate the access of Nanopore
direct RNA sequencing to the community.

RESULTS

Overview of the MasterOfPores
Workflow
Workflow management systems together with Linux containers
offer a solution to efficiently analyze large scale datasets in a
highly reproducible, scalable and parallelizable manner. During
the last decade, an increasing interest in the field has led to the
development of different programs such as Snakemake (Köster
and Rahmann, 2012), NextFlow (Di Tommaso et al., 2017),
Galaxy (Afgan et al., 2018), SciPipe (Lampa et al., 2019) or
GenPipes (Bourgey et al., 2019), among others. These tools enable
the prototyping and deployment of pipelines by abstracting
computational processes and representing pipelines as directed

2https://github.com/nanoporetech/pipeline-pinfish-analysis
3https://github.com/IOB-Muenster/nanopipe2
4https://biocorecrg.github.io/master_of_pores/
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FIGURE 1 | Overview of the MasterOfPores workflow for the processing of direct RNA nanopore sequencing datasets. (A) Overview of the 4 modules included in the
MasterOfPores workflow. The pre-processing module (NanoPreprocess) accepts both single FAST5 and multi-FAST5 reads and includes 8 main steps: (i)
base-calling, (ii) demultiplexing (iii) filtering, (iv) quality control, (v) mapping and (vi) gene or transcript quantification and (vii) final report building. The outputs generated
by NanoPreprocess (BAM, FastQ and base-called Fast5) are used as input by the subsequent MasterOfPores data analysis modules, to predict RNA modifications
(NanoMod) and polyA tail length estimations (NanoTail). (B) Detailed description of the individual steps and software used for each of the 4 modules included in
MasterOfPores.

graphs, in which nodes represent tasks to be executed and edges
represent either data flow or execution dependencies between
different tasks.

Here we chose the workflow framework NextFlow (Di
Tommaso et al., 2017) because of its native support of different
batch schedulers (SGE, LSF, SLURM, PBS, and HTCondor),
cloud platforms (Kubernetes, Amazon AWS, and Google
Cloud) and GPU computing, which is crucial for processing
huge volumes of data produced by nanopore sequencers.
NextFlow has tight integration with lightweight Linux containers,
such as Docker and Singularity. Automatic organization of
intermediate results produced during the NextFlow pipeline
execution allows reducing the complexity of intermediary file
names and the possibility of name clashing. Continuous check-
pointing with the possibility of resuming failed executions,
interoperability and meticulous monitoring and reporting of
resource usage are among other thought-after features of
NextFlow. The executables of the presented pipeline have been
bundled within Docker images accessible at DockerHub that
can be converted on the fly into a Singularity image, thus
allowing the HPC usage.

The MasterOfPores workflow includes all steps needed to
process raw FAST5 files produced by Nanopore direct RNA
sequencing and executes the following steps, allowing users
a choice among different algorithms (Figure 1). The pipeline
consists of 3 modules:

(i) NanoPreprocess: this module takes as input the raw Fast5
reads and produces as output base-called sequences both in

FAST5 and FASTQ formats, as well as alignments in BAM
format. The pre-processing module performs base-calling,
demultiplexing, filtering, quality control, mapping and gene
and/or transcript quantification, generating a final report of
the performance and results of each of the steps performed.

(ii) NanoTail: this module takes as input the output from the
NanoPreprocess module and produces polyA tail length
estimations using two different algorithms.

(iii) NanoMod: this module takes as input the files generated
during the pre-processing step, and produces flat text
files with the predicted RNA modifications using two
different algorithms.

Pre-processing Module: NanoPreprocess
The NanoPreprocess module consists of 8 main steps (Figure 2):

(i) Read base-calling with the algorithm of choice, using
Albacore5 or Guppy.5 This step can be run in parallel and
the user can decide the number of files to be processed in a
single job by using the command –granularity.

(ii) Demultiplexing of the reads using DeePlexiCon (Smith
et al., 2019). This step is optional, and can only be used if
the libraries have been barcoded using the oligonucleotides
used to train the deep neural classifier6

(iii) Filtering of the resulting fastq files using Nanofilt (De
Coster et al., 2018). This step is optional and can be
run in parallel.

5https://nanoporetech.com
6https://github.com/Psy-Fer/deeplexicon
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TABLE 1 | Comparison of computing time and RAM used to run the pipeline for
the four S. cerevisiae polyA(+) direct RNA sequencing datasets used in this study.

Yeast WT
rep1

Yeast imeM
KO rep1

Yeast WT
rep2

Yeast imeM
KO rep2

Raw
data

Number of
reads

1,197,462 694,907 629,270 573,404

Module (1): NanoPreprocess

CPU* Total time 2 h 13 min 2 h 6 min 2 h 11 min 2 h 1 min

Total time
per 1000
reads (s)

7 s 10 s 12 s 12 s

GPU** Total time 6 h 44 min 4 h 05 min 3 h 59 min 3 h 19 min

Total time
per 1000
reads (s)

20 s 21 s 23 s 21 s

GPU*** Total time 1 h 8 m 37 min 36 min 30 min

Total time
per 1000
reads (s)

3 s 2 s 2 s 1 s

Module (2): NanoTail

CPU* Total time 3 h 26 min

Total time
per 1000
reads (s)

4 s

Module (3): NanoMod

CPU* Total time 5 h 40 min

Total time
per 1000
reads (s)

7 s

*CPU time computed using a maximum of 100 nodes with 8 CPU per node;
**GPU time computed using 1 card GIGABYTE GeForce RTX 1660 Ti; ***GPU time
computing using 1 card INNO3D GeForce RTX 2080.

(iv) Quality control of the base-called data, using MinIONQC
(Lanfear et al., 2019) and FastQC.7

(v) Read mapping to the reference genome or transcriptome,
using minimap28 or graphmap2.9

(vi) Quality control on the alignment, using NanoPlot10 and
bam2stats.11

(vii) Gene or transcript quantification, using HTSeq (Anders
et al., 2015) or NanoCount.12 The latter estimates transcript
abundance using an expectation-maximization algorithm.
NanoCount will be run if reads have been mapped
to the transcriptome, using the flag –reference_type
transcriptome, whereas HTSeq will be employed
to quantify per-gene counts if the reads have been
mapped to the genome.

(viii) Final report of the data processing using multiQC13 that
combines the single quality controls done previously, as
well as global run statistics (Figure 3).

7http://www.bioinformatics.babraham.ac.uk/projects/fastqc
8https://github.com/lh3/minimap2
9https://github.com/lbcb-sci/graphmap2
10https://github.com/wdecoster/NanoPlot
11https://github.com/lpryszcz/bin
12https://github.com/a-slide/NanoCount
13https://github.com/ewels/MultiQC

Data Analysis Modules: NanoTail and
NanoMod
The MasterOfPores pipeline contains two additional
modules for the downstream analyses of the mapped
reads, namely NanoTail and NanoMod, which provide
polyA tail length estimations and RNA modification
predictions, respectively (Figure 2). The modules can be
run using as input the output from the NanoPreprocess
module.

The NanoTail module estimates polyA tail lengths using
Nanopolish14 and TailfindR,15 producing a plain text file with
polyA tail length estimations for each read, computed using both
algorithms. The correlation between the two algorithms is also
reported as a plot.

The NanoMod module predicts RNA modifications using
Tombo16 and EpiNano,17 producing a plain text files with
the predicted sites by each algorithm. The NanoMod module
is run “paired mode,” i.e., providing two conditions, as
both EpiNano and Tombo identify RNA modifications by
comparing two conditions.

Running MasterOfPores: Installation,
Input, Parameters and Output
To run MasterOfPores, the following steps are required:

(i) Install NextFlow (version 19.10.0):
$ curl -s https://get.nextflow.io | bash

(ii) Clone the MasterOfPores repository:
$ git clone –depth 1 https://github.com/biocorecrg/

master_of_pores.git
(iii) Install Docker or Singularity (for Singularity, version 2.6.1

and Docker 19.03 or later are required):
Docker: https://docs.docker.com/install/
Singularity: https://sylabs.io/guides/2.6/user-guide/
quick_start.html#quick-installation-steps

(iv) Download Nanopore base-calling algorithms: guppy with
or without GPU support and or the albacore Wheel
file (a standard built-package format used for Python
distributions) and install them inside the bin folder inside
the MasterOfPores directory. The users can place their
preferred version of guppy and/or albacore in the bin
folder (in the example below, albacore version 2.1.7
and guppy 3.1.5).

$ cd master_of_pores/NanoPreprocess/bin
$ tar -zvxf ont-guppy_3.1.5_linux64.tar.gz
$ ln -s ont-guppy_3.1.5_linux64/ont-guppy/bin/
guppy_∗.
$ pip3 install –target = ./albacore ont_albacore-2.1.7-
cp36-cp36m-manylinux1_x86_64.whl
$ ln -s albacore/bin/multi_to_single_fast5
$ ln -s albacore/bin/read_fast5_basecaller.py

14https://github.com/jts/nanopolish
15https://github.com/adnaniazi/tailfindr
16https://github.com/nanoporetech/tombo
17https://github.com/enovoa/EpiNano
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FIGURE 2 | Scheme of the individual steps performed, inputs and outputs of the three modules (NanoPreprocess, NanoTail, and NanoMod) included in
MasterOfPores workflow. The inputs required by each module are depicted in green, whereas final outputs generated by each module are shown in blue.

(v) Optional step: install CUDA drivers (only needed for GPU
support):

https://docs.nvidia.com/cuda/cuda-installation-
guide-linux/index.html

(vi) Run the pre-processing step of the pipeline (using
singularity or docker):

$ cd./
$ nextflow run nanopreprocess.nf -with-singularity
or
$ nextflow run nanopreprocess.nf -with-docker

(vii) Run polyA tail estimation module
$ cd./NanoTail
$ nextflow run nanotail.nf -bg -with-singularity –
input_folders “.NanoPreprocess/output/RNA∗”

(viii) Run RNA modification prediction module
$ cd./NanoMod
$ nextflow run nanomod.nf -with-singularity
input_path “.NanoPreprocess/output/”

The NanoPreprocess module can handle both single- and
multi-FAST5 reads as input. To execute the workflow, several
parameters can be defined by the user, including the choice
of the basecaller (albacore or guppy), mapper (minimap2 or
graphmap2), as well as their command line options. If these are
not specified by the user, the workflow will be run with default
parameter settings specified in the params.config file (Table 2).
The final report includes four different types of metrics: (i)
General statistics of the input, including the total number of
reads, GC content and number of identical base-called sequences;
(ii) Per-read statistics of the input data, including scatterplots of
the average read length versus sequence identity, the histogram
of read lengths, and the correlation between read quality and

identity; (iii) Alignment statistics, including the total number of
mapped reads, the total number of mapped bases, the average
length of mapped reads, and the mean sequence identity; (iv)
Quality filtering statistics, including the number of filtered reads,
median Q-score and read length, compared to those observed in
all sequenced reads; and (v) Per-read analysis of biases, including
information on duplicated reads, over-represented reads and
possible adapter sequences (Figure 3). The final outputs of this
module include:

– Basecalled fast5 files within the “fast5_files” folder.
– Filtered fastq files within “fastq_files” folder.
– QC reports within “QC” folder.
– Final report within “report” folder.
– Aligned reads in sorted BAM files within the “aln” folder.
– Read counts within the “counts” folder.

The NanoMod module requires two samples to detect RNA
modifications, typically wild-type and knock-out (or knock-
down) matched conditions. The user must provide a tab-
delimited file (–comparison “comparison.tsv”) indicating which
input file is the wild-type condition and which one is the knock-
out or knock-down condition (see, for example18), which is
specified in the parameter file. The NanoMod module will output
the results into two different folders:

– RNA modification results predicted using Tombo in the
“Tombo” folder

– RNA modification results predicted using EpiNano in the
“EpiNano” folder

18https://github.com/biocorecrg/master_of_pores/NanoMod/comparison.tsv
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FIGURE 3 | Snapshots of the final report generated by MasterOfPores. (A) Main menu and overview of the final report generated by MasterOfPores. (B) The report
includes detailed metrics on the input reads (“MinIONQC”), as well as on the mapped reads (“AlignmentQC”). (C,D) Example of plots that are included as part of the
MasterOfPores final report, some of which are generated by integrating Nanoplot (C) and FastQC (D) software.

The NanoTail module will output the results into three
different folders:

– PolyA tail length estimates predicted using Nanopolish, in
the “Nanopolish” folder.

– PolyA tail length estimates predicted using tailfindR, in the
“Tailfindr” folder.

– In this module, an additional “NanoMod_final” folder is
generated, containing combined Nanopolish and tailfindR
estimates of polyA tail lengths, as well as information
regarding the geneID or transcriptID where the read is
mapped to.

Running MasterOfPores on the Cloud
(AWS Batch and AWS EC2)
Nanopore sequencing allows for real-time sequencing of samples.
While GridION devices come with built-in GPUs that allows live
base-calling, smaller MinION devices do not have built-in CPU
or GPU. Thus, the user has to connect the MinION to a computer
with sufficient CPU/GPU capabilities, or run base-calling after
the sequencing. In all these contexts, the possibility of running the
MasterOfPores pipeline on the cloud presents a useful alternative.

The Amazon Web Services (AWS) Batch is a computing
service that enables users to submit jobs to a cloud-based user-
defined infrastructure, which can be easily set up via either
code-based definitions or a web-based interface. Computation
nodes can be allocated in advance or according to resource
availability. Cloud infrastructure can be also deployed or
dismantled on demand using automation tools, such as
CloudFormation or Terraform.

Here we show that the MasterOfPores pipeline can be
successfully implemented on the cloud, and provide the
Terraform script for running MasterOfPores on the AWS Batch
CPU environments, available in the GitHub repository.19 To run
the pipeline using the AWS Batch, the users needs to change only
a few parameters related to their accounts in a configuration file.
The pipeline can be run from either a local workstation or an
Amazon EC2 entrypoint instance initiated for this purpose (we
recommend the latter). Data to be analyzed can be uploaded to
an Amazon S3 storage bucket.

Similarly, we also tested whether our pipeline could be
run in Amazon Web Services (AWS) Elastic Compute Cloud
(EC2), which is one of the most popular cloud services

19https://biocorecrg.github.io/master_of_pores/
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TABLE 2 | Settings and parameters that can be customized to run the NanoPreprocess module of the MasterOfPores workflow.

Parameter Description of the parameter Default Values

RUN_INFO kit Sequencing kit used (SQK-RNA001 or SQK-RNA002) SQK-RNA002

flowcell flowcell type FLO-MIN106

fast5 fast5 files including the path “$baseDir/data/multifast/∗.fast5”

annotation annotation file (GTF) including path “”

reference reference genome or transcriptome sequence “$baseDir/anno/curlcake_constructs.fasta.gz”

ref_type reference type (genome or transcriptome) “genome”

RUN_SETUP seqtype sequence type (RNA or DNA) “RNA”

output Output folder “$baseDir/output”

qualityqc Quality threshold for QC 5

granularity Number of files analyzed per process “”

DEMULTIPLEXING demultiplexer
demultiplex_opt

Option to run demultiplexing, in case the run is barcoded (ON or OFF)
choose between different pre-trained models

“OFF”
“-m pAmps-final-
actrun_newdata_nanopore_UResNet20v2_
model.030.h5”

BASE-CALLING basecaller Can be: albacore/guppy “guppy”

basecaller_opt Command line options for basecalling “”

GPU Whether or not using GPU (ON or OFF) “OFF”

FILTERING filter
filter_opt

Can be empty, OFF or nanofilt
command line options for filtering

“”
“”

MAPPING mapper Can be minimap2 or graphmap2 or empty minimap2

mapper_opt Command line options for mapping “-uf -k14”

map_type
reference_type

Can spliced or unspliced
can be transcriptome, genome or both

“spliced”
“genome”

GENE COUNTING counter Option to compute per-gene or per-transcript counts from the mapped
BAM file (YES or NO)

“YES”

counter_opt Command line options for counting. Of note, per-gene counts will be
computed using HTSeq if reference_type is “genome,” or computed
using NanoCount if reference_type is “transcriptome”

“”

REPORTING email Email (to receive the report when finished) “”

(Supplementary Table S1). Compared to AWS Batch, to run any
workflow in AWS EC2, the user must first create an Amazon
Machine Image (AMI). The AMI can be created using the same
instructions as provided in Supplementary File S1, starting
from the official Ubuntu 18.04 LTS AMI, and including both
Docker and Singularity software with NVIDIA libraries support.
Here we show that the resulting image can be used to run the
MasterOfPores workflow with NVIDIA Tesla V100 GPU cards.
Automation scripts to run MasterOfPores in AWS EC2 can be
found in the GitHub repository.20

Test Case: Analysis of Saccharomyces
cerevisiae SK1 PolyA(+) RNA
Running the MasterOfPores Pipeline on S. cerevisiae
PolyA(+) RNA
To benchmark the performance of the MasterOfPores workflow,
we employed four publicly available direct RNA sequencing runs
of polyA(+)-selected S. cerevisiae WT and ime4M strains, in
biological replicates, which had been sequenced using MinION
and GridION devices, producing a total of ∼3 million reads
(Table 1). We used up to 100 nodes with 8 CPUs for testing the

20https://biocorecrg.github.io/master_of_pores/

base-calling in CPU mode and 1 node with 1 GPU card for testing
the base-calling in GPU mode (Table 1).

The MasterOfPores NanoPreprocess module was ran using
guppy version 3.1.5 as the base-caller and minimap2 version
2.17 as the mapping algorithm. Reads were filtered by running
nanofilt with the options “-q 0 –headcrop 5 –tailcrop 3 –readtype
1D”. Filtered reads were mapped to the yeast SK1 fasta genome.
Specifically, the command that was executed to run the pipeline
with these settings was:

$ cd master_of_pores/NanoPreprocess
$ nextflow run nanopreprocess.nf –basecaller guppy –seqtype RNA \
–fast5 “FOLDERNAME/∗.fast5” –demultiplexing “OFF” \
–map_type “spliced” –mapper_opt “-uf -k14” \
–reference genome.fa.gz –mapper minimap2 –ref_type “genome”\
–filter nanofilt –filter_opt “-q 0 –headcrop 5 –tailcrop 3 –
readtype 1D”.

Then, the two data analysis modules were executed as follows:

$ nextflow run nanotail.nf –input_folders
“./NanoPreprocess/output/∗” \
–nanopolish_opt “” –tailfindr_opt “” –reference “genome.fa.gz”

$ nextflow run nanomod.nf –input_path
“./NanoPreprocess/output/” \
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–comparison “./comparison.tsv” –reference “genome.fa.gz” \
–tombo_opt “–num-bases 5” –epinano_opt “”

Benchmarking the Time Used for the Analysis of
S. cerevisiae PolyA(+) RNA
Here we have tested the pipeline using both CPU and GPU
computing. Specifically, we ran the pipeline on the following
configurations: (i) a single CPU node (e.g., emulating the
computing time on a single laptop); (ii) a CPU cluster with
100 nodes; (iii) a single mid-range GPU card (RTX2080); and
(iv) a single high-end GPU card (GTX1080 Ti). We found
that the computing time required to run the pipeline on a
single GPU card was significantly lower than the running
time in parallel on a high performance CPU cluster with 100
nodes, 8 cores per node (Table 1, see also Supplementary
Table S1). Moreover, we found that the computing time of the
NanoPreprocess module can be significantly reduced depending
on the GPU card (base-calling step was ∼2X faster for GTX1080
Ti than for RTX2080).

Reporting Resources Used for the Analysis of
S. cerevisiae PolyA(+) RNA
Taking advantage of the NextFlow reporting functions, the
pipeline can produce detailed reports on the time and resources
consumed by each process (Figure 4), in addition to the output
files (bam, fastq) and final report (html), if the workflow is
executed with parameters -with-report (formatted report) or-
with-trace (plain text report). Running the base-calling on each
multi-fast5 file in parallel on our dataset showed that the most
memory intensive tasks (about 5 Gbytes) were the mapping step
(using minimap2) and the quality control step (using Nanoplot)
(Table 3), while the most CPU-intensive and time-consuming
step (∼80 min) was the base-calling (using Guppy) (Table 4).

Finally, we should note that the latest (19.10.0) version of
NextFlow allows the user to control the execution of a pipeline
remotely. To enable this feature, the user needs to login to the
https://tower.nf/website developed by the NextFlow authors and
retrieve a token for communicating with the pipeline. For doing
that, the user should set this token as an environmental variable
and run the pipeline as follows:

$ export TOWER_ACCESS_TOKEN = YOUR_TOKEN
$ cd master_of_pores/NanoPreprocess
$ nextflow run nanopreprocess.nf -with-docker -with-report -bg -
with-tower

DISCUSSION

The direct RNA sequencing technology developed by Oxford
Nanopore technologies (ONT) offers the possibility of
sequencing native RNA molecules, allowing to investigate
the (epi)transcriptome at an unprecedented resolution, in full-
length RNA molecules and in its native context. Although the
direct RNA sequencing library preparation kit was made available
in April 2017, only a modest number of researchers have started
to adopt this new technology, partly due to the complexity of
analyzing the resulting raw FAST5 data. Moreover, even in those

cases when specific software and tools have been made available,
the users typically experience many difficulties in installing
dependencies and running the software. To overcome these
issues and facilitate the data analysis of direct RNA sequencing
to the general user, we propose the use of NextFlow workflows.

Specifically, we propose the use of MasterOfPores workflow
for the analysis of direct RNA sequencing datasets, which is a
containerized pipeline implemented in the NextFlow framework.
MasterOfPores can handle both single- and multi-FAST5 reads
as input, is highly customizable by the user (Table 2) and
produces informative detailed reports on both the FAST5 data
processing and analysis (MultiQC report, Figure 3) as well
as on the computing resources used to perform each step
(NextFlow report, see Figure 4). Thus, the current outputs
of the MasterOfPores workflow include: (i) base-called FAST5
files, (ii) base-called fastq file, (iii) sorted BAM file containing
mapped reads, (iv) per-gene or per-transcript counts (depending
on algorithm choice), (v) MultiQC report, (vi) NextFlow report,
(vii) per-read polyA tail length estimations, including the
correlation of predictions using two distinct algorithms, and
(viii) per-site RNA modification predictions, including a final
plain text file containing the consensus sites predicted by two
distinct algorithms.

The process of Nanopore read base-calling, that is, converting
ion current changes into the sequence of RNA/DNA bases,
has significantly improved during the last few years, mainly
due to the adoption of deep learning approaches, such
as the use of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), which are currently the
most commonly used strategies for base-calling. The adoption
of RNN and CNN-based base-calling algorithms has led to
a dramatic improvement in base-calling accuracy. However,
this has come at the expense of a higher computational
cost: only 5–10 reads can be base-called on 1 CPU core
per second using the latest versions of the base-calling
algorithms. The use of graphic processing units (GPUs)
can greatly accelerate certain CPU-intensive computational
tasks, thus allowing to process 50–500 reads per second
(Supplementary Table S1). We therefore developed our
pipeline for both CPU and GPU computing. Moreover,
we provide the GPU-enabled docker image and detailed
information on how to setup the GPU computing (see section:
“Running MasterOfPores”). We encourage users to adopt the
GPU computing for the analysis of Nanopore sequencing
data whenever possible, as this option is both more time-
and cost-efficient.

MATERIALS AND METHODS

Code Availability
The pipeline is publicly available at https://github.com/
biocorecrg/master_of_pores under an MIT license. The
example input data as well as expected outputs are included
in the GitHub repository. Detailed information on program
versions used can be found in the GitHub repository. EpiNano
was modified from its original version (1.0) to decrease the
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FIGURE 4 | Snapshot of the NextFlow resources report. The report includes detailed information of the computing resources and time needed to execute each of
the modules of the pipeline. Base-calling and mapping are the most CPU demanding tasks. The base-calling step is the longest to run, whereas mapping and
generation of alignment QC metrics are the most memory-demanding tasks.

computing time of the pipeline (EpiNano version 1.1, available at
https://github.com/enovoa/EpiNano).

Documentation Availability
Detailed documentation on how to install and use the pipeline
can be found at: https://biocorecrg.github.io/master_of_pores/

Availability of Docker Files and Docker
Images
The pipeline uses software that is embedded within Docker
containers. Docker files are available in the GitHub repository.21

21https://github.com/biocorecrg/master_of_pores/tree/master/docker/

The pipeline retrieves a specific Docker image from DockerHub.
In particular, the workflow retrieves four distinct images: one for
basecalling,22 one for demultiplexing,23 one for pre-processing24

and one for measuring polyA tail lengths and detecting RNA
modifications.25

22https://cloud.docker.com/u/biocorecrg/repository/docker/biocorecrg/
mopbasecall
23https://hub.docker.com/repository/docker/biocorecrg/mopdem
24https://cloud.docker.com/u/biocorecrg/repository/docker/biocorecrg/
mopprepr
25https://cloud.docker.com/u/biocorecrg/repository/docker/biocorecrg/mopmod

TABLE 3 | RAM peak (Mbytes) used by each of the pre-processing module.

Sample Number of reads (M) Base-calling Mapping QC FastQC alnQC alnQC2 Filtering Counting MultiQC

wt1 1.2 578 4,517 2,751 283 109 4,891 76 34 76

wt2 0.6 458 2,129 1,651 520 39 4,751 69 34 57

ko1 0.7 417 1,954 1,715 427 115 2,111 70 34 77

ko2 0.6 480 1,771 1,400 494 49 2,266 69 34 75

TABLE 4 | CPU time peak (min) used by each of the steps of the pre-processing module.

Sample Number of reads (M) Base- calling Mapping QC FastQC alnQC alnQC2 Filtering Counting MultiQC

wt1 1.2 33 1 4 1 1 2 1 9 1

wt2 0.6 67 1 3 1 1 1 1 4 1

ko1 0.7 79 2 3 1 1 2 1 6 1

ko2 0.6 66 1 3 1 1 1 1 4 1
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Integration of Base-Calling Algorithms in
the Docker Images
Due to the terms and conditions that users agree to when
purchasing Nanopore products, we are not allowed to distribute
Nanopore software (binaries or in packaged form like docker
images). While the original version of the MasterOfPores pipeline
includes both guppy and albacore, we are not legally allowed
to distribute it with the binaries. Therefore, here we only make
available a version where the binaries must be downloaded and
placed into a specific folder by the user. We expect future versions
of MasterOfPores will include these programs within the docker
image once this issue is solved.

CPU and GPU Computing Time and
Resources
The MasterOfPores workflow was tested both locally (using either
CPU or GPU) as well as in the cloud (AWS). Computing
times for each mode are shown in Table 1. CPU time was
determined using a maximum of 100 nodes simultaneously with
maximum 8 cores CPU per node (2.8–3.5 GHz, 80–130 Watt).
GPU time was computed using either GIGABYTE GeForce
RTX 1660 Ti (1536 CUDA cores @ 1770 MHz with 6GB of
GDDR6 vRAM memory, 120 Watt) or INNO3D GeForce RTX
2080 (2944 CUDA cores @ 1710 MHz with 8 GB of GDDR6
vRAM memory, 225 Watt) or NVIDIA Tesla V100 (5120 CUDA
cores + 640 Tensor cores @ 1462 MHz with 16 GB of HBM2
memory). For GPU computing, both system memory (RAM)
and GPU memory (vRAM) are used. Base-calling with guppy
typically uses 1 or 4.2 Gb of vRAM in fast and high accuracy
mode, respectively. As a result, only one base-calling process
can be performed on above mentioned cards in high accuracy
mode at given time. The execution time in the AWS EC2
p3.2xlarge instance involves reading files already placed in a
previously set-up S3 storage bucket but not writing back output
results into it.
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Liver cancer (LC) is the fourth leading cause of cancer-related deaths worldwide.
There is an urgent need to identify novel and reliable prognostic biomarkers for
LC in order to improve patient outcomes. N6-methyladenosine (m6A) is the most
common internal modification in eukaryotic mRNA and has been associated with
various cancers, although its roles in the prognosis of LC remains to be elucidated.
We analyzed the expression profiles of 15 m6A-related genes in the International
Cancer Genome Consortium (ICGC) LIRI-JP dataset, and applied consensus clustering
to stratify LC patients into two subgroups (Cluster 1 and Cluster 2). Cluster1 was
significantly correlated to lower tumor stage and longer overall survival (OS). Gene
set enrichment analysis showed that tumorigenic markers, including DNA repair, E2F
targets, G2M checkpoint, and MYC targets V1, were enriched in Cluster2. We then
constructed a prognostic risk model using three m6A-related genes that were identified
as independent factors affecting OS. The nomogram based on the risk model score
indicated good performance in predicting the 1-, 2- and 3-year survival of the LC
patients. In conclusion, m6A-related genes are potential prognostic markers and
therapeutic targets for LC.

Keywords: liver cancer, m6A, ICGC, epigenetic modification, prognosis

INTRODUCTION

Liver cancer (LC) is the fourth leading cause of cancer-related deaths worldwide (Villanueva, 2019).
The etiology of LC differs geographically due to differences in the prevalence of risk factors (Jiang
et al., 2019). For instance, chronic viral hepatitis infection is the most important risk factor in Asian
countries, whereas non-viral factors are the major causative agents of LC in the Western countries
(Yau et al., 2019). In East Asia, hepatitis B virus (HBV)- and hepatitis C virus (HCV)-related LC
accounts for more than 80% of the cases (Liu et al., 2019a).

Liver tumorigenesis involves multiple steps with overlapping and interacting signaling pathways
(Arzumanyan et al., 2013). However, the precise underlying mechanisms have not been completely
elucidated so far. N6-methyladenosine (m6A), the most common internal post-transcriptional
modification in eukaryotic mRNA, associates with many biological processes such as stress
responses, stem cell differentiation, gametogenesis, and T Cell Homeostasis (Liu et al., 2019b; Zhou
et al., 2019), and is mediated by factors that mainly include the “writers” (METTL3, METTL14,
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WTAP, RBM15, and ZC3H13), “readers” (YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3, and HNRNPC), and “erasers”
(FTO, ALKBH3, and ALKBH5) (Yang et al., 2018; Sun
et al., 2019). Writers (m6A methyltransferase enzymes) and
erasers (m6A demethylase enzymes) regulate the abundance,
prevalence, and distribution of m6A, whereas readers (m6A
binding proteins) modulate m6A modification-related mRNA
processing, covering splicing, editing, localization, export,
stability, translation, and decay (Zhou et al., 2019; Esteve-Puig
et al., 2020). Recent reviews summarized that m6A-dependent
mRNA regulation plays a crucial part in the development and
progression of human cancers, such as HCC, acute myeloid
leukemia (AML), glioblastoma, lung cancer, breast cancer,
cervical cancer, and prostate cancers (Liu et al., 2019b; Esteve-
Puig et al., 2020). Dysregulation of writers, readers, and erasers
are pertinent to tumor initiation and progression, metastasis, and
cancer drug resistance (Esteve-Puig et al., 2020). For example,
METTL3 and FTO promote pathogenesis through stabilizing
specific sets of mRNAs in breast cancer and AML, respectively
(Tan et al., 2015; Vu et al., 2017). Similarly, alterations of
readers such as YTHDC2 and YTHDF2 are related to colorectal
cancer and hepatic cancer, respectively (Tanabe et al., 2016;
Chen et al., 2018).

Hepatocellular carcinoma (HCC) is classified into different
subclasses based on pathological characteristics and/or
transcriptomes (Hoshida et al., 2009; Calderaro et al., 2017), and
no study has so far reported prognostic subclasses of LC based
on the expression of m6A-related genes. Since the prognosis of
LC patients depends on the etiology and the ethnicity and/or
geographical region (Hashimoto et al., 2017; Villanueva, 2019),
and as East Asia has the highest incidence of LC (Bray et al.,
2018), we therefore analyzed the m6A profile in an East Asian
LC cohort (LIRI-JP dataset) from the International Cancer
Genome Consortium (ICGC) database. The aim of this study
was to determine the prognostic value of the m6A-related gene
signature in LC.

MATERIALS AND METHODS

Datasets
The RNA sequencing data and corresponding clinicopathological
information of LC patients were extracted from the ICGC (LIRI-
JP dataset1) and The Cancer Genome Atlas (TCGA, LIHC
dataset2) databases in May 2019. The gene expression data from
TCGA was estimated as Transcripts Per Kilobase of the exon
model per Million mapped reads (TPM). In the LIRI-JP dataset,
the clinical stages of the patients were classified as per the Stage
of Liver Cancer Study Group of Japan (LCSGJ) guidelines. The
simple somatic mutation data was also retrieved for calculating
the tumor mutation burden (TMB). The data of non-solid
tissues and non-primary tumors, and of samples lacking sufficient
clinical information were excluded. In case two or more samples
were derived from the same patient, the mean value was used

1https://icgc.org/
2http://cancergenome.nih.gov/

for analysis. Finally, 231 LC patients and 199 healthy controls
from the LIRI-JP dataset, and 370 LC patients from the LIHC
dataset were selected. The clinicopathological data of all patients
are summarized in Supplementary Table S1.

Bioinformatics Analysis
Fifteen m6A-related genes were extracted from the LIRI-JP
dataset (Supplementary Table S2). We analyzed the expression
of 15 m6A-related genes in LC patients and normal tissue
using the Limma package. LC patients were then clustered
into different subgroups using the “Consensus Cluster Plus”
package. In order to functionally annotate differentially expressed
genes (DEGs) in different subgroups, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted using the “clusterProfiler”
package (Yu et al., 2012), and the Gene set variation
analysis (GSVA) R package was used to analyze significant
differences between the subgroups (Hanzelmann et al., 2013).
Gene set enrichment analysis (GSEA) was used to identify
the hallmarks of tumor sets in different LC subgroups
(Liberzon et al., 2015).

The prognostic values of the m6A-related gene were
determined by univariate Cox regression analysis in the LIRI-JP
dataset in terms of hazard ratio (HR) and 95% confidence
interval (CI). Six prognostic relevant genes (P < 0.05) were then
used for the multivariable Cox analysis by step-wise forward
and backward selection approaches as well as the smallest
Akaike information criterion (AIC). Finally, a risk model was
constructed using three genes, and the risk score (designated
as riskScore) was calculated for each patient in the LIRI-JP
and LIHC dataset using the formula: riskScore = Coefgene1 ×

Expgene1 + Coefgene2 × Expgene2 + Coefgene3 × Expgene3,
where Coef is the coefficient and Exp is the gene expression
value. The clinicopathological factors and riskScore were used
as variates in the univariate and multivariate Cox proportional
hazards (PH) regression analyses to determine the independent
predictive factors of overall survival (OS) in both datasets.
A nomogram for 1-, 2-, and 3-year OS was then constructed
based on the independent predictive factors, and its predictive
performance was evaluated by C-index (Harrell et al., 1996).
The calibration curve of the nomogram was used to assess the
congruency between the predicted and actual survival. Bootstraps
with 1,000 resamples were used to quantify model overfit, and a
decision curve analysis (DCA) was made to evaluate the clinical
efficacy (Vickers et al., 2008). The prediction power of the
distinct parameters was determined using the area under receiver
operating characteristic (ROC) curve (AUC) values.

Statistics
The expression level of 15 genes in the LC patients and controls
was analyzed using the Wilcoxon rank sum test. The correlation
between genes was determined by Pearson’s analysis. Patients
were divided into different groups by consensus analysis or
riskScore (median value as the cutoff), and the distribution
of clinical parameters between the subgroups was determined
by Fisher’s exact test. The OS of LC patients in the different
subgroups was analyzed by the Kaplan–Meier method and
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compared with the log-rank test. All statistical analyses were
performed by R v3.6.03.

RESULTS

Differentially Expressed m6A-Related
Genes Classify Liver Cancer Patients
Into Distinct Clinical Clusters
Analysis of the expression patterns of m6A-related genes
in the LIRI-JP dataset identified 14 DEGs in this study,
including KIAA1429, HNRNPC, METTL3, YTHDF3, YTHDF1,
FTO, WTAP, YTHDF2, ALKBH5, ZC3H13, YTHDC2, ALKBH3,
RBM15, and YTHDC1. Among these DEGs, 13 genes were up-
regulated including KIAA1429, HNRNPC, METTL3, YTHDF3,
YTHDF1, FTO, WTAP, YTHDF2, ALKBH5, YTHDC2, ALKBH3,
RBM15, and YTHDC1, while ZC3H13 was down-regulated
(Figure 1A and Supplementary Table S2). In addition,
we analyzed the correlation among m6A-related genes. The
KIAA1429 and YTHDF3 were highly correlated with each other,
both of them were positively correlated with METTL14 and
negatively correlated with ALKBH3, respectively. For “readers,”
YTHDF1 was positively correlated with YTHDF2, HNRNPC,
and YTHDC1. For “writers,” WTAP was positively correlated
with RBM15, METTL3, and YTHDC1. For “erasers,” FTO
was positively correlated with ALKBH3 and ZC3H13, whereas
ALKBH3, and ZC3H13 were negatively correlated with each
other (Figure 1B). According to the consensus clustering
analysis, the LC patients were divided into Cluster 1 (n = 138)
and Cluster 2 (n = 93) (Figure 2A and Supplementary
Figure S1). Then, we compared the clinical features of these
two Clusters. Cluster 1 was significantly correlated with lower

3https://www.r-project.org/

tumor stage (P < 0.05), but not with gender and age (Figure 2B).
Figure 2C showed that prolonged overall survival (OS) in
patients with Cluster 1, and the 3-year survival rates of Cluster
1 and Cluster 2 subgroups were 87.3 and 73.8%, respectively
(P < 0.05). In addition, YTHDF2 levels were significantly lower
in stage 1 and 2 tumors compared to that in stages 3 and
4 (P < 0.01), while similar trends were not observed with
METTL3 and YTHDC2 (Supplementary Figure S2). Then, we
identified 761 DEGs between Cluster 1 and Cluster 2 with
| fold change| > 1 and FDR < 0.05 as the criteria. GO
and KEGG pathway analyses showed that these DEGs mainly
participated in malignancy-related pathways, including PPAR
signaling pathway, retinol metabolism, chemical carcinogenesis,
and xenobiotics- and drug metabolism-related cytochrome P450
(Figures 2D,E). GSVA resulted in similar findings (Figures 2F,G).
Furthermore, GSEA indicated that hallmarks of tumor sets were
remarkably enriched in DNA repair (NES = 1.74, normalized
P < 0.05), E2F targets (NES = 1.91, normalized P < 0.05),
G2M checkpoint (NES = 1.91, normalized P < 0.05), and MYC
targets V1 (NES = 1.82, normalized P < 0.05) in the Cluster 2
subgroup (Figure 2H).

Three m6A-Related Genes Form a
Prognostic Risk Signature in Liver
Cancer
Six m6A-related genes significantly correlated with OS by
Univariate Cox analysis (P < 0.05), of which METTL3, YTHDC2,
and YTHDF2 were identified as independent predictors of OS
and the coefficients were obtained by the multivariate analysis
(Table 1). A risk model was constructed using these genes,
and the riskScore was calculated for LC patients. Using the
median riskScore as the cutoff value, we classified the LC
patients into the high and low risk groups and observed poorer
OS in the former (P < 0.001; Figure 3A). In addition, the

FIGURE 1 | Expression and correlation of m6A-related genes in liver cancer. (A) The expression levels of 15 m6A-related genes in liver cancer (Normal = 199,
Tumor = 231). The heatmap shows the fold changes, with green indicates down-regulated genes, and red indicates up-regulated genes. (B) Pearson’s correlation
analysis of the 15 m6A-related genes. Blue indicates significant negative correlation and red indicates positive. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 2 | Differential tumor stage and overall survival and functional annotation of liver cancer in Cluster 1 (n = 138) and Cluster 2 (n = 93) subgroups.
(A) Consensus clustering matrix for k = 2. (B) Heatmap and clinicopathologic features of the two clusters defined by the m6A-related genes consensus expression.
Green and red in the heat map indicate down-regulated and up-regulated genes, respectively. (C) Kaplan–Meier overall survival curves for liver cancer patients in
LIRI-JP dataset. (D,E) Functional annotation of differentially expressed genes between Cluster 1 and Cluster 2 subgroups by GO terms (D) and KEGG pathway (E).
(F,G) GO terms (F) and KEGG pathway (G) significantly enriched in GSVA. (H) Genes with higher expression in Cluster 2 subgroup were enriched for hallmarks of
tumor sets by GSEA.

risk subgroups differed significantly in terms of tumor stage
(P < 0.01) and gene cluster (P < 0.001) (Figure 3B), but
not age and gender in the LIRI-JP dataset (Supplementary
Figure S3). The AUC values showed a better predictive ability
of the riskScore for 3-year OS compared to the aforementioned
parameters (Figure 3C). The multivariate analysis confirmed
that riskScore, gender and stage were independent prognostic
factors for the OS (stage and riskScore, P < 0.001; gender,
P < 0.01) (Figures 3D,E). Furthermore, the female and Stage 4
LC patients had poorer prognosis compared to the male patients
and those at other tumor stages, respectively (Supplementary
Figures S4A–C). Interestingly, patients in the low risk subgroup
stratified further by gender (female, P < 0.001; male, P < 0.05)
or age (≤65, P < 0.01; >65, P < 0.05) had relatively longer
OS compared to those in the high risk subgroup (Figures 3F–I),

whereas the tumor stage was not affected by the riskScore
(Supplementary Figures S4D–G).

Validation of the Risk Signature in TCGA
Cohort
In the TCGA dataset, METTL3, YTHDC2, and YTHDF2 were
also significantly upregulated in the LC patients relative to
the controls (Supplementary Table S2), and the riskScore
was an independent prognostic factor for OS in this cohort
(Figure 4A). We also stratified these patients into the high
and low riskScore groups as with the LIRI-JP cohort, and
observed significantly poorer prognosis in the former (P < 0.01)
(Figure 4B). Furthermore, the low riskScore group had longer
OS compared to the high riskScore group in the Asian cohort
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TABLE 1 | Univariate and multivariate analyses of fifteen m6A-related genes in LIRI-JP dataset.

Gene Univariate analysis Multivariate analysis

HR 95% CI P Coef HR 95% CI P

ALKBH5 1.06 1.01–1.11 0.017 – – – –

FTO 1.04 0.90–1.20 0.641 – – – –

HNRNPC 1.02 1.01–1.03 0.005 – – – –

KIAA1429 1.07 1.00–1.15 0.066 – – – –

METTL14 0.92 0.81–1.05 0.211 – – – –

METTL3 1.05 1.03–1.08 9.75E-05 0.039 1.04 1.01–1.07 0.004

RBM15 1.24 0.99–1.55 0.066 – – – –

WTAP 1.03 1.00–1.07 0.101 – – – –

YTHDC1 1.01 0.89–1.13 0.929 – – – –

YTHDC2 0.81 0.70–0.95 0.009 -0.176 0.84 0.72–0.98 0.024

YTHDF1 1.05 1.00–1.10 0.034 – – – –

YTHDF2 1.07 1.02–1.12 0.005 0.035 1.04 0.99–1.09 0.142

ZC3H13 0.98 0.94–1.01 0.155 – – – –

ALKBH3 0.96 0.87–1.06 0.436 – – – –

YTHDF3 1.00 0.96–1.05 0.939 – – – –

FIGURE 3 | Risk signature with three m6A-related genes in LIRI-JP dataset. (A) Kaplan–Meier overall survival curves for liver cancer patients classified into high and
low risk groups based on the riskScore. (B) The differential clinicopathological features was compared between the high and low risk groups. Green and red in the
heat map indicate down-regulated and up-regulated genes, respectively. (C) ROC curves displayed the predictive power of the riskScore, age, gender, tumor stage
and cluster for the 3-year survival rate. (D) Univariate and (E) multivariate Cox regression analyses of the association between clinicopathological factors and overall
survival. (F–I) Prognostic value of the riskScore stratified by (F,G) gender and (H,I) age. LCSGJ: Liver Cancer Study Group of Japan, **P < 0.01, ***P < 0.001.

(P < 0.01) (Figure 4C). Although there was no significant
difference, a trend of better survival in the low risk group
was observed in the non-Asian cohort (Figure 4D). The AUC

values showed that the riskScore had moderate predictive
ability for 1-, 2-, and 3-year OS in the TCGA dataset
(Supplementary Figure S5A), and the AUC values in the
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FIGURE 4 | Validation of the risk signature in TCGA cohort. (A) Multivariate Cox regression analysis of the association between clinicopathological factors and overall
survival. Prognostic value of the riskScore in TCGA cohort (B) and stratified by (C,D) race. AJCC, American Joint Committee on Cancer.

Asian cohort were higher than those in the non-Asian cohort
(Supplementary Figures S5B,C).

Construction and Validation of
Nomogram
The 231 LC patients in the LIRI-JP dataset were arbitrarily
separated into the training (n = 116) and validation cohort
(n = 115) with a 5:5 split ratio (seeds = 100). In the training
cohort, all independent prognostic factors were included in the
predictive nomogram for OS (Figure 5A), and the points for each
predictor are listed in Supplementary Table S3. The calibration
curves indicated good congruency between the predicted and
observed 3-year OS (Figure 5B). The Harrell’s concordance-
index (C-index) and 3-year AUC value of the nomogram were
0.797 and 0.822, respectively, which were higher compared to
that of the riskScore, gender, or tumor stage (Figure 5C and
Table 2). Similar outcomes were obtained in the validation as well
as the entire cohort (Figures 5D,E and Table 2). In addition, DCA
curves showed a greater threshold of the nomogram compared
to the riskScore or tumor stage (Figure 5F), indicating that the
nomogram has greater discriminatory capacity and accuracy for
predicting survival compared to the other factors.

The m6A-Related Nomogram Has High
Predictive Power
Immune checkpoint proteins including the programmed cell
death protein 1 (PD-1/PDCD1), programmed death-ligand-
1 (PD-L1/CD274), and cytotoxic T-lymphocyte associated
antigen 4 (CTLA-4) are established prognostic markers for
LC patients (Cariani and Missale, 2019; El Dika et al., 2019;
Johnston and Khakoo, 2019). Recent studies showed that tumor
mutation burden (TMB) is also significantly associated with the
susceptibility to anti-tumor immunotherapy, and a higher TMB
indicates better prognosis in many cancer types (Peng et al.,
2019; Wang and Li, 2019). The m6A-related gene YTHDF1
was also closely related to the prognosis of HCC in the TCGA
dataset in a previous study (Zhao et al., 2018). We compared the
AUC values of our established nomogram with these biomarkers,
and found that the predictive power of the nomogram was
superior for 1-, 2-, and 3-year OS in the LIRI-JP dataset
(Figure 6). Finally, pathway enrichment analysis by Metascape4

indicated that METTL3, YTHDC2, and YTHDF2 and their
100 most strongly correlated co-expressed genes were enriched

4http://metascape.org/
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FIGURE 5 | Construction and validation of nomogram. (A) Nomogram predicting 1-, 2- and 3-year OS of patients with liver cancer. (B) Calibration plot for predicting
patient OS at 3-year. ROC curves of the nomogram and clinicopathological factors for 3-year OS prediction in the (C) training cohort, (D) validation cohort and (E)
entire cohort. (F) Decision curves of the nomogram, tumor stage and riskScore for predicting OS.

TABLE 2 | Comparison of C-index between the nomogram and other parameters
in LIRI-JP cohort.

C-index (95% confidence interval)

Training cohort Validation cohort Entire cohort

Nomogram 0.797 (0.715–0.879) 0.800 (0.718–0.882) 0.791 (0.732–0.850)

riskScore 0.709 (0.599–0.819) 0.714 (0.596–0.832) 0.706 (0.626–0.786)

Stage 0.667 (0.549–0.785) 0.729 (0.637–0.821) 0.699 (0.625–0.773)

Gender 0.591 (0.475–0.706) 0.566 (0.454–0.678) 0.579 (0.499–0.659)

for functions like mRNA processing, DNA repair, covalent
chromatin modification, and regulation of the cell cycle, which
are closely involved in tumorigenesis (Figure 7).

DISCUSSION

Although numerous genes and non-coding RNAs associated with
LC progression have been identified in recent years (Tsuei et al.,
2004; Yuan et al., 2014; Chua et al., 2015; Li et al., 2016; Mattu
et al., 2016; Xiao et al., 2016; Zhang et al., 2016; Liu et al.,
2017; Zhao et al., 2018; Zhou et al., 2019), the prognosis of
the patients remains disappointing. Therefore, it is imperative
to identify novel and reliable prognostic biomarkers or models
in order to improve the clinical outcomes of LC patients. LC
is a highly heterogenous cancer, and patient prognosis depends
significantly on the geographical region and etiology. Chronic
infection with the hepatitis virus is a major risk factor of LC
in East Asia, whereas alcohol consumption and non-alcoholic
fatty liver disease are the main causes in Western countries. We

analyzed the gene expression data of East Asian LC patients from
the ICGC LIRI-JP dataset in order to determine the prognostic
potential of m6A-related genes in LC. We found that six m6A-
related genes were significantly associated with the malignant
progression and prognosis of LC, and a risk signature consisting
of three of these genes was predictive of the prognosis.

We used consensus clustering to stratify the patients into
two subgroups based on the expression of m6A-related genes,
which showed significant differences in OS and the enriched
pathways associated with tumor development and progression.
The prognostic risk model also stratified the patients in the
LIRI-JP cohort into two groups based on the 3-gene riskScore,
which showed greater predictive performance compared to single
clinical indicators. Multivariate Cox analysis revealed that the
riskScore was an independent prognostic factor for LC in
the LIRI-JP and LIHC datasets. The nomogram, constructed
using the riskScore and clinicopathological features, further
increased the predictive power for OS compared to the riskScore,
immunotherapy-related genes, or TMB alone. Interestingly, in
the TCGA dataset, the riskScore was able to make a distinction for
the OS in the Asian cohort, but not in the non-Asian cohort. This
difference may be due to the fact that risk factors for LC differ
across ethnicities.

The three genes (YTHDC2, YTHDF2, and METTL3)
incorporated in the prognosis risk model were upregulated in the
LC patients in both LIRI-JP and LIHC datasets, which are similar
to those of previous studies (Yuan et al., 2014; Chen et al., 2018).
YTHDF2 and METTL3 have previously been reported as tumor
suppressors in HCC, and as oncogenes in pancreatic cancer and
acute myelocytic leukemia (Cui et al., 2017; Wang et al., 2017;
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FIGURE 6 | Compare the AUC values of the nomogram with different biomarkers. ROC curves of the nomogram and different biomarkers for (A) 1-, (B) 2- and (C)
3-year overall survival prediction in LIRI-JP cohort.

FIGURE 7 | Functional prediction of three m6A-related genes involved in the risk signature. (A) Significantly enriched pathways of the three genes and their
coexpressed genes. (B) The map of functional enriched pathways. Each node represents a GO term. Node size represents the number of gene in the pathway.
Different colors represent different pathways.
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Zhong et al., 2019). Chen et al. (2018) demonstrated that
overexpression of METTL3 in HCC patients have poor prognosis.
Further, knockout of METTL3 suppresses HCC tumorigenicity
and lung metastasis by modulation of cytokine signaling 2
through a YTHDF2-dependent mechanism (Chen et al., 2018).
Zhong et al. (2019) demonstrated that YTHDF2 acts as an
HCC suppressor via promoting the degradation of epidermal
growth factor receptor mRNA. Hou et al. (2019) reported that
a high expression of YTHDF2 gives rise to a better prognosis
of HCC patients, and represses tumor growth and angiogenesis
by degradation of interleukin 11 and serpin family E member
2 mRNAs. Tanabe et al. (2014) reported that YTHDC2 acts as a
tumor suppressor in the LC cell line by perhaps recruiting c-Jun
and activating transcription factor 2 to the YTHDC2 promoter.
The above three m6A-related genes may affect HCC growth and
metastasis by regulating the stability of multiple target genes.

Recent studies showed that m6A-related genes could be
potential prognostic markers for predicting patient survival in
a variety of cancers. These genes significantly correlated and
interacted with each other which indicated that the cross-talk
exists among the m6A-related genes (Li et al., 2019). Because of
a complex reciprocal regulatory relationship among the m6A-
related genes, it seems necessary to analyze prognostic and
predictive values using a signature comprised of multiple m6A-
related genes in patients with distinct tumor types. Kandimalla
et al. (2019) reported that a gene expression signature consisted
of seven m6A-related regulators characterized as a robust
prognostic and predictive signature in 13 human cancers
including HCC (relapse-free survival). This study offered a
landscape of the biological and clinical characteristics pertaining
to m6A machinery in tumor patients (Kandimalla et al., 2019).
However, the external validation cohort was applied to colorectal
cancer, gastric cancer, breast cancer, and ovarian cancer, but
not to HCC for survival analysis. In our study, we successfully
established a prognostic signature comprised of three m6A-
related genes for predicting survival of HCC patient, using an
additional RNA-seq dataset as external validation avoiding biased
results to some extent.

There were some limitations in this study. First, an additional
LC patient cohort for a prognostic study was needed to
validate the predictive power of our prognostic signature in the
future. Second, experimental studies that focus on the molecular
mechanisms remain necessary to investigate the functions of
these m6A-related genes in LC.

In summary, m6A-related genes have a prognostic value in LC,
and the constructed riskScore can identify patients who are high
risk and can enable individualized therapy. Our findings have to

be validated in larger cohorts, and further studies are also needed
to elucidate the mechanism of these m6A-related genes in LC.
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It has been known for a few decades that transcripts can be marked by dozens of
different modifications. Yet, we are just at the beginning of charting these marks and
understanding their functional impact. High-quality methods were developed for the
profiling of some of these marks, and approaches to finely study their impact on specific
phases of the RNA life-cycle are available, including RNA metabolic labeling. Thanks
to these improvements, the most abundant marks, including N6-methyladenosine, are
emerging as important determinants of the fate of marked RNAs. However, we still lack
approaches to directly study how the set of marks for a given RNA molecule shape
its fate. In this perspective, we first review current leading approaches in the field.
Then, we propose an experimental and computational setup, based on direct RNA
sequencing and mathematical modeling, to decipher the functional consequences of
RNA modifications on the fate of individual RNA molecules and isoforms.

Keywords: RNA modification, m6A, direct RNA sequencing, metabolic labeling, nascent RNA, RNA metabolism,
long reads sequencing, nanopore

INTRODUCTION

More than a 100 RNA modifications have been identified since the 1950s (Boccaletto et al., 2018).
They were first observed in abundant populations of non-coding transcripts (e.g., tRNAs) and in
a second moment, due to the improvement of profiling techniques, their pervasive presence was
confirmed in coding transcripts (Roundtree et al., 2017). Different modifications were found to
co-occur on the same RNA molecule (Jackman and Alfonzo, 2013). In some cases, rather than a
mere stochastic effect due to the modification frequency, their co-occurrence suggested reciprocal
regulation mechanisms (Xiang et al., 2018).

The N6-methyladenosine (m6A) emerged as one of the most abundant modifications of coding
transcripts (Roundtree et al., 2017), and it was shown to be involved in the regulation of various
biological processes, including cellular differentiation (Lin and Gregory, 2014; Wang Y. et al.,
2014; Chen et al., 2015; Geula et al., 2015; Zhang et al., 2017a), meiosis (Bushkin et al., 2019),
heat stress response (Zhou et al., 2015), gametogenesis (Wojtas et al., 2017), and neurons activity
(Engel et al., 2018). Furthermore, aberrant m6A patterning was shown to be associated with diseases
insurgence and progression (Tong et al., 2018; Ianniello et al., 2019; Yang et al., 2019). A number
of effectors were identified that are responsible for m6A deposition (e.g., METTL3 and METTL14)
(Liu et al., 2014; Ping et al., 2014; Schwartz et al., 2014), recognition (e.g., members of the YTH
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domain family) (Luo and Tong, 2014; Xu et al., 2014; Zhu
et al., 2014; Xiao et al., 2016), and removal (FTO and ALKBH5)
(Jia et al., 2011; Zheng et al., 2013), suggesting that this mark
could be dynamically regulated. Genome-wide m6A profiling,
through immunoprecipitation with m6A-specific antibodies
followed by short-reads RNA sequencing (srRNA-seq), revealed
the preferential, while not exclusive, association of the mark
with the central adenosine in the RRACH sequence context
around the stop codon of messenger RNAs (R = G or A and
H = A, C, or U) (Dominissini et al., 2012; Meyer et al., 2012).
Notably, m6A marks have been linked to different biological
processes depending on their relative position within a transcript,
suggesting a context-specific role for this mark (Shi et al., 2019).
However, we have only started revealing the rules that determine
the preference of the mark for specific bases, and their impact
on specific downstream biological processes (Yue et al., 2018).
Altogether, m6A was identified as a key determinant of RNA
decay (Wang X. et al., 2014) and translation (Wang et al., 2015),
while discordant reports were published about its involvement
in splicing regulation (Haussmann et al., 2016; Xiao et al., 2016;
Bartosovic et al., 2017; Ke et al., 2017; Darnell et al., 2018;
Kasowitz et al., 2018; Louloupi et al., 2018).

RNA metabolic labeling (Dolken et al., 2008) emerged as
a powerful approach that not only allows to characterize the
association of m6A, or other RNA modifications, with nascent
transcripts, but also allows to quantify the impact of these marks
on the dynamics of all key steps of the RNA life cycle, and
specifically on the kinetic rates of RNA synthesis, processing,
and degradation. The application of this technique confirmed the
role of m6A on the regulation of RNA stability, and suggested
its influence on the dynamics of RNA synthesis and processing
(Furlan et al., 2019b).

The application of the current leading approaches for profiling
RNA modifications, such as m6A, generated important findings
about the functional role of these marks (Roundtree et al., 2017).
However, these approaches are heavily based on srRNA-seq, and
are afflicted by a number of downsides: different methods were
developed for various modifications, they only allow to indirectly
map the targeted mark, they are poorly suitable for analyses at
the level of single molecules and isoforms, they cannot be readily
used to profile co-occurring modifications, and they are difficult
to be paired with RNA metabolic labeling. In this perspective,
we discuss how direct RNA sequencing (such as nanopore-based
sequencing of native RNAs) is rapidly emerging as a powerful
alternative approach, which has the potential to overcome these
issues, bursting the field of epitranscriptomics.

EXPERIMENTAL AND COMPUTATIONAL
APPROACHES FOR THE
QUANTIFICATION OF RNA KINETIC
RATES

The state of the art approach to infer the kinetic rates governing
the RNA life cycle – synthesis of premature RNA, its processing
into mature RNA, and the degradation of the latter – is based

on the joint quantitative analysis of total and nascent RNA
(Figure 1). While the former is simply obtained through RNA-
seq, the latter can be profiled through RNA metabolic labeling. In
this technique, a nucleotide carrying an exogenous modification
(e.g., 4-thiouridine, 4sU) is provided in the cells’ medium, and
is incorporated into nascent transcripts during the labeling time.
Thus, the presence of the exogenous modification can be used
for the physical (Dolken et al., 2008) or in silico (Baptista and
Dölken, 2018) separation of newly synthetized transcripts from
pre-existing ones.

Mathematical modeling is then used for the gene-level
quantification of RNA kinetic rates, for example as implemented
and documented in the INSPEcT R/Bioconductor library (de
Pretis et al., 2015; Furlan et al., 2019a). Briefly, when short
labeling times are adopted (<1 h), the quantification of nascent
RNA for each gene provides a proxy for the rate of synthesis of
premature RNA. Then, total RNA-seq reads are used to measure
the abundance of premature and mature transcripts: reads that
entirely map to one or more exons are used to quantify mature
RNA species, and the remaining mapped reads (entirely, or
partially, covering introns) are used for the quantification of
premature species. Finally, the combination of synthesis rate
and premature RNA abundance is used to quantify the rate of
processing, while the combination of synthesis rate and mature
RNA abundance allows the quantification of degradation rates
(Furlan et al., 2019a).

The joint analysis of the information gained from RNA
metabolic labeling experiments, together with the profiling of
specific RNA modifications, would be extremely powerful for
the study of the functional consequences of these marks on
specific RNA life cycle steps. However, while the application of
metabolic labeling for the profiling of nascent RNA (Dolken
et al., 2008) and for the quantification of the RNA kinetic
rates (Dolken et al., 2008; Miller et al., 2011; Rabani et al.,
2011, 2014; de Pretis et al., 2015; Furlan et al., 2019a) is an
established approach, its combination with the profiling of RNA
modifications is more problematic. In fact, the joint profiling of
nascent and modified RNA requires the identification of at least
two RNA modifications: the endogenous mark (e.g., m6A), and
the exogenous modification used for the labeling (e.g., 4sU). As
we discuss in the following sections, this is a complex task that
can be only indirectly implemented through current approaches.

DETECTION OF RNA MODIFICATIONS
THROUGH SHORT-READS RNA
SEQUENCING

Numerous protocols based on srRNA-seq were developed
for the identification of either endogenous (e.g., m6A) or
exogenous (e.g., 4sU) RNA modifications. A first class of methods
is based on the enrichment of modified RNAs before the
sequencing. This relies either on the use of specific antibodies
[e.g., MeRIP-seq for m6A detection (Dominissini et al., 2012;
Meyer et al., 2012)], or the use of enzymes involved in the
metabolism of the modification [e.g., tRNA methyltransferase
DnmA (Muller et al., 2013)], or on the availability of tags such
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FIGURE 1 | Quantification of the RNA kinetic rates through RNA metabolic labeling coupled with srRNA-seq. (A) The key steps of the RNA life cycle, and the
corresponding RNA kinetic rates: synthesis (k1) of premature RNA, processing (k2) of premature into mature RNA, and degradation (k3) of mature transcripts.
(B) Incorporation of the uridine analog 4sU into newly synthetized transcripts. (C) Pre-existing and nascent RNA purification and sequencing through srRNA-seq.
(D) Quantification of premature (P), mature (M), and nascent (N) RNA from srRNA-seq reads. (E) RNA life cycle mathematical modeling and quantification of the RNA
kinetic rates in the steady-state limit.

as biotin on the modified residues [e.g., 4sU-based RNA
metabolic labeling (Dolken et al., 2008)]. These techniques
do not provide neither the exact modification site (they are
limited to 100–200 bp resolution), nor a precise quantification
of the proportion of modified transcripts (Molinie et al.,
2016), despite the development of ad hoc experimental (Sun
et al., 2012) and computational (de Pretis et al., 2015)
normalization techniques. Indeed, an alternative approach,
m6A-LAIC-seq (Molinie et al., 2016) has been developed
that relies on spike-ins to provide a precise quantification
of the m6A abundance, at the cost of skipping the RNA
fragmentation step and losing positional information on the
mark. A second class of methodologies is based on the
identification of RNA modifications signatures in the retro-
transcribed cDNA. One approach belonging to this class exploits
the early interruption of retrotranscription at the modification
site to produce specific truncation signatures [e.g., ICE-seq for
inosine detection (Sakurai et al., 2010)]. Alternative approaches
were developed to retro-transcribe the modified bases and their
native counterparts to different nucleotides, thus inferring the
site of the modification based on specific mismatches in the
reads alignment (Baptista and Dölken, 2018). For example,
SLAM-seq allows the in silico identification of reads derived
from nascent RNAs by inducing the pairing of alkylated 4sU to
guanines (Herzog et al., 2017). These methods markedly increase
the resolution, but are typically semi-quantitative, suffering
from low sensitivity (Neumann et al., 2019). Hybrid techniques

were also developed. For example, methylation induced cross-
linking and immunoprecipitation (miCLIP) combines m6A-
immunoprecipitation with the antibody cross-linking, leading
to conversion and truncation events. Their identification in
the sequencing results allows the mapping of m6A at base-
resolution (Linder et al., 2015). However, this method is
affected by low crosslink efficiency, reducing the sensitivity.
Recently, two novel approaches were developed that do not rely
on immunoprecipitation. MAZTER-seq (Garcia-Campos et al.,
2019) allows the quantitative and base-resolution identification of
m6A marks, relying on the use of a restriction enzyme that cuts
only when the target site is not methylated. As a downside, the
mapping is limited to the identification of m6A marks in specific
context sites (16% of all expected m6A sites in mammals). DART-
seq (Meyer, 2019) recruits APOBEC1 proteins at m6A sites
through readers of the YTH family, allowing the identification
of the marks by the detection of adjacent C to U mutations. It
was used in combination with srRNA-seq, with as little as 10 ng
of total RNA, and with long-reads RNA sequencing (lrRNA-seq),
leading to single transcript m6A detection. The key downside of
this method is the required cells transfection with APOBEC1-
YTH fusion protein. Finally, the ability to quantify the abundance
of m6A marks remains to be established.

A number of computational tools were developed that
are useful for calling RNA modifications on srRNA-seq data,
especially tailored toward the analysis of m6A marks in MeRIP-
seq datasets. exomePeak, while not originally developed for
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this task, is one of the most frequently adopted tools for the
identification of m6A peaks (Meng et al., 2013). Indeed, a detailed
protocol was described for its application on MeRIP-seq datasets
(Meng et al., 2014). This tool adopts a sliding window approach
with a conditional test relying on Poisson distributions. HEPeak
is an HMM-based tool dedicated to the identification of m6A
marks, claiming improved sensitivity and specificity compared to
exomePeak (Cui et al., 2015). From the same authors, MeTPeak
was later proposed that is able to take advantage of the variance
across replicates, and models the reads dependency across a
region (Cui et al., 2016). A number of tools were developed that
are dedicated to differential RNA methylation analysis, including
MeTDiff (Cui et al., 2018), FunDMDeep (Zhang S. Y. et al., 2019),
and RADAR (Zhang Z. et al., 2019). Finally, m6A viewer is a
Java stand alone application that supports detection, analysis, and
visualization of m6A marks, the former relying on the previously
described tools (Antanaviciute et al., 2017).

Besides the specific limitations of each technique, all available
protocols for the profiling of RNA modifications through srRNA-
seq share some key limitations. First, they require specific
reagents for each modification of interest, which currently limits
the profiling to a handful of modifications (Helm and Motorin,
2017). Second, the library preparations, and the sequencing
procedure, remove the RNA marks. As a consequence, most
available approaches for the modifications profiling are indirect,
reducing specificity and sensitivity (Helm and Motorin, 2017).
Third, the reduced length of srRNA-seq reads (50–300 bp) is
a major obstacle for the analysis of individual RNA molecules,
despite the development of methods to infer isoforms expression
from these data (Zhang et al., 2017b). As a consequence, the
assignment of individual or co-occurring modifications to a given
RNA molecule, or even to a given isoform, is not feasible. Fourth,
srRNA-seq protocols are not readily applicable to detect two (or
more) RNA modifications simultaneously.

Although recent interesting technical advances are starting
to appear [e.g., simultaneous detection of N1-methyladenosine,
5-methylcytosine, and pseudouridine (Khoddami et al., 2019)],
these methods highly depend on the specific combination of
marks. The reasons for this limitation are manifolds. Likely,
the methods for the profiling of different modifications should
be consecutively applied, and the output of one method
could be poorly suitable for the subsequent. For the same
reason, a high amount of starting material is likely to be
necessary, to avoid capturing only highly expressed transcripts.
Alternatively, numerous rounds of PCR would be necessary,
introducing amplification biases (Aird et al., 2011; Kebschull
and Zador, 2015). The limitations in specificity and sensitivity
of each method would combine. Moreover, it would be crucial
and cumbersome to develop normalization procedures for the
comparison of the results from each approach, possibly based on
spike-ins. Finally, it would be hard to keep track of the positional
information of each modification.

Things would get even more complicated when, in addition
to the mark of interest, the dynamics of RNA metabolism
are also of interest, which require the identification of an
exogenous modification as second mark. In this case, to quantify
the RNA kinetic rates of modified and unmodified RNAs, it

would be necessary to quantify all four possible combinations:
nascent/modified, nascent/unmodified, pre-existing/modified,
and pre-existing/unmodified transcripts (Figure 2). Currently,
the best approach to jointly identify 4sU and m6A would be
to start by separating nascent and pre-existing RNA using
4sU metabolic labeling and purification (Dolken et al., 2008).
Then, for each of these, the m6A-LAIC-seq protocol could be
applied to separate m6A methylated RNAs from unmethylated
transcripts. At the end, four samples per condition should
be prepared and sequenced. This approach is evidently very
complex and onerous, it would require a lot of starting
material and complicated downstream analyses, including spike-
ins based normalization of the datasets. For all these reasons,
the most common compromise is to profile m6A, and to
perform metabolic labeling through independent experiments
(Li et al., 2017; Furlan et al., 2019b). However, this type of
approach completely compromises the possibility of a direct
quantification of the dynamics of modified and unmodified
transcripts, since it only allows to quantify the dynamics of
the pool of transcripts for each gene, and then combine this
information with the expected degree of modification for that
population. Altogether, approaches based on srRNA-seq are
increasingly inadequate and could hamper the progress in the
field of epitranscriptomics.

LONG-READS DIRECT RNA
SEQUENCING FOR THE
IDENTIFICATION OF MODIFICATIONS IN
NATIVE RNAs

In the last few years remarkable efforts were dedicated to
overcoming the limitations of srRNA-seq based approaches
(Stark et al., 2019) for the identification of RNA modifications
within individual RNA molecules and isoforms. As a result, few
novel sequencing approaches that emerged recently allow rRNA-
seq. One platform, PacBio (developed by Pacific Biosciences),
exploits a sequencing by synthesis approach mediated by an
immobilized polymerase (Eid et al., 2009). Another one, which
will be the main focus in the next sections of this perspective,
was developed by Oxford Nanopore Technologies (ONT), and
consists of an array of thousands of nanopores which allow
a flow of ions across a dielectric membrane, thus generating
a measurable current. The active translocation of a molecule
of nucleic acids (either DNA, cDNA, or RNA) through each
pore, mediated by an engineered motor protein, results in a
sequence-specific perturbation of the measured current. In turn,
this signal can be exploited to infer the corresponding sequence of
nucleotides (Kasianowicz et al., 1996; Smith et al., 2015). lrRNA-
seq approaches were successfully used to study transcriptional
and post-transcriptional regulation in various physiological and
disease conditions (De Roeck et al., 2017; Aneichyk et al., 2018;
Anvar et al., 2018; Nattestad et al., 2018), including single-cells
(Byrne et al., 2017). Focusing on RNAs, these techniques can
produce single reads of up to 104 bases, with an average length of
almost 1 Kb for ONT (Workman et al., 2018). Hence, in a number
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FIGURE 2 | srRNA-seq based approach to quantify transcripts’ expression levels in all the four possible combinations given by the presence or absence of 4sU and
m6A RNA modifications. (A) RNA metabolic labeling, based on the incorporation of 4sU, is applied to separate the nascent portion of the transcriptome from the
pre-existing counterpart. (B) m6A-LAIC-seq is applied for both nascent and pre-existing RNAs to separate methylated from unmethylated transcripts. (C) cDNA
library preparation and sequencing for: pre-existing unmethylated RNAs, pre-existing methylated RNAs, nascent unmethylated RNAs, and nascent methylated
RNAs. (D) In silico reads alignment, counts quantification, and normalization to estimate transcripts’ expression levels across all the four conditions.

of cases, this allows the profiling of full-length RNA molecules,
and the fine characterization of their alternative isoforms. This
is especially true for mature transcripts, whose median length for
human and mouse mRNAs is around 2 Kb [based on the hg19 and
mm10 UCSC genome releases (Haeussler et al., 2019)]. Instead,
the likelihood of sequencing full-length premature transcripts
is lower. Indeed, their median open reading frame length is in
the 13–18 Kb range, although co-transcriptional splicing could

significantly reduce this figure (it is likely that some intron was
already excised before the completion of RNA synthesis).

The direct RNA sequencing approach developed by ONT
does not go through the conversion of RNA into cDNA, and
does not rely on amplification steps. For these reasons, the RNA
modifications are preserved and can induce specific alterations
in the current registered by the sequencer (Garalde et al.,
2018). Altogether, this approach represents a potential solution
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to most of the limitations of srRNA-seq discussed above, due
to its ability to directly identify any, and possibly multiple,
RNA modification in single, full-length molecules. dRNA-seq
was recently applied to study the transcriptome of viruses
(Moldován et al., 2018; Tombácz et al., 2018; Boldogkõi et al.,
2019; Depledge et al., 2019), yeast (Garalde et al., 2018), animals
(Jiang et al., 2019; Roach et al., 2019; Smith et al., 2019), and plants
(Zhao et al., 2019).

However, a number of limitations characterize the young field
of dRNA-seq. First, current dRNA-seq protocols are available
only for the sequencing of targeted, non-polyadenylated RNAs
(Keller et al., 2018; Smith et al., 2019) or polyadenylated RNAs.
This is due to the library preparation protocolos, which typically
targets polyA tails or specific 3′ sequences for ligating sequencing
adapters anchoring the motor protein. This limitation could
be addressed using adapters with random 3′ sequences, with
the risk of introducing a bias for recurrent RNA motifs, or
through in vitro polyadenylation of transcripts devoid of a polyA-
tail (Wongsurawat et al., 2018). Second, while the throughput
of dRNA-seq is rapidly growing, it currently compares to the
low- or mid-end coverage of srRNA-seq experiments. This
could limit the number of detectable transcripts, although,
importantly, the abundance of those that can be detected is well
correlated with high-coverage srRNA-seq data (Garalde et al.,
2018). This issue could be solved in the future by improving
the speed of translocation of RNAs across the nanopore, and/or
extending the sequencing time by prolonging the pores’ lifetime.
Noteworthy, given the same throughput in terms of sequenced
bases, lrRNA-seq vs srRNA-seq data have a substantial difference:
while the former allows detecting entire transcripts, the latter
offers a more unbiased sampling of any RNA fragment, thus
also covering a larger portion of the transcriptome (Soneson
et al., 2019). This could in part be obviated by a coarse RNA
fragmentation before the library preparation, and would also
reduce the 3′ coverage bias of dRNA-seq data, whose reads
start from a transcript’s 3′ end. A drawback of this approach
is that it would compromise the one-to-one correspondence
between reads and RNA molecules. Third, the accuracy of
base calling on dRNA-seq data is currently significantly lower
than srRNA-seq. When base calling errors occur at sites of
RNA modification, they are likely due to the inability of the
base caller’s to deal with changes in the signal originated by
those marks. However, these errors represent a small fraction
of incorrect base calls, due to the low number of marks per
transcripts (e.g., 2–3 m6A marks per RNA). Hence, reduced
base calling accuracy is not considered a major issue in the
field of RNA modifications but, on the contrary, represents
an opportunity for aiding the identification of modified bases
(Liu et al., 2019). Fourth, there could be limitations on the
detectability of specific RNA modifications. For example, in the
context of RNA metabolic labeling, the ability of dRNA-seq to
identify various (exogenous) modified nucleotides was tested
(Maier et al., 2019). This revealed that 4sU modified nucleotides,
commonly used in metabolic labeling through srRNA-seq, were
not compatible with the nanopores, leading to blockages during
the sequencing, although this issue was not confirmed in a
more recent report (Drexler et al., 2019). Instead, other marks,

such as 5-ethynyluridine (5eU), were found to be suitable for
these experiments.

In conclusion, this is a young and rapidly evolving research
field, based on a highly collaborative research community.
Hence, numerous labs are actively involved to find solutions or
improvements to all these limitations, which are likely to be fully
or partially overcome in the next few years (Rang et al., 2018).

COMPUTATIONAL TOOLS FOR THE
DETECTION OF MODIFICATIONS IN
LONG-READS DIRECT RNA
SEQUENCING

Recent and growing literature is available about the footprints
left by RNA modifications on dRNA-seq data, and how to
exploit them to detect RNA marks (Xu and Seki, 2019).
Differences in current levels between native bases and their
modified counterparts were reported for m6A, m5C, m7G, and
pseudouridine (Garalde et al., 2018; Workman et al., 2018; Smith
et al., 2019). Moreover, the increase of base miscalls frequency
in concomitance to modified sites were observed next to “A-
to-I,” 7-methylguanosine and pseudouridine sites (Workman
et al., 2018; Smith et al., 2019). These observations led to the
development of specific computational tools for the detection of
RNA modifications.

Tombo, an official tool provided by ONT, requires a model of
the signal generated by the modification in all possible sequence
contexts, to be used as a baseline for the identification of the
same mark at single molecule resolution within a new dRNA-
seq dataset (Stoiber et al., 2016). Notably, baseline data for 5-
methylcytosine marks are included in the tool (Viehweger et al.,
2019). Alternatively, data for a condition devoid of modifications
can be provided. With a similar approach, Tombo was recently
used to identify m6A in yeast with an accuracy of 69% and
a recovery of 59%, compared with m6A peaks identified with
MeRIP-seq (Liu et al., 2019). Obviating for the need of these
positive or negative baseline data, Tombo can be used to compare
the signal observed for each k-mer with that of any possible
unmodified k-mer, although this approach is affected by high
false positive rates.

EpiNano relies on a support vector machine, and exploits
the increased frequency of alignment errors and the low base
quality caused by the presence of the modification of interest (Liu
et al., 2019). The tool is first trained and tested on two sets of
in vitro transcribed synthetic RNAs that contain either m6A only
or unmodified adenosine only. Its classification performance in
the context of the expected m6A RRACH motif was excellent
(area under the curve up to 0.944). Rather, the performance
decreased when the tool was applied on in vivo yeast data and
benchmarked with MeRIP-seq m6A calls for the same conditions
(accuracy: 87% and recovery: 32%). In terms of downsides,
EpiNano requires prior knowledge on the sequence motif for
the mark of interest, and it cannot achieve single molecule
resolution, since it aggregates the information derived from
multiple reads alignments.
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ELIGOS aims at the unbiased identification of any RNA
modification that would impact bases errors frequencies. It relies
on the comparison between dRNA-seq of native and cDNA-
converted transcripts, the latter used as a reference that is
devoid of any mark due to the retro-transcription to cDNA
(Wongsurawat et al., 2018). ELIGOS was tested on in vitro fully
modified transcripts, rRNAs from various species, and a human
lymphoblastoid cell line. Like Tombo, the main downside of
ELIGOS is in terms of false positive rates.

A further method for m6A identification that was recently
released is called MINES (Lorenz et al., 2019). This software
implements a random forest classifier trained on a set of high
confidence, experimentally defined, m6A sites within canonical
DRACH motifs. This method showed high accuracy and
precision, and also has single-isoform, single-base resolution.
However, MINES can only predict m6A sites within DRACH
motifs, which only comprise a portion of all m6A sites. A further
potential limitation is due to the fact that the classifier was trained
on m6A sites defined with CLIP and – as such – might suffer of
biases similar to those caused by antibody-based methods.

Nano-ID was recently developed for detecting the
incorporation of the exogenous mark 5eU into nascent
RNA (Maier et al., 2019), implementing the analysis of RNA
metabolic labeling on the ONT platform. This tool relies on a
neural network trained to distinguish dRNA-seq signal of fully
unlabeled from fully labeled RNAs (24 h 5eU labeling time),
to classify reads from nascent transcripts, while no positional
information on 5eU marks is returned. The results achieved by
nano-ID on this test set were very encouraging (area under the
curve 0.95), and the tool was applied to infer the isoform-level
rates of synthesis and degradation in K562 cells, and how they
were affected by heat shock.

Nanocompore is a novel tool recently released, which is based
on the comparison of a condition of interest with a condition
where the writer for a specific mark was depleted or removed
(Leger et al., 2019). The idea is that the removal of the mark
leads to a change in the ONT signal, which could be identified
through statistical tests by comparing the two conditions. As a
result, Nanocompore can provide near base-resolution and single
molecule calls for the mark of interest. Alternatively, analogously
to ELIGOS, if the baseline condition is depleted of multiple or
possibly all marks (e.g., via in vitro transcription), the tool returns
the corresponding changes in the signal to identify all marks
occurrence, while mark-specific calls are not possible. Advantages
and disadvantages of the tools discussed above are reported
in Table 1.

APPLYING DIRECT RNA SEQUENCING
TO QUANTIFY THE DYNAMICS OF
MODIFIED RNAs

The recent surge in the number of tools for the identification
of specific modifications indicates that the field is quickly
progressing. However, a number of improvements are required
for the joint analysis of the patterning of an endogenous
modification, such as m6A, with the quantification of

the corresponding RNA dynamics, via metabolic labeling
and profiling of exogenous modifications such as 4sU or
5eU (Figure 3).

First, the modifications have to be profiled at single molecule
resolution, a prerequisite for the direct matching of the RNA
dynamics with the modification status. This would allow
understanding how the RNA kinetic rates are impacted by the
presence of a modification, and, potentially, by its patterning
(numerosity and position). Notably, the frequency and the
specific position of occurrence of the marks is increasingly
recognized as an important factor. For example, the fate of RNAs
carrying multiple m6A marks was shown to be influenced by a
liquid–liquid phase separation processes driven by the binding
of readers of the YTH family. Eventually, those transcripts were
shown to be targeted to specific cellular compartments, including
stress-granules and P-bodies, with important consequences for
their translation and stability (Ries et al., 2019).

Second, tools based on supervised machine learning could be
preferable in the field, compared to methods for the unsupervised
identification of the marks. In fact, various confounding
factors could potentially affect direct RNA sequencing data,
which could be easier to address in a supervised framework.
However, supervised methods require training on sets of
modified transcripts, which should be built so that they closely
reflect the characteristics of in vivo datasets. For example,
for endogenous modifications, rather than producing in vitro
fully modified transcripts, the level of modification could be
tuned by mixing unmodified and modified nucleotides to
match the expected frequency of the mark. For exogenous
marks, the approach described in Maier et al. (2019) could be
followed, where physiological high-level of incorporation of a
modified nucleotides are obtained by its prolonged availability in
the cells medium.

Third, the current ONT signal (amplitude and dwell time)
is the most direct data type for the identification of the marks,
compared to more indirect measurements, such as the error rate.
While tools, such as EpiNano, showed a good performance by
only using the latter, we would recommend trying to incorporate
information from the former. Indeed, indirect measurements
could be completely or partially originated by unexpected causes,
which could lead to high false positive rates with in vivo datasets.

Fourth, the quantification of RNA dynamics should include
the step of premature RNA processing. This is often neglected,
by assuming the corresponding rate being constant. However,
RNA synthesis and processing are tightly coupled, then when
the former is modulated, which often occurs, the latter is
also expected to be altered (Neugebauer, 2019). Moreover,
recent reports start unveiling the frequency and importance of
changes in splicing dynamics (Rabani et al., 2014; de Pretis
et al., 2015, 2017; Louloupi et al., 2018; Furlan et al., 2019a;
Wachutka et al., 2019). The cost of considering the processing
step is two fold: it markedly increases the complexity of the
underlying mathematical models, and implies the quantification
of the abundance of premature RNA species. The latter is
specifically problematic for the ONT platform. Indeed, the library
preparation procedure expects transcripts with the polyA tail,
which are lacking in premature RNAs. In vitro polyadenylation
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TABLE 1 | Comparing strengths and pitfalls of four software packages for m6A detection from Nanopore dRNA-seq data.

EpiNano ELIGOS MINES Nanocompore

Requires training dataset Yes No Yes No

Requires comparison condition No Yes (cDNA) No Yes

Limited to RACH motifs Yes No Yes No

Single nucleotide resolution Yes Yes Yes No

Isoform resolution Yes Yes Yes Yes

Single molecule resolution No No No Yes

Able to distinguish different modifications Yes No Yes Yes

FIGURE 3 | dRNA-seq based approach to quantify transcripts’ expression levels in all the four possible combinations given by the presence or absence of 5eU and
m6A RNA modifications. (A) RNA metabolic labeling, based on the incorporation of 5eU, is applied to mark nascent transcripts, before direct RNA sequencing.
(B) Base calling and identification of the two RNA modifications. (C) Reads alignment and in silico separation, according to the presence or absence of each RNA
modification, to estimate transcripts’ expression levels across all the four conditions.

with m6A could be used for adding m6A-tails to premature
transcripts. This would allow the sequencing of premature
RNAs, and would preserve the sequencing information about
the endogenous tails of mature transcripts, for studies on their
functional impact on RNA dynamics.

Fifth, reads from premature RNAs would have to be
distinguished from those from mature species. The presence of an
endogenous polyA tail would provide a way to computationally
identifying reads from mature species. However, this approach
would fail for those mRNAs that are not polyadenylated in
their endogenous mature form. An alternative criterion is to
consider the reads containing introns as premature RNA. This

could be problematic in case of intron retention, which in many
organisms, including humans, is not infrequent (Chaudhary
et al., 2019; Monteuuis et al., 2019). The request of more than
one intron in order to classify a read as premature RNA would
probably eliminate this issue. Of course, such a strict condition
would cause the exclusion of those genes that have less than
two introns, which often occurs in some organisms (e.g., yeast
or plants). The best criterion could eventually be a mix of the
proposed approaches, selected according to the biological system
under analysis and the transcripts of interest. For instance, to
study mRNA kinetics in mammalian cells, mature RNA could be
estimated considering fully spliced, polyadenylated transcripts,
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while premature RNA could be quantified from the remaining
reads, possibly requiring the presence of one or more introns.

Once proficient algorithms for the detection of the
endogenous (e.g., m6A) and exogenous (e.g., 5eU) marks at
single molecule resolution are in place, they could be used, in
series, for the identification of the four possible classes defined by
the presence or absence of each modification. The performance
of such an approach should be tested on a dataset generated
ad hoc. The genesis of reads with both the RNA modifications, or
missing only the exogenous mark, is feasible by using or avoiding
long-time metabolic labeling, respectively. Instead, reads devoid
of both the base analogs can be produced sequencing the
corresponding cDNA. It is more difficult to generate transcripts
that lack only the endogenous modification, which could be
obtained by knocking-out the corresponding writer (for those
marks for which this is known). However, genetic compensation
(El-Brolosy and Stainier, 2017) or writer’s redundancy could lead
to the incomplete depletion of the RNA modification.

ADDITIONAL REMARKS

The study of the impact of RNA modifications on the RNA life
cycle dynamics would largely benefit from the development of a
unified computational framework. This, starting from long reads
dRNA-seq data, should manage the RNA kinetic rates inference,
according to their modification status, at the level of individual
transcriptional units or specific isoforms.

A convenient starting point could be INSPEcT (de Pretis
et al., 2015), a tool developed in our lab for the inference of
all RNA kinetic rates (synthesis, processing, and degradation)
from srRNA-seq data. The user should only pay attention to
quantify premature and mature RNA in both nascent and pre-
existing fractions according to the guidelines presented above.
Additionally, if the quantification of dynamics at the level of
specific isoforms is desired, the analysis should be conducted
considering the reads associated with each isoform, rather than
those associated with the whole transcriptional unit. Finally, if
this analysis is applied independently on the set of modified and

unmodified reads, it would allow comparing the kinetic rates
among them, as illustrated in Figure 3B.

INSPEcT has been recently extended by implementing a novel
approach that allows the inference of synthesis, processing and
degradation kinetic rates without nascent RNA profiling (Furlan
et al., 2019a). This approach could be an interesting alternative
to study the relation between RNA modifications and RNA life
cycle dynamics without requiring metabolic labeling and the
consequent identification of the exogenous modification. This
would also allow studying the impact on RNA dynamics of those
modifications that mark the same base targeted by metabolic
labeling, such as pseudouridine and 5eU.

In conclusion, a number of recent and on-going technology
advancements are significantly facilitating the study of the
functional consequences of RNA modifications on the fate of
marked transcripts. In particular, the combined application of
RNA metabolic labeling, for the profiling of nascent transcripts
and the quantification of the kinetic rates governing the RNA
life cycle dynamics, and of long-reads direct RNA sequencing, is
particularly promising. Indeed, they promise to deliver data of
unprecedented quality and resolution, and should allow studying
the impact of RNA modifications at the level of individual
molecules and isoforms.
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A flurry of methods has been developed in recent years to identify N6-methyladenosine
(m6A) sites across transcriptomes at high resolution. This raises the need to understand
both the common features and those that are unique to each method. Here, we
complement the analyses presented in the original papers by reviewing their various
technical aspects and comparing the overlap between m6A-methylated messenger
RNAs (mRNAs) identified by each. Specifically, we examine eight different methods that
identify m6A sites in human cells with high resolution: two antibody-based crosslinking
and immunoprecipitation (CLIP) approaches, two using endoribonuclease MazF, one
based on deamination, two using Nanopore direct RNA sequencing, and finally,
one based on computational predictions. We contrast the respective datasets and
discuss the challenges in interpreting the overlap between them, including a prominent
expression bias in detected genes. This overview will help guide researchers in making
informed choices about using the available data and assist with the design of future
experiments to expand our understanding of m6A and its regulation.

Keywords: RNA, N6-methyladenosine, m6A, epitranscriptomics, bioinformatics

INTRODUCTION

N6-methyladenosine (m6A) is the most abundant internal modification of messenger RNA
(mRNA), occurring ubiquitously across the tree of life. In mammals, m6A is thought to be
deposited cotranscriptionally by the METTL3–METTL14–WTAP complex, with METTL3 being
the catalytically active methyltransferase (Ke et al., 2017; Bertero et al., 2018). There is a
strong enrichment for this modification within a degenerate DRACH sequence context (D = A,
G, or U; R = A or G; H = A, C, or U), with early chromatographic studies suggesting a
core RAC motif (Wei and Moss, 1977). The knockout of METTL3 is embryonic lethal in
mice, indicating its critical role in regulating mammalian development (Geula et al., 2015):
the modification is implicated in diverse cellular processes such as differentiation, meiosis,
circadian rhythms, and proliferation in cancer (Fustin et al., 2013; Schwartz et al., 2013; Batista
et al., 2014; Geula et al., 2015; Cui et al., 2017). As a posttranscriptional regulator, m6A is
especially interesting in the context of neurons, where it can potentially regulate localized
translation (Merkurjev et al., 2018; Shi et al., 2018). The best understood mechanism of m6A

Frontiers in Genetics | www.frontiersin.org 1 May 2020 | Volume 11 | Article 39898

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00398
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00398
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00398&domain=pdf&date_stamp=2020-05-20
https://www.frontiersin.org/articles/10.3389/fgene.2020.00398/full
http://loop.frontiersin.org/people/893527/overview
http://loop.frontiersin.org/people/909515/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00398 May 18, 2020 Time: 14:10 # 2

Capitanchik et al. Advances in Transcriptomic m6A Detection

function is via the direct binding of YTH domain proteins, which
target m6A-containing transcripts for nuclear export, translation,
and decay (reviewed in Patil et al., 2018).

To develop a detailed understanding of how m6A dictates
mRNA fate, we need to determine exactly which mRNA
sites are m6A modified in a given biological system. To this
end, high-throughput approaches have been developed to map
m6A transcriptome-wide (Table 1). However, the modification
presents significant challenges, as reverse transcription of native
m6A nucleotides using common reverse transcriptases does not
yield a specific mutational or truncation-based signature, unlike
other RNA modifications.

Here, we provide a brief technical overview of the major
methods to identify m6A transcriptome-wide at single
nucleotide, or near single nucleotide, resolution highlighting
the respective advantages and drawbacks of each method.
Furthermore, by comparing genes identified by each method, we
begin to explore their resulting datasets.

Antibody-Based Methods
The first described methods for transcriptome-wide profiling
of m6A were m6A-seq and MeRIP-seq. These methods use
an antibody for m6A to perform RNA immunoprecipitation,
followed by next generation sequencing (NGS) (Dominissini
et al., 2012; Meyer et al., 2012). However, the resolution of m6A-
seq is limited to the size of RNA fragments, with no objective
way of determining where in the fragment the modification
occurred. Greater resolution was achieved by UV crosslinking the
antibody to RNA, following the principles of the crosslinking and
immunoprecipitation (CLIP) protocol (König et al., 2010). Such
approaches were simultaneously developed in the laboratories
of Samie Jaffrey and Robert Darnell, named miCLIP and m6A-
CLIP, respectively (Figure 1A; Ke et al., 2015; Linder et al., 2015).
Here, purified RNA is incubated in vitro with an m6A antibody.
Following immunoprecipitation, the antibody is digested with
proteinase K, leaving an amino acid adduct attached to the RNA
base. During preparation of the complementary DNA (cDNA)
library, the reverse transcriptase either reads through this
crosslinked adduct, causing a substitution or deletion mutation,
or is stopped, resulting in cDNA truncation. These signals can
be analyzed computationally to identify the modification site
at single nucleotide resolution (Haberman et al., 2017). The
Jaffrey group found that antibodies differed in their propensities
to introduce a mutation or truncation and in the positions
of these signals in relation to the modified adenosine. The
authors concluded that the polyclonal Abcam and Synaptic
Systems antibodies were most efficient at immunoprecipitating
and gave the most predictable mapping signatures; as a result,
they remain the most commonly used antibodies in subsequent
miCLIP publications.

N6-methyladenosine-crosslinking and immunoprecipitation
is conceptually similar to miCLIP but requires preparation of
multiple libraries and has so far exclusively used the Synaptic
Systems antibody. Two sequencing libraries are prepared from
the same sample: one using the MeRIP-seq approach to identify
m6A-modified oligonucleotides and one using the miCLIP
approach, which is then analyzed to identify both reverse

transcription read-through and truncation events. These signals
are then filtered to retain only those that overlap with peaks
from the MeRIP-seq library. In this way, the authors claimed
greater specificity in identifying true modification sites. The
protocol differs from the miCLIP protocol in several additional
ways; for example, size selection of RNA fragments prior to
immunoprecipitation and a bromodeoxyuridine (BrdU) cDNA-
purification approach. There are also differences in the starting
RNA/antibody ratios—miCLIP uses an excess of RNA, whereas
m6A-CLIP uses an excess of antibody.

A major drawback with these approaches is the promiscuity of
m6A antibodies; for example, some interact with m6Am, which
is found as the first nucleotide after the cap in certain mRNAs
(Schwartz et al., 2013; Linder et al., 2015). Devising appropriate
methods to eliminate false positives is challenging. Studies
generally tackle this issue by only reporting sites found within
the consensus DRACH motif or by perturbing methyltransferase
activity. Neither is optimal: DRACH-only reporting prevents
discovery of m6A in RAC or noncanonical motifs, whereas
knockout or knockdown controls exclude sites that can be
modified by another methyltransferase. Furthermore, disrupting
the m6A machinery may introduce global changes in RNA
abundance that are difficult to account for, except with the careful
use of input libraries and spike-ins (Liu et al., 2020).

Finally, methods that depend on crosslink-induced mutations
as the readout—as opposed to truncations—may be more
susceptible to gene expression changes because higher
read coverage is required to call sites. Additionally, for all
strategies, the necessary integration of multiple control datasets
(methyltransferase depletion, RNA input, etc.) increases the
variance in the experimental design, reducing the statistical
power to call sites. In summary, although antibody-based
methods have been fundamental to paving the way for
transcriptomic analysis of m6A and remain the most common
way to survey the modification, issues with antibody specificity
make orthogonal approaches desirable.

Enzyme-Based Methods
In 2017, the MazF endoribonuclease was described, which cuts
RNA within an ACA sequence motif, but with greater preference
for ACA over m6A-CA sites (Imanishi et al., 2017). Thus, m6A-
modified sites, usually present within a DRACH motif, can
be detected as a reduction in MazF cleavage efficiency. Two
new methods, MAZTER-seq and m6A-REF-seq (Figure 1B)
developed by the laboratories of Schraga Schwartz and Guan-
Zheng Luo, respectively, showed how this enzyme can be used to
map m6A at single-nucleotide resolution (Garcia-Campos et al.,
2019; Zhang Z. et al., 2019).

In both approaches, purified mRNA is treated with the MazF
enzyme, leaving RNA fragments containing an ACA site at the
5′ end and finishing just before the next ACA motif within the
transcript. After sequencing, any ACA sequences present within
a read indicate an uncut and, therefore, modified site. The main
advantage of this approach is that it can provide stoichiometric
information on the m6A modification, based on the cut/uncut
ratio of reads for every ACA site, something the antibody-based
methods currently lack.
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TABLE 1 | Single nucleotide resolution, transcriptome-wide methods for detecting m6A.

Method type Method Cell lines
(human)

Strengths Weaknesses Motif
restriction?

Diagnostic
signature

UMI RNA selection References and
(data access)

Antibody based miCLIP HEK293
MOLM13

• High throughput, can be
used to assess multiple
conditions
• RNA can be taken from any
source as crosslinking occurs
in vitro
• Reproducible data

• Difficult to correct for
nonspecific antibody binding
• Requires UV crosslinker
• Complex library preparation
• Requires high amounts of
input material

DRACH Truncations and
C→ T mutations

Yes Total RNA and poly(A)
selected available

Linder et al., 2015;
Vu et al., 2017
(GSE98623)

m6A-CLIP A549
CD8+ T cells
HeLa

RRACU/RAC Truncations and
mutations
(substitutions and
deletions)

Yes poly(A)
HeLa—ribo0, poly(A),
nucleoplasm,
chromatin

Ke et al., 2015
(GSE71154); Ke
et al., 2017
(GSE86336)

MazF enzyme
based

MAZTER-seq HEK293T • Generates stoichiometric
data
• Semiquantitative output

• Can only detect sites in
ACA sequence context
• Sequence-specific biases in
enzyme cutting efficiency
• Complex bioinformatics
analysis

ACA Enzymatic cleavage
efficiency,
measured as
truncations vs.
read-through

No poly(A) Garcia-Campos
et al., 2019

m6A-REF-seq HEK293T ACA No poly(A) Zhang Z. et al.,
2019

Fusion domain
based

DART-seq HEK293T • Low RNA input
• Simple library preparation

• Biases in background
APOBEC1 targeting
• Mapping is limited to
YTH-recognized sites
• Resolution is low compared
to CLIP methods
• Must express fusion
construct in vivo for
maximum efficiency

Mutation site
must be C→ U

C→ U mutations No None Meyer, 2019

In silico prediction WHISTLE Any • Can predict m6A sites in
any gene, regardless of
expression

• Trains based on CLIP
datasets, so will learn CLIP
biases

RRACH Truncations and
mutations

Yes poly(A) Chen et al., 2019
(http://180.208.58.
19/whistle/
download.html)

Direct RNA
sequencing by
Nanopore

MINES HEK293 • Potential for measuring
stoichiometry of sites and
combinatorial modification
dynamics (although currently
not systematically
implemented)

• Trains based on CLIP
datasets, so will learn CLIP
biases

RGACH Tombo’s fraction
modified values
and coverage files

NA poly(A) Lorenz et al., 2019

NanoCompore MOLM13 • Can detect other
modifications as well as m6A
• Potential for measuring
stoichiometry of sites and
combinatorial modification
dynamics (although currently
not systematically
implemented)

• Currently low throughput
• High input requirements
• Requires a low or no
methylation control, which
might be difficult to obtain

No Difference in k-mer
current intensity
and dwell time in
pore between WT
and METTL3 KD
control

NA poly(A) Leger et al., 2019
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FIGURE 1 | High throughput methods to detect or predict m6A in transcriptomes. (A) Crosslinking and immunoprecipitation (CLIP) methods involve UV crosslinking
of the m6A antibody to purified RNA. m6A-CLIP and miCLIP differ in the antibodies used, complementary DNA (cDNA) library preparation, and computational
processing, among other differences. (B) MazF Escherichia coli endoribonuclease preferentially cuts at nonmethylated ACA sites. This forms the basis of
MAZTER-seq and m6A-REF-seq. (C) DART-seq expresses an APOBEC1-YTH fusion protein. The YTH domain targets APOBEC1 to m6A sites, where it deaminates
surrounding cytosines to uracil. (D) Direct RNA sequencing with Nanopore technologies facilitates detection of m6A due to differences in ionic current intensities
between A- and m6A-containing sequences and dwell time in the pore. Methods differ by how these signals are deconvolved. m6A identification using nanopore
sequencing (MINES) is a combination of four random forest models, pretrained using CLIP m6A sites as true positives. NanoCompore relies on a comparison in
signal between two conditions, for example wild type (WT) and METTL3 knockdown, or in vivo RNA vs. nonmodified in vitro transcribed RNA. (E) In silico prediction
of m6A sites is performed by WHISTLE, a support vector machine algorithm that uses miCLIP and m6A-CLIP sites as training data.

Nevertheless, due to the specific attributes of the MazF
enzyme, careful quality control in calculating m6A stoichiometry
is required. In MAZTER-seq, potential m6A sites are prefiltered
to remove any ACA sequences that are too close to each other
to be accurately measured. Furthermore, reads that do not
begin and end within a cleaved ACA sequence are removed,
as they could occur through random RNA fragmentation or
nonspecific cutting. Finally, for a subset of analyses, ACA
sites containing a G at the +3 position are removed, as this
impairs MazF cleavage efficiency. The authors calculate that,
theoretically, 25% of DRACH sites in yeast and 16% in mammals
can be quantified using MAZTER-seq. In contrast, m6A-REF-
seq does not apply filters based on incorrect read endings or
calculations of the minimal ACA proximity; instead, ACA sites
predicted to be in double-stranded RNA regions are discarded,
as they are considered to alter cutting efficiency. Furthermore,
for a site to be called, the authors require a decrease in the
modification ratio >10% when the RNA is treated with the
demethylase enzyme FTO.

In addition to calculating stoichiometric ratios of CLIP-
annotated m6A sites, MAZTER-seq was used to identify
previously unknown m6A sites. This was achieved by comparing
cleavage efficiencies within DRACH motifs in three different

control scenarios. The first was between WT and m6A
methyltransferase deletion input libraries, the second was m6A-
IP with the same strains, and the third, a comparison between
input and m6A IP WT conditions. In this way, the authors
classified all published sites into confidence groups and found
a number of previously unannotated sites within the high-
confidence groups. Crucially, this suggests that probable m6A
sites have been missed by antibody-based methods.

MazF clearly enables valuable approaches to calculate m6A
stoichiometry at a focused set of sites, validate previously
identified m6A sites, and identify a number of novel sites. The
limitation of the MazF enzyme to ACA sites and the extensive
filtering requirements do mean, however, that these methods
alone cannot provide a full transcriptome-wide map of m6A.
Nonetheless, the careful work to identify and quantify the
biases inherent in this system is of great value in developing
high-confidence m6A maps and offers an important orthogonal
method to other transcriptome-wide mapping approaches.

Fusion Domain-Based Methods
DART-seq employs the in vivo expression of a YTH
protein domain fused to the APOBEC1 enzyme (Figure 1C;
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Meyer, 2019). The YTH domain was identified in numerous
studies as the major “reader” of the m6A modification (Zaccara
et al., 2019), whereas the APOBEC1 enzyme deaminates cytosine
to uracil, which can be detected as a mutation compared with
a reference sequence. Thus, this construct allows deamination
of cytosine residues in the vicinity of m6A sites recognized by
YTH. Previous studies suggest that m6A is invariably followed
by cytosine (Wei et al., 1976), raising the possibility of single-
nucleotide resolution mapping, although in practice, more
distant cytosines are also modified.

The most notable benefit is the low input requirements:
libraries can be made with as little as 10 ng of total RNA as
starting material. Additionally, as the YTH-APOBEC1 construct
can be transiently expressed in cells, library preparation is
much more straightforward than either the antibody- or
enzyme-based methods, since no treatment of the RNA is
required to identify the m6A signal following extraction. Owing
to targeting by the major m6A reader, it is also possible
that DART-seq will identify more functionally relevant m6A
sites than other methods. One possible drawback is that the
APOBEC1 enzyme displays sequence preferences: expressed
alone, it modifies cytosine residues in the 3′ untranslated
region (UTR), making it difficult to detect confidently in
this region, while ∼70% of APOBEC1-only deaminated sites
are preceded by an adenosine (Supplementary Figure 6C
from Meyer, 2019), meaning that using APOBEC1 and
APOBEC1-YTH mutant as a control is likely to result in
false negatives.

Direct Sequencing-Based Methods
Ideally, it would be possible to detect m6A via direct RNA
sequencing. Pore-based sequencers measure changes in an ionic
current as nucleic acids pass through a nanopore: information
about changes in current and dwell time in the pore is used
to identify the nucleotide in question. Several publications
demonstrated that RNA modifications produce specific current
and dwell time signals, suggesting nanopore-based methods
could identify modified nucleotides in a high throughput manner
(Figure 1D; Garalde et al., 2018; Workman et al., 2018; Smith
et al., 2019). The potential benefits of this approach for mapping
RNA modifications are huge, as stoichiometric and positional
information of multiple modifications could be interpreted
simultaneously. The reality of deconvolving the raw signal to
infer m6A sites, however, is not straightforward.

The first application of the Oxford Nanopore technology
(Nanopore) to detect m6A in a whole transcriptome examined
yeast mRNA (Liu et al., 2019). The authors trained a
support vector machine (SVM), called EpiNano, on Nanopore
sequencing data of synthetic transcripts containing m6A residues
in every possible 5-mer combination to identify the most
informative signals that distinguish m6A from other nucleotides.
Surprisingly, the raw current intensities alone were found to
be poor predictors of methylation status; instead, the selected
training features included mean per-base quality, mismatch
frequency, and deletion frequency. The model achieved ∼90%
prediction accuracy for the training dataset. It was then used
to recover 363 previously identified, high-confidence m6A sites,

previously identified using m6A-seq, which it was able to do
with 87% accuracy.

An alternative approach, m6A identification using nanopore
sequencing (MINES), was used to create the first Nanopore-
based m6A transcriptome for humans (Lorenz et al., 2019).
This method applied Tombo, a program that was previously
developed to detect de novo modifications in Nanopore DNA-
sequencing data based on base-calling errors (Oxford Nanopore
Technologies, 2018). The authors trained random forest models
using the Tombo modification values to classify the m6A status
of four RGACH motifs. Those RGACH sites overlapping with
HEK293 miCLIP and HeLa m6A-CLIP sites (Linder et al.,
2015; Ke et al., 2017) were labeled as true positives in the
training data, and the models achieved an average accuracy of
79%, representing 35% of m6A sites identified with CLIP-based
methods (in part due to the motif restriction). The authors then
predicted 13,034 novel RGACH m6A sites, which were validated
by METTL3 knockdown.

A further approach is NanoCompore (Leger et al., 2019),
which compares Nanopore signals between two datasets and
therefore does not require a training dataset. Specifically,
this is achieved by contrasting the median current intensities
and dwell times of k-mers between the experiment and
a control with perturbed modifications (e.g., wild type vs.
knockdown, or in vitro modified vs. unmodified controls). To
identify METTL3-dependent m6A sites, the authors processed
polyA+-selected RNA sequencing data from wild-type and
METTL3 short-hairpin RNA (shRNA) knockdown MOLM13
cells. NanoCompore is not restricted to m6A and can be
readily extended to other modifications that have a reliable
control. A major advantage is that it avoids being biased by
the accuracy of previous mapping methods to train the models,
as site identification is instead determined by the sensitivity
to a specific modification enzyme. Of course, the dependence
on a comparison between samples is a limitation, as reliable
controls are currently unavailable for many modifications and
biological systems, and specific sites or RNA species are often
modified by distinct enzymes. As a result, there is probably
a reduced risk of false-positive site assignment at the cost
of sensitivity.

Finally, a simplified approach was recently published for the
Arabidopsis thaliana transcriptome (Parker et al., 2020), in which
the base-calling error rate was used as the sole parameter for
identifying m6A sites. The authors compared the transcriptomes
for a vir-1 mutant, an Arabidopsis m6A methyltransferase, with
a vir-1 restored line, identifying ∼17,000 sites with an error
rate twofold greater in the control line compared to mutant.
Taking this approach 66% of identified m6A sites fell within five
nucleotides of a miCLIP peak.

The above methods demonstrate that direct RNA sequencing
can be used to detect m6A. A common limitation pertains
to the resolution and accuracy of modification assignment for
transcripts with low sequencing depth. However, with third-
generation sequencing technologies developing rapidly, the
benefits of using direct sequencing to map RNA modifications—
such as the possibility of correlating modifications with other
transcriptomic features within a single RNA molecule, and
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FIGURE 2 | m6A-containing genes identified by eight methods. (A) Bar chart showing the number of m6A-containing transcripts identified by each method. Some
methods have data from multiple cell lines or apply several possible thresholds, which are shown separately. The cell lines for each dataset are indicated along with
the type of method. The hashed bars denote genes that are commonly expressed between all the cell lines considered here. For DART-Seq, MAZTER-Seq, and
MINES, several thresholds were possible: “DART-Seq M3” refers to sites identified by comparison with METTL3 knockdown. “Low” and “high” refer to two
stringency thresholds applied by the authors. “MAZTER-Seq” refers to all sites with a cleavage efficiency <50%, and “MAZTER-Seq cond” refers to FTO
overexpression, WT ≥ 20%, and/or Alkbh5 overexpression, WT ≥ 20%. “MINES” refers to all sites identified by MINES, and “MINES 30×” refers to MINES sites with
≥ = 30× coverage. (B) Bar chart showing the numbers of overlapping target genes between the eight methods, considering all the reported genes.
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accurately calculating m6A stoichiometry genome-wide—are
likely to push the boundaries of the field.

In silico Prediction
Even in the best circumstances, experiments are still costly and
time consuming to run and can only identify m6A sites that
are present in the prepared sample. In silico prediction offers
the potential of identifying all possible m6A sites (Figure 1E).
However, algorithms rely on two critical factors: (i) the reliability
of the training data and (ii) the ability to identify and encode
relevant features indicating m6A presence into the model.
Existing approaches either use SVMs (methyRNA—Chen et al.,
2017; RNAMethPre—Xiang et al., 2016; WHISTLE—Chen et al.,
2019) or random forest models (RF; SRAMP—Zhou et al., 2016)
to classify whether or not an adenosine is modified. The benefits
of a machine-learning model, over other modeling approaches,
is that predictive features do not have to be selected a priori.
Indeed, the learned weighting of features in a model can aid
our mechanistic understanding of methylation. The authors
of WHISTLE (whole-transcriptome m6A site prediction from
multiple genomic features) showed that nucleotide sequence was
the most important predictor of m6A but that 14 other genomic
features also contributed. Among the top features was the site
being in a long exon, which was previously found to be a defining
characteristic of sites measured using m6A-CLIP (Dominissini
et al., 2012; Ke et al., 2017). WHISTLE achieved an area under the
curve of 0.948 when tested against previously unseen CLIP data.

Currently, all in silico m6A models use antibody-based
methods as training data and so will also learn the biases present
in them. To continue improving predictions, it will be important
to generalize models by training on orthogonal datasets.

ASSEMBLING A DATASET TO COMPARE
DETECTED AND PREDICTED m6A
TRANSCRIPTS

The rapid expansion in orthogonal methods for transcriptomic
m6A detection offers an opportunity to compare the published
datasets. We assembled the processed data produced by eight
high-resolution methods using human cells: two antibody-based
CLIP approaches (miCLIP, m6A-CLIP); two endoribonuclease
MazF-based (MAZTER-seq, m6A-REF-seq); one deamination
approach (DART-seq); two using Nanopore direct RNA
sequencing (MINES, NanoCompore); and finally, one based
on computational predictions (WHISTLE). Here, we examine
the overlap between these methods at the level of transcripts,
focusing on a single representative transcript per gene. We
include only sites with a matching DRACH motif, although
some datasets have additional restrictions (such as MazF “ACA,”
WHISTLE “RRACH,” and MINES “RGACH”). In total, we
consider 134,470 unique sites in 12,391 mRNAs (Figures 2A,B;
sites per gene are summarised in Supplementary Data Sheet S1).

Filtering for Commonly Expressed Genes
Since there is not a single cell line that is used across all of
the methods, we focused on commonly expressed mRNAs. For

studies with no accompanying gene expression data, we accessed
published RNA-seq measurements for equivalent cells lines from
the EBI Expression Atlas (HEK293, HEK293T) and the Gene
Expression Omnibus (MOLM13) (accession numbers listed in
Table 2) (Edgar et al., 2002; Papatheodorou et al., 2018). For
HEK293 and HEK293T, raw counts were assigned to the longest
annotated transcript obtained from Ensembl BioMart v98 for
GRCh38.p13, and transcripts per million (TPM) were calculated
as expression measurements (Kinsella et al., 2011). For MOLM13
and HeLa, processed expression measurements were available
as fragments per kilobase of transcript per million (FPKM)
values. For A549 and CD8+ T cell, we used the matched poly-
A sequencing data from the m6A-CLIP study. BedGraph files
were downloaded, and coordinates were lifted over to hg19 using
UCSC liftOver (Kuhn et al., 2013). Poly(A) sites were assigned
to genes using bedtools closest -s -id -a stdin
-b../hg19_mRNA_annotation.gtf -D a (Quinlan and
Hall, 2010) with a threshold of 2,000 nt from the end of the
annotated 3′ UTR. Expression was quantified as read counts
per transcript. Expression values were visualized in histograms,
with most cell lines displaying bimodal distributions allowing
a straightforward separation of expressed and unexpressed
genes. For A549 and CD8+ T cells, which displayed unimodal
distributions, we applied an arbitrary threshold of five counts.
Finally, for each cell type, we assigned expressed genes into deciles
according to their expression values.

The procedure yielded between 8,235 and 12,968 expressed
genes for each cell line (Table 2). Transcripts that were detected
by the m6A measurement, but not RNA-seq, were assigned
post hoc to the lowest expression decile of the cell line in question.
In total, we considered 6,585 genes with commonly expressed
transcripts across six cell lines.

Comparison of the Top-Ranking
Transcripts Between Methods
The eight m6A studies applied very different, and in some cases
arbitrary, thresholds leading to large differences in the numbers

TABLE 2 | Number of expressed genes per cell line and origin of the expression
dataset.

Cell line Number of genes
expressed

Accession References

HEK293 11,018 E-GEOD-44384 (EBI
Expression Atlas)

Hussain et al., 2013

HEK293T 11,703 E-MTAB-7029 (EBI
Expression Atlas)

Doumpas et al., 2019

MOLM13 12,968 GSE114111 (GEO) Pei et al., 2018

HeLa 12,839 GSM2300445 (GEO) Ke et al.,
2017—m6A-CLIP
paper

A549 9,963 GSM1828600 (GEO) Ke et al.,
2015—m6A-CLIP
paper

CD8T+ 8,235 GSM1828598 (GEO) Ke et al.,
2015—m6A-CLIP
paper
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TABLE 3 | Number of m6A modified transcripts for each method following thresholding.

Method Sample Thresholding Number of
transcripts

Number of total
transcripts for method

Number transcripts
(6,585 commonly

expressed genes subset)

miCLIP CIMs HEK293 As from paper 3,755 6,282 4,000

CITs HEK293 As from paper 2,779

MOLM13 As from paper 3,662

m6A-CLIP A549 As from paper 5,915 8,560 4,694

CD8+ T cell As from paper 4,697

HeLa As from paper 6,415

DART-seq High stringency
HEK293T

C > U events from paper filtered for
DRACH motif

5,648 8,331 5,445

Low stringency
HEK293T

C > U events from paper filtered for
DRACH motif

7,614

WT vs. METTL3
depleted HEK239T

C > U events from paper filtered for
DRACH motif

2,370

m6A-REF-seq HEK293T As from paper 1,843 1,843 1,243

MAZTER-seq HEK293T MazF cleavage efficiency < 50% 3,545 3,705 2,568

HEK293T FTO overexpression, WT ≥ 20%,
and/or Alkbh5 overexpression,
WT ≥ 20%

482

WHISTLE Trained on miCLIP and
m6A-CLIP

Posterior probability of being
m6A ≥ 0.95

3,877 3,877 2,177

MINES Nanopore As from paper 6,910 6,910 4,390

Nanopore Filtered for 30× coverage (threshold
for NanoCompore)

1,883

NanoCompore WT vs. METTL3 KO
Nanopore

DRACHs within clustered 5-mers with
contextual p < 0.001

556 556 387

of reported targets. In comparing the results, we found that
studies reporting greater numbers of m6A targets tended to have
better overlaps with other studies (data not shown), making them
appear ostensibly more reliable; however, it is also possible that
those methods suffer from higher false-positive rates.

To facilitate comparisons, we focused on the top ∼1,000 m6A
modified transcripts for each method (Table 4). We wished to use
“modification scores” for each study to identify thresholds that
produce similar numbers of top-ranking targets; however, scores
are not available for all methods, so instead, we ordered genes
according to the number of detected m6A sites per transcript.
NanoCompore reported only 387 transcripts that met our
expression criteria, due to the lower sequencing throughput, the
stringent requirement for 30× coverage over sites, and restriction
to sites that change between wild type and METTL3 knockdown
cells. In total, we considered 3,875 top-ranking transcripts among
genes that are commonly expressed across all cell lines, with a
total of 73,914 unique m6A sites.

Of the 3,875 transcripts across all methods, 55% (2,121) are
identified as m6A modified by at least two, 31% (1,213) by at
least three, and 16% (619) by four or more methods (Figure 3A).
Hierarchical clustering shows that methods of the same type
cluster together, indicating that they are more likely to detect
similar targets (Figure 3B); however, the shallowness of the
dendrogram highlights that despite this, distinct methods tend
to differ greatly in their outputs. WHISTLE and MINES cluster
with the CLIP-based methods, reflecting the underlying training
datasets. MAZTER-seq and m6A-REF-seq also cluster but share

little overlap (40% of MAZTER-seq sites and 33% of m6A-REF-
seq sites overlapped with each other). The method with the
highest proportion of unique genes is NanoCompore (48%),
followed by m6A-REF-seq (26%). The method with the lowest
proportion of unique genes is m6A-CLIP (10%), which suggests
its sites could be the most reliable (Figure 3C).

In general, the higher the expression, the more likely a
transcript is to be identified by multiple methods (Figure 3D);
this is expected as most of the experimental methods described
here are biased toward highly expressed genes. In this regard,
NanoCompore displays the largest expression dependence
(Figure 3E). Interestingly, miCLIP shows a greater preference
for highly expressed genes compared with m6A-CLIP, perhaps
due to differences in starting RNA/antibody ratios in the
immunoprecipitation step. In conclusion, the low overlap

TABLE 4 | Number of top-ranking targets selected per method.

Method Number of transcripts

DART-seq 1,019

m6A-CLIP 1,072

m6A-REF-seq 1,243

miCLIP 1,233

NanoCompore 387

WHISTLE 1,198

MINES 1,104

MAZTER-seq 944
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FIGURE 3 | Comparing the top-ranking target genes identified by eight methods. (A) Bar chart showing the numbers of top-ranking genes that overlap between the
eight methods. (B) Heatmap showing overlap between the top targets. Dendrograms are produced by complete-linkage hierarchical clustering using the Jaccard
index as the distance metric. Dark blue indicates presence of the gene among the top targets for a method, and gray indicates absence. Colored bars denote the
category of the method. (C) Proportions of top targets that are unique to each method. (D) Number of methods detecting a target gene plotted against its mean
expression decile across all studied cell lines. (E) Minimum expression deciles for the top ranked genes were plotted for each method.

Frontiers in Genetics | www.frontiersin.org 9 May 2020 | Volume 11 | Article 398106

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00398 May 18, 2020 Time: 14:10 # 10

Capitanchik et al. Advances in Transcriptomic m6A Detection

between methods may arise partly from the expression-
linked bias in m6A detection and additional technical aspects
of each method leading to different subsets of DRACH
sites being detected.

DISCUSSION

Our analysis suggests that data coverage and mRNA expression
are among the main biases for m6A detection. With sufficient
coverage, potential sites of m6A modification can be detected in
most mRNAs. However, in the absence of a gold standard, it is
not possible at this point to estimate the false-positive rate of
any single method for m6A detection nor of integrated datasets.
This will be important moving forward because it is clear that
different studies display varying degrees of overlap. Determining
the reasons behind this is valuable for the community, especially
as several databases now give users access to repositories of
miCLIP data (CVm6A—Han et al., 2019; m6AVar—Zheng et al.,
2017) and algorithms trained on such data are being used to
make conclusions about the functionality and disease relevance
of m6A sites (m6AVar—Zheng et al., 2017; Deep-m6A—Zhang
S.-Y. et al., 2019; m6Acomet—Wu et al., 2019; DeepM6ASeq—
Zhang and Hamada, 2018). Predictions will be limited by the
validity of the training data, and it will be interesting to see
how data from the newer non-antibody-based methods can be
incorporated into such efforts.

In this review article, we performed analyses at the gene
level as a tentative step to give the reader a broad perspective
of the data types that are available for studies of m6A RNA
modifications. An important aspect for further analyses will be
to compare individual sites within a transcript across methods,
experimental conditions, and variants of DRACH motif. In
this way, it will be possible to address the positional or
sequence biases of methods, compare the dynamics of m6A
sites between conditions, cells or cellular compartments, and
assess the modification rates of different DRACH sites. Such
analysis could be approached in various ways, taking into account
variable distances between sites assigned by different techniques
and other method-specific issues. For such analyses, the use of
unique molecular identifiers (UMIs) that control for PCR biases
in library preparation—integrated into CLIP-based approaches—
are particularly valuable. None of the antibody-free approaches
currently use UMIs; therefore, quantifications of MazF and
DART-seq datasets may be affected by variable PCR duplication
rates. Direct RNA sequencing with Nanopores is not affected by
PCR duplication, but the shallow sequencing depth may limit
quantitative comparisons across large numbers of sites.

Finally, we have examined only m6A sites that occur within
DRACH motifs, in line with the computational approaches used
in past studies. In the future, it will be interesting to analyze
noncanonical sites: currently, the technical noise is often too high
to reliably include such sites and therefore appropriate controls
will be needed, such as METTL3 depletion. This would also help
establish the methylation status of lowly expressed genes, which
generally have lower sequencing coverage.

Ultimately, untangling the benefits and biases of each method
in determining m6A sites is crucial for the field as we move
toward further understanding the mechanism, regulation, and
function of m6A methylation on a transcriptomic scale.
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N6-methyladenosine (m6A) is one of the most widely studied epigenetic modifications,

which plays an important role in many biological processes, such as splicing, RNA

localization, and degradation. Studies have shown that m6A on lncRNA has important

functions, including regulating the expression and functions of lncRNA, regulating the

synthesis of pre-mRNA, promoting the proliferation of cancer cells, and affecting cell

differentiation and many others. Although a number of methods have been proposed

to predict m6A RNA methylation sites, most of these methods aimed at general m6A

sites prediction without noticing the uniqueness of the lncRNA methylation prediction

problem. Since many lncRNAs do not have a polyA tail and cannot be captured

in the polyA selection step of the most widely adopted RNA-seq library preparation

protocol, lncRNA methylation sites cannot be effectively captured and are thus likely to

be significantly underrepresented in existing experimental data affecting the accuracy

of existing predictors. In this paper, we propose a new computational framework,

LITHOPHONE, which stands for long noncoding RNA methylation sites prediction

from sequence characteristics and genomic information with an ensemble predictor. We

show that the methylation sites of lncRNA and mRNA have different patterns exhibited in

the extracted features and should be differently handled when making predictions. Due

to the used experiment protocols, the number of known lncRNA m6A sites is limited,

and insufficient to train a reliable predictor; thus, the performance can be improved by

combining both lncRNA and mRNA data using an ensemble predictor. We show that

the newly developed LITHOPHONE approach achieved a reasonably good performance

when tested on independent datasets (AUC: 0.966 and 0.835 under full transcript and

mature mRNA modes, respectively), marking a substantial improvement compared with

existing methods. Additionally, LITHOPHONE was applied to scan the entire human

lncRNAome for all possible lncRNA m6A sites, and the results are freely accessible

at: http://180.208.58.19/lith/.
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INTRODUCTION

RNA modifications include more than 150 different types,
among which N6-methyladenosine (m6A) has attracted the most
attention due to its universality and various biological functions
(Fu et al., 2014; Liu and Jia, 2014; Meyer and Jaffrey, 2014). The
m6A RNA methylation denotes that the amino group on the
sixth carbon atom of adenine is modified by a methyl group,
usually occurring in the conservative sequence RRACH (R = G,
A; H = A, C, or U) or GGAC (Dominissini et al., 2012). The
universality of m6A is reflected in the following two aspects. On
the one hand, it appears in almost all RNA transcripts, including
coding and non-coding ones (Dominissini et al., 2012; Alarcón
et al., 2015b). On the other hand, it is enriched near the stop
codon, 3′ untranslated regions, and the last exon region of mRNA
(Liu et al., 2014, 2015). Recent studies (Alarcón et al., 2015a;
Roost et al., 2015) showed that as a common molecular tag, m6A
modification is involved in many important biological processes,
including RNA localization and degradation (Wang et al., 2014),
RNA structural dynamics (Roost et al., 2015; Song et al., 2020),
variable splicing (Wang et al., 2014), primary microRNA process
(Chen et al., 2015a; Geula et al., 2015), cell differentiation and
adaptation, and circadian clock regulation (Fustin et al., 2013).
It is also associated with protein translation, obesity, abnormal
brain development, and a few other diseases (Peng et al., 2016).

Long non-coding RNA (lncRNA) refers to a class of RNAs that
have no coding potentials and are of a length >200 nucleotides
(nt). Studies have shown that lncRNA plays an important
role in many life activities, such as dosage compensation
effect, epigenetic regulation, cell cycle regulation, and cell
differentiation regulation (Qureshi et al., 2010; Peng et al., 2016).
Recent epitranscriptome analysis has shown that thousands of
lncRNAs contain a large number of methylation sites (Shafik
et al., 2016). For example, m6A methylation is important for the
silencing or inactivation of the X chromosome gene mediated by
lncRNA XIST (Patil et al., 2016). The m6A methylation of XIST
is completed by recruiting the complex composed of RBM15
(RNA-binding motif protein 15)/RBM15B-WTAP-METTL3 to
the specific region of XIST, the methylation recognition protein
(reader) YTHDC1 then binds to this region and recruits silencing

proteins to complete the whole gene suppression process.
Moreover, the m6A methylation of MALAT1 regulates pre-
RNA synthesis. It was found that MALAT1 could carry this
methylation in the stem ring structure. After m6A methylation,
the binding ability of the gene to the hnRNP C protein was
enhanced (Nian et al., 2015). In addition, m6A methylation can
regulate lncRNA FOXM1-AS to promote the proliferation of
cancer cells (Zhang et al., 2017; Song et al., 2020), and regulate
lncRNA1281 to affect the differentiation of mouse embryonic
stem cells (Yang et al., 2018).

With the development of high-throughput sequencing (HTS)
technology, a new field of epitranscriptome analysis has emerged.
The invention of MeRIP-Seq in 2012 (Meyer et al., 2012)
presented the first technique to detect the m6A spectrum in
the whole transcriptome, during which RNA was randomly
fragmented into short pieces of around 100 nt long; the
fragments containing methylation modification were captured

using the specific antibodies, and then subjected to sequencing to
generate the IP samples; meanwhile, an input control sample was
generated in parallel to serve as the background. Tools likeMACS
(Zhang et al., 2008), exomePeak (Meng et al., 2013), or other
peak calling methods are usually used to detect m6A peaks with a
length of about 100 nt (Chen et al., 2017). It is possible to further
narrow down the precise location of m6A sites by searching
for the m6A conforming DRACH motif in the detected peaks.
However, since these methods cannot distinguish the random
DRACH motifs from the real m6A-containing motifs nearby, a
large number of false-positive m6A methylation sites is reported
by MeT-DB (Liu et al., 2018) and RMBase (Xuan et al., 2018), as
previously reported (Zhang et al., 2019). In addition to MeRIP-
Seq, technologies with a single base resolution such as miCLIP
(Bastian et al., 2015) and m6A-CLIP (Shengdong et al., 2015)
have been developed. However, due to the high difficulty and cost
of base-resolution experiments, these technologies have not been
widely used compared with MeRIP-Seq.

In silico methods to predict methylation sites based on
machine learning (ML) approaches have been increasingly
popular in recent years. For example, Chen et al. proposed the
first ML method to predict RNA methylation sites in 2015,
called “iRNA-Methyl” (Chen et al., 2015b). This method used
dinucleotide composition and physicochemical characteristics to
construct the PseDNC in order to represent RNA sequences and
used these as an input to support vector machines (SVMs) to
predict the m6A methylation sites of Saccharomyces cerevisiae.
Later, Zhou et al. (2016) used a variety of features to represent
the sequence information, including the features of sequence
coding, K-nearest base pair similarity and base pair frequency,
to train the predictive model with the random forest (RF)
method for them6Amethylation sites prediction inmammalians.
MethyRNA (Chen et al., 2016) encoded RNA sequences using
the nucleotides’ chemical properties and their accumulated
frequency information, and used SVM classifier to predict the
methylationmodification sites of S. cerevisiae. M6AMRFS (Qiang
et al., 2018) represented the sequence features with dinucleotide
binary encoding (DBE) and local position-specific dinucleotide
frequency (LPDF), and predicted the methylation modification
sites of S. cerevisiaem6A based on an eXtreme Gradient Boosting

(XGBoost) classifier. Besides, a number of methods used deep
learning (DL) approaches to predict m6A methylation sites.
BERMP (Yu Huang et al., 2018) used the base coding and the
frequency of each base in a sliding window of a certain length
as the characteristics of the sequence information. Using trained
Gated Recurrent Unit (GRU) classifier and RF classifier, the
final prediction results are obtained by logical regression. In
DeepM6ASeq (Zhang and Hamada, 2018), the sequence was
encoded using a one-hot encoding scheme, and the methylation
modification sites were then predicted using a deep learning
model consisting of a convolutional neural network (CNN) layer
and one bidirectional long short-term memory (BLSTM) layer.
Gene2vec (Quan Zou et al., 2018) took the methylation status
near the methylation site, a one-hot encoding, the RNA word
embedding feature, and the context word embedding feature
as sequence features, used them respectively as an input to
a CNN, and used a devoting method to predict the location.
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Deep-m6A (Zhang Sy et al., 2019) took the product of a one-
hot encoding of the sequence characteristics and the sites’ reads
count in the IP samples as an input to predict m6A sites using
a CNN. In addition, PRNAm-PC (Liu et al., 2016), RAM-ESVM
(Wei et al., 2017a), AthMethPre (Xiang et al., 2016), and other
methods (Chen et al., 2015c; Li et al., 2016; Zhao et al., 2018;
Liu et al., 2020) can also be used to predict m6A methylation
sites. Although all these methods can predict RNA methylation
sites, they are entirely based on the sequence context information.
Even when secondary structures or other advanced features
are used, the information is still directly extracted from the
sequence without considering other potential and useful genomic
features, referring to genome-related features that are not directly
derived from sequences, including the secondary structure,
gene annotation, transcription type, conservation, and many
more. Recently, the method of WHISTLE (Zhang et al., 2019)
combined sequence and genomic features to predict m6A sites
and constructed the entire m6A epitranscriptome, showing that
genomic features can also be very effective in the prediction of
these sites and should be considered in the prediction framework.

Although the aforementioned methods can all perform
general RNA methylation sites prediction, none of them was
specifically considered or optimized for lncRNA methylation
sites detection. Most of the currently existing experimental data
use polyA selection when constructing the RNA-seq library; thus,
lncRNAs will not be effectively captured since many of them
are non-polyadenylated, and many lncRNA methylation sites are
likely to be missed in the data generated from such protocol
that would mainly contain the methylation sites information of
mRNAs. As a result, the performance of site predictors trained
with such data is likely to be limited when they are applied
for the lncRNA methylation sites prediction task. The interplay
between lncRNA and RNA methylation is now of an increasing
interest to the science community and it is needed to develop a
lncRNA-specific methylation sites prediction tool.

In this paper, we propose a new computational framework,
LITHOPHONE, which stands for long noncoding RNA
methylation sites prediction from sequence characteristics
and genomic information with an ensemble predictor.
LITHOPHONE uses a RF classifier to predict m6A methylation
sites by extracting the physicochemical and frequency
accumulation characteristics of the bases based on sequence
information and multiple genomic features, and identify lncRNA
methylation sites by combining the information from mRNA
and lncRNA sites using an ensemble predictor.

MATERIALS AND METHODS

Dataset Construction
For predicting the m6A methylation sites in lncRNA, we
employed the ground truth data that was used in the WHISTLE
project (Zhang et al., 2019), including six single-base resolution
m6A experiments from six datasets obtained from five cell types
(see Table 1): HEK293T, MOLM13, A549, CD8T, and HeLa,
respectively, where HEK293T has two samples. The annotation
information of lncRNA was obtained through Bioconductor via
the TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts R package.

TABLE 1 | Single-base resolution m6A datasets in lncRNA m6A prediction.

Cell Note References

HEK293T Abacm antibody Bastian et al., 2015

HEK293T Sysy antibody Bastian et al., 2015

MOLM13 Vu et al., 2017

A549 Shengdong et al., 2015

CD8T Shengdong et al., 2015

HeLa Ke et al., 2017

The positive m6A sites were defined as under the DRACH
consensus motifs in at least two of the six datasets. The
negative m6A sites were randomly selected from the non-
positive DRACH adenosines on the full transcripts containing
the positive sites. There were equal numbers of negative
and positive sites for each set of the training data, and the
underlying motifs were restricted on DRACH. In addition, no
sites were reported from the regions that can be mapped to
multiple genes.

Finally, 2,582 full transcript m6A sites in lncRNA were
collected, including 1,291 positive sites and 1,291 negative
ones, while 2,214 m6A sites were obtained in mature lncRNA
mode with 1,107 positive sites and 1,107 negative ones. Four-
fifths of the sites were randomly selected for training, and
the rest was retained for testing under both full transcript
and mature RNA modes, respectively. For comparison
purposes, we also generated the matched data for mRNAs,
including 57,105 positive sites and the same number of
negative ones for the full transcript mode, and 54,476 positive
sites and 54,476 negative ones for the mature RNA mode,
respectively. There were many more mRNA methylation
sites compared with the lncRNA sites, suggesting that the
mRNA methylation sites usually dominate the epitranscriptome
profiling results.

Feature Representation
In this work, the sequence and genomic features were
simultaneously used to represent a m6A site.

Sequence Features
A nucleotide in a 21-nt sequence around the DRACH motif was
represented by a four-dimensional vector following the method
of MethyRNA (Chen et al., 2016). Firstly, each kind of nucleotide
in RNA, including adenine (A), guanine (G), cytosine (C), and
uracil (U), was represented by three characteristics according
to its different chemical characteristics. For example, there is
only one ring structure in cytosine and uracil, while adenine
and guanine have two rings; adenine and cytosine both contain
an amino group, while guanine and uracil both contain a keto
group; hydrogen bonds are strong in guanine and cytosine
when forming the secondary structure, while they are weak in
adenine and uracil. According to these three features, a three-
dimensional vector S = (xi, yi, zi) could be used to represent
a nucleotide:

x =

{

1 if s ∈ {A,G}

0 if s ∈ {C,U}
, y =

{

1 if s ∈ {A,C}

0 if s ∈ {G,U}
, z =

{

1 if s ∈ {A,U}

0 if s ∈ {C,G}
(1)
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Therefore, based on the above-defined rules, the vectors (1,1,1),
(0,1,0), (1,0,0), and (0,0,1) can be used to encode A, C, G,
and U, respectively. Next, the base accumulation frequency was
also considered to describe the distribution of each base in
the sequence. This frequency was defined as the frequency of
the ith base in the previous i bases. The density fi of the ith
base is calculated by fi = di/i, where fi is the frequency of the
occurrence of the ith base before i position density, and di is
defined as the sum of the occurrences of the ith base in the
previous i bases. For a sequence like “ACCUGAAUUG,” A occurs
three times at the 1st, 5th, and 6th positions, so the cumulative
frequencies are 1/1, 2/5, and 3/6, respectively. However, the
cumulative frequencies of C are 1/2 and 2/3; those of U are
1/4, 2/8, and 3/9; and those of G are 1/5 and 2/10. According
to the above-described chemical characteristics and frequency
cumulative distribution characteristics, each base can be encoded
using a four-dimensional vector.

Genomic Features

Sequence features can only reflect the characteristics of each
base in the sequence, but they cannot represent the topological
information of the RNA methylation sites; thus, 60 additional
genomic features were generated to reflect this information for
the RNA methylation prediction in lncRNA. These features
are detailed as follows: genomic features 1–10 are the dummy
variable features, which indicate whether the site is overlapped
with the topological region on the major RNA transcript. In
order to extract genomic features, the longest transcripts were
selected to prevent the influence of transcription isoforms. All
features were extracted using the transcriptional annotations
of the hg19 TxDb package (Xuan et al., 2018). Genomic
features 11–12 stand for the distances toward the splicing
junctions. Features 13–14 represent the length of the transcript
region containing the methylation site. Features 15–32 indicate
the consistence motif to which the RNA methylation site
belongs. Features 33–36 represent clustering indicators or motif
clustering, which reflect the clustering effect of the RNA
methylation sites. Features 37–40 are the scores related to the
evolutionary conservation, including two Phast-Cons scores and
two fitness consequences scores. Features 41–42 obtain the
secondary structure information of the RNA using RNAfold
(Gruber et al., 2015). RNA annotations related to m6A biology
are features 43–55. Feature 56 is a dummy variable indicating
whether the lncRNA is a miRNA target. Finally, features 57–
60 include two z-scores of the isoform and exon number,
and two z-scores of the GC content. Table S1 contains the
detailed information of the genomic features considered in
the prediction.

Evaluation Metrics
In order to measure the prediction effect of the model, we used
the measurements of sensitivity (Sn), specificity (Sp), accuracy
(ACC), and Matthews correlation coefficient (MCC) to show the
results of the model. The four indicators are respectively defined

as follows:

Sn =

TP

TP + FN
(2)

Sp =

TN

TN + FP
(3)

ACC =

TP + TN

TN + FP + TP + FN
(4)

MCC =

TP × TN − FP × FN
√

(TP + FP)(TN + FN)(TP + FN)(TN + FP)
(5)

where TP, TN, FP, and FN are the true positive, true negative, false
positive, and false negative values, respectively. The sensitivity
reflects the success rate of the positive sample prediction, and
the specificity reflects the success rate of the negative sample
prediction. A good prediction system should have both a high
sensitivity and a high specificity at the same time. If the sensitivity
is very high and the specificity is low, the false positive will be
very high, while if the specificity is very high and the sensitivity is
low, the false negative will be very high. Therefore, the forecasting
system needs to comprehensively consider these two indicators.
Matthews correlation coefficient is a comprehensive performance
evaluation index considering unbalanced datasets. In addition,
we plotted the receiver operating characteristic (ROC) curves
and calculated the areas under the curves (as called “AUC”) to
evaluate the prediction performance.

RESULTS AND DISCUSSION

Comparing RF and Other Algorithm
Performance Through Cross-Validation
In order to compare the prediction results of different algorithms,
five different classifiers were used: RF (Liu, 2017; Wei et al.,
2017b), SVM (Song et al., 2018), K-nearest neighbor (KNN)
(Jia et al., 2016), logistic regression (LR) (Cha et al., 2015)
and XGBoost (Chen and Guestrin, 2016). RF is a popular ML
algorithm used to predict m6A RNA methylation, which was
applied in SRAMP (Zhou et al., 2016) to predict mammalianm6A
sites. SVM is another ML algorithm applied in computational

TABLE 2 | Performance under 10-fold cross-validation.

Mode Method Evaluation metrics

Sn Sp ACC MCC AUC

Full transcript RF 0.923 0.938 0.930 0.861 0.971

SVM 0.884 0.942 0.913 0.828 0.964

KNN 0.5 0.501 0.500 0.001 0.945

LR 0.881 0.944 0.912 0.827 0.962

XGBoost 0.907 0.940 0.924 0.848 0.955

Mature lncRNA RF 0.784 0.724 0.754 0.511 0.827

SVM 0.738 0.713 0.725 0.451 0.796

KNN 0.499 0.501 0.500 0.001 0.727

LR 0.602 0.807 0.704 0.418 0.789

XGBoost 0.645 0.697 0.671 0.345 0.722
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biology, based on which the methods of MethyRNA (Chen
et al., 2016) and RAM-ESVM (Wei et al., 2017a) were developed
to predict RNA methylation sites. KNN is one of the most
powerful methods in the data mining classification technology,
and LR is an ML method with a simple algorithm and a
high performance. XGBoost is frequently used in competitions
and industry, and can be effectively applied to the tasks of
classification, regression, and ranking; it was used in M6AMRFS
(Qiang et al., 2018) to predict m6A sites in multiple species

based on the sequence features. All methods were implemented
using the corresponding R packages (see Table S2). In order
to compare their performance, a 10-fold cross-validation was
employed on the training datasets under the full transcript
and mature lncRNA modes. The performance of the different
classifiers is summarized in Table 2, which shows that RF
achieved the best performance both under the full transcript
mode and mature lncRNA mode with an AUC of 0.971 and
0.827, respectively.

TABLE 3 | Performance under independent test.

Mode Training data Testing data Method Evaluation metrics

Sn Sp ACC MCC AUC

Full transcript lncRNA lncRNA RF 0.922 0.930 0.926 0.853 0.966

SVM 0.903 0.934 0.919 0.838 0.963

KNN 0.500 0.500 0.500 0.000 0.942

LR 0.895 0.926 0.911 0.822 0.959

XGBoost 0.922 0.903 0.913 0.826 0.947

lncRNA mRNA RF 0.981 0.046 0.514 0.077 0.759

SVM 0.984 0.051 0.518 0.098 0.678

KNN 0.499 0.501 0.500 0.000 0.572

LR 0.954 0.171 0.562 0.200 0.716

XGBoost 0.908 0.250 0.579 0.209 0.697

mRNA lncRNA RF 0.752 0.934 0.843 0.698 0.936

SVM 0.744 0.899 0.822 0.651 0.905

KNN 0.492 0.508 0.500 0.000 0.703

LR 0.539 0.953 0.746 0.541 0.872

XGBoost 0.721 0.891 0.806 0.622 0.869

mRNA mRNA RF 0.846 0.833 0.839 0.679 0.913

SVM 0.829 0.839 0.834 0.669 0.908

KNN 0.499 0.501 0.500 0.001 0.798

LR 0.717 0.896 0.806 0.623 0.898

XGBoost 0.831 0.832 0.832 0.664 0.907

Mature RNA lncRNA lncRNA RF 0.766 0.694 0.730 0.461 0.821

SVM 0.712 0.689 0.700 0.401 0.789

KNN 0.500 0.500 0.500 0.000 0.734

LR 0.590 0.802 0.696 0.401 0.797

XGBoost 0.757 0.703 0.730 0.460 0.784

lncRNA mRNA RF 0.757 0.522 0.639 0.287 0.705

SVM 0.814 0.424 0.619 0.258 0.717

KNN 0.493 0.508 0.501 0.002 0.520

LR 0.804 0.472 0.638 0.292 0.660

XGBoost 0.652 0.527 0.590 0.181 0.615

mRNA lncRNA RF 0.788 0.608 0.698 0.403 0.807

SVM 0.761 0.631 0.696 0.395 0.774

KNN 0.500 0.500 0.500 0.000 0.542

LR 0.419 0.838 0.628 0.283 0.653

XGBoost 0.694 0.694 0.694 0.387 0.749

mRNA mRNA RF 0.858 0.825 0.841 0.683 0.916

SVM 0.840 0.842 0.841 0.682 0.915

KNN 0.499 0.501 0.500 0.001 0.800

LR 0.742 0.895 0.819 0.645 0.908

XGBoost 0.831 0.832 0.832 0.664 0.907
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Independent Tests Suggest That lncRNA
and mRNA Methylation Sites Possess
Different Characteristics
Next, we independently tested the m6A sites on lncRNA in
the full transcript and mature lncRNA modes. It is worth
mentioning that none of the existing sites prediction methods
differentiated between lncRNA and mRNA sites. Since mRNA
sites are significantly over-represented in the data, it should
dominate the performance assessment results. In the following
tests, the mRNA and lncRNA sites were explicitly separated in
both training and testing phases. Specifically, we used m6A sites
from both mRNA and lncRNA for the training, and then as
testing sites from the two categories as well. We used the training
data in lncRNA to train in the full transcript mode, tested with
the testing data of lncRNA and mRNA separately, then trained
with the training data in mRNA and finally tested with the testing
data of lncRNA and mRNA separately. The same method was
used in the mature lncRNA mode. As shown in Table 3, the best
performance was achieved when the training and testing data
were matched, suggesting that lncRNA and mRNA methylation
sites exhibited different characteristics. When using lncRNA
data as training samples to predict m6A sites in lncRNA, the
prediction performance (AUC = 0.966 and AUC = 0.821, under
full transcript and mature RNA modes, respectively) was better
than when we used mRNA data as training samples to predict
the sites of lncRNA (AUC = 0.936 and AUC = 0.807, under
full transcript and mature RNA modes, respectively). Similarly,
this situation also occurs in predicting the sites of mRNA. When
mRNA sites were used for training, the results achieved for
testing the sites of mRNA were better than those of lncRNA. In
addition, it can be seen that the method of RF can achieve the
best prediction results in both cross-validation and independent
testing among the five different prediction methods. Therefore,
RF is chosen as a classifier to predict the methylation sites
in lncRNA.

Construction of an Ensemble Predictor
Since mRNA methylation sites can also be used for lncRNA site
prediction and have achieved a reasonably good performance
(Table 3), and considering that we only have a limited number
of lncRNA methylation sites, which may not be sufficient for
training, an ensemble model using mixed predictive results of
mRNA and lncRNA was proposed in order to further improve
the lncRNA sites prediction accuracy. The probability of lncRNA
sites prediction in this model is defined as follows:

Pen = αPm + (1− α)Plnc (6)

where Pen denotes the final prediction probability of the sites
in the mature lncRNA mode, Pm represents the prediction
probability of the sites when mRNA sites data were used
for training, and Plnc denotes the prediction probability of
the sites when the lncRNA data were used for training.
In order to optimize the value of α, which gives the
models different weights, a grid search was performed α ∈

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The best performance

FIGURE 1 | Search for optimal parameter of the ensemble predictor. The

optimal result was achieved when α=0.3. When α = 0, only lncRNA sites were

used for training; while when α = 1, only mRNA sites were considered.

TABLE 4 | Comparison of ensemble model and lncRNA trained model.

Predictor Evaluation metrics

Sn Sp ACC MCC AUC

mRNA trained 0.788 0.608 0.698 0.403 0.807

lncRNA trained 0.766 0.694 0.730 0.461 0.821

Ensemble (α = 0.3) 0.797 0.689 0.743 0.489 0.835

was achieved when α = 0.3 (AUC= 0.835) (see Figure 1), which
indicates that the relatively small number (1,107) of lncRNA sites
plays a major role in the ensemble predictor (weight= 0.7), while
the very large number (54,476) of mRNA methylation sites plays
a minor role (weight = 0.3). The results comparing the mRNA
and lncRNA models are shown in Table 4.

Feature Selection
To further optimize the prediction results, we used feature
selection to obtain the most effective feature set to predict
the methylation sites on lncRNA, and a greedy search was
implemented. Firstly, we ranked the features according to their
importance through the results of AUC with 10-fold cross
validation. Then, one feature was added to the training set
each time from the sorted feature set, and the prediction
results were obtained using 10-fold cross-validation. The optimal
feature set was obtained through the highest AUC. As shown in
Figures 2C,D, the first 134 features composed the optimal feature
set in the m6A sites prediction in the full transcript mode, while
the top 41 features can get the highest AUC when predicting
m6A sites in the mature RNA mode. In addition, it can be seen
from Figures 2A,B that the top five features when predicting
lncRNA m6A sites under the full transcript mode are whether
the site is overlapped with the intron (intron), the distance to
the downstream (3′ end) splicing junction (dist_sj_3_p2000), the
z-score of the isoform num (isoform_num), whether the site is
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FIGURE 2 | Feature selection results. (A) The ranking of the features for full transcript m6A site prediction. (B) The ranking of the features for mature lncRNA m6A site

prediction. (C) Top 134 features were selected for full transcript m6A site prediction. (D) Top 41 features were selected for mature lncRNA m6A site prediction.

overlapped with the internal exon (internal_exon), and the z-
score of the gene length exons (length_gene_ex). On the other
hand, the five most importance features in the prediction sites
under the mature RNA mode are the distance to the upstream
(5′ end) splicing junction (dist_sj_5_p2000), the distance to
the downstream (3′ end) splicing junction (dist_sj_3_p2000),
the z-score of the gene length exons (length_gene_ex), whether
the site is overlapped with the intron (intron), and the z-
score of the exon num (exon_num). Although some of the first
five features are identical in predicting RNA methylation sites
in both full transcript and mature lncRNA modes, different
characteristics reflect the inherent differences between the
two modes.

Comparison With Existing Methods
In order to further verify the validity of the proposed algorithm,
we compared it with the methods of SRAMP that uses RF
to predict mRNA m6A sites, MethyRNA that uses the same
sequence features as we do, but uses SVM for prediction,
and the deep learning method of Gene2vec. These methods
have available prediction tools. The results are summarized in
Table 5 and the ROC curves of the four methods are shown
in Figure 3. The results show that the proposed method is

TABLE 5 | Performance comparison for lncRNA m6A site prediction.

Mode Method Evaluation metrics

Sn Sp ACC MCC AUC

Full transcript SRAMP 0.705 0.791 0.748 0.498 0.827

MethyRNA 0.717 0.752 0.734 0.469 0.801

Gene2vec 0.798 0.813 0.805 0.611 0.865

LITHOPHONE 0.922 0.930 0.926 0.853 0.966

Mature RNA SRAMP 0.604 0.748 0.676 0.355 0.749

MethyRNA 0.622 0.644 0.633 0.266 0.679

Gene2vec 0.778 0.689 0.734 0.469 0.806

LITHOPHONE 0.797 0.689 0.743 0.489 0.835

superior to the current popular methods in predicting lncRNA
methylation sites.

LncRNAome-Wide m6A Site Prediction
In order to obtain a complete map of all the human lncRNA
methylation sites, we searched the entire lncRNAome for all the
DRACH motifs, which represent candidate lncRNA methylation
sites, under both full transcript and mature RNA modes, and
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FIGURE 3 | ROC for lncRNA methylation site prediction. The proposed approach substantially outperformed competing approaches. (A) The ROC curve for the full

transcript mode. (B) The ROC curve for the mature RNA mode.

used the proposed method to predict the probability of lncRNA

methylation sites. Finally, 330,564 out of the total 4,046,330
DRACHmotifs were predicted to contain m6ARNAmethylation
sites under the full transcript mode with a probability greater
than 0.5, and 114,093 out of the total 313,458 DRACH motifs
from 29,687 lncRNAs were predicted as putative lncRNA
methylation sites under the mature RNA mode. The prediction
results can be freely accessed at: http://180.208.58.19/lith/. In
addition, the data and code used in this article can be obtained
from https://github.com/lianliu09/lncRNA-m6a.git.

CONCLUSION

With the rapid development of high-throughput sequencing
and RNA methylation profiling technologies, people can
now study RNA modifications with a high accuracy in
the full transcriptome range. In recent years, a number
of RNA methylation sites prediction methods have been
developed. However, to the best of our knowledge, none
of them considered the experimental bias induced in the
current epitranscriptome data, which can significantly affect the
performance of these predictors.

In this paper, we presented LITHOPHONE, an ensemble
framework to predict m6A epitranscriptome in lncRNA.
Unlike other methods that rely only on sequence information,
LITHOPHONE extracts the physicochemical and frequency
accumulation characteristics of the bases, combining 60 genomic
characteristics to predict the m6A methylation modification
sites under both full transcript and mature RNA modes on
lncRNA using the RF algorithm. To the best of our knowledge,
LITHOPHONE is the first m6A sites predictor that is optimized
for lncRNA. We showed that lncRNA and mRNA exhibit
different predictive characteristics, and how LITHOPHONE
outperforms competing approaches in lncRNA methylation site
prediction. Additionally, we searched the entire lncRNAome
in human for all possible m6A sites located on lncRNAs and

predicted 330,564 m6A sites on pre-lncRNA and 114,093 sites

on mature lncRNA. We built a website to query the prediction
results of lncRNA methylation sites and it is freely accessible at:
http://180.208.58.19/lith/. The LITHOPHONE framework can be
easily extended to other RNAmodifications, such as m1A, as well
as other species, such as the mouse.
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Although it is widely accepted that N6-methyladenosine (m6A) RNA methylation plays
critical roles in tumorigenesis and progression, the values of m6A modification are less
known in hepatocellular carcinoma. The major purpose of our current studies is to
investigate the role of m6A regulators in hepatocellular carcinoma and whether it can
affect the prognosis of hepatocellular carcinoma. Here we demonstrate that most of
the m6A regulators are highly expressed in hepatocellular carcinoma. Furthermore, we
cluster hepatocellular carcinoma into two subgroups (cluster 1/2) by applying consensus
clustering to m6A regulators. Compared with the cluster 1 subgroup, the cluster 2
subgroup was significantly associated with a higher pathological grade and survival.
Based on these findings, we reveal a risk signature by using three m6A regulators,
which are not only an independent prognostic marker but also a predictor of the
clinicopathological features in hepatocellular carcinoma. In conclusion, m6A regulators
are crucial participants in the malignant progression of hepatocellular carcinoma and are
potential targets for prognosis.

Keywords: m6A modification, m6A regulators, hepatocellular carcinoma, a risk signature, prognostic marker

INTRODUCTION

RNA modification was first discovered in the 1960s and was considered to be another epigenetic
form analogous to DNA and histone modification (Jia et al., 2013). Among more than 100 kinds of
RNA modifications known so far, N6-methyladenosine (m6A) methylation is the most abundant
RNA epigenetic modification in RNA, which is dynamically regulated by methyltransferases
(“writers”), binding proteins (“readers”), and demethylases (“erasers”) (Niu et al., 2013; Yang
et al., 2018). The prominent methyltransferases complex catalyzes the formation of m6A, which
contain at least six “writer” proteins: methyltransferase like 3 (METTL3), methyltransferase like 14
(METTL14), WT1-associated protein (WTAP), VIRMA (KIAA1429), zinc finger CCCH domain-
containing protein 13 (ZC3H13), and RNA binding motif protein 15 (RBM15) (Liu and Pan, 2016).
The demethylases catalyze the demethylation of m6A, which mainly include fat mass- and obesity-
associated protein (FTO) and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5)
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(Ding et al., 2018; Piette and Moore, 2018). The binding
proteins, which recognize and bind with m6A, are consisting
of YTH domain family proteins and heterogeneous nuclear
ribonucleoprotein C (HNRNPC) (Duan et al., 2019). The
biological functions of m6A RNA methylation are involved in
regulating all stages of the RNA life cycle, including pre-mRNA
splicing, pri-miRNA processing, nuclear output, RNA translation
regulation, and RNA degradation (Roignant and Soller, 2017).

The transcriptome-wide mapping of m6A focuses on
investigating the landscapes and the functions of the reversible
m6A modification in the last decade (Bi et al., 2019). Recently,
more and more scientists focus on exploring the association
between m6A and human diseases, especially in tumors (Dai
et al., 2018; Pan et al., 2018). A growing appreciation of the
biological significance of m6A RNA methylation implied that
m6A contributed to tumorigenesis and tumor progression (Deng
et al., 2018). The dislocation of m6A is closely associated with
various kinds of cancers, such as glioblastoma (GBM), colorectal
carcinoma (CRC), pancreatic cancer (PC), and hepatocellular
carcinoma (HCC) (Chen et al., 2018; Chai et al., 2019; Zhang
et al., 2019; Zhou et al., 2019). Notably, the roles of m6A
regulators in tumors are controversial. METTL3 serves as a
tumor suppressor gene in GBM and is considered as an oncogene
in CRC or non-small cell lung carcinoma (Li et al., 2019; Wei
et al., 2019; Liu et al., 2020). YTHDF2 acts as a tumor suppressor
gene in lung cancer and supposed to be an oncogene in PC
(Chen et al., 2017; Sheng et al., 2019). The controversial roles
of m6A regulators in tumors suggest that the functions of m6A
modification in tumors are complicated. Moreover, the literature
does not have comprehensive m6A regulator expression and
prognosis analysis in tumors.

In this study, we systematically analyze the expression data
of 13 m6A modification regulators in HCC from The Cancer
Genome Atlas (TCGA) datasets. We demonstrate that most of the
13 m6A regulators are highly expressed among HCC. Moreover,
we also find that the m6A regulators are crucial participants in the
malignant progression of HCC and a signature with three selected
m6A regulators is designed to stratify the prognosis of HCC.

MATERIALS AND METHODS

Data Acquisition and Processing
The RNA-seq transcriptome and clinical data of 407 HCC
samples and 58 adjacent tissue samples were obtained from
TCGA1. The workflow type is fragments per kilobase million.
The R package “limma” was used to process and delete duplicate
genes. The expression of m6A regulators in HCC was extracted
from RNA-seq transcriptome. The Wilcoxon test was used
to analyze the differential expression of these m6A regulators
(p < 0.05 was considered as significant). Incomplete samples
of survival data were removed, and finally, 403 samples with
complete clinical information were obtained for subsequent
analysis. The flow chart of this study is shown in Figure 1.

1https://portal.gdc.cancer.gov/

Identify the Role of m6A Regulators in
HCC
Gene mutation and copy number variation data were
downloaded from the cbioport database2. The interaction
and the correlation among m6A regulators were analyzed using
the R package “corrplot.” The HCC patients were divided into
two subgroups based on the expression of m6A regulators
using a cluster analysis method with “ConsensusClusterPlus”3.
The R package “ggplot2” is used for principal component
analysis (PCA). The R package “survival” was used to plot
Kaplan–Meier survival curves. A p < 0.05 was considered as
statistically significant.

Construction of a Signature Associated
With Prognosis
The roles of m6A regulators in the prognosis of HCC patients
were identified by univariate Cox regression analysis; p < 0.05
was considered as significant. A risk signature was built by the
least absolute shrinkage and selection operator (LASSO) Cox
regression algorithm, and multivariate Cox regression analysis.
The signature is expressed as follows: risk score = (coefficient
gene 1 × gene 1 expression) + (coefficient gene 2 × expression
of gene 2) + . . . + (coefficient gene n × expression gene n). The
median risk score served as a cutoff value to classify patients into
high-risk and low-risk groups. The R package “survival ROC” was
used to perform time-dependent receiver operating characteristic
(ROC) curve analysis to assess the accuracy of the predicted
genetic features of time-dependent cancer death. The area under
the curve (AUC) was calculated to evaluate the accuracy of the
risk prediction model. The R package “survival” was used to plot
Kaplan–Meier survival curves.

Independence of Prognostic Factors
From Other Clinical Parameters in TCGA
Complete information on the 403 samples included relevant
clinical data for univariate and multivariate Cox regression
analyses. p < 0.05 was considered as statistically significant.

Construction of a Predictive Nomogram
The independent prognostic factors were chosen as the
prognostic model to construct a nomogram in the entire TCGA
cohort. The calibration plot and the concordance index (C-index)
were used to investigate the calibration and the discrimination
of the nomogram.

RESULTS

m6A Regulators in HCC Patients Are
Highly Expressed
More and more reports have shown that m6A regulators such
as METTL14 (Li et al., 2020), YTHDF1 (Zhao et al., 2018),
YTHDF2 (Chen et al., 2018), and WTAP (Chen et al., 2019)

2http://www.cbioportal.org/
3http://www.bioconductor.org/
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FIGURE 1 | Flow chart of the approach utilized in the current study.

are essential for the deterioration and the progression of HCC.
To further confirm the role of all m6A regulators in HCC, we
systematically investigated the expression of 13 m6A regulators
(including six writers: KIAA1429, METTL3, METTL14, RBM15,
WTAP, and ZC3H13; two erasers: ALKBH5 and FTO; and
five readers: HNRNPC, YTHDC1, YTHDC2, YTHDF1, and
YTHDF2) in 403 HCC samples and 58 adjacent normal tissue
samples from the TCGA database. Information on these m6A
regulators is shown in Table 1. Similar to the results of Li’s
report (Li et al., 2020), we found that KIAA1429, METTL3,
and HNRNPC are highly expressed in HCC tumor samples.
Contrary to Li’s findings, our results show that the expression
of METTL14, YTHDC1, YTHDC2, and FTO was also increased
in HCC, while the expression of ZC3H13 has no difference
between the tumor samples and the adjacent normal tissue
samples. In detail, HNRNPC had the highest expression, followed
by ALKBH5 and YTHDF1(p < 0.05) (Figures 2A,B). The

inconsistent results between Li’s study and our research may be
caused by different sample data.

Mutation and Copy Number Variation of
m6A Regulatory Genes in HCC
We then completely analyzed the different mutation and
copy number variation (CNV) patterns of m6A regulatory
genes in HCC from the cbioport database4. It included
gene mutation, amplification, deep deletion, mRNA expression
change, and other multiple alterations. The result revealed
that m6A regulators were highly expressed in most HCC
samples; meanwhile, m6A regulators had gene mutations and
CNV (Figure 3A). Specifically, the m6A “writer” gene VIRMA
(KIAA1429) had the highest mutation and CNV frequency

4http://www.cbioportal.org/
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TABLE 1 | Information on 13 m6A regulators.

Types Gene symbol HGNC symbol Full name

Readers HNRNPC 5035 Heterogeneous nuclear
ribonucleoprotein C

YTHDC1 30626 YTH domain containing 1

YTHDC2 24721 YTH domain containing 2

YTHDF1 15867 YTH N6-methyladenosine RNA
binding protein 1

YTHDF2 31675 YTH N6-methyladenosine RNA
binding protein 2

Writers KIAA1429 24500 vir like m6A methyltransferase
associated

METTL3 17563 Methyltransferase like 3

METTL14 29330 Methyltransferase like 14

RBM15 14959 RNA binding motif protein 15

WTAP 16846 WT1 associated protein

ZC3H13 20368 Zinc finger CCCH-type
containing 13

Erasers ALKBH5 25996 alkB homolog 5, RNA
demethylase

FTO 24678 FTO alpha-ketoglutarate
dependent dioxygenase

(40%). as well as “readers” YTHDF1 (18%), ALKBH5 (17%), and
WTAP (17%), respectively (Figure 3B).

Interaction and Correlation Among m6A
Regulators in HCC
Next, we evaluated the interaction and the correlation among
m6A regulators. In the cbioport database, we found that there
were close interactions among m6A regulators (Figure 3C).
Furthermore, we analyzed the expression correlation of these
genes in detail based on the expression profile of m6A regulators.
The result showed that there was a significant positive correlation
between the expressions of most m6A regulators. However,
there might be no correlation between YTHDC2 and ALKBH5,
ZC3H13 and ALKBH5, ZC3H13 and KIAA1429, and ZC3H13
and YTHDF1 (Figure 3D). These results reveal that, except
for a few m6A regulators, most of them may play roles
together in HCC.

Classification of HCC Samples Based on
the Expression of m6A Regulators
To study whether m6A regulators type HCC samples well,
by inputting the expression profile of the m6A regulators,
we performed a cluster analysis with the R package
“ConsensusClusterPlus” (k = 2–9, Figure 4A). The results
revealed that it was most appropriate to divide the patients into
two subtypes (Figure 4A). These two subtypes were defined as
cluster 1 and cluster 2 in order to further verify the accuracy
of the two subtypes. We input all gene expression profiles and
subtype information and used the R packages “limma” and
“ggplot2” for the PCA of HCC. The PCA results also showed
that the HCC sample could be well divided into two subtypes
(Figure 4B). Moreover, a significantly shorter survival curve in
the cluster 2 subgroup was observed (Figure 4C). Furthermore,

the clinical characteristics of the two subtypes are shown in
Table 2. These two subgroups were significantly correlated
with the WHO grade, gender, age, and lymph node metastasis
(p < 0.05) (Figure 4D). These findings further indicate that
m6A regulators have a key role in HCC categories. However, the
specific molecular differences or other effects between these two
subtypes needed further research.

A Risk Signature Built Using Three
Selected m6A Regulators
The previous results revealed that m6A regulators play an
important role in HCC. In order to explore whether m6A
regulators predict the survival prognosis of HCC patients, we
combined the expression profile and the clinical data of m6A
regulators for univariate Cox regression analysis. The results
revealed that a total of seven genes (YTHDF2, KIAA1429,
HNRNPC, WTAP, YTHDF1, YTHDC1, and METTL3) were
significantly associated with survival prognosis (p < 0.05,
Figure 5A). The hazard ratio values of these seven genes were
all more than 1 (Figure 5A), indicating that they may be negative
prognostic factors for HCC patients.

Then, we further analyzed these seven genes through LASSO
regression analysis, and the results showed that three m6A
regulators (YTHDF1, YTHDF2, and KIAA1429) might be able to
construct a prognostic model (Figures 5B,C). A multivariate Cox
regression analysis was used to construct a risk signature based on
the expression of these three genes (Figure 5D). The univariate
and multivariate Cox regression results are shown in Table 3. Risk
score = 0.038 × expression of YTHDF1 + 0.064 × expression
of YTHDF2 + 0.067 × expression of KIAA1429. The patients
were divided into high-risk and low-risk groups by the median
risk score (0.939), which served as the cutoff value. The model
constructed with the risk signature showed that the AUC values
of the time–ROC curve for 3-year overall survival (OS) was
0.665 (Figure 6A). As the risk score increased, the mortality
rate increased gradually (Figure 6B). OS in the high-risk group
was significantly shorter than in the low-risk group (p < 0.05,
Figure 6C). The clinical characteristics of the high- and low-
risk groups are shown in Table 2. The high- and low-risk groups
were found to correlate significantly with age, grade, and lymph
node metastasis in HCC (p < 0.05, Figure 6D). To further assess
whether risk score can be used as an independent prognostic
indicator, we performed univariate Cox and multivariate Cox
regression analyses on the risk score. By univariate analysis, we
found that the risk score, WHO grades, and TNM stages were
all correlated with the OS (P < 0.001) (Figure 6E). Including
these factors into the multivariate Cox regression, the risk
score remained significantly associated with the OS (p < 0.001)
(Figure 6F). All the results suggest that the prognostic survival
models based on these three genes are useful for prognosis in
HCC patients. The expression level of these three genes can be
used as independent prognostic factors for HCC in the clinic.

Construction of a Prognostic Nomogram
To further evaluate this risk signature, we used the ROC curve
to evaluate the model to predict the survival status of HCC for
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FIGURE 2 | The differential expression levels of 13 m6A regulators in hepatocellular carcinoma (HCC) tissues and adjacent normal tissues. (A) The results of the heat
map show the expression levels of 13 m6A regulators in 407 HCC samples and 58 adjacent normal tissues (Wilcoxon test). (B) The histogram shows the differential
expression levels of 13 m6A regulators in 407 HCC samples and 58 adjacent normal tissues (Wilcoxon test). *p < 0.05 and ***p < 0.001.

1, 3, and 5 years, respectively. The results showed that the AUC
value for 1 year is 0.72, the AUC value for 3 years is 0.665, and the
AUC value for 5 years is 0.599 (Figure 7A). This result shows that
the risk signature has a good prognosis for 1 and 3 years, but for
the 5-year survival status, the prediction is not so accurate. The
reason may be that the number of HCC patients in the TCGA

data set who survived more than 5 years is too small. It may be
better to add more samples for analysis.

Then, we constructed a nomogram to predict OS in patients
with HCC based on risk scores (Figure 7B). The calibration
plots showed that the performance of the nomogram was best in
predicting 1-, 3-, and 5-year OS (Figure 7C).
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FIGURE 3 | The interaction among m6A regulators in hepatocellular carcinoma (HCC). (A,B) The copy number variations and mutation of 13 m6A regulators in HCC
from cbioport database. (C) The correlation of m6A regulator protein expression in HCC. (D) Correlation between the expression of 13 m6A regulators mRNA in
HCC.

Consequently, an independent prognostic risk
signature was built based on three m6A regulators
(YTHDF1, YTHDF2, and KIAA1429) in HCC
(Figure 8).

DISCUSSION

Accumulating evidence shows that the m6A modification was
observed in diverse cancers, which is important for cancer stem
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FIGURE 4 | The role of subtypes based on m6A regulator expression profiling in hepatocellular carcinoma (HCC). (A) The relative change of the cumulative
distribution function and the area under the curve of k = 2–9 for consensus clustering. This result shows that, when K = 2, the m6A regulators can well divide HCC
into two types. (B) The results show that the subtypes identified based on the expression profile of the m6A modulator can well distinguish HCC into two clusters.
(C) The comparison of survival curves between cluster 1 and cluster 2 subgroups. (D) The comparison of clinicopathological features between cluster 1 and cluster
2 subgroups (Wilcoxon test). **p < 0.01 and ***p < 0.001.

cells self-renewal, cancer cell proliferation, and radiotherapy or
chemotherapy resistance (Pan et al., 2018). The formation of
m6A is catalyzed by the prominent “writer” proteins (Duan

et al., 2019). The downstream cellular functions of m6A rely
on its “readers” (Wang et al., 2015; Kretschmer et al., 2018).
In addition, HNRNPC is considered as an “m6A switch” to

Frontiers in Genetics | www.frontiersin.org 7 August 2020 | Volume 11 | Article 863126

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00863 August 10, 2020 Time: 14:53 # 8

Liu et al. N6-Methyladenosine RNA Methylation

TABLE 2 | The clinical features of hepatocellular carcinoma.

Variables Cluster 1
(n = 260)

Cluster 2
(n = 143)

High risk
(n = 201)

Low risk
(n = 202)

Age (years)

≤ 65 154 78 113 119

> 65 105 33 56 82

Unkonw 1 32 32 1

Gender

Female 76 64 77 63

Male 184 79 124 193

Grade

G1 + G2 183 49 86 146

G3 + G4 72 61 81 52

Unknown 5 33 34 4

Tumor invasion (T)

T1 + T2 197 105 174 155

T3 + T4 60 38 54 44

Unknown 3 0 0 3

Lymph node (N)

N0 177 100 147 130

N1 + N2 1 7 6 2

Unknown 83 36 48 70

Metastasis (M)

M0 184 110 153 140

M1 3 4 4 3

Unknown 73 30 44 59

Tumor stage

Stages I + II 188 95 137 146

Stages III + IV 56 40 53 43

Unknown 16 8 11 13

improve the accessibility of RNA binding proteins (Liu et al.,
2015). Some reports show that METTL14 is supposed to be an
oncogene in acute myeloid leukemia (Weng et al., 2018). WTAP
also acts as an oncogene for the development of malignant tumors
and a target for immunotherapy of cancer patients (Xie et al.,
2019). KIAA1429 acts as an oncogenic factor in breast cancer
and contributes to liver cancer progression (Lan et al., 2019;
Qian et al., 2019).

Currently, increasing evidence indicates that m6A regulators
are involved in the progression of HCC (Ma et al., 2017;
Yang et al., 2017). The “writer” METTL3 contributes to HCC
progression by repressing SOCS2 expression (Chen et al., 2018).
The “writers” METTL14 acts as an adverse prognosis factor
for HCC by promoting miR126 processing (Ma et al., 2017).
KIAA1429 is involved in liver cancer progression and regulates
the invasion of HCC by altering the m6A modification of
ID2 and GATA3 (Qian et al., 2019; Cheng et al., 2019). The
“reader” YTHDF2 was closely associated with the malignancy
of HCC modulated by MiR145 (Yang et al., 2017). Our results
are consistent with these reports. All m6A regulators, except
ZC3H13, are highly expressed in HCC, indicating that m6A
regulators have key roles in HCC. The PCA results show that
m6A regulators can divide hepatocellular carcinoma patients into
two types well, and two clustering subgroups have significant

differences in WHO grade, gender, age, and lymph node
metastasis. All these results suggest that m6A regulators may be a
useful diagnostic classification tool for HCC. However, we only
explore the relevance of these two types and clinical features.
More detailed studies of m6A regulatory factors in the diagnostic
classification of HCC are needed.

There is an important question of whether the m6A regulator
expression level can act as a prognostic marker in HCC. Li
et al. show that KIAA1429, METTL3, and HNRNPC are highly
expressed in HCC tissues, while METTL14, ZC3H13, YTHDC1,
YTHDC2, and FTO expressions are lower than those in normal
tissues. A three-gene (CSAD, GOT2, and SOCS2) signature
regulated by METTL14 is efficient for the prognostication of
HCC (Li et al., 2020), which suggests that m6A regulators have
a clinical prognostic impact in HCC. In our present study,
we get similar results that the m6A regulator expression levels
are essential for hepatocellular carcinoma prognosis. Differently,
in our study, we derive the HCC prognostic signature from
the expression of three m6A regulators (YTHDF1, YTHDF2,
and KIAA1429). As we have observed, the three-gene signature
generated by risk score can stratify the OS for HCC patients.
In our results, the expression of all m6A regulators, except for
ZC3H13, is higher in the tumor samples than in the adjacent
normal tissue. Inconsistent results may result from different
sample amounts and sources. More samples are used in our
study than in their research, and all our study data of 407
samples are from the TCGA database, while 64 of 307 patients
included in their report are from the GSE116174 dataset (others
are from the TCGA database). Moreover, that report focuses on
studying the function of METTL14 and establishing a METTL14-
regulated three-gene (CSAD, GOT2, and SOCS2) signature and
nomogram to predict the OS of HCC. However, in our study,
the HCC prognostic signature derives from directly using three
m6A regulators (YTHDF1, YTHDF2, and KIAA1429). The three
regulators are considered to be useful markers for the diagnosis
and the treatment of HCC patients in the clinic. Because the
signature is generated based on the expression level of m6A
regulators which do not involve the downstream target genes,
additional trials are needed to find the target genes and the
signaling pathways of these three regulators. That should be a
good strategy to treat HCC by targeting YTHDF1, YTHDF2, and
KIAA1429 combined with targeting their downstream genes.

In our results, a very surprising one is that ZC3H13 expression
has no difference between tumor samples and adjacent tissue
samples. In addition, ZC3H13 is not correlated with ALKBH5,
KIAA1429, and YTHDF1. The previous report shows that the
expression of ZC3H13 is lower than those in normal tissues (Li
et al., 2020). ZC3H13 is a classical CCCH zinc finger protein
localized in human chromosome 13q14.139 (Ouna et al., 2012).
As an m6A methylation writer, the role of ZC3H13 in tumors
is controversial. A report shows that ZC3H13 serves as a tumor
suppressor protein in colon carcinoma and colorectal cancer by
regulating the Ras-ERK signaling pathway (Zhu et al., 2019).
Other reports consider it as an oncogenic protein by binding with
K-ras and activating the NF-κB signal (Knuckles et al., 2018). The
controversial roles of ZC3H13 in tumors give us a clue that the
essentiality and the functions of m6A RNA methylation in tumors
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FIGURE 5 | Identification of m6A regulators associated with hepatocellular carcinoma (HCC) prognosis. (A) The univariate Cox regression models identified seven
m6A regulators associated with overall survival. (B,C) Three m6A regulators were identified by LASSO regression analysis. (D) Three m6A regulators were identified
for constructing a prognostic model by multivariate Cox regression analysis. *p < 0.05 and **p < 0.01.

TABLE 3 | Univariate and multivariate Cox regression analyses of three m6A regulators in hepatocellular carcinoma.

Variables Univariate analysis Multivariate analysis

Hazard ratio (HR) (95% CI) P-value Coefficient HR (95% CI) P-value

YTHDF2 1.105 (1.062–1.150) <0.001 0.064 1.066 (1.016–1.118) 0.008

YTHDF1 1.072 (1.041–1.105) <0.001 0.038 1.039 (1.002–1.078) 0.039

KIAA1429 1.140 (1.060–1.227) <0.001 0.067 1.070 (0.997–1.159) 0.099

are complicated, and further studies are needed to focus on its
prognostic value in HCC.

Another interesting result is that RNA binding protein
HNRNPC expression is elevated in HCC. This is consistent
with the previous report (Li et al., 2020). The essentiality of
HNRNPC in tumors is not clear. Certain studies show that

HNRNPC promotes cell proliferation, apoptosis, and tumor
growth (Kleemann et al., 2018; Wu et al., 2018). In addition,
a high expression of HNRNPC has a poor prognosis and
may act as a candidate biomarker for chemoresistance in
gastric cancer (Huang et al., 2016). Besides that, HNRNPC
also acts as a dengue virus NS1-interacting protein and plays
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FIGURE 6 | The role of this risk signature in hepatocellular carcinoma (HCC). (A) Receiver operating characteristic curve analysis predicts the accuracy of the 3-year
survival of risk signature in HCC. (B) The risk score analysis of this risk signature in HCC. (C) The comparison of survival curves between high- and low-risk groups.
(D) The comparison of clinicopathological features between high- and low-risk groups (Wilcoxon test). (E) The association between clinicopathological factors
(including the risk score) and overall survival by univariate Cox regression analyses. (F) The association between clinicopathological factors (including the risk score)
and overall survival by multivariate Cox regression analyses. *p < 0.05 and ***p < 0.001.
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FIGURE 7 | Construction of a prognostic model. (A) Receiver operating characteristic curve analysis of the ability of this risk signature to predict hepatocellular
carcinoma (HCC) 1-, 3-, and 5-year survival status. (B) The construction of the nomogram was based on the risk score in HCC. (C) The calibration plot for internal
validation of the nomogram.

an important role during the replication of the hepatitis C
virus and hepatitis delta virus (Noisakran et al., 2008; Casaca
et al., 2011). Our results imply that HNRNPC is a candidate
biomarker for HCC. More work is needed to verify the relevant
regulatory pathways.

Among 13 m6A RNA methylation regulators, the m6A
methylation writer VIRMA (KIAA1429) has the most obvious
mutation in HCC. VIRMA is identified as the component

associated with WTAP in mammalian cells and involved in
the regulation of m6A methylation events in 3’UTR and near
the stop codon (Lobo et al., 2019). Certain studies show that
KIAA1429 contributes to liver cancer progression through N6-
methyladenosine-dependent post-transcriptional modification of
GATA3 and regulates the migration and the invasion of HCC
by altering the m6A modification of ID2 mRNA (Cheng
et al., 2019; Qian et al., 2019). It is necessary to study the
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FIGURE 8 | Summary of the potential prognostic value of m6A regulators in hepatocellular carcinoma.

roles of obvious mutation of VIRMA in HCC occurrence
and progression.

CONCLUSION

In conclusion, a high expression of m6A regulators implies that
dysregulated m6A play important roles in HCC. Furthermore,
two clustering subgroups indicate that m6A RNA methylation
plays essential roles in the prognosis and the clinicopathological
features of HCC. In addition, a prognostic risk signature with
three selected m6A RNA methylation regulators gives us a clue
that m6A RNA methylation regulators are potentially useful for
prognostic stratification and targeting treatment in HCC.
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tRNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs) derived from
tRNAs. tRFs are highly abundant in many cell types including stem cells and cancer
cells, and are found in all domains of life. Beyond translation control, tRFs have several
functions ranging from transposon silencing to cell proliferation control. However, the
analysis of tRFs presents specific challenges and their biogenesis is not well understood.
They are very heterogeneous and highly modified by numerous post-transcriptional
modifications. Here we describe a bioinformatic pipeline (tRFs-Galaxy) to study tRFs
populations and shed light onto tRNA fragments biogenesis in Drosophila melanogaster.
Indeed, we used small RNAs Illumina sequencing datasets extracted from wild type and
mutant ovaries affecting two different highly conserved steps of tRNA biogenesis: 5′pre-
tRNA processing (RNase-P subunit Rpp30) and tRNA 2′-O-methylation (dTrm7_34 and
dTrm7_32). Using our pipeline, we show how defects in tRNA biogenesis affect nuclear
and mitochondrial tRFs populations and other small non-coding RNAs biogenesis, such
as small nucleolar RNAs (snoRNAs). This tRF analysis workflow will advance the current
understanding of tRFs biogenesis, which is crucial to better comprehend tRFs roles and
their implication in human pathology.

Keywords: Drosophila, Nm methylation, RNase P, tRNA, tRFs, oogenesis

INTRODUCTION

Transfer RNAs (tRNAs) are molecules of ∼75 nt transcribed by RNA polymerase III that adopt a
typical cloverleaf secondary structure. They are ancient molecules required for protein translation
and are encoded by hundreds of genes (∼300 in Drosophila,∼400 in humans) localized in clusters
throughout the genome in some species (Haeusler and Engelke, 2006; Willis and Moir, 2018).
tRNAs can be transcribed in the nucleus or in mitochondria. Once transcribed, tRNA precursors
(pre-tRNAs, ∼125 nt) are processed by the highly conserved ribozymes RNAse P and Z, to cleave
the 5′ leader and the 3′ trailer, respectively (Jarrous, 2017). Then, a CCA trinucleotide tag is
added at the 3′ end of mature tRNAs by a specific enzyme (RNA polymerase ATP(CTP):tRNA
nucleotidyltransferase) present in all kingdoms of life. CCA tag plays a role in tRNA amino-
acylation, tRNA export toward the cytoplasm, and tRNA quality control (Wellner et al., 2018).
RNase P is formed by one RNA molecule and several protein subunits such as Rpp30, highly
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conserved throughout evolution (Jarrous, 2017). In some species,
RNAse P can also cleave non-canonical targets such as rRNA,
snoRNA, some long non-coding RNA and RNAs containing N6-
methyladenosine (m6A) (Coughlin et al., 2008; Jarrous, 2017;
Park et al., 2019).

Importantly, tRNA biogenesis involves the production of
small RNA molecules, hereafter referred to as tRNA fragments
(tRFs), derived either from tRNA precursors or from cleavage of
mature tRNAs. tRFs are found in a wide variety of organisms
and tissues and are associated with several pathologies such as
cancer and neurodegeneration (reviewed Kumar et al., 2016;
Soares and Santos, 2017; Shen et al., 2018). Despite recent
efforts to develop tools describing tRFs populations (Thompson
et al., 2008; Kumar et al., 2014b; Selitsky and Sethupathy,
2015; Pliatsika et al., 2016; Loher et al., 2017a; Schorn et al.,
2017; Kuscu et al., 2018; Liu et al., 2018; Guan et al., 2019)
tRFs analyses from different laboratories remain difficult to
compare (Supplementary Table 1). Indeed, finding consensus
tools to study different species and tissues is difficult for
several reasons (Telonis et al., 2016). First, different factors
can vary in RNA sample preparation (protocol, tissue, species,
sex, population. . .) as well as in library preparation. Secondly,
tRFs nomenclature, bioinformatics workflows, bioinformatics
softwares and parameters vary depending on the laboratory.
Thirdly, tRNAs-genome references are different in each species1

and their construction to get all tRFs types can vary depending
on the study. Fourthly, it has been suggested that very small
RNAs (14–16 nt) could originate not only from tRNA molecules,
but also from highly repeated regions unrelated with tRNA, or
from incomplete (truncated) pseudo-tRNAs in some organisms,
with different copy numbers and genomic localizations (Telonis
et al., 2014). Also, tRNAs can be substrates for the production of
other types of small ncRNA such as miRNAs or piRNAs (Maute
et al., 2013; Keam et al., 2014; Honda et al., 2017). This problem
can be addressed by studying tRFs that match the “non-tRNA-
space,” which corresponds to the whole genome excluding tRNA
genes (Telonis et al., 2016; Loher et al., 2017b). Importantly,
while trying to exclude false positive tRFs, one could increase
false negative error rate, since it is difficult to know the real
origin of tRFs: “tRNA space,” “non-tRNA space,” or both. In
addition, some nuclear tRNAs can be similar to mitochondrial
tRNAs in vertebrates (especially in primates). These tRNAs, called
tRNA-lookalikes, could be a source of tRFs, whose origin is
difficult to determine. However, no tRNAs-lookalike were found
in Drosophila using perfect match alignments, and only one
tRNA-lookalike was found allowing mismatches (Telonis et al.,
2014, 2015a). Finally, several tRNAs corresponding to the same
amino-acid share the same sequence2. Thus, these tRNAs will
generate different types of tRFs which can be attributed randomly
to one of these tRNAs or to all of them (ex.tRNA:Val-CAC-2-1 to
2-6). This problem can be solved by collapsing tRNA sequences
to obtain unique tRNA mature sequences. However, this collapse
cannot be done with the extended sequences of tRNAs (25 nt and
80 nt flanking mature tRNA) since these sequences are different.

1http://gtrnadb.ucsc.edu/
2http://gtrnadb.ucsc.edu/genomes/eukaryota/Dmela6/Dmela6-align.html

Besides, only some bioinformatic analysis have tried to validate
tRFs profiles in parallel, by performing Northern Blot (Torres
et al., 2019) (Supplementary Table 1).

The impact of tRFs levels in various biological processes
is currently under investigation and multiple processes have
already been identified, amongst which stands gene expression
and translation control, transposon silencing, ncRNA processing,
histone levels control, cell proliferation and DNA damage
response modulation (Goodarzi et al., 2015; Sharma et al., 2016,
2018; Kuscu et al., 2018; Li et al., 2018; Liu et al., 2018; Schorn and
Martienssen, 2018; Shen et al., 2018; Boskovic et al., 2019; Guan
et al., 2019; Su et al., 2019).

In wild type condition, when RNAse P cleaves the 5′ trailer
of tRNA-precursor, the resulting fragment is believed to be
degraded by the ribonuclease translin–TRAX complex (C3PO)
(Li Z. et al., 2012; Figure 1A). Then, RNase Z cleaves the 3′
trailer forming tRFs-1 (also called tRFs-3′U because the Poly-
U tract is typically found at 3′ of pre-tRNAs) (Rossmanith,
2012; Kumar et al., 2015). Once mature, tRNAs can be cleaved
forming small fragments: tRFs-5 (or 5′tRFs, originating from
5′) or tRFs-3 (or 3′tRFs, originating from 3′ including CCA
tag). These cleavages could be done by Dicer or by other
endonucleases that remain to be discovered (Cole et al., 2009;
Sobala and Hutvagner, 2011; Li L. et al., 2012; Kuscu et al.,
2018; Shen et al., 2018; Su et al., 2019). Internal tRFs (i-tRFs)
are contained to the interior of the mature tRNA sequence
and can straddle the anticodon (Telonis et al., 2015b). Also,
mature tRNA molecules can be cut in 2 halves (tRNA halves
∼35 nt) which play important roles in different stress conditions,
such as hypoxia or temperature changes (Fu et al., 2008;
Thompson et al., 2008; Shen et al., 2018; Akiyama et al., 2020).
Intriguingly, in some neuropathologies, tRNA precursors can be
cleaved and generate tRNA fragments (∼40 nt) which include
the 5′ trailer (Hanada et al., 2013). Spanner-tRFs are another
class of tRFs that occur rarely and can be formed before the
RNase Z cleavage and before CCA addition, spanning the CCA
editing point. Finally, transcription termination associated tRNA
fragments (taRFs) are formed when RNA Pol-III does not finish
transcription properly. Interestingly, altered tRF populations
have been discovered in mouse mutants for RNase Z (ELAC2),
which have cardiomyopathy and premature death (Siira et al.,
2018). However, it is still not known whether RNase P also plays
a role in tRFs formation.

Aberrant tRFs populations could have trans effects on gene
expression. They could target different RNAs by sequence
complementarity, by guiding Argonaute proteins similarly
to other small non-coding RNAs like miRNAs (microRNAs),
siRNAs (small interfering RNAs) and piRNAs (Piwi-interacting
RNAs) (Kim et al., 2009; Kumar et al., 2014a; Yamanaka
and Siomi, 2015). miRNAs are small RNAs known to cleave
mRNAs or inhibit mRNA translation (Jonas and Izaurralde,
2015). piRNAs and siRNAs are small RNAs known to silence
transposable elements (TEs) (Czech et al., 2018). Among tRFs
targets, some TEs and gene sequences have been identified,
linking tRFs to several cellular processes and pathologies,
such as translation control, cell signaling, development,
proteasome regulation or metabolism (Goodarzi et al., 2015;
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FIGURE 1 | General workflow for tRNA fragments (tRFs) classes extraction: (A) tRNA processing and tRNA fragments are depicted. The 5′ tail of pre-tRNAs is
cleaved by RNase P (blue arrowhead) and the 3′ tail is cleaved by RNase Z (green arrowhead). 5′ cleavage product is believed to be degraded whereas RNase Z
cleavage product forms tRFs-1 (green line). Mature tRNAs (light gray line) is edited by the addition of 3′-tRFs motif (red dot). Several types of tRFs can be generated
from mature RNAs, such as 5′-tRFs (light blue line), 3′-tRFs (dark blue line), and inner tRFs (i-tRFs) belonging to the anticodon region (dark gray lines). Spanner-tRFs
can be formed before the addition of CCA from tRNA-precursors, spanning the CCA region (light brown line). Transcription associated (taRFs, orange line) can be
formed from downstream regions of tRNAs. Longer tRNA halves are represented with light purple lines. (B) Galaxy-developed workflow for extraction of all tRFs
classes, described in A. Alignments were done with SR_Bowtie tool for small RNA short reads (version 2.1.1) using two types of matching: ∗ Match on DNA as fast
as possible or ¤ Match on DNA, multiple mappers. “Ref.” are the different genome references used for alignments in this pipeline: rRNA, snoRNA, tRNA-non-edited
or tRNA-CCA-edited. For tRNA-non-edited reference construction, mature tRNAs (75 nt) were compared with tRNA-precursors (125 nt) to determine RNase P and
RNase Z cleavage points. 25 nt were added upstream at 5′, and 80 nt downstream, right after the RNase Z cleavage point (25 + 75 + 80 = 180 nt approximately).
For tRNA-CCA-edited reference construction, a CCA motif was added to the non-edited reference, precisely at the 3′CCA edition point (red dot). tRFs CCA or
non-CCA can be treated separately or altogether (ALL-tRFs).

Karaiskos and Grigoriev, 2016; Sharma et al., 2016; Martinez,
2017; Schorn et al., 2017; Kim et al., 2019; Mo et al., 2019; Telonis
et al., 2019). tRFs thus emerge as potential biomarkers and
therapeutic targets for human pathologies (Balatti et al., 2017;
Zhu et al., 2018).

Currently, around 150–170 RNA modifications are known,
and recent reports show that RNA modifications defects play
an important role in tRFs production in different organisms.
Epitranscriptomics have recently emerged as a new field to

comprehend the mechanisms underlying RNA modifications
and their role in gene expression. Indeed, tRNAs are the most
extensively modified RNAs in cells (up to 25% of nucleotides
per tRNA) (Delaunay and Frye, 2019; Ontiveros et al., 2019;
Guzzi and Bellodi, 2020). These marks are believed to help
tRNAs to respond to a wide range of environmental cues,
stimuli and stress. They play crucial roles at all tRNA biogenesis
steps, such as sequence maturation, folding, recycling and
degradation. Interestingly, there is a crosstalk between the
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different modification pathways and a large amount of tRNA
modification enzymes defects have been linked to human
pathologies (Angelova et al., 2018; Sokołowski et al., 2018; Lyons
et al., 2018; Dimitrova et al., 2019).

In Drosophila it has been recently shown that methylation
marks protect tRNAs from cleavage and that aberrant tRFs
populations accumulate in methylation mutants: on the one
hand, Dnmt2 mutation impairs m5C methylation (Schaefer et al.,
2010; Durdevic et al., 2013a; Genenncher et al., 2018). On
the other hand, dTrm7_34 (CG7009) and dTrm7_32 (CG5220)
mutation impairs 2′-O-methylation (Angelova et al., 2020). 2′-
O-methylation is one of the most common RNA modifications
and consists in the addition of a methyl group to the 2′
hydroxyl of the ribose moiety of a nucleoside, being also known
as Nm. It is found in tRNAs, rRNAs, snRNAs (small nuclear
RNAs), at the 3′ end of some small non-coding RNAs (such
as piRNAs), and at some sites on mRNAs (Ontiveros et al.,
2019). This modification plays a wide range of roles in RNA
structure, stability and interactions (Dimitrova et al., 2019). It
has been recently shown that Drosophila proteins dTrm7_34 and
dTrm7_32 are the functional orthologs of yeast TRM7 (Pintard,
2002) and human FTSJ1 (Guy et al., 2015) respectively, which
are involved in 2′-O-methylation of the anticodon loop of several
conserved tRNAs substrates (tRNA-Leu, Trp, Phe). Mutations of
these tRNAs methyltransferases in Drosophila lead to lifespan
reduction, small non-coding RNA pathways dysfunction and
increased sensitivity to RNA virus infections, besides specific tRFs
accumulation (Angelova et al., 2020).

Despite their abundance, only a very limited subset of
RNA modifications can be detected and quantified by current
high-throughput analytical techniques such as ARM-seq, and
substantial efforts are being invested for the development
of this field (Cozen et al., 2015; Dai et al., 2017). Some
modifications, such as 2′-O-methylation, can have an impact
on classical sequencing techniques during library preparation
(reverse transcription blocking) and could introduce a bias in
the analyses, such as in the type of tRFs preferentially sequenced
which can have different degrees of modification (Motorin and
Helm, 2019). However, one study have reported that tRNA
modifications only have a limited impact on data mining when
studying tRFs in The Cancer Genome Atlas (Telonis et al.,
2019). Indeed, we still do not know the impact of each RNA
modification on small RNA sequencing, and thousands of
small RNA datasets have already been generated with Illumina
sequencing techniques. Thus, a wide range of wild type and
mutant datasets from different species are available3,4 and their
analysis can bring important new information on tRFs biogenesis
and/or stability.

Since tRFs biogenesis remains obscure, we developed
and describe a user-friendly tRFs-pipeline for Drosophila
melanogaster based on Galaxy environment (tRFs-Galaxy), with
workflows and tools that can be easily shared with the scientific
community. To do so, we took advantage of several Drosophila
datasets (15–29 nt) generated in our laboratories: Rpp30 mutants,

3www.ebi.ac.uk/ena
4www.ncbi.nlm.nih.gov/geo

which affect tRNA processing, and dTrm7_34 and dTrm7_32,
which affect tRNA Nm methylation (Molla-Herman et al., 2015;
Mollà-Herman et al., 2019; Angelova et al., 2020). We believe that
this study will help to better understand the known pathways of
tRFs biogenesis as well as to uncover new tRFs biogenesis factors
and unexpected crosstalks between different RNA regulatory
mechanisms, crucial for gene expression.

MATERIALS AND METHODS

Fly Stocks
Fly stocks are described in Molla-Herman et al. (2015) and
Angelova et al. (2020).

RNA Extraction From Ovaries
RNA was extracted from Drosophila ovaries following
standard methods detailed in Molla-Herman et al. (2015)
and Angelova et al. (2020).

Small RNA Sequencing
RNA samples of 3–5 µg were used for High-throughput
sequencing using Illumina HiSeq, 10% single-reads lane
1 × 50 bp (Fasteris). 15–29 nt RNAs sequences excluding rRNA
(riboZero) were sequenced. All the analyses were performed
with Galaxy tools5. Workflows are available upon request. Data
set deposition is described in Molla-Herman et al. (2015) and
Angelova et al. (2020). European Nucleotide Archive (ENA) of
the EMBL-EBI6, accession numbers are: PRJEB10569 (Rpp30
mutants), PRJEB35301 and PRJEB35713 (Nm mutants).

Clipping and Concatenation
Raw data were used for clipping the adaptors [Clip adapter
(Galaxy-Version 2.3.0, owner: artbio)] and FASTQ quality
control was performed [FastQC Read Quality reports (Galaxy-
Version 0.72)]. Since replicates were homogeneous in quality
and analysis (replicates for heterozygous and homozygous
dTrm7_34∗ flies and triplicates for dTrm7_34∗- dTrm7_32∗
double mutants) we merged them [Concatenate multiple datasets
tail-to-head (Galaxy-Version 1.4.1, owner: artbio) to have single
fasta files. dTrm7_34∗/Def9487 as well as Rpp3018.2, mnkP6

homozygous and Rpp30PE/Rpp3018.2 datasets were used to obtain
normalization numbers but are not shown in the figures for
simplicity (Supplementary Figure 8).

Data Normalization Using DeSeq miRNA
Counts
Data were normalized with library Normalization Factors (NF)
obtained by using [DESeq geometrical normalization (Galaxy-
Version 1.0.1, owner: artbio)] with miRNA counts obtained
using [miRcounts (Galaxy-Version 1.3.2)], allowing 0 mismatch
(MM). Then, 1/NF values were used in Galaxy small RNA maps
(Supplementary Figures 8A,B).

5https://mississippi.snv.jussieu.fr
6http://www.ebi.ac.uk/ena
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Data Normalization With DeSeq Using
tRFs Counts
To create tRFs expression heatmaps, all-tRFs read counts were
normalized using [DESeq Normalization (Galaxy-Version 1.0.1,
owner: artbio)] giving rise to a Normalized Hit Table.

Genome References
rRNA, snoRNA, miRNA, ncRNA, intergenic, genic references
and Transposable Elements (Ensemble canonical TE) were
obtained from Ensembl Biomart7. For tRNAs, we created
a genome reference of extended pre-tRNAs adding 25 nt
upstream and 80 nt downstream of tRNAs genome annotations.
These sequences referred to as “non-edited tRNAs” have an
average length of ∼180.3 nt (Standard Deviation 14.9 nt) for
nuclear tRNAs and ∼170 nt (Standard Deviation 6.2 nt) for
mitochondrial tRNAs. Sixteen tRNA sequences have an intron
that has to be spliced. To analyze tRFs carrying 3′CCA motif
we inserted a CCA in the genomic precursor sequence, at the
position where tRNAs are edited after pre-tRNA maturation.
We called this reference “CCA-edited-tRNAs.” To study the
“non-tRNA space” we created a reference genome excluding
known tRNAs gene segments. To avoid multimapping of tRFs to
several tRNAs with similar sequences we collapsed tRNAs mature
sequences into “Unique Mature tRNAs” and we added CCA tag.
We split the snoRNA sequences in two reference sets, one with
box C/D snoRNAs whose mature sequences are equal or less than
120 nt long, the other with box H/ACA snoRNAs whose mature
sequences are more than 120 nt long.

General Small RNA Annotation
Small RNA reads files were first depleted from rRNAs by
discarding reads aligning to rRNA genome reference. Then, we
annotated the small RNAs by iterative alignments to the various
references using the tool [Annotate smRNA dataset (Galaxy-
Version 2.4.0, owner: artbio)] and allowing 0 mismatches. For
annotation cascades, iterative alignments were performed in
the following order: tRNA, tRNA-CCA-edited, miRNA, TE-
derived, all-ncRNA, all genes and all intergenic. The number of
alignments for each class were visualized with Pie-Charts whose
sizes reflect the respective depth (total aligned reads) of the
libraries (see Supplementary Figure 8C).

Specific tRFs Classes Extraction
Small RNA reads trimmed off from their adapter sequences
were first aligned to the rRNA reference using the Galaxy tool
[sR_bowtie (Galaxy-Version 2.1.1, owner: artbio)] and the option
“Match on DNA as fast as possible.” Unaligned reads were
retrieved and aligned to the snoRNA reference, and snoRNA
alignments were visualized using the tool [small RNA maps
(Galaxy-Version 2.16.1, owner: artbio)].

Next, unaligned reads were retrieved and realigned to the non-
edited tRNA reference. Matching reads in this step correspond
to tRFs without CCA (tRF-non-CCA) including 5′-tRFs, tRFs-1,
spanners and internal tRFs. On the contrary, edited 3′-tRFs did

7http://www.ensembl.org/biomart/martview

not match in this step, because the CCA motif is not encoded
in the genome and we did not allow mismatches (see below).
To retrieve these unmatched tRFs, we selected unaligned reads
with 3′ end CCA and realigned these reads to the CCA-edited-
tRNA reference.

Finally, we merged non-CCA tRFs and 3′ tRF using the tool
[FASTA Merge Files (Galaxy-Version 1.2.0)] and realigned those
reads to the CCA-edited-tRNA reference. Matched reads (“all-
tRFs”) were visualized (see Figure 1B) using the tool [small RNA
maps (Galaxy-Version 2.16.1, owner: artbio)].

In order to isolate spanner tRFs, aligned non-CCA-tRFs were
realigned using CCA-edited tRNAs as reference. Unaligned reads
in this step are tRFs that span the editing point. These reads were
realigned using non-edited-tRNA reference, allowing to retrieve
spanner-tRFs maps.

Importantly, we could not reliably detect tRNA Halves
(> 30 nt) since our original libraries were prepared using RNA
size selection between 15 and 29 nt.

tRFs Global Size Distribution, Coverage
and tRF Logo
All-tRFs, non-CCA-tRFs or 3′-tRFs datasets were used to
generate small RNA maps and read size distributions taking into
account the normalization factors for the different genotypes.
Read coverage of tRNA sequences was generated using the tool
[BamCoverage (Galaxy-Version 3.1.2.0.0, owner: bgruening)].
Briefly, we first used sR_bowtie with the options “matched
on DNA, multiple mappers randomly matched at a single
position,” “0 mismatch allowed,” and tRNA-CCA-edited as a
reference. Bam alignment files from this step were used with
the BamCoverage tool to generate BigWig coverage files, using
the library normalization factors as scale factors. The tool
[computeMatrix (Galaxy-Version 3.1.2.0.0, owner: bgruening)]
was then used to prepare the data for plotting heatmaps or a
profile of given regions. We used four Bed files with this tool
to visualize Nuclear tRNAs, 5′-tRFs, 3′-tRFs and Mitochondrial
tRNAs (see Supplementary Figure 9A). To obtain a Logo, tRFs
FASTA files were treated to obtain the last 15 nt of every sequence
then we used the tool [Sequence Logo (Galaxy-Version 3.5.0,
owner: devteam)].

tRFs Expression Heatmap and Ratio
Calculation
To visualize tRFs expression levels we created Heatmaps. With
all-tRFs collection list, we used sR_Bowtie (for small RNA short
reads Galaxy-Version 2.1.1, matched on DNA, multiple mappers,
randomly matched at a single position, 0 mismatch allowed)
and we used tRNA-CCA-edited as reference. Then we used
the tool [Parse items in sR_Bowtie alignment (Galaxy-Version
1.0.6)]. We did a DESeq2 normalization of hit lists (geometrical
method Galaxy-Version 1.0.1, see above). We cut columns from
the Normalized Hit table (Galaxy-Version 1.0.2) and we used
Sort data in ascending or descending order tool (Galaxy-Version
1.0.0), generating a table with the tRFs counts for the different
genotypes. We used Plot Heatmap with high number of rows
(Galaxy-Version 1.0.0) to create the expression profiles. We used
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Log2(value+ 1) and Blue-White-Red colors to reflect reads from
minimal to maximal expression. We created Heatmaps using the
“tRNA-extended-CCA-edited” genome of reference to have all
types of tRFs represented. This method leads to multimapping
issues of several tRFs that match different tRNAs genes with
similar sequences. We thus also created Heatmaps using the
“Unique tRNA mature CCA-edited” genome of reference that
avoids multimapping but leads to the loss of tRFs-1 originating
from the precursor. To detect important changes of tRFs between
genotypes, we cut columns corresponding to counts of white−
and Rpp3018.2 mutants, or dTrm7_34∗/TbSb heterozygous and
dTrm7_34∗ homozygous mutants. We calculated the ratio of
tRFs expression between them, using Compute an expression
on every row tool (Galaxy-Version 1.2.0). The obtained data
were treated with Microsoft Office Excel to better observe ratio
differences by using conditional formatting tool, obtaining a three
color code (Blue-White-Red from minimal to maximal value, see
Supplementary Figure 9B).

snoRNAs Global Size Distribution and
Coverage
To represent all the reads along a canonical snoRNA molecule
we analyzed the Bam Coverage, by first using sR_Bowtie
for small RNA short reads (Galaxy-Version 2.1.1), matched
on DNA, multiple mappers, randomly matched at a single
position. 0 mismatches were allowed, using snoRNA as genome
reference. Then BamCoverage tool generates a coverage BigWig
file from a given BAM file (Galaxy-Version 3.1.2.0.0) that we
normalized using the scale factors. Afterward, Compute Matrix
prepares data for plotting a heatmap or profiles of given regions
(Galaxy-Version 3.1.2.0.0). We had three Bed files to plot:
snoRNAs > 120 nt Bed file; snoRNAs < 120 nt Bed file; and both
together (see Supplementary Figure 9C).

RESULTS

How to Study Different tRFs Categories
In this study we have developed user friendly and easy to share
workflows using Galaxy5 allowing to extract all major classes of
tRFs (tRFs-Galaxy) (Figure 1 and see section “MATERIALS AND
METHODS”): 5′-tRFs, 3′-tRFs and inner-tRFs, corresponding
to fragments derived from mature tRNA transcripts; tRFs-1,
formed by RNase-Z cleavage of tRNA precursors; spanner tRFs,
spanning the CCA region and created before CCA addition; and
transcription associated tRFs (taRFs), formed due to problems in
transcription termination. The presented pipeline allows to study
them separately or altogether.

tRFs Description in Drosophila Ovaries
To describe tRFs general populations in wild type ovaries from
young flies, we first performed a cascade of annotations of small
RNA populations, to the exclusion of rRNA fragments which
were previously depleted from the sequence datasets (Figure 2A
and Supplementary Figure 8) (rRNA were “bioinformatically
depleted”). A high percentage of small RNA reads correspond to

transposable elements (TEs, yellow), representing piRNAs and/or
siRNA that match TE sequences. To distinguish tRFs carrying
a 3′CCA motif from non-CCA-tRFs (5′-tRFs, i-tRFs, spanners,
taRFs and tRFs-1) we used two different reference genome files
(see below). In white− ovaries there are twice as much non-
CCA-tRFs than 3′-tRFs (Figure 2A: 1.15% vs 0.52%). However,
since some sequences can be matched by multiple types of small
ncRNAs, the mapping order in the cascade annotation tool can
introduce a bias, as observed in the MINTmap tRFs study of
Loher et al. (2017b). Thus, we used different tools to study tRFs
populations in detail.

To have a general overview of tRNA fragments, we aligned all
tRFs along canonical nuclear or mitochondrial tRNA precursors,
belonging to 290 different nuclear tRNAs and 21 different
mitochondrial tRNAs (Figure 2B). Nuclear tRFs coverage shows
that in white− control ovaries there is a majority of tRFs-1. In
addition, we observe a significant population of 3′-tRFs and a
minor population of 5′-tRFs and inner tRFs. Mitochondrial tRFs
seem more abundant at the 5′ part of tRNAs molecules and
around the anticodon region. In addition, global size distribution
analysis showed that in control ovaries, non-CCA-tRFs are
heterogeneous, ranging from 15 to 25 nt, whereas 3′-tRFs are
mostly 17 nt long (Figure 2C). The presence of a CCA signature
could be easily identified by analyzing the Logo of the last 15 nt
of tRFs populations (Figure 2D).

We next interrogated which type of tRNAs molecules could
generate these tRFs. In Drosophila melanogaster there are 21
mitochondrial tRNAs (one per amino-acid) and 290 nuclear
tRNAs, comprising several tRNAs per isotype with different
anticodon sequences (between 5 and 22 tRNAs per amino acid)1.
For example, there are 15 tRNAs for Valine with different
anticodons: 6 tRNA:Val-AAC, 7 tRNA:Val-CAC and 2 tRNA:Val-
TAC. Among tRNA genes, 16 tRNAs carry an intron (tRNA:Leu-
CAA, Ile-TAT and Tyr-GTA). Since tRNA genes are redundant,
the physiological importance of expression levels variations of
individual tRNA genes is not well understood. However, it has
been recently shown that differential tRNA gene expression
results in changes in the abundance of tRFs but not of mature
tRNAs, suggesting that different expression levels of tRNA
genes may regulate non-canonical tRNA functions through tRFs
(Torres et al., 2019).

Moreover, it has been shown in some organisms that small
tRFs sequences could originate from genome regions similar to
tRNAs, which are not true tRNA genes. These regions can be
tRNA-lookalikes, truncated tRNA genes or repeated elements
and they form the “non-tRNA-space” (Telonis et al., 2016; Loher
et al., 2017b) (Supplementary Figure 1A). Thus, it is difficult
to know the genomic origin of tRFs: if they belong to the
“tRNA-space” or to the “non-tRNA-space.” Indeed, in white-
control Drosophila ovaries we observe a fraction of 15–17 nt
long tRFs matching to the non-tRNA space (Supplementary
Figure 1B). This proportion increases in Rpp3018.2 mutants
(Supplementary Figure 1C). Interestingly, if we run the same
analysis excluding smallest tRFs (15–16 nt) profiles are similar
in control (w-) while 5′tRFs accumulation in Rpp30 mutants
is less dramatic (Supplementary Figure 1E). Another problem
in determining the origin of tRFs is that several tRNAs from
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FIGURE 2 | tRFs description in control Drosophila ovaries: (A) Small RNAs sequences from 15–29 nt were analyzed to distinguish different categories with the help
of an annotation cascade tool in the following order: miRNA, ncRNA, intergenic, genes, TE (piRNA, siRNA), snoRNAs, tRFs-non-CCA or tRFs-CCA. The percentage
of reads is shown in a pie-chart, which size reflects the bank’s depth (M = Millions of reads). (B) Nuclear and mitochondrial tRFs coverages of 15–29 nt tRFs were
analyzed in white- control ovaries using scaling factors (see section “MATERIALS AND METHODS”). CCA edition point is shown with a red dot. The different types of
tRFs are shown along the coverage profile from the beginning of the pre-tRNA molecule (TSS transcription start site) to the end of the extended edited genome
reference (TES, transcription extended site). (C) General size distribution (15–29 nt) of normalized read counts corresponding to different categories of tRFs in white-
control ovaries. Color-codes on the right are the same as in Figure 1B for tRFs categories. (D) Logo for the last 15 nt of white- tRFs sequences (all categories
included, issued from fasta files). (E) Examples of tRFs readmap profiles in white- control ovaries originating from two different tRNAs. Red peaks reflect read counts
(using scaling factors). The position of the peak along the edited tRNA reference genome reflects the beginning of the reads sequences. 0: beginning of the
pre-tRNA. 100: position of RNase Z cleavage. 5′-tRFs are in light blue, 3′-tRFs are in dark blue, tRFs-1 are in green.

the same amino-acid share the same sequence at different parts
of the molecule1 (see alignments). Thus, sometimes we cannot
distinguish if 5′-tRFs, 3′-tRFs or i-tRFs derived from a single or
several tRNA molecules.

To analyze the expression of tRFs and have an idea of tRNA
type forming tRFs, we made a tRNA heatmap reflecting the
expression levels of all tRFs (all types comprised) belonging
to a given tRNA isotype (Supplementary Figure 2) by using
two different reference genomes: the “unique tRNA mature
CCA-edited” (Supplementary Figures 2A,B) and the “tRNA
extended CCA-edited” (Supplementary Figure 2C). By using the
collapsed “unique tRNA mature sequences,” tRFs-1 originating

from tRNAs precursors cannot be studied, neither taRFs
or spanner tRFs.

In white− control ovaries, among the most abundant
tRFs originating from mature tRNA sequences we could
observe: tRNA:Phe-GAA, tRNA:Val-AAC or TAC, tRNA:Lys-
CTT, tRNA-Gly-GCC, tRNA:Pro-AGG or CGG, tRNA:His-GTG,
and tRNA:Glu-CTC (Supplementary Figure 2A). If we study
all types of tRFs by using the “tRNA extended CCA-edited”
sequences we observe that tRFs from tRNA:Val-TAC or AAC
were the most abundant, followed by tRFs mapping tRNA:Glu-
CTC, several tRNA:Phe-GAA, and tRNA:Pro-CGG or AGG.
tRFs corresponding to mature tRNA:Val-CAC, tRNA:Ala-TGC,

Frontiers in Genetics | www.frontiersin.org 7 October 2020 | Volume 11 | Article 518949140

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-518949 October 7, 2020 Time: 19:43 # 8

Molla-Herman et al. tRNA Fragment Biogenesis Analysis

tRNA:Lys-TTT or tRNA:Gln-CTG were also abundant. It is
important to note that, as mentioned, tRNA modifications
can induce sequencing bias allowing preferential sequencing to
certain tRNA and tRFs types over others, since some tRNA
(and potentially also tRFs) modification patterns are isoacceptor
specific. Thus, the biological meaning of this tRFs abundance
pattern remains to be explored.

To describe in more detail the most relevant tRFs profiles
corresponding to each individual tRNAs, we developed a
multidimensional tRFs map which displays the name of the
tRNA molecule, the read counts and the tRFs position along
the tRNA molecule (Figure 2E). For example, in control ovaries,
highly expressed tRFs from tRNA:Val-CAC-2-3 produce mostly
3′-tRFs (dark blue) and 5′-tRFs to a lesser extent (light blue).
Moreover, tRNA:Gln-CTG-4-1, a tRNA which generates high
amounts of tRFs in control ovaries, has a clear majority
of tRFs-1 (green).

In conclusion, our analysis describes in detail the population
of tRFs present in control Drosophila ovaries in a global manner
(annotation, coverage, size distribution, logo and heatmap tools),
as well as the specific tRFs profiles of each tRNA isotype
(multidimensional tRFs maps). We find that tRFs-1 are highly
present, followed by 3′-tRFs and 5′-tRFs.

tRNA Processing Defects Lead to tRFs
Accumulation
We recently discovered that Drosophila Rpp30 mutations lead
to tRNA processing and early oogenesis arrest, producing
atrophied small ovaries full of early arrested stages (Molla-
Herman et al., 2015). As control, we chose white- young
(freshly hatched) ovaries described above, since they are full
of early stages. Besides, we observed that Rpp30 mutants
have a defect in piRNA production. In accordance, cascade
annotations showed that Rpp3018.2 homozygous ovaries have
highly decreased TE-matching sequences compared to white−
(Figure 3A), which is rescued in Rpp3018.2; ubiRpp30GFP
ovaries, showing the specificity of the phenotype. Intriguingly,
we observed a substantial increase of small RNAs derived from
snoRNA (pink, 6.42% in the ovaries from Rpp3018.2 homozygous
flies compared to 0.29%, observed in white− controls). Moreover,
we found that in Rpp3018.2 homozygous ovaries, both non-
CCA and CCA-tRFs were present in equal quantities (1.99 vs
2.09%), whereas in control ovaries non-CCA-tRFs were more
represented than CCA-tRFs (1.15% vs 0.52%). This suggests an
increase of CCA-tRFs and/or a decrease of some non-CCA-tRFs
in Rpp3018.2 homozygous mutants.

Nuclear tRFs coverage (Figure 3B, left panel) showed that
in Rpp3018.2 homozygous ovaries, there is a substantial increase
of 5′-tRFs, i-tRFs and 3′-tRFs), and a drastic decrease of tRFs-
1, when compared to control. Importantly, rescued Rpp3018.2;

Rpp30GFP ovaries (purple line) showed a similar profile to
white−, demonstrating that Rpp30 overexpression is able to
recover tRFs formation in Rpp3018.2 homozygous mutants. In
parallel, mitochondrial-tRFs coverages (Figure 3B, right) showed
that Rpp3018.2 homozygous individuals have a high accumulation
of different tRFs types in their ovaries.

Next, global size distribution (Figure 3C) indicated that
tRFs accumulate in Rpp3018.2 homozygous ovaries compared to
white−. Indeed, non-CCA-tRFs range from 15 to 22 nt whereas
3′-tRFs are on average 17 nt long in mutants (Figures 3C,D).
Finally, spanner-tRFs, which are a very minor population in
Drosophila white- ovaries, are heterogeneous in size and do not
show important changes in mutants when compared to control
(Figure 3C, lower panels).

In conclusion, our analysis shows that tRNA processing
defects alter tRFs biogenesis and/or stability in Rpp30 mutants:
increase of (5′-tRFs, i-tRFs and 3′tRFs), and tRFs-1 decrease.
Since there are more than 300 tRNAs genes in Drosophila, we
wondered if these defects were due to tRFs originating from a
particular tRNA type.

tRFs Expression Levels Are Altered in
Rpp30 Mutants
As mentioned, tRFs heatmaps showed that white− control
ovaries have abundant tRFs derived from tRNA-Val, Glu, Phe,
Pro, Ala, Lys, Gln (Supplementary Figure 2). Importantly,
the general heatmap profile is highly changed in Rpp3018.2

homozygous but is partially rescued in Rpp3018.2; ubiRpp30GFP
(Supplementary Figure 2). To easily detect the most drastic
changes in tRFs populations we calculated the ratio of tRF-
counts between Rpp3018.2 homozygous and white- ovaries
(Supplementary Figure 2B). For example, tRFs derived
from tRNA:Val-AAC-2-1 are highly decreased in Rpp3018.2

homozygous ovaries compared to white-, with a ratio of 0.05
(Supplementary Figure 2B).

From this ratio data, we selected tRNA profiles in which
tRFs were increased, decreased or unchanged in mutants when
compared to white- (Figure 4). For example, in Rpp3018.2

mutants: tRNA:Leu−TAA−1−1, tRNA:Thr−AGT−1−6,
tRNA:Ser−GCT−2−1, tRNA:Gly−TCC−1−2 and
tRNA:Pro−AGG−1−5 show an increase of 3′-tRFs. In addition,
tRNA:Ala−CGC−1−1 accumulates 3′−tRFs and 5′−tRFs.
tRNA:Ser−AGA−2−2 shows a drastic increase in only 5′−tRFs.
Indeed, all tRNA:Ser−AGA/CGA (12 different tRNAs) behave
similarly. tRNA:Leu−CAA−2−2 has an important increase in
5′−tRFs as all tRNA:Leu−CAA. It should be noted that Leu-CAA
group have an intron of 40–44 nt, that is why 3′-tRFs are located
offset in tRFs maps. Next, tRNA-Gly-GCC-2-1 is similar in white-
and Rpp3018.2 mutants. Finally, several tRFs types decreased in
Rpp3018.2 mutants: tRFs-1 generated from tRNA:Glu-CTC-3-8
and tRNA:Gln-CTG-4-1; 5′-tRFs generated from tRNA:Val-
CAC-2-3; 3′-tRFs generated from tRNA:Val-CAC-2-2 and 2-3.
We also compared tRFs profiles by selecting tRNAs having
the mostly expressed tRFs (up to heatmaps) in white- and we
compared them to mutants (Supplementary Figure 3).

Overall, we find that in Drosophila ovaries, tRFs originate
from diverse isotypes of tRNAs and show heterogeneous profiles.
In general, as shown in Figure 3B, we find that tRFs-1 are
decreased in Rpp30 mutants, whereas tRFs originating from
mature tRNA are accumulated. tRNA processing by RNase P is
the first step of tRNA biogenesis following transcription. We thus
wondered whether other downstream events could also affect
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FIGURE 3 | tRNA processing plays a role in nuclear and mitochondrial tRFs formation: (A) Small RNAs sequences (from 15–29 nt) were analyzed in different
genotypes to distinguish categories with the help of an annotation cascade tool in the following order: miRNA, ncRNA, intergenic, genes, TE (piRNA, siRNA),
snoRNAs, tRFs-non-CCA or tRFs-CCA. The percentage of reads for each genotype is shown in pie-charts, which size reflects the depth of each bank (M = Millions
of reads). (B) Nuclear and mitochondrial tRFs coverages were analyzed in white- control and Rpp30 mutant ovaries using scaling factors (see section “MATERIALS
AND METHODS”). Different tRFs are shown along the coverage profile from the beginning of the pre-tRNA molecule (TSS transcription start site) to the end of the
extended edited reference genome (TES, transcription extended site). CCA edition point is shown with a red dot. 5′-tRFs and 3′-tRFs regions are zoomed in, for a
better comparison between the genotypes. (C) General size distribution (15–29 nt) of normalized read counts corresponding to the different categories of tRFs in
white- control and mutant ovaries. Color-codes on the right are the same as in Figure 1B for tRFs categories. (D) Logo for the last 15 nt tRFs sequences of white-
control and mutant ovaries (all categories included, issued from fasta files containing all tRFs sequences).
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FIGURE 4 | Rpp30 mutation leads to an increase of 5′-tRFs, an increase of 3′-tRFs and a decrease of tRFs-1. 16 tRFs readmap profiles as examples of the most
increased or decreased tRFs from the ratio Rpp3018 .2 homoz./white- (see in Supplementary Figure 2B) are shown for the different genotypes, using normalizing
factors (see section “MATERIALS AND METHODS”). Since pre-tRNAs sequences are included in the tRNA reference genome, 5′-tRFs start at position 25 nt instead
of position 0 nt. 3′-tRFs are located around the position 80 nt and tRFs-1 are located around position 100 nt (positions can vary depending on tRNA lengths and the
presence of intron). Peaks determine the beginning of the reads sequences. tRFs are schematized in white- and Rpp3018.2 homozygous for better comparison:
5′-tRFs in light blue, 3′-tRFs in dark blue and tRFs-1 in green. Ratio’s values above 1 (upper pannels): tRFs increased in Rpp3018 .2 mutants. Ratio’s values below 1
(lower panels): tRFs decreased in Rpp3018 .2 mutants.
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tRFs biogenesis or stability, such as tRNA post-transcriptional
modifications of tRNA molecules.

tRNA 2′-O-Methylation Defects Lead to a
Decrease of tRFs-1 and an Increase of
3′-tRFs
Mutations of tRNAs 2′-O-methyltransferases (Nm MTases)
dTrm7_34 and dTrm7_32 lead to Drosophila life span reduction,
small RNA pathways dysfunction, increased sensitivity to RNA
virus infections and tRFs-Phe accumulation (Angelova et al.,
2020). In our cascade annotation analysis (non-normalized),
non-CCA-tRFs decrease in dTrm7_34∗ homozygous mutants
when compared to control (Figure 5A, light green, 1.19%
versus 0.52%), whereas tRFs-CCA slightly increase (Figure 5A,
red, 0.09% versus 0.13%). Surprisingly, double mutants
dTrm7_34∗, dTrm7_32∗ show profiles similar to control.
By using normalization factors, the analysis of tRFs size
distribution and of a Logo sequence revealed that 3′-tRFs
of 18 nt increase in dTrm7_34∗ homozygous mutants when
compared to control (Figure 5B, C), which was rescued in
double mutants. Finally, lowly expressed spanner tRFs were
similar in dTrm7_34∗ heterozygous and homozygous mutants
when compared to control and slightly lower in double
mutants (Figure 5B).

To obtain an overview of which tRFs classes were globally
altered in Nm MTases mutants, we aligned all-tRFs together
along a canonical nuclear or mitochondrial tRNA precursors.
In heterozygous control ovaries (Figure 5D, gray), there is a
majority of nuclear tRFs-1, similarly to control white- ovaries
(Figure 2B). Of note, the size of heterozygous ovaries is bigger
than white- ovaries, since they have early and older stages.
Interestingly, dTrm7_34∗ homozygous mutants and double
mutants dTrm7_34∗, dTrm7_32∗ showed a decrease of tRFs-1
when compared to heterozygous control (Figure 5D, orange and
blue), suggesting that these Nm MTases are involved in tRFs
biogenesis and/or stability.

Since tRFs-1 reads signal is very high and the signal of 5′-
tRFs and 3′-tRFs is lower, it was difficult to identify major
changes in tRFs originating from mature tRNAs. By zooming
into these regions, we observed that 5′-tRFs slightly decrease in
dTrm7_34∗ homozygous mutants (Figure 5D, left panel, orange),
whereas 3′-tRFs increase (Figure 5D, right panel, orange). In this
analysis double mutants again show similar profiles to control,
suggesting that dTrm7_32 mutation somehow rescues dTrm7_34
defects on 3′-tRFs accumulation. Interestingly, we recently
reported that longer 5′-tRF-Phe (∼35 nt) were significantly
increased in different combinations of dTrm7_34 mutant alleles
(Angelova et al., 2020).

Moreover, we observed mitochondrial tRFs in heterozygous
ovaries similar to white- flies (Figures 2B, 5D, right panel,
gray line), derived mostly from the first half of the molecule.
Homozygous mutant for dTrm7_34∗ ovaries are similar to
heterozygous mutants, whereas double mutants dTrm7_34∗,
dTrm7_32∗ show a global increase of mito-tRFs, suggesting
that dTrm7_32, and not dTrm7_34, may be involved in
mitochondrial-tRFs biogenesis and/or stability.

In summary, we have observed that defects of tRNA 2′-
O-methylation affect tRFs populations in Drosophila ovaries.
dTrm7_34 and dTrm7_32 mutations lead to a decrease of tRFs-1
and dTrm7_34 mutation leads to an accumulation of 3′-tRFs and
a slight decrease of 5′-tRFs.

tRNA Methylation Mutations Affect tRFs
Derived From Different Isotypes of tRNAs
tRNA expression heatmaps using “extended tRNA CCA-
edited reference genome” allowing the analysis of all
types of tRFs showed that the most expressed tRFs in
ovaries from heterozygous dTrm7_34∗ mutants were those
corresponding to tRNAs Glu-CTC, Pro-CGG and AGG,
Val-TAC, Cys-GCA, Lys-TTT, Gly-TCC, Ala-CGC, His-
GTG, Ser-GCT (Supplementary Figure 4A), similarly to
white- control ovaries (Supplementary Figure 2C). In the
ovaries from dTrm7_34∗ homozygous mutants, we observed
a decrease of the tRFs derived from Glu-CTC, Cys-GCA,
Lys-TTT or Gly-TCC, whereas tRFs derived from Ser-GCT
were increased when compared to control. These changes
have been quantified by calculating the ratio between
homozygous and heterozygous dTrm7_34∗ read counts
(Supplementary Figure 4B).

Considering the read counts ratio change between
homozygous and heterozygous dTrm7_34∗ ovaries (Figure 6,
upper panels), we observe that 5′-tRFs are strongly decreased
for several tRNAs, such as Glu-CTC, Gly-TCC, Cys-GCA. This
effect is partially rescued in double mutants. In addition, we
observe that tRFs-1 from tRNAs Gln-CTG-4-1 and Pro-AGG-
2-1 are strongly reduced in the ovaries from both homozygous
dTrm7_34∗ and dTrm7_32∗, dTrm7_34∗ compared to the control
(Figure 6, upper panels). We detect no change in tRNA:Met-
CAT-1-5 tRFs between control and mutants, where the observed
tRFs population matches the anticodon region (Figure 6, middle
panel). On the contrary, we clearly see an increase of 3′-tRFs in
dTrm7_34∗ homozygous mutants for several tRNAs: Pro-CGG-
1-1, Thr-AGT-1-4, Gln-CTG-1-1, Arg-TCG-2-1, Ser-GCT-2-2
(Figure 6, lower panels). Surprisingly, those defects are rescued
in double mutants dTrm7_32∗, dTrm7_34∗. In addition, we
find similar results analyzing profiles corresponding to highly
expressed tRFs in heterozygous dTrm7_34∗ ovaries for 5′-tRFs
and tRFs-1 (Supplementary Figure 5). However, increase of
3′-tRFs are difficult to observe, indicating that the increased in
dTrm7_34∗ homozygous ovaries 3′-tRFs are not highly present
in heterozygous ovaries.

We recently showed that dTrm7_34 and dTrm7_32 methylate
tRNA-Leu, Trp, Phe (conserved targets in yeast and humans),
as well as that dTrm7_32 methylates tRNA-Glu and Gln in
Drosophila (Angelova et al., 2020). Indeed, tRFs derived from
these specific tRNAs show different profiles between mutants and
control conditions (Supplementary Figure 6). First, tRNA-Leu
tRFs have different profiles regarding their anticodon sequence.
Some 5′-tRFs in control ovaries are decreased in dTrm7_34∗
mutants and remain decreased or are rescued in double mutants.
tRFs-1 decrease in dTrm7_34∗ homozygous mutants, whereas 3′-
tRFs increase. Thus, tRNA-Leu tRFs follow the general tendency
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FIGURE 5 | tRNAs methylation defects alter nuclear and mitochondrial tRFs formation: (A) Small RNAs sequences from 15–29 nt were analyzed in different
genotypes to distinguish different categories with the help of an annotation cascade tool in the following order: miRNA, ncRNA, intergenic, genes, TE (piRNA,
siRNA), snoRNAs, tRFs-non-CCA or tRFs-CCA. The percentages of reads from dTrm7_34∗ heterozygous, dTrm7_34∗ homozygous and dTrm7_34∗, dTrm7_32∗

double mutant ovaries are shown in pie-charts. The pie-charts size reflects the depth of the bank (M = Millions of reads). (B) General size distribution (15–29 nt) of
normalized read counts corresponding to the different categories of tRFs in different genotypes using scaling factors (see section “MATERIALS AND METHODS”).
Color-codes for the tRFs categories on the right are described in Figure 1B. (C) Logo for the last 15 nt tRFs sequences of control and mutant ovaries (all categories
included, issued from fasta files). (D) Nuclear and mitochondrial tRFs coverages were analyzed in different genotypes using scaling factors (see section “MATERIALS
AND METHODS”). Different types of tRFs are shown along the coverage profile from the beginning of pre-tRNA (TSS transcription start site) to the end of the
extended edited reference genome (TES, transcription extended site). CCA edition point is shown with a red dot. 5′-tRFs and 3′-tRFs regions are zoomed in for
better comparison between the genotypes.
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FIGURE 6 | tRFs expression is altered in tRNA methylation mutants: 13 tRFs readmap profiles as examples of the most increased or decreased tRFs from the ratio
dTrm7_34∗ homozygous/heterozygous (see in Supplementary Figure 4B) are shown for the different genotypes, using normalizing factors (see section
“MATERIALS AND METHODS”). Since pre-tRNAs sequences are included in the tRNA reference genome, 5′-tRFs start at position 25 nt instead of position 0 nt.
3′-tRFs are located around the position 80 nt and tRFs-1 are located around position 100 nt, depending on tRNA lengths and the presence of intron. Peaks
determine the beginning of the reads sequences. tRFs are schematized in dTrm7_34∗ homozygous and heterozygous mutants for better comparison: 5′-tRFs in light
blue, 3′-tRFs in dark blue and tRFs-1 in green. Ratio’s values above 1 (lower panels): tRFs increased in dTrm7_34∗ homozygous mutants. Ratio’s values below 1
(upper panels): tRFs decreased in dTrm7_34∗ homozygous mutants.
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observed in Figure 5D. In contrast, tRNA-Trp- and tRNA-Phe-
derived 3′-tRFs increase in dTrm7_34∗ homozygous mutants,
while double mutants dTrm7_34∗, dTrm7_32∗ lose 3′-tRFs.

Overall, tRNA Nm methylation defects in the anticodon loop
have a global impact on tRNA fragmentation, though to a lesser
extent than tRNA processing defects (Figure 7). Indeed, tRFs-
1 show a decrease in dTrm7_34∗ homozygous mutants and
3′-tRFs are increased, whereas 5′-tRFs are slightly decreased.
Intriguingly, double mutants dTrm7_34∗, dTrm7_32∗ have
profiles similar to control, indicating that for at least some of the
observed differentially expressed tRFs increased in dTrm7_34∗
homozygotes, dTrm7_32-dependent Nm modification might
have an effect on their biogenesis and/or stability. Finally, tRFs
longer than 30 nt can’t be properly detected in the analyzed
libraries (size selection of 15–29 nt), so our analysis does not
include the 35 nt long tRNA-Phe-derived 5′-tRFs characterized
previously in dTrm7_34∗ mutants (Angelova et al., 2020).

tRNA Processing and Methylation Avoid
snoRNA Fragmentation
The increase of small RNAs derived from snoRNAs observed in
Rpp30 mutants (Figure 3A) led us to study this population in
more detail. In Drosophila, snoRNAs > 120 nt are box H/ACA
and play a role in pseudouridylation whereas snoRNAs < 120 nt
are box C/D snoRNA and play a role in 2′-O-methylation
(Huang, 2005; Angrisani et al., 2015; Falaleeva et al., 2017). Since
RNase P has been shown to participate in snoRNAs maturation
in some species (Coughlin et al., 2008) and since snoRNAs
molecules can be cleaved to form snoRNA fragments (snoRFs)
by enzymes that remains to be elucidated (Falaleeva and Stamm,
2012; Światowy and Jagodzińśki, 2018), we studied a potential
role of RNase P in snoRFs biogenesis (Supplementary Figure 7).

snoRFs size distributions shows that snoRFs are highly
increased in Rpp3018.2 homozygous mutants, with snoRFs mostly
ranging between 15 and 23 nt (Supplementary Figure 7A).
Since there are two main snoRNA populations (box H/ACA and
C/D Supplementary Figure 4B), we analyzed them all together
and separately to observe snoRFs coverages. Indeed, total
snoRFs coverage shows that in control flies (white- and rescued
Rpp3018.2; Rpp30GFP) there is almost no snoRFs formation
(Supplementary Figure 7C, upper panel, black and purple lines).
However, snoRFs are highly increased in Rpp3018.2 homozygous
mutants (red line), mostly in 3′ of snoRNA molecules. Indeed,
there is a strong accumulation of box C/D snoRFs mostly at 3′ of
the snoRNA molecule, and an increase of box H/ACA 5′ and 3′
snoRFs in ovaries from Rpp30 mutants compared to controls. The
sequence specificities for box C/D or H/ACA can be observed by
analyzing the Logo (Supplementary Figure 7D).

In methylation mutants, ovaries from heterozygous and
homozygous dTrm7_34∗ mutants show similar profiles,
with snoRFs mostly ranging from 21-28 nt (Supplementary
Figure 7A). Indeed, in comparison to white- where almost
no snoRFs are detected (Supplementary Figure 7C), we
observe that snoRFs accumulate in tRNA methylation
mutant genetic backgrounds (heterozygous, homozygous
and double mutants), mostly at the 3′ part of snoRNA molecules

(Supplementary Figures 7A, C). These results suggest that
dTrm7_34 and dTrm7_32 function(s) can be important in
avoiding snoRFs fragmentation.

DISCUSSION

Our study presents an easy to share user friendly bioinformatic
workflow for tRFs population analysis and its use on Illumina-
generated small RNA libraries. As proof of principle we used
libraries of control and mutant Drosophila for two key events
of tRNA biology: tRNA processing and tRNA Nm methylation
at the anticodon loop. We provide a new genome reference,
comprising sequences upstream and downstream of mature
tRNA genome sequences and bioinformatically added CCA tags
that allow analysis of 3′-tRFs and 5′-tRFs, i-tRFs, tRFs-1, taRFs
and spanners (Figure 1A).

Using mutant flies for the RNAse P subunit (Rpp3018.2) we
observed an important decrease in tRFs-1 (Figure 7). tRFs-
1 are generated by RNase Z-mediated cleavage of pre-tRNAs.
Interestingly, it has been described in Drosophila and other
species that RNase P cleaves the 5′ trailer before RNase Z
cleaves the 3′ trailer (Dubrovsky et al., 2004; Xie et al., 2013).
In this way, an upstream defect on 5′ cleavage due to Rpp30
mutation could affect RNase Z cleavage, thereby explaining
why tRFs-1 decrease in Rpp30 mutants. Moreover, Rpp3018.2

mutants show an accumulation of 5′-tRFs. It is possible that
a lack of 5′ leader cleavage affects tRNA secondary structure,
promoting cleavage in the D-loop to form 5′-tRFs by Dicer
or other endonucleases as already shown in mammals (Li
et al., 2018). Finally, 3′-tRFs also increase in Rpp3018.2 mutants.
CCA is known to be added on mature tRNA, which suggests
that Rpp30 mutation somehow affects tRNA cleavage after the
CCA tRNA editing. Since 3′-tRFs are involved in TEs silencing
control, increasing this tRFs population by promoting tRNA
cleavage at the T-loop can be a way to control TEs when
the main piRNA pathway is compromised. This observation
is consistent with previous reports of tRFs functioning as a
versatile and adaptive source for genome integrity protection
(Martinez et al., 2017; Schorn et al., 2017). Also, it is important
to mention that Rpp30 mutants accumulate short tRFs (15–17 nt)
which origin is difficult to know: tRNA-space versus non-tRNA
space. Indeed, when 15–16 nt are excluded from the analysis,
while control profiles do not change, the tRFs increase is less
dramatic (Supplementary Figure 1E), suggesting that they could
partly correspond to non-tRNA space. For example, they could
originate from TEs overexpression and fragmentation, but this
remains to be elucidated.

Besides tRFs, we observed that snoRNAs fragments (snoRFs)
accumulate in Rpp30 homozygous mutant ovaries. In this sense,
it has been shown that snoRNAs can be a target of RNase P in
some species during snoRNA maturation (Coughlin et al., 2008;
Marvin et al., 2011). We know now that snoRNAs molecules can
be cleaved into snoRNA fragments (snoRFs) but the enzyme(s)
responsible for their cleavage remain(s) poorly characterized
(Światowy and Jagodzińśki, 2018). snoRFs are aberrantly present
in several pathologies such as cancer and neurodegenerative
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FIGURE 7 | tRNA processing and methylation defects impact on tRFs biogenesis: The main steps of tRNA processing are depicted. Cleavage sites for ribozymes
RNase P and Z are indicated on a pre-tRNA molecule. Cleavage of the 3′ trailer forms tRFs-1 (green). Upon cleavage of the leader and trailer sequences and CCA
addition (dark gray), yielding mature tRNAs, they can be cleaved at the D-loop, forming the tRFs 5′ (light blue) and at the T-loop, forming 3′-tRFs. 2′O-methylation
sites for dTrm7_32 and dTrm7_34 are shown at the anticodon loop. Increase or decrease of different tRFs populations in mutants for tRNA processing or tRNA
methylation are schematized with arrows of different sizes (↑, increased, ↓, decreased).

diseases (Falaleeva and Stamm, 2012; Patterson et al., 2017;
Romano et al., 2017; Światowy and Jagodzińśki, 2018). It is thus
possible that RNase P limits snoRNA fragmentation to preserve
homeostasis by an uncharacterized mechanism. Interestingly,
mice mutant for RNase Z (the other major tRNA processing
enzyme) showed an increase in snoRNAs expression. This
phenomenon was proposed to compensate translation defects
produced by the lack of correct 3′ tRNA processing (Siira et al.,
2018). However, a role of RNase Z in snoRFs formation has
not been described.

As introduced previously, in Drosophila some methylation
marks protect tRNAs from cleavage and aberrant
tRFs populations accumulate in mutants for different
methyltransferases, such as Dnmt2 (catalyzes m5C methylation)
and dTrm7_32 and dTrm7_34 (catalyze 2′-O-methylation)
(Schaefer et al., 2010; Durdevic et al., 2013b; Genenncher et al.,
2018; Angelova et al., 2020). In addition, It has recently been

shown in mice that loss of NSUN2 altered tRFs profiles in
response to stress, impairing protein synthesis (Gkatza et al.,
2019). Our analysis of the tRFs populations in ovaries mutant
for dTrm7_34 and dTrm7_32, two Nm MTases of the anticodon
loop of some tRNAs, showed that dtrm7_34 mutants have
different tRFs profiles when compared to Rpp3018.2 mutants
(Figure 7): tRFs-1 are decreased compared to control, 5′-tRFs
are slightly decreased, whereas 3′-tRFs are increased. dTrm7_34
has been shown to methylate tRNAs at the wobble position 34 of
the anticodon region and its mutation leads to an accumulation
of tRNA halves fragments (around 35 nt length) (Angelova
et al., 2020). Thus, an accumulation of longer tRFs could
impede a cleavage in the D-loop, explaining a decrease in
5′-tRFs. However, in this study we cannot detect tRNA halves
since our datasets contain RNAs of 15–29 nt only. Moreover,
3′-tRFs increase in dTrm7_34∗ homozygous mutants, suggesting
that tRNA Nm methylation at position 34 somehow limits
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T-loop cleavage. The other anticodon Nm methyltransferase,
dTrm7_32, has been shown to methylate position 32 of its
substrate tRNAs (Angelova et al., 2020). Interestingly, double
mutants dTrm7_34∗, dTrm7_32∗ show a different tRFs profile
when compared to dTrm7_34∗ single mutant. This result
suggests that a lack of methylation in the anticodon loop region
can somehow favorize the production and/or stabilize some
tRFs, as proposed recently for tRNA halves in Nm mutants
(Angelova et al., 2020).

Finally, our study detected an increase of mitochondrial
derived tRFs in Rpp3018.2 mutants, as well as in double
mutants dTrm7_34∗, dTrm7_32∗ when compared to control,
whereas control conditions show very low levels of mito-
tRFs. This observation indicates that tRNA processing and
tRNA Nm methylation pathways of the anticodon loop limit
aberrant fragmentation of mitochondrial tRNAs. Mito-tRNAs
are polycistronic sequences cleaved by conserved mitochondrial
RNase P and Z complexes in several species (Jarrous and Gopalan,
2010; Rossmanith, 2012). Intriguingly, a recent study reported an
interplay between RNase P complex and mito-tRNA methylation
enzymes in human cells. Indeed, mito-RNAse P was shown
to recognize, cleave and methylate some mitochondrial tRNAs
in vitro, and its activity was enhanced by interaction with a
tRNA methylation cofactor (Karasik et al., 2019). Mito-RNAse
P and Z dysfunctions have also been linked to several human
mitochondrial diseases, as myopathies and neurodevelopmental
disorders (Barchiesi and Vascotto, 2019; Saoura et al., 2019).
A description of mitochondrial tRFs biogenesis could thus help
to better understand the molecular mechanisms underlying these
pathologies. In line with neurodegenerative diseases implication,
tRFs have been shown to be present in the brain of different
species, and their populations were shown to vary during aging in
Drosophila (Karaiskos et al., 2015; Karaiskos and Grigoriev, 2016;
Angelova et al., 2018).

High throughput Illumina sequencing of small RNA libraries
could introduce biases in tRFs detection, since tRNAs are highly
modified molecules and very few techniques are able to properly
describe these modifications in a transcriptome-wide way, such
as ARM-seq or Circ-RNA-seq tRNA (Cozen et al., 2015; Zhang
et al., 2015). For example, in white- control ovaries, tRFs-1 are
the most highly present, followed by 3′-tRFs and 5′-tRFs. This
tRF distribution in the sample could be due to the method
of library preparation or sequencing, since with standard small
RNA-Seq protocols, tRFs-1 could be preferentially sequenced
as they are poorly modified post-transcriptionally. In addition,
since the reverse transcription occurs from the 3′-end of the
tRNA sequence, because of tRNA modifications libraries could
be biased toward detection of reads mapping to the 3′-end of
tRNA sequences (Torres et al., 2019). However, some studies have
reported that tRNA modifications only have a limited impact on
data mining when studying tRFs in The Cancer Genome Atlas
(Telonis et al., 2019). Importantly, a huge number of datasets
are already available with valuable information to extract. By
analyzing different mutants from distinct pathways we should
be able to increase our knowledge on tRFs biogenesis and/or
stability, as well as on the potential interactions between the
diverse mechanisms impacting tRFs biology. For example, it has

been recently shown that snoRNAs can 2′-O-methylate tRNA-
CAT at position 34 in mammalian cells, similarly to dTrm7_34
(Vitali and Kiss, 2019; Angelova et al., 2020). Conversely, tRNA
methylation could have an impact on snoRNAs biogenesis, as
observed in this study. Thus, our new workflow can help to
analyze past, present and future small RNA sequences obtained
by different means. It will be interesting to obtain a tRF
cartography in different tissues, organs and species; to determine
tRFs targets and biogenesis factors; as well as to elucidate tRFs
functions in gene expression regulation. It will also be interesting
to compare datasets obtained from classical Illumina sequencing
with other techniques such as ARM-seq, which provides a
read out of some modifications and may reveal additional tRFs
populations. Our study thus has the potential to participate in
the discovery of novel nuclear or mito-tRFs that could help
advance the understanding of the etiology of a wide range of
human pathologies.
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Supplementary Figure 1 | tRFs could originate from tRNA space and non-tRNA
space: (A) Representation of the different genomic loci that can give rise to tRFs:
tRNAs, tRNA-lookalikes, truncated tRNAs or repeated elements. (B) tRFs size
distribution of reads matching “tRNA space” (gray) and “non-tRNA space” (blue).
(C) Fold change of tRF reads matching the “tRNA-space” versus tRFs reads
matching the “non-tRNA space.” (D) tRFs matching the “non-tRNA space”
corresponding to tRFs-CCA (dark pink) and tRFs-non-CCA (light pink) in the
represented genotypes. (E) comparison between Bam Coverages obtained with
15–29 nt (left, same as Figure 3B) and 17–29 nt (right) in different genotypes.

Supplementary Figure 2 | tRFs expression is altered in Rpp30 mutants: (A)
Unique mature-tRNA CCA-tagged sequences were used as a reference genome
to identify tRNAs that are sources of tRFs. tRFs reads were counted in a hit table,
normalized by DESeq normalization Geometrical method and used to generate a
heatmap for the different genotypes (1-3) reflecting all nuclear and mitochondrial
tRNA genes in Drosophila’s genome. The read counts were sorted from maximum
to minimum values for the white- column (left) for a better comparison with the
other genotypes. Expression levels are reflected with a color-code going from blue
(lowest levels), through white (middle levels), to red (highest levels) and ranging
from 0 to 15 log2 counts. (B) Ratio of the read counts Rpp3018 .2

homozygous/white- presented in (A) Minimal values are in dark blue, middle
values are in white, and maximal values are in red. (C) Heatmap generated as in
(A). by using “tRNA-extended CCA edited” sequences in order to analyze all types
of tRFs: from precursor and mature tRNAs.

Supplementary Figure 3 | Rpp30 mutations affects tRFs biogenesis: 11 tRFs
readmap profiles representing the most expressed tRFs in white- (see
Supplementary Figure 2C) are shown for the different genotypes. The readmaps
were obtained using normalizing factors (see Methods). Since pre-tRNAs
sequences are included in the tRNA reference genome, 5′-tRFs are located at
position 25 nt instead of position 0 nt. 3′-tRFs are located around position 75 nt
and tRFs-1 are located around position 100 nt, depending on the length of the
tRNAs and the presence of intron. Peaks determine the beginning of the reads
sequences. tRFs categories are schematized in white- and Rpp3018.2

homozygous for better comparison: 5′-tRFs in light blue, 3′-tRFs in dark blue and
tRFs-1 in green.

Supplementary Figure 4 | tRFs biogenesis is altered in tRNA methylation
mutants: (A) tRFs were counted in a hit table using tRNA-extended CCA edited as
a reference genome. The table was normalized by DESeq normalization
Geometrical method and used to generate a heatmap for the different genotypes
(1-3) reflecting all nuclear and mitochondrial tRNA genes in Drosophila’s genome.
The read counts were sorted from maximum to minimum values for the white-

column (left) for better comparison with the other genotypes. Expression levels are
reflected with a color-code going from blue (lowest levels), through white (middle
levels), to red (highest levels). (B) Read counts ratio dTrm7_34∗ homoz./heteroz.
calculated from (A) Minimal values are in dark blue, middle values are in white, and
maximal values are in red, ranging from 0 to 15 log2 counts.

Supplementary Figure 5 | tRNA methylation defects alter tRFs populations: 12
tRFs normalized readmap profiles representing the most decreased or increased
tRFs from the ratio dTrm7_34∗ homozygous/heterozygous (see Supplementary
Figure 4B) are shown for the different genotypes. Since pre-tRNAs sequences
are included in the tRNA-reference, 5′-tRFs are located at position 25 nt instead of
position 0 nt. 3′-tRFs are located around position 75 nt and tRFs-1 are located
around position 100 nt, depending on the length of the tRNAs and the presence
of an intron∗. Peaks determine the beginning of the reads sequences. The tRFs
categories are schematized in dTrm7_34∗/Tb,Sb heterozygous for better
comparison: 5′-tRFs in light blue, 3′-tRFs in dark blue and tRFs-1 in green.
Ratio’s values above 1: tRFs increased in dTrm7_34∗ homozygous mutants.
Ratio’s values below 1: tRFs decreased in dTrm7_34∗ homozygous
mutants.

Supplementary Figure 6 | Lack of dTrm7_32 and dTrm7_34 affects the
abundance of tRFs, derived from their substrate tRNAs: 13 tRFs normalized
readmap profiles as examples of tRNA substrates of dTrm7_34 and dTrm7_32 are
shown for the different genotypes. Since pre-tRNAs sequences are included in the
tRNA-reference, 5′-tRFs are located at position 25 nt instead of position 0 nt.
3′-tRFs are located around position 75 nt and tRFs-1 are located around position
100 nt, depending on the length of the tRNA and the presence of an intron. Peaks
determine the beginning of the reads sequences. tRFs are schematized in
dTrm7_34∗/Tb,Sb heterozygous and homozygous mutants for better comparison:
5′-tRFs in light blue, 3′-tRFs in dark blue and tRFs-1 in green.

Supplementary Figure 7 | tRNA processing and tRNA methylation affects
snoRNA fragments (snoRFs) profiles. (A) General size distribution (15–29 nt) of
normalized snoRFs read counts is shown for the different genotypes of tRNA
processing and tRNA methylation mutants. (B) Violin plot reflecting snoRNAs
populations found in Drosophila melanogaster genome. snoRNAs of more than
120 nt belong to box H/ACA class whereas snoRNAs of less than 120 nt belong
to box C/D class. (C) Shown are snoRFs coverage profiles for the indicated
genotypes (scaling factors used, see Methods). TSS: Transcription Start Site. TES,
Transcription End Site. (D) Logo for the most representative sequences found in
the last 15 nt of snoRFs for Rpp30 mutants (issued from fasta files containing
all sequences).

Supplementary Figure 8 | Workflow related to miRNA normalization, scale
factors and global cascade annotation. Representation of the Workflows used to
perform miRNA normalization (A) and the Scale Factors (B). Shown are Scale
factors for all the genotypes used in this study. For simplicity, only white-,
Rpp3018 .2homoz., Rpp3018 .2;ubiRpp30GFP, dTrm7_34∗/Tb,Sb∗ heterozygous,
dTrm7_34∗ homozygous and dTrm7_34∗, dTrm7_32∗ double mutants have been
used for the main figures. (C) Workflow used to generate the cascade annotations
represented in Figures 2, 3, 5.

Supplementary Figure 9 | Workflow related to Bam Coverages and tRNA
expression heatmaps. Scheme of the Workflows used for generation of tRFs Bam
Coverages represented in Figures 2, 3, 5. (A), tRFs Heatmaps represented in
Supplementary Figures 2, 4 (B), and snoRFs Bam Coverage represented in
Supplementary Figure 7 (C).

Supplementary Table 1 | Comparison of some existing tRFs bioinformatic
analysis tools. Comparison is only based on some selected bibliographic
resources available in Pubmed, April, 2020. y: yes, n: no. “-” indicates that the
information is not relevant or that the item doesn’t exist.
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