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Editorial on Research Topic

Improving Diagnosis, Treatment, and Prognosis of Neuropsychiatric Disorders by Leveraging

Neuroimaging-based Machine Learning

Recently, there has been increasing attempt that leveraged machine learning techniques to improve
the diagnosis, treatment, and prognosis of diseases with medical images. Pioneering work has
consistently demonstrated the promise of machine learning in a variety of clinical settings, such
as detection of diabetic retinopathy using retinal fundus photographs (Gulshan et al., 2016),
identification of axillary lymph node metastasis with magnetic resonance imaging (MRI) radiomics
in patients with breast cancer (Yu et al., 2020), prediction of the risk of patients’ sudden cardiac
death with MRI and positron-emission tomography (PET) images (Shade et al., 2021), etc. The
employment of machine learning techniques in these clinical settings has substantially advanced
the development of computer-assisted systems for disease diagnosis and treatment.

Machine learning has also demonstrated its great potential in the diagnosis and treatment
of neuropsychiatric disorders. Many of these diseases are now redefined as “disorders of brain
circuits” (Insel et al., 2010). As for mental disorders, traditional diagnosis of these disorders
is merely based on subjective symptoms and signs. In 2010, the National Institute of Mental
Health (NIMH) launched the Research Domain Criteria (RDoC) project, which aims to establish
a framework for classification of mental disorders based on underlying biological mechanisms
with data from genetics and clinical neuroscience (Insel et al., 2010). This initiative has changed
our understanding of mental disorders and may hopefully promote “precision medicine for
psychiatry” (Insel et al., 2010; Insel and Cuthbert, 2015). Indeed, recent studies have shown the
feasibility of redefining and subtyping of mental disorders according to patterns of brain activity
and connectivity obtained from neuroimaging data with the help machine learning. For example,
Drysdale and the colleagues identified four neurophysiological subtypes of depression according to
patients’ functional connectivity profiles with hierarchical clustering (Drysdale et al., 2017). Later, Li
et al. reported that functional striatal abnormalities could be used to reliably identify schizophrenia
patients with a high accuracy, as well as predict patients’ response to antipsychotic treatment (Li
et al., 2020).

This Research Topic aims to advance our understanding of healthy and diseased brains by
leveraging neuroimaging-based machine learning, in order to improve diagnosis, treatment, and
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prognosis of neuropsychiatric disorders. We thus invited
world-renowned experts to present their recent work that
have employed novel machine learning approaches in studies
of neuropsychiatric disorders. Of the 25 papers published in
this Research Topic, the majority focused on the diagnosis
of neuropsychiatric disorders. Due to the relatively small
sample size of the datasets, support vector machine (SVM)
was the most widely used machine learning method in these
papers. Noninvasive neuroimaging data, including structural
and functional MRI images, electroencephalography and
magnetoencephalography were collected and the classifiers
were generally trained and tested with features generated by
a traditional morphological analysis or brain connectivity
analysis. Now with the help of machine learning techniques, we
are capable of detecting subtle and complex abnormalities in
brain structure and function in patients with neuropsychiatric
disorders. It is worth noting that the functional connectivity
profiles are now considered to constitute a fingerprint of the
brain which could be used to reliably differentiate a subject from
others (Finn et al., 2015).

We will see in this Research Topic that Pan et al. achieved
an accuracy of higher than 80% in differentiating patients
with cervical dystonia and healthy controls, using voxel-
wise resting-state functional connectivity and SVM. Similar
framework was used to identify patients with Parkinson’s
disease, type 2 diabetes mellitus induced cognitive impairment,
major depression, obsessive-compulsive disorder, bipolar
disorder, internet addiction, as well as High-Risk First-
Degree Relatives of Patients With Schizophrenia. In addition,
Zhao et al. established a novel pipeline for epileptogenic
zone identification with convolutional neural network.
Kung et al. showed that morphological features could be
employed to identify the conversion from mild cognitive
impairment to Alzheimer’s disease with multilayer perceptron
classifier. Moreover, Inglese et al. established a self-supervised
contrastive learning model for subtyping of patient with systemic
lupus erythematosus.

In addition to disease diagnosis, This Research Topic also
includes novel and interesting findings on the application
of machine learning in treatment and prognosis of diseases.
Li et al. showed that neuroimaging features could be used
to predict response to treatment in patients with idiopathic

generalized epilepsy with tonic–clonic seizures. Xi et al.
showed that brain structure-based signature could be used
to identify responders and non-responders to a treatment
with combined ECT and antipsychotics in patients with
schizophrenia. Bohaterewicz et al. proposed a framework to
predict suicide risk in patients with schizophrenia. Xu et al.
established a nomogrammodel for the prediction of intracerebral
hematoma expansion with radiomic features extracted from
CT images.

Looking into the future, the reproducibility of the findings
and the generalization of the classifiers may need to be
tested with large datasets from multiple independent sites.
The sample size in most of the papers published in this
Research topic is relatively small and whether findings could
be reproduced with large datasets remains to be tested.

More importantly, the majority of studies in this Research
Topic have trained and tested the model with data from a
single site. Whether these models could still achieve high
classification accuracy when tested with data collected from
another independent site remains unclear. Unfortunately, due to
the high heterogeneity of neuropsychiatric disorders, machine
learning models built on the data from a single site usually
demonstrated poor performances when tested with data from
multiple independent sites. To ensure the robustness and
generalization of the classifiers, future studies may need to
further train the model with multi-site dataset and systematically
tested the generalization of the models with leave-one-site-out
cross validation.
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Background: Altered functional connectivity (FC) is related to pathophysiology of

patients with cervical dystonia (CD). However, inconsistent results may be obtained due

to different selected regions of interest. We explored voxel-wise brain-wide FC changes

in patients with CD at rest in an unbiased manner and analyzed their correlations with

symptomatic severity using the Tsui scale.

Method: A total of 19 patients with CD and 21 sex- and age-matched healthy controls

underwent resting-state functional magnetic resonance imaging scans. Global-brain

FC (GFC) was applied to analyze the images. Support vector machine was used to

distinguish the patients from the controls.

Results: Patients with CD exhibited decreased GFC in the right precentral gyrus

and right supplementary motor area (SMA) that belonged to the M1-SMA motor

network. Significantly negative correlation was observed between GFC values in the

right precentral gyrus and symptomatic severity in the patients (r = −0.476, p = 0.039,

uncorrected). Decreased GFC values in these two brain regions could be utilized

to differentiate the patients from the controls with good accuracies, sensitivities and

specificities (83.33, 85.71, and 80.95% in the right precentral gyrus; and 87.59, 89.49,

and 85.71% in the right SMA).

Conclusions: Our investigation suggests that patients with CD show reduced GFC

in brain regions of the M1-SMA motor network and provides further insights into the

pathophysiology of CD. GFC values in the right precentral gyrus and right SMA may be

used as potential biomarkers to recognize the patients from the controls.

Keywords: cervical dystonia, global-brain functional connectivity, precentral gyrus, supplementary motor area,

network
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INTRODUCTION

Cervical dystonia (CD), known as spasmodic torticollis, is the
most common type of focal dystonia with estimated prevalence
of 28–183 cases per million individuals (1, 2). CD is caused by
abnormal impulse of central nervous system (CNS) resulting
in cervical muscle group paroxysmal involuntary contraction,
and thus presents abnormal posture of head and neck. Simple
rotatory torticollis is the most common type occurring in >50%
of cases (3). Other types can be classified into laterocollis,
anterocollis, retrocollos, or tremor (4). Patients with CD are
often accompanied with neck or shoulder pain and tremor (5, 6).
The chronic neck pain caused by CD leads to disability or
low quality of life. Thus, it is meaningful to accurately identify
patients with CD and provide them with effective treatment
in clinical trials. However, no curative treatment is available
at present, and the pathophysiology underlying the disorder
remains poorly understood.

Rapid advances in neuroimaging techniques suggest that CD
is not a disease with abnormality in an isolated brain region
but a chronic disorder involving damage in multiple brain
networks (7). Patients with CD showed structural alterations in
lentiform nucleus, basal ganglia (8, 9), internal globus pallidus
(10), thalamus, cerebellum, motor cortex, and supplementary
motor area (SMA), putamen, right visual cortex, and right dorsal
lateral prefrontal cortex (11). Altered functional connectivity
(FC) was observed in brain regions including premotor cortex,
prefrontal cortex, parietal cortex, middle temporal gyrus, SMA,
primary motor area (M1), secondary somatosensory cortex, right
supramarginal gyrus, and a network that comprised anterior
cingulate cortex (12–16).

However, findings of the above-mentioned studies are
inconsistent in terms of special brain regions. For example,
conflicting results of an enhancement in gray matter volume
in the motor cortex and SMA but a reduction in gray matter
were reported in the same areas (11). Several analyses on regions
of interest (ROI) revealed alterations in cerebellar gray matter
volume (11), but other researchers found no such abnormality
in patients with CD (13). Patients with CD displayed increased
connectivity in the premotor, prefrontal cortex, and parietal
cortex but had decreased paradox connectivity in the same
regions (7, 13). The inconsistency may be partly due to a seed-
based FC method (ROI) or an independent component analysis
approach used to explore the brain mechanisms in patients with
CD. These approach are useful in testing hypotheses regarding
specific regions or networks but do not provide a comprehensive
method for examining connectivity outside of the predetermine
areas (17, 18).

Given this background, a voxel-wise global-brain FC (GFC)
approach was utilized to examine the difference in large-scale
functional organization in patients with CD. GFC uses a metric
that does not require a priori seed or network selection and
provides a measure of the connectivity of all voxels in the brain
relative to all other voxels (19–24). GFC has been proven to be a
powerful and replicable data-driven analysis for the identification
of major intrinsic networks (18, 25). The goals of this GFC
study conducted in patients with CD included the following:

(1) to explore GFC differences between patients with CD and
healthy controls; (2) to probe relationship between altered FC
and clinical measurements in patients with CD; and (3) to
examine whether GFC values in relevant brain areas may be
considered potential image biomarkers in differentiating patients
from healthy controls using support vector machine (SVM).

MATERIALS AND METHODS

Subjects
A total of 21 right-handed patients with CD were referred
from the First Affiliated Hospital of Guangxi Medical University.
CD was diagnosed based on criteria of the dystonia diagnostic
and treatment guidelines of Chinese Medical Association
of neurology branch of Parkinson’s disease and movement
disorders group. A total of 21 right-handed healthy controls
without symptoms of neurologic diseases were recruited by
advertisements from local community at the same time. All
participants aged from 18 to 60 years old, and healthy controls
were group-matched with the patients in terms of age and
sex ratio.

Patients with CD shared the following exclusion criteria: (1)
consistent with diagnosis of primary CD with rotatory torticollis
but obvious dystonia existed in other parts of the body except the
cervical region, (2) any other neurological with the exception of
dystonia, (3) other causes of secondary spasmodic torticollis that
are definitely diagnosed, (4) history of related medical treatment
or operation therapy within 3 months before the treatment such
as Botulinum-A toxin injection (26, 27), and (5) any history of
serious medical or neurological illness. The exclusion criteria
for healthy controls were as follows: (1) any history of severe
neuropsychiatric diseases, (2) any history of serious surgery
or internal medicine diseases, and (3) any family history of
severe neurological disorders in their first-degree relatives. The
participants that did not reach the standard for MRI or showed
alterations under conventional MRI scans were also excluded.

All patients were assessed with the Tsui scale (28) to measure
symptomatic severity of CD. The study was approved by the
Local Ethics Committee of the First Affiliated Hospital of
Guangxi Medical University. All participants provided a written
informed consent prior to the experiment.

Image Acquisition and Preprocessing
A Siemens 3.0 T scanner was used to capture resting-state scans.
All participants were required to lie still, close their eyes, and
stay awake. The participants used soft earplugs and foam pads
to reduce the scanning noise and head motion. The acquisition
slice-order type was ascend with the following parameters:
repetition time/echo time = 2,000 ms/30ms, inversion time =

900ms, 30 slices, 64 × 64 matrix, 90◦ flip angle, 240mm field
of view, 4mm slice thickness, 0.4mm gap, and 250 volumes
lasting for 500 s. After scanning, participants were asked whether
they fell asleep during the fMRI scanning, and all participants
confirmed wakefulness.

Functional image data were preprocessed automatically using
the DPABI software (29). The first 10 volumes were removed to
ensure a steady-state condition. The fMRI time series was first
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corrected for within-scan acquisition time differences between
slices and headmotion.We excluded the participants whose head
movement exceeded 2mm of translation or 2◦ of rotation in
any directions. All realigned images were spatially normalized
to the Montreal Neurological Institute EPI template in SPM8
and resampled to 3mm × 3mm × 3mm voxels (30). After
normalization, the images were smoothed with a 4mm full width
on the half-maximum Gaussian kernel. The time series were
further band-pass filtered (0.01–0.08Hz) and linearly detrended.
Afterward, several covariates, including Friston-24 head motion
parameters acquired by rigid body correction, signal from a
region centered in white matter, and signal from cerebrospinal
fluid were removed. Global signal was not removed as indicated
in a previous study (31). The frame-wise displacement (FD) value
for each participant was calculated according to a previous study
(32). Scrubbing (removing time points with FD > 0.2mm) was
also used to control the effect of head motion.

GFC Analysis
The GFC method was similar to that used in our previous
study (24). For each participant, we calculated average values
of correlations between each voxel’s time series and every other
voxel in gray matter of the whole brain in MATLAB, which was
defined as GFC of this voxel (18). The threshold setting classified
voxel with probability of>0.2 as gray matter, and the gray matter
mask would be produced by the gray matter probability map in
SPM8 (33). The GFC values were converted into Fisher z-scores
(21, 24, 34). The GFC maps were generated by combining GFC
of all voxels. Thereafter, two-sample t-tests were conducted on
the GFC maps between patients with CD and controls after the
normality of the data being checked. The mean FD and age were
used as covariates of no interest to limit the possible effects of
these variables. The significance level was set as p < 0.05 by using
the family wise error (FWE) correction method.

Correlation Analysis
We extracted mean z values from brain clusters with abnormal
GFC. After checking normality of the data, Pearson correlations
were performed to determine the relationship between GFC
values and Tsui total scores in the patients. The significance level
was set at p < 0.05.

Classification Analysis by Using SVM
SVM was applied to examine whether decreased GFC in several
brain regions could be used to distinguish the patients from
the controls (35). The LIBSVM software adopted a “leave-
one-out” (LOO) approach that was cross-validated to obtain
good sensitivity and specificity. In our study, given a dataset of
19 samples, the LOO-based validation was performed with 19
iteration. In each iteration, the classifier was trained with 19-1
samples and tested on the remaining sample. The type of kernel
was the default Gaussian kernel in LIBSVM (33).

We adopted a 5-fold cross-validation method to validate
the SVM results. Each sample was randomly divided into five
subgroups. The first 4 subgroups were taken as training sets
and the fifth subgroup was taken as a test set to obtain a global

accuracy. Moreover, results were validated by a permutation test,
which ran 10,000 times for each sample to get a global accuracy.

RESULTS

Characteristics of the Subjects
The data of 2 patients were excluded due to excessive head
movement. Consequently, the final sample included 19 patients
and 21 controls. Continuous variables, including age, years of
education, and FD, were analyzed with two-sample t-tests after
the normality of the data being checked. A Chi-squared test was
used for sex distribution.

The differences in age (p = 0.75), sex ratio (p = 0.22),
and FD (p = 0.51) between the patients and controls were
not statistically significant. The information of demographic
and clinical characteristics of the included subjects were listed
in Table 1.

Group Differences in GFC
Compared with the controls, patients with CD exhibited
decreased GFC in the right precentral gyrus and right SMA
(Figure 1 and Table 2). No brain region exhibited increased GFC
in the patients relative to the controls.

Correlations Between GFC and Clinical
Variables
As shown in Figure 2, a negative correlation was observed
between GFC values in the right precentral gyrus and
symptomatic severity in the patients (r = −0.476, p = 0.039,
uncorrected). The correlation was not significant at Bonferroni
corrected p < 0.05/2= 0.025 (for the two clusters).

SVM Results
SVM analysis was conducted to determine whether GFC values in
these brain areas could distinguish patients with CD from healthy
controls with good sensitivity and specificity. The decreased GFC
values in two brain regions exhibited high accuracies, sensitivities
and specificities (83.33, 85.71, and 80.95% in the right precentral
gyrus; and 87.59, 89.49, and 85.71% in the right SMA) in
differentiating patients with CD fromhealthy controls (Figure 3).

We used both the 5-fold cross-validation and permutation
test methods to validate the SVM results. The global balanced
accuracy was 80.00 and 68.42% in the right precentral gyrus and

TABLE 1 | Characteristics of participants.

Variables Patients (n = 19) Controls (n = 21) p-value

Age (years) 38.74 ± 10.71 39.62 ± 6.62 0.75b

Sex (male/female) 9/10 6/15 0.22a

FD (mm) 0.02 ± 0.02 0.03 ± 0.02 0.51b

Illness duration (months) 24.29 ± 31.26

Symptom severity 16.32 ± 4.45

aThe p-value for sex distribution was obtained by a chi-square test.
bThe p-values were obtained by two samples t-tests.

FD, Framewise displacement.
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FIGURE 1 | Reduced GFC in patients with cervical dystonia relative to healthy controls. GFC, global-brain functional connectivity.

TABLE 2 | Regions with decreased GFC in patients.

Cluster location Peak (MNI) Numbers

of voxel

T-value p-value

x y z

Right precentral gyrus 57 6 9 19 −4.7764 <0.001

Right supplementary

motor area

12 30 51 36 −4.3817 <0.001

GFC, global-brain functional connectivity; MNI, Montreal Neurological Institute.

right SMA using the 5-fold cross-validation method. By contrast,
the global accuracy was 0.8023 (p < 0.001) and 0.8071 (p <

0.001) in the right precentral gyrus and right SMA using the
permutation test.

DISCUSSION

Patients with CD exhibited significantly decreased GFC values
in brain regions of the M1-SMA motor network compared with
healthy controls. Moreover, GFC values in the right precentral
gyrus were negatively correlated with symptomatic severity in
the patients. GFC values in these areas could correctly identify
patients from healthy controls with good sensitivity, specificity,
and accuracy.

Previous studies indicate that dystonia is a disorder of
motor organization, programming, execution, and sensorimotor
integration (36). The precentral gyrus (as the M1), located
between the central sulcus and anterior central sulcus on the
dorsolateral side of the frontal lobe, is closely related to motor

FIGURE 2 | A negative correlation (r = −0.476, p = 0.039, uncorrected)

between GFC values in the right precentral gyrus and symptomatic severity in

patients with cervical dystonia. GFC, global-brain functional connectivity.

preparation and execution. The main function of precentral
gyrus is to convert programmed behavioral instructions from
other brain regions into signals that encode various movements,
such as muscle contractions, strength and duration. Precentral
gyrus receives projections from postcentral gyrus and part of the
secondary somatosensory cortex of the dominant hemisphere,
which contain information on the contralateral derma, muscle
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FIGURE 3 | 3D view of classified accuracy with the best parameters using GFC values in the right precentral gyrus and right SMA to differentiate the patients from the

controls. The results were obtained in LIBSVM using a “leave-one-out” approach with default Gaussian kernel. Left: Using decreased GFC values in the right SMA to

differentiate the patients from the controls. Right: Using decreased GFC values in the right precentral gyrus to differentiate the patients from the controls. SVM,

support vector machine; GFC, global-brain functional connectivity; SMA, supplementary motor area.

and arthrosis, and subsequently corrects movement (37). The
abnormality in this motor system may show reduced surround
inhibition, resulting in unnecessary and redundant muscle
contractions beyond specific behavior (12). Therefore, decreased
GFC in the right precentral gyrus of patients with CD may
lead to impairedmovement preparation or movement inhibition,
resulting in symptoms of uncontrolled muscle contraction in
shoulder and neck.

GFC values in the right precentral gyrus were negatively
correlated with symptomatic severity of the patients. Significantly
decreased gray matter volume in the right precentral gyrus
was observed in patients with cervical spondylotic myelopathy,
and increased gray matter volume was found in the same area
after surgery compared with baseline data (38). One possible
explanation for increased gray matter volume in the motor
cortex was cortical plasticity. Meanwhile, an fMRI study revealed
an abnormally low cortical activity in precentral gyrus in
patients with focal dystonia (39). The pathological involuntary
twisting and contraction of the cervical muscles in patients
with CD might increase frequency of muscle activity, which
was equivalent to passive and orderly movement training.
Dystonia excessive muscle spasm would cause low GFC values
in the right precentral gyrus, thereby resulting in the negative
correlation between GFC values in the right precentral gyrus and
symptomatic severity in the patients. The negative correlation
observed in the present study indicated that decreased GFC
values in the right precentral gyrus could serve as a quantitative
marker for evaluation of clinical symptomatic severity in
the patients.

The SMA, located at the medial wall of superior frontal
gyrus, is a brain region associated with voluntary movement
(40). It is associated with high motor regulations, such
as initiation of movement. Several clinical observations
(41, 42) revealed that patients with impaired function in
the SMA showed delayed movement initiation, difficulty

in acting smoothly, and poorly organized movements.
Functional changes observed in the SMA were associated
with increasing upper extremity function scores during
rehabilitation (43). Hence, decreased GFC values in the SMA
may be associated with the involuntary spasm of the focal muscle
in the patients.

Kasess et al. proposed a closed-loop control circuit composed
of basal ganglia thalamic neurons connecting M1 and SMA
to subserve motor task execution interactively (44, 45).
Reciprocal interconnections between M1 and SMA were found
in patients with epilepsy with focal seizures as the main
clinical manifestation (46), and fMRI revealed a reduced
coupling between M1 and SMA in subcortical pathology.
We also examined whether there were abnormal reciprocal
interconnections between M1 and SMA in patients with
CD, and found decreased FC between right M1 and right
SMA in patients with CD compared with healthy controls
(p = 0.036, Table S2). Abnormal correlation between M1
and SMA in patients with CD suggests that decreased GFC
in these loops may be related to limb dyskinesia in the
present study.

SVM analysis exhibited that sensitivities, specificities, and
accuracies of GFC values in the right precentral gyrus and
right SMA in differentiating the patients from the controls were
>0.8, which were good for the established diagnostic indicators
(47). These results were further validated by the 5-fold cross-
validation and permutation test methods. Also, GFC values from
116 brain regions of the Anatomical Automatic Labeling (AAL)
templates were extracted, and SVM was conducted to examine
whether GFC values of 116 brain regions could differentiate the
patients from the controls with good accuracies, sensitivities and
specificities. As shown in Table S1, the accuracies, sensitivities
and specificities of GFC values in the right precentral gyrus
and right SMA were among the highest ones. Thus, decreased
GFC values in these brain regions may be utilized as potential
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image biomarkers to discriminate patients with CD from
healthy controls.

This study has some limitations. First, all patients hadminimal
or absent dystonic posturing in the supine during scanning.
Muscle spasms in this position lead to difficult determination
of whether this condition is a secondary spasm. Therefore,
the influences of sensory deception in the analysis cannot
be easily eliminated. Second, data on age of onset and other
relevant clinical characteristics were collected retrospectively,
which might have limited the accuracy of the information.
Finally, due to the small sample size, this study has insufficient
capacity to subdivide patients into different groups based on
head rotation.

CONCLUSIONS

The present study indicates that reduced GFC exists in
brain areas of the M1-SMA motor network in patients
with CD. GFC values in the right precentral gyrus
and right SMA may be used as potential biomarkers to
differentiate the patients from the controls. Thus, this study
provides new insights into the pathological changes of GFC
in CD.
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Object: The purpose of our study was to investigate the microstructural changes of the

medial temporal cortex in mild cognitive impairment (MCI) patients with cerebral small

vascular disease (cSVD) using diffusion kurtosis imaging (DKI) and to examine whether

DKI parameters are correlated with MCI.

Method: A total of 82 cSVD patients admitted to the Department of Neurology Beijing

Chaoyang Hospital, Capital Medical University, were retrospectively enrolled in this study.

The Montreal cognitive assessment scale (MoCA) score was used to assess overall

cognitive function. According to the presence or absence of MCI, these patients were

divided into an MCI group (n = 48) and a non-MCI group (n = 34). The general clinical

data of the two groups were collected and analyzed. The regions of interest (ROIs) in

the medial temporal cortex were selected for investigation. The averaged values of DKI

parameters were measured in each ROI and compared between the two groups, and

the correlations between DKI parameters and MoCA score and between diffusion and

kurtosis parameters were examined.

Results: Compared to the non-MCI group, MCI patients showed significantly increased

mean diffusion (MD) and radial diffusion (RD) and significantly decreased mean kurtosis

(MK) in the left hippocampus (P = 0.005, 0.006, 0.002, respectively). In the left

hippocampus, fractional anisotropy (FA), MK, radial kurtosis (RK), and kurtosis fractional

anisotropy (KFA) showed significantly positive correlations with MoCA score (r = 0.374,

0.37, 0.392, 0.242, respectively, all P < 0.05), while MK and RD were negatively

correlated with MoCA score (r = −0.227, −0.255, respectively, both P < 0.05). In the

left parahippocampal region, axial kurtosis (AK) and KFA were positively correlated with

MoCA score (r = 0.228, 0.282, respectively, both P < 0.05), while RK was positively

correlated with MoCA score in the right parahippocampal region (r = 0.231, P < 0.05).
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Significant correlations of MD with MK, RD with RK, and FA with KFA were observed in

the medial temporal cortex (r = −0.254, −0.395, 0.807, respectively, all P < 0.05) but

not of axial diffusion (AD) with AK.

Conclusion: The DKI technique can be used to observe microstructural changes of the

medial temporal cortex in MCI patients with cSVD. The DKI-derived parameters might

be a feasible means of evaluating patients with MCI.

Keywords: mild cognitive impairment, cerebral small vascular disease, medial temporal cortex, diffusion kurtosis

imaging, changes

INTRODUCTION

Mild cognitive impairment (MCI) is a condition in which
patients demonstrate cognitive impairment with minimal
impairment of the instrumental activities of daily living and that
does not meet the diagnostic criteria for dementia (1). MCI is
common in senior adults, and its prevalence increases with age
and lower social/educational status. Patients with MCI are at
higher risk of dementia than age-matched controls (2). Studies
have shown that the medial temporal cortex is likely to be more
vulnerable to MCI and have revealed a 2.2-fold higher volume
loss in the hippocampus, 1.8-fold loss in the whole brain, and 1.5-
fold loss in the olfactory cortex in MCI patients (3). Takahashi
et al. found that a low MoCA score of 22 or less was associated
with medial temporal cortex atrophy in patients with amnestic
cognitive impairment after stroke (4). The meta-analysis also
revealed that the early changes in the olfactory cortex are a good
imaging biomarker that can be used to discriminate individuals
with MCI from normal control subjects and that a larger degree
of atrophy in the olfactory cortex predicts increased disease
severity (5). In recent years, many studies have been published
on diagnostic applications of diffusion tensor imaging (DTI) (6–
10). However, the simplified description of the diffusion process
assumed in DTI does not permit complex microstructures to
be completely mapped because the cellular components and
structures hinder and restrict the diffusion properties of water
molecules. These limitations can be partially overcome by DKI,
and DKI parameters have been found to be very sensitive in
identifying some alterations that characterize many neurological
diseases (11, 12). These changes are appreciable with DKI even
before any imaging findings through conventional imaging and
in a better way than with conventional DTI (13). However, few
DKI study results are available with which to comprehensively
investigate the changes in the medial temporal cortex in patients
with MCI. This study aimed to identify the early microstructural
alterations in the medial temporal cortex in MCI patients with
cSVD byDKI and further examine the relationship between these
parameters and MoCA score, which may provide neuroimaging
evidence for the evaluation of MCI patients.

METHODS

Subjects
We retrospectively collected 82 patients with cSVD who were
admitted to the Department of Neurology, Beijing Chaoyang

Hospital, Capital Medical University from January to December
2018, and the diagnosis was confirmed by conventional MRI scan
(including MRA) of the head (14). Inclusion criteria were: age
of ≥50 years, cranial MRI confirmed the presence of cSVD (15),
evaluation of daily life showed no functional disability, evaluation
of overall cognitive function performed using the MoCA score.
Exclusion criteria were: patients with severe medical diseases,
such as heart diseases, liver diseases, renal failure, tumors,
or other systemic diseases; patients with severe neurological
diseases, such as white matter lesions unrelated to vascular
diseases, tumor, Parkinson’s disease, and brain trauma; patients
with severe neuropsychological disorders, mental disease, or
medicated with drugs affecting cognition within the prior 24 h;
patients with contradictions to MRI or who were unable to
receive cranial MRI.

Cognitive Function and

Neuropsychological Assessment
All patients were assessed on the neuropsychological scale
at admission. We use the MoCA score to assess overall
cognitive function, which included attention and concentration,
executive function, memory, language, visual-spatial structure
skills, abstract thinking, calculation, and orientation. According
to their social/educational status, those in the illiterate group
with ≤13 points, in the primary school group with ≤19 points,
and in the junior high school and above group with ≤24 points
were considered to have objective cognitive impairment (16).
The 24 stems of the Hamilton Depression Scale (HAMD) and
the Hamilton Anxiety Scale (HAMA) were also performed to
assess the severity of depressive or anxiety disorders. All subjects
underwent routine blood biochemical tests and glycosylated
hemoglobin and serum homocysteine tests. The baseline
data collected for all subjects were age, gender, education,
hypertension, diabetes mellitus, hyperlipidemia, smoking, and
drinking history.

General Criteria for MCI
First, the patient is neither normal nor demented; second,
there is evidence of cognitive deterioration, shown by either
an objectively measured decline over time and/or subjective
report of decline by self and/or informant in conjunction with
objective cognitive deficits; third, activities of daily living are
preserved, and complex instrumental functions are either intact
or minimally impaired (17).

Frontiers in Neurology | www.frontiersin.org 2 January 2020 | Volume 10 | Article 137817

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. MCI and the Medial Temporal Cortex Changes

MRI DATA COLLECTION

MRI Scanning
All patients were scanned on a 3 Tesla whole-body MR system
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
with a 20-channel phased-array head coil. The head was fixed
with a sponge mat. T1-weighted images (T1WI) were scanned
using a 3D magnetization-prepared rapid acquisition gradient
echo (MPRAGE). The sequence parameters were set as follows:
repetition time (TR) = 2,300ms, inversion time (TI) = 900ms,
echo time (TE) = 89ms, flip angle (FA) = 8◦, field-of-view
(FOV) = 240 × 240mm, voxel size = 0.9mm isotropic, parallel
acceleration factor (PAT) = 2, and acquisition time = 5min
21 s. The diffusion imaging was performed using spin-echo
echo-planar imaging (SE-EPI) and was scanned in two blocks.
The parameters of the first block were TR = 7,700ms, TE =

89ms, imaging matrix = 74 × 74, FOV = 222 × 222mm,
number of slices = 50, slice thickness = 3mm, b = 0, 1,000,
2,000 s/mm2, 1 average, 30 gradient direction, PAT = 2, and
the acquisition time was 8min 14 s. The parameters of the
second block were the same as for the first except only b
= 0 s/mm2 was used, 9 average, and acquisition time was
1min 34 s. The total scan time of the diffusion scan was
9min 48 s.

Processing of DKI Data
Two radiologists (KL with 10 years’ experience in neuroimaging,
ZPwith 20 years’ experience in neuroimaging) viewed the images.
The medial temporal cortex mainly includes the hippocampus,
and olfactory and parahippocampal regions, and the label indices
of 21, 22, 37, 38, 39, 40 were selected as ROIs according
to the Anatomical Automatic Labeling (AAL) template (18).
The scanned diffusion-weighted images were first transformed
to NII file format using the dcm2nii tool and then supplied
to the diffusional kurtosis estimator (DKE) to generate DKI
parameter maps. However, during the acquisition, to reduce the
eddy current (EC) effect, we applied the vendor-provided EC
sensitivity reduction and dynamic field correction option in the
protocol. The T1W images acquired by MP-RAGE were supplied
to the SPM12 toolbox (19). The AAL template was non-linearly
registered to T1W images, and the AAL labels were aligned to
the T1W image space using the generated wrapping field and
transformation matrix. The DWI images (b = 0 s/mm2) were
rigidly aligned to the T1WI space, and the transformed matrix
was applied onto the DKI parameter maps. The average values
of MD, AD, RD, FA, MK, AK, RK, and KFA in these segmented
ROIs were then automatically calculated using MATLAB (2017a,
The MathWorks, Inc., Natick, MA). Although, in gray matter,
due to its near isotropic diffusion, the independent parameters
were considered to contain only MD and MK (12), we presented
the preliminary results in this study for all parameters including
the directional ones to provide a comprehensive perspective
with potential findings. MK is calculated as the average of
the kurtosis along all directions of diffusion gradients (20),
and AK, RK, and KFA are calculated similarly to AD, RD,
and FA, which are of interest for white matter bundles since
they give additional information on the axonal and myelin
integrity (21).

Statistical Analyses
Statistical analyses were performed using SPSS (version 22.0, IBM
Corp., Armonk, NY). The one-sample Kolmogorov–Smirnov
test was applied to test the normality of the data distribution.
Data were expressed as mean ± standard deviation (X ± SD)
when normality assumptions were satisfied. Otherwise, data were
expressed in terms of quartile. The independent sample t-test,
Mann–Whitney U-test, or the χ

2-tests were used appropriately
for comparison between the two groups. Multivariate logistic
regression was applied to determine the risk factors for patients
with MCI. We corrected multiple comparisons using the Šídák-
Bonferroni method, and the corrected P-value was statistically
significant when P < 0.0083 (0.05/6 = 0.0083). Correlation
between the MoCA score and the DKI diffusivity and kurtosis
parameters were analyzed. Pearson correlation analysis was
applied when normality assumptions were satisfied; otherwise,
Spearman correlation analysis was used. A value of P < 0.05 was
considered statistically significant.

RESULTS

General Characteristics and Cognitive

Functions
Of the 82 patients, 47 were male and 35 were female. The age
ranged from 50 to 88 years, with a median age of 64 (59, 69)
years old. The length of education was from 0 to 18 years, and
the median length was 8 (8, 11) years. According to the presence
or absence of MCI, the 82 patients were divided into an MCI

TABLE 1 | General characteristics and cognitive function of MCI and non-MCI

patients.

MCI group

N = 48

Non-MCI group

N = 34

U/x2 P

Age (year) 64 (60, 71) 63 (57, 67) −0.862 0.389

Sex (male) 28 (58.3%) 19 (55.9%) 0.049 0.825

Duration of education (year) 8 (7, 10) 9.5 (8, 11) −1.708 0.088

HAMD 23 (47.9%) 14 (41.2%) 0.365 0.546

HAMA 19 (39.6%) 13 (38.2%) 0.015 0.902

Hyperlipidemia 27 (56.3%) 15 (44.1%) 1.173 0.279

DM 10 (20.8%) 14 (41.2%) 3.979 0.046*

Hypertension 33 (68.8%) 21 (61.8%) 0.432 0.511

History of drinking 13 (27.1%) 11 (32.4%) 1.794 0.498

History of smoking 18 (37.5%) 14 (41.2%) 0.138 0.934

Glucose (mmol/L) 5.3 (4.9,6.5) 5.3 (4.7, 7.2) −0.108 0.914

UA (umol/L) 294 (236, 381) 283 (253, 346) −0.376 0.707

CR (umol/L) 69.2 (63.4, 84.9) 67.5 (56.7, 75.7) −1.633 0.102

TC 4.4 (3.6, 4.9) 4.5 (3.9, 5.0) −0.734 0.463

TG 1.5 (1.1, 1.9) 1.3 (0.9, 1.9) −0.932 0.351

LDL-C 2.3 (1.9, 2.8) 2.4 (2.−0, 2.8) −0.438 0.662

LPa 174 (71, 385) 135 (54, 182) −1.412 0.158

HCY 14.3 (12, 16.5) 12.3 (10.8, 15.3) −1.823 0.068

Glycated hemoglobin 6 (5.8, 6.8) 6.4 (5.8, 6.8) −0.972 0.331

MoCA 21 (19, 22) 27 (5, 28) −6.983 0.000**

DM, Diabetes mellitus; UA, Uric acid; Cr, Creatinine; TC, Total cholesterol; TG, Triglyceride;

LDL-C, Low-density lipoprotein cholesterol; Lpa, Lipoprotein a; HCY, Homocysteine;

MoCA, Montreal Cognitive Assessment; MCI, mild cognitive impairment.

*P < 0.05, **P < 0.01.
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group (48 cases) and a non-MCI group (34 cases). There were 28
males and 20 females in the MCI group, their ages ranged from
50 to 88 years old, with a median age of 64 (60, 71) years old,
their education period was from 0 to 18 years, and the median
duration of education was 8 (7, 10) years. There were 19 males
and 15 females in the non-MCI group, their ages ranged from
50 to 78 years old, with a median age of 63 (57, 67) years old,
their duration of education was from 8 to 11 years, and the
median duration of education was 9.5 (8, 11) years. There were
no significant differences in gender, age, and years of education
between the two groups (P > 0.05).

The risk factors of cerebrovascular disease (such as
hypertension, diabetes mellitus, hyperlipidemia, and history
of smoking and drinking), the blood test results (such as total

cholesterol, serum glucose, serum homocysteine, etc.), theMoCA
score, and the HAMA and HAMD score were also comparable
between the groups. MCI patients had evident cognitive
impairment and shared significant reductions in MoCA score
(P < 0.01). Patients with non-MCI had more type 2 diabetes
mellitus. However, there was no significant difference between

the two groups after multivariate logistic regression was applied
(see Table 1). We have also evaluated the enlarged perivascular
space (EPVS) and white matter hyperintensities (WMHs)
according to cranial MRI (see Supplementary Figures 1, 2). We
found patients with MCI had more severe total WMHs, however,
there were no significant differences between the two groups
in the severity of EPVS. Logistic regression was performed to
determine risk factors for patients with MCI, and found that
the severity of WMHs was an independent risk factor for MCI
patients (see Supplementary Tables 1, 2).

Comparison of DKI Parameters in the

Medial Temporal Cortex Between the MCI

and Non-MCI Groups
Compared to the non-MCI group, the MCI group showed
significantly increased MD and RD (P = 0.005, 0.006,
respectively) and significantly decreased FA, AK, MK, RK,
and KFA in the left hippocampal region (P = 0.017, 0.01, 0.002,
0.016, and 0.023, respectively). In the right olfactory region,

TABLE 2 | Comparison of DKI parameters in the hippocampus between patients in the MCI and non-MCI groups.

Group MCI group

N = 48

Non-MCI group

N = 34

t/U-Valuea P-Valuea t/U-Valueb P-Valueb

Left Right Left Right

AD 1.99 (1.82, 2.29) 1.80 (1.63, 2.07) 1.96 (1.77, 2.06) 1.67 (1.58, 1.90) 644.0 0.105 628.0 0.077

MD 1.79 ± 0.30 1.51 (1.30, 1.80) 1.63 ± 0.22 1.37 (1.25, 1.53) 620.0 0.065 5.51 0.005

RD 1.65 ± 0.29 1.36 (1.17, 1.63) 1.48 ± 0.23 1.24 (1.11, 1.40) 645.0 0.108 3.94 0.006

FA 0.16 (0.14, 0.19) 0.21 ± 0.06 0.18 (0.16, 0.24) 0.22 ± 0.07 0.44 0.72 563.5 0.017

AK 0.63 ± 0.05 0.65 ± 0.06 0.66 ± 0.04 0.68 ± 0.06 0.00 0.08 3.28 0.01

MK 0.70 ± 0.07 0.74 ± 0.08 0.74 ± 0.07 0.75 ± 0.09 0.15 0.37 0.00 0.002

RK 0.74(0.70, 0.80) 0.83 ± 0.13 0.79(0.74, 0.92) 0.84 ± 0.15 0.37 0.67 559.0 0.016

KFA 0.26 ± 0.05 0.31 ± 0.05 0.29 ± 0.05 0.32 ± 0.07 0.53 0.30 0.16 0.023

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean

kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.
aThe right-side group test value and P-value.
bThe left-side group test value and P-value.

TABLE 3 | Comparison of DKI parameters in the olfactory region between patients in the MCI and non-MCI groups.

Group MCI group

N = 48

Non-MCI group

N = 34

t/U-Valuea P-Valuea t/U-Valueb P-Valueb

Left Right Left Right

AD 1.70 ± 0.43 1.69 ± 0.39 1.66 ± 0.36 1.66 ± 0.37 0.21 0.77 0.32 0.65

MD 1.47 ± 0.41 1.45 ± 0.35 1.46 ± 0.35 1.43 ± 0.37 0.19 0.77 0.14 0.85

RD 1.38±0.37 1.33±0.34 1.33 ± 0.31 1.30 ± 0.36 0.44 0.67 0.22 0.53

FA 0.15 ± 0.04 0.16 ± 0.04 0.15 ± 0.03 0.17 ± 0.05 0.82 0.24 0.41 0.50

AK 0.70 (0.65, 0.76) 0.68 (0.64, 0.73) 0.71 (0.67, 0.79) 0.72 (0.67, 0.78) 581.0 0.027 726.5 0.40

MK 0.72 (0.66, 0.77) 0.71 (0.66, 0.76) 0.73 (0.69, 0.80) 0.78 (0.69, 0.83) 594.0 0.037 712.0 0.328

RK 0.72 (0.65, 0.82) 0.73 (0.66, 0.82) 0.74 (0.70, 0.80) 0.80 (0.68, 0.87) 637.0 0.092 706.0 0.301

KFA 0.28 (0.24, 0.32) 0.29 (0.25, 0.34) 0.29 (0.26, 0.32) 0.31 (0.26, 0.40) 734.0 0.44 728.0 0.408

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean

kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.
aThe right-side group test value and P-value.
bThe left-side group test value and P-value.
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TABLE 4 | Comparison of DKI parameters in the parahippocampus between patients in the MCI and non-MCI groups.

Group MCI group

N = 48

Non-MCI group

N = 34

t/U-Valuea P-Valuea t/U-Valueb P-Valueb

Left Right Left Right

AD 2.20 ± 0.37 1.90 ± 0.25 1.14 ± 0.27 1.93 ± 0.34 3.72 0.75 1.52 0.44

MD 1.92 ± 0.35 1.65 ± 0.23 1.88 ± 0.25 1.68 ± 0.33 4.22 0.73 1.58 0.57

RD 1.78 ± 0.34 1.53 ± 0.23 1.73 ± 0.25 1.54 ± 0.32 4.66 0.79 1.16 0.48

FA 0.15 (0.13, 0.17) 0.15 (0.14, 0.18) 0.16 (0.14, 0.17) 0.16 (0.14, 0.18) 771.0 0.762 688.0 0.228

AK 0.63 ± 0.08 0.66 (0.62, 0.68) 0.65 ± 0.04 0.67 (0.64, 0.71) 663.0 0.15 9.15 0.044

MK 0.69 ± 0.10 0.69 ± 0.07 0.71 ± 0.05 0.71 ± 0.06 0.14 0.19 6.32 0.175

RK 0.72 (0.66, 0.78) 0.73 ± 0.10 0.74 (0.71, 0.82) 0.76 ± 0.08 0.32 0.27 630.0 0.08

KFA 0.23 ± 0.04 0.27 ± 0.06 0.25 ± 0.03 0.27 ± 0.06 0.22 0.94 0.68 0.087

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean

kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.
aThe right-side group test value and P-value.
bThe left-side group test value and P-value.

TABLE 5 | Spearson’s correlations of DKI parameters with MoCA score.

MoCA Brain region AD MD RD FA AK KFA MK RK

Olfactory_R −0.035 −0.029 −0.036 0.134 0.157 0.161 0.137 0.161

Olfactory_L −0.033 0.000 −0.034 −0.009 −0.010 0.097 −0.078 −0.034

Hippocampus_R −0.079 −0.138 −0.145 0.109 0.106 0.095 0.173 0.154

Hippocampus_L −0.147 −0.227* −0.255* 0.374** 0.220 0.242* 0.370** 0.392**

Parahippocampal_R −0.074 −0.077 −0.086 0.143 0.212 0.097 0.218 0.231*

Parahippocampal_L −0.131 −0.122 −0.134 0.152 0.228* 0.282* 0.180 0.161

R, Right; L, Left; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional

anisotropy; MoCA, Montreal cognitive assessment scale.

*P < 0.05, **P < 0.01.

AK and MK were significantly lower in patients with MCI (P =

0.027 and 0.037, respectively), while in the left parahippocampal
region, AK was significantly lower in patients with MCI (P =

0.044). No parameters were found to be significantly different
between the two groups in the left olfactory, right hippocampus,
and right parahippocampal regions. The Šídák-Bonferroni
method was applied for multiple comparisons, and MD, RD, and
MK still remained statistically significantly different in the left
hippocampal region (P = 0.005, 0.006, and 0.002, respectively;
see Tables 2–4).

Spearman Correlations With DKI

Parameters and MoCA Score
In the left hippocampal region, FA, MK, RK, and KFA were
positively correlated with MoCA score (r = 0.374, 0.370, 0.392,
and 0.242, respectively, all p < 0.05), while MD and RD
were negatively correlated with MoCA score (r = −0.227 and
−0.255, respectively, both p < 0.05). In the left parahippocampal
region, AK and KFA were positively correlated with MoCA
score (r = 0.228 and 0.282, respectively, both p < 0.05), and
RK was positively correlated with MoCA score in the right
parahippocampal region (r = 0.231, p < 0.05), while the
other parameters had no correlation with MoCA score (detailed
Spearman coefficients are summarized in Table 5 and Figure 1).

Pearson Correlations Between Diffusivity

and Kurtosis Parameters
Considering the values of parameters obtained from all patients
for the medial temporal regions, there were significant positive
correlations between FA and KFA (r = 0.807, p < 0.001), and
RD was found to negatively correlate with RK (r = −0.395,
P < 0.001). Similar inverse correlation was observed between
MD and MK (r = −0.254, P = 0.021), but there were no
significant correlations between the AD and AK parameters
(Figure 2 presents the correlations mentioned above).

DISCUSSION

Our study mainly found that compared to the non-MCI group,
the MCI group showed significantly increased MD and RD
and significantly decreased MK in the left hippocampal region.
In the left hippocampal region, FA, MK, RK, and KFA were
significantly positively correlated with MoCA score, while MD
and RD were significantly negatively correlated with MoCA
score. In the left parahippocampal region, AK and KFA were
significantly positively correlated with MoCA score, while RK
was significantly positively correlated with MoCA score in the
right parahippocampal region.With the exception of AD andAK,
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FIGURE 1 | Correlations between DKI parameters and MoCA score in left Hippocampus.

significant correlations were observed between the other three
diffusion and kurtosis parameters in the medial temporal cortex.

In our study, the results showed that compared to non-MCI
patients, the values of MK in the left hippocampal region was
significantly lower in MCI patients, while the values of MD
and RD were significantly increased. Consistent with our results,
earlier studies comparing MCI, Alzheimer’s disease, and controls
also found decreased values of MK in MCI and Alzheimer’s
disease (12, 22). Falangola et al. demonstrated that MCI
and Alzheimer’s disease patients showed statistically significant
differences in kurtosis parameters in selected brain regions
(segmented prefrontal white matter, prefrontal oval, genu of the
corpus callosum, anterior corona radiate, segmented temporal
white matter, temporal oval, and hippocampus) compared to
controls (22). Ryu et al. also found that patients with subjective
memory impairment (SMI) exhibited DTI changes (lower FA
and higher MD in SMI) in the hippocampal body and olfactory
white matter compared to controls (23). The decrease of MK
and elevated MD and RD suggests a change in the gray matter
microstructure in the medial temporal cortex. This may be due
to the loss of neuron cell bodies, synapses, and dendrites, which
would increase the extracellular space and result in elevatedmean
diffusivity and radial diffusivity.

Our study also found that in the left hippocampal region, FA,
MK, RK, and KFA were positively correlated with MoCA score,
while MD and RD were negatively correlated with MoCA score.
In the left parahippocampal region, AK and KFA were positively
correlated with MoCA score, and in the right parahippocampal,
RK was positively correlated with MoCA score, while the other

parameters were observed have no correlation with MoCA score.
NJ G etc. found no significant correlations between MMSE
score and any of the kurtosis parameters in the gray matter of
the temporal cortex (12); this may have been due to the small
number of cases, as their study had only 18 Alzheimer’s disease
patients and 12 MCI patients. We also found that, with the
exception of AD and AK, significant correlations were observed
between kurtosis and diffusivity parameters (between MK and
MD, between FA and KFA, and between RK and RD), which
is consistent with the study of NJ G. The results suggested
that the changes in diffusivity were accompanied by a change
in diffusional non-gaussianity, and kurtosis parameters were
suggested to be at least complementary to, if not more sensitive
than diffusivity parameters for detecting microstructural changes
in the medial temporal cortex.

In addition, our study revealed bilateral asymmetry in the
microstructural changes of themedial temporal cortex in patients
with MCI. Compared to non-MCI patients, the microstructural
changes in the left hippocampus were more obvious than in
the right in MCI patients. The possible reason for this is that,
in normal people, the hippocampal cortex shows asymmetry. A
meta-analysis of asymmetry of the hippocampus and amygdala
revealed that both the hippocampus and the amygdala are
reliably asymmetrical structures in normal adults, with larger
right hippocampal and right amygdala volumes (24). This finding
was also supported by Yue et al. in a study of subjective
cognitive decline among community-dwelling Chinese (25). De
Toledo-Morrell et al. found that the right olfactory cortex may
be more vulnerable to the aging process than the left because it
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FIGURE 2 | Correlations between diffusivity and kurtosis parameters from all ROIs.

was smaller in elderly subjects (26). A recent longitudinal study
showed that a smaller thickness in the right olfactory region
predicted the onset of symptoms (27). Therefore, we speculated
that the left hippocampus is smaller than the right, and the left
hippocampal microstructural changes are more vulnerable in
MCI patients.

Our study also has several limitations. First, the relatively
small sample size may have contributed to the significant group
differences. Second, our study lacks a normal healthy control
group and long-term follow-up, which has a certain impact on
the results of the study. Third, due to the small number of MCI
patients in this study, we did not further analyze the subtypes
of MCI. Fourth, although interesting findings regarding kurtosis
parameters were observed in the medial temporal cortex, their
underlying pathophysiological significance must be examined in
further studies.

CONCLUSION

It is feasible to use DKI to observe the microstructural changes
of the medial temporal cortex in MCI patients with cSVD.
Compared to the non-MCI group, DKI-derived parameters
of the medial temporal cortex were significantly different in

the MCI group. Furthermore, some of the DKI parameters
showed heterogeneous patterns of correlations with the clinical
evaluation score of MCI patients, which might provide insights
into the imaging evaluation of MCI patients with cSVD.
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INTRODUCTION

Independent Component Analysis (ICA) is a widely used, unsupervised, exploratory machine
learning method (Comon, 1994) and is often applied to resting-state fMRI (rsfMRI) data
(Nickerson et al., 2017). Though its usefulness is apparent, the most common applications of
ICA involve substantial subjectivity. For example, the spatial components extracted through
individual or group-level ICA are never identical between studies and are often labeled by visual
inspection and expert opinion. The goal of this study was to establish a spatial component approach
based on well-documented atlases derived from large-scale investigations. These components can
subsequently be used in place of components tailored to fit each individual study’s dataset.

The utility of ICA to extract meaningful functional connectivity patterns without the need
for prior knowledge has been established by its application to large-scale studies like Human
Connectome Project (HCP) and United Kingdom (UK) BioBank cohort (Miller et al., 2016; Smitha
et al., 2017). Although ICA has been successfully applied to a wide range of applications in
rsfMRI, there have long been some concerns about reproducibility and the subjectivity of ICA
results (Friston, 1998). Also, ICA is a computationally-demanding approach, which may provide
a barrier to researchers with limited resources or exceptionally large datasets. We present an
approach that has the potential to substantially decrease both the subjectivity of ICA and its
computational burden.

THE CRITIQUE ON ICA

Performing ICA-based rsfMRI studies involves: data preprocessing and clean-up (sometimes
through subject-level ICA or SICA), group-level ICA (GICA) on the entire dataset (usually
with temporal concatenation), separating signal from noise independent components (ICs),
network labeling, and time-series and spatial map extraction based on selected ICs for all
subjects (Nickerson et al., 2017). Because ICA is a time-consuming and computationally resource-
demanding procedure, a significant reduction in runtime may be worthwhile, especially in large-
scale studies. Runtime issues aside, our main objective for improving this analysis pipeline focuses
on producing objective, reproducible science. Furthermore, a main concern of the ICA pipeline
lies in network labeling, where ICs representing potential resting-state networks (RSNs) of interest
must be inspected by contextually-experienced brain anatomist(s) to be safeguarded against any
misidentification. This limitation may challenge reproducibility of the results since this process
could be quite arbitrary (Storti et al., 2013; Salimi-Khorshidi et al., 2014; Pruim et al., 2015).
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Also, running GICA on different datasets will not yield exactly
the same components, and will output results that may not be
closely matched with the results from other analyses (e.g., a single
network may be split into 2 or 3 components, depending on the
idiosyncrasies of the datasets used) (Wang and Li, 2015).

CURRENT REMEDIES

One approach to this problem is to utilize machine learning
and deep learning solutions to compare the GICA results with
established reference RSNs (Kozák et al., 2017; Zhao et al.,
2018). Although this classification method categorizes the ICs
objectively based on the provided template, replicability, and
stability of this approach have yet to be benchmarked by large-
scale studies and relies on large amounts of training data.
Deep learning approaches involve additional concerns such as
slow convergence and over-fitting, especially in MRI modalities
(Srivastava et al., 2017).

Another method is “semi-blind ICA”, which uses prior
knowledge in the form of a “template” that is entered at
the beginning of each run of GICA to guide and improve
estimation of network-related components (Lin et al., 2010).
This method also requires well-established knowledge on the
expected activation patterns in fMRI data, especially in task-
based fMRI studies.

The alternative approach presented here may allow ICA
pipelines to be more stable, faster and reproducible, in terms of
extracting time-series of network(s) of interest from the subjects’
data in a shorter time and with less computational resources.
This is the case especially in time-constrained, resource-limited
studies where access to experts for interpreting the GICA results
may be a challenge.

FIGURE 1 | Conventional ICA pipeline vs. the proposed solution.

A SOLUTION

We propose to use the ICs resulting from prior studies, such as
the UK Biobank and HCP, in an “atlas-like” manner. Because
such ICs are already published (Miller et al., 2016), they could
be well-studied and agreed upon by the experts across the field.
Following agreement, it would be possible to use the ICs as a
reference to extract the time-series of subjects in matched groups,
similar to an atlas, and interpret the ICs from other studies more
objectively through automated, semi-automated, or conventional
manual approaches.

Results of GICA would have the potential be re-used in
other studies (Bijsterbosch et al., 2017). The idea of using
a reference in analyses is not novel. The use of references
such as Montreal Neurological Institute (MNI) standard spaces
or Harvard-Oxford cortical and subcortical structural atlases
in preprocessing and analysis of imaging data is also based
on the same concept of grouping data together to have
a common frame of reference. This approach would be
beneficial to ICA pipelines as well. This solution is depicted
in Figure 1. In order to elaborate on this proposal, it is
demonstrated by following the solution recommended by the
widely-used FMRIB Software Library (FSL) package from
Functional Magnetic Resonance Imaging Modeling (FMRIB) lab
(Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).

After preprocessing the data, it is common to use cleaned
data to perform GICA to detect ICs and then inspect the results

to label and select RSNs (ICs) of interest. By means of dual

regression, candidate ICs are mapped to each subject’s functional

data to extract subject-specific time-series and spatial maps of

desired RSNs for use in subsequent analyses (Beckmann et al.,

2009; Nickerson et al., 2017).
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To alleviate the issues mentioned above, a more efficient
approach would be to use previously labeled ICs from a large-
scale study as an atlas of ICs to be applied in dual regression
rather than performing GICA. This strategy reduces study-
specific GICA to a regression method. As a candidate application
for this improved approach, it would be possible to use the set
of ICs from GICA obtained in one study to get the time-series
of matched subjects in another demographically comparable
study in a cross-site investigational manner. Also, investigating
a subset group from the original dataset would be more efficient
this way by eliminating the need to run GICA again on the
subset. Although running GICA in this scenario may lead to
a better model fit to the data this may not outweigh the
benefit of having a more objective way of extracting the spatial
maps and time-series. Also, using GICA can provide additional
improvements of noise components, that would not be possible
using a standard atlas. This may not be much of a concern, since
sufficient preprocessing and noise removal can be performed at
the individual subject level.

Atlas-based ICA would also benefit smaller-sized studies
since the analysis pipeline would improve stability and allow
results to be more readily comparable to other studies. In a
conventional pipeline, the whole dataset must be preprocessed
and ready before running GICA, therefore performing analysis
on a subset before data collection is complete is not feasible
and will not produce the same components as when the
entire dataset is available. In addition, if a participant’s data
was excluded, re-running the GICA again would be necessary,
instead of simply removing those records from the group
analysis. The proposed approach would address these issues
as well.

We tested our approach on an rsfMRI dataset from a recent
within-subjects study (Le et al., 2018) with 20 individuals that
completed three sessions of functional scans (60 scans in total).
Following preprocessing we investigated the difference between
the conventional ICA pipeline and our proposed pipeline and
applied the GICA atlas from a subset of the Tulsa 1,000 study
cohort (Victor et al., 2018) using a MacBook Pro machine with
a 2.9 Ghz Intel Core i7 processor and 16 GB of memory.
In the proposed pipeline, the time-series of the ICs for each
subject (Stage 1 output from dual regression) were ready to
use in 57mins. Alternatively, performing GICA followed by
dual regression in order to extract the time-series for each
subject took 9 h and 33min. The additional runtime required for
running GICA is reasonable in this case, but would be of greater
concern with a larger dataset. Additionally, GICA on the 60
scans produced a substantially different set of components, which
makes it difficult or impossible to compute the same components
as from the atlas.

Currently, there are published reference atlases on well-
studied resting-state networks (Yeo et al., 2011). These atlases
are useful for labeling the networks, yet they are binary
network masks and lack components’ voxel-wise weights, which
are necessary for subject-wise time-course extraction. To the
best of our knowledge, no atlas has been published with
this information.

There are some limitations of this new proposed approach.
Similar to other studies that use a common atlas, the subject
population should be a reasonable representation of the subject
group recruited in the reference studies. Since most large public
datasets are from normal populations, one might question
the practice of applying components derived from them to
patient populations. This is a valid concern, which could be
addressed by comparing GICA results from the target population
with the standard atlas components. Similarly, there may be
systematic differences introduced bymachine types and scanning
parameters, which warrants a thorough investigation. Regardless,
it would be surprising if factors such as scanning parameters
impacted large-scale functional organization of the brain. Also,
across the field there is no standard procedure for preprocessing
the data, so careful consideration must be taken when applying
an IC atlas and preprocessing procedures must be compatible
(Wetherill et al., 2018), as different preprocessing methods may
result in a different set of outcomes. In addition, performing
preprocessing on the data before comparing the results to IC atlas
is necessary. For example, if an atlas uses 2mm resolution maps,
applying it to studies with different set of rules would require
auxiliary processing steps.

To the best of our knowledge, there are several ICA results
published and available in the literature (Beckmann et al., 2005;
Smith et al., 2009; Laird et al., 2011) including from the UK
Biobank cohort (Miller et al., 2016). Such references have the
potential to be applied as “Atlases of ICs” on other studies, but
only with extensive documentation. Publishing group-level ICA
results and documenting them in an atlas-like manner would
also allow researchers to keep their (testing) data separate from
the training data used to build the models, which is another
consideration that has garnered increased attention recently
(Scheinost et al., 2019), along with the need for more open,
externally validated science.
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Abnormal functional connectivity (FC) within discrete brain networks is involved in the
pathophysiology of obsessive-compulsive disorder (OCD) with inconsistent results. In the
present study, we investigated the FC patterns of 40 drug-naive patients with OCD and 38
healthy controls (HCs) through an unbiased voxel-wise global brain FC (GFC) analysis at
rest. Compared with HCs, patients with OCD showed decreased GFC within the default
mode network (DMN) (i.e., left posterior cingulate cortex/lingual gyrus) and sensorimotor
network (i.e., left precentral gyrus/postcentral gyrus) and increased GFC within the
executive control network (ECN) (i.e., left dorsal lateral prefrontal cortex and left inferior
parietal lobule). Receiver operating characteristic curve analyses further indicated that the
altered GFC values within the DMN, ECN, and sensorimotor network may be used as
neuroimaging markers to differentiate patients with OCD from HCs. These findings
indicated the aberrant FC patterns of the DMN, ECN, and sensorimotor network
associated with the pathophysiology of OCD and provided new insights into the
changes in brain organization function in OCD.

Keywords: obsessive-compulsive disorder, global brain functional connectivity, functional magnetic resonance
imaging, network, resting state
INTRODUCTION

Obsessive-compulsive disorder (OCD) is a common and chronic psychiatric disorder involving
intrusive, unwanted thoughts, and/or repetitive behavior, anxiety, and social dysfunction. OCD has
a lifetime prevalence of 2%–3% worldwide (1), but the underlying neurobiological mechanisms
remain unclear.

Neuroimaging studies have shown that OCD may be caused by distortions within large-scale
brain networks rather than from independent brain regions (2). A “triple network” model
emphasizes the abnormal intrinsic functional connectivity (FC) patterns within and between the
g March 2020 | Volume 11 | Article 98128
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executive control network (ECN), salience network (SN), and
default mode network (DMN) as essential features of psychiatric
disorders including OCD (3). DMN is composed of posterior
cingulate cortex (PCC), medial prefrontal cortex (PFC), and
lateral posterior cortices, which is involved in reflective and
introspective self-awareness processes (4). ECN is composed of
dorsal lateral PFC (DLPFC) and posterior parietal cortex, which
is crucial for cognitive control (such as planning and response
inhibition) (5, 6). SN is composed of anterior insular cortices and
dorsal anterior cingulate, which plays an important role in
regulating external and internal salient information (3, 7). The
DMN deactivates during cognitive demanding tasks and shows
increased activities during resting state, and is considered as a
task-negative network. The ECN shows elevated co-activation
during the cognitive performance, and is a task-positive network.
The SN is involved in monitoring the interactions between the
DMN and ECN (8). FC within and between the DMN, ECN, and
SN was reported to be altered in patients with OCD, and
dysfunction of the triple networks may be related to obsessive
thoughts and/or compulsive behavior in OCD (2).

Considerable neuroimaging studies have observed altered FC
and/or regional activity in brain regions within the DMN, ECN,
and SN with inconsistent results. Increased FC and/or regional
homogeneity within the DMN, ECN, and SN at rest were found
through using the independent component analysis and regions
of interest (ROI) seed-based FC approaches (8–12). By contrast,
neuroimaging studies have reported decreased FC within the
DMN, ECN, and SN at rest in OCD (2, 13–15). Two main factors
may explain the inconsistency of the findings. One factor may be
the sample heterogeneity regarding medication use. Selective
serotonin reuptake inhibitors (SSRIs) may modulate the neural
condition and are known to have a remarkable influence on FC
at rest in patients with OCD (16, 17). Therefore, drug-naive
patients with OCD should be employed to obtain primitive FC
information of the neurobiological mechanisms in OCD.
Another important factor may be that numerous neuroimaging
studies have concentrated on FC between brain regions of an
appointed network rather than using a whole brain assessment
(18). Thus, FC based on the assumptive network of interest may
lead to biased results and limits the investigation of the most
remarkably altered brain areas that may represent the essential
abnormality in the neurobiological mechanisms of OCD (19).
Voxel-wise global brain FC (GFC) analysis is a model-free
method used to investigate functional interactions across the
whole brain regions with an unbiased hypothesis-driven manner,
and has been applied to obtain whole brain FC in patients with
major depressive disorder (19), schizophrenia (20), and
somatization disorder (21).

In this study, we compared GFC differences between drug-
naive patients with OCD and healthy controls (HCs) using
resting-state fMRI. On the basis of the aforementioned studies,
we hypothesized that patients with OCD would show altered
GFC in some brain regions, peculiarly in brain regions of the
DMN, ECN, and SN. We also hypothesized that these alterations
would be related to clinical variables in OCD.
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MATERIALS AND METHODS

Participants
Forty drug-naive patients with OCD were recruited from the
Fourth Affiliated Hospital of Qiqihar Medical University and
Qiqihar Mental Health Center. Patients with OCD were
diagnosed using the Structured Clinical Interview for DMS-IV
(SCID), patient version. Yale-Brown Obsessive-Compulsive
Scale (Y-BOCS), 17-item Hamilton Rating Scale for Depression
(HAMD), and Hamilton Anxiety Rating Scale (HAMA) were
used to assess the severity of OCD, depression symptoms, and
anxiety symptoms, respectively. Patients with OCD should have
a score of higher than 16 on Y-BOCS and score of less than 18 on
HAMD. In current OCD sample, 4 patients were with
obsessions, 4 patients were with compulsion, and 32 patients
were with both obsessions and compulsion. Forty HCs were
recruited from the community and screened using the SCID,
nonpatient version. The participants shared the following
exclusion criteria: (1) diagnosis of other Axis I and II
disorders; (2) a history of major physical diseases and
neurological disorders; and (3) nicotine/caffeine dependence or
substance/alcohol use disorder. Moreover, HCs with a family
history of major psychiatric disorders were excluded. All
participants were right-handed and aged from 18 to 60 years old.

This study was approved by the Research Ethics Committee at
Qiqihar Medical University, China. All participants were informed
regarding the procedures, and signed an informed consent.

Image Acquisition and Preprocessing
Images were acquired by using a 3.0-Tesla GE 750 Signa-HDX
scanner (General Electric Healthcare, Waukesha, WI, USA) at the
Third Affiliated Hospital of Qiqihar Medical University,
Heilongjiang, China. The subjects were instructed to relax, remain
motionless (especially the head), keep eyes closed, and stay awake.
An echo-planar imaging (EPI) sequence was used to acquire
resting-state functional magnetic resonance imaging (RS-fMRI).
The parameters were as follows: 33 axial slices, TR = 2,000 ms,
TE = 30 ms, FA = 90°, thickness/gap = 3.5 mm/0.6 mm, FOV =
200 × 200 mm, and in-plane resolution = 64 × 64. A total of 240
volumes were collected for 8 min.

The images were manually check to ensure good coverage for
all voxels included in a whole-braingray matter mask. Data
Processing & Analysis for Brain Imaging (DPABI) software was
used to preprocess the imaging data (22). After signal stabilization,
slice timing determination and head-motion correction were
conducted. The subjects included in the analysis should have a
maximum displacement ≤ 2 mm in x, y, or z direction and an
angular rotation < 2° on each axis. Two HCs were excluded from
further analysis because of excessive head motion. The functional
images were normalized to the standard EPI template in SPM8
(http://www.fil.ion.ucl.ac.uk/spm) and spatially resampled to a
voxel size of 3 mm × 3 mm × 3 mm. The processed images
were smoothed with a Gaussian kernel of 4 mm full width at the
half maximum. The signal was linearly detrended and band-pass
filtered (0.01–0.08 Hz) to reduce high-frequency physiological
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noise and low-frequency drift. The 24 head motion parameters
obtained by rigid body correction, white matter, and cerebrospinal
fluid time courses were removed from the images by linear
regression. The global signal was included because removing it
in the preprocessed RS-fMRI FC data remains debatable. Resting-
state fMRI is highly susceptible to head motion and that simply
regressing out the effects of the 24 head motion parameters is not
sufficient to deal with this issue (23, 24). The analyses were
therefore using scrubbing with a framewise displacement (FD)
measure, which indexes volume-to-volume changes in head
position using a threshold of 0.2 together with one preceding
and two subsequent volumes (25).

Global-Brain Functional Connectivity (GFC)
Analysis
Voxel-wise GFC was calculated in MATLAB within a gray matter
mask, which was created by thresholding (probability > 0.2) the gray
matter probability map in SPM8 (26). GFC values for a given voxel
of each participant were computed between this voxel and all other
voxels within the gray matter mask. The formula used to calculate
the GFC values was described by Cui et al. (19) as follows:

GFCa =on
b=1

r(Ta,Tb)
n − 1

In this formula, the symbols a and b stand for the given voxels
a and b, n represents number, r means the Pearson' s correlation
coefficient, Ta and Tb are the time series of voxel a and voxel b.
The coefficient r was computed and transformed to z values with
Fisher r-to-z transformation (27). GFC of a voxel was defined as
the mean coefficient of the given voxel with all other voxels, and
GFC maps were created by combining the GFC of all voxels.

Statistical Analysis
Imaging data and demographics were compared between OCD
and HCs. Two-sample t-tests were used to analyze the
continuous variables, and chi-square tests were used to analyze
the categorical data.

GFC analysis was conducted with two-sample t-tests between
patients with OCD and HCs. The FD values of each participant
were calculated based on the study of Power et al. (25) by
indexing volume-to-volume changes in head position. The
mean FD values and age were used as covariates to minimize
the potential effects of these variables. The significance level was
set at the corrected p < 0.05 for multiple comparisons using the
Gaussian Random Field (GRF) method (voxel significance: p <
0.001, cluster significance: p < 0.05).

Pearson and Spearman correlation analyses were used to
assess the relationship between the GFC values showing
significant group differences (mean z values of GFC were
extracted) and clinical variables in the patients with OCD. A
partial correlation analysis was also calculated between the
altered GFC values and clinical variables in OCD, the mean
FD values and age were used as covariates. The significance level
was Bonferroni corrected at p < 0.05.

Moreover, receiver-operating characteristic curve (ROC)
analysis was conducted to determine whether the altered GFC
values of these ROIs could be used to differentiate patients with
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OCD from HCs. A “leave-one-out”method was applied to conduct
the ROC. Furthermore, a permutation test was used to validate the
ROC results, which ran 10,000 times for each sample (OCD/HCs)
and a global accuracy could be obtained for each sample.
RESULTS

Characteristics of the Participants
Supplementary Table S1 indicates the clinical characteristics of
all participants. The patients had a mean age of 27.28 ± 8.16
years, a mean duration of illness of 66.68 ± 75.54 months, and a
mean education of 13.40 ± 2.87 years. The controls had a mean
age of 27.18 ± 8.33 years and a mean education of 13.74 ± 3.03
years. No significant difference was found regarding gender (x2 =
0.32, p = 1.00), age (t = 0.05, p = 0.71), education (t = -0.50, p =
0.83), and FD values (t = 1.25, p = 0.13) between OCD and HC
groups. However, significant group differences were found in Y-
BOCS total (t = 25.27, p < 0.001) and subscale scores (obsessive
thinking, t = 17.98, p < 0.001; compulsive behavior, t = 14.92, p <
0.001), HAMD scores (t = 9.04, p < 0.001), and HAMA scores
(t = 9.00, p < 0.001) (Supplementary Table S1).

Group Differences in GFC
As shown in Table 1 and Figure 1, patients with OCD showed
significantly decreased GFC values in the left PCC/lingual gyrus
and left precentral gyrus/postcentral gyrus and significantly
increased GFC values in the left DLPFC and left inferior
parietal lobule (IPL). A plot of the extracted cluster values with
the raw data points of samples (OCD/HCs) was presented in
Figure 2. A sagittal view of the left PCC/lingual gyrus cluster was
presented in Supplementary Figure S1.

There is a debate in whether global signal should be removed.
We reanalyzed the data with global signal removal, and obtained
the similar results (Supplementary Table S2 and Supplementary
Figure S2).

Correlations Between GFC Values and
Clinical Variables in Patients With OCD
No correlations were observed between abnormal GFC values and
Y-BOCS, HAMD, and HAMA scores in the OCD group with
Pearson and Spearman correlation analyses. These correlations were
also not significant using the mean FD values and age as covariates
with partial correlation analysis.
TABLE 1 | Regions with abnormal GFC in the patients with OCD.

Cluster location Peak (MNI) Number of
voxels

T value

x y z

Left PCC/Lingual Gyrus −18 −66 12 83 −5.9634
Left Precentral Gyrus/Postcentral
Gyrus

−45 −9 30 129 −5.6116

Left DLPFC −36 45 27 56 5.2824
Left IPL −54 −42 39 83 4.3242
March 20
20 | Volume 11 | A
GFC, global-brain functional connectivity; OCD, obsessive-compulsive disorder; MNI,
Montreal Neurological Institute; PCC, posterior cingulate cortex; DLPFC, dorsal lateral
prefrontal cortex; IPL, inferior parietal lobule.
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ROC Analysis in Patients With OCD and
HCs
ROC curves were conducted with false positive rate (1-specificity) as
X-axis and true-positive rate (sensitivity) as Y-axis and were created
by connecting all the points on the graph (each cut-off level
generated a point) (Figure 3). Area under the curve (AUC) is an
assessment of the entire diagnostic accuracy of the test, and was
computed with SPSS 20.0 software (SPSS Inc., Chicago, Illinois,
USA). The AUC values of the left PCC/lingual gyrus, left precentral
gyrus/postcentral gyrus, left DLPFC, and left IPL were 0.868, 0.830,
0.804, and 0.814, respectively (Table 2).

The results manifested that the GFC value of the left PCC/lingual
gyrus could differentiate patients with OCD from HCs with a
sensitivity of 72.50% and a specificity of 84.21%. The GFC value
of the left precentral gyrus/postcentral gyrus could differentiate
patients with OCD from HCs with a sensitivity of 85.00% and a
specificity of 76.32%. The GFC value of the left DLPFC could
differentiate patients with OCD from HCs with a sensitivity of
75.00% and a specificity of 78.95%. The GFC value of the left IPL
could differentiate patients with OCD fromHCs with a sensitivity of
72.50% and a specificity of 81.58% (Table 2).

The global balanced accuracies of the left PCC/lingual gyrus,
left precentral gyrus/postcentral gyrus, left DLPFC and left IPL
were 0.7815 (p < 0.001), 0.7797 (p < 0.001), 0.6826 (p < 0.001),
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0.6932 (p < 0.001) respectively for classifying patients with OCD
from HCs using the permutation tests.
DISCUSSION

In this study, we investigated the GFC alterations in drug-naive
patients with OCD with an unbiased method at rest. The primary
results showed that patients with OCD exhibited decreased GFC
in the region within the DMN (left PCC/lingual gyrus) and
increased GFC in the regions within the ECN (left DLPFC and
left IPL), which were consistent with our hypothesis. Moreover,
ROC analyses indicated that decreased GFC in the left PCC/
lingual gyrus and increased GFC in the left DLPFC and left IPL
might be used as candidate neuroimaging markers to
differentiate patients with OCD from HCs. Inconsistent with
our hypothesis, we found decreased GFC in the region within the
sensorimotor network, including the left precentral gyrus/
postcentral gyrus, and no significant relationship was observed
between abnormal GFC and clinical variables in the OCD group.

Many previous studies have evaluated FC based on
assumptive seed definitions with an ROI method, which may
acquire different result patterns. Diverse studies typically
generate inconsistent results (2). Furthermore, some studies
FIGURE 1 | Brain regions with abnormal GFC in patients with OCD. The threshold was set at p < 0.05 corrected by the GRF method. Red and blue denote
increased and decreased GFC values respectively. Colour bar indicates t values from two-sample t-tests. L, left side; R, right side; GFC, global-brain functional
connectivity; OCD, obsessive-compulsive disorder; GRF, Gaussian Random Field.
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have focused on the networks of interest and ignored the most
crucial brain areas involved in the core pathological
abnormalities in OCD (12, 13, 15, 28–30). By contrast, in the
present research, we used a voxel-wise brain-wide method to
focus on FC alterations in drug-naive patients with OCD at rest.
Frontiers in Psychiatry | www.frontiersin.org 532
Therefore, the present findings were revealed in an unbiased
manner and may detect the potential FC abnormalities involved
in the core pathological abnormalities of OCD.

The present study found altered GFC in the left PCC/lingual
gyrus, left DLPFC, and left IPL, which indicated that there were
FIGURE 3 | Receiver operating characteristic (ROC) curves using the mean GFC values in the left PCC/lingual gyrus, left precentral gyrus/postcentral gyrus, left
DLPFC and left IPL to separate patients with OCD from healthy controls. GFC, global-brain functional connectivity; PCC, posterior cingulate cortex; DLPFC, dorsal
lateral prefrontal cortex; IPL, inferior parietal lobule.
FIGURE 2 | A plot of the extracted cluster values with the raw data points of samples. DLPFC, dorsal lateral prefrontal cortex; IPL, inferior parietal lobule; PCC,
posterior cingulate cortex.
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disrupted functional interactions within the DMN and ECN in
patients with OCD. As a neural substrate for human awareness,
the PCC/lingual gyrus regulates arousal and attention, and is a
crucial brain region in the DMN (31, 32). Reduced FC in the
PCC within the DMN was found in previous studies in patients
with OCD (28, 29, 33). Reduced negative correlations between
the PCC and the fronto-parietal network were discovered in
patients with OCD (33). DLPFC and IPL are the core brain
regions in the ECN, which are involved in cognitive task
switching, response inhibition, and executive planning (34, 35).
In our previous study, high regional homogeneity in the DLPFC
and IPL (peaking in angular gyrus) and increased FC between
DLPFC and IPL at rest in OCD were found with a different
sample (12). Decreased GFC in the DMN and increased GFC in
the ECN at rest may be related to low self-awareness and focus
on controlling external stimuli in patients with OCD.
Furthermore, altered GFC in the DMN and ECN may break
the balance of the “triple network” model and leads to the
difficulty on switching between task-negative and task-positive
processing in patients with OCD (8). In conclusion, our findings
suggested that disrupted GFC in the DMN and ECN might
contribute to the pathophysiology of OCD.

We also observed decreased GFC in regions within the
sensorimotor network (i.e., left precentral gyrus/postcentral
gyrus), which indicated that altered GFC within the
sensorimotor network might be associated with OCD. Patients
with OCD have damaged sensory gating and sensory-motor
integration, which demonstrate that the deviance of the
sensorimotor network may be involved in the inability of
patients with OCD to suppress internally repetitive and
intrusive thoughts and behavior (36, 37). Meanwhile, the
activation in brain regions within the sensorimotor network in
the inhibitory control processes may explain the essence of
inhibitory control deficits of OCD (38). Furthermore, a recent
study revealed that the amplitude of low-frequency fluctuations
of the precentral gyrus showed a large discriminative power to
identify patients with OCD from HCs (39).

The diagnostic accuracy is high when AUC is above 0.9,
medium when AUC is 0.7–0.9, and low when AUC is 0.5–0.7. On
this basis, the accuracies of altered GFC values in the left PCC/
lingual gyrus, left precentral gyrus/postcentral gyrus, left DLPFC,
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and left IPL for differentiating patients with OCD from HCs are
moderate. Moreover, the sensitivity and specificity of altered
GFC values in these brain regions are relatively high. The ROC
results are also validated by permutation tests. Therefore, the
ROC results of the present study indicate that the decreased GFC
in the left PCC/lingual gyrus and left precentral gyrus/
postcentral gyrus and increased GFC in the left DLPFC and
left IPL may be used as candidate neuroimaging markers for
patients with OCD.

Previous studies have reported correlations between
abnormal FC and clinical variables, such as obsessive-
compulsive severity and illness duration in patients with OCD
(2). However, no relationships were found between abnormal
GFC and clinical variables in the OCD group in the current
study, which indicated that abnormal GFC values might be trait
changes independent of clinical variables for patients with
OCD (40).

Surprisingly, we did not obtain abnormal GFC values in the
regions within the SN. As an important member in the triple
network model, the SN filters and detects the external and
internal salient information, and has an important role in
supervising the interactions between the DMN and ECN (8).
In our previous study, decreased FC strength within the SN,
between the SN and ECN, and the DMN in OCD at rest was
revealed (15). In that study, we only focused on the SN and
ignored other important brain regions involved in OCD.
However, in the present study, we explored the entire brain FC
with an unbiased voxel-wise method, and the present results
were related with the core pathological alterations of OCD.

Global brain connectivity (GBC) has been used to study OCD in
a few studies. For example, Anticevic et al. found decreased GBC in
the left lateral prefrontal cortex and increased GBC in the right
putamen and left cerebellar cortex (41). Moreover, weighted degree
centrality (DC), a very similar measure to GBC, has been utilized in
some studies. Beucke et al. demonstrated higher DC values in the
orbitofrontal cortex and basal ganglia (42). Tian et al. discovered
increased DC values distributed in the cortico–striato–thalamo-
cortical (CSTC) circuits and parietal, occipital, temporal, and
cerebellar regions (43). Shin et al. found that changes of DC value
in the right ventral frontal cortex were correlated with improvement
of obsessive-compulsive symptoms in patients with OCD after
SSRIs treatment (16). Gottlich et al. reported that the lower DC
value in the bilateral superficial amygdala could predict treatment
outcome of cognitive-behavior therapy in OCD (44). The diverse
findings may be due to differences across studies such as global
signal regression, head motion, and medication use (2, 45).

Another interesting finding in the current study is that all brain
regions with altered GFC values are in the left hemisphere. Brain
lateralization is implied in the pathogenesis of psychiatric
disorders including OCD (46). Previous studies have found that
regional alterations of white matter, gray matter volume, and
cortical thickness are mainly located in the left hemisphere,
including the middle frontal gyrus, IPL, and precentral gyrus,
which may be the foundation for GFC abnormalities in the left
hemisphere in patients with OCD (47–49). Combining with
previous studies and our results, we inferred that GFC
TABLE 2 | ROC analysis for differentiating the patients from the controls by
using the GFC values.

Brain regions Area under
the curve

Cut-off
point

Sensitivity Specificity

Left PCC/Lingual Gyrus 0.868 0.3776 72.50%
(29/40)

84.21%
(32/38)

Left Precentral Gyrus/
Postcentral Gyrus

0.830 0.0664 85.00%
(34/40)

76.32%
(29/38)

Left DLPFC 0.804 0.2552 75.00%
(30/40)

78.95%
(30/38)

Left IPL 0.814 0.2725 72.50%
(29/40)

81.58%
(31/38)
ROC, receiver operating characteristic curve; GFC, global-brain functional connectivity;
PCC, posterior cingulate cortex; DLPFC, dorsal lateral prefrontal cortex; IPL, inferior
parietal lobule.
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abnormalities in the left hemisphere might contribute to the core
pathophysiology of OCD. However, several studies have
discovered that the changes of structural and functional
asymmetry in patients with OCD are mostly distributed to the
right hemisphere (50–52). Sample selection including age, sex,
illness duration, medication use, comorbidities, and data analysis,
including ROI locations, may account for this discrepancy (2).

This study has several limitations apart from the relatively small
sample size. First, we did not collect fMRI data with specific tasks,
and abnormal GFC at rest might reveal the general pathological
changes in OCD. Second, white and gray matter alterations that
may underlie the mechanism of GFC are not evaluated in our
research. Thirdly, OCD samples were not divided into different
subtypes based on different clinical symptoms due to the sample
characteristics (i.e., most patients (32/40) are mixed with both
obsession and compulsion) and relatively small sample size.
Different OCD subtypes may have different GFC patterns at rest
(53). Future studies should consider these issues. Finally, the ROIs
were first used as differing in OCD vs HCs, and then used in the
ROC analysis, which may lead to double dipping. Therefore, the
present candidate neuroimaging markers for OCD should be
interpreted cautiously.

Despite these limitations, the current study is the first to
evaluate voxel-wise brain-wide FC in OCD in an unbiased
manner. The results manifest that abnormal FC patterns of the
DMN, ECN, and sensorimotor network may account for the
pathophysiology of OCD. The current study provides new
insights into the alterations in brain organization function
in OCD.
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Threatening faces are potent cues in social anxiety disorder (SAD); therefore, neural response
to threatening faces, particularly regions in the “fear” circuit such as amygdala, may classify
individuals with SAD. Previous studies of indirect/implicit processing of threatening faces have
shown that support vector machine (SVM) pattern recognition significantly differentiates
individuals with SAD from healthy participants, though evidence for the role of the fear
circuit in classification has been inconsistent. We extend this literature by using SVM during
direct face processing. Individuals with SAD (n=47) and healthy controls (n=46) completed a
validated emotional face matching task during functional MRI, which included a matching
shapes control condition. SVM was based on brain response to threat (vs. happy) faces,
threat faces (vs. shapes), and threat/happy faces (vs. shapes) in 90 regions encompassing
frontal, limbic, parietal, temporal, and occipital systems. Recursive feature elimination (RFE)
was used for feature selection and to rank the contribution of regions in predicting SAD
diagnosis. SVM results for threat (vs. happy) faces revealed satisfactory accuracy (e.g., area
under the curve=0.72); results with shapes as “baseline” yielded less optimal classification.
RFE for threat (vs. happy) indicated that all 90 brain regions were necessary for classification.
RFE-based ranking suggested diffuse neurofunctional activation to threat (vs. happy) faces in
classification. When using an RFE cut-point, regions implicated in sensory and goal-directed
processes contributed relatively more in differentiating SAD from controls than other regions.
Results suggest that neural activity across large-scale systems, as opposed to fear circuitry
alone, may aid in the diagnosis of SAD.

Keywords: social anxiety, neuroimaging, magnetic resonance imaging, machine learning, support vector machine
INTRODUCTION

Social anxiety disorder (SAD) is one of the most common anxiety disorders in the United States (1)
and a major public health problem. It is characterized by excessive fear and avoidance in a range of
situations that involve potential negative judgment by others (2) and is associated with severe
impairment (3–5). Yet, SAD is frequently underdiagnosed or misdiagnosed due in part to the shame
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and social evaluative fears intrinsic to the disorder (6, 7). Given
that diagnostic accuracy is fundamental to appropriate
treatment, an objective diagnostic approach has the potential
to greatly reduce the burden and costs associated with SAD.

Extant functional magnetic resonance imaging (fMRI) studies
have demonstrated aberrant activity in SAD relative to healthy
controls (HC), suggesting that neurofunctional activity could
serve as a classifier. In light of social fears, this work has generally
used threatening facial expressions and focused on brain regions
central to threat processing and the mediation of fear responses
(e.g., amygdala, insula, infralimbic cortex) (8–10). While findings
consistently point to exaggerated activity to threatening faces in
the “fear circuit” in SAD relative to HC, atypical brain response
(e.g., hyper- or hypoactivation) has also been observed in
occipital, parietal, frontal, and subcortical regions in SAD [for
reviews, see (11, 12)]. Findings suggest that disturbances in an
array of regions implicated in emotion, sensory processes, and
emotion regulation distinguish SAD from HC. However,
neuroimaging results based on group effects (e.g., SAD vs.
controls) do not delineate which regions predict SAD status at
the individual level, the objective of brain-based markers of SAD.

The identification of neuromarkers for disease classification
has both mechanistic and clinical utility. Subtle anomalies in the
brain not detected with univariate model-driven methods may be
captured with support vector machine (SVM) analysis, a data-
driven, multivariate approach (13, 14). SVM employs a pattern
recognition algorithm where a classifier trained on a subset of the
data is used to predict the categories (e.g., patients or HC)
according to new observations (i.e., “test” data).

SVM has demonstrated that neural activity during indirect
face processing differentiates individuals with SAD from HC. A
study by Frick and colleagues (15) consisted of 12 healthy male
participants and 14 males with a primary diagnosis of SAD,
without a comorbid depressive disorder. Whole-brain informed
SVM results showed that activation when identifying the gender
(male/female) of a threatening face significantly differentiated
SAD from HC [area under the curve (AUC) = 0.70].
Additionally, SVM was performed with selected regions such
as fear network (amygdala, anterior cingulate cortex,
hippocampus, insula) and parietal lobe. Results showed that
activation in the fear network also distinguished SAD from HC
(AUC = 0.75), though its association with symptom severity is
not clear as such data were not reported. In contrast to the fear
network, parietal lobe responses were less effective in classifying
SAD (AUC = 0.45) (15).

In a separate study, 16 individuals with SAD (16) and 16
individuals with panic disorder (without a comorbid depressive
disorder) along with 19 HC completed an indirect face
processing task where threatening and neutral faces were
colored in red, yellow, or blue and participants were instructed
to name the color of the face. For feature selection, leave-one-out
cross-validation was used. Namely, one subject was withheld
from the data set and a two-sample t-test was performed for
the remaining training data. The features were ranked by
absolute t-score, and the top number of features selected were
used to predict the class of the withheld test data during the
Frontiers in Psychiatry | www.frontiersin.org 238
classification stage. Findings were not significant for face-color
identification (AUC < 0.55). However, the feature selection
approach ranking connectivity by the t-score of the two-
sample t-test identified functional connectivity between the
hippocampus and temporal pole and functional connectivity
between middle temporal gyrus and frontal orbital cortex as
key classifiers in distinguishing SAD participants from those with
panic disorder (AUC = 0.81) and HC (AUC = 0.88) (16). Despite
evidence that such functional connectivity served as classifiers,
there were no associations with anxiety symptoms among
participants with SAD.

Al though incons i s tenc ies were poss ib ly due to
methodological differences across studies including participant
sample characteristics, findings suggest that neural activity
during indirect/implicit face processing predicts SAD
diagnosis. Also, despite small sample sizes, overall accuracy as
represented by AUC ranged from 0.70 to 0.88, indicating
adequate classification as 1 signifies perfect classification and
0.50 is no better than guessing (17). Altogether, SVM is a
promising approach toward identifying brain-based biomarkers
to detect SAD at the single-subject level.

The objective of the current study was to expand on the
literature by conducting SVM classification with neural activity
during direct threat face processing, an ecologically valid
stimulus. Based on previous studies and contemporary models
of SAD (11), we hypothesized that neural activity to threatening
facial expressions in occipital, parietal, frontal, and subcortical
regions would predict SAD diagnosis and that classification
performance would be largely determined by regions (i.e.,
features) central to the fear circuit (e.g., amygdala, insula).

Although SVM is relatively insensitive to the size of features
(18), overfitting commonly occurs in SVM and other machine
learning models when the number of the features (e.g., brain
regions) is similar or higher than the number of observations
(e.g., participants). Thus, we used recursive feature elimination
(RFE) in conjunction with SVM to test whether feature selection
improved classification (19, 20). Lastly, we tested for potential
relationships between brain regions that largely contributed to
classification and symptom severity in the SAD group.
METHODS

Participants
The study comprised 48 participants with SAD and 46
demographically matched HC, who met criteria for quality via
visual inspection (e.g., integrity of coregistration) and
quantitative parameters (e.g., movements were < 3 mm and <
3 degrees rotation in any one direction) during fMRI. However,
one SAD participant was excluded due to a technical error
during fMRI; thus, the SAD group comprised 47 participants.
Exclusion criteria for all participants included: treatment
(pharmacotherapy or psychotherapy), a comorbid depressive
disorder, presence of a medical or neurological illness, less
than 18 or more than 65 years of age, contraindications to
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magnetic resonance imaging (e.g., pregnancy, ferrous objects),
current substance dependence (within 6 months of the study), or
current or history of cognitive dysfunction (e.g., traumatic brain
injury, pervasive developmental disorder). Additional exclusion
criteria for HCs included a current or past Axis I disorder. A
trained master's-level clinician performed the Structured Clinical
Interview for DSM-5 (“SCID-5”) (21) and other clinician-
administered measures. The clinician-administered Liebowitz
Social Anxiety Scale (LSAS) (22) was used to assess social
anxiety, and the Hamilton Anxiety Rating Scale (HAM-A) (23)
and Hamilton Depression Rating Scale (HAM-D) (24) were used
to evaluate anxiety and depression levels, respectively. All
measures were collected within two weeks of the fMRI scan.
All participants tested negative on a urine toxicology screen
before the scan.

Procedures were approved by the local Institutional Review Board
at theUniversity of Illinois at Chicago and complied with theHelsinki
Declaration, and participants were compensated for their time.

fMRI Task
During scanning, all participants performed a validated
emotional face matching task (EFMT, see Figure 1 for
schematic), which has been used in studies involving SAD
participants (26, 27) and is designed to probe brain response
to signals of threat (i.e., angry, fearful faces) against those that do
not convey threat (i.e., happy faces). The task comprised
photographs from a validated set of face stimuli (25) presented
in a block design, during which participants viewed a trio of faces
(one target at top, two probes on bottom) and selected by right-
handed button press which probe matched the target facial
expression. The target and congruent probe face displayed one
of three expressions (fearful, angry, or happy), whereas the
incongruent probe face always displayed a neutral expression.
Trials with emotional faces (fearful, angry, or happy) were
interleaved with blocks of shapes (triangles, circles, squares) as
a sensorimotor control condition, counterbalanced across a run.
Three angry, three fearful, and three happy blocks of trials were
interspersed with nine shape-matching blocks. Each block lasted
20 s and consisted of four back-to-back 5-s trials.

To maximize threat signal, angry and fearful faces were
collapsed. While the primary contrast of interest was threat
(vs. happy) faces, since happy faces as a “baseline” to threat
has high ecological validity, classification was also performed for
Frontiers in Psychiatry | www.frontiersin.org 339
threat (vs. shapes) and all emotional faces (vs. shapes) to explore
whether neural activity against a sensorimotor control condition
improved classification.

Previous studies have shown that SAD and healthy
participants are similar in task performance for the EFMT (26,
27). Nonetheless, to explore potential group differences, accuracy
and reaction time for target threat (angry/fearful) and happy
faces were submitted to a mixed 2 (Group: SAD, HC) x 2
(Emotion: threat, happy) analysis of variance (ANOVA) with
repeated measures on the last factor.

To evaluate relationships between neural predictors and
symptom severity, two-tailed Pearson's correlations were
performed. All analyses were performed in the Statistical Package
for the Social Sciences (SPSS, Version 24) unless otherwise stated.

fMRI Data Acquisition and Preprocessing
Scanning was conducted on a 3 Tesla GE Discovery System
(General Electric Healthcare; Waukesha, WI) with an 8-channel
head coil. Functional data were acquired using gradient-echo
echo planar imaging (EPI) sequence with the following
parameters: TR = 2 s, TE = min Full [~25 ms], flip angle =
90°, FOV = 22 x 22 cm2, acquisition matrix 64 x 64, 3-mm slice
thickness, 44 axial slices, 180 volumes per run. For anatomical
localization, a high-resolution, T1-weighted volumetric
anatomical scan was acquired.

The first four volumes from each run were discarded to allow
for T1 equilibration effects. Conventional preprocessing steps
were used in the Statistical Parametric Mapping (SPM8) software
package (Wellcome Trust Centre for Neuroimaging, London
www.fil.ion.ucl.ac.uk/spm). Briefly, images were temporally
corrected to account for slice time acquisition differences and
spatially realigned to the mean image to correct for head
movement, while six motion parameters were entered as
regressors of no-interest to control for minimal head
movement during scanning. Images were then normalized to a
Montreal Neurological Institute (MNI) template using the echo-
planar imaging template, resampled to 2 x 2 x 2 voxels and
smoothed with an 8 mm isotropic Gaussian kernel.

A general linear model was applied to the time series,
convolved with the canonical hemodynamic response function
and with a 128s high-pass filter. Using a box-car model, the
contrasts of interest—threat (vs. happy) faces, threat (vs. shapes),
and all faces (vs. shapes)—were generated for each participant.
FIGURE 1 | Schematic of Emotional Face Matching Task conditions (25).
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Classification
The Automated Anatomical Labelling atlas with MarsBar for
SPM8 (28, 29) was used to generate regions of interest (ROIs)
within the frontal, parietal, temporal, and occipital cortices, and
subcortical system, which totaled 90 regions. An SVM
classification model that was constructed with brain activation
[b weights, arbitrary units (a.u.)] derived from each of these
anatomy-based ROIs was in Python 3.6 [Guido van Rossum,
Centrum Wiskunde & Informatica (CWI), Netherlands]. Linear
kernel was selected to define the support vector (i.e., hyperplane)
with default settings in scikit-learn (30). Classifier performance
was examined with AUC, sensitivity, and specificity.

Feature selection was performed with RFE. If RFE eliminated
brain regions, a nonparametric permutation test was used to test
whether AUC between the original SVM model and SVM+RFE
model significantly differed from each other. Regardless as to
whether RFE eliminated brain regions or not, RFE yields a Fisher
score (31) to rank the importance of the feature (i.e., brain
region). Therefore, the Fisher score was used to examine the
contribution of brain regions in classification. To test the
generalizability for classification results, 10-fold cross-
validation (leave one out) was performed.
RESULTS

Participants
Two-tailed independent t-tests and chi-square tests were performed
to evaluate participant characteristics. Results showed that the SAD
group was more socially anxious [LSAS; t(91) = 24.01, p < 0.001],
generally anxious [HAM-A; t(91) = 11.21, p<0.001], and depressed
[HAM-D; t(91) = 0.99, p < 0.001] than the HC group. However,
groups were similar in age [t(91)=0.03, p = 0.97] and education in
years [t(91) = 0.27, p = 0.79]. The distribution of gender c2 = 0.12,
p = 0.81 and race/ethnicity c2 = 3.45 p = 0.75 were also comparable
between groups. See Table 1 for demographics and clinical details.

Behavioral Results
The ANOVA for accuracy revealed a main effect of
Emotion [F(1, 91) = 75.06, p<0.001] but no main effect of
Group [F(1, 91) = 0.00, p = 0.99] or Emotion x Group
interaction [F(1, 91)=0.01, p = 0.94]. Follow-up paired t-
tests showed that accuracy was lower when identifying
target threatening faces than happy faces [t(92) = 8.71,
p<0.005]. The same analysis for reaction time for accurate
trials did not yield a main effect of Emotion [F(1, 91) = 0.27,
p = 0.61], Group [F(1, 91) = 2.63, p = 0.11], or Emotion x
Group interaction [F(1, 91) = 0.05, p = 0.83]. Details are
reported in Table 1.
Feature Selection and Support Vector
Machine Performance
For the primary contrast of interest, threat (vs. happy) faces,
no regions were excluded based on RFE. Results for the
original SVM model with 90 ROIs achieved a cross-
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validated accuracy of 69.98%, with AUC = 0.72 (p<0.001);
sensitivity = 0.71 and specificity = 0.69. RFE feature
importance (i.e., Fischer score) results yielded a smooth
decay across ROIs as opposed to a robust inflection
separating high and low feature importance (Figure 2). Due
to the smooth decay, we used an arbitrary cut-point of 0.10
based on the Fisher score to evaluate relationships between
brain regions (i.e., features) that contributed relatively more
to classification and symptom severity. Regions with a
relatively high Fisher score (i.e., >0.10) were bilateral
Heschl's gyrus, right inferior occipital gyrus, left middle
orbitofrontal gyrus, bilateral superior parietal gyrus, and
right fusiform gyrus. Pearson's correlations within the SAD
group did not reveal significant relationships between activity
in these regions and social anxiety severity (LSAS) or general
anxiety level (HAM-A) (all p's > 0.05).

Regarding threat faces (vs. shapes), RFE excluded 73
regions; for all faces (vs. shapes), RFE excluded 29 regions.
Yet, when classification was performed with SVM+RFE or
SVM alone (i.e., all 90 regions), accuracy was not as high or
TABLE 1 | Demographic and clinical characteristics and task performance.

Social Anxiety
Disorder (N=47)

Heathy
Controls (N=46)

M(SD) M(SD)

LSAS 79.31(15.0) 14.0(10.8)a

HAM-A 12.0 (6.5) 0.9 (1.5)a

HAM-D 6.7 (3.9) 0.6 (1.1)a

Age 25.7 (6.2) 25.8 (8.4)
Education in years 15.7 (2.0) 15.6 (2.4)

Race/Ethnicity N % N %
Caucasian 31 66.0 24 52.2
Asian 9 19.1 13 28.3
African American 3 6.4 4 8.7
American Indian or
Alaskan Native

1 2.1 1 2.2

More than one race or unknown 3 6.4 4 8.7
Hispanic 10 20.8 11 23.9

Gender N % N %
Male 13 27.7 12 26.1
Female 34 72.3 34 73.9
Comorbidity N % –

Generalized anxiety disorder 15 31.9 –

Persistent depressive disorder 6 12.7 –

Specific phobia 5 10.6 –

Panic disorder 4 8.5 –

Posttraumatic stress disorder 2 4.3 –

Task Performance M(SD) M(SD)
Response time for threat faces
(milliseconds)

1348.3 (398.5) 1416.3 (349.7)

Response time for happy faces
(milliseconds)

1324.3 (299.0) 1426.4 (347.7)

Accuracy for threat faces (%) 89.8 (8.8) 90.5 (9.5)
Accuracy for happy faces (%) 96.3 (10.4) 97.1 (7.8)
March 2020 | Volu
me 11 | A
LSAS, Liebowitz Social Anxiety Scale; HAM-A, Hamilton Anxiety Rating Scale; HAM-D,
Hamilton Depression Rating Scale
aHealthy controls were less socially anxious (LSAS), less generally anxious (HAM-A), and
less generally depressed (HAM-D) than participants with social anxiety disorder (p<0.05).
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sensitivity/specificity as balanced as for threat (vs. happy)
faces for either threat faces (vs. shapes) or all faces (vs.
shapes). See Supplementary Table 1 for details.
DISCUSSION

This is the first study we are aware of that used SVM to classify
individuals with SAD based on brain response during direct
threat processing with a validated emotion processing task. With
regard to behavioral performance, accuracy was high, verifying
that all participants followed task instructions. SAD was
predicted by widespread activity to threat (vs. happy faces),
and classification accuracy (i.e., AUC), sensitivity, and
specificity were satisfactory and consistent with previous
neuroimaging studies that used SVM to predict SAD in the
context of indirect/implicit face processing (15, 16) in addition to
resting state (32).

Findings partially support our hypotheses as brain
response to threatening (vs. happy) faces classified SAD
participants; however, feature selection did not improve
classification as neural activity in all ROIs was required to
distinguish SAD participants from HC (i.e., AUC = 0.72,
Figure 3), with cross-validation accuracy ~70% and
specificity and sensitivity ~0.70%. Findings suggest that
neural activation differences between SAD and HC are
diffuse; thus, an array of brain regions supporting various
functions were needed to identify the underlying patterns for a
binary classifier. Results are similar to Frick and colleagues
(15) insofar as they also showed that whole brain activity
significantly differentiated SAD participants from HC.

Evidence that neural activity across occipital, parietal,
frontal, and subcortical regions predicted SAD diagnosis
supports our hypothesis. However, we also expected regions
(i.e. features) that underlie that the fear circuit (e.g., amygdala,
insula) would largely contribute to classification that was not
observed. Though these regions were needed to obtain
satisfactory classification, their Fisher scores were relatively
low, indicating that they made a necessary but not substantial
contribution. It is possible that SAD patients had similar
amygdala hyperreactivity to both threat and happy faces, as
an earlier study reported exaggerated amygdala reactivity to
Frontiers in Psychiatry | www.frontiersin.org 541
threat and happy faces in SAD relative to controls (33).
Individual differences in amygdala response to emotional
faces in SAD may have reduced the ability for amygdala to
robustly predict diagnostic status.

When using an arbitrary cut-point based on Fisher scores
generated by RFE feature selection, regions that “largely”
contributed to diagnostic classification (i.e., had relatively high
Fisher scores) comprised structures involved in sensory functions.
Inferior occipital gyrus and fusiform gyrus support higher-order
visual processing and face perception (34), parietal superior gyrus
responds to visual input and is involved in spatial orientation (35),
middle orbitofrontal gyrus has extensive connections with sensory
and limbic structures (36) and is implicated in goal-directed
attention (e.g., selection of task-relevant stimuli and responses;
superior parietal cortex, frontal middle gyrus) (37, 38), and
Heschl's gyrus engages to auditory stimuli (39).

Cognitive models propose that biases to negatively
valenced stimuli play a critical role in anxiety by forming, or
reinforcing, maladaptive views of the self and others (40, 41).
In support, behavioral studies consistently demonstrate
attentional bias to threat faces in SAD (42–44) and
preferential attention to threat is thought to contribute, in
part, to the development and maintenance of SAD (45, 46).
Consequently, occipital, fusiform, parietal superior, and
middle orbitofrontal gyrus activation may factor into
predicting SAD diagnosis given the salience of threatening
f a c e s when con t r a s t ed w i th a pos i t i v e / approach
socioemotional signal. We speculate that the background
scanner noise may explain the Heschl's gyrus finding as
such noise has been shown to influence activity in this
region in healthy participants (47). For example, SAD
patients report poorer attentional control than healthy
individuals (48) and thus may be more susceptible to being
distracted by vibrations of the gradient coil or other features
of the MRI environment. Since our study was not designed to
test this, further investigation is needed to understand the role
of Heschl's gyrus in predicting SAD diagnosis.

Despite the contribution of these regions in classification,
there was no association between neural activity and symptom
severity, which is consistent with a prior SVM SAD study that
performed correlational analysis (16). The lack of a robust
inflection separating high and low Fisher scores may have
reduced our ability to detect significant associations. Even so,
FIGURE 2 | Bar plot of the Fisher score ranks for anatomy-based regions of interest related to brain response to threat (>happy) faces in descending order. Line
denotes arbitrary Fisher score cut-point of 0.10 to highlight regions that largely differentiated individuals with social anxiety disorder from healthy controls.
March 2020 | Volume 11 | Article 144

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Xing et al. Classification and Social Anxiety Disorder
links between illness severity and neurofunctional activity in
SAD may be tenuous. For example, associations between
amygdala activity, a region implicated in the neurobiology of
SAD (11, 12), and social anxiety severity have been inconsistent
(49–51). It is possible that variance in neurofunctional activity
may not be strongly tied to psychological measures, which are
relatively distal measures of biology and subject to inaccuracy
(e.g., negative bias) (52).

In addition to our primary contrast of interest (i.e., threat vs.
happy), we explored classification based on neural activity to
threat faces (vs. shapes) and emotional faces (vs. shapes).
Interestingly, RFE did exclude certain brain regions to improve
classification, yet, accuracy for SVM+RFE and SVM alone
tended to be lower and there was more imbalance between
sensitivity and specificity. Using a sensorimotor control
condition as a baseline may have introduced more noise and
complexity in classification than a facial expression as baseline.

Altogether, differential neural activity between threatening
and positive socioemotional cues may serve as a biomarker to
detect SAD at the single-subject level. However, it will be
important for future studies to test the extent to which this
may (or may not) generalize to other internalizing
psychopathologies (e.g., depression, generalized anxiety
disorder). Indeed, contemporary models of psychopathology
emphasize a transdiagnostic, dimensional approach based on
observations that behavioral and neurobiological substrates cut
across standard diagnostic categories (53, 54). Accordingly, it
may be more impactful to identify biomarkers that map onto
constructs shared across disorders, for example, attentional
control or executive function, which modulate emotional
reactivity (55, 56) and are disrupted to varying degrees in
individuals with psychiatric illness (57, 58).
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Findings should be considered in light of limitations. Certain
comorbidity was permitted; therefore, results may not extend to
the classification of SAD alone. In addition, we used an AAL-
based atlas in the creation of brain ROIs. Alternative approaches
to ROI creation exist (59, 60); consequently, differences in the
selection of regions to include in the SVM analysis may have
impacted results. Also, findings may not generalize to indirect/
implicit face processing or to other stimuli (e.g., images of
general negative content, salient words). Further, to
standardize the analyses, the classification adopted the default
parameter with a linear kernel provided by the toolbox, which
may affect the ability in recognizing complex patterns during the
feature selection. More complex kernels and parameters can be
explored in the future application to potentially enhance the
performance during the feature selection. Lastly, we used cross-
validation to examine the generalizability of classification
performance; however, it will be important to replicate results
in an independent sample before drawing firm conclusions.
CONCLUSIONS

Despite limitations, the current study provides evidence that
SVM based on brain response to threat faces is a promising
approach for classifying SAD. Whole-brain activity to threat (vs.
happy) faces was required for optimal classification performance.
Brain regions showing relatively higher importance in
classification highlight the relevance of brain regions outside
the fear circuit (e.g., amygdala, insula) in predicting SAD. In
particular, results suggest that activity in regions that govern
sensory and goal-directed processes may play a role in
SAD diagnosis.
DATA AVAILABILITY STATEMENT

Requests to access the data sets will be considered upon request
to the corresponding author. However, data sets may not be
complete as not all participants may have provided consent to
share their raw data.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Office for the Protection of Research Subjects,
University of Illinois at Chicago. The patients/participants
provided their written informed consent to participate in
this study.
AUTHOR CONTRIBUTIONS

MX contributed to the analysis and interpretation of results. JF
contributed to manuscript preparation and interpretation of
FIGURE 3 | Area under the curve results based on support vector machine
analysis for threat (vs. happy) faces.
March 2020 | Volume 11 | Article 144

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Xing et al. Classification and Social Anxiety Disorder
results. HK contributed to the research design, manuscript
preparation, and interpretation of results.
FUNDING

This work was supported by NIH/NIMH K23MH093679,
R01MH112705, and in part by R01MH101497, and the Center
Frontiers in Psychiatry | www.frontiersin.org 743
for Clinical and Translational Research (CCTS) UL1RR029879.
JF was supported by F32MH117895.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00144/
full#supplementary-material
REFERENCES

1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE.
Lifetime prevalence and age-of-onset distributions of dsm-iv disorders in the
national comorbidity survey replication. Arch Gen Psychiatry (2005) 62:593–
602. doi: 10.1001/archpsyc.62.6.593

2. First M, Williams J, Karg R, Spitzer R. ructured Clinical Interview for DSM-5-
Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV).
(2015) Arlington, VA: American Psychiatric Association.

3. Hambrick JP, Turk CL, Heimberg RG, Schneier FR, Liebowitz MR. The
experience of disability and quality of life in social anxiety disorder.
Depression Anxiety (2003) 18:46–50. doi: 10.1002/da.10110

4. Safren SA, Heimberg RG, Brown EJ, Holle C. Quality of life in social phobia.
Depression Anxiety (1996) 4:126–33. doi: 10.1002/(SICI)1520-6394(1996)
4:3<126::AID-DA5>3.0.CO;2-E

5. Schneier FR, Heckelman LR, Garfinkel R, Campeas R, Fallon BA, Gitow A,
et al. Functional impairment in social phobia. J Clin Psychiatry (1994) 55
(8):322–31.

6. Schneier FR. Social anxiety disorder. BMJ (Clinical research ed.) (2003) 327
(7414):515–6. doi: 10.1136/bmj.327.7414.515

7. Wittchen HU, Fehm L. Epidemiology, patterns of comorbidity, and associated
disabilities of social phobia. Psychiatr Clinics (2001) 24:617–41. doi: 10.1016/
S0193-953X(05)70254-9

8. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci (2000) 23:155–
84. doi: 10.1146/annurev.neuro.23.1.155

9. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval.
Neuropsychopharmacology (2008) 33:56. doi: 10.1038/sj.npp.1301555

10. Marek R, Strobel C, Bredy TW, Sah P. The amygdala and medial prefrontal
cortex: partners in the fear circuit. J Physiol (2013), 5912381–91. doi: 10.1113/
jphysiol.2012.248575

11. Brühl AB, Delsignore A, Komossa K, Weidt S. Neuroimaging in social anxiety
disorder—a meta-analytic review resulting in a new neurofunctional model.
Neurosci Biobehav Rev (2014) 47:260–80. doi: 10.1016/j.neubiorev.2014.08.003

12. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis
of emotional processing in PTSD, social anxiety disorder, and specific
phobia. Am J Psychiatry (2007) 164:1476–88. doi: 10.1176/appi.ajp.2007.
07030504

13. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a
tutorial overview. Neuroimage (2009) 45:S199–209. doi: 10.1016/
j.neuroimage.2008.11.007

14. Cortes C, Vapnik V. Support-vector networks.Mach Learn (1995) 20:273–97.
doi: 10.1007/BF00994018

15. Frick A, Gingnell M, Marquand AF, Howner K, Fischer H, Kristiansson M,
et al. Classifying social anxiety disorder using multivoxel pattern analyses of
brain function and structure. Behav Brain Res (2014) 259:330–5. doi: 10.1016/
j.bbr.2013.11.003

16. Pantazatos SP, Talati A, Schneier FR, Hirsch J. Reduced anterior temporal and
hippocampal functional connectivity during face processing discriminates
individuals with social anxiety disorder from healthy controls and panic
disorder, and increases following treatment. Neuropsychopharmacology
(2014) 39:425–34. doi: 10.1038/npp.2013.211

17. Bradley AP. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognit (1997) 30:1145–59. doi:
10.1016/S0031-3203(96)00142-2

18. Vapnik V. Statistical learning theory. New York: Wiley (1998).
19. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach
Learn Res (2003) 3:1157–82. doi: 10.1162/153244303322753616

20. Hua J, Tembe WD, Dougherty ER. Performance of feature-selection methods
in the classification of high-dimension data. Pattern Recognit (2009) 42:409–
24. doi: 10.1016/j.patcog.2008.08.001

21. First MB, Williams J, Karg RS, Spitzer RL. User’s guide to structured clinical
interview for DSM-5 disorders (SCID-5-CV) clinical version. Arlington, VA:
American Psychiatric Publishing (2015).

22. Liebowitz MR. Social Phobia. Mod Trends Pharmacopsychiatry (1987) 22,
141–73. doi: 10.1159/000414022

23. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol
(1959) 32:50–5. doi: 10.1111/j.2044-8341.1959.tb00467.x

24. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry
(1960) 23:56. doi: 10.1136/jnnp.23.1.56

25. Gur RC, Sara R, Hagendoorn M, Marom O, Hughett P, Macy L, et al. A
method for obtaining 3-dimensional facial expressions and its standardization
for use in neurocognitive studies. J Neurosci Methods (2002) 115:137–43. doi:
10.1016/S0165-0270(02)00006-7

26. Klumpp H, Fitzgerald DA, Phan KL. Neural predictors and mechanisms of
cognitive behavioral therapy on threat processing in social anxiety disorder.
Prog Neuropsychopharmacol Biol Psychiatry (2013) 45:83–91. doi: 10.1016/
j.pnpbp.2013.05.004

27. Phan KL, Coccaro EF, Angstadt M, Kreger KJ, Mayberg HS, Liberzon I, et al.
Corticolimbic brain reactivity to social signals of threat before and after
sertraline treatment in generalized social phobia. Biol Psychiatry (2013)
73:329–36. doi: 10.1016/j.biopsych.2012.10.003

28. Brett M, Anton J-L, Valabregue R, Poline J-B. Region of interest analysis using
the MarsBar toolbox for SPM 99. Neuroimage (2002) 16:S497.

29. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O,
Delcroix N, et al. Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage (2002) 15:273–89. doi: 10.1006/nimg.2001.0978

30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in Python. J Mach Learn Res (2011) 12:2825–30.
doi: 10.5555/1953048.2078195

31. Gu Q, Li Z, Han J. (2012). Generalized fisher score for feature selection. arXiv
preprint arXiv:1202.3725.

32. Zhang W, Yang X, Lui S, Meng Y, Yao L, Xiao Y, et al. Diagnostic prediction
for social anxiety disorder via multivariate pattern analysis of the regional
homogeneity. BioMed Res Int (2015) 2015, 1–9. doi: 10.1155/2015/763965

33. Straube T, Mentzel HJ, Miltner WH. Common and distinct brain activation to
threat and safety signals in social phobia. Neuropsychobiology (2005) 52:163–
8. doi: 10.1159/000087987

34. Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for
the perception of faces. Philos Trans R Soc B: Biol Sci (2006) 361:2109–28. doi:
10.1098/rstb.2006.1934

35. Vandenberghe R, Gillebert CR. Parcellation of parietal cortex:
convergence between lesion-symptom mapping and mapping of the
intact functioning brain. Behav Brain Res (2009) 199:171–82. doi:
10.1016/j.bbr.2008.12.005

36. Kalin NH, Shelton SE, Davidson RJ. Role of the primate orbitofrontal cortex in
mediating anxious temperament. Biol Psychiatry (2007) 62:1134–9. doi:
10.1016/j.biopsych.2007.04.004

37. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven
attention in the brain. Nat Rev Neurosci (2002) 3:201. doi: 10.1038/nrn755
March 2020 | Volume 11 | Article 144

https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00144/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00144/full#supplementary-material
https://doi.org/10.1001/archpsyc.62.6.593
https://doi.org/10.1002/da.10110
https://doi.org/10.1002/(SICI)1520-6394(1996)4:3%3C126::AID-DA5%3E3.0.CO;2-E
https://doi.org/10.1002/(SICI)1520-6394(1996)4:3%3C126::AID-DA5%3E3.0.CO;2-E
https://doi.org/10.1136/bmj.327.7414.515
https://doi.org/10.1016/S0193-953X(05)70254-9
https://doi.org/10.1016/S0193-953X(05)70254-9
https://doi.org/10.1146/annurev.neuro.23.1.155
https://doi.org/10.1038/sj.npp.1301555
https://doi.org/10.1113/jphysiol.2012.248575
https://doi.org/10.1113/jphysiol.2012.248575
https://doi.org/10.1016/j.neubiorev.2014.08.003
https://doi.org/10.1176/appi.ajp.2007.07030504
https://doi.org/10.1176/appi.ajp.2007.07030504
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.bbr.2013.11.003
https://doi.org/10.1016/j.bbr.2013.11.003
https://doi.org/10.1038/npp.2013.211
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1162/153244303322753616
https://doi.org/10.1016/j.patcog.2008.08.001
https://doi.org/10.1159/000414022
https://doi.org/10.1111/j.2044-8341.1959.tb00467.x
https://doi.org/10.1136/jnnp.23.1.56
https://doi.org/10.1016/S0165-0270(02)00006-7
https://doi.org/10.1016/j.pnpbp.2013.05.004
https://doi.org/10.1016/j.pnpbp.2013.05.004
https://doi.org/10.1016/j.biopsych.2012.10.003
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1155/2015/763965
https://doi.org/10.1159/000087987
https://doi.org/10.1098/rstb.2006.1934
https://doi.org/10.1016/j.bbr.2008.12.005
https://doi.org/10.1016/j.biopsych.2007.04.004
https://doi.org/10.1038/nrn755
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Xing et al. Classification and Social Anxiety Disorder
38. Klein JT, Shepherd SV, Platt ML. Social attention and the brain. Curr Biol
(2009) 19:R958–62. doi: 10.1016/j.cub.2009.08.010

39. Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, et al.
Relating structure to function: Heschl's gyrus and acoustic processing. J
Neurosci (2009) 29:61–9. doi: 10.1523/JNEUROSCI.3489-08.2009

40. Beck AT, Clark DA. An information processing model of anxiety: Automatic
and strategic processes. Behav Res Ther (1997) 35:49–58. doi: 10.1016/S0005-
7967(96)00069-1

41. MacLeod C, Mathews A, Tata P. Attentional bias in emotional disorders. J
Abnormal Psychol (1986) 95:15. doi: 10.1037/0021-843X.95.1.15

42. Bögels SM, Mansell W. Attention processes in the maintenance and treatment of
social phobia: hypervigilance, avoidance and self-focused attention. Clin Psychol
Rev (2004) 24:827–56. doi: 10.1016/j.cpr.2004.06.005

43. Joormann J, Gotlib IH. Is this happiness I see? Biases in the identification of
emotional facial expressions in depression and social phobia. J Abnormal
Psychol (2006) 115:705. doi: 10.1037/0021-843X.115.4.705

44. Mogg K, Bradley BP. A cognitive-motivational analysis of anxiety. Behav Res
Ther (1998) 36:809–48. doi: 10.1016/S0005-7967(98)00063-1

45. Cisler JM, Koster EH. Mechanisms of attentional biases towards threat in
anxiety disorders: An integrative review. Clin Psychol Rev (2010) 30:203–16.
doi: 10.1016/j.cpr.2009.11.003

46. Evans TC, Walukevich KA, Britton JC. Vigilance-avoidance and
disengagement are differentially associated with fear and avoidant
behaviors in social anxiety. J Affect Disord (2016) 199:124–31. doi: 10.1016/
j.jad.2016.04.003

47. Gaab N, Gabrieli JD, Glover GH. Assessing the influence of scanner background
noise on auditory processing. II. An fMRI study comparing auditory processing in
the absence and presence of recorded scanner noise using a sparse design. Hum
Brain Mapp (2007) 28:721–32. doi: 10.1002/hbm.20299

48. Klumpp H, Kinney KL, Kennedy AE, Shankman SA, Langenecker SA, Kumar
A, et al. Trait attentional control modulates neurofunctional response to
threat distractors in anxiety and depression. J Psychiatr Res (2018) 102:87–95.
doi: 10.1016/j.jpsychires.2018.03.011

49. Ball TM, Sullivan S, Flagan T, Hitchcock CA, Simmons A, Paulus MP, et al.
Selective effects of social anxiety, anxiety sensitivity, and negative affectivity on
the neural bases of emotional face processing. NeuroImage (2012) 59:1879–87.
doi: 10.1016/j.neuroimage.2011.08.074

50. Phan KL, Fitzgerald DA, Nathan PJ, Tancer ME. Association between
Amygdala Hyperactivity to Harsh Faces and Severity of Social Anxiety in
Generalized Social Phobia. Biol Psychiatry (2006) 59:424–9. doi: 10.1016/
j.biopsych.2005.08.012

51. Shah SG, Klumpp H, Angstadt M, Nathan PJ, Phan KL. Amygdala and insula
response to emotional images in patients with generalized social anxiety
disorder. J Psychiatry Neurosci (2009) 34:296–302.
Frontiers in Psychiatry | www.frontiersin.org 844
52. Caouette JD, Ruiz SK, Lee CC, Anbari Z, Schriber RA, Guyer AE. Expectancy bias
mediates the link between social anxiety and memory bias for social evaluation.
Cogn Emotion (2015) 29:945–53. doi: 10.1080/02699931.2014.960368

53. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research
domain criteria (RDoC): toward a new classification framework for research
on mental disorders. Am Psychiatr Assoc (2010) 167:748–51. doi: 10.1176/
appi.ajp.2010.09091379

54. Kozak MJ, Cuthbert BN. The NIMH research domain criteria initiative:
background, issues, and pragmatics. Psychophysiology (2016) 53:286–97. doi:
10.1111/psyp.12518

55. Comte M, Schön D, Coull JT, Reynaud E, Khalfa S, Belzeaux R, et al.
Dissociating bottom-up and top-down mechanisms in the cortico-limbic
system during emotion processing. Cereb Cortex (2014) 26:144–55. doi:
10.1093/cercor/bhu185

56. Otto B, Misra S, Prasad A, McRae K. Functional overlap of top-down emotion
regulation and generation: An fMRI study identifying common neural
substrates between cognitive reappraisal and cognitively generated
emotions. Cognit Affective Behav Neurosci (2014) 14:923–38. doi: 10.3758/
s13415-013-0240-0

57. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A.
Identification of common neural circuit disruptions in cognitive control
across psychiatric disorders. Am J Psychiatry (2017) 174:676–85. doi:
10.1176/appi.ajp.2017.16040400

58. Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal
in clinical populations to define neural targets for enhancing emotion
regulation. A Syst Rev NeuroImage (2017) 151:105–16. doi: 10.1016/
j.neuroimage.2016.06.009

59. Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. A whole
brain fMRI atlas generated via spatially constrained spectral clustering. Hum
Brain Mapp (2012) 33:1914–28. doi: 10.1002/hbm.21333

60. Hayasaka S, Laurienti PJ. Comparison of characteristics between region-and
voxel-based network analyses in resting-state fMRI data. NeuroImage (2010)
50:499–508. doi: 10.1016/j.neuroimage.2009.12.051

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Xing, Fitzgerald and Klumpp. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2020 | Volume 11 | Article 144

https://doi.org/10.1016/j.cub.2009.08.010
https://doi.org/10.1523/JNEUROSCI.3489-08.2009
https://doi.org/10.1016/S0005-7967(96)00069-1
https://doi.org/10.1016/S0005-7967(96)00069-1
https://doi.org/10.1037/0021-843X.95.1.15
https://doi.org/10.1016/j.cpr.2004.06.005
https://doi.org/10.1037/0021-843X.115.4.705
https://doi.org/10.1016/S0005-7967(98)00063-1
https://doi.org/10.1016/j.cpr.2009.11.003
https://doi.org/10.1016/j.jad.2016.04.003
https://doi.org/10.1016/j.jad.2016.04.003
https://doi.org/10.1002/hbm.20299
https://doi.org/10.1016/j.jpsychires.2018.03.011
https://doi.org/10.1016/j.neuroimage.2011.08.074
https://doi.org/10.1016/j.biopsych.2005.08.012
https://doi.org/10.1016/j.biopsych.2005.08.012
https://doi.org/10.1080/02699931.2014.960368
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1111/psyp.12518
https://doi.org/10.1093/cercor/bhu185
https://doi.org/10.3758/s13415-013-0240-0
https://doi.org/10.3758/s13415-013-0240-0
https://doi.org/10.1176/appi.ajp.2017.16040400
https://doi.org/10.1016/j.neuroimage.2016.06.009
https://doi.org/10.1016/j.neuroimage.2016.06.009
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1016/j.neuroimage.2009.12.051
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fnins-14-00186 March 18, 2020 Time: 17:10 # 1

ORIGINAL RESEARCH
published: 19 March 2020

doi: 10.3389/fnins.2020.00186

Edited by:
Jun Shi,

Shanghai University, China

Reviewed by:
Han Zhang,

University of North Carolina at Chapel
Hill, United States

Kuangyu Shi,
Technical University of Munich,

Germany

*Correspondence:
Yu-Feng Zang

zangyf@hznu.edu.cn
Jian Zhang

zhangjian@sus.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 07 November 2019
Accepted: 20 February 2020

Published: 19 March 2020

Citation:
Wang J, Deng X-P, Wu Y-Y, Li X-L,

Feng Z-J, Wang H-X, Jing Y, Zhao N,
Zang Y-F and Zhang J (2020)

High-Frequency rTMS of the Motor
Cortex Modulates Cerebellar

and Widespread Activity as Revealed
by SVM. Front. Neurosci. 14:186.

doi: 10.3389/fnins.2020.00186

High-Frequency rTMS of the Motor
Cortex Modulates Cerebellar and
Widespread Activity as Revealed by
SVM
Jue Wang1, Xin-Ping Deng2,3,4, Yun-Ying Wu2,3,4, Xiao-Long Li2,3,4, Zi-Jian Feng2,3,4,
Hong-Xiao Wang2,3,4, Ying Jing2,3,4, Na Zhao2,3,4, Yu-Feng Zang2,3,4* and Jian Zhang1*

1 School of Psychology, Shanghai University of Sport, Shanghai, China, 2 Institute of Psychological Sciences, Hangzhou
Normal University, Hangzhou, China, 3 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments,
Hangzhou, China, 4 Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University,
Hangzhou, China

Functional magnetic resonance imaging (fMRI) studies have shown that the effect
of repetitive transcranial magnetic stimulation (rTMS) can induce changes in remote
brain regions. In the stimulated regions, low-frequency (≤1 Hz) rTMS induces inhibitory
effects, while high-frequency (≥5 Hz) stimulation induces excitatory effects. However,
these stereotypical effects arising from low- and high-frequency stimulation are based
on measurements of motor evoked potentials (MEPs) induced by pulsed stimulation. To
test the effects of rTMS on remote brain regions, the current study recruited 31 young
healthy adults who participated in three rTMS sessions (10 Hz high frequency, 1 Hz
low frequency, and sham) on three separate days. The stimulation target was based
on individual fMRI activation in the motor cortex evoked by a finger movement task.
Pre- and post-rTMS resting-state fMRI (RS-fMRI) were acquired. Regional homogeneity
(ReHo) and degree centrality (DC) were calculated to measure the local and global
connectivity, respectively. Compared with the sham session, high-frequency (10 Hz)
rTMS significantly increased ReHo and DC in the right cerebellum, while low-frequency
(1 Hz) stimulation did not significantly alter ReHo or DC. Then, using a newly developed
PAIR support vector machine (SVM) method, we achieved accuracy of 93.18–97.24%
by split-half validation for pairwise comparisons between conditions for ReHo or DC.
While the univariate analyses suggest that high-frequency rTMS of the left motor cortex
could affect distant brain activity in the right cerebellum, the multivariate SVM results
suggest that both high- and low-frequency rTMS significantly modulated widespread
brain activity. The current findings are useful for increasing the understanding of the
mechanisms of rTMS, as well as guiding precise individualized rTMS treatment of
movement disorders.
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INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) is a safe and
non-invasive technique for the treatment of brain diseases. It
is widely believed that low-frequency (≤1 Hz) rTMS exhibits
inhibitory effects and high-frequency (≥5 Hz) rTMS exhibits
excitatory effects on brain activity (Lefaucheur, 2019). However,
these conclusions are primarily based on measurements of
the amplitude of motor evoked potentials (MEPs) elicited
by pulsed TMS of the primary motor cortex. In fact, the
modulatory effects of rTMS on brain activity are much
more complicated.

Resting-state functional magnetic resonance imaging (RS-
fMRI) is increasingly being used to detect TMS-induced brain
activity at the network level. Many studies using this technique
have found that rTMS modulates brain networks or functional
connectivity (FC) (Eldaief et al., 2011; Chen et al., 2013; Halko
et al., 2014; Nettekoven et al., 2014, 2015; Wang et al., 2014;
Watanabe et al., 2014; Andoh et al., 2015; Cocchi et al., 2015,
2016; Ji et al., 2017). While RS-fMRI studies into FC have
increased our understanding of the complex mechanisms of the
modulatory effects of rTMS on brain activity, there are two
limitations for analysis of FC or networks. First, these analyses
can only reveal the relationships between brain activity in distinct
regions. For example, one study found that rTMS modulated
the FC between the lateral parietal cortex with the hippocampus
(Wang et al., 2014), but it is not clear whether the local activity
in the hippocampus was modulated. An alteration in FC does
not indicate a change in brain activity in a specific region. FC is
probably a “bridge” to deliver the stimulus to the hippocampus.
The second limitation is that there are too many options for
the configuration of network or FC analysis. For example, the
most popular seed-based FC analysis has countless options for
the location of the seed region of interest (ROI). This makes it
difficult to compare the results between different studies using
network or FC analysis.

In contrast to network or FC analyses that compare activity
between distributed brain regions, there are a few RS-fMRI
metrics that reflect spontaneous local activity, such as regional
homogeneity (ReHo) (Zang et al., 2004). This measures the local
synchronization of the nearest neighboring voxels (e.g., 7, 19, or
27 voxels). Another metric, degree centrality (DC), measures the
strength of the connectivity of one voxel compared with all other
voxels in the brain (Buckner et al., 2009). DC is one of the least
computationally consuming metrics of graph theory and can be
easily accomplished at the voxel level. Combined measurements
of ReHo and DC could reflect both local and global connectivity
of a specific voxel. ReHo and DC are metrics of “voxel-level
whole-brain” analysis (Zang et al., 2015). In addition, there are
far fewer options for their analysis parameters than other FC
methods (such as the excess of options for seed selection in seed-
based FC analysis). These characteristics of ReHo and DC render
them more suitable for coordinate-based meta-analysis (Zang
et al., 2015) and are further helpful for precise localization of
abnormal activity.

Typical univariate neuroimaging analyses compare differences
between groups in a voxel-wise or region-wise manner.

Multivariate analyses can be applied using machine learning
classification techniques, such as support vector machine (SVM).
In most studies where it is applied, machine learning is used
for differentiating between two independent groups, for example,
comparing patient group to healthy control. Sometimes, machine
learning methods are used to differentiate two conditions
within a group. Borrowing from the concept of paired t
tests, Zhou et al. (2017) proposed a PAIR method for SVM.
Compared with conventional UNPAIR SVM (i.e., taking two
within-group conditions as independent conditions), PAIR SVM
yielded similar performance when applied to an RS-fMRI dataset
with two conditions (eyes closed vs. eyes open), but better
performance when validating in a completely new dataset
(Zhou et al., 2017), suggesting that PAIR SVM could be
better generalized.

The motor cortex is one of the most frequently reported
stimulation targets for rTMS modulation in both healthy
populations (Hartwigsen and Siebner, 2015; Cona et al., 2017)
and those with brain disorders including movement disorders
(Wagle Shukla et al., 2016; Brabenec et al., 2019), stroke
rehabilitation (Ludemann-Podubecka et al., 2016; Lee et al.,
2019), and other disorders (Siebner et al., 2003; Odorfer et al.,
2019; Pei et al., 2019; Zhang et al., 2019). Some of these studies
performed RS-fMRI before and after modulation and analyzed
the network changes. However, there is large variation in the
analytical methods applied from study to study. These included
voxel-to-voxel based dynamic FC (Zhang et al., 2019), graph
theory using 24 ROIs (Lee et al., 2019), whole-brain graph
theory (Pei et al., 2019), and seed-based FC (Brabenec et al.,
2019). While it could be concluded that rTMS of the motor
cortex modulates the motor network, such a conclusion appears
too general since it is difficult to identify which specific brain
areas are modulated.

The current study aimed to investigate the modulatory
effects of rTMS on specific brain areas by measuring local
RS-fMRI metrics. We compared low-frequency (1 Hz)
and high-frequency (10 Hz) rTMS with a sham condition.
For precise and individualized localization of rTMS, self-
initiated finger movement task was performed and the
fMRI activation peak voxel in the motor cortex was
taken as the stimulation target for each individual. We
hypothesized that local spontaneous activity in motor-
related subcortical regions could be modulated. In addition
to univariate statistical analyses (ANOVA and t tests), we
used PAIR SVM (Zhou et al., 2017) to differentiate between
rTMS conditions.

MATERIALS AND METHODS

Participants
Thirty-three healthy right-handed participants were recruited
through an online advertisement. Two participants were
excluded, one because head motion exceeded 2 mm in translation
or 2◦ in rotation in any direction, and one because there
was no task-related activation in the fMRI. A total of 31
participants were included in the final analysis (23 females,
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FIGURE 1 | Finger tapping, a block design task with a self-paced rhythm at around 2 s, during a 4-min MRI scan.

mean age ± SD: 23 ± 2.8 years). All participants met the
inclusion criteria of no history of neuropsychiatric disorders
or head trauma, no substance abuse, and no psychiatric
disorders. The whole study was approved by the Ethics
Committee of the Center for Cognition and Brain Disorders
(CCBD) at Hangzhou Normal University (HZNU). Informed
consent was obtained from each participant before the first
scanning session.

Experimental Design
Our experiment consisted of a within-subject, single-blinded,
and placebo-controlled design. Each participant received three
sessions of rTMS intervention (one each of 10 Hz, 1 Hz, and sham
stimulation) across three separate days with an interval of more
than 1 week between each session. The order of the conditions
was balanced across participants. Participants underwent an RS-
fMRI scan session, a task fMRI session, and a 3D-T1 session
before rTMS. They then received an rTMS intervention in the
TMS room near the MRI room. Immediately (less than 30 min)
after that, both RS-fMRI and task fMRI were scanned again.

During RS-fMRI scanning, participants were asked to keep
their eyes closed, relax, remain as motionless as possible, not
think of anything in particular, and not fall asleep.

During the task fMRI session, participants were asked to
perform a 4-min block design task consisting of finger tapping.
For the finger tapping blocks, participants were asked to press
a button with their right index finger with a self-paced rhythm
about every 2 s when a picture of clock appeared in the center of
the screen. The picture remained visible for the whole 30 s of the
block (Figure 1). For the 30-s rest blocks, participants were asked
to relax with their eyes fixed on a cross in the center of the screen.

MRI Data Acquisition
MRI data were acquired on a 3T scanner (MR-750, GE Medical
Systems, Milwaukee, WI, United States) at the CCBD of HZNU.
The fMRI scanning sessions included an 8-min RS-fMRI session
and a 4-min task session with the following parameters: repetition
time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle
(FA) = 90◦, 43 slices with no gaps, matrix = 64 × 64,
field of view (FOV) = 220 mm × 220 mm, acquisition
voxel size = 3.44 mm × 3.44 mm × 3.2 mm. A high-
resolution T1 anatomical image was obtained (176 sagittal slices,

thickness = 1 mm, TR = 8.1 ms, TE = 3.1 ms, FA = 8◦,
FOV = 250× 250 mm).

Data Analysis on Pre-rTMS MRI
The pre-rTMS task fMRI data and T1 image acquired on the
first day were used to localize the stimulation target for each

TABLE 1 | Peak voxels of finger tapping activation in the motor cortex.

Subject Brodmann Coordinate t value p value
ID area (x y z)

Sub001 4 -44 -15 58 6.25 <0.001

Sub002 6 -54 -6 50 6.22 <0.001

Sub003 4 -36 -19 59 5.84 <0.001

Sub004 4 -32 -20 56 3.91 <0.001

Sub005 4 -42 -16 62 8.89 <0.001

Sub006 6 -43 -8 63 5.05 <0.001

Sub007 6 -42 -14 49 8.36 <0.001

Sub008 6 -51 -9 51 9.21 <0.001

Sub009 6 -43 -14 58 3.82 <0.001

Sub010 6 -50 -6 49 6.40 <0.001

Sub011 6 -50 4 47 6.34 <0.001

Sub012 4 -42 -15 56 8.29 <0.001

Sub013 6 -57 0 44 4.44 <0.001

Sub014 6 -42 -12 57 10.1 <0.001

Sub015 6 -36 -15 57 8.58 <0.001

Sub016 6 -30 -24 60 2.78 <0.01

Sub017 6 -39 -9 54 5.91 <0.001

Sub018 4 -36 -25 61 8.59 <0.001

Sub019 4 -48 -13 58 5.97 <0.001

Sub020 6 -51 -7 51 9.44 <0.001

Sub021 4 -45 -15 56 5.55 <0.001

Sub022 4 -36 -23 54 8.45 <0.001

Sub023 4 -54 -7 42 9.90 <0.001

Sub024 6 -45 -3 47 3.32 <0.01

Sub025 4 -55 -3 42 7.64 <0.001

Sub026 4 -43 -15 56 5.26 <0.001

Sub027 6 -51 -5 50 6.95 <0.001

Sub028 6 -51 -6 48 6.92 <0.001

Sub029 6 -50 0 48 11.28 <0.001

Sub030 6 -57 0 44 6.93 <0.001

Sub031 3 -32 -27 57 8.52 <0.001

Mean -45 -10 53
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FIGURE 2 | Three-level (1 Hz/low frequency, 10 Hz/high frequency, and sham)
one-way ANOVA on changes in brain activity (post- minus pre-rTMS). The
right cerebellum showed significant differences between the three stimulation
conditions (GRF correction, single voxel p < 0.001, cluster level p < 0.05).

individual. Statistical parametric mapping 12 (SPM121) was
used for subject-level activation analysis (high-pass filtering,
>1/128 Hz, was selected in “fMRI Model specification”) after
preprocessing, which included slice timing correction, head
motion correction, co-registering the functional images to T1
image, and then spatial smoothing with a Gaussian kernel of
6 mm full width at half maxima (FWHM). Finally, the individual
activation map was generated using a linear general model. Then,
for each participant, the individual peak activation voxel around
“hand knob/M1” (Yousry et al., 1997) was identified as the
individualized rTMS stimulation target. The motor cortex was
successfully activated in 31 participants (Table 1).

fMRI-Navigated rTMS
The individual activation map was loaded into BrainSight
TMS navigation system (Rogue Research, Montreal, Canada)
for fMRI-guided rTMS intervention. TMS (Magstim Rapid2,
Magstim Co., Whitland, United Kingdom) was applied with a

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

figure-of-8 coil (diameter = 70 mm). Surface electromyogram
(EMG) leads were placed over the right abductor pollicis brevis
(APB) muscle. Participants sat in a cozy chair with both arms
relaxed on their thighs. Full muscle relaxation was confirmed
through visual observation and EMG monitoring. The coil
(toward forehead) was firstly placed over the left primary motor
area (M1, hand knob) at an angle of 45◦ from the coronal
midline for measuring the MEPs in the target muscle during
rTMS sessions. To determine the hotspot, the coil was moved
by distances of 0.5 cm around the hand knob area. The resting
motor threshold (RMT) was quantified as the lowest intensity
that evoked a response (>50 µV) in more than 5 of 10
consecutive trials.

For each stimulation day, 1800 pulses (intensity of 100%
RMT, duration 30 min) were delivered (Eldaief et al., 2011).
For the low-frequency (1 Hz) stimulation, the pulses were
delivered continuously for 1800 s. For the high-frequency
(10 Hz) stimulation, the pulses were delivered with 60 trains of
stimulation each lasting 3 s, with rest intervals of 27 s in between
(total duration: 1800 s). For the sham stimulation, the coil was
tilted 90◦ off the scalp with one wing touching the scalp (Lisanby
et al., 2001). Sham stimulation was randomly assigned at 1 Hz
with half of participants and 10 Hz with the other half. No side
effects of rTMS occurred in the current study.

Data Preprocessing for Group-Level
Comparisons of Pre- and Post-rTMS
fMRI
The RS-fMRI data preprocessing was conducted using
DPABI_V4.02 software (Yan et al., 2016) and included (1)
discarding the first 10 volumes to allow the signal to reach
equilibrium and the subjects to adapt to the scanning noise,
(2) correcting for the acquisition time delay between slices, (3)
rigid-body realignment for estimation and correction of motion
displacement, (4) co-registering the functional images to the T1
image, (5) normalization to MNI space using the EPI template in
SPM12, (6) regressing out 24 head-motion parameters (Yan et al.,
2013), (7) removing the linear trend, and (8) band-pass filtering
(0.01–0.08 Hz). After the preprocessing, ReHo (Zang et al., 2004)

2http://rfmri.org/dpabi

TABLE 2 | Alterations in activity (post- minus pre-rTMS) in different brain regions for the High, Low, and Sham stimulation conditions from one-way ANOVAs.

Brain region MNI (x y z) Cluster size (mm3) F value Peak voxel p value

ReHo

Right Inferior Semi-Lunar Lobule 21 -78 -57 621 11.571 <0.001

Left Inferior Semi-Lunar Lobule -21 -63 -57 351 9.29 <0.001

Right Cerebellum VIII/VIIb 39 -60 -54 864 15.02 <0.001

Right Brainstem 0 -27 -51 459 14.18 <0.001

Right Cerebellum Crus1 24 -69 -36 459 12.26 <0.001

DC

Right Inferior Semi-Lunar Lobule 18 -75 -57 405 8.86 <0.001

Right Cerebellum VIII/VIIb 42 -57 -54 729 12.91 <0.001

ReHo, regional homogeneity; DC, degree centrality; MNI, Montreal Neurological Institute.
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FIGURE 3 | Pairwise paired t tests between stimulation conditions on the ReHo and DC value of the peak voxel of F maps in the right cerebellum. The coordinates
of the peak voxels were the same as Table 2. *Still significant after Bonferroni correction of 0.05/15 = 0.0033.

and DC were calculated. For the ReHo calculation, the Kendall
concordance coefficient was calculated for the time courses of
seven neighboring voxels. We did not use the conventional 27
neighboring voxels because we were interested in subcortical
areas, most of which have a small volume. For DC calculation,
a correlation coefficient r > 0.25 was set as the threshold,
and the negative connections were excluded when calculating
weighted DC maps because of their ambiguous interpretation

(Murphy et al., 2009; Weissenbacher et al., 2009; Wang et al.,
2011). A predefined gray matter mask provided by SPM123, with
tissue probability >20%, was used to restrict the DC calculation
within the gray matter (Zuo et al., 2012). Spatial smoothing
with a Gaussian kernel of 6 mm FWHM was then applied to the
mReHo (ReHo value of each voxel divided by the mean ReHo

3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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TABLE 3 | Differences between stimulation conditions in the right cerebellum
(paired t tests).

Mean ± SD t value p value

ReHo (Right Cerebellum VIII/VIIb)

High vs. Low 0.13 ± 0.24 3.13 0.004

High vs. Sham 0.22 ± 0.29 4.22 0.0002∗

Low vs. Sham 0.09 ± 0.19 2.48 0.019

DC (Right Cerebellum VIII/VIIb)

High vs. Low 0.12 ± 0.23 2.96 0.006

High vs. Sham 0.20 ± 0.22 4.95 0.00003∗

Low vs. Sham 0.08 ± 0.17 2.56 0.016

ReHo (Right Semi-Lunar Lobule)

High vs. Low 0.23 ± 0.30 4.16 0.0002∗

High vs. Sham 0.17 ± 0.33 2.80 0.009

Low vs. Sham −0.06 ± 0.28 −1.17 0.253

ReHo (Right Brainstem)

High vs. Low 0.15 ± 0.21 4.11 0.0003∗

High vs. Sham 0.01 ± 0.20 0.25 0.805

Low vs. Sham −0.14 ± 0.17 −4.73 0.00005∗

ReHo (Right Cerebellum Crus1)

High vs. Low −0.13 ± 0.18 −3.98 0.0004∗

High vs. Sham −0.15 ± 0.17 −4.87 0.00003∗

Low vs. Sham 0.03 ± 0.19 −0.74 0.463

∗Surviving Bonferroni correction of 0.05/15 = 0.0033. SD, standard deviation;
ReHo, regional homogeneity; DC, degree centrality.

value of the whole gray matter mask) and weighted positive mDC
(weighted positive DC value of each voxel divided by the mean
weighted positive DC value of the whole gray matter mask) maps.

Statistical Analysis
Univariate Analysis
One-way ANOVAs were conducted on the ReHo change and
DC change (post- minus pre-rTMS) to explore differences
between the three stimulation conditions (Low, 1 Hz; High,
10 Hz; and Sham) within the predefined gray matter mask.
The ANOVA F maps were corrected using Gaussian random
field (GRF) correction (single voxel p < 0.001, cluster level
p < 0.05). The ReHo and DC values of the peak voxels in the
surviving clusters were extracted, and then were entered into
SPSS (v204) for further analysis. Paired t tests were performed
between stimulation conditions (High vs. Low, High vs. Sham,
and Low vs. Sham).

Multivariate Analyses Using SVM
Dimensionality reduction
The F map was thresholded at p < 0.05 (uncorrected) to
generate a mask for the feature extraction of each condition
(High, Low, and Sham) and each metric (the ReHo and DC
value of post- minus pre-rTMS for each condition). Thus, 4267
voxels from the gray matter mask (67,541 voxels) were used
for SVM analysis.

Grouping for PAIR SVM
PAIR SVM is a new method for differentiating two conditions
in the context of a within-group design. It has been found
to show better generalization performance in an independent
dataset than using the UNPAIR method (Zhou et al., 2017)
and was therefore implemented in the current study. To

4https://www.ibm.com/analytics/spss-statistics-software

FIGURE 4 | Paired t tests between post- and pre-rTMS on ReHo and DC value of the peak voxel of F maps in the right cerebellum. The coordinates of the peak
voxels were the same as Table 2. *Still significant after Bonferroni correction of 0.05/15 = 0.0033.
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explain, we take the comparison of ReHo change (ReHo
value of post- minus pre-rTMS) between High vs. Sham as
an example. The 31 participants were randomly divided into
groups A and B (n = 15 and 16, respectively). Group A was
assigned to be the “High minus Sham” group (labeled “ + 1”)
and group B was assigned to be the “Sham minus High”
group (labeled “−1”).

SVM Classification
The linear kernel was used to extract the weight for each feature
(Fu et al., 2008). The sequential minimal optimization (SMO)
algorithm was used to handle the very large training datasets
with high speed (Platt, 1998). For optimal generalization, we
used split-half cross-validation, which is more stringent than
other methods such as n-fold or leave-one-out validation. Half
of the dataset (15 or 16 random samples from group A and
group B, respectively) was randomly selected to train the SVM
model, and the remaining half was used as test data. We
then obtained the classification accuracy and corresponding
weighted contribution vector. These calculations were repeated
100 times, and then the mean accuracy and the mean weighted
vector were obtained.

RESULTS

ANOVAs showed significant effects between the three conditions
(Low, High, and Sham) in the right cerebellum VIII extending
to VIIb for both ReHo and DC (Figure 2 and Table 2). Paired
t tests showed that the high-frequency stimulation (10 Hz)
revealed a significantly larger change than the sham stimulation
(mean ± SD = 0.22 ± 0.29, t = 4.22, p = 0.0002, Bonferroni
corrected, i.e., 0.05/15 = 0.0033; Figure 3 and Table 3) for ReHo,
and was significantly larger change than the sham stimulation
(mean ± SD = 0.20 ± 0.22, t = 4.95, p = 0.00003, Bonferroni
corrected, i.e., 0.05/15 = 0.0033; Figure 3 and Table 3) for DC.
The results of ReHo and DC were similar, while with a bit
slightly more regions for ReHo. Post- vs. pre-rTMS effects of each
stimulation condition is shown in Figure 4.

For the SVM, the classification accuracy of the split-half
validation ranged from 93.18 to 97.24%, specifically: 94.7%
(ReHo) and 93.18% (DC) for the High vs. Low condition, 95.95%
(ReHo) and 94.32% (DC) for the High vs. Sham, and 97.24%
(ReHo) and 95.57% (DC) for the Low vs. Sham (Table 4).
The spatial pattern of voxel-level contribution for discriminative
results was very similar to the spatial patterns of paired t tests
between stimulation conditions (ReHo: Figure 5, DC: Figure 6).

To compare against the SVM, we calculated the area under
the curve (AUC) of the receiver operating characteristic (ROC)
of the peak voxels of the F maps of ReHo (x = 39, y = −60,
z = −54) and DC (x = 42, y = −57, z = −54), respectively. The
pairwise comparisons showed 63–84% accuracy (Figure 7 and
Table 4). As expected, the results were similar to the results of
the pairwise t tests (Figures 5, 6 and Table 3). The comparison
of ReHo and DC values for the high-frequency (10 Hz) condition
vs. sham condition showed the most significant difference in the
right cerebellum.

TABLE 4 | The mean classification accuracy of split-half validation and the area
under the curve (AUC) of the receiver operating characteristic (ROC) of the peak
voxels of the F map of ReHo and DC for pairwise comparison between rTMS
conditions.

PAIR SVM

High Low Sham

ReHo

High 94.70% 95.95%

Low 97.24%

Sham

DC

High 93.18% 94.32%

Low 95.57%

Sham

AUC of the ROC

ReHo

High 0.72 0.84

Low 0.68

Sham

DC

High 0.73 0.82

Low 0.63

Sham

ReHo, regional homogeneity; DC, degree centrality; SVM, support vector machine;
AUC of the ROC, the area under the curve of the receiver operating characteristic.

DISCUSSION

Effects of rTMS in the Cerebellum
The motor cortex is a widely used stimulation target for rTMS
(Lefaucheur, 2019). Many studies have claimed that FC alters
after rTMS on the motor cortex (Nettekoven et al., 2014;
Esterman et al., 2017; Ji et al., 2017; Hawco et al., 2018; Riedel
et al., 2019; Shang et al., 2019). The seed selection and candidate
networks varied among these studies. Although these findings are
helpful for understanding the mechanisms of rTMS modulation,
these results are less helpful to precisely localize the changes
in activity, and hence are difficult to translate into clinical
practice as they do not provide a precisely focused target for
brain stimulation. We found significant condition effects of
rTMS on local connectivity (ReHo) and global connectivity (DC)
in areas VIII/VIIb of the right cerebellum (ipsilateral to the
finger movement) in healthy participants. The cerebellum is
involved in motor function via the cerebello-thalamo-cortical
circuit (Middleton and Strick, 2001). The VIIb region receives
projections from neurons in the subthalamic nucleus and input
from the contralateral premotor areas (Wu and Hallett, 2013).
The current rTMS study stimulated the left motor activation
area and found significantly increased ReHo and DC in the right
cerebellum in the high-frequency (10 Hz) condition, but not in
the low-frequency or sham conditions (Figures 3, 4). The motor
cortex has been commonly considered a stimulation target of
rTMS treatment of movement disorders (Wagle Shukla et al.,
2016). The current finding may therefore have direct importance
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FIGURE 5 | Left column: Brain regions that showed different contributions between stimulation conditions identified by ReHo maps within the mask of uncorrected F
map of ANOVA. Right column: Paired t tests between stimulation conditions on ReHo maps within the mask of uncorrected F map of ANOVA.

for the rTMS treatment of movement disorders with dysfunction
of the motor-thalamo-cerebellum circuit.

The Classification Accuracy of the PAIR
Method for SVM
It has been reported that the PAIR SVM method performs
better than the conventional UNPAIR method in generalization

to a completely new dataset in a within-group design (Zhou
et al., 2017). We found the discriminative accuracy to be 93–
97% (Table 4), with no apparent difference in accuracy across
pairwise comparisons or across metrics (ReHo vs. DC). The
spatial pattern of the weighted contribution identified by the
classification was very similar to that of the paired t test maps
of pairwise comparison between rTMS conditions (Figures 5, 6).
In contrast to the high accuracy of SVM, no any single
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FIGURE 6 | Left column: Brain regions that showed different contributions between stimulation conditions identified by DC maps within the mask of uncorrected F
map of ANOVA. Right column: Paired t tests between stimulation conditions on DC maps within the mask of uncorrected F map of ANOVA.

voxel could correctly differentiate between rTMS conditions,
with the highest showing accuracy of only 84% (AUC of the
ROC, Table 4). The SVM results suggest that both high- and
low-frequency rTMS significantly modulated brain activity in
widespread but distinct ways. Although only the right cerebellum
survived correction for multiple comparisons, other motor-
related regions including the left cerebellum and the bilateral
sensorimotor cortices were also modulated by high- and low-
frequency rTMS (Figures 5, 6). Although the effect size of
these brain regions was small, combinations of these brain

regions through the SVM could accurately differentiate between
rTMS conditions.

The Metrics ReHo and DC
Regional homogeneity reflects the temporal local
synchronization or local connectivity of a given voxel with
its nearest neighbors (7, 19, or 27 voxels) (Zang et al., 2004).
DC calculates the total number of connections or total weighted
connectivity of a given voxel with all other voxels in the brain
(Buckner et al., 2009). ReHo has been reported to be decreased

Frontiers in Neuroscience | www.frontiersin.org 9 March 2020 | Volume 14 | Article 18653

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00186 March 18, 2020 Time: 17:10 # 10

Wang et al. rTMS Remote-Effect in the Brain

FIGURE 7 | The area under the curve (AUC) of the receiver operating
characteristic (ROC) of the peak voxels of the F maps of ReHo (x = 39,
y = -60, z = -54) and DC (x = 42, y = -57, z = -54).

in the cerebellum in patients with movement disorders (Jiang
et al., 2016; Liu et al., 2017). The current findings demonstrate
that the ReHo value in the right cerebellar regions VIII/VIIb can
be significantly enhanced by high-frequency rTMS in healthy
participants, but not in low-frequency or sham stimulations.
Although the patterns of DC and ReHo were very similar
(Figure 2 upper vs. lower; Figure 5 vs. Figure 6), they did show
slight discrepancies. Future studies should further compare
the two methods.

Distinct Effects of High- and
Low-Frequency rTMS
A recently published review supported the viewpoint that high-
frequency rTMS will recruit more neural networks than low-
frequency rTMS (Lefaucheur, 2019). Since TMS activates circuits,
the neurobiological changes in activity can be observed at areas
distant from the stimulation site. For example, stimulating the
precentral gyrus contralateral to a source of pain at a frequency
of 5–20 Hz induces analgesic effects (Lefaucheur, 2016). Low-
frequency (≤1 Hz) and high-frequency (≥5 Hz) stimulation
are two classic rTMS paradigms and cause inhibitory effects
through long-term depression (LTD) of synaptic transmission,
and excitatory effects through long-term potentiation (LTP),
respectively (Chen et al., 1997; Pascual-Leone et al., 1998; Post
et al., 1999). Low-frequency pulsed TMS reduces the amplitude
of MEPs, while high-frequency pulsed TMS enhances MEP
amplitude (Lefaucheur, 2019). However, there is no evidence to
assume from the MEP amplitude that inhibitory/excitatory effects

are due to the LTD/LTP in other rTMS applications, such as
rTMS treatment (Lefaucheur, 2019). The rTMS aftereffect highly
depends on the property of the brain network and the status
of the population (Lefaucheur, 2019). This makes it difficult to
say whether low-frequency rTMS induces inhibitory effects, or
high-frequency rTMS induces excitatory effects on brain function
in remote regions. For instance, increased FC between the left
posterior inferior parietal lobule and hippocampal formation was
reported after low-frequency rTMS, and decreased FC between
default mode network nodes has been reported after high-
frequency rTMS (Eldaief et al., 2011). A similar paradox occurs
with theta burst stimulation (TBS), another rTMS technique.
Intermittent TBS (iTBS) is thought to be excitatory, and
continuous TBS (cTBS) is thought to be inhibitory (Rossini et al.,
2015). Nevertheless, increased FC was found after stimulation
of the prefrontal cortex by cTBS in healthy controls (Dan et al.,
2016), and decreased FC has been reported after stimulation
of the parieto-occipital vertex by iTBS in patients after stroke
(Volz et al., 2016).

The therapeutic importance of rTMS results from the
modulatory effects it can mediate on certain abnormal brain
areas. The results of the present study provide evidence for one
such rTMS paradigm that has these effects: a total of 1800 10-
Hz rTMS pulses successfully enhanced the ReHo and DC value
in the cerebellum VIII/VIIb. The potential clinical significance
is that high-frequency rTMS of the motor cortex could be
applied to patients with movement disorders whose pathology
is characterized by decreased ReHo or DC in the cerebellum.
We also show that self-initiated finger movements are a useful
task for individualized target localization. Multi-session rTMS
could induce more reinforced and prolonged aftereffects as 5-Hz
rTMS of the motor area for 2 weeks provides an improvement in
clinical symptoms and increases the rate of return to normal low-
frequency fluctuations (ALFF) (Liu et al., 2015). Nevertheless,
evidence from neuroimaging studies can only provide us with
suggestions for the modulatory effects of rTMS on brain function.
Clinical improvement is the ultimate aim of rTMS interventions.
More studies should be conducted to outline the underlying
mechanisms involved.

CONCLUSION

In conclusion, high-frequency (10 Hz) but not low-frequency
(1 Hz) rTMS on the left motor cortex significantly increased
ReHo and DC in the right cerebellum VIII/VIIb ipsilateral to
the finger movement. SVM multivariate analysis showed 93–97%
accuracy. Our results suggest that univariate and multivariate
analysis, such as SVM, are mutually complementary. The
univariate analysis could precisely localize the rTMS effect at
a voxel level, illustrated by the finding that high- but not
low-frequency rTMS enhanced ReHo and DC in the right
cerebellum. Meanwhile, the multivariate analysis suggested that
both high- and low-frequency rTMS significantly modulate brain
activity in a widespread but distinct manner. Future studies
should investigate which specific symptoms of movement-related
disorders could be modulated by high- or low-frequency rTMS.
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LIMITATIONS

A few limitations of the current study should be addressed
here. (1) It was a small sample study with a single session of
stimulation. This could be the reason for the weak effect. (2)
Although we used a stringent validation, the split-half test, the
feature extraction step of the F map could be considered “double
dipping” or circular analysis. Validation in a new dataset will
provide a more reliable conclusion.
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Introduction: Developing a machine learning-based approach which could provide
quantitative identification of major depressive disorder (MDD) is essential for the
diagnosis and intervention of this disorder. However, the performances of traditional
algorithms using static functional connectivity (SFC) measures were unsatisfactory. In
the present work, we exploit the hidden information embedded in dynamic functional
connectivity (DFC) and developed an accurate and objective image-based diagnosis
system for MDD.

Methods: MRI images were collected from 99 participants including 56 healthy controls
and 43 MDD patients. DFC was calculated using a sliding-window algorithm. A non-
linear support vector machine (SVM) approach was then used with the DFC matrices
as features to distinguish MDD patients from healthy controls. The spatiotemporal
characteristics of the most discriminative features were then investigated.

Results: The area under the curve (AUC) of the SVM classifier with DFC measures
reached 0.9913, while this value is only 0.8685 for the algorithm using SFC measures.
Spatially, the most discriminative 28 connections distributed in the visual network (VN),
somatomotor network (SMN), dorsal attention network (DAN), ventral attention network
(VAN), limbic network (LN), frontoparietal network (FPN), and default mode network
(DMN), etc. Notably, a large portion of these connections were associated with the
FPN, DMN, and VN. Temporally, the most discriminative connections transited from the
cortex to deeper regions.

Conclusion: The results clearly suggested that DFC is superior to SFC and provide
a reliable quantitative identification method for MDD. Our findings may furnish a better
understanding of the neural mechanisms of MDD as well as improve accurate diagnosis
and early intervention of this disorder.

Keywords: sliding window, dynamic brain connectivity, static brain connectivity, resting state, machine learning
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INTRODUCTION

Major depressive disorder (MDD) is characterized by depressed
mood, lack of interest, and motivation, as well as impaired
cognitive function and attention, etc. (Friedman and Anderson,
2014; Hamilton et al., 2015; Otte et al., 2016). This disorder
represents a major public health issue and has been predicted
to be a leading cause of disability (Wiles et al., 2013). Recent
studies leveraging neuroimaging techniques have deepened our
understanding of the neural mechanisms of MDD and revealed
abnormalities in brain function and structure in these patients
(Parlar et al., 2017). Current diagnosis of MDD is basically based
on structural interview of the patients, which is expert dependent.
Developing a machine learning-based approach, which could
possibly realize the quantitative characterization of the brain
imaging data and achieve an objective prediction of the brain
disorders (Gong and He, 2015), deserves more attention.

Neuroimaging studies based on functional magnetic
resonance imaging (fMRI) have provided rich evidence of
abnormalities in neural activity and functional connectivity of
multiple brain regions and networks of patients with MDD,
including cingulate cortex, precuneus, and medial prefrontal
cortex (mPFC) of the default mode network (DMN), dorsolateral
prefrontal cortex (dlPFC) of the central executive network
(CEN), insula of the salience network and the amygdala,
hippocampus, etc. (Hamilton et al., 2015; Mulders et al., 2015;
Otte et al., 2016; Ambrosi et al., 2017). These findings collectively
point toward the fact that aberrant functional connectivity can
be used as an imaging metric to provide new opportunities
for accurate diagnosis of MDD. Likewise, recent studies used
fMRI-based functional connectivity measures as eigenvalues to
distinguish MDD patients from healthy subjects. Then, after
leave-one-out cross validation (LOOCV), it achieved an accuracy
over 70% by support vector machine (SVM) or partial least
squares (PLSs) classifiers (Cao et al., 2014; Bhaumik et al., 2016;
Yoshida et al., 2017).

Previous studies on resting-state functional connectivity were
mainly based on the temporal correlation between regional
blood oxygen level-dependent (BOLD) time courses, barring
an implicit assumption that functional connectivity is temporal
stationary (Sporns, 2011; Jie et al., 2018). As a matter of
fact, a number of researches have revealed that functional
connectivity may experience a dynamic change over time
(Calhoun et al., 2014), which, to a certain extent, might
be attributed to the neuronal origin and related to the
cognitive and vigilance state variations (Chang et al., 2013;
Thompson et al., 2013; Jie et al., 2018). By measuring time-
varying functional connectivity among brain regions, dynamic
functional connectivity (DFC) analysis furnishes a more detailed
description of interactions in the brain. Indeed, some studies
have found that the DFC analysis produced time-varying
co-activation patterns, which the traditional static functional
connectivity (SFC) analysis was not able to obtain (Xiao and
Duyn, 2013). Thus, DFC has been applied to underlie the
pathophysiology of diseases such as autism spectrum disorder
(ASD), Parkinson’s disease, migraine, and seizure, etc. For
example, increased dynamics of thalamic to sensory network

and decreased dynamics of global network were detected in a
patient with ASD (Fu et al., 2019). Clustering analysis showed
that the stability of weak connection decreased while that
of strong connection increased in patients with Parkinson’s
disease (Kim et al., 2017), similar results were found in
interictal migraine patients (Tu et al., 2019), which imply
dysrhythmia in brain connections in these diseases. Besides, a
high accuracy was achieved by classifying seizure patients and
normal people with DFC analysis, which may help to provide
a better understanding of the underlying mechanisms of this
disease (Liu et al., 2017). In addition, recent research has shown
that the metastable state calculated through DFC analysis was
correlated to the stage of consciousness (Hudson et al., 2014;
Cavanna et al., 2017), and dynamic fluctuations in functional
connectivity were also suggested to be related to individual
cognitive states and psychological activities (Shine et al., 2016;
Pang et al., 2018).

Dynamic connectivity analysis in patients with depression
has provided new insights into the neural mechanisms of this
disorder. In particular, Kaiser et al. (2016) found that meditation
in depressed patients is associated with abnormal communication
patterns of brain fluctuations (Kaiser et al., 2016). Zhi et al.
(2018) used the sliding-window algorithm to identify three
types of node damage which were related to the severity of
depressive symptoms and cognitive ability. Wang et al. (2019)
found decreased DFC variability between the anterior DMN and
the right CEN compared with controls (Wang et al., 2019). It is
noteworthy that initial attempts have been made to validate that
the accuracy of a machine learning-based diagnosis system could
be largely improved by using DFC metrics, instead of traditional
SFC measures (Zheng et al., 2019).

In the present work, we aimed to develop a machine learning-
based scheme for discrimination of patients with MDD by
leveraging the hidden information embedded in DFC in order
to provide accurate, objective, and image-based diagnosis of
MDD. Resting-state fMRI data were collected from 56 healthy
controls and 43 MDD subjects. DFC was calculated using the
sliding-window algorithm which is the most widely used method
to investigate DFC by calculating functional connectivity in
a succession of neighboring time windows (Hutchison et al.,
2013a). Then, a non-linear SVM classifier-based recursive feature
elimination (SVM-RFE) approach was performed to select the
optimal feature subset for classification model development
with a training dataset. The performance of the established
model was then validated with a testing dataset and achieved
a favorable accuracy and area under the curve (AUC) of
receiver operating characteristic (ROC) of 0.9975. Furthermore,
we investigated the spatial and temporal characteristics of the
most discriminative connections. The results revealed that the
most discriminative connections formed core brain networks
including the frontoparietal network (FPN), visual network
(VN), DMN, etc. The current study demonstrated that by
combining features obtained from DFC analysis with advanced
machine learning techniques, we can provide an objective
and reliable image-based diagnosis system for MDD. More
importantly, these findings could also provide novel insights into
the underlying neural mechanisms of depression.
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MATERIALS AND METHODS

Participants
Forty-three eligible right-handed MDD patients (13 male and
30 female) were recruited from Xijing Hospital. Fifty-six healthy
controls (all right-handed, 30 male and 26 female) were recruited
via advertising. The baseline demographics of the subjects are
shown in Table 1. Two-sample t-tests were performed to verify
whether there are significant intergroup differences of age and
educational level. A chi-square test was applied to verify whether
the constituent ratio of gender was significant between the two
groups. Statistical analyses of this study were performed by using
IBM SPSS statistics (v. 22.0, Armonk, NY, United States). The
level of confidence was kept at 95%, and results with p < 0.05
were considered significant.

Patients were tallied with the diagnostic criteria of Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV) or ASD for a current episode of MDD as assessed
by two experienced psychiatrists. The severity of depression
and anxiety was assessed by Hamilton Depression Rating Scale
(HAMD, 24 items) and Hamilton Anxiety Rating Scale (HAMA),
respectively. Exclusion criteria included incomplete HAMD test,
relevant medical or neurological disorders, and incorrect head
position, etc. Each of the 99 subjects was informed of the aims
and procedures of the research and signed an informed consent.
The experiment was carried out in strict accordance with the
requirements of the Ethics Committee in Xijing Hospital.

Acquisition and Preprocessing fMRI Data
The resting-state fMRI data were acquired at Xijing Hospital
using a GE Discovery MR750 3.0 T MRI system. fMRI data were
gathered from 99 subjects who completed the functional scan
with the parameters set as follows: TR = 2,000 ms, TE = 30 ms,
flip angle = 90◦, FOV = 240 mm, matrix = 64 × 64, number
of slices = 45, slice thickness = 3.5 mm, spacing = 0.0 mm.
Except for the functional data, a whole-brain T1 structural image
was obtained for each subject with the following parameters:
TR = 8.2 ms, TE = 3.2 ms, FOV = 256 mm, matrix = 256 × 256,
flip angle = 12◦, slice thickness = 1 mm, no spacing.

The procedure of data analysis was shown in Figure 1. Data
were preprocessed using Data Processing Assistant for Resting-
State fMRI1 (DPARSF, version 2.3) (Yan et al., 2016). The first

1http://www.rfmri.org/DPARSF

TABLE 1 | Demographics for the MDD patients and HCs.

HC MDD p-value

Age 32.28 ± 10.80 35.23 ± 11.23 0.157

Gender (male/female) 30/26 13/30 0.013

Educational qualifications (year) 15.78 ± 4.33 11.44 ± 3.33 <0.001

HAMD – 23.35 ± 3.33l –

HAMA – 18.04 ± 3.33l –

Data are shown as (mean ± SD). HAMA, Hamilton Anxiety Rating Scale;
HAMD, Hamilton Depression Rating Scale; HC, healthy control; MDD, major
depressive disorder.

10 scans of the resting-state fMRI images were discarded in
order to eliminate the effects of magnetic field instability. The
remaining 200 fMRI images were then corrected for slice timing,
compensating the differences in acquisition time between slices.
Then, realignment was performed to correct for head motion
between fMRI images at different time points by translation
and rotation. The high-resolution structural image was then
co-registered with functional images and segmented into gray
matter, white matter, and cerebrospinal fluid (CSF) signal. The
deformation parameters from the structural image to the MNI
template were then used to normalize the resting-state fMRI
images into a standard space. Next, a Gaussian filter with a half
maximum width of 6 mm was used to smooth the functional
images. Then, the linear trends were removed. The effects of
white matter signal, CSF signal, and Friston 24 head motion
parameters were regressed out. Finally, a band-pass filter of
0.01∼0.1 Hz was used for filtering.

Dynamic Functional Connectivity
Analysis
The DFC analysis was performed by GRETNA2 (v2.0.0).
The brain was parcellated into 274 regions according to the
brainnetome atlas3. However, one of the regions numbered 255
with a low probability density was not identified, thus 273 regions
were left. Then, Pearson’s correlation coefficient was used for
measuring the functional connectivity. DFC between any pair
of these regions was then calculated using a sliding-window
algorithm. Sliding-window algorithm is one of the most widely
used to evaluate dynamic brain functional connectivity. The
functional connectivity between two nodes was first calculated
using a subsection of the data within a time window. The window
was then slid one step, and the calculation of the functional
connectivity was repeated within the new time window. As
recommended in previous studies, the window width should be
no less than 1

/
fmin, fmin represents the minimum frequency of

the signal (Shakil et al., 2016; Liao et al., 2018; Guo et al., 2020).
In the current study,fmin was 0.01 Hz and the TR was 2 s, thus
the window width was set to 100 s (50 time points), and the
step length was set to two time points. Finally, we obtained
76 DFC matrices for each subject, with 273 × 273 variables
from each matrix.

Feature Extraction and Selection
The upper diagonal elements of the functional connectivity
matrices were extracted and 76 × 37,128 = 2,821,728 features
were left for each subject to constitute the entire feature set.
A linear model was used before classification to regress out the
effects of gender and educational level. Then, a two-sample t-test
(p < 0.001, uncorrected) was applied to select features with
significant intergroup differences between the MDD patients and
the health controls, resulting in a 1 × 5,635 feature vector for
each subject which is the total features used in the classification.
Further considering the high-throughput features extracted from
the relatively limited subjects would inevitably cause redundancy

2https://www.nitrc.org/projects/Gretna
3http://atlas.brainnetome.org/
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FIGURE 1 | The data analysis pipeline. After data acquisition and preprocessing, sliding-window algorithm was applied with the window width set to 50 time points
and the step size set to two time points to calculate dynamic functional connectivity (DFC). For each subject, a 1 × 5,653 DFC matrix was obtained after two sample
t-test and employed as features for classification with a non-linear support vector machine (SVM) classifier.

and over fitting in classification, in this study, a non-linear SVM-
RFE approach was employed afterward to find an optimal feature
subset with the best discriminative power for MDD identification.
Detailed descriptions of this widely applied approach were
presented in our recent studies (Xu et al., 2019a,b).

Performance Evaluation Using the
Prediction Model Developed by the
Selected Features
With the optimal feature subset selected, the prediction model
was then developed for MDD identification. The non-linear SVM
classifier with the radial basis function kernel was implemented
using the widely used LIBSVM toolbox for model construction
and performance evaluation (Chang and Lin, 2011). Labels of the
patient group were set as “+1,” and that of the healthy controls
were set as “–1.” The grid search approach was performed
to select the optimal parameters “-c, -g” for the classification
model construction. Considering the limited sample-set size, an
external 10-fold cross validation (CV) strategy with 100-round
classifications was used to fully evaluate the performance. This
strategy first randomly and almost evenly divides the entire
sample set into 10 subsets. Then, nine subsets are used to train
the classifier and the remaining one subset is used to validate
the trained classifier. After 10 subsets are successively validated,
one round classification is finished and the average performance

can be obtained. Owing to the random allocation of the 10-
fold subsets, only one round classification may not well reflect
the overall performance of the samples. Instead, the procedures
above are usually repeated for 100 rounds, and the final average
performance after all these rounds classifications can be achieved.

In order to compare the prediction performance of the current
results with that of using other brain templates, the widely used
Anatomical Automatic Labeling (AAL) template with 116 brain
regions was adopted to repeat the steps above, including DFC,
SFC feature extraction, and feature selection and classification.

Finally, the extracted DFC and SFC features were combined
to classify the MDD patients from the healthy controls
in both templates.

In order to verify the reliability, consistency, and
generalizability of the proposed method, the database was
further divided into the training set (including 73 subjects with
33 MDD patients and 40 healthy controls) and the testing set
(including 26 subjects with 10 MDD patients and 16 healthy
controls), accounting for about 80 and 20% of the whole datasets,
respectively. The baseline demographics of the training set
subjects are shown in Supplementary Table S1, the testing set
subjects are shown in Supplementary Table S2. Then, a two-
sample t-test was applied with all the features in the training set
to determine the features with significant intergroup differences
between MDD patients and the health controls. After that, these
features with significant differences in the training set were
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further selected using the SVM-RFE to determine an optimal
feature subset for model development. The performance of the
model was then validated using the testing set.

Relationships Between the Selected
Features and Clinical Variables in the
Major Depressive Disorder Group
We performed the Pearson’s correlation analysis between the
selected features and clinical variables including HAMD and
HAMA in the MDD group separately. Before the analysis, a linear
model was used before classification to regress out the effects of
gender and educational level.

RESULTS

Feature Selection and Performance
Evaluation
Considering the imbalance of sample size between the two groups
in this study, the AUC value was employed as the criterion for
optimal feature subset determination (Xu et al., 2019a,b). Finally,
a subset of 28 features with the highest AUC value of 0.9975 was
selected as the optimal feature subset for model construction, as
shown in Figure 2A.

At the same time, we compared the performances of the
system using features obtained from DFC matrices with that of
the system using features extracted from traditional SFC matrices.
SFC matrices that measured the average functional connectivity
were obtained by calculating the correlation between the whole
time-series of any two nodes. Thus, for each subject, SFC analysis
only resulted in one 273 × 273 functional connectivity matrix,
while DFC analysis obtained 76 273 × 273 matrices. Figure 2B
shows the diagnostic performances of the system with SFC
matrices. Apparently, the AUC of the system was higher when
using DFC matrices (0.9975) which embedded rich information
on time-dependent fluctuations in connections than those using
static connectivity matrices (0.8746). In addition, with the lack of
features extracting time-varying connections, more (14 for static
matrices compared with 28 for dynamic matrices) were required
for the system to achieve its highest AUC.

We further assessed the performances of the systems with
SVM and 10-fold CV (Figure 3 and Table 2). Figure 3 shows
the ROCs of models constructed with the most discriminative
features selected from the DFC and SFC metrics. The AUC value
of the model with 28 optimal DFC features was 0.9913 while
that of the model with 14 SFC features was only 0.8685. The
results apparently indicated the superiority of the DFC-based
classification model for MDD discrimination.

Then, we estimated the classification performance using the
optimal feature subset selected from the DFC-based features,
SFC-based features, and both of the DFC- and SFC-based features
with different brain templates.

With the Brainnetome atlas template, the performance of the
optimal feature subset selected from the DFC-based features in
the training set was much better than that of SFC, while the
performance of the optimal feature subset selected from the DFC-

and SFC-based features did not witness a dramatic increase, as
shown in Supplementary Figures S1, S2 and Supplementary
Tables S3, S4. When using the testing data for the performance
verification, we observed that the results of the DFC-based
optimal features were also the best, whereas the performance of
the other two optimal feature subsets received a dramatic decline,
indicating the low consistency and generalizability of the models
developed by using these two optimal feature subsets.

With the AAL atlas template, the performance of the
optimal feature subset selected from the DFC-based features
in the training set was also much better than that of
SFC, while the performance of the optimal feature subset
selected from of the DFC- and SFC-based features was
nearly the same with that of the DFC-based optimal features,
as shown in Supplementary Figure S3 and Supplementary
Table S5. When using the testing data for verification, we
also noticed that the performance of the DFC-based optimal
features was the best but was severely inconsistent with the
performance of using these optimal features in the training
set, as shown in Supplementary Figure S4 and Supplementary
Table S6.

All the results above conclusively reveal that the classification
model developed using the DFC-based optimal features extracted
from the brain regions using the Brainnetome atlas template
could be more powerful for the discrimination between the MDD
patients and the healthy people; the SFC-based features could
probably introduce certain feature redundancy that might further
impair the discriminative power of the prediction model.

Spatiotemporal Characteristics of the
Most Discriminative Dynamic Functional
Connections
In fact, the 28 most discriminative DFC connections were
28 abnormal DFCs in patients with MDD compared with
healthy controls. We further investigated the spatiotemporal
characteristics of the most discriminative dynamic functional
connections in patients with MDD. More specifically, the
28 abnormal DFCs involved seven different brain networks
and 40 different brain regions, distributed in 24 sliding
windows. Figure 4 shows the spatial pattern of these
connections which clearly suggested that these connections
form brain networks including the VN, somatomotor
network (SMN), dorsal attention network (DAN), ventral
attention network (VAN), limbic network (LN), FPN, and
DMN, etc. Table 3 provided more detailed information
on these connections with their discriminative power
(weight). According to Table 3, the connections that
demonstrated the highest discriminative power included
DFC connections between the inferior parietal lobule (IPL)
and middle frontal gyrus (MFG), between parahippocampal
gyrus and IPL, between cingulate gyrus and orbital gyrus.
Figure 5 shows the temporal characteristics of these
28 connections. The most discriminative connections
within each time window were depicted. We found that
over time, the brain area gradually penetrated from
the cortex to the deeper regions of the brain. More
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FIGURE 2 | Feature selection process of using the support vector machine–classifier-based recursive feature elimination (SVM-RFE) algorithm with 5,653 dynamic
functional connectivity (DFC)-based variables and 248 static functional connectivity (SFC)-based variables, respectively. Panel (A) represents the curve of the area
under the curve (AUC) values using the top n features from the DFC matrices, and the red dot in the local magnification of the curve stands for the highest AUC value
of 0.9975 achieved by the top 28 features. Panel (B) displays the curve of the AUC values using the top n features from the SFC matrix, and the blue dot in the local
magnification of the curve shows the highest AUC value of 0.8746 achieved by the top 14 features.

importantly, Figure 5 also implicated that the most
discriminative connections varied largely from one time
window to another. Thus, traditional SFC analysis which
is unable to capture the time-dependent variations in
functional connections would fail to detect these most
discriminative connections.

Relationship With Clinical Properties
In the analysis of correlations between the selected features
and clinical characteristics in the MDD group, we found that
the dynamic functional connection between fusiform gyrus and
inferior temporal gyrus was significantly negatively correlated
with HAMD scores, connections between basal ganglia and
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FIGURE 3 | Performance comparison of the 28 selected dynamic functional
connectivity (DFC)-based features and 14 selected static functional
connectivity (SFC)-based features with a non-linear support vector machine
(SVM) classifier and 10-fold cross validation (CV) strategy. The blue and red
curves represent the receiver operating characteristic (ROC) curves of using
the 28 and 14 optimal features, respectively.

inferior temporal gyrus, the precuneus and superior frontal
gyrus (SFG) were significantly positively correlated with HAMA
scores, connection between medioventral occipital cortex and
the amygdala was significantly negatively correlated with HAMA
scores. Figure 6 shows the details of relationships between DFC
features and clinical characteristics.

DISCUSSION

In this study, we developed a machine learning diagnosis
framework for patients with MDD based on subjects’ dynamic
resting-state functional connectivity patterns. Three main
findings emerged from the current study: (1) Patients with MDD
could be reliably differentiated from healthy controls based on
the patterns of resting-state DFC with a high accuracy of 0.9913
(10-fold CV). (2) Spatially, the most discriminative connections
formed core networks including the VN, SMN, DAN, VAN, LN,
FPN, and DMN, etc. (3) Temporally, the most discriminative
connections were not stationary as assumed by traditional SFC
analysis. On the contrary, these connections varied from the
cortex to deeper structures of the brain over time.

Static Functional Connectivity Analysis
Versus Dynamic Functional Connectivity
Analysis
Although the high-throughput feature set containing 5,635
variables were obtained from the upper diagonal elements
of the DFC matrices, they might not contribute equally
for the distinction between MDD patients and the healthy
controls. In fact, the features highly correlated with each
other or less capable of MDD identification would inevitably

TABLE 2 | Performance comparison between the optimal feature subsets
determined from DFC and SFC using the non-linear SVM classifier and 10-fold CV
with 100-round classifications.

Method Optimal
features size

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC

DFC 28 96.77 94.68 95.59 0.9913

SFC 14 76.19 83.05 80.07 0.8685

AUC, area under the curve; CV, cross validation; DFC, dynamic functional
connectivity; SFC, static functional connectivity; SVM, support vector machine.

cause redundancy for the classifier training, impairing the
overall discriminative power for MDD patients. Therefore,
the SVM-RFE approach was employed to determine an
optimal feature subset for prediction model construction
(Xu et al., 2019a,b). The classification performance of the
model using all the 5,635 variables and a non-linear SVM
classifier with LOOCV achieved the sensitivity, specificity,
accuracy, and AUC of 53.49, 71.43, 63.64%, and 0.7072,
respectively, whereas these metrics were greatly improved to
97.67, 94.64, 95.96%, and 0.9975 using the model constructed
by the 28 optimal features and the same classifier with
LOOCV. It apparently demonstrates the effectiveness and
great potential of SVM-RFE approach for redundancy
reduction, optimal feature determination, and performance
improvement. Concerning the LOOCV might introduce
the overtraining in the classification, the non-linear SVM
classifier with 10-fold CV was further employed to evaluate the
performance of the optimal features. The results demonstrate
the favorable robustness and consistency of the model
for MDD diagnosis.

As far as we know, most of the previous studies were
based on the resting-state functional connectivity, and the
accuracy of the distinction between MDD patients and the
healthy controls varied between 76.10 and 91.90% (Bhaumik
et al., 2017; Li et al., 2017; Yoshida et al., 2017; Zhong
et al., 2017). However, a growing number of studies suggest
that resting-state functional connectivity may hide some
information, which could be fully reflected in DFC (Zhang
et al., 2019; Zheng et al., 2019). In order to compare the
capability of the DFC and SFC matrices for the quantitative
characterization of patients with MDD, the prediction model
using the optimal features extracted from the SFC matrix was
also developed. The classification performance was apparently
inferior to that of the DFC-based prediction model, denoting
that the DFC might effectively describe the network changes
associated with the feelings and executive function that
closely relate to MDD, thus could obtain more excellent
classification performance when used for MDD identification
(Zhang et al., 2019).

The potential explanation of the superiority of the DFC-based
prediction model is that during the resting-state scanning,
subjects were required to simply close their eyes without
thinking about anything. However, there still exist mind
wandering and attention return. These cognitive processes
may lead to huge fluctuations of brain connections during
scanning (Chang and Glover, 2010). Such time-varying
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FIGURE 4 | The spatial distribution of the 28 most discriminative dynamic connections after feature selection. The size of the node represents the node degree,
while the color of the node represents the brain network that this node belongs to.

information of the spontaneous brain activity could not
be reflected in SFC but might be captured by DFC using
the sliding-window algorithm with appropriate window
width and step size.

Besides, the results of the DFC-based prediction model further
suggest that the present method could not only improve the
classification performance in comparison with state-of-the-art
approaches (Demirtas et al., 2016) but also shed light upon the
temporal patterns of brain activity and their applications in brain
disorder diagnoses.

Spatial Characteristics of the Most
Discriminative Connections
Using the SVM-RFE approach, we selected 28 optimal features
from 5,635 dynamic functional connections obtained in 76
time windows. The spatiotemporal characteristics of these most
discriminative connections were then investigated by mapping
these connections into the 76 DFC matrices to reconstruct
the spatial patterns and analyze the temporal characteristics
of these connections. Interestingly, we noted that although
several brain networks were implicated, a large portion of
these connections were associated with the FPN, VN, and
DMN. The findings indicated that these regions contributed
largely to accurate classification of MDD patients with healthy
controls and thus may play an important role in the neural
mechanisms of MDD.

The most discriminative connections formed several core
brain networks including the VN, SMN, DAN, VAN, LN,
FPN, and DMN, etc., suggesting that connectivity of these
networks may be disrupted in patients with MDD. The
results are in line with numerous previous studies that have
observed abnormal connectivity of these networks (Wang
et al., 2012; Wu et al., 2013, 2017; Hilland et al., 2018; Fan

et al., 2019; Yu et al., 2019). Among these networks, the
connection between MFG and IPL demonstrated the most
significant contribution to the accurate classification of MDD
patients with healthy controls. Previous researchers found
that MFG and SFG showed decreased functional connectivity
in MDD with robustness (Sheng et al., 2018; Yang et al.,
2019). Cui et al. (2018) found that the global functional
connectivity of the right IPL increased in MDD patients
compared with the control group in two distinct datasets,
and IPL is one of the discriminative effective connections
when distinguishing MDD patients and healthy controls in
a classification study with an accuracy of 91.67% (Geng
et al., 2018). More importantly, both of the MFG and
IPL are subregions of FPN, which is a cognitive control
network, especially a goal-directed regulation of attention
and emotion, etc. (Marek and Dosenbach, 2018). Leming
et al. (2019) found disruption of normative pathways in FPN
in MDD, and others found abnormal connections between
FPN and some networks such as DMN in MDD (Disner
et al., 2011). These results were consistent with those of a
cognitive model that disorders of goal-directed attention and
emotion can lead to excessive rumination (Kaiser et al., 2015).
Besides, another study also reported that three subnetworks
in the FPN of MDD patients had increased functional
connectivity before treatment and recovered after treatment,
which makes it a potential target for antidepressant therapy
(He Y. et al., 2018).

Default mode network is a central network for MDD which
was verified in numerous researches in the last decades, most
of results contribute to a conclusion that the aberrant function
and structure of it was related to depressive rumination. Kühn
et al. (2012) found that rumination was correlated negatively
with the volume of gray matter in the anterior cingulate cortex
and other regions. In the functional connectivity analysis, a
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meta-analytic result showed an increased connection between
DMN and subgenual prefrontal cortex, which was able to
predict rumination level (Hamilton et al., 2015). Besides, a
DFC analysis was conducted by Kaiser et al. (2016), and
they reported that the increased DFC between the mPFC
and the insula was correlated with the level of rumination.
However, a recent study applied a multicenter research with
1,642 participants and reached a conclusion that reduced
but not increased connection was only in recurrent MDD,
and this had a positive relation with symptom severity (Yan
et al., 2019). Our result also showed that the DFC between
the precuneus and SFG was significantly positively correlated
with HAMA scores.

VN was also an important region that contributed to
classification. Our findings are consistent with recent studies
that have noticed functional and structural abnormalities in the
VN in MDD patients. Zeng et al. (2012) used SFC analysis
to classify patients with MDD and healthy controls, and they
reported that the VN was among the most discriminative
regions (Zeng et al., 2012). Latterly, in the study of functional
connectivity density (FCD), a decrease in long-term FCD of
supraoccipital gyrus was found, suggesting that the visual
cortex is a key hub for MDD (Zou et al., 2016). In

TABLE 3 | The 28-dynamic function connectivities.

Number Functional connectivity Sliding time
window

Weight

(1) IPL_R_6_3 MFG_R_7_5 9 1.00

(2) IPL_L_6_6 PhG_R_6_2 64 0.96

(3) CG_R_7_4 OrG_L_6_2 14 0.93

(4) BG_R_6_3 INS_L_6_4 74 0.89

(5) VI_Vermis ITG_L_7_3 47 0.85

(6) LOcC_R_4_1 PCL_R_2_1 65 0.81

(7) Tha_L_8_5 BG_L_6_2 20 0.78

(8) FuG_R_3_1 ITG_L_7_4 7 0.74

(9) INS_L_6_5 MFG_R_7_4 10 0.70

(10) VIIIa_R IPL_R_6_4 71 0.67

(11) INS_L_6_3 MFG_L_7_3 51 0.63

(12) INS_R_6_1 IPL_L_6_6 76 0.59

(13) CG_R_7_7 OrG_R_6_3 42 0.56

(14) BG_R_6_2 IPL_R_6_1 2 0.52

(15) Tha_L_8_4 PrG_L_6_2 9 0.48

(16) BG_R_6_1 ITG_L_7_5 53 0.44

(17) VI_Vermis CG_R_7_6 63 0.41

(18) LOcC_R_4_1 PCL_R_2_1 66 0.37

(19) MTG_R_4_1 IFG_R_6_3 1 0.33

(20) VI_Vermis ITG_L_7_3 48 0.30

(21) Amyg_L_2_1 MVOcC_L_5_4 7 0.26

(22) FuG_R_3_1 IFG_L_6_3 20 0.22

(23) VI_Vermis CG_R_7_6 62 0.19

(24) CG_R_7_7 OrG_R_6_3 43 0.15

(25) IPL_R_6_3 MFG_R_7_5 12 0.11

(26) Amyg_L_2_1 MVOcC_R_5_2 55 0.07

(27) PCun_L_4_4 SFG_R_7_7 19 0.04

(28) BG_R_6_3 INS_L_6_4 73 0.00

addition, the structure of the VN was also impaired in the
patients. Significantly thinner calcarine gyrus was found in
MDD patients than in healthy controls (Suh et al., 2019).
Occipital bending is a powerful biomarker for depression,
and patients with occipital bending were reported to have
abnormal cortical thickness in the posterior occipital lobe
(Fullard et al., 2019). Notably, a recent study revealed that brain
regions associated with early awakening and visual processing
overlap in patients with MDD (Tao et al., 2018). Thus,
impairments in the visual areas may result in disruption of sleep
rhythms and symptoms of sleep disturbances generally seen in
patients with MDD.

When analyzing the temporal characteristics of the most
discriminative features, we found that these connections were
distributed in different time windows, reflecting the non-
stationary characteristics of functional connectivity over time
which has been consistently noticed in literature (Xiao and
Duyn, 2013; Bi et al., 2016; Demirtas et al., 2016; Kaiser
et al., 2016; Du et al., 2018; He C. et al., 2018). These
results thus provide an explanation why the classification
model with the DFC features could achieve better performances
than the model with SFC features, since traditional static
analysis may eliminate the contribution of the more volatile
connections (Britz et al., 2010; Chang and Glover, 2010;
Hutchison et al., 2013b). Furthermore, we noticed that the
most discriminative connections gradually changed from cortical
regions to deeper structures of the brain over time, suggesting
a switch between the cortical and limbic systems in the
patients at rest.

To summarize, the current study used a data-driven machine
learning approach to demonstrate that by leveraging valuable
information embedded in DFC metrics, we could provide
an accurate diagnosis scheme for patients with MDD. The
spatiotemporal characteristics of those most discriminative
connections could provide a novel insight into the neural
mechanisms of this disorder.

Limitations
This study has some limitations and caveats to bear in
mind. Although sliding-window algorithm is one of the
most widely used methods to investigate DFC, a recent
study has suggested that this algorithm tends to suppress
dynamic correlation, especially those that change rapidly
with time (Mokhtari et al., 2019). In addition, the step
size and window width should be carefully set for the
sliding-window algorithm. For the current study, we set the
window width to 50 time points and the step size to two
time points as suggested by previous studies (Guo et al.,
2020). We will further investigate the effects of different
parameter settings in future studies. Finally, we used machine
learning to successfully distinguish depression patients from
normal people. However, the sample size in the current
study is relatively small. Future studies may independently
replicate our results on large sample datasets. Despite many
limitations, our study suggested that by combining dynamic
resting-state functional connectivity analysis and machine
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FIGURE 5 | The temporal distribution of the 28 most discriminative dynamic connections after feature selection. (A–C) The connections in different time windows.
(D) The color of the inner circle represents the brain network that the node belongs to. The lines in the circle represent the connections, and the color of the
connections represents different windows.

FIGURE 6 | The relationship between the optimal dynamic functional connectivity (DFC) features and clinical characteristics in the major depressive disorder (MDD)
group.
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learning techniques, we were able to provide a reliable imaging-
based quantitative identification of major depression for early
intervention in MDD patients.
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The fast Fourier transform (FFT) is a widely used algorithm used to depict the amplitude
of low-frequency fluctuation (ALFF) of resting-state functional magnetic resonance
imaging (RS-fMRI). Wavelet transform (WT) is more effective in representing the complex
waveform due to its adaptivity to non-stationary or local features of data and many
varieties of wavelet functions with different shapes being available. However, there
is a paucity of RS-fMRI studies that systematically compare between the results of
FFT versus WT. The present study employed five cohorts of datasets and compared
the sensitivity and reproducibility of FFT-ALFF with those of Wavelet-ALFF based on
five mother wavelets (namely, db2, bior4.4, morl, meyr, and sym3). In addition to the
conventional frequency band of 0.0117–0.0781 Hz, a comparison was performed
in sub-bands, namely, Slow-6 (0–0.0117 Hz), Slow-5 (0.0117–0.0273 Hz), Slow-4
(0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2 (0.1992–0.25 Hz). The
results indicated that the Wavelet-ALFF of all five mother wavelets was generally more
sensitive and reproducible than FFT-ALFF in all frequency bands. Specifically, in the
higher frequency band Slow-2 (0.1992–0.25 Hz), the mean sensitivity of db2-ALFF
results was 1.54 times that of FFT-ALFF, and the reproducibility of db2-ALFF results was
2.95 times that of FFT-ALFF. The findings suggest that wavelet-ALFF can replace FFT-
ALFF, especially in the higher frequency band. Future studies should test more mother
wavelets on other RS-fMRI metrics and multiple datasets.

Keywords: amplitude of low-frequency fluctuation, wavelet transform, resting-state fMRI, sensitivity,
reproducibility

INTRODUCTION

Using resting-state functional magnetic resonance imaging (RS-fMRI), Biswal et al. (1995) observed
for the first time that the low-frequency (<0.1 Hz) fluctuation (LFF) was highly correlated between
sensorimotor cortices. Subsequently, RS-fMRI has attracted significant attraction. While vast
majority of RS-fMRI studies investigated brain networks by analyzing the relationship between
different brain areas, a few studies focused on the local brain activity.
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The amplitude of LFF (ALFF) is the simplest metric to
measure the local spontaneous activity of every single time series.
While most RS-fMRI studies used a conventional frequency band
of 0.01–0.08 Hz, sub-bands were also extensively used in research
on brain disorders (Liu et al., 2014; Giménez et al., 2017; Li
et al., 2017a,b; Wang et al., 2018) following the study by Zuo
et al. (2010) in which a few sub-bands were mentioned including
Slow-5 (0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–
0.198 Hz), and Slow-2 (0.198–0.25 Hz). Although the very low
frequency band < 0.01 Hz (Slow-6) was not included in most
studies, a few studies indicated that Slow-6 was meaningful
either physiologically (Lv et al., 2013; Zhang et al., 2015) or
pathophysiologically (Wang et al., 2015). Therefore, frequency-
dependent analysis should be included in studies in addition to
the conventional frequency band.

The ALFF is calculated with a fast Fourier transform (FFT)
(Zang et al., 2007), wherein the energy of a time series is
decomposed by Fourier transform (FT) into a set of sinusoidal
functions at different frequencies. However, the fMRI signals are
complex waveforms, and thus, it is difficult for a set of stationary
sinusoidal functions to detect transient phenomena, such as
spikes (Bullmore et al., 2004; Mallat, 2009). Patel et al. (2014)
mentioned “wavelet analysis offers a powerful set of tools for
analyzing the properties of complex time series (Daubechies and
Heil, 1992; Mallat, 2009).” The natural adaptivity of the wavelet
transform (WT) to local or non-stationary features of data and
many varieties of wavelet functions with different shapes being
available makes it more effective in depicting complex waveform
than the FFT (Bullmore et al., 2004; Zhang et al., 2014).

Currently, many RS-fMRI studies use WT. Most existing WT
RS-fMRI studies use WT for functional connectivity analysis
(Achard et al., 2006; Deshpande et al., 2010; Spoormaker et al.,
2010; Schröter et al., 2012; Yaesoubi et al., 2017; Váša et al.,
2018). In functional connectivity analysis domain, some studies
have analyzed the transformed wavelet coefficients (Achard et al.,
2006), whereas others have analyzed the transformed wavelet-
filtered time series (Xu et al., 2016) of certain frequency ranges.
As previously mentioned, functional connectivity describes the
relationship between different brain areas. ALFF describes the
activity of a single time series, and it is widely used for
precisely localizing abnormal brain activity. Another similar
metric is the power of the time series. It should be noted
that the power is proportional to the square of ALFF (Zang
et al., 2007). To the best of the authors’ knowledge, all ALFF
studies are based on FFT, and only two studies applied WT
to analyze the power of a single time series (Salomon et al.,
2011; Bajaj et al., 2013). Fox example, a study compared
WT-based power between two RS-fMRI conditions, i.e., acute
tryptophan depletion diet versus control diet (Salomon et al.,
2011). Although theoretically WT is more valid in depicting
complex time series than FFT, there is a paucity of studies
comparing the WT-based ALFF (Wavelet-ALFF) with the
FFT-ALFF. Moreover, there are several mother wavelet bases.
However, two existing WT-based power studies did not compare
different wavelets.

In the present study, we applied five mother wavelets, namely,
Daubechies 2 (db2) (Bullmore et al., 2004; Salomon et al., 2011;

Zhang et al., 2016), biorthogonal 4.4 (bior4.4) (Laine, 2000;
Van De Ville et al., 2003; Mutihac, 2006), Morlet (morl) (Chang
and Glover, 2010; Bajaj et al., 2013; Omidvarnia et al., 2017;
Yaesoubi et al., 2017), Meyer (meyr) (Behjat et al., 2015), and
Symlets 3 (sym3) (Khullar et al., 2011) to calculate ALFF and
compared the sensitivity and reproducibility between Wavelet-
ALFF and FFT-ALFF in multiple frequency bands and multiple
cohorts to explore whether Wavelet-ALFF is superior to FFT-
ALFF and as to which mother wavelet is more superior.

MATERIALS AND METHODS

Subjects and Data Acquisition
In this study, we used two MRI datasets, namely, EOEC
and ADHD-200. The reason for using the two datasets is
explained in Section “Discussion.” All data acquisitions were
approved by the corresponding institutional ethics committees.
All subjects provided the informed consent before data collection.
Additionally, all subjects did not have a history of neurological
disease or psychiatric disorders.

The EOEC dataset consisted of 31 right-handed healthy
subjects (21.8 ± 1.8 years old, 15 females). The subjects
experienced two 8-min RS-fMRI sessions, namely, one with eyes
open (EO) and the other with eyes closed (EC). The order of
the two sessions was counterbalanced across subjects. Specifically,
MRI data were collected by a GE MR750 3T scanner (GE
Healthcare, Milwaukee, WI, United States) with an eight-channel
head receiving coil. During data collection, foam cushions were
applied to reduce head movement, and earplugs were applied to
diminish scanner noise. The scanning parameters of RS-fMRI
data were as follows: TR/TE = 2000/30 ms, flip angle = 60◦, 43
slices, thickness/gap = 3.4/0 mm, and FOV = 220 mm× 220 mm
with an in-plane resolution of 3.44 mm × 3.44 mm. The
resting-state BOLD scan lasted for 8 min and produced 240
images. A three-dimensional (3D) T1 was obtained with a
spoiled gradient-recalled pulse sequence with the following
parameters: TR/TE = 8.1/3.1 ms, flip angle = 9◦, 176 sagittal slices,
thickness = 1 mm, FOV = 250 mm× 250 mm.

The ADHD-200 dataset was from the publicly available
dataset “The ADHD-200 Consortium”.1 The ADHD-200 dataset
contains the RS-fMRI and anatomical MRI data of children
with attention deficit hyperactivity disorder (ADHD) and
typically developing children (TDC). The ADHD-200 dataset
was provided by eight independent imaging sites and was
divided into the training and test sets by the ADHD-200
Global Competition. The current study only used the data
from four imaging sites, i.e., NYU, PKU1, PKU2, and PKU3
as described in a previous study (Wang et al., 2017). Given
that the PKU3 only has male subjects, the female subjects in
NYU, PKU1, and PKU2 were not analyzed. Additionally, the
current study also removed the data from left-handed subjects.
Finally, the data from 58 subjects in NYU, 30 subjects in PKU1,
56 subjects in PKU2, and 38 subjects in PKU3 were used

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
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after age matching between children with ADHD and TDC
(Wang et al., 2017).

Data Preprocessing
All the images were preprocessed via a MATLAB toolbox,
Data Processing Assistant for RS-fMRI (DPARSF) (Yan and
Zang, 2010) which was based on Statistical Parametric Mapping
(SPM8)2 and RS-fMRI Data Processing Toolkit (REST) (Song
et al., 2011). The first 10 time points (20 s) were discarded
because the subject took time to adapt to the scanning noise
and additionally for the scanner to calibrate (Zang et al., 2004;
Wang et al., 2017; Yan et al., 2019). Given that there were only
170 time points in NYU data, we retained 170 time points for
PKU1, PKU2, and PKU3.

The preprocessing steps included slice time correction,
head motion correction, spatial normalization (resampled into
3 mm × 3 mm × 3 mm), spatial smoothing (6-mm isotropic
Gaussian kernel), and nuisance covariates regression (head
motion effect using Friston 24-parameter model, white matter,
and cerebrospinal fluid signal).

Fast Fourier Transform–Amplitude of
Low-Frequency Fluctuation Calculation
The FFT-ALFF was calculated by using the DPARSF software
(Yan and Zang, 2010). As described in a previous study, the
averaged square root of power spectrum obtained with the
FFT across the given frequency band was considered as FFT-
ALFF (Zang et al., 2007; Zuo et al., 2010). The FFT-ALFF was
standardized by dividing each voxel’s FFT-ALFF by the “global”
mean FFT-ALFF (Zang et al., 2007). It should be noted that
“global” denotes a group mask. Some small parts of the brain were
not covered during scanning for some subjects in the ADHD-
200 dataset, and thus, we created a group mask in a manner
similar to a previous study (Wang et al., 2017) in which the brain
area of more than 80% of subjects were covered. The current
study calculated FFT-ALFF in the conventional band (0.0117–
0.0781 Hz) and five sub-bands as previously defined. These are
the Slow-6 (0–0.0117 Hz), Slow-5 (0.0117– 0.0273 Hz), Slow-
4 (0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2
(0.1992–0.25 Hz) (Zuo et al., 2010; Wang et al., 2015, 2017;
Zhang et al., 2015).

Wavelet–Amplitude of Low-Frequency
Fluctuation Calculation
In this study, the continuous WT (CWT) was implemented via
MATLAB 2014a Wavelet Toolbox (MathWorks, Natick, MA,
United States). The CWT wavelet coefficient is defined as the
convolution of the time series x(t) with the scaled and translated
version of a mother wavelet function ψk,s (t) (Torrence and
Compo, 1998) as shown below:

CWT(k, s) =
1
√
s
·
+∞

∫
−∞

x(t) ·ψ∗
(
t − k
s

)
dt (1)

2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

where x(t) denotes the time series, ψk,s (t) denotes the mother
wavelet function, s denotes wavelet scale (64 frequency bins in
the current study, between 0 and 0.25 Hz at an interval of
0.0039 Hz), k denotes the localized time index (k ∈ [1, 170] and
[1, 230] for EOEC dataset and ADHD-200 dataset, respectively),
and ∗ denotes the complex conjugate (Poza et al., 2014;
Morabito et al., 2017).

We used five mother wavelets which have been used in
previous fMRI literature, including db2 (Bullmore et al., 2004;
Salomon et al., 2011; Zhang et al., 2016), bior4.4 (Laine, 2000; Van
De Ville et al., 2003; Mutihac, 2006), morl (Chang and Glover,
2010; Bajaj et al., 2013; Omidvarnia et al., 2017; Yaesoubi et al.,
2017), meyr (Behjat et al., 2015), and sym3 (Khullar et al., 2011).
The traces for the five wavelets are shown in Supplementary
Figures S1–S5, respectively.

As mentioned in a previous study, “a relatively high value
of the coefficient is given in the product with the wavelet if
there exists a spectral component of the signal corresponding to
the value of s at a location k” (Morabito et al., 2017). Wavelet-
ALFF was calculated by first adding up the wavelet coefficients
at all time points for each frequency point, and the averaged
coefficient across a given frequency band was then obtained as
defined below:

Wavelet-ALFF =
1
m

n∑
i=1

∣∣CWTi,j
∣∣ , j = s1 . . . sm (2)

where
∣∣CWTi,j

∣∣ denotes the absolute value of wavelet coefficient
at time point i at a given frequency point j; n denotes the
total amount of wavelet coefficient at a given frequency point;
and m denotes the total number of frequency points across a
given frequency band. In the current study, we calculated the
Wavelet-ALFF in the conventional frequency band of 0.0117–
0.0781 Hz and five sub-bands, i.e., Slow-6 (0–0.0117 Hz), Slow-5
(0.0117–0.0273 Hz), Slow-4 (0.0273–0.0742 Hz), Slow-3 (0.0742–
0.1992 Hz), and Slow-2 (0.1992–0.25 Hz). For standardization
purpose as did for FFT-ALFF, each voxel’s Wavelet-ALFF was
divided by the “global” (i.e., a group mask as described in
Section “Fast Fourier Transform–Amplitude of Low-Frequency
Fluctuation Calculation” mean Wavelet-ALFF.

t-Tests on Amplitude of Low-Frequency
Fluctuation Maps of Each Frequency
Band
Paired t-tests between EO and EC conditions were performed
for the EOEC dataset. Two-sample t-tests between ADHD group
and TDC group were performed in each cohort for ADHD-
200 dataset. As Jia et al. (2018) have recently reported, stringent
or liberal multiple comparison correction could not control the
false discoveries across multiple studies when the effect sizes
were relatively small. The reproducibility of the results across
multiple cohorts is more important for the recovery of the
ground truth. In order to detect sensitivity, two relatively liberal
thresholds (p < 0.05, cluster size ≥ 10 voxels; p < 0.01, cluster
size ≥ 10 voxels) were used. We did not use stringent multiple
comparison correction.
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Comparison Between
Wavelet–Amplitude of Low-Frequency
Fluctuation and Fast Fourier
Transform–Amplitude of Low-Frequency
Fluctuation
Comparison of Sensitivity
To compare the sensitivity between Wavelet-ALFF and FFT-
ALFF, we first counted the total number of voxels above the
threshold (p < 0.05, cluster size≥ 10 voxels). We then calculated
a ratio in each frequency band as follows:

ratio =
numberWavelet-ALFF

numberFFT-ALFF
(3)

where numberWavelet-ALFF denotes the number of voxels detected
by Wavelet-ALFF method. Similarly, numberFFT-ALFF denotes the
number of voxels detected by FFT-ALFF method. A ratio > 1
implies higher sensitivity for Wavelet-ALFF than FFT-ALFF, and
the ratio < 1 implies the opposite.

Comparison of Reproducibility Across Cohorts in the
ADHD-200 Dataset
As indicated in Section “Subjects and Data Acquisition,” four
cohorts from the ADHD-200 open database were available for
the current study (Wang et al., 2017). The number of overlapped
voxels above the threshold (p< 0.05, cluster size≥ 10 voxels) was
applied to represent reproducibility. This implies that, although
some voxels showed a significant difference between patients and
healthy controls, it is unknown to what extent these brain areas
are reproducible in other cohorts. To compare the reproducibility
of results between Wavelet-ALFF and FFT-ALFF, we calculated a
ratio of each frequency band as follows:

ratio =
overlappednumberWavelet-ALFF

overlappednumberFFT-ALFF
(4)

where overlappednumberWavelet-ALFF denotes the number of
overlapped voxels above the threshold (p< 0.05, cluster size≥ 10
voxels) in at least three cohorts in the four ADHD cohorts
(NYU, PKU1, PKU2, and PKU3) detected by the Wavelet-
ALFF. Similarly, overlappednumberFFT-ALFF is the number of
overlapped voxels of at least three cohorts in the four ADHD
cohorts (NYU, PKU1, PKU2, and PKU3) detected by FFT-ALFF.
A ratio > 1 implies higher reproducibility for Wavelet-ALFF than
FFT-ALFF, and the ratio < 1 implies the opposite.

Similarity of Spatial Pattern of Wavelet–Amplitude of
Low-Frequency Fluctuation With Fast Fourier
Transform–Amplitude of Low-Frequency Fluctuation
We computed the Dice similarity coefficient (DSC) (Dice, 1945;
Burunat et al., 2016) to calculate the spatial overlap of Wavelet-
ALFF with FFT-ALFF results of each cohort in each frequency
band:

DSC =
2 |X ∩ Y|
|X| + |Y|

(5)

where X, Y , and X ∩ Y denote the Wavelet-ALFF-based
binarized map, corresponding FFT-ALFF-based binarized map,

and overlapped map, respectively. Additionally, |·| represents the
number of voxels in each corresponding map.

RESULTS

Comparison of Sensitivity
Table 1 (liberal threshold of p < 0.05, cluster size ≥ 10 voxels)
lists a comparison of sensitivity between Wavelet-ALFF and FFT-
ALFF. A ratio > 1 indicates higher sensitivity for Wavelet-ALFF
than FFT-ALFF. It indicated that only seven ratios were < 1
among all 150 ratios (not including mean ratio). It implies
that the Wavelet-ALFF indicated higher sensitivity in almost all
frequency bands in all cohorts than FFT-ALFF.

The sensitivity indicated a frequency-dependent difference
for Wavelet-ALFF and FFT-ALFF (Figure 1). Specifically, the
sensitivity ratio was the lowest in the conventional frequency
band (0.0117–0.0781 Hz). The Wavelet-ALFF in lower frequency
band Slow-6 (0–0.0117 Hz) and higher frequency band Slow-
2 (0.1992–0.25 Hz) exhibited higher sensitivity than in Slow-
3, Slow-4, and Slow-5. In Slow-6, db2 exhibited the highest
sensitivity among the five mother wavelets. In Slow-2, db2
and sym3 exhibited higher sensitivity than bior4.4, morl, and
meyr. The detailed number of voxels is listed in Supplementary
Table S1. The brain areas exhibiting a significant difference
between EC and EO in Slow-6, Slow-2, and conventional band are

FIGURE 1 | The mean sensitivity (ratio of Wavelet-ALFF to FFT-ALFF) across
all five cohorts (NYU, PKU1, PKU2, PKU3, and EOEC) of a given frequency
band and a given mother wavelet. All mean ratios were greater than 1, i.e.,
Wavelet-ALFF was more sensitive than FFT-ALFF. ALFF, amplitude of
low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2, Daubechies 2; FFT,
fast Fourier transform; meyr, Meyer; morl, Morlet; sym3, Symlets 3.
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shown in Figures 2–4, respectively. The brain areas exhibiting a
significant difference between ADHD and TDC of NYU cohort in
Slow-6 and Slow-2 are shown in Supplementary Figures S6, S7,
respectively. It should be noted that although there were several
maps, we only indicated those of FFT-ALFF and db2-ALFF.

The aforementioned results of higher sensitivity were
consistent when a more stringent threshold (p < 0.01, cluster
size ≥ 10 voxels) was used (Supplementary Tables S2, S3). The
mean sensitivity of db2-ALFF results was 2.36 times that of
FFT-ALFF in the higher frequency band Slow-2.

Comparison of Reproducibility Across
Cohorts in the ADHD-200 Dataset
Figure 5 shows a comparison of reproducibility between
Wavelet-ALFF result and FFT-ALFF result. A ratio > 1
indicates higher reproducibility of Wavelet-ALFF than FFT-
ALFF. Wavelet-ALFF indicated more reproducible results across
cohorts in the ADHD-200 dataset than FFT-ALFF in all
frequency bands and all mother wavelets.

The reproducibility indicated a frequency-dependent
difference between Wavelet-ALFF results and FFT-ALFF
results (Figure 5). Specifically, the reproducibility ratio was
the lowest in the conventional frequency band (0.0117–
0.0781 Hz). The Wavelet-ALFF in lower frequency band
Slow-6 (0–0.0117 Hz) and higher frequency band Slow-2
(0.1992–0.25 Hz) appeared as more reproducible than in
Slow-3, Slow-4, and Slow-5. In Slow-6, db2 appeared as the
most reproducible, and in Slow-2, db2 and sym3 were more
reproducible than bior4.4, morl, and meyr. The detailed number
of overlapped voxels of at least three cohorts in the four ADHD
cohorts is listed in Supplementary Table S4. The detailed
reproducibility ratio is listed in Supplementary Table S5, and

the reproducibility brain maps of Slow-6 and Slow-2 are shown
in Supplementary Figures S8, S9.

The aforementioned results of higher reproducibility were
overall consistent when a more stringent threshold (p < 0.01,
cluster size≥ 10 voxels) was used (Supplementary Tables S6, S7).
The reproducibility of db2-ALFF results was three times that of
FFT-ALFF in the higher frequency band Slow-2.

Similarity of Spatial Pattern of
Wavelet–Amplitude of Low-Frequency
Fluctuation With Fast Fourier
Transform–Amplitude of Low-Frequency
Fluctuation
Dice similarity coefficient indicated a moderate to high similarity
(0.53–0.90) of the spatial patterns detected by FFT-ALFF with
those detected by Wavelet-ALFF (Figure 6 and Supplementary
Table S8). The overlap of Wavelet-ALFF with FFT-ALFF
indicated a frequency-dependent character. Specifically, the
overlap was less prominent in the higher frequency band Slow-
2 (0.1992–0.25 Hz) and Slow-6 (0–0.0117 Hz), while the Slow-3
and Slow-4 indicated a more prominent overlap.

The five mother wavelets were compared, and db2-ALFF and
sym3-ALFF exhibited the least prominent overlap with FFT-
ALFF in the higher frequency band Slow-2 (0.1992–0.25 Hz).

DISCUSSION

Why We Used the EOEC Dataset and the
ADHD-200 Dataset
RS-fMRI studies include within-condition, between-condition,
and between-group comparisons. Studies on a single condition

FIGURE 2 | The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in Slow-6 (0–0.0117 Hz) by FFT-ALFF (A) and db2-ALFF (B),
respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; Pcun_L, left precuneus.
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FIGURE 3 | The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in Slow-2 (0.1992–0.25 Hz) by FFT-ALFF (A) and db2-ALFF
(B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; SMA_R, right
supplementary motor area.

FIGURE 4 | The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in the conventional band (0.0117–0.0781 Hz) by FFT-ALFF (A)
and db2-ALFF (B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform;
PoG_L, left postcentral gyrus.

yielded very robust results of networks. For example, the default
mode network can be determined in literally each subject.
Among the studies of between-condition comparison within a
single group of subjects, differences between EO and EC resting
conditions are significantly consistent across studies using FFT-
ALFF (Yan et al., 2009; Liu et al., 2013; Zou et al., 2015;

Zhao et al., 2018). Most clinical studies correspond to between-
group comparison. Although a gold standard does not exist in
clinical RS-fMRI studies, reproducibility across different studies
is a very important index. Unfortunately, only a very limited
number of RS-fMRI studies (e.g., Turner et al., 2013; Wang et al.,
2017) tested reproducibility across different datasets. Specifically,
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FIGURE 5 | The reproducibility ratio [see formula (4) for method] of
Wavelet-ALFF result to FFT-ALFF result. The reproducibility was defined by
overlapped voxels of at least three cohorts in the four ADHD cohorts (NYU,
PKU1, PKU2, and PKU3). All reproducibility ratios were greater than 1, i.e.,
Wavelet-ALFF result was more reproducible than FFT-ALFF result. ALFF,
amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2,
Daubechies 2; FFT, fast Fourier transform; meyr, Meyer; morl, Morlet; sym3,
Symlets 3.

ADHD-200 is an open-access dataset and is widely utilized. We
recently reported the extremely low reproducibility of RS-fMRI
results across ADHD datasets. Therefore, the aim of the current
study involved exploring whether Wavelet-ALFF can increase
the reproducibility of differences between ADHD and healthy
controls across datasets from different research centers.

Why We Used the Amplitude of
Low-Frequency Fluctuation Among the
Resting-State Functional MRI Metrics
There are several metrics for RS-fMRI. However, we only used the
simplest metric, i.e., ALFF, in the current study. Other metrics
involve significantly more options for parameters. For example,
there are countless options for seed selection in seed-based
functional connectivity analysis. Additionally, most RS-fMRI
network metrics are not suitable for coordinate- or voxel-based
meta-analysis. ALFF is a typical metric of single-voxel level or
single time series analysis. All the previous ALFF studies were
based on FFT. Only two studies mentioned WT and used the
power as a metric of local activity (Salomon et al., 2011; Bajaj
et al., 2013). It should be noted that the ALFF corresponds to
the averaged square root of power. Existing studies have not
compared the results between FFT-ALFF and Wavelet-ALFF. In
the current study, we compared the results of Wavelet-ALFF of

FIGURE 6 | The mean DSC for similarity analysis of spatial pattern calculated
from different mother wavelets and FFT-ALFF in different frequency bands.
ALFF, amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2,
Daubechies 2; DSC, Dice similarity coefficient; FFT, fast Fourier transform;
meyr, Meyer; morl, Morlet; sym3, Symlets 3.

five mother wavelets with that of FFT-ALFF on several RS-fMRI
cohorts in the conventional frequency band as well as sub-bands.
We compared their sensitivity, reproducibility, and overlap.

Sensitivity and Reproducibility
The sensitivity analysis indicated that Wavelet-ALFF was
generally more sensitive than FFT-ALFF to the between-group
differences (i.e., ADHD group versus TDC group) and between-
condition differences (i.e., EO versus EC) in all frequency bands
(Table 1 and Supplementary Table S1). Specifically, db2-ALFF
exhibited the highest sensitivity among all the mother wavelets
in the very low frequency band Slow-6 (0–0.0117 Hz) and higher
frequency band Slow-2 (0.1992–0.25 Hz).

With respect to the reproducibility, as shown in Figure 5
and Supplementary Tables S4, S5, the Wavelet-ALFF results of
every mother wavelet were more reproducible across the four
ADHD cohorts than the FFT-ALFF results in all frequency bands,
while more prominent in Slow-6 (0–0.0117 Hz) and Slow-2
(0.1992–0.25 Hz). Among the five mother wavelets, db2-ALFF
exhibited the highest reproducibility. Specifically, for the higher
frequency band (Slow-2), db2-ALFF results exhibited a better
reproducibility of 2.95 times of FFT-ALFF results (Figure 5 and
Supplementary Tables S4, S5).

When a more stringent threshold (p < 0.01, cluster
size ≥ 10 voxels) was used, the aforementioned results
of higher sensitivity and higher reproducibility of
Wavelet-ALFF than FFT-ALFF were similarly maintained
(Supplementary Tables S2, S3, S6, S7). It should be first noted
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TABLE 1 | Comparison of sensitivity between Wavelet-ALFF and FFT-ALFF [i.e.,
the ratio, see formula (3) for method] in five cohorts (NYU, PKU1, PKU2, PKU3,
and EOEC) by five mother wavelets (db2, bior4.4, morl, meyr, and sym3) in each
frequency band.

db2-ALFF bior4.4-
ALFF

morl-ALFF meyr-ALFF sym3-
ALFF

Slow-6 (0–0.0117 Hz)

NYU 1.46 1.33 1.25 1.32 1.28

PKU1 1.22 1.15 1.17 1.13 1.16

PKU2 1.37 1.28 1.29 1.36 1.24

PKU3 1.31 1.26 1.26 1.30 1.27

EOEC 1.20 1.18 1.11 1.14 1.17

Mean 1.31 1.24 1.22 1.25 1.22

Slow-5 (0.0117–0.0273 Hz)

NYU 1.12 1.10 1.02 1.07 1.09

PKU1 1.22 1.13 1.05 1.09 1.11

PKU2 1.16 1.08 0.99 1.07 1.09

PKU3 1.25 1.20 1.11 1.19 1.12

EOEC 1.15 1.10 1.01 1.03 1.09

Mean 1.18 1.12 1.04 1.09 1.10

Slow-4 (0.0273–0.0742 Hz)

NYU 1.05 1.03 0.99 1.03 1.03

PKU1 1.11 1.07 1.03 1.06 1.05

PKU2 1.06 1.07 1.05 1.06 1.08

PKU3 1.06 1.06 1.04 1.05 1.08

EOEC 1.04 1.02 0.98 0.99 1.03

Mean 1.06 1.05 1.02 1.04 1.05

Slow-3 (0.0742–0.1992 Hz)

NYU 1.12 1.11 1.07 1.06 1.15

PKU1 1.06 1.07 1.04 1.04 1.08

PKU2 1.03 1.04 1.02 0.99 1.09

PKU3 1.05 1.04 1.05 1.01 1.08

EOEC 1.05 1.06 1.04 1.01 1.09

Mean 1.06 1.06 1.05 1.02 1.10

Slow-2 (0.1992–0.25 Hz)

NYU 1.65 1.43 1.21 1.27 1.61

PKU1 1.57 1.37 1.18 1.20 1.55

PKU2 1.55 1.34 1.20 1.21 1.54

PKU3 1.47 1.34 1.14 1.19 1.49

EOEC 1.47 1.26 1.11 1.12 1.44

Mean 1.54 1.35 1.17 1.20 1.53

Conventional (0.0117–0.0781 Hz)

NYU 1.00 1.00 1.00 1.01 1.00

PKU1 1.08 1.06 1.03 1.06 1.03

PKU2 1.03 1.03 1.02 1.02 1.03

PKU3 1.03 1.03 1.04 1.03 1.02

EOEC 1.01 1.01 0.98 0.98 1.01

Mean 1.03 1.03 1.01 1.02 1.02

A ratio > 1 indicates more sensitive for Wavelet-ALFF and vice versa. The mean
sensitivity across all five cohorts of a given frequency band and a given mother
wavelet was also calculated. ALFF, amplitude of low-frequency fluctuation; bior4.4,
biorthogonal 4.4; db2, Daubechies 2; FFT, fast Fourier transform; meyr, Meyer;
morl, Morlet; sym3, Symlets 3.

that high sensitivity does not mean true positive. It merely
implies that more voxels were detected. Jia et al. (2018) found
that stringent or liberal multiple comparison correction could

not control the false discoveries across multiple studies when
the effect sizes were relatively small. The reproducibility of
the results across multiple cohorts is more important for the
recovery of the ground truth. Hence, the reproducibility of the
results across four ADHD cohorts was measured. However,
higher reproducibility does not always mean a true positive
due to the limited number of cohorts. Additional datasets of
other disorders should be used in future studies. The current
results simply imply that Wavelet-ALFF was slightly better
when compared with FFT-ALFF. As shown in the between-
condition comparison (i.e., EO versus EC), when compared with
those detected by FFT-ALFF, the significantly different voxels
detected by db2-ALFF covered more extended physiologically
relevant regions albeit similar, such as the precuneus in Slow-6
(Figure 2), supplementary motor area in Slow-2 (Figure 3), and
postcentral gyrus in the conventional band (Figure 4), which
can be related to alpha waves modulated by the closure of eyes.
In the between-group comparison (i.e., ADHD group versus
TDC group) for NYU cohort, when compared with FFT-ALFF,
db2-ALFF detected more regions that can be associated with
ADHD pathophysiology such as the middle frontal gyrus and
middle occipital gyrus in Slow-6 (Supplementary Figure S6),
superior occipital gyrus, and supplementary motor area in
Slow-2 (Supplementary Figure S7). Nevertheless, future studies
should focus on the same.

There are two reasons for the superiority of db2 compared
to the other mother wavelets. First, the support width of db2 is
less than that of the other mother wavelets, and the less support
width of db2 makes an increase in the degree of localization
of the wavelet coefficients (Zhang et al., 2016), which makes
db2 more effective in detecting local or non-stationary features
of the signal. Second, db2 appears to be quite similar to the
hemodynamic response function (HRF) among the five mother
wavelets. A CWT of HRF was implemented with a frequent
parameter of 64 (24) scale. If the summation of the absolute value
of the wavelet coefficients is larger, the similarity is higher (Rafiee
et al., 2011). It was found that the summation of db2 (229.4348)
was the largest compared to sym3 (224.7303), bior4.4 (219.8648),
meyr (201.7399), and morl (182.8433). Higher similarities may
facilitate identification of the signal feature more precisely (Singh
and Tiwari, 2006; Rafiee et al., 2011; Ngui et al., 2013).

Very Low Frequency Band Slow-6 and
Higher Frequency Band Slow-2
In RS-fMRI studies, the very low frequency band Slow-6 has
attracted less attention. Zhang et al. (2015) indicated that the
FFT-ALFF of Slow-6 (0–0.0117 Hz) in the basal ganglia was
higher during the state of real feedback finger force than during
sham feedback state. Beyond the conventional low frequency
band (<0.1 Hz), several RS-fMRI studies investigated the higher
frequency band (>0.1 Hz) signal. Yuan et al. (2014) used
fast sampling (TR = 400 ms) RS-fMRI and suggested that the
differences of fluctuation amplitude between EO and EC resting
states were in the conventional frequency band (<0.1 Hz) and
higher frequency band (up to 0.35 Hz). Two independent RS-
fMRI studies on chronic pain used conventional sampling rate
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(TR = 2 s) and consistently found increased spectral power of
patients in the higher frequency band (Malinen et al., 2010;
Otti et al., 2013). It should be noted that the amplitude is
proportional to the square root of spectral power (Zang et al.,
2007). The aforementioned studies all suggested that the very
low frequency band Slow-6 and higher frequency band Slow-2
can contain neural-related information. We recommend db2-
ALFF to substitute FFT-ALFF in future studies given its higher
performance in sensitivity and reproducibility in very low
frequency ALFF and higher frequency ALFF of db2 mother
wavelet than FFT-ALFF. However, there is no widely accepted
gold standard for RS-fMRI results of between- or within-group
comparison studies. The current better reproducibility of db2-
ALFF when compared to other mother wavelets and FFT-ALFF
was obtained in only four ADHD cohorts. Therefore, this should
be tested in more datasets in the future.

It should be noted that although db2-ALFF exhibited higher
sensitivity and higher reproducibility in the very low frequency
and higher frequency band, it does not imply that the very
low frequency band and higher frequency band are more
physiologically or pathophysiologically meaningful than the
conventional frequency band. Specifically, the conventional
frequency band detected the largest number of voxels among
sub-frequency bands (Supplementary Figure S10). The results
simply imply that the performance of db2-ALFF exceeds
that of FFT-ALFF.

Overlap of Spatial Pattern by
Wavelet–Amplitude of Low-Frequency
Fluctuation With Fast Fourier
Transform–Amplitude of Low-Frequency
Fluctuation
The vast majority of previous ALFF studies have used FFT, and
thus we calculated the overlap of spatial pattern of Wavelet-ALFF
results with FFT-ALFF results. Generally, the spatial patterns
detected by FFT-ALFF with Wavelet-ALFF were very similar
in the conventional frequency band (0.0117–0.0781 Hz), Slow-
3 (0.0742–0.1992 Hz), and Slow-4 (0.0273–0.0742 Hz) with a
DSC of approximately 0.85. The overlap was less prominent in
the higher frequency band Slow-2 (0.1992–0.25 Hz) and very
low frequency band Slow-6 (0–0.0117 Hz), wherein the db2-
ALFF and sym3-ALFF in the higher frequency band Slow-2
(0.1992–0.25 Hz) exhibited less spatial overlap with FFT-ALFF
than all other conditions (Figure 6). The lower spatial overlap of
results by db2- and sym3-ALFF with those of FFT-ALFF could be
attributed to the improved performance of both sensitivity and
reproducibility of db2- and sym3-ALFF.

Limitations
First, the study used only five mother wavelets that were used in
previous fMRI literature. Future studies should use more mother
wavelets. Second, the dynamic character is an advantage of WT.
However, there were an excessive number of time points, and thus
it is difficult to interpret the results if the t-test was performed on
every time point. A future study should propose an integrated
metric to characterize its dynamics. Third, db2-ALFF indicated

optimal sensitivity and reproducibility in higher frequency Slow-
2. However, based on the Shannon–Nyquist sampling theorem,
the lower sampling rate (TR = 2 s in the current study) resulted
in aliasing effect. This implies that the signal in Slow-2 can
be aliased from higher frequency physiological noise of heart
beating (around 1.2 Hz) and respiratory (around 0.33 Hz).
Future studies could use db2-ALFF in fast sampling rate RS-
fMRI dataset. Fourth, we used only four independent datasets of
ADHD cohorts to test the reproducibility. It should be noted that
higher reproducibility of Wavelet-ALFF in such small number
of cohorts does not imply higher specificity. The current results
should be tested in more (preferably more than 20) datasets.
Fifth, the current study compared only an RS-fMRI metric,
i.e., ALFF. Systematic investigations should be performed for
other metrics to compare wavelet- and FFT-based analyses. Sixth,
many preprocessing parameters may affect the results. Additional
datasets of other brain disorders are also important. Future
studies will focus on these aspects.

CONCLUSION

In summary, the results indicated that Wavelet-ALFF was
generally more sensitive to the between-group and between-
condition differences than FFT-ALFF in all frequency bands.
More importantly, the Wavelet-ALFF results indicated a better
reproducibility across the four ADHD cohorts than the FFT-
ALFF results in all frequency bands. Specifically, in the higher
frequency band Slow-2 (0.1992–0.25 Hz), the reproducibility
of db2-ALFF result was 2.95 times that of FFT-ALFF result.
This suggested that Wavelet-ALFF can replace FFT-ALFF as a
potentially reliable marker to determine the exact location of local
abnormal brain activity in future studies and further help precise
intervention such as deep brain stimulation and transcranial
magnetic stimulation.
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Objective: Neuroimaging-based brain signatures may be informative in identifying
patients with psychosis who will respond to antipsychotics. However, signatures that
inform the electroconvulsive therapy (ECT) health care professional about the response
likelihood remain unclear in psychosis with radiomics strategy. This study investigated
whether brain structure-based signature in the prediction of ECT response in a sample of
schizophrenia patients using radiomics approach.

Methods: This high-resolution structural magnetic resonance imaging study included 57
patients at baseline. After ECT combined with antipsychotics, 28 and 29 patients were
classified as responders and non-responders. Features of gray matter were extracted and
compared. The logistic regression model/support vector machine (LRM/SVM) analysis
was used to explore the predictive performance.

Results: The regularized multivariate LRM accurately discriminated responders from non-
responders, with an accuracy of 90.91%. The structural features were further confirmed in
the validating data set, resulting in an accuracy of 87.59%. The accuracy of the SVM in the
training set was 90.91%, and the accuracy in the validation set was 91.78%.

Conclusion: Our results support the possible use of structural brain feature-based
radiomics as a potential tool for predicting ECT response in patients with schizophrenia
undergoing antipsychotics, paving the way for utilization of markers in psychosis.
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INTRODUCTION

Despite progress, how to treat schizophrenia, an overwhelmingly
and highly heterogeneous mental disorder, effectively is still to be
learnt because of poor response to antipsychotics in as many as
30% of patients (1). From the perspective of stigmatization,
genetic etiology of schizophrenia are more frequently linked to
stigmatizing attitudes for psychosis, with a higher level of
perceived stigmatization in medical students and medical
doctors (2). Effective treatments appear to be critical, thereby
lessening the impact of the disorder and decreasing the stigma.
Holding synergistic effects in combination with antipsychotics,
there is growing evidence to support that addition of
electroconvulsive therapy (ECT) may be an effective alternative
for chronic patients with refractory symptoms, exhibiting the
safety and short-term efficacy (3–5). ECT is most commonly
considered in patients with schizophrenia only after unsuccessful
treatment with antipsychotic medication (6). Also, ECT may be
of value in the treatment of acute schizophrenia when used in
combination with antipsychotic medications (7).

Previous clinical studies also demonstrate that a small portion of
these patients are resistant to substantial improvement with ECT of
clozapine augmentation. Overall, 34% non-responder rate has been
reported by ameta-analysis recently; 46% non-responder rate across
clinical trials (8). Because ECT is liable to provoking cognitive
impairment and multi-system adverse effects, much more invasive
relative to pharmacotherapy, costly in relation to the procedure, and
available for partial hospitals, the ECT health care professional
should accurately identify non-responders before treatment. A
pressing need of predictive markers exists in clinical management
of ECT for schizophrenia, which is of high clinical relevance. A
recent review has shown the predictors of response to ECT in
schizophrenia, including symptoms, age, duration of illness, family
history of schizophrenia, and baseline global functioning and
cognitive functions (9), but no further attempts have been made
to substantiate the predictors.

Neuroimaging techniques provide promising assessment
tools to allow for individualized treatment in psychiatry.
However, despite compelling evidence of a biological basis of
schizophrenia, research into brain imaging features reflecting its
pathophysiology mechanism to guide clinical practice is
obviously lagged behind (10). Substantial efforts are still
required to identify biomarkers informative in treatment
response before reaping the reward of clinical benefit in
schizophrenia patients. Decades-long research on structural
and functional imaging has accumulated burgeoning evidence
for disrupted brain network involving the pathophysiology of
schizophrenia. In a previous review by Dazzan et al. (11),
structural magnetic resonance imaging (MRI) could be helpful
in stratifying patients with schizophrenia into clinically
meaningful clusters. Afterward, despite negative results (12),
proliferated evidence has provided more support for structural
features of responsiveness to antipsychotic drug treatment (see
Cui et al. for review) (13).

Promisingly, according to several recent findings, neuroimaging
could be helpful identifying the predictive biological markers of
depression. Most neuroimaging studies of ECT demonstrate
Frontiers in Psychiatry | www.frontiersin.org 282
treatment-related increase of hippocampal volume (14) and
disturbed white matter integrity (15). In major depressive
disorder, Oltedal et al. detected 0.28% hippocampal enlargement
per ECT session, and the variety of volume change by electrode
placement (i.e., bilateral, right unilateral) in the left hippocampus;
Repple et al. found an increased mean diffusivity following ECT in
the right hemisphere, and a correlation between seizure duration
and decreased fractional anisotropy, suggesting an effect of ECT on
the permeability of the blood-brain barrier. A recent structural MRI
at baseline has been proven to be successful for predicting
responsiveness to ECT in patients with major depressive disorder
(16). As for functional MRI, in severe and treatment-resistant
depressive patients, a multivariate pattern analysis study suggests
that resting-state networks could play an important role in
predicting remission from depression following a course of ECT
(17). A review by Sanghani et al. summarizes neuroimaging
predictors of response to ECT augmentation of antipsychotic
medications in schizophrenia, involving structural and functional
MRI (4). Also, radiomics approach could play an important role in
precision medicine (https://allofus.nih.gov/). In the context of
radiomics, it is a method to obtain more high dimensional
features that might be options used for machine learning analysis,
because medical images are digitally encrypted and hold a number
of information involved in pathophysiology (18). It extracts high-
throughput information and detects core features for supporting
clinical decision making. Radiomics analysis has shown evident
capacities for classification and prediction in schizophrenia.
Notably, a valid approach by means of MRI to diagnose
schizophrenia has been developed using radiomics strategy with
an accuracy of 87%, as demonstrated by Cui et al. (19). Taken
together, neuroimaging-based brain signatures hold great promise
that contributes to supporting decision making to select the proper
treatment in psychosis. The structural underpinnings are crucial for
underling the pathophysiology of schizophrenia (20–23). It is
already plausible that cerebral structure-based neurologic
signature could be a potential biomarker associated with
treatment response for patients with schizophrenia.

Therefore, in the current study, we aimed to examine whether
brain structure-based signature in the prediction of ECT
response in a sample of schizophrenia patients using radiomics
approach, making a step to improve individualized treatment of
schizophrenia using specific, quantitative, and objective
biomarker for clinical management. Both logistic regression
model and support vector machine (LRM/SVM) analyses were
used to explore the predictive performance. In line with Tandon
et al. (24), our goal is also “a deeper understanding of the
pathophysiology of schizophrenia leading to improved
treatment”. We hypothesized patients with a distinct structural
feature of the brain would reveal different response to ECT.
MATERIAL AND METHODS

Participants
This study was approved by the local institutional ethics
committee. Written informed consent was obtained from all
the participants (or their parents for those under age of 18 years)
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after complete description of the study. A total of 57 patients who
would be assigned to take ECT were recruited from the Xi'an
Mental Health Center (25). According to clinical practice
guidelines and expert consensus, indications for use of ECT
include patients with treatment-resistant schizophrenia or with
schizophrenia who have suicidal behavior/suicide attempts/acute
episode (see the Supplementary Material). Treatment resistance
is defined as little or no symptomatic response to multiple (at
least two) antipsychotic trials of an adequate duration (at least 6
weeks) and dose (therapeutic range) [American Psychiatric
Association (APA) practice guidelines] (26). The consensus
diagnoses were made by two experienced clinical psychiatrists
on the basis of Structured Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition, Text
Revision (DSM-IV-TR) using all the available information. All
patients underwent MRI scanning at baseline. Our study had no
influence on the therapy and clinical assessment determined by
their clinicians. Positive And Negative Syndrome Scale (PANSS)
that evaluated each patient's symptoms at the time of first and
second scans were used for the following analysis. The exclusion
criteria included: (1) presence of another axis I or axis II
psychiatric disorder; (2) history of receiving ECT; (3) history
of clinically significant neurological, neurosurgical, or medical
illnesses; (4) substance abuse within the prior 30 d or substance
dependence within the prior 6 months; (5) pregnancy or other
MR imaging contraindications, e.g., cardiac pacemakers and
other metallic implants.

Treatment response was assessed using percentage change of
symptoms based on PANSS. Responders were defined as 70%
reduction in PANSS total scores, an elevated level as high as the
criterion of 30% traditionally used (27, 28), as performed by
Petrides et al. (29). In our database, only subscale scores were
available, we were unable to use the Remission criteria of the
Schizophrenia Working Group Consensus (30). Here, we must
emphasize the additional complexity and risk associated with
ECT, as well as mounted efforts from clinicians and patients, and
therefore we increased expectations with which should be met.
Dose of antipsychotic medication was converted to defined daily
dose (DDD) (31). Patients were divided into two groups
randomly, a training set (n = 44, including 22 responders and
22 non-responders) and a validation set (n = 13, including 6
responders and 7 non-responders) using statistical software.
Demographic and clinical characteristics are listed in Table 1.
Image Acquisition
A GE Discovery MR750 3.0 T scanner was used to acquire
images in the Department of Radiology at Xi'an Mental Health
Center. As we performed previously, high-resolution T1-
weighted structural data were obtained as we performed
previously (Table S1) (19). During the scans, all participants
were instructed to relax, move and think of nothing in particular
as little as possible, keep their eyes closed, and not sleep. We also
used a custom-built head cushion to minimize head motion in
order to avoid excessive motion, reducing head motion artifacts
during acquisition. Thereafter, we carefully checked all the
images before the following analysis, thereby ensuring the
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image quality. Further details about image acquisition are
described in the Supplementary Material.

Electroconvulsive Therapy
Unilateral ECT was conducted in all patients three cycles per
week within the duration of hospital stay. A total of nine to 12
sessions of ECT were given using an instrument (spECTrum
5000Q). The stimulus current was 800 mA, and the stimulus
duration ranged from 3 to 5 s. Stimulus frequency was adapted
due to different seizure threshold varied for individuals. Also,
electrocardiography, blood pressure, and oxygen saturation
examinations were carried out to exclude severe complications.
All patients were anesthetized with propofol or etomidate, and a
muscle relaxant (succinylcholine) was administered, which were
calculated based on the body weight of each patient.

Image Processing
Data processing is described elsewhere previously (Figure 1A).
The voxel-based morphometry (VBM) analysis was performed
using CAT12 toolbox (C. Gaser, Structural Brain Mapping
group, Jena University Hospital, Jena, Germany) implemented
in SPM12 (Statistical Parametric Mapping, Institute of
Neurology, London, UK) with the default setting. Briefly, All
T1-weighted images are normalized using an affine followed by
non-linear registration, corrected for bias field in homogeneities.
Segmentation into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) (32) and spatially normalization using
the DARTEL-algorithm (33) were then applied. In the last step of
DARTEL, a non-linear deformation approach was used to
modulate the GM tissues for comparing the relative GM
volume adjusted for individual brain size. Furthermore, the
TABLE 1 | Demographical and clinical characteristics of participants.

Characteristic Responders
(n = 28)

Non-Responders
(n = 29)

P values

Age (y) 31.0 ± 10.2 29.7 ± 8.5 .61
Gender (M/F) 17/11 20/9 .51
Education level (y) 11.7 ± 3.5 11.3 ± 4.0 .71
Duration of illness (y) 5.4 ± 6.4 6.1 ± 6.4 .67
Time between measurements
(w)a

3.9 ± 1.1 3.9 ± 1.1 .89

CGI score at baseline 5.6 ± 1.1 5.7 ± 0.6 .72
CGI score after ECT 2.6 ± 0.7 3.6 ± 0.9 <.001
PANSS score at baseline
Positive score 29.9 ± 6.2 28.0 ± 8.1 .32
Negative score 19.5 ± 10.3 29.0 ± 10.9 .001
General score 44.7 ± 12.1 41.7 ± 9.5 .31

Total score 94.1 ± 19.2 98.7 ± 21.0 .39
PANSS score after ECT
Positive score 9.7 ± 2.0 15.4 ± 3.5 <.001
Negative score 10.6 ± 4.9 19.7 ± 7.9 <.001
General score 19.7 ± 3.4 28.6 ± 6.7 <.001

Total score 40.0 ± 7.1 63.7 ± 13.8 <.001
Changes in PANSS score 84.7% ± 9.6% 51.0% ± 12.8% <.001
Number of ECTa 10.3 ± 2.0 10.0 ± 2.9 .67
Antipsychotic dose (mg/d)b 17.5 ± 5.9 13.8 ± 6.7 .03
May 2
020 | Volume 11 | A
aData missing for one non-responder.
bOlanzapine equivalents based on defined daily doses method.
CGI, Clinical Global Impressions; ECT, electroconvulsive therapy; PANSS, Positive And
Negative Syndrome Scale.
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voxel values in the tissue maps are modulated by the Jacobian
determinant that was calculated during spatial normalization
(34). To assess the homogeneity of the GM tissues, a quality
check was performed using a CAT12 toolbox once the
preprocessing pipeline was completed (35). The modulated and
normalized GM tissues were not smoothed to avoid loss of image
information. The GM tissues were used for subsequent
statistical analysis.

Statistical Analysis and ROIs Definition
We used SPM12 for all of the statistical analyses. First, a two-
sample t-test was performed to compare the GM volume
between responder and non-responder in the training set
without covariates. The relative GM volume changes were
assessed at a threshold of P < .05 uncorrected. The extent
threshold was set at 100 voxels to define the regions of interest
(ROIs) which could have enough voxels to calculate features for
classification. Focusing on the ROIs from the two-sample t-test is
equivalent to initially screening out areas that may be
distinguishable, so that their features may have clinically
meaningful predictive capacity. The Automated Anatomical
Labeling (AAL) atlas (36), which parceled the GM into 90
anatomical regions was adopted to describe the anatomical
Frontiers in Psychiatry | www.frontiersin.org 484
location of each ROI. If the overlapping percentage of the ROI
with a region of AAL is greater than 50%, the anatomical location
of it is described as the region (Table S2).

Feature Extraction
Fifteen first-order statistics features calculated from the
histogram of each ROI GM volume values were extracted from
each ROI of patients in both the training and validation sets
(Table S3) (37). The mean, median, standard deviation, and root
mean square are the most commonly used and basic statistical
metrics. The skewness measures the degree of histogram
asymmetry around the mean, and kurtosis is a measure of the
histogram sharpness. As measures of histogram randomness we
computed the uniformity and entropy of the image histogram.
The feature algorithms were implemented in Matlab 2014a
(MathWorks, Natick, MA, USA). All features of ROIs for each
patient were concatenated into a feature vector and were
connected in parallel to form a feature matrix in each data set.
All features of the training set were standardized to zero mean
and unit variance to avoid model building being affected by the
differences in the feature scales, and the validation set were
processed with the same standardization criterion to ensure the
independence before pattern classification (38).
A

B

FIGURE 1 | Regions of interest (ROIs) definition and feature extraction. (A) A flowchart for the data processing. (1) The modulated and normalized gray matter (GM)
tissues were generated from T1-weighted images of each patient. (2) Patients were divided into two groups randomly, a training set (n = 44) and a validation set (n =
13) using statistical software. (3) Nineteen ROIs were defined using a two-sample t-test and two thresholds. (4), (5) 15 first-order statistics features were extracted
from each ROI of patients in both the training and validation sets. (6), (7) A leave-one-out cross-validation (LOOCV) framework was used to perform pattern
classification analysis in the training set, and all models were validated on the validation set. (8) We calculated the frequency of each feature and obtained a ranking
that characterized the importance of features. (9), (10) three selected features were used to train the radiomic LRM. (B) Nineteen ROIs were defined using a two-
sample t-test, a threshold of P < .05 (uncorrected) and an extent threshold of 100 voxels. The anatomical location of each ROI was described using AAL atlas.
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Pattern Classification Analysis
A leave-one-out cross-validation (LOOCV) framework was used
to perform pattern classification analysis in the training set
(Figure 2) (39). Specifically, the best features based on
univariate statistical tests (two-sample t-test) between
responders and non-responders in the remaining patients were
selected with P < .05 (uncorrected), and then regularized
multivariate logistic regression model (LRM) with the least
absolute shrinkage and selection operator (LASSO) penalty was
applied to select more important features and to build a classifier
(40). Moreover, the support vector machine (SVM) method was
used to validate results as an independent classifier using the
features selected by LASSO. Performance of the classifiers was
measured quantitatively using the area under the receiver
operating characteristic (ROC) curve (AUC) (Table S4).
Besides, one patient did not receive antipsychotic drugs, which
might affect the results. Since there had been a significant
difference in antipsychotic dose between responders and non-
responders, we excluded this patient and reanalyzed.

In order to obtain a model with fixed radiomic features and
analyze the impact of clinical factors, we constructed the
multivariate LRM based on the training set and validated it on
the validation set. Frequency of each feature selected by LASSO
across 44 training partitions of the cross-validation setup was
calculated to assess feature importance and to obtain a ranking of
features (Table S5) (41). Features greater than 50% of the
Frontiers in Psychiatry | www.frontiersin.org 585
selected frequency were important and used as a feature set for
further feature selection (41). To analyze the impact of clinical
factors, negative score and antipsychotics dose combined with
fixed radiomic features were also used to build the fusion LRM
model. For these two LRM, we evaluated the multicollinearity
according to the variance inflation factor (VIF) and tested the
significance of regression coefficients (b) with t-tests for each
independent variable (42). If VIF was less than 4, there was no
evidence of a multicollinearity problem (42). The following R
packages were used for pattern classification analysis (http://
www.R-project.org) (see Supplementary Material for
this section).
RESULTS

Participant Characteristics
The demographic and clinical characteristics of the participants
are listed in Table 1. In consistence with previous reports (13), 28
and 29 patients were classified as responders (49%) and non-
responders (51%) after ECT. No statistically significant
difference in baseline demographic characteristics was found
between responders and non-responders. Participants who
responded had a lower level of PANSS negative score (P =
.001) and received more antipsychotics (P = .03) than those
who did not respond before treatment.
FIGURE 2 | Pattern classification analysis. A leave-one-out cross-validation (LOOCV) framework was used to perform pattern classification analysis in the training
set. In the LOOCV, one patient was used as a testing sample, and the remaining patients were applied as training samples to select features and build the classifier
to classify the testing sample. Classification performance could be estimated based on all of the testing samples and be validated based on the averaged
classification results of validation set. ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area
under the receiver operating characteristic curve; PHI, phi correlation coefficient.
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ROIs Definition and Feature Extraction
Nineteen ROIs were defined, and the details were described in
Table S2 and were shown in Figure 1B. Fifteen first-order
statistics features were calculated from the histogram of each
ROI GM volume values (Table S3). A total of 285 features per
patient were used for pattern classification analysis.

Predictive Performance
The regularized multivariate LRM accurately discriminated
responders from non-responders on the basis of the ROC curve
with an accuracy of 90.91% and AUC value of 0.9318 (Figure 3A
and Table S4) and were further confirmed in the validating data
set, resulting in an accuracy of 87.59% and AUC value of 0.9031
(Figure 3B and Table S4). To assess possible overfitting, the
DeLong test was implemented on the ROC curves and revealed
that the differences were not statistically significant among the
AUCs of the training set and the validation set, with P values of
0.5804. Moreover, we used the SVM to replicate findings above.
The accuracy of the SVM based on all of the testing samples in the
training set was 90.91%, and the accuracy in the validation set was
91.78% (Table S4). The ROC curves of the training set and the
validation set were shown in Figures 3A, B, and P value of the
DeLong test was 0.6443. Moreover, we excluded a patient without
receiving antipsychotics and reanalyzed, and there was no
significant difference in antipsychotic dose between responders
and non-responders (P > 0.05). The accuracy of the LRM based on
all of the testing samples in the training set was 90.91%, and the
accuracy in the validation set was 87.12% (Table S6). The AUC of
the training set and the validation set were 0.9318 and 0.9034
separately, and P value of the DeLong test was 0.5586. The
accuracy of the SVM based on all of the testing samples in the
training set was 90.91%, and the accuracy in the validation set was
90.91% (Table S6). The AUC of the training set and the validation
set were 0.9298 and 0.9407 separately, and P value of the DeLong
test was 0.8386.

The fusion LRM with fixed radiomic features was built
(Table S7) and the classification performance of the model was
shown in Table S8. The ROC curves were shown in Figure S1
and P value of the DeLong test was 0.3785. Negative score and
Frontiers in Psychiatry | www.frontiersin.org 686
antipsychotics dose combined with fixed radiomic features were
also used to build the fusion LRMmodel for analyzing the impact
of clinical factors. However, negative score was removed due to
the multicollinearity (VIF > 4), and antipsychotics dose was
removed because the regression coefficient was not significant.
These two clinical factors could not be left in the final LRM.
DISCUSSION

In this naturalistic study, the principal findings indicated a potential
predictive capacity between patients who subsequently responded
and did not respond using radiomics approach, with clinically
meaningful accuracy (LRM: 90.91% in training and 87.59% in
validation; SVM: 90.91% in training and 91.78% in validation).
We identified neuroanatomical features with successful level
prediction of ECT response, involving cortical (inferior frontal
gyrus, cingulate cortex, and temporal and parietal lobes) and
subcortical regions (insula, thalamus, and hippocampus).

Although ECT combined with antipsychotics has been included
in treatment guidelines (26, 43), the suggestions from radiologists
to psychiatrists and patients and their families regarding the
treatment efficacy of ECT based on predictive/prognostic
markers, as approaches uncovering paths toward delivering
precision medicine, is of remarkable clinical significance. In the
study by Kupchik et al., there are 33% (n = 12) patients with
symptoms resistant to typical antipsychotics who did not benefit in
the clozapine-ECT group (44). Then, an open-label prospective
study finds that 40% (n = 6) patients with refractory schizophrenia
did not meet response criteria after receiving a combination of ECT
and clozapine. Furthermore, a prospective randomized study notes
51.3% (n = 20) patients defined as non-responders after treatment
of ECT plus clozapine or ECT augmentation (29). In a meta-
analysis reporting 46% non-responder rate across clinical trials, the
response defined as percentage improvement in scale/subscale
score of PANSS/Brief Psychiatric Rating Scale, arranging from
25% to 40% (8). On the contrary, we defined as decrease of ≥ 70%
in total PANSS score, resulting in higher level of non-responder
rate (51%). Radiomics features in the present study may assist in
A B

FIGURE 3 | Areas under receiver operating characteristic (ROC) curves in the training set (A) and validation set (B).
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the treatment selection, allowing for individual differences in
treatment algorithms to some extent. Hence, additional remedies
need to be considered and much more attention need to be paid in
such a setting to ameliorate symptoms of patients, including
transcranial magnetic stimulation, and psychological therapy.
Biomarkers obtained from the brain such as structural features
hold great promise that contributes to better management of
patients with refractory schizophrenia.

Of particular interest, in our study, features used for prediction
were extracted predominantly from the inferior frontal gyrus,
cingulate cortex, temporal and parietal lobes, insula, thalamus, and
hippocampus. These identified regions have been implicated in
previous studies looking before/after ECT brain changes. Recent
MRI studies have detected longitudinal alterations of the brain pre-
and post-ECT interventions in patients with schizophrenia. Recent
neuroimaging studies have shown an association of ECT in
schizophrenia with increase in GM volume within the medial
temporal lobe (amygdala, hippocampus, and insula) (45) and
increased global functional connectivity density among key
regions within default mode network (precuneus and medial
prefrontal cortex) (46). ECT exerts therapeutic efficacy via
elevating the concentration of N-acetylaspartate in the left
prefrontal cortex and thalamus, indicating an antipsychotic effects
through neuroprotective mechanism (47). In a sample of
schizophrenia and depression, ECT reveals both disorder-specific
and transdiagnostic effects. Structural network analysis suggests a
volume increase in the lateral prefrontal/cingulate cortical network
as schizophrenia-specific changes after ECT (48). On the contrary,
transdiagnostic impacts across schizophrenia and depression
include an enlargement of the medial temporal lobe
(hippocampus, parahippocampus, and amygdala) and insula,
together with attenuated functional connectivity involving
tempoparietal, prefrontal, and cortical midline structures and
augmented hypothalamic functional connectivity (45, 48). It may
bewhy these regions (therapeutic target) predict treatment outcome.

Methodologically, both LRM and SVM are linear classifiers.
Using both of them demonstrates the validity of results.
Machine-learning classification studies will have an influence
on precision medicine. The increasing importance of radiomics
in medical imaging creates an ideal situation for application of
radiomics in psychiatry where there is no “lesion” but there are
“features” for mental disorders, i.e., brain structure derived from
structural MRI. This step by step analysis could promote our
findings transforming clinical practice, which is helpful for the
generalizability of the potential marker. Most recently,
classification approaches provide a powerful way to promote
the translation of neuroimaging-based signature to diagnostic,
predictive or prognostic biological markers for mental disorders,
including schizophrenia (19). In addition to these structural and
functional tests previously discovered, we proposed this novel
predictive tool to replenish the existing clusters of potential
biomarkers, as an alternative approach. Future research needs
to integrate and optimize them, resulting in true cerebral
markers for clinical management of schizophrenia.

Nevertheless, there are still several issues that merit comments.
The clinical characteristics revealed a variable duration of illness
Frontiers in Psychiatry | www.frontiersin.org 787
and antipsychotic dose for schizophrenia patients, which might
have impact on our results. As a routine and natural clinical
phenomenon, we could not modulate patients' duration of illness.
In our study, we randomly divided patients in a 3:1 ratio to obtain
a training set of 44 patients and a validation set of 13 patients. In
order to overcome the issue of sample size and provide reliable
prediction results, we used the LOOCVmethod in the training set
to evaluate the classification ability of GM features, and select
important features to construct a final model. Likewise, previous
machine learning studies used similar sample sizes (25 responders
and 13 non-responders in first-episode drug-naive patients with
schizophrenia; 13 responders and 10 non-responders in patients
with acute major depressive disorder) and got meaningful results
(accuracy of 78.6% and 78.3%/73.9%) (16, 49). The number of
features is much larger than the sample size, and the training set
and validation set are drawn from the same dataset. Although we
use the LASSO for feature selection to reduce the number of
features and divide the data sets randomly, single-center data may
lead to an overly optimistic estimation of classification
performance and limit the generalizability of the results. In the
future, multi-center datasets with larger samples will be needed to
validate and promote these findings. Furthermore, we were unable
to analyze the life-time cumulative dosages of antipsychotics that
were unavailable in the clinical database at the hospital. The
difference is small in the effectiveness of individual
antipsychotics (50), and responders and non-responders in this
study received antipsychotics in doses recommended by APA
Practice Guidelines (olanzapine equivalents, 17.5 ± 5.9 mg/d,
13.8 ± 6.7 mg/d), which proposes that olanzapine in doses of
10–20 mg/d is effective in the acute phase of schizophrenia (26).
Despite majority of atypical antipsychotics, patients received
heterogeneous drugs, which may be helpful to control for drug
dose or treatment type (e.g., typical antipsychotic and atypical
antipsychotic) in the future analysis. Additionally, there was a
significant difference in the severity of negative symptoms between
responders and non-responders before treatment. This difference
begs the question: would the baseline PANSS negative score be a
predictor of treatment response? But Figure S2 indicates a limited
diagnostic performance.
CONCLUSION

Conclusively, this study implies that radiomics-based structural
brain feature could predict response to ECT combined with
antipsychotics in schizophrenia patients. Useful neuroanatomical
features for prediction involve brain regions modulated by ECT.
Additional effort is urgent for longitudinal differences after the ECT
series in patients with schizophrenia.
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Objective: During presurgical evaluation for focal epilepsy patients, the evidence
supporting the use of high frequency oscillations (HFOs) for delineating the epileptogenic
zone (EZ) increased over the past decade. This study aims to develop and validate
an integrated automatic detection, classification and imaging pipeline of HFOs with
stereoelectroencephalography (SEEG) to narrow the gap between HFOs quantitative
analysis and clinical application.

Methods: The proposed pipeline includes stages of channel inclusion, candidate HFOs
detection and automatic labeling with four trained convolutional neural network (CNN)
classifiers and HFOs sorting based on occurrence rate and imaging. We first evaluated
the initial detector using an open simulated dataset. After that, we validated our full
algorithm in a 20-patient cohort against three assumptions based on previous studies.
Classified HFOs results were compared with seizure onset zone (SOZ) channels for their
concordance. The receiver operating characteristic (ROC) curve and the corresponding
area under the curve (AUC) were calculated representing the prediction ability of the
labeled HFOs outputs for SOZ.

Results: The initial detector demonstrated satisfactory performance on the simulated
dataset. The four CNN classifiers converged quickly during training, and the accuracies
on the validation dataset were above 95%. The localization value of HFOs was
significantly improved by HFOs classification. The AUC values of the 20 testing patients
increased after HFO classification, indicating a satisfactory prediction value of the
proposed algorithm for EZ identification.

Conclusion: Our detector can provide robust HFOs analysis results revealing EZ at the
individual level, which may ultimately push forward the transitioning of HFOs analysis
into a meaningful part of the presurgical evaluation and surgical planning.

Keywords: high frequency oscillations, epileptogenic zone, epilepsy surgery, stereoelectroencephalography,
convolutional neural network
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INTRODUCTION

Although a majority of seizures can be well controlled
by antiepileptic drugs, approximately 30% of patients suffer
from uncontrolled seizures despite pharmacotherapy, who are
potential candidates for presurgical evaluation and subsequent
surgery interventions (Devinsky, 1999; Jobst and Cascino, 2015).
Accurate localization and safe removal of the EZ are major
prognostic factors for good surgical outcomes (Vakharia et al.,
2018). Intracranial EEG recordings are often used to identify
the epileptogenic regions, especially in MRI negative cases, for
their capability of direct recording of epileptogenic discharges
from brain parenchyma with high temporal and spatial accuracy,
and they have been considered an electrophysiological gold
standard for delineating SOZ, which defines EZ to a large extent
(Rosenow and Luders, 2001). SEEG using depth electrodes has
been more widely adopted in recent years because it is superior
for recording deep brain structures and less invasive compared
with the subdural grid electrode approach (Nagahama et al., 2018;
Zijlmans et al., 2019). Currently, epileptologists mainly focus
on ictal SEEG to reveal SOZ; however, interictal HFOs have
increased in popularity as a promising biomarker for the EZ over
the past decade (Bragin et al., 1999; Jacobs et al., 2008).

It has been well illustrated and replicated that the rates of
HFOs were higher within the SOZ than outside (Worrell et al.,
2004; Urrestarazu et al., 2007; Jacobs et al., 2008). From a surgical
perspective, several studies have shown that tailored resection
of HFOs regions predicts better surgical outcomes and that
residual HFOs are prognostic markers for seizure recurrence (Wu
et al., 2010; van Klink et al., 2014; van ’t Klooster et al., 2015).
In addition, a recent meta-analysis also indicated a significant
relationship between the removal of tissue with high HFOs rates
and surgical outcomes (Holler et al., 2015).

HFOs are characterized as transient small and fast
oscillating phenomenon, which typically last 6–30 ms with
varied morphometry (Zijlmans et al., 2017). They can
also sometimes be mislabeled due to impulse-like artifacts
contamination and improper filtering (Benar et al., 2010).
Therefore, it is well acknowledged that manual detection of
HFOs can be extremely laborious, time-consuming and prone
to subjective bias (Lopez-Cuevas et al., 2013; Spring et al.,
2018). Under this background, a variety of automated detection
algorithms have been developed, which were implemented
to help limit the manpower required for HFO analysis
significantly and to avoid the bias induced by human raters
(Thomschewski et al., 2019). However, most HFO detection
algorithms have been conducted through simply thresholding
instantaneous frequency traces, which might be vulnerable to the
influence of artifacts and the irregular morphometry of HFOs
(Chaibi et al., 2013).

Abbreviation: AUC, area under the curve; cHFO, candidate high frequency
oscillations; CI, confidence interval; EEG, electroencephalography; EZ,
epileptogenic zone; FN, false negative; FP, false positive; FRs, fast ripples;
HFOs, high frequency oscillations; MRI, magnetic resonance imaging; qHFOs,
quality high frequency oscillations; ROC, receiver operating characteristic; Rs,
ripples; SD, standard deviation; SEEG, stereoelectroencephalography; SOZ,
seizure onset zone; TF, time-frequency; TP, true positive.

During clinical application of HFOs, not only is the detection
accuracy important, but the classification of various events is also
crucial. HFOs can be categorized into ripples (Rs, 80–250 Hz) and
fast ripple (FRs, 250–500 Hz) according to their frequency range
(Jacobs et al., 2012). FRs are reported to be more focal and closely
linked to epileptogenicity than Rs (Engel et al., 2009; Akiyama
et al., 2011). Evidence indicates that HFOs cooccurring with a
spike were more closely related to the SOZ (Wang et al., 2013).
In addition, artifacts due to muscle activity or bad connections
result in significantly more FP findings. Therefore, a two-stage
detection and classification framework was proposed and has
achieved high sensitivity in recent years while maintaining high
specificity by identifying different types of events at the second
stage (Zijlmans et al., 2017). Under such a framework, some
detectors have been developed as semiautomatic, requiring visual
validation (Navarrete et al., 2016), while others have implemented
fully automated postprocessing steps such as feature extraction
and clustering for the classification problem (Gliske et al., 2016;
Liu et al., 2016a).

For discriminating false HFOs or any other events, it has
been suggested that time-frequency (TF) representation of
HFOs is highly beneficial in distinguishing events of different
types (Benar et al., 2010). Therefore, the event discrimination
task can be categorized as a two-dimensional time-frequency
image classification problem. Convolutional neural network
(CNN)-based models are promising techniques that have been
applied successfully for classifying images, and they have gained
momentum in recent years for their advantageous performance
over traditional models (Krizhevsky et al., 2012). Therefore, we
hypothesized that CNN image classifiers can also be used for the
HFO classification problem with good efficiency.

Although several HFOs detection algorithms have been
published, the general validation and clinical value of these
approaches are less well addressed in the clinical application
aspect (Zijlmans et al., 2017). For ease of clinical use, the
following merits should be considered for any efficient HFOs
analysis tools. First, it should maintain high sensitivity and
specificity when detecting HFOs. Second, the requirement for
user input parameters and intervention should be minimized
to save labor and reduce bias. Third, the algorithm should
have robust classification ability to identify artifacts, subtypes of
HFOs and HFOs cooccurring with other interictal epileptiform
discharges. Fourth, because the final goal for any HFO detector
is to locate the EZ through the distribution of HFOs, the
clinical value of the algorithm should be evaluated and validated.
Finally, the results should be properly projected on anatomical
structures to facilitate surgical planning. Motivated by the clinical
need for efficient and reliable HFOs analysis tool, the proposed
algorithm attempted to cover the abovementioned properties
and provided a comprehensive solution for HFO analysis. The
automatic procedures mimic typical manual analysis, which
includes channel selection (excluding channels outside the brain,
with clear continuous artifacts or located in white matter), HFOs
detection, classification and anatomical projection.

Overall, our detection algorithm adopted the two-stage
framework containing an initial detector and a CNN-based
classifier. We first validated the initial detector through a labeled
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simulated dataset built by Roehri et al. (2017). To further validate
the clinical values of this pipeline, we retrospectively applied the
method to intracranial EEG data recorded from 20 patients who
underwent resection surgery with good surgical outcomes but
with different pathological substrates. Taking advantage of the
labeled events after classification, we further validated the results
in a real dataset against some established findings in the literature
while evaluating its performance for predicting SOZ.

MATERIALS AND METHODS

Stages of the Proposed Pipeline
Channel Selection
Preimplantation 1 mm isotropic T1 weighted MRI images and the
coordinates for each depth electrode contact in individual space,
which were determined by coregistering the post implantation
computerized tomography image with the preimplantation MRI,
and raw SEEG data were collected. First, brain extraction was
performed by ROBEX (Iglesias et al., 2011) to make a binary
brain mask to identify outside brain contacts. Raw SEEG data
were first subjected to a notch filter for line noise of 50 Hz and
its harmonic up to 450 Hz using a 3-order Butterworth filter and
then were re-referenced offline in a bipolar manner. Any bipolar
SEEG channel containing outside brain contact was excluded
from further analysis to avoid artifacts. Then, a binary gray
matter mask was produced by the SPM121 unified segmentation
procedure with a threshold of 0.4. A 3 × 3 × 3 voxel cube
centered on the middle point of the 2 adjacent contacts was
modeled to identify whether the bipolar channel was localized
in the white matter. The bipolar channel was labeled as out
of gray matter if the 3 × 3 × 3 voxel cube contained fewer
than 9 gray matter voxels. The bipolar channel was labeled as
low amplitude if the corresponding root mean square (RMS)
was below 35% of all channels, formerly excluding those labeled
as out brain. Only channels labeled as out of gray matter and
low amplitude were excluded for further analysis. Channels with
extreme high-amplitude noise (voltage > 1000 uV) lasting for
more than 1 s were also excluded from the analysis. This stage
ensured that most artifact contaminated channels as well as
low-amplitude channels in white matter were screened out from
further analysis.

Candidate HFO (cHFO) Detection and Automatic
Labeling
After the channel selection described above, the baseline-
corrected SEEG segments were first filtered using a 64-order
zero-phase forward and reverse bandpass FIR filter in the
80–500 Hz range. Then, the rectified filtered signal envelope
was determined using spline interpolation over local maxima.
The SDs of the bandpass filtered signal in each 100 ms epoch
was calculated for the whole time series with a step length of
100 ms, generating a distribution of SDs for each channel. An
amplitude threshold was set to five times the median of SDs
(Staba et al., 2002; Liu et al., 2016b). A cHFO was defined if

1https://www.fil.ion.ucl.ac.uk/spm/

the envelope surpassed the amplitude threshold and lasted more
than 6 ms. The maximum envelope peaks of putative HFOs
separated by fewer than 20 ms were considered as one event.
According to the 1/f law, the amplitude of FRs was lower than Rs,
so we repeated the aforementioned procedures with 250–500 Hz
bandpass signals and detected extra events to form the final
cHFOs for further classification.

The cHFOs were extracted and epoched in 600 ms windows
centered on local envelope peaks, and the Morlet wavelet (central
frequency equals 1 Hz, and the full-width at half-maximum
equals 3 s) TF transform (1–500 Hz with step length equals 1 Hz)
was applied to generate the scalograms (Pantazis et al., 2005).
To decrease the impact of the 1/f spectrum on the scalogram,
we bandpass filtered the raw data with a first-order Butterworth
8–490 Hz while preserving most of the low-frequency features,
especially spikes from the raw traces, before the TF transform.
The raw power was log-transformed and smoothed for better
visualization as TF maps. We extracted the central 200 ms
window TF maps as the final training and classification dataset
to avoid edge effects during the TF transform. Considering the
typical duration of HFOs (6–30 ms) and interictal epileptiform
discharges such as spike (30–70 ms) and sharp wave (70–200 ms)
(Aanestad et al., 2020), we think that the 200 ms window
will sufficiently cover the whole spectrum characteristics of the
detected events.

After some trials on a small training and validation subset,
ResNet101 was finally chosen since it yielded the best results with
the least overfitting out of AlexNet, GoogLeNet, VGG-16 (Alom
et al., 2018). Four pretrained convolutional neural network
Resnet101 were trained through transfer learning as binary
classifiers with purposes of labeling artifacts, spikes, Rs and FRs
in sequence order. Details of Resnet101 can be found in He et al.
(2016). Transfer learning was implemented by replacing the last
3 layers of the pretrained ResNet101 to a new fully connected
layer, softmax layer and class-output layer in sequence. The whole
TF image datasets included 29,744 artifacts events against 68,988
non-artifacts events, 30,387 spike events against 23,452 non-spike
events, 38,447 R events against 22,152 non-R events, and 26,454
FR events against 27,695 non-FR events. The image dataset was
composed of a mix of real signals and simulated data described
below except that all the artifact TF images were generated from
real data. The main source of artifacts was electromyography
and sharp transients. The real training materials were extracted
from 12 consecutively selected drug-refractory epilepsy patients
in Beijing Tiantan hospital from June 2018 to July 2019 (detailed
clinical information is provided in Supplementary Table 1).
Two experienced reviewers worked independently to label the
events, and only those events with the same conclusion from both
reviewers were included in the dataset. We randomly divided
the data into training and validation datasets, using 80% of the
images for training and 20% for validation. The training process
used stochastic gradient descent with a momentum of 0.9. We
used cross entropy as a loss function. The minibatch size was
set to 32, max epochs to 3 and initial learning rate to 0.0001.
To further validate the robustness of the training process, we
repeatedly trained the network by using 70% and 90% of the
images for training and 30% and 10% for validation. The training
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processes were stopped manually when the loss/accuracy plateau
was reached to avoid overfitting, and the accuracies on the
test dataset were recorded. Theoretically, the four consecutive
classifiers would output 9 reasonable categories of labels, which
were artifacts, spike, R, FR, spike + R, spike + FR, spike + R +
FR, R + FR and other (defined by four negative predictions and
treated as artifacts). After event labeling, cHFO not concurrent
with artifacts were labeled quality HFO (qHFO).

HFOs Occurrence Rate Sorting and Imaging
The occurrence rate was normalized to the highest occurrence
rate channel. Normalized value assignment was performed
in every voxel included in the volume defined by a
9 × 9 × 9 mm cube model centered on each electrode

contact (David et al., 2011). The results were smoothed through
a [4 4 4] Gaussian kernel, which was overlayed on volumes. The
pipeline was developed in MATLAB 2018a (The MathWorks,
Inc., Natick, MA, United States) and illustrated in Figure 1.
Codes of the algorithms described in this paper, including the
trained neural network, are open-source and openly available2.

Evaluation of the Initial Detector Using
Simulated Data
The simulated dataset provided an ideal testing environment
featured by its artifact-free signals and well-controlled

2https://github.com/zhaobaotian/HFO_AI_Detector_Open

FIGURE 1 | Schematic illustration of the automatic analytical strategies. (A) Channel selection was performed to exclude electrodes located in white matter, showing
low-amplitude fluctuation and located outside brain (plotted in red). (B) Example of an unfiltered bipolar signal in a 400 ms window. (C) Signals were independently
subjected to 80 and 250 Hz high-pass filters and were then rectified (black trace) for envelope extraction (yellow trace). Thresholds (red trace) were calculated based
on the envelopes. Candidate HFOs were extracted by identifying envelopes surpassing the corresponding threshold of each channel. (D) Morlet wavelet transform
was applied to convert the epoched candidate HFO time series to time-frequency domain images, which were further used as input for the CNN classifiers.
(E) Example training and validation dataset used for the four binary CNN classifier training. (F) HFOs sorting based on the occurrence rate. The yellow bar suggested
the application of thresholding in HFOs occurrence rate that would be overlaid on the anatomical image. (G) The results were then projected to the anatomical
structures and shown as a heatmap illustrating the distribution of high-occurrence HFOs. CNN: convolutional neural network; HFOs: high frequency oscillations;
Spk: spike; R: ripple; FR: fast ripple.
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signal-to-noise ratios (SNRs) of HFOs. We adopted the
HFOs dataset simulated by Roehri et al. (2017) since it was
already tested against four state-of-the-art openly available
detectors, namely the Short Time Energy, the Short Line Length,
the Hilbert and the MNI detector from RIPPLELAB Toolbox
(Navarrete et al., 2016). Thus, the benchmarks of our detector
can be directly compared with those open detectors. Specifically,
the dataset included 960 channels lasting for 2 min with a
sampling rate of 2,048 Hz. Each channel contains 42 inserted
events of 7 different types: 1. spike; 2. spike cooccurring with
an R; 3. spike cooccurring with an FR; 4. spike cooccurring
with an R and an FR; 5. R; 6. FR; 7. R cooccurring with an
FR. Following the suggestions by the authors of the dataset,
we defined a 100 ms time window centered on each simulated
HFO as the CI. CIs containing detections were considered true
positives (TP), those without detections were defined as FN, and
detections falling outside CIs were labeled as FPs. We used the
precision (Precdetection) and sensitivity (Sensdetection) criteria as
well as the F1-score, which combines precision and sensitivity,
to characterize the detection performance over the SNRs. The
precision and F1-score were defined as 1 and 0, respectively,
when no event was detected (i.e. TP + FP = 0) in 0 dB channels.

Sensdetection =
TP

TP+ FN

Precdetection =
TP

TP+ FP

F1− score =
2TP

2TP+ FN+ FP

Testing Cohort and SEEG Recordings
Patients from Beijing Tiantan Hospital and Beijing Fengtai
Hospital following the criteria between October 2015 and
October 2017, were included in this analysis retrospectively: (1)
unifocal epilepsy confirmed by analysis of SEEG seizure onsets;
(2) surgical resection after the SEEG; (3) the sampling rate of
EEG amplifier >2000 Hz; and (4) postoperative Engel I with at
least a 24-month follow-up. Only Engel I patients were included
so that we could assume that the EZ was correctly identified.
This study was approved by the Ethics Board of the Beijing
Tiantan Hospital, Capital Medical University. Informed consent
was given by patients or their legal guardian/next of kin about the
use of data for research purposes.

The SEEG recording was carried out as part of the clinical
routine of the included patients. Intracerebral multiple contact
depth electrodes (Huake-Hengsheng Medical Technology,
Beijing, China; 8–16 contacts, length: 2 mm, diameter: 0.8 mm,
1.5 mm apart) were placed using a CRW frame-based system
(Integra Radionics, Burlington, MA, United States) to record
intracranial EEG data. The strategy for electrode placement,
independent from the present study, was based on noninvasive
information providing clinical hypotheses about the localization
of the EZ. Twenty-four hours after electrode implantation,
electrophysiological signals were recorded on a video EEG
system (Nihon-Kohden, Tokyo, Japan). Long-term SEEG
monitoring was carried out to record at least two habitual

seizures. The built-in antialiasing hardware bandpass filter of
the amplifier was set to 0.08–600 Hz for a 2000 Hz sampling
rate. Typical monitoring sessions lasted from 7 days up to
1 month. We randomly selected one 5–10 min clip from each
patient without selection of electrode contacts, patient’s state
(awake/sleep), or quality of recordings.

Concordance of HFOs Results and SOZ
In clinical situations, all the depth electrodes were implanted
according to the consensus reached during the phase I evaluation.
The medical history, scalp EEG, ictal semiology, structure MRI
and fluorodeoxyglucose-positron emission tomography were
reviewed and discussed. In all patients presented here, SOZ was
independently visually identified by two senior epileptologists
(Xiao-qiu Shao and Wen-han Hu) by reviewing and labeling
the channels with the earliest ictal discharge during recorded
seizures. The SOZ was taken as the gold standard guiding surgical
planning of resection in individual bases.

To evaluate the SOZ prediction ability of this algorithm,
sensitivity (SenSOZ), specificity (SpecSOZ) and ROC curve with
AUC were calculated and served as quantitative parameters.
Sensitivity and specificity were defined as (Burnos et al., 2014):

SensSOZ =
CHHFOin SOZ

CHHFOin SOZ+ CHNon−HFOin SOZ

SpecSOZ =
CHNon−HFOnot in SOZ

CHNon−HFOnot in SOZ+ CHHFOnot in SOZ

We manually set threshold to the first N channels with the highest
HFOs rate to be CHHFO and the rest to be CHNon−HFO. The ROC
curve was obtained by plotting the SenSOZ as a function of the
(1 - SpecSOZ) at each cutoff N, which was increased from one to
the number of total contacts in each patient with a step length of
one. The corresponding AUC of each patient was calculated using
the trapezoid method.

Although the accuracy of the four classifiers was evaluated
in the validation set, to further test their efficiency and
generalization ability in the clinical environment, we next
conducted an additional analysis with hypotheses in relation
to the automatic classifier that (1) the localization value of
HFOs could be enhanced by eliminating artifacts; (2) HFOs
co-occurring with spike have better predictive value for SOZ than
those without. (3) HFOs with FR are more closely related to SOZ
than those without.

RESULTS

Performance of the Initial Detector on
the Simulated Data Set
An accurate initial detector lays a solid foundation for the
integrated HFOs detection and classification framework. Taking
advantage of the well-established simulated HFOs dataset, we
were able to evaluate the overall performance of the initial
detector using the 3 metrics described in the “Materials and
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Method” section. As expected, the performance of the automatic
detector increased with SNRs. The median and range of
sensitivity, precision and F1-score for different SNRs were 0 dB
[5.56%, 0–33.3%], 5 dB [44.44%, 8.33–86.11%], 10 dB [94.44%,
66.67–100%], 15 dB [97.22%, 91.67–100%]; 0 dB [100%, 0–100%],
5 dB [95.12%, 66.67–100%], 10 dB[97.14%, 85.71–100%, 15 dB
[97.22%, 87.50–100%]; 0 dB [0%, 0–48.98%], 5 dB [59.45%,
15.00–92.54%], 10 dB [94.44%, 79.37–100%], 15 dB [97.22%,
91.89–100%], respectively. The results suggest satisfactory and
stable accuracy of the initial detector, especially when the SNR
was high (10 dB and 15 dB). The distributions of the sensitivity,
precision and F1-score of different SNRs are shown in Figure 2.
Generally speaking, our initial detector outperformed the Short
Time Energy, the Short Line Length, the Hilbert and the MNI
detector from RIPPLELAB Toolbox and was comparable with
Delphos detector (Roehri et al., 2017).

Classification Accuracy of the Trained
CNN Classifiers
Four Resnet101 networks, namely, artifacts, spike, R and FR
classifiers, were trained. The loss function generally converged
quickly, and the loss/accuracy plateaus were reached after
2–3 epochs. Specifically, after the last iteration, the prediction
accuracies in the validation set for artifacts, spike, R and
FR classifiers of different training/validation split ratios were
summarized in Table 1. It is worth noting that we divided
the whole dataset into training and validation groups rather
than training, validating and testing groups since we adopted a
pretrained ResNet-101 network, which did not require intensive
structure modification or hyperparameter tuning during training
and validation processes. The training process showed robustness
across different split ratio and no overfitting problem occurred.

Demographics and HFOs Detection and
Classification Results of the Testing
Cohort
In general, 20 consecutive patients (4 female) met the inclusion
criteria and were included as the testing cohort. Their
pathological results varied, including hippocampal sclerosis,
focal cortical dysplasia and tuberous sclerosis complex (TSC).
Detailed demographics and clinical information are provided
in Supplementary Table 2. In total, 2,048 channels (mean
102.4, range 57–187) were fed into the pipeline, and the mean
duration of interictal clips for each patient was 9.2 min (range
4.2–11.7 min) for each subject. Based on the channel inclusion
criteria automatically implemented by the algorithm, 142 (6.9%),
254 (12.4%) and 22 (1.1%) channels were identified as outside
the brain, inside white matter and with extreme amplitude values,
respectively, which were excluded from further analysis. A total of
125,567 cHFOs were detected during the first stage. The detailed
detection and classification outputs are provided in Table 2.
Representing example figures of the labeled artifact, spike + R,
spike + R + FR can be found in Figure 1D.

Concordance Between Labeled HFOs
and SOZ
To a large extent, the ultimate goal for any HFO detector is to
provide interpretable results revealing EZ; therefore, we decided
to compare the concordance between labeled HFOs and SOZ
with the dual purpose of validating the classification results
against the assumptions based on previous studies and further
evaluating the diagnostic ability of this detector for identifying
the EZ in a real dataset.

FIGURE 2 | Performance of the initial detector tested on an open simulation dataset. The three metrics were calculated as sensitivity (A), precision (B) and F1 score
(C) for different SNRs. The violin plots show the range (minimum to maximum) and distribution of the data. The black dots represent the median values. Different
color indicates different SNRs groups. SNRs: signal-to-noise ratios; Sensdetection: sensitivity of the initial detection; Precdetection: precision of the initial detection.
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TABLE 1 | Training results of different split ratios for ResNet101 classifiers.

Classifiers Accuracies from different
training/validation split ratio

70% 80% 90%

Artifacts 98.98% 99.03% 99.18%

Spike 97.93% 98.11% 98.12%

Ripple 95.65% 95.97% 95.99%

Fast ripple 96.46% 96.55% 96.71%

SOZ channels were visually marked by capturing the earliest
ictal epileptic discharges identified by neurologists in 20 patients
based on at least one ictal SEEG. In total, 127 channels (mean
6.4, range 1–14) were labeled as SOZ, and detailed SOZ channel
information can be found in Supplementary Table 2. Instead of
thresholding and simply comparing the overlap between HFO
channels and SOZ channels, we chose to calculate the ROC curves
and corresponding AUC value for each subject, representing the
ability for SOZ localization of this algorithm.

AUC values for different representative event types were
compared at the group level. The median (interquartile range)
of AUC values for cHFOs and qHFOs were 0.979 (0.106)
and 0.988 (0.080) (p = 0.0043, Wilcoxon signed-rank test),
suggesting the effect of artifact removal on improving the
localization value. After excluding all artifact events, qHFOs
with spike versus qHFOs without spike exhibited significant
differences (p = 0.0111, Wilcoxon signed-rank test) and the
corresponding median (interquartile range) of AUC values were
0.964 (0.073) and 0.899 (0.184), indicating a better prediction
value of qHFOs with spike than those without for identifying
the EZ. Likewise, we further compared the localization value
of qHFO with FR and without, and the median (interquartile
range) of AUC values were 0.964 (0.086) and 0.974 (0.087),
respectively. The comparison result was statistically insignificant
(p = 0.4209, Wilcoxon signed-rank test). See Figure 3 for the
statistic comparisons above. We speculate that this phenomenon
might partially be attributed to the ceiling effect since the AUC
values clustered close to 1 in those 2 groups as well as the theory
that FR were generated by more restricted regions compared
to ripples (Bragin et al., 2002; Gonzalez Otarula et al., 2019).
Although the difference was not significant, separating qHFOs
with FR largely increased the two lowermost AUC values from
0.624 and 0.662 to 0.840 and 0.840, resulting in higher mean AUC
values for qHFOs with FR.

Next, we sought to compare the proportion of qHFOs with
FR outside and inside SOZ. We hypothesized that the proportion
of qHFOs with FR was higher inside SOZ than outside qHFO
channels based on previous studies. The results illustrated in
Figure 4 confirmed our hypothesis (mean ± SD: 0.503 ± 0.202
versus 0.327 ± 0.146, p = 0.0005, paired t-test). The above
significant differences still existed after Bonferroni correction
for multiple comparisons. To present an intuitive imaging
illustration of the efficacy of classification, we plotted the density
map of the HFOs rate on the glass brain in Montreal Neurological
Institute space without thresholding as Figure 5.

DISCUSSION

Even HFOs have been recognized as a promising biomarker
for identifying the EZ in recent years, analysis of HFOs is
still challenging, mainly due to their usual low signal-to-noise
ratio, their heterogeneous patterns and their association with
other epileptic activity (Thomschewski et al., 2019). Automatic
detection of HFOs has a considerable advantage over visual
marking in terms of efficiency. Different algorithms, such as
the short-time energy detector (Staba et al., 2002), the short
line length detector (Gardner et al., 2007), the Hilbert detector
(Crepon et al., 2010), and the Montreal Neurological Institute
detector (Zelmann et al., 2012), have been published and are
publicly available through the RIPPLELAB Toolbox (Navarrete
et al., 2016); however, many publicly available detectors face
challenges such as artifact contamination and the lack of
robustness across different situations (i.e. low inter-method
reproducibility), which impede their clinical implementation
(Frauscher et al., 2017). To narrow the gap between HFOs
analysis and clinical EZ localization, we designed an integrated
pipeline imitating the current workflow of HFOs analysis. We
have also systematically validated the performance of our detector
in simulated datasets and real datasets. Features of the proposed
pipeline include (1) channel selection based on anatomical
localization and RMS to exclude flat channels and minimize
the influence of artifacts; (2) automatic detection of cHFO
through filtering and amplitude thresholds followed by labeling
detected events with tags of spike, R and FR using a deep
convolutional neural network in a supervised manner; and (3)
visualization of high-rate HFOs channel distribution projected
on brain structures.

Many automatic and semiautomatic algorithms have been
developed and have shown promising results. However, apart
from those flourishing studies, researchers should still be cautious
about the sensitivity and specificity of their SOZ localization
values. Part of the reason could be attributed to the lack of
a gold standard for identifying HFOs. A working definition
is that oscillatory activities in a frequency band from 80 to
500 Hz clearly stand out from the baseline signal and persist
for at least four oscillation cycles. This definition may provide
practical guidelines for the manual identification of HFOs;
however, it lacks specific parameters needed for designing
automatic detectors (Roehri et al., 2017). In addition, the
literature constantly indicates that manual labeling can act as
the gold standard (Amiri et al., 2016; Zuo et al., 2019), but
manual labeling has been questioned in terms of subjective
bias and interrater reliability. Here, as the base of our initial
detector, we adopted a traditional yet feasible definition by Anatol
Bragin et al. that successive RMS values with amplitudes of 5
SDs above the mean amplitude of the RMS signal longer than
6 ms in duration (Staba et al., 2002) with subtle modification
as described in the “Materials and Method” section. As was
discussed in the paper by Roehri et al. (2017), it was challenging to
directly compare the performance between detectors because of
the lack of gold standard, therefore, they proposed a benchmark
framework and an openly available simulated dataset to ease the
problem. The reason we choose the simulated dataset to validate
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TABLE 2 | Detection and classification results and the AUC values regarding SOZ of 20 testing patients.

Patient Clip
duration

(min)

Channel selection Event classification AUC values

Total WM OB EV Total Art./others Spk R FR Spk + R Spk + FR Spk + R + FR R + FR cHFOs qHFOs qHFOs w/FR

01 9.7 121 13 9 0 15865 743 196 1970 21 9081 44 3770 40 0.764 0.764 0.757

02 11.7 120 17 6 7 10403 3655 32 1874 107 1633 28 2276 798 0.956 0.980 0.962

03 5.0 81 13 2 1 2482 71 26 469 5 694 9 1154 54 0.946 0.946 0.949

04 7.0 115 22 2 2 981 92 29 63 11 278 68 432 8 0.996 1.000 0.992

05 9.6 136 16 12 2 643 211 3 137 6 131 3 142 10 0.998 0.998 1.000

06 10.8 58 2 7 0 10427 1267 30 392 288 2568 209 5424 249 0.855 0.893 0.889

07 4.5 100 5 10 0 4435 781 52 476 161 777 210 1815 163 1.000 1.000 1.000

08 4.2 70 5 2 2 2781 495 47 284 66 624 77 1130 58 0.920 0.946 0.939

09 11.3 111 8 11 0 6338 2580 37 330 72 1632 30 1606 51 0.989 0.991 0.993

10 10.1 76 8 9 0 2755 682 52 600 45 530 81 693 72 0.973 0.997 0.995

11 9.7 104 17 7 0 4131 492 12 2771 14 417 5 364 56 0.633 0.658 0.840

12 9.7 100 19 7 0 1757 110 19 663 2 462 11 462 28 1.000 1.000 0.945

13 10.8 60 2 4 1 5074 912 53 2509 58 1283 5 142 112 0.980 0.987 0.967

14 6.7 187 27 10 2 9085 832 68 2273 143 2692 218 2658 201 0.985 0.986 0.926

15 10.2 126 17 8 2 11256 1367 136 1095 96 3291 187 4905 179 0.990 0.989 0.993

16 11.1 105 15 12 1 10709 323 108 1366 148 5344 59 3207 154 0.791 0.782 0.840

17 11.2 128 8 7 0 10717 222 58 2529 11 5153 17 2612 115 1.000 0.998 0.981

18 11.1 57 12 4 0 9657 442 230 598 21 3898 108 4296 64 0.992 1.000 0.992

19 11.0 118 11 8 1 4215 1677 19 583 18 1161 7 717 33 0.775 0.839 0.839

20 9.5 75 17 5 1 1856 369 4 80 5 289 7 1089 13 0.978 1.000 1.000

Total 184.8 2048 254 142 22 125567 17323 1211 21062 1298 41938 1383 38894 2458 / / /

WM: channels identified in white matter; OB: channels identified outside brain; EV: channels including extreme amplitude values; Art.: artifacts; Spk: Spike; R: ripple; FR: fast ripple; cHFOs: candidate high frequency
oscillations; qHFOs: quality high frequency oscillations; AUC: area under the curve.
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FIGURE 3 | ROC curves and AUC values of different event types in the testing cohort. ROC curves were plotted for each patient comparing cHFOs and qHFOs, (A)
qHFOs with and without spike (B) and qHFOs with and without FR (C). The corresponding AUC values were calculated with the trapezoid method. Significant
differences were found between cHFOs and qHFOs (p = 0.0043, Wilcoxon signed-rank test) (D), qHFOs with and without spike (p = 0.0111, Wilcoxon signed-rank
test) (E), but not qHFOs with and without FR (p = 0.4209, Wilcoxon signed-rank test) (F). *p < 0.05, **p < 0.01. ROC: receiver operating characteristic; AUC: area
under the curve; HFOs: high frequency oscillations; cHFO: candidate HFOs; qHFOs: quality HFOs; FR: fast ripple; w/: with; w/o: without.

our initial detector is that there are benchmarks of four openly
available detectors based on this dataset and we can directly
compare our detector with others. To evaluate the initial detector
in a systematic manner, we tested our initial detector using
the simulated dataset, and the performance was satisfactory,
especially when the SNRs were high and robust compared
with other four state-of-the-art openly available detectors from
RIPPLELAB Toolbox (Navarrete et al., 2016).

Even though the performance was inspiring in the simulated
dataset, we should keep in mind that the real dataset might
be complicated, containing artifacts, physiology HFOs and
pathological HFOs with various patterns (Engel et al., 2009;
Kovach et al., 2011; Cimbalnik et al., 2018). Therefore, the
clinical translation of HFOs as a biomarker of EZ has been
largely limited by the ability to reliably detect and accurately
classify HFOs (Khadjevand et al., 2017). With the purpose of
improving the specificity of HFOs for indicating EZ, endeavors
have been made to distinguish events of interest. For example,
Fabrice Wendling et al. used a similar two-stage approach to
detect events of interest and identify FRs based on parameters
extracted from Fourier transform or wavelet transform (Birot
et al., 2013). Taking advantage of multiple handcrafted features

such as power band ratio, spectral centroid, and entropy, Su
et al. successfully divided HFOs candidates into several clusters
based on unsupervised clustering algorithms, which increased
the accuracy for pathological HFOs detection (Liu et al., 2018).
In this study, we aimed at improving this situation using four
well trained CNN classifiers after initial detection. To be specific,
in the testing dataset from real patients, we termed the detected
events from initial detector as cHFOs, which indicated that they
cannot be directly deemed as HFOs without further artifacts
rejection. As can be seen from Table 2, there were 13.80% false
HFOs and they could make a big difference in the final results.
The trained classifiers successfully improved the localization
value of HFOs for SOZ by rejecting those artifacts. The SOZ
localization value was further improved after the FR classifier was
applied, suggested by the increased AUC values.

Clinically, physicians tend to use high-pass filtering of EEG
signals to suppress background activity and highlight some
oscillations in the frequency band of interest. However, both
HFOs and sharp transients may be represented as in Amiri
et al. (2016); in this scenario, it is often helpful to overview
the broadband signal or the time-frequency scalogram, which
manifests the full spectral characteristics of the HFO event,
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FIGURE 4 | Percentage of qHFOs with FR inside and out of SOZ. The
percentage of qHFOs with FR was significantly higher inside SOZ than outside
(p = 0.0005, paired t-test). HFOs: high-frequency oscillations; FR: fast ripple;
SOZ: seizure onset zone; qHFOs: quality HFOs.

FIGURE 5 | HFOs imaging plotted on a glass brain in Montreal Neurological
Institute space showing (A) the automatic labeled gray matter depth electrode
coverage; (B) the spatial distribution of cHFOs; (C) the distribution of qHFOs
and the spatial distribution of qHFOs with FR (D). It can be seen from the
figures that with classification, the result was more specific and localized,
indicating SOZ. No thresholding was used in the above figures. The intensity
bar represents the min-max normalized HFOs occurrence rates. HFOs: high
frequency oscillations; cHFO: candidate HFOs; qHFO: quality HFOs; FR: fast
ripple; SOZ: seizure onset zone.

for categorization tasks. Inspired by current clinical workflows
and different from unsupervised clustering, we chose the CNN
model as our classifier, reflecting the idea from data to decisions.
The development of machine learning in recent years has heavily

emphasized and benefited from CNN, which was originally
designed to handle object classification tasks. Across multiple
layers, these networks extract features from low levels to higher
levels, often described as end-to-end and inspired by the
brain recognition process (Di Carlo and Cox, 2007). Among
different CNN architectures, ResNet101 mitigates the problem
of vanishing gradient resulting from improper hyperparameter
tuning and the increased stacked layers by skip connections,
and it is also actively chosen for computer vision tasks for its
ability to generalize well to different datasets and problems (Wu
et al., 2019). In contrast to handcrafted feature-based clustering,
a deep learning neural network can automatically extract features
and perform classification tasks. The key of this classification
algorithm was to gather enough representative events as training
materials so that the classifier can be trained toward good
generalization ability. Because the imbalance distribution of
different event types was shown in the results, it was more
feasible to train four binary CNN classifiers rather than one
multiclass classifier. Using transfer learning, it was possible to
train a more generalized deep neural network for classification
with limited samples.

The issue with the TF scalogram is that the low-frequency
component may make HFOs less visible given specific settings
because of the 1/f spectrum law. Researchers have designed
various strategies, such as autoregressive integrated moving
average, Teager-Kaiser operator energy and H0 z-score (Roehri
et al., 2016) to flatten the spectrum. Here, we arbitrarily
performed 8 Hz high-pass filtering of the raw trace and then
log-transformed the raw energy. The spectrum was whitened,
while most low-frequency components were preserved under
such settings. In scalograms, true HFOs are visible as isolated
“blobs” in the time-frequency plane, while the pure spike and
the transient sharp artifact produce a single elongated shape
with no visible band-limited blobs (Benar et al., 2010). During
the manual labeling period, it was sometimes challenging to
discern HFOs when the spikes co-occurred. We tended to check
the raw and high-pass filtered trace as supplementary proof for
visual classification. Based on the combined manually labeled and
simulated dataset, the training and validation results of the four
ResNet101 classifiers showed robust accuracies above 95% across
different split ratios. The four successfully trained classifiers laid
solid foundation for improving the localization value of HFOs.

After the classifiers were trained properly, we sought to
further validate the classification performance in 20 real patients
against 3 assumptions, which could be safely drawn from
previous studies: (1) the EZ localization capability could be
enhanced by removing artifacts and false HFOs (Benar et al.,
2010); (2) HFOs cooccurring with spikes had higher localization
value than those without (Wang et al., 2013; Weiss et al.,
2016; Wang et al., 2017), and (3) FRs were more closely
related to the EZ (Engel et al., 2009; Gonzalez Otarula et al.,
2019). By labeling cHFOs, our detector successfully verified
the assumptions concluded from previous studies. In addition,
we demonstrated that the AUC values of qHFOs and qHFOs
with FR clustered near 1. In the qHFOs with FR group, 19
out of 20 AUC values were above 0.8, and 15 were above
0.9. The results suggested the excellent ability to predict SOZ
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channels using the classified HFOs rate. Poor concordance was
found in two TSC patients, reflecting the multifocal nature and
a complex widespread epileptic network in patients with TSC
(Okanishi et al., 2014).

Aside from artifact removal, it was also important to separate
pathological HFOs and physiological HFOs. Previous studies
suggest that they could be distinguished based on their frequency
band, their co-occurrence with interictal epileptiform discharges
(Wang et al., 2013; Jacobs et al., 2016), their stereotyped
morphology patterns and their spatial distribution (Liu et al.,
2018). Therefore, successful classification of HFOs with FR or
co-occurring with other interictal epileptiform discharges such as
spike may help improve the specificity of HFOs in delineating EZ,
which could be achieved through our algorithm.

Detection and classification algorithms tend to be optimized
for recording a specific group with limited diversity in
epilepsy syndromes, which is true for this automatic pipeline.
Validation on a larger cohort from a multicenter is needed to
better evaluate the prediction performance of this algorithm.
Furthermore, because of the sophisticated design, this algorithm
is computationally expensive compared with other detectors.

In this paper, we proposed an integrated pipeline for
automatic detection, classification and imaging of HFOs with
SEEG. Our initial detector demonstrated robust detection
results on a comprehensive simulated dataset. The CNN-based
classifiers achieved satisfactory accuracy, and their generalization
ability was also validated in an extra real patient cohort.
Thus, the proposed detection method dramatically decreased
the workload in assessing the presence of HFOs in SEEG
while providing straightforward interpretable results for
surgical planning.
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Background: We aimed to construct and validate a nomogram model based on the
combination of radiomic features and satellite sign number for predicting intracerebral
hematoma expansion.

Methods: A total of 129 patients from two institutions were enrolled in this study. The
preprocessed initial CT images were used for radiomic feature extraction. The ANOVA-
Kruskal–Wallis test and least absolute shrinkage and selection operator regression
were applied to identify candidate radiomic features and construct the Radscore.
A nomogram model was developed by integrating the Radscore with a satellite sign
number. The discrimination performance of the proposed model was evaluated by
receiver operating characteristic (ROC) analysis, and the predictive accuracy was
assessed via a calibration curve. Decision curve analysis (DCA) and Kaplan–Meier (KM)
survival analysis were performed to evaluate the clinical value of the model.

Results: Four optimal features were ultimately selected and contributed to the Radscore
construction. A positive correlation was observed between the satellite sign number and
Radscore (Pearson’s r: 0.451). The nomogram model showed the best performance
with high area under the curves in both training cohort (0.881, sensitivity: 0.973;
specificity: 0.787) and external validation cohort (0.857, sensitivity: 0.950; specificity:
0.766). The calibration curve, DCA, and KM analysis indicated the high accuracy and
clinical usefulness of the nomogram model for hematoma expansion prediction.

Conclusion: A nomogram model of integrated radiomic signature and satellite sign
number based on noncontrast CT images could serve as a reliable and convenient
measurement of hematoma expansion prediction.

Keywords: cerebral hemorrhage/diagnostic imaging, disease progression, computed tomography, stroke,
algorithms

INTRODUCTION

Intracerebral hemorrhage (ICH) confers a worse prognosis than ischemic stroke, with an overall
fatality rate approaching 40% and neurological disability among the survivors (van Asch et al.,
2010; Heit et al., 2017). Based on previous findings, the baseline volume and the location of ICH,
intraventricular hemorrhage (IVH), Glasgow coma scale score, and age are strongly associated with
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the outcomes as clinical predictors (Hemphill et al., 2001).
Early hematoma expansion is a greater risk factor for increased
mortality and poor functional outcomes, which is independent
of other defined clinical correlation factors (Delcourt et al.,
2012). A remarkable hemorrhage enlargement by more than 33%
volume increase within 24 h after the onset of symptoms occurred
in 38% of patients with ICH, as has been reported prospectively
(Brott et al., 1997). Therefore, as the only modifiable risk factor,
early identification of patients with a potential risk of hematoma
growth is crucial for targeted therapeutic strategies.

Recently, different imaging characteristics have been
successively reported and paved the way for available prediction
of hematoma expansion in clinical routine. The computed
tomography angiography (CTA) spot sign, as an independent
predictor, has been well established and prospectively validated,
which turned out to be of limited sensitivity (Demchuk et al.,
2012; Dowlatshahi et al., 2016). Besides that, CTA has not
yet been a routine measurement for emergency radiology
in some institutions, following nephrotoxicity and allergy
problems (Caplan, 2016). Rather, several novel markers based
on noncontrast CT (NCCT), including blend sign, black
hole sign, swirl sign, island sign, and satellite sign, recently
gained attention, mainly focused on the heterogeneity and
the irregularity of hematoma (Boulouis et al., 2017; Shimoda
et al., 2017; Morotti et al., 2019). The satellite sign, which was
easy to recognize and clearly defined, was especially proven to
be an independent imaging marker for hematoma expansion
prediction (Shimoda et al., 2017; Yu et al., 2017). However,
these imaging predictors make qualitative or semi-quantitative
analysis studies only and caused inevitable deviation due to
subjectivity. More objective quantitative indicators should be
defined to approach more veracious results. As a promising
quantitative method for heterogeneous studies, radiomic analysis
has become a new “’hot spot” in cancer researches (Davnall
et al., 2012). Radiomic analysis links quantitative imaging
features to clinical findings by using machine learning and
statistics analysis methods. Machine learning methods, such as
logistic regression, support vector machines, random forest, and
Bayesian algorithm, have come into a wider use in the field of
radiomics (Lambin et al., 2012; Bi et al., 2018; Shen et al., 2018;
Khalaf et al., 2019; Zavecz et al., 2020). In oncology, features have
already been carried out to assess intratumor heterogeneity in
various tumor types through the analysis of pixel or voxel gray
level distribution and degree of coarseness for early diagnosis,
preoperative grading, and monitoring responses to therapies
for prognosis prediction (Lubner et al., 2017b; Bi et al., 2019).
However, limited numbers of studies were found focusing on
the nononcologic applications of radiomics (Kotze et al., 2014;
Ginsburg et al., 2016; Lubner et al., 2017a).

In this study, we hypothesized that radiomic analysis
and quantitative satellite sign can identify the associations
between the quantitative imaging features and the hematoma
pathophysiology and thus effectively and precisely predict
intracerebral hematoma expansion in NCCT images. The aim
of this study was to establish a quantitative imaging model
to predict hematoma expansion and improve the functional
outcomes for patients with ICH. We investigated a nomogram

model combined with radiomics and quantitative satellite sign
to improve the diagnostic performance in early hematoma
expansion prediction.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the Medical Ethics
Committee of institution I and II and conducted in accordance
with relevant guidelines. Informed consent was waived.

Patients with spontaneous ICH within 6 h since symptom
onset and CT recheck within 24 h in between January 2017
and December 2018 were included. The exclusion criteria were
the following conditions: (1) patients with ICH secondary to
arteriovenous malformation, trauma, aneurysm, tumor, and
venous sinus embolism, (2) patients who were receiving
anticoagulation treatment, (3) surgery or interventional therapy
before the repeat CT scan, (4) image contained severe artifacts,
and (5) IVH or subarachnoid hemorrhage is involved. Clinical
data were provided by a neurologist, including age, gender,
systolic blood pressure, international normalized ratio, time
to initial CT scan, activated partial thromboplastin time, and
baseline Glasgow Coma Scale score.

CT Examination, ROI Segmentation, and
Imaging Evaluation
The CT scans in the two institutions were carried out on different
CT scanners, including a GE LightSpeed VCT 64-slice and a GE
Optima 540 16-slice. The same CT scanning parameters were
performed with a tube voltage of 120 kV, a tube current of 150–
300 mA, field of view of 25 cm, and 512 × 512 acquired matrix.
The scan ranged from the skull base to the cranium, with a
thickness of 5 mm per layer.

The radiomic workflow is summarized in Figure 1. Patients
with a volume increase of more than 33% in the follow-up image
within 24 h compared to the initial one were automatically
defined as hemorrhage expansion (Connor et al., 2015;
Hemphill et al., 2015). ITK-SNAP (Version 3.6.0, UPenn)
was performed to segment regions of interest (ROI) on CT
images. ROI was delineated manually within the confine of
each main hematoma by two neuroradiologists with 10 and
12 years of experience, respectively, and who were blind
to the data. Before delineation, intensity normalization by
histogram matching was applied to eliminate any difference
in technologies using ITK software. All pixel gray levels
inside the whole ROI objects were extracted for radiomic
analysis. No multiple simultaneous spontaneous ICHs
were included in the study (Chen et al., 2016). The two
neuroradiologists recorded the location of hematoma, the
satellite sign number, and the presence or the absence of
swirl sign, blend sign, and black hole sign independently
during delineation. The definitions of satellite sign, blend
sign, black hole sign, and swirl sign were determined
according to Al-Nakshabandi (2001), Li et al. (2015, 2016),
and Shimoda et al. (2017).
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FIGURE 1 | Workflow.

Feature Extraction and Selection
All the radiomic features from ROIs were extracted from
preprocessed images using the Artificial Intelligence Kit Version
3.0.1.A (Life Sciences, GE Healthcare, United States), with
window width 110 and window level 45. Six main categories
were involved, including histogram, morphology, gray level co-
occurrence matrix, run length matrix, and gray level zone size
matrix. Analysis of variance, Kruskal–Wallis test, and single-
factor logistic regression analysis were successively carried out
for selecting significant features that were highly correlated.
By removing the redundancy with a correlation coefficient of
more than 0.90, the radiomic features were further optimally
elected. In the final step, least absolute shrinkage and selection
operator (LASSO) regression was applied to identify the most
nonredundant and robust features among the 396 radiomic
features from the training cohort in order to improve the
class separability and optimize the representation of lesion
heterogeneity. With an increase of the value of λ, relevant
features with non-zero coefficients were selected and these
contributed to the final LASSO regression. Meanwhile, the best
value of λ found by 10-fold cross-validation with a maximum
area under the curve (AUC) was used for constructing the
regression model. Radscore, which is defined by corresponding
non-zero coefficients of the features selected by LASSO, was
created by a linear combination of selected features weighted by
their coefficients. Respective Radscore was calculated for each
patient. Pearson correlation analysis was performed to identify
the correlation between satellite sign number and Radscore. The
pairwise Pearson correlation coefficients were calculated.

Radiomics Nomogram Building,
Calibration, and External Validation
Both Radscore and the satellite sign number were integrated
by a multivariate logistic regression-based radiomic model in
the training cohort. Furthermore, a nomogram model was
constructed based on a multivariate logistic regression analysis to
visually demonstrate the probability of a hematoma enlargement.
In addition, predictive models based on Radscore or the satellite
sign number alone were also developed. The receiver operating
characteristic (ROC) analysis and the AUC were applied to
evaluate the discrimination performance on the three models.
Along with the Hosmer–Lemeshow test measuring for goodness
of fit of the nomogram model, predictive accuracy was assessed
via a calibration curve in terms of the agreement between the
predicted probability of hematoma expansion and the actual
one. Then, the constructed model from the training cohort was
applied to the external validation cohort. Respective Radscore
was also calculated for each patient and further combined with
the satellite sign number to validate the nomogram model based
on the training cohort. Ultimately, the same process of predictive
capability assessment with the ROC analysis and the calibration
curve was also carried out in the validation cohort.

Decision curve analysis (DCA) was carried out to evaluate
the clinical value of the three models independently on the
basis of calculating the net benefit for patients at each threshold
probability. By comparing to all strategies or none at all, the best
model was elected according to the higher calculated net benefit.

The Kaplan–Meier method was carried out to calculate the
survival probabilities. The survival rates were estimated in

Frontiers in Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 491105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00491 June 2, 2020 Time: 20:39 # 4

Xu et al. Nomogram Model Predicts Hematoma Expansion

30 days. The patients from the two institutions were divided
into the expander and the non-expander groups according to the
predictive results using the threshold calculated from the training
dataset through the Youden Index. Survival was defined as the
period from diagnosis to the date of death or the time at which
information was last obtained.

Statistical Analysis
Version 3.3.2 of R software and version 13.0 of SPSS software
were used in the statistical analysis. Quantitative variables are
shown as mean ± SD. Statistical group comparisons of clinical
data were performed by independent-samples t-test or χ2

test where appropriate. Intraclass correlation coefficient (ICC)
was analyzed for estimating the reliability of inter-observer
agreements, which was defined as good consistency if between
0.75 and 1, fair consistency if between 0.4 and 0.75, and poor

consistency if under 0.4. The pairwise comparison of ROC
curves was performed using z statistic in MedCalc for Windows,
version 19.0.7 (MedCalc Software, Ostend, Belgium). Log-rank
test was used to compare survival curves, and the results were
considered as significant when p < 0.05. The test power (1-β
error probability) was calculated by version 3.1.9.7 of G∗Power
software. The level of statistical significance was set at a two-sided
p-value < 0.05 for all analyses.

RESULTS

Patients Characteristics
As demonstrated in the workflow (Figure 1), between January
2017 and December 2018, a final cohort of 129 patients were
selected, and among them, 68 patients from institution I were

TABLE 1 | Baseline demographic information.

Variable Training set (n = 68) Validation set (n = 61)

Expander (n = 21) Non-expander (n = 47) p-value Expander (n = 19) Non-expander (n = 42) p-value

Age (years) 64.2 ± 14.7 61.2 ± 14.2 0.42 56.2 ± 10.6 57.1 ± 13.5 0.86

Male (%)* 13 (19.1) 31 (45.6) 0.75 6 (20.7) 12 (41.4) 0.98

Admission SBP (mmHg) 168.5 ± 8.8 165.0 ± 11.2 0.21 162.3 ± 9.1 166.1 ± 8.2 0.28

Admission INR 1.5 ± 0.2 1.5 ± 0.3 0.25 1.4 ± 0.3 1.5 ± 0.3 0.51

Time to initial CT scan (h) 3.1 ± 0.9 3.5 ± 1.1 0.21 3.9 ± 1.6 3.9 ± 1.8 0.96

APTT (s) 33.3 ± 4.9 32.0 ± 3.9 0.25 28.3 ± 6.5 29.5 ± 5.0 0.62

Baseline GCS score 12.2 ± 3.8 12.0 ± 3.4 0.84 13.7 ± 3.7 12.3 ± 3.8 0.37

SBP, systolic blood pressure; INR, international normalized ratio; APTT, activated partial thromboplastin time; GCS, Glasgow Coma Scale. Data are means ± standard
deviations. ∗Data are the number of patients, with percentages in parentheses.

TABLE 2 | Radiological characteristics.

Variable Training cohort (n = 68) Validation cohort (n = 61)

Expander (n = 21) Non-expander (n = 47) p-value Expander (n = 19) Non-expander (n = 42) p-value

Observer 1

Location*

Basal ganglia 16 (76.2) 35 (74.5) 0.88 11 (57.9) 31 (73.8) 0.21

Lobar 4 (19.1) 9 (19.2) 0.99 5 (26.3) 7 (16.7) 0.38

Thalamus or brainstem 1 (4.8) 3 (6.4) 0.79 3 (15.8) 4 (9.5) 0.67

Satellite sign number 2.4 ± 1.6 1.0 ± 1.5 <0.001 2.4 ± 1.7 0.7 ± 1.0 0.001

Black hole sign* 8 (38.1) 9 (19.1) 0.10 7 (36.8) 7 (16.7) 0.08

Swirl sign* 7 (33.3) 6 (12.8) 0.04 8 (42.1) 9 (21.4) 0.09

Blend sign* 9 (42.9) 10 (21.3) 0.07 7 (36.8) 9 (21.4) 0.21

Observer 2

Location*

Basal ganglia 16 (76.2) 36 (76.6) 0.97 11 (57.9) 31 (73.8) 0.21

Lobar 4 (19.1) 8 (17.0) 0.84 5 (26.3) 6 (14.3) 0.23

Thalamus or brainstem 1 (4.8) 3 (6.4) 0.79 3 (15.8) 5 (11.9) 0.69

Satellite sign number 2.5 ± 1.7 1.1 ± 1.4 0.001 2.2 ± 1.1 0.7 ± 0.6 0.003

Black hole sign* 8 (38.1) 8 (17.0) 0.06 9 (47.4) 10 (23.8) 0.07

Swirl sign* 7 (33.3) 7 (14.9) 0.08 8 (42.1) 10 (23.8) 0.15

Blend sign* 7 (33.3) 8 (17.0) 0.13 7 (36.8) 8 (19.0) 0.14

Data are means ± standard deviations. ∗Data are the number of patients, with percentages in parentheses.
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taken as the training set for the initial prediction model and the
other 61 patients from institution II were taken as a prospective
independent set for validation.

Tables 1, 2 show the demographic, clinical, and imaging
characteristics. No significant difference (p > 0.05) was found
in all baseline clinical features and in most of the imaging
characteristics between expanders and non-expanders in both the
training and the validation cohorts. Moreover, only observer one
found a statistical significance in the presence of a swirl sign in the
training cohort. No other statistically significant difference of the
presence of swirl sign blend sign or black hole sign was observed
between groups in both cohorts. However, the patients with and
without hematoma expansion had an uneven distribution in the
satellite sign number with statistical significance (p < 0.001).

Reproducibility Analysis
Based on the result of the reproducibility analysis by the two
radiologists, 349 out of 396 (88.2%) radiomic features had good
consistency (ICC ≥ 0.75) on contour-focused segmentation. The
number of features with fair consistency (0.75 > ICC ≥ 0.4)
and with poor consistency (ICC < 0.4) was 28 (7.1%) and 19
(4.7%), respectively. Supplementary Table S1 demonstrates in
detail the consistency of the four selected radiomic features. For
identification of the satellite sign, swirl sign, and blend sign,
intraobserver reproducibility analysis was also conducted. The
ICC for the satellite sign number was 0.910 (95% CI: 0.855
to 0.945), indicating satisfactory consistency. By contrast, the
interrater agreement between the two neuroradiologists for swirl
sign, blend sign, and black hole sign was 0.738 (95% CI: 0.575
to 0.838), 0.735 (95% CI: 0.570 to 0.836), and 0.791 (95% CI:
0.700 to 0.854), respectively. Since there is excellent consistency

FIGURE 2 | Univariate analysis of four candidate features for hematoma
expansion prediction in the training cohort. HGLRE, high gray level run
emphasis, SRHGLE, short run high gray level emphasis. *p < 0.01,
**p < 0.001.

between the two segmentation data as well as the satellite sign
number evaluation, data from the neuroradiologist with 12 years
of experience were finally submitted for further analysis.

Radscore and Nomogram Building
Supplementary Figure S1A shows the heat map based on
feature distribution after redundancy removal. The transparent
clustering characteristics between rows implied a high differential
capacity of distinguishing between hematoma expanders and
non-expanders. Indicated between columns is the clustering
identification of the former four features and the latter eight
features, respectively. Four features were finally selected by 10-
fold cross-validation for ensuring robustness and preventing
overfitting (Supplementary Figures S1B,C). The differences
of the four candidate features between expanders and non-
expanders were all remarkably statistically significant (Figure 2).
These features were then constructed by a fitting calculation
formula for Radscore.

Radscore =− 1.41+ (1.29× Sum Average)+ (−0.82×High

gray level run emphasis− all direction− offset

1− SD)+ (−0.08× Short run high gray level

emphasis− angle 0− offset 4)+ (−0.61× Short

run high gray level emphasis− angle 135− offset 7)

From the pairwise Pearson correlative analysis, the satellite
sign number was observed to be positively correlated to the
corresponding Radscore with a correlation coefficient of 0.482
(p < 0.001, 95% CI: 0.272 to 0.649) (Figure 3). The multivariable
logistic regression analysis was generated on the basis of the
Radscore and the satellite sign number. The nomogram model
was conducted to visualize the results of the multivariable logistic

FIGURE 3 | Correlation between satellite sign number and Radscore based
on Pearson correlation analysis. The mean absolute correlation was 0.482
(p < 0.001, 95% CI 0.272 to 0.649).
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FIGURE 4 | Nomogram construction and performance of the combined model in both cohorts. (A) Combined nomogram based on the training cohort. (B) Pairwise
comparison of receiver operating characteristic (ROC) curves for Radscore, satellite sign number and the nomogram model in the training cohort. (C) Corresponding
calibration curve in the training cohort. (D) Pairwise comparison of ROC curves in the external validation cohort. (E) Calibration curve of the nomogram model in the
validation cohort.
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regression analysis (Figure 4A).

Nomogram =− 0.75+ (0.82× Radscore)

+ (0.41× Satellite sign number)

A further validation was carried out through ROC analysis.
Compared to the Radscore (0.812, 95% CI: 0.698 to 0.897,
sensitivity: 0.992, specificity: 0.617) and the satellite sign number
(0.762, 95% CI: 0.643 to 0.858, sensitivity: 0.950, specificity:
0.511) alone, the combination of the two yielded an even better
performance in the prediction of hematoma expansion as well
as an increased AUC of 0.881 (95% CI: 0.779–0.947, sensitivity:
0.973, specificity: 0.787) in the training cohort (Figure 4B). The
nomogram model showed a statistically significant improvement
in the pairwise comparison of ROC curves; however, the
difference between the Radscore and the satellite sign number
has no statistical significance (Figure 4B). Figure 4C illustrates
the corresponding calibration curve and the Hosmer–Lemeshow
test of the nomogram model in the training cohort (p > 0.05).
The nomogram model obviously showed a good agreement
between the predicted risk and the observed one, indicating a
high accuracy of the model in hematoma expansion prediction.
The test power (1-β) was 0.99, which verified the reliability and
the accuracy of the results (Supplementary Figure S2).

Performance on the External Validation
Cohort
According to the ROC analysis, the nomogram model yielded
a higher AUC value (0.857, 95% CI: 0.750–0.931, sensitivity:
0.950, specificity: 0.766) than the Radscore-based model (0.776,
95% CI: 0.657 to 0.868, sensitivity: 0.750, specificity: 0.745)
and the satellite sign number (0.720, 95% CI: 0.597 to 0.823,
sensitivity: 0.950, specificity: 0.426) in the external validation
cohort. Consistent results were shown in the pairwise comparison
of ROC curves (Figure 4D). Figure 4E illustrates the calibration
curve of the proposed nomogram model based on the validation
cohort, which suggested a favorable predictive performance
satisfactorily consistent with the ideal curve.

DCA was conducted to assess the clinical utility of the
nomogram model (Figure 5). According to the decision curve,
the nomogram model (red) demonstrated improved hematoma
expansion prediction with more areas shown in the validation
cohort compared to that derived from the Radscore or the
satellite sign number alone (blue and green).

The Kaplan–Meier survival analysis showed approximate
survival rates between actual subjects and predicted ones.
Furthermore, a significant difference was found not only between
the actual expander and non-expander groups but also between
predicted groups, which suggested the prognostic value of the
combined nomogram model (Figure 6, p < 0.001).

DISCUSSION

In this study, we established and validated a nomogram model
for early ICH expansion prediction, incorporating four robust
radiomic features which were extracted from NCCT and proven

FIGURE 5 | Decision curve analysis for the nomogram model in the external
validation cohort. The gray line stands for the assumption that all patients
developed hematoma expansion, and the black line represents the
assumption that no patient had hematoma expansion. Compared to other
models, the highest curve of the nomogram model with more area is the
optimal decision making for maximal net benefit in hematoma expansion
prediction.

FIGURE 6 | Kaplan–Meier (KM) survival curve for actual and predicted
expander and non-expander groups. The KM analysis shows a significant
difference between both actual and predicted groups (p < 0.001).

to be effective for the classification of expanders and non-
expanders and the satellite sign number which was found to be
a statistically significant imaging marker for the identification of
expanders. The nomogram model achieved a significantly better
performance in both training cohort and external validation
cohort with a larger AUC value than the model of radiomic
signature alone, suggesting the reproducibility and the reliability
of the improved model in hematoma expansion prediction.

In the recent years, several imaging markers for assessing
the greater risk of ICH expansion in NCCT images have been
springing up (Al-Nakshabandi, 2001; Li et al., 2015, 2016;
Boulouis et al., 2017; Shimoda et al., 2017). NCCT turned
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out to be an optimized alternative for patients with ICH.
Including blend sign, black hole sign, swirl sign, island sign,
and satallite sign, different imaging characteristics based on
NCCT have been proposed one after another (Al-Nakshabandi,
2001; Li et al., 2015, 2016; Boulouis et al., 2016b). The imaging
biomarkers based on the heterogeneity of hematoma were prone
to be impacted by photon noise and to be strongly subjective
due to the unclear description and definition, which were
dominant factors in reducing interobserver agreement during
visual assessment (Park et al., 2019). As a strong evidence
for that, the presence of qualitative signs was observed with
relatively inferior consistency between two observers, along with
indistinctive results between expanders and non-expanders, in
our study. Besides that, the evaluation of inter-group statistical
significance for swirl sign in the training cohort appeared to
be inconsistent between observers. In the study of Xie et al.
(2020), no statistical significance was found in the difference
of identification capability between the nomogram model and
the Radscore-based model for predicting ICH growth, indicating
no statistical contribution of qualitative NCCT signs to the
nomogram model construction. Meanwhile, inconsistent results
of association between NCCT imaging markers and functional
outcomes have been found in ICH patients (Boulouis et al., 2016a;
Morotti et al., 2017). In this context, instead of defining new
imaging predictors, more robust and quantitative characteristics
derived from NCCT images were urgently needed to combine
with existing markers to contribute to the predictive model for
hematoma expansion.

The satellite sign and the island sign shared a similar
morphology-based definition, which was less influenced by
photon noise during observation (Li et al., 2017; Shimoda
et al., 2017). However, the island sign contained a subjective
morphological assessment of “islands” that were connected with
the “mainland”, which could contribute to the discrepancy
between observers (Sporns et al., 2018). Besides that, the lower
limit of the island number in the definition made it difficult to
transform into a quantitative index. The satellite sign instead
had a precise size limitation with complete separation in at
least one slice for those “connected satellites,” making the
assessment more straightforward, which could be confirmed
by the excellent intraobserver agreement and the consistent
results between observers found in our study, thus indicating a
high reproducibility. The satellites were explained as multifocal
active bleeding from peripheral arterioles or reperfusion injury
resulting from perihematomal edema, which means the greater
the number of satellite was, the higher the probability of
hematoma enlargement could be (Fisher, 1971; Shimoda et al.,
2017). On top of that, we assumed that satellite sign number
detection, a quantitative transformation of the satellite sign, could
make imperative complementation for isolated small hematoma
that could not be simultaneously included in the radiomic
analysis and provide improved risk stratification.

The LASSO regression method has already been widely
applied in radiomics-based studies (Huang et al., 2016; Allotey
et al., 2019; Wei et al., 2019). The main thrust of LASSO
regression is to avoid overfitting by regression coefficient
restriction, which shows great strengths when multicollinearity

exists. It is suitable for dimension reduction and feature
selection in high-dimensional data, especially when the number
of features is much higher than the sample size, just in
line with the characteristics of radiomic data. Our previous
work concentrated on the predictive performance of filtered
histogram-based parameters for ICH enlargement (Shen et al.,
2018). In this work, we specially focused on amelioration
by employing a matrix-based texture extracting approach to
improve the category and the quantity of radiomic features.
Through an optimized selection from 396 features by the
LASSO method, four features including sum average, high gray
level run emphasis (all directions), short run high gray level
emphasis (angel 0), and short run high gray level emphasis
(angel 35) outstandingly surpassed themselves, suggesting their
vital role in the prediction model. The sum average measures
the relationship between the occurrences of pairs with lower
intensity values and higher intensity values. The high gray
level run emphasis and the short run high gray level emphasis
measure the distribution of high gray level values and the joint
distribution of short run and high gray level, respectively. These
results indicated the diversity between hematoma expanders
and non-expanders on the specific spatial heterogeneity of gray
levels within the region of hematoma. What we found was
consistent with those of previous studies which selected one
or more of these textures as optimum feature for radiomic
model construction (Chen et al., 2018; Romeo et al., 2018; Rui
et al., 2018). As expected, the Radscore-based model yielded
gratifying results in stratifying patients into expanders and non-
expanders, with an AUC of 0.812 in the training cohort. In
order to establish a more robust nomogram for prediction, the
satellite sign number, as described above, was introduced as a
promising imaging biomarker for complement. As the results
showed, the nomogram model proved to be more effective and
reliable than the model of radiomic signature alone in both
cohorts, with a satisfactory AUC of 0.881 and 0.857, respectively,
suggesting a positive effect of the inclusion of satellite sign
number on prediction.

Early hematoma expansion is a critical determinant for
both mortality and dependency after ICH onset. As the only
modifiable factor in the vast majority of patients, it takes the
center stage in therapeutic strategies (Ohwaki et al., 2004;
Broderick et al., 2007). Through our study, two experienced
neuroradiologists turned out to have rather different results
in the observation of swirl sign and blend sign; in spite
of that, they reached a high agreement for both radiomic
features and the satellite sign number detection. From that,
we would say that the nomogram model for ICH expansion
prediction was a fast, easy-to-use, and reliable tool, which could
be highly efficient and convenient for clinical routine. The
model could assess ICH dynamic changes effectively at baseline
and facilitate personalized treatment decisions. Owing to that,
early medication, intervention, or even decompressive surgery,
targeting hematoma growth, could be conducted for those highly
suspected expanders as early as possible in clinical practice to
improve the long-term prognosis.

There were some limitations in the current research that
still need to be further investigated. First of all, it was a
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retrospective study with a relatively small and imbalanced sample
size between expanders and non-expanders in both training and
external validation cohorts. Further prospective researches are
warranted to expand and balance the sample size and to verify
the conclusions. On the other hand, in the process of hematoma
segmentation, when it comes to hematoma located in cortical
or subcortical regions, it was prone to inaccurate delineation
due to partial volume effects. Besides that, the feature extraction
software made the displacement vectors 1, 4, and 7 describe
the relationship between the gray scale of pixels of the texture
as default setting. In light of this, different set points could
possibly influence the quantity and the category of radiomic
feature extraction; thus, a future radiomic analysis based on
various displacement vectors is required. Due to the relatively
short follow-up time, the median overall survival for ICH was
not available. We will continue to follow up with these patients
to secure a more complete prognosis status.

CONCLUSION

We have identified and validated a nomogram model
of integrated radiomic signature with the satellite sign
number based on NCCT images to be a reliable and
precise evaluation measurement for ICH enlargement
prediction at early baseline. The predictive model could
serve as an objective and convenient tool to use for
patients with ICH in individualized prediction and treatment
decision-making, thus suggesting a great potential for
clinical application.
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Parkinson’s disease (PD) is a progressive, chronic, and neurodegenerative disorder
that is primarily diagnosed by clinical examinations and magnetic resonance imaging
(MRI). In this study, we proposed a machine learning based radiomics method to
predict PD. Fifty healthy controls (HC) along with 70 PD patients underwent resting-
state magnetic resonance imaging (rs-fMRI). For all subjects, we extracted five types of
6664 features, including mean amplitude of low-frequency fluctuation (mALFF), mean
regional homogeneity (mReHo), resting-state functional connectivity (RSFC), voxel-
mirrored homotopic connectivity (VMHC) and gray matter (GM) volume. After conducting
dimension reduction utilizing Least absolute shrinkage and selection operator (LASSO),
fifty-three radiomic features including 46 RSFCs, 1 mALFF, 3 mReHos, 1 VMHC, 2 GM
volumes and 1 clinical factor were retained. The selected features also indicated the
most discriminative regions for PD. We further conducted model fitting procedure for
classifying subjects in the training set employing random forest and support volume
machine (SVM) to evaluate the performance of the two methods. After cross-validation,
both methods achieved 100% accuracy and area under curve (AUC) for distinguishing
between PD and HC in the training set. In the testing set, SVM performed better than
random forest with the accuracy, true positive rate (TPR) and AUC being 85%, 1 and
0.97, respectively. These findings demonstrate the radiomics technique has the potential
to support radiological diagnosis and to achieve high classification accuracy for clinical
diagnostic systems for patients with PD.

Keywords: Parkinson’s disease, radiomics, resting-state functional magnetic resonance imaging, structural
magnetic resonance imaging, machine learning

INTRODUCTION

Parkinson’s disease (PD) is a major neurodegenerative disease influenced by both genetic and
environmental factors (Halliday et al., 2014). As the second most common neurodegenerative
disorder, PD is characterized by the degeneration of dopamine-producing cells in the brain
resulting in motor symptoms and nonmotor features (Mhyre et al., 2012). Available diagnostic
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tools are better at detecting motor symptoms than nonmotor
symptoms. The neural and pathophysiologic mechanisms to
predict the progression of PD remain unclear and discovering
the psychobiological markers is the key research priority.
Understanding the inner working mechanisms of PD is one of
the most intriguing scientific questions. Studies in neuroscience
strongly suggest intervention during early therapeutic windows
(Vu et al., 2012; Tibar et al., 2018). Although positron emitted
topography/computed tomography is accurate (Meles et al.,
2017) the diagnosis of PD at present is mainly dependent on
clinical features and scores.

In recent years, neuroimaging has been increasingly employed
to aid the early diagnosis of PD. A variety of neuroimaging
technologies including functional magnetic resonance imaging
(fMRI), structure MRI (sMRI), positron emission tomography
(PET) and electroencephalography (EEG) have been widely
adopted. Among these, resting-state functional MR imaging (rs-
fMRI) is regarded as a promising technique for precisely locating
the abnormal spontaneous activities in neuropsychological
disease (Wang et al., 2019). Several rs-fMRI based methods
including regional homogeneity (ReHo), amplitude of low
frequency fluctuations (ALFF), and functional connectivity (FC)
provide a task-free approach to explore spontaneous brain
activity and connectivity among networks in different brain
regions of PD patients. Application of these techniques provides
new insights in prediction, early diagnosis and differential
diagnosis of PD. Previous rs-fMRI studies using ALFF found
specific frequency band of ALFF for PD (Li et al., 2016) and
detected significant alterations of ALFF in the prefrontal cortex
and subcortical regions in PD patients (Xiang et al., 2016).
Frequency domain analyses of ALFF revealed decreased ALFF
in the putamen, parieto-temporo-occipital cortex, thalamus,
cerebellum, and several occipital regions, while increased ALFF
values were detected in the caudate and several temporal regions
(Zhang et al., 2013). A large sample study of 109 PD patients
found distinguishing frequency bands and neural modulations in
the brainstem and striatum correlated with the dose of levodopa
and bradykinesia subscale scores (Hou et al., 2014).

Along with these distinctive changes of ALFF, spontaneous
ReHo analysis in rs-fMRI studies also achieved considerable
progress in examining early onset and late-onset PD (Wu et al.,
2009; Yang et al., 2013; Sheng et al., 2016). ReHo alteration in
the early phase of PD showed a low level of local coherence in
the right primary sensory and positive correlation with disease
duration (Choe et al., 2013). A 2-year longitudinal PD study
of multimodal MRI using ReHo and voxel-based-morphometry
(VBM) observed a progressive decrease of ReHo values in
the sensorimotor cortex, default-mode network (DMN), and
the left cerebellum, but increased ReHo in the supplementary
motor area (SMA), bilateral temporal gyrus, and hippocampus
(Zeng et al., 2017). A meta-analysis using ALFF and ReHo
found consistent decreased activity in the putamen for PD
patients that could serve as an independent validation of rs-
fMRI (Wang et al., 2018). Another ALFF and ReHo based study
demonstrated the disturbed DMN, SMA, basal ganglia (BG),
and posterior cerebellar lobule in cognitively normal PD as
compared with healthy controls (Harrington et al., 2017). These

multilevel characteristics of rs-fMRI could effectively improve the
discrimination accuracy of diagnosis.

Although previous rs-fMRI studies revealed widespread
abnormal intrinsic networks in line with the pathophysiology
of PD, these findings and biomarkers have not been extensively
used for diagnosis, prediction or prognosis of PD in daily clinical
practice. In recent years, a method called radiomics that extracts
large amount of features from radiographic medical images
into high-dimensional mineable data using data-characterization
algorithms has received considerable attention, particularly in
clinical oncology diagnosis (Valladares et al., 2020). Radiomics
analysis employs multimodality medical images and machine
learning techniques to extract many quantitative characteristics
as objective, sensitive biomarkers of disease stage to potentially
detect treatment effects (Liu et al., 2019). Applications of
radiomics approach in the neurodegenerative and mental
disorder disclosed the heterogeneity characteristics with a high
accuracy that facilitate individualized diagnosis in patients with
Alzheimer’s disease, autism spectrum disorder and schizophrenia
(Hofmann-Apitius et al., 2015; Salvatore et al., 2019; Wang et al.,
2019). The radiomics technology that integrated the advantages
of various models has been utilized to extract the characteristics
for automated diagnosis of early PD and quantifying PD severity.
These methods consist of voxel-based method (VBM), diffusion
tensor imaging (DTI), functional connectome and connectivity
measures among others (Shinde et al., 2019). A radiomics analysis
of longitudinal Single-photon Emission Computed Tomography
(PSECT) images demonstrated radiomic features significantly
increased the prediction accuracy and were proved to be effective
prognostic biomarkers of PD (Rahmim et al., 2017). More
recently, a radiomics of deep neural nets on neuromelanin-
sensitive MRI demonstrated a test accuracy of 85.7% and
revealed the substantia nigra pars compacta abnormalities in
PD discriminating from atypical PD (Shinde et al., 2019).
Another radiomics study of quantitative susceptibility mapping
were shown to assist the diagnosis of idiopathic PD (Cheng
et al., 2019). A classifier for early PD with an accuracy
of 86.96% was identified from SVM training by extracting
characteristics including ALFF, ReHo and RSFC from the gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
(Long et al., 2012).

Considering the above-mentioned radiomics approaches in
existing PD studies, we aimed to utilize both rs-fMRI and sMRI
to extract radiomic features including whole-brain functional
activity (i.e., ALFF and ReHo), connectivity (i.e., RSFC and
VMHC) and gray matter (GM). Our goal was to discover more
effective biomarkers and to eventually develop an automated
classification framework of early diagnosis for PD patients.

MATERIALS AND METHODS

Participates and Clinical Evaluation
This study was approved by the Medical Research Ethical
Committee of Nanjing Brain Hospital (Nanjing, China) in
accordance with the Declaration of Helsinki, and written
informed consent was obtained from all subjects. Seventy PD
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patients and fifty healthy controls (HC) were recruited. All the
demographic characteristics and clinical symptom ratings were
collected before MRI scanning and all patients were in the ON
state during the MRI scan.

All subjects underwent a complete neurological and
psychological status assess, and a review of medical history
records. Mini-mental state examination (MMSE) was used
to evaluate cognition. The severity of depression was
quantified using the Hamilton Depression Scale (HAMD).
The neurocognitive tests were administered to each participant
individually by a professional appraiser in the neuropsychological
research center. All HC participants were interviewed to rule out
the presence including current or past psychiatric illness, history
of psychiatric illness in first-degree relatives and/or current or
past significant medical or neurological illness.

The demographic and clinical data of patients with PD and
HC were compared using a Fisher’s exact test (for sex), analysis of
variance (ANOVA) (for age, education, MMSE and HAMD). The
level of significance was set at p < 0.05.

Image Data Acquisition
Image data were acquired using a Siemens 3.0-Tesla signal
scanner (Siemens, Verio, Germany) in the department of
radiology within Nanjing Brain Hospital. Functional imaging
data were collected transversely by using a gradient-recalled
echo-planar imaging (GRE-EPI) pulse sequence with the
following configurations: TR/TE = 200 ms/30 ms, flip
angle = 90◦, matrix = 64 × 64, FOV = 220 × 220 mm,
thickness/gap = 3.5/0.6 mm, in-plane resolution = 3.4× 3.4 mm,
slices = 31. For each subject, a total of 140 volumes were
obtained, resulting in a total scan time of 280 s. High resolution
anatomical images were acquired using a T1 fluid attenuated
inversion recovery (FLAIR) sequence (TR/TE = 2530/3.34 ms,
flip angle = 7◦, matrix = 256 × 192, FOV = 256 × 256 mm,
slice thickness/gap = 1.33/0.5 mm, 128 slices covered the whole
brain). The subjects were instructed to keep their eyes closed,
relax their minds and remain as motionless as possible during
the data acquisition. Rubber earplugs were used to reduce noise,
and foam cushioning was used to fix the head to reduce motion
artifacts. The MR images were retrieved from the archive by two
experienced neuroradiologists (QH and XW).

Data Preprocessing
Image preprocessing procedure was carried out Data Processing
Assistant for Resting-State fMRI1 based on Statistical Parametric
Mapping (SPM122) operated on the Matlab platform. The
following steps were applied to the image data. For each
subject, we first discarded the first five time points for signal
equilibrium when subject was still adapting to the scanning noise.
The remaining 135 images underwent slice-timing correction
using the middle slice as the reference frame and head motion
correction by regressing out 6 head motion signals (displacement
on x, y, and z direction and 3 angular motion). Four subjects
with more than 2.5 mm maximum displacement in any of

1http://rfmri.org/DPARSF
2http://www.fil.ion.ucl.ac.uk/spm/

the three dimensions or 2.5◦ of any angular motion were
removed. Next, T1-weighted structural images of each subject
were coregistrated to the resulting functional images followed by
images being segmented into gray matter (GM), white matter,
and cerebrospinal fluid using a new segment and DARTEL
segmentation algorithm. The functional images were spatially
normalized to the Montreal Neurological Institute (MNI) space
with 3 × 3 × 3 mm cubic voxels. After normalization,
images were spatially smoothed with a 4 mm full width
at half maximum (FWHM) Gaussian kernel and detrended
using linear, quadratic or higher order polynomial algorithms.
Note that when calculating Regional Homogeneity (ReHo),
the smoothing procedure was omitted for maintaining the
measuring accuracy. After smoothing and detrending, we further
regressed out nuisance covariates including the Friston 24 motion
parameters (Friston et al., 1996), white matter, global signals and
cerebrospinal fluid signals and applied temporal filter (0.01 Hz <
f < 0.08 Hz) to diminish high-frequency noise.

Image Feature Extraction
ReHo Analysis
The method of Regional Homogeneity (ReHo) (Zang et al., 2004)
was proposed to analyze characteristics of regional brain activity
and to reflect the temporal homogeneity of neural activity. It
has been pointed out that some preprocessing methods especially
spatial smoothing R-fMRI time series may significantly change
the ReHo magnitudes (Zuo et al., 2013). To get rid of this
potential issue, preprocessed rs-fMRI data without the spatial
smoothing step was used for calculating ReHo. All individual
ReHo maps were computed and then spatially smoothed with a
4 mm FWHM Gaussian kernel. In particular, we focused on the
mReHo maps obtained by dividing the mean ReHo of the whole
brain within each voxel in the ReHo map. We further segmented
the mReHo maps and extract all the 112 ROI signals based on the
Harvard-Oxford atlas (HOA) using the Resting-State fMRI Data
Analysis Toolkit, REST3.

ALFF and VHMC Extraction
Slow fluctuations in activity are fundamental features of the
resting brain for determining correlated activity between brain
regions and resting state networks. The relative magnitude of
these fluctuations can discriminate between brain regions and
subjects. Amplitude of Low Frequency Fluctuations (ALFF)
(Zang et al., 2007) are related measures that quantify the
amplitude of these low frequency oscillations. Leveraging the
preprocessed data within the frequency range between 0.01 and
0.1 Hz, we calculated individual ALFF maps and the mALFF
maps by dividing the mean ALFF of the whole brain within
each voxel in the ALFF maps. Using the HOA, we ended up
with 112 mALFF values after extracting the ROI signals based
on the mALFF maps.

Voxel-Mirrored Homotopic Connectivity (VMHC) quantifies
functional homotopy by providing a voxel-wise measure
of connectivity between hemispheres. VMHC calculates the
connectivity between each voxel in one hemisphere and

3http://restfmri.net/forum/index.php?q=rest
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its mirrored counterpart in the other (Zuo et al., 2010).
By segmenting the VMHC maps via HOA, we also got
112 VHMC values.

RSFC and GM Volume Extraction
Resting-state functional connectivity (rsFC) analysis is an
effective method for estimating spontaneous functional activity
and measuring the temporal correlation between spatially remote
neurophysiological events. The preprocessed rs-fMRI images
were segmented into 112 ROIs according to HOA. After
averaging the rs-fMRI time courses of all the voxels within each
ROI, the mean time series of each ROI were acquired. We
performed Pearson’s correlation analysis on each pair of ROI
time series (i.e., 112 × 111/2 = 6216 pairs in total). The 6216
correlation coefficients were then transformed into z-scores by
Fisher’s z transformation and retained as the RSFC metrics. Based
on the preprocessed structural images, we also extracted GM
volumes of these 112 ROIs using the HOA as masks.

Feature Selection and Model Validation
Our candidate features consist of all the aforementioned metrics
including ReHo, mALFF, VHMC, RSFC and GM volume along
with all the clinical characteristics. To build our model, we first
randomly split our dataset into training set and testing set while
maintaining the PD:HC ratio, where 93 subjects were used as
the primary cohort for feature selection and model training.
The remaining 23 subjects were treated as validation cohort for
examining the selected features. All steps of feature selection
and model training were only based on and performed in the
training dataset.

Note that our goal was to identify the most significant variables
that could discriminate PD patients from healthy controls.
However, as we had a total of 6669 features and a comparably
much smaller sample size, the dimension reduction was necessary
to improve the accuracy in the later step of building the machine
learning model for classification (Wang et al., 2019). Hence,
we first performed the nonparametric Mann-Whitney U test on
each feature between the PD patients and the healthy controls
and kept the variables with P-value larger than 0.1. Since the
Mann–Whitney U test does not require the data to be normally
distributed, we adopted the procedure as the first step to filter
the features. Next, to avoid the possible presence of Simpson’s
Paradox caused by multicollinearity, where a predictor appears
to be significant by itself, but this observation disappears or the
direction reverses when other predictors are added. Therefore,
whenever we spotted an absolute value of pairwise correlation
between two features that was larger than 0.5, we removed
the feature with larger average absolute correlation. Finally, to
further reduce the burden of high dimensionality imposed on
the model training, we used the least absolute shrinkage and
selection operator (Lasso) procedure that assigns a penalty to the
coefficients and eliminates variables with zero coefficient value.
We used 10-fold cross validation to obtain the optimal penalty
parameter for Lasso and retained the features with nonzero
regression coefficients.

The methods of supper vector machine (SVM) and random
forest were implemented for classifying subjects based on the

selected features. Given the relatively small sample size, we
used the linear kernel when fitting SVM, which was conducted
by specifying the type parameter to be “linear” in the svm
function. The tuning parameters for both methods were selected
via 10-fold cross-validation by using the trainControl function
with the method parameter being “repeatedcv” and the train
function with the method parameter specified as either “cforest”
or “svmLinear2” for random forest and SVM, respectively. The
performance of these two different machine learning methods
in the training and test sets were later compared and visualized
according to different metrics including accuracy, true positive
rate, false positive rate, receiver-operating characteristic (ROC)
curve and area under curve (AUC). The complete statistical
analysis was conducted in R 3.5.0. Specifically, packages “e1071,”
“randomForest”, “glmnet,” “caret” were employed for running the
SVM, random forest, Lasso and for cross validation, respectively.
The flowchart of this study is presented in Figure 1.

RESULTS

Clinical Characteristics
In Table 1, we provided the complete demographic and clinical
information for all subjects participated in this study. No
significant difference was observed with respect to the gender,
age, education and MMSE score between PD patients and HCs,
while significant difference was detected for HAMD between
these two groups. In particular, for PD patients, the HAMD
scores (11.0 ± 6.9) were significantly higher than those for HCs
(2.1± 2.3).

Feature Selection
After the first step of Mann–Whitney U test, 6669 features
containing metrics from rs-fMRI, sMRI and clinical information
reduced to 993 features. Next, the procedure of excluding
variables with absolute correlations larger than 0.5 removed 628
features with a total of 365 features remaining. Last, 54 features
including (46 RSFCs, HAMD, 1 mALFF, 3 mReHos, 1 VMHC
and 2 GM volumes) with nonzero coefficients obtained from the
logistic regression with Lasso penalty were retained as the final
metric set to be used for binary classification. In Table 2, we
listed these 46 RSFCs and the respective connected brain regions
indexed in the HOA template. The related brain regions of RSFCs
were primarily located in the executive control network (ECN),
default mode network (DMN), affective network (AN), visual
network (VIN) and sensorimotor network (SMN) (Figure 2).
The seven features were mALFF of the left superior temporal
gyrus, posterior division, mReHo of the left parahippocampal
gyrus, posterior division, mReHo of the right thalamus and left
pallidum, VMHC of the right temporal fusiform cortex, anterior
division, and the GM volume of the right inferior temporal gyrus,
anterior division and the right accumbens.

For better illustration and clearer visualization of the
difference for these selected features between PD group and HC
group, in Table 3 we reported the mean, standard deviation
(SD) and P-value of the resulting features from the dimension
reduction step for two groups. We also plotted the histograms of
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FIGURE 1 | Flowchart of the study. After the rs-fMRI and sMRI images were preprocessed, we extracted the 6669 metrics. Then, Mann–Whitney U test, screening
out high correlated variables and Lasso regression were implemented to reduce the number of features. Last, random forest and SVM were conducted to
differentiate between PD and HC subjects.

these features with different colors representing different groups
in Figure 3. In particular, the increasing or decreasing trends of
these features between two groups can be immediately revealed
by looking at the corresponding values in Table 3 or locations in
Figure 3.

Model Fitting
After the screening process, we were left with only 56 features
and were no longer stuck in the ultrahigh dimensional situation.
Most of the existing machine learning methods including
random forest and SVM could accommodate this relatively
smaller number of variables compared with previous 6669

TABLE 1 | Clinical and demographic data evaluation of PD and HC.

Characteristics PD (n = 68) HC (n = 48) Test statistics P-value

Sex (M/F) 35/33 23/25 0.409 >0.05a

Age (year) 57.8 ± 7.0 57.8 ± 5.5 0.021 >0.05b

Education (year) 11.8 ± 3.3 11.7 ± 4.8 0.689 >0.05c

MMSE 28.6 ± 1.7 29.0 ± 2.3 0.585 >0.05d

HAMD 11.0 ± 6.9 2.1 ± 2.3 67.58 <0.05e

aThe P-value for gender distribution by Fisher’s exact test; b−eThe P-values for age,
education, MMSE and HAMD, respectively, by analysis of variance (ANOVA).

features. Therefore, we conducted the model fitting procedure
for classifying subjects in the training set utilizing random forest
and SVM to evaluate the performance of these two methods. It
turned out that after cross-validation, both random forest and
SVM achieved the perfect accuracy and AUC for distinguishing
between PD and HC subjects in the training set, which was not
surprising since we only had 56 coefficients to estimate while we
had a sample size of 93 subjects.

Model Validation
Despite the superior performance of both methods in the training
set, what really matters is the predictive result in the testing set.
We therefore examined the validity of random forest and SVM by
evaluating their classification performance in the testing set using
AUC and the following measures (Table 4),

Accuracy =
TP + TN

TP + TN + FP + FN′

TPR =
TP

TP + FN′
FPR =

FP
TN + FP′

where TP, TN, FP and FN correspond to true positive, true
negative, false positive and false negative, respectively.

TPR measures the proportion of PD patients correctly
detected by the given procedure among all the PD patients.
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FPR is calculated using the number of people who were falsely
identified as having PD, divided by the total number of HCs.
Accuracy gives the proportion of true results (both true positives
and true negatives) among the total number of cases examined,
i.e., the sample size of the testing set. In practice, we used
the natural cutoff 0.5 to determine whether the subject should

be classified as PD. To further assess the robustness of two
methods, we also plotted the ROC curves in Figure 4 by varying
thresholding values.

From Table 4 and Figure 4 we can tell that random forest and
SVM performed comparably well in terms of the overall accuracy.
Random forest performed slightly better than SVM according

TABLE 2 | 46 RSFC features and the related brain regions indexed in the HOA template.

ID HOA number Brain region A Network HOA number Brain region B Network

1 1 Frontal Pole.L Other region 86 Parietal Operculum Cortex.R Other region

2 2 Frontal Pole.R Other region 5 Superior Frontal Gyrus.L Other region

3 2 Frontal Pole.R Other region 15 Temporal Pole.L AN

4 4 Insular Cortex.R AN 88 Planum Polare.R Other region

5 6 Superior Frontal Gyrus.R Other region 30 Inferior Temporal Gyrus, posterior.R DMN

6 6 Superior Frontal Gyrus.R Other region 78 Temporal Occipital Fusiform Cortex.R VIN

7 7 Middle Frontal Gyrus.L DMN 56 Paracingulate Gyrus.R ECN

8 11 Inferior Frontal Gyrus, pars opercularis.L Other region 76 Temporal Fusiform Cortex, posterior.R VIN

9 12 Inferior Frontal Gyrus, pars opercularis.R Other region 72 Lingual Gyrus.R Other region

10 12 Inferior Frontal Gyrus, pars opercularis.R Other region 87 Planum Polare.L Other region

11 14 Precentral Gyrus.R SMN 70 Parahippocampal Gyrus, posterior.R DMN

12 15 Temporal Pole.Sup.L AN 19 Superior Temporal Gyrus, posterior.L AUN

13 15 Temporal Pole.L AN 52 Juxtapositional Lobule Cortex.R Other region

14 16 Temporal Pole.R AN 36 Superior Parietal Lobule.R VIN

15 16 Temporal Pole.R AN 51 Juxtapositional Lobule Cortex.L Other region

16 16 Temporal Pole.Mid.R. AN 79 Occipital Fusiform Gyrus.L VIN

17 17 Superior Temporal Gyrus, anterior.L DMN 42 Angular Gyrus.R DMN

18 18 Superior Temporal Gyrus, anterior.R DMN 104 Right Putamen BGN

19 19 Superior Temporal Gyrus, posterior.L DMN 21 Middle Temporal Gyrus, anterior.L DMN

20 19 Superior Temporal Gyrus, posterior.L DMN 53 Subcallosal Cortex.L Other region

21 21 Middle Temporal Gyrus, anterior.L DMN 33 Postcentral Gyrus.L SEN

22 22 Middle Temporal Gyrus, anterior.R DMN 65 Frontal Orbital Cortex.L Other region

23 23 Middle Temporal Gyrus, posterior.L DMN 62 Precuneus Cortex.R DMN

24 24 Middle Temporal Gyrus, posterior.R DMN 30 Inferior Temporal Gyrus, posterior.R Other region

25 27 Inferior Temporal Gyrus, anterior.L DMN 89 Heschl’s Gyrus.L AUN

26 28 Inferior Temporal Gyrus, anterior.R DMN 60 Cingulate Gyrus, posterior.R DMN

27 29 Inferior Temporal Gyrus, posterior.L DMN 87 Planum Polare.L Other region

28 32 Inferior Temporal Gyrus, temporooccipital.R Other region 72 Lingual Gyrus.R Other region

29 34 Postcentral Gyrus.R SMN 96 Occipital Pole.R VIN

30 44 Lateral Occipital Cortex, superior.R VIN 111 Left Accumbens Other region

31 45 Lateral Occipital Cortex, inferior.L VIN 111 Left Accumbens Other region

32 54 Subcallosal Cortex.R Other region 110 Right Amygdala DMN

33 55 Paracingulate Gyrus.L ECN 57 Cingulate Gyrus, anterior.L DMN

34 55 Paracingulate Gyrus.L ECN 100 Right Thalamus DMN

35 56 Paracingulate Gyrus.R ECN 85 Parietal Operculum Cortex.L Other region

36 58 Cingulate Gyrus, anterior.R ECN 85 Parietal Operculum Cortex.L Other region

37 58 Cingulate Gyrus, anterior.R ECN 90 Heschl’s Gyrus.R AUN

38 60 Cingulate Gyrus, posterior.R DMN 74 Temporal Fusiform Cortex, anterior.R VIN

39 70 Parahippocampal Gyrus, posterior.R Other region 99 Left Thalamus DMN

40 75 Temporal Fusiform Cortex, posterior.L VIN 111 Left Accumbens Other region

41 77 Temporal Occipital Fusiform Cortex.L VIN 86 Parietal Operculum Cortex.R Other region

42 77 Temporal Occipital Fusiform Cortex.L VIN 110 Right Amygdala DMN

43 78 Temporal Occipital Fusiform Cortex.R VIN 80 Occipital Fusiform Gyrus.R VIN

44 88 Planum Polare.R Other region 99 Left Thalamus DMN

45 92 Planum Temporale.R Other region 107 Left Hippocampus DMN

46 96 Occipital Pole.R VIN 98 Brainstem.R Other region
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FIGURE 2 | The visualization plot of the selected 46 RSFCs. The color of the spot reflects the number of connections that the associated brain regions participate in.
The larger corresponding value on the color bar means more connections are involved in the respective region. The brain networks were visualized with the BrainNet
Viewer (Xia et al., 2013).

to FPR, while SVM outperformed random forest according to
accuracy, TPR and AUC. Therefore, for a less conservative and
more robust prediction, we would prefer SVM over random
forest based on the performance summary in the testing set.

DISCUSSION

We presented a framework for uncovering predictive markers
of PD based on radiomics analysis and obtained excellent
accuracy in classifying PD from HCs. Our model was
established based on the relevant clinical characteristics, whole-
brain functional connectivity and activity along with gray
matter structure. After collecting the MRI scans for one
subject, it may take 2 h for obtaining clinical evaluation,
10 min for preprocessing and around 2 s for running the
machine learning models. To the best of our knowledge,
this is the first study to explore the whole-brain functional
activity and gray matter structure in a homogeneous and
relatively large sample MRI study. The distinctive whole-
brain functional activity and connection were mainly located
within or across the AN, DMN, ECN and SMN in PD
compared with HCs.

Our results showed that both methods achieved perfect
accuracy in the training set, and SVM yielded an overall better
classification performance than random forest in the testing set.
In particular, SVM had higher accuracy (85%), TPR (1) and AUC
(0.97) than random forest, while the FPR for SVM (0.31) was
higher than random forest (0.27). The radiomics-based machine
learning models in present study demonstrated the validity of
trained classifiers in PD, which could be helpful to support
clinical decision in both radiology and neurology.

Previous studies have made great progress in identifying
PD and other neurodegenerative disorders from HCs using
structural and fMRI data with the assist of machine learning.
These results demonstrated the ability of supervised classification
methods with a relatively high accuracy. An automatic SVM
based study with leap motion controller recruited 16 PD and
12 HCs, and the accuracy was 74.07% with an AUC of 0.675
(Butt et al., 2018). Another study of SPECT imaging using
SVM and logistic regression (LR) showed that SVM method
produced a higher accuracy of 85% than LR of 83%, and the
authors claimed that the SVM-based model could provide better
guide for PD stage classification (Hsu et al., 2019). A large
sample based on 831 structure T1-weighted MRI achieved a
very high accuracy of up to 99% for differential diagnosis of
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TABLE 3 | The mean, standard deviation (SD) and P-value for all 54 selected features in PD group and HC groups.

ID Feature PD (mean ± SD) HC (mean ± SD) P-value

1 Frontal Pole.L-Parietal Operculum Cortex.R −0.1129 ± 0.2642 −0.2487 ± 0.265 0.3488

2 Frontal Pole.R-Superior Frontal Gyrus.L 0.0478 ± 0.2354 0.0408 ± 0.2536 0.0815

3 Frontal Pole.R-Temporal Pole.L 0.2116 ± 0.2723 0.3172 ± 0.2829 0.2758

4 Insular Cortex.R-Planum Polare.R 0.2713 ± 0.2794 0.1674 ± 0.2358 0.0104

5 Superior Frontal Gyrus.R-Inferior Temporal Gyrus, posterior.R −0.0828 ± 0.3272 0.0568 ± 0.3013 0.0341

6 Superior Frontal Gyrus.R-Temporal Occipital Fusiform Cortex.R −0.2821 ± 0.2749 0.4011 ± 0.2316 0.1139

7 Middle Frontal Gyrus.L-Paracingulate Gyrus.R 0.5995 ± 0.2634 0.4751 ± 0.2763 0.0082

8 Inferior Frontal Gyrus, pars opercularis.L-Temporal Fusiform Cortex, posterior.R 0.0897 ± 0.2763 0.2384 ± 0.2609 0.2141

9 Inferior Frontal Gyrus, pars opercularis.R-Lingual Gyrus.R −0.1656 ± 0.2669 0.2521 ± 0.2320 0.1853

10 Inferior Frontal Gyrus, pars opercularis.R-Planum Polare.L 0.0418 ± 0.2501 0.0845 ± 0.2656 0.0344

11 Precentral Gyrus.R-Parahippocampal Gyrus, posterior.R 0.1467 ± 0.2138 0.0216 ± 0.2398 0.0032

12 Temporal Pole.L-Superior Temporal Gyrus, posterior.L −0.3148 ± 0.2612 0.4955 ± 0.3027 0.2183

13 Temporal Pole.L-Juxtapositional Lobule Cortex.R −0.0739 ± 0.2415 0.0455 ± 0.2886 0.0269

14 Temporal Pole.R-Superior Parietal Lobule.R 0.1059 ± 0.2912 0.0107 ± 0.2773 0.0292

15 Temporal Pole.R-Juxtapositional Lobule Cortex.L 0.6623 ± 0.2743 0.7524 ± 0.2624 0.2021

16 Temporal Pole.R-Occipital Fusiform Gyrus.L −0.1192 ± 0.2378 0.0146 ± 0.2261 0.0045

17 Superior Temporal Gyrus, anterior.L-Angular Gyrus.R −0.0500 ± 0.2470 0.0688 ± 0.2392 0.0285

18 Superior Temporal Gyrus, anterior.R-Right Putamen −0.1993 ± 0.2559 0.1071 ± 0.2856 0.0207

19 Superior Temporal Gyrus, posterior.L-Middle Temporal Gyrus, anterior.L −0.0174 ± 0.2309 0.1275 ± 0.2442 0.1225

20 Superior Temporal Gyrus, posterior.L-Subcallosal Cortex.L 0.0451 ± 0.2116 0.1618 ± 0.2278 0.1429

21 Middle Temporal Gyrus, anterior.L-Postcentral Gyrus.L −0.0628 ± 0.2827 0.0856 ± 0.2278 0.0130

22 Middle Temporal Gyrus, anterior.R-Frontal Orbital Cortex.L −0.0029 ± 0.2553 0.1269 ± 0.2147 0.0659

23 Middle Temporal Gyrus, posterior.L-Precuneus Cortex.R −0.0032 ± 0.1956 0.1271 ± 0.1759 0.0238

24 Middle Temporal Gyrus, posterior.R-Inferior Temporal Gyrus, posterior.R 0.0455 ± 0.2457 0.0399 ± 0.2304 0.0888

25 Inferior Temporal Gyrus, anterior.L-Heschl’s Gyrus.L 0.4837 ± 0.3685 0.3644 ± 0.3915 0.0180

26 Inferior Temporal Gyrus, anterior.R-Cingulate Gyrus, posterior.R 0.1240 ± 0.2235 0.0302 ± 0.3139 0.0049

27 Inferior Temporal Gyrus, posterior.L-Planum Polare.L −0.0922 ± 0.2427 0.0667 ± 0.2399 0.0035

28 Inferior Temporal Gyrus, temporooccipital.R-Lingual Gyrus.R −0.0489 ± 0.2319 0.0818 ± 0.1936 0.0103

29 Postcentral Gyrus.R-Occipital Pole.R 0.2362 ± 0.2612 0.1036 ± 0.3113 0.0060

30 Lateral Occipital Cortex, superior.R-Left Accumbens −0.1134 ± 0.2020 0.0016 ± 0.2128 0.0043

31 Lateral Occipital Cortex, inferior.L-Left Accumbens 0.7454 ± 0.2993 0.6130 ± 0.2801 0.0100

32 Subcallosal Cortex.R-Right Amygdala −0.1688 ± 0.2078 0.0146 ± 0.2352 0.0006

33 Paracingulate Gyrus.L-Cingulate Gyrus, anterior.L −0.1056 ± 0.2160 0.0254 ± 0.2486 0.0047

34 Paracingulate Gyrus.L-Right Thalamus −0.0849 ± 0.2356 0.1805 ± 0.2874 0.2865

35 Paracingulate Gyrus.R-Parietal Operculum Cortex.L 0.0737 ± 0.2734 0.0281 ± 0.2416 0.0475

36 Cingulate Gyrus, anterior.R-Parietal Operculum Cortex.L 0.1262 ± 0.2546 0.2581 ± 0.2542 0.3158

37 Cingulate Gyrus, anterior.R-Heschl’s Gyrus.R 0.0159 ± 0.2817 0.0983 ± 0.1895 0.0704

38 Cingulate Gyrus, posterior.R-Temporal Fusiform Cortex, anterior.R −0.1340 ± 0.2362 0.0164 ± 0.2544 0.0084

39 Parahippocampal Gyrus, posterior.R-Left Thalamus 0.2082 ± 0.2267 0.3380 ± 0.1966 0.1968

40 Temporal Fusiform Cortex, posterior.L-Left Accumbens 0.1025 ± 0.2688 0.2534 ± 0.2388 0.2285

41 Temporal Occipital Fusiform Cortex.L-Parietal Operculum Cortex.R 0.0059 ± 0.2695 0.0970 ± 0.2492 0.2080

42 Temporal Occipital Fusiform Cortex.L-Right Amygdala 0.1999 ± 0.2317 0.0755 ± 0.2679 0.0043

43 Temporal Occipital Fusiform Cortex.R-Occipital Fusiform Gyrus.R 0.0310 ± 0.2339 0.1158 ± 0.2416 0.2874

44 Planum Polare.R-Left Thalamus −0.0057 ± 0.2023 0.1249 ± 0.2388 0.0550

45 Planum Temporale.R-Left Hippocampus −0.1296 ± 0.2257 0.0337 ± 0.2826 0.0017

46 Occipital Pole.R-Brainstem.R 0.0972 ± 0.2042 0.0076 ± 0.2136 0.0096

47 HAMD Score 10.1429 ± 6.3545 1.9730 ± 2.1793 0.0000

48 mALFF of Superior Temporal Gyrus, posterior.R 1.1140 ± 0.1317 1.0478 ± 0.1379 0.0270

49 mReHo of Parahippocampal Gyrus, posterior.L 0.8302 ± 0.0956 0.7870 ± 0.0859 0.0292

50 mReHo of Right Thalamus 0.8533 ± 0.0924 0.9144 ± 0.1154 0.1034

51 mReHo of Left Pallidum 0.7300 ± 0.0772 0.7718 ± 0.1010 0.0910

52 VMHC of Temporal Fusiform Cortex, anterior.R 0.2277 ± 0.1448 0.1818 ± 0.1395 0.0159

53 Gray Matter Volume of Inferior Temporal Gyrus, anterior.R 0.0025 ± 0.0008 0.0021 ± 0.0008 0.0103

54 Gray Matter Volume of Right Accumbens 0.0004 ± 0.0001 0.0004 ± 0.0001 0.1797
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FIGURE 3 | Histograms of selected features for PD and HC subjects with darker color representing overlapping values. Purple: PD; Green: HC. (A) HAMD score; (B)
mReHo values of the left parahippocampal gyrus, posterior division, the right thalamus and left Pallidum; (C) mALFF values of the left superior temporal gyrus,
posterior division; (D) VHMC values of the right temporal fusiform cortex, anterior division; (E) GM volumes of the right inferior temporal gyrus, anterior division and
the right accumbens.

PD (Singh and Samavedham, 2015). A study incorporating DTI
and VBM in an SVM algorithm correctly distinguished PD from
progressive supranuclear palsy (PSP) when white matter atrophy
was considered (Cherubini et al., 2014). Combined with these
previous findings, big data-driven approaches were helpful to aid
PD diagnosis and to reach precision medicine (Khoury et al.,
2019; van den Heuvel et al., 2020).

The aforementioned methods either possessed a lower
accuracy and AUC or only considered part of the complete
radiomic features based on either rs-MRI or sMRI. In our
study, the radiomics approach integrated both rs-MRI and sMRI
by extracting features that quantify the whole-brain functional
activity and connectivity along with GM volume and clinical
evaluations. Forty-six RSFCs and the respective connected brain
regions were selected after dimension reduction, and these
disturbed brain regions related to RSFCs were primarily located
in the ECN, DMN, AN, VN, and SMN. Seven more features
of the HAMD, mALFF, mReHo, VMHC and the GM volume
were also retained to build the classifying model. Within

TABLE 4 | Predictive performance table in the testing set for random
forest and SVM.

Accuracy TPR FPR AUC

Random forest 0.8261 0.9167 0.2727 0.9015

SVM 0.8483 1 0.3136 0.9697

the model, intrinsic connectivity networks of mALFF were
identified and located mainly in DMN including the left superior
temporal gyrus, posterior division, the left parahippocampal
gyrus, posterior division. The particular neural activities of
mReHo maps were also located in DMN of the right thalamus and
GN of the left pallidum. Selected VMHC quantified the functional
homotopy of connectivity in VN of the right temporal fusiform
cortex and anterior division. Features of the GM volume also
covered the DMN in the right inferior temporal gyrus, anterior
division and the right accumbens.

Some of these findings were expected and in accordance with
previous studies. For example, the altered RSFCs were primarily
located in the typical resting-state network (RSN). However,
the prominent role of DMN, ECN, AN, VIN and sensorimotor
functioning in PD revealed in our study was remarkable. The
identified regions in DMN included the left superior temporal
gyrus, posterior division, the left parahippocampal gyrus, the
right thalamus and the right inferior temporal gyrus. We also
found abnormal AN in the right insular cortex, left and right
temporal pole, along with unusual VIN in lateral occipital cortex,
superior, temporal fusiform cortex, the left and right temporal
occipital fusiform cortex, the left occipital pole, the right superior
parietal lobule. Abnormal ECN was detected in the left and right
paracingulate gyrus, and the right anterior cingulate gyrus.

RSN reflects the spontaneous neural activities of the blood
oxygenation level-dependent (BOLD) signals between temporally
correlated brain regions. Compared with the control group, the
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FIGURE 4 | ROC curves evaluating the predictive performance of random forest and SVM in the testing set.

DMN plays a crucial role in neurodegenerative disorders and
normal aging. Several fMRI studies have indicated that the DMN
injured before the cognitive decline in PD (Sandrone and Catani,
2013; Koshimori et al., 2016). A 2-year study using ReHo and
VBM to identify differences in local spontaneous brain activity
and gray matter volume found that PD patients with normal
cognition showed a decreased ReHo in the DMN (Zeng et al.,
2017). In addition, a gender-specific effect of uric acid on resting-
state cortical FC found the de novo PD group had decreased
FC in bilateral cingulate, postcentral and lingual gyri within
DMN (Lee et al., 2018). Our results were consistent with these
previous studies.

The basal ganglia, thalamus, and brainstem are important in
the pathophysiology of PD. Studies on detecting neural activity
changes in these regions have achieved more sensitive and reliable
results for scientific and clinical research on PD. The basal ganglia
network (BGN) has been observed in pathologies with altered
neurotransmitter systems of dopaminergic processes, and also
involving motor control. In the present study, we found disturbed
BGN in left pallidum, the right thalamus and the right brainstem.
The variability of FC in healthy older adults found strongest
correlate of FC in the BGN, and potential links to dopamine-
related function (Griffanti et al., 2018). A sex-related pattern of
RSN showed an increased connectivity within the BGN in female
PD patients, and FC changes in sensorimotor at baseline were
considered as an independent predictor of disease severity in the
early stage of PD (De Micco et al., 2019).

Attention networks (AN) in cortical regions are affected in
early stage of PD (Madhyastha et al., 2015). Proteinopathy and
longitudinal changes in FC networks within the SMN were
confirmed, and the interaction between the dorsal attention
network (DAN) the frontoparietal control network decreased

significantly over time in PD while correlated with the decline in
cognitive function (Campbell et al., 2019). Altered organization
of the DAN and lack of changes in the ventral attention network
(VAN) in PD patients indicated the higher risk for freezing
of gait during complex walking situations, and these findings
revealed that AN played an important role in freezing of gait
(Maidan et al., 2019). Gender-specific effect of uric acid on rs-
fMRI networks in de novo PD found decreased FC in bilateral
insular, frontal and temporal areas within DAN and bilateral
medial temporal and right insular areas within executive control
network (ECN) (Lee et al., 2018).

Apart from these RSFC findings, structure MRI has received
more research focus on better stability and repeatability
compared with rs-fMRI. In our study, GM volume of the
right inferior temporal gyrus, anterior division and the right
accumbens demonstrated differences in PD as opposed to HC.
Atrophy of the putamen and altered FC of the striatal structures
in PD revealed key structure-function relationship. Caudate
nucleus and putamen atrophy could serve as neuroimaging
biomeasures for PD (Owens-Walton et al., 2018). A brain
microstructual study found decreased white matter fiber
features in the right arcuate fasciculus and bilateral middle
cerebellar peduncles. The study also detected increased network
connectivity in prodromal early PD, which might indicate
the neural compensation (Sanjari et al., 2019). The right
accumben as one of selected GM features in the model is
an interesting sign. An analysis of dopamine regulation and
transporter function found regional brain (the nuclei accumbens,
cingulate regions and inferior frontal) were closely related
with apathy rating scores and β-amyloidopathy for predicting
cognitive decline in advancing PD (Zhou et al., 2020). An event-
related fMRI study based on reward-related neural responses
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showed the left nucleus accumbens with lower activation
indicated involvement of the ventral striatum in individuals for
further development of PD (Thaler et al., 2019) and PD patients
with persistent pain displayed an accumbens-hippocampus
disconnection (Polli et al., 2016).

Our study certainly has several limitations. First, although
we have carried out detailed clinical evaluation and stage
classification for all subjects, due to our limited sample size, we
could not further stratify the patients according to the disease
severity. Second, RSFCs in the model may be influenced by
the different clinical symptoms such as olfaction or depression.
Third, cerebellum networks were left out in the model. Although
the key molecular events that provoke PD have not been
fully understood and the underlying mechanisms involving
cerebellum were relatively less reported, considerable evidence
has indicated that cerebellum plays an important role in
sensorimotor dysregulation and has now received growing
attention (Lopez et al., 2020; Maas et al., 2020). For future studies,
we will include the cerebellum, and increase our sample size in
order to obtain different subgroups based on disease stages.

In agreement with previous rs-fMRI studies, the proposed
radiomics method that combined rs-fMRI spontaneous activity,
connectivity and structure MRI of gray matter (GM) was proved
to be scientifically sound and valid. The machine learning
based radiomics approach can help the diagnosis, personalized
treatment, and prognosis orientation for patient with PD at
a lower cost. This type of radiomics approaches should be
widely performed and considered as an automated classification
framework for predicting PD in clinical management.
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Measurement of the width of fetal lateral ventricles (LVs) in prenatal ultrasound (US)

images is essential for antenatal neuronographic assessment. However, the manual

measurement of LV width is highly subjective and relies on the clinical experience of

scanners. To deal with this challenge, we propose a computer-aided detection framework

for automatic measurement of fetal LVs in two-dimensional US images. First, we train a

deep convolutional network on 2,400 images of LVs to perform pixel-wise segmentation.

Then, the number of pixels per centimeter (PPC), a vital parameter for quantifying

the caliper in US images, is obtained via morphological operations guided by prior

knowledge. The estimated PPC, upon conversion to a physical length, is used to

determine the diameter of the LV by employing the minimum enclosing rectangle method.

Extensive experiments on a self-collected dataset demonstrate that the proposed

method achieves superior performance over manual measurement, with amean absolute

measurement error of 1.8mm. The proposed method is fully automatic and is shown to

be capable of reducing measurement bias caused by improper US scanning.

Keywords: biometric measurement, computer-aided diagnosis, ultrasound, fetal head, deep learning, lateral

ventricle

1. INTRODUCTION

Ultrasound (US) is widely used in prenatal diagnosis because it is non-radiative, noninvasive,
real-time, and inexpensive (1, 2). Ventriculomegaly, one of the most common abnormal findings
in prenatal diagnosis, is often a sign of central nervous system malformation, chromosomal
abnormalities, intrauterine infections, or other problems (3, 4). Ventriculomegaly can be diagnosed
by measuring the fetal lateral ventricles (LVs) in standard plane images of the fetal brain. Currently,
to measure the width of LVs, human scanners determine the maximum distance by marking two
endpoints on the inner and outer edges of the LV. The line segment between these endpoints is
considered the diameter of the LV and its length is generally referred to as the LV width (5), as
shown in Figure 1A. However, such manual measurement requires extensive and comprehensive
clinical knowledge of fetal LVs. It is a challenging task, especially for novice scanners. Additionally,
scanners often suffer from repetitive stress injuries caused by multiple keystrokes (6). Therefore, it
is necessary to develop automatic methods for fetal LVmeasurement, and crucial image-processing
issuesmust be resolved to achieve amore accurate and efficient obstetric examination. Although the
automatic measurement of fetal biometrics—such as head circumference (7, 8) and femur length
(9, 10)—has attracted widespread attention in recent years, work on fetal LV measurement is rare.
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FIGURE 1 | (A) Scanner-located LV width; the yellow crosses represent the endpoints, and the physical length of the LV is shown in the lower right corner. (B) Fetal LV

images in different ultrasound instruments.

To the best of our knowledge, this is the first study to propose an
automatic measurement method for fetal LV width based on two-
dimensional (2D) US images using deep learning. Several sample
images of fetal LVs and the caliper in different US instruments are
shown in Figure 1B.

Automatic measurement of fetal LV width remains a
challenging task, as illustrated in Figure 2. The difficulties lie
in three aspects: (1) The poor quality of the image can be an
obstacle to accurate detection and segmentation of the fetal
LV. For instance, the boundary of the LV may be blurred, as
indicated by the white arrows in Figures 2A,D, which can result
in a large overlap with adjacent tissues or anatomical structures,
as highlighted by the yellow arrows in Figure 2B. (2) Because
of differences between the location and type of calipers used,
indicated by the blue arrows in Figures 2C,D, it is difficult
to obtain the essential pixels-per-centimeter (PPC) parameter,
which is the number of pixels in one centimeter of an image
and is used to convert pixel length to physical length. (3) The
subjectivity of manual measurements can cause issues, and the
poor performance of the manual implementation is attributable
to a lack of standardized training. Although standard definitions
of the LV width are available, the widest part of the LV is
determined by scanners manually marking two points on its
inner and outer edges, as shown in Figure 1A.

To tackle these challenges, we develop a framework for

automatic LV measurement based on deep learning. Specifically,

we decompose the LVmeasurement task into three subtasks. First

we train a Mask R-CNN (11) convolutional network on 2,400

images of fetal LV. The trained model can effectively learn and

extract discriminative features from the training images and is
able to perform joint classification, detection, and segmentation
tasks simultaneously. Morphological operations (12) and prior
knowledge are combined to enable extraction of the caliper
scales in such a way that interference with other structures and
tissues in the images is avoided. In the second step, we extract
the caliper scales using prior knowledge. From these scales the
PPC is calculated precisely. Then, we employ the minimum
enclosing rectangle (MER) method to find the diameter and use
the Euclidean distance to calculate its pixel length. Finally, the
pixel length is transformed to the physical length of the LV by
the PPC. The proposed method is evaluated on a self-collected
dataset. Experimental results reported inTable 4 demonstrate the
superior performance of the method.

2. MATERIALS AND METHODS

The framework of the proposed method is summarized in
Figure 3. Given heterogeneous sources of US images, Mask R-
CNN can automatically detect and segment the caliper and the
fetal LV simultaneously. Then, the PPC is obtained from the
detected caliper using prior knowledge, and the pixel length of
the LV is obtained by theMERmethod. Finally, the fetal LVwidth
measurement is obtained by transforming the pixel length to a
physical length using the PPC.

2.1. Image Acquisition
All examinations and diagnoses were carried out during routine
screenings at the First Affiliated Hospital of Sun Yat-Sen

Frontiers in Neurology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 526126

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Automatic Measurements of Lateral Ventricles

FIGURE 2 | (A) Obvious fetal LV. (B) Images sometimes contain other similar structures. (C) Different location of the caliper than in (A). (D) Fuzzy fetal LV, with a

different type of caliper from that in (A). Blue arrows indicate the caliper; yellow arrows indicate the LV and similar structures; white arrows indicate the LV.

FIGURE 3 | Flowchart of the proposed framework for automatic LV measurement.
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FIGURE 4 | Ultrasound fetal brain image: from left to right the columns show the raw image, the ground truth labeled by the scanner, and the result detected by Mask

R-CNN.

University, China, from March 2010 to February 2018, by a
team of 15 doctors with 3–22 years of experience. Images of
fetal standard transventricular planes are required to assess fetal
LVs, according to the guidelines of the International Society
of Professionals in Ultrasound for Obstetrics and Gynecology
(ISUOG). Ten different US machines provided by six different
manufacturers (GE Voluson 730 Expert/E6/E8/E10, Aloka SSD-
a10, Siemens Acuson S2000, Toshiba Xario 200 (Tus-X200),
Samsung UGEOWS80A, and Philips EPIQ 7C) were utilized for
data acquisition.

We acquired a total of 2,900 images, comprising 1,694
normal LVs, and 1,206 ventriculomegaly LVs, from the above US
instruments, as well as 2,079 US images containing only calipers.
To verify the robustness of the model, we collected 200 test
images that contain neither LVs nor calipers to serve as negative

samples. Our dataset is large enough to adequately represent
the various LV images commonly seen in clinical practice. The
ground truth of the LVs and calipers in these images were labeled
by three experienced scanners. We randomly selected 2,400
images containing LVs and calipers and 1979 images containing
only calipers to constitute the training dataset. The testing dataset
is made up of 300 images containing LVs and calipers as positive
samples and the 200 images without LVs and calipers as negative
samples. The 1,979 images containing only calipers are used to
improve the recognition of calipers.

2.2. The Mask R-CNN Model
The complex task of measuring the width of LVs can be
disentangled into a few simple problems that are easily solved
with convolutional neural networks (CNNs). We trained a
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FIGURE 5 | Visualization of background noise filtering: (A) raw image; (B) intercept of the caliper; (C) conversion to gray-scale; (D) edge detection by the Laplace

operator; (E) binarization from gray-scale to monochrome; (F) morphological open operation. (G) The result of no morphological processing on the image. The green

arrows indicate the difference between the treated image in (F) and the untreated one in (G).

Mask R-CNN to simultaneously perform two localization
tasks and two segmentation tasks. In previous studies,
deep learning has produced state-of-the-art results in many
computer vision and medical image analysis problems, including
prediction of protein function (13), classification of non-
metastatic nasopharyngeal carcinomas (14), discovery of m6A
sequences (15), image segmentation using new iterative tri-class
thresholding techniques (16), qualitative assessment of fetal
head US images (17), and detection of breast cancer (18). We
choose to employ the deep learning algorithm Mask R-CNN,
which combines object detection, object classification, and object
segmentation. Notably, the excellent feature extraction ability of
the deep learning network offers the potential of resolving the
aforementioned issues in LV width measurement.

We trained an end-to-end 50-layer ResNet (19) with
Feature Pyramid Networks (FPN) (20). Specifically, ResNet50
learns a set of image filters at multiple spatial scales and
produces hierarchical feature maps of increasing coarseness.
FPN combines the low-level features and high-level increase the
receptive field and invariance. Then, the feature map generates

many candidate region proposals through the Region Proposal
Network (RPN). The class branch outputs the categories and

confidence scores of the predicted anatomy. The bounding boxes
of the target are obtained by the box branch. Subsequently, the
mask branch learns to up-sample the coarse feature maps to
produce a pixel-wise label prediction at the resolution of the
input image. The hyperparameters are set as follows: the height
and width of the input images are scaled down to 600 pixels;
the training batch size is set to six images per batch; the initial
learning rate and the number of iterations of the model are set to
0.02 and 20,000, respectively; and the remaining hyperparameters
are set to their default values given in previous work (11).
The Mask R-CNN network was trained with a training dataset,
and the network output is shown in Figure 4. The network
produces three results: bounding boxes, pixel-wise segmentation,
and recognition confidence values for fetal LVs and calipers.

2.3. PPC Calculation With Morphological
Operations and Prior Knowledge
Because of differences in the type, shape, and location of the
caliper, it is difficult to obtain an accurate value for the PPC. To
measure the LV width accurately, we incorporate clinical prior
knowledge into our algorithm to guide the precise estimation of
the PPC.

Through observation, two types of calipers are identified,
which we refer to as the 10-caliper and the 5-caliper. For the
former, the physical length between adjacent scales is 10mm,
as shown by the blue arrow in Figure 2A; the latter has a
5mm distance between adjacent scales, as shown by the blue
arrow in Figure 2D. The caliper scales are embedded in the
ultrasonic structure, and the background noise poses an obstacle
to extraction of the scale, as indicated by the blue arrow in
Figure 2A. Obviously, the background and caliper scales cannot
be distinguished directly via a threshold approach.

To eliminate the effects of background noise on scale
extraction, we first crop the caliper from the raw image using
the bounding box given by Mask R-CNN and process it
separately. We then convert the caliper images into gray-scale.
The Laplace operator is used for morphological operations
after comparing with the experimental results. Large highlighted
blocks of complex background are effectively discarded, as
shown in Figure 5D. Next, we binarize the gray-scale image
using a threshold value of 127 to obtain a monochrome image
and then perform a morphological open operation on the
monochrome image to eliminate a small amount of background
noise. A visualization of these processing steps is shown in
Figure 5. Figure 5G displays a binary image without the Laplace
and open operations. As indicated by the green arrows in
Figures 5F,G, the highlighted object is successfully filtered and
the scales are preserved adequately after the Laplace and open
operations. The background noise filtering is used preliminarily
to filter out the part of the image that does not belong to
the caliper.
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FIGURE 6 | Visualization of contour filtering: (A) finding contours; (B) filtering out large contours; (C) filtering out edge contours; (D) filtering out inner contours. The

yellow rectangles indicate the scales of the caliper found by our method.

After morphological processing, the background noise is
minimized and all contours in the image are obtained by
using the “findContours” function of OpenCV, as shown in
Figure 6A. These contours consist of pixel points (x, y). From
our observations, the caliper scales follow three rules, as shown

in Figure 7A. First, the scales belonging to a caliper contain
a small number of pixel points. Second, the scales are all on
the same y-axis. Third, the distances between adjacent scales
are fixed.

Although the above step reduces the noise, it still cannot
achieve the full denoising effect. To this end, we further propose
contour filtering for taking into account prior knowledge of the
scale. The aim of the following steps is to thoroughly eliminate
noise, so as to identify the type of caliper and determine the
PPC more accurately. First, we filter out the contours that
have pixel numbers larger than the threshold value of 30, i.e.,
the large background contours that have not been cleaned by
the morphological processing, indicated by the green arrows

in Figures 6A,B. Next, we count the contours that intersect
with each y-axis by traversing all y-axes in the caliper image.
The y-axis with the greatest number of intersecting contours is
regarded as the axis along which the scales are located. This
step involves filtering out the small and medium contours of the
image edge, as indicated by the blue arrows in Figures 6B,C.
Then, the mode is obtained as the pixel distance between
adjacent scales via calculating and recording the distance between
adjacent contours. The position of each contour is represented
by the point at the upper left corner of the contour. Finally,
all scale contours are obtained via the pixel distance, and the
“minAreaRect” function of OpenCV is utilized to generate a
rectangular bounding box for each scale contour, to filter out
the small contours between scales. After these steps have been
applied, the remaining contours are considered the scales of
the caliper. This process is illustrated in Figure 6D, where the
yellow rectangles indicate the scales of the caliper obtained by
our method.
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FIGURE 7 | (A) The 5-caliper, with the green arrows indicating the “big-small-big” scale change law. (B) The 10-caliper, where the blue arrows indicate adjacent

scales of the same size. (C) Results of caliper type judgments and PPC calculations; in each image the green box bounds the position of the scales given by Mask

R-CNN, and the yellow box shows the caliper scales extracted by our method. The PPC value and caliper type are shown in the upper left corner of each image.

FIGURE 8 | (A) The minimum angle θ between the x-axis and the enclosing rectangle of the LV image is determined. (B) After rotating the image to make it horizontal,

the vertical green lines are candidate diameters; the red line is the longest diameter. (C) Two LV measurements obtained using our method; in each image the yellow

line inside the green box is the diameter of the LV as determined by our method, and the measurement results are shown near the yellow line.
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TABLE 1 | Caliper and LV prediction results.

Caliper
Predicted result

Total
Yes No

Ground truth

Yes 290 7 297

No 0 203 203

Total 290 210 500

Precision Recall Sensitivity Specificity Accuracy

100% 97.64% 100% 96.67% 98.6%

LV
Predicted result

Total
Yes No

Ground truth

Yes 280 15 295

No 5 200 205

Total 285 215 500

Precision Recall Sensitivity Specificity Accuracy

98.25% 94.91% 98.25% 93.02% 96%

TABLE 2 | Expert scoring results.

Score Number Percentage (%) Average

0 15 5

1 10 3.3

2 15 5

3 28 9.3

4 232 77.5

Total 300 100 3.5

After extracting the scales, we calculate the PPC. The two
kinds of calipers have their unique rules of change in scale size:
the 5-caliper has a “big-small-big” change rule, as shown in
Figure 7A, whereas the 10-caliper has adjacent scales of the same
size, as shown in Figure 7B. The type of caliper is determined by
these rules and the scales extracted using the above procedure.
In the case of the 5-caliper, the PPC of the image is the distance
between adjacent scales multiplied by 2; for the 10-caliper, the
PPC is the distance between adjacent scales. The caliper type and
PPC results are shown in Figure 7C at the upper left corner of
the image. The green box surrounds the position of the scales
obtained by Mask R-CNN, and the yellow box indicates the
caliper scale extracted by our method.

2.4. Locating LV Diameter and LV
Measurement
Clinically, the widest location of the LV is determined by
scanners, who mark two points on the inner and outer edges of
the LV. To find the widest location of the LV in images, the MER
method is used to simulate the judgment of scanners.

We obtain the angle θ between the x-axis and the edge
of the enclosing rectangle with the smallest angle to the x-
axis, as illustrated in Figure 8A. First, the image is rotated
by angle θ in the opposite direction to give a horizontal LV,
as shown in Figures 8A,B. Then, we traverse all y-axes and
obtain two points intersecting the contour of the LV; see

TABLE 3 | Accuracy of caliper type judgments.

Number Correct Error Accuracy (%)

Total 100 92 8 92

Black 20 19 1 95

Complex 80 73 7 91.25

TABLE 4 | Quantification of the performance of the proposed method in terms of

mean absolute error (MAE), standard deviation (SD), root mean squared error

(RMSE), and average time consumed (ATC).

MAE (mm) Percentage of MAE SD (mm) RMSE (mm) ATC (s)

1.8 18.92% 3.4 2.38 0.13

the green lines in Figure 8B. We calculate the pixel distance
between these two points using the Euclidean distance. The
largest pixel distance is regarded as the width of the LV, and
the diameter of the LV is obtained as the line connecting
the two points, i.e., the red line in Figure 8B. Finally, the
physical length of the LV diameter is calculated as the pixel
length divided by the PPC. Figure 8C shows a visualization of
the results.

3. RESULTS AND DISCUSSION

We conduct three experiments to assess the reliability and
efficacy of the proposed framework for automatic fetal LV
measurement: (1) To evaluate our method’s detection and
segmentation ability for LVs and calipers, we test the trained
network model with a testing dataset containing 500 images.
(2) We assess the accuracy of the PPC acquisition method.
(3) We compare the measurement errors between the LV width
measured by our method and the ground truth measured by
three scanners.

Our data were labeled by three experienced scanners.
The diagnosis results and measurements produced by their
consensus judgments serve as the ground truth in Table 1.
The physical lengths of the LVs in Table 4 were also measured
by doctors.

3.1. Detection and Segmentation Ability of
Mask R-CNN
As shown in Table 1, to evaluate the proposed method’s ability
to recognize LVs and calipers, we record its precision, recall,
sensitivity, specificity, and accuracy on the test set.

The results indicate that the trained Mask R-CNN
identifies the LV and the caliper with accuracies of 96
and 98.6%, respectively. The precision of the model is
100% for calipers and 98.25% for LVs and indicates
that the positive samples identified by the network have
high confidence. Our model performs well for negative
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FIGURE 9 | Scoring criteria of three ultrasound experts, who scored the degree of fitting between predicted LV contours and the ground truth on a scale from 0 to 4.

FIGURE 10 | (A) Error recognition and (B) failure recognition for LVs. The first row shows the ground truth and error recognition; the second row shows the ground

truth and failure recognition.

samples, with a specificity of 96.67% for calipers and 93.02%
for LVs.

In addition, to verify the accuracy of the LV contour segments
obtained by Mask R-CNN, we invited three US experts to score
the degree of fitting between the predicted LV contours and
the ground truth on a scale from 0 to 4. The scoring criteria
are shown in Figure 9, and the results are reported in Table 2.
Predicted results scoring 4 points accounted for 77.4% of the

cases, with an average score of 3.5. To summarize, the network
appears to accurately predict the LV contours.

The accuracy of LV detection is lower than that of caliper
detection. A separate analysis of incorrect recognition cases, as
shown in Figure 10A, indicates that structures similar to LVs
are likely to be present in the images, demonstrating that object
detection in US images is still a challenging task. As can be
seen in Figure 10B, the unrecognized images are too dark, and
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FIGURE 11 | Measurement results obtained using our method (left) compared with the ground truth (right).

the contour of the LV is not obvious. A possible reason is that
the training dataset is insufficient. In future work, more LV
images will be collected and used for optimization of the network
structure to improve the detection of LVs.

Under the same hardware conditions (CPU Intel Core i7-7700
3.60GHz X8; GPU GeForce GTX 1060 6GB / PCIe / SSE2),
we train DeepLab V3+ networks with the same training set.
The hyperparameters are chosen as follows: train_crop_size is
set to 401 × 801, train_batch_size is set to 2, and the model is
iterated 40,000 times; the remaining hyperparameters are set to
their default values in previous work (21). Figure S1 shows the

comparison results. The experimental results indicate that the
performance is worse than that ofMask R-CNN, a possible reason
being that the images in the training set are relatively small, only
512 × 512. In contrast, the images in our training set are large
enough, with most of the sizes being 700× 1,400.

3.2. Accuracy of the PPC
The accuracy of the obtained PPC depends on the judgment
of the caliper type. To better represent the accuracy of
caliper type judgments with different data complexities, we
randomly select 20 images with black backgrounds and 80
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images with complex backgrounds to make up a 100-image test
dataset. Table 3 demonstrates the accuracy of our method in
caliper classification.

The experimental results indicate that our method performs
well in the recognition of caliper types against a black
background, with an accuracy of 95%; however, the accuracy of
recognition of caliper types against a complex background could
be further improved.

3.3. Measurement Error
Test sets consisting of 200 LV images measured by scanners
are used as the ground truth. We measure the same LVs using
our method and compare the results. Notably, the LVs are not
recognized in 19 of the 200 images; these images are considered to
be 0mm in the measurement error statistics. Figure 11 displays
LVmeasurement results obtained by our method, compared with
the LV ground truth provided by experts. The LV diameters
determined by our method are quite close to the ground
truth, and the measurement error is small. The mean absolute
error, standard deviation, root mean squared error, and time
consumption of our method are listed in Table 4. Because 19 of
200 images are considered to be 0mm, the standard deviation
is large, 3.4mm. The experimental results demonstrate that our
method is accurate and efficient for measuring fetal LV width; for
example, the time consumption is 0.13 s per image and the mean
absolute measurement error is 1.8mm.

4. CONCLUSION

This paper describes an automatic method for measuring the
width of LVs in 2D US images. To the best of our knowledge, this
is the first study proposing an automatic measurement method
for fetal LVs based on 2D US images using deep learning. Our
method is able to automatically recognize and locate the fetal LV
in 2D US images and can measure the width of the LV rapidly
and accurately. Moreover, our model, with slight modifications,
can be extended to the measurement of other fetal biometrics,
such as femur length and head circumference. The demonstrated
robustness of the model implies that it is also a promising tool
to be used with various ultrasonic instruments to facilitate quick
clinical prenatal diagnosis. The experimental results on 200 LV
images indicate that the performance of our proposed method
is close to the manual method of LV measurement in terms of
accuracy and efficiency.

The measurement errors of our method mainly arise from
three sources: inadequate fitting of the LV contour, inaccurate
PPC calculation, and inaccurate diameter location. In future

work, we will focus on reducing measurement errors by using
a greater amount of LV data, improving the network structure
to enhance its abilities of detection and segmentation, and
modifying the location algorithm for determining LV diameter.
Our long-term goal is to develop an automatic system that can
measure all biometrics based on fetal US images.
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Objective: Decreased homotopic connectivity of brain networks such as the cortico-
striato-thalamo-cortical (CSTC) circuits may contribute to the pathophysiology of
obsessive-compulsive disorder (OCD). However, little is known about interhemispheric
functional connectivity (FC) at rest in OCD. In this study, the voxel-mirrored homotopic
connectivity (VMHC) method was applied to explore interhemispheric coordination at rest
in OCD.

Methods: Forty medication-free patients with OCD and 38 sex-, age-, and education
level-matched healthy controls (HCs) underwent a resting-state functional magnetic
resonance imaging. The VMHC and support vector machine (SVM) methods were used
to analyze the data.

Results: Patients with OCD had remarkably decreased VMHC values in the orbitofrontal
cortex, thalamus, middle occipital gyrus, and precentral and postcentral gyri compared
with HCs. A combination of the VMHC values in the thalamus and postcentral gyrus could
optimally distinguish patients with OCD from HCs.

Conclusions: Our findings highlight the contribution of decreased interhemispheric FC
within and outside the CSTC circuits in OCD and provide evidence to the pathophysiology
of OCD.

Keywords: obsessive-compulsive disorder, voxel-mirrored homotopic connectivity, support vector machine,
functional magnetic resonance imaging, resting-state
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INTRODUCTION

The features of obsessive-compulsive disorder (OCD) are
persistent and intrusive thoughts, impulses, images, and
repetitive behaviors (1). This chronic neuropsychiatric disorder
has a lifetime prevalence of 2% to 3% (2). As one of the top ten
disabling diseases, OCD leads to social disability, functional
impairment, and even suicide. OCD imposes considerable
financial burden and misery to families. The involvement of
structural and functional abnormalities in the areas of the
cortico-striato-thalamo-cortical (CSTC) circuits, which include
the orbitofrontal cortex (OFC), dorsolateral prefrontal cortex,
anterior cingulate cortex, striatum, and thalamus, is among the
most examined networks in OCD (3–5). However, other brain
regions outside the CSTC circuits, such as the occipital, parietal,
and cerebellar cortices, are also involved in OCD (6–8).

As the largest commissure of white matter, the corpus
callosum (CC) plays a crucial role in cognitive processes and
interhemispheric communication (9). Decreased fractional
anisotropy values (10) and microstructural abnormalities in the
CC (11) have been reported in OCD, which may affect
interhemispheric functional interactions related to obsessions
and compulsions (12). Functional interhemispheric coordination
between the cerebral hemispheres may be an important aspect of
brain function (13). Nevertheless, little is known about
alterations in functional interhemispheric coordination in OCD.

As a basic characteristic of the brain’s intrinsic functional
architecture, functional homotopy reflects high degree of
synchrony in spontaneous activity between geometrically
corresponding (i.e., homotopic) regions in each hemisphere, and
can be investigated with the resting-state functional connectivity (FC)
method (14). A voxel-mirrored homotopic connectivity (VMHC)
approach explores the resting-state FC between the time series for
each voxel in one hemisphere and that of its corresponding voxel in
the opposite hemisphere (14) and is designed to measure
interhemispheric coordination (15). This method has been well
applied in neuropsychiatric disorders (16–20). Previous studies
used the VMHC approach to explore interhemispheric patterns in
patients with OCD at rest and found reduced VMHC values within
and outside the CSTC circuits (21, 22). Their findings indicated that
the integrity of interhemispheric cooperation was impaired in OCD.
However, most patients with OCD in the previous studies were on
medications that might affect brain connectivity at rest (21–24).
Whether altered interhemispheric coordination can be applied as a
potential image marker to determine OCD from healthy controls
(HCs) remains unclear.

In this study, we investigated interhemispheric FC at rest in a
relatively large number of medication-free patients with OCD
using the VMHC method. We hypothesized that patients with
OCD would exhibit decreased VMHC within and outside the
CSTC circuits based on previous studies (21, 22). We further
explored the correlations between altered VMHC values and
clinical variables in patients with OCD. Machine-learning
techniques have received increasing attention and are used to
identify potential neuroimaging biomarkers for early diagnosis in
psychiatric disorders (25). Support vector machine (SVM) is one
Frontiers in Psychiatry | www.frontiersin.org 2138
of the machine-learning techniques with higher precision and
accuracy. SVM is effective to define a set of information and
features from different brain regions that can classify patients
and HCs using neuroimaging data such as functional magnetic
resonance imaging (fMRI) data (25). Therefore, the present
research applied SVM to detect whether abnormal VMHC
could differentiate patients with OCD from HCs.
MATERIALS AND METHODS

Participants
Forty patients with OCD were recruited from the Fourth
Affiliated Hospital of Qiqihar Medical University, and Qiqihar
Mental Health Center, China. Diagnosis of OCD was confirmed
according to the Structured Clinical Interview for DMS-IV
(SCID), patient version (26). Yale-Brown Obsessive-
Compulsive Scale (Y-BOCS), 17-item Hamilton Depression
Rating Scale (HAMD), and Hamilton Anxiety Rating Scale
(HAMA) were used to assess the severity of clinical symptoms
of OCD. Eighteen patients were drug-naive, and twenty-two had
a history of antidepressants, antipsychotics or anti-obsessive
medication. No patients had taken any kind of psychotropic
medication for at least four weeks before the recruitment. Thirty-
eight sex-, age-, and education level-matched HCs were enrolled
from the local community using the SCID, non-patient version
(27). Patients with OCD and HCs had the same inclusion
criteria: (1) 16 to 50 years of age; (2) right-handedness; (3) no
neurological disorder; (4) no severe medical disorder; (5) no
substance/alcohol abuse or nicotine/caffeine dependence; and (6)
no contraindication for MRI scan. HCs were excluded if they had
a first-degree relative with any psychiatric disorders.

Ethical approval was obtained from the Research Ethics
Committee of Qiqihar Medical University. All subjects were
informed about the full description of procedures and provided
a written informed consent.

MRI Data Acquisition
Brain images were implemented on a 3.0-Tesla GE 750 Signa-
HDX scanner (General Electric Healthcare, Waukesha,
Wisconsin) with a standard head coil (12-channel) at the
Third Affiliated Hospital of Qiqihar Medical University. All
individuals were instructed to lie still with closed eyes and
minimize head movement. An echo-planar imaging (EPI)
sequence was used to acquire resting-state fMRI with the
following parameters: 33 axial slices, 2000-ms TR, 30-ms TE,
3.5/0.6-mm thickness/gap, 90° flip angle, 200 × 200-mm2

field of
view, 64 × 64 data matrix, and 240 volumes in total.

Data Processing
The imaging data were processed through the Data Processing &
Analysis for Brain Imaging (DPABI) software (28). The
preprocessing procedures were as follows: the first 10 volumes
were discarded. A slice-timing correction was applied. After that,
the images were spatially normalized to a standard Montreal
Neurological Institute (MNI) space and resembled to 3 × 3 × 3
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mm3. Subsequently, the processed images were spatially
smoothed using an isotropic Gaussian kernel of 4 × 4 × 4 mm3

full width at half maximum (FWHM). The temporal band-pass
filtering (0.01–0.08 Hz) was conducted to reduce the
confounding effect of high-frequency physiological noise and
low-frequency drifts. White matter, cerebrospinal fluid time
course, and 24 head motion parameters were regressed out as
the nuisance covariates. Mean framewise displacement (FD) for
each participant was calculated. Scrubbing was applied with a FD
which indexes volume-to-volume changes in head position using
a threshold of 0.2 together with one preceding and two
subsequent volumes (29).

Interhemispheric Correlation
VMHC computation was also processed by using the DPABI
software (28). The homotopic resting-state FC of the individuals
was computed as the Pearson correlations between the residual
time series of each voxel in one hemisphere and that of its
opposite hemisphere. Then, the coefficients were Fisher z-
transformed, and VMHC maps were generated with the
resultant values. The mean VMHC was extracted from the
voxels that make up the clusters.

Statistical Analyses
The demographic and clinical characteristics of the two groups
were conducted with two-sample t-tests or a c2 test using SPSS
version 23.0 (SPSS Inc., Chicago, IL, USA).

The mean FD and age were subsequently utilized as covariates
for voxel-wise two-sample t-tests between drug-naive patients
with OCD and HCs to detect VMHC differences. The
significance level corrected by the Gaussian random field
(GRF) theory was p < 0.05. To minimize the confounding
effects of depressive and anxiety symptoms on the present
results, we repeated voxel-wise two-sample t-tests using the
mean FD, age, HAMD scores, and HAMA scores as covariates.

Pearson correlations were evaluated between abnormal
VMHC and clinical symptoms, i.e., total, obsession, and
compulsion scores in the Y-BOCS, HAMA scores, and HAMD
scores in patients with OCD. The Bonferroni-corrected
significance level was p < 0.05.

SVM Analysis
SVM analysis was conducted using the LIBSVM software in
MATLAB (http://www.csie.ntu.edu.tw/cjlin/libsvm/). This
exploratory analysis examined whether abnormal VMHC
could be used to differentiate patients with OCD from HCs.
SVM classifiers can separate the individuals into two classes
through a decision boundary, which is as far as the closest points
from each of the sample data according to a function of selecting
kernel. To minimize the problem of overfitting or underfitting,
exploratory SVM analysis is conducted in the LIBSVM software
with default parameters. A “leave-one-out” cross-validation
approach was used to obtain the highest values for specificity
and sensitivity. A permutation test was applied to validate the
SVM results, which ran 10,000 times for each sample
(OCD/HCs). Then, a global accuracy could be obtained for
each sample.
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RESULTS

Demographic Characteristics of Subjects
The 40 patients with OCD comprised 27men and 13 women. The 38
HCs comprised 25men and 13 women. Patients andHCs showed no
significant between-group differences in age (t = 0.05, p = 0.71),
gender (X2 = 0.32, p = 1.00), education level (t = 0.50, p = 0.83), and
FD (t = 1.25, p = 0.13). Between-group differences were found in the
clinical characteristics of Y-BOCS (t = 25.27, p < 0.01), HAMA (t =
9.00, p < 0.01), and HAMD (t = 9.04, p < 0.01). Details are shown in
Supplementary Material Table S1.

VMHC Differences
Patients with OCD had remarkably decreased VMHC values in
the OFC, thalamus, middle occipital gyrus, and precentral and
postcentral gyri compared with HCs (Table 1 and Figure 1). No
VMHC was increased in the patients relative to the controls.
These results were similar using the mean FD, age, HAMD
scores, and HAMA scores as covariates (Table S2). Scatter plots
for the significant clusters of samples (OCD/HCs) were showed
in Figure 2.

Correlation Analysis
No correlations were found between abnormal VMHC values
and clinical variables (i.e., total, obsession, and compulsion
scores in the Y-BOCS, HAMA and HAMD scores) in patients
with OCD at Bonferroni-corrected p < 0.05 level.

SVM Results
Five brain regions (1 = middle occipital gyrus, 2 = orbitofrontal
cortex, 3 = postcentral gyrus, 4 = precentral gyrus, and 5 =
thalamus) in patients with OCD had decreased VMHC values.
Exploratory SVM analysis was conducted using the VMHCs of
these five brain regions and their pairwise combinations. Their
classification accuracies were as follows: 1 = 76.92% (60/78), 2 =
75.64% (59/78), 3 = 75.64% (59/78), 4 = 67.95% (53/78), 5 =
75.64% (59/78), 1 and 2 = 79.49% (62/78), 1 and 3 = 80.77% (63/
78), 1 and 4 = 76.92% (60/78), 1 and 5 = 78.21% (61/78), 2 and
3 = 80.77% (63/78), 2 and 4 = 89.74% (70/78), 2 and 5 = 76.92%
(60/78), 3 and 4 = 76.92% (60/78), 3 and 5 = 94.87% (74/78), and
4 and 5 = 71.79% (56/78).The combination of the VMHC values
of 3 and 5 (Figures 3 and 4) could optimally discriminate the
patients with OCD from the HCs with accuracy, sensitivity, and
specificity rates of 94.87%, 95.00%, and 94.74%, respectively.
TABLE 1 | Decreased VMHC in patients with OCD.

Cluster location Peak (MNI) Number
of voxels

T value

x y z

Orbitofrontal Cortex ± 9 9 −18 64 −4.5406
Thalamus ±12 −21 −12 152 −4.9082
Middle Occipital Gyrus ±48 −69 0 506 −5.2791
Postcentral Gyrus ±63 −6 27 92 −4.8418
Precentral Gyrus ±42 −15 39 64 −4.5126
September 2020 | Volu
me 11 | Article
MNI, Montreal Neurological Institute; VMHC, voxel-mirrored homotopic connectivity.
The significance level was set at p< 0.05 corrected by the Gaussian random field (GRF) theory
(voxel significance: p < 0.001, cluster significance: p < 0.05) for multiple comparisons.
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To validate the SVM results. A permutation test showed that
the global accuracy was 0.9562 (p < 0.001) for discriminating
patients with OCD from HCs by using the combination of the
VMHC values of 3 and 5.
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A feature selection was conducted to validate the SVM results
as follows. First, the accuracy was 82.05% (64/78) using the
combination of abnormal VMHC values in five brain regions for
classification. Then, the VMHC values in one brain region were
FIGURE 1 | Brain regions with decreased VMHC in patients with OCD. Blue denotes decreased VMHC. Color bars indicate t-values of voxel-based two-sample
t-tests (p < 0.05, GRF-corrected).
FIGURE 2 | Scatter plots for the significant clusters of samples. VMHC, voxel-mirrored homotopic connectivity.
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Jia et al. Decreased VMHC Values in OCD
removed and the VMHC values in the remaining four brain
regions were combined for classification. If the accuracy
increased, it means that the VMHC values in this brain region
could be removed; if the accuracy decreased, it means that the
VMHC values in this brain region should be retained. Next, the
VMHC values in another brain region were removed, the VMHC
values in the remaining three brain regions were combined for
classification, and the above process was repeated. Finally, the
combination of the VMHC values in the postcentral gyrus and
thalamus (3 and 5, Figures 3, 4) could optimally discriminate the
patients from the HCs with an optimal accuracy of 94.87%.

Different combinations of abnormal VMHC values in five
brain regions were examined to validate the SVM results using
the receiver operating characteristic curve (ROC) (Figure 5). The
areas under the curve (AUC) were as follows: 1 and 2 = 0.7889, 1
Frontiers in Psychiatry | www.frontiersin.org 5141
and 3 = 0.7965, 1 and 4 = 0.7717, 1 and 5 = 0.8030, 2 and 3 =
0.7774, 2 and 4 = 0.7899, 2 and 5 = 0.7666, 3 and 4 = 0.7881, 3
and 5 = 0.8047, and 4 and 5 = 0.7387. As expected, the
combination of 3 and 5 showed the highest AUC.
DISCUSSION

The present study explored interhemispheric FC at rest in a
relatively large medication-free OCD sample. Consistent with
our hypothesis, patients with OCD exhibited decreased VMHC
values within (i.e., OFC and thalamus) and outside (i.e., middle
occipital, precentral, and postcentral gyri) the CSTC circuits. In
addition, a combination of decreased VMHC in the thalamus
FIGURE 3 | Accuracy (%) of abnormal VMHC in single or combined brain regions to discriminate patients from healthy controls. 1, Middle occipital gyrus; 2,
orbitofrontal cortex; 3, postcentral gyrus; 4, precentral gyrus; 5, thalamus; 12, middle occipital gyrus and orbitofrontal cortex; 13, middle occipital gyrus and
postcentral gyrus; 14, middle occipital gyrus and precentral gyrus; 15, middle occipital gyrus and thalamus; 23, orbitofrontal cortex and postcentral gyrus; 24,
orbitofrontal cortex and precentral gyrus; 25, orbitofrontal cortex and thalamus; 34, postcentral gyrus and precentral gyrus; 35, postcentral gyrus and thalamus; 45,
precentral gyrus and thalamus.
FIGURE 4 | Visualization of the SVM classification using the combination of the VMHC values in the thalamus and postcentral gyrus. Left: 3D visualization of the
SVM parameter selection result (Best c, 1; Best g, 128). Right: visualization of the classification with the combination of the VMHC values in the thalamus and
postcentral gyrus. Different colors of the contour lines indicate different classification accuracies by using different combinations of the VMHC values in the thalamus
and postcentral gyrus. Dimension 1, the VMHC values in the postcentral gyrus; dimension 2, the VMHC values in the thalamus.
September 2020 | Volume 11 | Article 559729
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and postcentral gyrus could distinguish patients with OCD from
HCs with high accuracy, specificity, and sensitivity.

This study discovered decreased VMHC values within the
CSTC circuits, such as OFC and thalamus, in patients with OCD
at rest. OFC is a key structure within the CSTC circuits and plays
an important role in response inhibition, behavioral inhibition,
and emotional regulation (30–32). As a central relay station (33),
the thalamus transmits sensory input from the surrounding area
to the cortex and manages input and output information
between the striatum and cortex within the CSTC circuits (3,
34). A recent meta-analysis discovered that patients with OCD
showed hypoactivation in the bilateral thalamus and medial OFC
during inhibitory control (35). Decreased VMHC values in the
OFC and thalamus in patients with OCD at rest were also
observed in other studies (21, 22). The present and previous
studies supported the disconnection between homotopic brain
regions within the CSTC circuits in patients with OCD, which
might lead to obstacles in the communication and integration of
cognitive and emotional information in OCD (15).

DecreasedVMHCoutside theCSTCcircuits, such as themiddle
occipital, precentral, and postcentral gyri, in patients with OCD at
rest in our study is similar to the results of Deng et al. (21). The
occipital cortex is involved in the pathophysiology of OCD because
of its connection with the CSTC circuits (4, 36). Abnormalities in
the occipital cortex in patients with OCD may underlie the
visuospatial deficits characteristic of the disorder involved in the
pathophysiology of OCD, and cognitive impairments in OCD are
Frontiers in Psychiatry | www.frontiersin.org 6142
also underpinned by disconnectivity of specific neurocognitive
networks (37). Decreased regional homogeneity (ReHo) in the
occipital cortex and increased FC with the caudate nucleus have
beendiscovered indifferent samplesofOCD inour previous studies
(36, 38). Based on our current and previous findings, we inferred
that decreased ReHo and interhemispheric functional homotopy in
the occipital cortex and increased FC with the CSTC circuits may
work together to contribute to the pathogenesis of OCD. The
precentral and postcentral gyri are important brain regions in the
sensorimotor network; decreased global brain FC in the precentral
or postcentral gyrus at rest has been found in patients with OCD
(39), and the amplitude of the low-frequency fluctuations of the
precentral gyrus can beused to distinguish patients withOCD from
HCs (8). In the present study, decreased interhemispheric
functional homotopy in the precentral and postcentral gyri may
be associatedwith damaged sensory-motor integration and sensory
gating in OCD at rest and might contribute to the inability to
suppress internally repetitive and intrusive thoughts and behaviors
in patients with OCD (40, 41). Brain regions with macro- and
microstructural alterations outside the CSTC circuits are also
related to the pathophysiology of OCD (6–8, 11, 42–44). The
present findings provide additional evidence to elucidate the
pathogenesis of OCD.

The SVM classification method is a binary classification
algorithm that maximizes the boundary between classes in a
high dimensional space (45). The current SVM results displayed
that the combination of decreased VMHC in the thalamus and
postcentral gyrus could distinguish patients with OCD from HCs
with optimal accuracy, specificity, and sensitivity and could be
used as a potential neurobiological marker for OCD. This marker
may improve diagnostic accuracy and provide a new perspective
for clinical diagnosis.

This study had several limitations. First, the human brain is
asymmetrical, and this asymmetry may cause bias in the present
findings. However, we used a symmetrical template and
smoothed the data during data processing to limit the possible
effects of asymmetry. Second, gray and white matters were not
assessed in the current study, and their potential influence on
VMHC was unclear. Third, patients with OCD were not divided
into different subtypes according to clinical symptoms. Fourth,
some patients had a history of taking psychotropic medication,
which might influence interhemispheric functional homotopy at
rest in OCD. Fifth, resting-state FC is altered in depression, and
even subclinical depressive phenomenology can modify the
brain’s microstructure (46). Although only very mild symptoms
were present in this cohort (but see the significant difference
between HAMA and HAMD scores in the two samples), this
might have impacted the present findings. To minimize the
confounding effects of depressive and anxiety symptoms on the
present results, we repeated voxel-wise two-sample t-tests using
the mean FD, age, HAMD scores, and HAMA scores as
covariates. Similar results were obtained. This issue indicated
that depressive and anxiety symptoms had little effect on the
present results. Finally, it may be circular to pick brain regions
already shown difference between groups in the univariate voxel-
wise analysis, and the results of SVMmay be potential overfitting/
FIGURE 5 | Receiver operating characteristic curves (ROC) for discrimination
patients with obsessive-compulsive disorder from healthy controls using different
combinations of voxel-mirrored homotopic connectivity values in five brain
regions. 12, Middle occipital gyrus and orbitofrontal cortex; 13, middle occipital
gyrus and postcentral gyrus; 14, middle occipital gyrus and precentral gyrus;
15, middle occipital gyrus and thalamus; 23, orbitofrontal cortex and postcentral
gyrus; 24, orbitofrontal cortex and precentral gyrus; 25, orbitofrontal cortex and
thalamus; 34, postcentral gyrus and precentral gyrus; 35, postcentral gyrus and
thalamus; 45, precentral gyrus and thalamus.
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unfitting due to small sample size (47). For these reasons,
interpretation of the present findings should be cautious.

Despite these limitations, our findings found decreased
VMHC values within and outside the CSTC circuits at rest in
patients with OCD. A combination of the VMHC values of the
thalamus and postcentral gyrus could be used as a discriminative
feature to distinguish patients with OCD from HCs. The current
study provides evidence to the pathophysiology of OCD.
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Background: A number of mental illness is often re-diagnosed to be bipolar disorder
(BD). Furthermore, the prefronto-limbic-striatal regions seem to be associated with
the main dysconnectivity of BD. Functional connectivity is potentially an appropriate
objective neurobiological marker that can assist with BD diagnosis.

Methods: Health controls (HC; n = 173) and patients with BD who had been diagnosed
by experienced physicians (n = 192) were separated into 10-folds, namely, a ninefold
training set and a onefold testing set. The classification involved feature selection of the
training set using minimum redundancy/maximum relevance. Support vector machine
was used for training. The classification was repeated 10 times until each fold had been
used as the testing set.

Results: The mean accuracy of the 10 testing sets was 76.25%, and the area under the
curve was 0.840. The selected functional within-network/between-network connectivity
was mainly in the subcortical/cerebellar regions and the frontoparietal network.
Furthermore, similarity within the BD patients, calculated by the cosine distance between
two functional connectivity matrices, was smaller than between groups before feature
selection and greater than between groups after the feature selection.

Limitations: The major limitations were that all the BD patients were receiving
medication and that no independent dataset was included.

Conclusion: Our approach effectively separates a relatively large group of BD patients
from HCs. This was done by selecting functional connectivity, which was more similar
within BD patients, and also seems to be related to the neuropathological factors
associated with BD.

Keywords: classification, bipolar disorder, functional connectivity, feature selection, machine learning
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INTRODUCTION

Bipolar disorder (BD) is an affective disorder characterized by
episodic fluctuations in mood. It is one of the leading causes of
disability in the world and affects more than 1% of the world’s
population (Alonso et al., 2011). Based on the mood episodes
that the patients’ experience, BD is categorized into two common
subtypes, bipolar I disorder (BDI) and bipolar II disorder (BDII).
In BDI, at least one manic episode has to have presented,
while in BDII, at least one hypomanic episode and one major
depressive episode have to have presented (First et al., 1995).
The diagnosis of BD and its subtypes depends on the patient’s
subjective symptoms and the presence of observational signs.
However, BD is one of the most common mental illnesses to be
subject to re-diagnosis, and patients may often have been initially
diagnosed as suffering from unipolar depression or schizophrenia
(Hirschfeld et al., 2003; Ruggero et al., 2010). Therefore, a
search for objective neurobiological markers that can assist with
diagnosis is a pressing need, and such a system will then help
greatly with future treatment decisions related to BD.

Furthermore, BD is known to be a disease that involves
neurobiological deficits (Perry et al., 2018). The activity and
connectivity of the brain regions that mediate emotional
regulation and reward processing have been found to be
disrupted in BD (Chen et al., 2011; Strakowski et al., 2012;
Phillips and Swartz, 2014); these include alterations in the
activity of various limbic structures, such as the amygdala
and hippocampus, as well as prefrontal regions, such as
the ventrolateral cortex. Moreover, when a connectivity-based
approach has been employed previously to investigate BD, the
prefronto-limbic-striatal regions have been found to be the areas
associated with the main dysconnectivity in BD (Strakowski et al.,
2012; Jiang et al., 2017; Roberts et al., 2017). In a review study
by Perry et al. (2018), it was suggested that dysconnectivity is
most prominent in the amygdala and prefrontal regions when the
reviewed studies are considered; nevertheless, dysconnectivity
was also observed in the inferior frontal cortex, medial prefrontal
areas, anterior cingulate cortex, thalamus, and several other
diverse regions of the cortex. However, these observations were
based on group-level inferences and as a result could not be
applied directly to the categorization of individual patients.
Hence, there is a need to develop an approach that assists
individual diagnosis; this was coupled with neuroimaging in
order to develop an approach that will be able to distinguish BD
patients from healthy controls (HCs) and also distinguish BD
patients from patients with other psychiatric disorders.

Unfortunately, the thousands of features present in the data
created by neuroimaging lead to the “curse of dimensionality”
(Bellman, 1961; Altman and Krzywinski, 2018). As feature
dimensionality increases, the statistical results obtained often
can be the result of data sparsity, overfitting, or both. The
problem is made worse when there is a small sample size; and
in this context, in previous studies in this area, the sample sizes
have usually been relatively small (Frangou et al., 2017; Rubin-
Falcone et al., 2018; Squarcina et al., 2019). Furthermore, proper
feature selection strategies and reducing irrelevant/redundant
data will be able to improve the classification and prediction

performance, enhance the ability to generalize, and provide
a better interpretation of the learning process. In addition,
previous studies have shown that heterogeneity is present
in common psychiatric disorders (Jablensky, 2006; Charney
et al., 2017). A reduction in heterogeneity should increase
the predictive accuracy when diagnosing psychiatric disorders
(Insel et al., 2010; Wu et al., 2017; Dwyer et al., 2018).
Therefore, minimum redundancy/maximum relevance (mRMR)
was used in the present study during feature selection; this uses
mutual information quotient as the value of feature importance,
calculated by the mutual information of a feature regarding the
response divided by sum of that of other features, in order to
select the features that show minimal redundancy and maximal
relevance to the category being investigated (Peng et al., 2005). It
is one of a number of filter-based feature selection methods that
are available and is independent of the model being developing.
This means that it is unlikely to result in the model suffering
from overfitting and also helps to increase efficiency during
computation (Guyon and Elisseeff, 2003).

Therefore, the aim of the present study was to develop and
validate a classification approach for BD using a large sample
of the patients with BD that included both BDI and BDII
patients, in conjunction with a well-matched group of HCs and
to do this by using whole-brain functional connectivity analysis.
Furthermore, mRMR was utilized as a selection method in order
to remove irrelevant and redundant features, to avoid overfitting,
and to help interpret the functional connectivity; this would
be beneficial when distinguishing BD patients from HCs at the
individual level. In addition, support vector machine (SVM) was
used as the classifier in the present study; this has been widely
used for the classification of psychiatric disorders and has often
produced very promising results (Costafreda et al., 2011; Wei
et al., 2013; Jie et al., 2015; Rashid et al., 2016). This is because
the algorithm shows very good performance when attuning non-
linear discriminant functions (Wu et al., 2020).

MATERIALS AND METHODS

Participants
A total of 185 health controls and 222 patients with BD
were recruited. The patients included both outpatients and
inpatients who attended Taipei Veterans General Hospital,
Taiwan. Each patient diagnosis was confirmed by an experienced
physician according to the “Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition” (First et al., 1995) and was
based on structured clinical interviews. Potential participants
were excluded if they had a neurological illness or any other
disorder that affects cerebral metabolism, had substance abuse
history or dependence during the previous 6 months, or
had a history that included head injury with a documented
sustained loss of consciousness and/or neurological sequelae. The
clinical assessment of the patients with BD involved using the
young mania rating scale (YMRS) and the Montgomery–Åsberg
depression rating scale (MADRS), but only some of the patients
received a complete rating. The patients were being treated with
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a variety of atypical antipsychotics, antidepressants, and mood
stabilizers before participating in the study. The investigation was
conducted according to the latest version of the Declaration of
Helsinki. All participants gave written informed consent prior to
their participation, and this was after the procedures had been
fully explained to them. The present study was approved by the
Research Ethics Committee of Taipei Veterans General Hospital.

Resting-State Functional and Structural
Magnetic Resonance Imaging
Scanning was conducted at the Taipei Veterans General Hospital
and was carried out on a 3.0-T GE magnetic resonance imaging
(MRI) scanner (GE Healthcare Life Sciences, Little Chalfont,
United Kingdom) with a quadrature head coil. The head of
each subject was immobilized using a vacuum-beam pad inside
the scanner. All participants wore earplugs to muffle outside
noise. Resting-state functional images were obtained using a
T2∗-weighted gradient-echo, echo-planar sequence [repetition
time (TR) = 2,500 ms, echo time (TE) = 30 ms, flip angle
(FA) = 90◦, and voxel size = 3.5 mm × 3.5 mm × 3.5 mm].
A total of 200 MRI volumes of each subject were obtained
with their eyes closed. A functional whole-brain image volume
consisted of 43 interleaved horizontal slices, all of which were
parallel to the intercommissural plane. Furthermore, anatomical
whole-brain image volumes were obtained using a sagittal
magnetization-prepared rapid acquisition gradient-echo three-
dimensional T1-weighted sequence (TR = 2,530 ms, TE = 3 ms,
echo spacing = 7.25 ms, FA = 7◦, field of view = 256 × 256 mm,
voxel size = 1 mm × 1 mm × 1 mm) in order to
allow more efficient spatial registration and the localization of
brain activity; this allowed better correction for any anatomical
differences present that might affect the interpretation during
functional analysis.

Preprocessing for Resting-State
Functional MRI
Preprocessing and subsequent analyses of the imaging data
were performed using Statistical Parametric Mapping (SPM12,
Wellcome Institute of Neurology, University College London,
United Kingdom) executed in MATLAB 2019b (MathWorks,
Natick, MA, United States). The images were preprocessed based
on the following steps: (1) the initial eight volumes were excluded;
(2) slice-dependent time shifts were compensated for; (3) head
motion was corrected for and participants with a framewise
displacement > 0.2 mm were discarded; (4) functional imaging
volumes were co-registered with their own anatomical images;
(5) spatial normalization into the Montreal Neurological Institute
space was performed using a non-linear warping algorithm with
resampling at a voxel size of 3 mm × 3 mm × 3 mm; (6) spurious
data were regressed out by utilizing the Friston 24-parameter
model (Friston et al., 1996), and the data included white matter
signals, cerebrospinal fluid signals, and global signals; and (7)
band-pass filtering from 0.01 to 0.08 Hz was applied to the
imaging data. Subsequently, smoothing was conducted using a
4-mm full-width half-maximum Gaussian kernel. The removal
from the study of any participants showing considerable head

motion (mean framewise displacement > 0.2) meant that, after
the above procedures, there were 192 patients with BD, made up
of 103 patients with BDI and 89 patients with BDII, as well as 173
health controls, who proceeded on to the follow-up analysis.

Feature Extraction, Selection, and
Classification
Functional connectivity was conducted by parcellating the whole
brain into 268 regions, based on Shen’s whole-brain functional-
connectivity-based atlas (Shen et al., 2013); this was carried
out via a group-wise spectral clustering algorithm. Shen’s atlas
categorizes 268 regions into eight networks (see Figure 1); these
are the medial frontal network (MFN), the frontoparietal network
(FPN), the default mode network (DMN), the subcortical and
cerebellar regions (SC), the motor network (MON), the visual
I network (VisI), the visual II network (VisII), and the visual
association network (VA). The correlation between each of
the above pairs of regional time series across the 268 regions
was examined using Pearson’s correlation coefficient, and the
results were then converted using Fisher’s r-to-z transformation
(Fisher, 1915). Consequently, functional networks for each
patient were obtained in the form of 268 × 268 normalized,
symmetric correlation matrices. Next, in order to investigate
the generalizability of the classification, we used the nested
10-fold cross-validation as the following procedure (also see
Supplementary Figure S1). In the outer loop, each sample was
separated into 10-folds, and ninefolds were used as the training
set, while the remaining fold was used as the testing set. The
results of this procedure were used for the classification, and
the above process was repeated 10 times until each of the 10-
folds had formed testing set. The completed process formed the
10-fold classification used during the present study. During the
outer loop of the nested cross-validation, mRMR was used to
rank the importance of features with a high correlation with the
category but a low redundancy among features. Features before
there was a drop in the mRMR feature importance score (the
ratio of the mutual information between the feature and the
category to that between pairwise features), which represents the
feature’s selection confidence, were chosen. Furthermore, to avoid
double dipping, feature selection was only applied to the training
set. Next, SVM with the Gaussian kernel was utilized and the
parameter C and Gaussian kernel scale of the SVM for each
training set were determined by 10-fold cross-validation in the
inner loop. The trained model and selected features were then
applied to the testing set. After all folds of the outer loop had been
used as the testing set for classification, the performance in terms
of classification, including accuracy, sensitivity, and specificity,
was averaged. Given that different parcellations of the 10-folds
groupings are likely to influence the performance, the nested
cross-validation was run randomly 100 times, and the optimal
results identified. In addition, in order to investigate whether the
classification procedure outlined above can also be successfully
applied to the two common clinical types of BD, namely, BDI
(N = 103) and BDII (N = 89), these two types were separately
trained to determine if they are able to be discriminated from the
HCs when the sample size is balanced (N = 85).
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FIGURE 1 | The regions of the eight networks obtained from Shen’s whole-brain functional-connectivity-based atlas. The networks consist of the medial frontal
network, the frontoparietal network, the default mode network, the subcortical and cerebellar regions, the motor network, the visual I network, the visual II network,
and the visual association network. The glass brains in this figure are shown from a lateral view of the right hemisphere.

Inter-Subject Similarity Before and After
the Process of Minimum
Redundancy/Maximum Relevance
Recently, functional connectivity matrix similarity (alternatively
functional connectome fingerprinting) has been developed to
allow participant identification to be determined (Finn et al.,
2015; Ji et al., 2019; Liu et al., 2019); this is based on the
assumption that individuals within the same phenotypic group
will have a similar functional connectome. Hence, inter-subject
functional connectivity similarity was carried out to investigate
the similarity within each group and between BD/HC groups.
Specifically, similarity was defined as the cosine distance of every
paired functional connectivity matrix in the present study and
was calculated before and after the process of mRMR for each
complete group (that is not separating the group into training
and testing sets). The cosine distance was used as the degree of
similarity; and thus the lower the distance, the higher the value,
and the higher the similarity.

Effects of Confounding Factors
There are a number of confounding factors that needed to be
taken into consideration during the present study. Firstly, in
order to examine the effect of parcellation on the classification
performance, a second functional connectivity parcellated using
Power’s 264 node-based functional regions of interest (Power
et al., 2011) was carried out, and then the same procedures of
feature selection and model training were done. Power’s 264-
region parcellation was chosen for comparison because it consists
of a similar number of regions of interest; if there were fewer
nodes used, then this would have resulted in the functional

connectivity having a lower resolution. Such a lower resolution
might have produced a poorer classification performance, which
in turn might have resulted in the functional information
essential for discriminating classes fading as the signals from
reduced number of parcels became averaged (Arslan et al., 2018).
Comparison of the different parcellation was examined using the
two-proportion test.

Secondly, in order to rule out the effects of clinical
confounding factors, including duration of disease, symptoms,
and medication, we investigated the relationship between these
factors and the major features repeatedly chosen by mRMR
during the outer loop of the nested cross-validation. Pearson’s
correlation coefficients were used to examine the continuous
variables such as duration and symptom scores. Independent
t-tests were used to examine categorical variables such as the
patient groups with or without atypical antipsychotics, the patient
groups with or without antidepressants, and the patient groups
with or without mood stabilizers; each of these analyses were
carried out separately. In addition, even though head motion
had been corrected, spurious functional connectivity may be
produced by head motion (Power et al., 2012). Therefore, the
difference of head motion estimated via framewise displacement
calculation between BD/HC groups, and the correlation of head
motion and major features would be evaluated.

RESULTS

When the demographic data were examined (see Table 1), there
were no significant differences in terms of age either between
all of the patients and the HCs, or between either of the two
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clinical subgroups (BDI and BDII) and a subgroup of HCs that
had a balanced sample size. However, the sex was not matched
in BD/HC and BDII/HC comparisons because there was higher
proportion of female in BD and in BDII.

Classification Performance of Bipolar
Disorder Versus Healthy Controls With
Shen’s 268 Parcellation
There were 333 features selected on average by the outer loop of
all nested cross-validation. The overall accuracies of the training

TABLE 1 | Demographic data.

Bipolar Disorder Healthy Control p-Value

Sample size 192 173

Age 37.16 ± 12.197 35.65 ± 8.934 0.1831

Sex 0.0007*

Male (%) 62 (32.3) 87 (50.3)

Female (%) 130 (67.7) 86 (49.7)

Duration 12.45 ± 9.163

YMRS 3.41 ± 4.429

MADRS 12.07 ± 10.830

Medication

Atypical antipsychotics (%) 97 (50.5)

Antidepressants (%) 65 (33.9)

Mood stabilizers (%) 129 (62.5)

Suicide (%) 47 (24.5)

Bipolar I Disorder Healthy Control p-Value

Sample size 103 85

Age 37.87 ± 11.885 36.53 ± 3.893 0.1831

Sex 0.1011

Male (%) 41 (39.8) 44 (51.8)

Female (%) 62 (60.2) 41 (48.2)

Bipolar II Disorder Healthy Control p-Value

Sample size 89 85

Age 36.85 ± 11.986 36.53 ± 3.893 0.8123

Sex 0.0001*

Male (%) 21 (23.6) 44 (51.8)

Female (%) 68 (76.4) 41 (48.2)

YMRS, young mania rating scale; MADRS, Montgomery–Åsberg
depression rating scale. *p < 0.05.

and testing sets based on the features selected using mRMR
were 90.69 ± 0.93% and 76.25 ± 1.47%, respectively. For the
testing sets, the mean sensitivity and specificity for BD were
77.04 ± 1.64% and 76.71 ± 1.96%, respectively (see Table 2).
In addition, the area under the receiver operating characteristic
(ROC) curve (AUC) of the classification was 0.840 ± 0.0142.
Moreover, there were 22 major features selected by mRMR
in a total of nine or 10 times during the outer loop of the
optimal nested cross-validation, and these were found to mostly
be in the SC, followed by the FPN region (see Figures 2, 3).
Since Shen’s parcellation is not restricted by anatomical brain
structure, that is, by the gyrus and sulcus, the centroid location
of the parcellated region was used to provide more information
about the regions. Thus, as can be seen in Table 3, the major
features were mainly involved in within and between network
connectivity with the SC. The mRMR scores calculated by the
whole BD and HC groups were also presented in Table 3. In
addition, in order to investigate the importance of the selected
features with high mRMR scores, the classification performance
was also examined using the same feature numbers of the average
selected features mentioned above, but this time with an mRMR
low score. The mean accuracies obtained when classifying the
testing set under these circumstances were 71.15 ± 1.94%, which
was on the trend toward significantly worse performance than the
mean accuracy of the testing sets using the features with high
mRMR scores (p = 0.0594). For the low mRMR score testing
sets, the mean sensitivity and specificity were 71.20 ± 2.13%
and 72.77 ± 2.38%, respectively, and the mean AUC was
0.772 ± 0.0213.

Inter-Subject Functional Connectivity
Similarity Before and After the Process
of Minimum Redundancy/Maximum
Relevance
Before the process of mRMR, the inter-subject similarity of the
HC group was significantly smaller between groups than within
the HC group (0.3793 < 0.4004, p < 0.001), but that of the BD
group was slightly greater between groups than within the BD
group (0.3793 > 0.3789, p = 0.8989). However, after the process
of mRMR, the inter-subject similarity of both the HC and BD
groups was smaller between the groups than within each group
(0.3705 < 0.4339, p < 0.001; and 0.3705 < 0.3783, p = 0.0680,
respectively). Furthermore, in order to explore whether the
smaller similarity was affected by the feature number, the features

TABLE 2 | The classification performance of the testing sets.

Parcellation Targets Accuracy (%) Sensitivity (%) Specificity (%) AUC

Shen 268 BD vs. HC 76.25 ± 1.47 77.04 ± 1.64 76.71 ± 1.96 0.840 ± 0.0142

BDI vs. HC 73.47 ± 1.89 74.87 ± 2.00 73.91 ± 2.71 0.805 ± 0.0165

BDII vs. HC 72.78 ± 3.18 74.04 ± 3.56 76.24 ± 2.57 0.778 ± 0.0450

Power 264 BD vs. HC 74.36 ± 1.80 75.39 ± 1.76 74.73 ± 2.34 0.818 ± 0.0155

BDI vs. HC 73.25 ± 2.30 74.88 ± 2.28 73.59 ± 3.04 0.806 ± 0.0200

BDII vs. HC 70.97 ± 3.31 72.19 ± 3.68 74.69 ± 2.85 0.752 ± 0.0458

AUC, area under the receiver operating characteristic ROC curve; BD, bipolar disorder; BDI, bipolar I disorder; BDII, bipolar II disorder; HC, healthy control.
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FIGURE 2 | The major features after the 10 times process of minimum redundancy/maximum relevance selection during the outer loop of the nested
cross-validation illustrated using the eight networks of Shen’s 268-region parcellation. (A) The major features that were selected nine or 10 times during the nested
cross-validation of the bipolar disorder and healthy control groups. (B) The major features that were selected 10 times during the nested cross-validation of the
bipolar I disorder and healthy controls groups. (C) The major features that were selected 10 times during the nested cross-validation of the bipolar II disorder and
healthy control groups. (B,C) were selected 10 times because of the very large number of features selected when nine or 10 times were used. To make the
illustration more readable, only the features selected 10 times are shown. Red line represents the connectivity of patients being higher than healthy controls, and blue
line represents the connectivity of patients being lower than healthy controls.

were randomly selected with the same number as the features
with high mRMR scores. In these circumstances, the mean inter-
subject similarity of the HC group was still significantly smaller
between groups than within the HC group (0.3891 < 0.4141,
p < 0.001), but that of the BD group was also slightly greater
between groups than within the BD group (0.3891 > 0.3866,
p = 0.6109).

Classification Performance of Bipolar I
Disorder Versus Healthy Controls and
Bipolar II Disorder Versus Healthy
Controls Using Shen’s 268 Parcellation
When the classifications of BDI vs. HC and BDII vs.
HC were carried out, 342 and 252 features were on
average selected during the outer loop of all nested
cross-validation, respectively. The mean accuracies of the
training/testing sets were 94.52 ± 0.67%/73.47 ± 1.89%
and 89.59 ± 4.08%/72.78 ± 3.18%, respectively.
The sensitivity/specificity of the testing sets for BDI
and BDII was 74.87 ± 2.00%/73.91 ± 2.71% and
74.04 ± 3.56%/76.24 ± 2.57%, respectively (see Table 2).
Moreover, the AUCs of the testing sets were 0.805 ± 0.0165 and
0.778 ± 0.0450 for BDI and BDII, respectively. The above might
be the result of greater homogeneity because the major features
were chosen nine or 10 times during the outer loop, and this
was much larger than for the feature selection when all patients
were included. Thus, the major features of BDI and BDII were
pinpointed as features that were selected in every fold during the
outer loop of the optimal nested cross-validation (see Table 3).
Moreover, as Figure 2 shows, the major features of BDII existed
mostly within and between SC network connectivity, with a few
involving network connectivity of FPN and MFN. However,
the major features of BDI showed a wider distribution across
the networks than BDII. In addition, when the classification of
BDI and BDII was being conducted, 139 features were averagely
selected during the outer loop. The mean accuracies of the

training/testing datasets were 86.23 ± 2.95%/50.91 ± 2.47%,
and the sensitivity/specificity was 53.78 ± 2.29%/47.13 ± 3.46%,
respectively. Moreover, the mean AUC was 0.501 ± 0.0234.

Inter-Subject Functional Connectivity
Similarity of Bipolar I Disorder and
Bipolar II Disorder Before and After the
Process of Minimum
Redundancy/Maximum Relevance
In addition, the inter-subject similarities of the HC group
and BDI/BDII groups before the process of mRMR were both
significantly smaller between groups than within the HC group
(0.3809 < 0.4056, p < 0.001; and 0.3807 < 0.4056, p < 0.001,
respectively) but were both slightly smaller between groups than
within the BDI/BDII groups (0.3809 < 0.3811, p = 0.9753; and
0.3807 < 0.3836, p = 0.6005, respectively). However, the inter-
subject similarities of the BDI group after the process of mRMR
and with randomly selected features were still slightly smaller
between the groups than within the BDI group (0.3947 < 0.3961,
p = 0.8445; and 0.4058 < 0.4092, p = 0.5282, respectively). The
inter-subject similarities of the BDII group after the process of
mRMR and with randomly selected features were smaller but
not significantly between the groups than within the BDII group
(0.4450 < 0.4586, p = 0.0533 and 0.4049 < 0.4094, p = 0.4507,
respectively), with greater trend after mRMR.

Classification Performance of Bipolar
Disorder Versus Healthy Controls Using
Power’s 264 Parcellation
To allow the classification of BD and HC, 339 features using
Power’s 264 node-based atlas were on average selected during
the outer loop of all nested cross-validation. The mean accuracy
levels of the classification were 91.95 ± 1.03% for training sets
and 74.36 ± 1.80% for testing sets. The sensitivity/specificity
for the testing sets was 75.39 ± 1.76% and 74.73 ± 2.34%,
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FIGURE 3 | The major features of the classification for the bipolar disorder and healthy control groups, the bipolar I disorder and healthy controls groups, and the
bipolar II disorder and healthy controls groups after the 10 times process of minimum redundancy/maximum relevance selection during the outer loop of the nested
cross-validation illustrated on the glass brain.

respectively (see Table 2). Moreover, the AUC for the testing sets
of the nested cross-validation was 0.818 ± 0.0155. Compared
with Shen’s parcellation, both the mean accuracies of testing sets
using Power’s parcellation were lower, but the difference was not
significant (p = 0.5552).

For the classification of BDI vs. HC and BDII vs.
HC using Power’s 264 node-based atlas, 353 and 225
features were on average selected during the outer
loop, respectively. The mean accuracy levels of the
training/testing sets were 96.67 ± 0.85%/73.25 ± 2.30%
and 89.27 ± 4.63%/70.97 ± 3.31%, respectively.
The sensitivity/specificity for the testing sets for BDI
and BDII was 74.88 ± 2.28%/73.59 ± 3.04% and
72.19 ± 3.68%/74.69 ± 2.85%, respectively (see Table 2).
Moreover, the AUCs of the nested cross-validation were
0.806 ± 0.0200 and 0.752 ± 0.0458 for BDI and BDII,
respectively. Compared with those of Shen’s parcellation, both

the mean accuracies of testing sets using Power’s parcellation
were not significantly different for BDI vs. HC or for BDII vs. HC
(p = 0.9601 or p = 0.7039, respectively).

Potential Influence of Various Clinical
Confounding Factors and Head Motion
After false discovery rate (FDR) correction for multiple
comparisons, there was no significant correlation of the
major features with either illness duration or symptom scores.
Furthermore, there were no significant differences in the major
features between the patients who were being treated with
atypical antipsychotics, antidepressants, and/or mood stabilizers
or were not being treated. In addition, since that there was a
significant difference in gender between the BD and HC groups,
the classification only for the male BD and male HC groups was
also conducted. The mean accuracies were 74.36 ± 2.04%, and
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TABLE 3 | The major features after the 10 times process of minimum redundancy/maximum relevance selection.

Regions 1 (With Region Label) Regions 2 (With Region Label) mRMR Score

BD vs. HC

186 Left superior temporal pole in MFN – 152 Left middle orbitofrontal cortex in SC 0.0261

242 Left crus II of cerebellum in FPN – 70 Right inferior temporal cortex in FPN 0.0225

188 Left superior temporal pole in MON – 96 Right parahippocampus in DMN 0.0191

201 Left inferior temporal cortex in VA – 31 Right precentral cortex in FPN 0.0181

131 Right pons in SC – 43 Right angular gyrus in VA 0.0170

80 Right calcarine in VisI – 79 Right lingual gyrus in VisI 0.0084

199 Left inferior temporal cortex in FPN – 24 Right supplementary motor area in MON 0.0054

189 Left middle temporal pole in MON – 57 Right inferior temporal cortex in MFN 0.0038

104 Right lobule X of cerebellum in SC – 101 Right lobule IV, V of cerebellum in SC 0.0026

198 Left fusiform gyrus in VisI – 41 Right superior parietal cortex in VA 0.0023

110 Right lobule VI of cerebellum in SC – 99 Right hippocampus in SC 0.0022

157 Left inferior opercular frontal cortex in FPN – 152 Left middle orbitofrontal cortex in SC 0.0021

157 Left inferior opercular frontal cortex in FPN – 14 Right middle frontal cortex in FPN 0.0020

233 Left parahippocampus in SC – 81 Right inferior occipital cortex in VisII 0.0018

28 Right superior medial frontal cortex in SC – 16 Right inferior triangular frontal cortex in MFN 0.0015

192 Left middle temporal cortex in MFN – 136 Left rectus in SC 0.0014

252 Left crus II of cerebellum in SC – 144 Left middle frontal cortex in SC 0.0013

257 Left caudate in SC – 142 Left middle frontal cortex in FPN 0.0013

224 Left middle cingulate cortex in SC – 15 Right middle cingulate cortex in SC 0.0011

177 Left superior parietal cortex in VA – 91 Right middle cingulate cortex in SC 0.0009

59 Right fusiform gyrus in VA – 33 Right precentral cortex in MON 0.0008

50 Right middle temporal cortex in DMN – 9 Right middle frontal cortex in FPN 0.0007

BDI vs. HC

238 Left lobule VI of cerebellum in SC – 174 Left paracentral lobule in MON 0.0995

108 Right lobule IX of cerebellum in SC – 71 Right fusiform gyrus in VA 0.0423

104 Right lobule X of cerebellum in SC – 101 Right lobule IV, V of cerebellum in SC 0.0361

148 Left superior medial frontal cortex in MFN – 137 Left rectus in MFN 0.0361

202 Left inferior temporal cortex in MON – 30 Right superior frontal cortex in FPN 0.0361

260 Left caudate in SC – 151 Left inferior orbitofrontal cortex in MFN 0.0361

135 Left inferior orbitofrontal cortex in SC – 57 Right inferior temporal cortex in MFN 0.0305

193 Left inferior temporal cortex in FPN – 53 Right middle temporal pole in MFN 0.0070

201 Left inferior temporal cortex in VA – 49 Right angular gyrus in DMN 0.0065

55 Right inferior temporal cortex in FPN – 50 Right middle temporal cortex in DMN 0.0050

192 Left middle temporal cortex in MFN – 4 Right superior orbitofrontal cortex in FPN 0.0027

258 Left caudate in SC – 222 Left precuneus in DMN 0.0013

BDII vs. HC

186 Left superior temporal pole in MFN – 152 Left middle orbitofrontal cortex in SC 0.0567

220 Left middle cingulate cortex in SC – 60 Right inferior temporal cortex in MFN 0.0490

253 Left crus I of cerebellum in SC – 4 Right superior orbitofrontal cortex in FPN 0.0419

268 Left pons in SC – 148 Left superior medial frontal cortex in SC 0.0419

70 Right inferior temporal cortex in FPN – 19 Right middle frontal cortex in FPN 0.0354

198 Left fusiform gyrus in VisI – 53 Right middle temporal pole in MFN 0.0354

229 Left hippocampus in SC – 172 Left postcentral cortex in MON 0.0107

192 Left middle temporal cortex in MFN – 4 Right superior orbitofrontal cortex in FPN 0.0105

264 Left thalamus in SC – 183 Left superior temporal cortex in MFN 0.0097

DMN, default mode network; FPN, frontoparietal network; MFN, medial frontal network; MON, motor network; SC, subcortical and cerebellar network; VA, visual
association network; VisI, visual I network; VisII, visual II network.

the results of two-proportion test indicated no difference between
the whole groups and the male groups in overall performance
(p = 0.5552). These results suggested that there were few
clinical confounding factors that were affecting the classification
process. Furthermore, the mean (standard deviation) of mean

framewise displacement of BD and HC were 0.090 (0.0360) and
0.085 (0.0381), respectively. There was no significant difference
(p = 0.2303) between BD and HC. In addition, there was no
significant correlation between mean framewise displacement
and the major features of BD vs. HC or BDI vs. HC after FDR
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correction. However, only the functional connectivity between
right inferior temporal cortex (in FPN) and right middle frontal
cortex (in FPN), one of the major features of BDII vs. HC,
was significantly associated with mean framewise displacement
(q < 0.001).

DISCUSSION

The present study demonstrated that the patients with BD can
be successfully discriminated from HCs with a mean testing
accuracy of 76.25% and an AUC of 0.840; this analysis involved
a relatively large sample size and used a single imager. The
process selected the more relevant and less redundant functional
connectivity for the classification. In addition, the classification
performance of the present study was robust because nested
cross-validation was utilized. The findings indicate that the
relevant within-network and between-network connectivity of
the regions was mainly within the SC, as well as the FPN; and it
was these pathways that played the most important roles during
the classification that separated BD from HCs. The reasons
for being able to satisfactorily discriminate between BD and
HC was that the process selected the functional connectivity
that was more similar within BD, and that was related to
the neuropathological factors associated with BD; this was
possible because a whole-brain functional-connectivity-based
atlas was involved.

When discriminating BD patients from HCs, previous studies
have shown medium to high levels of accuracy when a variety of
features were used including voxel-based morphometry (Mwangi
et al., 2016), cortical thickness and skewedness (Squarcina
et al., 2019), and functional connectivity (Roberts et al., 2017;
Wang et al., 2019). Moreover, as a review study (Claude et al.,
2020), which added some more recent studies (Squarcina et al.,
2019; Wang et al., 2019), demonstrated that more than half of
the studies classifying BD and HC used structural MRI, and,
furthermore, the number of studies that used functional MRI was
greater than the ones using diffusion tensor images. In general,
the classification performances of the studies using functional
MRI outperformed those of studies using other modalities. The
accuracy levels for classification ranged from 57% to 100% among
these studies; however, the studies with relatively high accuracy
may have obtained these results due to overfitting because of a
small sample size. The studies with an accuracy higher than the
median accuracy of these studies, which was 68.2%, almost all
had a small sample size, namely, one that was less than 100. For
example, one reviewed study discriminated between 12 patients
with BD and 25 HCs with 100% accuracy using white matter
integrity as the features (Besga et al., 2012). Moreover, as the
sample sizes became larger, the classification performance levels
were reduced (Claude et al., 2020). Notwithstanding the above,
the present study, which has a relatively large sample size, has
been able to achieve a high accuracy; this accuracy is higher than
the median accuracy of the above previous studies as well as being
closed to the minimum threshold of clinical relevance (i.e., 80%).

A number of points need to be noted. Firstly, the acceptable
classification of BD during the present study is possibly a

consequence of deciding to use functional connectivity with
higher similarities within BD patients and avoiding using what
seems to be more irrelevant similarities between BD patients and
HC; the heterogeneous nature of the BD patients may be relevant
to this (Charney et al., 2017). Specifically, in the present study,
the mRMR process was performed with this purpose in mind.
This is supported by the finding that the inter-subject similarity
results show that the within-group similarity of BD patients
became greater than the between-group similarity after mRMR,
and at this point, the patients with BD became more homogenous
within the group. Even though both the between-group and
within-group differences that are present both before and after
mRMR were not significant for the BD group, there was an
observable trend. Furthermore, better classification performance
was obtained from the features with a high mRMR score when
those with a low mRMR score were used, and this is consistent
with the hypothesis that an increase in the homogeneity of
the psychiatric patients resulted in better predictive model
performance (Wu et al., 2017; Dwyer et al., 2018). However,
in the present study, rather than clustering the patients into
phenotypes based on their neuroimaging features as was done
in previous studies, the homogeneity increase was due to mutual
similarities in functional connections. Nevertheless, the results
that the classification performance between each clinical subtype
(i.e., BDI and BDII) and HCs was not better than that between
the whole patient group and HCs in the present study may
because of heterogeneity within the clinical subtypes. Previously,
there have been inconsistences between clinical subtypes and
neuroimaging phenotypes (Wu et al., 2017). Phenotypes derived
from neurobiological markers of the transdiagnosed study did
not match the diagnostic groups (Itahashi et al., 2020). Also,
subtypes of patients using unsupervised learning approaches
investigated by previous studies were hardly explained by clinical
patterns, including symptoms and treatment responses, and
usually were compared in clinical patterns with group level or
were defined by featured clinical patterns (Costa Dias et al.,
2015; Sun et al., 2015). However, the subtypes based on clinical
dimensions, such as the history of suicide, may be consistent in
neuroimaging and also be clinically explicable (Houenou et al.,
2015; Hozer and Houenou, 2016). Moreover, the fact that there
is evidence showing that there are few or no differences between
clinical subtype (i.e., BDI and BDII) in terms of neurobiological
abnormality may explain this inconsistency (Ha et al., 2009;
Ambrosi et al., 2016; Hibar et al., 2016; Janiri et al., 2019).
This is supported by our results to some extent because in the
present study there is poorer classification performance when
discriminating BDI from BDII.

Secondly, the classification results of the present study
were able to achieve satisfactory performance because the
selected features were specific to the regions associated with BD
neuropathology. The major features able to discriminate between
the BD and HC groups were those frequently selected during
feature selection in the cerebellum, the subcortical regions, and
some prefrontal regions. These selections are consistent with
dysconnectivity during BD, which is known to involve the
prefronto-limbic-striatal regions (Strakowski et al., 2012; Jiang
et al., 2017; Roberts et al., 2017; Perry et al., 2018). The cerebellum
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was long regarded as only acting as a motor coordinator, but
it also does seem to have a role as a modulator of non-motor
functions, including the processing of emotions and cognitions
(Stoodley and Schmahmann, 2009, 2010). Furthermore, the
involvement of the cerebellum in affective and cognitive function
is supported by evidence that the cerebellum interconnects with
regions that are involved in reasoning, emotions, motivation,
and various drives (Leiner et al., 1986; Middleton and Strick,
1994; Schmahmann, 1996; Kelly and Strick, 2003). In relation
to its affective functions, the cerebellum has been implicated
in perceiving and recognizing emotional cues, integrating
emotional evaluation, and modulating emotional processing
(Shakiba, 2014; Adamaszek et al., 2017). Previous studies have
also demonstrated affective disorders that are accompanied by
cerebellar abnormalities. Some of these findings have indicated
that patients with BD show cerebellar microstructural changes
(Ambrosi et al., 2016; Zhao et al., 2016), a decreased cerebellum
volume (Baldaçara et al., 2011), and alterations in cerebellar
activity and cerebro-cerebellar connectivity. These seem to be
present even during different mood states such as depression,
mania, and euthymia (Johnson et al., 2018; Wang et al., 2018),
when psychosis is present (Shinn et al., 2017), and in the absence
of medication (He et al., 2018; Luo et al., 2018; Chen et al.,
2019). In addition, the subcortical and prefrontal regions also
work synchronously during the regulation of emotion processing
(Phan et al., 2002; Yamasaki et al., 2002; Strakowski et al., 2012).
The subcortical regions covered by the results of the present study
included the thalamus, caudate nucleus, and hippocampus region
of the cortex. Moreover, the prefrontal regions, which include the
orbitofrontal cortex, dorsomedial prefrontal cortex (including
superior frontal cortex), and anterior cingulate gyrus (which is
covered by region 15 of Shen’s 268 atlas), were also involved;
these regions are highly implicated in the modulation of internal
emotional stimuli and automatic emotional responses (Phillips
et al., 2008). Our findings are consistent with the assumption that
BD is an interoceptive disorder (Perry et al., 2018). This is because
they are consistent with the findings regarding the regions
involving automatic emotion described in a study by Phillips
et al. (2008). Previous studies also indicated that disturbances
in emotional regulation are accompanied by abnormalities in
the subcortical and prefrontal regions, including enlargement of
the gray matter volume, disruption of white matter integrity,
altered activation, dysconnectivity, and abnormal properties
within functional network (Strakowski et al., 2005; Phillips et al.,
2008; Chen et al., 2011; Strakowski et al., 2012; Wang et al., 2017;
Perry et al., 2018). Furthermore, the result of the present study,
when the focal abnormalities in BDI and BDII patients were
compared, demonstrated that the former had more distributed
abnormalities as major features when classifying the patients and
HCs, which is also consistent with previous studies (Ha et al.,
2009; Abé et al., 2016).

In addition to feature selection, the better performance of the
present study may be a result of using whole-brain functional-
based parcellation. When compared with Power’s 264 node-based
atlas, Shen’s 268 whole-brain functional-connectivity-based atlas,
with an equivalent number of regions of interest, gave better,
although not significantly better, classification performance.

These results are consisted with Wang et al. (2019) in which
the classification by whole-brain parcellation outperformed
that node-based regions-of-interest analysis. Moreover, even
though Power’s atlas was created as a spatially continuous
parcellation, Arslan et al. (2018) found that it had worse
agreement with the regions of task activation, Brodmann areas,
and myelinated cortical areas than Shen’s atlas. In addition, even
though both the present study and Wang et al. (2019) study
demonstrated high accuracy, the features extracted from the
present study seem to be more reasonable than an approach
using anatomical parcellation for functional features extraction.
This is because, when compared with anatomical parcellation,
functional-connectivity-based parcellation shows much better
agreement with the underlying resting-state functional MRI (rs-
fMRI) connectivity (Arslan et al., 2018). For example, Deen et al.
(2011) conducted cluster analysis to investigate the subdivisions
of insula based on rs-fMRI and found distinct patterns of
connectivity within subdivisions of the insula (Deen et al., 2011);
this was in spite of the fact that the insula forms a single parcel in
a standard anatomical brain atlas (Tzourio-Mazoyer et al., 2002).

There are several limitations that affect the present study. The
first is that all the patients were being treated with medication;
the drugs included atypical antipsychotics, antidepressants, and
mood stabilizers. Such long-term treatment with medication can
bring about changes that affect the brain. Nevertheless, in the
present study, there was no significant correlation between any
of the major features and either illness duration or symptom
scores. Furthermore, there also were no significant differences
in the major features between the patients on different types
of medication. The second limitation is that no independent
dataset was included in this study. However, it should be noted
that the main purpose of the present study was to investigate
the generalizability of the classification procedure used here,
rather than an attempt to develop an effective model for assisting
diagnosis of BD. Thirdly, the amygdala, which plays an essential
role in affective disorders, was not identified as one of the
major features used for discriminating BD patients from HCs.
In the present study, the amygdala was separated into four
distinct subregions based on Shen’s 268 parcellation, and these
formed four distinctly different regions of interest; this splitting
of the amygdala might mean that each of the independent
subregions might not have a strong enough impact to be
identified during our procedure.

CONCLUSION

The present study demonstrates an effective approach for
classifying a relatively large group of individuals into BD
patients and HCs; this approach was able to achieve the
minimum thresholds for clinical relevance. This was done
by selecting homogeneous features and using whole-brain
functional connectivity. Furthermore, the features chosen by
the selection process were clearly related to various the
neuropathological factors relevant to BD. Finally, the parcellation
approach utilized in this study is congruous with functional
performance and the cytoarchitecture of brain. All of the above
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are possible reasons why the discrimination was successful
using our approach.
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Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most
important factors when evaluating an individual’s risk for SCZ. However, robust imaging
biomarkers for the disease that can be used for diagnosis and determination of the
prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for
use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-
eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned
using resting-state functional magnetic resonance imaging. The subjects’ brains were
parcellated into 200 regions using the Craddock atlas, and the FC between each pair
of regions was used as a classification feature. Multivariate pattern analysis using leave-
one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity
84.06%, specificity 92.18%, and area under the receiver operating characteristic curve
(AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default
mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the
accurate classification. The FC patterns of each FDR were input into each classification
model as test data to obtain a corresponding prediction label (a total of 76 individual
classification scores), and the averaged individual classification score was then used
as a robust measure to characterize whether each FDR showed an SCZ-type or HC-
type FC pattern. A significant negative correlation was found between the average
classification scores of the FDRs and their semantic fluency scores. These findings
suggest that FC combined with a machine learning algorithm could help to predict
whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.
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Frontiers in Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 577568158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.577568
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.577568
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.577568&domain=pdf&date_stamp=2020-11-23
https://www.frontiersin.org/articles/10.3389/fnins.2020.577568/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-577568 November 25, 2020 Time: 11:14 # 2

Liu et al. Functional Connectivity to Identify FDRs

INTRODUCTION

Schizophrenia (SCZ) is a devastating neurodevelopmental
disorder with a complex genetic etiology (Lee et al., 2016).
Multiplex family studies have established significant heritability
for SCZ, which is often summarized as 81% (Light et al.,
2014). First-degree relatives (FDRs; i.e., siblings, offspring, and
parents) of patients with SCZ are 10 times more likely to
suffer from SCZ than healthy controls (HCs) (Luykx et al.,
2017). Consequently, when evaluating an individual’s risk for
SCZ, the familial risk is among the most important factors
(Pirjo et al., 2005). To define putative risk criteria for psychosis,
prodromal criteria based on the Comprehensive Assessment of
At Risk Mental States (CAARMS), the Criteria of Prodromal
Syndromes (COPS), and the Bonn Scale for the Assessment
of Basic Symptoms/Schizophrenia Proneness Instrument, Adult
version (BSABS/SPI-A) have been validated in a range of
studies (Yung et al., 2008; Schultze-Lutter, 2009; Woods et al.,
2009). Early clinical intervention in SCZ has recently become
a major objective of mental health services; those interventions
include antipsychotic medications, cognitive behavioral therapy
(CBT), and other novel strategies such as eicosapentaenoic acid
(Addington and Heinssen, 2012). Because early intervention can
help delay and prevent the onset of psychosis, the development
of biomarkers allowing the early identification of individuals at
elevated risk of developing SCZ is of great importance.

A previous large-scale network analysis showed that FDRs of
patients with SCZ demonstrate similar deficits in connectivity
metrics (Delawalla et al., 2008), interhemispheric functional
connectivity (FC) abnormalities (Guo et al., 2014), default-
mode network dysfunction (Meda et al., 2008), and rich
club connectivity impairments, as do their relatives with SCZ
(Zhang et al., 2016). This sharing of disease-specific patterns
indicates that brain network disturbances are likely to show
familial associations, possibly reflecting a vulnerability for SCZ.
Consistent with these results, our previous study using stochastic
dynamic causal modeling found similar anterior cingulate
cortico-hippocampal dysconnectivity in unaffected FDRs and
patients with SCZ (Xi et al., 2016). To date, however, the
results of these studies showed minimal clinical impact for
diagnostic and prognostic purposes, and traditional diagnostic
and prognostic tools are still being used by psychiatrists. The
most important reason is that the differences between FDRs and
controls were reported at the group level, which provided limited
information to make inferences at the level of the individual
(Orrù et al., 2012).

With the continuous innovation of machine learning
technology, pattern classification algorithms have become
widely used in SCZ research. Previous studies showed that
functional brain connectivity patterns can be used not only
to classify patients with SCZ from normal controls but also
to predict the development and prognosis of the disease.
With the use of functional brain networks derived from an
independent component analysis of resting-state functional
magnetic resonance imaging (RS-fMRI), FC patterns reached
an accuracy of 85.5% for distinguishing SCZ patients from HCs
(Jing et al., 2019). Additionally, using a support vector machine

(SVM) algorithm, the accuracy of FC patterns for differentiating
controls from patients can reach 83.8% (Fan et al., 2011). More
importantly, the classification scores obtained from the SVM
could predict the prognosis, with high classification scores being
associated with worse treatment effects.

In the present study, we investigated the classification
efficiency of FC obtained from RS-fMRI for distinguishing SCZ
patients from HCs, applied the classification models to determine
whether FDRs were similar to SCZ patients or HCs, and finally
explored whether the classification scores were able to predict the
cognitive performance of the FDRs.

MATERIALS AND METHODS

Subjects
The current study was approved by the First Affiliated Hospital
(Xijing Hospital) of the Fourth Military Medical University.
Written informed consent forms approved by the local Research
Ethics Committee were signed by all participants. The study
sample consisted of 40 first-episode SCZ patients from early
intervention services within the outpatient clinic and inpatient
department of Xijing Hospital, 36 FDRs of patients with SCZ, and
40 HCs recruited from the local community by advertisements.
Two senior clinical psychiatrists diagnosed SCZ using the
Diagnostic and Statistical Manual of Mental Disorders (Fourth
Edition) (DSM-V) structured clinical interviews (SCIDs). All
SCZ patients had a first episode with exposure to antipsychotic
treatment within 2 weeks. Some patients with <6 months’ illness
duration were diagnosed as FE-SCZ after a 6-month follow-
up according to diagnostic criteria. The severity of symptoms
was assessed using the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1987). Exclusion criteria consisted of (1)
other DSM disease; (2) a history of treatment with transcranial
magnetic stimulation, transcranial current stimulation, or
behavioral therapy; (3) substance abuse; (4) other neurological
diseases; and (5) pregnancy or other MRI contraindications.
Additional exclusion criteria for the HCs included a current or
past history of psychiatric illness and the presence of psychosis in
FDRs (Yuan et al., 2018a).

MRI Acquisition
All MRI data were collected on a 3.0-T Siemens Magnetom
Trio Tim scanner at the Department of Radiology of Xijing
Hospital. During data acquisition, participants were asked to
keep their eyes closed, to let their mind wander, and to keep
awake (Liu et al., 2013; Yuan et al., 2017a). A head coil fitted
with foam pads was used to minimize head motion, and earplugs
were used to dampen scanner noise (Liu et al., 2017; Yuan
et al., 2017b). Resting-state functional scans were acquired with
an echo-planar imaging (EPI) sequence using the following
parameters: repetition time (TR), 2,000 ms; echo time (TE),
30 ms; field of view, 220 × 220 mm; matrix, 64 × 64; flip angle,
90◦; number of slices, 33; slice thickness, 4 mm; 240 volumes;
and a total of 7 min. After acquisition of the RS-fMRI, a high-
resolution T1 image was acquired for anatomical reference using
a magnetization-prepared rapid gradient-echo sequence with the
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following parameters: TR, 2,530 ms; TE, 3.5 ms; flip angle, 7◦;
field view, 256 × 256 mm; matrix, 256 × 256; slice thickness,
1 mm; slice gap, 0 mm; slices, 192; resolution, 1 × 1 × 1 mm;
and a total of 6 min 30 s.

Data Preprocessing
Preprocessing of the RS-fMRI data and the calculation of FC
measures were performed in a similar manner to those described
in previous studies (Zhu et al., 2019; Song et al., 2020). The
first 10 images were discarded to ensure MRI data stability
(Yuan et al., 2016), and then the remaining 230 images were
slice timing corrected and realigned to the first image, during
which the average frame-wise displacement (FD) was obtained
(no differences in this were found across the three groups; see
Table 1). Inter-scan motion was assessed using the translation
and rotation parameters, and an exclusion criterion of >2.5 mm
translation and/or >2.5◦ rotation in each direction at each time
point was set. Two SCZ patients, two HCs, and three FDRs met
the criteria and were excluded from further analyses, resulting
in 38 SCZ patients, 33 FDRs, and 38 HCs for final inclusion. As
FC measures are sensitive to head motion, Friston-24 parameters
were used to regress out their effects. To further reduce the effects
of nuisance factors, signals from cerebrospinal fluid and white
matter were also regressed out. The global signal was not removed
as suggested in a previous study (Hahamy et al., 2014). Then, the
DARTEL toolbox was used to normalize the data into Montreal
Neurological Institute (MNI) space (Ashburner, 2007), and the
resulting images were finally smoothed with a 6-mm full width at
half maximum (FWHM) Gaussian kernel.

Functional Connectivity of the Whole
Brain
The Craddock atlas was used to parcellate the whole brain
into 200 regions of interest (ROIs) (Craddock et al., 2012).

This new atlas has been validated that it can successfully
parcellate group resting-state fMRI data into spatially
coherent functionally homogeneous clusters of the network
(Allen et al., 2014). The time series within each region were
first band-pass filtered (0.01–0.08 Hz) and then averaged.
For each participant, FC was calculated between each
ROI using Pearson’s correlation coefficients, resulting in
19,900 [(200 × 199)/2] dimensional FC feature vectors
for each subject.

Feature Selection
Before the classifier model was built, an initial feature selection
step was performed for data dimension reduction. The current
study used an F-score for feature ranking, which was shown
to be an effective method in previous studies (Liu et al.,
2015). Leave-one-out cross-validation (LOOCV) was used to
evaluate the performance of the classifier. In LOOCV, one
subject is used as test the data, and the classifier is trained
on the remaining dataset. For each LOOCV iteration, the
features were ranked from the highest to lowest according
to their F-score, and the first 644 features (see details in
subsection “Overall Classifier Performance”) were used to
build the classifier.

However, for each iteration of the LOOCV, the data subset
used for feature ranking was a little different, and the final
features selected for the classification model differed slightly
between each iteration. Therefore, consensus features were
identified, with these being the features that were always selected
to build the classification model in each iteration of the LOOCV.
The weight for each consensus feature was defined as the average
of the weights across the 76 LOOCV iterations. A weight for each
ROI was also calculated by summing one half of the consensus
feature weights associated with that region, which represented the
ability of that region to discriminate SCZ patients from HCs.

TABLE 1 | Demographic and clinical features of the participants.

Demographic and clinical features of the participants SCZ FDR HC

n = 38 n = 33 n = 38

Characteristic Mean (± SD) Mean (± SD) Mean (± SD) p

Age (years) 26.3 ± 6.9 26.7 ± 9.6 25.4 ± 5.6 0.32

Gender (male/female) 19/19 18/15 19/19 0.84

Education level (years) 13.5 (2.96) 12.1 (4.15) 14.2 (3.37) 0.12

Age at onset (years) 19.2 (3.77)

Length of illness (years) 2.72 (2.95)

Frame-wise displacement 0.26 (0.11) 0.23 (0.11) 0.20 (0.09) 0.13

PANSS score

Total 22.6 ± 5.8

Positive 21.5 ± 8.1

Negative 44.1 ± 6.2

General 85.8 ± 12.8

Semantic fluency scores 12.1 ± 6.2 14.9 ± 5.6 16.7 ± 4.3 0.001

Differences in age, education levels, frame-wise displacement and semantic fluency scores were carried with one-way ANOVA. Differences in gender was carried with
Chi-square test.
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Classification and Support Vector
Machine
The SVM algorithm was selected for classification because it
has shown good efficiency when the sample size studied is
relatively small. Patients with SCZ were labeled as 1, and HCs
were labeled as −1, and a decision function was determined
during the training step and used to predict the labels of the test
data. To avoid overfitting and to allow direct extraction of the
feature weights, a linear kernel SVM was implemented using the
LIBSVM toolbox (Chang and Lin, 2011), with the parameter C
set to the default value of 1. With the use of the LOOCV strategy,
the accuracy, sensitivity, specificity, and area under the receiver
operating characteristic (ROC) curve (AUC) were obtained, and
the statistical significance of the accuracy was assessed using a
permutation test (Golland and Fischl, 2003).

Classification of First-Degree Relatives
The above-mentioned classification model was used to classify
SCZ patients and HCs, and our next analysis was to investigate
whether the final classification model could be used to determine
whether the FDRs showed similar FC patterns to SCZ patients or
HCs. After the classification model was built, the FC of each FDR
was input as test data into each iteration of the LOOCV, to obtain
its corresponding prediction label (1 or−1). Therefore, each FDR
was given 76 individual prediction labels. The classification score,
which is the average of the 76 prediction labels, was used as a
robust measure to characterize the similarity of each FDR’s FC
pattern to an SCZ pattern (in the range of−1 to 1, a positive score
indicated an SCZ pattern).

Correlation Analysis Between Cognitive
Function and Classification Scores
Finally, a general linear model was used to investigate the
correlations between classification scores and measures of
cognitive function in FDRs, with age, sex, and years of education
as covariates. A semantic fluency test (animal version) was
administered to evaluate the executive function and the semantic
memory, which are severely affected in SCZ; the performance was
analyzed using the number of correct words within 1 min.

RESULTS

Demographic and Clinical Data
The demographic and clinical data are shown in Table 1. No
significant difference was present between the SCZ patients,
FDRs, and HCs in any of the demographic variables, including
age, sex distribution, education level, and FD. However,
significant differences were found for semantic fluency scores
across the three groups.

Overall Classifier Performance
As shown in Figure 1, the accuracy of the linear SVM classifier
reached up to 88.15% (84.06% for sensitivity, 92.18% for
specificity, and p < 0.001 by permutation test) using the 644
highest-ranked FC features. Thus, we selected the top-ranked 644

FIGURE 1 | Predictive accuracy as a function of the number of connections
used in the classification process. The connections were ranked according to
F-scores in descending order.

features in each iteration of the LOOCV for the classification
features. The discriminative score for each tested individual
was acquired from the SVM classifier and an ROC curve was
created (Figure 2A), which showed an AUC of 0.93, indicating
good classification power. A non-linear SVM classifier was also
trained and showed similar results; however, to reduce the
risk of overfitting and to directly calculate and exhibit the FC
weights and ROI weights, the following analysis is based on the
linear SVM classifier.

Consensus Features and Region Weights
In this study, 397 consensus features were identified, as illustrated
in Figure 2B. Eighteen regions were identified as having weights
that were at least one standard deviation greater than the
average of the weights of all regions. As shown in Figure 3,
the ROIs making the greatest contribution to the model were
located within the default mode network (DMN) (angular gyrus,
middle temporal gyrus, orbital frontal gyrus, temporal pole,
and inferior frontal gyrus), frontal-parietal network (superior
parietal gyrus and parietal operculum cortex), auditory network
(Heschl’s gyrus), and sensorimotor network (precentral gyrus and
postcentral gyrus).

Cognitive Deficits in Relatives and
Correlation Analysis
As shown in Figure 4, six FDRs were given a classification score
of 1 (SCZ specific) in all 76 LOOCV iterations, seven FDRs were
classified as −1 (HCs specific) in all 76 LOOCV iterations, and
the remaining FDRs were classified either as 1 or −1 in different
iterations of the LOOCV. A significant negative correlation was
found between the average classification scores of the FDRs and
the semantic fluency scores.
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FIGURE 2 | (A) Receiver operating characteristic (ROC) curve of the classifier; the gray line indicates the 95% confidence interval for the area under the ROC curve.
(B) The consensus functional connections. The brain regions are represented by a square on the circumference of the big circle. The lines connecting two squares
represent the connections between the corresponding two brain regions. The red lines represent positive connections, and the blue lines represent negative
connections.

FIGURE 3 | Regions of interest that contributed mostly to the accurate classification. L, left; R, right; OFC, orbital frontal cortex; IFG, inferior frontal gyrus; SPL,
superior parietal lobule; MTG, middle temporal gyrus.

Classifier Performance Using Features
Within the Identified Networks
In the current study, we obtained many more features
than examples (644 features were selected according to 76

participants); therefore, we reanalyzed the classifier performance
only using features within the identified networks (DMN,
FP, auditory, and sensorimotor). According to the networks
brought up by Yeo et al. (2015), we masked the DMN, FP,
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FIGURE 4 | Correlation between support vector machine (SVM) scores and semantic fluency in first-degree relatives (FDRs).

auditory, and sensorimotor networks, and 142 features were
obtained. As shown in Figure 5, the accuracy of the linear
SVM classifier reached up to 82.89% (89.47% for specificity,
63.16% for sensitivity, and p < 0.001 by permutation test).
The discriminative score for each tested individual was acquired
from the SVM classifier, and an ROC curve was created
(Figure 6), which showed an AUC of 0.82, also indicating good
classification power.

DISCUSSION

With the use of a multivariate pattern classification method,
our study demonstrated that whole-brain resting-state
FC can be used to distinguish SCZ patients from HCs
with excellent accuracy, with the functional connections
showing the best discriminatory power being mainly
located within or across the default mode, frontal-parietal,
auditory, and sensorimotor networks. Furthermore, the
trained machine learning model could also help to identify
whether unaffected FDRs showed similar FC patterns to
SCZ patients or HCs. An additional finding was that the
classification scores of the unaffected FDRs correlated
significantly with their word semantic fluency test scores.
These findings suggest that FC, combined with a machine
learning algorithm, can help to predict whether unaffected

FDRs show a SCZ-specific FC pattern or a healthy
control-specific FC pattern.

Cutting-edge machine learning methods have been applied
in structural and functional neuroimaging studies and have
revealed that multivariate patterns of brain change are
sensitive enough to classify individual SCZ patients (Liu
et al., 2015; Yuan et al., 2018b). Combining cortical thickness,
gyrification of gray matter, and fractional anisotropy and
mean diffusivity of white matter, Liang et al. (2019) used
a gradient boosting decision tree to identify SCZ patients,
reaching an average accuracy of 76.54%. Using global and
nodal network properties derived from a graph theory
analysis, Jo et al. (2020) revealed that functional network
properties had a high discriminatory ability for classifying
SCZ patients and HCs. Using betweenness centrality from
graph theoretical approaches and a SVM algorithm, Cheng
et al. (2015) found a classification accuracy of around 80% for
differentiating SCZ patients from non-psychiatric HCs. Recent
progress in neuroimaging research has suggested that SCZ is a
dysconnectivity syndrome, and our results provide evidence that
resting-state FC can be successfully used to differentiate SCZ
patients from HCs.

We employed the F-score for the feature ranking in the
feature selection approach, and a SVM algorithm with an
LOOCV strategy showed a classification accuracy of 88.15%.
We used the Craddock atlas for brain parcelation, because the
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FIGURE 5 | Predictive accuracy as a function of the number of connections used in the classification process. The connections were ranked according to F-scores
in descending order. Classification performance was further tested by including features within the default mode network, frontal-parietal network, auditory network,
and sensorimotor network only.

brain regions are clustered in a more homogenous manner
than in the AAL atlas (Craddock et al., 2012), and certain
ROIs from this parcelation showed significant performance in

FIGURE 6 | Receiver operating characteristic (ROC) curve of the classifier
using features within the default mode network, frontal-parietal network,
auditory network, and sensorimotor network only.

classifying SCZ patients from HCs. Previous studies showed
that an isolated brain region or connectivity dysfunction
cannot be responsible for SCZ (Lefebvre et al., 2016) and
indicated that impairment of interactions between several
intrinsic FC networks underlies the specific psychopathological
mechanism of SCZ. Our ROIs showing significant classification
performance were located within previously well-studied brain
networks such as the DMN, frontal-parietal network, auditory
network, and sensorimotor network. Decreased communication
within the DMN supports the idea of impaired self-related
processes relevant to the emotional processing and recollection
of prior experience (Dong et al., 2018), whereas deficits in
the frontal-parietal network have been associated with poor
information manipulation and poor problem-solving in goal-
directed behavior, and it is proposed that abnormal interactions
between the DMN and frontal-parietal network are associated
with errors in the self-monitoring of SCZ (Anhoj et al.,
2018; Brandl et al., 2019). Auditory network dysfunction
is always found in SCZ patients, with morphological and
functional abnormalities of the superior temporal gyrus, a
key component of the auditory network, being frequently
reported, and altered dominance in the direction of causal
influence from the DMN to the auditory network also
being found (Li et al., 2019). Additionally, SCZ patients
have also shown impaired connectivity within sensorimotor
networks, such as compromised connections between M1
and the supplementary motor area and medial motor areas
(Mcnabb et al., 2018). In combination with our findings,
such aberrant connectivity within and between large-scale
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networks not only may reflect the possible pathophysiology
of SCZ but also can provide essential information, allowing
us to differentiate HCs and FDRs before the development
of SCZ symptoms.

First-degree relatives of patients with SCZ have an almost
10-fold increased risk of developing SCZ (Luykx et al., 2017);
however, early interventions to delay or prevent the onset
of psychotic disorders among these high-risk individuals have
shown limited success. One of the most important hurdles
is the identification of a syndrome or set of traits that
reflects a predisposition to SCZ and that might provide
potential targets for intervention. A neuroimaging analysis
of the FDRs of patients with SCZ has mostly focused on
group comparisons, with several functional brain alterations
before the onset of SCZ having been reported in previous
studies, although robust imaging biomarkers for the diagnosis
and prediction of a later transition to psychotic disorders
are still lacking. The classification scores presented in our
study provided a sensitive measure for classifying FDRs as
having a SCZ-specific FC pattern or HC-specific pattern, and
early preventions could be provided for relatives showing a
SCZ-specific pattern, especially those given labels of 1 in the
LOOCV predictions. More importantly, we found that the
classification scores showed a significant negative correlation
with the semantic fluency scores. For those FDRs with
a clear SCZ-specific pattern, psychological and psychosocial
interventions (such as CBT), pharmacological interventions
(such as risperidone), and nutritional supplements (such as
omega-3 fatty acids) would have a beneficial effect on transition
rates (Stafford et al., 2013), while for those with classification
scores <+1, those interventions should be implemented with
caution, as a clinically significant side effect (for example,
possible increased stigma) might be induced (Stafford et al.,
2013). As stated by other studies (Mourao-Miranda et al.,
2012), linear SVM can effectively handle high-dimensional
data and is less prone to overfitting of the data. Therefore,
in this study, we exclusively used a linear kernel SVM
to reduce the risk of overfitting the data and to allow
direct extraction of the weight vector. The linear SVM has
only one parameter (C) that controls the trade-off between
having zero training errors and allowing misclassifications.
This was fixed at C = 1 for all cases (default value). It
has been shown previously that the SVM performance for
whole-brain classification does not change for a large range
of C values and only degrades with very small C values
(Laconte et al., 2005).

Cognitive impairments are a key component of SCZ and
have been included as a diagnostic criterion for SCZ in
the DSM-V classification (Bortolato et al., 2015). Previous
studies have indicated that non-psychotic FDRs also exhibit
similar but less severe cognitive defects (Molina et al., 2016).
Study of the neurocognitive functions of non-psychotic
FDRs is a widely used strategy for understanding the
etiology of SCZ and is free of the confounds associated
with psychosis. Furthermore, it is also well accepted that
cognitive impairments precede the onset of illness and represent
vulnerability markers for the onset of the disorder (Viviano

et al., 2018). Therefore, the negative correlations found between
classification scores and cognitive performance indicate that
the classifiers built on these FC measures could serve as
sensitive biomarkers for the early detection of FDRs at high risk
of developing SCZ.

The present study has several limitations. First, the
sample size of the current study is relatively small, and
the age distribution is rather young because we recruited
first-episode SCZ, and a large multicenter imaging dataset
containing chronic SCZ patients is necessary to confirm
our findings. Second, we used cross-sectional data of the
FDRs, and a longitudinal investigation is needed to verify
our findings. So far, we have followed 10 unaffected FDRs
for 4 years, and they remain normal. Due to low incidence
rate of SCZ in unaffected FDRs, longer follow-ups are
needed to investigate if the SCZ-specific FDRs had higher
risk of development of the disease than the HCs-specific
FDRs. Third, cognitive impairment was characterized
by a small number of measures, and comprehensive
measures should be collected, which may help bring
neuroimaging classification scores from the bench to the
bedside. Finally, we did not collect other cognitive status
score such as Mini-Mental State Exam (MMSE), which
would provide important information on global cognition
for FDRs and HCs.

CONCLUSION

Our findings indicate that brain-wide multivariate neuroimaging
patterns have clear advantages for accurately classifying
individuals as SCZ patients or HCs. FC within and among
the default mode, frontal-parietal, auditory, and sensorimotor
networks contributed most to the accurate classification. Finally,
classification scores obtained by our analysis could serve as an
effective and sensitive biomarker for the early detection of FDRs
at high risk of developing SCZ.
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Background: Previous studies of atypical antipsychotic effects on cortical structures
in schizophrenia (SZ) and bipolar disorder (BD) have findings that vary between the
short and long term. In particular, there has not been a study exploring the effects of
atypical antipsychotics on age-related cortical structural changes in SZ and BD. This
study aimed to determine whether mid- to long-term atypical antipsychotic treatment
(mean duration = 20 months) is associated with cortical structural changes and whether
age-related cortical structural changes are affected by atypical antipsychotics.

Methods: Structural magnetic resonance imaging images were obtained from 445
participants consisting of 88 medicated patients (67 with SZ, 21 with BD), 84
unmedicated patients (50 with SZ, 34 with BD), and 273 healthy controls (HC). Surface-
based analyses were employed to detect differences in thickness and area among
the three groups. We examined the age-related effects of atypical antipsychotics after
excluding the potential effects of illness duration.

Results: Significant differences in cortical thickness were observed in the frontal,
temporal, parietal, and insular areas and the isthmus of the cingulate gyrus. The
medicated group showed greater cortical thinning in these regions than the unmediated
group and HC; furthermore, there were age-related differences in the effects of atypical
antipsychotics, and these effects did not relate to illness duration. Moreover, cortical
thinning was significantly correlated with lower symptom scores and Wisconsin Card
Sorting Test (WCST) deficits in patients. After false discovery rate correction, cortical
thinning in the right middle temporal gyrus in patients was significantly positively
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correlated with lower HAMD scores. The unmedicated group showed only greater
frontotemporal thickness than the HC group.

Conclusion: Mid- to long-term atypical antipsychotic use may adversely affect cortical
thickness over the course of treatment and ageing and may also result in worsening
cognitive function.

Keywords: schizophrenia, bipolar disorder, atypical antipsychotics, magnetic resonance imaging (MRI), cortical
thickness

INTRODUCTION

Schizophrenia (SZ) and bipolar disorder (BD) have substantial
overlap in genetic vulnerability (The International Schizophrenia
Consortium, Purcell et al., 2009; Network and Pathway
Analysis Subgroup of Psychiatric Genomics Consortium,
2015), brain structural abnormalities (Goodkind et al., 2015),
symptomatology, and cognitive deficits (Tamminga et al., 2013),
suggesting a common neurobiological mechanism underlying
the two psychiatric conditions. Atypical antipsychotics are
first-line treatment options for SZ and BD (Meltzer, 2013) and
are effective for treating psychotic symptoms in both disorders
(Leucht et al., 2009). They are the mainstay long-term treatment
for SZ. Atypical antipsychotics combined with mood stabilizers
constitute the mainstay of acute management of bipolar mania
and depression and the long-term management of BD (Grande
et al., 2016). However, the effects of atypical antipsychotics
on cortical structures, especially age-related effects, are still
unclear (Goff et al., 2017). Potential effects could have important
implications for the course and prognosis of illness.

Previous magnetic resonance imaging (MRI) studies of
antipsychotic effects have mainly focused on morphometric
changes in cortical volume, thickness and surface area. There
may be differences in the short- and longer-term (mid-to-long-
term) effects of atypical antipsychotics treatment on cortical
structures, such as clinical trials examining the cortical structural
changes during short-term (less than 3 months) antipsychotic
treatment have reported that cortical thickness is maintained
or even increased after 6–12 weeks of antipsychotic treatment
(Goghari et al., 2013; Jessen et al., 2018; Nelson et al., 2020),
while longer-term (more than 3 months) studies have shown
cortical structural loss compared to healthy controls (HC)
(Lieberman et al., 2005; Ahmed et al., 2015; Guo et al., 2019;
Voineskos et al., 2020). In the largest randomized longitudinal
study to date comparing the effects of antipsychotic medication
types on brain volumes, olanzapine was found to reduce brain
volumes over a 1-year period (Lieberman et al., 2005). In the
most recent double-blind, randomized, placebo-controlled trial,
major depressive disorder (MDD) patients who were exposed
to olanzapine had a significant decrease in cortical thickness
across a 6-month period compared with those who took a placebo
(Voineskos et al., 2020). Due to the challenges of conducting
clinical trials to study atypical antipsychotic effects for more than
1 year, observations mostly come from cross-sectional studies and
longitudinal studies with naturalistic designs. For example, cross-
sectional studies of SZ patients undergoing current or chronic
(over 5 years) treatment suggest cortical loss (Haijma et al., 2013;

Lesh et al., 2015; Gjerde et al., 2018; van Erp et al., 2018;
Di Sero et al., 2019; Liu et al., 2020). Similar results were
observed in BD patients (Gildengers et al., 2014; Birner et al.,
2020), although other studies failed to replicate the finding,
possibly due to differences in the duration (short, medium and
long-term) of atypical antipsychotic treatment and variability in
methodology and sample size (Hallahan et al., 2011; Hafeman
et al., 2012; Hibar et al., 2018). Longitudinal studies with 3, 7.2,
and 9 years of follow-up showed that atypical antipsychotics
were associated with progressive cortical structural loss (Ho
et al., 2011; Veijola et al., 2014; Akudjedu et al., 2020).
However, the findings were not replicated by a meta-regression
of longitudinal studies and a 5-year follow-up study (van
Haren et al., 2011; Vita et al., 2015). In these studies, a
higher mean daily intake or cumulative intake of atypical
antipsychotics was associated with less cortical structural loss.
Herein, we conduct a preliminary exploratory investigation of
the effects of mid- to long-term use of atypical antipsychotics on
cortical structures.

Few studies have focused on the effects of atypical
antipsychotic on age-related cortical structural changes.
Previous studies found greater age-related loss of cortical
structures in SZ and BD patients than in HC but were unable
to comprehensively examine the influence of antipsychotics
(Cropley et al., 2017; Abe et al., 2020). Most studies indicate the
absence of antipsychotic effects in the age-related trajectory of
cortical measures (Cropley et al., 2017; Altamura et al., 2018),
while some show the presence of antipsychotic effects (van Haren
et al., 2011). However, evidence regarding the effects of atypical
antipsychotics on age-related cortical structural changes in SZ
and BD remains uncertain.

Cortical volume is determined by both cortical thickness and
surface area, which have distinct genetic influences (Panizzon
et al., 2009) and different development trajectories (Wierenga
et al., 2014). Thus, we used SBM vertexwise analysis based
on cortical surface reconstruction to evaluate thickness and
surface area. We opted to combine SZ and BD patients for
the following reasons: The criteria for the current prevalent
classifications of SZ and BD were established mainly based
on clinical symptoms. However, SZ and BD share substantial
core features, as indicated by converging lines of evidence
from genetic, molecular, histological, and neuroimaging studies
(Garcia-Rizo et al., 2016; Goldsmith et al., 2016; Moser et al.,
2018; Akudjedu et al., 2020; Writing Committee for the
Attention-Deficit/Hyperactivity Disorder et al., 2020). Thus,
there appears to be a greater continuum between SZ and BD
than previously thought. Previous studies have also selected
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samples of SZ and BD patients to explore antipsychotic effects
(Cross-Disorder Group of the Psychiatric Genomics Consortium,
2013; Ansell et al., 2015; Goodkind et al., 2015). Thus, SZ
and BD patients were combined here. To our knowledge, only
two studies have investigated how atypical antipsychotics are
associated with cortical thickness in SZ and BD. One cross-
sectional study did not include an unmedicated comparison
group or clear determination of the duration of medication
use; it found that SZ and BD patients had thinner medial
frontal, parietal and fusiform areas and thicker precentral and
postcentral gyri compared to HC (Ansell et al., 2015). One
recent naturalistic longitudinal study of psychosis patients with
a 3-year follow-up period reported a significantly increased
rate of cortical thinning in the left lateral orbitofrontal region
compared with HC (Akudjedu et al., 2020). However, evidence
of the mid- to long-term effects of atypical antipsychotics
is still needed.

Herein, we aimed to determine whether mid- to long-
term atypical antipsychotic treatment is associated with cortical
structural changes in a real-world observation and, if so, whether
age-related cortical structural changes are affected by atypical
antipsychotics. We compared cortical thickness and area in
SZ and BD patients who had been treated for more than
3 months with atypical antipsychotics, patients who received no
psychotropic medication, and HC. We also examined the effects
of atypical antipsychotics on clinical symptoms and cognitive
function. We hypothesized that regional cortical thickness
was more vulnerable to the effects of atypical antipsychotics
than surface area was. We also hypothesized that greater
cortical thinning would be found in medicated patients than in
unmedicated patients and HC and that atypical antipsychotics
would affect age-related changes.

MATERIALS AND METHODS

Participants
The study included a total of 445 individuals aged 13–45 years:
88 medicated patients (67 with SZ, 21 with BD) who were
treated with atypical antipsychotics for at least 3 months, 84
unmedicated patients (50 with SZ, 34 with BD) who had received
no pharmacological treatment for at least 2 months or were
medication naive, and 273 HC. Patients were recruited from
the inpatient services of the Shenyang Mental Health Centre
and the outpatient services of the First Affiliated Hospital of
China Medical University. HC participants were recruited from
the local community. All participants provided written informed
consent after receiving a detailed description of the study. The
study was approved by the Institutional Review Board of China
Medical University.

All participants were independently assessed by two expert-
trained psychiatrists using the Structured Clinical Interview
for the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV) Axis I Disorders (age ≥18 years)
or the Schedule for Affective Disorders and Schizophrenia for
School-Age Children-Present and Lifetime version (K-SADS-
PL) (age <18 years). All patients met the DSM-IV diagnostic

criteria for SZ and BD and had no other comorbid Axis I
disorder. HC participants did not have current or lifetime
Axis I disorders or a history of psychotic, mood, or other
Axis I disorders in first-degree relatives, as determined by
detailed family history. HC were matched by age and gender
with the medicated and unmedicated patients. Participants
were excluded if any of the following were present: (1)
substance/alcohol abuse or dependence, (2) concomitant major
medical disorder, (3) history of electroconvulsive therapy
or transcranial magnetic stimulation therapy, (4) history of
head trauma with loss of consciousness for ≥5 min or any
neurological disorder and (5) any contraindications for magnetic
resonance imaging (MRI).

Symptom severity was assessed by the Hamilton Depression
Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the
Young Mania Rating Scale (YMRS), and the Brief Psychiatric
Rating Scale (BPRS); cognitive function was evaluated by the
Wisconsin Card Sorting Test (WCST). Demographic and clinical
information are detailed in Table 1.

Pharmacological Treatment
We reviewed information on the type, dosage, and duration of
medication recorded at the time of the MRI scan. The treatments
received reflected real-world clinical practice. According to the
existing literature on cortical structure changes following the
administration of antipsychotics (Lesh et al., 2015), a treatment
duration of more than 3 months would be sufficient to observe
brain changes associated with atypical antipsychotic use in our
samples. On the basis of existing literature on antipsychotic
washout (Garver et al., 2005), we considered subjects who were
medication naive or had not taken any psychotropic medication
in the 2 months prior to the MRI scanning unmedicated.
The mean duration of atypical antipsychotic treatment was
20 months; in 78% (69/88) of participants, the duration was
more than 6 months, and 61% (54/88) of the participants,
the duration was more than 1 year. In the medicated group,
65 patients took a single atypical antipsychotic, and the other
23 patients took 2 atypical antipsychotics simultaneously. No
patients were taking typical antipsychotics, but 15 patients were
taking antidepressants (escitalopram, fluoxetine, fluvoxamine,
and sertraline) at the time of scanning, and 17 patients
were taking anticonvulsants (magnesium valproate and sodium
valproate). Doses of antipsychotics were converted to olanzapine
equivalents (Leucht et al., 2016). In the unmedicated group,
68 patients were medication naive, and the remaining 16 had
discontinued psychotropic medication more than 2 months
before the study.

MRI Acquisition
MRI scans were acquired on a GE signa HDX 3.0T scanner at
the First Affiliated Hospital of China Medical University with
a standard 8-channel head coil. A 3D fast-spoiled gradient-
echo sequence [3D-FSPGR: TR = 7.1 ms, TE = 3.2 ms,
matrix = 240 × 240, field of view (FOV) = 24 cm × 24 cm, voxel
size = 1 mm ∗ 1 mm ∗ 1 mm, slice thickness = 1.0 mm without
a gap, 176 slices in total, and scan time = 8 min 6 s] was used to
obtain sagittal T1-weighted structural images of the whole brain.
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TABLE 1 | Demographic, clinical characteristics and cognitive function of healthy controls, the medicated patients, and the unmedicated patients.

Variable HC (n = 273) Patients (n = 172) F/χ2/t-values p-values

Medicated patients (n = 88) Unmedicated patients (n = 84)

Demographic characteristic

Age (years) 26.59 (7.15) 25.47 (8.12) 25.11 (8.19) 1.609$ 0.201

Male 107 (39%) 38 (43%) 34 (40%) 0.443$ 0.801

Right handedness 253 (94%) 232 (90%) 75 (89%) 3.264$ 0.515

Clinical characteristic

Illness duration (months) – 59.20 (59.65) 17.01 (28.52) 30.059% <0.001

First episode, yes – 39 (44%) 65 (77%) 18.851% <0.001

HAMD Total (n = 251) (n = 74) (n = 65)

1.05 (1.71) 5.47 (6.05) 13.40 (9.43) −5.827% <0.001

HAMA total (n = 250) (n = 69) (n = 60)

0.92 (2.11) 3.88 (4.02) 10.93 (9.00) −5.602% <0.001

YMRS total (n = 245) (n = 63) (n = 60)

0.22 (0.83) 2.84 (6.81) 4.30 (8.84) −1.028% 0.306

BPRS total (n = 189) (n = 78) (n = 68)

18.41 (1.18) 28.33 (10.41) 34.51 (12.44) −3.267% 0.001

Cognitive function

WCST (n = 194) (n = 53) (n = 47)

Corrected responses 31.53 (11.54) 20.06 (11.36) 23.87 (12.64) −1.590% 0.115

Categories completed 4.19 (2.09) 2.25 (2.24) 2.66 (2.09) −0.954% 0.342

Total errors 16.55 (11.69) 27.94 (11.36) 24.13 (12.64) 1.590% 0.115

Perseverative errors 5.98 (6.98) 10.83 (8.37) 9.68 (11.37) 0.580% 0.563

Non-perseverative errors 10.52 (6.54) 17.11 (7.70) 14.49 (8.34) 1.635% 0.105

Medication

Antipsychotic use

Duration (months) – (n = 83) 20.47 (25.55) –

Dose OPZ (mg) – (n = 64) 8.27 ± 6.49 –

Antipsychotic type

Amisulpride – 3 (3%) –

Aripiprazole – 24 (27%) –

Clozapine – 12 (14%) –

Olanzapine – 17 (19%) –

Paliperidone – 2 (2%) –

Quetiapine – 17 (19%) –

Risperidone – 33 (38%) –

Ziprasidone – 3 (3%) –

Antidepressants (%) – 15 (17%) –

Anticonvulsants (%) – 17 (19%) –

Data were presented as either n (%) or mean (SD). HC, Healthy Controls; HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale; YMRS, Young Manic
Rating Scale; BPRS, Brief Psychiatric Rating Scale; WCST, Wisconsin Card Sorting Test. OPZ, Olanzapine equivalent value. $The examination among the medicated,
unmedicated, and HC groups. %The examination between the medicated and unmedicated groups.

Data Processing
Structural MRI images were processed by the Connectome
Computation System (CCS1) (Zuo et al., 2013), an integrated
informatic platform for multimodal neuroimaging data mining
and discovery sciences. Methodological details of the processing
have been provided in previous studies (Jiang et al., 2015).
Briefly, the CCS processing pipeline employed in the present
work included two major parts: (1) volBrain (Manjon and
Coupe, 2016) performs noise removal, intensity variation

1https://github.com/zuoxinian/CCS

correction, and extraction of brain tissues; (2) FreeSurfer (version
6.02) performs cortical surface reconstruction with a series of
functions, including brain tissue segmentation, mesh tessellation
and deformation to tissue boundaries, surface topological defect
correction, and surface inflation into a sphere. All outcomes
of the above preprocessing were visually inspected by two
researchers, and no participants needed manual editing. Cortical
thickness and surface area were calculated in native space.
Specifically, the thickness of each vertex was the mean value

2https://surfer.nmr.mgh.harvard.edu
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of twice the shortest calculated distance between the white
surface (white–gray interface) and the pial surface (grey-
CSF interface) and vice versa. Cortical thickness has been
demonstrated to show high test–retest reliability (Madan and
Kensinger, 2017). The cortical surface area was derived as the
total area of the triangles connected to a vertex. All individual
maps of cortical thickness and surface area were smoothed
of 10 mm full width at half-maximum (FWHM) using a
Gaussian filter and transferred to the standard spherical surface
(fsaverage).

Statistical Analysis
Statistical analyses of demographic and clinical characteristics
were performed using analysis of variance (ANOVA), two-sample
t-tests, or χ2 tests.

A general linear model (GLM) was applied to examine
the vertexwise differences in morphometry, including cortical
thickness and surface area, among the three groups for the
left and right hemispheres. Age and gender were modeled
as covariates of interest. We then tested the effects of the
group differences in the two morphometric measurements with
statistical correction for multiple comparisons based on the
Monte Carlo clusterwise simulation approach, with a p-threshold
of 0.001 at the vertex level and a p-threshold of 0.01 at the
cluster level (Hagler et al., 2006). We also performed vertexwise
post hoc t-tests for cortical thickness between each pair of
groups (medicated vs. HC, unmedicated vs. HC, medicated vs.
unmedicated). A three-group comparison of cortical thickness
that included intracranial volume (ICV), age and gender as
covariates were also performed (see Supplementary Material).
Vertexwise analyses of cortical thickness between the diagnostic
subgroups were also performed to test for effects of diagnosis:
BD/SZ (see Supplementary Material).

For each region showing group-level differences, the mean
values of the cortical measures were extracted. Post hoc
two-sample t-tests were applied to test the differences in
effects between each pair of groups in these regions. Multiple
comparisons were corrected using the false discovery rate (FDR)
method, and the significance level was set at p < 0.05. The
duration of illness was included as a covariate of no interest in
the patient subgroup comparison. Multiple regression analyses
were used to evaluate the relationships between cortical measures
in regions showing group-level differences with 5 potential
moderators [diagnosis: BD/SZ, age, gender, atypical antipsychotic
use (yes/no), and illness duration] in patients. The 5 moderators
were entered concurrently as independent effects, allowing us
to examine the magnitude of influence among them, especially
illness duration and antipsychotic use. The results were corrected
using the FDR method, with p < 0.05.

To determine potential relationships between the thickness or
surface area of regions showing significant group differences and
antipsychotic dosage and duration, symptom severities (HAMD,
HAMA, YMRS, and BPRS scores) and cognitive function (WCST
scores) in all patients (unmedicated and medicated), exploratory
partial correlation analysis controlling for age and gender was
performed. The results were corrected using the FDR method,
with p < 0.05.

To determine the age-related effects on cortical measurements
in the three groups, we used the mean values of the cortical
measurements in regions with group-level differences and
ran a GLM. The cortical measurements were considered
dependent variables. Fixed factors included age and group
(HC, unmedicated, medicated). Significant interaction effects
(age × group) were first examined among the three groups to
explore the regions showing age-related alterations and were
further disentangled using post hoc analysis between each pair of
groups to test for differential rates of age-related changes across
groups. Additionally, to determine the effects of illness duration
on our findings, we investigated the (illness duration × group)
interactions. The results were corrected using the FDR method,
with p < 0.05.

RESULTS

Demographic and Clinical Data
Demographic and clinical details are presented in Table 1. We
found no significant differences in age, gender or handedness
among the three groups. We did observe that the medicated
group had significantly lower mean HAMD, HAMA and BPRS
scores; longer illness duration; and lower first-episode rates
than the unmedicated group (p < 0.05). Demographic and
clinical details of the SZ and BD patients are shown in
Supplementary Table 1.

Group Differences in Cortical
Morphology
A three-group analysis of cortical thickness showed 13 regions
with significant group differences (Table 2 and Figure 1A).
Post hoc analysis showed that compared to the unmedicated
and HC groups, the medicated group demonstrated widespread
cortical thinning in the bilateral insula, the bilateral isthmus
of the cingulate cortex, the bilateral superior frontal gyrus,
and the bilateral superior temporal gyrus as well as in the
right precentral gyrus, left inferior temporal gyrus, right middle
temporal gyrus, right lateral orbitofrontal cortex and right
superior parietal gyrus compared with the unmedicated group
and HC. Compared to the HC group, the unmedicated patient
group showed increased cortical thickness in the left inferior
temporal gyrus and the left superior frontal gyrus (Figure 1B).
When illness duration was included as a covariate in comparisons
of patients (medicated vs. unmedicated), all significant regions
except the right parietal cortex survived. We did not detect
any significant differences in cortical surface area among the
three groups. The results of vertexwise post hoc t-tests of
cortical thickness were presented in Figure 2 and Supplementary
Tables 2, 3. Compared to the HC and unmedicated group, the
medicated group showed cortical thinning in multiple regions.
The unmedicated group showed no significant differences in
cortical thickness compared with HC. The results of three-group
analysis of cortical thickness controlling for ICV, age and gender
can be found in Supplementary Material, which were similar to
the above findings. The details of the effects of diagnosis: BD/SZ
on cortical thickness can be found in Supplementary Material.
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TABLE 2 | Cortical regions with significant difference in cortical thickness among healthy controls, the medicated patients, and the unmedicated patients.

Brain region Cluster size (mm2) Talairach Coordinates (Peak Vertex) p-values

Left hemisphere

Inferior temporal gyrus 546.49 −53.4 −19.2 −30.3 < 0.001

Insula 354.44 −33.7 14.9 13 < 0.001

Superior frontal gyrus 339.42 −6.8 37.9 46.6 < 0.001

Superior temporal gyrus 331.48 −47.6 4.8 −27.9 0.001

Isthmus cingulate gyrus 224.27 −12.3 −40.8 33.6 0.009

Right hemisphere

Middle temporal gyrus 1090.79 54.4 3.4 −31.2 < 0.001

Insula 736.88 32.2 9.4 9.2 < 0.001

Lateral orbitofrontal cortex 480.16 33.3 31.3 −11.8 < 0.001

Precentral gyrus 387.28 24.1 −13.8 63.8 < 0.001

Isthmus cingulate gyrus 344.42 4.4 −42.2 29.9 < 0.001

Superior parietal cortex 321.1 25.1 −60.5 33 < 0.001

Superior frontal gyrus 268.73 12.7 19.8 37.4 0.003

Superior temporal gyrus 229.69 57.1 −12.5 −4.7 0.008

The results do not indicate diagnostic differences between BD and
SZ with regard to the relationship between atypical antipsychotic
treatment and cortical thickness alterations.

Multiple regression analyses in patients showed that diagnosis
(BD/SZ) did not have significant effects on cortical thinning in
all regions after FDR correction. Age had significant effects on
cortical thinning in all regions (−0.008 to −0.003 mm/year)
except the right middle temporal gyrus. Gender did not have
significant effects on cortical thinning in all regions. Atypical
antipsychotic use had significant effects on cortical thinning in
all regions (b = −0.177 to −0.060 mm/year). Illness duration
did not have significant effects on cortical thinning in all
regions (Supplementary Table 4). We also used these possible
confounding factors as covariates to observe the effect on
the results. Potential confounding factors [diagnosis: BD/SZ,
age, gender, duration of illness, antidepressants (yes/no) and
anticonvulsants (yes/no)] had little impact on the results
(Supplementary Figures 1–3). Additionally, higher olanzapine
dose equivalents were significantly correlated with cortical
thinning in the left superior temporal gyrus (r = −0.362,
p = 0.011) after FDR correction. There was no significant
correlation between duration of antipsychotic treatment and
cortical thickness.

Regarding clinical symptoms, the HAMD scores of patients
were significantly positively correlated with cortical thinning in
the left isthmus of the cingulate cortex and the right middle
temporal gyrus, right lateral orbitofrontal cortex, left superior
temporal gyrus and left inferior temporal gyrus. The HAMA
total score of patients was significantly positively correlated with
cortical thinning in the left isthmus of the cingulate cortex, the
right middle temporal gyrus and the left superior temporal gyrus.
The YMRS total score in patients was significantly negatively
correlated with cortical thinning in the left superior frontal
gyrus. BPRS scores were significantly positively correlated with
cortical thinning in the bilateral insula, the bilateral isthmus
of the cingulate cortex, the left superior frontal gyrus, the left
superior temporal gyrus, the right precentral gyrus, the left

inferior temporal gyrus, the right middle temporal gyrus, the
right lateral orbitofrontal cortex and the right superior parietal
gyrus. Regarding cognitive function, WCST deficits in patients
were significantly correlated with cortical thinning (correct
responses and completed categories were positively correlated
with cortical thickness; total errors, perseverative errors, and
non-perseverative errors were negatively correlated with cortical
thickness) in the right superior frontal gyrus, the left isthmus of
the cingulate cortex, the right middle temporal gyrus, the right
lateral orbitofrontal cortex and the left superior temporal gyrus.
All the results above were set at p < 0.05 uncorrected, and the p
and r values are listed in Table 3. After FDR correction, there was
still a significant positive correlation between cortical thickness in
the right middle temporal gyrus and the HAMD total (r = 0.283,
p = 0.026), somatic anxiety (r = 0.295, p = 0.030), and psychic
anxiety scores (r = 0.263, p = 0.041). The results of exploratory
partial correlation analyses controlling for age, gender and illness
duration can be found in Supplementary Table 5.

Age-Related Differences in Cortical
Morphology
Age-related effects on cortical thickness were observed in all 13
regions, showing group-level differences after FDR correction
(Figure 3). Post hoc analyses showed that medicated patients had
greater age-related cortical thinning in most (9 of 13) of these
regions than did the unmedicated patients and HC (Table 4).

When the same effects were examined in relation to illness
duration, no illness duration effects were found.

DISCUSSION

In this study, we found significant cortical thickness differences
in the frontal, temporal, parietal, cingulate gyrus isthmus and
insula areas among the three groups, with medicated patients
showing significant cortical thinning. No differences in cortical
surface area were found among the three groups. Furthermore,

Frontiers in Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 579139173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-579139 December 4, 2020 Time: 18:44 # 7

Feng et al. Antipsychotic Effects on Cortical Morphology

FIGURE 1 | Significant differences in cortical thickness among healthy controls, medicated patients, and unmedicated patients. (A) Regions with significant
thickness differences among the three groups. The significance level was set at p < 0.001 at the vertex level with Monte Carlo clusterwise simulation correction for
multiple comparisons (p < 0.01, corrected). The color bar represents the t-value. (B) Post hoc pairwise comparisons showing thickness differences between each
pairing (HC vs. medicated, HC vs. unmedicated, medicated vs. unmedicated). The significance level was set at p < 0.05, with FDR correction for multiple
comparisons. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. HC, healthy controls; R, right; L, left; SPG; superior parietal gyrus; ICG, isthmus of the cingulate cyrus; mSFG,
medial superior frontal gyrus; PreCG, precentral gyrus; INS, insula; MTG, middle temporal gyrus; lOFC, lateral orbitofrontal cortex; STG, superior temporal gyrus;
ITG, inferior temporal gyrus.

there were age-related differences in the effects of atypical
antipsychotics in most (9 of 13) regions in the medicate group
compared to the unmedicated and HC groups.

These findings were not related to illness duration. In
an exploratory correlation analysis, cortical thinning in most
regions was significantly positively correlated with lower HAMD,
HAMA, and BPRS scores and WCST deficits (p < 0.05,
uncorrected). After FDR correction, cortical thinning in the right
middle temporal gyrus in patients was significantly positively
correlated with lower HAMD total, somatic anxiety, and psychic
anxiety scores. Finally, unmedicated patients had greater cortical
thickness than HC only in the frontotemporal region.

In this study, cortical thinning in medicated patients relative to
unmedicated patients provided preliminary evidence indicating
negative effects of mid- to long-term atypical antipsychotic
treatment on cortical thickness. Our results were consistent

with studies showing the contribution of atypical antipsychotics
to cortical thinning in the frontal, temporal, and parietal
lobes, which has been repeatedly reported (Lesh et al., 2015;
Zhang et al., 2018; Guo et al., 2019; Liu et al., 2020), and in
the lateral orbitofrontal cortex (Gjerde et al., 2018; Akudjedu
et al., 2020). Mid- to long-term treatment effects may be
negative as a result of cumulative pharmacologic effects (Xiao
et al., 2018). A study of BD published in 2020 found that
patients currently being treated with atypical antipsychotics
had significantly reduced total gray matter volumes compared
to patients who were not taking atypical antipsychotics and
to HC, which is similar to our results (Birner et al., 2020).
The possible mechanism for cortical thinning may be that
long-term atypical antipsychotic treatment could cause some
loss of neurites, synaptic spines, or synapses in the cortical
structures (Huang and Song, 2019). Animal studies have also
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FIGURE 2 | Significant differences of cortical thickness between medicated patients and HC, and between medicated patients and unmedicated patients.
(A) Regions with significant thickness differences between medicated patients and HC. (B) Regions with significant thickness differences between medicated
patients and unmedicated patients. The significance level was set to vertex p < 0.001 with Monte Carlo cluster-wise simulation correction for cluster p < 0.01. L,
left. R, right. The color bar represents t-value. (C) Post hoc pair-wise comparisons showing thickness differences between medicated patients and HC. (D) Post hoc
pair-wise comparisons showing thickness differences between medicated patients and unmedicated patients. The significance level was set at p < 0.05 with FDR
correction for multiple comparison. ∗∗∗p < 0.001. HC, healthy controls; R, right; L, left; SPG; superior parietal gyrus; ICG, isthmus cingulate gyrus; mSFG, medial
superior frontal gyrus; PreCG, precentral gyrus; ISN, insula; MTG, middle temporal gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus; lOFC, lateral
orbitofrontal cortex; FFG, fusiform gyrus.

shown an association between long-term exposure to atypical
antipsychotics and reduced cortical volume (Dorph-Petersen
et al., 2005). The atypical antipsychotic medication olanzapine
was shown to exhibit neurotoxic effects by influencing autophagy
(Vucicevic et al., 2014).

Our results showed greater age-related cortical thinning in
medicated patients than in unmedicated patients and HC. The
results were consistent with those of a few studies that did
not differentiate between the effects of typical and atypical
antipsychotics (van Haren et al., 2011; Alexander-Bloch et al.,
2014) on cortical thinning and contradict the absence of
an effect of antipsychotics on the age-related trajectory of
cortical measures. We cannot deny that psychiatric disorders
are progressive brain diseases that cause changes in cortical
structures (van Haren et al., 2012). However, when illness
duration was used as a covariate, all significant regions except the
right parietal cortex survived. Moreover, we did not find evidence
of an interaction between illness duration and group. Thus, we
consider that the effect of atypical antipsychotics on thickness was
greater than the effect of the disease itself (Fusar-Poli et al., 2013;
Birner et al., 2020).

One possible reason for the occurrence of cortical thinning
but not surface area reduction is that they have different neural
mechanisms. In studies examining the role of genetic and
environmental factors in thickness and surface area in a sample
of 1,237 healthy adult twins, genetic factors contributed to

approximately 45% of the variance in thickness (Kremen et al.,
2010) but as much as 70% of the variance in surface area (Eyler
et al., 2011). These results suggest that of these two structural
measures, the brain plasticity caused by environmental influences
(atypical antipsychotics, in our study) may be mainly reflected in
changes in cortical thickness.

We observed a complex relationship between cortical
structural changes and clinical features following mid- to long-
term treatment. In this study, cortical thinning was associated
with clinical improvement and, possibly, worsening cognitive
function, suggesting atypical antipsychotics have both adaptive
and maladaptive compensatory effects. Findings related to
cognitive function were not significant after FDR correction,
and further studies are needed to clarify the role of atypical
antipsychotics in cortical thinning and subsequent changes in
cognitive function. Worsening cognitive function may relate
to dopamine sensitivity in psychosis and negative prognosis
in patients receiving long-term, 7–20 years of antipsychotic
treatment (Harrow and Jobe, 2018). Prior studies have generally
indicated cortical volume loss during the course of illness
in SZ; however, there are inconsistencies in findings such as
the association of cortical structural loss with improved and
worsening clinical severity (Gur et al., 1998; Sporn et al., 2003;
Xiao et al., 2015; Walton et al., 2017; Moser et al., 2018;
Guo et al., 2019). Several studies have found that atypical
antipsychotics were associated with concurrent cortical structural
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TABLE 3 | Relationship between cortical thickness and clinical symptoms or cognitive function in all patients (medicated and unmedicated).

Regions variables SPG.R ICG.R mSFG.R ICG.L PreCG.R INS.R INS.L MTG.R OFC.R STG.L ITG.L mSFG.L

Clinical symptoms

HAMD total score 0.283/
<0.001***

0.181/0.034* 0.186/0.030* 0.210/0.014*

HAMD factor scores 0.209/0.014*

Somatic anxiety 0.295/
<0.001***

0.181/0.034* 0.206/0.016* 0.232/0.006**

Psychic anxiety 0.263/
0.002**

0.204/0.017* 0.186/0.030*

Core depressive 0.186/0.029* 0.201/0.019* 0.182/0.034* 0.172/0.045*

Anorexia

HAMA total score 0.225/0.011* 0.195/0.028* 0.185/0.037*

YMRS total score −0.200/0.028*

BPRS total score 0.211/0.011*

BPRS factor scores

Anxiety and depression 0.179/0.032* 0.192/0.021*

Lack of energy 0.185/0.026*

Thought disorder 0.173/0.038*

Activity

Hostility 0.178/0.033* 0.256/0.002** 0.183/0.028* 0.267/0.001** 0.226/0.006** 0.197/0.018* 0.182/0.029* 0.224/0.007** 0.297/0.018*

Cognitive function

WCST

Correct responses 0.205/0.043* 0.253/0.012* 0.268/0.008** 0.213/0.036*

Categories completed 0.218/0.031* 0.227/0.025* 0.205/0.034*

Total errors −0.205/0.043*−0.253/0.012* −0.268/0.008**−0.213/0.036*

Perseverative errors −0.218/0.032*

Non-perseverative errors −0.230/0.023*

Exploratory partial correlation analyses controlling for age and sex were performed to determine the relationship between cortical thickness and clinical symptoms (HAMD total scores and its factors; HAMA total scores;
YMRS total scores; and BPRS total scores and its factors) and cognitive function (WCST scores) separately. Data were presented as r-value/uncorrected p value; ***p < 0.001, **p < 0.01, *p < 0.05. Bold indicates
significance at p < 0.05, after FDR correction. R, right; L, left; SPG; superior parietal gyrus; ICG, isthmus cingulate gyrus; mSFG, medial superior frontal gyrus; PreCG, precentral gyrus; INS, insula; MTG, middle temporal
gyrus; lOFC, lateral orbitofrontal Cortex; STG, superior temporal gyrus; ITG, inferior temporal gyrus.
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FIGURE 3 | Age-related differences in cortical thickness among healthy controls, medicated patients, and unmedicated patients. HC, healthy controls.

loss and clinical improvement (Ahmed et al., 2015; Lesh
et al., 2015; Guo et al., 2019). Further, atypical antipsychotics
may have mechanistic role in cortical thinning as well as
clinical improvement. Interestingly, greater cortical volume

reduction in medicated adults and adolescents with SZ has been
associated with greater clinical improvement at 3-year follow-
up independent of medication types or baseline or follow-up
clinical severity (Gur et al., 1998; Sporn et al., 2003). Some
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TABLE 4 | Average rate of change in cortical thickness per year for healthy controls, the medicated patients, and the unmedicated patients.

Brain region HC (mm/year) Medicated (mm/year) Unmedicated (mm/year) Medicated vs. Unmedicated Medicated vs. HC

Left hemisphere

Inferior temporal gyrus −0.003 −0.006 −0.003 ↓ ↓

Insula −0.005 −0.008 −0.004 ↓** ↓***

Superior frontal gyrus −0.009 −0.011 −0.006 ↓* ↓***

Superior temporal gyrus −0.005 −0.006 −0.006 ↑* ↓**

Isthmus cingulate gyrus −0.007 −0.004 −0.005 ↑ ↑***

Right hemisphere

Middle temporal gyrus −0.004 −0.006 −0.001 ↓** ↓***

Insula −0.006 −0.010 −0.006 ↓*** ↓***

Lateral orbitofrontal cortex −0.005 −0.010 −0.006 ↓* ↓***

Precentral gyrus −0.003 −0.005 −0.001 ↓ ↓***

Isthmus cingulate gyrus −0.006 −0.009 −0.003 ↓* ↓***

Superior parietal cortex −0.005 −0.004 −0.003 ↓ ↑**

Superior frontal gyrus −0.008 −0.009 −0.008 ↓*** ↓***

Superior temporal gyrus −0.005 −0.004 −0.007 ↑ ↑

HC, healthy controls; the significance level was set at p < 0.05 with FDR correction for multiple comparison. ***p < 0.001, **p < 0.01, *p < 0.05. ↓, greater age-
related thickness thinning in medicated patients compared to unmedicated patients or HC; ↑, smaller age-related thickness thinning in medicated patients compared to
unmedicated patients or HC.

data found a negative correlation between cortical volume and
regional homogeneity (ReHo) in the right inferior temporal
gyrus in drug-naïve SZ but not in HC, suggesting that cortical
volume reductions could be associated with increased ReHo
(greater brain network integration) in SZ (Hong et al., 2019).
In addition, cortical thinning has also been observed in high-
risk people without disease onset (Bois et al., 2015). Altogether,
these studies suggest that cortical thinning in medicated patients
represent a potential compensatory mechanism associated with
clinical improvement. Conceivably, cortical thinning could occur
through known compensatory synaptic and cellular pruning of
malfunctioning neurons. However, atypical antipsychotics are
unlikely able to correct or arrest cortical defects and their
progression that are already present.

Interestingly, we also observed more thickness in the left
superior frontal gyrus and the inferior temporal gyrus in
unmedicated patients than in medicated patients and HC.
Greater thickness in these regions may be related to insufficient
synaptic pruning during the neurodevelopmental process in SZ
(Xiao et al., 2015). Moreover, we observed a trend of greater
cortical thickness in the forebrain and less cortical thickness
in the hindbrain in unmedicated patients than in HC. This is
in line with the low-frequency fluctuation (ALFF) and regional
homogeneity (ReHo) results of previous large-sample functional
studies conducted by our group (Wei et al., 2018; Chang et al.,
2019), suggesting that there are disease-related physiological
imbalances (such as functional imbalances) that lead to cortical
structural changes through some mechanisms. The negative
findings of disease effects on surface area may be because the
surface area is a weak intermediate phenotype for psychiatric
disorders (Neilson et al., 2019). Our sample size is not adequate
to identify disease-related differences.

There are several limitations to our study. First, the present
study was conducted in a real-world context. Most patients

were treated with more than one medication, and it was
difficult to identify patients treated with a single medication.
Therefore, it is unclear whether specific atypical antipsychotics
cause cortical structure abnormalities. There may be interactions
between different medications, a possibility that requires further
investigation. Additionally, we note that the illness duration
differed significantly between the medicated and unmedicated
groups. However, this study demonstrated no effect of illness
duration on the results. The multiple regression analysis and
lack of interaction between illness duration and thickness
argued against the possibility that our results were due to
differences in illness duration between groups. Finally, given
our cross-sectional design, the age-related results provided
only a preliminary exploration of the cortical structural
changes associated with atypical antipsychotics. However, it
has been noted that most accelerated aging studies are cross-
sectional designs. A longitudinal, placebo-controlled randomized
controlled trial (RCT) design would be better, but patients
in such studies would not be representative. Our real-world
observations can provide complementary information and are
more representative of the real-world situation. Second, our
sample size was moderate and had a relatively wide age range
(13–45 years). The broad age range and cross-sectional design
may have limited the interpretation of our findings. Finally, the
correlation findings are tentative because the uncorrected p and r
values were generally modest, indicating modest effects.

Our major findings suggest that mid- to long-term atypical
antipsychotic treatment is related to regional cortical thinning
but not to a reduction in surface area and is associated with
cognitive impairment. Furthermore, we provide the first evidence
of age-related differences in the effects of mid- to long-term
atypical antipsychotic treatment on cortical thickness in SZ and
BD, suggesting that mid- to long-term atypical antipsychotic
treatment may have negative effects.
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Type 2 diabetes mellitus (T2DM) leads to a higher risk of brain damage and adversely
affects cognition. The underlying neural mechanism of T2DM-induced cognitive
impairment (T2DM-CI) remains unclear. This study proposes to identify a small number
of dysfunctional brain connections as imaging biomarkers, distinguishing between
T2DM-CI, T2DM with normal cognition (T2DM-NC), and healthy controls (HC). We have
recruited 22 T2DM-CI patients, 31 T2DM-NC patients, and 39 HCs. The structural
Magnetic Resonance Imaging (MRI) and resting state fMRI images are acquired, and
neuropsychological tests are carried out. Amplitude of low frequency fluctuations (ALFF)
is analyzed to identify impaired brain regions implicated with T2DM and T2DM-CI. The
functional network is built and all connections connected to impaired brain regions are
selected. Subsequently, L1-norm regularized sparse canonical correlation analysis and
sparse logistic regression are used to identify discriminative connections and Support
Vector Machine is trained to realize three two-category classifications. It is found that
single-digit dysfunctional connections predict T2DM and T2DM-CI. For T2DM-CI versus
HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, the number of connections
is 6, 7, and 5 and the area under curve (AUC) can reach 0.912, 0.901, and 0.861,
respectively. The dysfunctional connection is mainly related to Default Model Network
(DMN) and long-distance links. The strength of identified connections is significantly
different among groups and correlated with cognitive assessment score (p < 0.05). Via
ALFF analysis and further feature selection algorithms, a small number of dysfunctional
brain connections can be identified to predict T2DM and T2DM-CI. These connections
might be the imaging biomarkers of T2DM-CI and targets of intervention.

Keywords: resting state fMRI, type 2 diabetes mellitus, cognitive impairment, functional connectivity, machine
learning
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INTRODUCTION

Diabetes mellitus is a common metabolic disorder characterized
by hyperglycemia (McCrimmon, et al., 2012). Currently, there
are an estimated 463 million adults with diabetes worldwide,
of which Type 2 diabetes mellitus (T2DM) accounts for
more than 90% (International Diabetes Federation, 2019). The
chronic hyperglycemia of T2DM patients may cause systemic
damage to nerves, eyes, kidneys, and blood vessels, which may
bring many complications, such as cognitive impairment (CI),
microvascular complications (Valencia and Florez, 2017),and
olfactory dysfunction (Yazla et al., 2018).

T2DM-induced cognitive impairment (T2DM-CI), also
known as diabetic encephalopathy, mainly manifests through
learning, judgment, and memory deficits, a decline in executive
function, and decreased information processing speed (Mijnhout
et al., 2006; McCrimmon, et al., 2012; Biessels and Despa,
2018). Many longitudinal studies have found that T2DM is an
independent risk factor for Alzheimer’s disease (AD) (Vagelatos
and Eslick, 2013) and vascular dementia (VD) (Biessels et al.,
2008), and some patients may even deteriorate to severe
dementia (Cukierman et al., 2005). However, due to the diversity
of clinical manifestations of T2DM-CI and its relatively slow
onset, there is no gold standard for diagnosis, which is likely to
cause misdiagnosis or missed diagnosis and delay the treatment
of patients (Srikanth et al., 2020).

Resting state functional MRI (rs-fMRI) and the subsequent
computational analysis have presented the potential of precisely
characterizing and inferring neurological diseases, including
T2DM-CI (Cohen et al., 2017; Rosenberg et al., 2019). Measures
of brain regions and connections are two main aspects of the
computational analysis. Amplitude of low frequency fluctuations
(ALFF) can reflect the intensity of spontaneous neural activity
of each voxel from an energy perspective, thereby reflecting
the regularity and physiological state of neuron autonomous
activity in different brain regions (Pan et al., 2017). It has been
demonstrated that T2DM shows the decreased ALFF in frontal
lobe, parietal lobe, and posterior cerebellar lobe (Xia et al., 2013;
Cui et al., 2014). ALFF disturbances in the occipital lobe may
play an important role in T2DM-related cognitive dysfunction
(Wang et al., 2014). Most previous studies have only compared
T2DM patients with healthy controls (HC), however, T2DM-CI
is not well-studied.

Through various brain atlases [e.g., the recently established
human Brainnetome Atlas of 246 brain subregions (Fan et al.,
2016)], a whole brain functional network can be constructed
from rs-fMRI data to study the brain connections. This method
can fully utilize the rich information from the viewpoint of
connectomics, find potential neuroimaging biomarkers, and help
people understand the neural mechanism of neurological and
psychiatric disorders (Craddock et al., 2013; Fornito et al., 2015;
Qi et al., 2015; Bassett and Sporns, 2017). Previous studies have
shown that T2DM is of aberrant brain functional connectivity
(Musen et al., 2012; Chen et al., 2014).

Through machine learning, the integrated models of
characteristics across multiple brain connections and regions can
be constructed to predict clinical statuses and outcomes (Iniesta

et al., 2016; Woo et al., 2017; Dwyer et al., 2018). Remarkable
progress has been made for autism, schizophrenia, depression,
and AD (Yahata et al., 2016; Sui et al., 2018; Zhu et al., 2019; Jin
et al., 2020). Specifically, Liu et al. (2019) selected 23 connections
to identify 38 T2DM-CI from 84 T2DM patients and the resulted
area under the receiver operating characteristic (ROC) curve
(AUC) reached 0.9737.

Better predictive biomarkers of T2DM-CI rest on the effective
identification of the discriminative features (or connections).
Meanwhile, the number of identified connections must be small
to avoid the over-fitting problem in which the fitting errors
are artificially smaller than inherent data variance (Whelan and
Garavan, 2014; Woo et al., 2017). The resulted model with
over-fitting inevitably presents catastrophic generalizability for
external data. According to a rule of thumb, 10 samples (patients)
are usually required for each feature (or connection) in a binary
classifier (Gillies et al., 2016).

Therefore, we propose one effective method of identifying
a small number of dysfunctional brain connections and use
them as imaging biomarkers to distinguish among T2DM-CI,
T2DM with normal cognition (T2DM-NC), and healthy controls
(HC). There are three contributary aspects. First, one ALFF-
based way is proposed to identify dysfunctional connections
through the impaired Brainnetome regions, integrating the
information of both brain regions and connections. Second,
6, 7, and 5 dysfunctional connections have been identified as
biomarkers distinguishing between T2DM-CI and HC, T2DM-
NC and HC, and T2DM-CI and T2DM-NC. The strength of
identified connections are significantly different among groups
and correlated with cognitive assessment score (p < 0.05). Third,
the constructed three models can predict T2DM and T2DM-CI
with the AUC higher than 0.90. These identified dysfunctional
brain connections might direct the underlying neural mechanism
of T2DM-CI and the potential targets of intervention of T2DM
care. The ALLF-based method can be expanded to study other
neurological disorders.

MATERIALS AND METHODS

Participants
A total of 53 T2DM patients who met the diagnostic criteria
were recruited from Affiliated Zhongshan Hospital of Dalian
University from January 2015 to January 2017. Inclusion criteria
for T2DM patients were that they must: (1) meet the diagnostic
criteria for diabetes, (2) be 45 to 75 years old, (3) have a
history of diagnosis of 5 to 10 years, and (4) be right-handed.
Meanwhile 39 healthy people who were examined at Affiliated
Zhongshan Hospital of Dalian University at the same time were
recruited as the HC group. The sex, age, and education level
of the HC group were matched with T2DM patients. Exclusion
criteria for all participants were: (1) patients with vision, hearing,
language communication, or physical activity difficulties; (2)
patients with psychiatric disorders or head trauma; (3) alcoholics,
smoking addicts, or drug abusers; (4) MRI contraindications;
and (5) patients with brain injury, cerebral hemorrhage, cerebral
infarction, and other brain diseases, and patients with brain

Frontiers in Neuroscience | www.frontiersin.org 2 January 2021 | Volume 14 | Article 588684183

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-588684 December 31, 2020 Time: 11:8 # 3

Qian et al. Connections Predicting T2DM-Induced Cognitive Impairment

white matter demyelination (Age-Related White Matter Changes
(ARWMC) score >1). The detailed demographic information
of the enrolled subjects is shown in Table 1. This study was
approved by the ethics committee of Affiliated Zhongshan
Hospital of Dalian University and was in accordance with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. All the subjects were informed
about the examination, expressed their knowledge of the study,
and signed their informed consent.

We used neuropsychological tests, including the Chinese
version of the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005), clock drawing test (CDT) (Shulman,
2000), auditory verbal learning test (AVLT) (Powell et al., 1991),
digit span test (DST) (Melikyan et al., 2019), trail making test
(TMT) (Llinàs-Reglà et al., 2017), and verbal fluency test (VFT)
(Weiss et al., 2003), to determine the cognitive status of T2DM
patients. The same trained physicians judged whether T2DM
patients have cognitive impairment and divided them into
T2DM-CI (MoCA score < 26, n = 22) and T2DM-NC (MoCA
score ≥ 26, n = 31). The details are given in Table 1.

Rs-fMRI Data Acquisition
MRI scanning was performed using one Magnetom 3.0 Tesla
scanner (Siemens, Germany) with a 12-channel head phased
array surface coil. The gradient field is 45 mT/m, and the gradient
switching rate is 200 mT/ms. The subject’s head was fixed with
a sponge pad before scanning and was informed to keep their
head still during the scan. Structural images were acquired using
the standard 3D magnetization prepared rapid gradient echo
(MPRAGE) sequence: repetition time (TR) = 2530 ms, echo time
(TE) = 2.22 ms, slice thickness = 1.0 mm, flip angle (FA) = 7◦,
field of view (FOV) = 224 × 224 mm, matrix = 224 × 224,
layers = 192. Rs-fMRI images were collected by the echo planar
imaging (EPI) pulse sequence: TR = 2000 ms, TE = 30 ms,
slice thickness = 3.5 mm, FA = 90◦, FOV = 224 × 224 mm,

TABLE 1 | Demographic, clinical, and neuropsychological information of
the participants.

Characteristics T2DM-CI T2DM-NC HC p-value

Gender (male/female) 12/10 18/13 23/16 0.138

Age 62.64 ± 4.94 59.56 ± 7.56 58.34 ± 6.69 0.092

BMI (kg/m2) 25.99 ± 3.03 25.78 ± 3.16 25.10 ± 2.49 0.458

Education duration 10.23 ± 2.89 11.35 ± 3.09 10.86 ± 2.73 0.387

T2DM duration 10.14 ± 4.66 9.15 ± 6.74 − 0.406

FPG (mmol/L) 14.13 ± 7.31 11.08 ± 7.93 5.24 ± 0.29 0.013*

MoCA 21.91 ± 2.77 27.16 ± 1.15 27.24 ± 1.15 < 0.001*

CDT 2.45 ± 0.59 2.77 ± 0.61 3.03 ± 0.57 0.003*

VFT 20.55 ± 6.44 23.63 ± 5.92 22.85 ± 6.42 0.205

AVLT 21.38 ± 5.69 24.94 ± 4.64 25.65 ± 3.33 0.003*

DST 10.59 ± 1.89 12.19 ± 2.62 12.09 ± 2.12 0.025*

TMT(s) 69.95 ± 27.57 51.77 ± 26.83 51.90 ± 21.14 0.019*

Data are presented as mean ± SD. BMI, body mass index; FPG, fasting plasma
glucose; MoCA, Montreal Cognitive Assessment; CDT, clock drawing test; VFT,
verbal fluency test; AVLT, auditory verbal learning test; DST, digit span test; TMT,
trail making test. * indicates a difference of p < 0.05, which is statistically significant.

matrix = 64 × 64, layers = 31. 240 time phases were collected
and 240 images were obtained. The MRI images will be available
upon reasonable request after approval by the Ethic Committee
of Affiliated Zhongshan Hospital of Dalian University.

Overview of the Study Procedure
As shown in Figure 1, there are seven steps in our study.
(1) Image processing is performed according to the standard
procedures. (2) ALFF analysis is done to identify the impaired
regions for three two-group comparisons. (3) Functional brain
network is constructed for each participant. (4) Impaired
Brainnetome regions are identified. (5) Dysfunctional
connections connected with the impaired Brainnetome are
selected. (6) Discriminative connections are identified by
L1-norm regularized sparse canonical correlation analysis (L1-
SCCA) and sparse logistic regression (SLR). (7) Classifiers are
trained, and their performance is evaluated.

It is noted that, to avoid category information leakage, steps
from (2) to (7) in Figure 1 are carried out in a procedure
of leaving-one-out cross validation (LOOCV). It means that
steps from (2) to (7) have be conducted for n1, n2, and n3
times for T2DM-CI versus HC, T2DM-NC versus HC, and
T2DM-CI versus T2DM-NC, where n1, n2, and n3 are the
number of participants in three classifications after step (1) of
imaging preprocessing.

Image Preprocessing
In this study, resting state fMRI data are preprocessed using
Data Processing and Analysis for Brain Imaging (DPABI) toolkit1

in MATLAB 2018b software. As shown in Figure 1B, at first,
the initial 10 time points of fMRI data are removed to exclude
the influence of the instability of equipment initialization and
subjects’ adaptation to the environment. Second, slice-timing
correction and realignment for head motion correction are
carried out. Three participants with head motion exceeding
2.0 mm maximum translation or 2◦ rotation are excluded.
Third, detrending and nuisance covariates regression, including
Friston 24-parameter model, and mean time series of global,
white matter, and cerebrospinal fluid signals as regressors, are
conducted to remove the influence of physiological factors.
Fourth, spatial normalization is carried out, and the brain
structure of each subject is normalized to the standard
template by the Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL) tool (Ashburner, 2007).
Finally, images are smoothed by Gaussian of full-width at half-
maximum 4 mm. Because ALFF analysis is then needed, we have
skipped filtering during the preprocessing. It is noted that 89
subjects (19 T2DM-CI, 31 T2DM-NC, and 39 HC) took part in
the following study since three subjects were removed during
image preprocessing.

ALFF Calculation and Statistical Analysis
We used the modules in the DPABI toolkit to calculate ALFF.
First, time series of each voxel are transformed into frequency
domain by Fourier transform and then the power spectrum is

1http://www.restfmri.net
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FIGURE 1 | Overview of study procedure. (A) Main steps in this study [It is noted that steps from (2) to (7) are carried out many times since they are included in a
procedure of leaving-one-out cross validation (LOOCV) to avoid the leakage of category information]; (B) Image preprocessing; (C) Construction of functional brain
network; (D) Identification of impaired Brainnetome subregions by ALFF analysis; (E) Identification of discriminative connections by L1-SCCA and spare logistic
regression (SLR).

obtained. Subsequently, the square root of each frequency power
spectrum is calculated according to the frequency band (usually
0.01–0.08 Hz), and the mean value is ALFF. Finally, the ALFF
values are standardized to reduce the errors caused by individual
differences. The standardized ALFF value is the ALFF value of
each voxel divided by the whole brain ALFF mean value.

We have performed statistical analysis on the standardized
ALFF values of T2DM-CI, T2DM-NC, and HC. The ALFF values
among the three groups are compared by one-way ANOVA
test and the statistical map with significant difference is used
to create a mask. Then two-sample t-tests are performed as

post hoc tests to identify regions with significant differences in
the mask above. The significance level of two-sample t-tests
are set at p < 0.05 with 1000 permutations corrected with
the threshold-free cluster enhancement (TFCE) correction. It is
found that permutations corrected with the TFCE correction
can best balance the family-wise error (FWE) rate and test-retest
reliability (Chen et al., 2018).

To avoid the category information leakage, ANOVA test and
two-sample t-test are carried out after leaving one out, not for all
subjects. Specifically, in each fold of the leave-one-out procedure,
we have conducted the above ANOVA test and two-sample t-test
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on all subjects except the one who is taken out, then we get
the regions with significantly different ALFF of this fold. They
are named the impaired regions. In summary, this step of ALFF
calculation and statistical analysis has been conducted 58 times
for T2DM-CI versus HC, 70 times for T2DM-NC versus HC, and
50 times for T2DM-CI versus T2DM-NC.

Construction of Functional Brain
Networks
The network consists of many nodes and edges between those
nodes. In the functional brain network, nodes represent brain
regions and edges represent the degree of statistical dependence
of blood oxygen level dependent (BOLD) imaging between
different brain regions. As shown in Figure 1C, the present
study has used the Human Brainnetome Atlas (Fan et al., 2016),
which parcellates the whole human brain into 246 subregions,
and each subregion represents a node in the brain network. With
the progress of MRI scanning, changes in activity of different
brain regions can be reflected as time courses. For each subject,
we obtain the average time courses of the 246 brain subregions
and then we calculate the Pearson correlation coefficient between
the average time courses of any two subregions as a functional
connectivity indicator between them, which can be used as the
edge of the brain network. After that, we can get one 246 × 246
adjacency matrix of each subject, which is called the weighted
functional connectivity matrix.

Identification of Impaired Brainnetome
Subregions
After using two-sample t-test of ALFF to determine voxels
with significant differences between two groups, we excluded
clusters with less than 20 voxels. Spatially matching the impaired
regions identified by ALFF analysis with Brainnetome Atlas
can determine the volume of the impaired region in each
Brainnetome subregions. We sort the Brainnetome subregions by
volume of impaired region from large to small. Finally, two lists
of subregions with increased and decreased ALFF are obtained
for each two-group comparison.

Previous studies have reported that, compared with HCs,
T2DM patients have decreased ALFF values in brain regions
which are related to cognitive impairment. There are 15
Brainnetome subregions with decreased ALFF for both T2DM-
CI versus HC and T2DM-NC versus HC, which are named as the
impaired Brainnetome subregions. For T2DM-CI versus T2DM-
NC, there are only 10 subregions with decreased ALFF. In order
to get the same number of subregions for the three groups, we
have added five subregions with increased ALFF.

Identification of Connections With High
Discriminative Power
In constructed adjacency matrix, all functional connections
connected to the 15 impaired Brainnetome subregions are
considered to be potentially discriminative.

The number of features is still too large for classification. We
utilize a combination of L1-SCCA and SLR to further perform
dimension reduction (Yahata et al., 2016). At first, we have two

data matrices: the first data matrix of X1 = [x1
1, x2

1, . . . , xN1 ]
T

and the second matrix of X2 = [x1
2, x2

2, . . . , xN2 ]
T . X1 lists the

attributes all subjects with a dimension of N × p1 (N is the
number of subjects, p1 is 3 here). The first column of X1 is the
“Diagnosis” label (either 0 or 1), while the second and third
columns are the age and gender (1 for male, 0 for female). X2
lists the connections connected with 15 impaired Brainnetome
subregions with a dimension of N×p2 (p2 is 3570 here). L1-SCCA
is applied to get the sparse projection matrices V1 and V1 from
X1 and X2. As the equation given in references (Witten et al.,
2009; Yahata et al., 2016), for a canonical variable, L1-SCCA is
formulated as,

max
v1,v2

vT
1 XT

1X2v2 subject to | |v1| |
2
1 ≤ λ1, | |v2| |

2
1 ≤ λ2, ||v1||

2
2

≤ 1, ||v2||
2
2 ≤ 1

(1)

where v1 and v2 are the projection vectors and λ1 and λ2 are their
sparseness, respectively. Subsequently, the canonical variable
only associated with the “Diagnosis” label is determined, the
connections corresponding to the diagnostic canonical variable
is chosen, and the effect of nuisance variables of age and
gender is reduced.

Sparse logistic regression is further used to reduce the
dimension of features and identify the connections with high
discriminative power. Given N feature-label data samples{(
x1, y1

)
, . . . ,

(
xN, yN

)}
, LR aims to find the parameter vector

θ such that the likelihood function l (θ) is maximized.

l (θ) =
N∑

n=1

[
ynlogpn +

(
1− yn

)
log

(
1− pn

)]
(2)

where,

pn =
1

1+ exp
(
−f (xn; θ)

) (3)

here f (xn; θ) =
D∑

d=1
θdxd + θ0, D is the dimension of features and

θ0 is the bias.
Sparse logistic regression combines the automatic relevance

determination (ARD) with LR (Yamashita et al., 2008). Imposing
the constraint on the weight parameter, ARD assumes that each
parameter θd has a Gaussian prior with mean 0.

P (θd|αd) = N
(
0, α−1

d
)

d = 1, . . . , D (4)

here αd is the inverse variance of the normal distribution and it is
treated as a hyper-parameter, named “the relevance parameter.”
αd regulates the range of θd. It is known that most αd diverges
to infinity and the corresponding θd is pruned. Finally, the
connections related to the label are automatically selected by SLR.

After this reduction, an average of 15.47 connections remain.
However, these surviving connections are still too many for
the sample in this study and result in over-fitting. Therefore,
we instigate the influence of surviving connections on the
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classification performance and determine the final discriminative
connections when the highest performance reaches this point.

Classification and Performance
Evaluation
Support vector machine (SVM) is used to build prediction
models. This study has used the library for support vector
machines (LIBSVM) toolkit2, which integrates functions such as
SVM kernel selection, parameter adjustment, and prediction. We
chose the radial basis function (RBF) as the kernel function of
the SVM, and the values of the optimal penalty coefficient C and
the kernel function parameter Gamma are determined by the grid
search method through 5-fold cross validation.

Due to the limited number of samples in this study, we have
used LOOCV to estimate the generalization of the classifier. The
receiver operating characteristic (ROC) curve, the area under
ROC curve (AUC), and the confusion matrix are used to quantify
the performance of the classifier. Moreover, using the fixed
discriminative connections identified in this study as the features,
three SVM models are trained and evaluated by LOOCV.

RESULTS

Impaired Brainnetome Subregions
Determined by ALFF
Through ALFF analysis and subsequent matching, 15 impaired
subregions have been identified for T2DM-CI versus HC, T2DM-
NC versus HC, and T2DM-CI versus T2DM-NC (Figure 2 and
Table 2). In Figure 2, the abbreviation of brain subregion is
used, and one can refer to the original paper for the full names
(Fan et al., 2016).

Using T2DM-CI versus HC as an example, we have conducted
the group comparison (or ALFF analysis) 58 times in LOOCV
loop. During these 58 comparisons, only one sample (or patient)
is different between any two comparisons. Some clusters of voxels
with significantly different ALFF will be obtained and there is
only a slight difference (a several of voxels) between the “impaired
regions” of any two comparisons. However, this slight difference
has been eliminated in the impaired Brainnetome subregions. It is
because these Brainnetome subregions are selected if they overlap
with the “impaired regions” and the overlap status does not
change with the slight variation of “impaired regions.” We have
compared the identified subregions in 58 experiments of LOOCV
loop for T2DM-CI versus HC and found they are completely the
same. It is also true for the other two comparisons.

For T2DM-CI versus HC, two impaired subregions are in
the frontal lobe, four in the inferior parietal lobule, three in
the precuneus, four in the cingulate gyrus, and two in the
occipital lobe. For T2DM-NC versus HC, there is the same spatial
distribution as for T2DM-CI versus HC.

Two subregions in the middle frontal gyrus belong to the
executive control network (ECN), four in the inferior parietal,
four in the cingulate gyrus, and three in the precuneus are in

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

the default model network (DMN). Two in the occipital lobe
belong to the visual network (VN). Among 15 subregions, 13 are
overlapped between T2DM-CI versus HC and T2DM-NC versus
HC, indicating that T2DM-CI and T2DM-NC have a common
neuropathological basis.

For T2DM-CI versus T2DM-NC, three subregions are in the
frontal lobe, one in the superior parietal lobule, four in the
inferior parietal lobule, one in the postcentral gyrus, four in the
precuneus, one in the cingulate gyrus, and one in the occipital
lobe. Among 15 subregions, seven have appeared in the above two
comparisons and they belong to DMN and ECN. One subregion
in the superior parietal lobule and one in the postcentral gyrus
are the new ones which do not appear in the other comparisons.
From the viewpoint of intrinsic brain network, three subregions
(ID: 16, 17, 18) are in ECN, nine in DMN (ID: 136, 138, 142, 144,
151, 152, 153, 154, 183), one in FPN (ID: 132), 1 in DAN (ID:
161), and one in VN (ID: 210).

Dysfunctional Connections With High
Discriminative Power
The effect of the number of discriminative connections on
prediction accuracy is given in Figure 3. It is shown that the SVM
model has the highest accuracy of 93.1%, while six discriminative
connections remain for T2DM-CI versus HC. For T2DM-NC
versus HC and T2DM-CI versus T2DM-NC, the optimal number
of discriminative connections is seven and five. The feature
selection method of L1-SCCA and SLR is much better than the
dimension reduction of principal component analysis (PCA).

Because LOOCV is used to divide the dataset, the surviving
connections for each fold are slightly different. Sorting the
connections by repeat times, the top six, top seven, and top
five connections are listed in Tables 3–5 for T2DM-CI versus
HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC,
respectively. The spatial locations of the identified connections
are given in Figure 4. The straight-line distance between two
endpoints of each connection is also calculated according to the
MNI coordinates of the subregions and presented in Tables 3–5.

It is found that for T2DM-CI versus HC, among the six
selected connections (Table 3, Figure 4A), two are between
regions within DMN (left and right subregions in cingulate
gyrus; two subregions in cingulate gyrus and inferior frontal
gyrus), two between DMN and frontoparietal network (FPN),
one between DMN and ECN, and one between DMN and salience
network (SAN). DMN appears in all six connections. All six
connections are long-distance links across different lobes; three
of the six are inter-hemispheric, and the other three are right
intra-hemispheric. Though the straight-line distance between
subregions of 181 and 182 is only 19.29 mm, it has been treated
as a “long-distance” link as it is inter-hemispheric. No left
intra-hemispheric connection is observed. For the three inter-
hemispheric connections, one subregion in the precuneus (ID:
154, Pcun_R_4_4) appears twice.

For T2DM-NC versus HC, among the seven selected
connections (Table 4 and Figure 4B), there were two
between regions of DMN, two between DMN and ECN,
one between ECN and dorsal attention network (DAN),
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TABLE 2 | Impaired brain subregions identified through ALFF analysis in T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC.

ID Brain subregion Anatomical and cyto-architectonic descriptions MNI coordinate Selected or not

X Y Z CI vs. HC NC vs. HC CI vs. NC

15 MFG_L_7_1 A9/46d, dorsal area 9/46 −27 43 31
√

16 MFG_R_7_1 A9/46d, dorsal area 9/46 30 37 36
√

17 MFG_L_7_2 IFJ, inferior frontal junction −42 13 36
√ √

18 MFG_R_7_2 IFJ, inferior frontal junction 42 11 39
√

23 MFG_L_7_5 A8vl, ventrolateral area 8 −33 23 45
√

26 MFG_R_7_6 A6vl, ventrolateral area 6 34 8 54
√

132 SPL_R_5_4 A7pc, postcentral area 7 23 −43 67
√

136 IPL_R_6_1 A39c, caudal area 39 (PGp) 45 −71 20
√

138 IPL_R_6_2 A39rd, rostrodorsal area 39 (Hip3) 39 −65 44
√ √ √

142 IPL_R_6_4 A40c, caudal area 40 (PFm) 57 −44 38
√ √ √

143 IPL_L_6_5 A40c, caudal area 40 (PFm) −47 −65 26
√ √

144 IPL_R_6_5 A39rv, rostroventral area 39 (PGa) 53 −54 25
√ √ √

151 Pcun_L_4_3 dmPOS, dorsomedial parietooccipital sulcus −12 −67 25
√

152 Pcun_R_4_3 dmPOS, dorsomedial parietooccipital sulcus 16 −64 25
√ √ √

153 Pcun_L_4_4 A31, area 31 (Lc1) −6 −55 34
√ √ √

154 Pcun_R_4_4 A31, area 31 (Lc1) 6 −54 35
√ √ √

161 PoG_L_4_4 A1/2/3tru, area 1/2/3 (trunk region) −21 −35 68
√

175 CG_L_7_1 A23d, dorsal area 23 −4 −39 31
√ √

176 CG_R_7_1 A23d, dorsal area 23 4 −37 32
√ √

181 CG_L_7_4 A23v, ventral area 23 −8 −47 10
√ √

182 CG_R_7_4 A23v, ventral area 23 9 −44 11
√ √

183 CG_L_7_5 A24cd, caudodorsal area 24 −45 7 37
√

209 sOcG_L_2_2 lsOccG, lateral superior occipital gyrus −22 −77 36
√ √

210 sOcG_R_2_2 lsOccG, lateral superior occipital gyrus 29 −75 36
√ √ √

ID, the ID of the note (brain subregion) in the Human Brainnetome Atlas; MFG, middle frontal gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; Pcun,
precuneus; PoG, postcentral gyrus; CG, cingulate gyrus; sOcG, superior occipital gyrus.

√
indicates the brain region which is selected as the impaired brain subregions.

FIGURE 2 | Impaired Brainnetome subregions determined by ALFF. (A) T2DM-CI versus HC; (B) T2DM-NC versus HC; (C) T2DM-CI versus T2DM-NC.

one between DMN and FPN, and one between DMN and
SAN. Among the seven connections, two are left intra-
hemispheric, two are inter-hemispheric, and three are right
intra-hemispheric. All seven connections are long-distance
links. The connection between subregions of 175 and 176
is inter-hemispheric, though the straight-line distance is
only 8.31 mm.

When comparing T2DM-CI versus HC and T2DM-NC
versus HC, it is surprising to find that no overlap exists
between the six and seven connections although DMN, FPN,
ECN, and SAN are involved in both cases. It indicates that
the neuropathological substrate for T2DM-CI and T2DM-
NC might be different from the viewpoint of functional
connections, though they have almost the same impaired
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FIGURE 3 | The effect of the number of discriminative connections on prediction accuracy and comparison of our method with feature reduction of principle
component analysis (PCA). (A) T2DM-CI versus HC; (B) T2DM-NC versus HC; (C) T2DM-CI versus T2DM-NC.

TABLE 3 | Six discriminative functional connections for T2DM-CI versus HC.

Connected nodes ID Connected brain subregions Repeat times Distance (mm) Resting state network Correlation with MoCA p-value

181-182 (A23v-A23v) CG_L_7_4, CG_R_7_4 58 17.29 DMN 0.3247 0.0129

133-144 (A7ip-A39rv) SPL_L_5_5, IPL_R_6_5 58 85.24 FPN-DMN −0.3465 0.0077

8-154 (A6dl-A31) SFG_R_7_4, Pcun_R_4_4 57 69.86 FPN-DMN −0.4403 0.0005

138-188 (A39rd-A32sg) IPL_R_6_2, CG_R_7_7 56 117.63 DMN −0.3506 0.0070

30-154 (A44d-A31) IFG_R_6_1, Pcun_R_4_4 55 80.75 ECN-DMN −0.3482 0.0074

143-170 (A39rv-vId/vIg) IPL_L_6_5, INS_R_6_4 37 112.21 DMN-SAN −0.3746 0.0038

CG, cingulate gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; SFG, superior frontal gyrus; Pcun, precuneus; IFG, inferior frontal gyrus; INS, caudodorsal
posterior insula; DMN, default mode network; FPN, frontoparietal network; ECN, executive control network; SAN, salience network.

subregions (Table 2). This finding may emphasize that the
information of brain regions and connections are intrinsically
different and complementary.

For T2DM-CI versus T2DM-NC, among the five selected
connections (Table 5, Figure 4C), there are three between
DMN and ECN, one between subregions within the DMN,

and one between DMN and FPN. Three connections are with
the subregion of IPL_R_6_5 in the inferior parietals lobule.
Three are inter-hemispheric connections. All five connections
are long-distance links across different lobes, suggesting that the
global integration of information, not the local communication,
might be abnormal in T2DM-induced cognitive impairment. The
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TABLE 4 | Seven discriminative functional connections for T2DM-NC versus HC.

Connected nodes ID Connected brain subregions Repeat times Distance (mm) Resting state network Correlation with MoCA p-value

154-166 (A31-vIa) Pcun_R_4_4, INS_R_6_2 70 87.50 DMN-SAN −0.0712 0.5581

26-110 (A6vl-A35/36r) MFG_R_7_6, PhG_R_6_1 70 88.66 ECN-DMN −0.0858 0.4800

71-181 (A41/42-A23v) STG_L_6_2, CG_L_7_4 70 48.43 FPN-DMN 0.0316 0.7950

175-176 (A23d-A23d) CG_L_7_1, CG_R_7_1 70 8.31 DMN 0.0081 0.9472

32-144 (IFS-A39rv) IFG_R_6_2, IPL_R_6_5 70 89.94 ECN-DMN 0.0108 0.9296

15-160 (A9/46d-A2) MFG_L_7_1, PoG_R_4_3 66 102.00 ECN-DAN 0.0354 0.7709

115-153 (A28/34-A31) PhG_L_6_4, Pcun_L_4_4 64 78.19 DMN −0.1040 0.3915

Pcun, precuneus; INS, caudodorsal posterior insula; MFG, middle frontal gyrus; PhG, parahippocampal gyrus; STG, superior temporal gyrus; CG, cingulate gyrus; IFG,
inferior frontal gyrus; IPL, inferior parietal lobule; PoG, postcentral gyrus; DMN, default mode network; SAN, salience network; ECN, executive control network; FPN,
frontoparietal network.

TABLE 5 | Five discriminative functional connections for T2DM-CI versus T2DM-NC.

Connected nodes ID Connected brain subregions Repeat times Distance (mm) Resting state network Correlation with MoCA p-value

32-144 (IFS-A39rv) IFG_R_6_2, IPL_R_6_5 50 89.94 ECN-DMN −0.4273 0.0020

18-237 (IFJ-rTtha) MFG_R_7_2, Tha_L_8_4 50 63.64 ECN-DMN 0.3831 0.0060

37-151 (A44op-dmPOS) IFG_L_6_5, Pcun_L_4_3 50 96.28 ECN-DMN 0.3862 0.0056

144-217 (A39rv-cHipp) IPL_R_6_5, Hipp_L_2_2 48 91.44 DMN 0.3555 0.0113

133-144 (A7ip-A39rv) SPL_L_5_5, IPL_R_6_5 37 85.24 FPN-DMN −0.3527 0.0120

IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; Tha, Thalamus; Pcun, precuneus; Hipp, hippocampus; SPL, superior parietal lobule; IPL,
inferior parietal lobule; ECN, executive control network; DMN, default mode network; FPN, frontoparietal network.

hippocampus and thalamus are new regions which do not appear
in T2DM-CI versus HC and T2DM-NC versus HC.

Altered Strength of Discriminative
Connections
The strength of discriminative connections is compared between
different groups (Figure 5). All discriminative connections have
significantly different strengths (p < 0.05). Here we define that
the smaller connectivity indicates a more negative strength of
connection and the greater connectivity indicates a more positive.
As shown in Figure 5A, T2DM-CI shows the smaller connectivity
in one connection (181-182) but the greater connectivity in
five connections than HC. Most discriminative connections are
“weak.” Specifically, only one connection has a strength higher
than 0.6 and the other five have strength less than 0.4.

For T2DM-NC versus HC, one connection has strength
higher than 0.8 and the other six have strength less than 0.3.
Three connections have greater connectivity in T2DM-NC than
HC (26-110; 71-181; 15-160) and the other four show the
opposite results.

For T2DM-CI versus T2DM-NC, all five discriminative
connections are “weak” and with an absolute strength less than
0.3. Three connections in T2DM-CI show smaller connectivity
than T2DM-NC (18-237; 37-151; 144-217), but two show the
greater connectivity.

Strength of Discriminative Connections
and MoCA Score
The correlations between the real value of five discriminative
connections and MoCA score are analyzed and the correlation
coefficients (r) and p-values are listed in Tables 3–5 for three

comparisons. For T2DM-CI versus HC, the strength of all six
connections is significantly correlated with MoCA score. The first
connection (181-182) has positive r of 0.3247, corresponding to
the one with the smaller connectivity in T2DM-CI, and the others
have negative r. As expected, there are no significant correlations
between the strength of discriminative connections and MoCA
score for T2DM-NC versus HC because they have a similar
MoCA score >26.

For T2DM-CI versus T2DM-NC, the correlations between the
real value of five discriminative connections and MoCA score
are given in Figure 6. It is found that they are significantly
correlated (p < 0.05) and the correlation coefficient (r) is
−0.4273, 0.3831, 0.3862, 0.3555, and−0.3527. For the connection
between the inferior frontal gyrus and inferior parietal lobule,
the value is positive in T2DM-CI but negative in T2DM-NC
(ID: 32 and 144). The same trend occurs for the connection
between the superior temporal gyrus and inferior parietal
lobule (ID: 133 and 144). The opposite trend appears for the
other three connections: middle frontal gyrus and Thalamus
(ID: 18 and 237); inferior frontal gyrus and precuneus (ID:
37 and 151); and inferior parietal lobule and hippocampus
(ID: 144 and 217).

We have analyzed the correlations between the strength of
five discriminative connections in T2DM-CI versus T2DM-NC
and CDT, AVLT, DST, TMT, VFT, respectively. The Pearson
correlation coefficient (r) and the p-values are calculated. Only
three cases are significant (p < 0.05): Connection 32-144 and
CDT (r = −0.3137); Connection 18-237 and DST (r = 0.3191);
and Connection 144-217 and CDT (r = 0.2894). Since the
five discriminative connections are determined according to
the classification label given by the MoCA threshold, their
strength is significantly correlated with MoCA (Table 5).
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FIGURE 4 | Dysfunctional connections with high discriminative power. (A) Six connections for T2DM-CI versus HC; (B) Seven connections for T2DM-NC versus HC;
(C) Five connections for T2DM-CI versus T2DM-NC. The blue lines represent connections used for classification. Dots represent brain subregion nodes connected
to these connections. Different colored dots represent subregions from different resting state network. The green dots indicate subregions of DMN, the red dots
indicate subregions of FPN, yellow dots indicate subregions of ECN, purple dots indicate subregions of SAN and black dots indicate subregions of DAN.
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FIGURE 5 | Strength comparison of dysfunctional discriminative connections. (A) Six connections for T2DM-CI versus HC; (B) Seven connections for T2DM-NC
versus HC; (C) Five connections for T2DM-CI versus T2DM-NC. * indicates a difference of p < 0.05, which is statistically significant.

However, only three of 25 cases are significant for the five
neuropsychological test scales of CDT, AVLT, DST, TMT,
and VFT. A possible reason might be that these scales
measure different aspects of the neuropsychology or cognition
of T2DM patients.

Performance of Predictive Models
As shown in Figure 7A, for T2DM-CI versus HC, the optimal
SVM models achieve an average accuracy of 93.1% and an AUC
of 0.912 in the LOOCV loop. The precision, F1-score, recall, and
specificity are 94.1, 88.9, 84.2, and 97.4%, respectively (Figure 7B.

For T2DM-NC versus HC (Figures 7A,C), the optimal SVM
models achieve an average accuracy of 88.6% and an AUC of
0.901. The precision, F1-score, recall, and specificity are 84.8,
87.5, 90.3, and 87.2%, respectively. The performance is slightly
lower than the models for T2DM-CI versus HC.

For T2DM-CI versus T2DM-NC (Figures 7A,D), the optimal
SVM models achieve an average accuracy of 76.0% and an AUC
of 0.861. However, the recall and F1-score are lower and only
reach 62.5 and 52.6%, respectively. Of the nineteen patients with
T2DM-CI, nine are wrongly predicted as T2DM-NC.

When using the fixed discriminative connection as input
features, the performance of SVM models can be improved. As
shown in Figure 8, the AUC can be increased to 0.977, 0.929,
and 0.927 for T2DM-CI versus HC, T2DM-NC versus HC, and
T2DM-CI versus T2DM-NC, respectively. Especially for T2DM-
CI versus T2DM-NC, the recall and F1-score can reach 78.9 and
83.3%, respectively, although four patients with T2DM-CI are
still predicted wrongly.

DISCUSSION

To the best of our knowledge, this is the first study to
identify a small number of dysfunctional brain connections as
imaging biomarkers distinguishing among T2DM-CI, T2DM-
NC, and HC simultaneously. As small as six, seven, and five
identified connections can lead to reliable SVM classifiers and
the prediction accuracy can reach 96.6, 90.0, and 88.0% for
T2DM-CI (n = 19) versus HC (n = 39), T2DM-NC (n = 31)
versus HC (n = 39), and T2DM-CI (n = 19) versus T2DM-
NC (n = 31), respectively. The small number of connections
alleviates the over-fitting problem. The proposed new way
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FIGURE 6 | Correlations between the dysfunctional discriminative connections and MoCA scores for T2DM-CI and T2DM-NC groups. (A) Connection 32-144;
(B) Connection 18-237; (C) Connection 37-151; (D) Connection 144-217; (E) Connection 133-144.

of identifying connections starts from ALFF analysis to find
impaired Brainnetome subregions, further selects discriminative
connections from ones linked with impaired subregions by L1-
SCCA and SLR, and determines the final connections through
investigating the effect of the number of connections on
prediction accuracy.

Impaired Brainnetome Subregions
for ALFF
Compared with the HC group, the 15 impaired Brainnetome
subregions with decreased ALFF in the two T2DM groups
(T2DM-CI and T2DM-NC) are mostly the same, located in
the frontal lobe, inferior parietal lobule, precuneus, posterior
cingulate gyrus, and occipital lobe. This finding is in line
with previous studies. The frontal lobe is involved in cognitive
functions such as execution function, attention, memory, and
language (Chayer and Freedman, 2001); the precuneus is related
to many high-level cognitive functions, such as episodic memory,
self-related information processing, and self-awareness (Cavanna
and Trimble, 2006). The decreased activity in the occipital
lobe is significantly correlated with visual memory decline,
information processing speed loss, and attention loss. In addition,
a relevant study has reported that the hypometabolism and neural
degeneration in the posterior cingulate cortex are related to
cognitive decline in AD, schizophrenia, and other brain diseases
(Dan et al., 2019). Zhou et al. concluded that the inferior parietal
lobule, including the angular gyrus and the supramarginal gyrus,

is involved in higher cognitive function activities, especially
executive control functions (Zhou et al., 2019). The decreased
ALFF reflects the inhibition of neurons in related brain regions
and the decrease of activity (Wang et al., 2011).

For T2DM-CI versus T2DM-NC, 12 subregions belong
to DMN and ECN and the other three belong to FPN,
DAN, and VN. These regions appear in AD, mild cognitive
impairment, and schizophrenia, and are thought be implicated
with cognition (Sui et al., 2018; Jin et al., 2020). In summary,
the identified Brainnetome subregions are impaired from the
viewpoint of ALFF (i.e., the intensity of spontaneous neural
activity) and might help understand the neuropathological basis
of T2DM and T2DM-CI.

Discriminative Connections Are
DMN-Related and Long-Distance
For three classifications, the identified brain connections with
high discriminative power are mainly between subregions within
DMN and between DMN and other resting state networks
including ECN, FPN, and SAN. It is no wonder that DMN
are implicated with T2DM and T2DM-CI (Yang et al., 2016;
Macphersona et al., 2017). DMN is related to continuous
thinking, imagination, and internal mental activities such as
memory, theory of mind, and self-thinking (Brewer et al., 2011).
In addition, DMN is considered to be related to human cognitive
function (Broyd et al., 2009), and some studies have also found
that abnormal activity in the DMN is closely related to some
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FIGURE 7 | The ROC curve and confusion matrix obtained by LOOCV procedure. (A) The ROC curves for three classifications; (B) The confusion matrix of T2DM-CI
versus HC; (B) The confusion matrix of T2DM-NC versus HC; (D) The confusion matrix of T2DM-CI versus T2DM-NC.

psychiatric disorders, such as MCI (Wang et al., 2019), AD
(Agosta et al., 2012) and schizophrenia (Jing et al., 2019).

In T2DM-CI versus T2DM-NC, it is found that most of the
discriminative connections are between DMN and other resting
state networks. ECN is involved in goal-oriented advanced
cognitive tasks and plays an important role in adaptive cognitive
control (Seeley et al., 2007). FPN is related to interoceptive
awareness, working memory, and emotional regulation (Salas
et al., 2014), and studies have found that the destruction of FPN
and DMN is the basis of metacognitive deficits (Jia et al., 2020).
Combining the functions of these networks, previous research,

and the findings found in this study, we speculated that the
cognitive impairment caused by T2DM may be mainly related
to the abnormal connectivity patterns between DMN and ECN,
FPN, or other resting state networks.

Another finding is that all discriminative connections for
three classifications are long-distance. It is in agreement with
the report of T2DM-CI (Liu et al., 2019). One possible reason is
that the impaired subregions are hub nodes in the brain network
and they mediate the long-distance connections between brain
modules (Crossley et al., 2014). The hubs are generally implicated
in different brain disorders. These long-distance connections
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FIGURE 8 | The ROC curve and confusion matrix obtained by fixed discriminative connections. (A) The ROC curves for three classifications; (B) The confusion
matrix of T2DM-CI versus HC; (C) The confusion matrix of T2DM-NC versus HC; (D) The confusion matrix of T2DM-CI versus T2DM-NC.

are functionally valuable for information integration and are
closely related with cognition (van den Heuvel et al., 2012;
Crossley et al., 2013).

The Methodology From Brain Regions to
Connections
Here we have proposed one way of identifying discriminative
connection for the diagnosis prediction of T2DM and T2DM-CI.
It belongs to the category of “From brain regions to connections”
and the measure of brain regions is ALFF. Our previous
study used prior knowledge to localize the etiological origin
of depression (lateral habenula, LHb), selected discriminate

connections linked with LHb, and realized an accurate prediction
of subclinical depression (Zhu et al., 2019). This method is also in
the category of “From brain regions to connections.” Moreover,
the measure of brain regions can be certainly expanded to other
fMRI measures, including regional homogeneity (ReHo) and
Voxel-mirrored Homotopic Connectivity (VMHC).

The identified Brainnetome subregions help narrow the search
range of discriminative connections. More importantly, the
impaired Brainnetome subregions will leave “ALFF memory” to
the discriminative connections so that the final classification has
used valuable information of both brain region and connections.
We observed that among 15 impaired subregions, 13 are
overlapped between T2DM-CI versus HC and T2DM-NC versus
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HC. However, no overlap exists between the six and seven
discriminative connections. This observation suggests that the
information of brain regions and connections are intrinsically
different and complementary.

Another category of identifying discriminative connections
is “Select connections from network directly.” The selection
method can be L1-SCCA, SLR, elastic net, and so on (Yahata
et al., 2016; Liu et al., 2019). These methods emphasize the
role of connections and believe the hypothesis of “the node is
determined by its connections.” The third category is “Select
brain regions and connections simultaneously.” The measures
of brain regions and connections are treated equally, and the
selection or reduction of measures rely on powerful machine
leaning algorithms or multiple variable analysis (Jin et al., 2020).

Less Is Better for Reliable Biomarkers
Over-fitting is one of the main issues for neuroimaging-based
classifiers of neurological disorders. We have 30135 connection
candidates (246∗245/2 = 30135), and more if necessary. However,
the sample size is only 92 in this study due to the difficulty of
recruiting patients. An effective way of identifying discriminative
features (or connections) is the key to generating better
predictive biomarkers.

Less is better for the reliable biomarkers. In this study,
single-digit brain functional connections have been identified
and enable prediction of T2DM and T2DM-IC. Specifically,
six, seven, and five dysfunctional connections can distinguish
between T2DM-CI and HC, T2DM-NC and HC, and T2DM-
CI and T2DM-NC, respectively. Each feature (or connection)
corresponds to 10 samples (patients) in a binary classifier (Gillies
et al., 2016). Fewer connections can alleviate the problem of over-
fitting and increase the generalizability of prediction models.
Fewer connections means that the etiological origin of T2DM
and T2DM-CI is more specific and potential intervention will be
targeted and precise.

It should be noted that our study aims to identify a
small number of dysfunctional brain connections as imaging
biomarkers distinguishing between T2DM-CI, T2DM-NC, and
HC. These identified dysfunctional brain connections may help
to understand the underlying neural mechanism of T2DM-
CI and even find targets of intervention. However, for real
clinical diagnosis and intervention, more studies are required.
For clinical diagnosis of T2DM-CI, a reasonable way might be
to conduct the cognitive assessment from the clinic at first to find
the high-risk group and then to do an fMRI scan.

Limitations and Future Directions
There are many limitations in the current study. The sample
size is still small, although the total number has reached 92.
Moreover, the generalizability of the classifier is not tested on an
independent validation cohort since all participants are recruited
from one single center. However, the results of this study have
confirmed the potential of functional connectivity patterns based
on ALFF results to predict cognitive impairment in T2DM
patients. In the future, more effective prediction models may be
obtained through larger sample data combined with data from
different sources.

In terms of the construction of the prediction model, for
the time being, only the combination of L1-SCCA and sparse
logistic regression are used to reduce the dimension of selected
features. In the future, we can use elastic net model, minimum-
redundancy maximum relevancy, recursive feature elimination,
and other feature selection and dimension reduction methods to
obtain a better classification model (Liu et al., 2019).

In this study, T2DM patients have been divided into
T2DM-CI and T2DM-NC according to neuropsychological tests.
However, because T2DM patients may suffer from diabetic
microangiopathy, diabetic retinopathy, and other complications,
these diseases may also affect ALFF and functional connectivity.
In future research, it may be necessary to consider the impact of
other T2DM complications and analyze the potential impact of
factors such as the course of T2DM patients and the degree of
cognitive impairment (Rosenberg et al., 2019).

Finally, this study mainly analyzed from the perspective of
brain functional connection network through fMRI data. In the
future research, we can combine more neuroimaging data to find
abnormalities caused by T2DM-induced cognitive impairment
from structural abnormalities as a comprehensive biomarker, so
as to make a more reliable analysis and diagnosis of the disease
(Woo et al., 2017; Jin et al., 2020).

CONCLUSION

In this study, via ALFF analysis and effective algorithms of
feature selection, single-digit dysfunctional brain connections
have been identified to predict T2DM and T2DM-induced CI.
Only using six, seven, and five discriminative connections,
the trained SVM models can realize the classification between
T2DM-CI and HC, T2DM-NC and HC, and T2DM-CI and
T2DM-NC, with an AUC of 0.912, 0.901, and 0.861, respectively.
The strength of identified connections were significantly
different among groups and correlated with cognitive assessment
(MoCA) score. The impaired Connectome subregions and
dysfunctional connections might serve as the imaging biomarkers
of T2DM-CI and as potential targets of intervention of
T2DM care. The developed method leaves "ALFF memory" to
the discriminative connections so that the final classification
has used valuable information from both brain regions and
connections, which can be expanded to studies of other
neurological disorders.

DATA AVAILABILITY STATEMENT

The MRI images will be available upon reasonable request
after approval by the Ethic Committee of Affiliated Zhongshan
Hospital of Dalian University.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Affiliated Zhongshan

Frontiers in Neuroscience | www.frontiersin.org 15 January 2021 | Volume 14 | Article 588684196

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-588684 December 31, 2020 Time: 11:8 # 16

Qian et al. Connections Predicting T2DM-Induced Cognitive Impairment

Hospital of Dalian University. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

SQ, YY, and JW designed and directed the study. HQ, DQ, YT,
and CL analyzed the data. DQ and JW recruited participants and
acquired the data. HQ, SQ, YT, and YY drafted the manuscript

together. All authors revised and approved the final version
of the manuscript.

FUNDING

This work was partly supported by the National Natural Science
Foundation of China under Grant (Nos. 81671773 and 61672146
to SQ) and the Fundamental Research Funds for the Central
Universities (N181904003, N172008008, and N2024005-2 to SQ).

REFERENCES
Agosta, F., Pievani, M., Geroldi, C., Copettif, M., Frisonil, G. B., and Filippi, M.

(2012). Resting state fMRI in Alzheimer’s disease: beyond the default mode
network. Neurobiol. Aging 33, 1564–1578. doi: 10.1016/j.neurobiolaging.2011.
06.007

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,
353–364.

Biessels, G. J., Deary, I. J., and Ryan, C. M. (2008). Cognition and diabetes: a lifespan
perspective. Lancet Neurol. 7, 184–190. doi: 10.1016/s1474-4422(08)70021-8

Biessels, G. J., and Despa, F. (2018). Cognitive decline and dementia in diabetes
mellitus: mechanisms and clinical implications. Nat. Rev. Endocrinol. 14,
591−604.

Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., and Kober,
H. (2011). Meditation experience is associated with differences in default
mode network activity and connectivity. Proc. Natl. Acad. Sci. U. S. A. 108,
20254–20259. doi: 10.1073/pnas.1112029108

Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., and Sonuga-
Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders:
a systematic review. Neurosci. Biobehav. Rev. 33, 279–296. doi: 10.1016/j.
neubiorev.2008.09.002

Cavanna, A. E., and Trimble, M. R. (2006). The precuneus: a review of its functional
anatomy and behavioural correlates. Brain 129, 564–583. doi: 10.1093/brain/
awl004

Chayer, C., and Freedman, M. (2001). Frontal lobe functions. Curr. Neurol.
Neurosci. Rep. 1, 547−552.

Chen, X., Lu, B., and Yan, C. (2018). Reproducibility of R-fMRI metrics on the
impact of different strategies for multiple comparison correction and sample
sizes. Hum. Brain Map. 39, 300–318. doi: 10.1002/hbm.23843

Chen, Y., Jiao, Y., Cui, Y., Shang, S., Ding, L., Feng, Y., et al. (2014). Aberrant
brain functional connectivity related to insulin resistance in Type 2 diabetes: a
resting-state fMRI study. Diabetes Care 37, 1689–1696. doi: 10.2337/dc13-2127

Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K., Nivl, Y., et al. (2017).
Computational approaches to fMRI analysis. Nat. Neurosci. 20, 304–313.

Craddock, R. C., Jbabdi, S., Yan, C., Vogelstein, J. T., Castellanos, F. X., Martino,
A. D., et al. (2013). Imaging human connectomes at the macroscale. Nat.
Methods 10, 524–539. doi: 10.1038/nmeth.2482

Crossley, N., Mechelli, A., Scott, J., Carletti, F., Fox, P., McGuire, P., et al. (2014).
The hubs of the human connectome area generally implicated in the anatomy
of brain disorders. Brain 137, 2382–2395. doi: 10.1093/brain/awu132

Crossley, N., Mechelli, A., Vertes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet,
C. E., et al. (2013). Cognitive relevance of the community structure of the
human brain functional coactivation network. Proc. Natl. Acad. Sci. U. S. A.
110, 11583–11588. doi: 10.1073/pnas.1220826110

Cui, Y., Jiao, Y., Chen, Y., Wang, K., Gao, B., Wen, S., et al. (2014). Altered
spontaneous brain activity in type 2 diabetes: a resting-state functional MRI
study. Diabetes 63, 749–760. doi: 10.2337/db13-0519

Cukierman, T., Gerstein, H. C., and Williamson, J. D. (2005). Cognitive decline and
dementia in diabetes-systematic overview of prospective observational studies.
Diabetologia 48, 2460–2469. doi: 10.1007/s00125-005-0023-4

Dan, R., Ruzicka, F., Bezdicek, O., Roths, J., Razicka, E., Vymazald, J., et al. (2019).
Impact of dopamine and cognitive impairment on neural reactivity to facial

emotion in Parkinson’s disease. Eur. Neuropsychopharmacol. 29, 1258–1272.
doi: 10.1016/j.euroneuro.2019.09.003

Dwyer, D. B., Falkai, P., and Koutsouleris, N. (2018). Machine learning approaches
for clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14, 91−118.

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al. (2016). The human
Brainnetome atlas: a new brain atlas based on connectional architecture.
Cerebral Cortex 26, 3508–3526. doi: 10.1093/cercor/bhw157

Fornito, A., Zalesky, A., and Breakspear, M. (2015). The connectomics of brain
disorders. Nat. Rev. Neurosci. 16, 159–172. doi: 10.1038/nrn3901

Gillies, R. J., Kinahan, P. E., and Hricak, H. (2016). Radiomics: images are more
than pictures, they are data. Radiology 278, 563–577. doi: 10.1148/radiol.
2015151169

Iniesta, R., Stahl, D., and McGuffin, P. (2016). Machine learning, statistical
learning and the future of biological research in psychiatry. Psychol. Med. 46,
2455−2465.

International Diabetes Federation (2019). IDF Diabetes Atlas, 9th Edn. Brussels:
International Diabetes Federation.

Jia, W., Zhu, H., Ni, Y., Su, J., Xu, R., Jia, H., et al. (2020). Disruptions
of frontoparietal control network and default mode network linking the
metacognitive deficits with clinical symptoms in schizophrenia. Hum. Brain
Mapp. 41, 1445–1458. doi: 10.1002/hbm.24887

Jin, D., Wang, P., Zalesky, A., Liu, B., Song, C., Wang, D., et al. (2020). Grab-
AD: generalizability and reproducibility of altered brain activity and diagnostic
classification in Alzheimer’s Disease. Hum. Brain Mapp. 41, 3379–3391.doi:
10.1002/hbm.25023

Jing, R., Li, P., Ding, Z., Lin, X., Zhan, R., Shi, L., et al. (2019). Machine learning
identifies unaffected first-degree relatives with functional network patterns and
cognitive impairment similar to those of schizophrenia patients. Hum. Brain
Mapp. 40, 3930–3939.

Liu, Z., Liu, J., Yuan, H., Liu, T., Cui, X., Tang, Z., et al. (2019). Identification
of cognitive dysfunction in patients with T2DM using whole brain functional
connectivity. Genomics Proteomics Bioinformatics 17, 441–452. doi: 10.1016/j.
gpb.2019.09.002

Llinàs-Reglà, J., Vilalta-Franch, J., López-Pousa, S., Calvó-Perxas, P., Rodas, D. T.,
and Garre-Olmo, J. (2017). The trail making test. Assessment 24, 183–196.

Macphersona, H., Formicaa, M., Harrisb, E., and Daly, R. M. (2017). Brain
functional alterations in Type 2 Diabetes – A systematic review of fMRI studies.
Front. Neuroendocrinol. 47:34–46.doi: 10.1016/j.yfrne.2017.07.001

McCrimmon, R, J., Ryan, C. M., and Frier, B. M. (2012). Diabetes and cognitive
dysfunction. Lancet 379, 2291–2299.

Melikyan, Z. A., Corrada, M. M., Dick, M. B., Avdikou, K., Stefanatos, C.,
Diamantidou, A., et al. (2019). Neuropsychological test norms in cognitively
intact oldest-old. J. Int. Neuropsychol. Soc. 25, 530–545. doi: 10.1017/
s1355617719000122

Mijnhout, G., Scheltens, P., Diamant, M., Biessels, G. J., Wessels, A. M., Simsek,
S., et al. (2006). Diabetic encephalopathy: a concept in need of a definition.
Diabetologia 49, 1447–1448. doi: 10.1007/s00125-006-0221-8

Musen, G., Jacobson, A. M., Bolo, N. R., Simonson, D. C., Shenton, M. E., Richard,
L., et al. (2012). Resting-state brain functional connectivity is altered in Type 2
diabetes. Diabetes 61, 2375–2379.

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., and Chertkow, H.
(2005). The montreal cognitive assessment, MoCA: a brief screening tool for
mild cognitive impairment. J. Am. Geriatrics Soc. 53, 695–699. doi: 10.1111/j.
1532-5415.2005.53221.x

Frontiers in Neuroscience | www.frontiersin.org 16 January 2021 | Volume 14 | Article 588684197

https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/s1474-4422(08)70021-8
https://doi.org/10.1073/pnas.1112029108
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1093/brain/awl004
https://doi.org/10.1093/brain/awl004
https://doi.org/10.1002/hbm.23843
https://doi.org/10.2337/dc13-2127
https://doi.org/10.1038/nmeth.2482
https://doi.org/10.1093/brain/awu132
https://doi.org/10.1073/pnas.1220826110
https://doi.org/10.2337/db13-0519
https://doi.org/10.1007/s00125-005-0023-4
https://doi.org/10.1016/j.euroneuro.2019.09.003
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1038/nrn3901
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1002/hbm.24887
https://doi.org/10.1002/hbm.25023
https://doi.org/10.1002/hbm.25023
https://doi.org/10.1016/j.gpb.2019.09.002
https://doi.org/10.1016/j.gpb.2019.09.002
https://doi.org/10.1016/j.yfrne.2017.07.001
https://doi.org/10.1017/s1355617719000122
https://doi.org/10.1017/s1355617719000122
https://doi.org/10.1007/s00125-006-0221-8
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-588684 December 31, 2020 Time: 11:8 # 17

Qian et al. Connections Predicting T2DM-Induced Cognitive Impairment

Pan, P., Zhu, L., Yu, T., Shi, H., Zhang, B., Qin, R., et al. (2017).
Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive
impairment: a meta-analysis of resting-state fMRI studies. Ageing Res. Rev. 35,
12−21.

Powell, J. B., Cripe, L. I., and Dodrill, C. B. (1991). Assessment of brain
impairment with the Rey Auditory Verbal Learning Test: a comparison with
other neuropsychological measures. Arch. Clin. Neuropsychol. 6, 241–249. doi:
10.1016/0887-6177(91)90001-p

Qi, S., Meesters, S., Nicolay, K., Romeny, B. M. H., and Ossenblok, P. (2015). The
influence of construction methodology on structural brain network measures: a
review. J. Neurosci. Methods 253, 170–182. doi: 10.1016/j.jneumeth.2015.06.016

Rosenberg, J., Lecheaa, N., Pentanga, G. N., and Shah, N. J. (2019).
What magnetic resonance imaging reveals – A systematic review of the
relationship between type II diabetes and associated brain distortions of
structure and cognitive functioning. Front. Neuroendocrinol. 52:79–112.
doi: 10.1016/j.yfrne.2018.10.001

Salas, C. E., Radovic, D., Yuen, K. S. L., Yeates, G. N., Castro, O., and Turnbull,
O. H. (2014). "Opening an emotional dimension in me": changes in emotional
reactivity and emotion regulation in a case of executive impairment after left
fronto-parietal damage. Bull. Menninger Clin. 78, 301–334. doi: 10.1521/bumc.
2014.78.4.301

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H.,
et al. (2007). Dissociable intrinsic connectivity networks for salience processing
and executive control. J. Neurosci. 27, 2349–2356. doi: 10.1523/jneurosci.5587-
06.2007

Shulman, K. I. (2000). Clock-drawing: is it the ideal cognitive screening test? Int.
J. Geriatr. Psychiatry 15, 548–561. doi: 10.1002/1099-1166(200006)15:6<548::
aid-gps242>3.0.co;2-u

Srikanth, V., Sinclair, A. J., Hill-Briggs, F., Moran, C., and Biessels, G. J. (2020).
Type 2 diabetes and cognitive dysfunction-towards effective management of
both comorbidities. Lancet Diabetes Endocrinol. 8, 535−545.

Sui, J., Qi, S., van Erp, T. G. M., Bustillo, J., Jiang, R., Lin, D., et al. (2018).
Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion.
Nat. Commun. 9:3028.

Vagelatos, N. T., and Eslick, G. D. (2013). Type 2 diabetes as a risk factor
for Alzheimer’s disease: the confounders, interactions, and neuropathology
associated with this relationship. Epidemiol. Rev. 35, 152–160. doi: 10.1093/
epirev/mxs012

Valencia, W. M., and Florez, H. (2017). How to prevent the microvascular
complications of type 2 diabetes beyond glucose control. BMJ 356:i6505. doi:
10.1136/bmj.i6505

van den Heuvel, M. P., Kahn, R. S., Goni, J., and Sporns, O. (2012). High-cost,
high capacity backbone for global brain communication. Proc. Natl. Acad. Sci.
U. S. A. 109, 11372–11377. doi: 10.1073/pnas.1203593109

Wang, C., Fu, K., Liu, H., Xing, F., and Zhang, S. Y. (2014). Spontaneous brain
activity in type 2 diabetics revealed by amplitude of low-Frequency fluctuations
and its association with diabetic vascular disease: a resting-state fMRI study.
PLoS One 9:e108883.doi: 10.1371/journal.pone.0108883

Wang, J., Liu, J., Wang, Z., Sun, P., Li, K., and Liang, P. (2019). Dysfunctional
interactions between the default mode network and the dorsal attention
network in subtypes of amnestic mild cognitive impairment. Aging (Albany NY)
11, 9147–9166. doi: 10.18632/aging.102380

Wang, Z., Yan, C., and Zhao, C. (2011). Spatial patterns of intrinsic brain activity
in mild cognitive impairment and alzheimer’s disease. Hum. Brain Mapp. 32,
1720–1740. doi: 10.1002/hbm.21140

Weiss, E. M., Siedentopf, C., Hofer, A., Deisenhammer, E. A., Hoptman, M. J.,
Kremser, C., et al. (2003). Brain activation pattern during a verbal fluency test in
healthy male and female volunteers: a functional magnetic resonance imaging
study. Neurosci. Lett. 352, 191–194. doi: 10.1016/j.neulet.2003.08.071

Whelan, R., and Garavan, H. (2014). When optimism hurts: inflated prediction in
psychiatric neuroimaging. Biol. Psychiatry 75, 746–748. doi: 10.1016/j.biopsych.
2013.05.014

Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix
decomposition, with applications to sparse principal components and canonical
correlation analysis. Biostatistics 10, 515–534. doi: 10.1093/biostatistics/kxp008

Woo, C. W., Chang, L. J., Lindquist, M. A., and Wager, T. D. (2017). Building
better biomarkers: brain models in translational neuroimaing. Nat. Neurosci.
20, 365–377. doi: 10.1038/nn.4478

Xia, W., Wang, S., Sun, Z., Bai, F., Zhou, Y., Yang, Y., et al. (2013). Altered
baseline brain activity in type 2 diabetes: a resting-state fMRI study.
Psychoneuroendocrinology 38, 2493–2501. doi: 10.1016/j.psyneuen.2013.05.012

Yahata, N., Morimoto, J., Hashimoto, R., Lisi, G., Shibata, K., Kawakubo, Y., et al.
(2016). A small number of abnormal brain connections predicts adult autism
spectrum disorder. Nat. Commun. 7:11254.

Yamashita, O., Sato, M. A., Yoshioka, T., Tong, F., and Kamitani, Y. (2008).
Sparseestimation automatically selects voxels relevant for the decoding of
fMRIactivity patterns. Neuroimage 42, 1414–1429. doi: 10.1016/j.neuroimage.
2008.05.050

Yang, S., Xu, Z., Xiong, Y., Zhan, Y., Guo, L., Zhang, S., et al. (2016). Altered
intranetwork and internetwork functional connectivity in Type 2 diabetes
mellitus with and without cognitive impairment. Sci. Rep. 6:32980.

Yazla, S., Ozmen, S., Kiyici, S., Ypldpz, D., Haksever, M., and Gencay, S. (2018).
Evaluation of olfaction and taste function in type 2 diabetic patients with
and without peripheral neuropathy. Diabetes Metab. Res. Rev. 34:e2973. doi:
10.1002/dmrr.2973

Zhou, X., Zhang, Z., Liu, J., Qin, L., Pang, X., and Zheng, J. (2019). Disruption and
lateralization of cerebellar–cerebral functional networks in right temporal lobe
epilepsy: a resting-state fMRI study. Epilepsy Behav. 96, 80–86. doi: 10.1016/j.
yebeh.2019.03.020

Zhu, Y., Qi, S., Zhang, B., He, D., Teng, Y., Hu, J., et al. (2019). Connectome-
based biomarkers predict subclinical depression and identify abnormal brain
connections with the lateral habenula and thalamus. Front. Psychiatry 10:371.
doi: 10.3389/fpsyt.2019.00371

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Qian, Qin, Qi, Teng, Li, Yao and Wu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 January 2021 | Volume 14 | Article 588684198

https://doi.org/10.1016/0887-6177(91)90001-p
https://doi.org/10.1016/0887-6177(91)90001-p
https://doi.org/10.1016/j.jneumeth.2015.06.016
https://doi.org/10.1016/j.yfrne.2018.10.001
https://doi.org/10.1521/bumc.2014.78.4.301
https://doi.org/10.1521/bumc.2014.78.4.301
https://doi.org/10.1523/jneurosci.5587-06.2007
https://doi.org/10.1523/jneurosci.5587-06.2007
https://doi.org/10.1002/1099-1166(200006)15:6<548::aid-gps242>3.0.co;2-u
https://doi.org/10.1002/1099-1166(200006)15:6<548::aid-gps242>3.0.co;2-u
https://doi.org/10.1093/epirev/mxs012
https://doi.org/10.1093/epirev/mxs012
https://doi.org/10.1136/bmj.i6505
https://doi.org/10.1136/bmj.i6505
https://doi.org/10.1073/pnas.1203593109
https://doi.org/10.1371/journal.pone.0108883
https://doi.org/10.18632/aging.102380
https://doi.org/10.1002/hbm.21140
https://doi.org/10.1016/j.neulet.2003.08.071
https://doi.org/10.1016/j.biopsych.2013.05.014
https://doi.org/10.1016/j.biopsych.2013.05.014
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1038/nn.4478
https://doi.org/10.1016/j.psyneuen.2013.05.012
https://doi.org/10.1016/j.neuroimage.2008.05.050
https://doi.org/10.1016/j.neuroimage.2008.05.050
https://doi.org/10.1002/dmrr.2973
https://doi.org/10.1002/dmrr.2973
https://doi.org/10.1016/j.yebeh.2019.03.020
https://doi.org/10.1016/j.yebeh.2019.03.020
https://doi.org/10.3389/fpsyt.2019.00371
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-605697 December 28, 2020 Time: 17:11 # 1

ORIGINAL RESEARCH
published: 11 January 2021

doi: 10.3389/fnins.2020.605697

Edited by:
Qiuyun Fan,

Harvard Medical School,
United States

Reviewed by:
Xize Jia,

Hangzhou Normal University, China
Rosaleena Mohanty,

Karolinska Institutet (KI), Sweden

*Correspondence:
Anna M. Sobczak

ann.marie.sobczak@gmail.com
Bartosz Bohaterewicz

bohaterewicz@gmail.com

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 12 September 2020
Accepted: 26 November 2020

Published: 11 January 2021

Citation:
Bohaterewicz B, Sobczak AM,

Podolak I, Wójcik B, Mȩtel D,
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Background: Some studies suggest that as much as 40% of all causes of death in a
group of patients with schizophrenia can be attributed to suicides and compared with
the general population, patients with schizophrenia have an 8.5-fold greater suicide risk
(SR). There is a vital need for accurate and reliable methods to predict the SR among
patients with schizophrenia based on biological measures. However, it is unknown
whether the suicidal risk in schizophrenia can be related to alterations in spontaneous
brain activity, or if the resting-state functional magnetic resonance imaging (rsfMRI)
measures can be used alongside machine learning (ML) algorithms in order to identify
patients with SR.

Methods: Fifty-nine participants including patients with schizophrenia with and without
SR as well as age and gender-matched healthy underwent 13 min resting-state
functional magnetic resonance imaging. Both static and dynamic indexes of the
amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency
fluctuations (fALFF), regional homogeneity as well as functional connectivity (FC) were
calculated and used as an input for five machine learning algorithms: Gradient boosting
(GB), LASSO, Logistic Regression (LR), Random Forest and Support Vector Machine.

Results: All groups revealed different intra-network functional connectivity in ventral
DMN and anterior SN. The best performance was reached for the LASSO applied to FC
with an accuracy of 70% and AUROC of 0.76 (p < 0.05). Significant classification ability
was also reached for GB and LR using fALFF and ALFF measures.

Conclusion: Our findings suggest that SR in schizophrenia can be seen on the level of
DMN and SN functional connectivity alterations. ML algorithms were able to significantly
differentiate SR patients. Our results could be useful in developing neuromarkers of SR
in schizophrenia based on non-invasive rsfMRI.

Keywords: schizophrenia, suicidal ideations, machine learning, resting state fMRI, mental pain, classification,
gradient boosting, feature selection
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INTRODUCTION

Schizophrenia research suggests that as much as 40% of all death
causes in this group can be attributed to suicides (Wildgust et al.,
2010), while 25–50% of individuals with schizophrenia attempt to
commit suicide during their lifetime (Bohaterewicz et al., 2018;
Cassidy et al., 2018). Hence, there is a vital need of developing
more accurate and objective methods to predict the risk of suicide
among individuals with schizophrenia.

Functional magnetic resonance imaging (fMRI) is a non-
invasive, widely employed method allowing one to measure
activity of a human brain. Resting state (rs), in turn, is
considered highly effective as it captures 60–80% of the brain’s
total activity (Smitha et al., 2017). Furthermore, some studies
show that it allows monitoring treatment outcomes as well
as assessing biomarkers of psychiatric disorders (Glover, 2011;
Moghimi et al., 2018).

Previous studies indicate gray matter volume reduction in
dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus,
as well as insular cortex in patients after suicide attempt,
compared to the ones without suicide attempt in the past
(Besteher et al., 2016; Zhang et al., 2020), whereas fMRI
studies revealed that during a simple task based on cognitive
control, suicide thoughts were associated with decreased activity
in PFC and the history of previous suicide attempt resulted
in decreased activity of premotor cortex (Minzenberg et al.,
2014; Potvin et al., 2018). Previous results from volumetric
as well as functional task fMRI analyses indicate the potential
resting-state brain activity changes in the regions included in
Default Mode Network (DMN), Salience Network (SN), and
Sensorimotor Network (SMN).

In recent years, there has been a growing number of machine
learning (ML) applications on rsfMRI data in order to make
prognostic evaluation and to differentiate between various groups
or conditions (Pereira et al., 2009). Lately, ML classifiers with the
input from fMRI as an unbiased biomarker have been adopted to
identify people engaged in the suicide-related behavior, including
suicide ideations. For example, Just et al. (2017) were able
to correctly identify 15 out of 17 suicidal participants with a
sensitivity of 0.88 and a specificity of 0.94 using Gaussian Naïve
Bayes algorithm and task fMRI data. In more recent work,
Gosnell et al. (2019) used a Random Forest (RF) algorithm and
rsfMRI functional connectivity data from psychiatric inpatients
that enabled them to correctly classify suicidal behavior with
a sensitivity of 81.3%. To the best of our knowledge, none
of the previous studies focused on various ML classifiers in
order to discriminate between healthy controls (HCs), suicidal
risk (SR), and non-suicidal risk (NSR) schizophrenia patients
based on rsfMRI data.

In the current work, our objective was to conjoin ML methods
with rsfMRI data in order to investigate whether the selected
classifiers allow differentiating between schizophrenia patients
with and without a suicide risk. Ultimately, five algorithms
such as Gradient Boosting (GB), Least Absolute Shrinkage and
Selection Operator (LASSO), Logistic Regression (LR), RF, and
Support Vector Machine (SVM) were performed to increase
the reliability of diagnostic accuracy. Each metric presents

a different degree of complexity; therefore, establishing their
separate and combined precision allows gaining a wider picture
in the aforementioned classification. Moreover, the article aims at
explaining the association between the resting-state brain activity
and suicide risk among schizophrenia patients; thus, stationary as
well as dynamic measures with sliding windows approach were
calculated. Based on the literature, the authors hypothesize (a)
varied neural activity in the regions included in DMN, SN, and
SMN networks to be involved in suicide risk in patients with
schizophrenia; (b) that the predictive ability of classifiers will be
better while using dynamic indexes as the features in comparison
to the static ones; (c) that the results of ML-based discrimination
will differ using diverse parcellation approaches; (d) ML-based
algorithms to discriminate between SR and NSR groups with the
accuracy exceeding 50%.

MATERIALS AND METHODS

Participants
A total of 66 participants were recruited for the study.
The clinical group consisted of 43 patients with paranoid
schizophrenia diagnosed according to the ICD-10 criteria.
The clinical group covered two subgroups: 24 patients with
acute suicidal risk (SR) and 19 patients without such risk
(NSR). The control group (HCs) consisted of 23 individuals
matched in terms of gender and age with a clinical group,
without diagnosis of mental disorder or a history of mental
illness in first-degree relatives. All the participants were right-
handed, as measured by the Neurological Evaluation Scale
(Buchanan and Heinrichs, 1989). The inclusion criterion for the
clinical group was treatment with atypical antipsychotic agents
from the group of dibenzoxazepine: clozapine, olanzapine, or
quetiapine. Additionally, valproic acid treatment was accepted.
The exclusion criteria for both clinical and control groups were
as follows: (1) history of alcohol or drug abuse (according
to substance use disorder of DSM-5); (2) severe, acute, or
chronic neurological and somatic diseases; (3) severe personality
disorders; (4) treatment other than those mentioned in the
inclusion criteria. All of the abovementioned conditions were
confirmed by clinical interviews based on DSM-5 criteria.
Detailed information about patients’ medication is presented in
the Supplementary Materials. Written consent was obtained
from all of the participants. The study was approved by the
Jagiellonian University Bioethics Committee.

Assessment of Suicidality
Suicidal risk was assessed with the Polish adaptation of
Suicide Behavior Questionnaire—Revised (SBQ-R) (Osman
et al., 2001; Chodkiewicz and Gruszczyńska, 2020), with the
cutoff of ≥8 points in accordance with the Osman et al.
(2001) recommendations. Moreover, the Polish adaptation
(Chodkiewicz, 2013) of The Psychache Scale (TPS) (Holden
et al., 2001) was used to evaluate the subjective experience
of participants’ psychological pain, considered to be highly
associated with suicidal thoughts and acts (Ducasse et al., 2018).
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MRI Data Acquisition
MRI data were acquired using a 3-T Siemens Skyra MR System
(Siemens Medical Solutions, Erlangen, Germany). Anatomical
images were obtained using sagittal 3D T1-weighted MPRAGE
sequence with TR = 2,300 ms and TE = 3.9 ms. A total of
13 min of functional resting-state BOLD images was acquired
using a gradient-echo single-shot echo planar imaging sequence
with the following parameters: FOV = 256 mm; TE = 27 ms;
TR = 2060 ms; voxel size = 3 mm × 3 mm × 3 mm, with no
gap. Altogether, 39 interleaved transverse slices and 400 volumes
were acquired. During the resting-state procedure, the subjects
were instructed to keep their eyes open and to think of nothing
particular. They were also asked not to fall asleep, which was
controlled using an infrared binocular eye tracker (Eyelink 1000
Plus, SR Research, Mississauga, ON, Canada). In addition, during
the EPI sequence, neutral gray background was presented using
a MRI-compatible LCD screen and Siemens Head Coil Viewing
Mirror. Both structural and functional sequence details are in
Supplementary Data Sheet 1.

Data Preprocessing
Data preprocessing was performed using Dpabi v. 4.2 (Yan
et al., 2016) and SPM 12 (Friston, 1994), both working under
Matlab v.2018a (The Mathworks Inc.). The first 10 time points
were discarded due to signal equilibration, and next slice timing
and realignment with assessment of the voxel specific head
motion were conducted. The subjects with movements in one
or more of the orthogonal directions above 3 mm or rotation
above 3◦ were discarded from the analysis. A total of three
participants from the control group and four patients from
the clinical sample (four from SR group) were excluded due
to the excessive head movements. Consequently, 39 patients
and 20 HCs were included in the final analyses. Functional
scans were then coregistered using T1 images and normalized
to Montreal Neurological Institute (MNI) space using DARTEL
and a voxel size of 3 mm3. The 24 motion parameters (Friston
et al., 1996) derived from the realignment step were regressed
out from the functional data by linear regression as well as five
principal components from both cerebrospinal fluid and white
matter signals using principal components analysis integrated in
a Component-Based Noise Correction Method (Behzadi et al.,
2007). The global signal was included due to its potential in
providing additional valuable information (Liu et al., 2017). The
signal was then band-pass filtered (0.01–0.08 Hz). Finally, the
functional data were spatially smoothed with 4-mm Full Width
at Half Maximum (FWHM) kernel.

Parcellation
For validation purposes and to exclude a chance of parcellation-
specific results, the preprocessed data were parcellated using
two functional atlases: Power et al. (2011), which utilizes 264
functionally independent regions, and Automated Anatomical
Labeling (AAL) atlas, which separates brain into 116 regions
(Tzourio-Mazoyer et al., 2002). Using centroids obtained from
both atlases, the raw signal from individual brain maps was
extracted and averaged within a 4-mm-radius sphere using

MarsBaR v. 0.43 (Brett et al., 2002). In addition, in accordance
to our hypothesis, in order to investigate possible between-
group differences among DMN, SN, and SM networks, the
authors used templates from FIND lab1. Raw time series were
extracted and averaged in each ROI within ventral default
mode network (vDMN), dorsal default mode network (dDMN),
anterior salience network (aSN), posterior salience network
(pSN), and SMN (Shirer et al., 2012) (see Supplementary Table 1
for detailed information about the ROIs).

Measures
For the purpose of developing a predictive classification model,
the authors used Regional Homogeneity (ReHo), Amplitude
of Low Frequency Fluctuations (ALFF), Fractional Amplitude
of Low Frequency Fluctuations (fALFF), and Functional
Connectivity (FC). Each measure has its static and dynamic
equivalent, and each measure was extracted for both atlases (see
Figure 1 for study flowchart and Supplementary Materials for
detailed description of the measures).

Stationary Approach
The mReHo, ALFF, and f/ALFF maps were segmented into 116
and 264 brain regions, and the values were extracted accordingly.
Each participant got 116 × 1 (AAL atlas) and 264 × 1 (Power
et al. atlas) matrices, consisting of a single value for each brain
region among all 390 time points. Z-transformed correlation
coefficients were obtained for each brain atlas, which resulted in
264 × 264 as well as 116 × 116 matrices for each participant.
The lower half and diagonal values were removed and not used as
features for ML algorithms, so that the total of 6,670 and 34,716
z-score values were used.

Dynamic Approach
The dynamic mALFF, mf/ALFF, and mReHo indexes were
computed using the Temporal Dynamic Analysis module of
Dpabi (Yan et al., 2017) using a sliding window approach with
a hamming window shape.

According to previous work of Leonardi and Van De Ville
(2015), in order to reduce the likelihood of spurious fluctuations
in the dynamics of observed data, minimum window length
should have at least 1/f min, where f min is the minimum frequency
of the time series; a similar approach was used among others
in the work of Li et al. (2019), where the authors showed
alterations in temporal dynamics of the brain associated with
suicidal ideations in depression. In our case, f min after band-pass
filter equals 0.01 Hz (100 s), and for this reason, window size was
set to 50 TR (103 s) length and was shifted by 1 TR (2.06 s). The
full time series was divided into 341 windows for each participant.
As in case of stationary maps, dynamic maps were segmented
using AAL and Power atlases. As a result, each participant gets
a matrix of size 341 × 116 for AAL atlas and 341 × 264 for
Power et al. atlas for dynamic ReHo (dReHo), dynamic ALFF
(dALFF), as well as dynamic f/ALFF (df/ALFF). Each column
represented a brain region and rows were populated with a
single value for each window. Dynamic functional connectivity

1http://findlab.stanford.edu/functional_ROIs.html
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FIGURE 1 | Flowchart of the steps taken in order to extract rsfMRI features.

(dFC) was computed using the same window size, shift, and
method via DynamicBC v.2.2 (Liao et al., 2014). After the
calculations, data were represented by a 341 × 116 × 116
matrix for AAL atlas and 341 × 264 × 264 for Power atlas,
where each of the 341 windows were “populated” with z-score
Pearson correlation values. As in the case of stationary FC,
upper half and diagonal values were removed from each of
the 341 matrices so that 6670 and 34,716 z-score values for
each window were used, which gave a total of 2.274470 (aal)
and 11.838156 (Power) z-score values used as an input for
classification algorithms.

Classification Models
The authors used a selection of the most effective classification
algorithms, each with a different level of complexity: LR (Cramer,
2002), LASSO (Tibshirani, 1996), SVM (Boser et al., 1992),
RF (Ho, 1995), and GB (Friedman, 2001). See Supplementary
Materials for a detailed description of the algorithms. Python,
SciPy, NumPy, and scikit-learn (ver. 0.21) (Pedregosa et al.,
2011) were used to compute the results. Standard scikit-learn
model classes, score calculation routines, grid search, and dataset
splitting functions were applied where possible.

The source code is available at https://github.com/gmum/
schizo_fmri.

Classification Framework
The dataset was divided into train and test sets of approximately
equal sizes (19 and 20 patients, respectively) with stratification.
The training dataset was used to train a classifier pipeline

consisting of optional data standardization and dimensionality
reduction using Principal Component Analysis (PCA) steps and
of the actual classifier. A grid search with fivefold cross-validation
was performed to find the optimal hyperparameters. The entire
hyperparameter grid search and training procedure is illustrated
in Figure 2. It was run separately for every combination of
the classifier type, input data type, and whether dimensionality
reduction was performed.

For static data, the model simply accepts the entire data of
selected measure types for the given patient. For dynamic data,
the model is given only a single window and, thus, predicts a
binary label for each window. An aggregation scheme is needed to
make a final prediction for a patient. For this purpose, we applied
a simple thresholding and counting scheme. Window results are
first transformed to binary results using 0.5 as the threshold value.
The final result was defined as the ratio of positive results to the
total number of windows.

Classification Performance
Area Under Receiver Operating Curve (AUROC) was used as the
score metric for grid search cross-validation procedure, and both
AUROC and accuracy of the final classifier were evaluated on
the test dataset.

In addition, the p-value of each AUROC score was calculated
in order to determine the statistical significance of the obtained
results. To do this, 1,000 permutations of the target labels
were generated. Then, for each permutation, the classifier was
retrained on the permuted labels, and its AUROC score was
measured. The p-value was defined as the ratio of runs that
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FIGURE 2 | Illustration of the machine learning classification framework.

achieved a score greater than or equal to the score of the original
classifier (Ojala and Garriga, 2010).

Statistical Analysis
Two-sample t-tests were used in order to seek for possible
differences in suicidal risk (SBQ-R), mental pain (TPS), severity,
and illness duration between the SR and NSR groups. One-way
analysis of variance (ANOVA) was used to check for possible
differences in age, mean FD, and education (in years) between SR,
NSR, and HCs groups, and the Kruskal–Wallis H test was used to
compare gender differences.

One-way ANOVA was used to investigate possible differences
in FC among three rsfMRI networks between SR, NSR, and
HCs groups. The results were corrected with the Benjamini and
Hochberg (1995) False Discovery Rate correction at p < 0.05.

One-way ANCOVA with the Bonferroni post hoc test was used
to investigate the differences in static ALFF, fALFF, ReHo between
SR, NSR, and HCs. Age, gender, and mean FD were used as
covariates. The same set of analyses was applied to compare the
group-level temporal variability of ALFF, fALFF, ReHo, and FC.
Temporal variability for ALFF, fALFF, and ReHo was expressed
as a coefficient of variations (SD/mean) and, for FC, as a variance
calculated across sliding-window dynamics, and then compared
using one-way ANOVA with FDR correction. The statistical
significance level for ALFF, fALFF, and ReHo analyses was set as
pFWER < 0.05 with 5,000 times permutation using Permutation
Analysis of Linear Models (Winkler et al., 2016) as a part of
DPABI. The cluster forming threshold was set to z = 2.3, which
is equal to p < 0.01 and the cluster extent threshold at k > 25
(Li et al., 2019).
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RESULTS

Demographic and Clinical
Characteristics
The final analysis was conducted based on the data obtained from
59 participants, 39 of whom were schizophrenia patients. No
differences in age [one-way ANOVA; F(2,57) = 2.13; p = 0.1282],
gender [Kruskal–Wallis; H(2) = 2,468; p = 0.291], and head
motion [one-way ANOVA; F(2,57) = 0.66; p = 0.5214] were found
among the three groups. SR and NSR groups were significantly
different in SBQ-R score (t = 7.645; p < 0.001) and illness
duration (t = 1.69; p = 0.01), but no differences were found in
the case of TPS scores (t = 1.904; p = 0.064) The range of SBQ-R
score in the SR group was 8–17 points (Table 1).

Differences in rsfMRI Measures
No differences were found among the three groups in static
ALFF, fALFF, and ReHo. No significant differences were found
in the case of temporal variability of ALFF, fALFF, or ReHo
either. Significant differences between SR, NSR, and HCs groups
were found in both static functional connectivity and temporal
variability of FC. One-way ANOVA showed that the three

TABLE 1 | Detailed participant demographic and clinical information.

Demographics HCs SR NSR

Group size (n) 20 20 19

FD (0–3) 0.079 ± 0.04 0.09 ± 0.05 0.097 ± 0.063

TPS (13–59) 15.38 ± 6.88 33.65 ± 10.24 26.57 ± 12.86

SBQ-R (3–17) 4.42 ± 2.11 10.7 ± 2.97 5.10 ± 1.32

Gender (female/male) 10/10 5/15 9/10

Age (27–65) 36.57 ± 7.25 42.6 ± 9.4 39.1 ± 9.23

Handedness (right/left) 20/0 20/0 19/0

Illness duration (years) (10–39) – 18 ± 10.1 10.89 ± 5.93

SBQ-R, Suicide Behaviors Questionnaire—Revised; TPS, The Psychache Scale.
Ranges of the variables are provided in the parentheses.

groups were different in FC among ventral DMN (F = 19.02;
p < 0.001) and anterior SN (F = 6.85; p = 0.001) (Figure 3).
Post hoc tests showed that the significant differences among
ventral DMN network were present between SR and NSR groups
(p < 0.001; FDR corrected) and NSR and HCs groups (p < 0.01;
FDR corrected). In the case of anterior SN, post hoc tests
indicated differences between SR and NSR groups (p = 0.03;
FDR corrected). No differences were found among dorsal DMN,

FIGURE 3 | (A) Receiver operating characteristic curve for LASSO classificator applied to Functional Connectivity with Power 264 atlas. (B) Box-and-whisker plot
illustrating the differences between three groups in Functional Connectivity among ventral Default Mode Network. (C) Box-and-whisker plot illustrating the differences
between three groups in Functional Connectivity among Anterior Salience Network. The outliers can be seen due to the high variance of dFC values.
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TABLE 2 | Dynamic functional connectivity and functional connectivity differences
among NSR, SR, and HC groups.

Region F p Pairwise comparison

Dorsal DMN 1.55 0.2133 –

Ventral DMN 19.02 <0.001 SR vs. NSR (p < 0.0001, MD = −0.0582);
NSR vs. HCs (p < 0.0001, MD = 0.0550)

Anterior SN 6.85 0.0011 SR vs. NSR (p = 0.001, MD = 0.0482);
NSR vs. HCs (p = 0.029, MD = −0.0347)

Posterior SN 1.23 0.2919 –

Sensorimotor
Network

1.66 0.1898 –

Dynamic
variance Power
Atlas FC

677.67 <0.001 SR vs. NSR (p < 0.0001, MD = −0.00103);
SR vs. HCs (p < 0.0001, MD = −0.00095);
NSR vs. HCs (p = 0.0404,
MD = 0.0000775)

Dynamic
variance AAL
FC

108.61 <0.001 SR vs. NSR (p < 0.0001, MD = −0.00098);
SR vs. HCs (p < 0.0001, MD = −0.00068);
NSR vs. HCs (p = 0.00031,
MD = 0.000303)

Statistical differences were computed using one-way ANOVA with FDR correction.

posterior SN, or SMN between the three groups. Temporal
variability of FC, calculated at each voxel for the two atlases,
showed that the three groups were significantly (p < 0.001)
different in total FC variability measured using AAL, as well as
Power atlases. Post hoc tests with FDR correction showed that in
the case of both atlases, FC variability was significantly different
between SR and NSR, between SR and HCs, and between NSR
and HCs groups (Table 2 and Supplementary Figures 1, 2).

Classification Results
The 10 most important features of amplitude of low-frequency
fluctuations (ALFF) for LR as well as of Functional Connectivity
for LASSO classifiers are presented in Table 3. The accuracies
and AUROCs of five ML algorithms for each static and dynamic
rsfMRI measures, divided into two atlases, are listed in Table 4.

Three variants of ML algorithm and rsfMRI measures turned
out to be significant at p < 0.05. (1) The LASSO applied to static
functional connectivity with Power atlas reached an accuracy of
70% and an AUROC of 0.76. (2) The LR algorithm applied to
dynamic ALFF with AAL atlas reached an accuracy of 65% and
an AUROC of 0.75. (3) The GB algorithm applied to static fALFF
with AAL atlas reached an accuracy of 65% and an AUROC of
0.74. It can be seen that AUROCs of the majority of variants
were at chance level, even when accuracies were above 50%.
In short, the obtained results suggest that the combination of
LASSO algorithm and static functional connectivity calculated
on 264 ROIs provide superior accuracy/AUROC of classification
between SR patients and non-SR patients and allow correct
classification of 14 out of 20 SR patients.

DISCUSSION

In the present article, a successful discrimination between
schizophrenia patients with and without a suicide risk using ML
algorithms and rsfMRI data was demonstrated.

TABLE 3 | The 10 most important features for Logistic Regression and LASSO
classifiers.

Ensemble Method Logistic Regression

Feature ROI labels Coordinates
(MNI)

1 Angular_L −39, −74, 43

2 Precuneus_L −11, −56, 15

3 Cingulum_Ant_L −2, 41, 16

4 Temporal_Sup_L −60, −25, 13

5 Postcentral_R 65, −7, 24

6 Precentral_R 20, −29, 60

7 Postcentral_R 50, −20, 42

8 Postcentral_L −53, −10, 24

9 Rolandic_Oper_R 43, −23, 20

10 Frontal_Sup_L −20, 45, 39

Ensemble Method LASSO

Feature ROI–ROI labels

1 Supramarginal_R–Precentral_R

2 Postcentral_R–Precuneus_R

3 Angular_R–Precentral_R

4 Frontal_Sup_Medial_R–Parietal_Sup_R

5 Paracentral_Lobule_L–Postcentral_R

6 Frontal_Sup_Medial_R–Frontal_Mid_R

7 Precentral_R–Frontal_Sup_Medial_R

8 Frontal_Inf_Tri_L–Occipital_Mid_L

9 Precentral_R–Frontal_Sup_Medial_R

10 Frontal_Sup_Medial_L–Precentral_R

Data are presented for (a) Logistic Regression applied to dynamic amplitude of
low-frequency fluctuations with AAL atlas and (b) LASSO applied to static ROI–ROI
Functional Connectivity with Power 264 atlas.

Although previous studies developed the rsfMRI-based ML
classification models capable of distinguishing suicidal patients
with different diagnoses, such as anxiety disorder, depression,
or borderline personality disorder (Gosnell et al., 2019; Wang
et al., 2020), to the best of the authors’ knowledge, none
of the previous studies were focused on schizophrenia. Ipso
facto, the presented study is the first attempt to find rsfMRI
features that allow detecting the risk of suicide in schizophrenia
with the use of the ML algorithms. Moreover, this is the first
work using rsfMRI to explain the differences in brain activity,
which might be associated with suicide risk in schizophrenia
patients. Above that, unlike most of ML–fMRI studies focused
on classifying suicidal participants, the authors used five various
ML classifiers. The results of conventional analyses showed
that patients with and without suicidal risk, as well as the
healthy controls, demonstrated different patterns of temporal
variability of dFC and FC, with the latter being an important
feature for ML classification. Furthermore, ALFF and fALFF
measures also contributed to ML-based classification, but no
significant differences in the above measures were found in the
conventional group analyses.

Du et al. (2015) and also Gosnell et al. (2019) results
are partly congruent with the ones obtained from this study,
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TABLE 4 | The accuracies and AUROCs of five ML algorithms for each static and dynamic rsfMRI measures, divided into two atlases.

ALFF fALFF FC REHO Concatenated

AAL 116 Static With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA

GB 55%/0.6 55%/0.62 65%/0.74* 40%/0.25 65%/0.65 55%/0.47 45%/0.46 45%/0.43 55%/0.62 55%/0.49

LASSO 55%/0.41 50%/0.41 55%/0.54 65%/0.61 50%/0.58 50%/0.65 65%/0.54 50%/0.6 50%/0.27 45%/0.55

LR 60%/0.55 45%/0.5 35%/0.29 35%/0.34 35%/0.34 35%/0.32 35%/0.36 35%/0.32 45%/0.43 35%/0.29

RF 45%/0.57 50%/0.55 65%/0.66 30%/0.34 50%/0.43 60%/0.44 30%/0.32 25%/0.24 55%/0.67 50%/0.36

SVM 50%/0.46 50%/0.42 50%/0.55 40%/0.29 50%/0.14 40%/0.37 50%/0.38 30%/0.34 45%/0.38 60%/0.48

AAL 116 Dynamic

GB 45%/0.47 60%/0.5 40%/0.42 50%/0.5 – – 60%/0.5 40%/0.29 – –

LASSO 40%/0.45 50%/0.39 60%/0.57 50%/0.45 – – 40%/0.43 55%/0.49 – –

LR 50%/0.65 65%/0.75* 60%/0.56 35%/0.39 35%/0.27 – 50%/0.51 35%/0.41 45%/0.44 –

RF 45%/0.49 50%/0.57 35%/0.48 45%/0.47 50%/0.43 – 35%/0.38 40%/0.41 70%/0.6 –

SVM 45%/0.46 45%/0.42 40%/0.42 40%/0.41 – – 45%/0.32 55%/0.39 – –

Power 264 Static

GB 60%/0.55 40%/0.5 40%/0.32 55%/0.56 45%/0.67 50%/0.5 40%/0.4 30%/0.33 50%/0.62 50%/0.5

LASSO 45%/0.42 25%/0.42 70%/0.65 55%/0.31 50%/0.41 70%/0.76 35%/0.34 35%/0.36 45%/0.51 50%/0.41

LR 55%/0.61 60%/0.48 45%/0.51 40%/0.44 45%/0.47 45%/0.43 50%/0.51 40%/0.45 45%/0.48 45%/0.4

RF 60%/0.65 40%/0.41 45%/0.47 55%/0.46 60%/0.69 55%/0.38 55%/0.68 70%/0.57 55%/0.48 50%/0.49

SVM 50%/0.34 50%/0.39 50%/0.45 50%/0.33 50%/0.68 50%/0.46 45%/0.24 40%/0.43 50%/0.69 50%/0.46

Power 264 Dynamic

GB 55%/0.58 45%/0.6 50%/0.5 60%/0.57 – – 55%/0.6 55%/0.64 – –

LASSO 60%/0.5 55%/0.65 45%/0.62 45%/0.38 – – 45%/0.58 45%/0.5 – –

LR 60%/0.57 70%/0.66 55%/0.51 50%/0.44 50%/0.46 – 50%/0.47 50%/0.5 50%/0.48 –

RF 45%/0.44 55%/0.53 50%/0.34 50%/0.48 50%/0.41 – 40%/0.61 60%/0.55 50%/0.49 –

SVM 45%/0.46 45%/0.6 40%/0.47 55%/0.42 – – 50%/0.55 50%/0.51 – –

GB, gradient boosting; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; RF, random forest; SVM, support vector machine. Significant
results (p < 0.05), estimated using the permutation method, are marked with an asterisk and bolded. The binary classification was conducted using NSR and SR groups.

indicating frontal and temporal brain region abnormalities to be
the most useful in ML classification of suicidal risk, suggesting
activity of specific brain structures to be characteristic for
suicide risk among all psychiatric patients. Cao et al. (2015), in
turn, demonstrated altered ReHo in suicide attempters without
psychiatric diagnosis in left precuneus, which also remains
consistent with the region allowing discriminating between SR
and NSR patients reported in our study. In addition, regions
that turned out to be discriminative in ML-based classification
are also congruent with the studies using cognitive control tasks,
revealing the association between decreased activity of the frontal
cortex and suicide risk in schizophrenia (Zhang et al., 2013;
Potvin et al., 2018). Our results are also consistent with the studies
showing significance of ACC, angular gyrus, as well as both
precentral and postcentral gyrus in understanding the suicidal
behavior (Reisch et al., 2010; Fan et al., 2013; Tsujii et al., 2017;
Harms et al., 2019).

Numerous fMRI studies indicate the association of suicide-
related behaviors and prefrontal cortex alterations due to its
role in decision-making as well as action planning (Potvin
et al., 2018; Brown et al., 2020). Other studies suggest decreased
connectivity between ACC and PFC to be related to suicidal
behavior (Minzenberg et al., 2015; Chase et al., 2017). PFC
and ACC are considered responsible for anticipating the
consequence of actions, inhibition of inappropriate behavior,
and impulsiveness (Zhou et al., 2016; Brown et al., 2019),

which are indirectly related to suicidal behavior (Wang et al.,
2017; Koval and Baumann, 2019). Alterations in ACC and
PFC have also been found in patients with schizophrenia
(Cordes et al., 2015; Fryer et al., 2019) while their impulsivity
has been reported as correlated with increased suicide risk
(Iancu et al., 2010). Notably, the above regions are included
in DMN as well as SN, which have already been established
as disrupted in schizophrenia (Garrity et al., 2007; White
et al., 2010; Palaniyappan et al., 2012). Weaker functional
connectivity within DMN is reported to be associated with the
difficulties in abstract thinking, planning the future, as well
as analyzing social behaviors (Andrews-Hanna, 2012), while
decreased functional connectivity within SN has been reported as
linked to higher trait anxiety and decreased cognitive regulation
(Geng et al., 2016). The above symptoms might additionally
elevate suicidal risk.

Importantly, our results from conventional static FC analyses
confirm the aforementioned results, revealing functional
connectivity differences in ventral DMN and anterior SN
between SR and NSR patients. The above dissimilarity was also
apparent between NSR patients and HCs. Moreover, The LASSO
algorithm, applied on static functional connectivity data, allowed
the discrimination between SR and NSR patients, supporting our
hypothesis. Furthermore, all the three groups varied from each
other in the case of temporal variability of dFC with the use of
both AAL and Power atlases.
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According to another hypothesis, all five ML algorithms
presented different classification performance. The LASSO,
applied on static functional connectivity without PCA on Power
atlas, achieved 70% accuracy and an AUROC of 0.76, proving
to be the best ML classifier used in the study. As a result,
LASSO allowed the correct classification of 14 out of 20 suicidal
patients. The possible reason why the LASSO outperforms the
other classifiers is the type of its regularization loss term. The
processed dataset has high dimensionality but very few samples,
which could possibly make the standard classifiers heavily overfit
to the train set and therefore perform poorly on the test set.
As a result, a regularization method needs to be used in order
to reduce overfitting and increase generalization. The L1 cost
used in LASSO has a property of much stronger parameters’
shrinkage due to its diagonal regularization contour, leading to
a more sparse model.

Noteworthy, raw performance of the classifiers differed
depending on the selected parcellation scheme. However,
contrary to our assumptions, the dynamic measures did not
improve the prediction ability of ML classifiers compared to
static measures. As far as the authors are aware, none of
the previous studies used ML-based classifiers to discriminate
between SR and NSR schizophrenia patients. Further studies
should consider to enlarge sample size in order to demonstrate
the replicability of our study.

LIMITATIONS

The conducted study has some limitations. Firstly, EPI sequence
was introduced to participants after the structural scans (T1–
MPRAGE) and not before them, which could influence the
results. Secondly, results may possibly depend on the size of the
smoothing kernel. Another noteworthy limitation of this study
is the restricted sample size; thus, the presented results should
be interpreted with caution. Further studies should consider
extending the sample size by adding the control group to the
input training data. Moreover, the specific window size as well
as arbitrarily chosen atlases could influence the results. What is
more, the high number of features may cause high susceptibility
to any noise signal; therefore, distinctive features could be
possibly different in another sample size, i.e., patients. Based on
the literature, we have also decided to include the global signal,
which is not always considered to be beneficial. Additionally,
further studies should incorporate a semi-supervised approach
with a pre-training phase using the data of HC.
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An efficient method to identify whether mild cognitive impairment (MCI) has progressed
to Alzheimer’s disease (AD) will be beneficial to patient care. Previous studies have
shown that magnetic resonance imaging (MRI) has enabled the assessment of AD
progression based on imaging findings. The present work aimed to establish an
algorithm based on three features, namely, volume, surface area, and surface curvature
within the hippocampal subfields, to model variations, including atrophy and structural
changes to the cortical surface. In this study, a new biomarker, the ratio of principal
curvatures (RPC), was proposed to characterize the folding patterns of the cortical
gyrus and sulcus. Along with volumes and surface areas, these morphological features
associated with the hippocampal subfields were assessed in terms of their sensitivity to
the changes in cognitive capacity by two different feature selection methods. Either the
extracted features were statistically significantly different, or the features were selected
through a random forest model. The identified subfields and their structural indices that
are sensitive to the changes characteristic of the progression from MCI to AD were
further assessed with a multilayer perceptron classifier to help facilitate the diagnosis.
The accuracy of the classification based on the proposed method to distinguish whether
a MCI patient enters the AD stage amounted to 79.95%, solely using the information
from the features selected by a logical feature selection method.

Keywords: mild cognitive impairment, Alzheimer’s disease, magnetic resonance imaging, hippocampal subfields,
multilayer perceptron

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia, representing a significant
burden on the global economy (Prince et al., 2015). While the treatment of AD remains a major
clinical challenge, slowing down the deterioration of cognitive capability during the mild cognitive
impairment (MCI) stage represents an important preventive approach. Consequently, it is critical
to monitor whether a patient is progressing from MCI to AD (a converter) or is still in the MCI
stage (a non-converter).

Multiple AD biomarkers have been recognized with varying trends as the disease progresses
(Bateman et al., 2012). For the prediction of AD, amyloid, tau, and neurodegeneration are
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related and efficient biomarkers that comply with the amyloid
hypothesis. This hypothesis postulated that AD is due to
a cascade mechanism, starting from the deposition of Aβ

and tau hyperphosphorylation, which then further causes
neurodegeneration, including synaptic dysfunction, death of
neural cells, and brain shrinkage (Hardy and Selkoe, 2002;
Spillantini and Goedert, 2013). However, the examinations of
amyloid and tau, including the extraction of cerebrospinal
fluid (CSF) and contrast injection for a PET scan, are
in general more invasive. Therefore, we resort to the last
potential mechanism in studying AD—neurodegeneration.
Neurodegeneration encompasses structural variations, such as
atrophy and neuronal loss due to amyloid and tau deposition,
which can be measured and, hence, quantified via structural
MRI. Clear observations of the hippocampal volume using this
neuroimaging modality are indicative biomarkers revealing the
obvious changes in the transition from MCI to AD which have
been well documented (Frisoni et al., 2010; Bateman et al., 2012).

Studies on structural atrophy in the hippocampus and
entorhinal cortex, based on the evaluation of volume and surface
area from MRI scans during the progression from MCI to AD,
have been previously carried out (Devanand et al., 2007; Frisoni
et al., 2010; Bateman et al., 2012). Although the volume and
surface area of the hippocampus and entorhinal cortex have
been observed to be highly correlated to AD (Bobinski et al.,
2000; Dickerson et al., 2009), these biomarkers are influenced
by natural aging (Bigler et al., 1997; Dickerson et al., 2009). The
curvature of the cortical surface is another feature in the analysis
of cognitive evolution. It has been shown that the mean curvature
of the cortex is less influenced by normal aging (Long et al., 2012).
The mean curvature derived from a surface analysis could be used
to distinguish MCI from AD based on the analysis of the cortical
area (Long et al., 2013).

While some AD biomarkers have achieved good prediction,
most of them require several different examined data modalities
to achieve good accuracy. In this work, we propose a method
to screen for whether an MCI patient has developed AD, using
only the MRI data, with efficiency and good accuracy. This
work analyzes geometric features to identify the conversion
from MCI to AD by characterizing structural changes in the
hippocampus. For surface curvature, we further introduce a
new feature, the “average of principal curvature ratio,” instead
of using the average curvature. In addition to the statistical
evaluation of indices, including the volume, surface area,
and curvature index within the hippocampus, the multilayer
perceptron (MLP) classifier is designed to predict whether a
subject has converted from MCI to AD.

Recent Advances
Recently, internationally encoded endpoints, e.g., clinical,
imaging, genetic, and biospecimen biomarkers, have been
introduced together with machine learning analytics algorithms
in predicting and characterizing the disease process from normal
aging to early MCI, late MCI, and dementia, especially AD.
Neuroimaging biomarkers have especially gained popularity in
providing direct indication of the AD progress.

A systematic review primarily on imaging and biochemical
biomarkers, including primarily MRI, PET scans, and CSF or
plasma amyloid-β/tau, with longitudinal cohorts in anticipating
characterization of AD progression has been documented
(Lawrence et al., 2017). Principal component analysis was used
by Blazhenets et al. (2019) to quantify cerebral metabolic
patterns measured from fluorodeoxyglucose-positron emission
tomography (FDG-PET) related to MCI to AD conversion.
Clinical variables were also used. FDG-PET brain images were
used by Brown et al. (2020) at different prodromal stages
in tracking longitudinally the AD process. Statistical textural
features on the entorhinal cortex from MRI scans were extracted
for differentiation of normal control, MCI, and AD by Leandrou
et al. (2020). Textural biomarkers were assessed for its superiority
over traditional volumetric features in earlier indication of brain
atrophy. Similarly, Lee et al. (2020) also extracted grayscale co-
occurrence matrix texture features surrogating as hippocampus
precuneus and posterior cingulate cortex biomarkers. Structural
MRI (sMRI) cortical and subcortical measurements, e.g.,
thickness and rs-fMRI functional graph connectivity biomarkers,
were studied with SVM classification having high prediction
accuracy for MCI converter or non-converter (Cabral et al.,
2015). Vuoksimaa et al. (2020) investigated on vascular risk
factors, serving as a biomarker, for MCI to AD conversion
in subjects having low cerebral small vessel burden. Memory
baseline brain (e.g., hippocampus, entorhinal cortex) and CSF
biomarkers were also studied by Kung et al. (2020).

Non-linear Gaussian processes were documented by Lin
et al. (2020) to model non-linear interactions of biomarkers
including demographics, APOE4, CSF, hippocampal volume, and
brain age. The proposed method also provided insight into
the biomarker interactions personalized for individual patients
(Hojjati et al., 2018). This proposed an extreme learning machine-
based method to individually grade multimodal data extracted
from MRI images, PET, CSF, and gene biomarkers. Pan et al.
(2020) applied several CNN models which were subsequently
combined via ensemble learning for classifying features extracted
from MRI images. AD-NET introduced by Gao et al. (2020)
transferred age-related surrogate biomarker information in the
form of transfer learning to deep learning of sMRI features for
alleviation of data insufficiency.

In this study, we introduce algorithmic methods to
characterize and quantify the pathological variations in the
identification of biomarkers. Furthermore, extracted biomarkers
capable of indicating the severity of AD may be fed into the
MLP classifier to differentiate the MCI to AD group from the
non-converter MCI group. By honing its capacity through the
accumulation of additional data, this framework could be further
designed as a computer-aided diagnosis system to assist doctors
in taking preventive steps to reduce the progression rate of AD.

MATERIALS AND METHODS

Overview of the Proposed Algorithm
As shown in Figure 1, the proposed algorithm functions in
the following order: data pre-processing, feature extraction,

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 584641211

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-584641 March 3, 2021 Time: 16:21 # 3

Kung et al. Neuroimage Biomarker Identification Alzheimer’s Disease

FIGURE 1 | Block diagram of the whole proposed algorithm.

and classification after acquiring the MRI images. The overall
data pre-processing includes data cleaning for datasets with a
series of MRI selection standards and MRI pre-processing and
hippocampus segmentation. After obtaining the pre-processed
hippocampus-labeled images, the image processing pipeline
is followed by a surface construction of the hippocampus.
Subsequently, morphological metrics including volume, surface
area, and curvature of the hippocampus surface will be calculated.
The assessment of the surface curvature will be detailed in
the following section since it plays a critical role in our
classifier. We perform feature extraction based on a statistical
analysis of the volume, surface area, and average RPC, associated
to the hippocampal subfields, in the hopes of identifying a

proper neural network model to construct the MLP classifier
to mimic a neurologist’s decision in assisting with a diagnosis.
This MLP classifier serves to identify the converter and non-
converter groups.

MRI Data Acquisition and Selection
MRI data used in this study was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database with a primary
focus on the analysis of two subject groups, namely, the converter
and the non-converter groups. The converters are those cases
diagnosed with MCI at the first visit but developing AD within
a 2 year period. Their demographic data are shown in Table 1
with the Mini-Mental State Examination (MMSE) scores shown
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in Table 10. There were no significant differences between the
converter and non-converter groups in terms of age at first visit,
gender ratio, or years of education as shown in Table 2. The
data used for the diagnosis had 1.2 mm resolution and were
T1-weighted images acquired from 1.5 to 3.0 T scanners. These
data were collected for studies through four phases: ADNI1,
ADNI GO, ADNI2, and ADNI3. The current study focuses on
demographic, neuropsychological, and structural imaging data
from the ADNI GO and ADNI2 phases.

Structural MRI images were selected from the ADNI database
and were pre-processed with images scanned in the sagittal
plane, to minimize differences as a result of individual scanning
conditions. Pre-processing includes correcting the non-uniform
intensity caused by the gradient warp distortion. The data in
the ADNI1 phase was not included in current studies to assure
consistent MRI scanning protocol. The ADNI3 phase data was
also excluded due to incompleteness. In order to eradicate
unexpected factors, a series of data cleaning steps were defined
for each cohort as follows. Data from GE were excluded due to
difference in protocols in ADNI2 and GO phases: (a) excluded
ADNI1 and ADNI3 phases; (b) included pre-processing steps,
e.g., MT1, N3, and Gradwrap; (c) excluded the accelerated
scanning images; (d) excluded images if the scanning time differs
from the diagnosis time by over 2 weeks; (e) chose the scanning
images with the scanning time closest to diagnosis time;, and (f)
investigated whether the diagnosis record has a missing score in
neuropsychological data.

MRI Pre-processing
Structural MRI pre-processing consists of two parts: one for
assuring consistencies due to different scanning systems and the
other another for inner-subject variabilities.

The pre-processing for scanning system consistency includes
MT1, N3, and Gradwrap. MT1 is a multiplane reconstruction
process, in which the scanning image will produce sagittal,
coronal, and axial planes. N3 (Sled et al., 1998) is an algorithm
for correcting intensity non-uniformity in MRI which is caused

TABLE 1 | The demographic data for the two study groups.

MCI non-converter MCI to AD

Number of subjects 89 89

Age at first visit (years) 73.4 ± 7.6 74.4 ± 8.0

Males (%) 53 (59.6%) 52 (58.4%)

Years of education 16.3 ± 2.6 15.8 ± 2.6

TABLE 2 | Chi-square test between the MCI non-converter and MCI to AD.

Type Chi-square Degrees
of

freedom

Significant
level 5%

Gender (M, F) 0 1 3.841

Age (50s, 60s, 70s, 80s, 90s) 8.843 4 9.488

Education (11∼20) 8.905 9 16.919

MMSE (−12, −11, −8∼5) 58.263 15 24.996

by inhomogeneous radiofrequency (RF) excitation. Gradwrap
(Axel and Morton, 1989) corrects the gradient distortion which
is caused by both gradient non-linearity and imperfections in the
B0 field to assure revelation of significant hippocampus features
in discerning between the MCI group and the AD group.

Pre-processing for inner-subject data consistency includes a
series of step. The first step is size conformation by which
image sizes from different manufacturers were normalized. The
second step consists of non-uniform intensity normalization
which is similar to the pre-processing for assuring scanning
system consistency but does not include the magnetic field
strength information. The third step is the Talairach transform
computation with Talairach coordinates used for brain size
and shape normalization. Intersubject registration within the
standardized space is used to compare different brain positions
with different sizes. The fourth step is interslice intensity
normalization which attempts to correct for fluctuations in
intensity caused by eddy current and cross talk between slices.
This intensity correction step is aimed to enhance the accuracy
of the subsequent segmentation process. The fifth step, namely,
the skull strip, utilized the watershed algorithm to segment
and remove the skull, eyes, and neck which are not part of
the brain. The sixth step applies a subcortical segmentation
algorithm to segment and label each subcortical structure. It
calculates transforms to align the input volume to the Gaussian
classifier atlas (GCA). Normalization was also performed using
non-linear transforms based on GCA, which labels subcortical
structures within the GCA model. The final step is white
matter segmentation which uses intensity, neighborhood, and
smoothness constraints to segment and separate the white matter.

Segmentation of the Hippocampus and
Its Subfields
After pre-processing, hippocampus segmentation was performed
using FreeSurfer 6.0 (Fischl, 2012). This is based on the
statistical atlas which was constructed from manual labels and
information from Bayesian reference (Iglesias et al., 2015).
The FreeSurfer pipeline used in current research generated
the masks of the entire hippocampus as well as its subfields
according to the pre-trained statistical atlas (Iglesias et al.,
2015). The hippocampus was further segmented into 12
subfields, namely, the parasubiculum, presubiculum, subiculum,
CA1, CA3, and CA4. Granule cells were in the molecular
layer of the dentate gyrus (GC-ML-DG), hippocampus–
amygdala–transition area (HATA), fimbria, molecular layer,
hippocampal fissure, and hippocampal tail. The parasubiculum,
HATA, and fimbria subfields were not included due to low
resolution in MRI.

Although there were a few literature documenting quantitative
performance evaluations on this automatic subfield segmentation
and manual segmentation process, results have shown that
the segmentation of subfields using FreeSurfer could achieve
high test–retest reliability, with intraclass correlation coefficient
(ICC) > 0.9 for most subfields (Whelan et al., 2016). The
segmented subfields were also shown to be informative in the
analysis of AD (Iglesias et al., 2015). When compared with FIRST,

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 584641213

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-584641 March 3, 2021 Time: 16:21 # 5

Kung et al. Neuroimage Biomarker Identification Alzheimer’s Disease

a software which also enables hippocampus segmentation in
FSL, FreeSurfer has revealed a higher correlation via manual
tracing (manual segmentation), with approximately 82 ± 1.5%
of the volume overlapping in the left hippocampus and

82 ± 2.8% of the volume overlapping in the right hippocampus
(Morey et al., 2009).

There should, in general, not be much difference
between 1.5 and 3 T images except possibly minor in

FIGURE 2 | Flowchart of curvature analysis on the hippocampus surface.
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FIGURE 3 | Laplacian smoothing on the hippocampal surface. From left to right, displayed are the series of hippocampal surfaces from the original surface
constructed from the Marching cubes to the surface with more smoothing iterations. The upper surfaces are the full size of the hippocampus, and the lower surfaces
are about the zooming surface focus on hippocampal head for observing the smoothing levels at a fine scale.

the contrast. Recently, Brown et al. (2020) have also
documented on test–retest reliability of automated
segmentation of the hippocampal subfield procedures
via T1-weighted images acquired from two models of
Siemens scanners.

Curvature Analysis
As depicted in Figure 2, the segmented hippocampus and its
subfields subsequently underwent 3D surface reconstruction,
surface smoothing, and calculation of the curvature indices.
The 3D reconstruction is based on the Marching cubes
algorithm (Lorensen and Cline, 1987) to produce a surface from
hippocampus-labeled MRI. Subsequently, surface smoothing is
performed to compensate for the spurious structure of the
original segmentation with the Laplacian smoothing algorithm.
The effect of surface smoothing is demonstrated in Figure 3.
The surface from the original hippocampal segmentation
could be quite rough due to limited spatial resolution and
SNR in MRI scans. The smoothing algorithm removes the
bulgy structure to adequately reveal the surface structure.

FIGURE 4 | Illustration about the curvature to quantify the degree of bending
and folding.

The number of iterations for smoothing has been set to
50 in this work to balance noise removal and principal
feature preservation.

The curvature analysis measures the principal curvatures
and RPC. Quantified by the curvature index, the cortical gyrus
and sulcus can be described as the juxtaposition of ridges and
valleys according to Boucher et al. (2009). Curvature was first
defined as the second-order derivative of a 1D curve, as shown
in Figure 4. The concept can be generalized to a 2D surface
to measure folding conditions in terms of normal curvature,
defined by a 1D curve intercepted by a normal plane at a specific
point. Among all normal curvatures obtained from the different
rotating angles of a given point on the surface, the maximum and
minimum are defined as the principal curvatures, respectively.
The principal curvatures of a given vertex, v, on the surface in
3D, are formulated as follows:

cmax(v) = H(v)+
√

(H(v))2
− K(v), and

cmin(v) = H(v)+
√

(H(v))2
− K(v).

The K(v) indicates the discrete Gaussian curvature at vertex v
which can be obtained from the Gauss–Bonnet theorem, given
by

K(v) = d(v) = 2π−

N∑
i

= 0βi,

where N is the number of faces containing v and βi is the interior
angle of v. H(v) represents the discrete mean curvature defined as

H(e) =
1
N

N∑
i=1

s(e) ·ψ(e)
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FIGURE 5 | Local folding pattern corresponds to the principal curvature.

FIGURE 6 | Input features and proposed architecture in MLP.
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FIGURE 7 | CA1 subfield surface attached with calculated maximum curvature, minimum curvature, and RPC. The leftmost artwork is about the CA1 subfield
surface with maximum curvature. The second artwork from the left is about the CA1 subfield surface with minimum curvature. The third artwork from the left is about
the CA1 subfield surface with RPC. The right artwork is about the demonstration of RPC by the medial side of the hippocampus surface with RPC attached. In this
illustration, the RPC showed its ability to indicate valleys and ridges on the surface.

FIGURE 8 | Comparison of CA1 surface between MCI and AD. The three artworks in the left are the comparison of volume and surface area. The volume is 443.964
mm3 and surface area is 753.45 mm2 when the subject was diagnosed as MCI. The volume is 325.024 mm3 and surface area is 594.504 mm2 when the subject
was diagnosed as AD. The two artworks in the right are targeted to demonstrate the change of “average of RPC.”

where e is the edge set incident to the vertex v and N
is the number of edges in the edge set. Besides, the s(e)
denotes the length of the edge, and ψ(e) denotes the dihedral
angle of e. Based on the topology observed, we also noted
that RPC can be an effective index to distinguish the local
folding pattern, as shown in Figure 5, which is defined by

RPC =
Max

{∣∣CMax
∣∣, ∣∣CMin

∣∣}
Min

{∣∣CMax
∣∣, ∣∣CMin

∣∣}
The curvature indices of the entire hippocampus as well as
all the segmented subfields are all calculated. Separation of the
curvature of the entire hippocampus and its subfield will help
to reveal structural alterations inside the hippocampus during
the conversion. Instead of mapping the calculated curvature
on the lattice grid of the segmentation map, an iterative
closet points (ICP) surface registration algorithm (Besl and
Mckay, 1992) has been used to register the curvature values
of the subfield segmentation after smoothing. The refined
registration was applied out of concern that the curvature of
the subfield is prone to a low signal-to-noise ratio and limited
spatial resolution.

Feature Selection for Classification
Proper selection of features as prediction variables has been
known to be a critical factor in constructing classification models.
In our current work, neuropathological and morphological

TABLE 3 | Two-sample t-test on changing rate of volume in different hippocampal
subfields.

Regions Changing rate of volume p-value Cohen’s d

MCI
non-converter

group

MCI to AD
group

Presubiculum −2.73 ± 8.38% −7.34 ± 6.46% 0.00001 0.61848

Subiculum −3.96 ± 6.13% −7.78 ± 5.81% 0.00001 0.64324

CA1 −2.74 ± 5.14% −4.84 ± 4.99% 0.00154 0.41515

CA3 −3.21 ± 7.99% −6.13 ± 6.68% 0.00233 0.39884

CA4 −3.07 ± 6.02% −5.34 ± 5.01% 0.00167 0.41205

GC-ML-DG −3.52 ± 6.07% −5.61 ± 4.86% 0.00365 0.38056

Molecular layer −3.6 ± 6.23% −6.62 ± 4.71% 0.00003 0.54958

Hippocampal
fissure

0.57 ± 7.83% −3.34 ± 8.93% 0.00037 0.46771

Hippocampal
tail

−2.26 ± 8.36% −4.87 ± 6.3% 0.00681 0.35392
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changes as described by medical experts have been used to
characterize the volume, surface area, averages of the principal
curvatures, and the average of the RPC biomarkers. These indices
featuring the entire hippocampus and its subfields were chosen
for investigation while anticipating biomarker identification
to categorize the converter and the non-converter cohorts.
Furthermore, this work seeks to track symptom changes over
time. The change in rate of each morphological index should be
more useful than the indices at each time point. Thus, the change
in rate

(
Cf
)

of a morphological index is defined as

Cf =
fsecond − ffirst

fsecond
, f ∈ F

=
{

volume, surface_area, average_curvature
}

to quantify the relative difference between two visits. In the
feature selection step, we explore neuroimaging features. Feature
selection is carried out because that multilayer perceptron

TABLE 4 | Two-sample t-test on changing rate of surface area in different
hippocampal subfields.

Subfields Changing rate of the surface area p-value Cohen’s d

MCI
non-converter

group

MCI to AD
group

Presubiculum −2.23 ± 4.95% −4.75 ± 4.62% 0.00006 0.52750

Subiculum −2.59 ± 4.14% −5.68 ± 4.16% 0.00001 0.74995

CA1 −2.36 ± 4.58% −4.36 ± 3.93% 0.00003 0.47154

CA3 −3.22 ± 5.58% −5.62 ± 5.29% 0.00075 0.44230

CA4 −2.91 ± 4.39% −5.01 ± 3.89% 0.00045 0.50678

GC-ML-DG −3.36 ± 4.87% −4.87 ± 4.23% 0.00109 0.33237

Molecular layer −3.25 ± 5.38% −5.71 ± 4.54% 0.00017 0.49474

Hippocampal
fissure

2.53 ± 13.24% −3.96 ± 13.42% 0.000205 0.48880

Hippocampal
tail

−1.61 ± 4.08% −4.06 ± 4.43% 0.00001 0.57654

TABLE 5 | Two-sample t-test on changing rate of “average of RPC” in different
hippocampal subfields.

Subfields Changing rate of average of RPC p-value Cohen’s d

MCI
non-converter

group

MCI to AD
group

Presubiculum 3.26 ± 7.82% 1.24 ± 9.65% 0.07571 0.23127

Subiculum −0.24 ± 7.74% 1.87 ± 8.92% 0.05146 0.25377

CA1 0.17 ± 7.1% 2.59 ± 8.33% 0.01595 0.31467

CA3 4.23 ± 14.62% 3.61 ± 14.42% 0.74307 0.04254

CA4 13.0 ± 54.5% 14.3 ± 58.17% 0.85797 0.02323

GC-ML-DG 3.5 ± 20.75% 4.35 ± 19.91% 0.74702 0.04187

Molecular layer 4.08 ± 23.04% 7.0 ± 24.87% 0.34714 0.12212

Hippocampal
fissure

2.14 ± 19.4% 2.85 ± 19.14% 0.77527 0.03705

Hippocampal
tail

2.12 ± 11.1% 2.11 ± 12.34% 0.99021 0.00159

will usually treat all features as equivalent or begin. With
the training process, a multilayer perceptron will determine
the most suitable parameters in the feature map. As such,
reducing some features such as noise can more accurately and
quickly yield a suitable weight in the feature map. In the first
selection method, the univariate selection, a two-sample t-test
is conducted to compare the Cf in each volume of interest
to explore potential useful biomarkers. The indices showing
significant differences between the two groups will be adopted as
the candidate prediction variables in the classifier. Features are
selected on the basis of their p-value in an independent t-test.
The p-value may represent whether the difference is sufficiently
large to justify the conclusion that the two samples were
drawn from different populations. The second method is feature
importance, which is based on the features set combinability
and Gini impurity, whereby features are selected based on their
combination relevance.

Multilayer Perceptron Classifier
MLP is a popular and efficient neural network model in the
field of pattern recognition. MLP mimics the developing brain,
the plasticity, and the storage of experiential knowledge, which

TABLE 6 | Selection result based on univariate selection.

Rank Region Feature p-value

1 Subiculum Surface area < 0.00001

2 Subiculum Volume < 0.00001

3 Presubiculum Volume < 0.00001

4 Hippocampal tail Surface area 0.00001

5 Molecular layer Volume 0.00003

6 Presubiculum Surface area 0.00006

7 CA4 Surface area 0.00012

8 Molecular layer Surface area 0.00017

9 Hippocampal fissure Surface area 0.00021

10 CA1 Surface area 0.00034

11 Hippocampal fissure Volume 0.00038

12 CA3 Surface area 0.00076

13 CA1 Volume 0.00155

14 CA4 Volume 0.00168

15 CA3 Volume 0.00234

16 GC-ML-DG Volume 0.00366

17 Presubiculum CurvMin 0.00373

18 Hippocampal tail Volume 0.00681

19 CA1 CurvMax 0.00969

20 GC-ML-DG Surface area 0.01097

21 CA1 RPC 0.01596

22 Subiculum RPC 0.05146

23 Presubiculum CurvMax 0.06049

24 CA4 CurvMin 0.06766

25 Presubiculum RPC 0.07571

26 Molecular layer CurvMax 0.11261

27 Hippocampal tail CurvMax 0.25083

28 Hippocampal fissure CurvMax 0.29224

29 Molecular layer RPC 0.34715

30 CA4 CurvMax 0.41302
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TABLE 7 | Selection result based on feature importance.

Rank Region Feature Score

1 Presubiculum Volume 2,335

2 Hippocampal tail Surface area 2,004

3 Subiculum Surface area 1,994

4 Presubiculum Surface area 1,972

5 Hippocampal fissure Surface area 1,687

6 Subiculum Volume 1,598

7 Hippocampal fissure Volume 1,551

8 CA4 Volume 1,545

9 GC-ML-DG Surface area 1,420

10 GC-ML-DG Volume 1,374

11 CA4 Surface area 1,349

12 Hippocampal tail Volume 1,277

13 Presubiculum CurvMin 1,107

14 Molecular layer Surface area 1,053

15 Molecular layer Volume 1,016

16 Molecular layer CurvMax 694

17 CA3 Volume 663

18 CA1 CurvMax 619

19 Subiculum CurvMax 612

20 CA4 CurvMin 609

21 Presubiculum RPC 479

22 CA1 RPC 462

23 CA3 RPC 458

24 Subiculum RPC 320

25 CA4 CurvMax 306

is also known as learning processing. MLP is a multilayer
network capable of multilevel information extraction through its
hierarchical structure. MLP may also be seen as a multivariate
probabilistic function or mapping of input features to outputs.

The MLP architectures proposed in this current research
are shown in Figure 6. There are three main parameters
needed for the design: (1) the number of hidden layers, (2)
the number of neurons in each layer, and (3) the activation
function. With regard to choosing the number of hidden layers,
we have a shallow design network. Our input features are highly
representative, and we do not need a deep network to identify

the complicated relations. With regard to choosing the number
of neurons in each layer, we used a grid search method to
find out the best parameter. In addition, we used ReLU as an
activation function. ReLU reduced the probability of a vanishing
gradient and is more computationally efficient. According to the
design, the MLP is equipped with two hidden layers within each
12-neuron layer.

The prediction was based on these architectures and was
performed using the scikit-learn framework. The ReLU function
was used as the activation function. The Adam with momentum
(0.9) and adaptive learning rate to enhance training was used to
optimize the learning process. An L2 norm penalty of weight
0.0001 was also imposed for regularization. The maximum
iteration was set to 800. All the subject data were randomly
shuffled; 60% of them were treated as the training set, 30% of
them were treated as the testing set, and 10% of them were
used for validation.

RESULTS

Feature Extraction From the
Hippocampus
The 3D curvature mappings are shown in Figure 7. The
maximum curvature is capable of delineating the ridges of
the local structure (Figure 7), while the minimum curvature
is capable of outlining the cap-shape patterns (Figure 7).
While the two principal curvatures enhance the folding
regions bending in different directions, the RPC helps to
distinguish the folding area and the flatting area. However,
the RPC is instrumental in enhancing the morphological
complexity of cortical surfaces, as shown in Figure 7, indicating
capture of the structural changes in the hippocampus.
Figure 8 illustrates the morphological changes in CA1
from a typical converter. Not only the volume but also the
surface area was significantly reduced. A smaller flat region
was also noticed when the subject was diagnosed with AD
with increased RPC.

The rates of change in volume, surface, and RPC data of all
nine subfields are listed in Tables 3–5. The converter generally

TABLE 8 | Performance of the MLP classifier with different input features (100 times training result averaging).

Input feature Neuroimaging features

Basic MLP architecture 2 hidden layers with 12 neurons

Selection method Criteria Number of features Accuracy (%) Sensitivity (%) Specificity (%)

Univariate selection p-value < 0.01 19 79.07 72.41 85.74

Univariate selection p-value < 0.05 21 78.47 72.04 84.91

Univariate selection p-value < 0.1 25 75.96 71.39 80.00

Feature importance Random forest top 10 10 72.45 60.00 84.91

Feature importance Random forest top 15 15 78.10 70.28 85.93

Feature importance Random forest top 20 20 79.95 74.44 85.46

Feature importance Random forest top 25 25 76.39 73.52 79.26

Whole feature (without feature selection) 45 65.97 60.56 71.39
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shows a higher reduction level over time in terms of volume and
surface area than the non-converter. Most of the subfields reveal
statistically significant differences, except for the parasubiculum,
HATA, and fimbria. The hippocampus subregion segmentation
algorithm will make an error in a small region appear particularly
significant since our surface model is constructed by labeled
segmentation of MRI data. These errors will continue to be
passed on to the feature via the feature extraction step. On the
other hand, only temporal changes in the average RPC in CA1
achieved significant difference levels between the two groups and
reached a statistical significance level quite early in the subiculum.

Table 6 shows the selection results for neuroimaging features.
For neuroimaging features, we found that volume and surface
area are strong features in different subregions. There are only
seven curvature features selected by the criteria. We also observed
that the presubiculum might be a region of interest since the
volume, surface area, RPC, minimum curvature, and maximum
curvature have been selected. In addition, the subiculum, CA1,
CA4, and the molecular layer have four features which have been
selected by a univariate selection method. They might also be
regions of interest to carefully focus on. We built 100 random
forest classifiers with 20 decision trees. Due to the randomness

TABLE 9 | Classification comparison of different approaches (order follows the time of publication).

Study ROI Subjects Features Accuracy (%)

Chupin et al. (2009) Hippocampus and
amygdala

76 MCI-C 134 MCI-NC MRI (volume) 67.0

Misra et al. (2009) Whole brain 27 MCI-C 76 MCI-NC MRI (RAVENS score) 75–80

Liu et al. (2010) Hippocampus, amygdala,
and caudate

21 MCI-C 79 MCI-NC MRI (volume) 69.0

Davatzikos et al. (2011) Whole brain 69 MCI-C 170 MCI-NC MRI (SPARE-AD) + CSF 61.7

Wolz et al. (2011) Whole brain 167 MCI-C 238 MCI-NC MRI (hippocampus volume) 65.0

MRI (hippocampus volume,
thickness, TBM, and
manifold-based learning)

68.0

Duchesne and Mouiha (2011) Whole brain 20 MCI-C 29 MCI-NC MRI 72.3

Costafreda et al. (2011) Hippocampus 22 MCI-C 81 MCI-NC MRI (shape), cognitive scores
(MMSE)

80.0

Coupe et al. (2012) Entorhinal cortex and
hippocampus

167 MCI-C 238 MCI-NC MRI (volume, SNIPE) 73.0

Cheng et al. (2015b) GM 43 MCI-C 56 MCI-NC MRI (volume) + CSF + PET 70.7

Ewers et al. (2012) Hippocampus 58 MCI-C 72 MCI-NC MRI (hippocampus volume), CSF
P-tau181, Aβ1-42, cognitive scores
(TMT-B), age

76.9

Westman et al. (2012) Whole brain 81 MCI-C 81 MCI-NC MRI (volume, thickness) + CSF 68.5

Zhang et al. (2012a) Whole brain 43 MCI-C 48 MCI-NC MRI (volume) + CSF + PET 73.9

Zhang et al. (2012b) Whole brain 38 MCI-C 50 MCI-NC MRI (volume) + PET + cognitive
scores (MMSE, ADAS-Cog)

78.4

Young et al. (2013) Whole brain 47 MCI-C 96 MCI-NC MRI + CSF + PET + APOE 74.1

Wee et al. (2013) Whole brain 89 MCI-C 111 MCI-NC MRI (volume, thickness) 75.05

Suk and Shen (2013) Whole brain 43 MCI-C 56 MCI-NC MRI (volume) + CSF + PET +
cognitive scores (MMSE,
ADAS-Cog)

75.8

Eskildsen et al. (2013) Whole brain 166 MCI-C 134 MCI-NC MRI (thickness) 80.9

Suk et al. (2014) Whole brain 76 MCI-C 128 MCI-NC MRI + PET 75.9

Liu et al. (2015) Whole brain 117 MCI-C 117 MCI-NC MRI 78.9

Cheng et al. (2015a) GM 43 MCI-C 56 MCI-NC MRI (volume) + CSF + PET 80.1

Suk et al. (2015) Whole brain 43 MCI-C 56 MCI-NC MRI 69.3

MRI + CSF + PET + cognitive
scores (MMSE, ADAS-Cog)

83.3

Cabral et al. (2015) Whole brain 25 MCI-C 56 MCI-NC MRI+PET 74.0

Moradi et al. (2015) GM 164 MCI-C 100 MCI-NC MRI, age, cognitive scores (MMSE,
ADAS-Cog, CDR-SB, RAVLT, FAQ)

82.0

Korolev et al. (2016) Left hippocampus, middle
temporal gyrus, inferior
parietal cortex

139 MCI-C 120 MCI-NC MRI (volume, thickness) + plasma
proteomic data + cognitive scores
(ADAS, RAVLT, FAQ)

79.9

ROI, regions of interest; GM, gray matter; TBM, tensor-based morphometry; SNIPE, Scoring by Non-local Image Patch Estimator; CDR-SB, Clinical Dementia Rating-Sum
of Boxes; ADAS, Alzheimer’s Disease Assessment Scale; RAVLT, Rey Auditory Verbal Learning Test; FAQ, Functional Activities Questionnaire; MCI-C, MCI converters;
MCI-NC, MCI non-converters.
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of the subset of features in forming the decision tree, the model
may yield important differences in feature weights each time.
By training the model multiple times, for a certain number
of cycles, we were finally able to obtain a certain amount of
features that make an important contribution to the impact of
the classification task. The importance of a feature is computed
as the total Gini impurity reduction of the criterion brought
by that feature. It is also called the Gini importance. We sort
the rank from the whole feature according to the sum of the
feature importance with different weights. A higher feature
importance rank in the random forest has a higher weight. The
order of ranking is representative of the relative importance in
Table 7.

Identification of MCI Converting Based
on MLP
Performances of the MLP, adopting different combinations
of prediction variables, are listed in Table 8. We found the
criteria (p < 0.01) with a higher accuracy (79.07%) in a
univariate selection method. Performance decreased with this
criteria (p < 0.05; p < 0.1). This means that the extra
selected features represent noise in the classification task. The
second observation was that the criteria (random forest top
20) had a higher accuracy (79.95%) in the feature importance
method. The best accuracy was also found in the two-selection
method. This is reasonable, since the random forest considered
both the combination of feature set and classification ability
at the same time. We roughly assessed the different criteria.
We will compare the selected features by a two-selection
method and remove the common parts. This can help with the
interpretation. Using both selection methods can enhance the
model accuracy by about 15%.

Correlation Between MMSE and
Neuroimage Biomarkers
The correlation between the neuroimaging biomarkers with
MMSE scores is shown in Table 10. It is observed that based
on p < 0.05, the volume and surface area markers have
revealed high correlations with the presubiculum, subiculum,
molecular layer, and hippocampal fissure subfields. In addition,
the newly introduced RPC biomarker, representing degeneration,
has statistical significance between MMSE at the CA1 and
molecular layer subfields. High correlations could also be
observed between pathological indicative maximum curvature
and minimum curvature biomarkers and MMSE primarily at
the CA1 subfield.

DISCUSSION

Previous studies have found that morphological changes in the
hippocampus are highly related to the progression of AD. While
most research studies have investigated the entire hippocampus
as a single unit, the present work has tried to associate
the alteration of the subfields of the hippocampus with the
progression of cognitive impairment. The results suggested that
the rate of change of the average RPC can be used as a biomarker

TABLE 10 | Correlation between MMSE and neuroimage biomarkers.

Regions Feature MMSE

Pearson’s r p-value

Presubiculum Volume 0.3166 < 0.0001

Surface_area 0.3399 < 0.0001

RPC 0.01606 0.8316

Max_Curvature 0.0268 0.7248

Min_Curvature −0.0815 0.2836

Subiculum Volume 0.3093 < 0.0001

Surface area 0.3352 < 0.0001

RPC −0.0437 0.5669

Max_Curvature −0.0541 0.4782

Min_Curvature −0.0666 0.3843

CA1 Volume 0.0974 0.1984

Surface area 0.1059 0.1618

RPC −0.1639 0.0303

Max_Curvature −0.2193 0.0034

Min_Curvature 0.1938 0.01

CA3 Volume 0.09047 0.2325

Surface area 0.1353 0.0734

RPC −0.0394 0.6039

Max_Curvature 0.00488 0.9488

Min_Curvature −0.0581 0.4424

CA4 Volume 0.06013 0.4266

Surface area 0.1001 0.1848

RPC 0.0023 0.9763

Max_Curvature −0.1453 0.0642

Min_Curvature 0.07523 0.3339

GC-ML-DG Volume 0.1068 0.1585

Surface area 0.08517 0.2597

RPC −0.0482 0.5233

Max_Curvature 0.06343 0.4003

Min_Curvature 0.03293 0.6662

Molecular layer Volume 0.2298 0.0022

Surface area 0.2101 0.0051

RPC −0.2311 0.0019

Max_Curvature −0.1014 0.1952

Min_Curvature 0.02585 0.7342

Hippocampal fissure Volume 0.1829 0.0145

Surface area 0.2416 0.0012

RPC 0.04782 0.5262

Max_Curvature 0.09744 0.1996

Min_Curvature 0.04733 0.546

Hippocampal tail Volume 0.09862 0.1928

Surface area 0.121 0.1097

RPC −0.0423 0.577

Max_Curvature 0.06056 0.4273

Min_Curvature −0.0475 0.5294

of whether an MCI patient will convert to AD. While the average
RPC captures the structural features in AD progression, the ways
in which the pattern changes were also qualitatively analyzed.
Based on the correspondence between principal curvature indices
and morphology, the histogram showing the distribution of the
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surface pattern from the data of a typical converter subject is
plotted in Figure 9. The flat pattern was found to diminish more
than the other patterns. This finding suggests that the boundaries
of the hippocampal subfields would grow increasingly spurious
during conversion to AD. Consequently, RPC has the potential
to detect whether a subject has developed AD according to the
change in surface pattern.

Several studies have focused on the link between volume
and surface area while discriminating MCI and AD. These
two structural quantities have shown their potential in the
classification. Consequently, this work has invested much effort
into investigating these two quantities and their temporal
changes, as shown in Tables 3, 4. The experimental results also
showed that the curvature features can improve the classification
ability. Curvature features which have statistical meaning and
important features have been selected by univariate selection. As
a result, the combination of the random forest top 20 features
is likely to provide the highest accuracy in predicting changes
in symptoms based on the presented framework. However,

there is still room to improve the prediction accuracy, and
we anticipate that further factors, regardless of morphology or
physiology, should be further investigated to increase the quality
of the classification.

The architecture of the MLP classifier is also key to the
prediction accuracy, in addition to properly selecting the
prediction features. After obtaining the optimized prediction
results for the two hidden-layer MLP, we tried modifying the MLP
to a larger number of layers and neurons. However, as far as the
number of subjects is concerned, the MLP structure cannot go too
much deeper lest overfitting takes place. Another interesting fact
in the experiment is shown in Table 8, whereby the increase in
input features does not guarantee a better prediction, even when
combining the three prominent features. These two findings
suggest that the design of an optimal MLP classifier requires
sophisticated tests. While there is no standard way to optimize the
variables and parameters, our approach, starting with a statistical
analysis on the feature selection, may greatly ease the daunting
procedure of optimizing the structure of the classifier.

FIGURE 9 | Comparison between MCI and AD according to the detected local folding pattern on the whole hippocampus surface. The two left artworks are the
local folding pattern identification of the surface in MCI stage and the surface in AD stage, respectively. Moreover, the two right artworks are the histogram about the
proportion ratio of each local folding patterns in the MCI stage and AD stage, respectively.
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Several studies have sought to discriminate between MCI
converters (MCI-C) and MCI non-converters (MCI-NC). A list
of the accuracy from the literature is listed in Table 9. This
study achieved a 79.95% accuracy based on the MLP classifier
with a surface area and average RPC as input features, while
the accuracy of the other approaches ranged from 74.1 to
83.3%. We have found that the present work has achieved
relatively high accuracy, with only MRI data extracted from the
regions in the hippocampus without combining other features
from PET, CSF, or cognitive scores. This work could be used
as a good screening tool for clinical examinations, as only a
structural MRI scan is required with a simple MLP classifier. The
loads for scan and computation are minimal. Given that other
examination data may provide complimentary information to
improve prediction quality, the MLP classifier can be augmented
to accommodate more information to ensure better accuracy
when a MCI converter is suspected.

Normalization is a key step in the FreeSurfer to register a
brain to the template for subfield segmentation (Wisse et al.,
2020). Despite concerns on the accuracy in volumetry of the
automatic segmentation, the results suggest that the two different
groups, MCI converter and MCI non-converters, could still be
distinguishable statistically following the presented procedure.
We believe the outcome can be greatly improved providing
more accurate information if the anatomical image at a higher
resolution becomes available.

Recent advances in machine learning-based biomarker studies
for AD are generally faced with two major challenges: the first on
diagnostic confirmation of the disease without biopsy and second
on data insufficiency. Statistical models are introduced to model
the degenerative process which, however, are independent or
irrespective of pathological feedbacks. Supervised deep learning
via CNN has gained high popularity, and information such
as, e.g., clinical data, has been transferred to train CNN using
neuroimaging biomarkers. To address both challenges, our main
contribution is on the introduction of a machine learning
algorithm which incorporates the neuropathologist’s experiences
in characterizing pathological morphology of the disease in the
form of subfield biomarker, primarily curvature analysis, with
features selected via univariate t-test and random forest.

In Table 10, hippocampal volumetric MRI measurements have
revealed statistical significance which is consistent with well-
established outcomes in clinical AD progression research. In
addition to characterizing the degenerative process via coarse or
global features using volume and surface area, we have further
introduced curvature as fine or local neuropathological features
delineated at the hippocampal subfields.

Based on a recently published paper (Gao et al., 2020),
the highest accuracy for MCI to AD conversion using

only structural MRI is 73%. The accuracy could reach
79% after adding PET markers. Our proposed technique
achieves one of the highest accuracy by using only structural
MRI biomarker. Medical experts’ intelligence is subsequently
augmented with the semisupervised algorithm, primarily via the
MLP decision-making process using limited imaging data. These
biomarkers are further confirmed from the neuropsychological
MMSE information.

CONCLUSION

The present work has assessed the structural information of
the hippocampal subfields, including volume, surface area, and
surface pattern as characterized by a curvature analysis. The
combined biomarkers of the rate of change in volume, surface
area, and curvature from the hippocampal subregions are
considered critical in classifying an MCI converter, which can
achieve an accuracy of 79.95%.
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Patients With Tonic–Clonic Seizures
Xin Li1, Zhongyuan Wang2, Qian Chen1, Xiaoyun Wang2, Zhao Qing3, Wen Zhang3,
Jiaming Lu3, Junxia Wang1, Xin Zhang3, Jiani Liu3, Zhengge Wang3* , Baoxin Li1,3* and
Bing Zhang1,3*
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2 Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,
3 Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China

We aimed to determine the alterations in the subcortical structures of patients with
idiopathic generalized epilepsy with tonic–clonic seizures (IGE-GTCS) via MRI volumetry
and vertex-based shape analysis and to evaluate the relationships between MRI
measures and drug responses. In a follow-up sample of 48 patients with IGE-GTCS
and 48 matched normal controls (NCs), high-resolution 3D T1WI was performed at
baseline. After 1 year of follow-up, 31 patients were classified as seizure free (SF) and
17 as drug resistant (DR). The volumes of subcortical structures were extracted,
and vertex-based shape analysis was performed using FSL-Integrated Registration
and Segmentation Toolbox (FSL-FIRST). Comparisons among groups were calculated
adjusting for covariates [age, sex, and intracranial volume (ICV)]. Analysis of the
relationships among imaging biomarkers along with frequency and duration was
assessed using partial correlations. The differential imaging indicators were used as
features in a linear support vector machine (LSVM). The DR group displayed significant
regional atrophy in the volume of the left amygdala compared with NCs (p = 0.004, false
discovery rate corrected) and SF patients (p = 0.029, uncorrected). Meanwhile, vertex-
based shape analysis showed focal inward deformation in the basolateral subregion
of the left amygdala in DR compared with the results for SF and NC (p < 0.05, FWE
corrected). There were significant correlations between the volume changes and seizure
frequency (r = −0.324, p = 0.030) and between shape (r = −0.438, p = 0.003) changes
and seizure frequency. Moreover, the volume of the left thalamus in the DR group was
significantly correlated with seizure frequency (r = −0.689, p = 0.006). The SVM results
revealed areas under the receiver operating characteristic curve of 0.82, 0.68, and 0.88
for the classification between SF and DR, between SF and NC, and between DR and
NC, respectively. This study indicates the presence of focal atrophy in the basolateral
region of the left amygdala in patients with IGE drug resistance; this finding may help
predict drug responses and suggests a potential therapeutic target.

Keywords: drug-resistant epilepsy, generalized tonic–clonic seizures, amygdala, vertex-based shape analysis,
support vector machine
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INTRODUCTION

Idiopathic generalized epilepsy (IGE) with tonic–clonic seizures
(GTCS), one of the main genetic generalized epilepsy syndromes,
representing approximately 15–20% of all epilepsies (Jallon and
Latour, 2005), typically responds well to antiepileptic drug
(AED) treatment. However, approximately one-third of patients
still develop drug resistance (Brodie et al., 2012) despite the
availability of over 20 new AEDs in the past 30 years (Engel
and Pitkanen, 2020). Compared with the epilepsy control group,
the risk of mortality, dysfunction, and premature death in drug-
resistant (DR) epilepsy patients was notably higher, which created
a huge burden for patients and the society (Jerome Engel, 2016;
Beghi et al., 2019). IGE appears normal on conventional magnetic
resonance imaging (MRI) with a diffuse mechanism of seizure
onset and no identifiable pathogenesis other than hereditary
susceptibility. Identifying common biological disease pathways
may help clarify diagnostic and prognostic biomarkers, which
in turn helps optimize individual treatment (Pitkänen et al.,
2016). Consequently, we aimed to identify imaging biomarkers
to predict prognosis in IGE patients.

With the application of non-invasive neuroimaging
technology, the understanding of the epilepsy mechanism
is improving; furthermore, this technology explores different
aspects, such as structural functional or metabolic modification.
Structural changes are a prominent feature of many epilepsy
types. Based on abundant human and animal neuropathologic,
imaging, and electrophysiologic evidence, it has been suspected
that a complex cortical–subcortical interaction is the basis
of the epileptic process and that subcortical structures (such
as the thalamus and basal ganglia) play a crucial role in the
generation and propagation of epilepsy (Badawy et al., 2013).
Some studies have suggested that electrical stimulation of
subcortical structures may exert control on seizure generators
initiating epileptic activities, although the mechanism of
action remains to be fully elucidated (Zangiabadi et al.,
2019). Therefore, the alterations of subcortical nuclei are
worth studying. Today, the results of previous studies in
subcortical structures in IGE remain controversial. Extensive
brain subcortical structural atrophy across several regions,
including the thalamus, hippocampus, pallidum, and putamen,
was previously reported in IGE patients via volumetric and
voxel-based morphology (VBM) analysis (Betting et al., 2006;
Bernhardt et al., 2009; Du et al., 2011; Whelan et al., 2018). Some
studies have found no significant difference in the subcortical
structure volume of IGE-GTCS patients compared with that
of normal controls (NCs) (Bernasconi et al., 2003; Natsume
et al., 2003; Seeck et al., 2004; Ozturk et al., 2020). Some
functional MRI studies complemented these findings, indicating
connectome anomalies in the thalamus and hippocampus (Wang
et al., 2019a,b). Despite the contribution of these findings to
localizing anomalies in this disease, there is limited insight
into the specific clinical value of the abnormality of subcortical
nuclei. Hence, we attempt to explore more subtle forms of
structural damage in the subcortical structures from patients
with different drug responses and to predict drug efficacy in
IGE-GTCS patients.

Complementary to VBM, vertex-based shape analysis is an
automatic method that provides useful information about the
location and pattern of morphological changes in subcortical
structures. Shape analysis is now widely used to evaluate
the regional atrophy of subcortical structures in various
neurological and psychiatric disorders (Zarei et al., 2010;
Gelineau-Morel et al., 2012). Moreover, combining volumetric
and morphological analyses will improve the accuracy and
sensitivity of structural alterations.

In the present study, we hypothesized that IGE-GTCS patients
with different drug responses would have diverse changes in the
subcortical nuclei, and the structural alteration of subcortical
nuclei may be potential biomarkers of drug responses in IGE
patients. To verify this hypothesis, we conducted both volume
and morphology analyses of subcortical structures with FSL-
Integrated Registration and Segmentation Toolbox (FSL-FIRST)
software in IGE-GTCS patients to determine specific patterns
that might be a biomarker to predict which patients will develop
drug resistance.

MATERIALS AND METHODS

Subjects
In order to make it easier for readers to understand, we made a
schematic figure of the analytical methods (Figure 1). Forty-eight
consecutive right-handed patients with IGE-GTCS admitted to
the Nanjing Drum Tower Hospital from 2013 to 2019 were
enrolled in the study. They met the following inclusion and
exclusion criteria: (1) those diagnosed with idiopathic/hereditary
generalized epilepsy with only GTCS according to the current
International League Against Epilepsy (ILAE) classification of
seizure types (Fisher et al., 2017) based on electroclinical
symptomatology were included (we ruled out patients with
myoclonic or absence seizures to exclude patients with juvenile
myoclonic epilepsy or juvenile absence seizures); (2) subjects
who had psychiatric disorders, brain structural lesions, systemic
disease, or other MRI contraindications were excluded; (3)
prospective clinical treatment follow-up of at least 1 year after
an imaging investigation was required for inclusion; and (4)
participation in a 3-T study MRI on the same scanner and 3D
T1WI results were necessary for inclusion.

In patients, we established the drug response via the ILAE
criteria (Kwan et al., 2010) at least at a 1-year follow-up point
after the imaging scan and divided patients into seizure-free (SF)
and DR groups. After 1 year of follow-up, 31 patients (11 females,
mean ± SD age = 24.11 ± 10.62 years) were classified as SF, and
17 patients (9 females, mean ± SD age = 28.53 ± 9.91 years)
were classified as DR. Of these patients, 15 SF patients and
3 DR patients had not taken medication before imaging
(mean ± SD duration = 1.73 ± 2.08 years), and 30 patients (16
SF and 14 DR) were treated with monotherapy or polytherapy
including valproate (VPA), levetiracetam (LEV), lamotrigine
(LTG), oxcarbazepine (OXC), topiramate (TPM), carbamazepine
(CBZ), phenytoin (PHT), clonazepam (CZP), and phenobarbital
(PB) before the study (mean ± SD duration = 9.45 ± 7.29 years).
The information of the drug exposure prior to MRI scan and
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FIGURE 1 | Schematic figure of the analytical methods.

treatment selection after enrollment is in Supplementary Table 2
(SocioDemographic).

Forty-eight age-matched and sex-matched NCs (17 females,
mean ± SD age 25.63 ± 3.25 years) were enrolled during the same
recruitment period. They underwent the same image scanning
with the same quality control standards as the patients. Prior to
the study, all subjects (patients and NCs) gave written informed
consent, and this study was approved by the Research Ethics
Committee of Nanjing Drum Tower Hospital.

MRI Acquisition
Brain scanning of all the subjects was performed on a Philips
Healthcare (Best, the Netherlands) 3 T MR imaging scanner
with an eight-channel head coil. High-resolution 3D T1WI was
conducted using a 3D turbo field echo sequence (repetition time
9.8 ms, echo time 4.6 ms, inversion time 900 ms, flip angle 8◦,
voxel size 1.0 mm × 1.0 mm × 1.0 mm, and 192 slices). During
the examination, the subjects were ordered to close their eyes and
remain motionless.

Image Analysis
To investigate the alterations in subcortical structures, we
first applied the DARTEL algorithm in the SPM12 toolbox1

to preprocess each anatomical image to perform intensity
correction and skull dissection. A Bayesian model-based

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12

segmentation tool in FSL-FIRST2 was used to segment subcortical
nuclei (bilateral thalamus, hippocampus, amygdala, nucleus
accumbens, putamen, caudate, and palladium), cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM). No
participant was excluded owing to poor structural segmentation,
following FSL-FIRST guidelines3. Then, we calculated the
volumes of the individual subcortical nuclei and the intracranial
volume (ICV). For the subcortical nuclei of all subjects, the
vertex index was calculated using the FSL vertex analysis script,
first_utils script, which is based on the signed vertical distance
from the corresponding surface mesh (a vtk file produced by
using the FSL run_first_all script) in the Montreal Neurological
Institute (MNI) template. A positive index indicated outward
deformation or expansion of the surface of a given structure,
whereas a negative index indicated inward deformation or
atrophy of the surface of the structure. Finally, the degree of
deformation value for all participants was computed and then
used for statistical analysis.

Statistical Analysis
This study used IBM SPSS Statistics, Version 23.0, to determine
a statistical description and make statistical inferences. A chi-
square test was used to assess the classification variables. Analysis
of variance (ANOVA) was performed to evaluate continuous
variables. ANOVA was used for between-group comparisons (SF
vs. DR, SF vs. NC, DR vs. NC, SF vs. DR vs. NC) of the volume
of subcortical nuclei after adjusting the covariates (age, sex, and
ICV). An analysis with a priori determination of the significance
level at p < 0.05 was considered statistically significant, false
discovery rate corrected (FDR corrected). The volume difference
between the left and right amygdala was compared by using
paired t-test in the three groups (SF, DR, and NC) separately.
Intergroup differences in subcortical shape were assessed using
a method based on a non-parametric approach for seven pairs
of nuclei using the FSL randomization procedure and adjusting
the covariates (age and sex). The findings were corrected for
multiple comparisons using threshold-free cluster enhancement
(TFCE) with a familywise error (FWE) rate of p < 0.05 by
running 5,000 random permutations. Then, after controlling for
age, sex, and ICV, the relationship between the volume and shape
of the structures with seizure frequency and disease duration was
analyzed by partial correlation.

SVM-Based Classification
To explore whether imaging indicators can be used to classify
including SF vs. DR, DR vs. NC, SF vs. NC, we applied the
LIBSVM toolbox for MATLAB to implement the linear support
vector machine (LSVM) classification4. LSVM is one of the
most widely used supervised machine learning methods (Cui
et al., 2016). Its purpose is to obtain a classifier with high
predictive ability by minimizing the empirical classification error
on the training data while considering the complexity of the
model. In this study, the SVM toolbox in MATLAB was used

2http://www.fmrib.ox.ac.uk/fsl/FIRST
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST/UserGuide
4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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to verify the role of the morphology and volume of subcortical
structures in the classification of subjects. Leave-one-out cross-
validation (LOOCV) was adopted; that is, each subject was
separately used as the test set in turn, and the remaining subjects
belonging to the contrast group were used as the classifier to
form the training set. We used the SVM with the linear kernel
function, and the parameter C was set to 1. Discriminative
features were derived from differential imaging indicators of
seven pairs of subcortical structure volumes and shapes. The
accuracy, sensitivity, specificity, and operating curve (ROC) of
the classifier in the classification of test set data in each test were
recorded. Then, the area under the curve (AUC) of the ROC
was statistically compared based on the DeLong method. To test
the sample size imbalance effect on the classification, a control
analysis to select the same sample size of DR (n = 17) from NC
(n = 48) was performed.

RESULTS

Clinical Features
Anatomical MRI data from 96 participants were included in
the study, consisting of 31 SF patients, 17 DR patients, and
48 NCs. The demographic and clinical characteristics of the
subjects are listed in Table 1. The baseline features of sex and
age among the three groups (all p > 0.05) were generally well
balanced. Patients who were not SF indeed had a higher seizure
frequency (t = 19.700, p = 0.000) and had a longer illness duration
(t = 23.896, p = 0.000) than SF patients. However, there was
no significant difference in onset age between the two groups
(t = 0.035, p = 0.852).

MRI Features
MR Volumetry
We analyzed seven pairs of subcortical nuclei, including the
bilateral thalamus, hippocampus, amygdala, nucleus accumbens,
putamen, caudate, and palladium. The subcortical nuclei
schematic is shown in Figure 2. There were significant differences
in the volume of the left amygdala between the three groups
(p = 0.008, uncorrected) (Table 2). Compared with NCs, DR
patients showed a distinct decrease in the volume of the left
amygdala (p = 0.004, FDR corrected, Figure 3A), and compared

with SF patients, the volume of the left amygdala was reduced in
DR patients (p = 0.029, uncorrected). There was no difference in
the volume between SF patients and NCs (p > 0.05). Additionally,
there was no significant difference in bilateral amygdala volume
in NCs (p = 0.100) and SF patients (p = 0.164), but the volume
of the left amygdala was smaller than that of the right amygdala
in the DR group (p = 0.031) (Figure 3B and Supplementary
Table 1). Interestingly, the thalamus and hippocampus did
not show any significant alterations. Moreover, there was no
significant difference in the shape (p > 0.05) and volume
(p = 0.372) of the left amygdala between the medication group
and the non-medication group.

Vertex-Based Shape Analysis
Compared with NCs, DR patients showed significant regional
atrophy in the shape of the left amygdala (L_Amyg: 616/911
67.62%, p < 0.05, FWE corrected), which was located in the
basolateral region (Figure 4B). Meanwhile, a similar part of the
left amygdala in the DR group was also slightly reduced compared
with the amygdala of SF patients (L_Amyg: 172/872 19.72%,
p < 0.05, FWE corrected) (Figure 4A). In addition, the shape
of the left putamen (L_Puta: 94/2,969 3.17%, p < 0.05, FWE
corrected) showed slight inward deformation (atrophy) in the
DR group compared with that of NCs. Furthermore, compared
with controls, SF patients had minor inward deformation
in the shape of the left pallidum (L_Pall: 15/1,128 1.33%,
p < 0.05, FWE corrected).

Correlation Between MRI Measurements and Clinical
Parameters
The correlations between the morphology and volume changes
of subcortical nuclei and the seizure frequency and disease
duration of IGE are provided in Table 3. The data of all patients
showed that seizure frequency was negatively correlated with left
amygdala shape (r = −0.438, p = 0.003, uncorrected) and volume
(r = −0.324, p = 0.03, uncorrected) (Table 3 and Supplementary
Table 2). In the DR group, although there was no statistically
distinct difference, there was a trend of correlation between the
shape and volume of the left amygdala and seizure frequency.
Moreover, the volume of the left thalamus in the DR group was
significantly negatively related to seizure frequency (r = −0.689,
p = 0.006, uncorrected), but a correlation was not found in all

TABLE 1 | Demographic and clinical characteristics of the subjects.

Characteristics SR (n = 31) DR (n = 17) NC (n = 48) F or t p

Demographic

Age (years) 24.11 ± 10.62 28.53 ± 9.91 25.63 ± 3.25 1.788 0.173

Sex (F/M) 11/20 9/8 17/31 1.808 0.405

Medical history

Duration (years) 4.81 ± 4.54 9.74 ± 9.35 / 19.700 0.000*

Frequency# (times/years) 1.90 ± 1.55 7.06 ± 7.02 / 23.896 0.000*

Onset age (year) 19.35 ± 10.33 18.80 ± 8.78 / 0.035 0.852

SF, seizure free; DR, drug resistant; NC, normal control.
*There were statistically significant differences between the groups (p < 0.05).
#Numbers of generalized tonic–clonic seizure per year.
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FIGURE 2 | Schematic diagram of subcortical structures by the BrainNet Viewer. (A) Coronal; (B) sagittal; and (C) axial.

patients. No correlation was found for the disease duration in
either patient group. On the other hand, left amygdala volume
was positively correlated with right amygdala volume in the NC
group (r = 0.599, p = 0.000) and SF (r = −0.522, p = 0.003),
but this correlation was not found in the DR group (r = 0.373,
p = 0.140) (Supplementary Table 1).

SVM Classification Results
The results of the LSVM classification are shown in Figure 5 and
Supplementary Table 3. Discriminative features were derived
from age and differential indicators including the volume and
shape of the left amygdala and palladium and putamen. The
best results are retained for each group classification. The
demographical feature of age among the three groups (all
p > 0.05) was generally well balanced, but the age of our subjects
(IGE patients) ranged from 12 to 57 years old. Therefore, age
was regarded as a feature in this study. The characteristics
that identify SF patients from NCs are age, the shape of the
left amygdala and palladium, and volume of the left amygdala;
those that differentiate DR patients from NCs are age, the
shape of the left amygdala and putamen, and volume of the
left amygdala; and those that discriminate SF patients and DR
patients include age, shape, and volume of the left amygdala
and palladium. LSVM distinguished DR patients from NCs
with an accuracy of 84.62%, sensitivity of 58.82%, specificity
of 87.50%, and AUC of 0.88, whereas the accuracy, sensitivity,
specificity, and AUC for differentiating SF patients from NCs
were 70.89, 41.94, 89.58%, and 0.68, respectively. In terms
of distinguishing DR patients from SF patients, the accuracy,
sensitivity, specificity, and AUC were 77.08, 90.32, 52.94%,
and 0.82, respectively. Furthermore, LSVM distinguished DR
patients (n = 17) from NCs (n = 17) with an accuracy of
82.35%, sensitivity of 82.35%, specificity of 82.35%, and AUC
of 0.90, and the classification features are the same as above
(Supplementary Figure 1).

DISCUSSION

In this study, alterations in subcortical nuclei in IGE-GTCS
patients with different drug responses were investigated by
MR volume and vertex-based shape analysis. Both volume and
morphology analysis of subcortical structures showed atrophy
in the basolateral region of the left amygdala in DR patients.
Moreover, there were significant correlations between the volume
and shape changes and between the volume and seizure
frequency. The correlation of bilateral amygdala volume was not
present in the DR group. The volume of the left thalamus in
the DR group was significantly related to seizure frequency. The
LSVM results revealed AUCs of 0.8159, 0.6848, and 0.8811 for the
classification between SF and DR patients, between SF patients
and NCs, and between DR patients and NCs, respectively.

Atrophy of the Left Amygdala, Especially
in Basolateral Areas Contributed to Drug
Resistance
It is well known that the amygdala is regarded as part of the limbic
system of the brain and is subdivided into three groups comprised
of the basolateral complex, the corticomedial nucleus, and the
central nucleus. The amygdala plays a crucial role in many
physiological and pathological mechanisms, including emotion
regulation, memory organization, epileptogenicity, and others
(Janak and Tye, 2015). In this study, pharmacoresistant patients
had more frequent seizures than SF patients. There is growing
evidence that seizure-induced alterations could also be generated
by recurrent seizures, especially in structures vulnerable to
damage (e.g., the amygdala or hippocampus) (Duncan, 2002;
Lopim et al., 2016). One study has shown that stimulating the
right amygdala can cause negative emotions, especially fear and
sadness, and stimulating the left amygdala can cause pleasant
or unpleasant (fear, anxiety, and sadness) emotions (Lanteaume
et al., 2007). It is reasonable to speculate that repeated seizures
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induce bad experiences and increase negative emotions in DR
patients, resulting in damage to the left amygdala. Accumulating
evidence suggests that an accelerated loss of neurons in the
epileptogenic zone has conventionally been considered to be a
factor associated with poor prognosis in epilepsy (Salmenpera
et al., 2001). Furthermore, previous studies have shown that
neurons in the basolateral amygdala consist of lateral (LA),
basal (BA), and basomedial (BM) cell groups and play an
important role in associative learning (Zhang and Li, 2018).
The basolateral subregion receives information on the external
environment from the sensory thalamus and sensory cortex,
which strongly project to the LA. The basolateral amygdala is
interconnected with sensory contact areas and cortical areas,
especially the hippocampus, midline, and orbital prefrontal
cortex (McDonald, 1998; Solano-Castiella et al., 2010). In our
research, the contraction in the basolateral area as a functional
area of the amygdala was more compelling than other findings.
Meanwhile, substantive evidence has shown that thalamocortical
networks play an essential role in GTCS (Bernhardt et al.,
2009). Notably, there are complex fiber projections between the
thalamus, amygdala, and hippocampus (McDonald and Mott,
2017; Aizenberg et al., 2019). Consequently, shrinkage of the
left amygdala in DR patients can be understood and explained.
A study showed that chronic epilepsy and memory impairment
in patients with DR medial temporal lobe epilepsy (TLE) are
related to different patterns of histopathological changes in
the hippocampus, amygdala complex, and entorhinal region.
Major histopathological alterations included neuronal cell loss
and cellular and fibrillary gliosis in the lateral and basal nuclei
of the amygdala. Patients with secondary GTCS showed more
serious damage in these areas (Yilmazer-Hanke et al., 2000). It
is universally accepted that the amygdala kindling model in fully
kindled rats may be an available model for DR patients with
complex partial seizures with secondary generalization (Loscher
et al., 1986; Welzel et al., 2019). On the other hand, some
studies have demonstrated that the amygdala and amygdala
pathways can predict the treatment outcome of social anxiety
disorder and affect therapeutic effects (Klumpp and Fitzgerald,
2018). Experimental evidence suggests that emotional stimuli
can influence many different aspects of cognition and behavior,
resulting in disrupted cognitive goals and less optimal task
performance (Vuilleumier et al., 2001; Ladouceur et al., 2018).
Emotional processing and regulation interact with treatment in
a number of diseases. It is well established that epilepsy is a
common neurological disorder that can be complicated with
neurobehavioral comorbidities, including cognitive disorders
and psychiatric disorders (Hermann et al., 2008; Lin et al., 2012).
As a result, our finding that patients with poor drug responses
have atrophy in the left amygdala, especially in basolateral
areas, is reasonable. Brain subcortical structural changes across
several regions, including the thalamus, hippocampus, pallidum,
and putamen, were formerly reported in IGE patients (Badawy
et al., 2013; Kim et al., 2013; Pitkänen et al., 2016). Previous
studies have not found obvious amygdala changes, which may
be due to the lack of subgroup analysis of drug responses.
On the other hand, we did not find a difference between the
thalamus and hippocampus, which may be due to insufficient
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FIGURE 3 | (A) Volume distribution of the left amygdala in patients and healthy controls. (B) Intragroup volume of the bilateral amygdala. SF, seizure free; DR, drug
resistant; NC, normal control. The results were corrected for sex, age, and ICV (p < 0.05).

FIGURE 4 | Vertex-based shape analysis results of the comparison between groups at a significance level of p < 0.05 (FWE corrected) and controlling for age and
sex. Red arrows point outward (expansion) and blue arrows point inward (atrophy). The x- and y-axes indicate different directions (dorsal, ventral, medial, lateral,
anterior, posterior) to show different location information. (A) The seizure free > the drug resistant, the basolateral region of the left amygdala: 172/872 19.72%;
(B) the drug resistant < the normal controls, the basolateral region of the left amygdala: 616/911 67.62%.

TABLE 3 | Correlation among volume and shape changes of subcortical nuclei along with seizure frequency and IGE duration.

Groups DR SF + DR (IGE)

Clinical feature Frequency Duration Frequency Duration

Statistics r p r p r p r p

Shape Left amygdala −0.357 0.211 −0.261 0.367 −0.438 0.003* −0.265 0.078

Volume Left amygdala −0.442 0.114 −0.237 0.415 −0.324 0.030* −0.226 0.136

Left thalamus −0.689 0.006* −0.527 0.053 −0.154 0.311 −0.182 0.232

*There were statistically significant differences between the groups (the significance level at p < 0.05).

obvious differences, the influence of drug treatment, the degree of
social support, etc. Furthermore, the vertex-based morphological
analysis showed slight atrophy of the left pallidum and putamen
in patients, which is consistent with the findings in previous
studies (Pitkänen et al., 2016; Beghi et al., 2019). This shows

that the left pallidum and putamen may play an unknown role
in IGE-GTCS.

Notably, the volume and shape atrophy in the left amygdala
found in the between-group comparison was negatively
correlated with seizure frequency, suggesting that basolateral
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FIGURE 5 | ROC curve of the classification between seizure-free and drug-resistant patients (A), between seizure-free patients and NCs (B), and between
drug-resistant patients and NCs (C).

regions of the amygdala are preferentially affected in IGE
patients. As a clinical index of epilepsy, seizure frequency
can indirectly reflect the severity of the disease. The negative
correlation indicated that the more frequent seizures were, the
more obvious the damage to the amygdala in IGE-GTCS patients
was. In the DR group, although there was no obvious relevance
in clinical indicators and imaging indicators, there was a trend
in relativity. This may be because the sample size was too small
to achieve a statistically significant difference. The correlation
of bilateral amygdala volume was not present in the DR group.
This may indicate that changes in the amygdala are related to
drug resistance. In addition, the volume of the left thalamus
in the DR group was significantly negatively related to seizure
frequency. This correlation was not found in the SF group or
among all patients. This may suggest that the left thalamus is
related to drug resistance. Several studies have suggested that the
anterior thalamic region (ANT) is vital to the maintenance and
propagation of seizures explained by its extensive connections
(Bouwens van der Vlis et al., 2019). The ANT is the most widely
used target for deep brain stimulation (DBS) in the treatment
of DR epilepsy (Fisher et al., 2010). These findings may reveal
the relationship between disease severity and imaging indicators,
which will help improve the present understanding of the
emergence of drug resistance, predict DR patients, and provide
an advanced therapeutic target for DR epilepsy.

Classification Performance of the SVM
We explored the classification results of drug responses in IGE-
GTCS patients using LSVM with imaging indicators. Although
the results are not very satisfactory, they provided us with an
opportunity to judge the efficacy of the drug clinically. This
is a brave attempt in the study of prognostic biomarkers in
DR epilepsy. In the future, this needs to be verified in animal
experiments and brain connectomics studies. The mediocre
performance may have been due to the following reasons. First,
our sample size was not large enough though it was essential
for classification performance, and the sample size imbalance
effect was also a source of poor classification results. In addition,
amygdala atrophy may have a complex pathophysiological
mechanism and may not be suitable for classification. Our

findings support the clinical validity of left amygdala contraction
as a potential means for clinicians to predict the efficacy
of a drug in IGE patients who have no obvious lesions on
conventional MRI.

Limitations and Settlements
The main limitation of our study is that the sample size of
the patients in the DR group was small. This may cause the
statistical effect to be erroneously low. For example, the difference
in the left amygdala volume between the DR group and the
SF group was not corrected for multiple comparisons. Clinical
and imaging indicators had related trends, but no significant
difference was found. Moreover, a larger sample size can provide
more representative features for obtaining a more stable and
reliable classification performance. However, the recruitment of
DR subjects is still challenging owing to the low incidence and
the demands of follow-up work. Second, although the mechanism
of the effect of AEDs on brain structure is unclear, we cannot
eliminate this drug effect. Some subjects had already taken AEDs
before the study began. Some studies have shown that AEDs can
affect a person’s brain structure, resulting in pseudoatrophy of
the brain or neurogenesis (Papazian et al., 1995). On the positive
side, we examined the changes in the nuclei in patients who were
taking medication at baseline and those who were not. There
was no significant difference in the shape and volume of the left
amygdala between these two groups. We can cautiously say that
the drug may not have a significant effect on the left amygdala
in our study. Moreover, we did not perform a psychiatric
evaluation, so we cannot determine the patients’ mental state to
further verify our results. Finally, although we obtained relatively
good classification accuracy by LSVM based on the volume and
shape analysis of subcortical structures, it is still not suitable
to serve as a substitute for traditional clinical methods for
evaluating drug resistance. In the future, more subjects need
to be included in studies using more advanced classifiers to
further validate our findings. Hopefully, more effective and high-
quality imaging indicators can be provided for the clinic, which
can identify DR patients, thereby reducing drug side effects and
improving the quality of life of patients by increasing social
support and care.
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CONCLUSION

The findings from this study suggested the presence of focal
atrophy of the left amygdala located in the basolateral region,
which may help predict drug response and suggest a potential
therapeutic target such as DBS.
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Although mounting neuroimaging studies have greatly improved our understanding of
the neurobiological mechanism underlying internet addiction (IA), the results based on
traditional group-level comparisons are insufficient in guiding individual clinical practice
directly. Specific neuroimaging biomarkers are urgently needed for IA diagnosis and the
evaluation of therapy efficacy. Therefore, this study aimed to develop support vector
machine (SVM) models to identify IA and assess the efficacy of cognitive behavior
therapy (CBT) based on unbiased functional connectivity density (FCD). Resting-state
fMRI data were acquired from 27 individuals with IA before and after 8-week CBT
sessions and 30 demographically matched healthy controls (HCs). The discriminative
FCDs were computed as the features of the support vector classification (SVC) model
to identify individuals with IA from HCs, and the changes in these discriminative FCDs
after treatment were further used as features of the support vector regression (SVR)
model to evaluate the efficacy of CBT. Based on the informative FCDs, our SVC model
successfully differentiated individuals with IA from HCs with an accuracy of 82.5% and
an area under the curve (AUC) of 0.91. Our SVR model successfully evaluated the
efficacy of CBT using the FCD change ratio with a correlation efficient of 0.59. The
brain regions contributing to IA classification and CBT efficacy assessment were the left
inferior frontal cortex (IFC), middle frontal cortex (MFC) and angular gyrus (AG), the right
premotor cortex (PMC) and middle cingulate cortex (MCC), and the bilateral cerebellum,
orbitofrontal cortex (OFC) and superior frontal cortex (SFC). These findings confirmed the
FCDs of hyperactive impulsive habit system, hypoactive reflecting system and sensitive
interoceptive reward awareness system as potential neuroimaging biomarkers for IA,
which might provide objective indexes for the diagnosis and efficacy evaluation of IA.

Keywords: internet addiction, cognitive behavior therapy, support vector classification, support vector
regression, biomarker
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INTRODUCTION

In the last two decades, with the development of digital
information technology, the internet has brought great
convenience and benefit to people’s lives, but the popularity
of the internet has also brought new public health issues,
such as internet addiction (IA). IA, characterized by excessive
internet craving and habitual and uncontrolled use of the
internet (Hormes et al., 2014; Wang et al., 2019), has widely
prevailed all over the world, with a prevalence ranging from
0.2 to 57.5% (Darvesh et al., 2020). Even in medical students,
the pooled incidence rate of IA is as high as 30.1% (Zhang
et al., 2018). Furthermore, the incidence of IA is rising rapidly.
The prevalence rate of IA has risen steeply almost ninefold in
Hong Kong in the last 10 years (Chung et al., 2019). Additionally,
with the popularity of mobile internet, the risk of IA in children
has become an increasing concern (Mihajlov and Vejmelka,
2017). Surveys show that almost one-quarter of early teenagers
spend 40 h online per week (Ayar et al., 2017), and more than
30% of children under 2 years old have used mobile internet
devices (Young, 2017), reflecting the younger age trend of IA.
Collectively, epidemiological features, including worldwide
prevalence, high incidence, rapidly increasing incidence and
younger age trend, make IA a public health threat as serious as
substance addiction.

As one of the most widely used noninvasive
technologies for investigating brain function in vivo,
functional magnetic resonance imaging (fMRI) has greatly
improved our understanding of the neuropathological
abnormalities underlying IA. Using resting-state functional
connectivity (FC), an fMRI technology reflecting the functional
communication of preselected regions of interest (ROIs),
researchers have found hyperactive function of the striatum
and orbitofrontal cortex (OFC) (Kuehn and Gallinat, 2015; Ge
et al., 2017), indicating that IA has similar pathological reward
awareness to substance addiction. In a longitudinal fMRI study,
the FC of the putamen in individuals with IA was also found to be
significantly correlated with the online time per day, suggesting
that the habitual use of the internet was related to hyperactive
impulsive habit system in the brain (Lee et al., 2021). Using
functional connectivity density (FCD) analysis, a novel method
that overcomes the bias of FC produced by the preselection of
ROIs, to analyze whole-brain functional communication, we
further found altered dorsolateral prefrontal cortex (DLPFC)
function in our prior study (Wang et al., 2019), representing
the defective reflecting system in IA. These fMRI studies have
provided us with the potential neuropathologic mechanism
underlying IA; however, the average differences between groups
are insufficient in guiding individual clinical practice directly.
There is still a lack of biomarkers to diagnose IA and evaluate the
effectiveness of therapy on IA.

Recently, machine learning (ML) has increasingly gained
popularity in the neuroimaging research field. Through
appropriate features, ML models can identify neuropsychiatric
diseases and predict the effectiveness of treatment accurately,
which provides us with an available way to explore potential
biomarkers for neuropsychosis diagnosis and the evaluation of

therapy efficacy (Arbabshirani et al., 2017). Feature selection,
aiming to find appropriate features to develop model, is a
necessary step in ML studies, especially in the neuroimaging
field. Due to the vast amount of data in neuroimaging studies,
overfitting is inevitable without feature selection (Chiang et al.,
2015). The two-sample t-test is a commonly used approach for
feature selection in pattern recognition, which can determine
the features distributed differently in two groups, meaning
that the corresponding features have excellent discrimination
ability (Liu et al., 2019). Support vector machine (SVM), which
includes support vector classification (SVC) and supporter
vector regression (SVR), is currently the most popular algorithm
applied in neuroimaging studies for its outstanding performance
on pattern recognition and regression prediction in small-sample
datasets (Bruin et al., 2019). Using the FC of the ventral tegmental
area and substantia nigra to build an SVC model, Wen et al.
(2020) successfully identified individuals with IA, implicating the
potential of the functional connectivity indexes of interoceptive
reward awareness system as neuroimaging markers of IA.
However, due to the priori selection of ROIs, seed-based FC can
only partly provide SVC with local features referred to ROIs.
The lack of global features of information communication might
reduce the performance of SVC (Guo et al., 2017). Additionally,
no studies have focused on the evaluation of IA treatment
efficacy, although SVR has been applied in the evaluation of
IA severity (Song et al., 2020). Thus, an SVM study based on
more comprehensive features is needed to explore potential
effective biomarkers for both IA diagnosis and the evaluation of
therapy efficacy.

Functional connectivity density analysis, computing the
temporal correlations of each voxel to all other voxels, can
provide SVM with more comprehensive features without bias.
Based on voxel-based FCD, data-driven SVM with global
features will provide us with an opportunity to acquire specific
neuroimaging markers for IA diagnosis and the evaluation of
therapy efficacy. Thus, this study aims to explore potential
biomarkers for IA diagnosis and the evaluation of therapy efficacy
using a combination of FCD analysis and SVM models. For
this purpose, we first computed the local FCD (lFCD), long-
range FCD (lrFCD), and global FCD (gFCD) of 27 individuals
with IA and 30 healthy controls (HCs) and then selected the
discriminative FCDs as effective features by a 2-sample t-test.
After parameter optimization, SVC models were established to
identify IA. After cognitive behavior therapy (CBT), an effective
treatment for various addictions, including IA (Goslarp et al.,
2020), FCD changes were used as features in SVR for the
evaluation of the efficacy of CBT. We hypothesized that (1) FCDs

Abbreviations: AG, angular gyrus; AUC, area under curve; CBT,
cognitive behavior therapy; DLPFC, dorsolateral prefrontal cortex; FC,
functional connectivity; FCD, functional connectivity density; fMRI,
functional magnetic resonance imaging; HC, healthy control; IA, internet
addiction; IAT, Young’s Internet Addiction Test; IFC, inferior frontal cortex;
LOOCV, leave-one-out-cross-validation; MCC, middle cingulate cortex; MFC,
middle frontal cortex; ML, machine learning; OFC, orbitofrontal cortex;
PMC, premotor cortex; RBF, radial basis function; ROC, receiver operating
characteristic; ROI, regions of interest; SFC, superior frontal cortex; SVC,
support vector classification; SVM, support vector machine; SVR, support vector
regression.
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would accurately discriminate individuals with IA from HCs
by the SVC model, and (2) FCD changes would well represent
symptom improvement after CBT by the SVR model.

MATERIALS AND METHODS

Participants
The study protocol was approved by the Sichuan Regional Ethics
Review Committee on Traditional Chinese Medicine (2016KL-
005) and carried out in accordance with the Declaration of
Helsinki. All enrolled participants voluntarily participated in the
study and signed informed consent forms before inclusion.

Sixty participants (30 individuals with IA and 30 HCs) aged
between 18 and 30 were initially recruited from universities.
Three individuals with IA failed to complete the CBT sessions
due to scheduling conflicts or personal issues. Thus, the final
dataset included data obtained from 27 individuals with IA and
30 HCs. Fifteen of 27 individuals with IA had participated in
our former fMRI study detecting functional abnormalities in IA
(Wang et al., 2019) and further consented to take part in the
present CBT study. Each individual with IA met the diagnostic
criteria for IA (assessed by the Internet Addiction Questionnaire),
while all the demographically matched HCs did not meet the
criteria for IA. The Internet Addiction Questionnaire developed
by Young was the first diagnostic tool for IA (Young, 1998). Based
on the original version of Young, Beard proposed a wider applied
questionnaire (Beard and Wolf, 2001), which was composed of
eight items. The first five items were characteristics of IA, and
the other three were negative consequences of IA. All of the first
five items and at least one of the last three items were required
for a diagnosis of IA. Young’s Internet Addiction Test (IAT) was
used to assess the severity of IA, and a score greater than 50
was required in the IA group (Yoon et al., 2017). Participants
with organic diseases or a history of substance abuse (such
as alcohol dependence, nicotine addiction or any other drug
addictions) were excluded from our study. Additionally, we also
excluded pregnant or lactating females.

Questionnaire
In addition to IAT, the Self-rating Depression Scale (SDS) and
Self-rating Anxiety Scale (SAS) were completed by all participants
and were applied to assess depression and anxiety, respectively.
All these clinical scales were translated into Chinese versions. We
also collected information on sex, age, and years of education by
a self-designed questionnaire.

Cognitive Behavior Therapy
The complete procedure of this study is shown in Figure 1.
After baseline assessment and fMRI scan, all individuals with IA
were treated with CBT, which was led by an experienced licensed
psychotherapist. A total of 27 individuals with IA completed
the 8-week CBT protocol. The CBT protocol consisted of 8
sessions, and each session lasted 1.5–2 h. According to the
modularized CBT protocol slightly modified from Park’s version
(Park et al., 2016), the following topics were discussed in the
8 sessions: (1) an introduction of the negative consequences of

excessive use of the internet, (2) the motivation behind excessive
internet use, (3) techniques for managing pressure, (4) techniques
for recognizing addiction when it happens, (5) five steps to
change, (6) techniques to deal with problems, (7) techniques to
recover family relationships; and (8) future plans. One topic was
discussed in each session.

To ensure the pure effect of CBT, individuals with IA were
informed not to take any other medicines or interventions during
the research term. Within 3 days after CBT sessions, we assessed
symptom severity again by IAT.

Resting-State fMRI Data Acquisition
All fMRI images were acquired by a 3.0 T MR imaging system
(GE Discovery MR 750, United States) with a standard 8-channel
head coil. The HC group took part in only one fMRI scan,
while the IA group participated in two scans, one within 3 days
before CBT treatment and the other within 3 days after CBT
sessions. During data collection, ear plugs and soft pads were
used to restrict noise and displacement of head, respectively.
The participants were instructed to keep their eyes closed and
remain awake with nothing in mind during the whole scanning
term. A standard echo planar imaging sequence was adopted to
collect functional images, with the following parameters in our
prior study (Wang et al., 2020a): repetition time = 2000 ms, echo
time = 30 ms, flip angle = 90◦, field of view = 24 cm × 24 cm,
image matrix = 64 × 64, no gap, and voxel size = 3.75 mm
× 3.75 mm× 4.4 mm. For this scan sequence, 255 volumes were
obtained, and each volume included thirty-five transverse slices.

Date Preprocessing and FCD Calculation
The Neuroscience Information Toolbox (NIT)1 was used for
data preprocessing. To minimize the influence of an unstable
magnetic field in the initial scanning, the first 5 volumes
of each participant were discarded. Subsequently, slice timing
and spatial realignment were conducted to correct time delay
and head motion, respectively. Participants with more than 2◦
rotation or more than 2 mm displacement were excluded from
the present study. The functional images were then spatially
normalized to a standard Montreal Neurological Institute (MNI)
template and resampled to 3 mm × 3 mm × 3 mm. After
that, we regressed out nuisance signals, including 24 head
motion parameters and signals from cerebral spinal fluid and
white matter. Ultimately, to reduce the interference of low-
frequency drift and high-frequency noise, bandpass filtering
(0.01–0.08 Hz) was conducted.

To address concerns about the influence of head motion on
fMRI analysis, voxel-specific framewise displacement (FD) was
computed (Jenkinson et al., 2002; Power et al., 2012; Yan et al.,
2013). Two-sample t-test showed that there was no significant
intergroup difference at baseline (P > 0.05, mean ± SD:
0.0407 ± 0.0123 for HCs and 0.0419 ± 0.0172 for the IA
group). Additionally, no significant difference before and after
CBT in the IA group was observed based on the paired t-test
(P > 0.05, mean ± SD: 0.0419 ± 0.0172 for pretreatment and
0.0436 ± 0.0189 for posttreatment). Furthermore, to rule out the

1http://www.neuro.uestc.edu.cn/NIT.html
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effect of head motion on the following analyses, we also calculated
FCD with and without scrubbing the frames with FD > 0.5
(Yamashita et al., 2020).

In our study, the FCD was calculated using the NIT according
to the method proposed by Tomasi and Volkow (2010a,b).
Initially, Pearson correlations between the time course of each
voxel and those of other voxels were calculated. The connections
between two voxels with a correlation coefficient of R > 0.6 were
considered as significant connections according to the previous
study (Tomasi and Volkow, 2010a). The gFCD was defined as

the total number of efficient functional connections between a
given voxel and all other voxels. The lFCD was defined as the
total number of efficient functional connections between a given
voxel and its neighboring voxels. The lrFCD was defined as the
number of efficient functional connections between a given voxel
and other distant voxels. Thus, the combination of gFCD, lFCD,
and lrFCD can well describe the role of a given voxel hub in
global, local and long-range information transmission. Finally,
the whole-brain gFCD, lFCD, and lrFCD maps were spatially
smoothed with a Gaussian kernel of 6 mm.

FIGURE 1 | Flow diagram of study procedure. At baseline, fMRI images were acquired from both the HC and IA groups. Based on informative FCDs, the SVC model
was applied to the identification of individuals with IA. After 8-week CBT sessions, individuals with IA were rescanned for fMRI data. The change in informative FCDs
was used to evaluate symptom improvement by the SVR model. IA, internet addiction; HC, heathy control; SVC, support vector classification; SVR, support vector
regression; IAT, Young’s Internet Addiction Test; CBT, cognitive behavior therapy.

FIGURE 2 | The SVM schematic flow. (A) In the SVC model, the gFCD, lFCD, and lrFCD differences between the HC and IA groups (pretreatment) were used as
features for pattern identification. Leave-one-out cross-validation was applied to performance assessment. (B) In the SVR model, the alterations of discriminative
gFCD, lFCD, and lrFCD were used as features to predict the improvement of IAT. The performance of the SVR model was represented by the correlation of actual IAT
scores to predict IAT scores collected in each leave-one-out-cross-validation fold. IA, internet addiction; HC, heathy control; SVC, support vector classification; SVR,
support vector regression; IAT, Young’s Internet Addiction Test; CBT, cognitive behavior therapy; ACC, accuracy; R, correlation coefficient.
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SVM Modeling
The main steps of SVM modeling are described in Figure 2,
comprising feature selection, model building, and performance
evaluation (Jie et al., 2018; Wang et al., 2020b). Due to the
vast amount of data, the selection of informative features
from tremendous neuroimaging data is necessary in ML studies
that are based on neuroimaging (Chiang et al., 2015) since
it decreases the computational burden and improves the
performance of SVM models. As in previous study, the two-
sample t-test (p < 0.005) was used to select features in the current
study (Suk et al., 2015; Kwak et al., 2020). After the features with
discriminative information were selected, we adopted the Fisher
score as the feature weight in the SVC model (Germond et al.,
2018), which is defined in the following equation:

FS (i) =
n1(m1i −mi)

2
+ n2(m2i −mi)

2

n1σ
2
1i + n2σ

2
2i

Here, mi represents the average of the i-th feature in all samples,
n1 and n2 are the number of samples in the HC and IA
groups, m1i and m2i are the respective mean values of the i-th
feature in each group, and σ2

1i and σ2
2i represent the respective

variance of the i-th feature in each group. Since the Fisher
score ranks features in order of how discriminate they are,
consequently, a higher Fisher score value contributes more
information to the SVC model.

To further confirm the selected FCDs as potential biomarkers,
the ratio of changes in the informative FCDs in IA group
was introduced into the SVR model as features to assess the
efficacy of CBT. The contribution of each feature to the SVR
model was evaluated by mutual information, which weighs the
features by the correlation and redundancy of features. High
mutual information represents a high prediction ability and low
redundancy (Gan et al., 2019).

LIBSVM2 was implemented in this study to build SVC and
SVR models (Chang and Lin, 2011). For classification, the
binary SVC model with a radial basis function (RBF) kernel
was built according to the extracted discriminative FCDs of the
IA (pretreatment) and HC groups. To optimize the classifier
and evaluate the performance of SVC, we used leave-one-
out cross-validation (LOOCV) and grid search (hyperparameter
optimization for C and gamma) to train the data. The
performance of the classification was described as the mean
accuracy in LOOCV and area under the curve (AUC). In
addition, a permutation test was applied with 1000 rounds to
assess the significance of classification accuracy (P < 0.05).

Through building the SVR model, we aimed to evaluate
symptom improvement by FCD changes after CBT in individuals
with IA. Thus, the ratio of FCD changes (change/baseline
of FCD) and IAT score improvement (change/baseline of
IAT score) were introduced into the SVR model as features
and labels, respectively. Grid search and LOOCV were
also used to optimize and assess the performance of SVR.
Pearson’s correlation coefficient was computed between
the actual IAT scores and the predictive scores collected

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

in all LOOCV folds. A 1000 times permutation test with
a P-value < 0.05 was further performed to ensure the
significance of the result.

Statistical Analysis
Demographic characteristics and treatment response were
analyzed by SPSS 18. Continuous variable (e.g., age, IAT
score) differences between HCs and individuals with
IA at baseline were compared by two sample t-test,
while the difference within the IA group before and
after CBT was compared by paired t-test. Categorical

TABLE 1 | Demographic characteristics and treatment response.

Healthy
control group

(n = 30)

IA group
pretreatment

(n = 27)

IA group post
treatment

(n = 27)

M ± SD M ± SD M ± SD

Age (years) 21.73 ± 2.08 20.74 ± 1.95# 20.74 ± 1.95

Sex (male/female) 22/8 22/5# 22/5

Education (years) 15.77 ± 1.82 14.70 ± 1.84# 14.70 ± 1.84

Internet Addiction
Test Scale

29.90 ± 7.18 62.89 ± 11.57N 46.56 ± 11.83*

Self-rating
Depression Scale

37.70 ± 7.87 55.74 ± 9.09N 50.22 ± 10.28*

Self-rating Anxiety
Scale

35.00 ± 6.79 50.11 ± 11.05N 44.22 ± 9.61*

#Comparison between individuals with IA and HCs at baseline, P > 0.05.
NComparison between individuals with IA and HCs at baseline, P < 0.05.
*Comparison in the IA group before and after CBT, P < 0.05.

TABLE 2 | Discriminative gFCD, lFCD and lrFCD between HCs and
individuals with IA.

FCDs Brain Cluster MNI Peak P value

regions voxels coordinates T-value

X Y Z

gFCD Cerebellum_R 26 28 −46 −30 3.9005 < 0.005

AG_L 29 −39 −57 27 −3.6592 <0.005

SFC_L 98 −6 33 57 −3.6342 <0.005

lFCD Cerebellum_R 129 9 −48 −15 4.3797 <0.005

MCC_R 23 6 −27 42 3.6251 <0.005

PMC_R 31 21 −9 61 3.5222 <0.005

Cerebellum_L 36 −15 −39 −21 3.2990 <0.005

lrFCD OFC_L+R 43 0 48 −21 3.3400 <0.005

IFC_L 25 −51 19 0 −4.3605 <0.005

SFC_L 125 −3 42 51 −4.0600 <0.005

SFC_R 24 18 48 48 −3.8860 <0.005

AG_L 28 −39 −60 30 −3.7300 <0.005

MFC_L 46 −42 15 45 −3.5797 <0.005

MNI, Montreal Neurological Institute; L, left; R, right; PMC, premotor
cortex; IFC, inferior frontal cortex; SFC, superior frontal cortex; AG, angular
gyrus; MCC = middle cingulate cortex; OFC, orbitofrontal cortex; MFC,
middle frontal cortex.
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variable (e.g., gender) differences were compared by the
chi-squared test.

As described in section “SVM Modeling,” the findings of two-
sample t-test were applied to feature selection using the Resting-
State fMRI Data Analysis Toolkit plus (RESTplus V1.24)3

(Jia et al., 2019).

3http://www.restfmri.net/forum/restplus

RESULTS

Demographic Characteristics and
Treatment Response
A total of 57 participants (27 individuals with IA and 30 HCs)
were included in the final data analysis. No statistically significant
differences were observed in sex, age, or years of education
between the IA group and the HC group (P > 0.05). Individuals
with IA exhibited higher IAT, SDS, and SAS scores (P < 0.05).

FIGURE 3 | Discriminative gFCD, lFCD, and lrFCD between HCs and individuals with IA. (A) Discriminative gFCD. (B) Discriminative lFCD. (C) Discriminative lrFCD
and (D) The summary of these discriminative FCDs based on BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al., 2013). The red nodes represent the
interoceptive reward awareness system, the blue nodes represent the impulsive habit system, and the yellow nodes represent the reflecting system. The red up
arrows represent increased FCDs, while the blue down arrows represent decreased FCDs. g, gFCD; l, lFCD; lr, lrFCD; L, left; R, right; SFC, superior frontal cortex;
OFC, orbitofrontal cortex; MFC, middle frontal cortex; IFC, inferior frontal cortex; PMC, premotor cortex; MCC, middle cingulate cortex; AG, angular gyrus.

FIGURE 4 | The classification performance of SVC model. (A) The classification results between the IA and HC groups. (B) The receiver operating characteristic
curve of the SVC model.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 665578241

http://www.restfmri.net/forum/restplus
http://www.nitrc.org/projects/bnv/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-665578 June 11, 2021 Time: 17:21 # 7

Wang et al. Biomarkers for Internet Addiction

After 8 weeks of CBT, significant decreases in IAT, SDS, and SAS
scores were observed in the IA group (P < 0.05) (see Table 1).

Feature Selection
Two-sample t-test was used to select informative features for
subsequent model building. The indiscriminative FCDs were
filtered out, and only FCDs with a P-value < 0.005 were selected
as feature vectors (see Table 2). As shown in Figure 3A, in
comparison to HCs, individuals with IA exhibited increased
gFCD in the right cerebellum and decreased gFCD in the
left angular gyrus (AG) and superior frontal cortex (SFC).
Figure 3B shows the enhanced lFCD of individuals with IA in
the right PMC, middle cingulate cortex (MCC), and the bilateral
cerebellum. The IA group also showed higher lrFCD in the
left/right orbitofrontal cortex (OFC) as well as lower lrFCD in the
left AG, inferior frontal cortex (IFC), and middle frontal cortex
(MFC) and the bilateral SFC, as shown in Figure 3C.

According to the tripartite neurocognitive model (Wei
et al., 2017), these results can be summarized as hyperactive
impulsive habit system, hypoactive reflecting system, and
sensitive interoceptive awareness system, which were proposed as
the main pathological mechanism of IA (Figure 3D). With all bad
frames scrubbed, the reanalysis produced similar results, which
are shown in Supplementary Figure 1.

SVC Results
Using gFCD, lFCD and lrFCD, the binary SVC successfully
discriminated individuals with IA from HCs with a mean
accuracy of 82.5% (Figure 4A), which was ensured by a
permutation test (P < 0.05). Figure 4B shows the receiver
operating characteristic (ROC) curve of this SVC model, the AUC
of which is 0.91. Similar results were also obtained after scrubbing
the bad frames (Supplementary Figure 2).

SVR Results
As shown in Figure 5, the SVR model successfully predicted
symptom improvement after CBT. Based on the variation ratio of
FCDs (change/baseline), the SVR model predicted an IAT score

FIGURE 5 | The regression performance of SVR model. Correlation analysis
between the actual IAT change ratio and the predictive change ratio predicted
by SVR.

decrease after treatment with a correlation efficient of 0.59. The
results were validated by a permutation test (P < 0.05). The
repeated analysis after the bad frames were scrubbed produced
similar results (Supplementary Figure 3).

Feature Contribution
The contribution of each feature to the SVM models is ranked
in Figure 6. According to the Fisher scores, the lFCD of the
right cerebellum and the lrFCD and gFCD of the left SFC were
the most important features in the SVC model (Figure 6A). The
lFCD of the left cerebellum and the lrFCD of the bilateral SFC
contributed most to the SVR model, since those features had the
highest mutual information (Figure 6B).

DISCUSSION

Using data-driven SVM models, we successfully identified
individuals with IA and evaluated the effectiveness of CBT. To
our knowledge, the present study is the first to explore unified
biomarkers for both diagnosis and therapy efficacy evaluation
in psychological neuroimaging using SVM models. The brain
regions contributing to IA classification and the evaluation of
CBT efficacy were the left IFC, MFC and AG, the right PMC
and MCC, and the bilateral SFC, OFC and cerebellum, which
were compatible with the tripartite neurocognitive model of IA
(Wei et al., 2017). In the well-accepted tripartite neurocognitive
model, the pathological mechanism of IA was attributed to
three key abnormal systems — hyperactive impulsive habit
system, hypoactive reflecting system, and sensitive interoceptive
awareness system (Wei et al., 2017).

Hyperactive Impulsive Habit System
The impulsive habit system in the tripartite neurocognitive
model is responsible for fast, automatic, unconscious, and
habitual behaviors (Wei et al., 2017). In the current study,
the hyperfunction of the right PMC and bilateral cerebellum
in individuals with IA, which were thought to contribute to
the habitual or compulsive use of the internet, was detected
and further found to contribute to IA identification and the
evaluation of CBT efficacy (Wang et al., 2020a).

As a key neural system that generates automatized behavior
to adapt to circumstances, the habit system is dedicated to
transiting goal-directed behavior to response-stimulate habitual
behavior (Everitt and Robbins, 2005). The hyperactive habit
system is considered part of the mechanism underlying substance
dependence (Zilverstand et al., 2018), accounting for the
transition from voluntary drug use (response-outcome goal-
directed behavior) to habitual and compulsive drug abuse
(response-stimulate habitual behavior) (Everitt and Robbins,
2005). As a behavioral addiction, IA manifests with habitual
and compulsive use of the internet (Seo and Ray, 2019).
Under the framework of associative learning theory, previous
psychological studies have revealed the aberrant transition
process from goal-directed behavior to habit-based behavior
in individuals with IA (Zhou et al., 2018; Gong et al., 2020),
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FIGURE 6 | The feature contribution. (A) The Fisher score of each feature in the SVC model. (B) The mutual information of each feature in the SVR model.

demonstrating the abnormal habit behavioral pattern built by
continuous online playing.

Neuroimaging evidence of aberrant habit system in IA was
also revealed by neuropathology studies. A number of studies
have found altered function of the PMC in IA (Cheng and Liu,
2020; Shin et al., 2020), which is a key region of the habit system
accounting for the transformation of memory into a particular
response sequence (Abe and Hanakawa, 2009). The cerebellum,
traditionally considered a pure motor center, is now concerned
for its various cognitive functions, including habit formation.
The cerebellum is involved in rapid and automatic behavioral
responses in substance dependence, accounting for the habitual
and compulsive drug abuse (Miquel et al., 2019, 2020). In IA
studies, increased activations in the cerebellum were also found
in individuals with IA when exposed to internet cues, implicating
automatic habitual reactions to internet (Schmitgen et al., 2020).
Furthermore, the hyperactivity of the PMC-cerebellar loop was
found both in IA and substance addiction (Yalachkov et al., 2009;
Wang et al., 2020a), suggesting the common pathological changes
in the habit system in IA and substance dependence.

In line with the tripartite neurocognitive model, the
hyperactive impulsive habit system was found valuable in IA
identification and the evaluation of therapy efficacy in our
study, further clarifying the abnormal habit formation process
in habitual and compulsive use of the internet. According to
the Fisher scores, the right cerebellum was one of the most
contributive regions to the SVC model, indicating that the
hyperconnected right cerebellum might be the discriminative
characteristic of IA. The mutual information further revealed
that the reduced connectivity of the left cerebellum contributed
most to the SVR model, implicating that the effect of CBT on
IA was closely associated with the compensatory decrease in left
cerebellum connectivity. Thus, the impulsive habit system might
be the key factor for IA diagnosis and treatment.

Hypoactive Reflecting System
According to the tripartite neurocognitive model, the reflecting
system is involved in planning, problem solving, and inhibition
control (Wei et al., 2017). In the present study, hypoactive FCDs
in the right DLPFC (comprising the SFC and MFC) and the left

AG, IFC and DLPFC were revealed and further demonstrated
to be conducive to IA identification and treatment efficacy
prediction. All these regions were included in the reflecting
system in the tripartite neurocognitive model.

Containing the most cognitive structures in the
brain, the reflecting system is involved in a variety of
advanced cognitive functions, including inhibition and problem
solving, so it is also known as cognitive control system in other
studies. The ability to suppress inappropriate behavior is a main
function of the reflecting system, the impairment of which was
proposed as a key determinant for uncontrolled internet and
drug use (Volkow et al., 2010; Brand et al., 2019). The reflecting
system in IA and substance addiction was consistently found
to be dysfunctional when performing inhibition control tasks
(Darnai et al., 2019; Antons and Matthias, 2020; Suarez-Suarez
et al., 2020); therefore, it was regarded as a therapeutic target for
addiction. After noninvasive treatment targeted to the system,
the addiction symptoms were significantly relieved (Newman-
Norlund et al., 2020; Su et al., 2020), indicating the critical role of
the reflective system in addiction.

The IFC and DLPFC, responsible for inhibiting response
habits and impulsive behavior, are acknowledged as key
components of the reflecting system. Impairments in the IFC
and DLPFC are thought to be directly related to uncontrolled
drug abuse (Ely et al., 2020; Qian et al., 2020), and the
stimulation of these regions was demonstrated to be effective
in relieving addictive symptoms (Chen et al., 2020b; Newman-
Norlund et al., 2020). In IA, a close association between
the dysfunction of IFC and DLPFC and the uncontrolled
online playing has also been demonstrated (Dong et al., 2020).
Although the AG is not typically associated with executive
control function, the crucial role of the AG in inhibition control
has been well demonstrated by previous studies (Castelluccio
et al., 2014; Nobusako et al., 2017; Lewis et al., 2019). In
substance dependence research, dysfunction of AG in response
inhibition tasks were found to be related to addiction severity
(Herman et al., 2019) and could even predict potential substance
abuse in the future (Mahmood et al., 2013), demonstrating
the importance of AG in inhibiting uncontrolled addictive
behavior. In individuals with IA, dysfunctional AG was also
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a key characteristic change correlating to symptom severity
(Lemenager et al., 2016; Chen et al., 2020a), implicating the
defective inhibition control function in IA.

In the tripartite neurocognitive model, the reflecting system
was described as the controller of the impulsive habit system
(Wei et al., 2017). Hence, it is not surprising that the hypoactive
reflecting system in our study contributed to IA diagnosis
and evaluation of therapy effectiveness. Through Fisher score
ranking, the critical role of the DLPFC in IA diagnosis
was well demonstrated in the SVC model. Furthermore, the
key contribution of the DLPFC to CBT efficacy assessment
was revealed by mutual information ranking. Thus, the
hypoconnection of the reflecting system might be the main
characteristic of IA, and activation connectivity of the reflecting
system might be the main effect of CBT on IA.

Sensitive Interoceptive Awareness
System
According to the tripartite neurocognitive model, the sensitive
interoceptive awareness system potentiates the activity of the
impulsive habit system and undermines the activity of the
reflecting system, thus playing an important role in developing
and maintaining IA (Wei et al., 2017). Reward awareness
plays an important part in interoceptive awareness. In our
study, the well-known reward regions OFC and MCC were
demonstrated to contribute to IA diagnosis and treatment
efficacy evaluation, validating the critical role of sensitive reward
awareness in IA.

Comprising of two major dopamine pathways (mesolimbic
and mesocortical pathways) in the brain, the reward network
plays a decisive role in substance addiction. Previous research
has revealed that independent of the drugs used and the tasks
performed, the hyperactive reward network was consistently
related to craving, addiction severity, and the use duration and
frequency of drug use. Consequently, the dysfunction of the
reward network was proposed as a fundamental pathological
change in substance dependence (Zilverstand et al., 2018). Similar
to that in substance addiction, sensitive reward awareness was
also demonstrated in IA and thought to be a critical pathological
characteristic of IA (Li et al., 2015). The mesocortical dopamine
pathway, including the MCC and OFC, is responsible for the
cognitive component of reward processing (Leroy et al., 2012).
The dysfunction of these two regions was thought to be involved
in excessive craving for addictive substances. Analogously, the
abnormal microstructure and function of the MCC and OFC
have also been found to be closely associated with internet craving
(Ko et al., 2009; Lee et al., 2017, 2019), implicating the common
foundation of IA and substance dependence.

Compatible with the tripartite neurocognitive model, the
sensitive interoceptive awareness system was found in individuals
with IA in the present study. In addition, similar to a
previous study, the functional connectivity indexes of the reward
awareness system were successfully applied to IA classification,
verifying the reward awareness system as the key characteristic
of IA (Wen et al., 2020). Moreover, we successfully evaluated the
effectiveness of CBT using FCD changes in the reward awareness

system, further confirming the potential of sensitive reward
system as biomarkers of IA.

CONCLUSION

In summary, based on individual FCD data, this study
successfully differentiated individuals with IA from HCs
and further evaluated the effectiveness of CBT. These findings
suggested the FCDs of hyperactive impulsive habit system,
hypoactive reflecting system, and sensitive interoceptive
awareness system as potential neuroimaging biomarkers of IA,
providing objective indexes for the diagnosis of IA and the
evaluation of treatment efficacy.

LIMITATIONS

Although providing robust and explainable results, our study
still has several limitations to be noted. First, to include more
participants, we included all types of IA in this study. Further
research on specific IA subtypes (such as internet gaming
disorder) should be conducted in the future. Second, the clinical
endpoint was set at the end of treatment in the present study
but should be extended to explore the long-term effect of
CBT and study the reduction in online time/week by CBT.
Third, due to the limited sample size, these findings need to
be validated in other larger datasets. In addition, our SVM
models were built on discriminative features. The excluded brain
areas may also contain valuable information, which should be
considered in future studies. Last, multimodal neuroimaging
data (such as structural data) may provide complementary
information; thus, multiple modalities are needed to improve the
performance of models.
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Machine learning methods have been frequently applied in the field of cognitive
neuroscience in the last decade. A great deal of attention has been attracted to
introduce machine learning methods to study the autism spectrum disorder (ASD) in
order to find out its neurophysiological underpinnings. In this paper, we presented a
comprehensive review about the previous studies since 2011, which applied machine
learning methods to analyze the functional magnetic resonance imaging (fMRI) data of
autistic individuals and the typical controls (TCs). The all-round process was covered,
including feature construction from raw fMRI data, feature selection methods, machine
learning methods, factors for high classification accuracy, and critical conclusions.
Applying different machine learning methods and fMRI data acquired from different sites,
classification accuracies were obtained ranging from 48.3% up to 97%, and informative
brain regions and networks were located. Through thorough analysis, high classification
accuracies were found to usually occur in the studies which involved task-based fMRI
data, single dataset for some selection principle, effective feature selection methods,
or advanced machine learning methods. Advanced deep learning together with the
multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends
especially in the recent 4 years. In the future, advanced feature selection and machine
learning methods combined with multi-site dataset or easily operated task-based fMRI
data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.

Keywords: autism spectrum disorder, functional connectivity, functional magnetic resonance imaging, machine
learning, feature selection

INTRODUCTION

As a pervasive neurodevelopmental disorder, autism spectrum disorder (ASD) is characterized
by deficits in social communication and interaction and restricted and repetitive behaviors
(Hull et al., 2017), which was known to be an urgent public health concern that could benefit
from enhanced strategies to help identify ASD earlier (Jon et al., 2018). Diagnosed autism
prevalence has risen dramatically over the last several decades (Nevison, 2014), and the causes have
remained elusive, which have increasingly attracted numerous researchers to focus on it. Thus far,
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different advanced neuroimaging tools have been applied for
ASD research, including structural and functional magnetic
resonance imaging (MRI), positron emission tomography
(PET), electroencephalography (EEG), magnetoencephalography
(MEG), and novel protocols (Alessandro et al., 2017; Du et al.,
2018). Among them, functional MRI (fMRI) studies involving
task-based and resting-state fMRI (rs-fMRI) data occupy a large
proportion. Especially with the appearance and development of
freely available rs-fMRI databases, such as the Autism Brain
Imaging Data Exchange (Martino et al., 2014)1, which provides
functional and structural brain imaging datasets collected from
more than 24 different independent sites, researchers from
different countries have expanded a series of studies based on it.
In this paper, the review about ASD classification is restricted to
fMRI data for more specific analysis. The aforementioned fMRI
data consist of rs-fMRI data and task-based fMRI data, which are
collected from scanning the brain using fMRI technology while
the subject is resting and performing a special task, respectively.

For the last decade, there have been a variety of methods
proposed to investigate the potential difference between ASD
patients and typical controls (TCs) from different levels using
fMRI data. It is well known that machine learning methods
have been widely applied to brain disorder research such as
schizophrenia, depression, Alzheimer disease, ASD, and so on
(Davatzikos et al., 2006; Fan et al., 2008; Cuingnet et al., 2011;
Du et al., 2012; Arbabshirani et al., 2013; Zeng et al., 2014; Patel
et al., 2015), especially with their rapid development. Recent
progress in machine learning has been driven both by the
development of new learning algorithms and theory and by the
ongoing explosion in the availability of online data and low-
cost computation (Jordan and Mitchell, 2015). Notwithstanding
the fact that there have existed great quantity of research on
classifications for ASD and the TCs, a specialized systematic
review about them is lacking. While different approaches have
different assumptions and advantages, a detailed review is
important to help us understand the ways in which these
approaches have been used. Wolfers et al. published a review
about pattern recognition for neuroimage-based psychiatric
diagnostics in which ASD was mentioned as a little part
(Wolfers et al., 2015). Du et al. (2018) have reviewed relative
literatures on classification and prediction of brain disorders
using functional connectivity (FC) but not limited to ASD. Hyde
et al. provide a comprehensive review of 45 papers utilizing
supervised machine learning in ASD but not limited to fMRI data
(Hyde et al., 2019).

In this paper, we exhibit a review by summarizing 47
literatures involving classifications using fMRI data between
ASD patients and TCs. The general process of autism spectrum
disorder studies using fMRI data and machine learning was
illustrated in Figure 1. The purpose of this review is to (1)
summarize relatively representative papers from the following
aspects to find out their commonality and differentiation:
classification features involved, machine learning methods,
classification performance, and factors on classification results;
(2) reveal critical consistent or novel conclusions about

1http://fcon_1000.projects.nitrc.org/indi/abide/

discriminant brain regions, networks, and explanations for
behavioral characteristics of ASD in the literatures; and (3) give
feasible work directions for future progress in the field.

FMRI DATA SOURCES

It is well known that spontaneous fluctuations in the blood
oxygenation level-dependent (BOLD) signal, as measured by
fMRI, present a valuable data resource for delineating the
human neural functional architecture (Cole et al., 2010). fMRI,
including rs-fMRI and task-based fMRI, has become one of
the primary tools of cognitive neuroscience. From analysis of
the papers detailed in Table 1, it was obviously found that
there are mainly three types of fMRI data sources, which are
self-acquisition data, the cooperation agency data, and freely
available database. The self-acquisition data and the cooperation
agency data are usually acquired from the same site with same
acquisition parameters. Notably, all the task-based fMRI data
involved belonged to the former two data sources. The well-
known large freely available database is the ABIDE database.
The data of the ABIDE database are collected from different
sites in North America and Europe, which inevitably introduces
heterogeneity into the dataset in terms of differences among fMRI
scanners, data collection protocols, and participant populations
(Ghiassian et al., 2016). The aggregation of data across multiple
neuroimaging sites has become popular in recent years. Given
that the sharing and combination of task-based fMRI data are
significantly more challenging than rs-fMRI data (Poldrack and
Gorgolewski, 2015), the large freely available database is mainly
rs-fMRI data. Despite this, some efforts have been made to build
an open repository for task-based fMRI data, such as the Open
fMRI database (Poldrack et al., 2013; Poldrack and Gorgolewski,
2015). The advantage of the large database is that it contains
more available data than the former two data sources and can
satisfy more researchers’ purchase for large database analysis.
Working toward the ultimate goal of deriving an automated
diagnosis tool from the fMRI data classification, a large database
is indispensable for further generalization. Unfortunately, the
classification of the large database from different sites appears to
be more challenging than that of the small database from the same
site. In spite of the above challenge, the freely available database
is getting increasing attention in the study of ASD. Notably, 33
of 47 literatures in Table 1 adopted the freely available database,
which accounted for 70% of the total.

FEATURE CONSTRUCTION FROM RAW
FMRI DATA

Sundry features constructed from raw fMRI data reflect special
meanings of brain information. They are important inputs
of machine learning and can influence the performance of
classification together with the explanation of contributed brain
areas to some extent. Therefore, proper feature construction from
raw fMRI data of ASD patients and the TCs becomes a crucial
step of classification. FC features are most popularly adopted
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FIGURE 1 | General process of ASD studies using fMRI data and machine learning (taking FC features for example). ASD, autism spectrum disorder; fMRI,
functional magnetic resonance imaging; FC, functional connectivity.

features given that they can reflect particular significance of ASD.
Besides, some other meaningful features are also introduced.

Non-task Static Functional Connectivity
Features
Resting-state FC has been proven to be a critical tool in
understanding different disease mechanisms and has great
potential to provide biomarkers for disease diagnosis (Price et al.,
2014). The typically static FCs are constructed by calculating FC
between two regions of interest (ROIs) of the brain. It has been
reported that altered patterns of brain FCs were suggested as a
key neurobiological correlate of the behavioral characteristics of
ASD (Neufeld et al., 2017). Increasingly, it has been accepted
that ASD is associated with atypical development of multiple
interconnected brain systems rather than isolated brain regions
(Minshew and Williams, 2007; Uddin et al., 2013a). Furthermore,
Hull et al. reviewed the rs-fMRI literatures over how intrinsic
connectivity is altered in the autistic brain, with reports of general
over-connectivity, under-connectivity, and/or a combination of
both (Hull et al., 2017). The whole brain fMRI is usually
parcellated into ROIs defined by different atlases, which are either
anatomically defined or functionally defined. The commonly
used atlas is the anatomical Automated Anatomical Labeling
(AAL) atlas (Murdaugh et al., 2012; Wang et al., 2012; Iidaka,
2015; Guo et al., 2017; Aghdam et al., 2018; Bi et al., 2018;
Kazeminejad and Sotero, 2019; Liu J. et al., 2020; Tang et al.,
2020; Zhao et al., 2020; Reiter et al., 2021). Aside from the AAL,
some other atlases were introduced to construct FCs for ASD
classification, such as the Power atlas (Power et al., 2014; Chen

et al., 2015; Dodero et al., 2015a; Yin et al., 2021), the Craddock
200 (CC200) atlas (Craddock et al., 2012; Kassraian-Fard et al.,
2016; Huang et al., 2020; Kazeminejad and Sotero, 2020; Liu J.
et al., 2020), the CC400 atlas (Sherkatghanad et al., 2020), the
Harvard Oxford (HO) atlas (Desikan et al., 2006; Fredo et al.,
2019), the Desikan–Killiany (DK) atlas (Kong et al., 2018; Soussia
and Rekik, 2018), and the sulci-based anatomical atlas (Yahata
et al., 2016). In particular, the whole brain FCs between 7,266
ROIs were used as classification features (Anderson et al., 2011;
Nielsen et al., 2013; Heinsfeld et al., 2018). In addition, FCs
derived from specific brain networks were also attractive. For
example, Murdaugh et al. adopted FCs between default mode
network (DMN) ROIs as classification features (Murdaugh et al.,
2012). Different from the above research, Dodero et al. (2015b)
obtained FCs by introducing the University of California at Los
Angeles (UCLA) Multimodal Connectivity Database, which is
an openly available website for brain network analysis and data
sharing (Brown et al., 2012).

Task-Based Static Functional
Connectivity Features
Though static FC features are the most adopted features for
ASD classification, they are usually but not absolutely restricted
to rs-fMRI data. The underconnectivity theory is based largely
on analysis of task-related changes in interregional connectivity
during tasks (Masona et al., 2008) that involve language, working
memory, mental imagery, executive functions, cognitive control,
and social cognition. Given that differentiation between ASD
patients and TCs is absolutely confirmed, targeted tasks can
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TABLE 1 | Summary of ASD classification studies based on fMRI data.

Study Participants Data Features Feature selection Machine learning
method

Accuracy

Anderson et al. (2011) 40 ASD
40 TC

rs-fMRI data Whole brain FCs between
7,266 ROIs

A two-tailed t-test for
p < 0.001

Not detailed 79%

Wang et al. (2012) 29 ASD
29 TC

fMRI data with a cognitive
control task

FCs between 106 ROIs
(the AAL atlas)

None Logistic regression 82.8%

Murdaugh et al. (2012) 13 ASD
14 TC

fMRI data with three stimuli
experiments

Seed-based FCs
FCs between 102 regions
(the AAL atlas)

None Logistic regression 96.3%

Nielsen et al. (2013) 447 ASD
517 TC

rs-fMRI data
(the ABIDE dataset)

Whole brain FCs between
7,266 ROIs

None Not detailed 60%

Uddin et al. (2013a) 20 ASD
20 TC

rs-fMRI data Independent components None Logistic regression 83%

Deshpande et al. (2013) 15 ASD
15 TC

fMRI data with ToM task FCs between 18 ROIs Recursive cluster
elimination

Linear SVM 95.9%

Just et al. (2014) 17 ASD
17 TC

fMRI data with a thinking task Features obtained by factor
analyses proposed by the
author

The FA procedure GNB 97%

Price et al. (2014) 30 ASD
30 TC

rs-fMRI data
(the ABIDE dataset)

Dynamic FCs from
multi-network

Self-proposed methods Multi-kernel SVM 90%

Zhou et al. (2014) 127 ASD
153 TC

rs-fMRI data
(the ABIDE dataset)

Integrated features PCA and MRMR SVM and Bayesian
network

70%

Plitt et al. (2015) 59 ASD
59 TC

rs-fMRI data FCs between ROIs from three
atlases
(the Destrieux atlas, the
DiMartino atlas, and the Power
atlas)

RFE The scikit-learn library 76.67%(peak)

Dodero et al. (2015a) 42 ASD
37 TC

rs-fMRI data
(the UCLA data)

FCs between 264 ROIs
(the Power atlas)

None Grass–Kernel based
Manifold Laplacian

63.29%

Iidaka (2015) 312 ASD
328 TC

rs-fMRI data FCs between 90 ROIs
(the AAL atlas)

Threshold Probabilistic neural
network

89.4%

Chen et al. (2015) 126 ASD
126 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 220 functionally
defined ROIs

PSO
RFE

SVM
Random forest

66%
90.8%

Chanel et al. (2016) 15 ASD
14 TC

fMRI data with emotional stimuli The beta maps RFE SVM 92.3%

Ghiassian et al. (2016) 538 ASD
573 TC

rs-fMRI data
(the ABIDE dataset)

Proposed HOG features MRMR MHPC learning
algorithm

65%

Kassraian-Fard et al. (2016) 77 ASD
77 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

None SVM 63%

Odriozola et al. (2016) 23 ASD
22 TC

fMRI data with two visual
oddball detection tasks

Multivariate activation patterns
in the dorsal part of the anterior
insula

None SVM 85%

(Continued)
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TABLE 1 | Countinued

Study Participants Data Features Feature selection Machine learning
method

Accuracy

Abraham et al. (2017) 871 participants rs-fMRI data
(the ABIDE dataset)

FCs between ROIs from three
atlases
(the HO atlas, the Yeo atlas,
and the CC200 atlas)

ICA and MSDL The scikit-learn library 67% (peak)

Yahata et al. (2016) 74 ASD
107 TC

rs-fMRI data FCs between 140 ROIs
(the sulci-based anatomical
atlas)

L1-SCCA SLR classifier 85%

Dvornek et al. (2017) 539 ASD
573 TC

rs-fMRI data
(the ABIDE dataset)

The resting-state fMRI time
series

None LSTM modela 68.5%

Rane et al. (2017) 539 ASD
573 TC

rs-fMRI data
(the ABIDE dataset)

All voxels within the GM mask None the scikit-learn library 62%

Guo et al. (2017) 55 ASD
55 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 116 ROIs
(the AAL atlas)

SAEs DNN classifiera 86.36%

Bi et al. (2018) 45 ASD
39 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 90 ROIs
(the AAL atlas)

random SVM cluster RBF-SVM 96.15%

Heinsfeld et al. (2018) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

Whole brain FC between 7,266
ROIs

SAEs DNN classifiera 70%

Aghdam et al. (2018) 116 ASD
69 TC

rs-fMRI and sMRI data
(the ABIDE dataset)

Means of ROIs respectively for
rs-fMRI, GM and WM
(the AAL atlas)

None DBN classifiera 65.56%

Zhao et al. (2018) 54 ASD
46 TC

rs-fMRI data
(the ABIDE dataset)

Multi-level, high-order FCs LASSO multiple linear SVMs 81%

Soussia and Rekik (2018) 155 ASD
186 TC

rs-fMRI data
(the ABIDE dataset)

High-Order Morphological
Network

None SIMLR based
pairing + SVM

61.7%

Dekhil et al. (2018) 123 ASD
160 TC

rs-fMRI data PSD PSD with highest
correlation with the 34
rs-fMRI atlases

RBF-SVM 91%

Bernas et al. (2018) 24 ASD
30 TC

rs-fMRI data 7 resting-state networks Group-ICA poly-SVM 86.7%

Bhaumik et al. (2018) 167 ASD
205 TC

rs-fMRI data
(the ABIDE dataset)

FCs between Brodmann’s
areas ROIs

Filter-based test and
embedded Elastic Nets

Partial least square
regression combined
with SVM

70%

Kong et al. (2018) 78 ASD
104 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 148 ROIs
(the Destrieux atlas)

F-score DNN classifiera 90.39%

Li et al. (2018) 38 ASD
23 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 90 ROIs
(the AAL atlas)

SSAE DTL-NN classifiera 70.4%

Kazeminejad and Sotero (2019) 109 participants
342 participants
190 participants
137 participants
51 participants

rs-fMRI data
(the ABIDE dataset)

FCs between 116 ROIs
(the AAL atlas)

A sequential forward
floating algorithm

Gaussian SVM 86%
69%
78%
80%
95%

(Continued)
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Study Participants Data Features Feature selection Machine learning
method

Accuracy

Eslami et al. (2019) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

AE A single layer
perceptrona

80%

Fredo et al. (2019) 306 ASD
350 TC
(400 participants for each
sample)

rs-fMRI
(the ABIDE dataset)

FCs between 237 ROIs
(the Gordon’s cortical atlas
the HO atlas)

Conditional random forest Random forest 62.5%
65%
70%
73.75%

Niu et al. (2020) 408 ASD
401 TC

rs-fMRI data
(the ABIDE dataset)

FCs between ROIs from three
atlases separately (the AAL
atlas, the HO atlas and the
CC200 atlas)

None The proposed
multichannel DANN

73.2%

Liu Y. et al. (2020) 506 ASD
548 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

Extra-tree Linear-SVM 72.2%

Sherkatghanad et al. (2020) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 392 ROIs
(the CC400 atlas)

None CNN classifiera 70.22%

Thomas et al. (2020) 620 ASD
542 TC

rs-fMRI data
(the ABIDE dataset)

Nine summary measures None 3D CNN classifiera 64%

Tang et al. (2020) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 116 ROIs
fMRI × ROI connectivity
(the AAL atlas)

None DNN classifiera 74%

Zhao et al. (2020) 45 ASD
47 TC

rs-fMRI data
(the ABIDE dataset)

FCs, Lo-D-FCs and Ho-D-FCs
between 116 ROIs (the AAL
atlas)

A two-sample t-test and
LASSO

Linear-SVM 83%

Huang et al. (2020) 505 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

Graph-based
feature-selection method

DBN classifiera 76.4%

Liu Y. et al. (2020) 403 ASD
468 TC

rs-fMRI data
(the ABIDE dataset)

D-FCs between ROIs
(the AAL atlas)

MTFS-EM Multi-kernel SVM 76.8%

Kazeminejad and Sotero (2020) 493 ASD
530 TC

rs-fMRI data
(the ABIDE dataset)

FCs between 200 ROIs
(the CC200 atlas)

PCA A multilayer
perceptrona

64.4%

Yin et al. (2021) 403 ASD
468 TC

rs-fMRI data
(the ABIDE dataset)

FC between 264 ROIs
(the Power atlas)

An AE-based feature
selection method

DNN classifiera 79.2%

Yang et al. (2021) 79 ASD
105 TC

rs-fMRI data
(the ABIDE dataset)

8 brain functional networks
from
group-ICA

Dual regression 3D CNN classifiera 77.74%

Reiter et al. (2021) 306 ASD
350 TC
(400 participants for each
sample)

rs-fMRI data
(the ABIDE dataset and data
sample from SDSU)

FC between 237 ROIs
(the Gordon atlas
the HO atlas)

Conditional random forest Random Forest 62.5%
65%
70%
73.75%

aMachine learning methods that are deep learning methods.
Abbreviations: ASD, autism spectrum disorder; fMRI, functional magnetic resonance imaging; rs-fMRI, resting state fMRI; TC, typical control; FC, functional connectivity; ROI, region of interest; AAL, Automated
Anatomical Labeling; ABIDE, Autism Brain Imaging Data Exchange; ToM, Theory of Mind; SVM, support vector machine; FA, factor analysis; GNB, Gaussian naïve Bayes; PCA, principal component analysis; RFE,
recursive feature elimination; MRMR, maximal relevance and minimal redundancy; UCLA, University of California at Los Angeles; PSO, particle swarm optimization; HOG, histogram of oriented gradients; ICA, independent
component analysis; MSDL, multi-subject dictionary learning; L1-SCCA, the L1-norm regularized sparse canonical correlation analysis; SAEs, sparse auto-encoders; SLR, Structured Logistic Regression; LSTM, long
short-term memory; DNN, deep neural network; DBN, deep belief network; RBF-SVM, radial basis function-support vector machine; GM, gray matter; WM, white matter; LASSO, least absolute shrinkage and selector
operation; SSAE, a stacked sparse auto-encoder; SIMLR, Single-cell Interpretation via Multi-kernel LeaRning; PSD, Power spectral densities; DTL-NN, deep transfer learning neural network; AE, autoencoders; HO,
Harvard Oxford; DANN, deep attention neural network; CNN, convolutional neural network; Lo-D-FCs, low-order dynamic functional connectivity networks; Ho-D-FCs, high-order dynamic functional connectivity
networks; MTFS-EM, an improved multi-task feature selection method integrating elastic net and manifold regularization; SDSU, San Diego State University.
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expand their fMRI differences relative to rs-fMRI. Therefore,
FCs generated from task-based fMRI data also attracted the
researchers (Murdaugh et al., 2012; Wang et al., 2012; Deshpande
et al., 2013). The Theory of Mind (ToM) hypothesis, proposed by
Baron Cohen, has emerged as a highly regarded explanation of
autistic behavior (Baron-Cohen, 1988a,b,c; Baron-Cohen et al.,
1994; Baron-Cohen, 2004). According to this prior knowledge,
Deshpande et al. (2013) acquired fMRI data during a ToM task
and obtained FCs between 18 ROIs.

Dynamic or High-Order Functional
Connectivity Features
The aforementioned FCs referred to the conventional static
brain FCs, which revealed the intrinsic similarities between a
pair of ROIs or specific networks. It was recently accepted that
dynamic FCs contained more additional knowledge than static
FCs. Dynamic FCs can reveal spatiotemporal network properties
not observable in static FCs and may reveal more nuanced
transient patterns of atypical FC in ASD (Mash et al., 2019).
Even so, there are but not many relative ASD classification
studies using dynamic FCs compared to static FCs. Price et
al. obtained dynamic FCs based on independent components
generated from group-independent component analysis (ICA).
In their research, it was demonstrated that using FC features over
a wide range of time scales was able to substantially increase ASD
classification compared with static FC features (Price et al., 2014),
indicating that dynamic FCs are the important supplement of
static FC features. A high-order morphological brain network
based on Pearson correlation was further proposed by Soussia
and Rekik to detect more complex interaction patterns between
multiple brain regions (Soussia and Rekik, 2018). Moreover, it
was noticed that the identified regions at a high-order level
are different from those at a lower order, and this may appear
to provide complementary discriminative information for more
accurate diagnosis (Soussia and Rekik, 2018). Similarly, multi-
level, high-order FC networks were put forward by Zhao et al.
to serve as ASD classification features (Zhao et al., 2018), and
better classification performance was obtained. Two years later,
they fused the features extracted from conventional FCs, low-
order dynamic FCs, and high-order dynamic FCs for the ASD
classification and achieved the best classification performance
than any other type of feature fusion (Zhao et al., 2020). It
was indicated that the fusion of different-level FCs can supply
complementary relevant information for ASD diagnosis, which
was consistent with their previous study.

Other Applied Classification Features
Through analysis of the relative papers, it was obviously found
that the commonly adopted classification features are mainly
from statics or dynamic functional networks. Besides, some
researchers expanded the range of classification features of ASD
through different perspectives. Because reduced attention to
social stimuli is one of the defining features of ASD, Odriozola
et al. (2016) used two visual oddball tasks to investigate brain
systems engaged during attention to social (face) and non-
social (scene) stimuli. In their work, multivariate activation

patterns in the dorsal part of the anterior insula were chosen
as classification features. Chanel et al. (2016) acquired fMRI
data from two performed experiments and used the beta maps
of each condition estimated at the individual step level as
features for the classification. The beta map of each individual
is high-dimensional containing 186,217 features. Even the rs-
fMRI time series and all voxels within the gray matter (GM)
mask were directly chosen as classification features (Dvornek
et al., 2017; Rane et al., 2017) with the hypothesis that they will
carry more useful information than single, static FC measures.
In addition, some researchers applied integrated classification
features. For example, volumetry analysis, FC MRI analysis, and
graph theory via small-world network analysis were introduced
to produce the integrated classification features which contained
a total of 22 quantitative local and global imaging features (Zhou
et al., 2014). Integrated FCs originated from the AAL atlas,
the HO atlas, and the Craddock atlas were implemented in the
work of Niu et al. (2020). Moreover, for better classification,
some researchers applied their proposed methods to obtain
classification features, such as histogram of oriented gradients
(HOG) features (Ghiassian et al., 2016) and features by factor
analysis (Just et al., 2014). As another example of classification
feature fusion, Aghdam et al. (2018) computed means of ROIs
respectively for rs-fMRI, GM, and white matter (WM) based
on the AAL atlas, and the highest classification accuracy was
obtained using the fusion of the three features. Based on FCs
of the AAL atlas, Tang et al. (2020) introduced fMRI × ROI
connectivity for feature supplements.

MACHINE LEARNING METHODS AND
CLASSIFICATION RESULTS

Summary About Machine Learning
Methods and Classification Accuracy
Results
High classification accuracy and confirming the most
discriminant features are two main purposes for ASD
classification. The most discriminant features resulting from
ASD classifications can make a good distinction between the two
groups and have the potentiality to serve as disease biomarkers.
The higher the classification accuracy, the more creditable the
confirmed discriminant features. As a traditional classifier,
support vector machine (SVM) has been widely used in the
classification of brain disorders including ASD in the last decade.
The SVM classifier can be linear and non-linear, which was
decided by different kernels, such as linear kernel, polynomial
kernel, sigmoid kernel, and Gaussian radial basis function (RBF)
kernel. Different kernels were chosen according to different
features. Eighteen papers in Table 1 applied SVM classifiers
benefiting from their classification power. Bi et al. classified the
ASD patients and TCs by 96.15% using SVM with RBF kernel
(Bi et al., 2018). Dekhil et al. (2018) obtained 91% classification
accuracy using the same classification method. Deshpande et al.
(2013), Chen et al. (2015), Chanel et al. (2016), Odriozola et al.
(2016), Bernas et al. (2018), and Zhao et al. (2018, 2020) all made
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use of SVM classifiers to discriminate ASD patients and TCs with
higher accuracies, which are 92.3% (peak), 85%, 81%, 90.8%,
95.9%, and 86.7%, respectively. However, the choice of SVM
classifiers is not the only determining factor for high accuracies,
which will be discussed in the next section. Kassraian-Fard et al.
(2016) and Liu J. et al. (2020) also applied the SVM classifier
but resulted in a lower accuracy probably due to the large
multi-site fMRI dataset.

Besides the SVM classifier, some other traditional classifiers
are also used in the discrimination of ASD patients and TCs,
such as logistic regression (Murdaugh et al., 2012; Wang
et al., 2012; Uddin et al., 2013a), random forest (RF) (Chen
et al., 2015; Fredo et al., 2019; Reiter et al., 2021), manifold
Laplacian (Dodero et al., 2015a), Gaussian naïve Bayes (GNB)
(Just et al., 2014), and so on. In order to contrast the
effect of different machine learning methods, the scikit-learn
library, which contains multiple machine learning methods,
was also applied by some researchers for ASD classification
(Plitt et al., 2015; Abraham et al., 2017; Rane et al., 2017). In
addition, many researchers tried their best to develop novel
classification approaches for better performance. Ghiassian et
al. proposed (f)MRI HOG-feature-based patient classification
(MHPC) learning algorithm to distinguish ASD individuals and
TCs by 65% (Ghiassian et al., 2016). Yahata et al. developed
a novel machine learning algorithm called Structured Logistic
Regression (SLR) classifier and separated the two groups with
the accuracy of 85% (Yahata et al., 2016). In addition, Niu
et al. employed a proposed multichannel domain-adversarial
neural network (DANN) model and further compared it with
the existing machine learning methods such as random RF, SVM
models, and multichannel deep neural network (DNN), resulting
in the best performance of the self-proposed method with an
accuracy of 73.2% (Niu et al., 2020).

Moreover, as an advanced and popular machine learning
method, deep learning was widely applied in the classification
of ASD especially since 2017. There are several commonly
used models of deep learning, such as, autoencoders (AE), long
short-term memory (LSTM), recurrent neural network (RNN),
DNN, deep belief network (DBN), and convolutional neural
network (CNN) (Du et al., 2018). Fourteen of 47 involved papers
applied deep learning methods for the classification as detailed in
Table 1. Purely from the perspective of classification accuracy, the
performance of advanced deep learning methods is comparable
with that of traditional ones. In fact, classification accuracy was
affected by not only machine learning methods but the dataset,
constructed features, and feature selection methods, which will
be discussed in detail in section “Factors on Classification
Accuracy.” Therefore, the scientific and meaningful comparison
on performance of deep learning and traditional machine
learning should be carried out under the same condition.
Classification accuracies were compared between deep learning
and traditional machine learning in Figure 2D using papers
with more than 800 participants from the ABIDE dataset.
Generally speaking, deep learning outperformed traditional
machine learning. In the work of Thomas et al. (2020) CNN was
reported to achieve comparable results with SVM as shown in
Table 2. Apart from this, eight other papers with deep learning

reported their better performance than traditional machine
learning methods under the same condition detailed in Table 2
(Heinsfeld et al., 2018; Kong et al., 2018; Li et al., 2018; Huang
et al., 2020; Kazeminejad and Sotero, 2020; Sherkatghanad et al.,
2020; Thomas et al., 2020; Yang et al., 2021; Yin et al., 2021). It is
reasonable to believe that deep learning holds better classification
power than the traditional ones.

Factors on Classification Accuracy
High accuracy is a critical goal of classification between ASD
individuals and TCs aiming to determine biomarkers for ASD.
Through analysis of the involved literatures, several factors that
substantially impacted classification accuracy were summarized.

Task-Based fMRI Dataset
Many studies have proved the brain difference between ASD
individuals and TCs. There is a hypothesis that the degree of
alteration in the representation of self in individuals with autism
would be related to behavioral measures of various social abilities,
such as thinking, face processing, and ToM (Just et al., 2014).
Thus, fMRI data with correlated tasks are commonly used for
ASD classification studies (Murdaugh et al., 2012; Wang et al.,
2012; Deshpande et al., 2013; Just et al., 2014; Chanel et al.,
2016; Odriozola et al., 2016). It was found that classifications
using task-based fMRI data usually obtained high accuracies as
detailed in Table 1 and represented by the pink diamonds in
Figure 2B, ranging from 82.8% to 97%. Compared to the rs-
fMRI data used in the classification, the task-based fMRI data
are an important factor for high classification accuracies. But
for task-based fMRI data, it is difficult to acquire large datasets.
Most task-based fMRI studies relatively involved small samples
of usually less than 50 subjects (Poldrack and Gorgolewski, 2015).
Interestingly, we found that the less samples, the higher the
classification accuracy as shown in Figure 2B. It is worthy of note
that the classification accuracy may decrease with an increase in
the number of individuals in the task-based fMRI studies, which
necessitates further demonstration.

Contribution of Feature Selection
Besides the factor of the task-based fMRI data, another important
factor for high classification accuracy is feature selection. Feature
selection methods play an important role in classifications
because of the high-dimension property of fMRI data even
after relative features have been constructed. Proper feature
selection can further reduce the dimensionality of features,
enhance classification accuracy, facilitate visualization of the
data, and lead to faster classification (Guyon and Elisseeff,
2003; Kassraian-Fard et al., 2016). To realize the importance
of feature selection in classification, it gradually became an
indispensable part of ASD classification studies. Nevertheless,
16 of the 47 papers in this review did not introduce separate
feature selection methods as detailed in Table 1, and high
dimensional features were directly applied as the inputs of
classifiers (Nielsen et al., 2013; Heinsfeld et al., 2018) resulting
in lower classification accuracies. The performance of ASD
classification with and without feature selection methods was
also compared in some works. Chen et al. (2015) achieved
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FIGURE 2 | Summary of the involved literatures (A) relationship between number of studies and total sample size. (B) relationship between classification accuracy
and total sample size. The pink diamonds and the others represent the task-based fMRI literatures and the rs-fMRI literatures, respectively. The red dots denote the
same classification results by Reiter et al. (2021) and Fredo et al. (2019). The green hexagons denote the classification results of Kazeminejad and Sotero (2020).
(C) Classification accuracy comparison of studies with feature selection and not, regarding the rs-fMRI dataset. (D) Classification accuracy comparison of studies
with deep learning and not, regarding the rs-fMRI dataset with more than 800 participants. fMRI, functional magnetic resonance imaging; rs-fMRI, resting state fMRI.

90.8% classification accuracy using the top 100 features with
the highest variable importance compared with 58% accuracy
without feature selection. Guo et al. (2017) demonstrated
that classification with feature selection outperformed that
without feature selection method by 9.09%, and different feature
selection methods could bring different classification results.
Worth mentioning was that the ASD classification studies
using feature selection method in the review can averagely
bring better classification accuracies than those without it
as statistically illustrated in Figure 2C. In summary, feature
selection methods made an indelible contribution to the
performance of ASD classification.

The Property of the Dataset
Another non-ignored factor of the high classification accuracy
is the property of the dataset applied for classification such
as sample size and data heterogeneity. The total sample size
of the involved literatures mostly concentrated less than 400

or more than 800 as shown in Figure 2A. The relationship
between classification accuracy and sample size was illustrated
in Figure 2B, in which the pink diamonds and others
represent the results of the literatures involving tasks or
not, respectively. Classification across multiple sites has to
accommodate additional sources of variance in subjects, scanning
procedures, and equipment in comparison to single-site datasets
(Nielsen et al., 2013) and usually results in low classification
accuracies detailed in Table 1. However, it is worth noting that
several works in Table 1 applying the fMRI data from the
ABIDE dataset brought high accuracies from 81% to 96.15%
(Price et al., 2014; Chen et al., 2015; Bi et al., 2018; Kong et al.,
2018; Zhao et al., 2018, 2020; Kazeminejad and Sotero, 2019).
Through analysis, the commonality of datasets applied in these
papers is that they are all subsets of the large dataset according
to some special selection criteria, such as site limitation, single
protocol, or age-related selection, which can alleviate data
heterogeneity to some extent and improve the classification
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TABLE 2 | Accuracy comparison between deep learning and other machine learning.

Study Deep learning accuracy Other machine learning accuracy

Dvornek et al. (2017) LSTM classifier: 68.5% SVM classifier: 66.9%
MHPC classifier: 59.2%

Heinsfeld et al. (2018) DNN classifier: 70% SVM classifier: 65%
RF classifier: 63%

Kong et al. (2018) DNN classifier: 90.39% RF classifier:74.46%

Sherkatghanad et al. (2020) CNN classifier: 70.22% SVM classifier:
KNN classifier:
RF classifier:

Kazeminejad and Sotero (2020) A multilayer perceptron: 64.4% (average) LR classifier: 61% (peak)
RF Classifier: 63% (peak)
RBF-SVM classifier: 67% (peak)

Thomas et al. (2020) CNN classifier: 64% SVM classifier: 66% (comparable)

Huang et al. (2020) DBN classifier: 76.4% DNN classifier: 70%
LSTM classifier: 68.5%
L-SVM classifier: 68.5%
SVC classifier: 66.9%
LOOCV classifier: 60%
RBF-SVM: 59.2%

Yin et al. (2021) DNN classifier: 79.2% L-SVM classifier: 68%
Medium-SVM classifier: 72.2%
Coarse Gaussian-SVM classifier: 66.9%
Medium-KNN classifier: 72.4%
Cosine-KNN classifier: 72.6%
Weighted KNN classifier: 72.4%

Yang et al. (2021) CNN classifier: 77.74% AE-MLP classifier: 68.56%
SVM classifier: 62.97%
RF classifier: 60.62%
Conv GRU-CNN classifier:67%

Abbreviations: LSTM, long short-term memory; SVM, support vector machine; DNN, deep neural network; RF, random forest; KNN, K-nearest neighbor; LR, logistic
regression; RBF-SVM, radial basis function-support vector machine; L-SVM, linear support vector machine; SVC, support vector classification; LOOCV, leave-one-out
cross-validation; AE-MLP, autoencoders-multilayer perceptron; CNN, convolutional neural network; GRU, gated recurrent unit.

accuracy. Eslami et al. (2019) evaluated their proposed machine
learning method on all data and each site data of the ABIDE
dataset respectively, resulting in 70.1% for all data and 80% peak
accuracy for the Oregon Health & Science University (OHSU)
site. Likewise, several works that focused on childhood and
adolescent fMRI data also attained high accuracies from 83% to
91% (Uddin et al., 2013a; Price et al., 2014; Iidaka, 2015; Bernas
et al., 2018; Dekhil et al., 2018) following the principal of the
above age-related selection. In the work of Kazeminejad et al., the
dataset including 817 participants was split into five age ranges,
and the best classification accuracies for each range were obtained
ranging from 69% to 95% (Kazeminejad and Sotero, 2019). In
accordance with the task-based fMRI studies, an approximately
linear relationship between classification accuracies and sample
size was discovered in their work as illustrated in Figure 2B.
In addition, the same sample size could result in different
classification accuracies due to different heterogeneity of the
dataset, which was illustrated by the red dots in Figure 2B
(Fredo et al., 2019; Reiter et al., 2021). All in all, the property
of the applied dataset can definitely influence the classification
result to some extent.

The Choice of Atlas
As discussed in section “FEATURE CONSTRUCTION
FROM RAW FMRI DATA,” atlases of anatomical, functional

parcellation, and data-driven extraction were applied for FC
feature construction in ASD classification. It was believed that
the choice of atlas could influence classification accuracy to some
extent (Plitt et al., 2015; Abraham et al., 2017; Dadi et al., 2019;
Liu Y. et al., 2020; Yin et al., 2021). Plitt et al. addressed the
impact of three different brain atlases on classifications (Power
et al., 2011; Plitt et al., 2015), which are the DiMartino atlas, the
Destrieux atlas, and the Power atlas. The Destrieux atlas slightly
outperformed the other two as illustrated in Figure 3, indicating
that different anatomical atlases influenced the classification
accuracy indeed. Meanwhile, Abraham et al. considered three
different predefined atlases and four data-driven atlases and
compared their classification performance (Abraham et al.,
2017). The three predefined atlases are the anatomical HO atlas
(Desikan et al., 2006), the functional Yeo atlas (Yeo et al., 2011),
and the functional Craddock atlas (Lashkari et al., 2009), while
the four data-driven atlases were derived based on K-means,
Ward’s clustering, ICA, and multi-subject dictionary learning
(MSDL). Data-driven atlases were reported to perform more
poorly than the predefined atlases except the MSDL-based atlas,
and the functional HO atlas led to maximal performance. In the
work of Dadi et al., functional atlases were reported to lead to
better prediction than anatomical atlases, and the MSDL-based
atlas was found to perform comparably (Dadi et al., 2019). The
MSDL-based atlas exhibited robust performance out of all the
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FIGURE 3 | Classification accuracy comparison based on different choice of atlas in the work of Plitt et al. (2015). RF, random forests; KNN, K-nearest neighbor;
L-SVM, linear support vector machine; RBF-SVM, Gaussian kernel support vector machine; GNB, Gaussian naïve Bayes; LDA, linear discriminant analysis; L1LR, L1
logistic regression; L2LR, L2 logistic regression; ENLR, elastic-net logistic regression; Average, average of the above nine methods.

anatomical and data-driven atlas approaches (Yin et al., 2021).
In a summary, the choice of atlas played an important role on
the prediction accuracy. Apart from this, the great meaningful
contribution of the choice of atlas was the explanation of
discriminant features or biomarkers derived from classification.

Development of Machine Learning Method
As the core of classification, machine learning methods are
undoubtedly a crucial factor on classification accuracies.
Different machine learning methods and their variants
were introduced to fMRI data classification study for better
classification results, determination of discriminant features,
ASD biomarkers exploration, or just method innovation.
Among traditional shallow machine learning methods, SVM was
recognized as a powerful one than others. With the appearance
and rapid development of deep learning, it was widely applied
in ASD classification. Apart from its lack of interpretability
restrictions and being time consuming, deep learning has shown
great potential power in classification compared with traditional
machine learning methods as discussed in section “Summary
About Machine Learning Methods and Classification Accuracy
Results.” Further and deeper study on deep learning can continue
to promote the development of ASD classification. The most
promising focus on the application of machine learning to the
neuroimaging field may be to create specific methods for the
special properties of fMRI.

SIGNIFICANT RESULTS SUMMARIZED
FROM INVOLVED LITERATURES

It is well known that one major goal of the classifications
between ASD and TC is to obtain high accuracies, while

another is to determine the informative brain regions or
networks contributing to the classifications with the ultimate
goal of yielding a possible biomarker of ASD. The higher the
accuracy, the more trustworthy the identified brain regions or
networks. Not only the informative brain areas or networks were
determined, but the physiology and behavior explanation about
them were exhibited in most of the papers.

Consistent Results From FC
Classification Using the AAL Atlas
Given that FCs were chosen by many researchers as classification
features, we summarized informative brain regions and networks
determined by classifications between ASD individuals and TCs
using FCs as features in Table 3. The brain regions and networks
are more comparable in different literatures which applied the
same brain atlas regardless of different pattern classification
methods. As an anatomically defined atlas, the AAL atlas was
frequently adopted in ASD classifications (Murdaugh et al., 2012;
Wang et al., 2012; Iidaka, 2015; Guo et al., 2017; Bi et al.,
2018; Liu J. et al., 2020; Tang et al., 2020; Zhao et al., 2020).
The informative brain regions and networks were determined
separately from FC classifications as shown in Table 3 except the
work of Guo et al. (2017) and Tang et al. (2020). The common
brain regions determined by classifications of the several above
literatures included the right posterior cingulate cortex (PCC),
the left PCC, and the right thalamus. The conclusion derived
from the work of Wang et al. (2012, 2017, 2020) is that
weak functional connections between the frontal lobe and the
rest of the cortex occurred in ASD patients compared with
the TCs. Dodero et al. (2015a) obtained eight informative
connections through FCs classification detailed in Table 3, in
which red connections identify higher connectivity in healthy
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TABLE 3 | Summary of informative brain regions or networks determined by classification between ASD and TD using FCs as features.

Authors Brain atlas Informative brain regions or networks contributing to the classification
between ASD and TD

Anderson et al. (2011) 7,266 regions The DMN, superior parietal lobule, fusiform gyrus and anterior insula

Wang et al. (2012) The AAL atlas Weak functional connections between the frontal lobe and the rest of the cortex

Murdaugh et al. (2012) The AAL atlas The PCC, PCUN, and MFC

Nielsen et al. (2013) 7,266 regions The DMN, parahippocampaland fusiform gyri, insula, Wernicke area, and
intraparietal sulcus

Deshpande et al. (2013) 18 self-defined ROIs Functional connections between the fusiform face area and middle temporal
gyrus

Iidaka (2015) The AAL atlas The medial part of the superior frontal gyrus, anterior and posterior cingulate
cortices, and thalamus

Chen et al. (2015) The Power atlas Default mode, somatosensory/motor (hand region), and visual networks
The left anterior cingulate gyrus, bilateral postcentral gyrus, right PCUN, left
calcarine sulcus, the left paracentral lobule and the right postcentral gyrus

Plitt et al. (2015) The Power atlas
The Destrieux atlas
The DiMartino atlas

The insula, ventromedial prefrontal cortex, anterior, middle, and posterior
regions of cingulate cortex, supplementary motor cortex, anterior temporal
lobes, posterior aspects of the fusiform gyrus, posterior superior temporal
sulcus, temporal parietal junction, intraparietal sulcus, and inferior and middle
frontal gyri, bilaterally
Default-mode network, the frontal-parietal control network

Yahata et al. (2016) Sulci-based anatomical
atlas

16 discriminative functional connections
The cingulo-opercular network

Dodero et al. (2015b) The Power atlas Red: left precentral gyrus-left occipital pole, left precentral gyrus-left precentral
gyrus, left superior frontal gyrus-right lateral occipital cortex, right superior
frontal gyrus-right parietal operculum
Blue: right frontal medial cortex-right precentral gyrus, left caudate-right
precentral gyrus, left putamen-right precentral gyrus, right frontal pole-right
lateral occipital cortex

Abraham et al. (2017) The HO atlas
The Yeo atlas
The CC200 atlas

DMN, Pareto-insular network and semantic ROIs

Guo et al. (2017) The AAL atlas 32 most significant FC mainly from or cross different pre-defined brain networks
including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum

Heinsfeld et al. (2018) 7,266 regions The regions with the highest anticorrelation: paracingulate gyrus, supramarginal
gyrus, and middle temporal gyrus
The regions with the highest correlation: occipital pole, and lateral occipital
cortex; superior division

Bi et al. (2018) The AAL atlas The right IFG (opercular part), the right PCUN, superior frontal gyrus (orbital
part), the left inferior occipital gyrus, the right hippocampus, the bilateral
superior frontal gyrus (dorsolateral), the right median cingulate and
paracingulate gyri, the right posterior cingulate gyrus, the left supramarginal
gyrus, the right thalamus, the right superior, and middle temporal gyrus

Bhaumik et al. (2018) The Brodmann’s areas
ROIs

Dorsolateral prefrontal cortex, somatosensory association cortex, primary
auditory cortex, inferior temporal gyrus
and temporopolar area

Fredo et al. (2019) The Gordon’s cortical
atlas
The HO atlas

COTC, visual, DA, DMN, and SMH

Liu Y. et al. (2020) The CC200 atlas Lower correlation between the anterior and posterior DMN in autistic individuals

Sherkatghanad et al. (2020) The CC400 atlas The right supramarginal gyrus, the fusiform gyrus, the cerebellar vermis (C115,
C188, C247, and C326)

Zhao et al. (2020) The AAL atlas Precentral gyrus, middle frontal gyrus, middle cingulate gyrus, posterior
cingulate gyrus, amygdala, angular gyrus

Huang et al. (2020) The CC200 atlas 20 discriminative functional connections

Reiter et al. (2021) The Gordon atlas
The HO atlas

COTC, visual, SMH, DMN, and DA

Abbreviations: ASD, autism spectrum disorder; TD, typically developing; FC, functional connectivity; DMN, default mode network; AAL, Automated Anatomical Labeling;
PCC, posterior cingulate cortex; PCUN, precuneus; MFC, medial prefrontal cortex; ROI, region of interest; HO, Harvard Oxford; IFG, inferior frontal gyrus; COTC,
cingulo-opercular task control; DA, dorsal attention; SMH, somatosensory motor hand.
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subjects while blue connections identify a higher connectivity
strength in autistic subjects. Guo et al. (2017) found 32 most
significant FCs between the two groups mainly from or across
different pre-defined brain networks including the default mode,
cingulo-opercular, frontal-parietal, and cerebellum. The detailed
significant brain areas about the above papers are shown in
Table 3.

Consistent Results About the Default
Mode Network
The DMN comprised several dispersed cortical nodes including
the anterior cingulate/medial prefrontal cortices and the PCC
(Raichle et al., 2001; Greicius et al., 2003; Buckner et al., 2008;
Washington et al., 2014). Functionally, the DMN is considered to
relate to self-referential cognition including domains of known
impairment in ASD (Chen et al., 2015), which have been reported
in some previous non-classification research (Monk et al., 2009;
Assaf et al., 2010; Minshew and Keller, 2010; Zielinski et al., 2012;
Martino et al., 2013; Redcay et al., 2013). Notably, some common
regions determined by the aforementioned literatures using the
AAL atlas belong to the DMN. Early in 2011, Anderson et al. have
reported the phenotypic pattern of impaired communication
within and between the DMN and attention control networks in
ASD through classification between the two groups (Anderson
et al., 2011). Soon afterward, a series of ASD classification studies
were carried out and resulted in consistent conclusions about
the DMN. As depicted in Table 3, impaired FCs related to the
DMN were obtained in several literatures (Nielsen et al., 2013;
Chen et al., 2015; Yahata et al., 2016; Abraham et al., 2017;
Heinsfeld et al., 2018; Fredo et al., 2019; Reiter et al., 2021).
Besides, Murdaugh et al. (2012) demonstrated that deactivation
and connectivity of the DMN were altered in individuals with
ASD at a high classification accuracy of 96.3%. The impaired
DMN was also reported in the research by Plitt et al. together
with the frontal-parietal control network (Plitt et al., 2015). In
addition, seven distinctive fronto-parietal and temporal networks
between ASD patients and TCs were reported in the work of
Bernas et al. (2018) one of which was DMN. Lower correlation
was proved between the anterior and posterior DMN in autistic
individuals (Liu Y. et al., 2020). Both dorsal DMN (dDMN)
and precuneus (PCUN) achieved better accuracies than other
brain networks in the work of Yang et al. (2021), which are
the subnetworks of the DMN. Taken together, the DMN is
undoubtedly a crucial component of the underlying neurobiology
and has the potentiality to serve as a biomarker of ASD.

Partial Hemispheric Distribution of
Discriminant FCs or Brain Regions
It has been reported that the distributed patterns of functional
abnormalities are over the whole brain of ASD patients (Zhao
et al., 2018). Actually, in the work of Nielsen et al. (2013), a
homogenous regional distribution of connectivity abnormalities
in autism was argued against and replaced by a heterogeneous
spatial distribution of connectivity disturbances that involves
specific brain regions. The conclusion of partial hemispheric
distribution of informative brain regions and networks in autism
were identically obtained in several other involved literatures.

There were significantly more regions in the right hemisphere
than in the left among the brain regions involved in the 16 FCs
identified in the study of Yahata et al. (2016) with the left intra-
hemispheric FCs absent. Likewise, significant discriminative
connections between the two groups were mostly located in the
right hemisphere, and there were more involved brain areas
in the right hemisphere than in the left, which was detailed
in the work of Dodero et al. (2015a). Odriozola et al. (2016)
also found that children with ASD displayed greater activation
of the right insula when viewing deviant faces vs. scenes in
contrast to their TCs (Odriozola et al., 2016). In addition,
the best performance was achieved in distinguishing between
ASD/TC subjects for the right hemisphere by Soussia and Rekik
indicating that the right hemisphere features may have more
discriminative power (Soussia and Rekik, 2018). Though not all
relative papers involved the conclusion about partial hemispheric
distribution, it undoubtedly supplied a novel understanding and
a new prospective for ASD.

Identification of the Potential ASD
Biomarker
As a prime conception in the field of psychiatric neuroimaging
research, biomarkers have successfully attracted enough
attraction of researchers especially with the emergence and
development of machine learning. More than 10 years ago,
machine learning methods were thought to be a promising
method to reveal brain states that discriminate patients from
controls and thus constitute a valuable tool to identify potential
biomarkers (Mourão-Miranda et al., 2005; Pereira et al., 2009).
Notably, 38 of 47 papers in the review mentioned “biomarker”
to some extent, which appropriately proved the collaborative
efforts from various research teams to explain or identify the
objective biomarker of ASD using machine learning methods
and fMRI data. Plitt et al. (2015) indicated that FC classification
of autism identifies highly predictive brain features but falls short
of biomarker standards for several reasons, such as establishing
standard analytic techniques, demonstrating biomarkers
robustness to variability across larger numbers of individuals
and sites, and addressing the diagnostic potential of brain-based
biomarkers. It was thought that the predicted autistic neural
patterns determined by classification are anticipated to serve as
reproducible biomarkers and important in early diagnosis and
treatment (Kong et al., 2018; Huang et al., 2020). Resting-state FC
measures were proved to be potential diagnostic biomarkers for
ASD in several studies (Deshpande et al., 2013; Price et al., 2014;
Plitt et al., 2015; Bhaumik et al., 2018; Kong et al., 2018; Soussia
and Rekik, 2018; Fredo et al., 2019). The study of Iidaka (2015)
indicated that an intrinsic connectivity matrix constructed from
rs-fMRI data could yield a possible biomarker of ASD restricted
to children and adolescents. It was proposed that the high-order
FC could be affected in ASD compared with the traditional FC
and thus can be used as effective biomarkers for ASD diagnosis
in the work of Zhao et al. (2018). In the study of Bernas et al. a
change in the coherence of temporal neurodynamics is identified
to be a biomarker of ASD (Bernas et al., 2018). Thomas et al.
(2020) reported that hidden somewhere in the high-dimensional
spatio-temporal signal are the biomarkers that could distinguish
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between healthy and psychiatric subjects. A strong negative
correlation between the left precuneous cortex and the left
superior frontal gyrus was anticipated to serve as reproducible
biomarkers (Huang et al., 2020). In the work of Yang et al. (2021),
the dDMN, PCUN, and salience network (SN) are suggested to
be highly different between ASD and normal control (NC) and
have the potential to be reliable biomarkers for the identification
of ASD. Though most works of relative papers failed to identify
definite and replicated biomarkers of ASD, efforts from different
research teams have put the identification of the ASD biomarker
forward, and it was believed that an ideal biomarker would be
derived through the continuous work.

Some Other Specific Meaningful Results
In the work of Heinsfeld et al. (2018), the most contributing
conclusion is the anterior-posterior disruption in the connectivity
of ASD, which has been reported to be shown in previous
task-related (Adam et al., 2004; Kana et al., 2009) and rs-fMRI
studies of ASD patients (Cherkassky et al., 2006). Similarly,
the right supramarginal gyrus, the fusiform gyrus, and the
cerebellar vermis were found to play a significant role in the
diagnosis of autism (Sherkatghanad et al., 2020), which was
another evidence about the disruption of anterior-posterior brain
connectivity in ASD. Lower correlation between the anterior and
posterior DMN was demonstrated in autistic individuals than
controls (Liu Y. et al., 2020). Brain regions related to social
communication, emotion expression, language comprehension,
and action coordination were determined, such as inferior frontal
gyrus, amygdala, angular gyrus, and hippocampus (Zhao et al.,
2018). In the work of Uddin et al. the SN was identified to
play a critical role in discriminating children with ASD from
TC and could be a hallmark of ASD (Uddin et al., 2013b) with
the explanation that regions within the SN are implicated in
multiple functions, ranging from attention to interception and
subjective awareness (Craig, 2011). Changes in caudate volume,
caudate-cortical FC, and inferior frontal gyrus FC were reported
to be highly informative in the classification of the two groups
(Zhou et al., 2014). Moreover, the social brain has been accepted
to be impaired in individuals with ASD, which was further
confirmed from the perspective of fMRI classification through
four literatures (Deshpande et al., 2013; Just et al., 2014; Chanel
et al., 2016; Bernas et al., 2018). Though most involved literatures
identified contributing brain regions or networks, some still gave
more prominence to the methods and results of classifications
and ignored the determination of informative brain regions and
networks (Kassraian-Fard et al., 2016; Dvornek et al., 2017; Ktena
et al., 2017; Kong et al., 2018; Kazeminejad and Sotero, 2019; Liu
J. et al., 2020; Niu et al., 2020; Yin et al., 2021).

FUTURE WORK DIRECTION

In this paper, we summarized 47 literatures involved in
fMRI data classification between ASD individuals and TCs.

Most researchers expected to derive the biomarkers of ASD
through classification studies and have made some progress
in deed, but the overall assessment of classification of
ASD using fMRI data thus far falls short of biomarker
standards. Despite this, several work directions may need
to be paid more attention by researchers: (1) Considering
the factors for high classification accuracies, development
of novel feature selection methods should be an important
work direction for classifications between ASD individuals
and TCs, which could facilitate machine learning methods
to determine the most discriminant features. (2) Another
pivotal work direction is to obtain advanced machine learning
methods by improving the existing methods and combining
the superiority of different methods, especially trying to
develop specific machine learning methods for the special
properties of fMRI. (3) Non-invasive rs-fMRI data classification
studies between ASD individuals and TCs will still be the
prominent work direction especially since the release of
the ABIDE dataset. More robust and replicated biomarkers
are more likely derived from big datasets. (4) Age is an
important factor in the ASD diagnosis. Age-specific research
can significantly reduce the heterogeneity of ASD dataset
and increase the classification rate. Therefore, the age-specific
research of ASD will be a valuable research direction. (5)
Because of the higher classification accuracies for task-based
fMRI data, it may be a new work direction to design some
easily operated and efficient tasks to acquire fMRI data
to form large datasets for further research. In the future,
developed feature selection and machine learning methods
combined with large rs-fMRI datasets or easily operated task-
based fMRI dataset may appear to serve as a promising
diagnostic tool for ASD.
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Background: Magnetic resonance (MR) scans are routine clinical procedures for

monitoring people with multiple sclerosis (PwMS). Patient discomfort, timely scheduling,

and financial burden motivate the need to accelerate MR scan time. We examined

the clinical application of a deep learning (DL) model in restoring the image quality of

accelerated routine clinical brain MR scans for PwMS.

Methods: We acquired fast 3D T1wBRAVO and fast 3D T2w FLAIRMRI sequences (half

the phase encodes and half the number of slices) in parallel to conventional parameters.

Using a subset of the scans, we trained a DL model to generate images from fast

scans with quality similar to the conventional scans and then applied the model to the

remaining scans. We calculated clinically relevant T1w volumetrics (normalized whole

brain, thalamic, gray matter, and white matter volume) for all scans and T2 lesion volume

in a sub-analysis. We performed paired t-tests comparing conventional, fast, and fast

with DL for these volumetrics, and fit repeated measures mixed-effects models to test

for differences in correlations between volumetrics and clinically relevant patient-reported

outcomes (PRO).

Results: We found statistically significant but small differences between conventional

and fast scans with DL for all T1w volumetrics. There was no difference in the extent to

which the key T1w volumetrics correlated with clinically relevant PROs of MS symptom

burden and neurological disability.

Conclusion: A deep learning model that improves the image quality of the accelerated

routine clinical brain MR scans has the potential to inform clinically relevant outcomes

in MS.

Keywords: multiple sclerosis, deep learning, artificial intelligence, magnetic resonance imaging, accelerated

acquisition, patient-reported outcome (PRO), brain volume, DBPN
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INTRODUCTION

Routine magnetic resonance (MR) scans are the standard of
care for monitoring disease activity and progression in people
with multiple sclerosis (PwMS) (1). Most PwMS undergo brain
MR scans yearly, with individual factors such as changes in
disease activity and disease-modifying treatment (DMT) altering
the scan frequency. Prolonged MR scan time contributes to
patient discomfort, poor image quality due to motion, delays in
scheduling, potentially high medical cost, and financial burden
for PwMS (2). Thus, accelerating the acquisition time of clinical
MR scans could benefit PwMS and generally improve access to
critical diagnostic imaging. However, diminished image quality
(e.g., contrast to noise ratio, resolution) is the main challenge
preventing the clinical application of MR scans with accelerated
acquisition time.

Artificial intelligence (AI) approaches could potentially
address the loss of MR image quality in accelerated scans. Deep
learning (DL) models such as convolutional neural networks
(CNNs) enhance MR image quality of the fast scans without
compromising relevant image information passed through each
layer (3–6). Compared to supervised learning algorithms, CNNs
show comparable aptitude and often greater adaptability in MRI
post-processing (7). Deep back-projection network (DBPN) is a
class of CNN that outperforms other methods given its ability to
self-correct errors using back-projection (8).

In this study, we evaluated the clinical application of a
DL model based on DBPN that employed noise-reducing and
sharpness-enhancing functions. Specifically, we assessed whether
the DL model improved the quality of fast clinical brain
MR images acquired with accelerated time and whether the
key volumetrics from brain MR preserved their correlations
with clinically relevant neurological outcomes to the extent
comparable to the benchmark conventional MR scans. Here,
we prioritized T1-weighted volumetrics (i.e., whole brain, gray
matter, white matter, thalami) that are known to be associated
with subsequent clinical outcomes in MS (9–18).

METHODS

Data Source
We recruited participants from a clinic-based, prospective MS
cohort study (Prospective Investigation of Multiple Sclerosis in
the Three Rivers Region, PROMOTE) based in the Pittsburgh
region (PA, USA). The Institutional Review Board of the
University of Pittsburgh approved this study. All participants
completed the informed consent process.

MRI Acquisition
One hundred and fifteen participants underwent routine clinical
brain MR studies on a GE Discovery MR750 3-Tesla scanner
between September 2018 and January 2020, some completing
multiple scans on separate days. In addition to the institutional
clinical protocol that included the standard (or conventional) 3D
T1w BRAVO (FE/PE/SE: 220 × 220 × 126, scan time 2:57), 3D
T2 FLAIR (FE/PE/SE: 256 × 224 × 240, scan time 6:40), and
other routine clinical sequences, we acquired an accelerated (or

fast) 3D T1w BRAVO (FE/PE/SE: 220 × 128 × 64, scan time
1:13) and an accelerated (or fast) 3D T2w FLAIR (FE/PE/SE:
256 × 128 × 120, scan time 2:17) during the same MR exam.
Compared to the conventional T1w BRAVO and T2w FLAIR, the
fast sequences were accelerated by a factor of 2 in both the phase
and slice directions.

Deep Learning
We developed a DL model based on DBPN (8) to enhance the
image quality for the fast sequences from clinical brain MR
scans. The DLmodel input the fast sequences and generated high
resolution images similar to that of the conventional sequences.
The output of the DL model had twice the slice number as that
of the input. To incorporate the slice information, we applied a
2.5 D model with five adjacent slices. We trained the DL model
with the first 15 randomly selected scans, with images from the
conventional sequences serving as the ground truth. An L1 loss
was applied in training to measure the difference between the
DL output and ground truth. We applied image pre-processing,
including image registration (19), bias field correction (20), and
image normalization to the training data. We implemented the
DL model in TensorFlow and trained on an NVIDIA V100 GPU
with an ADAM optimizer (21). After excluding the 15 training
scans and 7 scans acquired with the incorrect conventional
and/or fast sequences, we applied the DL model to the remaining
108 scans for evaluation.

MR Image Analysis
Figure 1 showed the overall workflow. For this study, we
prioritized T1w volumetric analysis. As quality control, we first
examined the raw T1w images to remove scan with: (1) excessive
motion artifacts that could decrease the automatic segmentation
accuracy (4 out of 108); (2) acquisitions in the wrong phase
encoding orientation (7 out of 108); and (3) missing scan (1 out
of 108). Using the FreeSurfer software version 6.0 (http://surfer.
nmr.mgh.harvard.edu/) (22), we then computed the volumes of
96 sets of T1w MR images, including the following regions: total
brain, total thalamus, total cerebral graymatter, and total cerebral
white matter as well as intracranial space. These regions were
chosen based on known correlation with clinical outcomes in
MS (9–15, 17, 18). We extracted the volumes from the automatic
segmentation file “aseg” of FreeSurfer and normalized each
volume measure by the intracranial volume in each individual.
Normalized volumes had no unit.

For exploratory analysis, we manually delineated the T2
lesions and calculated the T2 lesion volume in a subset of
30 MR scans using DSI Studio (http://dsi-studio.labsolver.org)
(23). Two initial raters (RP and MD) performed the manual
correction, and a third supervising rater (CI) performed the final
manual correction. We first loaded the T2 FLAIR images in DSI
Studio from Step T3. The lesion drawing task began with placing
multiple 3D spheres to cover each of the T2 hyperintense regions.
DSI Studio provides a 3D interactive function to place and move
spheres in the 3D space to complete this task quickly. The raters
then refined the contours of the lesions by applying an intensity
threshold. The exact value of the threshold was adjustable to

Frontiers in Neurology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 685276266

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://dsi-studio.labsolver.org
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mani et al. DL for MRI in MS

FIGURE 1 | Study workflow.

achieve the best segmentation results. Each scan required an
average of 15–30min to complete the manual correction.

Patient-Reported Outcomes
To assess the clinical relevance of the neuroimaging measures,
we used two clinically relevant patient-reported outcomes of
neurological function validated in PwMS. First, the Multiple
Sclerosis Rating Scale-Revised (MSRS-R) assessed the MS
symptom burden across eight domains: walking, using arms
and hands, vision, speech, swallowing, cognition, sensation, and
bowel and bladder control (24, 25). Each domain included a
sub-score ranging from 0 (no symptoms) to 4 (severe disability)
for a maximum total score of 32. Second, Patient Determined
Disease Steps (PDDS) assessed the gait impairment, ranging
from 0 (normal gait) to 8 (bedridden). We categorized patients
as having severe disabilities based on consistent requirements

for assistive devices for distances longer than 25 feet (PDDS of
4). This threshold approximated the clinician-rated Extended
Disability Status Scale (EDSS) score of 6 (26).

Statistical Analysis
All analyses were completed using R version 4.0.3 (27). For the
paired t-tests, a two-sided P < 0.0125 was indicative of statistical
significance as we used the Bonferroni Correction method to
obtain this significance level (0.05/4 = 0.0125), given the four
different T1w volumetrics being tested. For descriptive variables,
we expressed continuous data as mean and standard deviation
(SD) or medians and interquartile ranges, and categorical data as
frequencies and percentages.

We first performed paired t-tests to compare the three types of
MR acquisition (conventional, fast, fast with DL) for the four T1w
volume measures: normalized brain volume (NBV), normalized
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thalamic volume (NThV), normalized gray matter volume
(NGMV), and normalized white matter volume (NWMV).

To measure the association between the four T1w volumetrics
(NBV, NThV, NGMV, NWMV) and the two patient-reported
clinical outcomes (MSRS-R, PDDS), we developed a repeated
measures multivariate linear mixed-effects model for T1w
volumetrics that included the type of MR acquisition conducted
as the fixed between-subject factor, a random subject effect and
clinical outcomes (see Supplementary Material for formula).
We included interaction terms between the clinical outcomes
tested and the type of MR acquisition, with conventional MR
acquisition as the reference point or benchmark. The interaction
terms quantified (1) differences in associations with clinical
outcomes between fast scans and conventional scans, and (2)
differences in associations with clinical outcomes between fast
scans with DL and conventional scans. To account for the
contribution of age, sex, race, ethnicity, disease duration in
years, clinical type (e.g., relapsing), and DMT (i.e., treatment)
status on the clinical outcomes, we adjusted these covariates as
fixed effects in the model. We performed exploratory analysis
examining themultivariate association between T2 lesion volume
and clinical outcomes.

Data and Code Availability
Code for analysis and figure generation is available at:
https://github.com/ashikamani/MS-MRI-. Anonymous data that
support the findings of this study are available upon reasonable
request to the corresponding author.

RESULTS

Participant Demographics
This study includes 87 unique PwMS (see Table 1 for
demographics). After excluding training scans and evaluation
scans with quality control failure, there were a total of 96 MR

TABLE 1 | Characteristics of the study participants.

Characteristics Participants (N = 87)b

Age (years), Mean ± Standard deviation 46.8 ± 13.3

Men, n (%) 26 (29.8)

European-descent, n (%) 73 (83.9)

Non-hispanic, n (%) 84 (96.6)

Non-hispanic European descent, n (%) 70 (80.5)

PDDSa, Mean ± SD 1.7 ± 1.8

MSRS-Ra, median (interquartile range) 4 (2–9)

RMSa, n (%) 75 (86.2)

Disease duration (years), Mean ± SD 14.9 ± 19.3

No treatment, n (%) 24 (27.6)

High-efficacy treatment, n (%) 5 (5.7)

aPDDS, patient-determined disease steps; MSRS-R, multiple sclerosis rating scale-

revised; RMS: relapsing clinical type.
bBecause nine participants had two MR scans on separate days, the total number of

participants was 87, whereas the total number of MR scans (occurring on separate days)

for evaluation was 96.

scans for evaluation. Nine patients had two MR scans occurring
on separate days. The mean age of the participants was 47 years.
Most participants were women and of Non-Hispanic European
descent (70.2 and 80.5%, respectively). Most participants (86.2%)
had the relapsing type of MS with mostly mild physical disability
and gait impairment (mean PDDS of 1.7) and mild MS symptom
burden (median MSRS-R of 4). The mean disease duration (i.e.,
the interval between the date of the participant’s first neurological
symptoms and the date of MR scan) was 15 years. At the time of
the MR, most participants (72.4%) received DMT with 5.7% on
high-efficacy treatment.

Comparison of MR Acquisition Methods
for T1w MRI Volumes
We compared the T1w volumetrics across the three MR
acquisition methods: conventional scan, fast scan, and fast scan
with DL (Figures 2, 3). For the T1w volumes, paired t-tests
using the conventional scan as the benchmark indicated a true
difference in mean volumes among these methods (Table 2).
Using a threshold for multiple hypotheses testing, paired t-tests
comparing fast scans against conventional scans were significant
for NBV, NThV, NGMV, and NWMV (p = 0.0006, p = 0.01, p
< 0.0001, and p < 0.0001, respectively). Likewise, paired t-tests
comparing fast scans with DL against conventional scans were
significant for NBV, NThV, NGMV, and NWMV (p < 0.0001, p
= 0.002, p = <0.0001, and p < 0.0001, respectively). Compared

FIGURE 2 | Representative T1w images. Central slices in a similar position for

the acquisitions using the three methods: Conventional T1w BRAVO (2:57min

total acquisition time, 220 × 220 × 126 matrix size), fast T1w BRAVO

(1:13min total acquisition time, 220 × 128 × 64 matrix size), and fast T1w

BRAVO with DL (same acquisition time and matrix size as the fast T1w

BRAVO). BRAVO is the T1-weighted sequence for brain volume imaging on

GE MR scanner.
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to the conventional scans, the mean absolute difference (or
percentage difference) for NBV, NThV, NGMV, and NWMV for
fast scans with DL were 0.013 (−1.789%), 0.0020 (2.265%), 0.018
(−4.273%), and 0.0043 (1.478%), respectively. Finally, paired t-
tests comparing fast scans with DL and fast scans were also
significant for NBV, NThV, NGMV, and NWMV (p = 0.0004, p
< 0.0001, p < 0.0001, and p < 0.0001, respectively).

While the T1w volumes on fast scan and fast scan with
DL both had significant differences from conventional scans,
the relative difference (or percentage difference) decreased

FIGURE 3 | Representative FreeSurfer segmentation images. Slices in a

similar position for the FreeSurfer segmentation derived from the three different

methods to generate the images.

from −9.3% (fast vs. conventional) to −4.3% (fast with DL
vs. conventional) for normalized gray matter volume and
from 10.9% (fast vs. conventional) to 1.5% (fast with DL
vs. conventional) for normalized white matter volume. The
relative difference marginally increased from −0.9% (fast vs.
conventional) to −1.8% (fast with DL vs. conventional) for
normalized brain volume and from−1.6% (fast vs. conventional)
to 2.3% (fast with DL vs. conventional) for normalized
thalamic volume.

MRI-Clinical Correlations Comparisons
We next assessed the clinical applicability of the T1w volume
metrics as acquired by the different methods again using
the conventional scans as benchmarks. First, we examined
the correlation between T1w volumetrics and physical and
gait impairment based on the clinically relevant patient-
reported outcome of PDDS (Table 3). The Wald chi-square
test for comparing the coefficients between fast scans and the
conventional scans were statistically significant only for NBV (p
= 0.002) but not for NThV, NGMV, and NWMV, indicating a
difference in the correlation between NBV (but not the other
T1w volumetrics) and PDDS when comparing the fast scans to
the conventional scans. Importantly, the coefficients comparing
fast scans with DL and conventional scans were not statistically
significant for NBV, NThV, NGMV, and NWMV, indicating
no difference in the correlations between all T1w volumetrics
and PDDS when comparing the fast scans with DL against the
benchmark conventional scans.

Second, we examined the correlation between T1w
volumetrics and the MS symptom burden based on the clinically
relevant patient-reported outcome of MSRS-R (Table 4). There
was no significant difference in the correlation between all T1w
volumetrics (NBV, NThV, NGMV, and NWMV) and MSRS-R
when comparing fast scans to the benchmark conventional
scans. Likewise, we did not find statistical significance for the
coefficients comparing fast scans with DL and the conventional
scans for all T1w volumetrics, indicating no difference in the

TABLE 2 | Paired differences for T1w volume measures across methods.

Mean of the

differences ± SD

P-values Mean of the

differences ±SD

P-values Mean of the

Differences ±SD

P-values

Mean percentage

difference

Mean percentage

difference

Mean percentage

difference

Fast vs. Conventional Fast vs.

Conventional

Fast with DLb vs.

Conventional

Fast with DL vs.

Conventional

Fast with DL vs. Fast Fast with DL vs.

Fast

NBVa
−0.007 ± 0.021

−0.905%

0.0006* −0.013 ± 0.017

−1.789%

<0.0001* −0.006 ± 0.015

−0.892%

0.0004*

NThVa
−0.0002 ± 0.0006

−1.641%

0.01* 0.0002 ± 0.0006

2.265%

0.002* 0.0004 ± 0.0005

3.971%

<0.0001*

NGMVa
−0.039 ± 0.012

−9.345%

<0.0001* −0.018 ± 0.011

−4.273%

<0.0001* 0.022 ± 0.011

5.595%

<0.0001*

NWMVa 0.031 ± 0.018

10.874%

<0.0001* 0.004 ± 0.010

1.478%

<0.0001* −0.026 ± 0.018

−8.475%

<0.0001*

aNBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized gray matter volume; NWMV, normalized white matter volume. Normalized volumes have no unit.
bDL, deep learning approach applied to the fast scan.

*Indicated statistical significance meeting the multiple hypotheses testing threshold.
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TABLE 3 | Linear mixed-effects model with conventional MRI scans as baseline

and interaction with gait and physical impairment in multiple sclerosis as

measured by PDDS.

Interaction between

scan type and

patient-reported

outcomesb

Coefficient (SE) P-values for

interaction term

coefficients

NBVa Fast × PDDS 0.0031 (0.001) 0.002*

FwDL × PDDS 0.0016 (0.001) 0.096

NThVa Fast × PDDS 0.00007 (0.00003) 0.024

FwDL × PDDS 0.000008 (0.00003) 0.790

NGMVa Fast × PDDS 0.0010 (0.0006) 0.110

FwDL × PDDS 0.0013 (0.0006) 0.039

NWMVa Fast × PDDS 0.0020 (0.0008) 0.019

FwDL × PDDS 0.0006 (0.0008) 0.460

aNBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized

gray matter volume; NWMV, normalized white matter volume. Normalized volumes have

no unit.
bPDDS, Patient-determined disease steps; FwDL, Fast scan with deep learning.

*Indicated statistical significance meeting the multiple hypotheses testing threshold.

TABLE 4 | Linear mixed-effects model with conventional MRI scans as baseline

and interaction with multiple sclerosis symptom burden as measured by MSRS-R.

Interaction between

scan type and

patient-reported

outcomesb

Coefficient (SE) P-values for

interaction term

coefficients

NBVa Fast × MSRS-R 0.0007 (0.0003) 0.022

FwDL × MSRS-R 0.0003 (0.0003) 0.297

NThVa Fast × MSRS-R 0.00002 (0.00001) 0.025

FwDL × MSRS-R 0.00002 (0.00001) 0.069

NGMVa Fast × MSRS-R 0.0003 (0.0002) 0.102

FwDL × MSRS-R 0.0002 (0.0002) 0.302

NWMVa Fast × MSRS-R 0.0004 (0.0003) 0.181

FwDL x MSRS-R 0.0001 (0.0003) 0.618

aNBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized

gray matter volume; NWMV, normalized white matter volume. Normalized volumes have

no unit.
bMSRS-R, multiple sclerosis rating scale-revised; FwDL, fast scan with deep learning.

*Indicated statistical significance meeting the multiple hypotheses testing threshold.

correlations between all T1w volumetrics and MSRS-R when
comparing fast scans with DL against the benchmark scans.

Exploratory Analyses
In a subset of the 30 scans in which we calculated T2 lesion
volumes, there was no difference in pairwise comparisons across
the three methods (Figure 4, Supplementary Table 1). Further,
there was no difference in the correlation between the T2 lesion
volume and either neurological outcome (MSRS-R or PDDS)
when comparing fast scans with DL against the benchmark
conventional scans (Supplementary Table 2).

FIGURE 4 | Representative T2FLAIR images. Slices in a similar position for the

acquisitions using three different methods: Conventional T2 FLAIR (6:40min

total acquisition time, 256 × 224 × 240 matrix size), fast T2 FLAIR (1:13min

total acquisition time, 256 × 128 × 120 matrix size), and fast T2 FLAIR with

DL (same acquisition time and matrix size as the fast T2 FLAIR). FLAIR is the

T2-weighted Fluid-Attenuated Inversion Recovery sequence.

DISCUSSION

We reported a deep learning model based on DBPN that
improved the image quality of an accelerated T1w sequence
acquired during routine clinical brain MR scans to the extent
of preserving the correlation between the key T1w volumetrics
and clinically relevant outcomes in PwMS. The T1w volumetrics
(normalized brain volume, normalized thalamic volume,
normalized gray matter volume, and normalized white matter
volume) are all known to inform MS neurological outcomes
(9–18) and are indeed inversely correlated with patient-reported
neurological outcomes in this study (Supplementary Table 3).
Here, the T1w (and T2w-FLAIR) fast images were acquired
nearly 3 (and 6 times) faster than the conventional acquisitions
(respectively). To our knowledge, this is the first report of DL
application to improve the image quality of accelerated scans
in clinical brain MR for MS and it has the potential for clinical
applications in the routine care of PwMS.

Accelerating clinical MR acquisition time has direct clinical
implications, particularly for conditions such as MS where
routine disease monitoring using MR scans is the standard
of care. Methods such as compressed sensing and parallel
imaging aim to reconstruct higher quality images from a smaller
amount of raw MR imaging data (28–30). However, the concern
for clinical feasibility stems from the poor image quality and
long reconstruction times (31). Deep learning methods began
to address these issues by incorporating different types of
CNN structures (3–6). These methods follow two similar steps:
reducing scan acquisition time by under-sampling k-space in
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raw MR data and then reconstructing a higher-quality image
using novel DL models. Contrasting feed-forward approaches,
DBPN takes advantage of error feedback to self-correct at
multiple layers of the neural network. Further, with its multiple
stages of up- and down-sampling layers, it combines both local
and global information into learning, and preserves the small
details leading to more robust response compared to residual
block-based models such as Enhanced Deep Residual Networks
(EDSR), which focuses only on the local information (32).
DBPN is a useful tool for improving image quality through
noise elimination and sharpness-enhancement (8). Given it is
not over-parameterized, a relatively modest sample size would
be sufficient for training the model to generate reasonable
performance without overfitting. Finally, it results in faster
inference time during deployment without similar performance.
To our knowledge, this specific application of DBPN to improve
the quality of accelerated clinical brain MR scans for PwMS
is novel.

In terms of the study design, we aimed to balance the need
for sufficiently powered sample size for the held-out evaluations
and the need to have sufficient training data to generate
reasonable performance without overfitting. By tuning the model
parameters (filter size, the number of filters, the number of the
project units, etc.), it was feasible to build a model that performed
well on a small training set. Empirically, we found that 15 cases
for the current model setup (which were randomly selected)
resulted in good performance in image improvement. The loss
function metric, a measure of the difference between the model
output and the ground truth image, decreased monotonically
as validation set images were presented to the deep learning
algorithm. This suggests that the model was not overfitted
and could be generalizable. When visually assessing the image
sharpness, particularly in the cerebral cortex, the performance
of the validation set resembles the training set, again confirming
that the model was not overfitted.

Although the T1w volumes computed from the fast scan
and fast scan with DL both had significant differences when
compared to the benchmark conventional scans (Table 2), the
fast scan with DL reduced the mean absolute difference from
the benchmark scans for normalized gray matter volume (from
−9.345 to −4.273%) and normalized white matter volume
(from 10.874 to 1.478%), while only marginally increased
the mean absolute difference from the benchmark scans for
normalized brain volume (from −0.905 to −1.789%) and
normalized thalamic volume (from −1.641 to 2.265%) when
compared to the fast scans. The current study cannot conclude
whether the deep learning approach introduces brain region-
specific improvement.

Despite the small T1w volumetric differences from the
benchmark conventional approach, there was no significant
difference in the correlations between all four T1w volumetrics
and the two clinically relevant patient-reported outcomes
of neurological disability and symptom burden (PDDS and
MSRS-R) in the fast scans with DL against the benchmark
conventional approach (Tables 3, 4). These findings indicate
that the calculated volumetric differences between fast scans
with DL and conventional approaches were not large enough

to have clinical impact. Specifically, the correlation between the
T1w MRI findings and real-world outcomes of gait and physical
impairment (PDDS) as well as overall symptom burden (MSRS-
R) were preserved in the fast scans with DL.

The difference in the parcellations derived from the fast and
conventional images could explain the significant difference in
the correlation between the normalized brain volume and PDDS
(Table 3) as well as the borderline difference in the correlation
between the normalized brain volume and MSRS-R (Table 4),
though the latter association did not reach significance after
correction for multiple testing. When calculating the normalized
whole brain volume in the fast scans, the segmentation software
likely performed less well when compared to the other T1w
volumetrics. The coarse resolution of the fast scans might have
made the delimitation of the whole brain edges more challenging.

Obtaining nearly equivalent image quality using shorter
acquisition time improves patient comfort and satisfaction while
reducing artifact introduced by involuntary motion that often
manifests in the latter portion of a prolonged MR study. The
increased MR study throughput would also enable efficient
utilization of the MR resources, reducing unnecessary wait time
and improving access to critical imaging for diagnostic and
monitoring purposes, not only for PwMS but also for other
patient populations.

There were limitations to our study. First, the study had
a modest sample size, limiting the power of some of the
statistical analyses (e.g., T2 lesion volume, see further discussion
Supplementary Material). Second, the current study performed
volumetric analysis on only the T1w images, while inclusion
of the T2w-FLAIR contrasts in the processing pipeline might
improve the volumetric estimations.

In summary, we demonstrated the clinical application of a
deep learning model to improve the quality of accelerated T1w
images in routine clinical brain MR scans for MS. Beyond further
validation of this application in longitudinal studies (e.g., baseline
T1w volumetrics informing long-term clinical outcomes), we
anticipate future studies that test the ability of a DL model
to replace gadolinium contrast for MRI with “virtual” contrast
(33, 34).
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Introduction/Purpose: Systemic lupus erythematosus (SLE) is a chronic auto-immune
disease with a broad spectrum of clinical presentations, including heterogeneous
neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found
in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in
distinguishing between NPSLE patients and patients in which the NP symptoms are
not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive
learning algorithms proved to be useful in classification tasks in rare diseases with
limited number of datasets. Our aim was to apply self-supervised contrastive learning
on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to
distinguish between NPSLE and non-NPSLE patients.

Subjects and Methods: We used 3T MRI T1-weighted images of 163 patients. The
training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random
geometric transformations between iterations to augment our data sets. The ML pipeline
consisted of convolutional base encoder and linear projector. To test the classification
task, the projector was removed and one linear layer was measured. Validation of the
method consisted of 6 repeated random sub-samplings, each using a random selection
of a small group of patients of both subtypes.

Results: In the 6 trials, between 79% and 83% of the patients were correctly classified
as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the
common features found in both groups, Gradient-weighted Class Activation Maps
(Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common
features identified for the NPSLE cohort, while no such communality was found for the
non-NPSLE group.

Discussion/Conclusion: The self-supervised contrastive learning model was effective
in capturing common brain MRI features from a limited but well-defined cohort
of SLE patients with NP symptoms. The interpretation of the Grad-CAM results
is not straightforward, but indicates involvement of the lateral and third ventricles,
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periventricular white matter and basal cisterns. We believe that the common features
found in the NPSLE population in this study indicate a combination of tissue loss,
local atrophy and to some extent that of periventricular white matter lesions, which are
commonly found in NPSLE patients and appear hypointense on T1-weighted images.

Keywords: Systemic Lupus Erythematosus, magnetic resonance imaging, cohort studies, unsupervised machine
learning, neuroimaging

INTRODUCTION

Systemic lupus erythematosus (SLE) is a female-predominant
auto-immune disease with a broad spectrum of clinical
presentations and multi-organ involvement. SLE is characterized
by the production and deposition of several autoantibodies,
of which more than 20 are associated with damage to the
nervous system and 11 are brain-specific (Hanly et al., 2019). The
involvement of the central nervous system (CNS) in SLE leads
to a series of non-specific neuropsychiatric (NP) manifestations
in 12–95% of SLE patients (Ainiala et al., 2001). These NP
symptoms widely range in terms of severity and prognostic
implications (Schwartz et al., 2019). NP events in SLE can
be directly associated with the disease (NPSLE) or can be
explained by another etiology (non-NPSLE). NP symptoms are
associated with an increased mortality and reduced quality
of life within the SLE population (Ramage et al., 2011). The
diagnosis of NPSLE is also difficult due to the heterogeneous
nature of NP syndromes. According to the American College of
Rheumatology (ACR), 19 different syndromes are described in
relation to NPSLE patients, and stem from involvement of the
CNS: aseptic meningitis, cerebrovascular disease, demyelinating
syndrome, headache (including migraine and benign intracranial
hypertension), movement disorder (chorea), myelopathy, seizure
disorders, acute confusional state, anxiety disorder, cognitive
dysfunction, mood disorder and psychosis (Hanly, 2014). The
large variation in the attribution of the NP symptoms across
studies and institutions highlights the difficulty in unequivocally
diagnose NPSLE. In clinical practice, it is important to correctly
classify NP events, since the therapeutic approach is defined
based on this classification. A study performed in our center
reported that about 15% of NP events attributed to SLE
(NPSLE) during the first patient evaluation were reclassified after
reassessment as non-NPSLE (Magro-Checa et al., 2017). This
discrepancy highlights the pressing need for biomarkers that
will contribute to more reliably distinguish between NPSLE and
non-NPSLE early in the diagnostic process.

Another contributor to the heterogeneity of NPSLE is
the multitude of pathomechanisms that underlie brain tissue
damage. Two different underlying mechanisms are thought
to play a role in the pathophysiology of NPSLE. One is the
inflammatory mechanism, where the blood-brain barrier (BBB)
or the blood-cerebrospinal fluid (BCSF) barrier is compromised
due to presence of pro-inflammatory factors (Gelb et al., 2018).
Subsequently, auto-antibodies can enter the brain and trigger
an inflammatory process that results in focal or diffuse tissue
damage. The second proposed mechanism is the thrombotic or
ischemic mechanism, where vascular injury and occlusion are

present (Magro-Checa et al., 2016). These two pathomechanisms
act independently of one another and can be both present
in the same patient. Due to the lack of a diagnostic gold
standard, the best strategy so far for diagnosing NPSLE remains a
multidisciplinary expert consensus after standardized evaluation
of complaints and a complete battery of tests, including brain
magnetic resonance imaging (MRI) (Magro-Checa et al., 2017).
Despite conventional brain MRI being the method of choice
for clinical evaluation of SLE patients experiencing NP events,
morphological changes and brain lesions observed in these
patients do not clearly correlate with the clinical symptoms and
disease outcome, underscoring the clinical-radiological paradox
encountered with many NPSLE patients, defined by the presence
of lesions in the absence of symptoms of NPSLE or vice versa
(Magro-Checa et al., 2018).

Currently, MRI features can only contribute in a limited
way in the diagnostic process, mostly in the way of exclusion.
Several studies have shown that patients with SLE have more
white matter hyperintensities (WMH) and more atrophy and
infarcts compared to controls (Ainiala et al., 2005; Appenzeller
et al., 2006, 2007; Kozora and Filley, 2011; Luyendijk et al.,
2011). These findings per se, albeit indicative of robust
presence of structural abnormalities in NPSLE, are not useful
for the diagnostic process, and basic metrics such as global
atrophy and lesion count and lesion load do not lead to
a specific diagnosis. It is therefore imperative to further
explore neuroimaging biomarkers in the hope of finding
markers that can help clinicians differentiate between NPSLE
and non-NPSLE patients, and further down the line, also
help in the stratification of NPSLE patients based on their
clinical phenotype.

Deep learning has been shown to be useful in diagnostic
tasks related to clinical neuroimaging data both in diseases with
overt brain damage such as stroke, as well as in diseases in
which brain alterations are not directly detectable via standard
radiological observation (Zhang L. et al., 2020). Deep learning
models can extract significant features that are relevant to clinical
diagnosis and can distinguish between patient populations even
when the brain alterations are not visibly overt (Islam and Zhang,
2018). Classification tasks, however, require a large number of
data sets, as well as trained clinicians to generate labels to
aid the categorization process. Dementia (Basaia et al., 2019;
Jo et al., 2019; Oh et al., 2019; Stamate et al., 2020) and
psychiatric disorders (Lin et al., 2018; Durstewitz et al., 2019)
have been natural targets for using deep neural networks, as
imaging data for these diseases are widely available. NPSLE,
on the other hand, is a sub-category of SLE, which in itself
is categorized as an orphan/rare disease (prevalence of 1–5 in

Frontiers in Neuroscience | www.frontiersin.org 2 February 2022 | Volume 16 | Article 695888275

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-695888 February 14, 2022 Time: 13:32 # 3

Inglese et al. MRI-Based Classification of NPSLE Patients

10,000, source1) and thus the amount of data available is limited.
This makes a supervised ML approach impractical for studying
brain abnormalities in NPSLE in a single-center study.

Recently, self-supervised learning approaches, which train the
model on unlabeled data by providing self-generated labels from
the data themselves, have become popular in image classification.
In non-medical applications, self-supervised learning approaches
were applied in the prediction of the rotation angles of objects
(Gidaris et al., 2018), colorization of gray-scale images (Zhang
et al., 2016) and solving randomly generated Jigsaw puzzles
(Noroozi and Favaro, 2016). Instance-level identity preservation
with contrastive learning has proven effective in learning rich
representations for classification (He et al., 2019; Tian et al.,
2019; Chen et al., 2020). In this context, self-supervised learning
approaches are more suitable for dealing with limited data
sets, such as the one presented in this work. Self-supervised
learning in biomedical imaging has been implemented in several
instances, among which screening of 2-dimensional chest x-ray
images (Zhang J. et al., 2020), in the evaluation of cardiac
time-series data (Kiyasseh et al., 2020), in tissue segmentation
of brain lesions (Gonçalves et al., 2014), in segmentation of
renal dynamic contrast-enhanced MRI (Huang et al., 2019),
in robust and accelerated reconstruction of quantitative and
B0-inhomogeneity-corrected R2

∗ maps from multi-gradient
recalled echo MRI data (Torop et al., 2020) and in quality
enhancement of compressed sensing MRI of the vessel wall
(Eun Di Jang et al., 2020).

In this study, we hypothesized that a self-supervised learning
approach would be effective for the classification tasks in
our limited patient population, in particular in the distinction
between two important diagnostically different SLE patient
groups: NPSLE and non-NPSLE patients. To test this hypothesis,
we applied a self-supervised method to 3D structural MRI data
with the aim of distinguishing and classifying such data for
NPSLE and non-NPSLE patients. To provide a benchmark for
the ML algorithm presented here, we performed two secondary
analyses on the same data set: a standard tissue volumetric
analysis of the two patient populations, and a classification of the
data sets based on one-class support vector machine (SVM).

MATERIALS AND METHODS

Patient Population
Leiden University Medical Center (LUMC) is the national referral
center for SLE patients with NP complaints in the Netherlands.
SLE Patients are referred to the outpatient clinic if they present
with NP manifestations. In this retrospective study we initially
included 216 patients with SLE recorded between May 2007
and April 2015. Of these, 28 patients were excluded because of
undefined diagnosis, 3 patients were excluded because of motion
artifacts in the MRI scan, 20 patients were excluded because of
brain infarcts over 1.5 cm and 2 patients were excluded due to
the presence of other diseases (one for a brain tumor and one for
a large arachnoid cyst). This resulted in a total of 163 patients

1www.orpha.net

included in this study. The medical ethics committee of Leiden-
The Hague-Delft approved of the study and all included patients
signed an informed consent form.

All patients were admitted to the clinic for a full one-
day visit and underwent an identical standardized assessment
that included a brain MRI scan (Zirkzee et al., 2012) and
a combination of multidisciplinary medical assessments and
extensive complementary tests, necessary for deciding whether
the NP-events are attributed to SLE (Magro-Checa et al., 2016).
Attribution of NP symptoms to SLE was established during a
multidisciplinary consensus meeting. This diagnostic process is
described in detail previously (Zirkzee et al., 2012). NP events
were classified according to the 1999 ACR nomenclature for
NPSLE (ACR AD HOC Committee on Neuropsychiatric Lupus
Nomenclature, 1999).

During an intake interview, information about gender, age,
and SLE disease duration was provided by the patients and
verified by their medical records. During the evaluation, SLE
activity and damage indexes were scored for each patient: the
SLE disease activity was defined using the Systemic Lupus
Erythematosus Disease Activity Index 2000 (SLEDAI-2K)
(Gladman et al., 2002); SLE irreversible damage was determined
through the Systemic Lupus International Collaborating
Clinics/American College of Rheumatology damage index (SDI)
(Gladman et al., 2000).

Magnetic Resonance Imaging Protocol
All patients were scanned, according to a standardized scanning
protocol, on a Philips Achieva 3T MRI scanner (Philips
Healthcare, Best, Netherlands) with a body transmit RF coils
and an 8-Channel head receive coil array. The sequence used
for this project was a 3D T1-weighted gradient echo scan (voxel
size = 1.17× 1.17× 1.2mm3; TR/TE = 9.8/4.6 ms).

Magnetic Resonance Imaging
Preprocessing
All the T1-weighted images were registered to a standard brain
template, the Montreal Neurological Institute standard template
(MNI152), using FNIRT (FMRIB’s non-linear image registration
tool) (Woolrich et al., 2009; Jenkinson et al., 2012), using affine
registration with 12 degrees of freedom.

Machine Learning Pipeline Architecture
We followed the self-supervised framework introduced by Chen
et al. (2020), where an encoder network fθ was used to project
the image into a feature space, followed by two-layer multi-
perceptron (MLP) pπ projector that projected the features into
latent vector z. In our work we modified this approach to
address the fact that 3D MRI data required more classification
parameters than 2D natural images. Therefore, we designed the
encoder network fθ using three convolutional layers with batch
normalization and a max pooling layer. To test the representation
feature, we changed the projector layer into a linear layer which
had the same output size as the number of classes, which in our
case equals 2 – NPSLE and non-NPSLE. Subsequently, we fine-
tuned the linear layer with a training set. Finally, we tested the
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FIGURE 1 | Architecture of ML pipeline: encoder, projector, and linear module. In the training phase, an encoder and projector were used to project the images into
representation space with a latent vector z. In the fine tuning and test phase, the projector was changed with a linear module and predict the class.

accuracy of the trained encoder and linear layer. Figure 1 shows
the architecture described above.

Preprocessing
In 2D natural images, Chen et al. (2020) used stochastic
data augmentation t, randomly selected from the family of
augmentations T, including random cropping, random color
distortion, and random flip. In our 3D MRI data, we used
stochastic data augmentation by performing random selection
from the set of augmentations we applied to our data. These
included: random cropping, random flipping along the z axis and
random in-plane rotation. The random crop was applied up to
15 voxels along the three axes. For the random flip, only left-right
flips were applied based on the foot-head axis (coronal plane). For
rotation, random rotation of angles up to 45 degrees was applied
in the left-right, anterior-posterior and foot-head directions. To
test the robustness of our method with respect to different data
augmentation strategies, we tried three different augmentation
settings: one only with crop, one with crop, flip and rotation. The
geometric transformations are depicted in Figure 2.

Contrastive Loss
The contrastive loss function Lcon is defined as follows,

Lcon, θ,π

(
x,
{
xpos

}
,
{
xneg

})

: = − log

∑
{zpos} exp(

sim(z, {zpos})
τ

)∑
{zpos} (

sim(z, {zpos})
τ

)exp +
∑
{zneg } exp(

sim(z, {zneg})
τ

)

where z,
{
zpos

}
, and

{
zneg

}
are corresponding 128-dimensional

representation vectors (z) of x obtained by the encoder and
projector z = pπ(fθ (x)). The expression sim (u, v) = uTv

||u||||v||
denotes cosine similarity between two vectors and τ is a
temperature parameter (Chen et al., 2020).

We trained the encoder and projector with the contrastive loss
function, NT-xent which maximizes the similarity between each
transformed sample.

Patient Selection for Validation of the ML Pipeline
To determine the accuracy of our study, six trials were performed.
In each trial, the training set consisted of 68 non-NPSLE and 34
NPSLE patients randomly chosen from within the total patient
population (163 subjects). In order to have an equal number of
NPSLE and non-NPSLE patients for the training procedure, we
used the images of NPSLE twice in every epoch. Therefore, a total
of 136 images were used to train the model. In each trial, the
test set consisted of 9 non-NPSLE patients and 9 NPSLE patients
randomly chosen within the total patient’s population (163
subjects) excluding the training set. The overall demographic
and clinical characteristics of the patient population included in
this study is shown in Table 1A. The demographic and clinical
characteristics of the patients selected in each trial are shown in
Tables 1B,C. Detailed age data for the training and test sets in all
six trials are given in the Supplementary Tables 1A,B.

Training Details
We used three convolutional layers as the base encoder
network and 2-layer multi-layer perceptron with 128 embedding
dimensions as the projection head. All models were trained
by minimizing the final contrastive loss with a temperature of
τ = 0.5. For the rest, we followed similar optimization steps as in
SimCLR (Chen et al., 2020). We trained with 1000 epochs under
the stochastic gradient descent (SGD) base Layer-wise Adaptive
Rate Scaling (LARS) optimizer (You et al., 2017), a cosine
annealing learning rate and a gradual warmup scheduler (Chen
et al., 2020). We used a weight decay of 1e-6 and momentum
of 0.9. We used linear warm-up for the first 10 epochs until a
learning rate of 1.0 was achieved and decay with cosine decay
schedule. We used a batch size of 16. Furthermore, we used
global batch normalization, which shared the parameters over
the multiple GPUs. We trained the encoder with contrastive
loss. Then, we fine-tuned the encoder along a linear layer to
optimize the cross-entropy loss with learning rate 0.001 during
35 epochs. Figure 3 shows the loss curves across the 1,000
training epochs for the three data augmentation strategies. Such
intermediate observations are useful for the evaluation of the
training process, which in this case appears to be well-behaved
for all three strategies.
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FIGURE 2 | 3D data transformations used for data augmentation. Three types of geometrical transformations were applied to the 3D MRI data augment the data
set: cropping of the image, left-right flips, and in-plane rotations.

Gradient Class Activation Mapping
There are several methods for interpreting predictions in deep
learning (Selvaraju et al., 2016; Doshi-Velez and Kim, 2017; Fong
and Vedaldi, 2017; Kim et al., 2017; Shrikumar et al., 2017;
Covert et al., 2020). We chose to use gradient class activation
mapping (grad-CAM) (Selvaraju et al., 2016). Grad-CAM uses
gradient information flowing into the last convolutional layer
of the model to assign importance values to each parameter
for the prediction of the model. We extended the grad-CAM
to deal with 3D convolutional neural networks. Since we are
interested in a classification for a specific disease, and images
are all aligned to the same space (MNI 152), it was possible
to average the grad-CAM maps of test samples to obtain a
qualitative measure of the brain regions where significant features
were found after averaging across subjects in each trial. For
this purpose, for each trial, the grad-cam maps of the samples
which were correctly classified in the same class were averaged.
Thresholded averaged grad-CAM maps were then overlaid on the
MNI template for display.

Secondary Analyses
We included two secondary analyses to serve as benchmarks to
the ML analysis: a volumetric analysis of tissue volumes obtained
from segmentation of the T1-weighted images, and a one-class
supporting vector machine (SVM) analysis.

Volumetric Analysis
3D T1-weighted images were segmented using the CAT12
toolbox from the statistical parametric mapping software to
determine total grey matter (GM), white matter (WM), and
cerebral-spinal fluid (CSF) volumes (Inglese et al., 2021). Total
intracranial volume was calculated as the sum of gray matter,
white matter, and cerebral-spinal fluid volumes. Tissue fractions
were obtained by normalizing each tissue volume to the
total intracranial volume. Two analyses were performed: (a) a
comparison of tissue fractions between the 9 NPSLE and the 9
non-NPSLE subjects included in each trial in the ML analysis,
for a total of 6 such comparisons; and (b) comparison of tissue
fractions across the entire population of NPSLE (n = 43) and
non-NPSLE (n = 120) included in this study.

TABLE 1A | Patient population characteristics for the entire study.

NP-SLE patients
(n = 43)

non-NPSLE
patients (n = 120)

Female, n (%) 37 (86%) 110 (92%)

Age, years 40 ± 13 42 ± 13

NPSLE phenotypes

Inflammatory 30 (70%) –

Ischemic 13 (30%) –

Hypertension 16 (37%) 35 (30%)

Current smoking 12 (28%) 34 (28%)

BMI 25 ± 6 25 ± 4

Diabetes 3 (7%) 6 (5%)

Duration of SLE,
years

6 ± 8 8 ± 8

SLEDAI-2K 8 ± 5 4 ± 4

SDI 1.5 ± 1.2 0.9 ± 1.1

Sex, age and SLE clinical variables are described for the population included
in the study. SLEDAI = Systemic Lupus Erythematosus Disease Activity Index
2000. SDI = Systemic Lupus International Collaborating Clinics/American College
of Rheumatology Damage Index.

One-Class Support Vector Machine
Analysis
For the one-class SVM analysis we used the pipeline provided
by the scikit-learn 0.24.2 toolkit2. Given the significantly larger
size of the non-NPSLE group, we chose it to be class on which
the boundaries are defined, and the NPSLE group are tested as
belonging to the class or outliers. In a consistent manner with
the ML analysis, 68 T1-weighted images of non-NPSLE were
initially chosen for the classifier to define the class boundaries.
Subsequently, randomly chosen 9 NPSLE and 9 non-NPSLE
data sets were tested against the classifier. This process was
repeated 10 times.

Statistics
For evaluation of the performance of the algorithm at each trial,
we used classification accuracy, precision and recall as quantitative
measures. An image is considered correctly classified when the

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.
html

Frontiers in Neuroscience | www.frontiersin.org 5 February 2022 | Volume 16 | Article 695888278

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-695888 February 14, 2022 Time: 13:32 # 6

Inglese et al. MRI-Based Classification of NPSLE Patients

model classifies it into the correct class: NPSLE or non-NPSLE.
Accuracy was defined as the ratio between the total number of
correctly classified samples and the total number of test sets.
The coefficient of variation for the three augmentation strategies
was also calculated by taking the ratio of the mean accuracy and
the standard deviation. Precision was defined as the fraction of
correctly predicted NPSLE samples out of the total test samples
(NPSLE + non-NPSLE). The recall, defined as the fraction of
relevant items selected from the interest class, was calculated as
the fraction of correctly predicted NPSLE samples out of the total
number of NPSLE samples.

To assess differences in mean accuracy, precision and recall
among the three different geometric transformation approaches
we used here, repeated-measures analysis of variance (ANOVA)
was performed. For the volumetric analysis, the normality
of the volume fraction distributions was checked with the
Shapiro-Wilk test and value histograms were visually inspected.
Differences between NPSLE and non-NPSLE patients across the
total population and for the test sets in each trial were assessed
with independent sample t-tests and p values were calculated.
All tests were performed using the Statistical Package for the
Social Sciences (SPSS) version 25 (IBM corporation, Armonk,
NY, United States).

RESULTS

Classification Performance
No statistically significant differences were found between NPSLE
and non-NPSLE in any of the population characteristics provided
in Tables 1B,C (training sets) and (test sets). Table 2A shows
the individual and mean accuracy of the classification results
for the six trials, defined as the percent of correctly classified
NPSLE/non-NPSLE patients out of the total tests within a
trial. Results are given for three different strategies for data
augmentation that included one (random crop), two (random
crop + flip) and three (crop + flip + rotate) transformations.
The accuracy (SD) of the six trials in each augmentation strategy
was 83.35% (14.05%), 83.33% (16.10%), and 79.63% (11.47%). No
significant differences were found when comparing the accuracy
of the classification across the three data augmentation options.
The coefficient of variation for the three augmentation strategies
ranged between 0.14 and 0.19.

Table 2B shows the individual and mean precision and recall
for the test sets in each of the 6 classification trials. Precision is
defined as percent of correctly predicted NPSLE cases out of the
total number of tests within a trial, and recall is defined as the
fraction of correctly predicted NPSLE samples out of the total
number of NPSLE test samples within a trial. The same three sets
of geometric transformation for data augmentation were used
also here. The precision (SD) across trials was 50.6% (8%), 49.3%
(6%), and 48.6% (7%) for trials using only crop, crop + flip,
and crop + flip + rotation transformation, respectively. Recall
(SD) values were 85.2% (19%), 83.3% (23%), and 79.7% (19%) for
trials using only crop, crop + flip, and crop + flip + rotation
transformation, respectively. No significant differences were
found in accuracy (p = 0.531), precision (p = 0.845) and recall

(p = 0.686) among trials using the three different geometric
transformations.

An alternative and useful way to assess classifier performance
is the receiver operating characteristic (ROC) curve, displaying
the true positive rate (recall, or sensitivity) vs. the false positive
rate, expressed as complementary to the specificity. We provide
the ROC curves for the test sets in all six trials and the three
data augmentation strategies within each trial in Supplementary
Figure S1 of the Supplementary Material.

Common Features in NPSLE –
Grad-CAM Results
Figure 4 shows the thresholded averaged grad-CAM maps for the
six trials. Threshold was set at three different levels: 0.75, 0.85,
and 0.95. Each of the three panels shows the results following
data augmentation with crop only (4A), crop + flip (4B) and
crop + flip + rotate (4C). Common features that show up on
the grad-CAM maps were found only in the NPSLE cohort. The
areas generated by the grad-CAM maps with threshold set at
0.75 are too generic to report on specific brain regions, while
the higher thresholds of 0.85 and 0.95 reveal more parcellated
maps indicating local involvement. Brain regions showing on
the grad-CAM maps with threshold above 0.85 include the
lateral ventricles and periventricular white matter, as well as third
ventricle and basal cisterns (Figure 5). There were no specific
regions that contributed to the model’s prediction of non-NPSLE.

Secondary Analyses
Volumetric Analysis
Table 3 shows the results of the different comparisons of tissue
fractions between NPSLE and non-NPSLE: the six comparisons
within the test sets and the comparison across the entire
population of NPSLE and non-NPSLE subjects. When data are
not corrected for multiple comparisons, three comparisons show
significant differences between NPSLE and non-NPSLE: GM and
CSF in trial 4, and WM in trial 6. These differences become
non-statistically significant when the p values are corrected for
multiple comparisons (6 trials × 3 tissue types = 18 tests) with
Bonferroni correction. No statistically significant difference in
any tissue fraction was found between the total population of
NPSLE patients and that of non-NPSLE patients.

One-Class Support Vector Machine Analysis
Our attempt to apply one-class SVM to distinguish between T1-
weighted images of NSPLE and non-NPSLE was unsuccessful: all
non-NPSLE as well as all NPSLE data sets in all 10 trials were
classified as within-class, i.e., belonging to the non-NPSLE group.

DISCUSSION

In this study, we designed a self-supervised machine-learning
pipeline for classification of T1-weighted MRI images aimed at
distinguishing between images of NPSLE patients and those of
non-NPSLE patients. The accuracy of the classification algorithm,
based on six repeated trials, was significantly above random
choice, and practically independent of the augmentation strategy.
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TABLE 1B | Patient population characteristics for the six training sets.

Trial 1 (n = 102) Trial 2 (n = 102) Trial 3 (n = 102) Trial 4 (n = 102) Trial 5 (n = 102) Trial 6 (n = 102)

Sex (female, %) 90% 91% 91% 93% 90% 89%

Age (mean ± SD) 44 ± 13 41 ± 12 41 ± 12 41 ± 12 41 ± 14 43 ± 13

SLE duration (mean ± SD) 7 ± 8 7 ± 8 7 ± 7 8 ± 8 7 ± 8 7 ± 8

SLEDAI-2K (mean ± SD) 2 ± 2 2 ± 2 2 ± 2 2 ± 2 2 ± 2 2 ± 2

SDI (mean ± SD) 1 ± 1.2 0.8 ± 1 0.8 ± 1 0.8 ± 1 0.9 ± 1.1 0.9 ± 1.1

Sex, age and SLE clinical variables are described for the population included in each training set of each trial. SLEDAI = Systemic Lupus Erythematosus Disease Activity
Index 2000. SDI = Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index.

TABLE 1C | Patient population characteristics for the six test sets.

Trial 1 (n = 18) Trial 2 (n = 18) Trial 3 (n = 18) Trial 4 (n = 18) Trial 5 (n = 18) Trial 6 (n = 18)

Sex (female, %) 100% 89% 94% 89% 100% 100%

Age (mean ± SD) 34 ± 9 46 ± 16 41 ± 10 47 ± 15 38 ± 11 37 ± 13

SLE duration (mean ± SD) 6 ± 7 5 ± 6 9 ± 10 3 ± 5 8 ± 8 7 ± 8

SLEDAI-2K (mean ± SD) 2 ± 1 1 ± 1 2 ± 2 2 ± 2 3 ± 2 3 ± 1

SDI (mean ± SD) 0.83 ± 0.9 1.6 ± 1.5 1 ± 1.2 0.8 ± 1.3 0.7 ± 1.1 0.6 ± 0.8

Sex, age and SLE clinical variables are described for the population included in each trial. SLEDAI = Systemic Lupus Erythematosus Disease Activity Index 2000.
SDI = Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index.

FIGURE 3 | Training loss function for the duration of the training process (1,000 epochs). The three traces represent the loss functions obtained with the three data
augmentation strategies: orange: crop only; gray: crop and flip; yellow: crop, flip and rotation.

TABLE 2A | Classification accuracy for the test sets per trial, for all three data augmentation strategies.

Random data
augmentation Set

T Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean (S.D.)

crop {T1} ∈ T 61.11% (6,5) 77.78% (8,6) 77.78% (5,9) 100.0% (9,9) 88.89% (7,9) 94.44% (9,8) 83.35% (14.05%)

crop, flip {T1, T2} ∈ T 61.11% (7,4) 66.67% (6,6) 94.44% (8,9) 83.33% (7,8) 94.44% (8,9) 100.00% (9,9) 83.33% (16.10%)

crop, flip and rotation {T1, T2, T3} ∈ T 66.67% (6,6) 72.22% (8,5) 77.78% (6,8) 100.0% (9,9) 77.78% (8,6) 83.33% (7,8) 79.63% (11.47%)

Data are shown as percentage. Numbers in parentheses stand for the number of correctly classified non-NPSLE and NPSLE subjects, respectively.
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TABLE 2B | Classification precision and recall for the test sets per trial, for all three data augmentation strategies.

(precision/recall)

Random data
augmentation Set

T Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean (S.D.)

crop {T1} ∈ T 45.5%/55.6% 42.9%/66.7% 64.3%/100% 50.0%/100% 56.3%/100% 44.4%/88.9% 50.6% (8%)/85.2% (19%)

crop, flip {T1, T2} ∈ T 36.4%/44.4% 50.0%/66.7% 52.9%/100% 53.3%/88.9% 52.9%/100% 50.0%/100% 49.3% (6%)/83.3% (23%)

crop, flip, and rotation {T1, T2, T3} ∈ T 50.0%/66.7% 38.5%/55.6% 57.1%/88.9% 50.0%/100% 42.9%/66.7% 52.9%/100% 48.6% (7%)/79.7% (19%)

Data are shown as percentage, and each pair of numbers represents the precision and recall values, respectively.

The mean classification accuracy into the two classes, NPSLE
and non-NPSLE, across the three augmentation strategies ranged
between 79 and 83%. Within-augmentation variability across
trials was well contained: the coefficient of variation for the three
augmentation strategies ranged between 0.14 and 0.19, indicating
a good repeatability of the accuracy of the classification,
despite the significant heterogeneity of clinical measures, disease
phenotypes and the symptoms in the NPSLE population.

The overall precision of our model, representing the fraction
of correctly predicted NPSLE out of the total number of
NPSLE predictions, was lower, at about 51.8%. This indicates
a relatively high rate of false negatives (non-NPSLE subjects
identified as NPSLE). This may indicate that the structural
brain changes characteristic of NPSLE and were picked up by
the classification algorithm can also be found in non-NPSLE
patients. MRI abnormalities, such as lesions, local atrophy and
other diffuse abnormalities have been found in non-NPSLE
and as well as in SLE patients without NP when compared
with healthy controls (Ainiala et al., 2005; Appenzeller et al.,
2006, 2007; Kozora and Filley, 2011; Luyendijk et al., 2011).
It is thus not surprising that some of the features picked up
in the training of the algorithm were erroneously attributed
to non-NPSLE patients. It remains to be seen whether with
increased population size (via, for example, a multicenter effort),
or additional MRI modalities that reflect better other aspects of
structural changes in the disease (for example, FLAIR T2 images
that report on white matter hyperintensities) will contribute to
the precision of the classification and limit the false-positives.
Conversely, the recall, defined as the fraction of total relevant
results (correctly predicted NPSLE patients) out of the NPSLE
group, averaged at about 83% indicating a relatively low rate of
false negatives, i.e., NPSLE patients that were not classified as
such. This corroborates the meaningfulness of the features found
by the ML algorithm and provides support to their link to brain
changes in NPSLE population.

We studied the relationship between brain alterations in
NPSLE and the common features identified by the classification
algorithm with grad-CAM, a commonly used visualization tool
that provides a coarse localization map highlighting important
regions in the image for the classification task. As of recent, Grad-
CAM maps have been applied to medical imaging modalities,
including a successful application aimed at grading gliomas based
on MR images (Pereira et al., 2018; Stoyanov et al., 2018).
While grad-CAM maps do not provide quantitative statistical
information in the way that statistical parametric maps do,

they do indicate communality in the features that led to the
classification. In particular, periventricular white matter, lateral
ventricles, third ventricle and basal cistern seemed to be features
that discriminate NPSLE patients from non-NPSLE. In vivo
Structural MRI Studies (Muscal and Brey, 2010) and post-
mortem histological analyses of brains of NPSLE patients (Brooks
et al., 2010) showed significant amount of small focal lesions and
white matter hyperintensities concentrating on periventricular
white matter, as well as ventricular dilation. Higher occurrence
of periventricular and deep WMH lesions was reported also
in SLE patients compared to controls but without stratification
for NPSLE versus non-NPSLE patients (Hachulla et al., 1998).
Overall, despite their common presence in SLE patients with
brain involvement, the etiology of periventricular WMH in
NSPLE is not well understood, nor is it fully investigated in
other diseases with prevalence of periventricular WMH. In
older adults, periventricular WMH appear to be associated
with impaired cognitive function, in particular with working
memory, and are linked to disruption of long distance white
matter connections. Some characterization of periventricular
WMH in older adults was provided by diffusion tensor imaging
and pathological observations and revealed that periventricular
WMH are mostly characterized by gliosis and myelin loss
(Griffanti et al., 2018). Further investigation on the role of
periventricular WMH in NPSLE patients is necessary to confirm
their role and their importance in the disease process. Similarly,
additional confirmation for the link between the grad-CAM
concentration in the ventricular area in the NPSLE population
and either ventricular dilation or periventricular WMH needs to
be obtained. It is important to note that common features of brain
tissue alterations in NPSLE are not only relegated to volume and
location but also to the shape of lesions, and in particular that of
white matter hyperintensities. The potential relevance of WMH
shape in the radiological diagnostic process has been already
demonstrated in diabetes (De Bresser et al., 2018), cerebral small
vessel disease (Kant et al., 2019) and stroke (Ghaznawi et al.,
2021). Evidence for ventricular and periventricular structural
differences between NPSLE phenotypes, including between
NPSLE and non-NPSLE, have been already given, including in
our own studies (Inglese et al., 2021), and it is possible that the
features detected by the ML algorithm in the NPSLE population
is a combined effect of volume and shape characteristics. Finally,
there is no consistent reporting on direct involvement of the
basal cisterns per se in SLE or NPSLE, barred few case reports
(Kawamata et al., 1991; Tsushima and Kubo, 1999). A plausible
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FIGURE 4 | (A) Grad-CAM results of NPSLE patients in the six trials
augmented with “crop” (A), “crop and flip” (B), and “crop, flip and rotation”
(C). Each row displays thresholded mean grad-CAM maps obtained from the
NPSLE test set of one of the trials (1 through 6) overlaid on a T1-weighted
dataset. Each column displays a different Grad-CAM threshold: 0.75 (left),
0.85 (middle), and 0.95 (right). Within each column, data are shown in three
different orientations: coronal (left), sagittal (middle), and axial (right).

explanation for the involvement of the basal cisterns is the effect
of atrophy, leading to increase in CSF volume in the basal cisterns
as well as in the lateral ventricles.

There are several limitations and challenges associated with
our study, and we hope to address some of them in our future
efforts. Characterization of the overlapping features between

the false negatives and “true” NPSLE subjects will certainly
require special attention in future studies, with significantly
larger populations of SLE and non-NPSLE patients, and with
an inclusion of control groups of SLE patients without NP,
as well as of healthy controls. One of the most significant
limitations of this study is that we could not use the method
implemented here to reliably address the link between NP
manifestations and structural brain changes in the NPSLE
population. This is a question of great importance, and providing
means to investigate it will increase the understanding of
the pathological mechanisms behind NPSLE as well as aid in
diagnosis. The choice of focusing solely on the classification
of NPSLE vs. non-NPSLE patients was partly driven by its
diagnostic importance, but also made based on the number
of patients available for the training and trial sets. Since the
ACR1999 criteria apply only to NPSLE, stratification based
on NP manifestations or based on NPSLE disease phenotype
would have resulted in groups that are too small for a reliable
application of the pipeline we developed in this work. For
example, stratification of the NPSLE patients to ischemic and
inflammatory phenotypes would have resulted in two groups
of 30 and 13 patients, respectively, from which training
and trial samples have to be in turn chosen. This is an
unrealistic scenario for this particularly study. It is hoped that
multicenter studies that carefully address harmonization in the
diagnostic and in the imaging process will be able to efficiently
address this issue.

Despite the fact that there were common regions highlighted
by Grad-CAM in the NPSLE group, it is premature to
claim at this point that these regions are indeed clinically
significant, and a broader investigation is required. In the
current investigation we used only one MRI modality, namely
T1-weighted images, a modality that is highly sensitive to
volumetric structural changes, but less sensitive and less specific
to lesions, infarcts, microbleeds and hemorrhages, which all result
in local hypointensities. Thus, it is imperative to continue the
investigation with a more multimodal approach, with additional
modalities that will add more sensitivity and specificity to a
variety of structural changes commonly found in SLE and
NPSLE. From the algorithm perspective, self-supervised machine
learning is identity preserving, and it is therefore possible to
add a variety of MRI modalities to the process in the hope
of significantly improving the classification performance. For
example, information on microbleeds is significantly enhanced
with the use of T2

∗-weighted images, and white matter
hyperintensities are conspicuous on T2-FLAIR images.

In deep learning classification tasks, access to a large amount
of data sets is essential. The number of samples (overall number
of patient data sets) that were included in our study (163)
was limited compared to typical numbers of samples used in
classification tasks, typically in the tens of thousands of cases
(Zhang J. et al., 2020) NPSLE is a rare and highly heterogeneous
disease with respect to the variety and severity of symptoms, and
most pertinently with respect to the types and spatial distribution
of brain abnormalities found in NPSLE and the underlying
pathomechanisms responsible for the damage to brain tissue.
and it is therefore not a natural target for supervised machine
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FIGURE 5 | Brain areas that correspond with regions highlighted in the grad-CAM maps with threshold above 0.85. Arrows indicate the lateral ventricles (A), the
third ventricle (B), and the basal cisterns (C). Periventricular white matter is highlighted in (D).

learning based classification. Our results do not categorically
exclude the usefulness of supervised deep learning approaches to
classification tasks of the kind we performed here, but do provide

TABLE 3 | Comparisons of GM, WM, and CSF tissue fractions between NPSLE
and non-NPSLE across test sets in all six trials and in the entire study population.

NPSLE Non-NPSLE p-value

Test sets

Trial 1 n = 9 n = 9

GM 0.43 ± 0.02 0.42 ± 0.03 0.139

WM 0.35 ± 0.01 0.35 ± 0.03 0.804

CSF 0.22 ± 0.03 0.24 ± 0.05 0.256

Trial 2 n = 9 n = 9

GM 0.40 ± 0.03 0.39 ± 0.03 0.441

WM 0.34 ± 0.02 0.34 ± 0.03 0.777

CSF 0.26 ± 0.03 0.27 ± 0.04 0.592

Trial 3 n = 9 n = 9

GM 0.40 ± 0.02 0.39 ± 0.02 0.417

WM 0.34 ± 0.02 0.34 ± 0.02 0.914

CSF 0.26 ± 0.04 0.27 ± 0.03 0.508

Trial 4 n = 9 n = 9

GM 0.38 ± 0.04 0.40 ± 0.03 0.366

WM 0.33 ± 0.02 0.35 ± 0.02 0.116

CSF 0.29 ± 0.05 0.26 ± 0.03 0.140

Trial 5 n = 9 n = 9

GM 0.37 ± 0.03 0.41 ± 0.02 0.023*

WM 0.33 ± 0.01 0.34 ± 0.02 0.050

CSF 0.30 ± 0.04 0.25 ± 0.04 0.019*

Trial 6 n = 9 n = 9

GM 0.41 ± 0.03 0.40 ± 0.02 0.537

WM 0.33 ± 0.01 0.37 ± 0.03 0.006*

CSF 0.26 ± 0.04 0.24 ± 0.04 0.244

Total populations n = 43 n = 120

GM 0.40 ± 0.03 0.40 ± 0.03 0.478

WM 0.34 ± 0.02 0.34 ± 0.03 0.126

CSF 0.26 ± 0.04 0.25 ± 0.05 0.252

Tissue volumes were normalized to total intracranial volume resulting in (unitless)
tissue fractions. These are expressed as mean ± SD. Differences between NPSLE
and non-NPSLE were calculated with unpaired t-tests and expressed as p values,
*p < 0.05. values in bold represent statistically significant differences between the
two cohorts.

an impetus for exploring a variety of approaches with the goal
of finding the one that suits the most the type and amount data
in need of classification. The goal of this study was to establish
a retrospective link between (known) diagnosis and structural
brain differences between two classes of samples: NPSLE and
non-NPSLE patients. Within the limits of a single-center study
we benefitted from the maximum number of patients available
in the Netherlands, as well as from the most comprehensive
diagnostic process for NPSLE (being a national referral center for
the disease). When attempting to use a 2 class-wise supervised
learning approach, the model diverged, possibly due to the
limited number of data sets and the inconspicuousness of the
visual features. Based on the fact that self-supervised learning is
known to perform well even with a small data sets (Masood et al.,
2015; Bai et al., 2019), we opted for self-supervised learning, in
the hope that following the classification, common features for
two independent classes will emerge, coinciding with the NPSLE
and non-NPSLE patient groups. Eventually, the algorithm was
only able to find common features within one class of patients
(NPSLE), and no common features were found in the non-NPSLE
group in our trials. We cannot claim as a certainty that there are
no common features to the non-NPSLE group, but the positive
result we obtained for the classification of the NPSLE group
supports the notion that in our classification task it was more
effective to allow the algorithm to learn the visual representation
in a self-supervised manner using similarity across images, rather
than providing a-priori class labels.

To conclude: we set the stage for classification of brain
imaging data of NPSLE and non-NPSLE patients using deep
neural networks, achieving relatively high average accuracy
across repeated trials. We showed that self-supervised learning
is capable of capturing common image features in one class of
subjects (NPSLE). This task could not be accomplished with
supervised learning, demonstrating that self-supervised machine
learning can capture relatively inconspicuous visual information
by cross-entropy loss in the MRI images, and may prove
advantageous when only a limited number of data sets is available.
The method shown here is modular and can accommodate
additional imaging modalities to be included in the classification,
and can be easily applied to other studies of rare diseases that
suffer from similar limitations.
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